QUALITY CHARACTERISTICSTO SELECT AN ARCHITECTURE
FOR REAL-TIME INTERNET APPLICATIONS

Losavio F., Matteo A., Ordaz Jr. O.
Centro ISY S, Faaultad de Ciencias,
Universidad Central de Venezuela
Apartado 47567 Los Chaguaramos 1041-A, Caraca, Venezela
{flosavio, amatteo, oordaz} @isys.ciens.ucv.ve

Lévy N., Marcano-Kamenoff R.
Laboratoire PRISM
Université de Versaill es St.-Quentin,
78035V ersaill es Cedex, France
{Nicole.Levy,Rafad.Marcano} @prism.uvsq.fr

Abstraa

Performance, seaurity and avail ability are important non-functional characeristics that must be present in
red-time systems. The seledion o a @mnvenient architedure is an important step in achieving these quality
goas. The use of an appropriate achitedura style can simplify architedural design and subsequent
software implementation stage. The overal quality goals are influenced by the structural charaderistics or
topdogy of the style. However, the problem on the seledion d the right architedural styles acording to
the desired quelity attributes is an open isuie. The eisting approaches ladk of a standard and formal
notation. They are limited to an informal description and examples of the gplicaion d a style. Quality
isaues are not explicitly considered. The main goal of thiswork isto propaose an approach for the seledion
of software achitedures based on qulity charaderistics. We present a process integrating the ABAS
technique with the 1SO 9126 qulity model, taking advantage of their complementary strengths. The B
formal language is used to formally describe achitedural styles and their quality attributes. We describe
and dscussan experience obtained in applying this processfor the seledion d the achitedure of a market
stock exchange monitoring system. One of the transformations introduces Internet as a communicaion
medium.

Key-words: software achitedure, red-time system, quality attribute, ABAS, architecural style

1. INTRODUCTION

Red-time time systems interad diredly with eledricd and/or medanicd devices,
handling external events usually captured by sensors from the eavironment. They must be
prepared to ded with safety-criticd situations, which must be handled with strict timing
and adering constraints. They may vary in time and scope, bu performance, seaurity and
avail ability are important quality or nonfunctional charaderistics that must be present in
such systems, whose fail ure may invalve high costs, such aslossof human life.

An important step towards achieving the quality goals required by areal-time system
is the seledion d a mnvenient architedure for the mrrespondng software system [BCK
98], [BK 99]. Architedural design identifies the key strategies for the large-scde
organizaetion d the system under development [Kru 04, [SR 98], [Dou 99. These
strategies include for example, the mapping of a software padkage to processors, bus and
protocol seledion, at a quite low level of abstradion. Quality requirements are generally

1 This reseach is gorsored by the CEE INCO SQUAD projed EP 962019and the CDCH ARCAS projed No.
03.13.458400 d the Universidad Central de Venezuela

dedt with by arather informal processduring architedural design. Conventional objed-
oriented design methods [Rum et a 96|, [Jac ¢ a 92], [Kru 07 tend more on achieving
the required system functionality, paying limited attention to quality requirements.
Implicitly, the use of the objed-oriented modeling approach guarantees to some extent
the construction d reusable and flexible systems. Hence maintainability and reusability
requirements are incorporated to some extent. However, only these quality charaderistics
are implicitly considered [Bos 0Q]. It is also of general agreement that the improvement
of one quality attribute may negatively influence ancther one, so there must be a
negotiation a tradeoff before bulding the final system. Otherwise, the inclusion d
different quality requirements oncethe system is built, will be extremely costly. There ae
very few approaches to explicitly hande the nflicts in quality requirements during the
architedural design stage [Bege d a 99, [KK 00Q], [Bos 00], [Kas et a 98]. Consequently,
the ladk of a suppating method a systematization divesto design software achitedures
in an ad-hoc, intuitive, experience based manner, with the cnsequent risk of unfulfilli ng
some of the system properties.

Few traditional software development methods ded explicitly with quality
architedural design. New methods are aising.

A method, poposed by [Bos 00], considers the design of software achitedures
taking acourt of the quality requirements from the ealy stages of development. The
architedural design process seen as an optimization poblem, is viewed as a function
taking as inpu the functional requirements gedficaion and generating as output the
architedural design. In the first step, a first version d the achitedure is produwced, nd
acounting of the quality requirements. Then, this design is evaluated with resped to the
quality requirements. Each quality attribute is given an estimated value. These values are
compared with the values of the quality requirement spedficaion. If al the values are &
good a better than required, the achitedura design processis finished. Otherwise, a
send step transforms the initial architedure, duing which, qulity value for some
attribute improves. This design is again evaluated and the same processis repeaed, if
necessary, urtil al quality requirements are fulfilled o until the software enginee
deddes that there is no feasible solution. In this case the software achited needls to
renegotiate the requirements with the austomer. Each transformation (quality attribute-
optimizing solution), generally improves one or some qudlity attributes, affeding others
negatively.

