
THE FIFTEENTH INTERNATIONAL
INTERNET & SOFTWARE

QUALITY WEEK
San Francisco September 3 - 6, 2002

Produced by

Software
Research
Institute

The Wired World
It’s the driving factor in today’s technology growth.

QW2002 aims to face internet and software quality
issues directly.

Keynoters and speakers with real-world experience
that you can apply immediately.

Fifteen years of serving the SQA community with
cutting-edge experience and state-of-the-art technology.

www.qualityweek.com

In cooperation
with

Industry
Sponsors

Media
Sponsors

www.qualityweek.com

SR

QW2002 Program

 San Francisco, California, USA | 3 - 6 September 2002

NOTE: The program selections, speaker biographies, and presentation abstracts may be incomplete in some instances; this
material is being updated constantly. All material presented is based on the best information available and may be subject to
change. Updated 16 August 2002.

QUICK ACCESS TO THE FOUR DAY PROGRAM AT QW2002

Pre-Conference Tutorials Tuesday 3 September 2002

Conference Day 1 Wednesday 4 September 2002

Conference Day 2 Thursday 5 September 2002

Conference Day 3 Friday 6 September 2002

Post Conference Workshops Friday 6 September 2002

Vendor Demonstration Sessions Wednesday 4 September 2002
Thursday 5 September 2002

T Tuesday 3 September 2002
PRE-CONFERENCE TUTORIALS

8:30
-

12:00

Tutorial A1

Test
Automation: A
Context-Driven

Approach
Mr. Douglas

Hoffman
Software
Quality

Methods, LLC.
& Mr. Bret
Pettichord

Tutorial B1

Web Site
Robustness

and Scalability
Testing

Mr. Ross
Collard

Consultant

Tutorial C1

Web Testing:
A Practical
Approach
Dr. Edward

Miller
eValid, Inc.

Tutorial D1

Writing Good
Requirements

(PART 1)
Mr. Erik

Simmons
Intel

Corporation

Tutorial E1

Practical
Web/e-

Commerce
Stress Testing

(PART 1)

Mr. Robert
Sabourin

Amibug.com

Tutorial F1

Test
Management

And
Organization
Mr. Rex Black

RBCS, Inc.

Tutorial G1

Better Data:
Better
Testing

Mr. James
Lyndsay

Workroom
Productions

Ltd.

12:00
- 1:30 TUTORIAL DAY LUNCH AND NETWORKING

1:30
-

5:00

Tutorial A2

Test
Automation:

Survey of
Architectures

Mr. Bret
Pettichord
Pettichord

Consulting LLC
& Mr. Douglas

Hoffman

Tutorial B2

Security
Testing for
Web Sites,

Web
Applications
and Software

Mr. Hung
Nguyen

LogiGear
Corporation

Tutorial C2

Software
Projects --
Effective

Estimating &
Planning

Techniques
Mr. Robert L.

Galen
RGalen

Consulting
Group, LLC

Tutorial D2

Writing Good
Requirements

(PART II)
Mr. Erik

Simmons
Intel

Corporation

Tutorial E2

Practical
Web/e-

Commerce
Stress Testing

(PART II)

Mr. Robert
Sabourin

Amibug.com

Tutorial F2

Managing Test
Estimation

Mr. Rex Black
RBCS, Inc.

Tutorial G2

Paradigms Of
Black Box
Software
Testing
Dr. Cem
Kaner
Florida

Institute of
Technology

5:00 -
7:00 EXPO Open: Welcome Reception In The Exhibit Hall

Wednesday 4 September 2002
CONFERENCE DAY #1

QW2002 Exhibition: 12:00 PM to 6:30 PM

1
8:30

-
10:00

PLENARY SESSION

Plenary Session Introduction:
Dr. Edward Miller, Chairman

(Software Research, Inc.)

Keynote 1G1:

Internet Reliability under Stress
Mr. Fred Baker
Cisco Systems

Keynote 1G2:

The Human Side of Risk
Mr. Erik Simmons
Intel Corporation

10:00
-

10:30
REFRESHMENTS IN EXHIBIT HALL

10:30

2

11:15

Vendor
Technical

Track

Technology
Track

Applications
Track

Internet
Track

Process
Track

QuickStart
Track

Session 2V1

Carrier
Compliance

Testing of Mobile
Handsets

Mr. Mitch Krause
TestQuest, Inc.

Paper 2T1

Experience in Testing
Pocket PC Applications

Mr. Ibrahim El-Far
(Florida Institute of
Technology), Ms.

Florence Mottay (J.D.
Edwards), & Dr.

Herbert Thompson
(System Integrity)

Paper 2A1

Testing and
Managing

Risky Content
in the Online

World
Mr. Michael

Weider
Watchfire

Corporation

Paper 2I1

Web Site
Performance and

Qos Monitoring
Dr. Ludmila
Cherkasova

Hewlett Packard
Labs

Paper 2P1

Outsourcing in
QA and Testing

Mr. Vijay Sikka
& Mr. Anurag

Khemka
Nirixa, Inc.

Session 2Q

Effective
Performance
Test Planning

and
Implementation

Mr. Hung
Nguyen

LogiGear
Corporation

Session 2V2

Agile Software
Process

Improvement
Mr. Jessee Ring
Software Quality

First

Paper 2T2

Quality Assurance
Aspects in Developing
a Component-based

System
Dr. Josef Withalm

Siemens Ag

Paper 2A2

Testing A
Large Scale
Application
Mr. Peter
Lafleur

Public Works &
Government

Services
Canada

Paper 2I2

Web Services
QoS Indicators
Dr. Selim Aissi

Intel

Paper 2P2

Creating
Quality From
Scratch: How

To Build a Test
Organization
Mr. Eric Patel

RapidSQA

12:00
- 1:30 CONFERENCE LUNCH AND NETWORKING IN EXHIBIT HALL

Vendor
Technical

Track

Technology
Track

Applications
Track

Internet
Track

Process
Track

QuickStart
Track

Session 3V1

Change Impact
Testing

Mr. Joe Ponczak
McCabe &
Associates

Paper 3T1

Interface-driven Model-
based Test Generation

of Java Test Drivers
Dr. Mark Blackburn,

Robert Busser & Aaron
Nauman

Paper 3A1

Software
Defect Arrival
Modeling With

the Weibull
Distribution

Mr. Erik

Paper 3I1

Measuring and
Improving Web
Site Quality: A

Consumer
Focused System
Dr. John M. Ryan

Paper 3P1

Applied Six
Sigma to
Software
Process

Improvement
Dr. Huey-Der

Session 3Q

A Short Course
In Metrics &

Measurement
Dysfunction

Dr. Cem Kaner
Florida Institute

1:30

3

2:15

T-VEC
Technologies/SPC &

Dr. Ramaswamy
Chandramouli

(National Institute of
Standards and
Technology)

Simmons
Intel

Corporation

Safe Shopping

Network

Chu
National
Defense

Management
College

of Technology

Session 3V2

DMS: Software
Quality

Enhancement via
Automated
software
Analysis,

modification and
Generation

Dr. Ira Baxter
Semantic

Designs, Inc.

Paper 3T2

Tool Support for Model
Based Statistical

Testing
Dr. Stacy Prowell & Mr.
William Thomas Swain

The University of
Tennessee

Paper 3A2

Using Defect
Tracking

Integrations to
Improve your
QA Process
Dr. Kelly A.

Shaw
TeamShare,

Inc

Paper 3I2

InBrowser
WebSite Testing:
The Client-Side

Approach
Dr. Edward Miller
eValid, Inc., USA

Paper 3P2

Effort
Estimation for
QA Projects
Statistical

Approaches &
Challenges

Mr. Raja
Mohapatra &
Mr. Bibhash

Saha
Infosys

Technologies
Ltd

3:00 -
3:30 REFRESHMENTS IN EXHIBIT HALL

3:30

4

4:15

Vendor
Technical

Track

Technology
Track

Applications
Track

Internet
Track

Process
Track

Panel
Discussion

Session 4V1

To be
announced.

Paper 4T1

Quality Process for
XML Interfaces

Mr. Glenn Breslin
Independent

Paper 4A1

The mysteries
of Unit Testing
Explained for

Testers
Mr. Michael

Hackett
LogiGear

Corporation

Paper 4I1

Bugs in Your
Shopping Cart: A

Taxonomy
Mr. Giri

Vijayaraghavan &
Dr. Cem Kaner

Florida Tech Dept
of Computer

Sciences

Paper 4P1

Big And
Complex
Projects:
Beyond
Extreme

Programming
Mr. Joan Bosch

Sole
NTE, s a.

Session 4Q

The Value of
Agile Testing
Ross Collard

Consultant & Mr.
Bret Pettichord

Pettichord
Consulting

Session 4V2

LogiGear
Corporation

Paper 4T2

Innovative WebSite
Mapping Tool

Dr. Edward Miller
eValid, Inc.

Paper 4A2

Reduce Overall
Project

Development
Costs with
Structured

Testing
Ms. Jan
Grinnell

GovConnect

Paper 4I2

Deployment of
Globalised

Wireless Internet
Applications

Mr. Ed Adams
VeriTest

Paper 4P2

'Excel'erating
Test Status
Reporting

Mr. Jim Hazen
SysTest Labs

5:00 -
6:30

EXPO RECEPTION
Drinks and hors d'oeuvres are served in the Expo Hall.

Thursday 5 September 2002
CONFERENCE DAY #2

QW2002 Exhibition: 10:00 AM to 3:30 PM

5

PLENARY SESSION

Plenary Session Introduction:
Dr. Edward Miller

(Software Research, Inc.)

Keynote 5G1:

Science, Computer "Sciences", Mathematics, and Software Development

8:30
-

10:00

Prof. Dick Hamlet
Portland State University

Keynote 5G2:

Achieving Very High Reliability for Ubiquitous Information Technology
Mr. Robert V. Binder

Mobile Systems Verification

10:00
-

10:30
REFRESHMENTS IN EXHIBIT HALL

10:30

6

11:15

Vendor
Technical

Track

Technology
Track

Applications
Track

Internet
Track

Process
Track

QuickStart
Track

Session 6V1

Test Automation,
Build to Last
Action Based

Testing Methods
and Tools at

Work!
Mr. Hans
Buwalda
Logigear

Corporation

Paper 6T1

Revisiting
Comparisons

between Manual
and Automated

testing
Mr. Anurag

Khemka & Mr.
Vijay Sikka
Nirixa, Inc.

Paper 6A1

Reducing Test
Automation

Maintenance Costs
Mr. Michael Waller &

Timothy Nelson
STAMP

Technologies

Paper 6I1

Performance
Testing

Applications In
Internet Time

Ms. Nancy Landau
Alltel Technology

Services

Paper 6P1

Optimizing
Test

Productivity to
Maximize
Product
Quality

Dr. Nancy
Eickelmann

Motorola

Session 6Q

Testimonial - A
Fully Illustrated

Overview of
Software
Testing

Mr. Robert
Sabourin

Amibug.com

Session 6V2

To be
announced.

Paper 6T2

A Custom
Automation

Framework and
Test Case

Management
Solution

Mr. Darin Magoffin

PowerQuest

Paper 6A2

Risk Based
Regression Testing
Mr. Gregory Pope

University of
California LLNL

Paper 6I2

Comparative
Strategies for
Measuring the

Internet: The Whole
is More than the

Sum of the P
Dr. Chris Overton
Keynote Systems,

Inc.

Paper 6P2

Beta Testing --
Boot Camp
Basics and

Beyond
Mr. Ralph
Dalebout

IBM
Corporation

12:00
- 1:30 CONFERENCE LUNCH AND NETWORKING IN EXHIBIT HALL

1:30

7

2:15

Vendor
Technical

Track

Technology
Track

Applications
Track

Internet
Track

Process
Track

QuickStart
Track

Session 7V1

To be
announced.

Paper 7T1

Streaming Media
Quality: The

Orphan Child of
“Old Media” and
Internet Flakiness
Dr. Chris Overton

Genimedia
& Dr. Simon

Robins
Genimedia

Paper 7A1

Adventures in
Session-based

Testing
Mr. James Lyndsay,

Workroom
Productions Ltd. &

Niel vanEeden,
Jobpartners Ltd.

Paper 7I1

Get Real! The
Importance of

Realism in Web
Site Capacity
Assessment

Mr. Philip Joung
Caw Networks

Paper 7P1

Managing Test
Products, The
Next Challenge

Mr. Hans
Buwalda
LogiGear

Corporation

Session 7Q

Overview of
ASQ's 2002

CSQE Body of
Knowledge
Mr. Douglas

Hoffman
Software
Quality

Methods, LLC.

Session 7V2

To be
announced.

Paper 7T2

SPARTA:
Architecture for

Automated Testing
of Network

Protocol Stacks
Mr. Srivatsa

Srinivasan & Mr.
Sandeep Prabhu

Microsoft

Paper 7A2

Experiences with
Action Based

Testing, a Case
Study

Mr. Flavio Y
Kubagawa, QAD
Inc. & Mr. Hans

Buwalda, LogiGear
Corp.

Paper 7I2

Don't Get Trampled
by the Crowd:
Realistic Load
Testing of Web
Sites Across the

Internet
Mr. Eric D. Siegel
Keynote Systems,

Inc.

Paper 7P2

A Climber’s
View of

Software
Quality

Dr. John
Dalbey

California
Polytechnic

State
University

3:00 -

3:30 REFRESHMENTS IN EXHIBIT HALL

3:30

8

4:15

Vendor
Technical

Track

Technology
Track

Applications
Track

Internet
Track

Process
Track

Panel
Session

Session 8V1
To be

announced.

Paper 8T1

Branch Coverage
Tools For Arbitrary
Languages made

Easy!
Dr. Ira Baxter

Semantic Designs,
Inc.

Paper 8A1

Using SW Process
Assessment to

Manage Quality of
Suppliers: An
Experience in
Automotive
[suppliers]

Dr. Fabrizio Fabbrini
& Mr. Mario Fusani

IEI-CNR

Paper 8I1

Vulnerabilities and
Developing for the

Net
Mr. Robert A.

Martin
The MITRE
Corporation

Paper 8P1

Common
Problems in

Tool Adoption
Karen S. King

King
Consulting

Session 8Q

Web Services
QoS, Reliability,

and Security
Dr. Selim Aissi

Intel

Session 8V2
To be

announced.

Paper 8T2

Automating
Testing on
ASP.NET

Applications
Mr. Thomas R.

Arnold
Xtend

Development, Inc.

Paper 8A2

Training Testing
Professionals:

Making the transition
to Web Based

Application Testing
Mr. Robert Sabourin

AmiBug.Com, Inc.

Paper 8I2

Implementing a
Web Based Testing

Framework
Mr. Steve

Whitchurch
Network

Associates, Inc.

Paper 8P2

The Making of
an Open

Source Stress
Test Tool

Mr. Danny R.
Faught

Tejas Software
Consulting

Friday 6 September 2002
CONFERENCE DAY #3

9

8:30
-

10:00

Technology
Track

Applications
Track

Internet
Track

Process
Track

QuickStart
Track

Paper 9T1

Virtual Test
Management: Rapid
Testing Over Multiple

Time Zone
Mr. Ed Adams

VeriTest

Paper 9A1

Performance and
Scalability Bottlenecks
in J2EE Applications

Mr. Ed Lycklama
Sitraka

Paper 9I1

Assessing risks in
wireless solution
implementation

Mr. Yiftach Resheff
Antenna Software

Paper 9P1

Testing Efficiency:
Taking Advantage of

Test Overlap
Ms. Lauri MacKinnon
PhaseForward Inc.

Session 9Q

A Survey of
Freeware Test

Tools
Mr. Danny

Faught
Tejas Software

Consulting
Paper 9T2

Cross Platform
Framework For

Integration Testing
Dr. Nagesh Vempaty

Aalayance Incorporated

Paper 9A2

Legacy Data
Conversion: Making

Coffee
Mr. Joshua Kitchen

IBeta

Paper 9I2

A Framework for
Testing Wireless

Applications
Mr. Ibrahim K. El-Far,
Roussi Roussev, and
Nattawut Sridranup
Florida Institute of

Technology

Paper 9P2

Measuring the
Effectiveness of
Software Testers
Dr. Cem Kaner

Florida Institute of
Technology

10:00
-

10:30
REFRESHMENTS

10:30

PLENARY SESSION

Plenary Session Introduction:
Dr. Edward Miller

(Software Research, Inc.)

Keynote 10G1:

10

11:15

Competitiveness Versus Security

Mr. Don O'Neill
Center for National Software Studies

Keynote 10G2:

You Want It When?
Mr. Gregory Pope

University of California LLNL

AWARDS PRESENTATION

12:30
- 1:30 LUNCH FOR WORKSHOP ATTENDEES

Friday 6 September 2002
POST-CONFERENCE WORKSHOPS

W
1:30

-
5:00

Technology
Workshop W1

Introduction to Performance
on the Internet and Web

Mr. Eric D. Siegel
Keynote Systems, Inc.

Applications
Workshop W2

Jump Starting Your Test
Automation

Mr. Hung Nguyen & Hans
Buwalda

LogiGear Corporation

Internet
Workshop W3

Performance Testing &
Issues

Dr. Subraya BM
Infosys Technologies Ltd.

Management
Workshop W4

Bug Advocacy: Effective
Bug Reporting
Mr. Cem Kaner

Florida Institute of
Technology

SB

Standby Presentations

Process
Track

The Essentials of Testing and Test Automation

Mr. Hans Buwalda
LogiGear Corporation

Key Points

Analyze your requirements for test automation
Understand how product architecture affects test automation
Learn the key elements to test automation architecture
Learn five approaches for verifying test results
Realize the limits of regression testing
Avoid common blind alleys
Determine whether your organization is ready to automate

Presentation Abstract

Doug Hoffman and Bret Pettichord bring together their extensive experience to provide key information on test automation. Successful
testing groups have used a variety of test automation architectures. Pettichord and Hoffman's combined perspectives and insights will
help you select and customize an effective architecture for your context.

Most software test automation efforts fail to achieve their goals, some rather spectacularly. Effective software test automation starts
with understanding and good planning. This morning tutorial describes how to take a context-driven approach to test automation.
Instead of using a generic test automation approach, successful companies tailor their automation architecture to their specific context.
Avoid common blind alleys that many test teams have wasted time and energy on. Learn how your staff profile, product architecture
and test mission affect your test automation architecture.

About the Author

Douglas Hoffman is an independent consultant with Software Quality Methods, LLC. He has been in the software engineering and
quality assurance fields for nearly 30 years and now is a management consultant in strategic and tactical planning for software quality.
Throughout his career he has automated testing using a wide variety of hardware and software techniques. His experience includes
consulting, teaching, managing, and engineering across the computer systems and software industries. His recent experience has
focused on creating and transforming software quality and development groups, and architecting software test automation
environments.

Douglas is a founder and past Chairman of the Santa Clara Valley Software Quality Association (SSQA) and the Silicon Valley Section
of the American Society for Quality (ASQ). He has been a presenter and participant at dozens of software quality conferences and has
been Program Chairman for several international conferences on software quality. He is a member of the ACM and IEEE and is active
in the ASQ as a Senior Member, participating in the Software Division, the Santa Clara Valley Section, and the Software Quality Task
Group. He has earned a BA in Computer Science, an MS in Electrical Engineering, an MBA, a Certificate from ASQ in Software Quality
Engineering, and has been a registered ISO 9000 Lead Auditor.

Bret Pettichord is an independent consultant with experience using a wide variety of test tools and approaches. He's developed
automated tests for software in various domains, including publishing, accounting, sales, systems management, education and benefits
administration. The tutorial builds on Lessons Learned in Software Testing: A Context- Driven Approach, the best-selling book he
coauthored with Cem Kaner and James Bach. Many of his writings are collected at www.pettichord.com.

Specializing in software testing and test automation, Bret has 14 years experience in software development, including positions as a
staff consultant at Segue Software and a test automation lead at BMC and then IBM/Tivoli before becoming an independent consultant.
Recent clients have included Texas Instruments, Rational Software, Texas Department of Human Services, Deliotte Consulting,
Whisperwire and Netpliance. He learned about software testing as a tax programmer at Arthur Andersen and a software tester and
automator at Interleaf.

QW2002 Tutorial A1

Mr. Douglas Hoffman
(Software Quality Methods, LLC.) & Mr. Bret Pettichord

Test Automation: A Context-Driven Approach

Key Points

Testing availability of Web sites
Testing scalability
Robustness and recoverability of Web sites

Presentation Abstract

First on reliability -- nature of Web site reliability, modes of failure, testing for recoverability, load & stress test project outlines,load &
stress test plan templates, and common test chalenges.

Second session on scalability -- reasons Web sites don't scale, how to test for scalalabity, predictig scalability, and what test equipment
and tools are needed.

About the Author

Ross Collard is president of Collard & Company, a consulting firm which is headquartered in Manhattan, New York City. His consulting
and training clients have included: ADP, Alcatel, American Express, Anheuser-Busch, Apple, AT&T, Banamex, Bank of America,
Bechtel, Blue Cross/Blue Shield, Boeing, British Airways, the CIA, Ciba Geigy, Cisco, Citibank, Computer Associates, Dayton Hudson,
Dell, EDS, Exxon, General Electric, Goldman Sachs, Federal Reserve, Ford, Hewlett-Packard, Hughes Aircraft, IBM, Intel, Johnson &
Johnson, JP Morgan, McGraw Hill, MCI, Merck, Microsoft, Motorola, NASA, Nortel, Novell, Procter & Gamble, Prudential, Sears
Roebuck, Swiss Bank, U.S. Air Force, Verizon and Worldcom.

He has conducted seminars on business and information technology topics for businesses, governments and universities, including
George Washington, Harvard and New York Universities, MIT, Stanford and U.C. Berkkeley.He has a BE in Electrical Engineering from
the University of New Zealand (where he grew up), an MS in Computer Science from the California Institute of Technology and an MBA
from Stanford University. His set of books on software testing is due to be published next year.

QW2002 Tutorial B1

Mr. Ross Collard
(Collard & Company)

Web Site Robustness and Scalability Testing

Key Points

WebSite testing imposes new constraints on testing and analysis technology.
Very complext WebSites have extremely high "negative payoff" for failure.
WebSite quality requires both static and dynamic testing, and dynamic testing requires 100% maintenance of session context.
Continual monitoring of WebSite quality appears to be a requirement for a complex WebSite.

Presentation Outline

WebSite Properties, Concerns
Static Testing
Dynanmic Testing
 Functional/Verification
 Timing/Tuning
 Server Loading
 Mapping
WebSite Monitoring
Case Study
Source Material

About the Author

Dr. Edward Miller is Chairman and President of Software Research, Inc., San Francisco, California, and Chief Technical Architect for
software test tools development and software engineering quality questions. Dr. Miller has worked in the software quality management
field for 25 years in a variety of capacities, and has been involved in the development of families of automated software, analysis and
WebSite quality analysis tools.

He was chairman of the 1985 1st International Conference on Computer Workstations, and has participated in IEEE conference
organizing activities for many years. He has been Chairman of the Quality Week Conferences since 1988 and of the Quality Week
Europe Conferences since 1996. He is a Bember of the Board of the Center for National Software Studies, a not-for-profit organization
devoted to furtherance of national software concerns, and a member of the External Advisory Board of the EE Department at Iowa
State University. He is the author of Software Testing and Validation Techniques, an IEEE Computer Society Press tutorial text. Dr.
Miller received his Ph.D. (Electrical Engineering) degree from the University of Maryland, an M.S. (Applied Mathematics) degree from
the University of Colorado, and a BSEE from Iowa State University.

QW2002 Tutorial C1

Mr. Edward Miller
(eValid, Inc.)

Web Testing: A Practical Approach

Key Points

Discuss and choose from different techniques to specify requirements
Improve written requirements and tell good requirements from bad ones
Write non-functional requirements so they are verifiable

Presentation Abstract

Back by popular demand, in full-day format. This tutorial has earned consistent praise from attendees at Quality Week 2001, Quality
Week Europe 2002 (average 4.9 out of 5 rating), and PNSQC 2000 (44 of 45 evaluations rated "valuable" or "very valuable"). Attendees
enjoy the fast pace and depth of information presented. This material has been taught to nearly 4,000 students at Intel sites around the
world. Poorly written requirements result in lost productivity, increased re-work, dissatisfied customers, poor end product quality, and
even project cancellations. So, why are good requirements so hard to write? Many people do not know the key attributes of a "Good
Requirement", and have not been exposed to the various effective ways to specify requirements.

This 1-day workshop focuses on and applies the best-known methods behind improved requirements writing. Based closely on a
popular course taught at Intel, the course covers the different types of requirements and what activities are important when specifying
requirements. The emphasis is on practical solutions to common problems, and contains valuable real examples from Intel documents
in both original and improved formats. Students will gain an understanding of the attributes of a good requirement, and learn ways to
identify whether the requirement is unambiguous, concise, necessary, correct, and traceable. Many useful "take it home and use it
tomorrow" techniques for writing both functional and non-functional requirements are presented. Several exercises are included to
reinforce the techniques. Attendees are invited to bring their existing requirements documents for use in the final exercise if desired.

About the Author

Erik Simmons has 15 years experience in multiple aspects of software and quality engineering. Erik currently works as Platform Quality
Engineer in the Platform Quality Methods group, part of the Corporate Quality Network at Intel Corporation. He is responsible for
Requirements Engineering practices at Intel, and lends support to several other corporate software and product quality initiatives. Erik
is a member of the Pacific Northwest Software Quality Conference Board of Directors and the Steering Committee of the Rose City
SPIN. He holds a Masters degree in mathematical modeling and a Bachelors degree in applied mathematics from Humboldt State
University in California, and was appointed to the Clinical Faculty of Oregon Health Sciences University in 1991.

QW2002 Tutorial D1 & D2

Mr. Erik Simmons
(Intel Corporation)

Writing Good Requirements

Key Points

Stress testing for Web applications
Performance testing for Web applications
Load testing for Web applications
Test automation for Load Testing of Web applications
How stress can impact all quality factors
Stress testing tools and techniques
How to simulate large system loads
How to implement site monitoring
What is stress testing?
When to apply stress testing
How to assess software reliability
How to assess software stability

Presentation Abstract

You know you should be doing stress testing, you're just not sure when. This workshop explores this question, which is particularly
important to developers in Internet multi-tier development projects. You will review practical methods of assessing software reliability,
and learn why it is important to "stress early and stress often."

This workshop focuses on stress testing Web and e-Commerce applications. You will learn how to find the weakest part of an
application by testing to failure and then working with developers to determine the root cause of the defect. You will learn about the
tools to support stress testing, including several available for free!

This workshop introduces you to using tools to automate some important parts of testing Web/e-Commerce applications. You will study
how to organize and run stress testing, and review several sample automations.

Several examples based on commercial Web/e-Commerce applications will be described.

Benefits

After completing this workshop, you will understand many approaches to stress testing applications at all phases of development. After
completing this workshop, you will understand how to plan and automate stress testing for Web/e-Commerce applications. After
completing this workshop, you will know how and when to implement stress testing as part of the software development process.

About the Author

Robert Sabourin, P. Eng. has 20+ years management experience leading teams of software development professionals to consistently
deliver projects on-time, on-quality and on-budget. He is a well-respected member of the software engineering community who has
managed, trained, mentored and coached hundreds of top professionals in the field. He frequently writes and speaks to conferences
around the world on software engineering, SQA, testing, management and internationalization.

QW2002 Tutorial E1 & E2

Robert Sabourin
(Amibug.com)

Practical Web/e-Commerce Stress Testing

Key Points

Explain the organizational context of an independent testing team.
Create and explain a cost-of-quality based business case for testing.
Figure out how test efforts should fit into various system lifecycles.

Presentation Abstract

Organizations invest in quality in general, and testing specifically, because they expect the time, money, and care spent prior to
releasing a system to pay dividends after the release. These dividends may come in the many forms, including but not limited to
financial rewards. Testing is, therefore, a risk management exercise that helps the organization reduce the likelihood of having to bear
certain unanticipated future costs. With such high stakes involved, testing is an endeavor that deserves careful planning, crisp
execution, a talented team, and significant resources. This tutorial will examine the project and organizational context of testing
projects, the need for alignment between testing and quality, and techniques that a test manager can use to ensure crisp test project
management.

About the Author

Rex Black (Rex_Black@RexBlackConsulting.com) is the President and Principal Consultant of Rex Black Consulting Services, Inc.
http://www.RexBlackConsulting.com, an international software and hardware testing and quality assurance consultancy. He and his
consulting associates help clients such as Bank One, Cisco, Compaq, Dell, Schlumberger, Williams Communications, and others with
implementation, consulting, training, and staffing for testing, test automation, and quality assurance projects. His first book, Managing
the Testing Process, published in June 1999, sold thousands of copies in North and South America, Europe, and Asia. In July 2002,
Wiley published the updated and improved second edition. Following on the heels of these successful books, Addison-Wesley will
publish Critical Testing Processes, Volume I and Volume II in late 2002 and early 2003, respectively.

QW2002 Tutorial F1

Mr. Rex Black
(RBCS, Inc.)

Test Management And Organization

Key Points

Data-driven functional test techniques
The construction of "Good Data", and how it can help avoid comon problems
Data and communication

Presentation Abstract

Data is a crucial part of most functional testing - but its importance can be missed in test planning, and is often only appreciated after
things have started to go wrong. This course will help delegates improve their testing by improving their test data.

About the Author

James Lyndsay is an independent consultant with more than ten years experience. After working in analysis, coding and testing at IBM
and in the City, he formed Workroom Productions in 1994 (http://www.workroomproductions. com/).
As a Test Strategist, he has spent the last seven years working with multinational corporations, long projects, and even the occasional
web start-up. His business experience includes banking, telecoms, utility billing, logistics, electronic publishing and retail, and he pays
keen attention to the way that his clients focus is shifting away from functional testing.

QW2002 Tutorial G1

Mr. James Lyndsay
(Workroom Productions Ltd.)

Better Data: Better Testing

Key Points

Learn the benefits and risks of developing user interface abstraction libraries.
Understand when to use data-driven, keyword-based or model-based approaches.
Learn about options for automating non-user interfaces.
Learn how focusing on test evaluation can enable high-volume test creation.

Presentation Abstract

Bret Pettichord and Doug Hoffman bring together their extensive experience to provide key information on test automation. Successful
testing groups have used a variety of test automation architectures. Pettichord and Hoffman's combined perspectives and insights will
help you select and customize an effective architecture for the needs and challenges of your context.

This afternoon tutorial surveys and explores eleven architectural patterns for automating software testing. Each architecture is
described in terms of the contextual factors that favor its adoption. These patterns include:

- Scripting Frameworks
- Data-Driven Scripts
- Action Keywords
- Test-First Programming
- API Tests
- Thin GUI
- Consult an Oracle
- Automated Monkey
- Assertions and Diagnostics
- Quick and Dirty

About the Author

Bret Pettichord is an independent consultant with experience using a wide variety of test tools and approaches. He's developed
automated tests for software in various domains, including publishing, accounting, sales, systems management, education and benefits
administration. The tutorial builds on Lessons Learned in Software Testing: A Context- Driven Approach, the best-selling book he
coauthored with Cem Kaner and James Bach. Many of his writings are collected at www.pettichord.com.

Specializing in software testing and test automation, Bret has 14 years experience in software development, including positions as a
staff consultant at Segue Software and a test automation lead at BMC and then IBM/Tivoli before becoming an independent consultant.
Recent clients have included Texas Instruments, Rational Software, Texas Department of Human Services, Deliotte Consulting,
Whisperwire and Netpliance. He learned about software testing as a tax programmer at Arthur Andersen and a software tester and
automator at Interleaf.

Douglas Hoffman is an independent consultant with Software Quality Methods, LLC. He has been in the software engineering and
quality assurance fields for nearly 30 years and now is a management consultant in strategic and tactical planning for software quality.
Throughout his career he has automated testing using a wide variety of hardware and software techniques. His experience includes
consulting, teaching, managing, and engineering across the computer systems and software industries. His recent experience has
focused on creating and transforming software quality and development groups, and architecting software test automation
environments.

Douglas is a founder and past Chairman of the Santa Clara Valley Software Quality Association (SSQA) and the Silicon Valley Section
of the American Society for Quality (ASQ). He has been a presenter and participant at dozens of software quality conferences and has
been Program Chairman for several international conferences on software quality. He is a member of the ACM and IEEE and is active
in the ASQ as a Senior Member, participating in the Software Division, the Santa Clara Valley Section, and the Software Quality Task
Group. He has earned a BA in Computer Science, an MS in Electrical Engineering, an MBA, a Certificate from ASQ in Software Quality
Engineering, and has been a registered ISO 9000 Lead Auditor.

QW2002 Tutorial A2

Mr. Bret Pettichord
Pettichord Consulting LLC & Mr. Douglas Hoffman

Test Automation: Survey of Architectures

Key Points

To introduce software security and security testing concepts
To share strategies and tactics for software security test planning and test design
To discuss common software security vulnerabilities and how to test for them

Presentation Abstract

Security issues are one of the highest concerns to many organizations. Despite this fact, security testing is often the least understood
and least defined task. Security testing is a broad effort that requires a domain of expertise beyond traditional software testing. This
one-day course teaches you security issues and outlines how software-testing roles fit in the big picture. The course focuses on
security-related testing as it is applied to testing Web sites, Web applications, and software applications. This course is ideal for
software testing professionals who are facing the new challenges and responsibilities of determining the scope of security testing to be
done at the application level. QA professionals wanting to understand common vulnerabilities and hacking techniques used against
Web sites and applications will especially benefit from this course. The course layout walks you through an overview of fundamental
security issues including the hacking process and the strategies and technologies used in defending a system. Vulnerabilities in Web
sites, Web applications and software applications as well as how the test for them will be discussed. Participants will come away with a
clear understanding of testing for software system security, and many testing techniques, tools and resources that can be immediately
applied to any project.

About the Author

Hung Q. Nguyen is founder, president, and CEO of LogiGear® Corporation. He’s held leadership roles in business management,
product development, business development, engineering, quality assurance, testing, and information technology. Hung is an
international speaker and contributor to industry publications. He authors and teaches software testing curriculums for LogiGear
University and the University of California. He is the original architect of TRACKGEAR™, a Web-based defect management system,
and the author of Testing Applications on the Web (Wiley). He also wrote (with Kaner and Falk) the best-selling book Testing Computer
Software (Wiley), which is also published in Japanese. He holds a B.Sc. in Quality Assurance from Cogswell Polytechnical College, is
an ASQ-Certified Quality Engineer, and a member of the Advisory Council for the Department of Applied Computing and Information
Systems at UC Berkeley Extension.

QW2002 Tutorial B2

Mr. Hung Q. Nguyen
(LogiGear Corporation)

Security Testing for Web Sites, Web Applications and Software

Key Points

An in-depth overview, with practice, of the presented techniques
Skills for how to use collaborative, team based techniques to improve your work estimation
Not only estimating, but how to use collaboration, team based techniques for planning
Finally, skills in applying the right parts of the techniques to a variety of project situations

Presentation Abstract

The project and cultural dynamics of planning and estimating are one of the greater challenges facing technologists today. There is
ever increasing pressure to “get things done”, so there is little “time” for estimating or planning. All too often, business derived dates or
unrealistic dates drive projects. In conjunction with this, teams lack solid estimating and planning skills, usually resorting to “quick best
guesses”, then compensating for poor estimates and plans with extremely hard work with a low probability of success. This workshop is
intended to provide a review of three collaborative estimating and planning techniques that will enhance and improve your abilities to
effectively estimate and plan your projects. Almost half the workshop is spent in exercises learning to apply the techniques.

About the Author

Robert Galen is employed at EMC Corporation in Research Triangle Park, NC as a Sr. QA & Test Manager. He has also recently
started a consulting firm, RGalen Consulting Group, L.L.C., where he is Principal Consultant. Bob has held director, manager and
contributor level positions in both software development and quality assurance organizations. He has over 20 years of experience
working in the following domains:
- Computer systems
- Financial trading systems
- Mail processing equipment
- Medical diagnostics systems
- Telecommunications & network analysis equipment

He has a broad background that spans real-time embedded to client/server systems architecture and development in a wide variety of
languages and technologies. Since the early 1990’s, he has been involved in successfully leading software development and process
improvement initiatives. Areas of particular interest include:
- Requirement analysis and management
- Software project management
- Software quality, testing and metrics
- Software leadership and development team dynamics

Bob is an active member of ACM, ASQ, IEEE/CS, PMI and active (Program & Publicity Chair) in the local RTP-SPIN group -
www.rtpspin.org. He is passionate about and committed to the profession of software engineering and product development.

QW2002 Tutorial C2

Mr. Robert L. Galen
(RGalen Consulting Group, LLC)

Software Projects -- Effective Estimating & Planning Techniques

Key Points

Discuss and choose from different techniques to specify requirements
Improve written requirements and tell good requirements from bad ones
Write non-functional requirements so they are verifiable

Presentation Abstract

Back by popular demand, in full-day format. This tutorial has earned consistent praise from attendees at Quality Week 2001, Quality
Week Europe 2002 (average 4.9 out of 5 rating), and PNSQC 2000 (44 of 45 evaluations rated "valuable" or "very valuable"). Attendees
enjoy the fast pace and depth of information presented. This material has been taught to nearly 4,000 students at Intel sites around the
world. Poorly written requirements result in lost productivity, increased re-work, dissatisfied customers, poor end product quality, and
even project cancellations. So, why are good requirements so hard to write? Many people do not know the key attributes of a "Good
Requirement", and have not been exposed to the various effective ways to specify requirements.

This 1-day workshop focuses on and applies the best-known methods behind improved requirements writing. Based closely on a
popular course taught at Intel, the course covers the different types of requirements and what activities are important when specifying
requirements. The emphasis is on practical solutions to common problems, and contains valuable real examples from Intel documents
in both original and improved formats. Students will gain an understanding of the attributes of a good requirement, and learn ways to
identify whether the requirement is unambiguous, concise, necessary, correct, and traceable. Many useful "take it home and use it
tomorrow" techniques for writing both functional and non-functional requirements are presented. Several exercises are included to
reinforce the techniques. Attendees are invited to bring their existing requirements documents for use in the final exercise if desired.

About the Author

Erik Simmons has 15 years experience in multiple aspects of software and quality engineering. Erik currently works as Platform Quality
Engineer in the Platform Quality Methods group, part of the Corporate Quality Network at Intel Corporation. He is responsible for
Requirements Engineering practices at Intel, and lends support to several other corporate software and product quality initiatives. Erik
is a member of the Pacific Northwest Software Quality Conference Board of Directors and the Steering Committee of the Rose City
SPIN. He holds a Masters degree in mathematical modeling and a Bachelors degree in applied mathematics from Humboldt State
University in California, and was appointed to the Clinical Faculty of Oregon Health Sciences University in 1991.

QW2002 Tutorial D1 & D2

Mr. Erik Simmons
(Intel Corporation)

Writing Good Requirements

Key Points

Stress testing for Web applications
Performance testing for Web applications
Load testing for Web applications
Test automation for Load Testing of Web applications
How stress can impact all quality factors
Stress testing tools and techniques
How to simulate large system loads
How to implement site monitoring
What is stress testing?
When to apply stress testing
How to assess software reliability
How to assess software stability

Presentation Abstract

You know you should be doing stress testing, you're just not sure when. This workshop explores this question, which is particularly
important to developers in Internet multi-tier development projects. You will review practical methods of assessing software reliability,
and learn why it is important to "stress early and stress often."

This workshop focuses on stress testing Web and e-Commerce applications. You will learn how to find the weakest part of an
application by testing to failure and then working with developers to determine the root cause of the defect. You will learn about the
tools to support stress testing, including several available for free!

This workshop introduces you to using tools to automate some important parts of testing Web/e-Commerce applications. You will study
how to organize and run stress testing, and review several sample automations.

Several examples based on commercial Web/e-Commerce applications will be described.

Benefits

After completing this workshop, you will understand many approaches to stress testing applications at all phases of development. After
completing this workshop, you will understand how to plan and automate stress testing for Web/e-Commerce applications. After
completing this workshop, you will know how and when to implement stress testing as part of the software development process.

About the Author

Robert Sabourin, P. Eng. has 20+ years management experience leading teams of software development professionals to consistently
deliver projects on-time, on-quality and on-budget. He is a well-respected member of the software engineering community who has
managed, trained, mentored and coached hundreds of top professionals in the field. He frequently writes and speaks to conferences
around the world on software engineering, SQA, testing, management and internationalization.

QW2002 Tutorial E1 & E2

Robert Sabourin
(Amibug.com)

Practical Web/e-Commerce Stress Testing

Key Points

Analyze risks to system quality to determine what should be tested.
Create an actionable, realistic estimate of the tasks, dependencies, resources and time required.
Adjust the estimated budget and schedule to fit project constraints.

Presentation Abstract

Based on the upcoming Second Edition of Rex's popular book, Managing the Testing Process, and nearly two decades of software,
hardware, and systems experience, Rex Black will guide course attendees through a risk-based approach to creating realistic,
actionable estimates of the testing tasks required for a project. Using techniques ranging from the informal to ISO 9126 to Failure Mode
and Effect Analysis, Rex will demonstrate how to determine what you should test--and how extensively--by developing a prioritized list
of risks to system quality. Rex will then use a hypothetical case study to translate that list of quality risks into an estimated schedule and
budget via techniques like the Delphic Oracle, Three-Point, and Wideband team task sizing methods, plus the use of historical data and
rules of thumb for additional accuracy. Finally, Rex will examine options for testers when they're asked to shrink their testing efforts into
pre-existing schedule or budget targets, including risk-driven test effort descoping. Throughout, attendees will have a chance to solidify
their understanding of the techniques through in-class discussion, Q&A, and three exercises.

About the Author

Rex Black (Rex_Black@RexBlackConsulting.com) is the President and Principal Consultant of Rex Black Consulting Services, Inc.
http://www.RexBlackConsulting.com, an international software and hardware testing and quality assurance consultancy. He and his
consulting associates help clients such as Bank One, Cisco, Compaq, Dell, Schlumberger, Williams Communications, and others with
implementation, consulting, training, and staffing for testing, test automation, and quality assurance projects. His first book, Managing
the Testing Process, published in June 1999, sold thousands of copies in North and South America, Europe, and Asia. In July 2002,
Wiley published the updated and improved second edition. Following on the heels of these successful books, Addison-Wesley will
publish Critical Testing Processes, Volume I and Volume II in late 2002 and early 2003, respectively.

QW2002 Tutorial F2

Mr. Rex Black
(RBCS, Inc.)

Managing The Testing Process: Test Estimation

Key Points

There are several different, effective styles of black box testing
You can probably improve testing in your company by introducing one new style

Presentation Abstract

There are several substantially different approaches to black box testing. We'll look at nine of these approaches. In my experience as a
consultant and teacher, moving through many different companies, many test groups rely heavily on only one or two of them and are
virtually unaware of some of the alternatives.

The tutorial will consider each of the approaches in turn. For some of the approaches (the limiting factor will be time), we'll look at
examples of the types of tests that someone would design when working within a given paradigm (or approach), the types of problems
most easily found, and some types of problems that are more likely missed.

About the Author

Cem Kaner is Professor of Computer Sciences at the Florida Institute of Technology. Prior to joining Florida Tech, Kaner worked in
Silicon Valley for 17 years, doing and managing programming, user interface design, testing, and user documentation. He is the senior
author (with Jack Falk and Hung Quoc Nguyen) of TESTING COMPUTER SOFTWARE (2nd Edition) and (with David Pels) of BAD
SOFTWARE: WHAT TO DO WHEN SOFTWARE FAILS.

Through his consulting firm, KANER.COM, he teaches courses on black box software testing and consults to software publishers on
software testing, documentation, and development management. Kaner is also the co-founder and co-host of the Los Altos Workshop
on Software Testing, the Software Test Managers' RoundTable, the Workshop on Heuristic & Exploratory Techniques, and the Florida
Workshops on Model-Based Testing.

Kaner is also attorney whose practice is focused on the law of software quality. He is active (as an advocate for customers, authors,
and small development shops) in several legislative drafting efforts involving software licensing, software quality regulation, and
electronic commerce. Kaner holds a B.A. in Arts & Sciences (Math, Philosophy), a Ph.D. in Experimental Psychology (Human
Perception & Performance: Psychophysics), and a J.D. (law degree). He is Certified in Quality Engineering by the American Society for
Quality.

QW2002 Tutorial G2

Cem Kaner
(Florida Institute of Technology)

Paradigms Of Black Box Software Testing

Presentation Abstract

The internet, which was designed for reliability through redundancy, has been criticized regarding its reliability on specific paths.
Contributing factors have included the reliability of end system and infrastructure software, database design, provisioning of circuits with
bandwidth, and control of traffic using policy and routing, to name but a few. The reliability of the network has come under test recently
on 11 September, in the Code Red and Nimda virus attacks, and with the current Klez worm. Fred Baker, who contributes technically to
Internet QoS standards, chairs the Internet Emergency Preparedness Working Group, and sits on the Internet Architecture Board, will
address these issues and put them in context.

About the Author

Fred Baker has worked in the telecommunications industry since 1978, building statistical multiplexors, terminal servers, bridges, and
routers.

At Cisco Systems, his primary interest areas include the improvement of Quality of Service for best effort and real time traffic, the
development of routing and addressing, and issues in law enforcement and emergency use of the Internet. In addition to product
development, as a Cisco Fellow, he advises senior management of industry directions and appropriate corporate strategies.

In addition, he is the chair of the Internet Society’s Board of Trustees.

His principal standards contributions have been to the IETF, for which he served as IETF Chair in from 1996 to 2001. In that forum, he
has contributed to Network Management, OSPF and Manet Routing, PPP and Frame Relay, the Integrated and Differentiated Services
QoS architectures, and RSVP. He now serves on the IETF’s Internet Architecture Board and chairs the Internet Emergency
Preparedness Working Group, as well as directly contributing technically.

QW2002 Paper 1G1

Mr. Fred Baker
(Cisco Systems)

Internet Reliability under Stress

Key Points

We must better understand our tendencies and limitations as humans when it comes to assessing risks and estimating their severity and
probability.
We must better understand how the way we express a risk influences someone's response to it.
We must better understand how culture, values, corporate history, and similar factors influence risk perception and management.

Presentation Abstract

A quick search using the terms Risk, Management, and Assessment on an Amazingly large book Website turns up 249 books on the
topic, not to mention the chapters and sections devoted to various aspects of risk in texts on project management. Add hundreds of
magazines, articles, conference proceedings, presentations, and courses at public and private institutions and you come up with a very
large body of knowledge indeed.

But, the vast majority of that material concerns the analytical side of risk assessment and management. It's the other side of risk - the
human side - where we need to increase our knowledge. If we don't, even the best analytical methods will be ineffective.

About the Author

Erik Simmons has 15 years experience in multiple aspects of software and quality engineering. Erik currently works as Platform Quality
Engineer in the Platform Quality Methods group, part of the Corporate Quality Network at Intel Corporation. He is responsible for
Requirements Engineering practices at Intel, and lends support to several other corporate software and product quality initiatives.

Erik is a member of the Pacific Northwest Software Quality Conference Board of Directors and the Steering Committee of the Rose City
SPIN. He holds a Masters degree in mathematical modeling and a Bachelors degree in applied mathematics from Humboldt State
University in California, and was appointed to the Clinical Faculty of Oregon Health Sciences University in 1991.

QW2002 Paper 1G2

Mr. Erik Simmons
(Intel Corporation)

The Human Side of Risk

1

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

The Human Side of Risk
Erik Simmons, Intel Corporation

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

2

The Study of Risk

Risk is a highly studied subject:

• 249 books found on an Amazingly Large Bookstore’s
Website

• Hundreds of papers, conference proceedings,
tutorials, classes, and book chapters

But, few of us understand the human side of risk

Risk is a highly studied subject:

• 249 books found on an Amazingly Large Bookstore’s
Website

• Hundreds of papers, conference proceedings,
tutorials, classes, and book chapters

But, few of us understand the human side of risk

Perceptive biases

Cognitive limitations
Environmental influences

Decision processes?

2

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

3

Are We Rational or Irrational?

1:659,779 1:6,585

1:100

What’s the greater risk of death?What’s the greater risk of death?

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Risk Perception
Influences and Factors

3

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

5

The Two Sides of Risk

Analytical Behavioral

• Logical

• Data Driven

• Scientific

Failure Modes & Effects
Analysis (FMEA)

Risk Management

• Emotional

• Experiential

• Irrational

Subjective assessment
or ignorance of risk

Gambling

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

6

Some Risk Perception Influencers

• Dread associated with the risk
• Perceived controllability
• Imposed versus voluntary risk
• Immediate versus delayed consequences
• Low versus high knowledge about the consequences
• Chronic versus acute consequences
• Severe versus non-severe consequences
• Signaling ability for other similar or more severe events
• Familiarity (experience) with the risk
• Availability of examples

• Dread associated with the risk
• Perceived controllability
• Imposed versus voluntary risk
• Immediate versus delayed consequences
• Low versus high knowledge about the consequences
• Chronic versus acute consequences
• Severe versus non-severe consequences
• Signaling ability for other similar or more severe events
• Familiarity (experience) with the risk
• Availability of examples

Heightens
Perception

Diminishes
Perception

4

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

7

Software Examples

• Dread: Security flaws, product recall, loss of life
• Imposed versus voluntary risk: Schedule reductions by

management versus the development team
• Immediate versus delayed consequences: Loss of fixed

bid contract versus renegotiation later on
• Low versus high knowledge about the consequences:

Commitment to support a unreleased OS version
• Severe versus non-severe consequences: Complete

build failure versus a few hours lost to an SCM issue
• Signaling ability for other similar or more severe events:

Performance issues in the first of many products on a
new architecture

• Dread: Security flaws, product recall, loss of life
• Imposed versus voluntary risk: Schedule reductions by

management versus the development team
• Immediate versus delayed consequences: Loss of fixed

bid contract versus renegotiation later on
• Low versus high knowledge about the consequences:

Commitment to support a unreleased OS version
• Severe versus non-severe consequences: Complete

build failure versus a few hours lost to an SCM issue
• Signaling ability for other similar or more severe events:

Performance issues in the first of many products on a
new architecture

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

8

Cultural & Environmental Influences

Culture and environment influence the way risk is dealt
with, and when. For example, the US culture is marked by*:

• Insistence for choice
• Pursuit of dreams
• Big is better
• Impatience

Various cultures might view risk awareness as pessimism,
realism, or exemplary behavior

Culture and environment influence the way risk is dealt
with, and when. For example, the US culture is marked by*:

• Insistence for choice
• Pursuit of dreams
• Big is better
• Impatience

Various cultures might view risk awareness as pessimism,
realism, or exemplary behavior

How does your company’s culture and environment
affect your perception of risk?

• Tolerance of mistakes
• Urge to improvise
• Fixation on what’s “new”

*Adapted from The Stuff Americans are Made of, J. Hammond and J. Morrison

5

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

9

The Message Matters

Suppose you had a rare medical condition for which surgery
was the only cure

If there were two procedures available, would you chose:

1. A procedure where nearly 1 in 5 patients die in
surgery

2. A procedure with 85% probability of survival

Suppose you had a rare medical condition for which surgery
was the only cure

If there were two procedures available, would you chose:

1. A procedure where nearly 1 in 5 patients die in
surgery

2. A procedure with 85% probability of survival

Hmmm… Do the
options really feel the
same?

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

10

Unintended Messages

A fear of flying program had an expert explain to participants
how unlikely it was for planes to crash

• The expert listed all the catastrophic failure modes and
stated the probability of failure for each

• Result: The participants came away more afraid, because
no one knew until then that there were so many ways a
plane could crash!

A fear of flying program had an expert explain to participants
how unlikely it was for planes to crash

• The expert listed all the catastrophic failure modes and
stated the probability of failure for each

• Result: The participants came away more afraid, because
no one knew until then that there were so many ways a
plane could crash!

6

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

11

Too Much Information

Software risk spreadsheets can send the wrong message to
other team members and management

Rigorous risk analysis and complete spreadsheets can cause:
• Added scrutiny from upper management (risk = problem)
• Individuals who state risks to be branded as “negative”, “not

a team player”, etc.
• Avoidance of risks because “it’s too much to deal with”

Software risk spreadsheets can send the wrong message to
other team members and management

Rigorous risk analysis and complete spreadsheets can cause:
• Added scrutiny from upper management (risk = problem)
• Individuals who state risks to be branded as “negative”, “not

a team player”, etc.
• Avoidance of risks because “it’s too much to deal with”

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

12

What Could We Do Instead?

Monitor all the risks, but consider using a format other than
the entire spreadsheet to report on them. For example:

• Report only the Top 10 risks
• Report rolled-up metrics, such as total exposure

(probability of occurrence X impact in time or dollars)
• Rotate the category of risk reported each meeting
• Educate people on risk management

Monitor all the risks, but consider using a format other than
the entire spreadsheet to report on them. For example:

• Report only the Top 10 risks
• Report rolled-up metrics, such as total exposure

(probability of occurrence X impact in time or dollars)
• Rotate the category of risk reported each meeting
• Educate people on risk management

7

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Cognitive & Behavioral Limitations

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

14

Test Your Knowledge

How many people died as a result of motor vehicle
crashes in the United States in 2000?

• Provide a point estimate and the smallest range
that you are certain contains the true answer.

• Write your answer below

How many people died as a result of motor vehicle
crashes in the United States in 2000?

• Provide a point estimate and the smallest range
that you are certain contains the true answer.

• Write your answer below

Point estimate:

Range:

8

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

15

Questions:

Did you come close?

Was the real answer included in you range estimate?

How did you arrive at your estimate?

What influenced your estimation and decision process?
• Incomplete information
• Personal history
• Time pressure
• Cost of being wrong
• Familiarity with the risk
• And more…

Did you come close?

Was the real answer included in you range estimate?

How did you arrive at your estimate?

What influenced your estimation and decision process?
• Incomplete information
• Personal history
• Time pressure
• Cost of being wrong
• Familiarity with the risk
• And more…

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

16

Bounded Rationality

A completely rational decision is practically impossible:
• We cannot know everything we would like before

making decisions
• Even with incomplete information, the data

complexity is often overwhelming
• Emotion also plays a significant and often

unpredictable role in decisions

We are forced to create and use simplified heuristics and
models to aid decision making

A completely rational decision is practically impossible:
• We cannot know everything we would like before

making decisions
• Even with incomplete information, the data

complexity is often overwhelming
• Emotion also plays a significant and often

unpredictable role in decisions

We are forced to create and use simplified heuristics and
models to aid decision making

Psychology

Environment

9

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

17

Decisions, Decisions…

Three basic building blocks for a decision heuristic:
• Search rule: How to locate alternatives
• Stopping rule: When to stop looking
• Decision rule: How to decide between alternatives

Three basic building blocks for a decision heuristic:
• Search rule: How to locate alternatives
• Stopping rule: When to stop looking
• Decision rule: How to decide between alternatives

How much time should we spend
deciding how much time to spend?

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

18

Cognitive “Limitations”?

Fast and Frugal Heuristics for decision making can
outperform more complex decision structures like
regression and neural nets in certain environments

We must consider such heuristics in risk management

Fast and Frugal Heuristics for decision making can
outperform more complex decision structures like
regression and neural nets in certain environments

We must consider such heuristics in risk management

There are times when more information is not better

10

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

19

Which Would You Choose?

WorstWorstAverageConestoga
Coupe

BestAverageWorstBelchfire
Mark II

AverageBestBestAardvark
PerformanceQualityCostCar Name

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

20

How About Now?

WorstBestAverageConestoga
Coupe

BestAverageWorstBelchfire
Mark II

AverageWorstBestAardvark
PerformanceQualityCostCar Name

11

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

21

Some Fast & Frugal Heuristics

• Take the first solution that meets minimum requirements in
the most important dimension

• Take the best solution in the most important dimension
• Take the equally weighted best solution in all dimensions
• Imitate the most successful in cases where no clear best

solution exists
• Imitate the majority in volatile or complex environments
• Take the recognized solution over unrecognized solutions

• Take the first solution that meets minimum requirements in
the most important dimension

• Take the best solution in the most important dimension
• Take the equally weighted best solution in all dimensions
• Imitate the most successful in cases where no clear best

solution exists
• Imitate the majority in volatile or complex environments
• Take the recognized solution over unrecognized solutions

Secu
rity

Performance
Ease of Use Cost

Schedule

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

22

On The Other Hand…

Experts sometimes run things intuitively rather than
analytically

In those cases, new twists, unseen conditions, or novel
combinations of events can be disastrous

Experts sometimes run things intuitively rather than
analytically

In those cases, new twists, unseen conditions, or novel
combinations of events can be disastrous

Chernobyl happened to a very experienced team

Many reasons behind it, including
• Overconfidence from repeated safety rule violations

without negative consequences
• Time pressure
• Perceived controllability

Chernobyl happened to a very experienced team

Many reasons behind it, including
• Overconfidence from repeated safety rule violations

without negative consequences
• Time pressure
• Perceived controllability

12

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

23

It Happens in Software, Too

An experienced team wants to skip inspecting a requirements
document in order to save time. Why?
• Time pressure & short term thinking: over-insuring small,

likely losses while under-insuring for catastrophic loss
• Perceived controllability: Exposures to this risk without

catastrophic consequences in the past
• Over-weighting local experience: Generalization of local

experience to infer a lower risk than really exists

What can you do about it?
• Express the risk over time rather than single incident
• Provide data that describes risk rates and consequences

based on large samples and studies
• Advocate a balance between short and long term thinking

An experienced team wants to skip inspecting a requirements
document in order to save time. Why?
• Time pressure & short term thinking: over-insuring small,

likely losses while under-insuring for catastrophic loss
• Perceived controllability: Exposures to this risk without

catastrophic consequences in the past
• Over-weighting local experience: Generalization of local

experience to infer a lower risk than really exists

What can you do about it?
• Express the risk over time rather than single incident
• Provide data that describes risk rates and consequences

based on large samples and studies
• Advocate a balance between short and long term thinking

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

24

Emotion, Risk, and Decision Making

Past success creates pride and self worth
• In this setting, people tend to chose risk minimizing

strategies
Failures create stigma, shame and a lack of self worth

• When this happens, people tend to chose reward
maximizing strategies and ignore risk

Dread can focus inordinate attention on certain risks and
influence decision making

Past success creates pride and self worth
• In this setting, people tend to chose risk minimizing

strategies
Failures create stigma, shame and a lack of self worth

• When this happens, people tend to chose reward
maximizing strategies and ignore risk

Dread can focus inordinate attention on certain risks and
influence decision making

13

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

25

Affect and Risk Perception

• Ice cream

• Nuclear waste

• Tropical vacation

• Chemicals

• Public speaking

• Ice cream

• Nuclear waste

• Tropical vacation

• Chemicals

• Public speaking

• Inspections

• Metrics program

• Agile methods

• Process improvement

• Object Orientation

• Inspections

• Metrics program

• Agile methods

• Process improvement

• Object Orientation

Affect is the feelings or emotions elicited by an external
stimulus

Affect can strongly influence risk perception

Affect is the feelings or emotions elicited by an external
stimulus

Affect can strongly influence risk perception

What feelings and emotions do the following terms create?

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

26

What’s the Greater Risk of Death?

1:659,779 1:373,787

1:2

14

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

27

Summary

• We sometimes hold very inaccurate and irrational
views about risks

• Risk means different things to different people, and
risk perception is influenced in many ways

• Risk definition is an exercise in power. If you control
how risk is defined, you can greatly influence which
strategy is best in response

• More information is not necessarily better - it may
confuse or alarm rather than inform

• Presentation matters!

• We sometimes hold very inaccurate and irrational
views about risks

• Risk means different things to different people, and
risk perception is influenced in many ways

• Risk definition is an exercise in power. If you control
how risk is defined, you can greatly influence which
strategy is best in response

• More information is not necessarily better - it may
confuse or alarm rather than inform

• Presentation matters!

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

28

Summary

• We must better understand our tendencies and
limitations as humans when it comes to assessing
risks and estimating their severity and probability

• We must better understand how the way we express a
risk influences someone’s response to it

• We must better understand how culture, values,
corporate and personal history, and other similar
factors influence risk perception and management

• We must better understand our tendencies and
limitations as humans when it comes to assessing
risks and estimating their severity and probability

• We must better understand how the way we express a
risk influences someone’s response to it

• We must better understand how culture, values,
corporate and personal history, and other similar
factors influence risk perception and management

Otherwise, the best analytical tools and methods
for risk will have little effect

15

® Copyright © 2002 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

29

For More Information

• The Perception of Risk, Paul Slovic, Earthscan
Publications Ltd, 2000

• The Logic of Failure, Dietrich Dörner, Metropolitan
Books, 1996

• Bounded Rationality: The Adaptive Toolbox, Gerd
Gigerenzer and Reinhard Selten, MIT, 2001

• Elements of Reason: Cognition, Choice, and the
Bounds of Rationality, Arthur Lupia et al, Cambridge,
2000

• The Perception of Risk, Paul Slovic, Earthscan
Publications Ltd, 2000

• The Logic of Failure, Dietrich Dörner, Metropolitan
Books, 1996

• Bounded Rationality: The Adaptive Toolbox, Gerd
Gigerenzer and Reinhard Selten, MIT, 2001

• Elements of Reason: Cognition, Choice, and the
Bounds of Rationality, Arthur Lupia et al, Cambridge,
2000

Key Points

What is science?
The traditional relationship among science, mathematics, and engineering.
Why is software engineering different?
So what is software, really?
What's to be done?

Presentation Abstract

Science is the basis for every field of engineering -- except software engineering. Software obeys no physical laws, not because our
discipline is immature, but as an intrinsic property. Software is therefore given the hard problems to solve, because other technologies
are limited; and, the software designer finds it hard to tell a good design from a bad one. What software engineers need is a way to say
`no' to impossible requirements.

About the Author

Dick Hamlet is Professor of Computer Science at Portland State University. He has been active in software development and research
for more than 30 years, as a programmer, manager, teacher, and researcher. He was a member of the software engineering research
group at the University of Maryland for 12 years, a visiting lecturer at University of Melbourne in 1982, and a Fulbright scholar at
National University of Ireland, Galway, in 1998-99. He is the author of three textbooks and more than 50 refereed conference and
journal publications. He has implemented major software systems for two programming languages, the first mutation testing system, a
transportable image-processing system, and a prototyping system for testing tools.

He holds a BS (electrical engineering) from the University of Wisconsin, MS (engineering physics) from Cornell, and PhD (computer
science) from the University of Washington. Currently he is investigating the theoretical foundations of testing, and is principal
investigator on a National Science Foundation grant to study the reliability of systems built from software components.

QW2002 Paper 5G1

Prof. Dick Hamlet
(Portland State University)

Science, Computer "Science", Mathematics, and Software Development

Science Mathematics

Engineering

Science,
Computer ‘Science’,

Mathematics,
and Software Development

Dick Hamlet
Portland State University

Portland, OR, USA

. – p.1

Outline of the Talk

I. Philosophy of Software Engineering

II. Mathematics, Science, Engineering

III. And for Software Engineering ... ?

IV. What’s To Be Done About It?

. – p.2

Fundamental Questions

I What is software engineering?

“Whatever it is I do all day...”

... is not much good

There are good answers to similar questions:

I What is physics?

I What is civil engineering?

(Some of those answers along the way)

. – p.3

But What Use is It?

I Impress people at parties...

I Ask for a raise...
I Write a book and go on talk shows...

I Feel good (or bad) about your profession ...

I But knowledge may interfere with your work
B Newton was seeking God’s truth
B (And everyone thought he’d found it)

. – p.4

Science, Math, and Engineering

Mathematics

Science

Engineering

In the beginning Mathematics

Science

Engineering

100 years later

. – p.5

What Are The Disciplines?

Questions answered by:

Mathematics:
How to describe complicated things?

Science:
How does the world really work?
What are its natural laws?

Engineering:
How can I make it happen as I want?

Science & Mathematics Technology
Understanding of reality Human control

. – p.6

Formal Definitions (c. 2000)

(Mathematical) theory: A body of definitions,
axioms, and theorems.

(Scientific) theory: A collection of assertions
about reality that may be falsified by
observation.
Ideally, applied mathematics.

Engineering design rules (Theory?): Systematic
procedures for making artifacts, drawn from
science, practice, invention, and experiment.

. – p.7

Applied Mathematics

I Start with a rich mathematical theory

I Identify the theory’s objects with physical
entities

I Check that the theory’s axioms are true for
those entities

I Exploit the theorems of the theory

☞ Creates a precise scientific theory ☞

. – p.8

Testing a Scientific Theory

Suppose a theorem of the mathematical theory
(in the scientific theory) is observed not to hold.

We say, “The theory is wrong,” meaning the
scientific one.

I The axioms did not hold.
OR

I Mathematical logic is wrong.

We much prefer this one

. – p.9

‘Normal’ Engineering Design

I Design rules tried and true, used before

I No new ‘engineering science’ allowed

I ‘Safety factors’ cover design errors

I Very likely to succeed in use

I Rare failures publicly analyzed

In ‘pre-normal’ times engineers can’t work properly

Too many failures force design-rule change –
ending a ‘normal’ period

(See Addis, inspired by Kuhn)

. – p.10

Summary: Traditional Paradigm

Science seeks to accurately describe the world’s
laws

Engineering design must conform to scientific
laws – normal design removes some of the
uncertainty (See Vincenti)

Mathematics is the handmaiden of science, the
tool of engineering

☞
Spectacular success in mechanical,

civil, aeronautical, and electrical
engineering

☞

. – p.11

Traditional Engineering (Electrical)

Partial
differential
equations

Electromagnetic
theory

Electronic
engineering

∇ · ~B = 0

∇ × ~E = −
∂ ~B

∂t

∇ · ~D = ρ

∇ × ~H = ~J −
∂ ~D

∂t

☞ Maxwell equations: applied mathematics
of electromagnetic theory ☞

. – p.12

Today’s Philosophical Truths

I Mathematics isn’t true or false.
Mathematical objects are merely “the things
that satisfy the axioms” (if any)
We hope they also satisfy the theorems

I Science isn’t objective, but ‘theory saturated’.
Science starts with a problem to be explained,
then comes a theory, and finally observations
testing theory (Karl Popper)

I Engineering design rules must be usable –
they don’t have to be scientific.
Safety factors compensate for incorrect
theories in the rules

. – p.13

Quotations Supporting the Truths

I “Mathematics is the subject in which we never
know what we are talking about, nor whether what
we are saying is true.” –Bertrand Russell

I “It is also a good rule not to put overmuch
confidence in the observational results that are put
forward until they are confirmed by theory.”
–Sir Arthur Eddington

I “The Doric design procedures ... were elegantly
simple... They required the selection of a single
fundamental ‘module’ equal to one half the
diameter of a column, all parts of the work
adjusted by means of calculations based upon it.”
–William Addis

. – p.14

Software Engineering?

I It is technology – software controls the world
today

Is it like this?

Logic,
algebra

Computer
science

Software
engineering

. – p.15

Computer Science?

I Donald Knuth’s volumes are entitled
The Art of Computer Programming

I C.A.R. Hoare (q.v.) looks (forward!) to ‘laws’
and ‘science’ for programming. But (on Ada):

“Almost anything in software can be implemented,
and even used, given enough determination.”

B Not even the DoD can buy physical laws

I In an accredited CS curriculum physics and
calculus are required but not used

I “If a discipline has ‘science’ in its name, it
isn’t.”

. – p.16

What is Programming?

I Programming is at the heart of CS

I There is no science of programming
B Programming skill is taught by example
B Particular programs are studied as artifacts

I What are the laws of programming?
B You must use C++?
B You must choose identifiers to company

standard?
B You must not write:

if X = Y for if (X == Y) ?

. – p.17

Where Does Programming Fit?

Logic,
algebra

Computer
science

Software
engineering

here?

or here?

. – p.18

Computer ‘Science’ Isn’t

I There are no falsifying experiments
B ‘Experiment’ in CS means to implement an

idea until it works
I Programming languages are invented

B They can be changed at will (past time!)
B Their properties can be proved (and if the

proof fails, change something!)

☞ Scientists can’t change reality
to fit theory ☞

. – p.19

Digression: There’s Some Science...

I Information theory and undecidability
(complexity) theory are something like
thermodynamic laws

I ‘Science’ overlaps with ‘rational discussion’
“I may be wrong and you may be right, and by an
effort we may get nearer to the truth.”
–Karl Popper

B Mathematics and CS: consistency, depth,
and elegance replace experiments

I The sociology and economics of software
engineering are human laws, but they have
immense inertia

. – p.20

Computer Mathematics?

Math

Computer
science

Software
engineering

information theory

programming

economics of SE

sociology of SE

. – p.21

Evaluating Engineering Designs

I Solving problems – an analogy:
B Civil engineering: Design a bridge

consistent with physical reality (may be
impossible)

B Software engineering: Design a program
consistent with customer requirements (??)

I Einstein said that in making the laws of
physics, God was “subtle, but not damn mean”
B Sometimes customers are damn mean...

☞ How is a good design different
from a poor one? ☞

. – p.22

Examples of Models in Engineering

I Aeronautical engineering: predict wing
behavior
B May be proved wrong by experiment
B Failures covered by a safety factor

I Software engineering: predict efficacy of a
testing strategy
B Can be verified by mathematical proof
B Failures may be arbitrarily bad

☞ In software, a model is mathematics
to explain some other mathematics ☞

. – p.23

The Woes of the Craft

I Software gets to do the hard parts
B The others, limited by natural law, can’t!

I Crackpot Requirements

I No professional tools
B A builder needs a better saw than a

hobbyist – but Windows Pro isn’t

I Ugly theory (bad mathematics)

I 60-hour weeks
B “We delivered the compiler on time, but

none of the marriages survived.”

. – p.24

All Problems Solved by Philosophy?

I Fundamental understanding should help us
deal with our difficulties

☞ Software is not subject to natural law ☞

I Recommendations:
B Take responsibility
B Use good mathematics
B Keep things straight

. – p.25

Take Responsibility

☞ Without natural law we have no one
to blame but ourselves

☞
I Civil engineer’s “No” backed by physical law

I Software engineer’s “No” based only on
sociology and economics

B Crazy requirements and schedules
B Releasing untested or failed software
B But: no politics in “No”

I Better tools and working conditions

. – p.26

Use Good Mathematics

☞ Bad mathematics is a matter of choice ☞

I Safe programming languages 40 years old
B Java isn’t bad but for the wrong reasons
B Giving a software engineer a Turing

complete programming language is like
giving a child an AK-47

I Redundant design – software ‘safety factors’

I What about ‘Formal Methods’?
B Pro: Mathematical theory of a single

program – capture it in deep theorems
B Con: Mathematics may be all right for

expressing God’s high-quality laws...
. – p.27

Keep Things Straight

☞ Don’t confuse sociology/economics
with mathematics

☞

I Taylorism hides in software process

“Management is not a skill or a craft or a
profession but a command relationship; a sort of
bad habit inherited from the army or the church.”
–A Lucas Aerospace worker

I eXtreme Programming fixes many woes

I Mathematics doesn’t have to be ‘validated’
B To model bean counting it isn’t necessary

to amass thousands of beans and check
1 + 0 = 1, ..., 2 + 2 = 4, ...

. – p.28

Annotated Bibliography

William Addis, Structural Engineering: The
Nature of Theory and Design, Ellis Horwood,
1991.
I A marvelous book by one of the few philosophers

of engineering. Addis speaks as a civil engineer
who has studied his discipline historically, and he
is not daunted by the immense difficulty of really
understanding the past. His purpose is to define
engineering design, which he rightly believes is a
better name for what engineers do than the
overused ‘practice’.

. – p.29

More Bibliography

Thomas S. Kuhn, The Structure of Scientific
Revolutions, 3rd ed., University of Chicago
Press, 1996.
I Kuhn’s thesis is that science has ‘normal’ periods

in which a dominant theoretical paradigm enables
scientists to work productively, and ‘revolutions’ in
which the theoretical paradigm is forced to
change. This view of the field is arguably the most
influential today. In particular, it has inspired
engineers like Addis and Vincenti.

. – p.30

More Bibliography

Karl R. Popper, Conjectures and Refutations:
The Growth of Scientific Knowledge, 5th ed.,
Routledge, 1992.
I Although Popper and Kuhn do not agree about

intrinsic ‘truth’ in science (Kuhn thinks there is
none, while Popper still hopes for it), they do agree
that the usual descriptions of the so-called
scientific method are nonsense. Popper’s view is
that theory directs most scientific work, and that
science is defined by theories that can be tested
and may prove false. Popper believes strongly in
the process of rational dispute, and he therefore
calls mathematics a science.

. – p.31

More Bibliography

C.A.R. Hoare, “Programming: Science or
Sorcery?,” in Essays in Computing Science,
Prentice-Hall, 1989.
I Hoare presents his vision of a software profession.

I would change his ‘science’ to ‘mathematics,’ and
his ‘law’ to ‘theorem.’

Walter G. Vincenti, What Engineers Know and
How they Know it, Johns Hopkins Press, 1990.
I Vincenti does not have Addis’s philosophical turn

of mind, but he knows aeronautical engineering
and has made a taxonomy of engineering
knowledge, with good examples (especially on
parameter variation).

. – p.32

Key Points

Ubiquitous IT presents new challenges
Highly automated testing can meet these challenges
Achieving high reliablity is not an exotic luxury

Presentation Abstract

The human race is rapidly moving to ubiquitous information technology -- unthethered broadband to the hand: anyone, anything,
anytime, anywhere. This adds several degrees of freedom to the already daunting combinatorics of testing. "Five nines" was once
arcane telco jargon, but it now headlines press releases from Microsoft. In sharp contrast to hardware advances, present-day software
technology is no better at achieving high reliability than it was ten years ago. Software development thus faces a significant challenge.
This talk presents a strategy for achieving very high reliability (at least five nines) for ubiquitous IT: automated, mobile-aware, high-
fidelity, profile-based, end-to-end testing. The strategy is explained through a brief experience report about its use to achieve very high
reliability in large, high-volume, distributed application. The talk concludes with a sketch of how this approach is currently evolving for
mobile technology.

Outline

Overview
The Vision
The New IT Reality
The Unchanged IT Reality: Software
Unique Wireless Test Problems
Reliability Arithmetic
Some Reliability Data Points
The New IT Reality: Reliability Sells!
The Engineering Challenge
The Strategy
Testing Process
Testing by Poking Around
Automated Test Script
Automated Generation/Agent
Full Test Automation
Test Effectiveness
Full Automation Case Study
Lessons Learned
Current Work - Wireless Testing System
Conclusion

About the Author

Robert V. Binder is internationally recognized as an expert on testing and author of the definitive Testing Object-oriented Systems:
Models, Patterns, and Tools. As president of RBSC Corporation for fifteen years, he's lead many projects to design and build advanced
automated testing systems.

QW2002 Paper 5G2

Mr. Robert V. Binder
(Mobile Systems Verification)

Achieving Very High Reliability for Ubiquitous Information Technology

Key Points

Participants will be able to reason about the practices and factors driving the competitiveness versus security trade off and assess the leading
indicators underlying these factors for their own organization.
While both are essential, it is clear that competitiveness and security travel on separate paths that do crisscross and overlap at certain points.
The competitiveness versus security trade off may be tilted towards competitiveness, thereby, exposing the nation's critical software
infrastructure to predictable security threats.

Presentation Abstract

There is an important national debate on CyberSecurity. It centers on who pays the bill, the private or public sector. On the one hand,
the public sector argues that security and competitiveness move together, therefore, the private sector should pay the cost to be
competitive. On the other hand, the private sector argues that security costs too much, and the probability of occurrence is too low to
force the investment especially during the period of economic recovery.

The knowledge required in this trade off revolves around the practices and factors that embrace both competitiveness and security and
those that embrace one at the expense of the other. A web-based scoring and analysis tool is used to assess the impact of the three
types of practices and factors used to frame the issue including trustworthiness, cost effectiveness, and survivability. Leading indicators
are identified for each practice and factor.

About the Author

Mr. Don O'Neill: Following his twenty-seven year career with IBM's Federal Systems Division, Mr. O'Neill completed a three year
residency at Carnegie Mellon University's Software Engineering Institute (SEI) under IBM's Technical Academic Career Program. An
independent consultant, he focuses on Software Inspections training, directing the National Software Quality Experiment, and
conducting Global Software Competitiveness Assessments. He is a founding member of the Washington DC Software Process
Improvement Network (SPIN) and the National Software Council (NSC) and serves as the Executive Vice President of the Center for
National Software Studies (CNSS) http://www.CNsoftware.org. He is a collaborator with the Center for Empirically-based Software
Engineering (CeBASE).

