
QUALITY CHARACTERISTICS TO SELECT AN ARCHITECTURE
FOR REAL-TIME INTERNET APPLICATIONS1

Losavio F., Matteo A., Ordaz Jr . O.
Centro ISYS, Facultad de Ciencias,
Universidad Central de Venezuela

Apartado 47567, Los Chaguaramos 1041-A, Caracas, Venezuela
{ flosavio, amatteo, oordaz} @isys.ciens.ucv.ve

Lévy N., Marcano-Kamenoff R.

Laboratoire PRISM
Université de Versaill es St.-Quentin,

78035 Versaill es Cedex, France
{ Nicole.Levy,Rafael.Marcano} @prism.uvsq.fr

Abstract

Performance, security and availabilit y are important non-functional characteristics that must be present in
real-time systems. The selection of a convenient architecture is an important step in achieving these quality
goals. The use of an appropriate architectural style can simpli fy architectural design and subsequent
software implementation stage. The overall quality goals are influenced by the structural characteristics or
topology of the style. However, the problem on the selection of the right architectural styles according to
the desired quality attributes is an open issue. The existing approaches lack of a standard and formal
notation. They are limited to an informal description and examples of the application of a style. Quality
issues are not explicitl y considered. The main goal of this work is to propose an approach for the selection
of software architectures based on quality characteristics. We present a process integrating the ABAS
technique with the ISO 9126 quality model, taking advantage of their complementary strengths. The B
formal language is used to formally describe architectural styles and their quality attributes. We describe
and discuss an experience obtained in applying this process for the selection of the architecture of a market
stock exchange monitoring system. One of the transformations introduces Internet as a communication
medium.
Key-words: software architecture, real-time system, quality attribute, ABAS, architectural style

1. INTRODUCTION

Real-time time systems interact directly with electrical and/or mechanical devices,

handling external events usually captured by sensors from the environment. They must be
prepared to deal with safety-criti cal situations, which must be handled with strict timing
and ordering constraints. They may vary in time and scope, but performance, security and
availabilit y are important quality or non-functional characteristics that must be present in
such systems, whose failure may involve high costs, such as loss of human li fe.

An important step towards achieving the quality goals required by a real-time system

is the selection of a convenient architecture for the corresponding software system [BCK
98], [BK 99]. Architectural design identifies the key strategies for the large-scale
organization of the system under development [Kru 00], [SR 98], [Dou 99]. These
strategies include for example, the mapping of a software package to processors, bus and
protocol selection, at a quite low level of abstraction. Quality requirements are generally

1 This research is sponsored by the CEE INCO SQUAD project EP 962019 and the CDCH ARCAS project No.

03.13.4584.00 of the Universidad Central de Venezuela

2

dealt with by a rather informal process during architectural design. Conventional object-
oriented design methods [Rum et al 96], [Jac et al 92], [Kru 00] tend more on achieving
the required system functionality, paying limited attention to quality requirements.
Implicitl y, the use of the object-oriented modeling approach guarantees to some extent
the construction of reusable and flexible systems. Hence maintainabilit y and reusabilit y
requirements are incorporated to some extent. However, only these quality characteristics
are implicitl y considered [Bos 00]. It is also of general agreement that the improvement
of one quality attribute may negatively influence another one, so there must be a
negotiation or tradeoff before building the final system. Otherwise, the inclusion of
different quality requirements once the system is built , will be extremely costly. There are
very few approaches to explicitl y handle the conflicts in quality requirements during the
architectural design stage [Bøe et al 99], [KK 00], [Bos 00], [Kas et al 98]. Consequently,
the lack of a supporting method or systematization drives to design software architectures
in an ad-hoc, intuitive, experience based manner, with the consequent risk of unfulfilli ng
some of the system properties.

Few traditional software development methods deal explicitl y with quality

architectural design. New methods are arising.
A method, proposed by [Bos 00], considers the design of software architectures

taking account of the quality requirements from the early stages of development. The
architectural design process, seen as an optimization problem, is viewed as a function
taking as input the functional requirements specification and generating as output the
architectural design. In the first step, a first version of the architecture is produced, not
accounting of the quality requirements. Then, this design is evaluated with respect to the
quality requirements. Each quality attribute is given an estimated value. These values are
compared with the values of the quality requirement specification. If all the values are as
good or better than required, the architectural design process is finished. Otherwise, a
second step transforms the initial architecture, during which, quality value for some
attribute improves. This design is again evaluated and the same process is repeated, if
necessary, until all quality requirements are fulfill ed or until the software engineer
decides that there is no feasible solution. In this case the software architect needs to
renegotiate the requirements with the customer. Each transformation (quality attribute-
optimizing solution), generally improves one or some quality attributes, affecting others
negatively.