Another method, ATAM (Attribute Tradeoff Analysis Method), is smilar to the one
formulated by [Bos 0Q]. It is proposed by [Kaz et a 98] as atechnique for understanding
the tradeoffs inherent in architedure evaluation. The method povides a way to evaluate
software achitedure’ s fitnesswith resped to multiple competing quality attributes. Since
these dtributes interad, the method relps to reason abou architedural dedsions that
affed quality attribute interadions. The ATAM is a spird model of design, pcstulating
candidate achitedures followed by analysis and risk mitigation, leading to refined
architedures. The technique used for helping the reasoning is based on Attribute Based
Architedural Style (ABAS). A quaity modd for a particular quality attribute is

established to help in the sdledion d astyle. An ABAS considers only one dtribute & a
time. If several attributes must be considered, the ABAS technique is regoplied.

Both methods are quite similar. However, ore of the major diff erences between these
approadhes is that [Bos 00] method includes concrete guidelines on how to transform or
refine the achitedure in order to med the quality requirements. ATAM, dces nat provide
guidelines for refinement, concentrating instead more on the identificaion d the tradeoff
points, e.g. design dedsions that will affed anumber of quality attributes.

For the purpose of this work, we have benefited from both approadies. We have
applied the ATAM’s ABAS tedhnique to identify the relevant quality attributes, in order
to evaluate the fitness of the proposed architedural style. However, since ABAS
considers only one dtribute & a time, we have used an extended ABAS [CLP 00Q],
defining a quality model involving al the interesting attributes, acwording to the ISO
9126 model. In this way we have aglobal and Letter picture of all the involved quality
attributes. On the other hand, we have used a formal approach based onthe B language
[Abr 96], similar to the transformation approacd followed by [Bos 00], to formally justify
the seledion d the style and related patterns.

In what follows we will consider an architedural style [GS 96] or architedural
pattern [Bus et al 96] as a general description d the pattern of data and interadion among
the comporents. An informal description d the benefits and drawbadks of using the style
is also provided [Bus et a 96], [KK 99]. A comporent of the style may be adesign
pattern, in the sense of [Gam et al 95].

The main goa of this work is to present and dscuss the experience obtained in
applying the ABAS (Attribute-Based Architedural Style) tedhnique [KK 99, for the
seledion d the achitedure of a market stock exchange monitoring system. This
application is considered a soft red-time problem, in the sense that some of the events
may miss their dealline, withou affeding the whoe system’s behavior. The
transformation process that undergoes architedural design is formally described by
means of the B language. One of the transformations introduces Internet as a
communicaion medium.

The structure of this paper is as follows. The first sedion introduces red-time
monitoring systems. First, the requirements for the stock exchanges monitoring system
are described. Then, a quality model is introduced, based on ISO 9126 model. A
cdegorization d architedura styles for red-time systems is subsequently presented. The
send sedion describes the process of seledion d the achitedure based on quality
attributes. The ABAS tedhnique is introduced. The third sedionill ustrates the use of the
B language to formally speafy architedures with quality attributes. The whole processof
applying the presented technique to seled the achitedure of the stock exchanges g/stem
is detailed in sedion 4.The last sedion dscusses the aquired skill s and advantages of
the presented approad.

2. REAL-TIME MONITORING SYSTEMS

2.1 Requirementsfor areal-time stock exchanges monitoring system

The primary goa of a red-time monitoring system is to cagpture, anadyze and
broadcast events (data) in red-time. We ae interested in soft red-time systems, where
some of the events may miss their dealine, withou affeding the whoe system’s
behavior. The neads of red-time distributed applicaions running in heterogeneous
environments interconreded by wide-areanetworks, have driven the requirements for an
application that will be cdled CSE (Cyber Stock Exchange). Non-functional
requirements for CSE are high avallability, platforms heterogeneity, distribution o
clients, reliable information with strict deadlines. It is known that these charaderistics
are nat independent, and there must be atradeoff to determine prioriti es.

The CSE system, as a red-time data provider, will monitor small and medium size
Latin American stock exchanges for brokers and independent investors. An antenna (feed
server) externa to the system, provides the data (feed) to the CSE data server. A fed
contains the relevant information d a stock exchange transadion. The dients (brokers),
distributed in dfferent geographicd locaions, are subscribed with the data server. When
a thange on the feed to which a dient is subscribed occurs, the feed is broadcasted to him
by the data server, acarding to a strict time delay. Since one of the requirements for the
CSE platform is wide-areanetworks, the time delay will depend onthe network structure
used to send the information to the dients. The type of service offered depends on this
delay.

Type of services offered

A commercial data provider for stock exchanges can be of different types, acrding
to the average delivery time (adt) off ered for the delivery of the datafeeds to the dients:
- end of day data provider. Data ae delivered at the end d the day
- delayed data provider. Data ae sent periodicdly and orly when there is a
modification.
- real-time dataprovider. Data ae sent ead time thereis amodificaion.