QW2002 Paper 10G1

Mr. Don O'Neill
(Center for National Software Studies)

Competitiveness Versus Security

@Copyright Don O’Neill, 2002 1 Competitiveness and
Security

QuickTime™ and a
Photo - JPEG decompressor

are needed to see this picture.

Competitiveness Versus Security

Considerations in
Ensuring Future US Competitiveness

In an Era of Increased Security Needs and
The Role of Public and Private Collaboration

Don O’Neill
Executive Vice President

Center for National Software Studies

September 2002

Featuring
Abstract

The Many Dimensions of Security
Competitiveness

Who Pays the Bill?
The Trade Off Factors

Outlook
Conclusion

@Copyright Don O’Neill, 2002 2 Competitiveness and
Security

Competitiveness Versus Security
Considerations in

Ensuring Future US Competitiveness
In an Era of Increased Security Needs and

The Role of Public and Private Collaboration
Abstract
There is an important national debate on CyberSecurity. It centers on who pays the bill, the
private or public sector. On the one hand, the public sector argues that security and
competitiveness move together, therefore, the private sector should pay the cost to be
competitive. On the other hand, the private sector argues that security costs too much, and the
probability of occurrence is too low to force the investment especially during the period of
economic recovery.

As Deming taught us, there is no substitute for superior knowledge. The knowledge required in
this trade off revolves around the practices and factors that embrace both competitiveness and
security and those that embrace one at the expense of the other. Three types of practices and
factors are used to frame the issue including trustworthiness, cost effectiveness, and
survivability. Leading indicators are identified for each practice.

A web-based scoring and analysis tool is used to analyze the impact of trustworthiness, cost
effectiveness, and survivability practices and factors on competitiveness and security. A set of
notional quick look scores are postulated for commercial, DOD industry, and government.
Participants are asked what scores they would assign each practice and factor and are invited to
exercise the tool to complete the analysis. An initial set of findings is suggested.

While both are essential, it is clear that competitiveness and security travel on separate paths that
do crisscross and overlap at certain points. The competitiveness versus security trade off may be
tilted towards competitiveness, thereby, exposing the nation’s critical software infrastructure to
predictable security threats.

The Many Dimensions of Security
We are experiencing the fall out from the lunge towards a paper less society without a
technology infrastructure. As McNamara said during Vietnam, “If you don’t watch the
periphery, it will soon become the center.” Security has become the center but a center that spans
many dimensions.

CyberSecurity has many dimensions, and currently players are free to choose the dimension that
best suits their background, experience, interest, or business objective. The challenge facing the
country is to frame the issue realistically, to distill those factors that impact on the national
interest, and to do so with intellectual honesty and not self interest. In large measure we are
engaged in operation barn door.

What are the dimensions of security?

It spans threats, vulnerabilities, and readiness.
It spans the industry’s underlying software architecture and environment and its inability to
field trustworthy software systems.
It spans industry best practices and certification of processes, people, and products.

@Copyright Don O’Neill, 2002 3 Competitiveness and
Security

It spans the private and public sector and the tensions between them.
It spans legislative directions with their unintended consequences that impact security.
It spans business with its lack of essential driving incentive to promote security.

Security spans threats, vulnerabilities, and readiness. The primary software security focus needs
to shift from threats and vulnerability to readiness and survivability. Threats are not well
understood. Even as we struggle to determine the profile of future incidents, the analysis of past
incidents yields only an incomplete and sometimes contradictory profile.

60% of security threats are random; 40% are targeted, but the degree of persistence is
unknown.
100% of enterprises are attacked, but only 30% admit to being attacked.
70% of attacks are carried out by insiders.
17% of attacks attributed to industrial espionage and competitive intelligence.
Vulnerabilities are predominately in implementation not design. These vulnerabilities are
examples of neglect and stem from unanticipated input, incorrect usage of protocols and
connectivity, and accepting default settings. Understanding these vulnerabilities involves
chasing down execution paths and their uncountably large number of possibilities.
The industry dependence on Microsoft products with its large pool of users and its common
and numerous vulnerabilities greatly facilitates security intrusion into the nation’s critical
infrastructure accounting for 90% of all vulnerabilities.
Security cannot be bolted on; it must be designed in.
Some of the industry approaches to readiness are wrong. A few say that security depends on
those doing the protecting. Some say security is a journey, not a destination. Many are
approaching security as a process improvement activity.

Security spans the industry’s underlying software architecture and environment and its inability
to field trustworthy software systems. Industry must make the technical sacrifices and
accommodations needed to achieve enterprise security and national security.

Security may require sacrificing certain preferred attributes of trustworthy software systems,
such as, openness, interoperability, and modifiability.
Security may require sacrificing certain architectural styles in favor of those that facilitate
ease of deterministic recovery and reconstitution following a security intrusion.

Security spans industry best practices and certification of processes, people, and products. The
primary software security focus on industry practices and certification must shift from process
and people to product.

Industry software configuration management practice is poor, and patches are made without
adequate testing.
Beyond that, the industry practice is to procrastinate on implementing security patches
because upgrades lead to problems, and personnel to test and retest are in short supply.

Security spans the private and public sector and the tensions between them. It is necessary to
trade knowledge for power as the coin of the realm in seeking common ground in the public-
private collaboration.

There is a public and private consensus that industry must lead in addressing security.
If the private sector doesn’t come up with market driven security standards, then government
will step up its regulatory pace.
However, the government itself has earned failing grades in its report card on security

@Copyright Don O’Neill, 2002 4 Competitiveness and
Security

readiness.
In addition the private sector is reluctant to report security intrusions to the government due
to the Freedom of Information Act.

Security spans legislative directions with their unintended consequences that impact security. It
is necessary to revise the legislative actions whose consequences are impacting national security.

Unintended consequences have accompanied UCITA, H1B High Tech Immigration Visa
Program, Clinger-Cohen Act, and Freedom of Information Act.
Software companies often operate as services and not subject to product liability.
The availability of security liability insurance might diminish the incentive to improve the
software security infrastructure. The insurers lack actuarial data on software security, and
may demand compliance with good security practice as a prerequisite to underwriting
insurance.
Furthermore contractors may be reluctant to support government security initiatives without
indemnification made possible under Public Law 85-804 and related executive orders.

Security spans business with its lack of essential driving incentive to promote security. It is
necessary to provide effective mechanisms that tilt the essential business calculation from cost
effectiveness and competitiveness to trustworthiness, survivability, and security.

Enterprise management is driven by “quicker, better, cheaper” and cost effective software
practices that enhance competitiveness while increasing security risk.
Quality concerns register with enterprise management ten times higher than security
concerns.
The high cost of security readiness and the perceived low probability of impact due to
security intrusion conspire to promote inaction.
In 2001, $13B in impact was attributed to security intrusion.
The enterprise must analyze what is to be protected and how important it is to be protected.

The scope of topics under the security tent is broad and deep; consequently there are no experts.
Stovepipe knowledge is increasing with respect to past and current threats and vulnerabilties, but
understanding and practicing readiness are lagging. Security threats come from unexpected
places. This makes risk management difficult. The attempt to get a balanced security risk
management program leads to nuanced approaches that look good under the uncritical light of
management review but buckle under the intense glare of the factory floor and operating center.
A collection of 90% approaches does not yield a 100% solution. The antidote for security threats
is survivability. For enterprises with software operations at the center of the nation’s critical
infrastructure, nothing else will do.

Competitiveness
The government is responsible for prosperity, and industry is responsible for competitiveness.
The leading indicators of prosperity span competitiveness, security, and infrastructure because
without security and infrastructure, competitiveness cannot be achieved.

The Council on Competitiveness in Washington, D.C. defines competitiveness as the capacity of
a nation’s goods and services to meet the test of international markets while maintaining or
boosting the real income of its citizens.

@Copyright Don O’Neill, 2002 5 Competitiveness and
Security

In software, competitiveness is achieved by providing fuel, setting direction, and controlling the
environment including personnel resources, customer satisfaction and value add, competitors and
new entrants, and event threats and change.There are five levels of global software
competitiveness.

Level 4
Competitor

Control

Level 5
Threat
Control

Level 3
Customer

Control

Level 2
Supplier
Control

Level 1 is the absence of expectation, achievement, and engagement in the conversation on
global software competitiveness.
Level 2 is associated with the availability of personnel skills and resources and their
deployment.
Level 3 is associated with value to the customer derived through vigorous competition for
current market niche with mature products that deliver value and earn customer satisfaction.
Level 4 is associated with competing for the future by setting the industry standard and
practicing reuse and domain architecture technology to meet it.
Level 5 is associated with managing change and controlling event threats through strategic
software management that raises the ability to improve to a core competence.

The elements of competitive software behavior revolve around commitment and how agreements
are made and met, perfection and how to hold a participant’s feet to the fire and when to cut
slack, and people and dealing with the stresses of commitment and perfection. Supplier driven
behavior is common in traditional and old style development with fewer suppliers competing.
Market driven behavior is common in new and emerging style development with high customer
bargaining power. Competition driven behavior is common in entrepreneurial style development
with many suppliers competing.

Who Pays the Bill?
The government has bought-in on the security problem, but industry has not yet been sold.
Industry appears to treat security as either a business challenge or a business opportunity, but it
has not made a commitment to the essential investment in infrastructure. There is a public and
private consensus that industry must lead in addressing security; however, with industry slow to
take the lead, the government can be heard rattling its regulatory sword in the form of standards.

While the government approach to industry continues to favor market driven mechanisms, the
government regulatory infrastructure is being readied.

National Security Telecommunications and Information Systems Security Policy No. 11
requires that all commercial off the shelf products must be certified by one of several
agencies. These are software products that process, store, display, or transmit national
security information. It became effective in July 2002.
Presidential Decision Directive 63 is intended to promote cooperation among industry and
government. The interconnection of the various sectors of the nation's critical infrastructure
introduces the risk of cascading consequences following a terrorist attack whether physical
attack or CyberAttack. To counter this threat, Information Sharing and Analysis Centers
(ISAC's) have been created to gather, analyze, and disseminate information and to promote

@Copyright Don O’Neill, 2002 6 Competitiveness and
Security

public-private cooperation. However, the Freedom of Information Act is throttling the
willingness of industry to participate fully and share openly. Compliance with PDD 63 is
achieved through vulnerability assessments using the InfoSec Assessment Training and
Rating System administered by several organizations.

The availability of cyber insurance may tweak the business calculation, perhaps diminishing the
incentive to invest in a secure technology infrastructure. To counter this, insurers may insist on
the adoption of industry best security practices and compliance with security standards before
issuing insurance. Currently actuarial data on security threats is incomplete.

There is an important national debate on CyberSecurity. It centers on who pays the bill, the
private or public sector. On the one hand, the public sector argues that security and
competitiveness move together, therefore, the private sector should pay the cost to be
competitive. On the other hand, the private sector argues that security costs too much, and the
probability of occurrence is too low to force the investment especially during the period of
economic recovery.

The Trade Off Factors
As Deming taught us, there is no substitute for superior knowledge. The knowledge required in
this trade off revolves around the practices and factors that enhance both competitiveness and
security and those that enhance one at the expense of the other.

Three types of practices and factors are used to frame the issue including trustworthiness, cost
effectiveness, and survivability.

Trustworthiness revolves around an engineering practice that tolerates change and yields
dependability of results.

Well engineered software products are complete, correct, consistent, conforming,
traceable, simple not complex, scalable, predictable, and usable.
Dependable software products are available, reliable, predictable, tested, defect free,
fault free, failure free, stable, private, and safe.
Well engineered software products are change tolerant and are adaptable, extensible,
interoperable, modifiable, and open.

Cost effective production is driven by a variety of factors involving personnel resources and
skills and development environment and its process, methods, and tools. Specifically there
has been a heavy dependence on several approaches:

The use of foreign nationals and offshore outsourcing.
The incorporation of commercial off the shelf products.
The deepening of community relations through collaborative research.
The management of personnel factors in particular personnel retention.

Survivability spans the resistance to CyberAttack, the recognition of a CyberAttack, and the
reconstitution of enterprise software operations following a CyberThreat or CyberAttack.
Survivability is achieved through the right blend of function, form, and fit.

Function includes user authorization, access control, encryption, firewalls, proxy
servers, normal operation monitoring, backup and shadow operations, data and
program restoration, and disaster recovery.

@Copyright Don O’Neill, 2002 7 Competitiveness and
Security

Form includes dispersion of data, diversification of systems, rules of construction,
state data isolation, disciplined data, intrusion usage patterns, virus scans, internal
integrity, secure state data monitor, exception handlers, full system state architecture,
minimum essential function, and isolation of damage.
Fit includes adherence to loading limits, predictable response, no memory leaks, rate
monotonic scheduling, time line or event driven scheduling, monitor memory
management, time line predictability, watch-dog timer, full system predictability.

Competitiveness Security
Engineering Practice + +
Dependable Product + +
Change Tolerance + - [Ease of Change]
Cost Effectiveness + - [Foreign Nationals, COTS]
Deep Comm unity Rel. + - [Collaborative Research]
Personnel Management - [Personnel Retention] - [Personnel Retention]
Survivability - [Resist, Recognize, Reconstitute] +

Leading indicators are identified for each practice and form the basis for the trade off which is
structured along the following lines:

Engineering practices and dependable product factors enhance both competitiveness and
security.
While change tolerance and ease of change benefit competitiveness, they also provide easy
access for those with malevolent intent.
While cost effectiveness benefits competitiveness, some of the means for achieving it present
security exposures.
While foreign nationals are skilled and cheap, they possess the means in the form of superior
knowledge and access to intrude on the nation’s critical infrastructure and they lack
allegiance to the United States.
While commercial off the shelf products provide quick and cheap solutions, they are
produced with unknown workforces using unknown practices that yield unknown
trustworthiness, a security exposure.
While collaborative research with appropriate intellectual controls is necessary to achieve
high maturity in competitiveness, this same knowledge could be used to launch a highly
intelligent security intrusion.
Personnel turnover impacts both competitiveness and security; deep domain knowledge must
kept be intramural.
Survivability practices essential for security impact competitiveness through added cost,
product inconvenience, and increased complexity.

The leading indicators selected to characterize the practices and factors of competitiveness and
security are drawn from the attributes of Trustworthy Software Systems, Global Software
Competitiveness, and CyberSecurity Survivability.

@Copyright Don O’Neill, 2002 8 Competitiveness and
Security

Engineering Practice
• Complete
• Correct
• Consistent
• Conforming
• Traceable
• Low complexity
• Scalable
• Predictable
• Usable

Dependable Product
• Available
• Reliable
• Predictable
• Tested
• Defect free
• Failure free
• Fault free
• Stable
• Private
• Safe

Change Tolerant
• Adaptable
• Extensible
• Interoperable
• Modifiable
• Open

Foreign Nationals and
Outsourcing

• Immigration Policy
• Domestic Outsource
• Offshore Outsource

Commercial Off the Shelf
• Reuse Technology Practice
• Product Line Practice
• Domain Architecture

Deep Community
Relationships

• Collaborative Research
• Government Research
• University Research

Personnel Management
• Open Requisitions
• Personnel Turnover
• Staff Churn

Survivability
• Resistance
• Recognition
• Reconstitution

Leading Indicators of
Competitiveness and Security

A web-based scoring and analysis tool is being used to assess the impact of trustworthiness, cost
effectiveness, and survivability practices and factors on competitiveness and security. A set of
notional quick look scores are postulated for commercial, DOD industry, and government.
Participants are asked what scores they would assign each practice and factor and are invited to
exercise the tool to complete the analysis [http://members.aol.com/ONeillDon2/comp-
sec_frames.html]. Using this tool the factor impact analysis was conducted to analyze the
behavior of trustworthiness, cost effectiveness, and survivability.

Each practice and factor is rated from low to high on a 1 to 5 scale. The expressions used to
evaluate competitiveness and security are:

competitiveness=(engineering+dependable+change+foreign+cots+research+(4-personnel)+(4-survivability))/8
security=(engineering+dependable+(4-change)+(4-foreign)+(4-cots)+(4-research)+(4-
personnel)+survivability)/8

@Copyright Don O’Neill, 2002 9 Competitiveness and
Security

3.50

3.25

3.00

2.75

2.50

2.25

E
v
a
l
u
t
i
o
n

Organization Type
Commercial DOD Industry Government

Competitiveness Versus Security: Notional Quick Look

Competitiveness

Security

Practice Commercial DOD Industry Government
Engineering Practice 1 3 2
Dependable Product 2 3 1
Ease of Change 2 3 1
Foreign Nationals 4 2 3
Commercial Products 4 2 2
Collaborative Research 2 4 3
Personnel Management 4 3 2
Survivability 2 4 1

Outlook
While both are essential, it is clear that competitiveness and security travel on separate paths but
paths that do crisscross and overlap at certain points. This competitiveness versus security trade
off may be tilted towards competitiveness thereby exposing the nation’s critical infrastructure to
predictable security threats.

Chief among these exposures is the need to rebalance certain cost effectiveness practices used in
the production of the nation’s software systems.

The emphasis on “better, quicker, cheaper” is leading to an increased use of ad hoc
programming practice which yields a high rate of defects and failures, necessitates a high
frequency of release, and results in highly complex software systems, all security exposures.
The increased dependence on foreign national sources has produced a massive population of
high tech workers who possess superior knowledge and access to the nation’s software
systems but who lack allegiance to the United States, a security exposure.
The emphasis on commercial off the shelf software is resulting in widespread usage of
software produced by an unknown workforce using unknown practices and yielding
unknown trustworthiness, a security exposure.

In addition, the industry software capacity and capability needs to be improved.
Industry capability to produce trustworthy software systems depends on the software product
engineering methodology practiced. The ad hoc programming method currently practiced
must be replaced with structured and disciplined software engineering.
The industry must possess the capability to counter the CyberSecurity threat by resisting and
recognizing CyberAttacks and reconstituting software operations following an attack. The
steps to reconstitute critical software operations center around the technology for ensuring

@Copyright Don O’Neill, 2002 10 Competitiveness and
Security

continuous operations, backing up and switching over, and restarting critical operations.

Also legislative directions must be revisited. When it comes to software and security, our
nation’s leaders are ignorant. As a result, legislation enacted for some purpose may possess side
effects that lead to unintended consequences. Several legislative factors impacting security
include:

UCITA excuses defects, faults, and failures providing an incentive for producing less
dependable software products, a security exposure. Software vendors are inoculated from
lawsuits brought by the users of these products.
H1B High Tech Immigration Visa Program facilitates the placement of foreign nationals as
key employees in the software operations of nation’s software systems, a security exposure.
Clinger-Cohen Act calls for commercial off the shelf usage, a security exposure.
Freedom of Information Act is a barrier to the public-private partnership and trust essential to
sharing CyberSecurity incident data, a security exposure.

Finally the government needs to weigh-in on the side of security to rebalance the
competitiveness versus security trade off. The government favors a market driven approach to
solving the software security problem. While there is a public-private consensus that industry
must take the lead in addressing security, industry has been slow to do so.

Accordingly, the industry can look to government to adopt a software security tax credit policy.
This tax credit will favor those enterprises in the nation’s critical infrastructure whose behaviors
and practices effectively address security and who share security information. The recipients of
the software security tax credit will be those who post highly pro-active responses to the
following questions:

Does the enterprise maintain a software security policy on what software operations are
critical and why they are critical?
Is the enterprise and its software operation a part of the nation’s critical infrastructure?
If it ceased to continue software operations, are there cascading consequences that would
impact the critical infrastructure and are these well defined including mitigation strategies?
Does the software security improvement for which the tax credit is being sought produce a
measured benefit in the resistance and recognition of software security threats and the
reconstitution of software operations following an alert or attack?
Does the enterprise compute a software security index of suspicion using current and
credible threat information and up to date readiness information and use the result in
connection with its software security policy?
Does the enterprise share software security incident attack and impact information with the
government agency responsible for its collection, analysis, and dissemination?

Conclusion
When it comes to security, knowledge must replace both power and money as the coin of the
realm. Both government and industry have responsibilities to reconcile the conflicting factors
encountered in seeking both competitiveness and security.

While the government cannot make us safe from CyberAttack, the government can tilt the
business calculation towards security through tax credits and insurance mechanisms designed
to incentivize readiness.
Since the industry’s software products make us vulnerable to CyberAttack, industry must

@Copyright Don O’Neill, 2002 11 Competitiveness and
Security

make the sacrifices needed to achieve security by rebalancing its cost effectiveness tactics
and ensuring the readiness and survivability of software products.

3602 words

@Copyright Don O’Neill, 2002 12 Competitiveness and
Security

Bibliography: Security
[ACM 99] Lipson, Howard F. and David A. Fisher, “Survivability- A New Technical
and Business Perspectives on Security”, ACM Proceedings of the 1999 New Security Paradigms
Workshop, 22-24 September 1999, Ontario, Canada

[Alford 01] Alford, Lt.Col. Lionel D. Alford.Jr., “Cyber Warfare: A New Doctrine and
Taxonomy”, CrossTalk: The Journal of Defense Software Engineering, Vol. 14 No. 4, April
2001

[ATAM] Architecture Tradeoff Analysis Method (ATAM), Software Engineering
Institute, Pittsburgh, Pa.

[CeBase 01] Basili, Victor R. and Barry Boehm, “COTS-Based Systems Top 10 List”,
Computer, Mat 2001, pp. 91-93

[Computerworld 5/9/02] “At Senate Hearing, CyberTerrorism Fears on the Rise”,
Computerworld, Dan Verton, 9 May 2002

[Computerworld 4/8/02-1] “Outflanking the CyberTerrorist Threat”, Computerworld , Dan
Verton, 8 April 2002

[Computerworld 4/8/02-2] “Terrorism 101 With Eric Shaw”, Computerworld , 8 April 2002

[CNSS 01] “Center for National Software Studies: Prospectus & Strategic Plan”,
Center for National Software Studies, 2 January 2001
http://www.CNsoftware.org

[CURE] COTS Usage Risk Evaluation (CURE), Software Engineering Institute,
Pittsburgh, Pa.

[NIST 02] Tassey, Gregory. “The Economic Impacts of Inadequate Infrastructure for
Software Testing”, Final Report, National Institute of Standards and Technology, RTI Project
Numer 7007.011, May 2002

[OCTAVE] Operationally Critical Threat, Asset, and Vulnerability Evaluation
(OCTAVE), Software Engineering Institute, Pittsburgh, Pa.

[O’Neill 02] O’Neill, Don, “Homeland Security Infrastructure for Critical Software
Operations”, The Competitor Vol 5 No 4, March 2002
http://members.aol.com/ONeillDon2/competitor5-4.html

[O’Neill 01] O’Neill, Don, “An Introduction to Global Software Competitiveness”,
submitted to CrossTalk, The Journal of Defense Software Engineering, submitted August 2001

[O’Neill 01] O’Neill, Don, “Country Report on the US Software Industry”, IEEE
Software Magazine, November/December 2001, submitted by request August 2001
http://members.aol.com/oneilldon2/competitor5-3.html

@Copyright Don O’Neill, 2002 13 Competitiveness and
Security

[O’Neill 99] O’Neill, Don, “Set Direction, Provide Fuel, and Control Environment...
Be Globally Competitive”, e-GOV Journal, The Journal for Electronic Commerce, Volume 2
Issue 1, December/January 1999
http://members.aol.com/oneilldon2/new_vol1 no3.html

[O’Neill 98] O’Neill, Don, “Threats to the Nation’s IT Resources and Potential
Management Responses”, Electronic Government Journal, March/April 1998, Page 6
http://members.aol.com/oneilldon2/competitor2-1.html

[O’Neill 97] O’Neill, Don, “Software Value Add Study”, ACM Software Engineering
Notes, Vol 22 No 4, July 1997
http://members.aol.com/oneilldon2/new_competitor_initial.html

[Post 01] “Government Gets an ‘F’ in Computer Security”, Washington Post, page
A4, 10 November 2001

[SEI 01] Linger, Richard C. and Andrew P. Moore, “Foundations for Survivable
System Development: Service Traces, Intrusion Traces, and Evaluation Models”, CMU/SEI-
2001-TR-029, October 2001

[SEI 98] Ellison, Robert J. et al, “Survivability: Protecting Your Critical System”,
IEEE Proceedings of the International Conference on Requirements Engineering, 6-10 March
1998, Colorado Springs, Colorado

[Schneier 01] Schneier, Bruce, “Managed Security Monitoring: Network Security for the
21st Century”, Counterpane Internet Security, 2001

[Standish] “Chaos Report”, Standish Group,
http://www.scs.carleton.ca/~beau/PM/Standish-Report.html

[Vatis 01] Vatis, Michael A., “Cyber Attacks During The War on Terrorism: A
Predictive Analysis”, Institute for Security Technology Studies at Dartmouth College, 2001

Bibliography- Competitiveness
[Allaire 96] Allaire, Paul et al, “Endless Frontier, Limited Resources: US R&D Policy
for Competitiveness”, Council on Competitiveness, 1996

[Byrne 00] Byrne, John A, “Management by Web”, Business Week, 28 August 2000

[Carmel 99] Carmel, Erran, “Global Software Teams”, Prentice Hall, 1999, 269 pages

[CIO 00] “A Passage to India”, CIO magazine, December 2000

[COC 96] Council on Competitiveness, “U.S. Competitiveness: A Ten Year
Strategic Assessment”, Washington DC, October 1996

@Copyright Don O’Neill, 2002 14 Competitiveness and
Security

[COC 97] Council on Competitiveness, “Global R&D Choices”, Washington DC,
1997

[Competitor 98] O’Neill, Don, “Microsoft Antitrust Lawsuit and Its Impact on Global
Software Competitiveness”, The Competitor Vol. 1 No. 6, July 1998
http://members.aol.com/oneilldon2/competitor1-6.html

[Fed 00] Cox, Michael, “16 Stats on the New Economy”, Federal Reserve Bank of
Dallas, 2000

[Hamel 96] Hamel, Gary and C.K. Prahalad, “Competing for the Future”, Harvard
Business School Press, 1996, 357 pages

[Humphrey 89] Humphrey, Watts S., "Managing the Software Process", Addison-Wesley
Publishing Company, Inc., 1989, 494 pages

[Kelly 98] Kelly, Kevin, “New Rules for the New Economy”, Penguin Group, 1998,
179 pages

[Moitra 01] Moitre, Deependra, “Country Report on India’s Software Industry”, IEEE
Software Magazine, January 2001

[Moore 96] Moore, James F., “The Death of Competition”, Harper Business, 1996,
297 pages

[O’Neill 97.1] O’Neill, Don, “Software Value Add Study”, ACM Software Engineering
Notes, Vol 22 No 4, pp. 22-24, July 1997

[O’Neill 97.2] O'Neill, Don, "Global Software Competitiveness Assessment Program",
Quality Week Europe Conference, Brussels, 1997

[O’Neill 97.3] O’Neill, Don, “Software Maintenance and Global Competition”, Journal
of Software Maintenance: Research and Practice, John Wiley and Sons, Ltd., Vol. 9, pp.379-
399, November/December 1997

[O’Neill 98] O’Neill, Don, “Threats to the Nation’s IT Resources and Potential
Management Responses”, Electronic Government Journal, p. 6, March/April 1998

[O’Neill 99] O’Neill, Don, “Set Direction, Provide Fuel, and Control Environment...
Be Globally Competitive”, e-GOV Journal, The Journal for Electronic Commerce, Volume 2
Issue 1, p. 19, December/January 1999

[O’Neill 95,96,00] O'Neill, Don, "National Software Quality Experiment: A Lesson in
Measurement”, Software Technology Conference, Salt Lake City, 1995, 1996, and 2000

[Paulk 95] Paulk, Mark C., “The Capability Maturity Model: Guidelines for
Improving the Software Process”, Addison-Wesley Publishing Company, 1995

@Copyright Don O’Neill, 2002 15 Competitiveness and
Security

[Peterson 95] Peterson, Ivars, “Fatal Defect”, Random House, Inc., New York, 1995, 260 pages

[Pyster 96] Pyster, Arthur et al, “Record of the National Software Summit”, National
Software Council, January 1996

[SEI 96] Ford, G. and N.E. Gibbs, “Mature Profession of Software Engineering”,
CMU/SEI-96-TR-004, Software Engineering Institute, Carnegie Mellon University, 1996

[SEI 01] “Process Maturity Profile of the Software Community 2000 Year End
Update, Software Engineering Institute, Carnegie Mellon University, 2001

[SPC 98] “The Frameworks Quagmire”, Software Productivity Consortium,
http://www.software.org/quagmire

@Copyright Don O’Neill, 2002 16 Competitiveness and
Security

Don O’Neill
Don O’Neill is a seasoned software engineering manager and technologist currently serving as
an independent consultant. Following his twenty-seven year career with IBM’s Federal Systems
Division, Mr. O’Neill completed a three year residency at Carnegie Mellon University’s
Software Engineering Institute (SEI) under IBM’s Technical Academic Career Program. There
he developed a blueprint for charting software engineering evolution in the organization
including the training architecture and change management strategy needed to transition skills
into practice.

As an independent consultant, Mr. O’Neill conducts defined programs for managing strategic
software improvement. These include implementing an organizational Software Inspections
Process, directing the National Software Quality Experiment, implementing Software Risk
Management on the project, conducting the Project Suite Key Process Area Defined Program,
and conducting Global Software Competitiveness Assessments. Each of these programs
includes the necessary practitioner and management training. As an expert witness, he provides
testimony on the state of the practice in developing and fielding large scale industrial software
and the complex factors that govern their outcome.

In his IBM career, Mr. O’Neill completed assignments in management, technical performance,
and marketing in a broad range of applications including space systems, submarine systems,
military command and control systems, communications systems, and management decision
support systems. He was awarded IBM’s Outstanding Contribution Award three times:

Software Development Manager for the Global Positioning (GPS) Ground Segment (500,000
source lines of code) and a team of 70 software engineers within a $150M fixed price
program.
Manager of the FSD Software Engineering Department responsible for the origination of
division software engineering strategies, the preparation of software management and
engineering practices, and the coordination of these practices throughout the division’s
software practitioners and managers.
Manager of Data Processing for the Trident Submarine Command and Control System
Engineering and Integration Project responsible for architecture selections and software
development planning (1.2M source lines of code).

Mr. O’Neill served on the Executive Board of the IEEE Software Engineering Technical
Committee and as a Distinguished Visitor of the IEEE. He is a founding member of the
Washington DC Software Process Improvement Network (SPIN) and the National Software
Council (NSC) and serves as the Executive Vice President of the Center for National Software
Studies (CNSS). He is a collaborator with the Center for Empirically-based Software
Engineering (CeBASE). He is an active speaker on software engineering topics and has
numerous publications to his credit. Mr. O’Neill has a Bachelor of Science degree in
mathematics from Dickinson College in Carlisle, Pennsylvania.

@Copyright Don O’Neill, 2002 17 Competitiveness and
Security

Mission of CNSS
The Center for National Software Studies (CNSS) is a public policy research organization
established as a non-profit 501(c)(3) status. The CNSS is a private corporation governed by a
board of directors and accepts funding through contributions and grants. With a mission to
elevate software to the national agenda, the CNSS is set up to provide objective expertise,
studies, and recommendations on national software issues. The software issues of national
importance identified by the CNSS include:

Software Value to US Economic Competitiveness
Software System Trustworthiness
Research and Development Funding
Software Workforce Issues
Maintaining Security and Privacy in Electronic Commerce
Protecting Intellectual Property and Preventing Piracy

Currently in Phase I, the CNSS startup operation is a web-based eCenter intended to prove its
viability and value as a national resource. Background information is available in the CNSS
Prospectus & Strategic Plan and the CNSS web page at http://www.CNsoftware.org.

Key Points

We seldom get all the test time we need
Most of us don't know how to negotiate
Specific proven tactics will get you more time

Presentation Abstract

This presentation includes proven tactics for negotiating software testng schedules.

About the Author

Gregory M. Pope is a Computer Scientist at the University of California Lawrence Livermore Laboratory. Over the past quarter century,
Mr. Pope has worked in a variety of capacities at virtually all levels of software development and testing. He began his career
developing software used to test jet engines and helicopters. He later worked in the defense industry, testing missioncritical software for
military and space applications. Working in the private sector, he has developed and patented techniques for computer-aided testing.
Among his inventions is the Ferret, a highly regarded software-testing tool manufactured and marketed by his company.

As a consultant and teacher, Mr. Pope has conducted hundreds of seminars for software development professionals throughout the
United States, Asia, Canada, Mexico, South America, and Europe. In his thriving consulting, training, and testing practice, he has
worked with many Fortune 500 companies, including Microsoft, IBM, Apple Computer, Sun Microsystems, AT&T, Eastman Kodak, DHL
Airways, and Knight- Ridder, as well as NASA, the Pentagon, U.S. defense contractors, the Internal Revenue Service, and numerous
foreign companies.

Mr. Pope is sought out to write articles on the subject of software testing for a number of industry publications, including CIO Magazine,
Computer Design, Industry Week, Computer World, Signal, Electronic Defense News, San Jose Mercury, and Software Maintenance
News. He holds a BS degree from Connecticut State University, an MBA from University of Phoenix, and is a member of IEEE.

QW2002 Paper 10G2

Mr. Gregory Pope
(University of California LLNL)

You Want It When?

Page 1

Slide 1

You Want it When?

By:By:
Gregory M. PopeGregory M. Pope

University of CaliforniaUniversity of California
Lawrence Livermore National LaboratoryLawrence Livermore National Laboratory

Quality WeekQuality Week
San Francisco, CASan Francisco, CA
September 6, 2002September 6, 2002

Estimating and Negotiating Test Schedules

Slide 2

Heard This Before ?Heard This Before ?

•• It is January 1st and marketing has an ideaIt is January 1st and marketing has an idea
•• “Must get the new product out by June 1st”“Must get the new product out by June 1st”
•• “Development says it will take 5 months”“Development says it will take 5 months”
•• “That leaves a month to test, you can do it”“That leaves a month to test, you can do it”
•• “We will use the FAD methodology”“We will use the FAD methodology”

Page 2

Slide 3

FAD MethodologyFAD Methodology
(Fantasy Application Development)(Fantasy Application Development)

•• Step 1 Step 1 -- Announce product and release dateAnnounce product and release date
•• Step 2 Step 2 -- Design logo and make TDesign logo and make T--ShirtsShirts
•• Step 3 Step 3 -- Determine what the product isDetermine what the product is
•• Step 4 Step 4 -- Estimate development timeEstimate development time
•• Step 5 Step 5 -- Write the code and web pagesWrite the code and web pages
•• Step 6 Step 6 -- Write the spec (optional)Write the spec (optional)
•• Step 7 Step 7 -- Beta release (ready or not)Beta release (ready or not)
•• Step 8 Step 8 -- Give incomplete version to TestGive incomplete version to Test
•• Step 9 Step 9 -- Announce upgrade program and patchesAnnounce upgrade program and patches

Slide 4

What If Other Industries Used What If Other Industries Used
FAD ?FAD ?

•• Pharmaceuticals Pharmaceuticals -- Here is a new drug, works great on Here is a new drug, works great on
frogs and pigs, you can try it at no charge. (Beta frogs and pigs, you can try it at no charge. (Beta
Program)Program)

•• Automotive Automotive -- It is a great car, and in 3 months we are It is a great car, and in 3 months we are
updating it (a small fee for you) to add the trunk and updating it (a small fee for you) to add the trunk and
reverse gear. (Upgrades)reverse gear. (Upgrades)

•• Aviation Aviation -- Welcome aboard, today we are going to be Welcome aboard, today we are going to be
the first aircraft to try the new GE engines with the old the first aircraft to try the new GE engines with the old
Bendix flight controls. (Platforms)Bendix flight controls. (Platforms)

•• Airlines Airlines -- Sorry for the delay, but the latest version of Sorry for the delay, but the latest version of
our cockpit software no longer supports landing at our our cockpit software no longer supports landing at our
original destination, so we are going to Pittsburgh original destination, so we are going to Pittsburgh
instead. (Version Compatibility)instead. (Version Compatibility)

Page 3

Slide 5

Informal Survey Informal Survey -- Test ScheduleTest Schedule
((19931993--2002 2002 -- 6,000 Developers/Testers)6,000 Developers/Testers)

•• Testers having too much time to test Testers having too much time to test -- 00
•• Testers having the right amount of time to test Testers having the right amount of time to test -- 250250
•• Testers having too little time to test Testers having too little time to test -- 5,7505,750

Slide 6

Why Incorrect Estimates Lengthen Why Incorrect Estimates Lengthen
Project TimeProject Time

•• Time is up before requirements are understoodTime is up before requirements are understood
•• Time is up before design is completeTime is up before design is complete
•• Coding begins with fuzzy requirements, incomplete Coding begins with fuzzy requirements, incomplete

designdesign
•• Developers may make requirement and design Developers may make requirement and design

decisions in their own best interestdecisions in their own best interest
•• Unit test may become debuggingUnit test may become debugging
•• Test schedule shortened to hold end dateTest schedule shortened to hold end date
•• ProductProduct--complete milestone slips to delivery datecomplete milestone slips to delivery date
•• Acceptance of the overrunAcceptance of the overrun

For More Information: “Software Engineering Economics”, Barry Boehm

Page 4

Slide 7

Universal Estimating LawsUniversal Estimating Laws

•• Law 1 Law 1 -- Software takes as long to develop as Software takes as long to develop as
it takesit takes

•• Law 2 Law 2 -- Software development time is not Software development time is not
influenced by what we would like it to takeinfluenced by what we would like it to take

•• Law 3 Law 3 -- Estimating a shorter time than it will Estimating a shorter time than it will
actually take only defines the length of the actually take only defines the length of the
overrunoverrun

Slide 8

Countermeasure Countermeasure -- Negotiating Negotiating
SkillsSkills

•• Requires acceptance of problemRequires acceptance of problem
•• Not taught in collegesNot taught in colleges
•• Only having one negotiating style is limiting Only having one negotiating style is limiting

(“You will ship it over my dead body.”)(“You will ship it over my dead body.”)
•• We negotiate all the time anyway in various We negotiate all the time anyway in various

placesplaces
•• Leads to more WinLeads to more Win--Win solutionsWin solutions

Page 5

Slide 9

Negotiation Negotiation -- DefinitionsDefinitions

•• Exploration to formulate viewpoints.Exploration to formulate viewpoints.
•• Delineate areas of agreement or contention.Delineate areas of agreement or contention.
•• Working out practical arrangements.Working out practical arrangements.

For More Information:
Gerald I. Nierenberg- Fundamentals of Negotiating
Nightingale-Conant - The Art of Negotiating

Slide 10

Negotiation ExamplesNegotiation Examples

•• Negotiating a test and development schedule Negotiating a test and development schedule
with the program managerwith the program manager

•• Ordering a meal at a restaurantOrdering a meal at a restaurant
•• Setting up a meeting timeSetting up a meeting time
•• Obtaining the release of hostagesObtaining the release of hostages

Page 6

Slide 11

Negotiate What?Negotiate What?

Price

Delivery

Features

Shipping

Terms

Follow-on

Warranty

Schedule

Budget

Staff

Tools

Release Dates

Acceptance

Environment

Product Testing Service

Slide 12

Success LikelihoodSuccess Likelihood

•• The issue is negotiable (buying a car is, The issue is negotiable (buying a car is,
selling your child is not)selling your child is not)

•• The negotiator’s interest in giving and taking The negotiator’s interest in giving and taking
value, and compromise (toll taker)value, and compromise (toll taker)

•• Negotiating parties trust each other to some Negotiating parties trust each other to some
extentextent

•• Trust Trust -- Words and Actions matchWords and Actions match

Page 7

Slide 13

Negotiation EssentialsNegotiation Essentials

•• Knowledge of human behaviorKnowledge of human behavior
•• Preparation, know all the related facts on Preparation, know all the related facts on

both sides of the issueboth sides of the issue
•• Understanding of techniques, strategies, and Understanding of techniques, strategies, and

tacticstactics
•• Understanding the needs of both sides, both Understanding the needs of both sides, both

direct and indirect.direct and indirect.

Slide 14

Example PreparationExample Preparation

•• Collect previous actuals on:Collect previous actuals on:
–– Defects per thousands of lines of codeDefects per thousands of lines of code
–– Hours to find defectsHours to find defects
–– Time to run testsTime to run tests
–– Pass and fail percentagePass and fail percentage
–– Defects found before and after deliveryDefects found before and after delivery
–– Classification of defects (requirement, coding, system, Classification of defects (requirement, coding, system,

testing, documentation)testing, documentation)
–– Accuracy of prior estimatesAccuracy of prior estimates
–– Customer satisfaction survey resultsCustomer satisfaction survey results

•• Know style of the person negotiating withKnow style of the person negotiating with

Page 8

Slide 15

Directness and OpennessDirectness and Openness

•• Direct Direct -- Do it and do it now per these Do it and do it now per these
instructions........instructions........

•• Indirect Indirect -- You should have known what I You should have known what I
was thinking............was thinking............

•• Open Open -- I feel angry and disappointed that we I feel angry and disappointed that we
have not been given time to test the new have not been given time to test the new
build........build........

•• Self Contained Self Contained -- Everything is fine.Everything is fine.

For More Information “Relationship Strategies” by Alexandra and Cathcart

Slide 16

Relationship StrategiesRelationship Strategies

Relater

Thinker

Socializer

Director

Indirect Direct

Open

Self
Contained

Page 9

Slide 17

Director StyleDirector Style

•• SelfSelf--contained, direct contained, direct
•• Most Important Most Important -- The bottom line on the issue, strategiesThe bottom line on the issue, strategies
•• Wants things to be measured, likes competition, work firstWants things to be measured, likes competition, work first
•• Assertive, Responsible, Straightforward, Practical, Self Assertive, Responsible, Straightforward, Practical, Self

MotivatedMotivated
•• Needs to be in charge of others, imposes their standards on Needs to be in charge of others, imposes their standards on

othersothers
•• Usually does not have a "product," juggles many things at Usually does not have a "product," juggles many things at

onceonce
•• Usually migrates to manager positionsUsually migrates to manager positions
•• Black and White approach, cutting edge, Black and White approach, cutting edge,
•• Jack Lord in Hawaii Five 0, Barbara Walters, ManagersJack Lord in Hawaii Five 0, Barbara Walters, Managers

Slide 18

Thinker StyleThinker Style

•• Indirect, selfIndirect, self--containedcontained
•• Most Important Most Important -- The logic behind the issue, the details, the The logic behind the issue, the details, the

rulesrules
•• Detail oriented, methodical, predictable, dependable, preciseDetail oriented, methodical, predictable, dependable, precise
•• Likes to engage in intellectual debates, organized, loyal, Likes to engage in intellectual debates, organized, loyal,

orderlyorderly
•• Usually introverted, has "show me" attitude, focusedUsually introverted, has "show me" attitude, focused
•• Likes to work alone, has the right tools, loves to gather dataLikes to work alone, has the right tools, loves to gather data
•• Perfectionist, less interested in outcome, problem solverPerfectionist, less interested in outcome, problem solver
•• Jack Webb in Dragnet, Joyce Brothers, Data on Star Trek, Jack Webb in Dragnet, Joyce Brothers, Data on Star Trek,

Developers, Testers, AccountantsDevelopers, Testers, Accountants

Page 10

Slide 19

Socializer StyleSocializer Style

•• Direct Direct -- OpenOpen
•• Most Important Most Important -- Interactions between peopleInteractions between people
•• Flexibility, goes with the flow, avoids formal plansFlexibility, goes with the flow, avoids formal plans
•• Goes for the gusto, jumps in and takes charge, ready, Goes for the gusto, jumps in and takes charge, ready,

fire, aimfire, aim
•• Avoids bureaucracy, likes challenges, very optimisticAvoids bureaucracy, likes challenges, very optimistic
•• Hates to work alone, likes to be where the action isHates to work alone, likes to be where the action is
•• Likes recognition, Egotistical, Impatient, ImpulsiveLikes recognition, Egotistical, Impatient, Impulsive
•• Mickey Rooney as Andy Hardy, Dom Mickey Rooney as Andy Hardy, Dom DelouiseDelouise, Sales , Sales

and Marketing personsand Marketing persons

Slide 20

Relater StyleRelater Style

•• Open, indirectOpen, indirect
•• Most Important Most Important -- Knowing how everyone feels Knowing how everyone feels

about the issueabout the issue
•• Good listener, empathetic, emotional, helpfulGood listener, empathetic, emotional, helpful
•• Flexible, goes with the flow, team playerFlexible, goes with the flow, team player
•• Not the job that counts, it is the peopleNot the job that counts, it is the people
•• Likes the personal approach, not formalLikes the personal approach, not formal
•• Warm, reliable, patient, relaxedWarm, reliable, patient, relaxed
•• Mr. Rogers, Marcus Mr. Rogers, Marcus WelbyWelby, Mary Tyler Moore, , Mary Tyler Moore,

Therapists, Nurses, PhysiciansTherapists, Nurses, Physicians

Page 11

Slide 21

Dealing With Dealing With
HumansHumans

Relater

Thinker

Socializer

Director

Indirect Direct

Open

Self
Contained

Areas of Friction

Slide 22

Software Development Software Development
Communicating and StylesCommunicating and Styles

Marketing/Sales
(Socializer)

Management
(Director) DevelopersTesters

(Thinkers)

Customer

Interaction between people

Bottom Line
Strategy
Winning

Logic, Data, Rules

Page 12

Slide 23

Dealing With StyleDealing With Style

•• Be aware of your own styleBe aware of your own style
•• Be aware of the style of the people you must Be aware of the style of the people you must

interact withinteract with
•• Be aware of the company's styleBe aware of the company's style
•• Present information in the same style of the Present information in the same style of the

person you are negotiating with to reduce person you are negotiating with to reduce
frictionfriction

Slide 24

Selling Test Plan to MarketingSelling Test Plan to Marketing

•• The Test Plan is flexibleThe Test Plan is flexible
•• Gives awards and recognizes achievementsGives awards and recognizes achievements
•• Eliminates bureaucracy and paperworkEliminates bureaucracy and paperwork
•• Allows frequent participation in meetingsAllows frequent participation in meetings
•• Participation in major milestonesParticipation in major milestones
•• Options for using contractors, outsourcing, Options for using contractors, outsourcing,

customer service as testing resourcescustomer service as testing resources
•• Show how test plan focuses testing on Show how test plan focuses testing on

frequent 800 line complaintsfrequent 800 line complaints

Page 13

Slide 25

Selling Test Plan to DevelopersSelling Test Plan to Developers

•• Test Plan is logical, rule basedTest Plan is logical, rule based
•• Test Plan details have been thought outTest Plan details have been thought out
•• Test Plan contains checklists and templates that Test Plan contains checklists and templates that

simplify worksimplify work
•• Test Plan has been demonstrated to work on a pilot Test Plan has been demonstrated to work on a pilot

programprogram
•• Test Plan provides the right tools for the jobTest Plan provides the right tools for the job
•• Test Plan provides data to track progressTest Plan provides data to track progress

Slide 26

Selling Test Plan to Selling Test Plan to
ManagementManagement

•• Test Plan follows a strategy (use case based, Test Plan follows a strategy (use case based,
risk based, top down, etc.)risk based, top down, etc.)

•• An attractive return on investment to the An attractive return on investment to the
bottom line ($4,000 per defect)bottom line ($4,000 per defect)

•• Shortest possible test time with reasonable Shortest possible test time with reasonable
riskrisk

•• It is a better Test Plan than the competition’sIt is a better Test Plan than the competition’s
•• Assumptions and dependencies clearly Assumptions and dependencies clearly

statedstated
•• Measurable and highly visible milestonesMeasurable and highly visible milestones
•• Early detection and correction of estimatesEarly detection and correction of estimates

Page 14

Slide 27

Favorite Tactics For Negotiating Favorite Tactics For Negotiating
Test ScheduleTest Schedule

•• ColumboColumbo -- play dumb, ask questions, reflect backplay dumb, ask questions, reflect back
•• Trump Trump -- bracketing estimatesbracketing estimates
•• Reversal Reversal -- opposite of what is expectedopposite of what is expected
•• HorsetradingHorsetrading -- trade time for tools, outsource, tempstrade time for tools, outsource, temps
•• Gasp (and Counter Gasp) Gasp (and Counter Gasp) –– that was the good newsthat was the good news
•• Switch Hitter Switch Hitter -- use the best peopleuse the best people
•• Limited Authority Limited Authority -- don’t shoot from the hipdon’t shoot from the hip
•• Participation Participation -- group decidesgroup decides
•• Salami Salami -- get what you need get what you need pocopoco a a pocopoco
•• Pinocchio Pinocchio -- the last resortthe last resort

Slide 28

SummarySummary

•• The biggest obstacle in the software industry is lack The biggest obstacle in the software industry is lack
of enough time to do our jobs wellof enough time to do our jobs well

•• We apply our education, experience, and tools, but We apply our education, experience, and tools, but
the problem persiststhe problem persists

•• We may not think of negotiating as an option We may not think of negotiating as an option
because it is not part of our educationbecause it is not part of our education

•• Negotiating can buy valuable time, help Negotiating can buy valuable time, help
management avoid blundersmanagement avoid blunders

•• Negotiating can make the job less stressful and Negotiating can make the job less stressful and
more creativemore creative

•• We will never get things our way completely, and We will never get things our way completely, and
good thing, else nothing would get shipped.good thing, else nothing would get shipped.

Key Points

Create useful load testing plans in the dark
Set and meet performance testing expectations
Design and construct useful tests through the understanding of user-based and server-based workload modeling, and other critical and often
misunderstood variables

Presentation Abstract

This QuickStart discusses how to plan and implement a successful, cost effective performance testing program. It's ideal for
professionals taking on the new responsibilities of determining the scope of performance testing, selecting the right strategy to fit the
need and budget; acquiring the resources to implement the program, designing useful tests to reveal findings that support business and
engineering decisions, and educating the rest of the organization about performance testing.

About the Author

Hung Q. Nguyen is founder, president, and CEO of LogiGear® Corporation. He’s held leadership roles in business management,
product development, business development, engineering, quality assurance, testing, and information technology. Hung is an
international speaker and contributor to industry publications. He authors and teaches software testing curriculums for LogiGear
University and the University of California. He is the original architect of TRACKGEAR™, a Web-based defect management system,
and the author of Testing Applications on the Web (Wiley). He also wrote (with Kaner and Falk) the best-selling book Testing Computer
Software (Wiley), which is also published in Japanese. He holds a B.Sc. in Quality Assurance from Cogswell Polytechnical College, is
an ASQ-Certified Quality Engineer, and a member of the Advisory Council for the Department of Applied Computing and Information
Systems at UC Berkeley Extension.

QW2002 Paper 2Q

Mr. Hung Nguyen
(LogiGear Corporation)

Effective Performance Test Planning and Implementation

1© 2002 LogiGear Corporation. All Rights Reserved.

Effective Performance

Test Planning

and

Implementation

Expert Testing…
Real World Solutions

2© 2002 LogiGear Corporation. All Rights Reserved.

Contact Information

 LogiGear Corporation

 551 Pilgrim Drive, Suite A-1

 Foster City, CA 94404

 Tel.650.572.1400

 Fax.650.572.2822

 lobby@logigear.com

 http://www.logigear.com

3© 2002 LogiGear Corporation. All Rights Reserved.

Objectives
• Create useful load testing plans in the

dark

• Set and meet performance testing
expectations

• Design and construct useful tests through
the understanding of user-based and
server-based workload modeling, and
other critical and often misunderstood
variables

4© 2002 LogiGear Corporation. All Rights Reserved.

What is Performance Testing?

 Performance testing is a capacity analysis and planning
process that’s designed to predict when future load levels

 will exhaust the Web system. It helps in developing effective
enhancement strategies that maintain acceptable user
experience.

5© 2002 LogiGear Corporation. All Rights Reserved.

Performance Test the System Resources

• In performance and performance-related testing,
simulated workload is used to exhaust system
resources, including:
– Memory: Physical, virtual, and storage; heap and stack

space
– CPU time
– TCP/IP addresses (in a DHCP pool)
– File handles
– Hardware interrupts and I/O processes
– Memory run-time errors such as leakage, overwrite, and

pointer errors; database file handles and deadlocks; and
multithreading related problems.

– Network bandwidth

6© 2002 LogiGear Corporation. All Rights Reserved.

The Performance Testing Process

• Set expectations and define deliverables

• Gather requirements

• Define workload

• Define performance goals and identify metrics to collect

• Identify tests to run, and when to run them

• Decide on a tool option

• Write a test plan

• Design user-scenarios and create test scripts

• Getting ready

• Run tests

• Analyze results

• Change the system to optimize performance

• Run new tests, as well as old tests

7© 2002 LogiGear Corporation. All Rights Reserved.

The Three Phases
• The Planning Stage

– Set expectations and define deliverables

– Gather requirements

– Define workload

– Define performance goals and identify metrics to collect

– Identify tests to run, and when to run them

– Decide on a tool option

– Write a test plan

– Design user-scenarios and create test scripts

– Getting ready

• The Testing Stage
– Run tests

• The Postmortem
– Analyze results

– Change the system to optimize performance

– Run new tests, as well as old tests

8© 2002 LogiGear Corporation. All Rights Reserved.

We Need Answers
• Can the system handle the expected load while maintaining

acceptable response time?

• As demand grows, will the system be able to handle
increased load while maintaining acceptable response time?

• If not, at what point does system performance begin to
deteriorate; which components cause the degradation?

• Is the current system scaleable enough to accommodate
future growth?

• When performance fails to meet acceptable customer-
experience levels, what will be the effect on company sales
and technical support costs?

9© 2002 LogiGear Corporation. All Rights Reserved.

Performance Test Objectives
• It takes time, effort, and commitment to plan for and

execute performance testing. Performance testing
involves more people in an organization than just
testers. Usually, a well-planned program is a joint
effort by members of a product team, including
upper management, marketing, development,
information technology, and software testing.

• Let’s examine performance issues from the
management and development perspectives
(departments that should normally be part
performance testing planning and execution).

10© 2002 LogiGear Corporation. All Rights Reserved.

Performance Test Objectives
• Management’s objectives: To avoid financial losses in sales

and technical support and to avoid customer dissatisfaction.
• Will the Web application be capable of supporting the projected

number of users while preserving acceptable performance—and at
what cost?

• At what point will the Web application’s load handling-capability begin
to degrade?

• How will the degradation affect the business financially?

• What can be done to increase the Web application load-handling
capability? What are the associated costs?

• After deployment, how can we know when to take appropriate actions
to prevent the Web application from reaching its saturation point
(monitoring after deployment)?

11© 2002 LogiGear Corporation. All Rights Reserved.

Performance Test Objectives
• Development and testing objectives

• What is the definition of “projected number of users?”
• Users are not created equal (user activities vary).

• User access and activity frequency can vary during a specific time cycle.

• How do we represent “projected number of users” in a workload model?

• How do we simulate real-world users? What is the correlation between real users and
virtual users?

• What is the definition of “acceptable performance?”
• How do we measure “performance” and at what cost?

• Which metrics should we use?

• Which factors affect “performance?”

• Which tools should we use and how should we evaluate them?

• Data analysis and corrective-action planning
• How can performance degradation be resolved?

• Added system resources

• Improved network system architecture

• Improved programming

• How can workload demand from users be monitored on an on-going basis so that
appropriate actions can be taken to avoid reaching the saturation point?

12© 2002 LogiGear Corporation. All Rights Reserved.

Setting Expectations

• Preparing the organization and managing people’s
expectations is essential for success

• Understand the test requirements and scope of testing
• Define, or at least ask:

– What are the objectives of the performance tests?
– Who cares? Why measure?

• Communicate:
– Your service capabilities and limitations
– Where you need help and how you can get help

• Upon completion of your test plan, seek review and buy-in
from the stakeholders

13© 2002 LogiGear Corporation. All Rights Reserved.

Define Your Deliverables
• Test plan

– Performance testing goals
– Workload definitions
– User scenario designs
– Performance test designs
– Test procedures
– System-under-test configurations
– Metrics to collect

• Tool evaluation and selection reports (first time, or as needed)
• Test scripts/suites
• Test run results
• Analysis reports against the collected data
• Performance related error reports (e.g., failed transactions)
• Functional bug reports (e.g., data integrity problems)
• Periodic status reports
• Final report

14© 2002 LogiGear Corporation. All Rights Reserved.

Test Requirements

• Environment and Resources

• Workload

• Service Response Time

15© 2002 LogiGear Corporation. All Rights Reserved.

Environment and Resources

• Network access variables

• Demographic variables

• ISP infrastructure variables

• Client configurations
– Computer variables

– Browser variables

• Server configurations
– Specifying mixes of system hardware, software, memory, network

protocol, bandwidth, etc.

16© 2002 LogiGear Corporation. All Rights Reserved.

The Workload
• Number of users

• Number of hits

• Number of page views

• Average page size

• Percentage of peak traffic over peak period

• Average user-session time

• Users: their activities and behaviors
• How many groups of users will be involved in the load test over a certain time

interval?

• How frequently will each user in each group access the Web application?

• Does average session time vary?

• What are the typical activities, and at what frequency are they performed by
each group of users (refer to the earlier example)?

17© 2002 LogiGear Corporation. All Rights Reserved.

Response Time: What’s Your Number?

0 Second

? Second

? Second

? Second

Acceptable User Experience

Unacceptable User Experience

Questionable User Experience

Business is Closed
Response
Time

Load

18© 2002 LogiGear Corporation. All Rights Reserved.

Response Time and Capacity
• Percentage of requested static pages that must meet the

acceptable response time
• Percentage of requested scripts that must meet the

acceptable response time
• The baseline multiplier (2x, 4x, ...) that the system must be

capable of handling
• The peak ratio that the system must be capable of handling
• The spike (overload caused by expected and/or unexpected

events) ratio that the system must be capable of handling

19© 2002 LogiGear Corporation. All Rights Reserved.

What If Requirements Don’t Exist?
• Tell people what you are going to do

• Get feedback

• Perform the testing

• Communicate your progress and results as you go

• Ask specific questions

• Fill in the blanks

20© 2002 LogiGear Corporation. All Rights Reserved.

Questions to Consider
• What is the definition of “workload”?

• What is the definition of “system”?

• How do we size the workload?

• What is the expected workload?

• What is response time?

• What is acceptable response time?

• Which metrics should we collect?

• What is the definition of “increased load”?

• What is the correlation between demand and increased load?

21© 2002 LogiGear Corporation. All Rights Reserved.

Questions to Consider
• How do we determine which components are problematic?

• What is the definition of scalability? How can it be tested?

• What is the definition of reliability and availability? How can it be
tested?

• What is future growth? Can it be quantified?

• How do we correlate financial implications?

• How many other users are using the same resources on the
system under test (SUT)?

• Is the SUT inside or outside the firewall?

• Is the load coming from the inside or outside of the firewall?

• Are you testing the SUT in its complete, real-world environment
(with load balances, replicated database, etc.)?

• What’s the mix ratio of static pages vs. code?

22© 2002 LogiGear Corporation. All Rights Reserved.

The Notion of Workload

• Workload can be described using a combination of three
terms
• User - Number of users and their common activities.

• Application - Workload generated at the application or server level
(such as HTTP requests) to carry out user activities.

• Resource - The resource requirements for handling the workload.

23© 2002 LogiGear Corporation. All Rights Reserved.

Workload Concept

• Users
• Total number of users in all unique classes.

• Percentage of users in each class.

• Number of sessions per user in each class over a period of time.

• Length of user sessions in each class.

• User activities - Number of each kind of unique activity carried out by users during the
sessions.

• User behaviors such as patience, speed, expertise, etc.

• Maximum number of concurrent users in all unique classes that the system has
to support over a period of time.

 Read Savoia’s “Trade Secrets from a Web Testing Expert”

• Percentage of concurrent users in each class.

• Application
• Activities are expressed in terms of service rates such as Transactions per Second

(TPS) or throughput, Kilobytes per second.

• Resources
• Resources required to handle the workload while preserving acceptable performance—

usually expressed in response time.

24© 2002 LogiGear Corporation. All Rights Reserved.

Sizing the Workload
• Before deployment

– Performance requirement document (If you are lucky!)

– Hypothesize the number of concurrent users, classify users into
groups, estimate percentage of each class of user, length of their
session, their activities and the frequency of each activity, user
behaviors, etc. You will eventually get a value—you may not get an
accurate estimate. However you will have opportunity to calibrate your
estimates after several runs of tests.

– Assemble a small group of users that will represent a sample of
various unique real world users. Have them use the product in the
ways that you expect the product will be used. Configure your server
to log user activity. Use the collected data to estimate the baseline
workload.

• After deployment
– Use Web or Proxy server logs to collect workload data.

25© 2002 LogiGear Corporation. All Rights Reserved.

Sizing the Workload
• Server-based profiling using Web server log data

• User-based profiling using user scenario
modeling

26© 2002 LogiGear Corporation. All Rights Reserved.

Web Server Log Metrics

• General metrics
– Metrics that convey the overall load and

performance of the system.

• Application-specific metrics
– Metrics that convey the load and performance of

the system in the context of specific user activities
or requests, such as requests of certain pages.

27© 2002 LogiGear Corporation. All Rights Reserved.

General Log Metrics

• Number of users over a
period of time

• Estimated Peak Ratios

By User:
Max UV /Ave UV = 13 / 5.8 = 2.8

By Page Views:
Max PV / Ave PV = 75 / 26.8 = 2.2

28© 2002 LogiGear Corporation. All Rights Reserved.

General Log Metrics

Page view distribution
can be translated into
the workload imposed
on the system

29© 2002 LogiGear Corporation. All Rights Reserved.

General Log Metrics

Page-views-per-visitor
distribution can be
translated into
user activity

30© 2002 LogiGear Corporation. All Rights Reserved.

General Log Metrics

Weekly average of peak
traffic is from:
8:00AM to 5:00PM
(server’s local time)

31© 2002 LogiGear Corporation. All Rights Reserved.

General Log Metrics

Ratios of New users to
returning-users.
Based on their
familiarity with the site,
returning user may navigate
the site faster.

32© 2002 LogiGear Corporation. All Rights Reserved.

Application-Specific Log Metrics

Analyze user activities
by studying the ratios
of specific requests
received by the
system.

33© 2002 LogiGear Corporation. All Rights Reserved.

Application Specific Log Metrics

The read/think/data-input time of various pages

34© 2002 LogiGear Corporation. All Rights Reserved.

Server Log Metrics
• A few key metrics to analyze

– Number of users and/or user sessions

– Average session time

– Number of page views

– Average page views per session

– The type of pages that were requested during the
session

– Peak period (e.g., 75% of traffic is from 11:00 AM-4:00
PM)

– Number of hits

– Average page size

35© 2002 LogiGear Corporation. All Rights Reserved.

Server Log Metrics
• Other interesting metrics to analyze

– New users vs. returning users

– Frequency of visits (e.g., 75% of users made one visit)

– Demographics

– Client information such as browser, browser version, Java
script support, Java script enable/disable, and so on.

– User read/think/data-input time.
• One way of computing read/think/data-input time is

Average Session Time

= Read/Think/Data-Input Time

Average Page Views per Session

36© 2002 LogiGear Corporation. All Rights Reserved.

Things to Consider
• Average vs. Maximum

– When examining server logs, pay attention to both the average
numbers as well as the maximum numbers

– Use averages with care
• Be careful with arithmetic averages

• Consider using range, percentile, median, etc.
 Read Savoia’s “Trade Secrets from a Web Testing Expert”

• An increase in sessions or users does not necessarily
correlate linearly with page views per hour.
– This behavior is due to the fact that:

• User session time is shorter. Therefore, average page views per user is
lower.

• Both number of users and session duration affect load.

37© 2002 LogiGear Corporation. All Rights Reserved.

Things to Consider
• Analyze the log carefully so you’ll have a

thorough understanding of how the values are
calculated and what they represent.

• Pick one log monitoring tool and use it
consistently.

• A few Web log tools
– Web Trends (http://www.webtrends.com)
– Analog

(http://www.statslab.cam.ac.uk/~sret1/analog/)
– NetTracker

(http://www.sane.com/products/NetTracker/)

38© 2002 LogiGear Corporation. All Rights Reserved.

Things to Consider
• Collect

– General activities by time of day

– General activities by day of week

– Application-specific activities by time of day

– Application-specific activities by day of week

39© 2002 LogiGear Corporation. All Rights Reserved.

User-Based Workload Profiling

• Workload can be derived from
– Number of concurrent users

– Ratios of various user variables

– Effects of each user variable

40© 2002 LogiGear Corporation. All Rights Reserved.

User Behaviors
• Different Functional groups will:

– Request different sets of features

– Use features at different frequencies

– Incur different session-elapse times

• Human speed affects the user's read/think/data-input
speed

• Human patience affects how quickly one cancels a
request

• Groups with different levels of expertise will use the
product or site at different read/think/data-input speeds

• Regular or returning users make requests at a faster rate
than new users

41© 2002 LogiGear Corporation. All Rights Reserved.

User Ratios
• Percentage by functional group

• Percentage by human speed

• Percentage by human patience

• Percentage by domain expertise

• Percentage by familiarity

• etc.

42© 2002 LogiGear Corporation. All Rights Reserved.

Creating Realistic Conditions

• Having a good mix
– Simulate various user groups to create a good mix of

specific requests

– Simulate user cancellations, to cover cancellations
caused by response time

 Read Savoia’s “Trade Secrets from a Web Testing Expert”

– Simulate both novice users and advanced users, to
cover speed variances

– Simulate user from different locations

43© 2002 LogiGear Corporation. All Rights Reserved.

Calculating Transactions per Second

 User Type % x Number of Users x Frequency

 (Session Length-Minutes x 60 Seconds)

 Note:

 This formula is based on an assumption that the transactions are distributed evenly
over the duration of a session. Therefore, the resulting number only represents the
minimum number or concurrent transactions per second.

44© 2002 LogiGear Corporation. All Rights Reserved.

• User’s tolerance varies depending upon several factors:
• Access rate

• Activity (e.g., downloading a 500K file as suppose to requesting a 10K
page)

• Human behavior

Example of Estimating User Cancellation Rate

Patience % Canceling Users Response Time
Greater Than

Low 20% 6 sec
Medium 50% 12 sec
High 30% 18 sec

45© 2002 LogiGear Corporation. All Rights Reserved.

An Example of Estimating User Speed

Domain Expertise % of Users Estimated
Read/Think/Data-
Input Time

Weighted
Factor

Scripted Estimated
Read/Think/Data-
Input Time

Novice Users 75% 45 sec 1.5 67.5 sec
Experienced Users 20% 45 sec 1.0 45.0 sec
Power Users 5% 45 sec 0.5 22.5 sec

46© 2002 LogiGear Corporation. All Rights Reserved.

Example of Estimating Arrival Rate

Demographics % of Users Arrival Rate
Weighted Factor

USA East Coast 30% 1.5
USA Central 15% 1.0
USA West Coast 45% 0.5
Europe 10% 2.0

47© 2002 LogiGear Corporation. All Rights Reserved.

Example of Common System Metrics

• Transactions Per Second (TPS) - The number of transactions
handled by the server per second. In the previous example,
the aggregate number of simple query transactions is 7 TPS.

• Hits per Second - Typically, the number of hits per second
the Web server receives from users. Note that a transaction
requesting a single HTML page can trigger multiple hits to the
server. As the number of transactions rises and the number
of hits-per-second reaches saturation point, transaction-
round-trip-time (latency) becomes longer.

- Concurrent connections - The number of concurrent open
connections.

- Throughput that the server processes (measured in KB/Sec) .

48© 2002 LogiGear Corporation. All Rights Reserved.

A Throughput Calculation Example
• The Objective - Determine bandwidth requirement for

handling the load.

• A Simplified Scenario
– A Web log shows that 10,000 concurrent users request a document

from a pool of 10 different HTML documents every 3.5 minutes, with
an average page size of 2 KBytes each.

• Calculating bandwidth requirement for throughput handling:

 Throughput = 10,000 * (2 * 1024 * 8) / (3.5 * 60) = 780,190 bps

 To handle this throughput load, the network connection should be at
least a T1 line (1,544,000 bps).

49© 2002 LogiGear Corporation. All Rights Reserved.

• Testing should be performed as early as possible, and should
be repeated as many times as possible. It is easier and less
costly to correct errors early in the development process.
• The earlier that testing is begun, the more times it can be repeated.

• The more often that tests are performed, the more likely they are to
uncover errors.

• Tests can be part of the regression-testing suite to be performed with
each build. Regression testing can determine if an error was added in
the latest release.

• Early detection is particularly important if the system does not meet
the desired performance requirement. This affords the developer
more time to adequately address problems.

When Can We Start Testing?

50© 2002 LogiGear Corporation. All Rights Reserved.

• Certain requirements must be met before testing can begin.
• Hardware must be installed and operational.

• Network should be fully operational.

• Functionality of the application under test must be complete.

• Tests themselves, tools and/or scripts must be fully developed or
incorporated into current test scripts (Previously developed test
scripts can often be used “as is”).

When Can We Start Testing?

51© 2002 LogiGear Corporation. All Rights Reserved.

Types of Tests

• Acceptance test (10-100 users with simple
scripts)

• Baseline test

• 2B1 load test

• Goal-reaching test

• Peak test

• Stress test

• Scalability tests

• Availability and reliability tests

52© 2002 LogiGear Corporation. All Rights Reserved.

Other Tests to Consider

• Regression and benchmark tests
– Application architecture changes

– Code changes

– Client/Server architecture changes

– Server configuration changes

– Middleware and other component changes

– User volume and behavior changes

• Data-empty vs. full tests

53© 2002 LogiGear Corporation. All Rights Reserved.

Formulating the Load Baseline

Response
Time

Load

Slow down point

54© 2002 LogiGear Corporation. All Rights Reserved.

2B1 or 3B1 Load Test

Response
Time

Load

Slow down point

1x 2x 3x

55© 2002 LogiGear Corporation. All Rights Reserved.

Load Ratios to Consider

• Tolerance ratio: Imposed load ± 25 %?

• Safety ratio: Imposed load x 2?

• Peak ratio: Imposed load x 4?

• Spike ratio: Imposed load x 5?

56© 2002 LogiGear Corporation. All Rights Reserved.

Estimating Load Capacity

• Estimate the load baseline

• Increase the load by multiplying the load
baseline by 1x, 2x, 3x, 4x, Nx gradually until
unacceptable response time is reached

 Note:

 Perceived user response is only as accurate as how closely the
virtual load matches the real world load.

57© 2002 LogiGear Corporation. All Rights Reserved.

Response Time: How Slow is Too Slow?

• Obtain market data to determine the threshold of
response time that will turn users away

• Judge it yourself through experimentation

58© 2002 LogiGear Corporation. All Rights Reserved.

Be Specific

• Specify what tests you will run

• Estimate how many cycles of each test
you will run

• Schedule your tests ahead of time

• Specify by what criteria you will consider
the SUT to be ready to test

• Forward thinking: Determine and
communicate the planned tests and how
the tests are scheduled

59© 2002 LogiGear Corporation. All Rights Reserved.

Document Your Plan

• Test Plan Objectives
– Documents test objectives, test requirements, test

designs, test procedures, and other project
management information.

– Solicits feedback and builds consensus.

– Defines development and testing deliverables.

– Secures commitment and resources for the test
effort.

– Take advantage of the test plan walkthrough
process.

60© 2002 LogiGear Corporation. All Rights Reserved.

Things to Consider
• Consensus and approval is achieved through test plan reviews and

communication.

• The test plan walkthrough is a powerful technique for collecting
requirements, soliciting feedback, and encouraging team involvement.

• Obtain budget and resource allocation upon or after completion and
approval of the plan.

• Human resource options:
– Train and use your own staff?

• The technology

• The test objectives

• The test environments

• The test methodology

• The business implications

– Rely on your developers to do it?

– Hire an outside consultant?

61© 2002 LogiGear Corporation. All Rights Reserved.

The Postmortem
• Analyze test results

– The three-step process
• Characterize: Look at what it does

• Analyze: Look for bottlenecks

• Optimize: Change the system to optimize performance

• Restore software and hardware to the base state condition
– Restore database

– Clear server cache

– Empty temporary and log files

– Reconfigure local network access

• Write a Performance Test Report

• Prepare regression and other tests

62© 2002 LogiGear Corporation. All Rights Reserved.

Web Resource: www.QACity.com

63© 2002 LogiGear Corporation. All Rights Reserved.

References
 Anderson, M. D., “13 Mistakes in Load Testing Applications”, Software Testing and Quality Engineering:

September/October 1999.

 Asbock, S., Load Testing for eConfidence, Lexington, MA, Segue Software: 2000

 Kolish, T. & Doyle, T., Gain eConfidence: The E-Business Reliability Survival Guide, Lexington, MA, Segue
Software: 1999

 Menasce, D. A., Almeida, V. A. F., Capacity Planning For Web Performance, Upper Saddle River, NJ: 1998.

 Menasce, D. A., Almeida, V. A. F., Scaling for E-Business, Upper Saddle River, NJ: 2000.

 Nguyen, N. Q., “Testing Web Applications”, LogiGear Corporation Training Handbook: 2000.

 Nguyen, N. Q., Testing Applications on the Web, New York, Wiley Computer Publishers, John Wiley & Sons: 2001

 Radview Software Inc., “The Web Load User’s Guide”, Lexington, MA: 1998.

 Savoia, A., “The Science and Art of Web Site Load Testing”, STQE STAREAST: 2000.

 Schelstrate, M., “ Stress Testing Data Access Components in Windows DNA Applications”, MSDN News,
March/April: 2000. http://msdn.microsoft.com/voices/news

64© 2002 LogiGear Corporation. All Rights Reserved.

About Hung Q. Nguyen

Hung Q. Nguyen is founder, president, and CEO of
LogiGear® Corporation. He’s held leadership roles in
business management, product development, business
development, engineering, quality assurance, testing, and
information technology. Hung is an international speaker
and contributor to industry publications. He authors and
teaches software testing curriculums for LogiGear University
and the University of California. He is the original architect
of TRACKGEAR™, a Web-based defect management
system, and the author of Testing Applications on the Web
(Wiley). He also wrote (with Kaner and Falk) the best-selling
book Testing Computer Software (Wiley), which is also
published in Japanese. He holds a B.Sc. in Quality
Assurance from Cogswell Polytechnical College, is an ASQ-
Certified Quality Engineer, and a member of the Advisory
Council for the Department of Applied Computing and
Information Systems at UC Berkeley Extension.

65© 2002 LogiGear Corporation. All Rights Reserved.

About LogiGear Corporation

LogiGear Corporation is the first Silicon Valley-based
software testing company to offer a full range of solutions
to advance individual and organizational excellence in
software testing. LogiGear offerings include in-depth
technical and management expertise in software quality
engineering, comprehensive advanced test engineering
such as Action Based Testing™, a structured approach to
testing and testing automation, and outsource testing
solutions, skill-based training curriculum for software
testing professionals through LogiGear University, and
world-class testing support products including
TRACKGEAR, a Web-based defect management
solution.

www.LogiGear.com

Key Points

Measurement programs often fail for good reasons
Many measurement programs are dysfunctional
We often have to take some measurements, here are a few ideas on what to do

Presentation Abstract

Relatively few software publishers (or in-house IT groups) have metrics programs in place. Many have tried, few have succeeded. I
don't think that the widespread failure of metrics programs in the field is due to a lack of professionalism, laziness, lack of interest in
quality or lack of sophistication of the staff. Rather, I think the failures stem from mistrust of the measurements and the people who take
them, lack of respect for the models that relate the measurements taken to the constructs they supposedly measure, and examples of
manipulation or misues of the data collected. These are serious problems. We should take them seriously.

About the Author

Cem Kaner is Professor of Computer Sciences at the Florida Institute of Technology. Prior to joining Florida Tech, Kaner worked in
Silicon Valley for 17 years, doing and managing programming, user interface design, testing, and user documentation. He is the senior
author (with Jack Falk and Hung Quoc Nguyen) of TESTING COMPUTER SOFTWARE (2nd Edition) and (with David Pels) of BAD
SOFTWARE: WHAT TO DO WHEN SOFTWARE FAILS.