Another method, ATAM (Attribute Tradeoff Analysis Method), is similar to the one

formulated by [Bos 00]. It is proposed by [Kaz et al 98] as a technique for understanding
the tradeoffs inherent in architecture evaluation. The method provides a way to evaluate
software architecture’s fitness with respect to multiple competing quality attributes. Since
these attributes interact, the method helps to reason about architectural decisions that
affect quality attribute interactions. The ATAM is a spiral model of design, postulating
candidate architectures followed by analysis and risk mitigation, leading to refined
architectures. The technique used for helping the reasoning is based on Attribute Based
Architectural Style (ABAS). A quality model for a particular quality attribute is

3

established to help in the selection of a style. An ABAS considers only one attribute at a
time. If several attributes must be considered, the ABAS technique is reapplied.

Both methods are quite similar. However, one of the major differences between these

approaches is that [Bos 00] method includes concrete guidelines on how to transform or
refine the architecture in order to meet the quality requirements. ATAM, does not provide
guidelines for refinement, concentrating instead more on the identification of the tradeoff
points, e.g. design decisions that will affect a number of quality attributes.

For the purpose of this work, we have benefited from both approaches. We have

applied the ATAM’s ABAS technique to identify the relevant quality attributes, in order
to evaluate the fitness of the proposed architectural style. However, since ABAS
considers only one attribute at a time, we have used an extended ABAS [CLP 00],
defining a quality model involving all the interesting attributes, according to the ISO
9126 model. In this way we have a global and better picture of all the involved quality
attributes. On the other hand, we have used a formal approach based on the B language
[Abr 96], similar to the transformation approach followed by [Bos 00], to formally justify
the selection of the style and related patterns.

In what follows we will consider an architectural style [GS 96] or architectural

pattern [Bus et al 96] as a general description of the pattern of data and interaction among
the components. An informal description of the benefits and drawbacks of using the style
is also provided [Bus et al 96], [KK 99]. A component of the style may be a design
pattern, in the sense of [Gam et al 95].

The main goal of this work is to present and discuss the experience obtained in

applying the ABAS (Attribute-Based Architectural Style) technique [KK 99], for the
selection of the architecture of a market stock exchange monitoring system. This
application is considered a soft real-time problem, in the sense that some of the events
may miss their deadline, without affecting the whole system’s behavior. The
transformation process that undergoes architectural design is formally described by
means of the B language. One of the transformations introduces Internet as a
communication medium.

The structure of this paper is as follows. The first section introduces real-time

monitoring systems. First, the requirements for the stock exchanges monitoring system
are described. Then, a quality model is introduced, based on ISO 9126 model. A
categorization of architectural styles for real-time systems is subsequently presented. The
second section describes the process of selection of the architecture based on quality
attributes. The ABAS technique is introduced. The third section ill ustrates the use of the
B language to formally specify architectures with quality attributes. The whole process of
applying the presented technique to select the architecture of the stock exchanges system
is detailed in section 4. The last section discusses the acquired skill s and advantages of
the presented approach.

4

2. REAL-TIME MONITORING SYSTEMS

2.1 Requirements for a real-time stock exchanges monitor ing system

The primary goal of a real-time monitoring system is to capture, analyze and

broadcast events (data) in real-time. We are interested in soft real-time systems, where
some of the events may miss their deadline, without affecting the whole system’s
behavior. The needs of real-time distributed applications running in heterogeneous
environments interconnected by wide-area networks, have driven the requirements for an
application that will be called CSE (Cyber Stock Exchange). Non-functional
requirements for CSE are high availabilit y, platforms heterogeneity, distribution of
clients, reliable information with strict deadlines. It is known that these characteristics
are not independent, and there must be a tradeoff to determine priorities.

The CSE system, as a real-time data provider, will monitor small and medium size

Latin American stock exchanges for brokers and independent investors. An antenna (feed
server) external to the system, provides the data (feed) to the CSE data server. A feed
contains the relevant information of a stock exchange transaction. The clients (brokers),
distributed in different geographical locations, are subscribed with the data server. When
a change on the feed to which a client is subscribed occurs, the feed is broadcasted to him
by the data server, according to a strict time delay. Since one of the requirements for the
CSE platform is wide-area networks, the time delay will depend on the network structure
used to send the information to the clients. The type of service offered depends on this
delay.

Type of services offered

A commercial data provider for stock exchanges can be of different types, according

to the average delivery time (adt) offered for the delivery of the data feeds to the clients:
- end of day data provider. Data are delivered at the end of the day
- delayed data provider. Data are sent periodically and only when there is a
modification.
- real-time data provider. Data are sent each time there is a modification.