CSE will satisfy one of these services.

Non-functional requirements. quality characteristics

The quality charaderistics required for CSE are the foll owing: - Availability, becaise
the system must naot interrupt the service In case of interruption, important transadions

may be lost involving substantial financial loss - Efficiency, becaise the data must be
delivered within the established average delivery time (adt) in arder to fulfill the service

offered. In consequence high performance must be aaured in data transmisson. -
Portability, because the dients which are distributed in dfferent locations, use different
development platforms, minimizing the neel for changes and adaptations. The
programming language used is also invalved in thisisaue.

Avail ability and efficiency are the most relevant charaderistics for CSE.

Efficiency is measured in terms of the number of transadions srved eat day. It
depends on the number of brokers and/or stock exchanges to be served and on the
platform used. If more dients are introduced, a hardware with high performance must be
considered. Reliability in ou case, depends diredly on the network (Internet) and the
different communicaion protocols for data transmisson; it may affed the avail ability of
the whole system. If the system is not avail able, the main goa will not be acompli shed,
hence the system will nat conform functiondlity, so availability is crucia for failure or
success In arder to guarantee aail ability, redundancy of hardware and software must be
taken into acaunt and maintenance ca also be dfeded in terms of cost increase. In what
follows, a genera model for establishing the quality charaderistics of red-time
monitoring systems will be presented.

ISO 9126[1SO 98] propacses a generic model, to spedfy and evauate the quality of a
software product from different perspedives or views, aaquisition, development,
maintenance It considers internal characteristics, which are related to the software
development processand environment and external characteristics, observed by the end-
user on the final software product. The view of quality, onthese bases, can be internal or
external, and it is dso affeded by the stakeholder view in the particular stage of
development. An external charaderistic can be measured internaly, however its name
and measure may be different, acording to the stage of development. For example,
portability is an external charaderistic acording to ISO 9126 we can spe& of a portable
system, from the point of view of the end-user of the final system. Moreover, the design
can be extensible from the point of view of the system enginee in the design phase, we
will then spedk in terms of extensibility. An important issue on software product quality is
that the product internal charaderistics determine or influencethe external charaderistics.
In order to establish this influence internal charaderistics must be linked or related in
some way to external charaderistics. 1ISO 9126 d@fine six charaderistics that can be
subdvided into sub-charaderistic, introduwcing a refinement notion: Functionality,
Reliability, Usability, Efficiency, Maintainability, Portability. Attributes in the 1SO
context are the measurable dements of the high level quality charaderistics and sub-
charaderistics.

The generic 1SO 9126 model must be aistomized acwording to the system’s non
functional requirements. Figure 1 shows the 1SO model adapted to the quality
requirements of red-time monitoring systems, considering reliability as the relevant
external charaderistic. It considers two main aspeds: the arival of the data to their final
destination and the rredness of these data & the moment of displaying them on the

client for satisfying the service In terms of the CSE system, avail ability is an external
sub-charaderistic of reliability. If availability canna be guaranteed, the system is not
reliable. Reliability is measured by the percentage of time that the system functions
withou fail ures that represent an interruption d the service Complexity, as its interna
sub-charaderistic, can be measured registering the interruptions of the system, as the time
that the data server is nat transmitting the feeds, and the number of clients requiring the
services. A grea complexity could affed reliability. Cougding is used to cdibrate
complexity. It is measured in terms of standard OO metrics.

Reliability (E)
|
I |
Avail ahility (E) Reusability (1)
Complexity (1) Instanciability (1)
Couding (1) Abstradion (1)

Figure 1. Quality Model for Red-time Monitoring Systems

On the other hand, reusability is an internal sub-charaderistic that may also affed
reliability. At design level it can be measured using standard OO metrics considering
abstradion a sub-charaderistics of instanciabilit y.

Efficiency (performance) is an external charaderistic measured in terms of the
number of transadions srved ead day. Portability may in turn affed efficiency. They
will not be treaed here in further details. Usability and Maintainability are nat the main
concerns for CSE, they neither will be discussed here.

From the @owve discusgon, it can be observed that avail ability affeds diredly the
functionality or functional conformity of red-time monitoring systems. If the system is
not available, the functional requirements will not be fulfilled. In this ®nse, we have
given priority to this charaderistic for seleding a nwvenient architedure for CSE.

2.2 Architedural stylesfor real-time systems

CSE is adistributed applicaion, so we will be interested orly in thase achitedural
styles favoring indired communication and comporents decougding. We will consider the
Data Indiredion style [KK 99]. This gdyle is charaderized by an intermediary (data
repository or protocol) between producers and consumers of some shared data. Producers

and consumers do nd know the data implementation cetail s of the repository and they do
not know ead ather. The design patterns Publisher/Subscriber and Mediator [Bus et a
96] will be studied. The Data Indiredion style describes an elemental distributed software
system in which prodwes and consumers communicae through an intermediary
comporent. However, the details on the repository or the protocol associated to the
intermediary comporent remains uncdefined.