Through his consulting firm, KANER.COM, he teaches courses on black box software testing and consults to software publishers on
software testing, documentation, and development management. Kaner is also the co-founder and co-host of the Los Altos Workshop
on Software Testing, the Software Test Managers' RoundTable, the Workshop on Heuristic & Exploratory Techniques, and the Florida
Workshops on Model-Based Testing.

Kaner is also attorney whose practice is focused on the law of software quality. He is active (as an advocate for customers, authors,
and small development shops) in several legislative drafting efforts involving software licensing, software quality regulation, and
electronic commerce. Kaner holds a B.A. in Arts & Sciences (Math, Philosophy), a Ph.D. in Experimental Psychology (Human
Perception & Performance: Psychophysics), and a J.D. (law degree). He is Certified in Quality Engineering by the American Society for
Quality.

QW2002 Paper 3Q

Cem Kaner
(Florida Institute of Technology)

A short course in metrics & measurement dysfunction

A Short Course in Metrics A Short Course in Metrics
and Measurement Dysfunctionand Measurement Dysfunction

Cem Kaner
International Software Quality Week

September, 2002

Much material is from participants of Software Test Managers Roundtable (STMR)
and the Los Altos Workshop on Software Testing (LAWST).
– STMR 1 (Oct-Nov 1999) focused on the question, How to deal with too many projects

and not enough staff? Participants: Jim Bampos, Sue Bartlett, Jennifer Brock, David
Gelperin, Payson Hall, George Hamblen, Mark Harding, Elisabeth Hendrickson, Kathy
Iberle, Herb Isenberg, Jim Kandler, Cem Kaner, Brian Lawrence, Fran McKain, Steve
Tolman and Jim Williams.

– STMR 2 (April-May 2000) focused on the topic, Measuring the extent of testing.
Participants: James Bach, Jim Bampos, Bernie Berger, Jennifer Brock, Dorothy Graham,
George Hamblen, Kathy Iberle, Jim Kandler, Cem Kaner, Brian Lawrence, Fran
McKain, and Steve Tolman.

– STMR 5 (Oct. 2001) focused on Measuring the effectiveness of test groups. Lisa
Anderson, Laura Anneker, James Bach, Sue Bartlett, Harold Crawford, David Gelperin,
Mark Harding, Doug Hoffman, Cem Kaner, Brian Lawrence, Hung Quoc Nguyen,
Alberto Savoia, Jennifer Smith-Brock, Steve Tolman, Jo Webb, Jim Williams, Garrin
Wong,

– STMR 6 (May 2002) focused on Measuring the effectiveness of software testers. Laura
Anneker, James Bach, Sue Bartlett, Rex Black, Jennifer Smith-Brock, Doug Hoffman,
Kathy Iberle, Cem Kaner, Brian Lawrence, Bret Pettichord, Sid Snook, Steve Tolman,
and Jo Webb.

– LAWST 8 (December 4-5, 1999) focused on Measurement. Participants: Chris Agruss,
James Bach, Jaya Carl, Rochelle Grober, Payson Hall, Elisabeth Hendrickson, Doug
Hoffman, III, Bob Johnson, Mark Johnson, Cem Kaner, Brian Lawrence, Brian Marick,
Hung Nguyen, Bret Pettichord, Melora Svoboda, and Scott Vernon.

3Copyright © Cem Kaner, 2000-2002. Quality Week 2002

What is measurement?What is measurement?

• Is measurement really “the assignment of numbers to
objects or events according to a clear cut rule”?
– No, it can’t be. If it was, then many inappropriate rules

would do.
• Measurement is the assignment of numbers

to objects or events (attributes) according to
a rule derived from a model or theory.

• A software metric is a standard way of measuring some
attribute or result of the software process. Examples of
these attributes are size, costs, defects, communications,
difficulty and environment.

4Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Types of attributes often measuredTypes of attributes often measured

• Resource
– Amount of resource available and/or used

• Process
– Attributes of the development artifacts (other than the product),

such as specifications, test materials
– Attributes of the methods and practices employed

• Product
– Attributes of the product under development, such as size,

reliability, usability.
• Impact

– The effect of the product, such as support costs, changed user
productivity, change in user safety.

5Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Why measure? (Some examplesWhy measure? (Some examples——add your own)add your own)

• Track project progress
• Gain control of processes
• Demonstrate the productivity of your staff
• Demonstrate the quality of your work
• Compare different engineering practices
• Increase your credibility with your management
• Identify where improvements are needed
• Determine (relative) complexity or other attributes of the software
• Help us understand whether we have achieved a certain quality level (value

on some desirable attribute, such as reliability, performance, usability,
accessibility, etc.)

• Gain control of characteristics of the products you make
• Gain the respect of your customers
• Demonstrate the effectiveness of the product
• Learn more about software engineering
• Evaluate models, provide a basis for scientific development of better ways

to produce better products.

6Copyright © Cem Kaner, 2000-2002. Quality Week 2002

ModelsModels

• It’s an abstraction—some details are omitted or simplified
– Try to measure distances on a subway map

• What is the scale of the subway map?
• Is it useful?

• Abstractions allow us to focus on a few variables and their
relationships.

• Abstractions allow us to use mathematics to study
relationships.

7Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Simple measurementSimple measurement

• You have a room full of tables that appear to be the
same length. You want to measure their lengths.

• You have a one-foot ruler.
• You use the ruler to measure the lengths of a few

tables. You get:
– 6.01 feet
– 5.99 feet
– 6.05 feet

• You conclude that the tables are “6 feet” long.

8Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Simple measurement (2)Simple measurement (2)

• Note the variation
– Measurement errors using the ruler
– Manufacturing variation in the tables

• Note the rule:
– We are relying on a direct matching operation and on

some basic axioms of mathematics
• The sum of 6 one-foot ruler-lengths is 6.
• A table that is 6 ruler-lengths long is twice as long

as one that is 3 ruler-lengths long.
• These rules don’t always apply. What do we do when we

have something hard to measure?

9Copyright © Cem Kaner, 2000-2002. Quality Week 2002

A Framework for MeasurementA Framework for Measurement

• A measurement involves at least 10 factors:
– Attribute to be measured

• appropriate scale for the attribute
• variation of the attribute

– Instrument that measures the attribute
• scale of the instrument
• variation of measurements made with this instrument

– Relationship between the attribute and the instrument
– Likely side effects of using this instrument to measure

this attribute
– Purpose
– Scope

10Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Framework for MeasurementFramework for Measurement

¾ Are we measuring the work of one tester? One
team on one project? Is this a cross-project metrics
effort? Cross-departmental research?

Scope

¾ If we do something that makes the measured result
look better, will that mean that we’ve actually
increased the extent of testing?

Side Effect

¾ Why are we measuring this? What will we do with
the number?

Purpose

• How will increasing “extent of testing” affect
the reading (the measure) on the instrument?

Mechanism

¾ What should we count? Lines? Bugs? Test cases?
Hours? Temper tantrums?

Instrument

¾ Extent of testing – What does that mean?Attribute

11Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Attributes and InstrumentsAttributes and Instruments

Sound level meterSound energy
Sound level comparisons by
humans

Loudness

??? Count bug reports or
graph bug curves???

----Proportion of bugs
that we’ve found

??? Count statements /
branches tested ???

----Product coverage
???Extent of testing???
??? Branches ???Code complexity

??? Bug count ???Tester goodness

Ruler / StopwatchSpeed
StopwatchDuration
RulerLength

12Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Defining the AttributeDefining the Attribute

• Imagine being on the job. Your local PBH (pointy-haired
boss) drops in and asks

“So, tell me.
How much testing have you gotten
done?”

13Copyright © Cem Kaner, 2000-2002. Quality Week 2002

The Question is Remarkably AmbiguousThe Question is Remarkably Ambiguous

Common answers are based on the:

¾ We’ve worked 80 hours a week on this for 4 months.
We’ve run 7,243 tests.

Effort

¾ We’ve discovered 593 bugs.Results

¾ We’ve run 80% of the test cases.Plan

¾ We’ve tested 80% of the lines of code.Product

14Copyright © Cem Kaner, 2000-2002. Quality Week 2002

The Question is Remarkably AmbiguousThe Question is Remarkably Ambiguous

Common answers are based on the:

¾ At this milestone on previous projects, we had fewer
than 12.3712% of the bugs found still open. We
should be at that percentage on this product too.

History
across

projects

¾ Beta testers have found 30 bugs that we missed. Our
regression tests seem ineffective.

Quality of
Testing

¾ We’re getting a lot of complaints from beta testers
and we have 400 bugs open. The product can’t be
ready to ship in three days.

Risks

¾ We’ve been plugging away but we can’t be efficient
until X, Y, and Z are dealt with.

Obstacles

15Copyright © Cem Kaner, 2000-2002. Quality Week 2002

What Are We Measuring?What Are We Measuring?

• Before we can measure something, we need some sense
of what we’re measuring. It’s easy to come up with
“measurements” but we have to understand the
relationship between the thing we want to measure and
the statistic that we calculate to “measure” it.

• If we want to measure the “extent of
testing”, we have to start by
understanding what we mean by
“extent of testing.”

16Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Surrogate measuresSurrogate measures

• "Many of the attributes we wish to study do not have
generally agreed methods of measurement. To overcome
the lack of a measure for an attribute, some factor which
can be measured is used instead. This alternate measure
is presumed to be related to the actual attribute with which
the study is concerned. These alternate measures are
called surrogate measures."

• Mark Johnson’s MA Thesis
• “Surrogates” provide unambiguous assignments of

numbers according to rules, but they don’t provide an
underlying theory or model that relates the measure to the
attribute allegedly being measured.

17Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Consider bug countsConsider bug counts

• Do bug counts measure testers?
• Do bug counts measure thoroughness of testing?
• Do bug counts measure the effectiveness of an

automation effort?
• Do bug counts measure how near we are to

being ready to ship the product?

How would we know?

18Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Bug counts and testersBug counts and testers

To evaluate an instrument that is supposed to measure an
attribute, we have to ask two key questions:
– What underlying mechanism, or fundamental relationship,

justifies the use of the reading we take from this instrument as a
measure of the attribute? If the attribute increases by 20%, what
will happen to the reading?

– What can we know from the instrument reading? How tightly is
the reading traceable to the underlying attribute? If the reading
increases by 20%, does this mean that the attribute has
increased 20%. If the linkage is not tight, we risk serious side
effects as people push the reading (the “measurement”) up and
down without improving the underlying attribute.

19Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Bug counts and testers: mechanism?Bug counts and testers: mechanism?

Suppose we could improve testing by 20%.
This might mean that:

– We find more subtle bugs that are important but that
require more thorough investigation and analysis

– We create bug reports that are more thorough, better
researched, more descriptive of the problem and
therefore more likely to yield fixes.

– We do superb testing of a critical area that turns out
to be relatively stable.

The bug counts might even go down, even
though tester goodness has gone up.

20Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Bug counts & testers: Side effectsBug counts & testers: Side effects

What if you could increase the count of reported bugs by
20%?
If you reward testers for higher bug counts, won’t you make
changes like these more likely?

– Testers report easier- to- find, more superficial bugs
– Testers report multiple instances of the same bug
– Programmers dismiss design bugs as non- bugs that testers

put in the system to raise their bug counts
– No one will work on the bug tracking system or other group

infrastructure.
– Testers become less willing to spend time coaching other

testers.

21Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Example: Bug CountsExample: Bug Counts

¾ If we change testing to maximize the bug count,
does that mean we’ve achieved more of the
testing? Maybe in a trivial sense, but what if we’re
finding lots of simple bugs at the expense of testing
for a smaller number of harder-to-find serious
bugs.

Side Effect

¾ If we increase the extent of testing, does that result
in more bug reports? Not necessarily.

Mechanism

¾ Bugs found. (Variations: bugs found this week,
etc., various numbers based on bug count.)

Instrument

¾ Not sure. Maybe we’re thinking of percentage
found of the total population of bugs in this
product.

Attribute

22Copyright © Cem Kaner, 2000-2002. Quality Week 2002

The Bug CurveThe Bug Curve

What Is This Curve?

Week

Bu
gs

 P
er

 W
ee

k

23Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Example: Bug CurvesExample: Bug Curves

¾ If we do something that makes the measured result
look better, will that mean that we’ve actually
increased the extent of testing? No, no, no. See side
effect discussion.

Side Effect

¾ As we increase the extent of testing, will our bug
numbers conform to the curve? Not necessarily. It
depends on the bugs that are left in the product.

Mechanism

¾ Bugs per week. A key thing that we look at is the
agreement between the predictive curve and the
actual bug counts.

Instrument

¾ We have a model of the rate at which new bugs
will be found over the life of the project.

Attribute

24Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Side Effects of Bug CurvesSide Effects of Bug Curves

Earlier in testing: (Pressure is to increase bug counts)
– Run tests of features known to be broken or incomplete.
– Run multiple related tests to find multiple related bugs.
– Look for easy bugs in high quantities rather than hard

bugs.
– Less emphasis on infrastructure, automation architecture,

tools and more emphasis of bug finding. (Short term
payoff but long term inefficiency.)

25Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Some Side Effects of Bug CurvesSome Side Effects of Bug Curves

Later in testing: (Pressure is to decrease new bug rate)
– Run lots of already-run regression tests
– Don’t look as hard for new bugs.
– Shift focus to appraisal, status reporting.
– Classify unrelated bugs as duplicates
– Class related bugs as duplicates (and closed), hiding key data about the

symptoms / causes of the problem.
– Postpone bug reporting until after the measurement checkpoint

(milestone). (Some bugs are lost.)
– Report bugs informally, keeping them out of the tracking system
– Testers get sent to the movies before measurement checkpoints.
– Programmers ignore bugs they find until testers report them.
– Bugs are taken personally.
– More bugs are rejected.

26Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Bug Curve Counterproductive?Bug Curve Counterproductive?

Shouldn't We Strive For This ?

Week

Bu
gs

 P
er

 W
ee

k

27Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Austin on Measurement DysfunctionAustin on Measurement Dysfunction

• Schwab & U.S. Steel
– Counting ingots
– How might these people have improved measured

productivity?

Robert Austin, Measuring and Managing Performance in
Organizations.

28Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Measurement DysfunctionMeasurement Dysfunction

• In an organizational context, dysfunction is
defined as the consequences of organizational
actions that interfere with the attainment of the
spirit of stated intentions of the organization.
(Austin, p. 10)

• Dysfunction involves fulfilling the letter of stated
intentions but violating the spirit.

29Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Measurement DysfunctionMeasurement Dysfunction

• Examples from law enforcement
– Quotas
– Percentage successful prosecutions
– Ratio of arrests to prosecutions

• Measured from the perspective of the police
• Measured from the perspective of the prosecutor
• Measured from the perspective of the crime lab

30Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Austin on the 2Austin on the 2--Party ModelParty Model

• Principal
– E.g. the employer, the person who wants the result and

who directly profits from the result.
– In Austin’s model, we assume that the employer is

motivated by maximum return on investment
• Agent

– E.g. the employee.
– In Austin’s model, the employee wants to do the least

work for the most money

31Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Austin: 2Austin: 2--Party Model Party Model –– Supervisory IssuesSupervisory Issues

• No supervision
– No work

• Partial supervision
– Work only on what is measured

• Full supervision
– Work according to the production guidelines laid out by

the employer

32Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Austin’s 3Austin’s 3--Party ModelParty Model

• Principal
– With respect to the agent, same as before: least pay for

the most work.
– With respect to the customer, wants to increase customer

satisfaction
• Agent

– With respect to principal, same as before: least work for
the most pay

– With respect to the customer, motivated by customer
satisfaction

• Customer
– Wants the most benefit for the lowest price

33Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Austin’s 3Austin’s 3--Party Model Supervisory ModelParty Model Supervisory Model

• No supervision
– Agent works to the extent that increasing customer

satisfaction provides more “benefit” to the agent
(worker) than it costs the agent to provide the work

• Full supervision
– Agent does exactly what should be done to increase

customer satisfaction

34Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Austin’s 3Austin’s 3--Party Model Supervisory ModelParty Model Supervisory Model

• Partial supervision
– Agent is motivated by increased customer satisfaction

and by rewards for performing along measured
dimensions.

– To the extent that the agent works in ways that don’t
maximize customer satisfaction at a given level of effort,
we have distortion.

– To the extent that the agent works in ways that reduce
customer satisfaction below the level that would be
achieved without supervision, we have dysfunction

35Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Austin’s 3Austin’s 3--Party Model Supervisory ModelParty Model Supervisory Model

• Back to full supervision
– What benefits are associated with full supervision?
– What costs are associated with full supervision?
– Imagine you were supervising a programmer who had a

6- week (best guess) programming task. What would you
have to know / measure in order to achieve full
supervision?

– In general, what are the obstacles to achieving full
supervision of knowledge workers?

– Is it reasonable to try for full supervision or are we stuck
with partial (or no) supervision?

36Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Austin’s 3Austin’s 3--Party Model Supervisory ModelParty Model Supervisory Model

• A key aspect of this model is that it builds in the notion of
internal motivation.

• Under full supervision with forcing contracts, perhaps
internal motivation is unnecessary. (I disagree, but
perhaps we can pretend that it is unnecessary.)

• Under partial supervision and no supervision, internal
motivation plays an important role in achieving customer
satisfaction and in eliciting effort and results from the
agent.

• This comes into play in Austin’s vision of delegatory
management.

37Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Tie This Back to Our Measurement ModelTie This Back to Our Measurement Model

• Full supervision:
– There is an instrument for every significant attribute and every

instrument directly measures the attribute. PROBABLY IMPOSSIBLE.
• Partial supervision:

– Some attributes are unmeasured or are measured using proxies (or
surrogates), measures that are loosely tied to the attribute under study.

• Distortion:
– Side effects

• Dysfunction
– Really bad side effects

• Informational vs Motivational Measures
– Purpose of use
– Scope of use

What protects data gathered for informational purposes from being
used for motivational purposes?

38Copyright © Cem Kaner, 2000-2002. Quality Week 2002

FlowgraphsFlowgraphs: Basic definitions: Basic definitions

• Flowgraph is a directed graph
– Nodes

• Start
• Terminal
• Predicate / Decision
• Procedural

– Edges - connect two nodes
– Arcs - directed edges

39Copyright © Cem Kaner, 2000-2002. Quality Week 2002

NodesNodes

• In our course (and in our text), nodes are “statement nodes”.
They normally correspond to a single statement. Other
computer scientists often represent states with nodes. The
action that transforms the program from one state to another
(such as execution of a statement) is shown on an arc.

• A GOTO statement does not appear on a node. It is a pure
vector, pointing to the place to transfer control.

• The terminal node has a single function—it is the end, such as
an endif. It is a logical connection point, not a source of action.

1 END

A single statement The GOTO statement

END

40Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Degree of a NodeDegree of a Node

• In-degree = # arcs to node
– In- degree of start node is often but not necessarily 0

• Out-degree = # arcs from the node
– Out- degree of terminal node = 0

• Procedure Node = out-degree = 1
• Predicate Node = out-degree > 1

41Copyright © Cem Kaner, 2000-2002. Quality Week 2002

ZuseZuse example Figure 2.3example Figure 2.3

Identify the following types of nodes: Start, Terminal, Predicate, Procedure
Identify the in-degrees of the nodes. Can you find nodes with in-degree of 0?
1? 2?
Identify the out-degrees of the nodes. Can you find nodes with out-degree of
0? 1? 2? 3?

1 2 3

4

5

6 7

8

9

10 11 12

42Copyright © Cem Kaner, 2000-2002. Quality Week 2002

““Proper” Proper” FlowgraphFlowgraph

• Execution starts at the start node, S and ends at the
terminal node, T

• For each node, N,
– There is a path from start node, S, to N
– There is a path from N to terminal node, T
– N could be replaced with a proper flowgraph and the

resulting flowgraph will still be a proper flowgraph

43Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Sequencing and Nesting of Sequencing and Nesting of FlowgraphsFlowgraphs

• If F1 and F2 are two flowgraphs
– We make a sequence of F1 and F2

by replacing the terminal node of F1
with the start node of F2.

– Notation:
• F1; F2
• Seq (F1, F2)
• P2 (F1, F2)
• F1 o F2

END

END

1

2

1 END2

Yields this

Sequencing
these:

F1

F2

F1; F2

44Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Sequencing and Nesting of Sequencing and Nesting of FlowgraphsFlowgraphs

• If F1 and F2 are two flowgraphs and X is a
procedure node.
– F2 is nested in F1 at X if we replace the

arc from X with the flowgraph F2 (F2’s
start node is X)

– Notation:
• F1(F2 on X)
• F1(F2) is OK if there is no ambiguity

END

X

A
Y

B

END

A

F1: if A then X F2: if B then Y

END

Y

B

F1(F2):
if A then if B then Y

t

f

t

f

t
t

ff

45Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Prime Prime FlowgraphFlowgraph

• Cannot be non-trivially decomposed by sequencing or nesting
• Different languages have different prime flowgraphs.
• Common ones:

– Pk = Sequence of length K
– D0 = If ... Then
– D1 = If ... Then ... Else
– D2 = While ... Do
– D3 = Repeat ... Until
– Ck = Case statement with K cases

46Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Prime Prime FlowgraphsFlowgraphs PkPk –– A simple series of statementsA simple series of statements

END2

END1

P2 (1,2)

P1

1

END21 kPk (1,2, ..., k)

47Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Prime Prime FlowgraphsFlowgraphs D0 If A then BD0 If A then B

END

B

At

f D0 (A,B)

48Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Prime Prime FlowgraphsFlowgraphs D1 If A then B else CD1 If A then B else C

END

B

A

C

t f

D1 (A,B,C)

49Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Prime Prime FlowgraphsFlowgraphs D2 while A do BD2 while A do B

A END

B

true

false

D2(A,B)

50Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Prime Prime FlowgraphsFlowgraphs D3D3 repeat A until Brepeat A until B

A

ENDB
true

false

D3(A,B)

51Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Prime Prime FlowgraphsFlowgraphs CkCk Case statementCase statement

A

B1 B2 B3 B4 B5 B6 B7

END

a1
a2 a3 a4 a5 a6 a7

52Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Sequence PracticeSequence Practice

END

END

B

A
D0

P1 1

B

A

END1
D0; P1

1

53Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Sequence PracticeSequence Practice

END

B

A

C

t f

D1

X

Y

END

t

f
D3

END

B

A

C

t f

X

Y

END

t

f
D1; D3

54Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Sequence PracticeSequence Practice

END

B

A

C

t f

D1

D1

END

B

A

C

t f

X

D1; D1
END

Y

X

Z

t f

END

Y

X

Z

t f

55Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Sequence PracticeSequence Practice

END

B

A

C

t f

D1

D1

END

B

A

C

t f

X

D1; P1; D1

END

Y

X

Z

t f

END

Y

X

Z

t f

ENDP1 1

1

56Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Nesting PracticeNesting Practice

END

B

A

C

t f

D1

X

Y

END

t

f
D3

D1(D3)

X

A

C

Y

END

57Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Composition of Composition of flowgraphsflowgraphs

• Functions can be modeled as directed graphs, and built
up by composition of the basic flowgraphs

• Every flowgraph has a unique decomposition into a
hierarchy of primes

58Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Decompose thisDecompose this

1 2 3

4

5

6 7

8

9

10 11 12

59Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Graph this (From Fenton / Graph this (From Fenton / PfleegerPfleeger))

If A
then

begin
If B then do X;
Y;
while C do U

end
else

if D
then do

repeat V until E

60Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Graph this (continued)Graph this (continued)

If A

IF DIf B

X

Y

while CU

END

V

Until E

Now,
decompose it
into a hierarchy
of primes

61Copyright © Cem Kaner, 2000-2002. Quality Week 2002

StructurednessStructuredness

• For a family, S, of prime flowgraphs
• A family of graphs is S-structured (or are S-graphs) if it

satisfies the following recursive rules:
– Each member of S is S- structured
– If F1 and F2 are S- Structured graphs then so are

• F1; F2
• F1 (F2) wherever nesting of F2 onto F1 is defined

– No flowgraph is an S- structured graph unless it can be shown
to be generated by a finite number of applications of the
above steps

NOTE: If SD = {P1, D0, D2}, the set of SD-graphs is the class of
“D-structured” or “structured” graphs. Every algorithm can be
encoded as an SD-graph (Bohm & Jacopini)

62Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Hierarchical measures Hierarchical measures –– in general in general

• A measure M is a hierarchical measure if it can be
defined on the set of S-graphs by specifying
– M(F) for each F in S (rule M1)
– The sequencing function

M(F1;F2;...;Fk) (rule M2)
– The nesting functions for

each F in S (rule M3)

• We can compute a hierarchical measure for a program
once we know the rules, M1, M2 and M3 and the
decomposition tree.

• (These slides are closely based on Fenton / Pfleeger)

63Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Hierarchical measures: NestingHierarchical measures: Nesting

• Primes (define as follows)
– Depth of nesting of P1 is 0
– Depth of nesting of any other prime is 1

• D (P1) = 0
• D (F prime but <> P1) = 1

• Sequence
– Depth of nesting of sequence F1, F2, ..., Fk is maximum

of the depth of nesting of the Fi’s.
• D (F1; ... ; Fk) = Max (D(F1), ..., D(Fk))

• Nesting
– Depth of nesting of flowgraph F(F1, ..., Fk) is max of the

depth of nesting of the F1 plus 1 b/c of the extra nesting
level in F). So
• D (F(F1; ... ; Fk)) = 1+ Max (D(F1), ..., D(Fk))

64Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Hierarchical measures: LengthHierarchical measures: Length

• M1:
– V(P1) = 1
– V(F) = N+1, where N is number of procedure nodes in F

• M2:
– V(F1;F2;...;Fk) = Sum (V(Fi))

• M3:
– V(F(F1,...,Fk))= 1+Sum(V(Fi) for each prime Fi <> P1)

• Example: compute v(D1((D0;P1;D2),D0(D3)))

65Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Hierarchical measures Hierarchical measures –– number of nodesnumber of nodes

• M1:
– n(F) = number of nodes in F, for each prime F

• M2:
– n(F1; ... ; Fk) = Σ n(Fi) – k +1

• M3:
– N(F(F1, ... , Fk)) = n(F) + Σ n(Fi) - 2K for each prime F

• Try it for
– P2 (and decompose it to P1;P1)
– D1 (D3, D1)

66Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Hierarchical measures Hierarchical measures –– number of edgesnumber of edges

• M1:
– e(F) = number of edges in F, for each prime F

• M2:
– e(F1; ... ; Fk) = Σ e(Fi)

• M3:
– e(F(F1, ... , Fk)) = e(F) + Σ e(Fi) - k for each prime F

• Try it for
– P2 (and decompose it to P1;P1)
– D1 (D3, D1)

67Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Hierarchical measures Hierarchical measures –– cyclomaticcyclomatic complexitycomplexity

• Cyclomatic complexity (F) = e(F) – n(F) + 2
– e(F) = number of arcs in F
– n(F) = number of nodes in F

• This is the number of linearly independent paths through
F

• M1:
– c(F) = 1+d where d is number of predicates in F, prime F

• M2:
– c(F1; . . .; Fk) = Σ c(Fi) – k + 1, for each prime Fi

• M3:
– c(F(F1, ... , Fk)) = c(F) + Σ c(Fi) - k for each prime F

68Copyright © Cem Kaner, 2000-2002. Quality Week 2002

CyclomaticCyclomatic complexity, simple examplescomplexity, simple examples

END2

END1

P2 (1,2)

P1

1

END

B

A

C

t f

X

Y

END

t

f

D1; D3

X

A

C

Y

END

D1(D3)

69Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Test coverage metrics Test coverage metrics –– basis path coveragebasis path coverage

• McCabe’s metric counts the number of basis paths
through the program, essentially the number of linearly
independent paths through the program. If you design
your tests to hit every basis path, you will cover every
statement and every branch in the program.

70Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Graph theory underlying basis paths (definitions)Graph theory underlying basis paths (definitions)

• Strongly connected graph: for any node, x, there is a
path from x to y and a path from y to x.

• A circuit is a path that begins and ends at the same
node.

• A cycle is a circuit with no node (other than the starting
node) included more than once.

• A path, P, is a linear combination of paths, P1, ..., Pn if
there are integers, Ai such that P = Σ Ai * Pi.

• A set of paths is linearly independent if no path in the
set is a linear combination of the others.

71Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Basis pathsBasis paths

• Notation:
– Rather than labeling nodes, lets label edges.

– We can describe a path as an n-tuple, such as <2, 3> or <1,4>
– We can create a path vector that shows the number of times

each path is traversed
• <2,3> = [0 1 1 0].
• <1,4> = [1 0 0 1].
• <1,2,3,4> = [1 1 1 1] but this is an infeasible path.
• (1 1 1 1) = [1 0 0 1] + [0 1 1 0] (this is basic matrix algebra)

– Cyclomatic complexity = e(F) – n(F) + 2 = 4 – 4 + 2 = size of
basis set

END

B

A

C

END

1 2

34

72Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Basis pathsBasis paths

• To create the basis set of cycles, we
can turn a directed graph into a strongly
connected graph by drawing an arc
from the end to the start.

• [1 0 0 1 1] is a circuit
• [0 1 1 0 1] is a circuit
• [1 1 1 1 2] is a circuit (what is the path?)
• [1 0 0 1 1] and [0 1 1 0 1] are cycles but

[1 1 1 1 2] is not.
• [1 1 1 1 2] is a linear combination of

[1 0 0 1 1] and [0 1 1 01]
• Any other path that you could actually

take through the graph is a linear
combination of [1 0 0 1 1] and [0 1 1 01]

• This is a basis set of cycles

END

B

A

C

END

1 2

34

5

73Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Basis pathsBasis paths

• Once we know the basis set of cycles, we eliminate the
fictitious branch (from stop to start), reducing the vectors
by a column:
– [1 0 0 1] and [0 1 1 0] is a basis set of linearly

independent paths.
– Basis sets (of cycles or flowgraph paths) are not unique

– Question: Aren’t [1 1 0 0] and [0 0 1 1] linearly
independent of the basis paths? Why aren’t they usable?

74Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Reality Check: Which is more complex?Reality Check: Which is more complex?

1 2 3

4

5

6 7

8

9

10 11 12

1 2 3

4

5

6 7

8

9

10 11 12

Two
programs

with the
same

McCabe
complexity

number
can have

very
different

complexity.

75Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Code coverageCode coverage

• Coverage measures the amount of testing done of a
certain type. Since testing is done to find bugs,
coverage is a measure of your effort to detect a certain
class of potential errors:
– 100% line coverage means that you tested for every bug

that can be revealed by simple execution of a line of
code.

– 100% branch coverage means you will find every error
that can be revealed by testing each branch.

– 100% coverage should mean that you tested for every
possible error. This is obviously impossible.

76Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Benefits of coverageBenefits of coverage

Before I attack coverage measures, let me acknowledge that
they are often useful.

– Many projects achieve low statement coverage, as little as 2%
at one well- known publisher that had done (as measured by
tester- hours) extensive testing and test automation. The results
from checking statement coverage caused a complete rethinking
of the company’s automation strategy.

– Coverage tools can point to unreachable code or to code that is
active but persistently untested.

Coverage tools can provide powerful diagnostic
information about the testing strategy, even if they are
terrible measures of the extent of testing.

77Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Statement / Branch Coverage and Data FlowsStatement / Branch Coverage and Data Flows

Start

1

2

4

3

5

6

7

Exit

X

X

X

X
means this routine
changes variable X

1(x) 2 3(x) 4 5 7
1(x) 2 4 6(x) 7
Now we have 100% branch
coverage, but where is 1(x) 7?
1(x) 2 4 5 7

Based on an example by
Richard Bender

78Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Example: Statement/Branch CoverageExample: Statement/Branch Coverage

¾ Not specifiedScope

¾ If we design our tests to make sure we hit more
lines, does that mean we’ll have done more
extensive testing? Maybe in a trivial sense, but
we can achieve this with weaker tests that
find fewer bugs.

Side Effect

¾ Not specifiedPurpose

¾ If we do more testing and find more bugs, does that
mean that our line count will increase? Not
necessarily. Example—configuration tests.

Mechanism
¾ Count statements and branches testedInstrument

¾ Extent of testing – How much of the product
have we tested?

Attribute

79Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Statement / Branch Coverage Just Test the FlowchartStatement / Branch Coverage Just Test the Flowchart

You’re not testing:
» data flow
» tables that determine control flow in table-driven code
» side effects of interrupts, or interaction with background tasks
» special values, such as boundary cases. These might or might

not be tested.
» unexpected values (e.g. divide by zero)
» user interface errors
» timing-related bugs
» compliance with contracts, regulations, or other requirements
» configuration/compatibility failures
» volume, load, hardware faults

80Copyright © Cem Kaner, 2000-2002. Quality Week 2002

If we use “coverage”?If we use “coverage”?

• If we improve testing by 20%, does this result in
a 20% increase in “coverage”? Does it
necessarily result in ANY increase in “coverage”?

• If we increase “coverage” by 20%, does this
mean that there was a 20% improvement in the
testing?

• If we achieve 100% “coverage”, do we really
think we’ve found all the bugs?

81Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Side effects and “coverage”Side effects and “coverage”

• Without a mechanism that ties changes in the
attribute being measured to changes in the reading
we get from the instrument, we have a “measure”
that is ripe for abuse.

• People will optimize what is tracked. If you track
“coverage”, the coverage number will go up, but (as
Marick has often pointed out) the quality of testing
might well go down.

82Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Statement / Branch Coverage and Data FlowsStatement / Branch Coverage and Data Flows

• How many basis paths are there in this program?

• Can we achieve complete basis path coverage
without ever hitting the critical data flow?

0
1
5

1
1
4

0
1
3

1
1
2

1
1
1

111
110
Exit76

83Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Basis pathsBasis paths

• By the way, which of these columns is variable?

11101111
0
1
5

1
1
4

0
1
3

1
1
2

1
1
1

111
110
Exit76

84Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Basis pathsBasis paths

• So we can reduce the big chart to the simpler small chart. It
is much easier to prove that the vectors form a basis path in
the simplified matrix.

XX10X1XX
0
1
5

X
X
4

0
1
3

X
X
2

X
X
1

XX1
XX0
Exit76

101
100
011
653

85Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Data FlowsData Flows

• A set-use pair is a dataflow
• A set-use pair with no intervening set is a first-order

dataflow.
– In the example, set the value of X in lines 1, 3, and 6.
– Path 1(set x) 2 3(set x) 4 5 7 (print x) has

• a first-order dataflow from line 3 to line 7 and
• a second-order dataflow from line 1 (through line 3

where x is reset) to line 7
• 100% dataflow coverage (in testing) usually means

covering all the first-order dataflows.

86Copyright © Cem Kaner, 2000-2002. Quality Week 2002

GoalGoal--QuestionQuestion--Metrics ApproachMetrics Approach

• To decide what to measure, we should first know why we care
about the answer. Given a goal for the measurement, we can
work forward to collect information that can help us meet that
goal.

• Basic approach
– Set the goal
– Identify questions that would give you information that you

need in order to meet the goal
– Determine whether there are (or whether you can create)

metrics that can help you answer those questions.

87Copyright © Cem Kaner, 2000-2002. Quality Week 2002

GQM Template for Defining a GoalGQM Template for Defining a Goal

• Questions usually look for information like:
– Purpose: TO (characterize, evaluate, predict, motivate, etc.)

THE (process, product, model, metric, etc.) IN ORDER TO
(understand, assess, manage, engineer, learn, improve, test,
etc.)

– Perspective: EXAMINE THE (cost, effectiveness, correctness,
defects, changes, product metrics, reliability, etc.) FROM THE
POINT OF VIEW OF (the programmer, manager, customer,
corporate perspective, etc.)

– Environment: The environment consists of the following:
process factors, people factors, problem factors, methods, tools,
constraints, etc.

Adapted from Basili

88Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Example from RosenbergExample from Rosenberg

• To PREDICT the SCHEDULE in order to MANAGE it.
– What are some relevant questions?
– Which ones might be answerable with metrics?
– What assumptions or preconditions or challenges are

associated with those questions or metrics?

89Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Another exampleAnother example

• To EVALUATE the COSTS AND BENEFITS of CODE
INSPECTIONS in order to DETERMINE WHETHER TO
CONTINUE THIS PROCESS.

• To analyze this, we have to break it down. What question(s)
would we ask about each of these?
– Evaluate
– Costs
– Benefits
– Code inspections
– Determine
– Continue
– This process

90Copyright © Cem Kaner, 2000-2002. Quality Week 2002

GQM Done Poorly or WellGQM Done Poorly or Well

• The goal has to be one that can be achieved via
measurement.

• Evaluate the questions. If you could answer them, would
you achieve your goal? If not, what other information
would you need?

• Evaluate the metrics. If you collected them, would they
provide you all of the information you need to answer your
questions?

• GQM in practice is often a rationalization to collect the
same old metrics.

• Evaluate the metrics. Apply the 10-factor analysis (or
some other careful analysis of validity) to them.

91Copyright © Cem Kaner, 2000-2002. Quality Week 2002

MultiMulti--Dimensional MeasurementDimensional Measurement

•The idea of multi-dimensional measurement is to put together a
pattern of information that, collectively, gives a more accurate picture.

•COCOMO is a leading example of this approach. See
http://www.jsc.nasa.gov/bu2/COCOMO.html and
http://sunset.usc.edu/research/COCOMOII/Docs/stc.pdf

•Balanced scorecards are a general scheme of this type. (Kaplan &
Norton, The Balanced Scorecard: Translating Strategy into Action).
Rather than reporting a single not-very-representative measure, use:
– a small number (maybe 5 - 10) of different measures,
– all of them meaningful to you,
– none of them perfect,
– all of them substantially different from each other,
– selected in a way that distortion caused by attempting to optimize

on a single measure will be reflected as a negative in at least one
other measure.

92Copyright © Cem Kaner, 2000-2002. Quality Week 2002

For example: Treat “Extent” as For example: Treat “Extent” as
a Multidimensional Problema Multidimensional Problem

• We developed the 8 aspects (or dimensions) of “extent of
testing” by looking at the types of measures of extent of
testing that we were reporting.

• Consider using a combination measure that looks at the 8
dimensions
– product coverage plan / agreement
– effort results
– Obstacles risks
– quality of testing project history

93Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Project Report / Component MapProject Report / Component Map

Component Test
Type

Tester Total
Tests
Planned /
Created

Tests
Passed /
Failed /
Blocked

Time
Budget

Time
Spent

Projected
for Next
Build

Notes

Status report used by Elizabeth Hendrickson
Page 1 --- Issues that need management attention
Page 2 --- Component map
Page 3 --- Bug statistics

We see in this report:

- Progress against plan - Obstacles / Risks

- Effort - Results

94Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Bach’s DashboardBach’s Dashboard

☺MedMedLowView

1621/LowMedBlockedInsert

1345, 1410.LowHighHighFile/edit

Comment
s

QualityCoverage

Achieved
Coverage

Planned
EffortArea

Build

32
Updated

11/1/00
Testing Dashboard

We see coverage of areas, progress against plan, current effort, key results and
risks, and obstacles.

95Copyright © Cem Kaner, 2000-2002. Quality Week 2002

One approach: Balanced scorecardOne approach: Balanced scorecard

• For 101 examples of possible coverage measures,
that might be suitable for balancing, see “Software
Negligence and Testing Coverage” at
www.kaner.com. These are merged in a list with
over 100 additional indicators of extent of testing in
the paper, “Measurement Issues & Software
Testing”, which is included in the proceedings.

96Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Suggested LessonsSuggested Lessons

• Simple charts can carry a lot of useful information and lead
you to a lot of useful questions.

• Report multidimensional patterns, rather than single
measures or a few measures along the same line.

• Think carefully about the potential side effects of your
measures. Robert Austin criticizes the balanced scorecard
approach because it can, and often does, still lead to
abuse, especially if the measures don’t balance each other
out.

• Listen critically to reports (case studies) of success with
simple metrics. If you can’t see the data and don’t know how
the data were actually collected, you might well be looking at
results that were sanitized by working staff (as a side effect
of the imposition of the measurement process).

Key Points

Fact: agile testing is a hot new item.
Claim: agile testing has great potential!
Counter-claim: it's bunk, or even dangerous!

About the Panel Moderator

Ross Collard is president of Collard & Company, a consulting firm which is headquartered in Manhattan, New York City. His consulting
and training clients have included: ADP, Alcatel, American Express, Anheuser-Busch, Apple, AT&T, Banamex, Bank of America,
Bechtel, Blue Cross/Blue Shield, Boeing, British Airways, the CIA, Ciba Geigy, Cisco, Citibank, Computer Associates, Dayton Hudson,
Dell, EDS, Exxon, General Electric, Goldman Sachs, Federal Reserve, Ford, Hewlett-Packard, Hughes Aircraft, IBM, Intel, Johnson &
Johnson, JP Morgan, McGraw Hill, MCI, Merck, Microsoft, Motorola, NASA, Nortel, Novell, Procter & Gamble, Prudential, Sears
Roebuck, Swiss Bank, U.S. Air Force, Verizon and Worldcom.

He has conducted seminars on business and information technology topics for businesses, governments and universities, including
George Washington, Harvard and New York Universities, MIT, Stanford and U.C. Berkkeley.He has a BE in Electrical Engineering from
the University of New Zealand (where he grew up), an MS in Computer Science from the California Institute of Technology and an MBA
from Stanford University. His set of books on software testing is due to be published next year.

Bret Pettichord is an independent consultant with experience using a wide variety of test tools and approaches. He's developed
automated tests for software in various domains, including publishing, accounting, sales, systems management, education and benefits
administration. The tutorial builds on Lessons Learned in Software Testing: A Context- Driven Approach, the best-selling book he
coauthored with Cem Kaner and James Bach. Many of his writings are collected at www.pettichord.com.

Specializing in software testing and test automation, Bret has 14 years experience in software development, including positions as a
staff consultant at Segue Software and a test automation lead at BMC and then IBM/Tivoli before becoming an independent consultant.
Recent clients have included Texas Instruments, Rational Software, Texas Department of Human Services, Deliotte Consulting,
Whisperwire and Netpliance. He learned about software testing as a tax programmer at Arthur Andersen and a software tester and
automator at Interleaf.

QW2002 Panel Session 4Q

Mr. Ross Collard
(Collard & Company) & Mr. Bret Pettichord

(Pettichord Consulting)

The Value of Agile Testing

Position Statement on Agile Testing for Quality Week Debate

Testers Should Embrace Agile Programming
Bret Pettichord

Pettichord Consulting LLC
www.pettichord.com

Copyright © 2002 Bret Pettichord, all rights reserved

Agile software development is based on a hierarchy of values. Individuals and
interactions are valued over processes and tools. Working software is valued over
comprehensive documentation. Customer collaboration is valued over contract
negotiation. Responding to change is valued over following a plan [1]. Extreme
programming is the most popular agile development practice, but any practice that
adheres to these values can properly be called agile.

Agile software development is a rejection of the traditional ideas about software
development. These depend on a phased approach, often known as a waterfall: first
requirements, then analysis, then design, then coding and finally testing and deployment.
Each step results in a document or deliverable that is used to define the next. When
followed fastidiously, testers receive software with complete design and requirements
specifications. More often, testers get software with incomplete documentation. Even so,
they often find bugs resulting from errors in design or analysis. These bugs are found
relatively late in the process. They often result in unexpected delays.

Two recent revisions to the traditional approach deserve mention. One is the
spiral model, which runs through each of these phases multiple times in shorter time
frames or iterations. Another is the V-model, which has testers check the deliverables of
each phase so that problems can be fixed before moving on to the next. Both models find
ways to involve testers earlier in the process.

Agile methods take a more radical approach. They discourage the detailed
documentation of requirements and design, emphasize writing code as soon as possible,
and encourage frequent design changes. These ideas scare a lot of people, including my
friend and colleague Ross Collard. Many of these people have been warning of the
dangers of ill-defined requirements, poor planning and cowboy coding for years. Too
often the results have been buggy software, schedule delays and software systems that
didn’t perform as expected.

These critics have been frustrated by their lack of impact even when they were
getting little public resistance to their warnings. Now a vocal group of influential
developers are boldly encouraging these “dangerous” practices and giving programmers a
license to hack.

That’s how I understand their concern and the context behind it. I take a very
different view. In my 14 years of working in software development, I’ve noticed that
speed has often been of the essence. Building software fast was not only essential to

meeting market windows, but it was also necessary to maintain project momentum.
Without it, projects easily floundered with dueling designs and grandiose plans.

I’ve also seen projects buried under the weight of their documentation, too vast to
read and too troublesome to revise, quickly becoming out of date. Effective
communication requires concise documentation. A key insights of agile programming is
that it’s not the documentation that matters: it’s the communication. Documentation is no
good if it goes unread.

It’s important to distinguish between programmers who are careless and undisciplined
and programmers who are honestly trying to follow the new agile methods. They require
discipline, although a different kind of discipline than traditional development. For
example, agile programmers are expected to practice test-first design all the time. This
practice has programmers writing tests before writing code. Testers have been
encouraging this for at least a decade. Now the agile programmers are saying it too! Agile
programmers report that test-first design speeds coding and improves design (with less
coupling and more cohesion). Skeptics, accustomed to programmers who claim to do
more testing than they actually do, might wonder whether agile programmers actually
follow through. In fact, agile programmers have released a cornucopia of open-source
testing frameworks over the past few years. They are serious about testing, and are
creating the tools needed to do it well.

They are also interested in automated test suites to support refactoring.
Refactoring is the practice of changing the structure of code without changing its
behavior. Traditional development tries to understand how all the code will work together
in advance. This is the design. With agile methods, this difficult process of imagining
what code might look like before it is written is avoided. Instead, the code is restructured
as needed to maintain a coherent design. Agile methods replace high-level design with
frequent redesign (refactoring). Successful refactoring requires a way of checking
whether the behavior was inadvertently changed. That’s where the tests come in.[2]

Yet another reason is their preference for tests (code) to text (words) for
describing system behavior. Tests are more precise than human language and they are
also a lot more likely to be updated when the design changes. How many times have you
seen design documents that no longer accurately described the current workings of the
software? Out-of-date design documents look pretty much like up-to-date documents.
Out-of-date tests fail.

Many testers are unhappy with agile development not so much because they think
it is a bad practice but simply because it fails to give them the documentation they need
for testing. This is an age-old complaint. Some testers claim to be unable to test a system
without detailed and authoritative specifications describing how it should work. I take a
different view. I often find many sources of expectations and intentions regarding
software behavior. There may be gaps, conflicts and ambiguities, but they often provide
enough to test from, reporting any surprises. Bug reports may or may not report bona fide
defects. Nonetheless testers are most useful when they report discrepancies and let the
team sort out right from wrong. Testers need to ask questions, and they need to be open-
minded when their bug reports are rejected. Now we have a bunch of programmers who
are encouraging this kind of reaction. I’m all for it.

I believe that agile programming is a major step forward. You may disagree. But
regardless, agile programming is the wave of the future. The practices will develop and
some of the extreme edges may be worn off, but it’s only growing in influence and
attraction. Some testers may not like it, but those who don’t figure out how to live with it
are simply going to be left behind.

Some testers are still upset that they don’t have the authority to block the release
of buggy software. Do they think they now have the authority to block the adoption of
these new development methods? They’ll need to get on this ship and if they want to try
to keep it from the shoals. Stay on the dock if you wish. Bon Voyage!

1. Agile Manifesto. 2001. http://www.agilemanifesto.org/
2. Martin Fowler, Refactoring: Improving the Design of Existing Code (Addison-

Wesley: 2000). The book uses 17 sound bites to summarize the key ideas for
effective refactoring. Of them, 9 address issues relating to tests and testing.

Key Points

Entertaining view of over 150 types of software testing
How different types of testing fit in the software development process
New practitioners will learn to distinguish many methods and approaches

Presentation Abstract

How many different ways do you know to test software? This important workshop outlines over 150 different ways to test your software!
Fully illustrated - with plenty of lively examples! You will also learn how testing fits into different software development processes and
organizational structures. This workshop provides a powerful "TESTimonial" for testing in software development.

Topics Covered
Where testing fits in the development process
Where testing fits in the org chart
over 150 different ways to test your software!

About the Author

Robert Sabourin, P. Eng. has 20+ years management experience leading teams of software development professionals to consistently
deliver projects on-time, on-quality and on-budget. He is a well-respected member of the software engineering community who has
managed, trained, mentored and coached hundreds of top professionals in the field. He frequently writes and speaks to conferences
around the world on software engineering, SQA, testing, management and internationalization.

QW2002 Paper 6Q

Mr. Robert Sabourin
(AmiBug.Com, Inc.)

Testimonial - A Fully Illustrated Overview of Software Testing

1

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 1

AmiBug.Com, Inc.

Testimonial

Robert Sabourin
President

AmiBug.Com, Inc.
Montreal, Canada

rsabourin@amibug.com
www.amibug.com

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 2

AmiBug.Com, Inc.

Software Testing
Methods & Tools

Quick-Start
Testimonial

2

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 3

AmiBug.Com, Inc.

Testimonial

• Robert Sabourin ,
Software Evangelist

• President
• AmiBug.Com Inc.
• Montreal, Quebec,

Canada
• rsabourin@amibug.com

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 4

AmiBug.Com, Inc.

• Software Development & SQA Consulting
• Services

– Training, Coaching and Professional
Development

– Light Effective Process
– Team Building and Organization
– We help people to get things done!

AmiBug.Com, Inc.

3

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 5

AmiBug.Com, Inc.

I am a Bug

Robert & Catherine Sabourin

ISBN: 0-9685774-0-7

www.amazon.com

In the style of a children's book.
Explains elements of software
development process in a fun easy
to read format.

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 6

AmiBug.Com, Inc.

Testing in
Development Process

• Testing activities take place in all parts
of software development

• From requirement eliciting to final
shipment

• Testing is part of the development
process

• Testing is part of the company business
process

4

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 7

AmiBug.Com, Inc.

Types of testing and
definitions

• Validation and Verification
– Validate

• correctness or suitability
• vertical experts to confirm master results

– Verification
• confirm software operates as it is required to
• double check to ensure results match those

previously validated and if not then re-validate them

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 8

AmiBug.Com, Inc.

Maintenance

Testing

Development

Design

Analysis

Requirements

TransitionConstructionInception Elaboration

C
or

e
W

or
kf

lo
w

Phase
Rational Unified
Process (RUP)

Testing can take place as part
of each phase of development .

5

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 9

AmiBug.Com, Inc.

Maintenance

Testing

Development

Design

Analysis

Requirements

TransitionConstructionInception Elaboration
C

or
e

W
or

kf
lo

w

Phase
Rational Unified
Process (RUP)

Te
st

in
g

ca
n

ta
ke

 p
la

ce
 a

s p
ar

t o
f e

ac
h

co
re

w

or
kf

lo
w

 in
vo

lv
ed

 in
 d

ev
el

op
m

en
t

or
ga

ni
za

tio
n.

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 10

AmiBug.Com, Inc.

Black Box Testing White Box Testing Grey Box Testing Alpha Testing
Beta Testing Unit Testing Integration Testing System Testing

Acceptance Testing Clean Room Testing Platform/Configuration Testing Extreme Testing
Localization Testing Internationalization Testing Usability Testing Performance Testing

Load Testing Stress Testing Benchmark Testing Function Testing
Formal Inspections Integrity Testing Regression Testing Smoke Testing

Sanity Testing Compliance Testing Certif ication/Branding Testing Top Dow n Testing
Bottom Up Testing End to End Testing Back to Back Testing Automated Testing

Ad-hoc Testing Heuristic Testing User Testing President Testing
Bug Bashing Web Box Testing Protection Testing Improvisational Testing

Exploratory Testing Gorilla Testing Non-Intrusive Testing Intrusive Testing
Event Driven Testing In Context Testing Pilot Testing Sandw ich Testing
Data Driven Testing Monkey Testing Guerilla Testing Data Verif ication Testing
Soap Opera Testing Use Case Testing Forced-Error Tests Database Testing
Robustness Testing Readiness Testing Destructive Testing Positive Testing

Negative Testing Preventative Testing Class/Method Testing FAST Testing
RAT Testing TOFT Testing Boundary Testing DAT Testing

Real World User Testing Volume Testing Assertion Testing Compatibility Testing
Documentation Testing On-Line Help Testing Collateral Testing Install Testing

Uninstall Testing GUI Testing Y2K Testing Security Testing
Link Testing Conversion Testing DLL Testing Manual Testing

Milestone Testing Platform Specif ic Testing Penetration Testing Recoverability Testing
Dynamic Testing Static Testing Life Cycle Testing Requirement Phase Testing

Error-Handling Testing Manual-Support Testing Intersystem Testing Control Testing
Parallel Testing Structural Testing Statistical Testing Fault-Based Testing
Banana Testing Defect Density Testing Module Testing Basis Path Testing

Incemental Testing Non-Incremental Testing Big Bang Testing Facility Testing
Storage Testing Analytic Testing Risk Based Testing Exhaustive Testing
String Testing Live Testing Hardw are Testing Softw are Testing
Defect Testing Object Oriented Testing Environmental Testing Production Testing

Confirmation Testing Component Testing Bug Isolation Contract Testing
Distributed Behavioral Testing Railroading Shotgunning

Spot Check Testing e-Commerce Testing Bug Filtering Snag Indentif ication
Interoperability Testiing Brow ser Testing HTML Testing Server Testing

Reliability Testing Availability Testing Maintainability Testing Spagetti Tests
Cluster Fail Over Testing Bug Forensics

Testimonial

6

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 11

AmiBug.Com, Inc.

Black Box Testing
• Tester views the

program as a black box
• Test is not concerned

about the internal
behavior and structure
of the program

• Test is designed to
observe and confirm
outcome of program in
response to input and
system state

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 12

AmiBug.Com, Inc.

White Box Testing
• Tester reviews the

programs behavior,
internal structure and
data flow

• Test design is based on
examination of code

• Used by developers as
code is written

• Assumes code required
• Does not confirm

requirements are met

7

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 13

AmiBug.Com, Inc.

Grey Box Testing
• “Looking Under Hood”
• Internals knowledge is

used in test design
– Effectiveness leads

to productive new
ideas for tests.

– Efficiency allows
tester to eliminate
redundant tests.

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 14

AmiBug.Com, Inc.

Grey Box Testing
• Examples

– You might discover that session information is
stored on disk, which should make you think about
full disks, lack of permissions, what happens when
the session file is deleted, etc.

– suppose that two features maintain lists and sort
them. If you know that they both use the same
sorting library, you don't need to fully test sorting
in each feature. You only need to test that each
feature uses the sorting library correctly.

8

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 15

AmiBug.Com, Inc.

Unit Testing
• Testing of a unit of

software as soon as this
is available

• Unit is exercised against
its detailed design

• Ensuring that developed
logic is tested

• Often uses white box
methods

• Done by developers at
completion of task

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 16

AmiBug.Com, Inc.

Module Testing

• Myers “The Art of
Software Testing” defines
Module Testing as:
– A process of testing

individual subprograms,
subroutines and procedures
in a program

– Test a program in small
blocks as they are built

– Type of Unit Testing

9

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 17

AmiBug.Com, Inc.

Component Testing

• Organize testing around
components or subsystem
– confirm operation of each

component, as they become
available, independently of other
components

– test interoperability of different
system components

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 18

AmiBug.Com, Inc.

Component Testing

• Organize testing around components or
subsystem
– stubs for missing components
– test harness in lieu of working application

10

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 19

AmiBug.Com, Inc.

Integration Testing
• Testing of combination

of two or more units of
software

• May involve black or
white box methods

• Testing done as soon as
integration takes place

• Testing typically done by
independent testers
working closely with
developers

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 20

AmiBug.Com, Inc.

System Testing
• Confirm that the total

software system
satisfies all of its
requirements

• Often mainly black-box
methods

• Done when all code and
integration is complete

• Simulates target
operational environment

11

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 21

AmiBug.Com, Inc.

Acceptance Testing
• Testing done by the

customer to confirm that
the software meets their
requirements

• Generally very well
defined in a contract

• Generally software must
pass this acceptance
testing before final
payment is made!

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 22

AmiBug.Com, Inc.

Alpha Testing
• Testing is performed

“in-house”
• After an intermediate

project milestone
• A build of the program is

delivered to Integration
or System Testers

• First testing done by
someone other that the
software developers

12

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 23

AmiBug.Com, Inc.

Beta Testing
• Testing is performed by

target customers or end
users

• All, or a usable subset,
of the functionality has
been implemented

• Can be done after or in
parallel with system
testing

• Danger - Sometimes
used for a sales demo

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 24

AmiBug.Com, Inc.

Live Testing

• System being tested is
operational
– used by the customer
– it has been paid for!

• Testing does not to interfere
with the system

• Measure
– performance
– resources

13

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 25

AmiBug.Com, Inc.

Usability Testing
• Testing done to help

design effective user
interfaces

• Part of software design
process

• Generally done by
human factors and
ergonomic experts

• Checklist approaches
used in system testing

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 26

AmiBug.Com, Inc.

Platform /
Configuration

Testing
• Ensure functionality

operates as required on
different hardware and
software configurations

• Different versions of
operating systems

• Different locales
• Different versions of

www browsers, plug-ins
• Different versions of any

co-dependent software

14

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 27

AmiBug.Com, Inc.

Platform Specific
Testing

• Testing included in the test
plan related to the specific
application target platform!
– For example tests needed due

to using Oracle database to
ensure operational functions
are compatible with the
application, these would be
different if SQL server or
INTERBASE were being
used to implement the DBMS

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 28

AmiBug.Com, Inc.

Browser Testing

• Common term in Web Application
Development for GUI (Graphical User
Interface) testing
– Test objects which operate within the

browser
– What happens when transactions are

interrupted by browser functionality
• backward, forward, refresh, go to URL

15

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 29

AmiBug.Com, Inc.

Performance Testing
• Measure applications

performance, verify
• Response time from

input event to outcome
• Throughput or volume

(transactions/time)
• Operational

characteristics
• Often automated!

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 30

AmiBug.Com, Inc.

Function Testing
• Verify that application

under test functions as
intended

16

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 31

AmiBug.Com, Inc.

User Testing

• for each category of user exercise
the system with real - or very close
to real data using real usage
scenarios

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 32

AmiBug.Com, Inc.

Facility Testing

• Often forgotten but very relevant
type of testing (especially in
Internet Era!)
– Confirm that each Facility (or

function or feature) of the product
has been implemented

– Can be done manually
– Cross check against objectives of

project and requirements (did we
skip one?)

17

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 33

AmiBug.Com, Inc.

Facility Testing

• New versus base system
– If you find a bug in the web system

we check to see if it existed in the
original system!

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 34

AmiBug.Com, Inc.

Integrity Testing

• compliance to standards (software,
API, operational)

• data integrity

18

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 35

AmiBug.Com, Inc.

Stress Testing
• Testing operational

characteristics of
application within a
harshly constrained
environment
– Limit processor

speed
– Limit memory
– Limit disk space
– Diminish access to

shared resources

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 36

AmiBug.Com, Inc.

Load Testing
• Vary work loads of the

system and study
operational
characteristics

• How much traffic can the
server handle?

• How is performance
affected by varying
load?

• What about reliability
and availability?

19

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 37

AmiBug.Com, Inc.

Volume Testing
• Type of load testing in

which large amounts of
data are processed through
the system

• Study behavior of system
under test when
experiencing extreme
processing demands

• Generally automated!

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 38

AmiBug.Com, Inc.

Extreme Testing
• Testing done as part of

an extreme software
development process

• Testing is against story
board scenarios

• Tightly coupled with
development (one
iteration at a time)

• Interact with customer of
project for acceptance
testing

20

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 39

AmiBug.Com, Inc.

Localization Testing
• Testing to ensure

localization did not
immediate normal
operation of the
application

• Confirm translations,
linguistic locale
differences

• Currency, sorting
• Cultural concerns

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 40

AmiBug.Com, Inc.

In Context Testing
• Part of localization

testing
• Testing of translation in

real application context
• Make sure localization is

correct taken in real
context

• Example would be
incorrect translation of a
word depending on use
as verb or noun

21

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 41

AmiBug.Com, Inc.

Internationalization
Testing

• An internationalized
program is able to be
localized to operate with
many different
languages and data
representations
including those using
multi-byte character sets

• Does internationalized
software still behave as
it did originally?

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 42

AmiBug.Com, Inc.

Regression Testing

• previously executed tests are re-executed
against a new version of the application
– have code changes broken something that used

to work
– have we introduced new defects
– typically first part of a testing iteration
– often automated

22

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 43

AmiBug.Com, Inc.

Smoke Testing
• a smoke test is run on a

new build of software to
make sure all functions
operate well enough to
continue testing

• usually run on a build
before it is given to
testers for integration or
system testing

• “turn on a new
appliance at the store”

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 44

AmiBug.Com, Inc.

RAT Testing
• Release Acceptance Tests

– Smoke Tests or Build
Acceptance Tests

– Sample of important
functions tested with
rational data on a sane
typical configuration

– Used to determine if build
from development is stable
enough to start testing

– Developers run the test
before release

23

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 45

AmiBug.Com, Inc.

Sanity Testing
• a final test before a release

can be shipped
• all normal operations and

scenarios are run once with
normal valid data
– install on typical platform
– run basic data
– is the release sane!
– are all components

there? do they work?

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 46

AmiBug.Com, Inc.

FAST Testing
• Functional Acceptance Simple

Tests
– Wide in breadth, low in

depth
– Exercise every low level

function of the application
at least once, no
combinations with other
functions

– Do all controls exist, are
default states correct, tab
order, shortcuts, accelerator
keys, links, images

24

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 47

AmiBug.Com, Inc.

FAST Testing

• Functional Acceptance Simple Tests
– Do low level functions work well enough on a

normal configuration to allow for task oriented
functional testing?

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 48

AmiBug.Com, Inc.

TOFT Testing
• Task Oriented Functional

Testing
– Can the application do

useful tasks correctly?
– Structured around product

features
– Detailed testing against

specification and reasonable
user expectations

• at least one test case per
feature or function!

25

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 49

AmiBug.Com, Inc.

Readiness Testing

• Readiness testing is
similar to smoke
testing
– Is the build ready to be

processed or used at
the next process step?

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 50

AmiBug.Com, Inc.

Compliance Testing

• do we conform to an
industry, national or
international
standard?

• do we use a
standard API?
(Posix compliant,
Win32, MFC)

26

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 51

AmiBug.Com, Inc.

End to End Testing

• the entire hardware/software
chain involved in the
execution of the function is
available

• all components, elements,
processes are used and a
transaction goes through the
entire system

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 52

AmiBug.Com, Inc.

Back to Back Testing

• running the same test
on similar
implementations or
versions and
comparing the results.

27

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 53

AmiBug.Com, Inc.

Benchmark Testing
• Compare performance

of system to a reference
target

• Various indices such as
Norton SI

• Compare against
reference source for
example comparing HP
printers with HP
compatible printers

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 54

AmiBug.Com, Inc.

Certification/Branding
Testing

• third party testing
done to confirm that
the application
conforms to criteria
for certification or
branding program
– Microsoft Windows

certification

28

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 55

AmiBug.Com, Inc.

Top Down Testing

• White box method
starting with main
program and
working down
through the
software.

• Stubs must be
created for units not
yet completed.

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 56

AmiBug.Com, Inc.

Bottom Up Testing

• White box method
starting with lower
level units.

• Driver units must be
created for units not
yet completed, each
time a new higher
level unit is added to
those already
tested.

29

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 57

AmiBug.Com, Inc.

Sandwich Testing

• Combining Bottom
Up and Top Down
approaches.

• Blend of stubs and
drivers depending
on part of software
being exercised.

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 58

AmiBug.Com, Inc.

Manual Testing

• A test or series of test
cases which are
executed manually

• These tests involve an
operator following a
pre-established test
procedure and using
predetermined test data
– Tedious
– Necessary

30

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 59

AmiBug.Com, Inc.

Automated Testing
• a test or series of test cases

which can be executed
automatically

• useful to repeat tests
especially complex
sequences of instructions

• useful for API testing
• regression with periodic

builds

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 60

AmiBug.Com, Inc.

Protection Testing
• Testing to find, or rule out, the

presence of faults which could
result in corruption, denial of
services, unauthorized access or
other related side effects.
– Information protection
– Protection against attackers
– Search for back doors
– Break in

31

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 61

AmiBug.Com, Inc.

Improvisational
Testing

• Type of exploratory
testing

• Similar to improv
music
– jazz

• No notes but themes
which can be
combined to form
great music

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 62

AmiBug.Com, Inc.

Clean Room Testing
• Testing done as part of

a clean room software
engineering process

• High reliability
• Statistical analysis to

determine test cases by
sampling set of possible
input data and
conditions

• Analytic technique

32

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 63

AmiBug.Com, Inc.

Analytic Testing

• Test planning based on a detailed
analysis of all application functions
and operations

• Test cases derived from a detailed
analysis of the technical
specification

• Can include white box approaches
• Your testing is based on analysis!

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 64

AmiBug.Com, Inc.

Exploratory Testing

• Structured way to test
• Concurrent

– testing
– test design
– test planning

33

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 65

AmiBug.Com, Inc.

Exploratory Testing

• “In operational terms, exploratory testing is
an interactive process of concurrent
product exploration, test design and test
execution.”

- James Bach

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 66

AmiBug.Com, Inc.

Ad-hoc Testing

• trying rational test
cases in a random but
not unreasonable
manner!

34

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 67

AmiBug.Com, Inc.

Heuristic Testing
• testing using heuristic

reasoning and taking
advantage of the technical
insight, critical thinking and
experience of the tester

• heuristic is defined as:
– of or relating to

exploratory problem
solving techniques that
use self-education

– adapt to what we learn!

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 68

AmiBug.Com, Inc.

Event Driven Testing
• A type of automated

testing
• Test script execution is

triggered by an external
event or interrupt

• Run test A when event B
occurs
– Web Site Monitors
– Run consistency check

if DBMS is 80% full

35

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 69

AmiBug.Com, Inc.

Data Driven Testing
• Test script or procedure in

which test data is separated
from test operations or actions
– parameterized data
– one set of data per test case
– run the same test script with

different data!
– data is deliberate, not

arbitrary
– testing is repeatable
– test can be automated

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 70

AmiBug.Com, Inc.

Capture Playback
Testing

• Tool is used to record all
input events of a simulated
user

• Test case is automated by
replaying all input events

• Difficult to maintain!
• Can be used as a first step

in designing a data driven
test automation script!

36

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 71

AmiBug.Com, Inc.

Data Verification
Testing

• Testing data storage and
integrity in applications which
store and manipulate data.
– is data valid or legal and

accurate
– is data of the correct type
– is data from the correct

record
– self verifying data concepts

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 72

AmiBug.Com, Inc.

Forced-Error Tests
• FETS
• Intentionally drive software into

each possible error condition
– Is error detected?
– Is error handled?
– Does system recover

gracefully?
– Is error condition

communicated?
– Any other problems

encountered?

37

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 73

AmiBug.Com, Inc.

Database Testing

• Identify database
related errors

• Errors in:
– database servers
– data warehouses
– data marts
– find bugs in SQL

statements

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 74

AmiBug.Com, Inc.

Positive Testing

• Does the application
perform what it is
expected to do given
known input and
operating state?
– The test result should

be “A”

38

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 75

AmiBug.Com, Inc.

Negative Testing

• Does the application
not perform what it is
not expected to do
given known input and
operating state?
– The test result should

not be “A”
– we are testing to ensure

it is not “A” we do not
care if it is “B” or “C”!

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 76

AmiBug.Com, Inc.

Preventative Testing
• Testing used to avoid

introducing defects in
software

• We use preventative
testing before we code!
– Formal Inspections
– Design Reviews
– Walkthroughs
– Peer Code Reviews

39

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 77

AmiBug.Com, Inc.

Formal Inspections
• Structured method to

efficiently identify
defects in any
deliverable or artifact of
the software
development process

• Artifact is review by a
team and defects
identified are logged

• Tom Gilb - champions
technique

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 78

AmiBug.Com, Inc.

Object Oriented
Testing

• Testing Object Orient Software at
the object level

• Independent testing of each object
• For each object

• methods testing
• class testing

• Combinations of objects
interoperating

40

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 79

AmiBug.Com, Inc.

Class/Method Testing

• OOP component
testing
– Testing classes of an

object
– Testing methods of a

class
– Independent of other

objects in the system
– White box method

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 80

AmiBug.Com, Inc.

Boundary Testing
• Test with extreme input values

– Lower and upper
boundaries

– Any edge conditions
– Above and below extreme

values
• Test to generate extreme output

values
– May or may not require

extreme input values
– Zero divide, overflow

• Record Sizes

41

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 81

AmiBug.Com, Inc.

DAT Testing
• Deployment Acceptance

Testing
– Typical testing of web

application on fully
installed target hardware
and software or on a staging
site which is equivalent to
the actual target or
customer site.

– Functional test suite is run
to ensure operation is OK
before we go live

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 82

AmiBug.Com, Inc.

Compatibility Testing

• Similar to platform of
configuration testing
– check that an application

functions correctly on various
hardware and software
environments

– software
• OS, Browser, DBMS,

Network Software,
Concurrent apps

– hardware
• CPU, Disk, Video Cards,

Memory, Printers

42

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 83

AmiBug.Com, Inc.

Documentation Testing

• Test software against
user and reference
documentation
– factual and accurate
– screen images are

correct
– examples work
– marketing collateral is

correct

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 84

AmiBug.Com, Inc.

On-Line Help Testing

• Test functionality of
Help System
– is help factual and

accurate
– are we launching to

correct page
– does indexing work
– are links correct
– are tool tips correct
– are images correct

43

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 85

AmiBug.Com, Inc.

GUI Testing
• Graphical User Interface Testing

– How does GUI operate against
specification

• Navigation
– Menus, Dialogues,

Forms, Tables
• Images
• Conformance to Style

guide - Look and Feel
• Consistent to environment
• Usability checking!

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 86

AmiBug.Com, Inc.

Security Testing
• Similar to protection

testing
• Concern about the

unauthorized access to all
or part of the system, are
security policies and
requirements implemented

• Protect against internal
and external threats
– Servers, Databases,

Clients

44

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 87

AmiBug.Com, Inc.

Penetration Testing

• Evaluate effectiveness of
network defenses
– External expertise
– Conducted before system is

live
– Continue on live system
– Work from outside perimeter
– Simulate work of hackers

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 88

AmiBug.Com, Inc.

Link Testing

• Test all links between
all pages of a web site
– Point to the correct

page?
– Is page accessible?
– Are references relative

or absolute?

• Several automated link
testing tools

45

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 89

AmiBug.Com, Inc.

Conversion Testing

• Data conversion occurs when
you upgrade from one
version of an application to a
subsequent version
– Is all user data correctly

converted to the new format?
– Did we loose or any records?

Any fields?
– Are new fields initialized to

correct values?

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 90

AmiBug.Com, Inc.

DLL Testing
• Dynamic Link Library Testing

– Windows applications often
use system DLLs.

– Other applications can
install different versions of
DLLs for which the test
application may be
incompatible

– Microsoft Dependency
Walker (free!)

• provide a list of DLLs

46

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 91

AmiBug.Com, Inc.

DLL Testing

• Dynamic Link Library Testing
– Are third party DLLs the correct versions?
– Are OS DLLs the correct versions?
– What happens if a third party system overwrites

a required DLL?

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 92

AmiBug.Com, Inc.

Dynamic Testing

• Testing running software
– System is operating during

testing
• Code is compiled, linked,

build, installed
• Binary image of code is

executing - running!
– Measure operational

performance
• Functionality
• Impact on environment

47

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 93

AmiBug.Com, Inc.

Static Testing

• Testing source code of
software
– Reviews
– Walkthroughs
– Inspections
– Static analysis (automatic or

manual)
– Study code and development

artifacts in order to gauge
correctness and identify defects

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 94

AmiBug.Com, Inc.

Error-Handling Testing

• Determine the ability of the
software being tested to process
incorrect transactions
– Are error conditions

recognized by the system?
– How does program respond to

unexpected conditions?
– What about errors

subsequently corrected by end
users?

48

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 95

AmiBug.Com, Inc.

Intersystem Testing

• Test to confirm two systems
or applications communicate
together correctly
– What is one is down?
– Proper parameters passed?
– Timing and synchronization
– Error handling

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 96

AmiBug.Com, Inc.

Control Testing
• Part of system testing to ensure

that controls on application are
correct:
– accurate and complete data
– authorized transactions
– audit trail
– integrity of processing

• Accounting systems as an
example!
– authentication, electronic

authorization

49

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 97

AmiBug.Com, Inc.

Big Bang Testing

• Synonymous to Non-
incremental Testing
– Do not do Integration Testing

until the entire system has
been build

– Attack all at once
• Risky
• No leverage!

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 98

AmiBug.Com, Inc.

Production Testing

• Testing as part of the
production process
– Was an item manufactured

correctly
– Often called quality control

• Confirming that a
production copy of any
shrink-wrap software being
sold is an exact image of
the gold master!

50

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 99

AmiBug.Com, Inc.

Bug Isolation

• Critical testing activity
– Determines minimal/ consistent

way to reproduce a bug
– Facilitates debugging
– Provides valuable input to

developers

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 100

AmiBug.Com, Inc.

Bug Isolation

• Eliminate ambiguity
– Isolate sub-system
– Hardware problem
– Software problem
– Internal factors
– External factors
– Is it really a bug?

51

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 101

AmiBug.Com, Inc.

Confirmation Testing

• Typically:
– Tester finds the bug
– Product/Development leads

prioritize the bug
– Developer fixes the bug
– Tester confirms that the fixed

bug is really fixed in the
appropriate software build

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 102

AmiBug.Com, Inc.

Confirmation Testing

• For each build
– testers confirm that all bugs which were

supposed to have been fixed, as indicated by
developers, are actually fixed

– after the build has passed a smoke test
– before in depth regression testing

52

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 103

AmiBug.Com, Inc.

Behavioral Testing

• Testing based on what a system
is supposed to do

• Tests based on how a system
functions

• Tests based on how a system is
supposed to be used

• Black box testing

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 104

AmiBug.Com, Inc.

Interoperability
Testing

• Ensure that software under test
interacts properly with target
platforms
– operating system
– equipment
– applications

• Same as platform or configuration
testing

53

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 105

AmiBug.Com, Inc.

Web Box Testing

• Commercial play on
the word
– White Box Testing

• Testing using web
based automated
workflow
management

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 106

AmiBug.Com, Inc.

HTML Testing

• Common term in Web
Application Development for
static analysis of Web page
HTML source
– Is HTML constructed properly?
– Are any tags missing?
– Are links correct?
– Is Syntax OK? Is it standard

compliant?

54

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 107

AmiBug.Com, Inc.

Server Testing

• Common term in Web
Application Development for
testing software objects which
run on the server
– CGI components
– Business tier
– Data tier
– Active Server Pages

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 108

AmiBug.Com, Inc.

Presidents Testing
• believe it or not, in many

companies the boss or some
senior executive takes pride
in running software on their
desk just before ship date to
see if they can break it!

• Some SQA teams clone the
Presidents PC and know his
favorite commands and
operations - this is run as a
special test!

55

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 109

AmiBug.Com, Inc.

Bug Bashing

• Testing done in a blitz
• A lot of testing in a

very short period of
time

• Sometimes used to test
web sites before going
live “everyone on
team bashes the
system”

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 110

AmiBug.Com, Inc.

Gorilla Testing

• Unstructured way to
test

• Try everything you
can to crash or break
the application

56

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 111

AmiBug.Com, Inc.

Monkey Testing
• “… six monkeys pounding

on six typewriters at
random for a million
years will recreate all the
works of Isaac Asimov…”
Noel Nyman, Microsoft
– random data entry
– automated or manual
– dumb monkeys,

monkeys with savvy

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 112

AmiBug.Com, Inc.

Guerrilla Testing

• Wage a Guerrilla
attack on the software
being tested, observe
behavior
– Do evil things
– Damage things
– Intentionally corrupt

data

57

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 113

AmiBug.Com, Inc.

Non-Intrusive Testing

• System testing
• Black Box
• Does not interfere

with system under test
• Leaves system in same

state after test

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 114

AmiBug.Com, Inc.

Intrusive Testing

• System testing
• Interferes with system

under test to allow for
probing for test data

• Interferes with system
under test to simulate
fault

• Leaves system in
different state after test

58

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 115

AmiBug.Com, Inc.

Pilot Testing
• Similar to Beta testing
• Usually a first project

between two companies
(Pilot project)

• If Pilot Testing passes
then larger scale
deployment will take
place, otherwise the
business deal will be
reworked!