CSE will satisfy one of these services.

Non-functional requirements: quali ty characteristics

The quality characteristics required for CSE are the following: - Availability, because

the system must not interrupt the service. In case of interruption, important transactions
may be lost involving substantial financial loss. - Efficiency, because the data must be
delivered within the established average delivery time (adt) in order to fulfill t he service

5

offered. In consequence, high performance must be assured in data transmission. -
Portability, because the clients which are distributed in different locations, use different
development platforms, minimizing the need for changes and adaptations. The
programming language used is also involved in this issue.

Availabilit y and eff iciency are the most relevant characteristics for CSE.

Eff iciency is measured in terms of the number of transactions served each day. It

depends on the number of brokers and/or stock exchanges to be served and on the
platform used. If more clients are introduced, a hardware with high performance must be
considered. Reliabilit y in our case, depends directly on the network (Internet) and the
different communication protocols for data transmission; it may affect the availabilit y of
the whole system. If the system is not available, the main goal will not be accomplished,
hence the system will not conform functionality, so availabilit y is crucial for failure or
success. In order to guarantee availabilit y, redundancy of hardware and software must be
taken into account and maintenance can also be affected in terms of cost increase. In what
follows, a general model for establishing the quality characteristics of real-time
monitoring systems will be presented.

ISO 9126 [ISO 98] proposes a generic model, to specify and evaluate the quality of a

software product from different perspectives or views, acquisition, development,
maintenance. It considers internal characteristics, which are related to the software
development process and environment and external characteristics, observed by the end-
user on the final software product. The view of quality, on these bases, can be internal or
external, and it is also affected by the stakeholder view in the particular stage of
development. An external characteristic can be measured internally, however its name
and measure may be different, according to the stage of development. For example,
portability is an external characteristic according to ISO 9126: we can speak of a portable
system, from the point of view of the end-user of the final system. Moreover, the design
can be extensible from the point of view of the system engineer in the design phase, we
will t hen speak in terms of extensibility. An important issue on software product quality is
that the product internal characteristics determine or influence the external characteristics.
In order to establish this influence, internal characteristics must be linked or related in
some way to external characteristics. ISO 9126 define six characteristics that can be
subdivided into sub-characteristic, introducing a refinement notion: Functionality,
Reliability, Usability, Efficiency, Maintainability, Portability. Attributes in the ISO
context are the measurable elements of the high level quality characteristics and sub-
characteristics.

The generic ISO 9126 model must be customized according to the system’s non

functional requirements. Figure 1 shows the ISO model adapted to the quality
requirements of real-time monitoring systems, considering reliabilit y as the relevant
external characteristic. It considers two main aspects: the arrival of the data to their final
destination and the correctness of these data at the moment of displaying them on the

6

client for satisfying the service. In terms of the CSE system, availabilit y is an external
sub-characteristic of reliabilit y. If availabilit y cannot be guaranteed, the system is not
reliable. Reliabilit y is measured by the percentage of time that the system functions
without failures that represent an interruption of the service. Complexity, as its internal
sub-characteristic, can be measured registering the interruptions of the system, as the time
that the data server is not transmitting the feeds, and the number of clients requiring the
services. A great complexity could affect reliabilit y. Coupling is used to calibrate
complexity. It is measured in terms of standard OO metrics.

Figure 1. Quality Model for Real-time Monitoring Systems

On the other hand, reusabilit y is an internal sub-characteristic that may also affect

reliabilit y. At design level it can be measured using standard OO metrics considering
abstraction a sub-characteristics of instanciabilit y.

Eff iciency (performance) is an external characteristic measured in terms of the

number of transactions served each day. Portabilit y may in turn affect eff iciency. They
will not be treated here in further details. Usabilit y and Maintainabilit y are not the main
concerns for CSE, they neither will be discussed here.

From the above discussion, it can be observed that availabilit y affects directly the

functionality or functional conformity of real-time monitoring systems. If the system is
not available, the functional requirements will not be fulfill ed. In this sense, we have
given priority to this characteristic for selecting a convenient architecture for CSE.

2.2 Architectural styles for real-time systems

CSE is a distributed application, so we will be interested only in those architectural

styles favoring indirect communication and components decoupling. We will consider the
Data Indirection style [KK 99]. This style is characterized by an intermediary (data
repository or protocol) between producers and consumers of some shared data. Producers

Reliabilit y (E)

Availabilit y (E)

Complexity (I)

Reusabilit y (I)

Instanciabilit y (I)

Abstraction (I) Coupling (I)

7

and consumers do not know the data implementation details of the repository and they do
not know each other. The design patterns Publisher/Subscriber and Mediator [Bus et al
96] will be studied. The Data Indirection style describes an elemental distributed software
system in which producers and consumers communicate through an intermediary
component. However, the details on the repository or the protocol associated to the
intermediary component remains undefined.