In order to communicate producers and consumers through a spedfic communicaion
model, we @uld introduce variants of the intermediary comporent. As a result, the
Publi sher/Subscriber pattern is gudied. It introduces the synchronization and propagation
of changes between the pullisher and the subscribers. The Mediator pattern introduces a
spedalized comporent (i.e. Mediator) taking in charge the cmmunicaion between
colleagues which dffer in their communicaion protocols.

3. THE ABAS (Attribute-Based Architedural Styles)

The nation d Attribute-Based Architedural Style (ABAS) [KK 99|, as we pointed
out in the Introduction, is conceved to make achitedura styles the foundation for more
predse reasoning abou architedural design. This is acomplished asciating a
reasoning framework (quantitative or qualitative) with the description of an architecural
style. The reasoning framework is based onthe establishment of a quality model spedfic
to a quality charaderistic, cdled attribute in the ABAS approadh. Notice that the ABAS
attribute notion corresponds to the 1SO 9126 ndion d quality charaderistic. Only one
atribute & a time is considered when ABASs are used in design o analysis, becaise
ABAS is associated with orly one dtribute reasoning framework, cdled an attribute
model. For example, if an architedural style is interesting from both a performance and a
reliability point of view, it would be motivation for creding the respedive performance
and reliability ABASs. The aithors clam that using ABASs is a step in moving
architedural design closer to being an engineaing discipline. Design and analysis of
software achitedure is based onreusable design comporents. reusing known patterns of
software comporents with predictable properties. The information for charaderizing an
ABAS quality attribute is divided into three caegories. - External Stimuli that causes the
architedure to respond @ change. - Responses, that are quantities measured or observed
in the requirements or attributes desirable in the achitedure. - Architectural decisions
that are agpeds (comporents and connedors) and their properties, charaderizing the
style, that have adired impad on achieving attribute resporses. The main pupase of
every ABAS is to aganize consistently the existing spedalized bod/ of knowledge in
eat o the quality attributes communities. This knowledge can be reused in every ABAS
related to a particular quality attribute. Table 1 shows the four parts of the ABAS
structure:

This gructure is smilar to those propaosed in the cdalogues of architedura styles
[SG 95], [Bus et a 96], with resped to Part 1 and 3 d Table 1. The main dfference

consists in adding explicitly the information onthe dharaderistics of the quality attribute
relevant to the particular style, expressed in Part 2 of Table 1. These ae the measures of
the resporses and constitute the quality model for the dtribute. Moreover, Part 4 of the
structure, analysis, is used to establish the link between the quality model of the dtribute,
and the measures of the atribute. The aspeds discussed in Parts 2, 3and 4 constitute the
reasoning framework for establi shing the quality charaderistics of the achitedural style.

From the &owe discusson, an ABAS is e as a reusable design comporent,
providing a quality model for a spedfic charaderistic which is predictable in the context
of the appli cation where the particular ABAS will be used. For example in ou case, if the
reliability attribute is required, all the ABAS using different forms of data indiredion,
which seans to be suitable achitedure for distributed systems, could be analyzed
acording to the framework of Table 1. The complexity of the achitedure, expressed by
the couding of the cmmporents, has to be taken into acoun, becaise we ae wnsidering
explicitly avail ability. In this ense, we have extended the ABAS framework [CLP 00],
considering the 1SO 9126 qulity model for a global and better understanding of the
guality charaderistics of the system. The quality model previously discussed, shows how
these dharaderigtics affed the avail ability of the services offered by the system.

Structure Description

1. Problem description

Informal description of the design and analysis
problem that the ABAS is intended to solve, including
the quality attribute of interest or whose presence is
desirable in the achitedura style, the context of use,
constraints and relevant attribute-spedfic requirements.

2. Stimulus/Resporse dtribute
measures

A charaderization d the stimuli to which the
ABAS is to respond and the quality attribute measures
of the resporse. Construction of an 1SO 9126 lased
guality model for the attribute.

3. Architedural style

Description d the achitedural style in terms of its
comporents, conredors, properties of those comporents
and conredors, and peitern o data axd control
interadions (their topdogy) and any constraints on the
style. Description d architectural decisions.

4. Analysis

Description d how the quality attribute models are
formally related to the achitedura style and the
conclusions abou “architecural behavior”.
Establishment of the links or tradeoff, between the
quality charaderistics required and the measured
properties aff eding them. A reasoning and analysis and
design heuristics are formulated.