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 116

AmiBug.Com, Inc.

Live Testing

• System being tested is
operational
– used by the customer
– it has been paid for!

• Testing does not to interfere
with the system

• Measure
– performance
– resources

59

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 117

AmiBug.Com, Inc.

Hardware Testing

• Complete solution is developed
– confirm hardware delivered meets

requirement
– confirm hardware is compatible

with software

• In embedded systems
– test hardware under development
– synchronize development of

hardware/electronics with
embedded firmware

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 118

AmiBug.Com, Inc.

Software Testing

• In systems development
– Testing software deliverables of a

system

• In Software Quality Assurance
– Work associated with verifying that

software conforms to requirements
– Checking to see if software actual does

what someone expects it to do!

60

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 119

AmiBug.Com, Inc.

Defect Testing

• Testing with the express
purpose of identifying
defects in the software
systems
– As opposed to testing to

confirm that a requirement is
met!

– Defects are the root cause of
bugs!

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 120

AmiBug.Com, Inc.

Environmental Testing

• Testing to ensure system operates
in the target environment
– vary environmental characteristics

• humidity
• pressure
• temperature (oven)
• wind
• shock and vibration

61

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 121

AmiBug.Com, Inc.

Contract Testing

• Use of third party contract
testing organization
– Must have reasonable

specification for subsystem
being tested

– Excellent for heavy metal stress
testing

– Excellent for highly specialized
expertise

– Communication issues

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 122

AmiBug.Com, Inc.

Distributed Testing

• Testing staff is split into
physically distributed teams

• Center of excellence
• Localization in-context testing
• Merger between different

companies
• Pure Black Box
• Outsourcing
• Overnight across world

parallelism

62

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 123

AmiBug.Com, Inc.

Railroading

• Testing continues in the original
defined sequence of a test suite
when a new build arrives

• Testing a new build starts exactly
where testing the previous build
left off

• Goal is to achieve acceptable
levels of test coverage

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 124

AmiBug.Com, Inc.

Shotgunning

• Distribute test suites
randomly across test cycles

• Distribute test configurations
randomly across test cycles

• Goal is to achieve acceptable
level of coverage

63

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 125

AmiBug.Com, Inc.

Spot Check Testing

• Spot Checking
– Test a random sample of functions of

an application
– Sometimes used as a sanity test

where random functions as selected
and tested with sane data.

– Sample randomly from a population
to make a probabilistic statements
about the population.

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 126

AmiBug.Com, Inc.

e-Commerce Testing

• Buzz word of the decade!
– Software Testing activities associate with the

development of a web based e-Commerce
system.

– Popular title used for end to end transaction
testing of an e-Commerce system.

64

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 127

AmiBug.Com, Inc.

Bug Filtering Testing

• Testing with a prior knowledge of
which Prioritization decision will
have been made about several
broad classes of bugs
– For example spelling mistakes or

typos which do not impact meaning,
and are not any user selectable
dialogue window or control will be
assigned a low priority.

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 128

AmiBug.Com, Inc.

Snag Identification

• A “snag” is a type of “bug”
typically captured by a companies
“IT” or “MIS” department

• CAE of Montreal, identify snags in
IT systems, logged, prioritized and
corrected them

• Results of testing an IT system are
“snags”

65

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 129

AmiBug.Com, Inc.

Reliability Testing

• Testing to determine the
reliability of software
– Statistical samples
– Accelerated life testing
– Project MTBF

• Mean Time Between Failures

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 130

AmiBug.Com, Inc.

Availability Testing

• Testing to determine the
availability of software
– Can users connect?
– Does application respond to input?
– How many failed attempts to load a

page occur as the system is loaded?
– Can the system run 24/7?

66

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 131

AmiBug.Com, Inc.

Maintainability Testing

• Testing to determine whether the
software can be maintained after
commercial deployment
– Can field installations be upgraded?
– What it the associated PITA factor?
– Can code be modified by developers

not familiar with code base?
– Inspections/Reviews may be needed

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 132

AmiBug.Com, Inc.

Spaghetti Tests

• Term describing a disorganized
collection of automated test
scripts.
– Similar to Spaghetti Code
– Tests are hard to maintain
– Get more complex when modified
– Hard to understand
– Lack design

67

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 133

AmiBug.Com, Inc.

Cluster Fail Over
Testing

• Multiple server systems
– Ensure that if, for any reason, one node

of a system fails that work is distributed
to other nodes

– Common in horizontally scalable Web
or e-Commerce applications

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 134

AmiBug.Com, Inc.

Bug Forensics

• When a computer system
abnormally stops or
unexpectedly fails, Bug
Forensics are the actions taken
to identify the exact time, place
and cause of system death

• Quincy TV metaphor

68

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 135

AmiBug.Com, Inc.

Banana Testing

• Fruit product
distribution analogy.

• Software ripens at the
customer site!

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 136

AmiBug.Com, Inc.

Basis Path Testing

• Method introduced by
McCabe
– Create a flow graph
– Identify all unique executable

paths through the code being
tested (called the Basis Set)

– Derive one test case for each
path in the Basis Set

– White Box method

69

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 137

AmiBug.Com, Inc.

Incremental Testing

• Test modules as they are
integrated into a system
– Form of Integration Testing

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 138

AmiBug.Com, Inc.

Non-incremental
Testing

• Test modules individually
and then when they are all
integrated together
– Unit Testing is done on each

Module
– System Testing is done

combining all Modules
– No Integration Testing is

done

70

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 139

AmiBug.Com, Inc.

Storage Testing

• Disk and memory resource
consumption

• Operation with insufficient
resources

• What if available memory
diminishes due to consumption
by other processes?

• Memory leaks
• Garbage collection?

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 140

AmiBug.Com, Inc.

Risk Based Testing

• Testing based on Risk Analysis
– Spread resources across various

testing objectives based on a
function of commercial (business or
market) and technical risk

– More effort will be spent on areas of
higher risk

– Order of testing is based on risk
• test higher risk areas first

71

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 141

AmiBug.Com, Inc.

Exhaustive Testing

• Test every possible input set
– For any function identify,

enumerate and list every possible
input data set.

– Try every single case!

• Test every possible outcome
– For every possible outcome test

every possible input data set which
is expected to generate it!

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 142

AmiBug.Com, Inc.

Exhaustive Testing

• Automated testing for large sets
• Examples

– Keyboard testing
• what does every keystroke, shift state generate

– for all keyboards
– for all languages

• can each character be generated
• Tango over 500,000 test cases

72

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 143

AmiBug.Com, Inc.

String Testing

• Focus testing on problems in
typical user scenarios
– Test a “string” of operations
– Example

• create, print and save a document

– Reference
• “Managing the Testing Process” Rex

Black

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 144

AmiBug.Com, Inc.

Penetration Testing

• Evaluate effectiveness of
network defenses
– External expertise
– Conducted before system is

live
– Continue on live system
– Work from outside perimeter
– Simulate work of hackers

73

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 145

AmiBug.Com, Inc.

Recoverability Testing

• If the system fails can it
recover?
– Does user loose data

from active session at
time of failure?

– Does server restart?
• JSERVE, HTTP,

DBMS
– Which type of failures

do not recover?
Should they?

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 146

AmiBug.Com, Inc.

Life Cycle Testing

• Continuous testing of the
system or software through
the entire development
process
– at predetermined milestones

results of development
process are inspected

– identify defects early
– required well defined

process

74

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 147

AmiBug.Com, Inc.

Requirement Phase
Testing

• Early in development process,
confirm requirements are
correctly collected and are
accurately articulated in a
manner consistent with the
customers needs

• Confirm requirements conform
to internal standards

• Confirm requirements are
testable

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 148

AmiBug.Com, Inc.

Error-Handling Testing

• Determine the ability of the
software being tested to process
incorrect transactions
– Are error conditions

recognized by the system?
– How does program respond to

unexpected conditions?
– What about errors

subsequently corrected by end
users?

75

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 149

AmiBug.Com, Inc.

Manual-Support
Testing

• Manual operations complement
automated operations in a system
– Are all manual procedures

documented correctly? For the
right person?

– Can manual procedures work
when software is in an unexpected
state?

– How does software react to
manual procedures run at the
wrong time?

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 150

AmiBug.Com, Inc.

Parallel Testing
• Similar to “Back to Back” Testing

– Two versions of application process
same data or respond to same input

– Example - Printer compatibility
testing

• Confirm same results based on
same input

– Can apply to all or part of an
application

• Compatible PCL but not
Imaging

76

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 151

AmiBug.Com, Inc.

Structural Testing

• White Box technique
• Structure of code used to

determine test data and
testing techniques
– Complexity
– Data Flow
– Execution, Program Flow

• statement, branch,
conditional, expression, path

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 152

AmiBug.Com, Inc.

Statistical Testing

• Determine operational
reliability of a system
– How do faults effect the

failure rate?
– Statistical models are used

to generate test data
– Estimate failure rates

77

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 153

AmiBug.Com, Inc.

Fault-Based Testing

• Demonstrate that certain
types of faults are not in
the program.

• Demonstrate that certain
types of tests find faults
which are injected into a
system.

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 154

AmiBug.Com, Inc.

Defect Density
Testing

• Testing use to estimate the number of
defects remaining in software!
– Density is number of defects per unit

of code
– Defect seeding methods can be used

• seed 100 (intentionally insert
bugs!)

• if you find 10 seeded and 20 non-
seeded then you can estimate the
number of remaining defects to be
about 200

78

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 155

AmiBug.Com, Inc.

Data Verification
Testing

• Testing data storage and
integrity in applications which
store and manipulate data.
– is data valid or legal and

accurate
– is data of the correct type
– is data from the correct

record
– self verifying data concepts

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 156

AmiBug.Com, Inc.

Soap Opera Testing
• Used when testing applications

which calculate pension or
insurance benefits, or income tax
– fictitious events regarding

relationships and
circumstances of individuals

• marriage, remarriage,
birth, death, divorce, sex
change, hire, fire, quit,
rehire, leaves

– sequencing contrived but
possible

79

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 157

AmiBug.Com, Inc.

Use Case Testing

• Test procedure is
modeled after the Use
Cases which were
used to specify and
design the system

• Part of Rational
Unified Process (RUP)

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 158

AmiBug.Com, Inc.

Database Testing

• Identify database
related errors

• Errors in:
– database servers
– data warehouses
– data marts
– find bugs in SQL

statements

80

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 159

AmiBug.Com, Inc.

Robustness Testing

• Robustness testing
attempts to measure
the degree to which a
system or component
can function correctly
in the presence of
invalid inputs or
stressful
environmental
conditions.

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 160

AmiBug.Com, Inc.

Destructive Testing
• Destructive testing involves

stressing the application or it’s
environment until the
application fails and then
performing a root-cause
analysis
– measure and improve

reliability
– “ … failure after 12,000

operations with 1000 users
active …”

81

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 161

AmiBug.Com, Inc.

Boundary Testing
• Test with extreme input values

– Lower and upper
boundaries

– Any edge conditions
– Above and below extreme

values
• Test to generate extreme output

values
– May or may not require

extreme input values
– Zero divide, overflow

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 162

AmiBug.Com, Inc.

DAT Testing
• Deployment Acceptance

Testing
– Typical testing of web

application on fully
installed target hardware
and software or on a staging
site which is equivalent to
the actual target or
customer site.

– Functional test suite is run
to ensure operation is OK
before we go live

82

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 163

AmiBug.Com, Inc.

Real World User
Testing

• End user centric testing
– Simulate how real customers use the software
– This is not the same as a usage scenario

• Test is based on your knowledge of the typical sequences of
operations by end user

• Study logs or customer support info if available
• Uncovers some of the most useful bugs!

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 164

AmiBug.Com, Inc.

Assertion Testing
• “Asserts”

– Added as in-line code
– Ensure that software is

operating in the correct
state with correct values of
certain variables, tables,
parameters or other data

– Assertions often
implemented as MACROS

– Generally disabled in
commercial builds

83

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 165

AmiBug.Com, Inc.

Assertion Testing

• Cautionary Warning About Assertions
– excellent practice for developers to ensure code

works
– can cause false failures if not implemented

carefully (don’t care condition handling)
– ensure all developers use “Asserts”

consistently!

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 166

AmiBug.Com, Inc.

Compatibility Testing

• Similar to platform of
configuration testing
– check that an application

functions correctly on various
hardware and software
environments

– software
• OS, Browser, DBMS,

Network Software,
Concurrent apps

– hardware
• CPU, Disk, Video Cards,

Memory, Printers

84

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 167

AmiBug.Com, Inc.

Documentation Testing

• Test software against
user and reference
documentation
– factual and accurate
– screen images are

correct
– examples work
– marketing collateral is

correct

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 168

AmiBug.Com, Inc.

On-Line Help Testing

• Test functionality of
Help System
– is help factual and

accurate
– are we launching to

correct page
– does indexing work
– are links correct
– are tool tips correct
– are images correct

85

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 169

AmiBug.Com, Inc.

Collateral Testing
• Any software collateral

shipped to the end user -
or available via www
should be tested to ensure
it operates with software
– Examples, Tutorials
– Macros
– Sample data
– Read me files

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 170

AmiBug.Com, Inc.

Install Testing
• Installation program can

be very complex to test
– different platforms
– different options
– over a previously

installed version
– not enough disk space

available
– missing or incorrect

third party software

86

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 171

AmiBug.Com, Inc.

Uninstall Testing
• Most applications come

with an Uninstall feature
– Is Uninstall clean?
– Is registry clean?
– Are user data files left

alone?
– Can all different

configurations and
options of install be
Uninstalled?

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 172

AmiBug.Com, Inc.

Y2K Testing

• Year 2000 testing is still needed!
– Dominant software testing issue

up to and including Year 2000
– Testing of any date aware aspect

of the application to confirm
handling of forward and
backward time calculations,
dates, leap years

– Examples: age computation,
expiry dates

87

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 173

AmiBug.Com, Inc.

Conversion Testing

• Data conversion occurs when
you upgrade from one
version of an application to a
subsequent version
– Is all user data correctly

converted to the new format?
– Did we loose or any records?

Any fields?
– Are new fields initialized to

correct values?

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 174

AmiBug.Com, Inc.

Milestone Testing
• Testing which must be passed

before software is considered
to have completed a
milestone
– For all project milestones

stakeholders agree on
milestone passage criteria
and suitable testing which
confirms the achievement!

– Decide this early to avoid
conflict and politics!

88

Thursday, August 08,
2002

© Robert Sabourin, 2000 Slide 175

AmiBug.Com, Inc.

Thank You

• Questions?

Key Points

What is ASQ's CSQE about
What are the subjects in the CSQE BOK
How to relate tasks to jobs and performance

Presentation Abstract

The CSQE BOK was updated for 2002. The presentation describes the BOK and identifies and relates job performance measures
relating to the BOK.

About the Author

Douglas Hoffman is an independent consultant with Software Quality Methods, LLC. He has been in the software engineering and
quality assurance fields for nearly 30 years and now is a management consultant in strategic and tactical planning for software quality.
He has just completed the writing and editing of several sections in the updated QCI CSQE Primer, the primary study guide covering all
of the topics in the CSQE BOK. He also prepared and teaches CSQE examination preparation courses in Silicon Valley. His consulting
experience includes management consulting, teaching, managing, and engineering across the computer systems and software
industries. His recent experience has focused on creating and transforming software quality assurance and development groups, and
architecting software test automation environments.

Douglas is a founder and past Chairman of the Santa Clara Valley Software Quality Association (SSQA) and the Silicon Valley Section
of the American Society for Quality (ASQ). He has been a presenter and participant at dozens of software quality conferences and has
been Program Chairman for several international conferences on software quality. He is a member of the ACM and IEEE and is active
in the ASQ as a Senior Member, participating in the Software Division, the Santa Clara Valley Section, and the Software Quality Task
Group. He has earned a BA in Computer Science, an MS in Electrical Engineering, an MBA, a Certificate from ASQ in Software Quality
Engineering, and has been a registered ISO 9000 Lead Auditor.

QW2002 Paper 7Q

Douglas Hoffman
(Software Quality Methods, LLC.)

Overview of ASQ's 2002 CSQE Body of Knowledge

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 1

Douglas Hoffman Copyright © 2002, SQM, LLC. 1

ASQ’s 2002 CSQE
Body of Knowledge

Copyright © 2002, Software Quality Methods, LLC. No part of these graphic overhead slides may
be reproduced, or used in any form by any electronic or mechanical duplication, or stored in a

computer system, without written permission of the author.

Douglas Hoffman
Software Quality Methods, LLC.

24646 Heather Heights Place
Saratoga, California 95070-9710

Phone 408-741-4830
Fax 408-867-4550

doug.hoffman@acm.org

Quality Week 2002

Douglas Hoffman Copyright © 2002, SQM, LLC. 2

… is a professional who has comprehensive
understanding of software quality development

and implementation; has a thorough
understanding of software inspection, testing,

verification, and validation; and can
implement software development and
maintenance processes and methods.”

ASQ CSQE Certification brochure, Revised 5-02. Copyright © 2002 American Society for Quality.

“The Certified Software Quality Engineer…

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 2

Douglas Hoffman Copyright © 2002, SQM, LLC. 3

ASQ
• The American Society for Quality

• Not-for-profit professional society

• Leading quality improvement organization
in US for more than 50 years

• More than 117,000 individual and

• 1,100 corporate sustaining members

• 247 local Sections

• 22 industry and topic-specific Divisions.

Douglas Hoffman Copyright © 2002, SQM, LLC. 4

CSQE

• Certification Requirements

• The Subject Areas of the CSQE 2002 BOK

• Bloom’s Levels Of Cognition

• Example of Performance Skill Levels

• Example of Mapping of Performance
Levels To Job Requirements

• Describing Individual Performance Levels

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 3

Douglas Hoffman Copyright © 2002, SQM, LLC. 5

Certification Requirements

• Education and/or Experience
• 8 years in quality field

• up to 5 years credit for degrees

• Proof of Professionalism

• Examination
• proctored, open book exam

• 160 questions

Douglas Hoffman Copyright © 2002, SQM, LLC. 6

Recertification Requirements
• Recertify every 3 years

• 18 points needed
• Professional Development
• Employment
• Instructor/Student
• Meetings
• Committees
• Certifications
• Proctoring
• Publishing

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 4

Douglas Hoffman Copyright © 2002, SQM, LLC. 7

CSQE BOK Subject Areas

• General Knowledge, Conduct, and Ethics

• Software Quality Management

• Software Engineering Processes

• Program and Project Management

• Software Metrics, Measurement, and
Analytical Methods

• Software Verification and Validation (V&V)

• Software Configuration Management

Douglas Hoffman Copyright © 2002, SQM, LLC. 8

General Knowledge, Conduct,
and Ethics

• Quality philosophy and principles

• Standards, specifications, and models

• Leadership tools and skills

• Ethical conduct and professional

development

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 5

Douglas Hoffman Copyright © 2002, SQM, LLC. 9

General Knowledge, Conduct,
and Ethics

• Quality philosophy and principles
– Benefits of software quality

– Prevention vs. detection

– Organizational and process
benchmarking

• Standards, specifications, and models

(C)

(C)

(An)

(Ap)

Douglas Hoffman Copyright © 2002, SQM, LLC. 10

General Knowledge, Conduct,
and Ethics

• Leadership tools and skills

– Organizational leadership

– Team management

– Team tools

– Facilitation skills

– Communication skills

(Ap)

(Ap)

(Ap)

(Ap)

(Ap)

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 6

Douglas Hoffman Copyright © 2002, SQM, LLC. 11

General Knowledge, Conduct,
and Ethics

• Ethical conduct and professional

development

– ASQ Code of Ethics

– Software liability and safety issues

– Professional training and development (Ap)

(Ap)

(E)

Douglas Hoffman Copyright © 2002, SQM, LLC. 12

Software Quality Management

• Goals and objectives

• Methodologies

• Audits

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 7

Douglas Hoffman Copyright © 2002, SQM, LLC. 13

Software Quality Management

• Goals and objectives
– Quality goals and objectives

– Outsourced services

– Planning

– Software quality management
systems documentation

– Customer requirements

(E)

(E)

(E)

(E)

(C)

Douglas Hoffman Copyright © 2002, SQM, LLC. 14

Software Quality Management

• Methodologies
– Reviews, inspections, and testing

– Change management methods

– Cost of quality (COQ)

– Quality data tracking

– Problem reporting and corrective actions

– Quality improvement process

(E)

(E)

(E)

(E)

(E)

(An)

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 8

Douglas Hoffman Copyright © 2002, SQM, LLC. 15

Software Quality Management

• Audits

– Program development and

administration

– Audit preparation and execution

– Audit reporting and follow up

(C)

(Ap)

(C)

Douglas Hoffman Copyright © 2002, SQM, LLC. 16

Software Engineering Processes

• Environmental conditions

• Requirements management

• Requirements engineering

• Analysis, design, and
development methods and tools

• Maintenance management

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 9

Douglas Hoffman Copyright © 2002, SQM, LLC. 17

Software Engineering Processes

• Environmental conditions
– Life cycles

– Systems architecture

• Requirements management
– Requirements prioritization and evaluation

– Requirements change management

– Bi-directional requirements traceability

(E)

(An)

(E)

(E)

(E)

Douglas Hoffman Copyright © 2002, SQM, LLC. 18

Software Engineering Processes

• Requirements engineering

– Requirements types

– Requirements elicitation

– Requirements analysis and modeling

– System and software requirements

specifications

(C)

(An)

(An)

(An)

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 10

Douglas Hoffman Copyright © 2002, SQM, LLC. 19

Software Engineering Processes

• Analysis, design, and development
methods and tools

– Software design methods

– Types of software reuse

– Clean room and other formal methods

– Software development tools

(Ap)

(C)

(Ap)

(Ap)

Douglas Hoffman Copyright © 2002, SQM, LLC. 20

Software Engineering Processes

• Maintenance management

– Maintenance types

– Operational maintenance (C)

(C)

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 11

Douglas Hoffman Copyright © 2002, SQM, LLC. 21

Program and Project
Management

• Planning

– Project planning elements

– Goal-setting and deployment

– Project planning tools

– Cost and value data

(Ap)

(An)

(Ap)

(Ap)

Douglas Hoffman Copyright © 2002, SQM, LLC. 22

Program and Project
Management

• Tracking and controlling

– Phase transition control techniques

– Interpreting and reporting COQ data

– Tracking elements and methods

– Project reviews

(An)

(An)

(E)

(E)

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 12

Douglas Hoffman Copyright © 2002, SQM, LLC. 23

Program and Project
Management

• Risk management

– Risk management planning methods

– Risk probability

– Product release decisions

– Software security, safety, and hazard

analysis issues

(E)

(E)

(An)

(S)

Douglas Hoffman Copyright © 2002, SQM, LLC. 24

Software Metrics, Measurement,
and Analytical Methods

• Metrics and measurement theory

• Process and product measurement

• Analytical techniques

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 13

Douglas Hoffman Copyright © 2002, SQM, LLC. 25

Software Metrics, Measurement,
and Analytical Methods

• Metrics and measurement theory

– Metrics and measurement theory

– Basic measurement theory and

techniques

– Psychology of metrics

(C)

(C)

(Ap)

Douglas Hoffman Copyright © 2002, SQM, LLC. 26

Software Metrics, Measurement,
and Analytical Methods

• Process and product measurement

– Process, product, and resource metrics

– Commonly used metrics

– Software quality attributes

– Defect detection effectiveness measures

– Program performance and process
effectiveness

(Ap)

(Ap)

(Ap)

(An)

(C)

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 14

Douglas Hoffman Copyright © 2002, SQM, LLC. 27

Software Metrics, Measurement,
and Analytical Methods

• Analytical techniques

– Data integrity

– Quality tools

– Sampling theory and techniques

(An)

(S)

(An)

Douglas Hoffman Copyright © 2002, SQM, LLC. 28

Software Verification and
Validation (V&V)

• Theory

• Reviews and inspections

• Test planning and design

• Test execution and evaluation

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 15

Douglas Hoffman Copyright © 2002, SQM, LLC. 29

Software Verification and
Validation (V&V)

• Theory

– V&V planning procedures and tasks

– V&V program

– Evaluating software products and
processes

– Interfaces

(S)

(An)

(C)

(S)

Douglas Hoffman Copyright © 2002, SQM, LLC. 30

Software Verification and
Validation (V&V)

• Reviews and inspections

– Types

– Items

– Processes

– Data collection, reports,
and summaries

(Ap)

(Ap)

(Ap)

(Ap)

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 16

Douglas Hoffman Copyright © 2002, SQM, LLC. 31

Software Verification and
Validation (V&V)

• Test planning and design
– Types of tests
– Test tools
– Test strategies
– Test design
– Test coverage of specifications
– Test environments
– Supplier components and products
– Test plans

(Ap)

(Ap)

(Ap)

(S)

(S)

(S)

(S)

(C)

Douglas Hoffman Copyright © 2002, SQM, LLC. 32

Software Verification and
Validation (V&V)

• Test execution and evaluation

– Test implementation

– Test documentation

– Test reviews

– Code coverage metrics

– Customer deliverables

– Severity of anomalies

(S)

(S)

(E)

(Ap)

(Ap)

(Ap)

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 17

Douglas Hoffman Copyright © 2002, SQM, LLC. 33

Software Configuration
Management

• Configuration infrastructure

• Configuration identification

• Configuration control

• Configuration status accounting

• Configuration audits

• Release and distribution issues

Douglas Hoffman Copyright © 2002, SQM, LLC. 34

Software Configuration
Management

• Configuration infrastructure
– Configuration management
– Library/repository processes
– Defect tracking and library tools

• Configuration identification
– Configuration items
– Baselines
– Configuration identification methods
– Software builds

(Ap)

(C)

(C)

(C)

(C)

(C)

(S)

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 18

Douglas Hoffman Copyright © 2002, SQM, LLC. 35

Software Configuration
Management

• Configuration control
– Item and baseline control
– Proposed modifications
– Review and configuration

control boards (CCBs)
– Concurrent development
– Traceability
– Version control
– Configuration item interfaces

(C)

(Ap)

(Ap)

(Ap)

(Ap)

(Ap)

(Ap)

Douglas Hoffman Copyright © 2002, SQM, LLC. 36

Software Configuration
Management

• Configuration status accounting

– Status reporting

– Changes to configuration items

and baselines

– Documentation control

(C)

(C)

(C)

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 19

Douglas Hoffman Copyright © 2002, SQM, LLC. 37

Software Configuration
Management

• Configuration audits
– Functional configuration audit

– Physical configuration audit

• Release and distribution issues

– Product release process issues

– Packaging, production, and distribution (K)

(C)

(C)

(C)

Douglas Hoffman Copyright © 2002, SQM, LLC. 38

Levels of Cognition1

• Knowledge

• Comprehension

• Application

• Analysis

• Synthesis

• Evaluation
1Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956).
Taxonomy of educational objectives handbook 1: Cognitive domain. New York: McKay.

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 20

Douglas Hoffman Copyright © 2002, SQM, LLC. 39

Levels of Cognition

Knowledge

Comprehension

Application

Analysis

Synthesis

Evaluation

- write, list, name, define, label, state

- explain, describe, summarize,
illustrate, paraphrase

- use, solve, apply, construct,
demonstrate, compute

- analyze, compare, contrast, separate

- create, design, invent, develop

- judge, recommend, critique, justify

LevelLevel VerbsVerbs

Douglas Hoffman Copyright © 2002, SQM, LLC. 40

Example of Performance Skill
Levels

• Row for each Skill Area

• Column for each Level of Performance

• Cell describes behavior that demonstrates mastery

• Color code by columns

A rea K n o w led g e C o m p reh e n s io n A p p l ic a t io n A n a lys is E v a lu a t io n S yn th es is

A u d i ts
A n s w e rs q u e stio n s
d u rin g a u d its

U n d e r sta n d s
p u rp o s e a n d
u n d e rly in g m e a n in g
o f a u d it q u e stio n s

A b le to p a rtic ip a te
a s a n a u d ito r w ith in
a n a u d it te a m

P a rtic ip a te s a s L e a d
A u d ito r g iv e n th e
a u d it p la n

C re a te s th e a u d it
p la n a n d is L e a d
A u d ito r

T ra in s L e a d
A u d ito rs a n d
p a rtic ip a te s in a u d it
im p ro v e m e n ts

L e ad e rsh ip
A b le to p a rtic ip a te
in p ro je c ts

A c ts in d e p e n d e n tly
in p ro je c ts

L e a d s ro u tin e
p ro je c ts

P la n s a n d le a d s
ro u tin e p ro je c ts

P la n s a n d le a d s a
la rg e o r c ro ss-
o rg a n iz a tio n a l
p ro je c t

P la n s a n d m a n a g e s
c h a n g e s in
o rg a n iz a tio n a l
c u ltu re

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 21

Douglas Hoffman Copyright © 2002, SQM, LLC. 41

Example Mapping Of Performance
Levels To Job Requirements

• Column for each job title and grade

• Color indicates Performance Skill Level expected

• Text amplifies or explains

Area Leve l Associa te Q E Q uality Engineer Sen ior Q E Fellow
G enera l K now ledge, C onduct, and E th ics

Q ua lity ph ilosophy and princip les In assigned work a rea .

S tandards, specifica tions , and
m odels

N/A In assigned work a rea .

Leadersh ip too ls and skills N /A

E thical conduct and pro fess iona l
deve lopm ent

Douglas Hoffman Copyright © 2002, SQM, LLC. 42

Example Describing Individual
Performance Levels

• Individual performance shown in second column

• Job Requirements column included for reference

• Remarks possibly color coded for strengths and
weaknesses

Area <name> Quality Engineer Remarks
General Knowledge,
Conduct, and Ethics
Quality philosophy and
principles

Knows quality principles in assigned
work area.

Standards, specifications,
and models

Does not use available standards In assigned work area. Send to ISO 9000
overview class

Leadership tools and skills Excellent leadership skills. Get into mentor program
Ethical conduct and
professional development

High ethics. Took leadership class.

ASQ's 2002 BOK Quality Week 2002

(c) 2002, Software Quality Methods, LLC. 22

Douglas Hoffman Copyright © 2002, SQM, LLC. 43

Summary

• CSQE covers a wide field

• CSQE includes level of cognition

• You can
– decide what applies to you

– define Performance Skill Levels

– define Job Requirements

– describe Individual Performance

Copyright 2002, Software Quality Methods, LLC. International Quality Week 2002

Overview of ASQ’s1

Certified Software Quality Engineer (CSQE)
Body of Knowledge

Douglas Hoffman
Software Quality Methods, LLC.

24646 Heather Heights Place
Saratoga, California 95070-9710

Phone 408-741-4830 Fax 408-867-4550
http://www.SoftwareQualityMethods.com

doug.hoffman@acm.org

Abstract

In 2002, the American Society for Quality (ASQ) has restructured and updated the Body of
Knowledge (BOK) used for their Certification in Software Quality Engineering (CSQE). This
paper describes the certification, outlines the updated BOK content, and highlights many of the
changes2. It also provides a method of adapting such a BOK to describe key skills and levels of
performance in a group. The following topics are covered in the paper:

• Certification Requirements
• The Subject Areas of the CSQE 2002 Body of Knowledge
§ General Knowledge, Conduct, and Ethics
§ Software Quality Management
§ Software Engineering Processes
§ Program and Project Management
§ Software Metrics, Measurement, and Analytical Methods
§ Software Verification and Validation (V&V)
§ Software Configuration Management

• Levels of Cognition (from Bloom’s Taxonomy, 1956)
• Performance Skill Levels
• Mapping of Performance Levels to Job Requirements
• Describing Individual Performance Levels

1 Much of the reference material contained in this document comes from ASQ’s CSQE Certification
brochure, ASQ Item B0110, Revised 5-02. Copyright © 2002 American Society for Quality. Reprinted
with permission.
See the side bar About the ASQ for a brief description of ASQ. Further information on the American
Society for Quality (ASQ) and certifications can be found at their web site at http://www.asq.org or by
calling them at 800-248-1946.
2 Special thanks to Bill Wortman and Wes Richardson at QCI for the mapping of the 2002 BOK with the
1996 BOK. (Quality Council of Indiana

http://www.qualitycouncil.com)

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 2 of 40

The purpose of this paper is to outline ASQ’s CSQE BOK and describe how a mapping of such
knowledge and skill areas into performance measures can be useful. By identifying relevant skill
areas and performance measures, a quality engineering team can clearly understand what levels
of performance are expected and how to evaluate the levels of performance being shown.

Readers should come away with a better understanding of:

• The topics contained in ASQ’s CSQE BOK
• The level of understanding needed for certification
• How to map BOK topics into job requirements and individual skill sets
• A spreadsheet technique for displaying QA tasks and levels of performance
• A spreadsheet technique for mapping tasks and performance to job requirements
• A further technique for describing an individual’s demonstrated performance level

The following detailed material is provided in appendices:

I. Outline of the Subject Areas of the CSQE 2002 Body of Knowledge
II. Mapping of the 2002 CSQE BOK with the 1996 BOK
III. CSQE Reference Materials

Background

“The Certified Software Quality Engineer…

… is a professional who has comprehensive
understanding of software quality
development and implementation; has a
thorough understanding of software
inspection, testing, verification, and
validation; and can implement software
development and maintenance processes and
methods.”3

I often illustrate the difference between
software test and quality assurance by
explaining about a course I teach to prepare
engineers to take the CSQE examination. The
course is four days long (28 hours), and I
introduce and define the subject areas in the
BOK. Software Testing is covered in about
two hours. The rest of the time is spent on
Software Quality Assurance.

3 ASQ CSQE Certification brochure, Item B0110, Revised 5-02. Copyright © 2002 American Society for
Quality. Reprinted with permission. All rights reserved.

About the ASQ
The American Society for Quality (ASQ), a
not-for-profit professional society, has been
the leading quality improvement organization
in the United States for more than 50 years.
ASQ has more than 117,000 individual and
1,100 corporate sustaining members
worldwide. Individual members belong to
one of 247 local Sections located throughout
the United States, Canada, Mexico, Puerto
Rico, and an International Chapter. ASQ also
has 22 industry and topic-specific Divisions.

ASQ was incorporated as the American
Society for Quality Control in 1946 as the
result of the merger of several local quality
societies that had formed after wartime
statistical quality control classes. The classes
were held to improve and maintain the quality
of defense materials during World War II. To
meet the needs of a changing marketplace,
the organization changed its name to the
American Society for Quality in 1997.

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 3 of 40

Since 1968, nearly 80,000 certifications have been awarded to professionals through ASQ's
programs. The BOK and CSQE certification was first made available in 1996. Forty countries
offer ASQ's programs as their method for certification. ASQ conducts professional certification
programs in eleven different areas of expertise including quality engineers, quality managers,
and software quality engineers. ASQ reviews and updates the BOK for each area on a regular
basis to keep up with the evolving information and technologies available in each field.
Computer Science in particular is evolving and changing quickly, necessitating ongoing
reevaluation and adaptation of software quality assurance concepts, tools, and techniques.

Many software quality assurance organizations have come from software development or user
oriented software testing. Their principles and techniques have evolved from the emerging fields
of Computer Science or Software Testing, and many have been created without benefit of
research or experience in quality assurance. ASQ’s programs are especially valuable for these
software quality professionals because they are founded on principles and techniques from the
broader, general science of quality assurance.

Although the CSQE BOK may not be universally applicable to software quality organizations, it
provides an excellent starting place for detailing a BOK appropriate for a given organizational
context. Performance Skill Levels can then be defined for each subject area in the BOK to
describe corresponding behaviors. Job Requirements can be listed to establish performance
expectations in each area for the job titles and grades used for quality engineers. (A Senior
Software Quality Engineer would be expected to perform many of the same tasks as an Associate
Software Engineer, but at a much higher level.) Likewise, an individual’s performance can be
described in each of the areas to identify strengths and weaknesses.

Certification Requirements

There are three requirements areas a candidate
must fulfill to earn ASQ’s CSQE:

• Education and/or Experience
• Proof of Professionalism
• Examination covering the CSQE BOK

Education and/or Experience

One must have eight years of on-the-job
experience in one or more of the areas of the
CSQE BOK. A minimum of three years of this
experience must be in a decision-making
position. "Decision-making" is defined as the
authority to define, execute, or control
projects/processes and to be responsible for the
outcome. This may or may not include
management or supervisory positions.

The RAB
The Registrar Accreditation Board (RAB), a
separately incorporated affiliate of ASQ, is
engaged in ISO 9000 and ISO 14000
accreditation and certification activities. The
RAB is a partner with the American National
Standards Institute (ANSI) in the National
Accreditation Program (NAP) which
accredits registrars and training course
providers. The NAP process ensures
customers and other stakeholders that
companies have implemented proper
management systems as defined by the ISO
9000 and ISO 14000 standards. The RAB
independently operates the U.S. certification
programs for both ISO 9000 and ISO 14000
auditors. These programs provide assurance
that individuals are qualified to audit
management systems against the
requirements of recognized standards.

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 4 of 40

If a person has been previously certified by ASQ as a Quality Engineer, Quality Auditor,
Reliability Engineer, or Quality Manager, experience used to qualify for certification in these
fields applies to certification as a Software Quality Engineer.

If you have completed a degree* (and have the diploma) from a college, university, or technical
school with accreditation accepted by ASQ, part of the eight-year experience requirement will
satisfied, as follows (only one degree may be claimed):

Diploma From Experience
Technical or trade school One year

Associate degree Two years

Bachelor's degree Four years

Master's or doctorate Five years

*Degrees or diplomas from educational institutions outside the United States must be equivalent
to degrees from U.S. educational institutions.

Proof of Professionalism

Proof of professionalism may be demonstrated in one of three ways:

1. Membership in ASQ, an international affiliate society of ASQ, or another society that is a
member of the American Association of Engineering Societies or the Accreditation Board for
Engineering and Technology

2. Registration as a Professional Engineer
3. The signatures of two persons who are ASQ members, members of an international affiliate

society, or members of another recognized professional society, verifying that you are a
qualified practitioner of the quality sciences

Examination Covering the CSQE BOK

Each certification candidate is required to pass a written examination that consists of multiple
choice questions that measure comprehension of the BOK. The CSQE examination is a one-part,
160-question, four-hour exam and is offered in the English language only. Because the BOK for
certification is affected by new technologies, policies, and the changing dynamics of
manufacturing and service industries, changed versions of the examination based on the current
BOK are used at each offering.

Examinations are conducted twice a year, in June and December, by local ASQ sections and
international organizations. Some special examinations may be added in conjunction with ASQ
sponsored conferences for attendees of the conference. All examinations are open-book. Each
participant must bring his or her own reference materials. Use of reference materials and
calculators is explained in the detailed guidance provided to applicants.

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 5 of 40

Topics in the Body of Knowledge

The CSQE 2002 BOK is divided into seven areas, as outlined below. (The complete, ten page
outline of the BOK as provided by ASQ is attached in Appendix I.) Each subject area covers
important aspects of the field of software quality engineering that a professional software quality
engineer should be familiar with.

Although a CSQE is not expected to have mastered all of the BOK (or all of any subject area),
they must demonstrate their understanding of the field by getting passing marks on an intensive
examination covering all of the subjects. There are four hours allotted to answer 160 multiple-
choice questions in a proctored, open book, open notes examination. This gives an average of 90
seconds per question, which leaves very little time to refer to books or notes during the exam.

I. General Knowledge, Conduct, and Ethics (16 Questions)

These topics relate to quality philosophies, principles, standards, specifications, and models in
general, and particularly as they relate to software quality assurance. This knowledge area
includes general quality tools and skills useful for effective teamwork and leadership.

II. Software Quality Management (30 Questions)

These topics focus on the quality management systems for software. They include setting goals
and objectives, techniques for evaluating and managing software quality, process audits, and
quality improvement processes.

III. Software Engineering Processes (26 Questions)

Software engineering processes include development processes, system architectures, software
tools, and methods for software requirements, analysis, design, and development. The area is
covered from project concept and development, through maintenance and obsolescence.

IV. Program and Project Management (24 Questions)

Topics include software development planning, project tracking, project controls, and risk
management. Techniques and concepts are applied to both software projects (the development
and release of a software product) and software programs (ongoing operation and maintenance of
software systems).

V. Software Metrics, Measurement, and Analytical Methods (24 Questions)

These topics focus on software product and process metrics, measurement theory, technology,
psychological aspects of software metrics, common software metrics, measurement and
analytical techniques, and quality tools.

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 6 of 40

VI. Software Verification and Validation (V&V) (24 Questions)

Topics covered in this area include more than formalized software testing, reviews, and
inspections. They cover techniques for verification (checking to see that each phase of work is
done right) and validation (checking to see that the right work is done and requirements are met)
including project planning, and technical analysis. Subject matter for software testing techniques
encompasses test planning, test types, test tools, strategies, test design, environmental factors,
documentation, implementation, reviews, execution, and evaluation.

VII. Software Configuration Management (16 Questions)

Configuration management topics, critically important contributors to software quality, include
the infrastructure components, configuration identification, component control, traceability,
status reporting, document control, audits, and release issues.

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 7 of 40

Bloom’s Six Levels of Cognition4

A software quality professional is not expected to master all subject areas to the same extent. In
addition to content specifics, the subtext detail in the outline for the BOK indicates the intended
complexity level of test questions for each topic (and thus, the depth of understanding expected).
The six levels of comprehension are based on Bloom’s “Levels of Cognition,” and are presented
below from least complex to most complex.

Knowledge
(Also commonly referred to as recognition, recall, or rote knowledge.) Being able to remember
or recognize terminology, definitions, facts, ideas, materials, patterns, sequences, methodologies,
principles, etc. Activities at this level are often described using verbs like define, list, label,
name, state, or write.

Comprehension
Being able to read and understand descriptions, communications, reports, tables, diagrams,
directions, regulations, etc. Activities at this level are often described using verbs like describe,
explain, illustrate, paraphrase, or summarize.

Application
Being able to apply ideas, procedures, methods, formulas, principles, theories, etc., in job-related
situations. Activities at this level are often described using verbs like apply, compute, construct,
demonstrate, solve, or use.

Analysis
Being able to break down information into its constituent parts and recognize the parts’
relationship to one another and how they are organized; identify sublevel factors or salient data
from a complex scenario. Activities at this level are often described using verbs like analyze,
categorize, compare, contrast, or separate.

Synthesis
Being able to put parts or elements together in such a way as to show a pattern or structure not
clearly there before; identify which data or information from a complex set is appropriate to
examine further or from which supported conclusions can be drawn. Activities at this level are
often described using verbs create, design, develop, hypothesize, or invent.

Evaluation
Being able to make judgments regarding the value of proposed ideas, solutions, methodologies,
etc., by using appropriate criteria or standards to estimate accuracy, effectiveness, economic
benefits, etc. Activities at this level are often described using verbs like critique, judge, justify, or
recommend.

4 Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of
educational objectives handbook 1: Cognitive domain. New York: McKay.

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 8 of 40

Examples of Performance Skill Levels5

By listing and defining each subject area expected to be understood by a software quality
professional, the BOK also defines the scope of activities for quality engineers. A similar list or
BOK can be created to identify the context specific subject areas applicable to any particular
software quality organization. The subject areas, levels of understanding, specific job functions,
and performance activities are unique to each organization and evolve over time. We can define
performance expectations and develop a guide for gaging individual performance by listing the
organization and job specific subject areas, and describing typical activity exemplars for each
performance level. The incomplete table below provides an example of subject areas and activity
descriptions. (Table 1: Example Performance Skill Levels)

The first column of the table lists the subject areas for the organization’s BOK. The subsequent
columns each represent successive levels of understanding and performance. Each row of the
table describes a subject area and the various levels of understanding demonstrated by the types
of behaviors listed. The columns are shaded uniquely to simplify identification of job
requirements and individual performance levels.

The example shows six Performance Skill Levels corresponding to Bloom’s Levels of Cognition.
There can be more or fewer Performance Skill Levels, and they can be defined as appropriate for
the organization. For example, three levels of performance could have columns titled
“Familiarity,” “Proven Skill,” and “Creative Expertise,” with descriptions of behaviors in the
cells for each skill area.

Mapping of Performance Levels to Job Requirements

Various jobs within an organization encompass different task activities, and various levels of
performance are expected for different grades or levels of experience. We can define the
expectations of performance for various job titles in a software quality organization using the
BOK and the table depicting Performance Skill Levels appropriate for each grade. The result can
be represented in a tabular form, much the same as for Performance Skill Levels. (Table 2:
Example Job Performance Requirements)

The first column of the table lists the subject areas appropriate for the performance of duties for
the job functions. This can include the entire BOK or a subset of it, depending on the tasks
required for the job functions. Subsequent columns are created for each job grade. The cells each
describe the types of activities a person with this job title is expected to perform for this subject
area. The appropriate color is shown if the description is identical to the Performance Skill
Levels. Text is added to clarify or describe the particular performance required. No color is
shown if the subject area is not applicable or not required for the job function and grade. A
typical table covers all the grades for a particular job title and the subset of BOK subjects
applicable to the job.

5 The tabular method of describing and mapping of a BOK to job descriptions and performance is based
on work done by James Bach (www.satisfice.com) and made available by STLabs.

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 9 of 40

Describing Individual Performance Levels

A table can also be used to describe an individual’s performance by using the first column for the
BOK subject areas and a second column for examples describing the actual behaviors
demonstrated. This information can be compared with the Job Performance Requirements for the
person’s job title and grade to identify the individual’s strengths and weaknesses relative to the
job requirements. (Table 3: Example Individual Performance Levels)

The color code in the second column identifies the Performance Skill Level observed. Text in the
cells can amplify or explain the observations. The third column is a direct copy of the applicable
Job Requirements for the individual. Remarks may be color coded to indicate areas of strength or
where improvement is needed.

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 10 of 40

Area \ Level Knowledge Comprehension Application Analysis Synthesis Evaluation
General Knowledge, Conduct, and Ethics
Quality
philosophy and
principles

Defines and lists
terminology,
philosophies, and
principles.

Summarizes and
explains
descriptions and
methods related to
quality principles.

Applies quality
philosophies,
principles, and
methods in job-
related situations.

Compares and
contrasts quality
philosophies and
principles.

Creates quality
philosophies and
principles as
required.

Makes judgments
and
recommendations
regarding quality
philosophies and
principles.

Standards,
specifications,
and models

Identifies, lists,
and defines
terminology,
standards, and
models.

Describes and
illustrates relevant
standards and
specifications.

Applies ideas,
procedures,
methods,
formulas,
principles,
theories, etc., in
job-related
situations.

Compares
standards,
specifications, and
models for
applicability to
given situation.

Develops
standards,
specifications, and
models as
required.

Critiques,
recommends, and
justifies quality
philosophies and
principles.

Leadership tools
and skills

Lists leadership
terminology,
definitions, and
principles.

Explains and
illustrates
leadership tools
and techniques.

Applies
appropriate
leadership
principles, tools,
and skills.

Compares and
contrasts
appropriate
leadership tools
and techniques.

Develops
leadership tools
and techniques
appropriate for job
situations.

Critiques,
recommends, and
justifies leadership
tools and
approaches.

Ethical conduct
and professional
development

Defines a
professional code
of ethics and can
identify and locate
methods of
professional
development.

Explains a
professional code
of ethics and
options for
professional
development.

Abides by a
professional code
of ethics and
develops
professionally.

Analyzes
professional
development
requirements and
options.

Designs and
develops
professional
development
programs.

Critiques,
recommends, and
justifies
professional
development
approaches.

Table 1: Example Performance Skill Levels

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 11 of 40

Area \ Job Title Associate QE Quality Engineer Senior QE QE Fellow
General Knowledge, Conduct, and Ethics
Quality philosophy and
principles

In assigned work area.

Standards, specifications, and
models

N/A In assigned work area.

Leadership tools and skills N/A
Ethical conduct and
professional development

* Colors correspond to columns in Table 1: Example Performance Skill Levels

Table 2: Example Job Performance Requirements

Area <name> Quality Engineer Remarks
General Knowledge, Conduct, and Ethics
Quality philosophy and
principles

Knows quality principles in assigned
work area.

Standards, specifications, and
models

Does not use available standards In assigned work area. Send to ISO 9000
overview class

Leadership tools and skills Excellent leadership skills. Get into mentor program
Ethical conduct and
professional development

High ethics.
Took leadership class.

* The Quality Engineer column is included as reference.

Table 3: Example Individual Performance Levels

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 12 of 40

Conclusion

ASQ’s CSQE BOK covers a very broad range of subjects applicable to software quality
engineering. The BOK is generic in the sense that it may be applied to any software quality
organization, even though the particular subjects and task emphasis relevant to specific
organizations are different. The subjects are broken into seven general areas, and the CSQE BOK
provides a detailed outline describing the concepts, tools, and techniques in each area. Along
with the description of the knowledge area, the outline also lists the expected level of
understanding a CSQE is expected to have.

A similar BOK can be developed that applies to a specific software quality organization. This
BOK can also be used to identify the tasks associated with various job functions and the levels of
performance of the tasks required at different job grades. Individual performance can then be
described in terms of the subject areas and tasks appropriate for their job. The individual
performance can then be compared to the job performance requirements to identify the
individual’s strengths and weaknesses.

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 13 of 40

Software Quality Engineer Certification (CSQE)
Body of Knowledge6

The following is an outline of topics that constitute the ASQ’s 2002 Body of Knowledge for
Software Quality Engineer.

I. GENERAL, KNOWLEDGE, CONDUCT, and ETHICS (16 Questions)
A. Quality philosophy and principles

1. Benefits of software quality
Describe how software quality engineering can benefit an organization.
(Comprehension)

2. Prevention vs. detection
Describe how quality engineering methodologies can reduce the length of time for
testing and can influence other defect detection methods. (Comprehension)

3. Organizational and process benchmarking
Identify, analyze, and model best practices at the macro (organizational) and micro
(process and project) levels. Identify and develop business objectives, use metrics to
monitor their achievement, and provide feedback to close the process improvement
loop. (Analysis)

B. Standards, specifications, and models
Identify and use software process and assessment models, including ISO 9001, ISO
15504, IEEE software standards, IEEE/EIA 12207, SEI Capability Maturity Model
Integrated (CMMI), etc., in a variety of situations. (Application)

C. Leadership tools and skills
1. Organizational leadership

Define, describe, and apply leadership tools and techniques, including analyzing
current situations, proposing, justifying, implementing, and managing change (using
change-agent tools), developing and implementing quality initiatives, obtaining cross-
functional commitment and collaboration, ensuring knowledge transfer, motivating
personnel, etc. (Application)

2. Team management
Define and use various team management techniques, including identifying and
assigning roles and responsibilities (e.g., champion, sponsor, facilitator, leader,
coach), identifying and assessing team member skills, interpreting team dynamics and
stages of team development, handling dominant or disruptive team members,
recognizing how diversity in teams strengthens the creative process, etc.
(Application)

3. Team tools
Define, describe, and use tools such as brainstorming, nominal group technique
(NGT), joint application development (JAD), rapid application development (RAD),
etc. (Application)

4. Facilitation skills

6 Copyright © 2002 American Society for Quality. All rights reserved.

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 14 of 40

Use various tools to manage and resolve conflict. Use negotiation techniques to
produce win-win outcomes. Identify and use time and meeting management tools to
maximize performance. (Application)

5. Communication skills
Define, describe, and apply various communication elements used in verbal, written,
and presentation formats, including interviewing and listening skills. Apply
communication elements to create effective process and procedural documents,
including identifying roles and responsibilities. (Application)

D. Ethical conduct and professional development
1. ASQ Code of Ethics

Determine appropriate behavior in situations requiring ethical decisions, including
identifying conflicts of interest and recognizing/resolving ethical issues related to
software licensing and use. (Evaluation)

2. Software liability and safety issues
Identify legal issues related to software product liability and safety, including
negligence, customer notification requirements, and other legal or regulatory issues.
(Application)
[NOTE: Other aspects of product safety and hazard analysis are covered in IV.C.4.]

3. Professional training and development
Define, describe, and apply training needs analysis methods for software quality
professionals, and manage training resources and materials. (Application)

II. SOFTWARE QUALITY MANAGEMENT (30 Questions)
A. Goals and objectives

1. Quality goals and objectives
Describe, analyze, and evaluate quality goals and objectives for programs, projects,
and products. (Evaluation)

2. Outsourced services
Define, analyze, and evaluate the impact of acquisitions, subcontractor services, and
other external resources on the organization's goals and objectives. (Evaluation)

3. Planning
Identify, apply, and evaluate scheduling and resource requirements necessary to
achieve quality goals and objectives. (Evaluation)

4. Software quality management (SQM) systems documentation
Identify and describe various elements related to SQM system documentation.
(Comprehension)

5. Customer requirements
Analyze and evaluate customer requirements and their effect on programs, projects,
and products. (Evaluation)
[NOTE: Changes in requirements are covered in III.B.3. The focus in this section is
to ensure that customer requirements are evaluated properly.]

B. Methodologies
1. Review, inspection, and testing

Define, describe, evaluate, and differentiate between these defect detection methods.
(Evaluation)

2. Change management methods

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 15 of 40

Identify and apply various methods appropriate for responding to changes in
technology, organizations, environment, human performance, etc. (Evaluation)
[NOTE: Change-agent tools are covered in I.C.1.]

3. Cost of quality (COQ)
Define, differentiate, and analyze COQ categories (prevention, appraisal, internal
failure, external failure) and their impact on products and processes. (Analysis)
[NOTE: Interpreting and reporting COQ data are covered in IV.B.2.]

4. Quality data tracking
Define, describe, select, and implement information systems and models used to track
quality data in various situations. (Evaluation)

5. Problem reporting and corrective action procedures
Define, describe, analyze, and distinguish between these procedures for software
defects, process nonconformances, and other quality system deficiencies.
(Evaluation)

6. Quality improvement processes
Define, describe, analyze and distinguish between various defect prevention,
detection, and removal processes, and evaluate process improvement opportunities in
relation to these tools. (Evaluation)

C. Audits
1. Program development and administration

Identify roles and responsibilities for various audit participants, including team
leader, team members, auditee, auditor, etc. (Comprehension)

2. Audit preparation and execution
Define and distinguish between various audit types, including process, compliance,
supplier, system, etc. Define and describe various steps in the audit process, from
scheduling the audit through the closing meeting and subsequent follow-up activities.
Define and identify various tools and procedures used in conducting audits.
(Comprehension)

3. Audit reporting and follow up
Identify, describe, and apply the steps of audit reporting and follow up, including the
need for and verification of corrective action. (Application)

III. SOFTWARE ENGINEERING PROCESSES (26 Questions)
A. Environmental conditions

1. Life cycles
Compare and evaluate the characteristics of spiral, waterfall, incremental, rapid
prototyping, V-model, etc. Differentiate these life cycles, describe what they are
designed to do, what their benefits are, and in what situations they should be used.
(Evaluation)

2. Systems architecture
Identify, describe, evaluate, and distinguish between system architectures, including
client server, n tier, B to B, B to C, and B to E, web (internet/intranet/extranet) and
wireless development, messaging and collaboration software, etc. (Analysis)

B. Requirements management
1. Requirements prioritization and evaluation

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 16 of 40

Describe, assess, prioritize, and evaluate the requirements for verifying software
correctness, consistency, completeness, and testability. Determine what should be
covered in a requirements statement, how to specify a requirement, etc. (Evaluation)

2. Requirements change management
Define, describe, and evaluate various elements of managing requirements change,
including what processes should be followed, when requirements need to change,
what review processes to use, etc. Define the effect of changing requirements at
various stages of the project life cycle. (Evaluation)

3. Bi-directional requirements traceability
Describe, select, and evaluate various traceability elements, including requirements to
design, design to code, and requirements to test. Describe and apply traceability tools
and mechanisms, such as system verification diagrams, traceability matrices, etc.
(Evaluation)
[NOTE: Traceability of configuration items is covered in VII.C.5.]

C. Requirements engineering
1. Requirement types

Define, describe, and analyze various requirement types such as security, regulatory,
quality, feature and product functionality, etc., and the significant elements of each.
(Analysis)

2. Requirements elicitation
Define and describe various elicitation methods, including using tools such as quality
function deployment (QFD), joint application development (JAD), customer needs
analysis, etc. Describe the key steps necessary for gathering product requirement
details, and identify common causes of failure to comply with requirements.
(Comprehension)

3. Requirements analysis and modeling
Describe, select, and analyze tools such as data flow diagrams (DFDs), entity
relationship diagrams (ERDs), use cases, etc. Describe how they are used at different
phases of development and requirements specifications. (Analysis)

4. System and software requirements specifications
Define and distinguish between these two types of specifications and their purpose,
and describe their relationship to each other. (Analysis)

D. Analysis, design, and development methods and tools
1. Software design methods

Define and use various design methods, including object-oriented analysis and design
(OOAD), structured analysis and design (SAD), unified modeling language (UML),
etc. Identify the steps used in program design and explain their uses. (Application)

2. Types of software reuse
Define, describe, and differentiate the use of various reuse methods including
reengineering, reverse engineering, plug-and-play, etc., and describe the design
paradigms that address these concepts. (Application)

3. Clean room and other formal methods
Define and describe these methods and their benefits. (Comprehension)

4. Software development tools
Identify, describe, use, and distinguish between various tools used for modeling, code
analysis, documentation, relational databases, etc. (Application)

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 17 of 40

E. Maintenance management
1. Maintenance types

Describe the characteristics of corrective, adaptive, and perfective maintenance types
and their benefits and risks. (Comprehension)

2. Operational maintenance
Describe the various categories of and activities involved in providing operational
services to the customer, managing application portfolios, and providing basic
software maintenance. (Comprehension)

IV. PROGRAM AND PROJECT MANAGEMENT (24 Questions)
A. Planning

1. Project planning elements
Describe and use factors such as forecasts, resources, schedules, etc., to develop,
initiate, and accomplish project goals. (Application)

2. Goal-setting and deployment
Identify and use milestones, objectives achieved, task duration, and other goal-setting
and deployment methods. (Application)

3. Project planning tools
Define, apply, and analyze various methods of managing risk, estimating costs,
scheduling resources, etc. using tools such as PERT charts, critical path method
(CPM), work breakdown structure (WBS), etc. (Analysis)
[NOTE: Gantt charts are covered in IV.B.1.]

4. Cost and value data
Identify and use various methods for calculating project-related data such as earned
value, development investment costs, etc. (Application)

B. Tracking and controlling
1. Phase transition control techniques

Develop and use various control techniques for tracking projects, including entry/exit
criteria, phase gate reviews, Gantt charts, etc. (Analysis)

2. Interpreting and reporting cost of quality (COQ) data
Review, interpret, and report COQ data and evaluate how each category is affected by
continuous improvement strategies. (Evaluation)
[NOTE: The definitions and distinctions between these categories are covered in
II.B.3.]

3. Tracking elements and methods
Describe, assess, and apply different tracking methods, including establishing metrics
for costs, deliverables, productivity, etc., creating and evaluating status reports and
life-cycle phase reports, measuring changes in earned value, evaluating changes in
business conditions, etc. (Evaluation)
[NOTE: Calculating earned value is covered in IV. A. 4.]

4. Project reviews
Define, use, and differentiate various types of reviews, including post-project, senior
management, team, etc., and use closed-loop methodologies to improve projects as a
result of lessons learned. (Analysis)

C. Risk management
1. Risk management planning methods

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 18 of 40

Define, integrate, and analyze various risk management methods, including assessing,
preventing, and mitigating risk with respect to critical aspects of a project and its
supporting strategies. (Synthesis)

2. Risk probability
Describe and evaluate various risk warning signs, assess risk probability and impact,
and develop contingency plans. (Evaluation)

3. Product release decisions
Identify situations and factors that require trade-offs on product release decisions.
Develop and analyze various ways of bringing a project back on track when problems
occur that affect quality, scheduling, customer requirements, product functionality,
etc. (Evaluation)

4. Software security, safety, and hazard analysis issues
Identify, review, and evaluate various factors related to software security, safety-
critical software, and hazard analyses. Identify and describe rationales for developing
safety plans and for implementing hazard analyses. (Analysis)
[NOTE: The legal aspects of product safety are covered in I.D.2.]

V. SOFTWARE METRICS, MEASUREMENT, AND ANALYTICAL METHODS (24 Questions)
A. Metrics and measurement theory

1. Definitions
Define, describe, and explain various terms related to metrics and measurement,
including error, reliability, internal vs. external validity, explicit vs. derived measures,
etc. (Comprehension)

2. Basic measurement theory and techniques
Define, describe, and use basic measurement scales (nominal, ordinal, ratio, interval),
the central limit theorem and related terms, including mean, median, mode, standard
deviation, variance, etc. (Application)

3. Psychology of metrics
Define and describe various uses of metrics. Compare and contrast how metrics affect
people and how people affect metrics. (Comprehension)

B. Process and product measurement
1. Process, product, and resource metrics

Describe and use various metrics to assess processes, products, and resources.
(Application)

2. Commonly used metrics
Define and use metrics to measure various aspects of software, including software
complexity, lines of code (LOC), non-commented lines of code (NCLOC), design
defects, requirements volatility, system performance, etc. (Application)
[NOTE: Code coverage metrics are covered in VI.D.4.]

3. Software quality attributes
Identify and describe various criteria for measuring attributes such as maintainability,
verifiability, reliability, usability, reusability, testability, expandability, etc.
(Comprehension)

4. Defect detection effectiveness measures
Define, describe, and use defect detection measures such as cost, yield, customer
impact, etc., and track their effectiveness. (Application)

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 19 of 40

5. Program performance and process effectiveness
Identify and use various methods of examining performance and effectiveness.
(Analysis)

C. Analytical techniques
1. Data integrity

Define, use, and interpret various techniques to ensure the quality of metrics data, its
accuracy, completeness, timeliness, etc. (Synthesis)

2. Quality tools
Define, select, and use quality analysis and problem-solving tools such as flow charts,
Pareto charts, cause and effect diagrams, check sheets, scatter diagrams, control (run)
charts, histograms, root cause analysis, affinity diagrams, tree diagrams, process
decision program charts (PDPCs), matrix diagrams, interrelationship digraphs,
prioritization matrices, activity network diagrams. (Analysis)

3. Sampling theory and techniques
Describe, differentiate, and analyze various sampling techniques for use in auditing,
testing, product acceptance, etc. (Analysis)

VI. SOFTWARE VERIFICATION AND VALIDATION (V&V) (24 Questions)
A. Theory

1. V&V planning procedures and tasks
Identify and select various methods for verification and validation, including static
analysis, structural analysis, mathematical proof, simulation, etc. Identify and analyze
which tasks should be iterated as a result of proposed or completed modifications.
(Synthesis)

2. V&V program
Describe and analyze methods for managing and reviewing a V&V program,
including technical accomplishments, resource utilization, program status, etc.
(Analysis)

3. Evaluating software products and processes
Analyze and select various ways of evaluating documentation, source code, test and
audit results, etc., to determine whether user needs and project objectives have been
satisfied. (Synthesis)

4. Interfaces
Identify various interfaces used with hardware, user, operator, and software
applications. (Comprehension)

B. Reviews and inspections
1. Types

Define, describe, and use various types of reviews and inspections, including desk-
checking, walk-throughs, Fagan and Gilb inspections, technical accomplishments,
resource utilization, future planning, etc. (Application)

2. Items
Identify, describe, and use various review and inspection items, including proposals,
project charters, specifications, code, tests, etc. (Application)

3. Processes
Define, describe, and use various review and inspection processes to examine
objectives, criteria, techniques, methods, etc. (Application)

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 20 of 40

4. Data collection, reports, and summaries
Define, describe, and use terms related to data collection, including preparation rates,
defect density yield, phase containment, etc. (Application)

C. Test planning and design
1. Types of tests [6B1]

Select, apply, and develop various types of test, including functional, performance,
regression, certification, environmental load, stress, worst case, perfective,
exploratory, etc. (Synthesis)

2. Test tools
Define and describe the application and capabilities of commonly used test tools such
as acceptance test suites, utilities (for memory, screen capture, string-finding, file
viewer, file comparison, etc.), and diagnostics (for hardware, software, configuration,
etc.). (Comprehension)

3. Test strategies
Identify, analyze, and apply various test strategies, including top-down, bottom-up,
black-box, white-box, simulation, automation, etc. (Synthesis)

4. Test design
Identify, describe, and apply various types of test design including fault insertion,
fault-error handling, equivalence class partitioning, boundary value, etc. (Application)

5. Test coverage of specifications
Identify, apply, and develop various test coverage specifications, including functions,
states, data and time domains, etc. (Synthesis)

6. Test environments
Identify various environments and use tools such as test libraries, drivers, stubs,
harnesses, etc., in those environments, and describe how simulations can be used in
test environments. (Synthesis)

7. Supplier components and products
Identify the common risks and benefits of incorporating purchased software into other
software products. Use various methods to test supplier components and products in
the larger system. (Application)

8. Test plans
Identify, describe, and apply methods for creating and evaluating test plans including
system, acceptance, validation, etc., to determine whether project objectives are being
met. (Application)

D. Test execution and evaluation
1. Test implementation

Define, describe, and use various implementation elements, including scheduling,
freezing, dependencies, V-model, error repair models, acceptance testing, etc.
(Application)

2. Test documentation
Define, describe, and use various documentation procedures, including defect
recording and tracking, test report completion metrics, trouble reports, input/output
specifications, etc. (Application)

3. Test Reviews
Describe, develop, and analyze various methods of reviewing test efforts, including
technical accomplishments, future planning, risk management, etc. (Synthesis)

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 21 of 40

4. Code coverage metrics
Define and apply various metrics including branch-to-branch, condition, domain,
McCabe's cyclomatic complexity, boundary, etc. (Application)
[NOTE: Other types of metrics are covered in V.B.2.]

5. Customer deliverables
Identify and select various methods for testing the accuracy of customer deliverables,
including packaged or downloaded products, license keys, user documentation,
marketing and training materials, etc. (Synthesis)

6. Severity of anomalies
Identify and select various methods for evaluating severity of anomalies in software
operations. (Evaluation)

VII. SOFTWARE CONFIGURATION MANAGEMENT (16 Questions)
A. Configuration infrastructure

1. Configuration management
Describe the roles and responsibilities of the configuration management group.
(Comprehension)

2. Library/repository processes
Define and identify processes used in a library system including dynamic, static,
controlled, etc., and their related procedures. (Comprehension)

3. Defect tracking and library tools
Define and describe configuration management tools used for defect tracking, library
management tools, etc. (Comprehension)

B. Configuration identification
1. Configuration items

Define, select, and use various items, including documentation, code interfaces,
training materials, customer-supplied equipment, etc. (Application)

2. Baselines
Define and identify when configuration baselines are created and used.
(Comprehension)

3. Configuration identification methods
Define and describe how these methods relate to schemes, naming conventions,
versions, serializations, etc. (Comprehension)

4. Software builds
Define and describe the primary purpose of software builds and their relation to
configuration management functions. Describe and use various methods for
controlling builds, including automation, new-version builds, etc. (Synthesis)

C. Configuration control
1. Item and baseline control

Define, describe, and apply various control processes, including version control,
traceability requirements, specifications, concurrent development, verifying
milestones, etc. (Application)

2. Proposed modifications
Describe how to assess proposed modifications, enhancements, or additions in terms
of their impact on an existing or planned system. (Comprehension)

3. Review and configuration control boards (CCBs)

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 22 of 40

Define, describe, and differentiate the roles and responsibilities of and procedures
used by these boards. (Application)

4. Concurrent development
Describe how configuration management control principles can be used in concurrent
development processes. (Application)

5. Traceability
Identify and apply various tools and methods for establishing and maintaining
traceability design, including backward and forward traceability, naming conventions,
etc., and explain how they are related to configuration management objectives.
(Application)
[NOTE: Traceability through product development is covered in III.B.3. The focus
for this area is on traceability and evolution of configuration items in code archives
and other configuration management elements.]

6. Version control
Define, describe, and use version control methods such as source code version
management and others, and how such methods can be used effectively by both small
and large development teams. (Application)

7. Configuration item interfaces
Define, describe, and apply management control processes for configuration item
interfaces. (Application)

D. Configuration status accounting
1. Status reporting

Describe various processes for establishing, maintaining, and reporting the status of
configuration items. (Comprehension)

2. Changes to configuration items and baselines
Describe the processes that should be used when changes are proposed to
configuration items and baselines. (Comprehension)

3. Documentation control
Define and describe related procedures for document distribution, approval, storage,
retrieval, revision, etc. (Comprehension)

E. Configuration audits
1. Functional configuration audit

Describe the primary purpose of these types of audits in relation to product
specifications and in contrast to physical configuration audits. (Comprehension)

2. Physical configuration audit
Describe the primary purpose of these types of audits in relation to product
specifications and in contrast to functional configuration audits. (Comprehension)

F. Release and distribution issues
1. Product release process issues

Identify and describe product release issues such as planning, scheduling, hardware
and software dependencies, etc. (Comprehension)

2. Packaging, production, and distribution
Define and describe these components in relation to product release requirements and
related issues. (Knowledge)

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 23 of 40

Mapping of 2002 CSQE BOK with the 1996 BOK7

CSQE BOK 2002 CSQE BOK 1996
I. General Knowledge, Conduct and

Ethics (16 Questions)
I. General Knowledge, Conduct and Ethics

(24 Questions)
I.A. Quality philosophy and principles I.B. Quality Philosophies and Principles
I.A.1. Benefits of software quality I.B.1. Benefits of software quality

[No similar topic found in BOK 2002] I.B.2. Quality philosophies (e.g., Juran, Deming,
Crosby)

I.A.2. Prevention vs. detection I.B.3. Prevention vs. Detection philosophies
[No similar topic found in BOK 2002] I.B.4. Software Total Quality Management

principles and applications
I.A.3. Organizational and process
benchmarking

I.B.5. Organization and process benchmarking (i.e.,
identifying, analyzing, and modeling best practices)

I.B. Standards, specifications, and models I.A. Standards
I.B. Standards, specifications, and models
- Identify and use software process and
assessment models including ISO 9001,
ISO 15504, IEEE software standards,
IEEE/EIA 12207, SEI Capability Maturity
Model Integrated (CMMI), etc., in a
variety of situations.

I.A.1. Domestic and international standards and
specifications (e.g., ISO 9000, IEEE, Human
Factors and Ergonomics Society, graphical user
interface guidelines)
I.A.2. Software quality and process initiatives,
ventures, and consortia (e.g., SEI, SPICE,
bootstrap, ESPRIT)

I.C. Leadership tools and skills I.C. Organizational and Interpersonal Techniques
I.C.1 Organizational leadership
I.C.2. Team management
I.C.4. Facilitation skills

I.C.5. Facilitation (e.g., team management,
customer-supplier relationships)

I.C.1 Organizational leadership
I.C.2. Team management
I.C.3 Team Tools
I.C.4. Facilitation skills

I.C.6. Principles of team leadership and facilitation

I.C.1 Organizational leadership
I.C.2. Team management
I.C.4. Facilitation skills

I.C.7. Meeting management

I.C.1 Organizational leadership
I.C.2. Team management
I.C.4. Facilitation skills

I.C.8. Conflict resolution

I.C.1 Organizational leadership
I.C.2. Team management

I.C.9. Organization and implementation of various
types of quality teams

I.C.5. Communication skills I.C.1. Verbal communication and presentation
I.C.2. Written communication
I.C.3. Effective listening
I.C.4. Interviewing

7 Copyright © 2002 Quality Council of Indiana

Reprinted with permission. All rights reserved.

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 24 of 40

CSQE BOK 2002 CSQE BOK 1996
I.D. Ethical conduct and professional
development

I.E. Professional Conduct and Ethics
II.C. Organizational and Professional Software
Quality Training

I.D.1. ASQ Code of Ethics I.E.1. ASQC Code of Ethics
I.E.2. Conflict of interest issues for a software
quality engineer
I.E.3. Ethical issues involving software product
licensing

I.D.2. Software liability and safety issues I.E.4. Legal issues involving software product
liability and safety (e.g., negligence, customer
notification, recall, regulations)

I.D.3. Professional training and
development

II.C.1. Quality training subject areas (e.g.,
inspection, testing, configuration management,
project management)
II.C.2. Available training resources, materials, and
providers
II.C.3. Professional societies, technical associations,
and organizations for software quality engineers

II. Software Quality Management
(30 Questions)

II. Software Quality Management
(16 Questions)

II.A. Goals and Objectives II.A. Planning
II.A.1. Quality goals and objectives
II.A.3. Planning

II.A.1. Product and project software quality goals
and objectives

II.A.2. Outsourced Services IV.A.6. Supplier management methodologies
II.A.3. Planning II.A.3. Quality and customer support activities
II.A.4. Software quality management
(SQM) systems documentation

[New topic in BOK 2002]

II.A.5. Customer requirements II.A.2. Customer requirements for quality
II.B. Methodologies II.B. Tracking
II.B. Change methodologies III.B. Process and Technology Change

Management
II.B.1. Review, inspection, and testing III.A.3. Defect prevention, detection, and removal

methods
II.B.2. Change management methods III.B.1. Software process and technology change

management theory and methods
[No similar topic found in BOK 2002] III.B.2. Process maturity models
[No similar topic found in BOK 2002] III.B.3. Software process assessment and

evaluation techniques
[No similar topic found in BOK 2002] III.B.4. Software process modeling (e.g., entry and

exit criteria, task definition, feedback loops)
II.B.3. Cost of Quality (COQ) IV.B.3. Cost of Quality categories (e.g., prevention,

appraisal, internal failure, external failure)

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 25 of 40

CSQE BOK 2002 CSQE BOK 1996
II.B.4. Quality data tracking II.B.1. Scope and objectives of quality information

systems
II.B.2. Categories of quality data and their uses
II.B.4. Techniques for implementing information
systems to track quality-related data
II.B.5. Records and data collection, storage,
maintenance, and retention

II.B.5. Problem reporting and corrective
action procedures

II.B.3. Problem reporting and corrective action
procedures (e.g., software defects, process
nonconformances)

II.B.6. Quality improvement processes III.A.3. Defect prevention, detection, and removal
methods
I.B.3. Prevention vs. Detection philosophies
III.B.6. Barriers to the implementation or success
of quality improvement efforts and quality systems

II.C. Audits VII. Software Audits (16 Questions)
II.C.1. Program development and
administration - Identify roles and
responsibilities for various audit
participants, including team leader, team
members, auditee, auditor, etc.

VII.C. Audit Planning
VII.C.1. Audit team member responsibilities
VII.C.2. Management (auditee and auditor)
responsibilities concerning audits
VII.C.3. Hosting external audits

II.C.1. Program development and
administration - Identify roles and
responsibilities for various audit
participants, including team leader, team
members, auditee, auditor, etc.

VII.C.4. Audit program development and
administration
VII.B.4. Audit process (e.g., objectives, criteria,
techniques and methods, participant roles)

[No similar topic found in BOK 2002] VII.C.5. Auditing requirements (e.g., industry and
government standards)

II.C.2 Audit preparation and execution VII.A. Audit Types
VII.B. Audit Methodology

II.C.2 Audit preparation and execution –
(a) Define and distinguish between
various audit types, including process,
compliance, supplier, system, etc.

VII.A.1. Performing internal audits (e.g., quality
system, product, process, project, customer)
VII.A.2. Performing external audits (e.g., supplier
qualifications, certification of supplier systems,
auditing testing done by independent agencies)
VII.B.1. Purpose, objectives, frequency, and criteria
of the overall audit program and individual software
audits

II.C.2 Audit preparation and execution –
(b) Define and describe various steps in
the audit process, from scheduling the
audit through the closing meeting and
subsequent follow-up activities.

VII.B.3. Audit steps (planning, preparation,
execution reporting, corrective action, verification,
follow-up)

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 26 of 40

CSQE BOK 2002 CSQE BOK 1996
II.C.2 Audit preparation and execution –
(c) Define and identify various tools and
procedures used in conducting audits.

VII.B.2. Procedures, tools, and issues related to
conducting audits in specific areas (e.g., software
development, project management, configuration
management)

II.C.3 Audit reporting and follow-up –
Identify, describe, and apply the steps of
audit reporting and follow up, including
the need for and verification of corrective
action.

VII.B.3. Audit steps (planning, preparation,
execution reporting, corrective action, verification,
follow-up)

III. Software Engineering Processes
(26 Questions)

III. Software Processes (24 Questions)

III.A. Environmental Conditions III.A. Development and Maintenance Methods
III.A.1. Software development procedures

III.A.1. Life cycles III.A.2. Life cycle or process models, e.g.
waterfall, spiral, etc.