In order to communicate producers and consumers through a specific communication

model, we could introduce variants of the intermediary component. As a result, the
Publisher/Subscriber pattern is studied. It introduces the synchronization and propagation
of changes between the publisher and the subscribers. The Mediator pattern introduces a
specialized component (i.e. Mediator) taking in charge the communication between
colleagues which differ in their communication protocols.

3. THE ABAS (Att r ibute-Based Architectural Styles)

The notion of Attribute-Based Architectural Style (ABAS) [KK 99], as we pointed

out in the Introduction, is conceived to make architectural styles the foundation for more
precise reasoning about architectural design. This is accomplished associating a
reasoning framework (quantitative or qualitative) with the description of an architectural
style. The reasoning framework is based on the establishment of a quality model specific
to a quality characteristic, called attribute in the ABAS approach. Notice that the ABAS
attribute notion corresponds to the ISO 9126 notion of quality characteristic. Only one
attribute at a time is considered when ABASs are used in design or analysis, because
ABAS is associated with only one attribute reasoning framework, called an attribute
model. For example, if an architectural style is interesting from both a performance and a
reliabilit y point of view, it would be motivation for creating the respective performance
and reliabilit y ABASs. The authors claim that using ABASs is a step in moving
architectural design closer to being an engineering discipline. Design and analysis of
software architecture is based on reusable design components: reusing known patterns of
software components with predictable properties. The information for characterizing an
ABAS quality attribute is divided into three categories: - External Stimuli that causes the
architecture to respond or change. - Responses, that are quantities measured or observed
in the requirements or attributes desirable in the architecture. - Architectural decisions
that are aspects (components and connectors) and their properties, characterizing the
style, that have a direct impact on achieving attribute responses. The main purpose of
every ABAS is to organize consistently the existing specialized body of knowledge in
each of the quality attributes communities. This knowledge can be reused in every ABAS
related to a particular quality attribute. Table 1 shows the four parts of the ABAS
structure:

This structure is similar to those proposed in the catalogues of architectural styles

[SG 95], [Bus et al 96], with respect to Part 1 and 3 of Table 1. The main difference

8

consists in adding explicitl y the information on the characteristics of the quality attribute
relevant to the particular style, expressed in Part 2 of Table 1. These are the measures of
the responses and constitute the quality model for the attribute. Moreover, Part 4 of the
structure, analysis, is used to establish the link between the quality model of the attribute,
and the measures of the attribute. The aspects discussed in Parts 2, 3 and 4 constitute the
reasoning framework for establishing the quality characteristics of the architectural style.

From the above discussion, an ABAS is seen as a reusable design component,

providing a quality model for a specific characteristic which is predictable in the context
of the application where the particular ABAS will be used. For example in our case, if the
reliabilit y attribute is required, all the ABAS using different forms of data indirection,
which seems to be suitable architecture for distributed systems, could be analyzed
according to the framework of Table 1. The complexity of the architecture, expressed by
the coupling of the components, has to be taken into account, because we are considering
explicitl y availabilit y. In this sense, we have extended the ABAS framework [CLP 00],
considering the ISO 9126 quality model for a global and better understanding of the
quality characteristics of the system. The quality model previously discussed, shows how
these characteristics affect the availabilit y of the services offered by the system.

Structure Description

1. Problem description Informal description of the design and analysis
problem that the ABAS is intended to solve, including
the quality attribute of interest or whose presence is
desirable in the architectural style, the context of use,
constraints and relevant attribute-specific requirements.

2. Stimulus/Response attribute
measures

A characterization of the stimuli to which the
ABAS is to respond and the quality attribute measures
of the response. Construction of an ISO 9126 based
quality model for the attribute.

3. Architectural style Description of the architectural style in terms of its
components, connectors, properties of those components
and connectors, and pattern of data and control
interactions (their topology) and any constraints on the
style. Description of architectural decisions.

4. Analysis Description of how the quality attribute models are
formally related to the architectural style and the
conclusions about “architectural behavior” .
Establishment of the links or tradeoff , between the
quality characteristics required and the measured
properties affecting them. A reasoning and analysis and
design heuristics are formulated.

Table 1. The ABAS Structure

9

3.1 Data Indirection

Problem description

This ABAS is characterized by keeping the producers and consumers of shared data

from having knowledge of each other’s existence and the details of their implementations
by interposing an intermediary or protocol between the producer and consumers of shared
data items.