Table1. The ABAS Sructure

3.1 Datalndirection
Problem description

This ABAS is charaderized by keegping the producers and consumers of shared data
from having knowledge of eat ather’s existence and the detail s of their implementations
by interposing an intermediary or protocol between the producer and consumers of shared
dataitems.

Criteriafor seleding Data I ndirection

It isrelevant to anticipate changes in the producers and consumers of data, including
the adition d new producers and consumers, if these dhanges are frequent and it is
worth the aost of the modification.

Stimuli/Response for avail abili ty

Important stimuli and their measurable cntroll able resporses are:
- Stimuli:
- addanew producer or consumer of data
- amodificaionto an existing producer or consumer of data
- amodificdionto the data repasitory
- Resporses:
- The number of comporents, interfaces and conredions added, deleted and
modified, aong with the daraderization d the @mplexity of these
additions/deletions/modifications

Architedural considerations

The data repository can be alocaion knavn by both producers and consumers (e.g. a
file or a global data aeg or it can be a separate computational comporent (eg. a
bladkboard). The @nstraint on the repository isthat it can hdd data. The repository has a
data structure, and a set of datatypes or layout known by all producers and consumers. A
single mmporent may be both a producer and a wnsumer. The producers placetheir data
on the repository becaise they know the detail s of the layout; the consumer has a similar
behavior for retrieving the data. The management of performance and concurrency
control are outside the scope of this gyle.

Analysis

Redundancy in data producers and data flow channels will i ncrease avail ability. The
dependency on the repository is crucial for availability. In case of failure, a substitute
repository must be avail able.

10

Architedural parametersfor the availability attribute

Topdogy Star
Knowledge of the datalayout by client Complete
Dependency on Repasitory for producers/consumers Very high
Redundancy of data producers High
Redundancy of data flow High

Table 2. Architedura dedsionsfor Data Indiredion

3.2 Mediator
Problem description

Mediator is extensively described in [Gam et a 95|, [LL 99]. The intent of the
Mediator design pattern is to define an ojed that encegpsulates how a set of objeds
interads. Mediator promotes loose wuging by keeuing objeds from referring to eath
other explicitly (encegpsulation), and let you vary their interadion independently.
Consumers and produce's are cdled colleagues. Mediator is a distinguished coll eggue. It
favors the cmmunicaion among coll eagues that do nd know ead ather, bu only their
Mediator; therefore the number if interconredionsis reduced.

Criteriafor seleding Mediator
Condtions that must be satisfied to seled Mediator:

- Colleagues do nd know eat ather

- A colleggue only knows its Mediator

- Mediator knows all it s coll eagues

- Colleggues are not couped

- There ae no dependency cycles among coll eagues
- Mediator is couded with its coll eagues

Stimuli/Responses for avail abili ty

- Stimulus: add anew coll eague

- Resporse: avail ability of the service increases with time, the number of coll esgues
(relevant to avail ability of service)

Architedural considerations

Table 3 presents relevant considerations for Mediator with resped to the avail ability
attribute.

11

Architedural parametersfor the availability attribute

Topdogy Star

Size (Number of coll eagues) High
Dependency on Mediator Very high
Redundancy of dataflows High

Table 3. Architedura dedsions for Mediator
Analysis

Collegues may be data produwces or consumers, indstinctly. Redundancy of
coll eagues implies the caadty of substituting the mediator for ancther colleague in case
of fail ure, increasing avail ability as afunction d the timethat the serviceis avail able.

However, if the number of colleagues increases too much (increase in complexity)
the cgadty of the Mediator for handling communicaions could be compromised. In
consequence, the avail ability of the system will be negatively affeded, since the dired
communicaion ketween the mediator and its coll eagues could be delayed, increasing the
posshility of failuresin the data delivery.

In case of CSE, the avail ability charaderistic dfeds the performance of the system,
as afunction d the st of the redundancy mecdhanisms necessary to provide the required
avail ability level, in a cnvenient time delay.

3.3 Publisher/Subscriber with Push model

Problem description

It helps to synchronize the state of producers (publishers) and consumers
(subscribers) of data. When a producer “pulishes’ a new data, all the subscribers related
to the producer, which require the data, are natified and automaticdly receve the data. In
the cae of a push model [Bus et a 96|, the producer sends data with the natificaion orly
to the interested consumers, reducing the number (complexity) of the coommunications to
the consumers and increasing the performance of the gplication.

Criteriafor seleding Publisher/Subscriber with Push model

Conditions that must be satisfied to seled Publi sher/Subscriber with Push model:

- The number and identity of data producers and/or consumers are not known o may
vary

- The tempora ordering between producers and consumers is not known and
undergoes frequent changes

12

- There ae no time onstraints related to the anourt of data that must be produced
andor consumed. There ae no synchronization dependencies between the
production and consummation d the data.

Stimuli/Responses for avail abili ty

- Stimulus: add a new producer

- Resporse: increases the avail ability of the service, measured in terms of the number
of transadions exeauted in aunit of time

Architedural considerations

Table 4 presents relevant considerations for Publisher/Subscriber with push model
with resped to the avail ability attribute.