III.A.2. Systems Architecture [New topic in BOK 2002]
III.B. Requirements Management [New topic in BOK 2002]
III.B.1. Requirements prioritization and
evaluation

VI.C.5 Methods for evaluating requirements for
correctness, consistency, completeness, and
testability

III.B.2. Requirements change
management

VI.C.9 Methods for assessing all proposed
modifications, enhancements, or additions to
determine the effect each change will have on the
system

III.B.3. Bi-directional requirements
traceability

VI.B.13 Traceability mechanisms (e.g., system
verification diagrams)
VI.C.3 Methods for evaluating software life cycle
products and processes (e.g., physical traces,
documentation, source code, plans, test and audit
results) to determine if user needs and project
objectives are satisfied
VI.C.4 Methods for performing requirements
traceability (e.g., requirements to design, design to
code)

III.C. Requirements Engineering III.A. Development and Maintenance Methods
III.C.1. Requirement types
III.C.3. Requirements analysis and
modeling

III.A.4. Requirement analysis and specification
methods (e.g., data flow diagram, entity-
relationship diagram)

III.C.2. Requirements elicitation III.A.5. Requirements elicitation methods and
techniques (e.g., Quality Function Deployment,
Joint Application Development, context-free
questioning, needs analysis, focus groups)

III.C.4. System and Software
Requirements Specifications

[New topic in BOK 2002]

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 27 of 40

CSQE BOK 2002 CSQE BOK 1996
III.D. Analysis, Design, and Development
Methods and Tools

III.A. Development and Maintenance Methods

III.D.1. Software design methods
Define and use various design methods,
including object-oriented analysis and
design (OOAD), structured analysis and
design (SAD), unified modeling language
(UML), etc. Identify the steps used in
program design and explain their uses.

III.A.6. Software design methods (e.g., structured
analyses and design, Jackson Design method,
Warnier-Orr method, object-oriented)
 - Information Domain
 - Structured Analysis
 - Warnier-Orr method
 - Jackson Design method
 - Object Oriented

III.D.2. Types of software reuse III.A.7. Issues related to reuse, re-engineering, and
reverse engineering

III.D.3. Clean room and other formal
methods

III.A.3. Defect Prevention Methods – Clean room
and defect prevention

III.D.3. Clean room and other formal
methods
III.D.4. Software development tools

III.B.5 Software environments (e.g., development
methodologies, tools, data, infrastructure)

III.E. Maintenance Management III.A. Development and Maintenance Methods
III.E.1. Maintenance types
III.E.2. Operational maintenance

III.A.8. Maintenance processes (e.g., re-
engineering, reverse engineering, change
management, retirement)

III.E.1. Maintenance types IV.A.4. Maintenance types (e.g., corrective,
adaptive, perfective)

III.E.2. Operational maintenance IV.A.5. Software maintenance and adaptability
program planning

IV. Program and Project Management
(24 Questions)

IV. Software Project Management
16 Questions)

IV.A. Planning IV.A. Planning
IV.A.1. Project planning elements IV.A.1. Project planning factors (e.g., quality, costs,

resources, deliverables, schedules)
IV.A.2. Goal-setting and deployment IV.A.3. Goal-setting and deployment

methodologies
IV.A.3. Project planning tools IV.A.2. Project planning methods and tools (e.g.,

work breakdown structures, documentation,
forecasting, estimation)
Estimating, WBS, Sizing
V.C.3. Commonly used metrics (e.g. complexity,
reliability, defect density, phase containment, size)
 - Boehm – Construction Cost Model (COCOMO)
 - Albrecht Function Points

IV.A.3. Project planning tools (e.g.
planning, cost estimating)
IV.B.3. Tracking elements and methods
(e.g. tracking, reporting)

IV.C.1. Project management tools (e.g., planning,
tracking, cost estimating, reporting)

IV.A.4. Cost and value data [New topic in BOK 2002]

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 28 of 40

CSQE BOK 2002 CSQE BOK 1996
IV.B. Tracking and Controlling IV.B. Tracking
IV.B.1. Phase transition control
techniques
IV.B.4. Project reviews

IV.B.1. Phase transitioning control techniques (e.g.,
reviews and audits, Gantt Charts, PERT, budgets)

IV.B.2. Interpreting and reporting cost of
quality (COQ) data

IV.B.2. Methods of collecting Cost of Quality data
IV.C.2. Methods of reporting Cost of Quality data

IV.B.3. Tracking elements and methods IV.B.4. Cost, progress, and deliverable tracking
(e.g., status reports, life cycle phase reports)

IV.C. Risk Management
IV.C.1. Risk management planning
methods

I.D.3. Risk management (e.g., project, product,
process)

[No similar topic found in BOK 2002] I.D.4. Problem-solving processes
IV.C.2. Risk probability [New topic in BOK 2002]
IV.C.3. Product release decisions IV.C.3. Trade-off involved in product release

decisions (e.g., cost, quality, schedule, customer,
test sufficiency, stability)

IV.C.4. Software security, safety, and
hazard analysis issues

II.A.4. Issues related to software security, safety,
and hazard analysis

V. Software Metrics, Measurement,
and Analytical Methods (24 Questions)

V. Software Metrics, Measurement and
Analytical Methods (24 Questions)

V.A. Metrics and measurement theory V.A. Measurement Theory
[No similar topic found in BOK 2002] V.A.1. Goal, question, metric paradigm for

selecting metrics
V.A.2. Basic measurement theory and
techniques

V.A.2. Basic measurement theory and techniques

V.A.1. Definitions V.A.3. Definitions of metrics and measures
[No similar topic found in BOK 2002] V.A.4. Designing measures

V.A.3. Psychology of metrics V.A.5. Psychology of metrics (e.g., how metrics
affect people and how people affect metrics)

V.B. Process and product measurement V.C. Software Measurement
[No similar topic found in BOK 2002] V.C.1. Prediction techniques of future

maintainability
V.B.1. Process, product, and resource
metrics

V.C.2. Applications of measurements to process,
product, and resources

V.B.2. Commonly used metrics V.C.3. Commonly used metrics (e.g. complexity,
reliability, defect density, phase containment, size)
 - Overview
 - Methodology
 - Halstead SW Science
 - Size – Lines of Code
 - DeMarco Bang

V.B.3. Software quality attributes V.C.4. Software quality attributes (e.g., reliability,
maintainability, usability, testability)

V.B.4. Defect detection effectiveness
measures

V.C.5. Defect detection effectiveness (e.g., cost
yield, escapes, customer impact)

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 29 of 40

CSQE BOK 2002 CSQE BOK 1996
V.B.5. Program performance and process
effectiveness

[New topic in BOK 2002]

V.C. Analytical techniques V.B. Analytical Techniques
V.C. Analytical Techniques I.D. Problem-Solving Tools and Processes
V.C.1. Data integrity V.B.1. Issues involving data integrity,

completeness, accuracy, and timeliness
V.C.2. Quality tools V.B.2. Basic statistical concepts and graphical

techniques for analysis and presentation of software
data (e.g., distributions, confidence intervals,
statistical inference)
V.B.3. Quality analysis tools (Pareto chart, Flow
charts, Control charts, Check sheets, Scatter
diagrams, histograms)

V.C.2. Quality tools I.D.1. Root cause analysis
I.D.2. Tools (e.g., affinity diagram, tree diagram,
matrix diagram, interrelationship digraph,
prioritization matrix, activity network diagram)

V.C.3. Sampling theory and techniques V.B.4. Sampling theory and techniques as applied
to audits, testing, and product acceptance

VI. Software Verification and
Validation (V&V) (24 Questions)

VI. Software Inspection, Testing, Verification
and Validation (24 Questions)

VI.A. Theory VI.C. Verification and Validation (V & V)
VI.A.1. V&V planning procedures and
tasks – (a) Identify and select various
methods for verification and validation,
including static analysis, structural
analysis, mathematical proof, simulation,
etc.

VI.C.1 V & V planning procedures

VI.A.1. V&V planning procedures and
tasks – (b) Identify and analyze which
tasks should be iterated as a result of
proposed or completed modifications.

VI.C.10 Methods for determining which V&V tasks
should be iterated based upon proposed
modifications and enhancements

VI.A.2. V&V program VI.C.2 Methods for reviewing V & V program
(e.g., technical accomplishments, resource
utilization, future planning, risk management,
impact analysis of proposed changes)

VI.A.3. Evaluating software products and
processes

VI.C.3 Methods for evaluating software life cycle
products and processes (e.g., physical traces,
documentation, source code, plans, test and audit
results) to determine if user needs and project
objectives are satisfied

VI.A.4. Interfaces VI.C.6 Methods for evaluating interfaces with
hardware, user, operator, and other software
applications

VI.B. Reviews and inspections VI.A. Inspection

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 30 of 40

CSQE BOK 2002 CSQE BOK 1996
VI.B.1. Types VI.A.1. Inspection types (e.g., peer reviews,

inspections, walk-throughs)
VI.A.4. Methods for reviewing inspection efforts
(e.g., technical accomplishments, resource
utilization, future planning)

VI.B.2. Items [New topic in BOK 2002]
VI.B.3. Processes VI.A.2. Inspection process (e.g., objectives, criteria,

techniques and methods, participant roles)
VI.B.4. Data collection, reports, and
summaries

VI.A.3. Inspection data collection, reports, and
summaries

VI.C. Test planning and design VI.B. Testing
VI.C.1. Types of tests VI.B.1 Types of tests (e.g., functional, performance,

usability, stress, regression. real-time response)
VI.B.2 Test Levels (e.g., unit, integration, system,
field)

VI.C.2. Test tools
VI.C.6. Test environments

VI.B.7 Test environments (e.g., tools and
methodologies, test libraries, drivers/stubs,
equipment compatibility test laboratories)

VI.C.3. Test strategies VI.B.3 Test strategies (e.g., top down, bottom up,
automated testing, I/0 first, beta testing, black box,
white box)

VI.C.4. Test design VI.B.4 Test design (e.g., test cases, fault insertion
and error handling, equivalence class partitioning,
usage scenarios, customer defect reports)

VI.C.5. Test coverage of specifications VI.B.6 Test coverage of specifications (e.g.,
functions, states, data and time domains,
localization, internationalization)

VI.C.7. Supplier components and products VI.B.11 Methods for testing supplier components
and products

VI.C.8. Test plans VI.C.7 Methods for evaluating test plans (e.g.,
system acceptance, validation) to determine if
software satisfies software and system objectives

VI.D. Test execution and evaluation VI.B. Testing
VI.D.1. Test implementation VI.B.9 Test management (e.g., scheduling,

freezing, resources, dependencies, analysis of test
results)

VI.D.2. Test documentation VI.B.8. Test documentation (e.g., test plans, logs,
test designs, defect recording, test reports)

VI.D.3. Test reviews VI.B.10 Methods for reviewing testing efforts (e.g.,
technical accomplishments, resource utilization,
future planning, risk management)

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 31 of 40

CSQE BOK 2002 CSQE BOK 1996
VI.D.4. Code coverage metrics V.C.3. Commonly used metrics (e.g. complexity,

reliability, defect density, phase containment, size)
- McCabe’s Cyclomatic Complexity
VI.B.5 Test coverage of code (e.g., branch-to-
branch, path, individual predicate, data)

VI.D.5. Customer deliverables VI.B.12 Methods for testing the accuracy of
customer deliverables including user
documentation, marketing and training materials

VI.D.6. Severity of anomalies VI.C.8 Methods for evaluating the severity of
anomalies in software operation

VII. Software Configuration
Management (16 Questions)

VIII. Software Configuration Management
(16 Questions)

VII.A. Configuration infrastructure [New topic in BOK 2002]
VII.A.1. Configuration management [New topic in BOK 2002]
VII.A.2. Library/repository processes VIII.A.3. Library control procedures
VII.A.3. Defect tracking and library tools VIII.A.5. Configuration management tools
VII.B. Configuration identification VIII.A. Planning and Configuration Identification
VII.B.1. Configuration items
VII.B.2. Baselines

VIII.A.1. Technical and managerial factors that
guide software product partitioning into
configuration items and components

VII.B.3. Configuration identification
methods
VII.B.2. Baselines

VIII.A.4. Configuration identification methods
(e.g., schemes, reidentification, naming
conventions, versions and serialization, baselines)

VII.B.4 Software builds VIII.B.2. Patching issues (e.g., testing, traceability,
source updating)

VII.C. Configuration control VIII.B. Configuration Control, Status Accounting,
and Reporting

VII.C.1. Item and baseline control [New topic in BOK 2002]
VII.C.2. Proposed modifications VI.C.9 Methods for assessing all proposed

modifications, enhancements, or additions to
determine the effect each change will have on the
system
VIII.B.3. Trade-offs between cost, cycle time, and
integrity of software product and rigor and
formality of change control
VIII.B.6. Techniques for assessing impacts of
proposed software changes

VII.C.3. Review and configuration control
boards (CCBs)

VIII.B.5. Software configuration/change control
board processes

VII.C.4. Concurrent development [New topic in BOK 2002]
VII.C.5. Traceability [New topic in BOK 2002]
VII.C.6. Version control VIII.B.4. Source and object code control procedures
VII.C.7. Configuration item interfaces [New topic in BOK 2002]
VII.D. Configuration Status Accounting VIII.B. Configuration Control, Status Accounting,

and Reporting

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 32 of 40

CSQE BOK 2002 CSQE BOK 1996
VII.D.1. Status reporting [New topic in BOK 2002]
VII.D.2. Changes to configuration items
and baselines

[New topic in BOK 2002]

VII.D.3. Documentation control VIII.B.1. Documentation control (e.g., issuing,
approval, storage, retrieval, revision)

VII.E. Configuration Audits [New topic in BOK 2002]
VII.E.1. Functional configuration audit
VII.E.2. Physical configuration audit

VII.A.3. Functional and physical configuration
audits
 - Functional
 - Physical

VII.F. Release and distribution issues [New topic in BOK 2002]
VII.F.1. Product release process issues VIII.A.2. Release process issues (e.g., supporting

multiple versions, feature vs. corrective releases,
hardware and software dependencies)

VII.F.2. Packaging, production, and
distribution

[New topic in BOK 2002]

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 33 of 40

Software Quality Engineer Certification (CSQE)
References8

The technical content and test questions for the CSQE are derived from the listed reference
materials. The list shows the references by subject area. References are repeated for each
relevant area. A list of general reference material follows the last subject area.

General Knowledge, Conduct, and Ethics

ANSI/ISO/IEE TICKIT Guidelines

Humphrey, Watts. Managing the Software Process, Addison-Wesley, 1989.

Juran, Joseph M., Juran on Quality by Design: The New Steps for Planning Quality into
Goods and Services, New York: McGraw-Hill1992.

Juran, Joseph M., The Quality Control Handbook, 4th ed., New York: McGraw-Hill, 1988.

Juran, Joseph M., Juran’s Quality Handbook, 5th ed., New York: McGraw-Hill, 1999.

Kan, Stephen H., Metrics and Models in Software Quality Engineering, 3rd ed., Kansas:
Addison-Wesley, 1995.

Kaner, Cem, Jack Falk, and Hung Quoc Nguyen, Testing Computer Software, 2nd ed., New
York: Van Nostrand Reinhold, 1999.

Pressman, Roger S., A Manager’s Guide to Software Engineering, New York: McGraw-Hill,
1992. ISBN 0070508208

Pressman, Roger S., Software Engineering: A Practitioner’s Approach, 5th ed., New York:
McGraw-Hill, 2000.

Russell, J.P., and Terry Regel, After the Quality Audit: Closing the Loop on the Audit
Process, 2nd ed., Milwaukee: ASQ Quality Press, 2000.

Scholtes, Peter R., The Team Handbook, 2nd ed., Revised Madison, Wisconsin: Joiner
Associates, 1996.

Schulmeyer, G. Gordon, and James I. McManus, Handbook of Software Quality Assurance,
3rd ed., Upper Saddle River, NJ: Prentice Hall, 1999.

8 Copyright © 2002 American Society for Quality. All rights reserved.
These books cover significant parts of the Body of Knowledge.
The ASQ Certification Board does not endorse any one particular reference source.

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 34 of 40

Software Quality Management

Arter, Dennis, Quality Audits for Improved Performance, 2nd ed., Milwaukee: ASQC
Quality Press, 1994.

Demarco, Tom, Controlling Software Projects: Management, Measurement, and Estimation,
NY: Yourdon Press, 1982. ISBN 0917072324.

Dobbins, James H., Software Quality Assurance and Evaluation ASQC Quality Press, 1990.
ISBN 0873890590

Dunn, Robert H., Software Quality: Concepts & Plans, Englewood Cliffs, NJ: Prentice Hall,
1990. ISBN 0138202834

Gryna, Frank M., Quality Planning and Analysis: From Product Development through Use,
Boston, MA: McGraw-Hill, 2001.

Humphrey, Watts, Managing the Software Process, Massachusetts: Addison-Wesley, 1989.

Humphrey, Watts, A Discipline for Software Engineering, Massachusetts: Addison-Wesley,
1995. ISBN 0201546108

Juran, Joseph M., and Frank M. Gryna, Quality Planning and Analysis, 3rd ed., New York:
McGraw-Hill Publishing Co., 1993. ISBN 0070331839

Juran, Joseph M., The Quality Control Handbook, 4th ed., New York: McGraw-Hill, 1988.

Juran, Joseph M., Juran’s Quality Handbook, 5th ed., New York: McGraw-Hill, 1999.

Kan, Stephen H., Metrics and Models in Software Quality Engineering, 3rd ed., Kansas:
Addison-Wesley, 1995.

Kaner, Cem, Jack Falk, and Hung Quoc Nguyen, Testing Computer Software, 2nd ed., New
York: Van Nostrand Reinhold, 1999.

Paulk, Mark C., et al. The Capability Maturity Model—Guidelines for Improving the
Software Process, Carnegie Mellon University Software Engineering Institute, 1995.

Pressman, Roger S., A Manager’s Guide to Software Engineering, New York: McGraw-Hill,
1992. ISBN 0070508208

Pressman, Roger S., Software Engineering: A Practitioner’s Approach, 5th ed., New York:
McGraw-Hill, 2000.

Russell, J.P., ed., ASQ Quality Audit Division, The Quality Audit Handbook, 2nd ed.,
Milwaukee: ASQ Quality Press, 2000.

Schulmeyer, G. Gordon, and James I. McManus, Handbook of Software Quality Assurance,
3rd ed., Upper Saddle River, NJ: Prentice Hall, 1999. P759

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 35 of 40

Software Engineering Processes

Arter, Dennis, Quality Audits for Improved Performance, 2nd ed., Milwaukee: ASQC
Quality Press, 1994.

Booch, Grady, Objected-Oriented Analysis and Design with Applications 2nd ed., CA:
Benjamin/Cummings Publishing Co., 1994. ISBN 0805353402

Booch, Grady, et al., Unified Modeling Language User's Guide Ed 1 Massachusetts:
Addison-Wesley, 1999. ISBN 0201571684

Dunn, Robert H., Software Quality: Concepts & Plans, Englewood Cliffs, NJ: Prentice Hall,
1990. ISBN 0138202834

Dunn, Robert H., and Richard S. Ullman, TQM for Computer Software (System Design and
Implementation) 2nd ed.,: McGraw-Hill, 1994. ISBN 0070183147

Humphrey, Watts, Managing the Software Process, Massachusetts: Addison-Wesley, 1989.

Humphrey, Watts, A Discipline for Software Engineering, Massachusetts: Addison-Wesley,
1995. ISBN 0201546108

Juran, Joseph M., The Quality Control Handbook, 4th ed., New York: McGraw-Hill, 1988.

Juran, Joseph M., Juran’s Quality Handbook, 5th ed., New York: McGraw-Hill, 1999.

Kan, Stephen H., Metrics and Models in Software Quality Engineering, 3rd ed., Kansas:
Addison-Wesley, 1995.

Kaner, Cem, Jack Falk, and Hung Quoc Nguyen, Testing Computer Software, 2nd ed., New
York: Van Nostrand Reinhold, 1999.

McConnell, Steve, Rapid Development, Washington: Microsoft Press, 1996. ISBN
1556159005

Paulk, Mark C., et al. The Capability Maturity Model—Guidelines for Improving the
Software Process, Carnegie Mellon University Software Engineering Institute, 1995.

Pressman, Roger S., A Manager’s Guide to Software Engineering, New York: McGraw-Hill,
1992. ISBN 0070508208

Pressman, Roger S., Software Engineering: A Practitioner’s Approach, 5th ed., New York:
McGraw-Hill, 2000.

Rumbaugh, James, et al., Object-oriented Modeling and Design, NJ: Prentice Hall, 1991.
ISBN 0136298419

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 36 of 40

Scholtes, Peter R., The Team Handbook, 2nd ed., revised Madison, Wisconsin: Joiner
Associates, 1996.

Schulmeyer, G. Gordon, and James I. McManus, Handbook of Software Quality Assurance,
3rd ed., Upper Saddle River, NJ: Prentice Hall, 1999.

Tingey, Michael, Comparing ISO 900,0 Malcolm Baldrige, and SEI CMM for Software,
Prentice Hall, 1997. ISBN 0133762602

Program and Project Management

Booch, Grady. Object Solutions: Managing the Object-Oriented Project, CA: Addison-
Wesley Publishing Co., Inc., 1996. ISBN 0805305947

Dunn, Robert H., Software Quality: Concepts & Plans, Englewood Cliffs, NJ: Prentice Hall,
1990. ISBN 0138202834

Futrell, Robert T., Donald F. Shafer, and Linda I. Shafer, Quality Software Project
Management, New Jersey: Prentice Hall, 2002. ISBN 0130912972

Gryna, Frank M., Quality Planning and Analysis: From Product Development through Use,
Boston, MA: McGraw-Hill, 2001.

Humphrey, Watts. Managing the Software Process, Massachusetts: Addison-Wesley, 1989.

Juran, Joseph M., and Frank M. Gryna, Quality Planning and Analysis, 3rd ed., New York:
McGraw-Hill Publishing Co., 1993. ISBN 0070331839

Juran, Joseph M., The Quality Control Handbook, 4th ed., New York: McGraw-Hill, 1988.

Juran, Joseph M., Juran’s Quality Handbook, 5th ed., New York: McGraw-Hill, 1999.

Kan, Stephen H., Metrics and Models in Software Quality Engineering, 3rd ed., Kansas:
Addison-Wesley, 1995.

Kaner, Cem, Jack Falk, and Hung Quoc Nguyen, Testing Computer Software, 2nd ed., New
York: Van Nostrand Reinhold, 1999.

King, David, Project Management Made Simple: A Guide to Successful Management of
Computer Systems Projects, New Jersey: Yourdon Press, 1992. ISBN 0137177291

Paulk, Mark C., et al. The Capability Maturity Model—Guidelines for Improving the
Software Process, Carnegie Mellon University Software Engineering Institute, 1995.

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 37 of 40

Pressman, Roger S., A Manager’s Guide to Software Engineering, New York: McGraw-Hill,
1992. ISBN 0070508208

Pressman, Roger S., Software Engineering: A Practitioner’s Approach, 5th ed., New York:
McGraw-Hill, 2000.

Schulmeyer, G. Gordon, and James I. McManus, Handbook of Software Quality Assurance,
3rd ed., Upper Saddle River, NJ: Prentice Hall, 1999.

Software Metrics, Measurement, and Analytical Methods

ANSI/ISO/IEE TICKIT Guidelines

Dunn, Robert H., Software Quality: Concepts & Plans, Englewood Cliffs, NJ: Prentice Hall,
1990. ISBN 0138202834

Dunn, Robert H., Software Defect Removal, NY: McGraw-Hill, 1984. ISBN 0070183139

Dunn, Robert H., and Richard S Ullman, TQM for Computer Software (System Design and
Implementation) 2nd ed., McGraw Hill, 1994. ISBN 0070183147

Humphrey, Watts. Managing the Software Process, Massachusetts: Addison-Wesley, 1989.

Humphrey, Watts, A Discipline for Software Engineering, Massachusetts: Addison-Wesley,
1995. ISBN 0201546108

Juran, Joseph M., The Quality Control Handbook, 4th ed., New York: McGraw-Hill, 1988.

Juran, Joseph M., Juran’s Quality Handbook, 5th ed., New York: McGraw-Hill, 1999.

Kan, Stephen H., Metrics and Models in Software Quality Engineering, 3rd ed., Kansas:
Addison-Wesley, 1995.

Pressman, Roger S., A Manager’s Guide to Software Engineering, New York: McGraw-Hill,
1992. ISBN 0070508208

Pressman, Roger S., Software Engineering: A Practitioner’s Approach, 5th ed., New York:
McGraw-Hill, 2000.

Scholtes, Peter R., The Team Handbook, 2nd ed., Revised Madison, Wisconsin: Joiner
Associates, 1996.

Schulmeyer, G. Gordon, and James I. McManus, Handbook of Software Quality
Assurance, 3rd ed., Upper Saddle River, NJ: Prentice Hall, 1999.

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 38 of 40

Software Verification and Validation

Dobbins, James H., Software Quality Assurance and Evaluation ASQC Quality Press, 1990.
ISBN 0873890590

Dunn, Robert H., Software Defect Removal, NY: McGraw-Hill, 1984. ISBN 0070183139

Dunn, Robert H., and Richard S Ullman, TQM for Computer Software (System Design and
Implementation) 2nd ed., McGraw Hill, 1994. ISBN 0070183147

Humphrey, Watts. Managing the Software Process, Massachusetts: Addison-Wesley, 1989.

Juran, Joseph M., The Quality Control Handbook, 4th ed., New York: McGraw-Hill, 1988.

Juran, Joseph M., Juran’s Quality Handbook, 5th ed., New York: McGraw-Hill, 1999.

Kan, Stephen H., Metrics and Models in Software Quality Engineering, 3rd ed., Kansas:
Addison-Wesley, 1995.

Kaner, Cem, Jack Falk, and Hung Quoc Nguyen, Testing Computer Software, 2nd ed., New
York: Van Nostrand Reinhold, 1999.

Myers, Glenford J., The Art of Software Testing, 1st ed., New York: John Wiley & Sons,
1979. ISBN 0471043281

Myers, Glenford J., Software Reliability: Principles and Practices, NY: Wiley, 1976. ISBN
0471627658

Pressman, Roger S., A Manager’s Guide to Software Engineering, New York: McGraw-Hill,
1992. ISBN 007-0508208

Pressman, Roger S., Software Engineering: A Practitioner’s Approach, 5th ed., New York:
McGraw-Hill, 2000.

Schulmeyer, G. Gordon, and James I. McManus, Handbook of Software Quality Assurance,
3rd ed., Upper Saddle River, NJ: Prentice Hall, 1999.

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 39 of 40

Software Configuration Management

ANSI/ISO/IEE TICKIT Guidelines

Dobbins, James H., Software Quality Assurance and Evaluation ASQC Quality Press, 1990.
ISBN 0873890590

Dunn, Robert H., Software Quality: Concepts & Plans, Englewood Cliffs, NJ: Prentice Hall,
1990. ISBN 0138202834

Dunn, Robert H., Software Defect Removal, NY: McGraw-Hill, 1984. ISBN 0070183139

Dunn, Robert H., and Richard S Ullman, TQM for Computer Software (System Design and
Implementation) 2nd ed., McGraw Hill, 1994. ISBN 0070183147

Humphrey, Watts. Managing the Software Process, Massachusetts: Addison-Wesley, 1989.

Juran, Joseph M., The Quality Control Handbook, 4th ed., New York: McGraw-Hill, 1988.

Juran, Joseph M., Juran’s Quality Handbook, 5th ed., New York: McGraw-Hill, 1999.

Kan, Stephen H., Metrics and Models in Software Quality Engineering, 3rd ed., Kansas:
Addison-Wesley, 1995.

Osborne, Wilma M., Software Configuration Management: An Overview, Gaithersburg, MD:
US Dept. of Commerce, National Computer Systems Lab, NIST Special Publication,
500-161, 1989.

Paulk, Mark C., et al. The Capability Maturity Model—Guidelines for Improving the
Software Process, Carnegie Mellon University Software Engineering Institute, 1995.

Pressman, Roger S., A Manager’s Guide to Software Engineering, New York: McGraw-Hill,
1992. ISBN 0070508208

Pressman, Roger S., Software Engineering: A Practitioner’s Approach, 5th ed., New York:
McGraw-Hill, 2000.

Schulmeyer, G. Gordon, and James I. McManus, Handbook of Software Quality Assurance,
3rd ed., Upper Saddle River, NJ: Prentice Hall, 1999.

ASQ’s 2002 CSQE BOK International Quality Week 2002

Copyright 2002, Software Quality Methods, LLC. Page 40 of 40

General References

Brooks, Frederick P. Jr., The Mythical Man-Month: Essays on Software Engineering,
Massachusetts: Addison-Wesley Publishing Co., 1975. ISBN 0201006502

Daughtrey, Taz, ed., Fundamental Concepts for the Software Quality Engineer, ASQ Quality
Press, 2002. H1115

DeMarco, Tom, and Timothy Lister, Peopleware: Productive Projects and Teams, NY:
Dorset House Publishing Co, 1977. ISBN 0932633056

Escoe, Adrienne, The Practical Guide to People-Friendly Documentation, ASQ Quality
Press, 2001.

Lockheed Martin Advanced Concepts Center, Succeeding with the Booch and OMT
Methods: A Practical Approach, CA: Addison-Wesley, 1996. ISBN 0805322795

Rumbaugh, James, Ivar Jacobson, and Grady Booch, eds., The Unified Modeling Language
Reference Manual, CA: Addison-Wesley, 1999. ISBN 020130998X

Yourdon, Edward, Decline and Fall of the American Programmer, New Jersey: Prentice-
Hall, Inc., 1992. ISBN 0132036703

Yourdon, Edward, Rise and Resurrection of the American Programmer, New Jersey:
Prentice-Hall, Inc., 1998. ISBN 013956160

Panel Moderator: Dr. Selim Aissi

Panelists (alphabetically)

Mr. Don Adam, Principal Security Architect, TIBCO
Mr. Dale Moberg, Chief Architect, Cyclone Commerce
Mr. Mark O'Neill, CTO, Vordel
Mr. Narendra Patil, President & CEO, InfoLead

Panel Description

The team of Web Services leading experts will have a discussion about QoS and Security aspects of Web Services technologies. The
Panel discussion will be centered around this list of Web Services Reliability Indicators:

Security Aspects (authentication, authorization, privacy, integrity)
Functional, Regression, Stress, and Monitoring testing techniques
XML Validity
Messaging Validity (SOAP validity) and security
Service Discovery Performance
Web Services Availability
Web Services Load-Balancing and Workload-Partitioning

About the Panel

Dr. Selim Aissi has been involved in the development of Safety-Critical Embedded Systems in the R&D, military, automotive, and wireless
appliances for over twelve years. He worked at the University of Michigan, General Dynamics (M1A2 Abrams Battlefield Tank Division),
General Motors (Embedded Controller Excellence Center), Applied Dynamics International, and Intel Corporation. Dr. Aissi has played
several management and architecture roles at Intel, and he is currently a Senior Security Architect at Intel's Corporate Technology Group
in Hillsboro, Oregon, USA He serves as the Intel representative to several Web Services Standards Working Groups, including the OASIS
CPPA and the UDDI Technical Committees. He holds a Ph.D. in Aerospace Engineering from the University of Michigan.

Mr. Don Adam is Principal Security Architect for TIBCO Software. In this role he has oversight for security strategy and direction in all
products, services and solutions. He was previously CTO of TriStrata Inc. and Principal Architect - Security and Networks at Sun
Microsystems. Prior to Sun he served in the USAF as Chief of Intelligence Systems Engineering, Pacific Air Forces and Technology
Advisor - Air Force Intelligence Agency.

Mr. Dale Moberg has been involved in defining or enabling secure, distributed standards or systems for business collaboration since 1993.
He has been an editor, chair or author in IETF WGs (EDIINT), RosettaNet, OASIS, ebXML Messaging, Collaboration Profile Agreement,
Java Community Process JSR (JAXR and 157), and participates in several W3C working groups. Most of his activities have been
concerned with integrating security standards for B2B PKI based security operations, such as digital signatures for nonrepudiation of
origin and nonrepudiation of receipt. He is also interested in pragmatic approaches to getting different PKI infrastructures to work together
effectively, and to manage the PKI lifecycle. He is currently chair of the OASIS ebXML Joint Committee and also chair of the Collaboration
Protocol Profiles and Agreements Technical Committee. He works for Cyclone Commerce as Chief Architect. Prior to 1993, he taught in
colleges or universities for 10 years, and spent 7 years as a researcher at a university (object oriented modeling, distributed simulation,
and practical uses for knowledge representation).

Mr. Mark O'Neill is the CTO of Vordel, the producer of the VordelSecure product for Web Services security. Mark's security background
began in academic cryptography at Trinity College Dublin's School of Mathematics, then continued at Eirtrade Services Ltd, Ireland's
largest EDI value-added network, where Mark oversaw the migration of EDI services to the Internet, using crytography toolkits. Mark
founded Delphium Technologies to provide security programming to blue-chip clients, and then joined Vordel in May 2000. Mark is
published in XML Journal, Web Services Journal, and PriceWaterhouseCoopers Journal of Crypography, and is a frequent speaker at
security and XML conferences. Mark is the author of Web Services Security, a book to be published by McGraw-Hill in late 2002.

Mr. Narendra Patil is President & CEO of Infolead, Inc. responsible for strategic management, emerging technology product offerings,
product positioning, and R&D efforts. Mr. Patil is very actively involved in the product engineering efforts related to Infolead's ASQ
(Automated Software Quality) tools and is the key contributor to the product architecture. Before establishing Infolead, Mr. Patil came from
two premier organizations within Sun Microsystems, Inc., the JavaSoft and Developer Tools divisions, where he initiated and promoted the
development of key ASQ tools, which are being used very extensively. Mr. Patil holds a BS in Computer Science from India and MBA from
University of Phoenix, USA.

QW2002 Panel Session 8Q

Dr. Selim Aissi
Senior Security Architect

(Intel Corporation)

Web Services QoS, Reliability, And Security

Key Points

Introduces the concept of freeware licensing.
Surveys broad categories of freeware test tools.
Demonstrates a handful of freeware tools in action.

Presentation Abstract

A survey of the many freeware test tools that are available, including live demos of the most promising freewar tools.

About the Author

Danny R. Faught is an independent software quality consultant, calling his practice Tejas Software Consulting. He has been in the
industry for ten years. He has a BS in Computer Science from the University of North Texas. He is a senior member of the American
Society for Quality, and is also a member of the Project Management Institute and the Fort Worth Chamber of Commerce. Danny is the
maintainer of testingfaqs.org and is cofounder of the swtest-discuss mailing list. He serves on the Practicality Gauntlet for STQE
magazine. He speaks and writes frequently on software quality topics.

QW2002 Paper 9Q

Danny Faught
(Tejas Software Consulting)

A Survey of Freeware Test Tools

A Survey of Freeware
Test Tools
Danny R. Faught

Tejas Software Consulting
www.tejasconsulting.com

Quality Week 2002

Slide 2Quality Week 2002

© 2002 Danny R. Faught

Objectives

• Familiarize you with the types of test tools
that are available as freeware.

• Demonstrate a few of the tools in action.
• Point you to where you can find the tools

and use them for yourselves.

Slide 3Quality Week 2002

© 2002 Danny R. Faught

Topics du jour

• What is freeware?
– allpairs demo

• Scripting languages
– stress_driver demo

• Static analysis
– sloccount demo

• Unit testing
– MinUnit example

• Wrapup

Slide 4Quality Week 2002

© 2002 Danny R. Faught

What is
freeware?

Slide 5Quality Week 2002

© 2002 Danny R. Faught

“Freeware” is a broad term

• Freeware generally refers to any
software that can be used free of
charge
– Maybe binary-only, no source code available,

no support or documentation if there are
problems, no rights to redistribute

– Maybe open source, fully documented, with
rights granted to modify the source,
redistribute it, and even sell it, with both
commercial support and a broad user
community that can help with problems

Slide 6Quality Week 2002

© 2002 Danny R. Faught

Types of licenses

• No license specified
• Public domain
• Free (including copyleft, and

GPL-compatible)
• Open Source
• Custom
• Not freeware: shareware

Slide 7Quality Week 2002

© 2002 Danny R. Faught

Free software: four essential freedoms

• The freedom to run the program, for any
purpose (freedom 0).

• The freedom to study how the program works,
and adapt it to your needs (freedom 1). Access
to the source code is a precondition for this.

• The freedom to redistribute copies so you can
help your neighbor (freedom 2).

• The freedom to improve the program, and
release your improvements to the public, so that
the whole community benefits. (freedom 3).
Access to the source code is a precondition for
this.

(http://www.gnu.org/philosophy/free-sw.html)

Slide 8Quality Week 2002

© 2002 Danny R. Faught

Sample licenses

• GNU GPL & LGPL
• BSD template, with or without

advertising clause
• X11
• Artistic
• Apache License
• IBM Public License
• Mozilla Public License
• MIT License

Slide 9Quality Week 2002

© 2002 Danny R. Faught

allpairs demo

• Allpairs is a test design tool that helps you
design tests for pair-wise combinations of
features or configurations.

• Written by James Bach, Satisfice, Inc.
• Available at

http://satisfice.com/testmethod.shtml

Slide 10Quality Week 2002

© 2002 Danny R. Faught

Freeware references

• “What Flavor is Your Freeware?”
http://tejasconsulting.com/newsletter/2002June-
July.html#feature

• Free as in Freedom: Richard Stallman's Crusade for
Free Software, Sam Williams, 2002, ISBN
0-596-00287-4

• The Cathedral & the Bazaar, Eric S. Raymond,
1999, ISBN 1-56592-724-9

• Open Sources, Chris DiBona, Sam Ockman, &
Mark Stone, eds., 1999, ISBN 1-56592-582-3

• Open Source Approved licenses
http://opensource.org/licenses/

• GNU’s “Various Licenses and Comments about
Them”
http://www.fsf.org/licenses/license-list.html

Slide 11Quality Week 2002

© 2002 Danny R. Faught

Scripting
languages

Slide 12Quality Week 2002

© 2002 Danny R. Faught

Script language timeline

Includes information from “History of Scripting,”
http://scriptics.com/doc/scriptHistory.html

1964 1977 1979
1978

1988
1987

1991
1990

1995

Pe
rl

TC
L

Py
th

on
, E

xp
ec

t

Vi
su

al
Ba

sic
Ja

va
Sc

rip
t

Bo
ur

ne
 sh

ell
 &

 cs
h

RE
XX

AW
K

JC
L

1993

Ap
pl

eS
cr

ip
t,

Ru
by

1971

sh

1982

ks
h

1974

se
d

M
S-

DO
S

1981

Slide 13Quality Week 2002

© 2002 Danny R. Faught

Proprietary scripting languages

• JCL
• MS-DOS batch files
• Visual Basic
• AppleScript

Now on to the freeware…
(Many of those that follow have both
freeware and proprietary
incarnations.)

Slide 14Quality Week 2002

© 2002 Danny R. Faught

Unix shells

• sh
– Primitive versions appeared on an early

version of Unix
– The Bourne shell (by Stephen Bourne)

appeared in 1978

• Alternatives have been popping up
ever since, including:
csh, ksh, POSIX shell, bash, zsh, tcsh,
rc, with numerous variations of each

Slide 15Quality Week 2002

© 2002 Danny R. Faught

Sed & awk

• Sed is an abbreviation for “stream
editor,” an evolution of the grep utility
that can find lines of text and also modify
them

• Awk is named for its authors – Alfred V.
Aho, Brian W. Kernighan, and Peter J.
Weinberger.
– A small, general purpose scripting language
– One of the main precursors of Perl (along

with sed)

Slide 16Quality Week 2002

© 2002 Danny R. Faught

REXX

• An acronym for “Restructured
Extended Executor Language”

• An ANSI-standard procedural
language that was also designed to be
a general-purpose macro language for
applications

• Seems to have a big following on
AmigaDOS and OS/2

Slide 17Quality Week 2002

© 2002 Danny R. Faught

Perl

• “Practical Extraction and Report
Language,” or perhaps, “Pathologically
Eclectic Rubbish Lister”

• Combines some of the best features of
C, sed, awk, and sh

• My personal favorite!

Slide 18Quality Week 2002

© 2002 Danny R. Faught

TCL & Expect

• TCL stands for “tool command
language” and is pronounced “tickle”
– The Tk graphics extension is probably the

most popular extension for TCL

• Expect, a TCL extension, is a tool for
automating and testing interactive
applications
– Named after the “expect” command used

in early modem scripts

Slide 19Quality Week 2002

© 2002 Danny R. Faught

Recent additions

• Python, Ruby, JavaScript, and many
others

• I’m not familiar with these, so they’re
left as an exercise for the reader

• Python and Ruby have been touted as
cleaner languages than Perl, so they
may be worth a look

Slide 20Quality Week 2002

© 2002 Danny R. Faught

What’s missing?

• What scripting languages do you use
that we haven’t discussed yet?

Slide 21Quality Week 2002

© 2002 Danny R. Faught

stress_driver demo

• Stress_driver is a generic stress
testing tool written in Perl, allowing
you to schedule multiple invocations
of a test program.

• Written primarily by Danny Faught,
Tejas Software Consulting, and owned
by Hewlett-Packard.

• Available at
http://tejasconsulting.com/tools/sd.html

Slide 22Quality Week 2002

© 2002 Danny R. Faught

• “History of Scripting,” http://scriptics.com/doc/scriptHistory.html
• Comp.unix.shell FAQs,

http://faqs.org/faqs/by-newsgroup/comp/comp.unix.shell.html
• Learning the bash Shell, 2nd Edition, ISBN 1-56592-347-2
• Effective awk Programming, 3rd Edition, Arnold Robbins, 2001,

ISBN 0-596-00070-7
• sed & awk, 2nd Edition, Arnold Robbins, Dale Dougherty, 1997,

ISBN 1-56592-225-5
• awk FAQ, http://www.faqs.org/faqs/computer-lang/awk/faq/
• sed FAQ, http://www.faqs.org/faqs/editor-faq/sed/index.html
• The Rexx Language, Michael Cowlishaw, 1990, ISBN 0137806515
• Rexx FAQ,

http://www.mindspring.com/~dave_martin/RexxFAQ.html

Language resources (1 of 2)

Slide 23Quality Week 2002

© 2002 Danny R. Faught

• http://www.perl.com (and many others)

• Programming Perl, 3rd Edition, Larry Wall, Tom Christiansen,
Jon Orwant, ISBN 0-596-00027-8 (and many others from
O’Reilly)

• comp.lang.tcl FAQ, http://www.geocities.com/lvirden/tcl-faq/

• Exploring Expect, Don Libes, 1995, ISBN 1-56592-090-2

• The Expect Home Page, http://expect.nist.gov/

• Python, http://www.python.org/

• Ruby, http://www.ruby-lang.org/

• comp.lang.javascript meta FAQ,
http://faqs.org/faqs/computer-lang/java/javascript/

Language resources (2 of 2)

Slide 24Quality Week 2002

© 2002 Danny R. Faught

Static
analysis

Slide 25Quality Week 2002

© 2002 Danny R. Faught

Web static analysis

• Tidy
– Fixes mistakes in html code automatically

and tidies up sloppy editing.

• W3C HTML Validation Service
– A service that checks documents like

HTML and XHTML for conformance to
W3C Recommendations and other
standards.

• Link Valet
– WWW Link checker.

Slide 26Quality Week 2002

© 2002 Danny R. Faught

Static error checking (Java)

• JiveLint
– A command line tool employing static

analysis on your JAVA source code.

• Jlint
– Jlint will check your Java code and find

bugs, inconsistencies and
synchronization problems by doing data
flow analysis and building the lock graph.

Slide 27Quality Week 2002

© 2002 Danny R. Faught

Static error checking (C)

• PScan
– Scans C source files for problematic uses

of printf style functions.

• CQUAL
– A type-based analysis tool that provides a

lightweight, practical mechanism for
specifying and checking properties of C
programs.

• BLAST
– A software model checker for C programs.

Slide 28Quality Week 2002

© 2002 Danny R. Faught

Code metrics

• sclc
– Counts lines of code (and comments, and

non-comment source lines, and assembly-
equivalent source lines) for Ada,
Assembly, Awk, C, C++, Eiffel, Java, Lisp,
Pascal, Perl, Tcl, shell, and make.

• metrics
– Tools to generate Halstead, McCabe, and

LOC metrics for C code.

Slide 29Quality Week 2002

© 2002 Danny R. Faught

sloccount demo

• sloccount
– A set of tools for counting physical Source Lines

of Code (SLOC) in Ada, Assembly, awk, Bourne
shell and variants, C, C++, C shell, COBOL, C#,
Expect, Fortran, Haskell, Java, lex/flex,
LISP/Scheme, Makefile, Modula-3, Objective-C,
Pascal, Perl, PHP, Python, Ruby,
sed, SQL, TCL, Yacc/Bison

Slide 30Quality Week 2002

© 2002 Danny R. Faught

Static analysis resources

• Tidy - http://tidy.sourceforge.net/,
– also Tidy Online - http://valet.htmlhelp.com/tidy/

• W3C HTML Validation Service - http://validator.w3.org/
• Link Valet - http://www.htmlhelp.com/tools/valet/
• JiveLint - http://www.bysoft.se/sureshot/javalint/
• Jlint - http://www.artho.com/jlint/
• PScan - http://www.striker.ottawa.on.ca/~aland/pscan/
• CQUAL - http://www.cs.berkeley.edu/~jfoster/cqual/
• BLAST –

http://www-cad.eecs.berkeley.edu/~rupak/blast/
• sclc- http://www.enteract.com/~bradapp/clearperl/sclc-

cdiff.html
• metrics - http://sources.isc.org/devel/tools/metrics.txt
• sloccount - http://www.dwheeler.com/sloccount/

Slide 31Quality Week 2002

© 2002 Danny R. Faught

Unit
testing

Slide 32Quality Week 2002

© 2002 Danny R. Faught

Lots of unit test tools out there

• Wow - I found 61 different freeware
unit test frameworks!

• I found tools for these languages:
– AppleScript, Ada, C, C++, C#, CA-

OpenROAD, Curl, LISP, .Net, Delphi,
Eiffel, Flash, GemStone, Haskell, HTML,
Jade, Java, JavaScript, K, KSQL,
Macromedia Director, Objective-C, Ocaml,
Perl, PHP, PowerBuilder, Python,
REALbasic, REBOL, Ruby, Scheme, Shell,
Suneido, Visual Basic, XML.

Slide 33Quality Week 2002

© 2002 Danny R. Faught

Simple and simplest

• Many unit testing frameworks are
based on JUnit for Java.

• The frameworks tend to be fairly
simple. Here is one that is perhaps the
simplest of them all…

Slide 34Quality Week 2002

© 2002 Danny R. Faught

MinUnit for C

/* file: minunit.h */
#define mu_assert(message, test)
do { if (!(test)) return message; } while (0)

#define mu_runtest(test)
do { char *message = test(); tests_run++; \
if (message) return message; } while (0)

extern int tests_run;

• by John Brewer, http://www.jera.com/techinfo/jtns/jtn002.html

Slide 35Quality Week 2002

© 2002 Danny R. Faught

MinUnit example (1 of 2)

#include "minunit.h"

int tests_run = 0;

int foo = 7;
int bar = 4;

static char * test_foo() {
mu_assert("error, foo != 7", foo == 7);
return 0;
}

Slide 36Quality Week 2002

© 2002 Danny R. Faught

MinUnit example (2 of 2)

static char * test_bar() {
mu_assert("error, bar != 5", bar == 5);
return 0;

}

static char * all_tests() {
mu_run_test(test_foo);
mu_run_test(test_bar);
return 0;

}
...

Slide 37Quality Week 2002

© 2002 Danny R. Faught

Unit testing references

• See
http://xprogramming.com/software.htm
for a long list of pointers to unit test
frameworks (some come with no
documentation)

• The seminal JUnit article, “JUnitTest
Infected: Programmers Love Writing
Tests”,
http://junit.sourceforge.net/doc/testinfec
ted/testing.htm

Slide 38Quality Week 2002

© 2002 Danny R. Faught

Wrapup…

Slide 39Quality Week 2002

© 2002 Danny R. Faught

Other tool categories…

• Security
• Coverage analysis
• GUI testing
• Test implementation/runtime tools
• Test suites
• Bug tracking

Slide 40Quality Week 2002

© 2002 Danny R. Faught

General references

• Testing Tools Supplier List, will eventually list
hundreds of freeware test tools, mailing list
for periodic announcements about new items-
http://testingfaqs.org/

• free-testing-tools mailing list, not much
activity yet -
http://groups.yahoo.com/group/free-testing-
tools/

• TestToolWiki, also not much there yet-
http://www.satisfice.com/scribble/

Slide 41Quality Week 2002

© 2002 Danny R. Faught

Comments welcome

• Comments and questions about this
presentation are welcome!

• Contact me at:
faught@tejasconsulting.com
+1 817 294 3998

• Sign up for my free email newsletter –
see the “News” section of my web site,
http://tejasconsulting.com

Slide 42Quality Week 2002

© 2002 Danny R. Faught

Thanks for listening!

• Please fill out the evaluations.

-Danny Faught,
Software Alchemist

Key Points

Learn key concepts in model-based testing
a model-based technique to Windows CE Software
Gain insight into our experience with state models

Presentation Abstract

Promising model-based approaches have emerged in the field of software testing during the past decade or so. In this presentation, we
focus on our recent experiences with using finite state machines to test a host of applications created by Microsoft for the Pocket PC
platform. Creating a state model of each of these applications facilitated the tasks of building test automation and verifying test results.
We explain the process we followed, present our results, and share some of the lessons we learned from our

About the Author

Ibrahim K. El-Far is a doctoral candidate in computer sciences at the Florida Institute of Technol-ogy under the academic supervision of
professor James A. Whittaker. He has a Bachelor of Sci-ences and a Master of Sciences in Computer Science from the American
University of Beirut, Beirut, Lebanon and the Florida Institute of Technology, Melbourne, Florida, USA, respectively. His interests are in
investigating software models for testing, test automation and tools, adequacy criteria, test cost and effectiveness, and software testing
education. He has over five years of ex-perience in model-based testing using finite state machines at the Center for Software
Engineer-ing Research at Florida Tech, where he has supervised the development of experimental model-based testing tools, advised
model-based testing groups, and taught model-based testing in vari-ous formats to a variety of students. You can contact Ibrahim at
ielfar@acm.org, visit for more information, or write him at the Software Engineering Program, Computer Sciences Department, Florida
Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901 USA.

Florence E. Mottay is a quality engineer at J.D. Edwards. She received her Master of Science in mathematics from the Florida Institute
of Technology. In previous years, Ms. Mottay worked as a research assistant at the Center for Software Engineering Research, Florida
Institute of Technol-ogy, Melbourne. Her research interests are in software testing, formal languages, mathematical models, and e-
commerce. She received awards for excellence in mathematics by the United States Achievement Academy (1997) and for academic
excellence by the American Association of University Women (1998).

Herbert H. Thompson is the director of security technology at System Integrity. He received his doctoral degree in mathematics from
the Florida Institute of Technology in 2002. In previous years, Dr. Thompson has worked for Microsoft Corporation as a test engineer.
His research inter-ests are in software engineering, security, and applying mathematics to computer science prob-lems. You can
contact him at hethomps@fit.edu or visit .

QW2002 Paper 2T1

Mr. Ibrahim El-Far (Flordia Institute of Technology), Ms.
Florence Mottay (J.D. Edwards), & Dr. Herbert Thompson

(System Integrity)

Experiences in Testing Pocket PC Applications

1

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Experiences in
Testing the Pocket
PC

Ibrahim K. El-Far
Florida Institute of Technology

Herbert H. Thompson
System Integrity

Florence E. Mottay
J.D. Edwards

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Overview

Scope of the Project
Introduction to Model Based testing
Case Study: the Pocket Inbox
Conclusions

2

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Project Scope

Pocket PC : Operating platform developed
by Microsoft for handheld devices.
Contracted to develop software models for
five applications: Contacts, Calendar,
Inbox, Pocket Word and Connectivity
Manager.

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Model Based Testing:
The Big Picture

Mental
Model

Mental
Model Build Model

Explicit Model

Generate Tests
Test Suites

&
Scripts

R
un Scripts

Application
Under
Test

Test
Oracle

Get expected result

Get actual result
Test Pass
& Failure

Data
Analyze

Data

Decide whether to
• Generate more tests
• Modify the model
• Stop testing

Estimate
• Reliability & other

quality measures

Test Objectives &
Stopping Criteria

3

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Modeling with Finite State
Machines

A state is a condition of the software
where a specific set of inputs can be
applied.
Two states are considered equal if the
same inputs can be applied and they
produce the same result.

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Building Models : An Example
[dim]

[off]

[bright]

[normal]

<turn off>

<turn off>

<turn off>

<turn on>

<decrease intensity>

<decrease intensity>

<increase intensity>

<increase intensity>
final state

start state

4

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Case Study: the Pocket Inbox

General Information
5,000 transitions
1,500 states
Most complex application we tested
Design choices

Limited number of messages
Input peculiarities

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Case Study: Exploration

Explore the
application in order to
discover and build a
mental representation
of its functionality

For demonstration
purposes, we only use
a partial model

5

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Case Study: Inputs

Identify all user inputs
1. New: to go to a new message window
2. Ok: to leave the New Message screen and save the

current message
3. Send: to leave the New Message screen and send

the current message
4. Space: space character
5. AlphanumericChar: any alphanumeric character

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Case Study: Input Applicability
Identify the individual characteristics used to define the states of
the application?

1. New: this input is applicable at any time. The user can press the
“New” button when the general inbox screen is showing, when the
window is New Message and whether he/she has entered text inside
a New Message window.

2. Ok: this input is applicable when the window is a New Message.
Whether the “To” field is empty or not does not make a difference.

3. Send: this input is applicable only when the window is a New
Message and the “To” field is not empty.

4. Space: this input is applicable when the window is a New Message.
5. AlphanumericChar: this input is applicable when the window is a

New Message

6

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Case Study: State Variables

Window = Inbox, NewMessage
This operational mode records which window the user
is on. For this model, only two windows are
considered as possible.

To Field = Empty, NotEmpty
This operational mode records if the value of the “To”
field is empty or not. It is useful to determine whether
the “Send” is enabled or not.

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Case Study: Transitions

Space
Ok

New

Window = NewMessage
To-Field = NotEmpty

Window = Inbox
To-Field = Empty Window = NewMessage

To-Field = Empty

New

AlphanumericCharSend

Ok

New

Space

AlphanumericChar

Space
Ok

New

Window = NewMessage
To-Field = NotEmpty

Window = Inbox
To-Field = Empty Window = NewMessage

To-Field = Empty

New

AlphanumericCharSend

Ok

New

Space

AlphanumericChar

Ok

New

Window = NewMessage
To-Field = NotEmpty

Window = Inbox
To-Field = Empty Window = NewMessage

To-Field = Empty

New

AlphanumericCharSend

Ok

New

Space

AlphanumericChar

7

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Case Study: Test Cases

Space

2

1

New

4,5

Window = NewMessage
To-Field = NotEmpty

Window = Inbox
To-Field = Empty Window = NewMessage

To-Field = Empty

New

AlphanumericCharSend

Ok

New

367

Space

AlphanumericChar

Space

2

1

New

4,5

Window = NewMessage
To-Field = NotEmpty

Window = Inbox
To-Field = Empty Window = NewMessage

To-Field = Empty

New

AlphanumericCharSend

Ok

New

367

Space

AlphanumericChar

2

1

New

4,5

Window = NewMessage
To-Field = NotEmpty

Window = Inbox
To-Field = Empty Window = NewMessage

To-Field = Empty

New

AlphanumericCharSend

Ok

New

367

Space

AlphanumericChar

1

New

4,5

Window = NewMessage
To-Field = NotEmpty

Window = Inbox
To-Field = Empty Window = NewMessage

To-Field = Empty

New

AlphanumericCharSend

Ok

New

367

Space

AlphanumericChar

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Case Study: Test Cases
New Space New

New

AlphanumericCharOk

New Space New

New

AlphanumericCharOk

BUG

8

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Conclusions
Model-based testing needs to be coupled with
exploratory techniques with the dual benefit of attaining a
better, more current understanding of the system and
harvesting many bugs along the way.
Models are beneficial, not only as a point of reference for
testing purposes, but also as a living specification of the
functionality it represents and as a basis for test
automation.
Having a good automated test oracle is vital to the
effectiveness of automated testing in general and model-
based testing in particular.

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Conclusion
As long as finite state machines are used, there are inescapable
critical issues to be dealt with: model building and maintenance,
state explosion, and model correctness. There is need for more
practical pointers on how to work around, or at least reduce the
impact of these factors.

Finally, studies need to be performed on answering the question: is
model-based testing worth the effort when it comes to finding faults?
Our preliminary results show that, for a very good, close-to-release,
stable product, the number of faults uncovered by model-based
testing is slightly disappointing if we severely limit the time during
which we can run tests. The strongpoint of model-based testing is
that it finds bugs with different characteristics: those that require
long complicated sequences of inputs to be exposed.

9

Quality Week 4 September 2002 © 2002 The authors, all rights reserved.

Contact Information
Email : hthompson@testingresearch.com
Web : http://www.testingresearch.com
Telephone : (321)-795-4531

Copyright © 2002 The Authors. All rights reserved. This paper to appear in the Proceedings of the
 Fifteenth International Internet & Software Quality Week Conference (QW 2002), September 2002.

I. El-Far, H. Thompson, F. Mottay: Experiences in Testing Pocket PC Applications 1

Experiences in Testing Pocket PC Applications

Ibrahim K. El-Far
Florida Institute of Technology
Herbert H. Thompson
System Integrity
Florence E. Mottay
J.D. Edwards

Keywords
Pocket PC; model-based testing; finite state models; case study

1. Introduction

1.1 Remarks on Testing with Software Models
Model-based testing (or MBT) techniques are deeply rooted in such fields as phone switches and
computer hardware components. However, their value remains vague in the software industry,
despite their apparent intuitive appeal. Perhaps this can be attributed to poor understanding of the
underlying principles and concepts of testing with models. Conceivably, it can also be attributed
to a troublesome paradigm shift from what is widely practiced today. On the other hand, the fact
remains that there is an obvious shortage of useful or insightful case studies. Further, there is
barely any work that faithfully details the goals, activities, and risks involved to the average test
professional who is expected to work with these methods. Indeed, many of these professionals
today are oblivious to the very existence of MBT, and, those who are aware of it are, at best,
highly doubtful of its value and the kind of returns on investment it presents. Recently, there has
been a rise in the number of researchers and testers willing to take the time to investigate the
models and methods of the paradigm (El-Far 2001).

These investigations seem to have started to pay off. Over the past few years, there have been
many success stories about employing models to steer various testing activities such as test gen-
eration and test result evaluation (El-Far and Whittaker 2001). Such reports have generated a lot
of enthusiasm with the popularization of object-oriented technologies and the advent of model-
based design and specification methods and tools. As a result, we have been witnessing a rapid
growth of the relevant body of literature since the 1990s. As with any developing field, the litera-
ture is affected by the lack of a common body of knowledge and a standard set of terms that are
precisely defined or that everyone uses consistently. However, there are numerous lessons to be
learned and many observations to be made on the model-based testing paradigm as a whole, not-
withstanding the differences among various types of models.

For example, the literature has some pointers as to the benefits of model-based testing, many of
which seem to agree with intuition (Robinson, 2000). For instance, the underlying model is a
formal, precise expression of a tester's understanding of how the software is supposed to work.
When such an understanding is written out to a structure that others can review, update, modify,
and influence with their own understanding of the software under test, many problems can be
solved. The model becomes a point of reference for the testing team, an aid to presenting results
to non-technical staff, and a form of documentation that reflects the most recent build of the sys-
tem – a living specification. Another benefit that is typical of several models is that they have a

Copyright © 2002 The Authors. All rights reserved. This paper to appear in the Proceedings of the
 Fifteenth International Internet & Software Quality Week Conference (QW 2002), September 2002.

I. El-Far, H. Thompson, F. Mottay: Experiences in Testing Pocket PC Applications 2

substantial and rich theoretical background that makes numerous tasks such as generating large
suites of tests fairly easy to automate. Examples of this are the theories of graphs (Gross &
Yellen, 1998) and automata (Ullman & Hopcroft, 1979) for finite state machines and stochastic
theory for Markov-chain models (Kemeny & Snell, 1976).

It is unfortunate that, due to many reasons, that we rarely see reports of failure or articles that
contain warnings of pitfalls and tips on what to expect. For this reason, we are usually left to de-
duce most drawbacks from reports and from hard experience. Perhaps the thorniest such issue is
one that plagues all forms of automated testing, namely, the oracle problem: how do we build an
automated mechanism that checks the outcome of tests against the required behavior? The ab-
sence of an oracle is an obstacle to the automated execution of long tests or large suites of tests,
both acclaimed by the field as major benefits of the approach (El-Far, 2001). Another significant
drawback is the substantial investments, time and personnel, that typically have to go into build-
ing, reviewing, and maintaining models. Even with the smallest models, precious time will be lost
before testers start to reap any fruit. Consequently, short development cycles, major delays in de-
velopment, postponing testing activities until after components are developed can all potentially
reduce the value of using models.

An interesting observation that can be drawn from the literature is that success reports seem to
always come from only a few application domains: phone switch software (Avritzer & Larson,
1993), embedded software such as that in hardware controllers (Agrawal & Whittaker, 1993), and
graphical user interfaces (Rosaria & Robinson, 2000), to mention some of the more typical do-
mains. This is very encouraging for those who are considering employing models in testing these
and other similar systems, although they would have to keep in mind that the results at our dis-
posal are certainly not beyond doubt. So, not too surprisingly, when we were about to embark on
a testing endeavor of some Pocket PC applications, we were enthusiastic and encouraged by what
we know from the works of others and our earlier finite-state model based testing experiences.
We shall elaborate on this later, but, first, we will briefly introduce the project in concern.

1.2 The Project at a Glance
Pocket PC is a Microsoft platform for handheld devices such as palmtops (Microsoft Inc. Official
Website). It is powered by Windows technologies and has the look and feel of a scaled down ver-
sion of a member of the Windows family of operating systems. Pocket PC devices ship with a
collection of built in utilities. These are small applications that are design to be familiar to the
Windows desktop user. They include, for example, Pocket Word (a simplified word processor)
and Pocket Outlook (email manager and organization utility). Other applications can be added by
the user or by a third party vendor.

Several months before the planned release date, when the product had reached a reasonable de-
gree of stability, Microsoft contracted our group at the Center for Software Engineering Research
in the Florida Institute of Technology to test five standalone components packaged with Pocket
PC: Contacts, Calendar, Inbox, Connectivity Manager, and Pocket Word, all of which we will
describe in some detail in a later section. They were particularly interested in seeing us apply fi-
nite-state model based techniques that were developed in part by researchers at the Center and
that we will be briefly explaining in the next section.

Microsoft supplied us with tools to help carry out various MBT activities, and they established
communication channels through which we were able to report bugs, request development sup-
port, and resolve conflicts and ambiguities. We started by gathering a team with a rich, varied
background. They all had been receiving some sort of formal university education in the fields of

Copyright © 2002 The Authors. All rights reserved. This paper to appear in the Proceedings of the
 Fifteenth International Internet & Software Quality Week Conference (QW 2002), September 2002.

I. El-Far, H. Thompson, F. Mottay: Experiences in Testing Pocket PC Applications 3

computer sciences, software engineering, and mathematics for a while, and they were fairly dis-
tributed across educational levels from those just starting their undergraduate studies to those pur-
suing doctoral research. Four out of the five working on the project had received proper instruc-
tion in software testing and two had previous experience in applying the technique in other pro-
jects administered by the Center (Jorgensen, 2000).

Both product and project conditions seemed to be in favor of employing a finite state model based
technique. First, all the products had graphical user interfaces and seemed to be state rich, making
them ideal for modeling using finite state models according to earlier case studies. Second, the
products were in general small; they had significantly less inputs and features than what one
would expect in a similar desktop applications. We believed, at first sight, that the environment in
which the Pocket PC application were deployed to be relatively well behaved. For instance, there
were only a few other applications with which they would interact, and most of these interactions
could be manageably monitored and recorded. In addition, by virtue of its design, which was in-
tended to support only a few devices and did not have any backward compatibility issues, the op-
erating system was small, free of clutter functions, and well tweaked for its purposes. We had
better chances, therefore, to accurately configure our tests and account for most environmental
conditions.

The project spanned two academic semesters, which would amount to eight effective months of
testing, more than many groups in the industry world normally have to develop a product never
mind test it. All members were contractually obligated to work for at least twenty hours every
week, but many ended up devoting up to thirty-five hours to this project. Given the fact that we
were supposed to test five applications, however, this meant that we had just enough time, but not
a whole lot.

We did have some worries about a number of practical issues, most notably input simulation and
test outcome evaluation. We were not exactly clear on how to execute our tests in an embedded
system; typically, in such cases, some type of simulator would be needed. As to evaluation, we
were also not clear on how to verify the state of the application against our models and how to
monitor and record any other needed application information. Both these concerns were ad-
dressed and resolved through development and test-tool support from Microsoft, details of which
could not be disclosed as per our legal obligations toward the company.

1.3 This Paper
Working on this project was rewarding in terms of the lessons learned. Our experience reinforced
some of the common beliefs about some of the benefits of model-based testing. On the other
hand, many questions about the returns on investment, bug count, and model-adaptability to spe-
cific contexts were raised with no satisfying answer.

This paper summarizes this experience. First, we briefly visit our technique for finite state model
based software testing. Then, we describe the applications under test and briefly outline the plan
that we followed to test each of them. A summary of the proceedings of the testing effort is fol-
lowed by a list of some the lessons learned.

Copyright © 2002 The Authors. All rights reserved. This paper to appear in the Proceedings of the
 Fifteenth International Internet & Software Quality Week Conference (QW 2002), September 2002.

I. El-Far, H. Thompson, F. Mottay: Experiences in Testing Pocket PC Applications 4

2. Background

2.1 Definitions and Terminology

2.1.1 SOFTWARE STATES
A software state is loosely defined as a condition of the software in which a certain collection of
inputs can be applied. For example, consider a typical combination safe. For our purpose, let us
say we walk into a room with that has such a safe. Consider two general states that the safe can
be in:

1. All tumblers are aligned and we can turn the handle to open the safe.
2. The correct sequence has not been applied to the combination dial and the safe handle

can not be turned.

Here we have clear criteria to define states in terms of applicable inputs. One state is defined by
the fact that we can turn the handle and open the safe. In the other state this input is not available
to us. We can easily extend this criterion for state definition to software. Consider a typical GUI
email application. In most such applications if there is no entry in the “To” line the send option is
disabled. Intuitively we can say that when text is in the “To” line, the software is in one state
which is different from the state the software is in when text is not present because different in-
puts are available to the user. In the following sections we will cement this notion of a software
state through examples and formal definition.

2.1.2 AN EXAMPLE SOFTWARE UNDER TEST
Consider a hypothetical light switch. The lights can be turned on and off using one input. The
intensity of the light can be adjusted using two inputs for lowering and increasing the intensity.
There are three levels of light intensity: dim, normal, and bright. If the lights are bright, increas-
ing the intensity should not affect the intensity. The case is similar for dim light and decreasing
the intensity. The simulator starts with the lights off. Finally, when the lights are turned on, the
intensity is normal by default, regardless of the intensity of the light when it was last turned off.
Obviously, the simulator can be in only one of four distinct states at any one time: the lights are
either off, dim, normal, or bright.

2.1.3 FINITE STATE MACHINES
Formally a finite state machine representing a software system is defined as a quintuple (I, S, T,
F, L), where

 I is the set of inputs of the system (as opposed to input sequences).
 S is the set of all states of the system.
 T is a function that determines whether a transition occurs when an input is applied to

the system in a particular state.
 F is the set of final states the system can end up in when it terminates.
 L is the state into which the software is launched.

A finite state machine can only be in one state at any one time. The occurrence of a transition
from one state to another is exclusively dependent on an input in I.

2.1.4 EXAMPLE FINITE STATE MACHINE
One way to model this is to use a finite state machine that is defined as follows:

“Light Switch” = (I, S, T, F, L), where:

Copyright © 2002 The Authors. All rights reserved. This paper to appear in the Proceedings of the
 Fifteenth International Internet & Software Quality Week Conference (QW 2002), September 2002.

I. El-Far, H. Thompson, F. Mottay: Experiences in Testing Pocket PC Applications 5

o I = {<turn on>, <turn off>, <increase intensity>, <decrease intensity>}
o S = {[off], [dim], [normal], [bright]}
o T:

o <turn on> changes [off] to [normal]
o <turn off> changes any of [dim], [normal], or [bright] to [off]
o <increase intensity> changes [dim] and [normal] to [normal] and

[bright], respectively
o <decrease intensity> changes [bright] and [normal] to [normal]

and [dim], respectively
o The inputs do not affect the state of the system under any con-

dition not described above
o F = [off]
o L = [off]

Figure 1: "Light Switch" Finite State Machine Definition

2.1.5 REPRESENTATION
Finite state machine models can be represented as graphs, also called state transition diagrams,
with nodes representing states, arcs representing transitions, and arc-labels representing inputs
causing the transitions. Usually, the starting and final states are specially marked. Automata can
also be represented as matrices, called state transition matrices. There are two useful forms of
state transition matrices that are illustrated for the “Light Switch” along with the corresponding
state transition diagram.

 [off] [dim] [normal] [bright]
[off] <turn on>
[dim] <turn

off>
 <increase

inten-
sity>

[normal] <turn
off>

<decrease
inten-
sity>

 <increase
inten-
sity>

[bright] <turn
off>

 <decrease
inten-
sity>

 <turn

on>
<turn
off>

<increase
intensity>

<decrease
intensity>

[off] [normal]
[dim] [off] [normal]
[normal] [off] [bright] [dim]
[bright] [off] [normal]

(i) (ii)

[dim]

[off]

[bright]

[normal]

<turn off>

<turn off>

<turn off>

<turn on>

<decrease intensity>

<decrease intensity>

<increase intensity>

<increase intensity>
final state

start state

(iii)

Figure 2: The presentation screen of the inbox application

Copyright © 2002 The Authors. All rights reserved. This paper to appear in the Proceedings of the
 Fifteenth International Internet & Software Quality Week Conference (QW 2002), September 2002.

I. El-Far, H. Thompson, F. Mottay: Experiences in Testing Pocket PC Applications 6

2.2 Why Finite State Models are Useful
Consider a common testing scenario: a tester applies an input and then appraises the result. The
tester then selects another input, depending on the prior result, and once again reappraises the
next set of possible inputs. At any given time, a tester has a specific set of inputs from which to
choose. This set of inputs varies depending on the exact state of the software. This characteristic
of software makes state-based models a logical fit for software testing: software is always in a
specific state and the current state of the application governs what set of inputs from which testers
can select. If one accepts this description of software then a model that must be considered is the
finite state machine.

Finite state machines have been around even before the inception of software engineering. There
is a stable and mature theory of computing at the center of which are finite state machines and
other variations. Chow (1978) wrote one of the earliest, generally available articles addressing the
use of finite state models to design and test software components.

Finite state models are an obvious fit with software testing where testers deal with the chore of
constructing input sequences to supply as test data; state machines (directed graphs) are good
models for describing sequences of inputs. This, combined with a wealth of graph traversal algo-
rithms (Robinson 1999 TCS), makes generating tests less of a burden than manual testing. On the
downside, complex software implies large state machines, which are nontrivial to construct and
maintain.

2.3 Finite State Model-Based Testing Activities

Mental
Model

Mental
Model Build Model

Explicit Model

Generate Tests
Test Suites

&
Scripts

R
un Scripts

Application
Under
Test

Test
Oracle

Get expected result

Get actual result
Test Pass
& Failure

Data
Analyze

Data

Decide whether to
• Generate more tests
• Modify the model
• Stop testing

Estimate
• Reliability & other

quality measures

Test Objectives &
Stopping Criteria

Figure 3: Some Model-based Testing Activities

Figure 3 above describes the finite state model based testing process. Perhaps the most difficult
step is encapsulating our mental model of the software into a concrete structure. In the next sec-
tion, we discuss a framework for expressing software models and representing states as a collec-
tion of software attributes.

Copyright © 2002 The Authors. All rights reserved. This paper to appear in the Proceedings of the
 Fifteenth International Internet & Software Quality Week Conference (QW 2002), September 2002.

I. El-Far, H. Thompson, F. Mottay: Experiences in Testing Pocket PC Applications 7

2.4 A Compact Representation of Finite State Models
Directed graphs representing the functionality of a software component can be an effective tool in
software testing. Figure 2 shows an example of such a graph. For any software system of non-
trivial size, however, these representations are inadequate. Here we seek to define a compact way
of defining a software state in terms of critical characteristics of the software. For example, con-
sider the email application described in section 2.1.1 above. Recall that the “Send” button of the
application is disabled if no text is entered in the “To” field. Suppose this application has two
windows: the first, which lists all received email and the second, which allows the user to com-
pose an email. Here we can identify two critical conditions that must be met in order to apply the
“Send” input:

1. The application must be in the “compose” window.
2. Text must be present in the “To” field.

To encapsulate this information, each of these characteristics of the system is referred to as a state
variable. For example, for this application we may want to define our state variables as Window
and Text_in_To_Field. Associated with each state variable is a set of values. In this case it
would be appropriate to define:
 Window = View, Compose
 Text_in_To_Field = Yes, No
A state then in terms of these values can be thought of as the combination of the variables above
with one value for each. The only state in this case for which we can apply the “Send” input is:
{Window = Compose and Text_in_To_Field = Yes}
The total number of potential states is the cross-product of the number of state variable values. In
our example the total number of possible states is thus 4 (2* 2) because we have 2 values for each
state variable. However, the number of valid states is almost never equal to this total. This is one
of the problems of model-based testing in that a significant amount of time is generally spent
identifying impossible states. In this example, there are only 3 possible states, which are:
{Window = View and Text_in_To_Field = No}
{Window = Compose and Text_in_To_Field = No}
{Window = Compose and Text_in_To_Field = Yes}

Another significant issue in model-based testing is state explosion. State explosion generally
happens when we increase the number of state variables and/or values. Consequently, adding
only one value can result in an out-of-control number of valid states, especially for large models.
Consider in this case adding just one value to the Window state variable. This action will in-
crease the number of potential states from 4 to 6.

3. The Testing Effort: The Inbox
The Inbox application is a small-scale version of outlook. It is the largest application we had
to test. The whole model consisted of almost 5,000 transitions and approximately 1,500
states. This application was interesting to model, in that it had a diverse range of features.
An example of this diversity is the number of different windows in the application. The user
can either view the inbox, outbox, deleted-items or drafts. One can edit a message from all
these screens except from the deleted-items window. To limit state explosion, we had to
limit the number of messages that could be found in each of the windows to three(except the
deleted items window).

We encountered some interesting challenges while modeling this application and automating
tests. For example, we actually needed to start running test suites with the keyboard visible
on the screen to ensure that inputs were accessible by automation. Such problems are often

Copyright © 2002 The Authors. All rights reserved. This paper to appear in the Proceedings of the
 Fifteenth International Internet & Software Quality Week Conference (QW 2002), September 2002.

I. El-Far, H. Thompson, F. Mottay: Experiences in Testing Pocket PC Applications 8

met while using MBT techniques and these design choices that the developer makes in order
to be user-friendly sometimes force the testers to model around them.

Most of the defects we found were in this application. This is understandable as it was the
most complex and the one with the most features modeled. This also confirms our intuition
that modeling more details often increases the chances of finding defects. One has to be
careful, though, as one potential pitfall when using MBT techniques is to construct an overly
detailed model. Such a model is seldom readable, hard to maintain, and makes building
automation much more difficult.

Next, we present the steps necessary for our finite state model-based technique. For each step,
we use examples from our work on the inbox application. The complete model would be con-
fusing as it is too big; thus, we show only a partial model.

1. Explore the application in order to discover and build a mental representation of its function-
ality.

For the Inbox application, we first studied the different screens*.