Criteria for selecting Data Indirection

It is relevant to anticipate changes in the producers and consumers of data, including

the addition of new producers and consumers, if these changes are frequent and it is
worth the cost of the modification.

Stimuli /Response for availabili ty

Important stimuli and their measurable controllable responses are:

- Stimuli:
- add a new producer or consumer of data
- a modification to an existing producer or consumer of data
- a modification to the data repository

- Responses:
- The number of components, interfaces and connections added, deleted and

modified, along with the characterization of the complexity of these
additions/deletions/modifications

Architectural considerations

The data repository can be a location known by both producers and consumers (e.g. a

file or a global data area) or it can be a separate computational component (e.g. a
blackboard). The constraint on the repository is that it can hold data. The repository has a
data structure, and a set of data types or layout known by all producers and consumers. A
single component may be both a producer and a consumer. The producers place their data
on the repository because they know the details of the layout; the consumer has a similar
behavior for retrieving the data. The management of performance and concurrency
control are outside the scope of this style.

Analysis

Redundancy in data producers and data flow channels will i ncrease availabilit y. The

dependency on the repository is crucial for availabilit y. In case of failure, a substitute
repository must be available.

10

Architectural parameters for the availabili ty att r ibute
Topology Star
Knowledge of the data layout by client Complete
Dependency on Repository for producers/consumers Very high
Redundancy of data producers High
Redundancy of data flow High
Table 2. Architectural decisions for Data Indirection

3.2 Mediator

Problem description

Mediator is extensively described in [Gam et al 95], [LL 99]. The intent of the

Mediator design pattern is to define an object that encapsulates how a set of objects
interacts. Mediator promotes loose coupling by keeping objects from referring to each
other explicitl y (encapsulation), and let you vary their interaction independently.
Consumers and producers are called colleagues. Mediator is a distinguished colleague. It
favors the communication among colleagues that do not know each other, but only their
Mediator; therefore the number if interconnections is reduced.

Criteria for selecting Mediator

Conditions that must be satisfied to select Mediator:

- Colleagues do not know each other
- A colleague only knows its Mediator
- Mediator knows all it s colleagues
- Colleagues are not coupled
- There are no dependency cycles among colleagues
- Mediator is coupled with its colleagues

Stimuli/Responses for availabili ty

- Stimulus: add a new colleague
- Response: availabilit y of the service increases with time, the number of colleagues

(relevant to availabilit y of service)

Architectural considerations

Table 3 presents relevant considerations for Mediator with respect to the availabilit y

attribute.

11

Architectural parameters for the availabili ty att r ibute
Topology Star
Size (Number of colleagues) High
Dependency on Mediator Very high
Redundancy of data flows High
Table 3. Architectural decisions for Mediator

Analysis

Colleagues may be data producers or consumers, indistinctly. Redundancy of

colleagues implies the capacity of substituting the mediator for another colleague in case
of failure, increasing availabilit y as a function of the time that the service is available.

However, if the number of colleagues increases too much (increase in complexity)

the capacity of the Mediator for handling communications could be compromised. In
consequence, the availabilit y of the system will be negatively affected, since the direct
communication between the mediator and its colleagues could be delayed, increasing the
possibilit y of failures in the data delivery.

In case of CSE, the availabilit y characteristic affects the performance of the system,

as a function of the cost of the redundancy mechanisms necessary to provide the required
availabilit y level, in a convenient time delay.

3.3 Publisher/Subscriber with Push model

Problem description

It helps to synchronize the state of producers (publishers) and consumers

(subscribers) of data. When a producer “publishes” a new data, all the subscribers related
to the producer, which require the data, are notified and automatically receive the data. In
the case of a push model [Bus et al 96], the producer sends data with the notification only
to the interested consumers, reducing the number (complexity) of the communications to
the consumers and increasing the performance of the application.

Criteria for selecting Publisher/Subscriber with Push model

Conditions that must be satisfied to select Publisher/Subscriber with Push model:

- The number and identity of data producers and/or consumers are not known or may
vary

- The temporal ordering between producers and consumers is not known and
undergoes frequent changes

12

- There are no time constraints related to the amount of data that must be produced
and/or consumed. There are no synchronization dependencies between the
production and consummation of the data.

Stimuli/Responses for availabili ty

- Stimulus: add a new producer
- Response: increases the availabilit y of the service, measured in terms of the number

of transactions executed in a unit of time

Architectural considerations

Table 4 presents relevant considerations for Publisher/Subscriber with push model

with respect to the availabilit y attribute.