Architedural parametersfor the availability attribute

Topdogy Star

Data persistency Transitory

Size of the data padkage Small

Communication Protocol Seledive broadcasting
Dependencies (from producer) Very high
Redundancy in dataflow High

Table 4. Architedural dedsions for Publi sher/Subscriber with push model
Analysis

An adequate redundancy of prodwes and data flow channels deaeases the
passhility of failures, increasing avail abilit y.

The use of the push model with seledive broadcasting communication protocols
organized in a star topdogy, favors performance and avail ability, considering moderate
data padkages, as a function d the band width of the communication channel and the
number of subscribers.

Avail ability affeds the performance of the system, as a function d the st of the
redundancy mechanisms required. The asciated computational infrastructure shoud
have enough cgpaaty and suppat balanced.

13

4. FORMALIZING ABASUSING B

The ABAS technique has the alvantage of suppating a simple and intuitive
description d software achitedures. It permits to speafy the general structure of a
software model at a high level of abstradion and to reason abou it. It is useful to
understand and dacument systems, all owing a better communicaion between developers
and customers. However, ABAS ladcks of predse semantics and remains inadequate to
proof corredness and consistency. Therefore, the resulting spedficaions can be subjed
to misinterpretations. ABAS is not sufficient enough to develop rigorous appli cations that
require nonfunctional propertiesto be ensured.

The gproach presented here integrates the B [Abr 96] formal method with the
ABAS tedhnique in a @mmplementary manner. The coice of B offers a perfed
oppatunity to enhance «isting semi-formal descriptions of architedural styles. We use
the B formal language in arder to balance the semantic weaknessof ABAS by a rigorous
and pedse spedficaion. The B forma spedficdion is used to spedfy predsely the
structure, the behavior and also to measure the nonfunctional charaderistics of an
architedural style.

The B formal language is based onthe set theory. A B spedficaionis composed of a
hierarchy of abstrad macdines, ead ore rrespondng to a particular comporent of the
spedfied system. An abstrad madiine dedares a set of state variables describing the
abstrad state. The madines operations are used to modify the state variables. First order
logic is used to expressthe invariant of a madine, as well as the precondtions of the
operations. The post-condtions are defined as generali zed substitutions. The @nsistency
between invariants and ogperations can be proven. The mistakes are nsequently
removed, ensuring the @rrednessof the spedficaion. Thisis a mgor advantage of the B
method. The B methodis entirely suppated by automated toadls guch as the Atelier B.

In [MLL 0Q] we have presented an approach to formally spedfy architecura
patterns using the B language. A complete description d the B method and the B
language can be foundin [Abr 96)].

In the aurrent approach, ABAS technique is used to describe the high-level structure
of a style, such as comporents/classes and association relationships among them. Then, a
first B abstrad speaficaion is deduced from the ABAS description and wsed to chedk
consistency. To doso, an abstrad madine is asociated to ead structural comporent of
the style. Subsequently, the B notation is used to describe detail s of ead comporent that
are left unspedfied in ABAS, such as the compasition and dhta types of class sates, the
behavior of classoperations and the global invariants. At this level anumber of important
dedsions concerning some unspedfied properties must be ducidated by the developer.
The quality attributes are included at this point. The resulting spedficationisthen used to
determine the quality attribute values of the achitedure.

14

Figure 2 shows the structure of the B spedficaion associated to the Data Indiredion
style. The left hand side of the picture shows the uses and includes links between the
different madines. On the right hand side, we present the madine Data Indirection
which spedfies the achitedural style. It includes the cmporents Consumer, Producer
and Protocol Consumer Producer (the intermediary). Becaise of ladk of space the
complete spedficaion d these mmporents is omitted here. In order to measure the non
functional requirements, the quality attributes are asciated to the B machines through
the definitions clauses. Notice that a definition caled availability is used to asciate the
avail ability attribute to the Data Indirection macdiine. The availability of the whoe
architedure is cdculated from the consumer’s perspedive. For a given consumer (C;), the
avail ability of the system takesinto acourt five variables :

- the avail ability of the consumer itself, avail(C)

- the availability of the wnredor, avail(co-I-C), between the intermediary and the
consumer

- the avail ability of the intermediary, avail(l)

- the avail ability of ead producer (P;) communicating with the intermediary, avail(P;)

- the aailability of the @nredor between eath prodwcer and the intermediary,
avail(co-P;-I).