Figure 4(a), shows the first screen that users see when they enter the inbox application. The
second screen, figure 4(b), exposes the menu that allows a user to browse through the inbox
folders. Figure 4(c), shows the new message screen that appears after the user clicks on
“New”. On this screen, the user can type a message and send it. The “Send” button will only
be enabled when the user has typed some text in the “To” field. To save a message the user
will have to click the “Ok” button.

 (a) (b) (c)

Figure 4: Different Screens of the Inbox Application: (a) Presentation Screen of the Inbox
Application (b) Presentation Screen and the Inbox Menu (c) New Message Window

* The screenshots in this paper were captured from the publicly available Pocket PC emulator. The actual
(similar) beta versions we worked with fall under non-disclosure agreement.

Copyright © 2002 The Authors. All rights reserved. This paper to appear in the Proceedings of the
 Fifteenth International Internet & Software Quality Week Conference (QW 2002), September 2002.

I. El-Far, H. Thompson, F. Mottay: Experiences in Testing Pocket PC Applications 9

2. Identify all user inputs. Decisions on whether to abstract physical inputs are made based on
what we need to test. For example, two inputs that are visibly the same and that can be simu-
lated with the same script may be abstracted as one input.

While we were testing the inbox application, we made a lot of abstractions. Figure5 shows a
screenshot of the New Message window. The “Ok” input located in the upper-left corner of
the window has the same effect as pressing the Enter button. Since we could not find any
significant differences between these two inputs, we decided to only consider “Ok” as an in-
put and not Enter.

Figure 5: Abstraction of Inputs

Here is the full list of inputs with short explanation for each of them for the small model pre-
sented in this section.

1) New: to go to a new message window
2) Ok: to leave the New Message screen and save the current message
3) Send: to leave the New Message screen and send the current message
4) Space: space character
5) AlphanumericChar: any alphanumeric character

3. Identify the individual characteristics used to define the states of the application. When can

this input be applied by the user and what are the system characteristics that affect its appli-
cability? What are the properties of the system that cause different responses to the same in-
put under seemingly similar conditions? From this information, define the rules that describe
valid sequences of inputs.

For each model, we explored the application in more depth than in step 1 to uncover input’s
applicability. Next, we describe the conditions in which each input is applicable.

1) New: this input is applicable at any time. The user can press the “New” button when
the general inbox screen is showing, when the window is New Message and whether
he/she has entered text inside a New Message window.

2) Ok: this input is applicable when the window is a New Message. Whether the “To”

field is empty or not does not make a difference.

Copyright © 2002 The Authors. All rights reserved. This paper to appear in the Proceedings of the
 Fifteenth International Internet & Software Quality Week Conference (QW 2002), September 2002.

I. El-Far, H. Thompson, F. Mottay: Experiences in Testing Pocket PC Applications 10

3) Send: this input is applicable only when the window is a New Message and the “To”
field is not empty.

4) Space: this input is applicable when the window is a New Message.

5) AlphanumericChar: this input is applicable when the window is a New Message.

Applicability of inputs then allows the tester to derive valid sequences of inputs. For our
model and assuming that the starting state is the general inbox window, an example of a valid
sequence is: New-AphanumericChar-Space-Send.

4. Generate the set of valid software states and transitions with the aid of specialized tools.

Following is the list of operational modes and inputs that are necessary in order to construct
our scaled down model of the inbox. Its state transition diagram will then be shown.

State variables

Window = Inbox, NewMessage

This operational mode records which window the user is on. For this model, only two
windows are considered as possible.

To Field = Empty, NotEmpty
 This operational mode records if the value of the “To” field is empty or not.
 It is useful to determine whether the “Send” is enabled or not.

State transition diagram

Space
Ok

New

Window = NewMessage
To-Field = NotEmpty

Window = Inbox
To-Field = Empty Window = NewMessage

To-Field = Empty

New

AlphanumericCharSend

Ok

New

Space

AlphanumericChar

Space
Ok

New

Window = NewMessage
To-Field = NotEmpty

Window = Inbox
To-Field = Empty Window = NewMessage

To-Field = Empty

New

AlphanumericCharSend

Ok

New

Space

AlphanumericChar

Ok

New

Window = NewMessage
To-Field = NotEmpty

Window = Inbox
To-Field = Empty Window = NewMessage

To-Field = Empty

New

AlphanumericCharSend

Ok

New

Space

AlphanumericChar
Figure 6: Graph Representation of the Model

Copyright © 2002 The Authors. All rights reserved. This paper to appear in the Proceedings of the
 Fifteenth International Internet & Software Quality Week Conference (QW 2002), September 2002.

I. El-Far, H. Thompson, F. Mottay: Experiences in Testing Pocket PC Applications 11

Examples of input sequences are New-Space-Ok, New-New-Ok etc.

5. Generate and run test cases (traversal paths in the graph). This step particularly benefits from
the well-established graph-theoretical body of knowledge.
To generate and run test cases, we used tools provided by Microsoft that we cannot disclose
in this paper. However, to better understand some of the sequences in this model, the follow-
ing shows one such possible scenario. Figure 8 below shows the path that is illustrated
through the screen shots below in figure 9.

Space

2

1

New

4,5

Window = NewMessage
To-Field = NotEmpty

Window = Inbox
To-Field = Empty Window = NewMessage

To-Field = Empty

New

AlphanumericCharSend

Ok

New

367

Space

AlphanumericChar

Space

2

1

New

4,5

Window = NewMessage
To-Field = NotEmpty

Window = Inbox
To-Field = Empty Window = NewMessage

To-Field = Empty

New

AlphanumericCharSend

Ok

New

367

Space

AlphanumericChar

2

1

New

4,5

Window = NewMessage
To-Field = NotEmpty

Window = Inbox
To-Field = Empty Window = NewMessage

To-Field = Empty

New

AlphanumericCharSend

Ok

New

367

Space

AlphanumericChar

1

New

4,5

Window = NewMessage
To-Field = NotEmpty

Window = Inbox
To-Field = Empty Window = NewMessage

To-Field = Empty

New

AlphanumericCharSend

Ok

New

367

Space

AlphanumericChar
Figure 7: Traversal Path

Copyright © 2002 The Authors. All rights reserved. This paper to appear in the Proceedings of the
 Fifteenth International Internet & Software Quality Week Conference (QW 2002), September 2002.

I. El-Far, H. Thompson, F. Mottay: Experiences in Testing Pocket PC Applications 12

New Space New

New

AlphanumericCharOk

New Space New

New

AlphanumericCharOk

Figure 8: Scenario in Screenshots

This series of screenshots is an example of test sequences that were run. This sequence also
demonstrates an inconsistency in one of the inputs. The first two “New” inputs show a New
Message screen with the “To” field highlighted. This allows the user to type text directly
into the “To” field. The third “New” though shows a New Message with the cursor in front
of the “< … >”. It means that the user will type text in front of that default value, which will
stay unless the user manually removes it (see the screenshot resulting from the “Alphanu-
mericChar” input). This issue was accepted as a defect by Microsoft and even if it seems like
a small problem, it would still inconvenience the user. The Inbox application was the largest
application we had to test and we found a number of inconsistencies that were accepted as
defects. Uncovering such failures illustrates an advantage of model-based testing techniques
over other testing techniques; sequences of inputs that are unusual and do not seem to be po-
tentially defective are executed by finite state machines.

4. Conclusions
 Model-based testing needs to be coupled with exploratory techniques with the dual bene-

fit of attaining a better, more current understanding of the system and harvesting many
bugs along the way.

 Models are beneficial, not only as a point of reference for testing purposes, but also as a
living specification of the functionality it represents and as a basis for test automation.

 Having a good automated test oracle is vital to the effectiveness of automated testing in
general and model-based testing in particular.

 As long as finite state machines are used, there are inescapable critical issues to be dealt
with: model building and maintenance, state explosion, and model correctness. There is
need for more practical pointers on how to work around, or at least reduce the impact of
these factors.

BUG

Copyright © 2002 The Authors. All rights reserved. This paper to appear in the Proceedings of the
 Fifteenth International Internet & Software Quality Week Conference (QW 2002), September 2002.

I. El-Far, H. Thompson, F. Mottay: Experiences in Testing Pocket PC Applications 13

 Finally, studies need to be performed on answering the question: is model-based testing
worth the effort when it comes to finding faults? Our preliminary results show that, for a
very good, close-to-release, stable product, the number of faults uncovered by model-
based testing is slightly disappointing if we severely limit the time during which we can
run tests. The strongpoint of model-based testing is that it finds bugs with different char-
acteristics: those that require long complicated sequences of inputs to be exposed.

Acknowledgements
This project was sponsored in part by a grant from Microsoft Inc in 2000. Thanks are due to Ah-
med Salem, Matt Wagner, Danko Panic, and Mohammed Al-Ghafees for their work and contribu-
tion to the project.

About the Authors
Ibrahim K. El-Far is a doctoral candidate in computer sciences at the Florida
Institute of Technology under the academic supervision of professor James A.
Whittaker. He has a Bachelor of Sciences and a Master of Sciences in Computer
Science from the American University of Beirut, Beirut, Lebanon and the Florida
Institute of Technology, Melbourne, Florida, USA, respectively. His interests are in
investigating software models for testing, test automation and tools, adequacy

criteria, test cost and effectiveness, and software testing education. He has over five years of ex-
perience in model-based testing using finite state machines at the Center for Software Engineer-
ing Research at Florida Tech, where he has supervised the development of experimental model-
based testing tools, advised model-based testing groups, and taught model-based testing in vari-
ous formats to a variety of students. You can contact Ibrahim at ielfar@acm.org, visit
http://www.testingresearch.com/ for more information, or write him at the Software Engineering
Program, Computer Sciences Department, Florida Institute of Technology, 150 West University
Boulevard, Melbourne, Florida 32901 USA.

Herbert H. Thompson is the director of security technology at System Integrity.
He received his doctoral degree in mathematics from the Florida Institute of
Technology in 2002. In previous years, Dr. Thompson has worked for Microsoft
Corporation as a test engineer. His research interests are in software engineering,
security, and applying mathematics to computer science problems. You can
contact him at hethomps@fit.edu or visit http://www.testingresearch.com/.

Florence E. Mottay is a quality engineer at J.D. Edwards. She received her
Master of Science in mathematics from the Florida Institute of Technology. In
previous years, Ms. Mottay worked as a research assistant at the Center for
Software Engineering Research, Florida Institute of Technology, Melbourne. Her
research interests are in software testing, formal languages, mathematical

models, and e-commerce. She received awards for excellence in mathematics by the United
States Achievement Academy (1997) and for academic excellence by the American Association
of University Women (1998).

References
[Agrawal & Whittaker 1993] K. Agrawal and James A. Whittaker. Experiences in applying statis-

tical testing to a real-time, embedded software system. Proceedings
of the Pacific Northwest Software Quality Conference, October
1993.

Copyright © 2002 The Authors. All rights reserved. This paper to appear in the Proceedings of the
 Fifteenth International Internet & Software Quality Week Conference (QW 2002), September 2002.

I. El-Far, H. Thompson, F. Mottay: Experiences in Testing Pocket PC Applications 14

[Avritzer & Larson 1993] Alberto Avritzer and Brian Larson. Load testing software using
deterministic state testing." Proceedings of the 1993 International
Symposium on Software Testing and Analysis (ISSTA 1993), pp. 82-
88, ACM, Cambridge, MA, USA, 1993.

[Chow 1978] Tsun S. Chow. Testing design modeled by finite-state machines.
IEEE Transactions on Software Engineering, 4(3): 178-187, May
1978.

[El-Far & Whittaker 2001] Ibrahim K. El-Far and James A. Whittaker. Model-based software
testing. To appear in the Encyclopedia of Software Engineering,
2001.

[El-Far 2001] Ibrahim K. El-Far. Enjoying the perks of model-based testing. Pro-
ceedings of 2001 Software Testing Analysis & Review Conference
(STARWEST), San Jose, California, USA, October/November 2001.

[Gross & Yellen 1998] Jonathan Gross and Jay Yellen. Graph theory and its applications.
CRC, Boca Raton, FL, USA, 1998.

[Hopcroft & Ullman 1979] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata
theory, languages, and computation. Addison-Wesley, 1979.

[Jorgensen 2000] Alan Jorgensen and James A. Whittaker. An API Testing Method.
Proceedings of the International Conference on Software Testing
Analysis & Review (STAREAST 2000), Software Quality Engineer-
ing, Orlando, May 2000.

[Kemeny & Snell 1976] J. G. Kemeny and J. L. Snell. Finite Markov chains. Springer-
Verlag, New York 1976.

[Robinson 1999 STAR] Harry Robinson. Finite state model-based testing on a shoestring.
Proceedings of the 1999 International Conference on Software
Testing Analysis and Review (STARWEST 1999), Software Quality
Engineering, San Jose, CA, USA, October 1999.

[Robinson 1999 TCS] Harry Robinson. Graph theory techniques in model-based testing.
Proceedings of the 16th International Conference and Exposition on
Testing Computer Software (TCS 1999), Los Angeles, CA, USA,
1999.

[Robinson 2000] Harry Robinson. Intelligent test automation. Software Testing Qual-
ity Engineering (STQE) Magazine, October/November 2000.

[Rosaria & Robinson 2000] Steven Rosaria and Harry Robinson. Applying models in your test-
ing process. Information and Software Technology, 42(12): 815-
824, September 2000.

Key Points

Component-Based
E-business
Quality Assurance

Presentation Abstract

In my contribution, I examine the influence component technologies can have on established QM-systems. With an example from the
field of tourism, I describe how an e-business architecture is built and which component technologies can be used in order to fulfil the
demands of both, QM and e-business.

About the Author

Born in 1947, Dr. J. Withalm studied at the University of Technology and graduated in Technical Mathematics, in Vienna in 1972 with
the degree "Diploma Engineer". During his studies he worked with an Austrian company as a system analyst on financial software
packages. Since 1973 he is employed by Siemens Austria. His areas of responsibility between 1973 an 1980 were as a system analyst
working on mathematical, topological system design algorithms for mainframe Hardware design. Another speciality was the design of
topological algorithms for railway signal technique. Besides this he continued his studies at the University of Technology and made his
Ph.D. in 1979. Parallel to those activities Dr.Withalm has always been very active on Quality Assurance matters and was head of
Siemens PSE's Quality Assurance department sind 1983.

In 1991 he started lectures in object oriented SW-Development on the University of Bratislava.In 1998 he started a second series of
lectures in distributed objects on the Fachhochschule for telematic in Salzburg. In Autumn 2000 he began a further series of lectures in
quality management on the Fachhochschule Technikum Vienna.

Since 1994 he is head of the business field software engineering and Tourism. Dr. Withalm headed 3 CMM assessments teams in 1993
- 1994 and was co-assessor in a CMM assessment in spring 1998.

QW2002 Paper 2T2

Dr. Josef Withalm
(Siemens Ag)

Quality Assurance Aspects in Developing a Component-based System

1

Quality Assurance Aspects
in Developing a
Component-based System

Dr. Josef Withalm

3-6 Sptember 2002 Dr. J. Withalm 2

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Curriculum vitae
Born in 1947, Dr. J. Withalm studied at the University of Technology and graduated in
Technical Mathematics in 1972 with the degree “Diplomingenieur”. During his studies, he
worked with an Austrian company as a systems analyst for financial software packages.
Since 1973 he has been employed with Siemens Österreich. His areas of responsibility
between 1973 and 1980 were system analysis on mathematical topological system
design algorithms for mainframe hardware design. Another specialty was the design of
topological algorithms for railway signaling. At the same time he continued his studies at
the University of Technology, graduating with a Ph. D. degree in 1979. In parallel, Dr.
Withalm has always been very active in the field of quality assurance, becoming the head
of Siemens PSE’s Quality Assurance department in 1983.
In 1991 he began to hold lectures on object-oriented SW development at the university of
Bratislava, Slovakia. In 1998 he started a second series of lectures on the topic of
distributed objects at the College for Telematics at Salzburg, Austria. Salzburg auf.
Since 1994, he has been the head of the PSE SW Engineering and Tourism sub-division.
Between 1993 and 1994, Dr. Withalm directed 3 CMM assessment teams and acted as
co-assessor in a CMM assessment in the spring of 1998.

2

3-6 Sptember 2002 Dr. J. Withalm 3

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Quality assurance aspects in developing a component-based system

Overview

Siemens/PSE environment

Project definition

QA requirements

e-business architecture

Technological requirements

Lessons learned

3-6 Sptember 2002 Dr. J. Withalm 4

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Siemens facts & figures

Sales in 2001: € 87 billion

World market for the electrical
and electronics industry:
€ 1.745 billion

Staff in 2001: 484.000

Represented in over 190
countries

Manufacturing plants in 43
countries

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

3

3-6 Sptember 2002 Dr. J. Withalm 5

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Siemens in the USA

35 companies, including:
Siemens Information and Communication Networks
Siemens Westinghouse Power Corporation
Siemens Business Services
Siemens Financial Services
Osram Sylvania

Total staff: 80.000
780 locations across all 50 states
Sales in the Americas in 2001: € 26,1 billion

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

3-6 Sptember 2002 Dr. J. Withalm 6

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

U.S. companies

Siemens Airfield Solutions, Inc
Siemens Information and Communication Networks, Inc.
Siemens Real Estate, Inc.
Siemens Shared Services LLC
Siemens Building Technologies, Inc
Siemens Carrier Networks, LLC
Siemens Transportation Systems, Inc.
Siemens Enterprise Networks, LLC
Siemens Business Services
Efficient Networks, Inc.
Siemens Corporate Research, Inc
Siemens VDO Automotive Corporation
Optisphere Networks, Inc.
Siemens Diesel Systems Technology, LLC
Siemens Technology-To-Business Center LLC
Siemens Foundation
Siemens Information and Communication Mobile LLC
Siemens Procurement and Logistics Services, LLC

4

3-6 Sptember 2002 Dr. J. Withalm 7

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

U.S. companies

Unisphere Networks, Inc
Siemens Venture Capital, Inc.
Siemens Medical Solutions USA, Inc.
Siemens Dematic Corp. Rapistan Material Handling
Automation Division
Siemens Hearing Instruments, Inc.
Siemens Westinghouse Power Corporation
Siemens Dematic Postal Automation L.P.
OSRAM SYLVANIA
Acuson
Siemens Dematic Electronics Assembly Systems, Inc.
Siemens One
Siemens Energy & Automation, Inc.
Siemens Medical Solutions Health Services Corporation
Siemens Corporation
Siemens Power Transmission & Distribution, Inc.
Siemens Financial Services, Inc.

3-6 Sptember 2002 Dr. J. Withalm 8

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

PSE environment

Approx. 5.200 employees (including subsidiaries)

40 years of practical experience

21 locations in 7 European countries and the
USA

Total sales approx. € 493 million in the FY 00/01

Export rate approx. 95%

Projects in 53 countries

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

5

3-6 Sptember 2002 Dr. J. Withalm 9

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

San Jose
Minneapolis

PSE Locations in the USASiemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

3-6 Sptember 2002 Dr. J. Withalm 10

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Quality assurance aspects in developing a component-based system

Overview

Siemens/PSE environment

Project definition

QA requirements

e-business architecture

Technological requirements

Lessons learned

6

3-6 Sptember 2002 Dr. J. Withalm 11

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Project description

establishing an agent platform for the following
applications:

SAPA (solving allotment problems by mobile agents)

Smart-Up (Small and Medium Sized Enterprises
Alliance through Research in Tourism)

LuSe (worldwide luggage search)

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

3-6 Sptember 2002 Dr. J. Withalm 12

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Task – Agents between travel agent and hotelSiemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

A

A

A

A

Booking
system

free

free

fully booked

Filter

Request to virtual travel
agency

The systems involved are live systems and must
absolutely not be modified.

Patent submitted

7

3-6 Sptember 2002 Dr. J. Withalm 13

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Summary of benefits of SAPA

Benefits for hotel owners
fast and flexible room assignment
risk of overbooking decreases
fewer different allotments required

Benefits for providers of Computerized Reservation
Systems (CRS)

data up-to-date
lower costs for data management

Benefits for tourists/travelers
guaranteed room booking
genuine last-minute booking
no rebooking to other hotels due to overbooking

3-6 Sptember 2002 Dr. J. Withalm 14

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Motivation

Computerized reservation and booking systems
(CRSs) currently require allotments to be made

Hotels want to use this sales channel

Disadvantages of allotments
Hotel cannot sell all of its services on its own
No guarantee that rooms will be sold
High commission payments for placement
Data is not always up-to-date
Management of allotments cost-intensive also
for CRSs

8

3-6 Sptember 2002 Dr. J. Withalm 15

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Initial situation
Traditional travel agency

Travel agencyTravel agency

Allotments
Information about services

?

3-6 Sptember 2002 Dr. J. Withalm 16

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

The allotment problem

§
§
§
§

9

3-6 Sptember 2002 Dr. J. Withalm 17

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Implemented parts

Agent
Technology

3-6 Sptember 2002 Dr. J. Withalm 18

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

HOGATEX
Architecture

Progress

......

Cash registersCash registers

Pay-TVPay-TV Telephone
system

Telephone
system

BarBarReceptionReception

ServerServer

10

3-6 Sptember 2002 Dr. J. Withalm 19

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Agent
Technology

Computerized Reservation System (CRS)

Property
Management
System (PMS)

α-version CRS for PMS

PMS without allotments required in CRS

Patent A1726/2001 pending

3-6 Sptember 2002 Dr. J. Withalm 20

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Hogatex
Server

Hotel
Database

new
development

Hotelagent

CORBA - Backbone

ACL

Existing
components

URL

SQL

A

Architecture α-version CRS for PMS

eS Client

Agent
factory A

JDBC
ODBC

e.g.
reception

e.g.
payment
system

Hogatex
Clients

Filter O eS Server

CRS
Database

O

11

3-6 Sptember 2002 Dr. J. Withalm 21

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

GUI of α-version CRS for PMS

3-6 Sptember 2002 Dr. J. Withalm 22

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Some companies requested proposals

ebookers
Nethotels
Sigma
Start-Amadeus
Egypt Tourism Ministry
SBS in Spain

12

3-6 Sptember 2002 Dr. J. Withalm 23

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Agents in SMART UP

Search
engine ?

?
?

?

?

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

Market research
methods

Quality management

How can we easily measure
the quality within our hotel?

e-business
solutions

Specialist in e-business solutions Specialist in market research

Specialist in
quality management

3-6 Sptember 2002 Dr. J. Withalm 24

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Summary of benefits of SMART UP

To provide SMEs in the tourism industry in
Europe with the tools required for them to
become competitive again

through a cooperation of SMEs, research
institutions, and industrial partners
through an exchange of information and
experience
through benchmarking and interactive
learning
through establishing long-term relationships

Funded by the EU

13

3-6 Sptember 2002 Dr. J. Withalm 25

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

SMART UP
The partners

OEHV - Association of Austrian hotel owners
Sigma - provides travel agents with IT
infrastructure and training in using such
infrastructure
Siemens - provides the HW/SW platform
4 University institutes from 4 European countries

University of Innsbruck, Austria, Center for
Tourism and Service Economics
Dublin Institute of Technology, Ireland,
Faculty of Tourism and Food School of
Hospitality Management and Tourism
University of St. Gallen, Switzerland
University of Surrey ,UK, School of
Management Studies for the Service Sector

3-6 Sptember 2002 Dr. J. Withalm 26

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Workpackage linkages of SMART UP

WP1:
Requirement
engineering

WP7:
Measurement

of results

WP4:
Content design of

 modules

WP8:
Dissemination and

Exploitation

WP5:
SITOS and Agent

Platform Modification

WP3:
Technical

Deployment of SITOS
and Agent Platform

WP6:
Ongoing evaluation

of results

WP2:
IT training for

users & know-how
providers

14

3-6 Sptember 2002 Dr. J. Withalm 27

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

LuSe/Solution

check-in

San Francisco airport

distribution facility

LuSe-system

transfer

transfer
check-in

distribution facility

conveyor belt

foreign
systems

3-6 Sptember 2002 Dr. J. Withalm 28

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Summary of benefits of LuSe

Airport
less storage cost
less damages payments/
„Which airport is responsible?“

Customer
more exact and quicker search process, more
information on results
can influence further route of luggage

Insurance
less payments

Airline
better customer satisfaction

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

15

3-6 Sptember 2002 Dr. J. Withalm 29

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Quality assurance aspects in developing a component-based system

Overview

Siemens/PSE environment

Project definition

QA requirements

e-business architecture

Technological requirements

Lessons learned

3-6 Sptember 2002 Dr. J. Withalm 30

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

QA requirements/Constructive

Business model
what is the optimum for provider, supplier and user

Q characteristics
which of them must be fulfilled to make the business
model work

e-business architecture
with which architecture can the Q characteristics be
accomplished

Technology
which technology matches the selected e-business
architecture

Deployment
how is the selected technology deployed best

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

16

3-6 Sptember 2002 Dr. J. Withalm 31

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

QA requirements/Q characteristics

Focus quite different at SAPA:

Availability: 365 days a year and 24 hours a day

Performance highest priority; nobody, particularly
not the new “users” like to wait

Functionality: full support for transaction security
(ACID: Atomicity, Consistency, Isolation,
Durability) because of bookings

User friendliness: irrelevant here as GUIs of CRS
and PMS are used

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

3-6 Sptember 2002 Dr. J. Withalm 32

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

QS requirements/Methodology

stdSEM must be supplemented with an e-project
management part
Vision/strategy shared by all partners
Uniform development methodology used by all
partners
Buy/make “smaller components”
Short development cycles
Clear specifications for integration
Clear specifications for acceptance

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

17

3-6 Sptember 2002 Dr. J. Withalm 33

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

QA requirements/Acceptance

Concrete example: SAPA

SAPA components in CRS (Computerized
Reservation System)

Agent platform – developed by an OEM

SAPA components in PMS (Property
Management System)

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

3-6 Sptember 2002 Dr. J. Withalm 34

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

QA requirements/Deployment

system is being used on 3 different servers

must interoperate with the existing SW

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

18

3-6 Sptember 2002 Dr. J. Withalm 35

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Quality assurance aspects in developing a component-based system

Overview

Siemens/PSE environment

Project definition

QA requirements

e-business architecture

Technological requirements

Lessons learned

3-6 Sptember 2002 Dr. J. Withalm 36

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

The importance of architecture for e-business
solutions

Several challenges:
Usage unpredictable, thus no performance
forecasts possible
Difficulties relating to manageability and
security

To create robust solutions, it is necessary to
cobble together various products (or their
subcomponents)

that are in a constant state of evolution
both in terms of technical and market faces

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

19

3-6 Sptember 2002 Dr. J. Withalm 37

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

E-Business
Common pitfalls in designing e-business applications
without an overall architectural concept / 1

Making purely technical choices in setting up a
Web solution

Leaves a brittle solution with inadequate
performance and scalability

Focussing on a single product and the features it
offers

Influences the design to an extent that
compromises performance, scalability and
flexibility

3-6 Sptember 2002 Dr. J. Withalm 38

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

E-Business
Common pitfalls in designing e-business applications
without an overall architectural concept / 2

Architecture is an ongoing, solutions-oriented
and component-based philosophy

The goal is to build solutions that optimize both
current performance and future flexibility

20

3-6 Sptember 2002 Dr. J. Withalm 39

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

E-Business
Benefits of an architectural approach / 1

Shorter time-to-market
Avoiding integration threads that need
constant manipulation and updating

Better protection of investments against
technology shifts

Avoiding “getting trapped” in obsolete e-
business technology

Ability to scale with increasing demand
Avoiding unanticipated spikes in demand

3-6 Sptember 2002 Dr. J. Withalm 40

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

E-Business
Benefits of an architectural approach / 2

Achieving robustness and continuity of the
solution while at the same time minimizing
disruption to the existing architecture

However, changes or upgrades of
infrastructure elements are inevitable

Minimizing personnel and maintenance costs
Existing personnel can concentrate on value-
added services

21

3-6 Sptember 2002 Dr. J. Withalm 41

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

E-Business
Benefits of an architectural approach / 3

Providing an architecture that adapts to business
change

Any kind of business-oriented solution must
be built with continuous change in mind

Enterprise is enabled to leverage technologies of
the past, present, and future

Providing freedom to enlist emerging
technologies as they become available

3-6 Sptember 2002 Dr. J. Withalm 42

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

E-Business
Benefits of an architectural approach / 4

Basis for enlightened make or buy decisions
Clear understanding of the relationship
between the various components

Freedom from extensive coding and multiple
middleware services

Developers can identify and implement the
right Enterprise Application Integration (EAI)
technology for Internet applications

22

3-6 Sptember 2002 Dr. J. Withalm 43

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Electronic Business
Creating an e-business architecture/Identification
of key requirements / 1

What type of applications is being built?
Batch, continuous, interactive, transactional,
rule-based, expert system, simulation, real-
time, workflow, reporting, publish & subscribe

Which features are required?
Scalability, security, reliability, ACID
properties, integrity, flexibility, portability,
manageability, performance

3-6 Sptember 2002 Dr. J. Withalm 44

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Electronic Business
Creating an e-business architecture/Identification
of key requirements / 2

What is already available today?
Existing platforms, products and protocols

Platforms – operating systems
Products – SW development
environments, databases, middleware,
application and web servers, network and
application management products,
application packages
Protocols – network operating systems
(Novell, TCP/IP, SNA), RPC, message
queuing, Corba, distributed DB protocols

23

3-6 Sptember 2002 Dr. J. Withalm 45

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Electronic Business
Creating an e-business architecture/Identification
of key requirements / 3

Existing technology
home-grown application
third-party SW or packaged application
mobile computing devices

Integration could take place on the
API level
protocol level, through a third-party or home-
grown gateway
database level

3-6 Sptember 2002 Dr. J. Withalm 46

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Validating the e-business architecture / 1

Typically involves:

Architecture review

Prototype

Pilot application

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

24

3-6 Sptember 2002 Dr. J. Withalm 47

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

E- Business Strategy and Requirements

E- Business Architecture

Architecture Review

Pilot Application Full-Scale Application

R
eq

ui
re

m
.

Align

Requirements

PrototypePrototype
R

eq
ui

re
m

.

Align PrototypePrototype

PrototypePrototype

R
eq

ui
re

m
.Feedback

Validating the e-business architecture / 2
E-business solution development lifecycle

Feedback

Transition

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

3-6 Sptember 2002 Dr. J. Withalm 48

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Validating the e-business architecture / 3
Architecture review/committee

is conducted by a small, focused steering
committee

comprised of architects, security
administrators, business analysts/subject
matter experts

database administrators, and systems and
network administrators

25

3-6 Sptember 2002 Dr. J. Withalm 49

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Validating the e-business architecture / 4
Tasks

understand the overall system requirement
understand the acceptable risk levels
isolate the core business processes that are
shared by other parts of the business
identify areas of high data volume, high
transaction volume and high availability
isolate technology and components within the
architecture into known and unknown entities

3-6 Sptember 2002 Dr. J. Withalm 50

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Validating the e-business architecture / 5
Further factors to consider

business alignment
core business components
technology readiness
technology standards
system integration
cost of ownership
cost containment

26

3-6 Sptember 2002 Dr. J. Withalm 51

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Validating the e-business architecture / 6
Prototype / 1

Mitigation of risks
Technological requirements and constraints
Is the performance acceptable within the
confines of the requirements?

Does it exhibit the ability to scale?
Does the fail-over functionality work, and is it
reliable?
Is the communication protocol able to
securely traverse through firewalls or proxy
servers?

3-6 Sptember 2002 Dr. J. Withalm 52

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Validating the e-business architecture / 7
Prototype / 2

Does it integrate or interoperate with legacy
systems?
Does the stability of the technology measure up
to expectations?
What is the level of complexity involved in
understanding and using the technologies in
question?
Do the technologies work together?
Budgetary constraints
Does the solution stay within the allotted budget?

27

3-6 Sptember 2002 Dr. J. Withalm 53

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Validating the e-business architecture / 8
Pilot application

Validation of the implementation of an e-business
strategy on a small scale

Validation of the technical solutions of the e-
business architecture and the application

A prototype validates a specific technology

A pilot application validates the overall business
solution

3-6 Sptember 2002 Dr. J. Withalm 54

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Implementing the e-business architecture

Define the skill and team requirements

Component-based architecture is centered on
OO technology

The team should consist of an architect, a
data/database analyst, and a business
analyst

28

3-6 Sptember 2002 Dr. J. Withalm 55

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Implementing the e-business architecture
Designing a new e-business application using
the architecture / 1

Use-case methodology coupled with the Unified
Modelling Language Notation

System Engineering Method (SEM)

Design and Development Environment (Rational
Rose Visual Modeling Tool, StP, ...)

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

3-6 Sptember 2002 Dr. J. Withalm 56

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Implementing the e-business architecture
Designing a new e-business application using
the architecture / 2

Design pattern
a recurring design solution to the same
problem (ranging from user interface to
business logic)

Creating and reusing business components
components encapsulate a collection of
logically related business objects
these components seamlessly communicate
among themselves through published
interfaces (CORBA, COM, RMI)

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

29

3-6 Sptember 2002 Dr. J. Withalm 57

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Implementing the e-business architecture
Designing a new e-business application using
the architecture / 3

Compliance with standards
Scalability and performance

Component-based design
provides the ability to replicate identical
copies across physical computers to
accommodate growth in accordance with
business needs and budgetary constraints
components can also be redistributed
across physical computers for the same
reason

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

3-6 Sptember 2002 Dr. J. Withalm 58

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Implementing the e-business architecture
Designing a new e-business application using
the architecture / 4

Stateless servers
the design of session management should
coincide with the stateless server design
to ensure cohesive scalability
scale best and work best with network
load balancing

Facilitating the deployment phase
avoid any special software customization
when an e-business partner, vendor, supplier,
or customer signs up

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

30

3-6 Sptember 2002 Dr. J. Withalm 59

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Implementing the e-business architecture
Designing a new e-business application using
the architecture / 5

Application design
With the help of the use-case methodology

business requirements are captured through
a series of interviews with users and
stakeholders
the interviewees could include staff members
from business partners

3-6 Sptember 2002 Dr. J. Withalm 60

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Implementing the e-business architecture
Designing a new e-business application using
the architecture / 6

Discussion of issues such as access security,
business events, growth plans, usage platforms,
operation requirements, and capacity planning
requirements
Interactive development process

Chunks of logically related requirements are
designed, built, tested, and assembled
progressively

31

3-6 Sptember 2002 Dr. J. Withalm 61

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Implementing the e-business architecture
Designing a new e-business application using
the architecture / 7

The team
will need to perform only minor configuration
changes
can quickly replicate or redistribute business
components across computers
The use of XML technology allows companies to
securely share information with new business
partners without requiring any special software or
hardware deployment

3-6 Sptember 2002 Dr. J. Withalm 62

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Implementing the e-business architecture
Designing a new e-business application using
the architecture / 8

Integration with legacy systems

can occur either at the application level or at
the database level

these points of contact may form
bottlenecks and/or single points of failure

replicate these interface points

32

3-6 Sptember 2002 Dr. J. Withalm 63

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Implementing the e-business architecture
Designing a new e-business application using
the architecture / 9

Retiring older applications

If the e-business application enhances much
of the business logic in an older legacy
system

consider phasing out the older system in
favor of the new

to avoid duplicated maintenance and
confusion

3-6 Sptember 2002 Dr. J. Withalm 64

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Implementing the e-business architecture
Designing a new e-business application using
the architecture / 10

Extending existing business models using
wrapper codes
Extending existing business models using
gateways (e.g. Java gateway for CICS)
Partially replacing existing business models
Scalability and performance
Technology constraints

33

3-6 Sptember 2002 Dr. J. Withalm 65

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

e-business deployment

Change management

Component-based deployment

Security

Concerted deployment

Software and data migration

Training

Fine-tuning the application

Documenting the environment

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

3-6 Sptember 2002 Dr. J. Withalm 66

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Deployment issues / 1

Change management
divide roles among e-business, operating
systems, and the database
software upgrades
changes to e-business components
new browsers
keep several versions running while a
migration plan is put in place
hardware replacement
operating system upgrades
third party software rollouts

34

3-6 Sptember 2002 Dr. J. Withalm 67

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Deployment issues / 2

Component-based deployment

must pass stringent quality tests to ensure
zero defects

any version upgrades or retiring of
components must be carefully orchestrated

3-6 Sptember 2002 Dr. J. Withalm 68

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Deployment issues / 3

Security
Firewalls block protocols such as the Internet
Inter-ORB Protocol, Java Remote Method
Protocol, and RPC from passing through
unless specifically allowed by security
administrator
Some organizations resort to tunnelling these
protocols through HTTP, which, however,
causes considerable performance problems
Many organizations prohibit downloading
unsigned Java applets and Active X controls

35

3-6 Sptember 2002 Dr. J. Withalm 69

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Deployment issues / 4

Block access to unauthorized web sites
Perform anti-virus scans on web servers, e-mail
servers, and desktops
Forbid dial-outs to Internet service providers from
within the organization
DMZ (demilitarised zone)network provides a safe
area for communication

taking place between internal and external
systems
any damage caused by hackers is confined
within the DMZ
sensitive components should not be deployed
in the DMZ

3-6 Sptember 2002 Dr. J. Withalm 70

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Deployment issues / 5

Concerted deployment

Many e-business solutions interoperate with
other systems

These applications may need to be
deployed in unison

36

3-6 Sptember 2002 Dr. J. Withalm 71

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Deployment issues / 6

Software and data migration

May require “data scrubbing”

Is typically done programmatically, in
some cases human intervention will be
required

3-6 Sptember 2002 Dr. J. Withalm 72

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Deployment issues / 7

Training

Operators and help desk personnel

Probably not familiar with the new
systems

Fine-tuning the application

Use metrics to continuously gauge the
success

Documenting the environment

37

3-6 Sptember 2002 Dr. J. Withalm 73

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Production management for e-business applications

New roles and responsibilities
Management tools
Troubleshooting

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

3-6 Sptember 2002 Dr. J. Withalm 74

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Production management for e-business applications /
1

New roles and responsibilities
security, administration, capacity planning,
architecture, technology strategies, and
business strategies
e-business begins to force a high
dependency between business and IT

Management tools
business component deployments, remote
problem tracking and notification, and better
sharing of application management data
between business partners

38

3-6 Sptember 2002 Dr. J. Withalm 75

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Production management for e-business applications /
2

Troubleshooting

leads to a high level of dependency on
relationships

numerous business partners any of whom
may identify new problems in the areas of
performance, availability, and connectivity

will require close co-operation among
business partners

3-6 Sptember 2002 Dr. J. Withalm 76

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Quality assurance aspects in developing a component-based system

Overview

Siemens/PSE environment

Project definition

QA requirements

e-business architecture

Technological requirements

Lessons learned

39

3-6 Sptember 2002 Dr. J. Withalm 77

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

E-business technologies

Custom-Developed Components and Data Sources

Presentation Data Sources Glue Logic Business Rules

Existing Data / System Off-the-Shelf Components Frameworks

Existing
Data Sources

Horizontal
Frameworks

Catalog
Payment

Enterprise Resource
Planning Systems

Enterprise
Systems

Vertical
Frameworks

Internet Infrastructure

Internet Protocols (HTTP)

Naming
and

Directory
Service
(LDAP)

Security
(Public Key

Infra
structurw)

Browser Web
Sever

Middleware

CORBA-Remote Method Invocation DCOM

Application
Server

Object
Transaction

OTS/EJB/MTS

Message-Oriented
Middleware

Workflow

3-6 Sptember 2002 Dr. J. Withalm 78

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Technologies used

Corba required for
Encapsulating legacy systems
„Highway“ for agents

Software agents required because of their properties:
Autonomous
Pro-active (goal-based)

XML required because of:
Standardized data exchange

SOAP enables
Interoperability with other distributed systems

EJB facilitates for the programmer all problems with
Transaction acidity
Load balancing

JSP/Servlets/Java Applets/JDBC
Enables database access from a web site
Only used for test system

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

40

3-6 Sptember 2002 Dr. J. Withalm 79

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

CORBA / 1
OMG (Object Management Group) / 1

Largest software consortium in the world
More than 800 members

system suppliers such as Siemens, IBM,
HP, DEC, Oracle...
but also “end users”, such as Boeing,
AT&T, Daimler Benz...
from all fields, such as telecom, health,
finances...

through IIOP (Internet Inter ORB Protocol)

3-6 Sptember 2002 Dr. J. Withalm 80

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Mission:
To offer a common platform-independent
framework architecture for the development
of object-oriented applications on distributed
computer systems: OMA (Object
Management Architecture)

CORBA (Common Object Request Broker
Architecture)

Core part of OMA, synonymous with system
architecture
Language-independent through IDL (Interface
Definition Language)
Platform-independent

CORBA / 2
OMG (Object Management Group) / 2

41

3-6 Sptember 2002 Dr. J. Withalm 81

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

CORBA / 3
Independence of programming languages

IDL lets you specify the following:
The methods supported by your interface,
including input/output parameters and data types
Attributes of a component
Classes to inherit from
Exceptions to be generated
Events

C C++ Smalltalk Ada COBOL Java

IDL IDLIDLIDLIDLIDL

Client

C C++ Smalltalk Ada COBOL Java

IDL IDLIDLIDLIDLIDL

Server

ORB

3-6 Sptember 2002 Dr. J. Withalm 82

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

CORBA / 4
Distributed objects according to CORBA

Clients do not need to know

where the distributed object is

under which operating system it executes

how the server object is implemented

Clients only know

the interface of the server object

42

3-6 Sptember 2002 Dr. J. Withalm 83

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

CORBA / 5
Properties of components

A) Plug-and-Play

B) Interoperability

D) Coexistence

C) Portability

E) Self-managing Entities

+ + =

ORB

ORB Legacy
Application

ORB

UnixMACOS/2

Object

3-6 Sptember 2002 Dr. J. Withalm 84

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

CORBA / 6
Goal: Business Objects

Object Bus Object Services
„SystemFramework

s“

Common Facilities
“Application
Frameworks“

Business
Objects

Interoperability Collaboration

43

3-6 Sptember 2002 Dr. J. Withalm 85

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

CORBA / 7
Pros

Fast access to known objects (defined in IDL)

Standardized IDL and ORB infrastructure

CORBA is being widely used as backbone for
server applications.

3-6 Sptember 2002 Dr. J. Withalm 86

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

CORBA / 8
Cons

No independent adjustment to changing
databases (special events, coordination tasks)

Very strict access rules (no fuzzy searching
possible)

No offline operation (e.g. monitoring and waiting
for changes)

No learning mechanism (customer behavior has
to be recorded by the server software)

44

3-6 Sptember 2002 Dr. J. Withalm 87

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Agents / 1
General classification of agents

Source: http://ivs.cs.uni-magdeburg.de/~dumke/STV/ST3-06.html

3-6 Sptember 2002 Dr. J. Withalm 88

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Agents / 2
Properties

autonomous
act on their own
perceptive
perceive their environment
re-active (event-based)
react to changes in their environment
pro-active (goal-based)
attempt to change the real world
cooperative
cooperate to achieve common goals as well as
their own goals
adaptive
learn from experience

45

3-6 Sptember 2002 Dr. J. Withalm 89

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

body head
com

m
u-

nicator

Agents / 3
What is an agent?

Body
application-specific basic functionality of the
agent
can be an existing system with an API

Head
manages the agent's goals, plans
controls the body via the API
manages cooperation with other agents

Communicator
is responsible for exchanging messages with
other agents
is based on traditional communication
protocols, e.g. TCP/IP

3-6 Sptember 2002 Dr. J. Withalm 90

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Travel route Heidelberg Travel route Heidelberg --
MunichMunich

Overnight stayOvernight stay
MunichMunich

Route HD Route HD -- MM

Agents / 4
Cooperation between agents

By trainBy train HD HD -- MM

By carBy car
HD HD -- MM

46

3-6 Sptember 2002 Dr. J. Withalm 91

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Agents / 5
Pros - cons

Agent technology pros
automation
adaptability
feedback
learning
teaching help functions
remote control

Agent technology cons
danger through exaggeration
user has to adjust to agent control
requirements for business model design
security
confidentiality

3-6 Sptember 2002 Dr. J. Withalm 92

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Agents / 6
Summary

By providing specific services, the agent system takes
over a number of coordination tasks in the
communication between the partners
The agent system's implementation provides for a
standardization of communications
Search and negotiation rules allow fuzzy searches
The agent system ensures easy scalability and strictly
delimits responsibilities between the partners
The agent system allows for a high degree of
automation and provides a uniform interface.
Agents are prepared for future use in combination with
other user interfaces (voice input, mobile telephony,
PDAs)
The agent system supplements the Corba backbone
by allowing to better connect to dynamic
heterogeneous and globally distributed databases

47

3-6 Sptember 2002 Dr. J. Withalm 93

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Application servers / 1

Application servers consist of:
a combination of several different
technologies, including

Web servers, ORBs, MOM, DBs...

Application servers can refer also to technologies
other than distributed objects

We focus only on the ones based on distributed
object technology

such as CORBA, Java RMI or COM+

3-6 Sptember 2002 Dr. J. Withalm 94

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Application servers / 2
ORBs / 1

feature varying degrees of complexity

the simplest ones make it possible to
connect

client applications and
distributed objects

make it easy to find and use objects
distributed on client

are less well suited for transaction controlled
environments with high data volumes

are called ORBs

48

3-6 Sptember 2002 Dr. J. Withalm 95

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Application sserver / 3
ORBs / 2

provide a communication backbone for
distributed objects

but normally not the robust infrastructure
required to support large numbers of users
and mission-critical operations

application developers must access services
such as transaction, persistence, multi-
threading on their own

3-6 Sptember 2002 Dr. J. Withalm 96

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Component transaction monitors

are application servers that have developed from
a mixture of

traditional TP monitors and
ORB technologies

provide infrastructure able to automatically
manage

transactions, object distribution, multi-
threading, security, persistence, and
resources (=Corba services)

49

3-6 Sptember 2002 Dr. J. Withalm 97

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Enterprise Java Beans
Definition

is a server-side standard component model for
component transaction monitors
Original definition by SUN:

is a component architecture for the
development and use of component-based
business applications
applications written using the Enterprise Java
Beans architecture are scalable, transaction-
oriented, and multi-user capable
once written, such applications can be used
on any server platform supporting the
Enterprise Server Beans specification

3-6 Sptember 2002 Dr. J. Withalm 98

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Distributed objects / 1

Different parts of a system can run on different
computers

Business logic and data can be accessed
remotely

Customers, business partners, and other remote
parties can use a business system from virtually
any place at any time

The latest development in distributed processing
are distributed objects

50

3-6 Sptember 2002 Dr. J. Withalm 99

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Distributed objects / 2

Distributed object technologies such as

Corba

Java RMI

COM+

make it possible to

run objects on one computer,

which are then used by client applications on
other computers

3-6 Sptember 2002 Dr. J. Withalm 100

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Distributed objects / 3

Distributed objects have developed from an old
type of 3-tier architecture

which is used in TP monitor systems such as
CICS by IBM or Tuxedo by BEA

Such systems separate the representation, the
business logic, and the database into three
separate layers

51

3-6 Sptember 2002 Dr. J. Withalm 101

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Distributed objects / 4

Distributed object technologies make it possible to
replace procedural COBOL and PL/1 applications
on the middle layer with business objects

Often, more complex, multi-tier architectures are used
here, different objects are located on different
servers and interact to complete a task

Enterprise Java Beans make it particularly easy to
create such n-tier architectures

3-6 Sptember 2002 Dr. J. Withalm 102

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Server-side components / 1

OO languages such as C++, Java and Smalltalk
are used to

write SW that is flexible, scalable, and
reusable

the three axioms of OO development

In business systems, OO languages are used to
improve GUI development
simplify data access
encapsulate the business logic

Encapsulating the business logic into business
objects is the latest focus of the IT industry

52

3-6 Sptember 2002 Dr. J. Withalm 103

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Server-side components / 2

Business is always moving; the products,
processes, and goals of a company are bound to
change in the course of time

If it is possible to encapsulate the software that
models a business into a business object, the
software will then be flexible, scalable, and
reusable and thus be able to develop on its own
in line with the business

3-6 Sptember 2002 Dr. J. Withalm 104

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Server-side components / 3

A server-side component model defines
an architecture for developing distributed
business objects

and combines
the accessibility of distributed object systems
with
the changeability of the business logic in the
form of an object

Server-side component models are used on the
application servers of the middle layer

that manage the components at runtime and
make them available to remote clients

53

3-6 Sptember 2002 Dr. J. Withalm 105

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Server-side components / 4

can be sold and purchased as independent
chunks of executable software, just like any other
component
comply with a standard component model and
can be executed without direct modification on a
server that supports this
component model
often support attribute-based programming

the run-time behavior of operational
components can be
modified
without changes to the component’s program
code

3-6 Sptember 2002 Dr. J. Withalm 106

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Server-side components / 5

Depending on the component model, the server
administrator is able to set the behavior of a
server-side component

with respect to transaction, security, and even
persistence

by assigning certain values to these attributes

54

3-6 Sptember 2002 Dr. J. Withalm 107

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Server-side components / 6

When new products are being developed and
corporate processes change

it is possible to re-assemble, change, and
extend server-side components in such a way
that the business system will reflect these
changes

A business system can be regarded as a
collection of server-side components that model
concepts such as customers, products,
reservations, warehouses, etc.

3-6 Sptember 2002 Dr. J. Withalm 108

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Server-side components / 7

Each component is like a building block that can be
combined with other components to form a business
logic

Products can be stored in a warehouse or
delivered to a customer
A customer can make a reservation or buy a
product

You can assemble or disassemble components, use
them in other components, and change their
definitions
A business system based on server-side components
is

flexible because it consists of objects, and
accessible because the components can be
distributed

55

3-6 Sptember 2002 Dr. J. Withalm 109

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Enterprise Bean / 1
Component

There are two different types:

Entity Bean

Session Bean

3-6 Sptember 2002 Dr. J. Withalm 110

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Enterprise Bean / 2
Entity Beans

model business processes that can be
expressed in the form of nouns

for example: customer, piece of equipment,
entry in stock list, location,...

thus model objects from the real world

hence are persistent data records in some
kind of database

56

3-6 Sptember 2002 Dr. J. Withalm 111

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Enterprise Bean / 3
Session Beans

are an extension of the client application and are
responsible for managing processes or tasks

for example: they are typically used to
manage certain activities such as a
reservation; in doing so, they rely on Entity
Beans

All these operations are reflected in the database
by actions being performed on the corresponding
Entity Beans

3-6 Sptember 2002 Dr. J. Withalm 112

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Classes and interfaces / 1

In order to implement an Enterprise Bean, it is
necessary to define two interfaces and one or
two classes

Remote interface

Home interface

Bean class

Primary key class

57

3-6 Sptember 2002 Dr. J. Withalm 113

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Classes and interfaces / 2
Remote Interface

defines the business methods of the beans

i.e. the methods offered in the real world to
complete a task

extends a javax.ejb.EJBObject, which in turn
extends java.rmi.Remote

the undefined entity that actually implements this
interface is called an EJB.Object

3-6 Sptember 2002 Dr. J. Withalm 114

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Classes and interfaces / 3
Home interface

defines the lifecycle methods of the beans

Create, Remove, Find

extends javax.ejb.EJBHome, which in turn
extends java.rmi.Remote

the object that implements the home interface is
called the local EJB object

58

3-6 Sptember 2002 Dr. J. Withalm 115

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Classes and interfaces / 4
Bean class

implements the business methods of the beans
but normally not their remote or home
interfaces

must, however, feature
methods with signatures that match the ones
in the remote interface, and
methods that match some of the methods of
the home interface

an Entity Bean must implement
javax.ejb.EntityBean
a Session Bean must implement
javax.ejb.SessionBean

Both extend
javax.ejb.
EnterpriseBean

3-6 Sptember 2002 Dr. J. Withalm 116

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Classes and interfaces / 5
Primary key

makes a database pointer available

only Entity Beans require a primary key

must implement java.io.Serializable

59

3-6 Sptember 2002 Dr. J. Withalm 117

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Classes and interfaces / 6
Context

Enterprise Beans are something in between a
client software and a database

the client never interacts directly with a bean
class
always uses just the home and remote
interfaces of a bean
interacts with automatically generated stubs

A bean that needs the services of another bean
thus is another client

using the same stubs instead of interacting
directly with the bean class

3-6 Sptember 2002 Dr. J. Withalm 118

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

a web service is a collection of functions
that can be published, located, and invoked
across the Web

these functions can be anything from simple
requests to complicated business processes
once a web service is deployed

other software (including other web services)
can discover and invoke the deployed service
dynamically at runtime

So, in a nutshell, Web services are components
for the truly distributed era.

Web services

Navigation 1

Navigation 4

Navigation 5

Navigation 6

Navigation 7

Navigation 8

Navigation 2

Navigation 3

60

3-6 Sptember 2002 Dr. J. Withalm 119

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Web services - Standards

SOAP Simple Object Access
Protocol

WSDL Web Service Description Language

UDDI Universal Description, Discovery,
and Integration

3-6 Sptember 2002 Dr. J. Withalm 120

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

SOAP/1

is a lightweight protocol based on XML

for the exchange of information in a
decentralized environment

typically across the Internet or intranets.

there are three key parts of SOAP

61

3-6 Sptember 2002 Dr. J. Withalm 121

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

SOAP/2
Key parts

an envelope that defines a framework for
description

what is in a message and how to process it

a set of encoding rules for expressing

instances of application-defined data types

a convention for representing

remote procedure calls (RPCs) and
responses

3-6 Sptember 2002 Dr. J. Withalm 122

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

SOAP/3

SOAP plays a role similar to

CORBA‘s Internet InterORB Protocol (IIOP)

COM‘s RPC

Java‘s Remote Method Invocation (RMI)

HTTP in ordinary Web browsing

62

3-6 Sptember 2002 Dr. J. Withalm 123

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

SOAP/4

SOAP is intended to be simple enough for a
programmer to be able

to implement in a couple of days

using the favorite programming language and
operating system

this simplicity comes from deliberately neglecting
the more complex parts of other distributed
computing protocols

3-6 Sptember 2002 Dr. J. Withalm 124

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

SOAP/5

Although the choice of HTTP and XML encoding
makes it look anything but simple

SOAP clients really just send XML call
messages over HTTP

to servers and can get XML response
messages back in return.

63

3-6 Sptember 2002 Dr. J. Withalm 125

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

WSDL

WSDL is an XML-based specification schema

for describing contracts between a set of Web
services that are to exchange messages

it declares the what, where, and how of the Web
services

with a role very much like that of the IDL in Corba
and COM+

WSDL plays a critical linking role, conferring the
self-definition property of Web services

3-6 Sptember 2002 Dr. J. Withalm 126

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

UDDI/1

UDDI standards define how to build and use a
directory of Web services

the UDDI directory is an online means

of consistent publishing and consuming of
Web services

it addresses the key question of how to actually
find web services

using different selection criteria

64

3-6 Sptember 2002 Dr. J. Withalm 127

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

UDDI/2

UDDI provides a set of XML documents
for describing and classifying Web services.

these services are described in Internet registries
that can be searched
the focus is on middleware connectivity and
using XML itself

to describe the system that companies use to
interface with one other

UDDI is based around the concept of standard
registry services

that provide yellow, white, and green page
business-centric functionality

3-6 Sptember 2002 Dr. J. Withalm 128

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

UDDI/3

White pages

provide general information about
businesses, such as names, addresses, and
contact details

Yellow pages

let clients search for businesses that provide
services to particular industry segments or
offer specific services

65

3-6 Sptember 2002 Dr. J. Withalm 129

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

UDDI/4

green pages
provide technical information on services being
offered

including how to call them and where they are
located
this information is returned as a „Type model“
(tModel)

the t Model is basically the same as the WSDL
description for the service.
the t Model includes information about

the location of the service
the service name
the operations it supports, and their parameters

3-6 Sptember 2002 Dr. J. Withalm 130

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Quality assurance aspects in developing a component-based system

Overview

Siemens/PSE environment

Project definition

QA requirements

e-business architecture

Technological requirements

Lessons learned

66

3-6 Sptember 2002 Dr. J. Withalm 131

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Lessons learned / Project management

One overall project manager and one QA
manager

Three subprojects

The second subproject was designed “only”
for the procurement and acceptance testing
of the Aglet system (OEM)

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

3-6 Sptember 2002 Dr. J. Withalm 132

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Lessons learned /
Responsibilities of the overall project manager

Coordination of joint approach/vision with
managers from partner companies

Definition of useful deliverables in agreement
with the customer

e.g. vacancy query that is available to
employees of a partner company

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

67

3-6 Sptember 2002 Dr. J. Withalm 133

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Lessons learned / Subprojects

Each subproject had its own organization and
functionality

No competition with other subprojects

Q feature requirements resulted in

High-priority focus on test cases and
coordination with overall project management

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

3-6 Sptember 2002 Dr. J. Withalm 134

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Lessons learned /
Q characteristics (availability, performance)

Choose architecture to meet these requirements
Technologies, too
Reviews/tests/prototypes, too
Encourage use of already developed components
(filters, agent platform, PMS client) that only need to
be customized

agreed quality is achieved
considerably lower error rate
errors detected very early on
error diagnosis and clearance considerably
easier

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

68

3-6 Sptember 2002 Dr. J. Withalm 135

Program and
System Engineering
PSE

Software & Internet Quality Week, San Francisco

Lessons learned / Acceptance testing

3 sub-acceptance test were required

a special team was formed to deal with overall
acceptance testing

security aspects played a major role

EJB support for acceptance testing of
bookings on hotel PCs

Siemens /
PSE environment

Project definition

QA requirements

e-business
architecture

Technological
requirements

Lessons learned

Thank you
for your attention!

Key Points

Test Automation Technology and Experience
Interface-driven Model-Based Test Automation
Java and SQL Test Driver Generation for Testing Database Functionality

Presentation Abstract

The combination of model-based verification and test automation has helped reduce cost, provide early identification of requirement
defects, and improve test coverage [RR00; KSSB01; BBNKK01; BBN01d; Sta00; Sta01]. This paper extends prior work in model-based
verification and describes an interface-driven analysis approach that combines requirement modeling to support automated test
generation of Java test scripts for executing against a database. The paper describes the concepts of models and test driver mappings
using examples for testing security functionality of an Oracle database using Java and standard Structured Query Language (SQL) test
drivers. Recommendations are provided for performing the modeling of textual requirements in conjunction with interface analysis to
support reuse of models and their associated test driver mappings. These recommendations were derived while extending an early
experimental model of one small set of related requirements to several other groups of interrelated requirements. The resulting insights
are useful for understanding how to scale models and the associated test driver mappings to an industry-sized verification project.
Although the modeling and testing is focused on security capabilities of a database, the results and recommended approaches are
general for testing any application.

About the Author

Dr. Blackburn is a Software Productivity Consortium Fellow, President of T-VEC Technologies, Inc. and co-inventor of the T-VEC
system. He has twenty years of software systems engineering experience in development, management and applied research of
process, methods and tools. He is currently involved in consulting, strategic planning, proposal and business development, as well as
developing and applying methods for model-based approaches to support requirement defect removal and test automation. He has also
been involved in applied research and technology demonstrations in requirement and design specification, formal methods, and formal
verification, object technology, web-based knowledge engineering, domain engineering, and reverse engineering. He earned a BS in
Mathematics from Arizona State, MS in Mathematics from Florida Atlantic University, and a Ph.D. in Information Technology from
George Mason University.

Mr. Robert D. Busser is co-founder of T-VEC Technologies, Inc. and co-inventor of the T-VEC system. He has over twenty years of
software systems engineering experience in development, and management in the area of advanced software engineering, and
expertise in software engineering processes, methods and tools. He is the chief architect of the T-VEC system. He has extensive
experience in requirement and design methods, real-time systems, model-based development and test generation tools, model
analysis, and verification. He has extensive knowledge about model transformation systems, theorem prover and constraint solving
systems. In addition, he has extensive avionics engineering experience and has been involved in several FAA certifications. He has
experience applying this knowledge in the development of highly-reliable software systems and the development of state of the art
requirements-based software modeling and testing technologies. Mr. Busser has a B.S. in Electrical and Electronics Engineering from
Ohio University.

Mr. Aaron M. Nauman has a wide range of systems and applications development experience in both real-time (telecommunications)
and information systems domains. He is currently involved in the development of model transformation, and software verification
through specification-based automated testing. His experience includes all aspects of product development from requirements analysis
through test implementation. Additionally, he has experience in object-oriented technologies, distributed and client/server systems,
web-based and components-based software and systems integration. He is a representative on the OMG UML Action Semantics
working group. Mr. Nauman graduated Summa Cum Laude from North Carolina State University with a B.S. in Computer Science.

Dr. Ramaswamy Chandramouli is a computer scientist at NIST with over 15 years of experience in both Private Sector and Federal
Agencies. His professional interests include Distributed System Security, Access Control Models and Security Specifications. He was
one of the authors of “Role Based Access Control Protection Profile” which was the first Common Criteria (V 2.0) Protection Profile to
be certified in the U.K. He was also the lead author of the paper titled “Comparison of Role Based Access Control Features in
commercial DBMS” which won the Best Professional Paper award at the the 21st National Information Systems Security Conference
held at Crystal City, VA, Oct 1998. Dr.Chandramouli holds an MS degree in Operations Research from the University of Texas and a
Ph.D. in Information Technology from George Mason University.

QW2002 Paper 3T1

Dr. Mark Blackburn, Mr. Robert Busser & Aaron Nauman
(T-VEC Technologies/SPC, Inc.) & Dr. Ramaswamy
Chandramouli (National Institute of Standards and

Technology)

Interface-driven Model-based Test Generation of Java
Test Drivers

1

Page 1

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 1

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Interface-Driver Model-based Test
Generation of Java Test Drivers

Mark Blackburn, Robert Busser, Aaron Nauman
T-VEC Technologies/SPC

Ramaswamy Chandramouli (Mouli)
National Institute of Standards and Technology

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 2

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Common Symbols, Abbreviations and
Acronyms

API Application programming interface
COTS Commercial off-the-shelf
GUI Graphical user interface
Java High-level programming language
JDBC Java Database Connectivity
MCDC Modified Condition Decision Coverage
NIST National Institute of Standards and

Technology
NRL Naval Research Laboratory
ODBC Open Database Connectivity
Perl High-level programming language
TAF Test Automation Framework
TTM T-VEC Tabular Modeler
SCR Software Cost Reduction
SQL Structured Query Language
SRS System/software requirement specification
UML Unified Modeling Language

Tool

Manual process

Machine readable artifact

Textual document

Object mapping

Tabular model

2

Page 2

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 3

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Outline

• Background/context

– Benefits achieved through use on other applications

• General description of process-oriented perspectives of the
method, tools and roles

– Lifecycle perspective

– Generic discussion of interfaces

– Models

– Test driver support

• Example requirements and interfaces for database security

• Other applications

• Summary and conclusions

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 4

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Background/Context

• National Institute of Standards and Technology (NIST) initiated
program to develop methods and tools for automating Security
Functional Testing

– Provided end-to-end support including model development, model
analysis, automated test generation, automated test execution in
multiple environments, and results analysis

• NIST expanded scope of requirements to assess scalability

• Applied best practices method from use on prior large projects

– Develop verification models based on refinement of requirements in
terms of component interfaces

– Verification/test engineer work in parallel with developer to refine
requirements, stabilize interfaces while identifying requirement defects

– Parallels concepts of eXtreme Modeling (like eXtreme Programming)

– User tabular modeling – easiest to learn and use

3

Page 3

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 5

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Contributions

• Pragmatic guidance for combining interface analysis and requirement
modeling

• Recommendations for defining interfaces that provide better support for
testability are valid for all forms of testing

• Interface-driven modeling has benefits for testing a released product, but
it has been applied during development with many additional benefits

– Ideally, test engineers work in parallel with developers to stabilize
interfaces, refine requirements, and build models to support iterative
test and development

– Test engineers write requirements for products (which in some cases
are very poorly documented) in models, as opposed to hundreds or
thousands of lines of test scripts

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 6

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

TAF Support

Test Automation Framework Life Cycle
Automation

T-VEC ®
Factory

Model
Analysis &
Coverage

Status,
Results
Report

Test
Driver

User Benefits
Full Life Cycle Automation

• LM Aero
• Early defect discovery reduces rework
• Up to 50% Reduction in Test Planning
• Up to 90% Reduction in Test Creation

• LM Astronautic - Mars Polar Lander Bug
• Rockwell - 52% Lifecycle Cost Reduction
• Member - 50% Reduction in Verification for

Life Critical System
• Requirement Management
• Drives Early Stabilization of Interfaces
• Model Analysis

• Early identification of model defects
(inconsistencies, contradictions)

• Test Vector Generation
• Test Driver Generation

• For host, target, or simulation
• Available for most any language
• Supports early model validation

• Automated results comparison
• Defect Tracking
• Requirement-to-test traceability

Defect
Tracking

TAF
Translators

Technical
Solution

Requirement
Management

Verification
Modeling

Requirement Engineer

Design Engineer

Test Engineer

Defects and
Failures

HTML
Model Report

4

Page 4

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 7

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Demonstrated to Work in
Other Application Domains

• Web-applications (client) interface to server (database)

– Models built in TTM (SCR) and test drivers generated in WinRunner
scripting language for web applications

• Client/server mainframe (database) application

– Models built in TTM (SCR) and test drivers generated in
DynaComm/Elite (3270 terminal emulation) scripting language for
PC clients

• Mars Polar Lander

• Life critical: medical, aerospace, avionics

• Non critical: telecomm, automotive

• Defense

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 8

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Key Results and Benefits*
• Found Mars Polar Lander bug

• Early requirement defect identification reduces rework

• Testable requirements help eliminate rework

• Test planning time reduced by up to 50%

• Automated test generation reduces manual effort by up to 90%*

• Test cases development and execution optimized to eliminate
test redundancy

• Known level of requirements coverage can be planned and
measured

• Significant cost reductions

*Source: Safford, Key applications of Test Automation Framework (TAF) , Twelfth Annual Software Technology Conference, 2000.
Kelly, et. al., Requirements Testability and Test Automation, Lockheed Martin Joint Symposium, June 2001.
Mars Polar Lander Fault Identification Using Model-based Testing, Proceeding in IEEE/NASA 26th Software Engineering
Workshop, November 2001.

5

Page 5

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 9

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Process Flow

Key

T-VEC Test
Specification

T-VEC
Test Vector
Generator

Test Vectors

T-VEC
Test Driver
Generator

Test Driver Mappings

Verification Modeling
and Clarification

Oracle8 Security
Target

Tool

- Role

- Tool

- Artifact(s)

Test
Drivers

Test
Report

SCR Modeling

Interfaces
Data Types
Variables
Constants

Behavior
Condition

Event
State machine

+

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 10

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Modeling Perspectives

Requirement Specification: defines
the boundary between the environment
and the system

Functional Specification: defines
the interfaces within the system

Design Specification: defines
the component

Environment

System

D. Cooke et al., 1996

6

Page 6

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 11

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Defining Component Interface Helps Stabilize
Architecture

• Verification efforts have helped drive better/early definition of
component interfaces to stabilize architecture early

B.1 B.2 B.3

Well-Defined Interfaces
Support Direct

Controllability and
Observability for

Component

Coupled Interfaces
Complicate Access to
Component and Limit

Controllability that
Requires Test Inputs

to be Provided Upstream

A B C

Key

-Well-defined Interface

- Coupled Interface

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 12

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Developing Verification Models
• Verification model is refinement of requirements defined in terms of

interfaces and other related documentation

Verification Models

Test
Engineer

System

Tests and
Test Drivers

Test
Results

T-VECTAF
TranslatorModeling

Interfaces

Tabular
Model

Env n.

map

schema

Env 1.

map

schema

Test Driver

map

schema

Requirement Specs.
User Documents

Interface Control Doc's.
API Doc's.

Design Models
Previous Test Scripts

Design Engineer

Model Defects

• Java - GUI
• Java - JDBC- Oracle
• Perl - ODBC - Oracle and Interbase
• Other languages C, Ada
• Proprietary, WinRunner, DynaComm, etc

7

Page 7

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 13

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Input
Variables

Tabular Modeling Based on SCR Method
Is Easiest for Test Engineers

Specified Behavior

Term
Variables

Mode
Machines

Term
Variables

Mode
Classes

Monitored
Variables

System,
Software, or
Component

Output
Variables

Controlled
Variables

TTM Tabular Modeler

SCRtool 2.1

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 14

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

How to Model Requirements Using
Tabular Modeling

SRS

Function
List

Change
Request

Requirements
(come in many forms)

Behavior
Conditions Events Mode Machines

Interfaces

Data Types

Constants

Variables

Requirement
Modeling and
Clarification

Defining
Product/Component

Interfaces

8

Page 8

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 15

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Separating Roles in Test Driver
Development Leverages Key Resources

Global init;
Forall tests

init target;
init output;
set inputs;
execute SUT;
get outputs;
store output;

endforall

Test Driver
Schema

Verification/Test
Engineers
(Modelers)

Develop models
and object mappings

specific to their project,
but contribute to common
object mappings reused
across various system

components

Test Drivers

T-VEC
Test Driver
Generator

Verification/Test Engineer
(Test Automation Architect)

Test driver schema
support, once developed,

can typically be
maintained by one

test automation architect

Test Driver
Schema

Perl
Utilities

Common Object
Mappings

Specific Object
Mappings

…

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 16

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Test Driver Organization Facilitates
Reuse and Leverages Expertise

operation.MAP

Global init;
Forall tests

init target;
init output;
set inputs;
execute SUT;
get outputs;
store output;

endforall

schema.sch

<TAF_HOME> = '\TAF\course\test_driver_utilities'

<subsystemName> = 'operation';

<TAF_HOME> = '\TAF\course\test_driver_utilities';

EMBED_PERL '<TAF_HOME>\schema.pl';

INCLUDE '<TAF_HOME>\schema.sch';

INCLUDE '<TAF_HOME>\inits_and_declarations.map';

INCLUDE '<TAF_HOME>\common.MAP';

schema.pl

common.MAP

inits_and_declarations.MAP

messages.map
literals.map
inputs.map
flags.map
vars.map

9

Page 9

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 17

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Benefits of Full Traceability:
Reviewable Artifacts and Quantitative Status

Test Vectors
Traceable to Every

Requirement
(Hyperlinked)

Vectors

DCP

Coverage Analysis
Traceable to DCP

(Hyperlinked)

Test Results
Report

Traces to Every
Vector

HTML
Representation

of Model
With

Requirement
Traceability

Program Status
(Hyperlinked)

To
Models,

Test Vectors,
Coverage Analysis,

and
Test Report

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 18

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

What's a Security Requirement?

Grant Object Privilege (F.APR.GOP):
A normal user (the grantor) can grant an object privilege to another user,
role or PUBLIC (the grantee) only if:
a) the grantor is the owner of the object; or
b) the grantor has been granted the object privilege with the

GRANT OPTION.

Oracle8 Security
Target

Oracle claimed
support for

ISO/IEC 15408
Security Target

10

Page 10

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 19

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Model Behavior for Grant Object Privileges

Grant Object Privilege
tcUserObjectPrivileges

tcRoleObjectPrivileges

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 20

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

What's an Interface?
Data Dictionary View and SQL Commands

Oracle8 Reference &
Oracle8 SQL Reference

Example from
Security Management

Requirement
Summary Data Dictionary Items

SQL
Command

Dependant
Command

Disable roles
DBA_ROLE_PRIVS
SESSION_ROLES SET ROLE

GRANT,
ALTER,

Enable roles
DBA_ROLE_PRIVS
SESSION_ROLES SET ROLE GRANT

Grant object privileges DBA_TAB_PRIVS GRANT

CREATE,
INSERT,
SELECT

Grant/revoke role
privileges DBA_ROLE_PRIVS

GRANT/
REVOKE

CREATE,
INSERT,
SELECT

Grant system
privileges DBA_SYS_PRIVS GRANT

CREATE,
INSERT,
SELECT

Revoke privileges DBA_TAB_PRIVS REVOKE GRANT

Every object uniquely
identified, even if
deleted ALL_OBJECTS

CREATE,
INSERT,
SELECT,
DELETE

11

Page 11

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 21

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

SQL Command and Data Dictionary

• SQL operations directly related to granting of object privileges is
of the form

GRANT <privilege> ON <object> TO <user | role | PUBLIC> [WITH GRANT OPTION]

Where <privilege> can be: ALTER, EXECUTE, INDEX, INSERT, READ, REFERENCES, SELECT,
UPDATE, ALL, and the GRANT OPTION is optional

• Related SQL operations

CREATE USER command and initialize user's privileges

To log on to Oracle, a user must have CREATE SESSION system privilege

• Data Dictionary is DBA_TAB_PRIVS.

– Lists all grants on objects in database

– Has attributes that indicate, GRANTEE (user to whom access was
granted), object owner, name of the object, GRANTOR (user who
performed the grant operation), privilege, and indication of whether
privilege can be granted to another user

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 22

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Test Driver Capabilities

• Retrieve global test configuration settings that direct test driver
mechanisms (log directory, output file directory, system user and
password,etc.)

• Retrieve test vector parameters during test execution

• Log test operation

• Create test output file

• Establish an Oracle database connection and SQL execution
through JDBC wrapper

• Specify test interface along with helper methods

• Initialize global constants

• Execute test

12

Page 12

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 23

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Detailed Process Flow Summary

Test
Results

Verification Model

Test Vector
Generator

Test Driver
Generator

Expected Outputs

Actual
Outputs

Cross
Comparison

Data dictionary
and

SQL commands

Interfaces

Object
Mapping

Test
Driver

Schema

JDBC

Oracle8 Security
Target

Database
System

Oracle8 Reference
Oracle8 SQL Reference

Behavior

Java
Environment

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 24

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Packaging of Infrastructure Java Classes

• Test driver support packaged using a Java package
com.tvec.support, which contains the following classes:

• ConfigManager – provides access to the global test configuration
settings

• Constants – set of constants used by the tests

• Context – used to retrieve (and set) test vector parameters

• Logger – provides classes to write log files and output files

• SQLUtils – provides database access

• TestImpl – abstract class with the test interface and helper
methods

• TestRunner – framework for running classes that implement
TestImpl

13

Page 13

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 25

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Operational Scenario
• TestRunner class contains entry point for running tests that

implement TestImpl

• Executing TestRunner performs as follows:

– Read global configuration file to determine log file directory, output
file directory, and maximum number of users

– Initialize test database (delete existing test table space, create a new
test table space)

– For each test vector:

– Create default data users, tables, roles, and profiles

– Call TestImpl.setupTest to setup the test environment further

– Call TestImpl.runTest to perform the test and return a Boolean result

– Write the result of the test to the output file

– Call TestImpl.cleanupTest to do standard cleanup needed to restore
test environment.

– Perform cleanup of standard users, tables, roles, and profiles

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved. 26

SOFTWARE
PRODUCTIVITY
CONSORTIUM

®

Conclusions/Summary
• Interface driven approach to modeling:

– Helps drive early stabilization of interfaces and aids in identifying
model variables

– Helps identify common test driver support capabilities that can be
constructed once and reused across many related tests

• Parallel development of verification modeling beneficial in
development and helps identify requirement defects early to
reduce rework

– Concept characterized as eXtreme modeling (similar to eXtreme
programming)

• Java-based test driver capabilities more difficult to setup than Perl
(as used on previous projects)

– If test drivers created and maintained manually, there might be some
benefit in using Java, but when automated Perl is easier to build,
read/review, and maintain

Copyright © 2002, Software Productivity Consortium and T-VEC Technologies, Inc. All rights reserved.

Page 1 of 15

Interface-driven Model-based Test Generation of Java Test Drivers
Mark Blackburn, Robert Busser, Aaron Nauman, T-VEC Technologies/SPC
Ramaswamy Chandramouli, National Institute of Standards and Technology

This paper extends prior work in model-based verification and describes
interface-driven analysis that combines textual requirement modeling to
support automated test generation of Java test scripts for executing against a
database. It describes concepts of models and test driver mappings using
examples for testing security functionality of an Oracle database using Java
and standard Structured Query Language test drivers. Although the modeling
and testing is focused on database security capabilities, the described
concepts are general for testing most applications.