Architectural parameters for the availabili ty att r ibute
Topology Star
Data persistency Transitory
Size of the data package Small
Communication Protocol Selective broadcasting
Dependencies (from producer) Very high
Redundancy in data flow High
Table 4. Architectural decisions for Publisher/Subscriber with push model

Analysis

An adequate redundancy of producers and data flow channels decreases the

possibilit y of failures, increasing availabilit y.

The use of the push model with selective broadcasting communication protocols

organized in a star topology, favors performance and availabilit y, considering moderate
data packages, as a function of the band width of the communication channel and the
number of subscribers.

Availabilit y affects the performance of the system, as a function of the cost of the

redundancy mechanisms required. The associated computational infrastructure should
have enough capacity and support balanced.

13

4. FORMALIZING ABAS USING B

The ABAS technique has the advantage of supporting a simple and intuitive

description of software architectures. It permits to specify the general structure of a
software model at a high level of abstraction and to reason about it. It is useful to
understand and document systems, allowing a better communication between developers
and customers. However, ABAS lacks of precise semantics and remains inadequate to
proof correctness and consistency. Therefore, the resulting specifications can be subject
to misinterpretations. ABAS is not suff icient enough to develop rigorous applications that
require non-functional properties to be ensured.

The approach presented here integrates the B [Abr 96] formal method with the

ABAS technique in a complementary manner. The choice of B offers a perfect
opportunity to enhance existing semi-formal descriptions of architectural styles. We use
the B formal language in order to balance the semantic weakness of ABAS by a rigorous
and precise specification. The B formal specification is used to specify precisely the
structure, the behavior and also to measure the non-functional characteristics of an
architectural style.

The B formal language is based on the set theory. A B specification is composed of a

hierarchy of abstract machines, each one corresponding to a particular component of the
specified system. An abstract machine declares a set of state variables describing the
abstract state. The machines operations are used to modify the state variables. First order
logic is used to express the invariant of a machine, as well as the preconditions of the
operations. The post-conditions are defined as generalized substitutions. The consistency
between invariants and operations can be proven. The mistakes are consequently
removed, ensuring the correctness of the specification. This is a major advantage of the B
method. The B method is entirely supported by automated tools such as the Atelier B.

 In [MLL 00] we have presented an approach to formally specify architectural

patterns using the B language. A complete description of the B method and the B
language can be found in [Abr 96].

In the current approach, ABAS technique is used to describe the high-level structure

of a style, such as components/classes and association relationships among them. Then, a
first B abstract specification is deduced from the ABAS description and used to check
consistency. To do so, an abstract machine is associated to each structural component of
the style. Subsequently, the B notation is used to describe details of each component that
are left unspecified in ABAS, such as the composition and data types of class states, the
behavior of class operations and the global invariants. At this level a number of important
decisions concerning some unspecified properties must be elucidated by the developer.
The quality attributes are included at this point. The resulting specification is then used to
determine the quality attribute values of the architecture.

14

Consumer Producer

Protocol Consumer
Producer

Data Indirection

uses

includes

MACHINE Data_Indirection
 /* machine specifying the whole architectural style */
INCLUDES Consumer, Producer, Protocol_Consumer_Producer
 /* used machines */
VARIABLES
 message, protocol_consumer_producer, dispatched_messages
 /* state variables of this machine */
INVARIANT
 message ⊆ MESSAGE ∧
 protocol_consumer_producer ∈ consumer producer ∧
 dispatched_messages ∈ message → producer ∧
 ran(protocol_consumer_producer) ⊆ ran(dispatched_messages)
 /* the invariant on variables */
DEFINITIONS
 Availability(Cj) ==

Σ (avail(Pi) * avail(co-Pi-I)) * avail(I) * avail(co-I-Cj) * avail(Cj)
INITIALISATION
 message,protocol_consumer_producer,dispatched_messages := ∅,∅,∅
 /* the initial state of variables */
OPERATIONS
 /* … operations definitions …*/

Figure 2 shows the structure of the B specification associated to the Data Indirection
style. The left hand side of the picture shows the uses and includes links between the
different machines. On the right hand side, we present the machine Data Indirection
which specifies the architectural style. It includes the components Consumer, Producer
and Protocol Consumer Producer (the intermediary). Because of lack of space, the
complete specification of these components is omitted here. In order to measure the non-
functional requirements, the quality attributes are associated to the B machines through
the definitions clauses. Notice that a definition called availability is used to associate the
availabilit y attribute to the Data Indirection machine. The availabilit y of the whole
architecture is calculated from the consumer’s perspective. For a given consumer (Cj), the
availabilit y of the system takes into account five variables :
- the availabilit y of the consumer itself, avail(Cj)
- the availabilit y of the connector, avail(co-I-Cj), between the intermediary and the

consumer
- the availabilit y of the intermediary, avail(I)
- the availabilit y of each producer (Pi) communicating with the intermediary, avail(Pi)
- the availabilit y of the connector between each producer and the intermediary,

avail(co-Pi-I).