MACHINE Data_Indirection

- - /* machine specifying the whole architectural style */
Data Indirection INCLUDES Consumer, Producer, Protocol_Consumer_Producer
/* used machines */

VARIABLES
message, protocol_consumer_producer, dispatched_messages
[* state variables of this machine */
INVARIANT

Consumer Producer message 0 MESSAGE O
protocol_consumer_producer O consumer +— producer [J
‘\ /,4 dispatched_messages [0 message — producer [
N S ran(protocol_consumer_producer) [ran(dispatched_messages)
y /' /* the invariant on variables */

Prot . c DEFINITIONS
rotocol Consumer Availability(Cj) ==
Producer

uses 2 (avail(Pi) * avail(co-Pi-I)) * avail(l) * avail(co-I-Cj) * avail(Cj)

. INITIALISATION

includes) mess;age,prqgocol_consume;r_producer,dispatched_messages =0,0,0
/* the initial state of variables */

OPERATIONS
/* ... operations definitions ...*/

Figure 2. B spedficaion d Datalndiredion style

Figure 3 shows the spedficaion d the Publisher/Subscriber architedura style.
Noticethat, for given subscriber (S), the avail ability of the system takes into acourt the
following variables:

- the avail ability of the subscriber itself, avail(S;)

- the aallability of the mnredor, avail(co-Pub-S;), between the pulisher and the
subscriber

- the avail ability of the puldisher, avail(Pub).

As for the Data Indiredion spedficdion, the availability attribute of Publisher
Subscriber is dedared as definition within the dstrad madine.

15

uses MACHINE Publisher_Subscriber

________ > - /* machine specifying the whole architectural style */
includes Publisher INCLUDES Publisher, Subscriber
— Subscriber /* used machines */
VARIABLES

message, protocol_publisher_subscriber
/* state variables of this machine */
INVARIANT
message 0 MESSAGE O
protocol_publisher_subscriber O publisher+— subscriber

; ; /'*“the link invariant between this machine and the refined */
Publisher |______ | Subscriber DEFINITIONS
Availability(Si) == avail(Pub) * avail(co-Pub-Si) * avail(Si)

Figure 3. B spedficaion d Publisher Subscriber style

5. Casestudy: seledion of thearchitedure for CSE.

5.1 Seledion of the Publisher/Subscriber with push model for Stock
Exchanges Monitoring Systems.

In the previous fdions, we have studied different charaderizations of architedural
models for red-time distributed systems, in particular for stock exchanges monitoring
systems. The extended ABAS framework formulated for ead candidate achitedure has
provided useful guidelinesfor helping in the seledion criteria.

- Mediator is not adequate becaise it favors encgpsulation (abstradion) of comporents
(seeFigure 1), communicating colleagues that do nd know ead ather by means of
an intermediary (Mediator); even if it favors low couging, it is better adapted for
adhieving modifiability and reusability, instead of avail ability.

- Publisher/Subscriber with push model is adequate becaise it offers a seledive
broadcasting of the data by the pullisher, maintaining at the same time alow level of
couding. The wsts of redundancy may be paid, becaise the structure of the
Publi sher/Subscriber is not complex. Notice that since dl the achitedures dudied
derive from the Data Indiredion style, they have in common a high dependence from
the intermediary comporent. Then redundancy is crucial for availability. But if the
involved structure of the pattern is smple, complexity will deaease axd so will
deaease mst.

5.2 Evaluation of the avail ability attribute

We gplied the Publi sher/Subscriber style with push model to design the achitedure
of the CSE. The pubisher recaves diredly the feeds from the antenna and lkroadcasts
them to the subscribed lbrokers via a ©onredor. The brokers are provided with a
comporent subscriber, as s1own in figure 4.

16

Stock —
exchanges Brokers

Figure 4. Application d Publisher/Subscriber style

The avail ability attribute for this architecture and for the i broker is the foll owing:
avail; = avail(Pub) * avail (co-Pub-s) * avail (S)
where avail (Pub) isthe value of the avail ability attribute essociated to the pubdisher
madhine, avail (S)) is the one of the subscriber madcine and avail (co-Pub-s) the one of
the mnredor between the puli sher and the i™ broker.

In order to enhance this avall ability, we cocse to use Internet as a conredor.
Internet can be cnsidered as aways available, i.e. its availability is equal to 1. The
architedure obtained is rown in Figure 5.

N

Stock \ \ / -

Internet
exchanges repip Browsers Brokers

Figure 5. Use of Internet as conredor

The availability attribute for this architedure and for the i™ broker is now the
foll owing:
avail; = avail (Pub) * avail (B))
where avail (B;) is the avail ability of the browser used by the broker to interad with the
pubisher.

17

This availability formula shows that the availability of the publisher is crucia. The
introduction d a redundant pubisher will doule this availability. The achitedure
obtained is $xrown in Figure 6.

/ =
4._>.
\.