Keywords: Test Automation Technology and Experience, Interface-driven Model-Based Test
Automation, Java and SQL Test Driver Generation, Security Testing, Database Testing
1 Introduction

The combination of model-based verification and test automation has helped reduce cost, provide
early identification of requirement defects, and improve test coverage [RR00; KSSB01;
BBNKK01; BBN01d; Sta00; Sta01]. This paper extends prior work in model-based verification
and recommends the use of interface-driven analysis with requirement modeling to support
automated test generation. The interface analysis provides key information that results in test
driver mappings that specify the relationships between model variables and the interfaces of the
system under test. The paper describes the concepts of models and test driver mappings using
examples for testing security functionality of an Oracle database using Java and Structured Query
Language (SQL) test drivers1. Recommendations are provided for performing the modeling of
textual requirements in conjunction with interface analysis to support reuse of models and their
associated test driver mappings. These recommendations were derived while extending an early
experimental model of one small set of requirements to several other groups of interrelated
requirements. The resulting insights have been applied to other industry applications and are
useful for understanding how to scale models and the associated test driver mappings to support
industry-sized verification projects.

1.1 Background

The National Institute of Standards and Technology (NIST) selected the T-VEC test generation
system to assess the feasibility of automating security functional testing [Cha99; BBNC01]. T-
VEC2 supports test vector generation, test driver generation, requirement test coverage analysis,
and test results checking and reporting [BB96]. Test vectors include inputs as well as the
expected outputs with requirement-to-test traceability information. The test driver mappings and
the test vectors are inputs to the test driver generation, which produces test drivers that are

1 One of the key requirements for the environment required the testing to be executed against the Oracle database

engine through a Java/JDBC connection.
2 Aissi provides a historical perspective on test vector generation, and recognizes T-VEC as one of the leading

commercial tools [Ais02].

 July 15, 2002

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved.

Page 2 of 15

executed against the implemented system during test execution. T-VEC is a component tool of the
Test Automation Framework (TAF) that integrates various government and commercially
available model development and test generation tools to support defect prevention and automated
testing of systems and software.

Although the modeling and testing examples are focused on security functionality of a database,
the results and recommended approaches are general for testing most applications. TAF has been
applied to other applications in various domains including critical applications for aerospace
(Mars Polar Lander) [BBNKK01], medical devices, flight navigation, guidance, autopilots,
display systems, flight management and control laws, engine controls, and airborne traffic and
collision avoidance. TAF has also been applied to non-critical applications like workstation-based
Java applications with GUI user interfaces, databases, client-server, web-based, automotive, and
telecommunication applications. The related test driver generation has been developed for many
languages (e.g., C, C++, Java, Ada, Perl, PL/I, SQL, etc.) as well as proprietary languages, COTS
test injection products (e.g., DynaComm, WinRunner) and test environments. Most users of
the approach have reduced their verification/test effort by 50 percent [KSSB01, Saf00].

1.2 Contributions

This paper provides pragmatic guidance for combining interface analysis and requirement
modeling. These recommendations for defining interfaces that provide better support for
testability are valid for all forms of testing. Although this paper describes why interface-driven
modeling has benefits for testing a released product, it has been applied during development with
many additional benefits, which are described in Section 2.4.

1.3 Organization of Paper

Section 2 provides an overview of the method and tools, while providing concept definitions,
guidance on interface definitions and analysis, and organizational roles and best practices. Section
3 discusses the security requirements and database interface details using examples. Section 4
discusses the test driver mapping and associated Java support required for test driver generation.
Section 5 provides conclusions concerning the use of Java for automated test driver support and
summarizes the benefits of interface-driven model-based testing.

1.4 Related Work

The Software Cost Reduction (SCR) modeling concepts are briefly explained in this paper. For
more information on modeling there are papers that describe related modeling approaches
[HJL96; PM91; Sch90], with examples that support automated test generation [BBN01a;
BBN01b; BBN01c; BBNC01, BBNKK01]. Asisi provides a historical perspective on test vector
generation and describes some of the leading commercial tools [Asi02]. Pretschner and Lotzbeyer
briefly discuss Extreme Modeling that includes model-based test generation [PL01], which is
similar to uses of TAF as discussed in Section 2.4. There are various approaches to model-based
testing and Robinson hosts a website that provides useful links to authors, tools and papers
[Rob00].

 July 15, 2002

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved.

Page 3 of 15

2 Method and Tool Overview

The TAF support, as shown in Figure 1, involves three main roles of development, including
Requirement Engineer, Design/Implementation Engineer, and Test Engineer. A requirements
engineer performs requirement analysis and typically documents the requirements in text. A
designer/implementer develops the technical solution, which includes system/software
architecture, design and implementation. Test engineers clarify the requirements in the form of a
verification model, which specifies behavioral requirements in terms of the interfaces for the
system under test.3 This is in contrast to a “pure” requirement model, which specifies the
requirements in terms of logical entities representing the environment of the system under test
[PM91; Sch90; HJL96]. Verification modeling from the interfaces is analogous to the way a test
engineer develops tests in terms of the specific interfaces of the system under test. TAF translators
convert verification models into a form where the T-VEC system generates test vectors and test
drivers, with requirement-to-test traceability information that allows failures to be traced
backwards to the requirement.

TAF Support

T-VEC
®

Factory

Model
Analysis &
Coverage

Model
Analysis &
Coverage

Status,
Results
Report

Status,
Results
Report

Test
Driver
Test
Driver

Defect
Tracking

TAF
Translators

Technical
Solution

Requirement
Management

Verification
Modeling

TAF
Translators

Technical
Solution

Requirement
Management

Verification
Modeling

Requirement Engineer

Design Engineer

Test Engineer

Defects and Failures

HTML
Model Report

Figure 1. Test Automation Framework Life Cycle Automation

2.1 Verification Modeling Process

Figure 2 provides a detailed perspective of the verification modeling process flow. A test engineer
is supplied with various inputs. Although it is common to start the process with poorly defined

3 A design engineer typically defines the interfaces, and component interfaces are typically documented in a

application programming interface (API) or other interface documents.

 July 15, 2002

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved.

Page 4 of 15

requirements, inputs to the process can include requirement specifications, user documentation,
interface control documents, application program interface (API) documents, previous designs,
and old test scripts. A verification model is composed of a model and one or more test driver
mappings. A test driver consists of object mappings and a schema (pattern). Object mappings
relate the model objects to the interfaces of the system under test. The schema defines the
algorithmic pattern to carry out the execution of the test cases. The one selected for use in this
paper is a Java test driver schema tailored to interface with an Oracle database through a Java
Database Connectivity (JDBC) application programming interface (API).

Verification Models

Test
Engineer

System

Tests and
Test Drivers

Test
Results

T-VECTAF
TranslatorModeling

Interfaces

Tabular
Model

Env n.

map

schema

Env 1.

map

schema

Test Driver

map

schema

Env n.

map

schema

Env n.

map

schema

Env 1.

map

schema

Env 1.

map

schema

Test Driver

map

schema

Test Driver

map

schema

Requirement Specs.
User Documents

Interface Control Doc's.
API Doc's.

Design Models
Previous Test Scripts

Design Engineer

Model Defects

• Java - GUI
• Java - JDBC- Oracle
• Perl - ODBC - Oracle and Interbase
• Other languages C, Ada
• Proprietary, WinRunner, DynaComm, etc

Figure 2. Verification Model Details

Models are typically developed incrementally. The models are translated and T-VEC generates
test vectors. T-VEC also detects untestable requirements (i.e., requirements with contradictions).
The generation of test vectors and defect detection does not use the test driver information. Test
drivers are produced from the test vectors using the test driver mappings and schema information.
Detail is provided in Section 4.

2.2 Why Tabular Models?

Table-based requirement modeling like the Software Cost Reduction (SCR) method [HJL96] has
been very effective and relatively easy to learn for test engineers [KSSB01]. Although design
engineers commonly develop models based on state machines or other notations like the Unified
Modeling Language (UML), users and project leaders observed that test engineers find it easier to
develop requirements for test in the form of tables (See [BBN01a] for details). The modeling
notations supported by tools for the SCR method have well-defined syntax and semantics
allowing for a precise and analyzable definition of the required behavior. This paper provides
examples using functional tabular modeling, based on the SCR method.

 July 15, 2002

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved.

Page 5 of 15

2.3 Why Interface-Driven Modeling?

It may seem appropriate to first develop models from the requirements, but when developing
models for the purpose of testing, the models should be developed in conjunction with analysis of
the interfaces to the component or system under test. Modeling the behavioral requirements is
usually straightforward and easier to evolve once the interfaces and operations are understood
because the behavioral requirements, usually defined in text, must be modeled in terms of
variables that represent objects accessible through interfaces.

2.3.1 Modeling Perspectives

Models are described using specification languages, usually supported through graphical
modeling environments. Specification languages provide abstract descriptions of system and
software requirement and design information. Cooke et al. developed a hierarchical scheme that
classified specification language characteristics [CGDDTK96]. Independent of any specification
language, Figure 3 illustrates three categories of specifications based on the purpose of the
specification. Cooke et al. indicates that most specification languages usually are based on a
hybrid approach that integrates different classes of specifications.

Requirement Specification: defines
the boundary between the environment
and the system

Functional Specification: defines
the interfaces within the system

Design Specification: defines
the component

Environment

System

D. Cooke et al., 1996

Figure 3. Specification Purposes

Requirement specifications define the boundaries between the environment and the system and, as
a result, impose constraints on the system. Functional specifications define behavior in terms of
the interfaces between components, and design specifies the component itself. A specification
may include behavioral, structural, and qualitative properties. Behavioral properties define the
relationships between inputs and outputs of the system [Sim69]; structural properties provide the
basis for the composition of the system components; and qualitative requirements [YZCG84]
define nonfunctional requirements. Often, languages support certain elements of requirement and
functional specifications and are termed functional requirements, as opposed to nonfunctional
requirements [Rom85].

 July 15, 2002

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved.

Page 6 of 15

A verification model, in the context of this paper, is best classified as a functional specification.
The requirements are defined in terms of the interfaces of the components. The term interface is
used loosely in this paper. An interface is a component’s inputs and outputs, along with the
mechanism to set inputs, including state and history information, and retrieve the resulting outputs.
Some components or systems may require sequences of function calls to initialize a component or
system, as well as additional calls to place the system in a particular state prior to setting the inputs
for testing.

2.3.2 Database Interfaces

For database security requirements the interfaces include the data dictionary (sometimes referred
to as database tables) that hold security information and reflect the results of security operations.
For each set of modeled requirements it is important to determine the data dictionary views and
the SQL commands associated with the requirements, and determine how those database tables
are modified to reflect the “correct” or “incorrect” results. Once the interfaces and the SQL
operations that affect those tables are understood, it’s usually easy to develop the test driver
mappings and models hand-in-hand.

2.3.3 Interface Accessibility

It is best to understand the interfaces of the system under test prior to modeling the behavioral
requirements to ensure that the interfaces for the resulting test driver map to actual inputs or
outputs of the system under test. If the interfaces are not formalized or completely understood
requirement models can be developed, but associated object mappings required to support test
driver generation must be completed once the interfaces have been formalized. This can make the
object mapping process more complex, because the model entities may not map to the component
interfaces. In addition, if the component interfaces are coupled to other components, the
components are typically not completely controllable through separate interfaces. This too can
complicate the modeling and testing process. Consider the following conceptual representation of
the set of components and interfaces shown in Figure 4.

B.1 B.2 B.3

Well-Defined Interfaces
Support Direct

Controllability and
Observability for

Component

Coupled Interfaces
Complicate Access to
Component and Limit

Controllability that
Requires Test Inputs

to be Provided Upstream

A B CA B C

Key

-Well-defined Interface

- Coupled Interface

Figure 4. Conceptual Components of System

 July 15, 2002

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved.

Page 7 of 15

To support a systematic verification approach that can be performed in stages where each
component is completely verified with respect to the requirements allocated to it, the interfaces to
the component should be explicitly and completely accessible, either using global memory, or
better through get and set methods/procedures as reflected in Figure 4. For example, if the inputs
to the B.2 component of higher-level component B are completely available for setting the inputs
to B.2, and the outputs from the B.2 functions can be completely observed, then the functionality
within B.2 can be completely specified and systematically verified. However, if interfaces from
other components, such as B.1 are not accessible, then some of the functionality of the B.2
component is coupled with B.1, and the interfaces to B.2, must also include interfaces to B.1, or to
other upstream components, such as component A. This interface coupling makes the test driver
interfaces more complex to describe, but also forces the behavioral modeling to be described in
terms of functionality allocated to combinations of components. The coupling reduces the reuse of
components, and increases the regression testing effort due to the coupled aspects of the system
components. The problems associated with testing highly coupled systems can be problematic for
model-based testing, but also negatively impacts any type of testing. As discussed in Section 2.4,
we have observed that interface-driven modeling has helped foster better system design by
reducing the coupling, but also helps provide better support for testing.

Systematic test coverage can typically be achieved directly from the verification model if the
components of the system can be tested individually. Component integration testing can later be
performed from higher-level models to ensure that the integration of the components (i.e., the
contractual obligation of the integration) is systematically and completely verified.

2.4 Organizational Best Practices

Interface-driven modeling can be applied after development is complete as is the case for security
testing of an Oracle database. However, significant benefits have been realized when it was
applied during development. Ideally, test engineers work in parallel with developers to stabilize
interfaces, refine requirements, and build models to support iterative test and development. Test
engineers write the requirements for the products (which in some cases are very poorly
documented) in the form of models, as opposed to hundreds or thousands of lines of test scripts.
They generate the tests vectors and test drivers automatically. During iterative development, if the
component behavior, the interface, or the requirements change, the models are modified, and test
cases and test drivers are regenerated, and re-executed. The key advantages are that testing
proceeds in parallel to development. Users like Lockheed Martin state that test is being reduced by
about fifty percent or more, while describing how early requirement analysis significantly reduces
rework through elimination of requirement defects (i.e., contradiction, inconsistencies, feature
interaction problems) [Saf00, KSSB01]. This typical and pragmatic use of TAF parallels eXtreme
Programming (XP) [Bec99] where tests are created before the program. However, others refer to
this model-based method as Extreme Modeling (XM) [PL01; BBWL00], which applies the
principles to write tests prior to coding. With XP test code is developed manually, but with XM
the requirements are modeled and the tests are generated.

3 Security Requirements and Database Interfaces

The Oracle 8 Common Criteria Security Target defines Security Functional Requirements [Ora00
– Chapter 5]. The data dictionary views are defined in Oracle8 Reference, which is provided with

 July 15, 2002

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved.

Page 8 of 15

the Oracle software. The SQL commands are defined in the Oracle8 SQL Reference, also
provided with the Oracle software.

Prior efforts focused on developing verification models for the security functionality, referred to as
“Granting Object Privilege Capability (GOP)” [BBNC01]. While extending the model to support
Identification & Authentication, Security Management, and Session Management, we observed
that it reduces work when “low-level” primitive models and their associated test driver mappings
are developed first so that the low-level models and test driver mappings can be reused as
primitives in higher-level requirement models. Developing from the lowest-level interfaces is not
an absolute requirement, but if this approach is applied to a larger verification effort, the resulting
verification model leverages reusable model elements that are directly related to reusable test
driver interface mappings.

3.1 Security Requirement Interfaces Analysis

Prior to, or in conjunction with, modeling the requirements, the database interfaces associated with
the requirements are analyzed to identify common tables, SQL commands, and common test
driver mappings that can be extended and maintained as the product evolves. Model variables are
used to represent database tables, objects, privileges and relationships. Consider the example of
Granting Object Privilege. The requirements state:

A normal user (the grantor) can grant an object privilege to another user, role
or PUBLIC (the grantee) only if:
 a) the grantor is the owner of the object; or
 b) the grantor has been granted the object privilege with the GRANT OPTION.

The SQL operations that are directly related to the granting of the object privileges include:
GRANT <privilege> ON <object> TO <user | role | PUBLIC> [WITH GRANT OPTION]

Where <privilege> can be: ALTER, EXECUTE, INDEX, INSERT, READ, REFERENCES,
SELECT, UPDATE, ALL, and the GRANT OPTION is optional.

And, where <object> is a database schema object like a table, view, sequence,
procedure, function, package, or snapshots.

And, where <user> is a database user, <role> is a defined database role, and
<PUBLIC> represents all users.

However, there are some initial privilege and dependent SQL commands that are related to the
GRANT SQL command. These involve the creation of a user, role, or session.

• When a user is created with the CREATE USER command, the user’s privilege is empty.

• To log on to Oracle, a user must have CREATE SESSION system privilege. After
creating a user, the user must be granted this privilege.

There are numerous other cases where additional constraints restrict grant privileges on various
object types. These details are beyond the scope of this paper, and are not discussed.

The data dictionary table that is affected, or can be used to determine if a particular GRANT
operation is successful, is DBA_TAB_PRIVS. This data dictionary view lists all grants on objects

 July 15, 2002

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved.

Page 9 of 15

in the database. It has attributes that indicate, the GRANTEE (user to whom access was granted),
object owner, name of the object, GRANTOR (user who performed the grant operation),
privilege, and an indication of whether the privilege can be granted to another user.

3.2 Security Models and Interface Specifications

As shown in Figure 5, the behavioral requirements are derived from the requirement text in the
Oracle Security Target, like Grant Object Privilege. The requirements are defined in terms of the
model variables that represent the interface defined in terms of the data dictionary and SQL
commands. The interfaces are declared as model variables using the modeling tool. The mapping
for the model variable defines how to affect that variable within the test execution environment.
For example, a GRANT SQL command must be issued to affect an object’s privilege.

Test
Results

Verification Model

Test Vector
Generator

Test Driver
Generator

Expected Outputs

Actual
Outputs

Cross
Comparison

Data dictionary
and

SQL commands

Interfaces
Data dictionary

and
SQL commands

Interfaces

Object
Mapping

Test
Driver

Schema
JDBC

Oracle8 Security
Target

Database
System

Oracle8 Reference
Oracle8 SQL Reference

Behavior

Java
Environment

Figure 5. Detailed Process Flow

As shown in Figure 5, the model is input to the test vector generator, and the resulting test vectors
are combine with the object mappings and test driver schema (details provided in Section 4) to
produce a Java test driver. The executing test driver communicates with the Oracle database
through a JDBC connection to carry out the tests. The actual outputs for each test are captured by
the test driver during test execution and stored for post processing. Finally a cross comparison tool
compares the expected outputs against the actual outputs and produces a test results log that
indicates the pass/fail status for each test vector.

 July 15, 2002

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved.

Page 10 of 15

3.2.1 Modeling Security Properties

Each security property is modeled as a Boolean object in a manner similar to Grant Object
Privileges as shown in Figure 6. The conditions associated with the TRUE output or the positive
sense for the model is the valid set of conditions required for Granting Object Privilege. Each test
case for the TRUE case should result in valid actions with respect to the security relationships
established for that case. The FALSE cases are negative conditions, which establish realistic
database relationship, but the corresponding test attempts to execute invalid operations, from a
security perspective that should be denied as an invalid security response. Some operations cause
failures because the database responds with an error message when improper or unauthorized
actions are requested. This general approach is used to model each security requirement to ensure
that proper security exists for authorized actions, while unauthorized actions are not permitted.

Row 1 of the model for Grant Object Privilege, shown in Figure 6, with the assignment TRUE
describes the conditions in which the grant object privilege should be permitted. When the grantee
and the grantor are valid database users, then an object privilege should be granted if the grantor
owns the object, or if the grantor has been granted object privileges with the GRANT OPTION. In
addition, the model defines additional conditions where the grantee (reflected by granteeType) can
be a user, PUBLIC or role. The term variable tcUserObjectPrivileges references another condition
table that enumerates the set of objectPrivileges (e.g., ALTER, DELETE, INDEX, INSERT, etc.)
that are valid, and should be tested. If the granteeType is a role, then the term
tcRoleObjectPrivileges defines a subset of the valid ObjectPrivileges that apply to roles.

Grant Object Privilege
tcUserObjectPrivileges

tcRoleObjectPrivileges

Figure 6. Example Model for Grant Object Privilege

3.3 Relationship of Security Requirements and Interfaces

Table 1 provides a summary for several modeled requirements. Each row provides a brief
summary of a requirement, the related data dictionary views, associated SQL command that are

 July 15, 2002

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved.

Page 11 of 15

primarily used to affect the operation, and related commands that are referred to as dependent
commands.

For example, the Grant Role Privilege command, like the Grant Object Privilege command
describes the requirements for granting and revoking role privileges. The primary data dictionary
table from which the results of the granted role privilege can be retrieved is the
DBA_ROLE_PRIVS (database administrator role privileges). The SQL commands that are used
to grant/revoke privileges are GRANT and REVOKE, and the related SQL commands include
CREATE, INSERT, SELECT and others. The operations and test driver commands required to
support Grant Role Privilege overlap Grant Object Privilege. More importantly, much of the
functionality for other requirements like DISABLE and ENABLE roles subsume many of the
tested requirements developed for GRANT and REVOKE roles.

Table 1. Detailed Security Specification Analysis

Requirement
Summary Data Dictionary Items

SQL
Command

Dependant
Command

Disable roles
DBA_ROLE_PRIVS
SESSION_ROLES SET ROLE

GRANT,
ALTER,

Enable roles
DBA_ROLE_PRIVS
SESSION_ROLES SET ROLE GRANT

Grant object privileges DBA_TAB_PRIVS GRANT

CREATE,
INSERT,
SELECT

Grant/revoke role
privileges DBA_ROLE_PRIVS

GRANT/
REVOKE

CREATE,
INSERT,
SELECT

Grant system
privileges DBA_SYS_PRIVS GRANT

CREATE,
INSERT,
SELECT

Revoke privileges DBA_TAB_PRIVS REVOKE GRANT

Every object uniquely
identified, even if
deleted ALL_OBJECTS

CREATE,
INSERT,
SELECT,
DELETE

4 Test Driver Generation

This section provides a brief summary of test driver generation. The details of the models, test
vectors and test drivers are beyond the scope of this paper. In addition, to understand the test
driver support requires some understanding of Java, SQL and operational details of an Oracle
database. Additional details including the security requirement models (in HTML), test vectors,
object mappings, test driver schema, test drivers and instructions for installing and executing the
test drivers against an Oracle database are available for download from:
http://www.software.org/pub/taf/Reports.html.

4.1 Creation of Test Oracle Database

The test driver dynamically creates and deletes database information in the form of users, roles,
database tables and values. Although most manual database-related testing is performed using
populated databases, model-based test generation systematically populates the database with test
data derived from the model. This allows automated test execution without manual assistance. The
models are constructed in a way that is independent of any specific populated database. There are
some specific database conditions that must be established prior to the execution of the tests. For

 July 15, 2002

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved.

Page 12 of 15

example a database administrator must install the database and the Oracle database test execution
requires the “TEMPORARY” tablespace to be available during execution.

4.2 Test Driver Application Programming Interface and Language

The test driver API discussed in this paper is based on JDBC API using Java that makes SQL calls
to the database. In prior work Perl test drivers used an Object Database Connectivity (ODBC) API
to inject SQL calls to both Oracle and Interbase databases. Although each language provides
suitable support for performing the test execution, we believe that there is more effort involved in
developing the Java/JDBC support as opposed to the Perl/ODBC support for test driver
generation.

4.3 Java Test Driver Support

The test driver generation support capabilities are provided by a Java infrastructure to:

• Retrieve global test configuration settings that can be configured to direct the test
driver mechanisms to use user-specified options such as log directory, output file
directory, system user and password, etc.

• Retrieve test vector parameters during test execution
• Log test operation
• Create test output file
• Establish an Oracle database connection and SQL execution through JDBC
• Specify an interface to which each test must conform along with helper methods
• Provide global constants
• Provide a framework for test execution

4.3.1 Test Driver Packaging

The test driver support is packaged using a Java package com.tvec.support, which contains the
following classes:

• ConfigManager – provides access to the global test configuration settings
• Constants – set of constants used by the tests
• Context – used to retrieve and set test vector parameters
• Logger – provides classes to write log files and output files
• SQLUtils – provides database access
• TestImpl – abstract class with the test interface and helper methods
• TestRunner – framework for running classes that implement TestImpl

4.3.2 Operational Scenario

The TestRunner class contains the entry point for running tests that implement TestImpl.
Executing TestRunner performs as follows:

 July 15, 2002

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved.

Page 13 of 15

1. Read the global configuration file to determine the log file directory, the output file
directory, and the maximum number of users

2. Initialize the test database, which deletes existing test table space, create a new test table
space

3. Get the test vectors from TestImpl by calling TestImpl.getTestVectors. For each test
vector:
1. Create default data based on the user-specified number of standard users
2. Call TestImpl.setupTest to setup the test environment further
3. Call TestImpl.runTest to perform the test and return a Boolean result
4. Write the result of the test to the output file
5. Call TestImpl.cleanupTest to do standard cleanup needed to restore test environment.
6. Perform cleanup of standard users, tables, roles, and profiles

4. Exit.
4.3.3 TestImpl Interface

The TestImpl class contains four methods that must be implemented when creating a test,
including: setupTest, runTest, cleanupTest, and getTestVectors.

• setupTest performs additional database configuration beyond the creation of the
standard users

• runTest performs test execution
• cleanupTest restores the database to a known state to support the next test vector
• getTestVectors retrieves the inputs for the current test.

4.3.4 SQLUtils

The SQLUtils class handles the database connectivity and SQL execution. It maintains a user-
authenticated connection that is used to execute SQL commands. The connection is only lost
when a disconnection-related operation or another connect call is performed.

5 Summary

This paper provides pragmatic guidance for combining interface analysis and requirement
modeling to support model-based test automation. The model-based testing method and tools
described in this paper have been demonstrated to significantly reduce cost and effort for
performing testing, while being demonstrated to identify requirement defects that reduce costly
rework. These recommendations for defining interfaces that provide better support for testability
are valid for all forms of testing. Although this paper describes why interface-driven modeling has
benefits for testing a released product, it has been applied during development with many
additional benefits. Organizations see the benefits of using interface driven model-based testing to
help stabilize the interfaces of the system early, while identifying common test driver support
capabilities that can be constructed once and reused across related tests. In addition, parallel
development of verification modeling is beneficial in development and helps identify requirement
defects early to reduce rework. This concept has been characterized as eXtreme modeling, which
is similar to eXtreme programming.

 July 15, 2002

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved.

Page 14 of 15

Although this paper discusses modeling and test automation for security requirements, the tools
and method are generally applicable because they have been used in several other application
domains. Finally, this paper discusses the use of Java test drivers, but in prior work Perl test
drivers were developed for both Oracle and Interbase databases. Although each language provides
suitable support for performing the test execution, we believe that there is more effort involved in
developing the Java support as opposed to the Perl support for test driver generation.

6 References
[Asi02] Aissi, S.,Test Vector Generation: Current Status and Future Trends, Software Quality

Professional, Volume 4, Issue 2, March 2002.

[Bec99] Beck, K., Extreme Programming Explained: Embrace Change. Addison Wesley, 1999.

[BBN01a] Blackburn, M.R., R.D. Busser, A.M. Nauman, Removing Requirement Defects and
Automating Test, STAREAST, May 2001.

[BBN01b] Blackburn, M. R., R.D. Busser, A.M. Nauman, How To Develop Models For Requirement
Analysis And Test Automation, Software Technology Conference, May 2001.

[BBN01c] Blackburn, M. R., R.D. Busser, A.M. Nauman, Eliminating Requirement Defects and
Automating Test, Test Computer Software Conference, June 2001.

[BBNC01] Blackburn, M.R., R.D. Busser, A.M. Nauman, R. Chandramouli, Model-based Approach to
Security Test Automation, In Proceeding of Quality Week 2001, June 2001.

[BBNKK01] Blackburn, M.R., R.D. Busser, A.M. Nauman, R. Knickerbocker, R. Kasuda, Mars Polar
Lander Fault Identification Using Model-based Testing, Proceeding in IEEE/NASA 26th
Software Engineering Workshop, November 2001.

[BBN01d] Busser, R. D., M. R. Blackburn, A. M. Nauman, Automated Model Analysis and Test
Generation for Flight Guidance Mode Logic, Digital Avionics System Conference, 2001.

[BBWL00] Boger, M., T. Baier, F. Wienberg, and W. Lamersdorf. Extreme modeling. In Proc. Extreme
Programming and Flexible Processes in SW Engineering (XP’00), 2000.

[CGDDTK96] Cooke, D., A. Gates, E. Demirors, O.Demirors, M. Tankik, B. Kramer, Languages for the
Specification of Software, Journal of Systems Software, 32:269-308, 1996.

[Cha99] Chandramouli R., Methodology for Automated Security Testing”, NIST Request for
Proposal, Nov 1999.

[HJL96] Heitmeyer, C., R. Jeffords, B. Labaw, Automated Consistency Checking of Requirements
Specifications. ACM TOSEM, 5(3):231-261, 1996.

[KSSB01] Kelly, V. E.L.Safford, M. Siok, M. Blackburn, Requirements Testability and Test
Automation, Lockheed Martin Joint Symposium, June 2001.

[PL01] Pretschner, A., H. Lotzbeyer, Model Based Testing with Constraint Logic Programming:
First Results and Challenges, Proc. 2nd ICSE Intl. Workshop on Automated Program
Analysis, Testing and Verification (WAPATV'01), Toronto, May 2001.

 July 15, 2002

Copyright © 2002, T-VEC Technologies, Inc. All rights reserved.

Page 15 of 15

[PM91] Parnas, D., J. Madley, Functional Decomposition for Computer Systems Engineering
(Version 2), TR CRL 237, Telecommunication Research Inst. of Ontario, McMaster
University, 1991.

[Rob00] Robinson, H., http://www.model-based-testing.org/.

[Rom85] Roman, G.C., A Taxonomy of Current Issues in Requirements Engineering, IEEE
Computer, 18(4):14-23, 1985.

[RR00] Rosario, S., H. Robinson, Applying Models in Your Testing Process, Information and
Software Technology, Volume 42, Issue 12, 1 September 2000.

[Sch90] van Schouwen, A.J., The A-7 Requirements Model: Re-Examination for Real-Time System
and an Application for Monitoring Systems. TR 90-276, Queen's University, Kinston,
Ontario, 1990.

[Sta00] Statezni, David. Test Automation Framework, State-based and Signal Flow Examples,
Twelfth Annual Software Technology Conference, April 30 - May 5, 2000.

[Sta01] Statezni, David. T-VEC’s Test Vector Generation System, Software Testing & Quality
Engineering, May/June 2001.

[Saf00] Safford, Ed L. Test Automation Framework, State-based and Signal Flow Examples,
Twelfth Annual Software Technology Conference, April 30 - May 5, 2000.

[YZCG84] Yeh, R.T., P. Zave, A.P. Conn, G.E. Cole, Software Requirements: New Directions and
Perspectives, in Handbook of Software Engineering, Editors C. R. Vick and C. V.
Ramamoorthy), Van Nostrand Reinhold, 1984.

Key Points

Model-based statistical testing is both efficient and cost-effective.
Model-based testing supports the use of test automation tools.
Significant tool support for model-based testing has been developed.

Presentation Abstract

This talk gives an overview of statistical testing based on a usage model, focusing on opportunities for automation in the process. In
particular, an overview of the Java Usage Model Builder Library (JUMBL), a Java class library to support statistical testing, is given. The
JUMBL supports the development and analysis of usage models, generation and transformation of tests, and analysis of test

About the Author

Dr. Prowell is a Research Associate Professor in the Department of Computer Science at the University of Tennessee where his work
focuses of rigorous software specification and statistical testing. Prior to joining the Univerity of Tennessee, Dr. Prowell worked for Q-
Labs on industrial application of process improvement and statistical testing techniques.

Mr. William Thomas Swain As manager of the SQRL, Mr. Swain coordinates project and contract activities. In addition he assists
industrial sponsors in application of previous and ongoing SQRL research.

From 1991 to 2000, Mr. Swain held Senior Software Engineering and Technical Leadership positions at CTI PET Systems, doing
product research and development for medical imaging systems based on Positron Emission Tomography. At CTI he performed
technical leadership roles in system architecture definition, system testing, and software process improvement.

From 1990 to 1991, he was responsible for demonstration of electronic document management technology at Integrated Computer
Systems (ICS). From 1986 to 1990, he managed development of PC-based machinery vibration monitoring systems at Computational
Systems Incorporated (CSI). At Perceptics Corporation from 1985 to 1986, he was Product Manager for Visual Recognition Systems.
As Director of Digital Systems at Technology for Energy Corporation (TEC) from 1979 to 1985, he was responsible for system
development of power plant monitoring and emergency response systems. From 1975 to 1978, he performed functional design and
design qualification for minicomputer-based reactor protection systems at Combustion Engineering Power Systems. While in the U.S.
Air Force (1972-1975), he was a Development Engineer specializing in technical intelligence related to electro-optics. Mr. Swain
received a M.S. degree in nuclear engineering from the University of Tennessee in 1972.

QW2002 Paper 3T2

Dr. Stacy Prowell & Mr. William Thomas Swain
(The University of Tennessee)

Tool Support for Model Based Statistical Testing

Jump to first page

Softw
are Q

uality
Research Laboratory

SQ
RL

Tool Support for
Model Based
Statistical Testing

Stacy Prowell
sprowell@cs.utk.edu

Tom Swain
swain@cs.utk.edu

The University of Tennessee
Software Quality Research Laboratory

http://www.cs.utk.edu/sqrl/

Jump to first page

SQ
RL

Software Testing

Population
(All Tests)

Sample
(Tests Executed)

Statistically Correct
Sample

Statistically
Valid Generalization

Jump to first page

SQ
RL

Usage Based Testing
User-perceived quality

weighted by importance to user
Test software as it will be used

weighted by frequency
Infer operational characteristics

reliability / confidence
expected loss
risk assessment

Jump to first page

SQ
RL

Statistical Testing
Process

Modeling: Characterize Population
Sampling: Construct Sample
Executing: Execute Sample on
SUT
Evaluating: Observe and Record
Results
Inferring: Infer Population
Characteristics

Jump to first page

SQ
RL

Pr[] = 0.0002

Markov Chain Usage
Model

Need a model of population:
Finite-State Markov Chain

X (0.5)

Y (0.5)

X (0.2)

Y (0.1)

W (0.2)

Y (0.5)Z (0.1)

X (1)
Y (0.5)

X (0.9)

X (1)

Y (0.3)

X (0.5) X (0.5)

Z (0.2)

Y (0.75)
X (1)

X (0.7)

X (0.25)

Y (0.3)
•Nodes represent “states of use”

•Arcs represent stimuli

•Probabilities represent use

A “use” (or test) is any path from
the source to the sink.

Represents the population of all
tests.W X XX ZX

Jump to first page

SQ
RL

Applicability
This approach has been used for:

Embedded real-time systems
(Raytheon)
Both hardware and software (IBM
SSD)
GUI applications (CTI)
Web-based applications (DeRoyal)
Networking (Nortel)

Jump to first page

SQ
RL

Automation
Opportunities
Tool support is useful for:

Constructing models
Analyzing a model
Generating tests from a model
Executing tests on the SUT
Inferring quality from observed
behavior

Jump to first page

SQ
RL

Developing Automation
Drivers:

Support research
Support application

Choices:
Get abstractions right (TML)
Construct a class library (JUMBL)
Build tools (TMLE)
Develop in Java

Jump to first page

SQ
RL

JUMBL
Java Usage Model Builder Library
(JUMBL)
Java class library and toolkit for
statistical testing
Developed and maintained by the
Software Quality Research
Laboratory (SQRL)
Has a command line / GUI
interface

Jump to first page

SQ
RL

Model Building and
Editing
The Model Language (TML)

Supports definition of models and
related information
Hierarchical modeling
Reuse of components
Constraints
Automated testing information
JUMBL: Native support

Jump to first page

SQ
RL

Model Building and
Editing
($ assume(1) $)
model security
source [S0 Enter]

"S“ [S1 Ready]
[S1 Ready]

($ 40 $) "S,C“ [S1 Ready]
($ 240 $) "B“ [S2 Entry Error]
($ 720 $) "G“ [S3 1 OK]

"T“ [S5 Alarm]
[S2 Entry Error]

($ 4000 $) "S,B,G“ [S2 Entry Error]
($ 96000 $) "C“ [S1 Ready]

"T“ [S8 Alarm and Entry Error]
…
Sink [S9 Exit]
end

Jump to first page

SQ
RL

Model Building and
Editing
Other Formats

Graphlet / yFiles (GML)
Spreadsheets (CSV)
XML (MML / TCML)
AT&T Graphviz (DOT)
Visio 2002 (in development)
Others…
JUMBL: Automatic detection and
WriteModel to convert

Jump to first page

SQ
RL

Population Analysis
Many model statistics are available
Some results can be obtained by
direct computation
Other results must be obtained by
approximation or simulation
JUMBL: Analyze

Jump to first page

SQ
RL

Sampling

Population
(All Tests)

Random
Probabilistic

Random

Weighted

Graph
Theoretic

Structural

Contractual
Requirements

Industry
Standards

Non-random

Jump to first page

SQ
RL

Test Selection
Importance sampling:
JUMBL: GenWeighted
Graph theoretic:
JUMBL: GenMinCover
Random walk:
JUMBL: GenTest
Manual construction:
JUMBL: CraftTest

Jump to first page

SQ
RL

Test Execution
Many automated test tools already
exist
Convert test cases to test scripts
which can be executed by a test
tool
Associate test instructions with
arcs and states in a model
JUMBL: WriteTest

Jump to first page

SQ
RL

Automated Testing

New file

Save document

win_activate(“Main”);
set_window(“Main”,6);
menu_select_item(“File;New”);

menu_select_item(“File;Save As…”);
set_window(“Save As”,2);
edit_set(“File name:”, “testwork”);
obj_type(“File name:”, “<kReturn>”);
win_activate(“Save As_1”);
set_window(“Save As_1”);
button_press(“Yes”);
set_window(“Main”,6);

…

Jump to first page

SQ
RL

Automated Testing

Test
Case

Test Runner
Oracle

Test
Script

SUT

Jump to first page

SQ
RL

Test Evaluation
Must be able to decide pass / fail
for each test.
This is difficult to automate:

Build oracle into test script
Use self-checking data
Use known cases
Log results for post-test analysis
For some cases, let a human
decide

Jump to first page

SQ
RL

Test Analysis
Record information from tests
JUMBL: RecordResults
Obtain reliability, MTTF,
confidence, and test sufficiency
JUMBL: AnalyzeTest

Jump to first page

SQ
RL

Testability
Development

Specification

Functions * Automata *
Enumerations

Testing
Usage Specification

Stochastic Models * Automata *
Sequences

Check testabilityOriginal specification

Transformed specification Transform for testability

Jump to first page

SQ
RL

Practical Modeling Issues
GUI-based Systems
Computational Applications
Embedded Systems
Combinations of the Above

Jump to first page

SQ
RL

GUI-based Systems
Data Entry <-> Processing
States

Allowed Input
Potential Behavior

Arcs
Processing Steps
Abstraction of Complex
or Routine Interaction

Anywhere-to-Anywhere
Designs

Bearing Definition

OK Cancel

Size

TCB Depth

Type

Elevation

General Options

SpanHold

Block Size

Plate Type

M-Type Block Options

Hanger Options

Apply

...

...

Jump to first page

SQ
RL

GUI State Definition

Fields Enabled/Disabled
Dialogs
Stimulus/Response Modes

Jump to first page

SQ
RL

Useful Arc Abstractions
Simple Dialogs

File chooser
Confirmation
etc.

Complex Interaction or Process
Data Acquisition
Process Control
DB Query

Jump to first page

SQ
RL

Anywhere-to-Anywhere
Designs

Use Submodels
Use Gateway
States

Jump to first page

SQ
RL

Computational Software
Partition Input Space

Abstract Input Parameters into
Subregions
Include Invalid as well as Valid
Values

Model Input Selection Process

Jump to first page

SQ
RL

Embedded Systems
Sequential
Parallel or Distributed

Submodel per Processor
Submodel per Interface
Interleaved Test Cases

Jump to first page

SQ
RL

Test Case Interleaving
Handled via the Tangle Function

Jump to first page

SQ
RL

Tangle Uses
Servers to Multiple Clients
Multiplexed Input Streams
Non-modal GUI

Jump to first page

SQ
RL

Summary
Flexible: JUMBL is built using a
“plugin” architecture for formats
and analytical results
Adaptable: Easy to build support
for third-party tools
General: Support any automated
test tool
Versatile: Applicable to diverse
architectures

Jump to first page

SQ
RL

Tool Availability
JUMBL is available from U.T.
SQRL under license agreement
Contact sprowell@cs.utk.edu for
more information
Large case study in Cleanroom
Software Engineering: Technology
and Process (Addison-Wesley)

Key Points

XML Interfaces - Standards and Process
Key Learnings from years of Project Managing five XML Interface Projects
Success Factors

Presentation Abstract

XML interfaces are currently growing in interest and popularity. All major companies are currently creating XML interfaces to obtain
necessary efficiencies and to collaborate with customer and vendor companies. This abstract communicates my recent experience
project managing five XML interfaces. To support iterative quality XML interface development, I have created an XML Interface
Standards and Process document, which I would like to share with my audience. I would very much like to communicate my key
learnings (that I learned over several years) so that my audience can expedite quality XML interface design, development, testing and
implementation.

About the Author

Glenn Breslin, CQA, CSTE Glenn Breslin is a Independent Software QA/Test Consultant. He manages testing efforts on large sized
information system projects for Fortune 500 clients. He has been involved in software test and quality assurance for over 20 years. He
has additionally functioned as a Testing Manager and Senior Project Manager at the Bank of America and at various software vendors.
The Quality Assurance Institute (QAI) has awarded Glenn the Certified Quality Analyst (CQA) and Certified Software Test Engineer
(CSTE) credentials.

QW2002 Paper 4T1

Mr. Glenn Breslin
(Independent)

Quality Process for XML Interfaces

Interim Technology Glenn Breslin

7/12/2002 1

Quality Process for XML Interfaces -- Glenn Breslin 7/12/2002 Page 1

GLENN BRESLIN
PRESENTS

QUALITY PROCESS
FOR

XML INTERFACES

Quality Process for XML Interfaces -- Glenn Breslin 7/12/2002 Page 2

XML INTERFACE QUALITY
KEY PRESENTATION TOPICS

Process And Standards
Key Learnings From Years of
Project Managing Five XML
Interface Projects
Success Factors

Interim Technology Glenn Breslin

7/12/2002 2

Quality Process for XML Interfaces -- Glenn Breslin 7/12/2002 Page 3

INTRODUCTION

Who Am I ?
What Will You Learn ?
How Will I Proceed ?
What Is Not Included ?

Quality Process for XML Interfaces -- Glenn Breslin 7/12/2002 Page 4

XML - AN INTRODUCTION

What Is XML ?
Why Is XML Used ?
What Does XML Look Like ?
Who Is Using XML ?
Why Is XML So Popular ?
What Environments for XML Usage?
What Is XML’s Future ?

Interim Technology Glenn Breslin

7/12/2002 3

Quality Process for XML Interfaces -- Glenn Breslin 7/12/2002 Page 5

QUALITY PROCESS (1)

Legend: y - included in presentation
n - not included in presentation

Project Plan (y)
Requirements (y)
Data Map (y)
Field Interface Map (y)
Design Document (y)
Code Development (n)

Quality Process for XML Interfaces -- Glenn Breslin 7/12/2002 Page 6

QUALITY PROCESS (2)

Integration Test Planning (y)
End to End Acceptance Test Plan (y)
Business Events (y)
Integration Test Execution (n)
End to End Acceptance Test

Execution (y)
Implementation Planning (n)
Implementation (n)

Interim Technology Glenn Breslin

7/12/2002 4

Quality Process for XML Interfaces -- Glenn Breslin 7/12/2002 Page 7

BUSINESS REQUIREMENTS

Introduction
Deliverable Content
• List and name the XML interfaces

– From the customer to the vendor
– From the vendor to the customer

• Sample Interfaces
Risks of Not Creating Requirements

Quality Process for XML Interfaces -- Glenn Breslin 7/12/2002 Page 8

DATA MAP

Introduction
Deliverable Content
• Customer User Interface,

Database, XML, Vendor Database,
Vendor User Interface (in columns)

• Customer…. To…… Vendor
• Vendor …. To…… Customer

Risks of Not Creating Data Map

Interim Technology Glenn Breslin

7/12/2002 5

Quality Process for XML Interfaces -- Glenn Breslin 7/12/2002 Page 9

DATA MAP – SIMPLE
EXAMPLE

dist nbrdistrictdist_nd_namedist

phoneborr_telb_telb_phoneTel

middleborr_midmnameb_midM

firstborr_firstfnamea_firstfirst

Vendor
UI

Vendor
Database

XMLCust
Database

Cust
UI

Quality Process for XML Interfaces -- Glenn Breslin 7/12/2002 Page 10

FIELD INTERFACE MAP

Introduction
Deliverable Content
• PowerPoint Slide with Customer

User Interface on the Left Side and
the Vendor User Interface on the
Right Side

Risks of Not Creating Field Interface
Map

Interim Technology Glenn Breslin

7/12/2002 6

Quality Process for XML Interfaces -- Glenn Breslin 7/12/2002 Page 11

FIELD INTERFACE MAP -
SIMPLE EXAMPLE

Order Number (A)
Order Type (B)
Order Instr (C)
Requestor (D)
Contract Date (E)

Cust Order Nbr (A)
Customer Name (D)
Type (B)
Instructions (C)
Delivery Date (E)

Customer UI Vendor UI

Quality Process for XML Interfaces -- Glenn Breslin 7/12/2002 Page 12

DESIGN DOCUMENT
Introduction
Deliverable Content
• Description of each interface in detail
• Mapping from Customer’s element

name to the XML name
• XML Tag Glossary
• Push vs. Pull Strategy
• Required URLs

Risks of Not Creating Design
Document

Interim Technology Glenn Breslin

7/12/2002 7

Quality Process for XML Interfaces -- Glenn Breslin 7/12/2002 Page 13

INTEGRATION TEST
PLANNING

Introduction
Deliverable Content
• Test Cases
• Test Data
• Coverage Strategy
• Track to Design Document

Risks of Not Planning Integration
Test

Quality Process for XML Interfaces -- Glenn Breslin 7/12/2002 Page 14

END TO END
ACCEPTANCE TEST PLAN

Introduction
Deliverable Content
• Business Events
• Acceptance Test Cases
• Test Environment
• Test Cycles
• Actual Hard Copy Results
• Test Case Tracking Logs

Risks of Not Creating End to End
Acceptance Test Plan

Interim Technology Glenn Breslin

7/12/2002 8

Quality Process for XML Interfaces -- Glenn Breslin 7/12/2002 Page 15

CONCLUSION

Recommended Quality Process
Recommended Deliverables
Standards
Major Key Learnings
Success Factors
Next Steps

Key Points

WebSites are most commonly viewed from a browser.
There are significant advantages to using a browser as the basis for WebSite quality checking.
A new technology that integrates functional testing, timing/tuning, load testing, and site analysis is described.

Presentation Abstract

The eValid Test Enabled Web Browser incorporates all of the main functions of a complete WebSite Test Environment in a convenient,
easy-to-use patent-pending package. eValid capabilities include functional testing and verification, detailed WebSite timing and tuning,
load generation with full-browser and partial-browser playbacks, and site analysis with the built-in WebSite spider search and filter
function.

This talk describes how the eValid system is architected, how it is used through the set of built-in menus, and how it can be applied to
produce reliable, effective tests of WebSites. Specific examples of WebSite testing are given.

About the Author

Dr. Edward Miller is Chairman and President of Software Research, Inc., San Francisco, California, and Chief Technical Architect for
software test tools development and software engineering quality questions. Dr. Miller has worked in the software quality management
field for 25 years in a variety of capacities, and has been involved in the development of families of automated software, analysis and
Web quality tools. He was chairman of the 1985 1st International Conference on Computer Workstations, and has participated in IEEE
conference organizing activities for many years. He is the Chairman of the Quality Week Conferences since 1988. He is the author of
Software Testing and Validation Techniques, an IEEE Computer Society Press tutorial text. Dr. Miller received his Ph.D. (Electrical
Engineering) degree from the University of Maryland, an M.S. (Applied Mathematics) degree from the University of Colorado, and a
BSEE from Iowa State University.

QWE2002 Paper 4T2

Dr. Edward Miller
(eValid, Inc.)

Innovative WebSite Mapping Tool

1

eValid, Inc.

Innovative WebSite Mapping Tool

Dr. Edward Miller
eValid, Inc.

901 Minnesota Street
San Francisco, CA 94107 USA

(miller@soft.com)

eValid, Inc.

Outline
� General Objectives
� Technology Base
� Search Engine
� Filters
� Reports
� SiteMap Representation
� Examples

2

eValid, Inc.

General Objectives
� Client Side Analysis
� Support ANY Server Technology
� 100% Realistic User Perspective
� Ease of Use
� Universality
� Valuable, Easy-To-Read Reports

eValid, Inc.

Technology Base
� eValid Browser Base
� Recursive Descent “spider”
� Universal Application (LAN + WEB)

3

eValid, Inc.

Search Engine Architecture
� Starting URL
� Protocols
� Inclusion Criteria

- Suffixes
- Added URLs

� Exclusion Criteria
� Case Study

eValid, Inc.

Site Analysis Preferences Menu

4

eValid, Inc.

Search By Links
� All Possible URLs
� Extensions
� Protocols
� Included Domains
� Excluded URLs
� Visit/Don’t Visit Off-Site URLs

eValid, Inc.

Excluded URLs “sample.txt”

5

eValid, Inc.

Search Limitations
� Depth of Search (From From Top)
� Length of Elapsed Time
� Total Number of URLs Analysed
� Cache On/Off

eValid, Inc.

Search Mode
� Browser Mode (Foreground)
� Background Mode (Normal)
� Background Mode (Quick)
� Performance Differences
� Result Differences
� Performance Issues

6

eValid, Inc.

Site Analysis Filtering
� Unavailable Pages
� Slow Pages
� Old Pages
� Large Pages
� External Pages
� Matching String
� Matching Regular Expression
� Metrics
� Case Study

eValid, Inc.

Filter Selection Menu

7

eValid, Inc.

Site Analysis Summary Report

eValid, Inc.

Sample Unavailable Pages Report

8

eValid, Inc.

Sample Slow Loading Pages
Report

eValid, Inc.

Sample Too Old Pages Report

9

eValid, Inc.

Sample Off Site Pages Report

eValid, Inc.

String Match Target Selection
� Complete HTML
� Visible Text
� META Tags Only
� URL Text Only

10

eValid, Inc.

String Match Specification
� Base String
� Case Sensitivity
� Inverted Logic Sense (NOT)
� Regular Expression

eValid, Inc.

Simple String Match Report

11

eValid, Inc.

Regular Expression Match Report

eValid, Inc.

Pages Matching Metric Criteria
� Pages Larger Than ?? Bytes
� Pages Containing Over ?? Links
� Pages Containing Over ?? HTML

Elements
� Pages Containing Over ?? Visible Text

Bytes
� Composition Rule (AND)

12

eValid, Inc.

Sample Metric Criteria Report

eValid, Inc.

Site Analysis Report Selection Menu

13

eValid, Inc.

Site Analysis Report Selection
� Full SiteMap
� Unique SiteMap
� Full URL List
� Unique URL List
� Show/Don’t Show Unvisited URLs

eValid, Inc.

Sample Full SiteMap Report

14

eValid, Inc.

Sample Unique SiteMap Report

eValid, Inc.

Sample Full URLs Report

15

eValid, Inc.

Sample Unique URLs Report

eValid, Inc.

3D SiteMap Graphs
� Derived From Complete SiteMap Table
� Fully Scalable
� Fully Rotatable (Horizontal & Vertical)
� Dependence Annotation
� Redraw from Current Image

16

eValid, Inc.

Simple 3D SiteMap

eValid, Inc.

Complex 3D SiteMap

17

eValid, Inc.

Dependency Display #1

eValid, Inc.

Dependency Display #2

18

eValid, Inc.

Performance Issues
� RAM Usage
� Download Time
� Download Volume
� Report Preparation Time (Size)
� Other Factors

eValid, Inc.

Conclusions & Recommendations
� Effective Technology
� Correct Application
� Results Analysis
� Repeatability
� Limitations

Key Points

Pros and cons of manual and automated testing
Situations where either type of testing is more effective
How to increase effectiveness of your testing efforts

Presentation Abstract

Since the dawn of software development, we all have debated the pros and cons of Manual Testing and Automated Testing. In this
paper, the authors discuss the features and benefits of each and the situations where each is more appropriate. The paper includes our
findings as well as compilations of discussions with several esteemed colleagues in QA and testing arena.

About the Author

Vijay Sikka is the co-founder and principal of Nirixa, Inc. a company providing comprehensive QA and testing outsourced services.
Vijay's more than 15 year executive career and strengths span business development, engineering, and operations. Vijay has done
marketing at IBM in Madison Avenue, New York and engineering management for 7 ½ years at Intel Corporation headquarters in Santa
Clara. In 1996, Vijay founded IBrain Software, Inc. and served as its CEO until its acquisition by Entigen Corp in 1998. In 1999, Vijay
started Bodha.com, Inc. and served on its board of directors until its acquisition by Peregrine Systems (NASDAQ: PRGN) in 2002. Vijay
has built international teams and engineering organizations with successful multi - year operations. Vijay is an advisor and a consultant
to several bay area companies.

Anurag Khemka is the co-founder and principal of Nirixa, Inc. a company providing comprehensive QA and testing outsourced services.
Anurag has more than fifteen years of experience in enterprise software development, product architecture, and executive
management. Anurag is the founder of MarketFirst Software, a pioneer and leader in Enterprise Marketing Automation, and currently
serves there as Vice President and Chief Technology Officer. Prior to founding MarketFirst in 1996, Anurag was the director of research
and development at Cambio Networks, and previous to that held positions as the chief product architect and R&D manager for UB
Network's enterprise-wide, client/server based network management products.

QW2002 Paper 6T1

Mr. Vijay Sikka & Mr. Anurag Khemka
(Nirixa, Inc.)

Revisiting Comparisons between Manual and Automated testing

1

Nirixa, Inc.

Revisiting Comparisons Between
Manual and Automated Testing

Presentation to: QW2002
By:
Anurag Khemka
Vijay Sikka

Copyright © 2001-02 Nirixa, Inc.

Manual vs. Automated Testing

Manual Testing : is the approach of
testing where human resources perform
all aspect of testing and validation for
the ‘system under test’.
Automated testing : is the approach of
testing where a significant amount of
testing and validation work is performed
by non-human resources in an
automated or semi-automated fashion.

2

Copyright © 2001-02 Nirixa, Inc.

Type of Resources Needed for
Various Test steps

Semi-automatedHumanGenerate reports
Semi-automatedHumanCoverage Analysis
AutomatedHumanCompare results to an oracle or standard
AutomatedHumanMonitor and record results
AutomatedHumanRunning tests
Semi-automated-NA-Development of test scripts

HumanHumanDevelopment of test cases, sequences, &
plans

HumanHumanCreation of test specification
HumanHumanTest planning
HumanHumanObjective definition
AutomatedManualSteps

Copyright © 2001-02 Nirixa, Inc.

Testing Basics
Manual testing is a must: interactive & creative testing
and human brain has no replacement
Automated testing will fail in any scenario where
manual testing fails e.g. bad requirements, unclear
specifications
Automation testing only finds a bug that you anticipate,
it can’t get creative
100% Automation is a myth: 100% manual testing is
still very common
Automation helps test staff focus on deeper manual
testing instead of working on repeated basic testing

3

Copyright © 2001-02 Nirixa, Inc.

Manual vs. Automated Testing
Score Card

HighLow to mediumSkills required
HighNoneEconomies of scale
LowHighCost of repetition
HighLowInitial implementation costs
LowHighFlexibility
LowHighResponsiveness
HighLowConsistency

Easily achievableRequires
duplicate effort

Redundancy
HighLowReliability
FastSlowTime per test run

Automated
Testing

Manual
Testing

Benefits

Copyright © 2001-02 Nirixa, Inc.

Why Automated Testing

Manual testing is very expensive and not
scalable
If certain routine aspects of testing are
automated, the test staff can do more
interactive/creative testing
Today’s fast development cycles require quick
time to market : Manual testing takes too
much time
Today’s products are more complex, requiring
extensive testing

4

Copyright © 2001-02 Nirixa, Inc.

Simple Economics of Automation

High fixed cost: deployment and licensing
Higher test script development cost
Promises less run time (per test cycle) cost
Usually first run of automation is more
expensive than manual testing
Automation results in cost savings only after
multiple runs are done
To recoup the cost of automation**
number of test cycles required = (fixed cost + cost of developing test

scripts) / reduced cost per test cycle

** This simple economics ignores the value of expanded testing abilities

Copyright © 2001-02 Nirixa, Inc.

Simple Economics of Automation

ROI = (total benefits-total
cost)/total cost
Total cost = cost of software
and hardware + cost of
developing the test scripts +
(run time cost per cycle *
number of test cycles)
Total benefits = reduced cost
per test cycle * number of test
cycles
Additional benefits (not easily
quantifiable)

Reduced time to market
Improved product quality
Ability to do load and
performance testing

General cost guidelines:

If cost of one manual test cycle is $n,

Then, generally the cost of developing
test scripts is 5 times n

After automation, the cost of running
one test cycle and maintaining the
scripts is n/5

So if project has m cycles, max cost of
Software and Hardware supported is :
$ n * (4/5*m – 5)

e.g. if n = 10,000 and m = 20, the
direct benefit of automation in this
example can be $110,000

5

Copyright © 2001-02 Nirixa, Inc.

When Automated Testing does not
work

If manual testing doesn’t work, automation too won’t
Unclear requirements, changing specifications
Volatile interface or environment
Testing at high level semantics (e.g. picture and text
description, semantical validation of content)
Lack of discipline, strategy, and methodology
Challenges offered by (Limited automation applications)

Multi-threaded, Multi-tiered systems
Distributed complex systems
Natural Language interfaces
Multitude of input device types
High Graphical content

Copyright © 2001-02 Nirixa, Inc.

When Automated Testing has best
Advantage

Clearly defined inputs and outputs
GUI (capture/playback) regression tests
Test suite runs (conformance testing e.g. XML conformance
tests, HTML validity testing)
Build/integration validation (Smoke testing)
Boundary condition testing / regression testing
Load testing and performance benchmarking
Configuration testing: same (or ported code) runs under
multiple environments (OS, H/W platforms, browsers etc.)
Testing transactional systems with mission critical
applications
Systems testing such as API set, Embedded systems,
peripheral testing etc.
Randomized input generation
High volume exhaustive (large permutations) testing
Sequence dependent testing etc.

6

Copyright © 2001-02 Nirixa, Inc.

Pros & Cons of Automation
Cons:

Automated testing does not find new bugs
Development & maintenance of test scripts is an expensive and
tedious task, specially in an evolving product
Cost of automation software, initial setup/training, generation of
reference oracle etc. is very high (direct & resources)
Real time, multi threaded systems are not always repeatable
Automation beyond a certain point is not cost effective

Pros:
Tests run faster, provides coverage and scale
They are consistent
Improved testing and better test records
Eliminates human error due to boredom & fatigue
Better use of the test staff for creative, deeper testing
Can reliably run tests that humans may find difficult and complex

Copyright © 2001-02 Nirixa, Inc.

When Manual Testing is a must
Automation is not complete testing, manual testing is
always necessary

Real value of automation is so team members can spend more
time doing interactive (manual) testing
Generally automated testing does not find any new bugs

Ad hoc or one time testing
First time testing
Interactive and usability testing
Natural language interfaces
Systems without predictive results
Less stable, high feature churn, or brittle systems
Unfrozen changing requirements/specification
Time of environment dependent response

7

Copyright © 2001-02 Nirixa, Inc.

Components of Automation
An established testing methodology

Commitment for adoption of automation tool
Sufficient and trained resources to implement automation

System under test (SUT)
Automation software or tools
Script for running tests
Results monitoring tools
Defined program inputs and expected outputs

Input dataset and expected results oracle
External and environmental factors
Managing results

Ability to automatically capture results in electronic format
Ability to compare and analyze results to what is expected
Reporting of final conclusions

Copyright © 2001-02 Nirixa, Inc.

Various Test stages and applicable
test methodology

Initially Manual; migrating to
more automation

Acceptance testing
Broadly manualAd hoc / exploratory testing
ManualUsability testing
High degree of automationStress and performance testing

High degree of automationLoad & scalability testing

High degree of automationSmoke testing (Regression testing)
Limited automationFunctional (Black box) testing
Limited automationWhite box testing

Limited automation, broadly
manual

Unit Testing

Test MethodologyTest Stage

8

Copyright © 2001-02 Nirixa, Inc.

Various Application types and
applicable test methodology

Initially manual; migrating to more
automation

Multi tier enterprise software

Limited automationTransactional systems

Limited automationReal time systems

Largely automatedEmbedded systems testing

Limited automation, Broadly manualSemantic testing

High degree of automationSystem level tools testing
(Compilers, syntax analyzer):

Close to 100% automationRun time libraries (APIs)

Broadly manual, limited automationGUI with dynamic content

High degree of automationGUI with predictive results

Test MethodologyApplication Type

Etc..

Copyright © 2001-02 Nirixa, Inc.

A Plethora of Available Test tools

Very sophisticated automation tools available
Capture / playback (including remote capabilities)
Handles security issues - records secure & non-secure pages
Strong scripting capabilities – runs with many data sets

Requires none or very little coding
Sophisticated Web features

Object based smart testing (not pixel based)
Adjust if button moves
Validation of object properties

Ability to model reference oracles & automated result comparison
Load generation – simulating large user sets
Performance measurements
Strong database support

Both for input data set
And storing output and results

Schedulable monitoring
Can’t provide recommendations in this forum

We have studied over 15 tools
Can make the study available on private basis

9

Copyright © 2001-02 Nirixa, Inc.

How to Approach Automation

Requires commitment and appropriately trained
resources
Define the purpose and scope of automation
Define the strategy : how’s and what’s?

It is a development effort in itself
What is the investment and what is the expected ROI
Script development is a large investment

Walk before you run: build on early small
successes
Try automation early : even at unit testing time
Planning, resource allocation is the key

Copyright © 2001-02 Nirixa, Inc.

Increase ROI in either Method

Your best bet is semi-automatic
Define your overall testing strategy

Methodology and tools
Identify proper candidates for automation

Must be process centric
Planning and documentation
Increases efficiency
And reduces resources (time & effort)

Least common denominator approach
Planning, specification, test design, results and reports are
common steps

Building Blocks approach
Have component test suite library
Build larger complex tests using these as building blocks
Reduces resources required

10

Copyright © 2001-02 Nirixa, Inc.

Summary

Automation offers true value
Sophisticated automation tools are worth it

Manual testing remains primary testing vehicle
Winners use both automated and manual
testing
Planning, strategy & process are very important
Leveraging earlier experiences increase ROI

Key Points

If you can’t find or buy the Test Case and Automation tools you need, you might try bui
Automation Management with metrics and history reporting
Integrated Test Case management tools with Automation tools

Presentation Abstract

Interested in seeing a real Test Automation solution in motion? Automation testing is an exciting thing to be a part of. Automating the
automation is even more exciting. In this framework the Test Case/Automation system is set in motion after Configuration Management
builds a piece of software for a project that has been automated. Thousands of pre-programmed test cases for multiple projects can be
run at night or throughout the day on multiple machines. You will see a demonstration of this process in motion, learn what obstacles
were overcome and how flexible the system is.

About the Author

Darin Magoffin, Todd Hovorka and Rich Wolkins have Software Automation Testing experience totaling more than 30 years combined.
Using their skills and background in software testing, they have combined their strengths to create a robust Test Case/Automation
Framework that suits the unique challenges of PowerQuest's products. Their experience and skill set have been aquired at companies
like WordPerfect, Novell, Corel, PowerQuest, and Gazelle Systems.

QW2002 Paper 6T2

Mr. Darin Magoffin, Mr. Todd Hovorka &
Mr. Rich Wolkins

(PowerQuest)

A Custom Automation Framework and
Test Case Management Solution

1

A Custom Automation A Custom Automation
Framework and Test Case Framework and Test Case

DatabaseDatabase
Automation can be your friendAutomation can be your friend

PowerQuest Corporation 2

Overview
• Why did PowerQuest build their own Test Case

and Automation Framework?
• Obstacles overcome and problems solved
• Automation Framework Process Flowchart
• Development Tools used
• Automation Server/Client/Log Manager overview
• See TCA (Test Case Automation) Manager,

Automation Server, Automation Client, Log
Manager in a real live, “No smoke and mirrors”
demo

• Q/A

2

PowerQuest Corporation 3

Why did PowerQuest build
their own Test Case and
Automation Framework?

• We had the expertise in house
• Existing Testing Frameworks, could not address

unique issues that PowerQuest products have
• We needed a tightly integrated Test Case database

with an automation framework
• We had existing automation that could more easily be

“tweaked” to fit into a custom built system than into
existing commercial systems

PowerQuest Corporation 4

Obstacles overcome and
problems solved

• Manager Buyoff
• Modifying already existing automation technologies to

be integrated into the system
• Metrics at a project level for Test Case results both

manual and automated
• Customizable Test Case matrix to allow for all

combination of Operating Systems, File Systems,
and Languages

• Automated submissions (Project Builds and
Automation Jobs)

3

PowerQuest Corporation 5

Automation Framework Process Flowchart

PowerQuest Corporation 6

Development Tools used

• Delphi 6 – (Automation Server, Automation Client,
Verify Build Notification Client, Log Manager)

• Borland’s C++ Builder 5 – (TCA Manager)
• Microsoft Visual C++ 6 – (Test harness for Calculator

and PartitionMagic 8)
• AppTester – (Automation API tool that integrates with

Microsoft Visual C++. It is used by the test harness
to drive the applications being tested)

4

PowerQuest Corporation 7

Automation Server Overview

• Listens for Automation Client requests
• Monitors Automation Run Queue for Pending Jobs
• Qualifies Jobs to Available Clients
• Farms out Jobs to Qualified Client Machines
• Handles all database requests
• Builds Client Profiles from system information
• Monitors & Displays all Client/Server communications

PowerQuest Corporation 8

Automation Server Overview

5

PowerQuest Corporation 9

Automation Client Overview

• Gathers systems information for automation
qualification and system analysis purposes

• Listens for, and executes Automation Jobs sent to it
by the Automation Server

PowerQuest Corporation 10

Automation Client Overview

6

PowerQuest Corporation 11

Log Manager Overview

• Implemented as an NT Service
• Monitors all specified folders for the existence of log

files
• Parses all detected logs for specified tags
• Emails results to specified recipients
• Closes the automation job in the run queue
• Saves automation job results to the database

PowerQuest Corporation 12

See TCA Manager,
Automation Server,

Automation Client, Log
Manager in a real live, “No
smoke and mirrors” demo

7

PowerQuest Corporation 13

Q/A

Key Points

Streaming media quality IS rigorously measurable in MOS-type metrics
You also need low-level operational metrics tied to discrete events
The challenge lies in bridging the gap - attemptable from both directions

Presentation Abstract

For standardized old media such as television, telephone, or even radio, there are mature infrastructures for quantifying quality, based
on correlation to Mean Opinion Scores (MOS), which average over panels of human judges. This has not yet become widespread for
streaming media, due to its variety, rapid evolution, novel degradations, and market immaturity. Nevertheless, we present rigorous
pixel-based metrics that correlate well with MOS (Genimedia approach), as well as metrics built upward from low-level operational
events (Keynote.) We discuss several important tradeoffs in the two approaches (interested audience, operational and SLA usability,
intrinsic meaning, maintainability), as well as how we see the two approaches being brought together in the future. Many metrics are
demoed under actual video degradations.

About the Author

Chris Overton is Keynote Statistician & Quantitative Architect. Over the last decade, he has consulted as a statistician in industry and in
academic biomedicine, as a software architect and developer, and in business model development. He founded Crazy Tulip Corp. to
build knowledge modeling software systems.
His responsibilities at Keynote include algorithm and tool design, data analysis & interpretation, internal & external education, and
serving as academic liaison. He architected Keynote’s SLA reporting engine and has helped several large companies build SLAs,
including for streaming media both on the provider side and on the customer side.
Chris is the principal architect of Keynote’s streaming media metrics and has published and lectured on related topics. He got his pure
math PhD from Stanford in ?96 and has taught there and at the University of San Francisco.

Simon Robins has been working in software development for over 10 years, and joined Genimedia as Principal Engineer on its
foundation at the start of 2001. Genimedia is dedicated to perceptual quality measurement for the monitoring, management and control
of the production and delivery of digital media. He now leads the technical marketing team at Genimedia. He has a degree in theoretical
physics from the University of Liverpool and a PhD in particle physics from London University.

QW2002 Paper 7T1

Dr. Chris Overton (Keynote Systems) & Dr. Simon Robins
(Genimedia)

Streaming Media Quality: Orphan Child of "Old Media" and Internet Flakiness

1

Streaming Media Quality:
The Orphan Child of “Old Media”

and Internet Flakiness

Chris Overton, Ph.D.
Keynote Systems

Simon Robins, Ph.D.
Genimedia

Plan for the talk

I. Big picture
II. Common challenges
III. Audio
IV. Video
V. State of the industry of quantifying

streaming quality

2

Warning

• This talk’s content is much easier to
appreciate if you see the actual video and
real-time metric tracking
– “A picture is worth a thousand words”
– “A video is worth a thousand pictures”

(127.34 after MPEG4 compression)

Take-home message

• Quantifying streaming quality CAN be done
rigorously
– We’ll discuss how – it’s much trickier than one might

think!
• However, it seems difficult at this time to build

metrics that are both commercially viable and
well-accepted by industry

• As streaming quality continues to become more of
an expectation than a miracle, the current vacuum
will beg to be filled

3

Wish list for
a streaming media quality metric

1. A single number …
2. … transparently derived…

• Having conceptual meaning
3. … universally accepted by industry …
4. … that tracks well with human panel judgment …
5. … and tells you what is going wrong,

so you can fix it
• Having diagnostic meaning

Wish list for
a streaming media quality metric

1. A single number …
2. … transparently derived…
3. … universally accepted by industry …
4. … that tracks well with human panel judgment …
5. … and tells you what is going wrong,

so you can fix it

THIS TALK:
• EXPLAINS HOW THIS IS UNACHIEVABLE
• SUMMARIZES CURRENT MARKET STATUS

AND POTENTIAL

4

Speaker backgrounds &
relevance to this talk

• Keynote Systems: “Streaming Media Perspective”
• Genimedia: “QoS solutions”
• This talk grew out of a discussion between the

authors after they appeared on a panel at Streaming
West 2002 (LA, April, 2002)

• We also take into account information shared under
NDA by other vendors

• Current negative market conditions direct our
emphasis to the general subject, rather than to the
products

• Thus we are able to give more balanced insight into
the industry of streaming quality and its
measurement and assurance

A sought-after metric: MOS
(mean opinion score)

• Average over ratings by several users,
each on an n-point scale

• Averaging builds “consensus” and reduces
variance due to atypical users

• Probability distribution of user’s ratings may
appear much simpler than that of various metrics
computed from hardware and software

• Goal: establish a good, calculable model for MOS

5

How well could streaming media MOS
stack up with our stated goals?

☺ A single number
. Transparently derived

Averaging isn’t hard – but settling on the budget and plan
for distributed measurement is!

/ Universally accepted by industry
Naïve approximations are recognized as such by some;

others are uncomfortable with overly complicated or
proprietary solutions

It’s hard to find one party everyone can trust
☺ Tracks well with human panel judgment
/ Tells you what’s going wrong, so you can fix it

Not by a long shot!

Part II: Common challenges in
building metrics for streaming

1) “Building the bridge” between MOS and diagnostic,
operationally meaningful metrics

2) One-sided vs. two-sided measurement
3) The tradeoff between diagnostic and conceptual metrics
4) Understandable derivability (computability) of metrics

(Even if you do something proprietary, can you convince
your audience that that it is reasonable?)

These points are absolutely critical to our approaches
(Genimedia and Keynote), even if we address
some in different ways

We’ll revisit this topic!

6

Part III: Metrics for Audio

A standard for comparison:
speech quality over POTS

• A single MOS makes sense:
– Expectations are straightforward
– Extensive research exists on related psychology of

perception
– Connection-based packet communication is fairly

consistent
– Variability of experience is not that sensitive to end-

points
• The main thing missing in MOS is latency

– So (MOS & latency) tells you a lot

7

How MOS begins to fall apart
for speech over phones

• Manageable differences:
– VOIP introduces a different set of artifacts
– Wireless extensions connected to POTS

• Mobile phones: a quantum leap in confusion:
– Latencies may become more significant
– Packet loss is higher even than in VOIP
– Profound sensitivity to geography, which varies over

time for a moving caller
– Roaming can make responsibility difficult to assign

Why MOS until recently was
even harder for streaming audio

1. Superposition of several kinds of variability:
– Greater variety in audio streams than in speech
– Encoded bandwidth
– Other encoding features, such as sample rate and

channel count
– Different technologies and product versions

• Sophisticated proprietary compression/decompression may
emphasize differing features

– Different behavior by Internet backbone and
connectivity, “distance” from cache server

– Variability over time

8

Why MOS until recently was even
harder for streaming audio (II)

2. Several target qualities (say for different
bandwidths), and so too many different sets of
expectations to place neatly on a single MOS
scale

3. New kinds of degradation:
• Separation in time between packet arrival and packet

playback through buffering, shielding yucky Internet
statistical behavior

• Codecs designed to allow greater packet loss
• Changing encoding quality over time

4. Immature expectations, so that yesterday’s MOS
won’t reflect tomorrow’s users

State of the industry in measuring
audio streaming quality

• At this point, marginally acceptable audio can fit
over a phone line
– Codecs are still improving slightly, and bandwidth is

still growing for other connectivities

• Thus, one can develop MOS for a small number of
genres (e.g. speech, acoustic music, electronic
music) based on studio quality
– Anything too low on this scale can then simply be

written off a unacceptable

9

State of the industry in measuring
audio streaming quality (II)

• Automatic calculation of MOS in real time is not
so easy

• However, the impact of lost packets is fairly
understandable, so the bridge between diagnosic
and conceptual metrics is not huge

• Keynote’s streaming service has made an attempt
at such a bridge, which we will discuss more
generally after covering video streaming

• Otherwise, this is a fairly mature subject that we
will not survey

Part IV: Metrics for Video

10

Again, MOS metrics are harder
for streaming than for TV

• Expectations have stabilized for analog
television video, and similarly will stabilize
for other formats such as HDTV; streaming
is still evolving fast enough that
expectations are changing

• Streaming video occurs at many different
bandwidths, uses many different codecs,
and introduces new kinds of degradations

So how do we build video streaming
metrics to satisfy our five goals?

• The sheer visibility of artifacts makes this a
compelling topic!

• Fundamentally, there are two possible kinds of
approaches:
– Building down from conceptual metrics closely

associated with MOS (Genimedia)
– Building up from discrete events such as lost packets,

bandwidth allocations, or frame rendering behavior
(Keynote)

• To contrast the two approaches, we’ll consider
each in turn

11

Genimedia

• Consider familiar kinds of degradations in video
streams:
– Blockiness
– Blurriness
– Jerkiness
– Noise

• Genimedia has built a tool to estimate these from
one-side measurement

• Observe how these track in the movie samples
• <show movies>

Genimedia (II)

• Since Genimedia’s metrics are so high-level, they
have intrinsic meaning and thus:
– They serve as good predictors of MOS (within one

fixed set of expectations)
– The code is easily maintainable

• On the other hand:
– If you are running a streaming service, you may be

more interested to know that a particular cache server is
dropping packets than in how this affects aggregate
blockiness

– You get some false positives, such as jerkiness at scene
shifts

12

Keynote
• High-level metrics should have nearly consistent

meaning across products and across product generations

…

• Low-level inputs vary across products and versions, and
typically have crisper technical meaning

Streaming Quality

Startup Quality Audio Quality Video Quality

Audio
Rendering

Audio
Encoding

Video
Rendering

Video
Encoding

Connect timeRedirect timeAudio encoded bwVideo packets recovered
Video frames droppedVideo frames droppedVideo frames droppedAudio encoded bwAudio encoded bwRedirect time

Keynote (II)

• Low-level metrics are diagnostic, and high-level
metrics attempt to capture their impact (as derived
by panel testing)

• This combination allows for broad comparison,
together with more “actionable” data

• However:
– Maintaining the “bridge” requires expertise and labor
– Meaning of (sparser) proprietary higher levels is harder

to understand

13

So how do we stack up
to our wish list?