Figure 2. B specification of Data Indirection style

Figure 3 shows the specification of the Publisher/Subscriber architectural style.

Notice that, for given subscriber (Si), the availabilit y of the system takes into account the
following variables:
- the availabilit y of the subscriber itself, avail(Si)
- the availabilit y of the connector, avail(co-Pub-Sj), between the publisher and the

subscriber
- the availabilit y of the publisher, avail(Pub).

As for the Data Indirection specification, the availabilit y attribute of Publisher
Subscriber is declared as definition within the abstract machine.

15

Publisher Subscriber

Publisher
Subscriber

uses

includes

MACHINE Publisher_Subscriber
 /* machine specifying the whole architectural style */
INCLUDES Publisher, Subscriber
 /* used machines */
VARIABLES
 message, protocol_publisher_subscriber
 /* state variables of this machine */
INVARIANT
 message ⊆ MESSAGE ∧
 protocol_publisher_subscriber ∈ publisher subscriber
 …
 /* the link invariant between this machine and the refined */
DEFINITIONS
 Availability(Si) == avail(Pub) * avail(co-Pub-Si) * avail(Si)

 …

Figure 3. B specification of Publisher Subscriber style

5. Case study: selection of the architecture for CSE.

5.1 Selection of the Publisher/Subscriber with push model for Stock

Exchanges Monitor ing Systems.

In the previous sections, we have studied different characterizations of architectural
models for real-time distributed systems, in particular for stock exchanges monitoring
systems. The extended ABAS framework formulated for each candidate architecture has
provided useful guidelines for helping in the selection criteria.

- Mediator is not adequate because it favors encapsulation (abstraction) of components

(see Figure 1), communicating colleagues that do not know each other by means of
an intermediary (Mediator); even if it favors low coupling, it is better adapted for
achieving modifiabilit y and reusabilit y, instead of availabilit y.

- Publisher/Subscriber with push model is adequate because it offers a selective

broadcasting of the data by the publisher, maintaining at the same time a low level of
coupling. The costs of redundancy may be paid, because the structure of the
Publisher/Subscriber is not complex. Notice that since all the architectures studied
derive from the Data Indirection style, they have in common a high dependence from
the intermediary component. Then redundancy is crucial for availabilit y. But if the
involved structure of the pattern is simple, complexity will decrease and so will
decrease cost.

5.2 Evaluation of the availabili ty att r ibute

We applied the Publisher/Subscriber style with push model to design the architecture

of the CSE. The publisher receives directly the feeds from the antenna and broadcasts
them to the subscribed brokers via a connector. The brokers are provided with a
component subscriber, as shown in figure 4.

16

Figure 4. Application of Publisher/Subscriber style

The availabilit y attribute for this architecture and for the i th broker is the following:

avail i = avail (Pub) * avail (co-Pub-si) * avail (Si)
where avail (Pub) is the value of the availabilit y attribute associated to the publisher
machine, avail (Si) is the one of the subscriber machine and avail (co-Pub-si) the one of
the connector between the publisher and the i th broker.

In order to enhance this availabilit y, we choose to use Internet as a connector.
Internet can be considered as always available, i.e. its availabilit y is equal to 1. The
architecture obtained is shown in Figure 5.

Figure 5. Use of Internet as connector

The availabilit y attribute for this architecture and for the i th broker is now the

following:
avail i = avail (Pub) * avail (Bi)

where avail (Bi) is the availabilit y of the browser used by the broker to interact with the
publisher.

Brokers
Stock

exchanges

CSE

Pub

S
S
S
S

...
...

B rokers
Stock

ex changes

CSE

Pub
...

...
B
B
B
B

B row sersT C P/I P
serv i ce

I nternet

17

This availabilit y formula shows that the availabilit y of the publisher is crucial. The
introduction of a redundant publisher will double this availabilit y. The architecture
obtained is shown in Figure 6.

Figure 6. Introduction of a redundant publisher

The availabilit y attribute for this architecture and for the i th broker is now the

following:
avail i = 2 * avail (Pub) * avail (Bi)

6. CONCLUSION

In this paper we have studied different attribute-based architectural styles (ABAS).