/ /_\\

Stock —
exchanges Brokers

Figure 6. Introduction o aredundant puli sher

The availability attribute for this architedure and for the i™ broker is now the
foll owing:
avail; = 2 * avail (Pub) * avail (B;)

6. CONCLUSION

In this paper we have studied dfferent attribute-based architedural styles (ABAYS).
The styles have then been formalised using the B language. Each comporent is gedfied
as an abstrad madiine in which quality attributes are defined. We have taken the
avail ability attribute @& an example. Then, we have gplied the proposed technique in
order to design the architedure of a Stock Exchanges Monitoring System. The
architedure has been developed by stepwise transformations: first we have used the
Publi sher/Subscriber style with the push model. The formula of the avail ability attribute
showed the importance of the conredor’s avail ability. The use of Internet as connedor
between the publisher and the subscribers had the avantage to offer a very high
availability. Then it appeas that the availability depend on the availability of the
pulisher itself. The middleware solution consisting in introducing a redundant puli sher
was then applied.

The orred seledion d a system architedure enhances the subsequent software
implementation and the system as a whole. Moreover, the structural charaderistics or
topdogy of the dosen styles influences the overall quality goals. However, the
applicability of astyle, that isto say the seledion d the right style for a particular design
isue, is yet an open problem. It has been the objed of many relevant works [Gam et a
95|, [Bus et a 96], trying to describe patterns to be eaily retrieved and reused. However,
these atempts ladk in general of a standard and formal notation, keing limited to an
informal description and examples of the gplicaion d a style. Quality issues are nat

18

explicitly considered. Therefore, this descriptions lead to misinterpretations. This makes
them an inseaure basis for criticd software devel opment.

Formal methods are used to spedfy predsely the structure and the behavior of the
entities compaosing a system and to prove rigorously that these satisfy the desired
structural and behavioral properties. Forma methods promise increased reliability of
software systems and povide analysis and \erificdion tods. In [MLL 0Q], we have
introduced a formal framework for system development using patterns. This framework
integrates the B formal language, describing the transformation from software
architedure to system design through successve transformation steps. In this paper we
have shown how formal methods can also take into acourt quality attributes.

REFERENCES

[Abr96] Abria JR. “The B Book - Assgning Programs to Meanings’, Cambridge University
Press 1996.I1SBN 0-521-49615.

[BCK 98] L. Bass P. Clements, R. Kazman “Software Architedure in Pradice”, Addison
Wesley, 1998.

[BK 99 L. Bass R. Kazman “Architedure-Based Development”, TR CMU/SEI-99-TR-007,
ESC-TR-99-007,April 1999.

[Bosh] J. Bosh “Design and Use of Software Architedure”, ACM Press 2000.

[Bee @ a 99 Bgegh J., DePanfilis S., Kitchenham B., Pasquini A. “A Method for Software
Quadlity Planning, Control and Evaluation”. IEEE Software, 6977, March/April 1999

[Buset a 96| F. Buschman et al “Pattern-Oriented Software Architedure. A System of Patterns’,
JohnWiley & Sonsinc., 1996.

[CLPOQ] Chirinos L., Losavio F., Pérez M.A. “Attribute-Based Tedchniques to Evauate
Architedural Styles for Interadive Systems’, Centro ISYS, Universidad Central de
Venezuela, Caraca, May 2000, Draft.

[Dou 99 DouglassB. P. “Red-Time UML” SeandEdition, Addison-Wesley, 1999.

[Gam et a 95] E. Gamma, R. Helm, R. Johrson and J.VIisddes “Design Patterns — Element of
Reusable Objed-Oriented Software”. Addison Wesley, New York 1995.

[ISO98 [ISO/IEC FCD 91261.2 “Information Tedhnology - Software Product Quality.Part 17:
Quality Model, 1998.

[KK 99 Klein M., Kazman R., “Attribute-Based Architedural Styles’, CMU/SEI-99-TR-022,
ESC-TR-99-022, October 1999.

[Kru0Q P. Krutchen “The Rational Unified Process An Introduction”, 2, Edition, Addison
Wesley, Realing, Massachussets, 2000

[Kaz et a 98] Kazman R., Klein M., Barbaca M., Longstaff T., Lipson H., Carriere J., “The
Architedure Tradeoff Analysis Method',CMU/SEI-98- TR-008,ESC-TR-98-008, July
1998

19

[LC99 Losavio F., Chirinos L. “Evaluadén ce la cdidad en e desarrollo de sistemas
interadivos’, (92-108) Procealings X CITS, Curitiba, Brazil, 17-21 May, 1999

[MLL 00] MarcanoR., Lévy N., Losavio F. “Spédficaion et Spédalisation ¢ Patterns en UML
et B”. Procealings LMO'2000- Langages et Modéles a Objets, Ed. Hermeés, Montréd
(Ca), janvier 2000.

[SG96 Shaw M., Garlan D. “Software Architedure — Pperspedive of an Emerging
Discipline”, Perentice Hall, 1996.

[SR98 B. Sdic, J. Rumbaugh “Using UML for Modelling Complex Red Time Systems’,
RSC, OTL, March 1998.