The styles have then been formalised using the B language. Each component is specified
as an abstract machine in which quality attributes are defined. We have taken the
availabilit y attribute as an example. Then, we have applied the proposed technique in
order to design the architecture of a Stock Exchanges Monitoring System. The
architecture has been developed by stepwise transformations: first we have used the
Publisher/Subscriber style with the push model. The formula of the availabilit y attribute
showed the importance of the connector’s availabilit y. The use of Internet as connector
between the publisher and the subscribers had the advantage to offer a very high
availabilit y. Then it appears that the availabilit y depend on the availabilit y of the
publisher itself. The middleware solution consisting in introducing a redundant publisher
was then applied.

The correct selection of a system architecture enhances the subsequent software
implementation and the system as a whole. Moreover, the structural characteristics or
topology of the chosen styles influences the overall quality goals. However, the
applicabilit y of a style, that is to say the selection of the right style for a particular design
issue, is yet an open problem. It has been the object of many relevant works [Gam et al
95], [Bus et al 96], trying to describe patterns to be easily retrieved and reused. However,
these attempts lack in general of a standard and formal notation, being limited to an
informal description and examples of the application of a style. Quali ty issues are not

Brokers
Stock

exchanges

CSE

Pub
...

...
B
B
B
B

Pub’

18

explicitl y considered. Therefore, this descriptions lead to misinterpretations. This makes
them an insecure basis for criti cal software development.

Formal methods are used to specify precisely the structure and the behavior of the

entities composing a system and to prove rigorously that these satisfy the desired
structural and behavioral properties. Formal methods promise increased reliabilit y of
software systems and provide analysis and verification tools. In [MLL 00], we have
introduced a formal framework for system development using patterns. This framework
integrates the B formal language, describing the transformation from software
architecture to system design through successive transformation steps. In this paper we
have shown how formal methods can also take into account quality attributes.

REFERENCES

[Abr 96] Abrial J.R. “The B Book - Assigning Programs to Meanings” , Cambridge University
Press, 1996. ISBN 0-521-4961-5.

[BCK 98] L. Bass, P. Clements, R. Kazman “Software Architecture in Practice”, Addison
Wesley, 1998.

[BK 99] L. Bass, R. Kazman “Architecture-Based Development” , TR CMU/SEI-99-TR-007,
ESC-TR-99-007, April 1999.

[Bosh] J. Bosh “Design and Use of Software Architecture”, ACM Press, 2000.

[Bøe et al 99] Bøegh J., DePanfili s S., Kitchenham B., Pasquini A. “A Method for Software
Quality Planning, Control and Evaluation” . IEEE Software, 69-77, March/April 1999

[Bus et al 96] F. Buschman et al “Pattern-Oriented Software Architecture. A System of Patterns” ,
John Wiley & Sons Inc., 1996.

[CLP 00] Chirinos L., Losavio F., Pérez M.A. “Attribute-Based Techniques to Evaluate
Architectural Styles for Interactive Systems” , Centro ISYS, Universidad Central de
Venezuela, Caracas, May 2000, Draft.

[Dou 99] Douglass B. P. “Real-Time UML” Second Edition, Addison-Wesley, 1999.

[Gam et al 95] E. Gamma, R. Helm, R. Johnson and J.Vlissides “Design Patterns – Element of
Reusable Object-Oriented Software”. Addison Wesley, New York 1995.

[ISO 98] ISO/IEC FCD 9126-1.2: “ Information Technology - Software Product Quality.Part 1” :
Quality Model, 1998.

[KK 99] Klein M., Kazman R., “Attribute-Based Architectural Styles” , CMU/SEI-99-TR-022,
ESC-TR-99-022, October 1999.

[Kru 00] P. Krutchen “The Rational Unified Process. An Introduction” , 2nd. Edition, Addison
Wesley, Reading, Massachussets, 2000.

[Kaz et al 98] Kazman R., Klein M., Barbacci M., Longstaff T., Lipson H., Carriere J., “The
Architecture Tradeoff Analysis Method” ,CMU/SEI-98-TR-008, ESC-TR-98-008, July
1998.

19

[LC 99] Losavio F., Chirinos L. “Evaluación de la calidad en el desarrollo de sistemas
interactivos” , (92-108) Proceedings X CITS, Curitiba, Brazil , 17-21 May, 1999.

[MLL 00] Marcano R., Lévy N., Losavio F. “Spécification et Spécialisation de Patterns en UML
et B” . Proceedings LMO’2000 – Langages et Modèles à Objets, Ed. Hermès, Montréal
(Ca), janvier 2000.

[SG 96] Shaw M., Garlan D. “Software Architecture – Pperspective of an Emerging
Discipline” , Perentice Hall , 1996.

[SR 98] B. Selic, J. Rumbaugh “Using UML for Modelli ng Complex Real Time Systems” ,
RSC, OTL, March 1998.