1. A single number …
2. … transparently derived…
3. … universally accepted by industry …
4. … that tracks well with human panel judgment …
5. … and tells you what is going wrong,

so you can fix it

In an ideal world…

• One might want to squeeze a Genimedia-like into
the Keynote hierarchy of metrics, and then
calculate more rigorously how low-level metrics
predict Genimedia ones
– This would allow a “pixel-level gold standard”

• Even so, one will probably not see SLA’s for
“blurriness < 5%.” – thus one still requires low-
level data
– Only after packet-level behavior is taken for granted

will business contracts more more to higher-level
conclusions

14

Market realities…
• Streaming is only beginning to become a viable

business
• Thus, quality measurement and monitoring

projects mostly have been put on hold
• Due to the limited use of third-party distributed

testing services, the subject does not yet have
enough inertia to develop widely accepted
standards
– Other than rudimentary ones, such as “packet loss rate”,

“availability”, “average bandwidth”, …
• Even so, the way is already paved for more

inclusive solutions!

Author contact info:

• Simon Robins:
srobins@Genimedia.com
www.simonrobins.com

• Chris Overton
chris@crazytulip.com

Key Points

Automated testing of network protocol implementations
Case studies of TCP/IP and TCP/IPv6 testing
Rapid test development

Presentation Abstract

This paper discusses SPARTA (Scripted Protocol- And Regression- Testing Architecture), a tool that is used to automate the testing of
network protocol stacks. The first part of the paper discusses the motivation behind the SPARTA toolset. The second part discusses the
SPARTA architecture. The final part of the paper presents case studies on how SPARTA was used to test the TCP/IP and TCP/IPv6
network protocol stack implementations on Microsoft Windows XP and Microsoft Windows CE.

About the Author

Srivatsa Srinivasan has been working in the Windows CE Platform Group at Microsoft for the past 3 years as a Software Design
Engineer in Test. His work has involved developing tests and tools to test various networking features of Windows CE. Currently his
focus is on developing tests for TCP/IPv4 and TCP/IPv6 networking protocols.

Sandeep Prabhu has been working in the Windows Networking Group at Microsoft for the past 3 years as a Software Design Engineer
in Test. His work has involved developing components and tools to test the various networking protocols. Currently his focus is on
developing tests for TCP/IPv4 and TCP/IPv6 networking protocols.

QW2002 Paper 7T2

Mr. Srivatsa Srinivasan & Mr. Sandeep Prabhu
(Microsoft)

SPARTA: Architecture for Automated Testing of Network Protocol Stacks

7/17/2002

1

welcome

SPARTA :
Architecture for Automated

Testing of Network
Protocol Stacks

Srivatsa Srinivasan
Sandeep Prabhu

Microsoft Corporation

7/17/2002

2

Agenda

Introduction
Motivation
Architecture
Examples
Conclusion

Introduction

SPARTA stands for Scripted Protocol- And
Regression-Testing Architecture
It is a tool that is used to automate the testing of
network protocol stacks

7/17/2002

3

Motivation

A toolset that can run on a PC and perform generic
network protocol stack testing with no requirements
for any special hardware
A toolset that can provide total flexibility in what the
user can put on the wire given that such capability is
often needed to do low-level protocol testing
A toolset that provides a mechanism to remotely
control the implementation under test at a very
granular level providing very powerful primitives to the
test developer to test complex network protocol stack
features

Motivation

A toolset that enables rapid test development, by
providing a scriptable interface to test developers who
can quickly write test scripts in common scripting
languages like VBScript or Jscript, leading to greater
testing efficiency
A toolset that is easily extendable to add functionality
for testing existing or yet to be designed network
protocols
A toolset that can be easily integrated with other tools
and applications

7/17/2002

4

Architecture

SPARTA Host
System Under Test
SPARTA Control Channel
SPARTA Data Channel

Architecture – SPARTA Host

7/17/2002

5

Architecture – System Under Test

Architecture – SPARTA Control Channel

A client-server mechanism that allows the SPARTA
Host to remotely control the System Under Test by
using a wide range of control primitives
A client component runs on the SPARTA Host that
communicates with a server component that runs on
the remote System Under Test
C++ and COM interfaces are provided on the
SPARTA Host to invoke the control channel primitives.
They provide a very powerful tool for the test
developer to coordinate complex protocol interactions
between the SPARTA Host and the System Under
Test

7/17/2002

6

Architecture – SPARTA Control Channel

The following control primitives are supported:
System Primitives: Set the configuration parameters
of the System Under Test, get system
status/statistics
Stack Primitives: Set the configuration parameters
of the network stack under test, get network stack
status/statistics (e.g. TCP/IP parameters and
statistics)
Socket Primitives: Create sockets (endpoints),
make the System Under Test establish connections
or accept connections on these sockets, send and
receive data on these connections, get the socket
status/statistics

SPARTA Host – SPARTA Driver

It is a module that sits in between the SPARTA API at
the top and the network driver at the bottom
On the send path, it puts raw packets on the wire as
handed down by the upper layer
On the receive path, packet filtering is supported by
the SPARTA driver. Other than filtered packets, the
SPARTA driver passes all packets to the upper layer
unaltered

7/17/2002

7

SPARTA Host – SPARTA Driver

Provides comprehensive queuing (important for slow
script execution and bursty traffic)
Packet filtering provides improved performance and
reduces script complexity
Multiple receive queues and filters are supported
Following two levels of filtering are supported:

“Regular” filters such as for broadcast, directed,
multicast etc.
Pattern based filtering - a program can specify a set
of patterns for incoming traffic to be filtered on

SPARTA Host – SPARTA Protocol API

A comprehensive set of objects describing packet
structures found in the TCP/IP protocol suite
Packet operations supported in objects (e.g.
checksum and length calculation)
Network driver functionality encapsulated in interface
objects
Automation of common packet exchanges (e.g.
address resolution using ARP)
Packet classes are designed in a layered fashion –
mirroring packet header structures

7/17/2002

8

SPARTA Host – SPARTA Protocol API

Exposed as a C++ object model for use in high
performance applications or for integrating SPARTA
with other tools
Exposed as a COM object model for scriptability using
any popular scripting language like VBScript, JScript
etc.
Objects make the following available:

Network Interface commands, Pattern filters
Address Objects, Packet Objects (arranged in an
hierarchical structure), Header Objects (correspond
to protocol headers in the packets)
Exception handling

SPARTA Host – SPARTA Protocol API

The following packet types are supported:
MacPacket – encapsulates the media type based
frame (e.g. ethernet or token ring)
IpPacket – encapsulates the IPv4 packet
Ipv6Packet - encapsulates the IPv6 packet
ArpPacket- encapsulates the IPv4 address
resolution packet

7/17/2002

9

SPARTA Host – SPARTA Protocol API

The following packet types are supported:
IcmpPacket – encapsulates the IPv4 ICMP packet
IgmpPacket (versions 1 and 2) – encapsulates the
IPv4 IGMP packet
Icmpv6Packet- encapsulates the IPv6 ICMP packet
UdpPacket - encapsulates the UDP packet
TcpPacket - encapsulates the TCP packet

SPARTA Host – Utilities

Apart from the Protocol and Control API sets, there
are some utility APIs to perform the functions
described below

Test results logging
Test variation tracking
Other utility functions

7/17/2002

10

Examples –Testing TCP/IP

Goal: Test the TCP SYN retry count feature (the TCP
SYN retry count is the number of times a TCP/IP node
retransmits the SYN packet before giving up)
The test is implemented as a VBScript script that
invokes the SPARTA Protocol and Control COM APIs
Representative of several test cases that have been
developed for the various features in the TCP/IP and
TCP/IPv6 protocol suites
Let us examine script as follows:

Script outline
Walk through each section of the script

Examples –Testing TCP/IP

Script outline
Initialization

Create and initialize SPARTA Utility Object
Create and initialize SPARTA Protocol Object
Create and initialize SPARTA Controller Object
Create and initialize Network Interface Object

Test
Perform test setup tasks using Control channel
Run the test (create and send packets, receive
packets, send commands etc.)
Analyze the results

Cleanup

7/17/2002

11

Examples –Testing TCP/IP

Dim Core, Sparta, AutoSrv, IFace, pControllerObj

' Create the TestCore utility object
set Core = CreateObject("Testcore.base.1")

' Create the Protocol object
set Sparta = CreateObject("Spartacom.base.1")
Sparta.InitLogging Core

' Create the Controller object
set AutoSrv = CreateObject("AutoSrvcom.base.1")
AutoSrv.InitLogging Core

Examples –Testing TCP/IP

' Create the AutoARP object
Set AutoArpObject =
Sparta.AutoArp(g_szLocalMacAddress,
g_szLocalMacAddress, g_szLocalSpoofIp)

' Create the Network Interface object
set IFace =
Sparta.DriverInterface(g_szLocalMacAddress)

' Set the receive modes for the network interface
IFace.EnableDirectedReceiveMode
IFace.EnableBroadcastReceiveMode

7/17/2002

12

Examples –Testing TCP/IP

' Enable filtering based on patterns
IFace.EnablePatternFiltering

' Create a pattern to filter by destination MAC address
Set pMacAddressObj =
Sparta.MacAddress(MediaType,
g_szLocalMacAddress)

Set pPattern =
Sparta.CreateMacDestAddressPattern(MediaType,
pMacAddressObj)
IFace.AddPatternFilter pPattern

Examples –Testing TCP/IP

' Create a pattern to filter by source IP address
Set pPattern =
Sparta.CreateIpSrcAddressPattern(MediaType,
g_szRemoteIpAddress)

IFace.AddPatternFilter pPattern

' Create a pattern to filter by SYN flag
Set pPattern =
Sparta.CreateHeaderRelativePattern(MediaType,
33, 1, Array(2))
IFace.AddPatternFilter pPattern

7/17/2002

13

Examples –Testing TCP/IP

' Start listening
IFace.StartListening

' Create the object used to specifically control System
Under Test

Set pControllerObj =
AutoSrv.InitController(g_szLocalIpAddress,
g_usControllerPort, g_szRemoteIpAddress,
g_usAutoSrvPort)

' Send commands over the control channel to the
System Under Test to create a socket, bind to it and
issue a connect socket call so we can test the TCP
SYN retry count functionality

Examples –Testing TCP/IP

ulStatus =
pControllerObj.CreateAndConnect(SOCK_STREA
M, g_szRemoteIpAddress, usRemotePort,
g_szLocalSpoofIp, usLocalPort, ulTID,
dwSessionId)

if (ulStatus <> 0) then
Core.FailSev1Variation "SYNRetryCountTest:

CreateAndConnect - " & ulStatus
exit Sub

end if

7/17/2002

14

Examples –Testing TCP/IP

' Make sure we receive 3 SYNs as that is the expected
default TCP SYN retry behavior

For ulCounter = 1 to 3
Set pTCPPacket = IFace.ReceiveTimed(7000)
if (pTCPPacket is Nothing) then

Core.FailSev1Variation "SYNRetryCountTest:
Failed to receive 3 SYNs"

exit Sub
end if

Next

More examples

Testing configurable network stack parameters (TCP
SYN Retry Count test revisited)
Testing timing related features (TCP Zero Window
Probing test)
Testing IPv6 (IPv6 Forwarding test)
Testing network stack implementations on multiple
OSes

7/17/2002

15

Conclusion

SPARTA is a test tool for automating network stack
testing
SPARTA does not require any special hardware, runs
on a PC
SPARTA provides a very easy scriptable interface for
all its features
SPARTA allows for granular control of the System
Under Test during test execution
TCP/IP and TCP/IPv6 tests have been developed to
test the implementations on several Microsoft OSes

© 2001 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only
Microsoft makes no warranties, express or implied, in this summary.

Key Points

How branch coverage is typically implemented
How to implement branch coverage with a program transformation tool
Can get coverage tools for any language this way

Presentation Abstract

Branch coverage tools are an important means for determing how well tested software is. Such tools are hard to obtain for nonstandard
languages or dialects, or for unusual execution environments. This talk shows how a program transformation tool can be used to
implement branch coverage easily for virtually any programming language or environment. Consequently, even software with unusual
languages can obtain valuable test coverage information.

About the Author

Dr. Baxter has been building systems software for over 30 years. He is presently the Chief Technology Officer of Semantic Designs, a
software-tools building company. He is also active in academic conferences, and is presently the Program CoChair for the International
Conference on Software Maintence 2002 (Montreal).

QW2002 Paper 8T1

Dr. Ira Baxter
(Semantic Designs, Inc.)

Branch Coverage Tools For Arbitrary Languages made Easy!

1

© Semantic Designs, Inc. 17/16/2002

Branch Coverage for Arbitrary
Languages Made Easy!

Ira D. Baxter
Semantic Designs, Inc.
www.semdesigns.com

September 2002

© Semantic Designs, Inc. 27/16/2002

Overview

• What is branch coverage?
• How branch coverage is typically

implemented
• How to implement branch

coverage with a program
transformation tool

• Can get coverage tools for any
language this way

2

© Semantic Designs, Inc. 37/16/2002

When is Software Tested Enough?

• Ideal: Prove software meets formal specification
– Oops: don’t have formal specification
– Oops: don’t have theorem prover
– Oops: theorem proving takes a long time
– Oops: compiler doesn’t implement source program
– Oops: don’t have skilled people to do this

• Approximation: Validate using test cases
– Oops: may not have enough test cases

• How can we possibly know?

© Semantic Designs, Inc. 47/16/2002

Software Testing: How (Much)?
• Ideally test:

– Product implements all specifications correctly
– Product doesn’t implement anything else
– Need lots of test cases!

• Issue: When to stop testing?
– Too little: product fails in field company failure
– Too much: miss market; overtested late

• Test Coverage: When enough code tested, stop!
– Code not tested is suspect; decide if more tests needed

• How can we identify such code?
– Note: Other stopping criteria possible

3

© Semantic Designs, Inc. 57/16/2002

Line Coverage
Tracks source lines executed

bool fibcached[1000];
int fibvalue[1000];

int fib(int i)
{ int t;
switch (i)
{ case 0:
case 1: return 1;
default:
if fibcached(i)

return fibvalue(i);
else { t=fib(i-1);

return t+fib(i-2);
};

};
};

Executed

5 lines executed
15 lines total

= 30% (line) coverage

Observation: Don’t learn much
from line coverage of sequential lines}

Unexecuted.
Should we ship?

© Semantic Designs, Inc. 67/16/2002

Branch Coverage
Track blocks of code controlled by conditionals

Executed

4 branch points executed
6 branch points total

= 64% (branch) coverage

Block of code executed if
conditional is false}

} Block executed if true conditional

bool fibcached[1000];
int fibvalue[1000];

int fib(int i)
{ int t;
switch (i)
{ case 0:
case 1: return 1;
default:
if fibcached(i)

return fibvalue(i);
else { t=fib(i-1);

return t+fib(i-2);
};

};
};

Code Block

Better criteria:
Doesn’t count unexecutable lines.

4

© Semantic Designs, Inc. 77/16/2002

Test Coverage
by Marking visited Blocks

bool fibcached[1000];
int fibvalue[1000];

int fib(int i)
{ int t;
switch (i)
{ case 0:
case 1: return 1;
default:
if fibcached(i)

return fibvalue(i);
else { t=fib(i-1);

return t+fib(i-2);
};

};
};

bool fibcached[1000];
int fibvalue[1000];

int fib(int i)
{ int t;
visited[1]=true;
switch (i)
{ case 0: visited[2]=true;
case 1: visited[3]=true;

return 1;
default:
visited[4]=true;
if fibcached(i)

{ visited[5]=true;
return fibvalue(i);}

else { visited[6]=true;
t=fib(i-1);
return t+fib(i-2);

};
};

};Original “C” program Marked program

© Semantic Designs, Inc. 87/16/2002

Inserting Probes in Source Code
Why not do it this way?

• Requires sophisticated tools to modify source
– Must understand structure of source language

• Until recently, such tools not available
– Object code probe insertion is only remaining alternative

• Industrial-strength program transformation systems
DMS, TXL, XT, Refine, …

– Understand syntax/semantics of languages
– Based on generalized compiler technology
– Carry out language-sensitive modifications
– Can be harnessed to insert probes in source code

More on these later…

5

© Semantic Designs, Inc. 97/16/2002

Putting Probes in Object code
Because everybody has it…(?)

• Can implement with compiler switch
– Compiler generates probes woven into object
– Requires compiler vendor to implement coverage

• Can instrument object code directly
– Compiler vendor independent
– Only need vendor to generate standard object
– Harder to implement reliably

© Semantic Designs, Inc. 107/16/2002

Inserting Probes in Object code
• Modify load image using linker symbol table information

– Trace through object code looking for JMPs
– Determine for each JMP the matching source code
– Replace each JMP with a JMP to a probe-patch

• Replace exit logic with call to dump coverage vectors
LOAD R3,XYZ
LOAD R4,XYZ+1
CMP R3,0
JNE $12

V27b:CMP R4,0
JNE $12

V28b:ADD R4,2
ADC R3,0
STORE R3,ABC
STORE R3,ABC+1

$12: RETURN

6

© Semantic Designs, Inc. 117/16/2002

Inserting Probes in Object code
• Modify load image using linker symbol table information

– Trace through object code looking for JMPs
– Determine for each JMP the matching source code
– Replace each JMP with a JMP to a probe-patch

• Replace exit logic with call to dump coverage vectors
LOAD R3,XYZ
LOAD R4,XYZ+1
CMP R3,0
JNE $12 JMP V27

V27b:CMP R4,0
JNE $12 JMP V28

V28b:ADD R4,2
ADC R3,0
STORE R3,ABC
STORE R3,ABC+1

$12: RETURN

; Probe patch code
V27: PUSH R0

LOAD R0,1
STORE R0,VISITED+27
POP R0
JNE $12
JMP V27b

V28: PUSH R0
LOAD R0,1
STORE R0,VISITED+28
POP R0
JNE $12
JMP LV27b

© Semantic Designs, Inc. 127/16/2002

Inserting Probes in Object code:
Problems

• Trace through object code looking for JMPs
• Trouble: distinguish code from data crash if wrong!
• Trouble: discovering JMPs implicit in runtime conventions
• Performance: instrument libraries whether desired or not

• Determine for each JMP the matching source code
• Can’t always uniquely determine source position matching JMP

– Object code source information typically line-oriented
– JMP in object code may not match any explicit source construct

• Replace each JMP with a JMP to a probe-patch
• Performance: JMPs common

– JMP out, save registers, do probe, restore, JMP back
• Space: each JMP expands program footprint grows
• Trouble: Original JMP small/precedes entry point almost

impossible to patch correctly

• Trouble: Not commodity platform/language: not available
• Trouble: interpretive language No object code!

7

© Semantic Designs, Inc. 137/16/2002

DMS® Software Reengineering Toolkit
An industrial-strength Program Transformation System

• Enables wide variety of source-based SE tasks to be automated
– Analysis and Testing
– Code Generation
– Reverse Enginering, Modification, Legacy System Porting

• For sources for large scale software systems
– Scalable to millions of source lines, tens of thousands of files
– Parallel processing foundations to support scale

• Handles many and mixed languages simultaneously
– C, C++, Java, Ada, Fortran, SQL, XML, assembler, …

• Generalized compiler technology conveniently integrated
– Parsing, Analyzing, Transforming, Prettyprinting
– Enables practical customization for desired automation task
– Predefined support for most standard computer languages
– Huge infrastructure cost amortized over many tasks/customers

© Semantic Designs, Inc. 147/16/2002

DMS Core

Parser

Domain
Definition

Transformation
Engine

Transforms

Analyzers

Methods

Analyze/xform/undo requests

Unparser definitions

Parser
Definition

Domain
Notation
(Spec)

Internal
Form
Representation

Internal
Form
Representation

Domain
Notation
Description

Graph
Viewer

Unparser

Domain
Notation
(Code)

Pixels

Engineer

Actions
Focus

8

© Semantic Designs, Inc. 157/16/2002

nested_class_declaration = nested_class_modifiers class_header class_body ;
<<PrettyPrinter>>: { V(H(nested_class_modifiers,class_header),class_body); }

class_header = 'class' IDENTIFIER ;
<<PrettyPrinter>>: { H('class',IDENTIFIER); }

class_header = 'class' IDENTIFIER 'implements' name_list ;
<<PrettyPrinter>>: { H('class',IDENTIFIER,'implements',name_list); }

class_header = 'class' IDENTIFIER 'extends' name;
<<PrettyPrinter>>: { H('class',IDENTIFIER,'extends',name); }

class_header = 'class' IDENTIFIER 'extends' name 'implements' name_list ;
<<PrettyPrinter>>: { H('class',IDENTIFIER,'extends',name,'implements',name_list);

class_body = '{' class_body_declarations '}' ;
<<PrettyPrinter>>: { V(H('{',STRING(" "),class_body_declarations),'}'); }

nested_class_modifiers = nested_class_modifiers nested_class_modifier ;
<<PrettyPrinter>>: { H(CH(nested_class_modifiers[1]),nested_class_modifier); }

DMS Domain Definition for Java
Parser + Pretty Printer

… + 300 more rules…(COBOL is 3500!)

© Semantic Designs, Inc. 167/16/2002

Java transform in Rule Spec Language

Domain Syntax

Domaindefault base domain Java;

rule merge-ifs(\condition1,
\condition2,
\then-statements)

“if \condition1
if \condition2

{ \then-statements
}

”
rewrites to
“if \condition1 && \condition2

{ \then-statements } ”;

Transforms source pattern, whereever found, into target pattern

9

© Semantic Designs, Inc. 177/16/2002

DMS transform(s) to mark program
default base domain C;

rule mark_function_entry(result:type, name:identifier,
decls:declaration_list, stmts:statement_sequence) =

“\result \name { \decls \stmts };”
rewrites to

“\result \name { \decls { visited[\place\(\stmts\)]=true; \stmts };”.

rule mark_if_then_else(condition:expression; tstmt:statement; estmt:statement) =
“if (\condition)\tstmt else \estmt;”

rewrites to
“if (\condition)

{ visited[\place\(\tstmt\)]=true; \tstmt}
else {visited[\place\(\estmt\)]=true; \estmt};”.

rule mark_while_loop(condition:expression, stmt:statement) =
“while (\condition) \stmt”

rewrites to
“while (\condition) { visited[\place\(\stmts\)=true; \stmt }”.

rule mark_case_clause(e:expression, stmts:statements) =
“case \e: \stmts”

rewrites to
“case \e: { visited[\place\(\stmts\)=true; \stmts }”.

A few rules for each branching construct in the language…
~~ 50 rules or 300 lines total

© Semantic Designs, Inc. 187/16/2002

Transforms: Source to Test Program
bool fibcached[1000];
int fibvalue[1000];

int fib(int i)
{ int t;
switch (i)
{ case 0:
case 1: return 1;
default:
if fibcached(i)

return fibvalue(i);
else { t=fib(i-1);

return t+fib(i-2);
};

};
};

bool fibcached[1000];
int fibvalue[1000];

int fib(int i)
{ int t;
visited[1]=true;
switch (i)
{ case 0: visited[2]=true;
case 1: visited[3]=true;

return 1;
default:
visited[4]=true;
if fibcached(i)

{ visited[5]=true;
return fibvalue(i);}

else { visited[6]=true;
t=fib(i-1);
return t+fib(i-2);

};
};

};Original “C” program Decorated program

Transformed To

10

© Semantic Designs, Inc. 197/16/2002

Branch Test Coverage Tool Flow

DMS: Add
marking

code

Compile
&

Run tests

Display
Coverage

Source
Code

Visit-adding
Transforms

Test Data

Decorated
Code

visited

Vector

Source line information
for visited[i]

Note: incrementing visited
rather then setting true
changes this to profiler tool!

© Semantic Designs, Inc. 207/16/2002

Input to Coverage Tool
Total Files Listed:
3825 File(s) 31,485,751 bytes
Total packages 133.
C:\santos\workdir
Bandera.prf
C:\santos\workdir

Bandera.java
ca\mcgill\sable\laleh\java\astfix\ASTFixer.java
ca\mcgill\sable\laleh\java\astfix\JJCParser.java
ca\mcgill\sable\soot\AlreadyDeclaredException.java
ca\mcgill\sable\soot\AlreadyManagedException.java
ca\mcgill\sable\soot\AlreadyThrowsException.java
ca\mcgill\sable\soot\AmbiguousFieldException.java
ca\mcgill\sable\soot\AmbiguousMethodException.java
ca\mcgill\sable\soot\ArrayType.java
ca\mcgill\sable\soot\BaseType.java
ca\mcgill\sable\soot\Body.java
ca\mcgill\sable\soot\BodyExpr.java
ca\mcgill\sable\soot\BodyRepresentation.java
ca\mcgill\sable\soot\BooleanType.java
ca\mcgill\sable\soot\BuildAndStoreBody.java
ca\mcgill\sable\soot\BuildBody.java

…

Source
base
directory

Target
directory

Files to
Probe

Probe
cross
reference
result

{

11

© Semantic Designs, Inc. 217/16/2002

2796659795
1 c:/santos/Bandera.java
2 c:/santos/ca/mcgill/sable/laleh/java/astfix/ASTFixer.java
3 c:/santos/ca/mcgill/sable/laleh/java/astfix/JJCParser.java
4 c:/santos/ca/mcgill/sable/soot/AlreadyDeclaredException.java
5 c:/santos/ca/mcgill/sable/soot/AlreadyManagedException.java
6 c:/santos/ca/mcgill/sable/soot/AlreadyThrowsException.java
…
3822 c:/santos/org/xml/sax/helpers/XMLFilterImpl.java
3823 c:/santos/org/xml/sax/helpers/XMLReaderAdapter.java
3824 c:/santos/org/xml/sax/helpers/XMLReaderFactory.java
%%
1 1 106 25 107 31
2 1 116 52 116 65
3 1 121 33 121 64
4 1 119 33 119 45
…
77751 3824 148 13 148 49
77752 3824 154 13 155 68
77753 3824 112 64 112 64
77754 3824 107 9 156 9
77755 3824 58 5 58 5

Cross Reference output
Bandera.prf

Probe
number

Source
File
Index
Directory

Probe
locations

Starting Line
Number{ Starting

Column

Source
Configuration
Magic number

{
File
number

Ending Line
Number

Ending
Column

File name

© Semantic Designs, Inc. 227/16/2002

Coverage Result file
2796659795
15A 22A 29A 32 34A 38 44A 51 55 57A
61 63B 67 74A 77 82 84A 88 91C 96
107 109 111 124C 132 134 139 141 147G 156
158C 163 165C 171A 177 182B 191A 198 202 206B
210A 221B 228A 231A 234 241 243C 250 252 254A
266C 271A 274A 280 287 289A 292A 295A 298A 303
310 312A 315 324 326A 329 336C 341 353 355A
359M 383 396A 399A 402A 405A 408 411B 415 417
421 425A 428 430D 437C 442 444C 449C 454C 459A
462B 466D 472B 479 481A 484J 498B 502 504 506B
511F 520B 526D 532A 535A 538 540 542 545 549A
552H 562 569B 573 575B 586-595 639A 642 644
2939 2943 2969A 2972 2974A 3024A 3032 3060 3063A 3068B
3072A 3152 3155C 3179A 3182 3193 3197A 3205A 3210 3212
3214 3219B 3224A 3231 3239 3250B 3255 3259A 3262A 3275B
3281 3292D 3300A 3303D 3311B 3382 3486C 3521C 3526C 3531A
3534E 3541 3543B 3549E 3642 3644C 3649B 3653J 3669E 3676
…

76918 76926A 76932 76934 76936 76948A 76956 76958 76960C 76965A
76968B 76972E 76981 76984E 76991 76996 77013 77032 77104 77106
77108

Source
Configuration
Magic number

Singleton
Executed
Probe

Multiple
Sequential
Probes

Many
Sequential
Probes

12

© Semantic Designs, Inc. 237/16/2002

Coverage Display Tool

© Semantic Designs, Inc. 247/16/2002

Additional Coverage Facilities
• Ability to do arithmetic on coverage vectors

– OR: Combines test case runs
– AND: Tells which tests cover same code
– DIFF: Indicates tests that hit uncovered code

• Summary of coverage
– Overall coverage totals
– Per module
– Per file

13

© Semantic Designs, Inc. 257/16/2002

Practicality

• Implementations for
– ANSI C 89, COBOL 85, Java
– PARLANSE (parallel programming language)
– Considering JavaScript, HTML, Perl, Python,…

• Performance scales well
– Tested with Java system: 3800 files
– 15% typical overhead; 50% in tight loops

© Semantic Designs, Inc. 267/16/2002

Simple Extensions
• Multiple simultaneous languages

– C + Assembler
– Java + JavaScript
– …

• Profiling
– Uses counters instead of booleans

• Modified Condition/Decision Coverage
– Verifies subconditions actually control branch

• Required for DO178B Aviation Software Standards
– Probable utility for Hardware Langauges

• VHDL, Verilog

14

© Semantic Designs, Inc. 277/16/2002

Branch Coverage: Summary
• Branch Coverage

– An effective means for deciding “how tested”
• Object Code Instrumentation

– Hard, not available for arbitrary languages/environments
• Industrial Strength Program Transformation Systems

– Used to automate analysis and source modifications
• Source Code Instrumentation

– Easily implemented as few hundred lines of program transforms
• Practical Test Coverage Tools

– Small increment beyond program transforms: Display tool
– Work for compiled and interpreted languages
– Can handle large scale applications: many files and mixed languages
– Can work for arbitrary execution environments

Key Points

Microsoft's Tools for Testing ASP.NET
Creating an Automated Script with ACT 1.0
Beyond Basics: Load Tests, Cookie Management and more

Presentation Abstract

With the release of Microsoft .NET comes new questions and challenges in testing. How does one go about automating the testing
within the .NET Realm?

In this presentation Tom Arnold will look at Microsoft ACT 1.0, a new automation tool that was released with Visual Studio .NET in
February 2002. This tool is full featured, allows for functional testing as well as load testing, and best of all, it's free with Visual
Studio .NET.

About the Author

Tom Arnold has been programming, managing and consulting on software development & test automation projects since 1991. In 1993,
Tom co-founded Software Testing Laboratories (later renamed to ST Labs, and eventually purchased by Data Dimensions /
LionBridge / Veritest), one of the software industry’s first outsourced software testing firms.

While at ST Labs, Tom added training & consulting to his repertoire when he began writing and teaching software test automation
classes to Microsoft employees as he created ST Labs’ training group. Two years later, Arnold published the book, Software Testing
with Visual Test 4.0. Shortly after his book’s publication, Tom managed the development team for Visual Test 4.0b for Microsoft
Corporation; this version later became Rational Visual Test 4.0r.

Arnold continued to run software test automation projects, consult for companies looking to establish an approach to testing, and speak
at industry conferences about effective uses and practical approaches to automated testing. Tom continued managing software
development teams, including the programmers and test engineers that created Rational Visual Test 6.0 (released in November 1998).
His 700-page book— Visual Test 6 Bible – and 10-tape (10-hour) training video series – VT6 InDepth—were both published in January
1999, winning a number of awards.

Tom’s current focus is on software project management, programming, test automation and writing about software development topics.
Tom maintains an active role in the software industry and presents at such conferences as STAR (Software Testing Analysis &
Review), Internet World, and RUC (Rational Users Conference). His Bachelors Degree in Computer Science comes from Purdue
University.

QW2002 Paper 8T2

Thomas Arnold
(Xtend Development, Inc.)

Automating Testing on ASP.NET Applications

1

Automating Testing of
ASP.NET Applications

(an introduction)

Thomas Arnold
Xtend Development

www.XtendDevelopment.com

Topics

• Microsoft .NET Framework
(a brief introduction)

• Be aware of migration issues
• Inherent challenges for testing
• Testing deployed projects
• Our examples: ASP.NET
• More information

2

What You Walk Away With

• A general understanding of .NET
• Issues programmers face in moving to

.NET (things that may result in bugs)
• Challenges you face as .NET attempts

to hold our hands
• Tools/methods/tricks to help you test

an ASP.NET deployed web application
• Where to continue learning about .NET

Why .NET?

• Cements the relationship between
Windows and Web developers

• Simplifies deployments of
applications (xcopy)

• Better versioning support to avoid
“DLL Hell”

• Provides a Framework that
everything can work within

3

Why .NET? (cont’d)

• Security policies are more easily
applied

• Makes it easy for other languages
to be used in Windows/Web dev

• Allows sharing of classes/libraries

Let’s look at the Framework…

Operating System

Common Language Runtime

Base Class Library

ADO.NET and XML

ASP.NET
Web Forms Web Services

Mobile Internet Toolkit

Windows
Forms

Common Language Specification

VB C++ C# JScript …

Visual Studio.N
ET

.NET Framework

4

.NET Framework (cont’d)

• Any language can be plugged into the
Framework by following the CLS
(Common Language Specification)

• 80+ “namespaces” exist that are
essentially class libraries used by these
languages

• These “namespaces” allow for a
common method of working with data
bases (through ADO.NET and XML)

.NET Framework (cont’d)

• The program language is compiled
down into a Common / Intermediate
Language (IL) that works with the CLR
(Common Language Runtime)

• The CLR works with the operating
system. By providing that layer, a CLR
can be written for Macintosh, Linux, and
so on, without changing source code

5

Migration Issues

Many development organizations
will want to take advantage of
these benefits:
–Write new applications in .NET
–Migrate existing code to .NET

Migration Issues (cont’d)

With migration comes potential bugs:
–New types have been introduced. For

VB 6 vs. VB.NET, for example:
• No more fixed-length strings:
dim Name As String * 30

• VB 6’s LONG equals VB.NET’s INTEGER

• VB 6’s INTEGER equals VB.NET’s SHORT

• VB.NET’s LONG is now a 64-bit integer
• VB.NET does not support VARIANT

6

Migration Issues (cont’d)

• VB6 to VB.NET migration issues
(continued)
– Variable declarations have changed
dim x, y as long
‘In VB6: x = variant, y = long
‘In VB.NET: x and y are declared long

– Keywords have been altered
The Empty and Null keywords in VB6 are
replaced by Nothing in VB.NET

Migration Issues (cont’d)

• VB6 to VB.NET migration issues
(continued)

Individual VB6 math functions have been
implemented as members of the Math class
in the System namespace

X = Cos(y) ‘old method in VB6
X = System.Math.Cos(y) ‘new

• Many others issues, not to mention the
issue of re-opening code that is already
working and the bugs that can result

7

Other Challenges

• One of the as-yet undefined
challenges is how the Framework
holds our hand
–Benefit in that it avoids additional

special-case coding for different
browsers, versions, OSes, etc.

– Potential issue in that its hand-
holding may make it more difficult to
work-around issues

Other Challenges
(cont’d)

• ASP.NET and Visual Studio.NET
have “WebForms”
–Controls on a WebForm are not

directly mapped to HTML
–Execution of the WebForm and its

ASP.NET code runs on the server
–Now code is tailor made for each user

8

Other Challenges
(cont’d)

• Compatibility testing has taken on
a whole new meaning:
–ASP.NET runs on the server-side

allowing the .NET Framework to
create HTML appropriate to the user

–The HTML that’s generated depends
on the browser brand, version# and
OS

Other Challenges
(cont’d)

• That means that a text box on
a WebForm could translate to
one of two HTML equivalents:

<input type=“text”>
-or-

<textarea>

9

Other Benefits

• Additional benefits of .NET
exist, however:
–Better error handling

(try / catch / finally)

–Easier to track a user’s session
state (less programming)

–Easy to globally configure an app

ASP.NET Example

We look now at a full-blown
ASP.NET deployed application
and consider methods of testing

10

Testing .NET

• It remains a “black box”
• Visual Studio.NET includes

tools for testing a web app
•Web.config provides helpful

information when testing

Still a Black Box

• Even with all of the changes to create
this .NET Framework, the resulting
applications can still be tested as a
Black Box

• Don’t feel that you must suddenly go
get programming certifications to be
able to do an effective job of testing
.NET apps

• Simply be aware that you have tools
available to you to help you navigate
the maze

11

.NET Tools for Testing

There are a number of tools
available to programmers for
debugging in .NET, and some
of them are useful to test
engineers
–Microsoft Application Center Test
–Web.config (using <trace>)

Application Center Test
(ACT)

• Designed to stress Web servers and analyze
performance and scalability problems with
Web applications, including ASP and
components they use

• Simulates a large group of users by opening
multiple connections to the server and rapidly
sending HTTP requests

• Supports several different authentication
schemes and the SSL protocol, making it ideal
for testing personalized and secure sites

12

ACT (Continued)

• Although load
testing is its
main purpose, a
programming
component can
also be useful for
functional testing

• Compatible with
all Web servers
and Web apps
that adhere to
the HTTP
protocol

Web.config

• Web.config is a file found at the
root level of your web application

• This files gives developers easy
access to application-wide settings

• The file is in XML format so it’s
easy to read and modify

• The setting we’re interested in is
<trace>

13

<trace>

• To use, web.config file should
have:
<configuration>
<system.web>
<trace enabled=“true”
pageOutput=“true”
requestLimit=“15”
traceMode=“SortByCategory” />

</system.web>
</configuration>

Output of <trace>
• Request Details
• Trace

Information
• Control Tree
• Cookies
• Headers
• Query String
• Server Variables

14

• ANTS – Load Testing
“Advanced .NET

Testing System”
(Red-Gate.com)

• PushToTest
Free Open-Source
Load Testing

• Rational RobotJ – Functional Testing

Other Tools

ANTS

15

Other Sources of Information

• My materials & articles:
– “Xtend Information” newsletter

(.NET related articles, links & news)
www.xtenddev.com/newsletters/

– “Automating Testing of ASP.NET
Applications” white paper:
www.xtenddev.com/qw2002/

Other Sources (cont’d)

• Books:
– “Introducing Microsoft .NET”

ISBN 073561377X, Microsoft Press
– “Database Programming with VB.NET”

ISBN 1-893115-29-1, Apress
(Carsten Thomsen)

– “VB.NET Language in a Nutshell”
ISBN 0-596-00092-8, O’Reilly

– “Programming VB.NET: A Guide for
Experienced Programmers”
ISBN 1-893115-99-2, Apress
(Gary Cornell & Jonathan Morrison)

16

Other Sources (cont’d)

Web sites:

www.gotdotnet.com
www.dotnetjunkies.com
www.asp.net
www.AutomationJunkies.com

Summary

• Brief intro to .NET Framework
• Identified potential bug causes

– Migrating from VB6 to .NET
– Hand-holding (browser-specific code)

• Called out benefits of .NET
• Looked at an ASP.NET example
• Testing an .NET Deployed App

– Black box testing still key
– Application Center Test (ACT)
– Web.config’s <trace> tag & output

• Sources for learning more about .NET

17

Questions?

If we run out of time, contact me:

tom@xtenddevelopment.com

Quality Week 2002 “Automating Testing of ASP.NET Applications” - 1

Automating Testing of
ASP.NET Applications

(an introduction)
Tom Arnold, tom@xtenddev.com
Presented at Quality Week 2002
Thursday, September 5th, 2002

Introduction
Microsoft has created a new environment that promises to ease the process of
software development. As test engineers, it is up to us to figure out how the new
.NET Framework applies to us, and our efforts, in testing the resulting ASP.NET
applications.

Because of the enormity of the .NET Framework this paper moves from the large,
high-level view of .NET down to specific examples in ASP.NET. That is, WebForms are
explored instead of WinForms, two pieces of the puzzle that will become clearer as
you read on.

This paper expands on my September 5th presentation at Quality Week 2002
conference. For more information about Quality Week visit www.qualityweek.com.

Topics

In this paper I will introduce you to a high-level view of what Microsoft .NET is,
issues – such as migrating to the .NET solution – that could result in bugs, inherent
challenges for software test engineers, approaches to testing deployed projects, and
where to find more information to continue to learn about testing .NET applications.

Author/Speaker Background

My background is in software development and automated testing. I started my
professional career in the software industry as a test engineer in the Seattle,
Washington, area in 1990. Since that time I’ve continued to be involved in software
testing (focusing mostly on test automation), development (C, C++, VB, and most
recently Java), and managing software development projects.

I started using Microsoft .NET in August 2001 and have found it to bring some very
exciting things to the table for developers. I was happy to see that Microsoft kept
software test engineers in mind as they created this new solution, as you’ll see.

Why .NET
Why Microsoft .NET? Sun Microsystems is one reason. Sun has been building on its
Java solutions since 1995 when Java was first released, and they’ve been running
hard for these past 7 years. Their solution is J2EE (Java 2 Enterprise Edition) that
allows the Java language to work within multiple operating systems as well as with
many databases. Sun has also come out with J2SE (Java 2 Standard Edition) and
J2ME (Java 2 Micro Edition). These solutions allow Java users to work in simple web
environments (J2SE), Enterprise (J2EE), and with handheld devices (J2ME). Very
exciting, and all bundled up in a very nice package with many developers excited
about the prospects.

Quality Week 2002 “Automating Testing of ASP.NET Applications” - 2

Enter Microsoft, a company that has long dominated the software development
industry, suddenly seeing some of its development supporters casting their gazes
upon Sun Microsystems’ solutions to Internet applications and multiple platform
support. Sun, with its popular Java programming language that is secure and easy to
use compared to C++.

Microsoft took the next logical step in the evolution of their development approaches
and brought together many of its development solutions to be placed into a bucket
named “.NET.” Does that mean .NET is entirely new? No. Microsoft has taken all of
its existing functionality, added in some additional bits (albeit some rather large and
important bits), and pulled it into a solution that will compete (very well) with Sun
Microsystems.

This is a good thing, why? Because Microsoft .NET brings a new focus on how to
approach Windows and Internet development, an approach that not only opens up
the architecture to allow a host of new languages to be supported in the .NET
development environment, but operating systems as well. The .NET Framework is
setting the scene to allow applications to be developed and deployed in many
environments, and additional support for such deployment created by third party
vendors.

.NET Framework
This framework, at first glance, seems more like a huge puzzle or maze. Just when
we’re getting things figured out, yet another enigma in the software industry
presents itself, this time in the form of Microsoft .NET.

Fear not, .NET is not so overwhelming after all. Remember that it’s an encapsulation
of a number of pre-existing Microsoft technologies with a few new ones thrown in for
good measure. This, as well as a common thread – or framework – that pulls it all
together, is what makes up Microsoft .NET.

Common Language Specification

The top layer shown in Figure 1 (on the following page) illustrates the default
languages already supported by .NET: Visual Basic, C++, JavaScript (known at
Microsoft as “JScript”), and Microsoft’s new C# (pronounced, “C Sharp”).

Microsoft Visual Basic .NET

Visual Basic now offers full object-oriented language features, including
implementation inheritance. It also allows developers to create highly scalable code
with explicit free threading and highly maintainable code with the addition of
modernized language constructs like structured exception handling.

Microsoft Visual C# .NET

Microsoft also created its own Java-like language called C#. C# is very much like
Java in that it handles all garbage collection, provides security, and is fairly easy to
use compared to C++. It was built from the ground up with the .NET Framework in
mind and is a modern, object-oriented, type-safe language. C# “is designed to bring
rapid development to the C++ programmer without sacrificing the power and control
that have been a hallmark of C and C++.”

Quality Week 2002 “Automating Testing of ASP.NET Applications” - 3

Microsoft Visual C++ .NET

Traditional unmanaged (outside of .NET) C++ and new managed (within .NET’s
structure) C++ code can be mixed freely within the same application. Existing
components can be wrapped as .NET components by using the managed extensions.
Most importantly, providing support for C++ preserves investment in existing code
while integrating with the .NET Framework.

JavaScript / JScript

JavaScript is the common language used for web development. This is because older
versions of Netscape Navigator supported only JavaScript, while Microsoft Internet
Explorer supported JavaScript and VBScript. If a website is being created with client-
side scripting, maximum compatibility can be maintained by using JavaScript. It’s no
wonder the popular language is supported in the .NET Framework.

Other Languages

This is not a complete list of the languages supported by .NET, however, not by a
long shot. By creating and publishing a Common Language Specification (CLS), third
party vendors can take new or existing languages and fit them into the .NET puzzle.
This means COBOL, FORTRAN, Java, and many other languages can now be used to
program Windows (WinForms) and Web (ASP.NET) applications and services.
Therefore the list will never be complete as vendors continue to add to the roster of
supported languages. And, if these languages follow the rules laid down by the CLS,
they can then access the libraries provided with .NET, as shown in Figure 1’s middle
layer.

Figure 1 - Microsoft .NET Framework

Quality Week 2002 “Automating Testing of ASP.NET Applications” - 4

The Middle Layer

The middle layer looks nice and neat the way it’s divided up in Figure 1, but really it
all exists in a grouping of over 90 collections, each one referred to as a namespace.
All languages that follow the CLS can work with these namespaces and thereby use
ADO.NET (database support) and the other libraries necessary to create Windows
and Web applications. It is also possible to create namespaces outside of what
Microsoft has already provided.

ASP.NET

The rewrite of ASP (Active Server Pages) – called ASPX for no other reason than they
were focused more on creating something cool than trying to figure out a catchy
name – became known as ASP+, and later renamed to ASP.NET. It addressed many
shortcomings of ASP. While ASP pages (.asp) are still supported by the ASP.NET
server, they must use the new file extension (.aspx). ASP.NET focuses more on
separating the HTML from the code. By using a code behind approach, the HTML is
kept in an .aspx file, and the new general practice is to place the blocks of code into
separate files to be included by the .aspx files (such as pagename.aspx.vb for
VB.NET code, or pagename.aspx.cs for C# code, for example).

In addition, ASP.NET works closely with Microsoft NT/Win2K servers’ security
settings. It works within those policies to make changes to permissions, rights, and
more, much easier. It also allows a user session to be shared over multiple servers
so that load balancing is easier and more effective. And, should one of the servers go
down, the user remains blissfully unaware and is able to carry out his transaction
because his session does not live on any one server.

And last, ASP.NET compiles its pages just in time so that execution is much faster
than ASP. The first time an .aspx page is accessed after being saved to the web
server, the page is compiled into a pseudo code form. This doesn’t increase actual
execution speed of the code (that is, it’s not compiled into machine language), but it
does allow the ASP.NET Server to avoid the compilation step for each and every user
before spitting out the generated HTML. Execution speed seems faster to the end-
user since the compilation step occurs only when the page is modified.

ADO.NET

Open Data Base Connectivity (ODBC) is an old tried and true standard for accessing
data. It was designed to provide a common set of routines to programmers. These
routines remained unchanged regardless of the type of database being accessed
(e.g. Access, SQL, Oracle). The next step in the evolution of the anonymous data
store was OLE-DB that not only supports ODBC, as well as its own methods for
working with Access/SQL/Oracle, it also works with Exchange, Excel, and other
applications (no, they don’t have to be Microsoft applications, just support OLE-DB).

ADO.NET (ActiveX Data Objects) is a friendly interface to OLE-DB. It provides a set
of objects to the languages working within the guidelines of the CLS. It’s yet another
level of abstraction to keep things simple and common to the programmer, and
allows ADO.NET to deal with the bit twiddling behind the scenes.

Base Class Libraries

ASP.NET and ADO.NET are part of the base class libraries provided in the .NET
framework. These namespaces are what provide common objects and methods used
by all CLS-compliant languages in the .NET framework.

Quality Week 2002 “Automating Testing of ASP.NET Applications” - 5

Common Language Runtime

The final layer is the Common Language Runtime, or CLR. This piece sits on top of
the operating system and executes the compiled code. So here’s where it gets really
cool. Because all languages that want to work with .NET must conform to the CLS,
and these managed languages all use the base class libraries (including ASP.NET and
ADO.NET), everything can be compiled down to a common set of metadata or an
Intermediate Language. This is the most basic level of data and at this point it
doesn’t matter what language the instructions were written in. VB, C#, C++, Java,
COBOL, whatever, it all looks the same at this intermediate language level.

This is a wonderful thing because this means that all languages can (and do) share
the same class definitions and objects defined further up the ladder. A namespace
can be created and used by all of the languages because they all eventually end up
at this very basic level so that the runtime engine can interpret them.

It gets better. Because the programming languages use the objects created via the
.NET namespaces for file manipulation, and therefore the CLR separates the
operating system from those languages, different versions of the CLR can be written
for the Macintosh, Linux, and so on. When OS-specific versions of the CLR are rolled
out, it will be possible to write your program once and have it deployed on multiple
operating systems without any extra work. (In theory). Sound familiar? (Hint: Sun
Microsystems’ goal with Java).

Challenges
As with any new approach, there is always a price of entry, whether it’s the learning
curve or bringing your now-Legacy-code along into the new system. In the case of
the .NET Framework there are two obvious challenges from the start: Migration of
old code into the new environment and understanding how much control .NET wants
to exercise in an attempt to hold our hands and make things easier.

Migration Issues

The Common Language Specification requires all languages to follow specific
guidelines to be allowed to participate in the .NET Framework. This applied to
creating a .NET version of Visual Basic as well. The result is changes that are easy to
accept when creating new applications, but can be more involved when migrating
code.

In the case of Visual Basic (VB.NET), for example, migration issues exist in regards
to the introduction and handling of new data types, renaming/moving of functions,
and the discontinuation of keywords.

What this has to do with software testing is that the code base that once worked
“good enough” to share with the user-base gets touched, and in an invasive way.
Opening a code base after Testing has blessed it is already a tricky business, but to
modify code so that it can work within the new framework – replacing type
declarations, using new functions, and more – will require a full test pass to verify
nothing breaks in the process. (Software test automation that’s already in place will
come in handy).

Quality Week 2002 “Automating Testing of ASP.NET Applications” - 6

New Types & Keywords

With the creation of a more generalized approach allowing many languages to work
together comes the need to tighten and redefine past approaches. Table 1 reflects
just a few of the differences between VB6 and VB.NET.

Visual Basic 6 VB.NET
Fixed length strings were declared as:
Dim Name as String * 30

Fixed-length strings are not allowed

An Integer type is 16-bits

A Short type is 16-bits

A Long type is 32-bits

An Integer type is 32-bits

No support for a 64-bits integer type

A Long type is 64-bits

Any data can be set to a Variant variable

The Variant type is unsupported

“Dim X, Y as Long” results in X declared
as a Variant and Y as a Long

“Dim X, Y as Long” results in X and Y
declared as a Long

Keyword “Empty” indicates an un-
initialized Variant variable. “Null”
indicates that a variable contains no valid
data.

“Null” and “Empty” have been replaced
by the keyword “Nothing”

Table 1 - Visual Basic 6 & VB.NET differences (Types and Keywords)

Moved Functions

To follow the new object-oriented approach that .NET utilizes through its libraries –
known as namespaces – functions have been relocated. Let’s take Visual Basic’s
Math functions for example. They have all been moved into the System.Math group,
so now:

X = Cos(Y)

Becomes:

X = System.Math.Cos(Y)

A tool does exist for migrating Visual Basic 6 projects over to VB.NET. Before you
breathe a sigh of relief, however, know that most people who have used this tool say
that it is not that helpful on large conversion efforts. If you have a simple application
to convert, it will provide you with some assistance. However, the changes between
version 6 and VB.NET are great enough to make a re-write of the application worth
considering, depending on the type of application and its features. For more details
about upgrading your Visual Basic 6 applications to VB.NET, I recommend the
following MSDN article as a very good starting point:

http://msdn.microsoft.com/vbasic/techinfo/articles/upgrade/vbupgrade.asp

Quality Week 2002 “Automating Testing of ASP.NET Applications” - 7

No Direct Mapping of ASP.NET to HTML Controls

One of the exciting features of ASP.NET is its ability to spare the developer from the
hassles of tracking which browser a visitor is using during a web session and
providing different HTML based on the visitor’s browser’s capabilities. ASP.NET will
issue the HTML it thinks best suits the client. This is a great concept, but in practice
the results are not yet clearly known. It remains to be seen how well this type of
handholding will work and if it results in workarounds being that much more
challenging.

An example is the text box placed on a web page. In ASP.NET it looks like this:

<asp:TextBox id="SearchTextBox" runat="server"
MaxLength="25"></asp:textbox>

It generates the following HTML:

<input name="ModuleSearch:SearchTextBox" type="text"
maxlength="25" id="ModuleSearch_SearchTextBox" />

However, depending on the browser, it could also generate this HTML:

<textarea name="ModuleSearch:SearchTextBox" rows=1
maxlength="25" id="ModuleSearch_SearchTextBox"><textarea>

You will note that these are two different control types, yet they can resemble each
other depending on the browser being used. The theory is that ASP.NET knows best,
and this remains to be seen. To be sure, as feedback comes in ASP.NET will become
much more robust as Microsoft builds on its goal of helping testers and developers
alike worry less about browser compatibility.

Testing in .NET
Now that we have a high-level view of what Microsoft .NET is, some of the challenges
that programmers face, and some of the issues testers need to be aware of, let’s
look at a sample ASP.NET application and some of the things we should consider in
its testing.

The web application we’ll use in this example comes with Microsoft Visual Studio
.NET and is called “Duwamish 7.0.” Its home page is shown in Figure 2 on the
following page. This application is for a fictional on-line bookseller and demonstrates
the concepts of modular development, working with controls, searching, an e-
commerce shopping cart, and working with a Microsoft SQL Server database.
(Microsoft was kind enough to fill the database for us with sample data).

Black Box Testing Remains Crucial
Although .NET makes technical testing more accessible to software test engineers,
the non-programming aspects for software testing remains key. Usability issues
remain important, of course, as does verifying that an application behaves, as an
end-user would expect. There is nothing new to be introduced to software test
engineers in the realm of black box testing in regards to an ASP.NET web application.
Browser compatibility testing remains an important part of the process, especially
since ASP.NET generates HTML unique to a user’s operating system, browser and
browser version.

Quality Week 2002 “Automating Testing of ASP.NET Applications” - 8

In regards to taking more technical approaches, there are many opportunities
available to test engineers, which the remainder of this document will explore.

Figure 2 – Sample application that invokes many of ASP.NET’s features.

Technical Testing

Microsoft has provided the tools necessary to test and debug ASP.NET applications
that are not only useful for developers but testers as well. Some of these tools move
into the realm of gray and white box testing, however, which some testing
organizations are against. The concern of these organizations is that it steps too far
away from what the end-user will experience. It also requires a more technical (and
hence, typically more costly) test engineer. I am of the opinion that while black box
testing is extremely important, the more technical a tester can be in their efforts, the
more effective they can be in diagnosing and tracking down issues and bugs and
communicating those problems to their programmer counterparts.

In this section we will introduce the <trace> setting that can be added to an
application’s web.config file and how it is used in debugging. We will also look at
some of the tools available for automating the testing on ASP.NET applications, both
in functionality and load/stress testing.

Quality Week 2002 “Automating Testing of ASP.NET Applications” - 9

Web.config

ASP.NET has what Microsoft refers to as a configuration system. This system is an
extensible infrastructure that enables all ASP.NET applications’ configuration settings
to be defined when an application is first deployed, and modified any time thereafter.
The root configuration file is machine.config and configures the entire web server.
Another file – web.config – can appear in multiple directories throughout the
ASP.NET web application server. The web.config file affects the directory it is in, as
well as its directory’s sub-directories. In addition, a web.config file in a lower child
directory can override or modify those settings of its parent.

Each web.config file contains a nested hierarchy of XML tags and sub-tags. These
tags have attributes that specify the configuration settings. There are over 60
elements that make up the configuration schema that controls how ASP.NET web
applications behave. You can even add your own, if you like. Listing 1 shows an
example of a web.config file.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <configSections>
 <section name="ApplicationConfiguration"
 type="Duwamish7.SystemFramework.ApplicationConfiguration,
 Duwamish7.SystemFramework" />
 <section name="DuwamishConfiguration"
 type="Duwamish7.Common.DuwamishConfiguration,
 Duwamish7.Common" />
 <section name="SourceViewer"
 type="System.Configuration.NameValueSectionHandler, System,
 Version=1.0.3300.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" />
 </configSections>
 <system.web>
 <customErrors defaultRedirect="errorpage.aspx" mode="On" />
 <compilation debug="true" />
 <sessionState cookieless="false" timeout="20" mode="InProc"
 stateConnectionString="tcpip=127.0.0.1:42424"
 sqlConnectionString="data source=127.0.0.1;
 user id=sa;password=" />
 <globalization responseEncoding="utf-8"
 requestEncoding="utf-8" />
 <!-- security -->
 <authentication mode="Forms">
 <forms name=".ADUAUTH" loginUrl="secure\logon.aspx"
 protection="All">
 </forms>
 </authentication>
 <authorization>
 <allow users="*" />
 </authorization>
 </system.web>
</configuration>

Listing 1: Example of a web.config file.

Quality Week 2002 “Automating Testing of ASP.NET Applications” - 10

First and foremost, don’t sweat it. This isn’t as scary as it looks, and not only that,
we only want to work with a very small section of the file. Specifically, we will insert
a <trace> tag directly under the <system.web> tag and place it into the directory
containing the pages we want to work with. In this case, to keep it simple, and to
avoid multiple copies of web.config that could go forgotten, it will be the root
version of web.config that we modify. The following line is added:

<trace enabled="true" pageOutput="true" requestLimit="15"
 traceMode="SortByCategory" />

Inserting this simple XML tag and its properties has dramatic effects on your
ASP.NET web application. In standard ASP pages it was necessary to insert
statements to print out the current status of variables or track what branches of code
were executed. This was done by strategically placing Response.Write() functions
throughout the .asp files. The problem was that these statements had to be removed
later (and not forgotten). ASP.NET’s solution to this is the trace functionality. With
the above line added to web.config in the Duwamish 7.0 sample application,
navigating to its home page (Figure 1) tacks on the additional information shown in
Figure 2.

Figure 2 – The <trace> tag is added to web.config in the Duwamish 7.0 web directory.

As you can see, ASP.NET’s new tracing functionality allows us to view verbose
information about an application with minimal intrusiveness. In the past it was
necessary to sprinkle Response.Write() routines throughout the code. Now, only
one file needs to be modified lowering the likelihood this setting will be accidentally
left enabled. In addition, Trace.Write() routines may be used throughout the code
where Response.Write() methods might have been used for debugging purposes in

Quality Week 2002 “Automating Testing of ASP.NET Applications” - 11

the past. Because Trace.Write() is only invoked when the <trace> tag is in place,
those statements may remain in place without ill effect.

The output provided when using <trace> is provided in six sections:

• Request Details: This provides such basic information as the visitor’s unique

session ID, the time & date the request came into the server, HTTP request type
and its status code.

• Trace Information: In addition to ASP.NET-generated information about the
execution of the application, this is where Trace.Write() values are printed. The
two parameters taken by Trace.Write() are displayed here as Category and
Message values.

• Control Tree: This section provides information about the controls used within
the page. ID, type, render size, and view state information is provided.

• Cookies Collection: Any cookies sent by the client in its request to the server
are displayed.

• Headers Collection: HTTP header values sent by the client to the server are
displayed here in a simple Name/Value pairing.

• Querystring Collection: This shows up only when the GET method is used to
submit a form. It shows the variables and values sent with the request. (These
same values can be found in their raw form in the QUERY_STRING entry of the
Server variables section).

• Server variables: The Name and Value of server side variables are displayed in
this table. This section includes a lot of the same information listed in the other
sections, just not as nicely formatted.

This information is helpful to test engineers in a number of ways. The Request
Details section, for example, is important in showing how the server responded back
to the client. Specifically, showing a status code of 200 means that no errors were
encountered. An error of 400 is a Bad Request, 401 is Required Authorization, 403 is
Forbidden Directory, 404 is Page Not Found, and 500 is Internal Server Error
(nothing new). Being able to print a page that shows the request string that resulted
in an Internal Server Error can be very helpful to development. The Trace
Information section can provide helpful information about which branches of code
were executed if the Trace.Write() method was used by the programmers. The
Headers Collection shows the type of browser and operating system used to access
the page, which can be helpful in verifying the browsers your group identified as
important are actually used in testing. The QueryString Collection makes it easy to
see what values a form sent to the page currently being displayed.

Microsoft ACT 1.0

Purpose of Microsoft Application Center Test 1.0 – or ACT – is to stress test web
servers and analyze performance and scalability problems with web applications.
This includes ASP.NET applications and their components. This type of testing is
accomplished by opening multiple connections to the server and rapidly sending
HTTP requests, thereby simulating a large group of users. Although high-load stress
testing over long periods of time is ACT’s main purpose, it can also be used for
functionality testing. Lastly, Application Center Test will work with any web server or
web application that adheres to the HTTP protocol.

Quality Week 2002 “Automating Testing of ASP.NET Applications” - 12

Putting Application Center Test into use on a testing project allows you to see how
your web server reacts when several hundred users access your application at the
same time. This simulates peak periods and not only provides performance and
scalability information, but also tests databases in regards to such issues as
concurrency, transactions, number of users supported, locks, pooling, and so on.

This tool comes with Visual Studio .NET Enterprise Developer and can be used within
the Visual Studio .NET’s Integrated Development Environment (IDE), but more
options are available when the stand-alone ACT program is used.

Listing 2 shows an example of a subroutine generated by ACT’s recorder. When a
script is generated, requests are broken up into individual subroutines that are then
called one-by-one by a Main() subroutine.

Just like the rest of .NET, this application relies on an object-oriented approach and
provides a number of objects that you can use. In Listing 2, note that we’re looking
at the SendRequest1() subroutine. This is the first routine generated when the
webapp-under-test was navigated to. The line of interest is the one that says,
oRequest.Path = “/duwamish7vb”. This is the root of the web directory or site
we’ve selected for testing. The other pieces specify the type of request coming in (in
this case “GET” instead of “POST” or “HEAD), the MIME types your browser declares

Sub SendRequest1()
 Dim oConnection, oRequest, oResponse, oHeaders, strStatusCode
 If fEnableDelays = True then Test.Sleep (0)
 Set oConnection = Test.CreateConnection("localhost", 80, false)
 If (oConnection is Nothing) Then
 Test.Trace "Error: Unable to create connection to localhost"
 Else
 Set oRequest = Test.CreateRequest
 oRequest.Path = "/duwamish7vb"
 oRequest.Verb = "GET"
 oRequest.HTTPVersion = "HTTP/1.0"
 set oHeaders = oRequest.Headers
 oHeaders.RemoveAll
 oHeaders.Add "Accept", "image/gif, image/x-xbitmap, " + _

"image/jpeg, image/pjpeg, application/msword, " + _
"application/vnd.ms-powerpoint, application/vnd.ms-excel, */*"

 oHeaders.Add "Accept-Language", "en-us"

 oHeaders.Add "User-Agent", "Mozilla/4.0 (compatible; " + _
"MSIE 6.0; Windows NT 5.0; .NET CLR 1.0.3705)"

 'oHeaders.Add "Host", "localhost"
 oHeaders.Add "Host", "(automatic)"
 oHeaders.Add "Cookie", "(automatic)"
 Set oResponse = oConnection.Send(oRequest)
 If (oResponse is Nothing) Then
 Test.Trace "Error: Failed to receive response for URL to " + _

"/duwamish7vb"
 Else
 strStatusCode = oResponse.ResultCode
 End If
 oConnection.Close
 End If
End Sub

Listing 2 – Example of a single request generated by ACT 1.0’s recorder.

Quality Week 2002 “Automating Testing of ASP.NET Applications” - 13

that it will accept and understand, your browser information, and so on. (You’ll be
happy to know that cookie handling is built in to ACT 1.0). After completing the
Request information, it is dispatched to the web site with a call to the
Connection.Send() method (oConnection is a Connection object, which was
created when a call was made to Test.CreateConnection at the front part of the
subroutine). The oConnection.Send(oRequest) call sends off the Request
information that was filled out in the middle of the script. (Lots of stuff just to
generate a single request, eh?)

Subsequent SendRequestN() routines are created (where N equals the next number
in the sequence) based on what the displayed page relies upon. This includes a
request for the cascading style sheet (/duwamish7vb/css/duwamish.css), images
(bannerlogo.gif, bannerhome.gif, bannercart.gif, banneraccount.gif, line.gif, etc.),
and the page itself (Default.aspx).

Finally, down around the 15th request, in the SendRequest15() routine, we get to the
request that was generated when typing in a search string and clicking the submit
button. The resulting request path looks something like this:

oRequest.Path = "/Duwamish7vb/searchresults.aspx" + _
"?type=0&fullType=Title&text=how+to+win+friends"

This is a direct call to the .aspx (ASP.NET) file using the GET method (the GET
method causes the submitted form’s values to be part of the URL, as opposed to
POST which embeds the variables and their paired values into the HTTP header and
goes unseen by the user). This call goes through the whole process previously
described, sending off the above request to searchresults.aspx with the query
string shown above, hoping for a reply in HTML by the server. The CSS file is
downloaded as are the GIFs and JPEGs. Whew! Lot’s of traffic going on just for a
single request!

When all is said and done, 34 separate requests are generated, and all we did was:

1. Navigate to http://localhost/duwamish7vb
2. Type “how to win friends” into the search box
3. Clicked the “Go” button to submit the form
4. Clicked on the link of the book found by the query

The main routine that fires off each of these requests is simple enough, and shown
(with some abbreviation) in Listing 3.

Sub Main()
 call SendRequest1()
 call SendRequest2()
 ‘: (3-33 removed for brevity)
 call SendRequest34()
End Sub
Main

Listing 3 – Each Request is sent in turn by calls to their corresponding subroutines.

Quality Week 2002 “Automating Testing of ASP.NET Applications” - 14

Running the script is as simple as clicking a Play button found on the toolbar. As the
test executes, the status can be viewed and looks similar to Figure 3. This status
box communicates the current state (for example, “The test is now running”), time
elapsed, time remaining, average requests per second, and total requests made so
far. It also lists the number of errors currently encountered allowing you to decide if
the test needs to be aborted or allowed to continue.

Figure 3 – Execution of the ACT script halfway through its test run.

At approximately 2 minutes and 5 seconds into the test run, I jumped to my browser
and tried 3 searches, resulting in the dip in Requests Per Second (RPS) generated by
the load test, shown in Figure 3. (Hey, the straight line was looking boring). This
allowed me to see how peppy the site was even under load.

When a script completes, its results can be viewed by clicking on the Results object
in the test project. The results are displayed in a list based on the name of the script
being executed, and the time/date of its execution. Results show the total number of
requests generated during the run (in this case, it was 5 minutes and generated
104,227 requests, an average of 347.42 requests per second). It also gives the test

Quality Week 2002 “Automating Testing of ASP.NET Applications” - 15

engineer an idea of how responsive the system was for those requests. Responsive-
ness is measured by tracking the “Average Time to First Byte” (how long until the
server started sending back a response) and “Average Time to Last Byte” (total time
to send the requested item). Errors are also listed (HTTP, DNS and Socket), as are
network statistics.

Considering my test example ran on the same computer as the web server,
bandwidth was pretty good (1,227,864.16 bytes/second) on my 1.2ghz laptop. And
last, response codes are tracked allowing us to understand the quality of the
requests and responses. The return result of “200” communicates the request was
received and a full response was returned. Using multiple computers on the network
is one way to raise the number of requests per second experienced by the server.
Getting a faster test machine with a big fat pipe direct to the server is another.

There is much more to discover about this program, including tracking server
performance, test machine performance, and more. I’ve used it more in a
recorder/playback capacity, but the language is based on VB Script and isn’t difficult
to master. There are only about 5 objects (with many methods each) that comprise
the model: Test, Request, Connection, User and the Response object. Real-world
use of this tool is likely to be: Record a few actions to generate a script, move the
common bits into separate routines, and use constants based on the type of machine
being used and browser being emulated. There is definitely room for structured
programming to be put into practice to make it less bulky and more responsive to
the evolution of a web site.

All in all, it’s a great tool that provides a lot of capability, and it’s “free” (as long as
you have the full-blown version of Visual Studio .NET).

Other Considerations

There are other tools out on the market worth considering. These include Red-
Gate’s new ANTS (“Advanced .NET Testing System”) product, Rational Software’s
new Java-based tool for testing Java and HTML applications, and PushToTest’s free
open-source load & monitoring tools. These are new or less known, so I won’t bother
to list the other tool vendors and tools of which you are probably already aware.

• ANTS appears to be very similar to Microsoft

Application Center Test 1.0 in what it provides. It
can be used to generate HTTP requests as well as
test Web Services through HTTP requests
enriched with the SOAP protocol. They have a
14-day free trial that’s worth a look (only allows
10 simultaneous connections in the demo,
however). At present they’re pricing their tool at
around $2,000+.

• Rational Software’s new Java-based testing tool is very intriguing. Look for my
white paper about it on the AutomationJunkies.com site in July when it releases.
By taking advantage of an object-oriented language like Java, this new tool
provides flexibility by treating each item on a web page or Java applet as an
object. This allows the object to be modified in the script later if it is modified on
the website or in the applet. Broken scripts due to UI changes are fixed more
quickly (a common automation nightmare). In addition, this new tool has a level
of intelligence built in allowing it to weigh the likelihood that a modified control is
still the control it wants to interact with, further improving maintainability.

Quality Week 2002 “Automating Testing of ASP.NET Applications” - 16

• PushToTest has an automation tool whose UI is in Java – allowing it to work
anywhere – and the scripting language is based on Python, a language that’s
easier to learn than C or C++. Using the Java framework allows test engineers to
deploy their Python test scripts and generate loads against their server under
test. Best of all, it’s open source, so you have the code base and are free to
modify its functionality and capabilities to your heart’s content.

Summary
This is a lot of information to absorb, to be sure. We started by looking at the .NET
Framework and getting a 30,000-foot view of what it is and some of the things it has
to offer. To continue learning about .NET I suggest visiting such sites as
GotDotNet.com and DotNetJunkies.com. These are two great sites for tutorials
and other information about working in .NET. Unfortunately, they’re mostly
programmer-centric, so you should also check out StickyMinds.com and
AutomationJunkies.com. Be sure to also visit QAForums.com for a great list of
discussion groups.

The next thing we looked at were some of the challenges development teams face –
concerns to programmers and testers alike – when moving into the .NET realm.
These include the modification of variable types between VB6 and VB.NET, the
placement of functions within the .NET object model, and how .NET does some
handholding, which could prove to be problematic when it comes to tweaking how a
page is displayed in different browsers. (This could be especially problematic to
automation tools that rely on specific controls to be in place and don’t tie themselves
to a single browser for testing).

We then looked at an ASP.NET example and a tool that comes with Microsoft Visual
Studio .NET (Application Center Test 1.0), as well as intrinsic support for ASP.NET
deployed applications (the <trace> tag in web.config). Let’s not forget the other
new tools that are coming to market to help support .NET testing, as well as new
tools that weren’t necessarily targeting .NET, but can be used regardless.

This paper scratches the surface, but still provides you with a strong starting point
with some of the options available to you when automating ASP.NET testing.

If you have questions or comments about this paper, please address them to
tom@xtenddev.com. If you find your team is undertaking automation approaches,
be sure to also visit this new test automation site: www.AutomationJunkies.com

Key Points

The challenges of managing multiple test sites
5 steps to successful virtual test management
Mistakes to avoid/lessons

Presentation Abstract

With the ever-changing challenges of testing, here comes the latest one: managing multiple test locations. More and more companies
are spreading testing organizations throughout the country and the world. Based on real-life experiences of the speakers, learn the
mistakes to avoid and lessons learned in managing multiple sites. Discover how the Virtual Test Manager can manage a dispersed test
organization without having to always be physically present.

About the Author

As VeriTest's Vice President of Marketing, Worlwide Testing Services, Ed is responsible for evangelizing VeriTest's capabilities in
outsourced testing, certification, and consulting. He has over 10 years experience in the software industry in Product Management,
Testing, Development, and Marketing, and is a frequent speaker on quality and test automation topics. Prior to joining VeriTest, Ed
spent 4 years with Rational Software's automated testing team. He is a member of the Order of the Engineer, ASME, and several
university advisory boards. He holds a B.S. in Mechanical Engineering, a B.A. in English Literature, and an MBA from The Carroll
School of Management at Boston College.

QW2002 Paper 9T1

Mr. Ed Adams (VeriTest)

Virtual Test Management: Rapid Testing Over Multiple Time Zones

11

Virtual Test Management

Rapid Testing Over Multiple Time Zones

Virtual Test Management

Rapid Testing Over Multiple Time Zones

Ed Adams
Vice President, Worldwide Testing Services
VeriTest, a division of Lionbridge
Ed_Adams@lionbridge.com
www.lionbrige.com
www.veritest.com

Ed Adams
Vice President, Worldwide Testing Services
VeriTest, a division of Lionbridge
Ed_Adams@lionbridge.com
www.lionbrige.com
www.veritest.com

AgendaAgenda

Introduction

Test Manager

7 Habits of Highly
Effective Test Managers

A Global Perspective &
Challenges with
Distributed Teams

Introduction

Test Manager

7 Habits of Highly
Effective Test Managers

A Global Perspective &
Challenges with
Distributed Teams

Lessons Learned

Best Practices

5 Steps to Successful
Virtual Test Management

Conclusions &
Recommended Reading

Lessons Learned

Best Practices

5 Steps to Successful
Virtual Test Management

Conclusions &
Recommended Reading

22

VeriTest: IntroductionVeriTest: Introduction

Experience
> First lab opened in 1987

Scalable Resources
> 300+ career test professionals at ten

labs worldwide
> Data center test beds with ‘scale-up’ 32-

way servers plus ‘scale-out’ server farms
> Acquisition of Data Dimensions, Inc.

completed in June, 2001

Leadership
> Technology alliances with industry trend-

setters Microsoft, Rational, Unisys

Global Footprint
> Delivery capability in North America,

Europe, Asia

Experience
> First lab opened in 1987

Scalable Resources
> 300+ career test professionals at ten

labs worldwide
> Data center test beds with ‘scale-up’ 32-

way servers plus ‘scale-out’ server farms
> Acquisition of Data Dimensions, Inc.

completed in June, 2001

Leadership
> Technology alliances with industry trend-

setters Microsoft, Rational, Unisys

Global Footprint
> Delivery capability in North America,

Europe, Asia

VeriTest: A Business Unit of LionbridgeVeriTest: A Business Unit of Lionbridge

Lionbridge Thumbnails

Founded 1996

> IPO 1999 (LIOX: Nasdaq)

Market Position in
Globalization and Testing
> No. 1 in revenue -- $125 million in 2002
> No. 1 in resources – 1,300 employees

Business
> Globalization Solutions
> Testing Services
> Software Development

Industries

> Fortune 1000 in IT, Life Sciences, Financial, Automotive

Lionbridge Thumbnails

Founded 1996

> IPO 1999 (LIOX: Nasdaq)

Market Position in
Globalization and Testing
> No. 1 in revenue -- $125 million in 2002
> No. 1 in resources – 1,300 employees

Business
> Globalization Solutions
> Testing Services
> Software Development

Industries

> Fortune 1000 in IT, Life Sciences, Financial, Automotive

33

Global InfrastructureGlobal Infrastructure

AgendaAgenda

Introduction

Test Manager

7 Habits of Highly
Effective Test Managers

A Global Perspective &
Challenges with
Distributed Teams

Introduction

Test Manager

7 Habits of Highly
Effective Test Managers

A Global Perspective &
Challenges with
Distributed Teams

Lessons Learned

Best Practices

5 Steps to Successful
Virtual Test Management

Conclusions &
Recommended Reading

Lessons Learned

Best Practices

5 Steps to Successful
Virtual Test Management

Conclusions &
Recommended Reading

44

Test ManagerTest Manager

Responsible for testing activities at one location

Duties: managing, testing, employee and customer
satisfaction and delivery

Reports to the Virtual Test Manager

No travel required

Responsible for testing activities at one location

Duties: managing, testing, employee and customer
satisfaction and delivery

Reports to the Virtual Test Manager

No travel required

AgendaAgenda

Introduction

Test Manager

7 Habits of Highly
Effective Test Managers

A Global Perspective &
Challenges with
Distributed Teams

Introduction

Test Manager

7 Habits of Highly
Effective Test Managers

A Global Perspective &
Challenges with
Distributed Teams

Lessons Learned

Best Practices

5 Steps to Successful
Virtual Test Management

Conclusions &
Recommended Reading

Lessons Learned

Best Practices

5 Steps to Successful
Virtual Test Management

Conclusions &
Recommended Reading

55

7 Habits of Highly Effective
Test Managers
7 Habits of Highly Effective
Test Managers

Fulfill the leadership role within the test organization

Act as a catalyst for positive results

Facilitate and develop team members' capabilities

Eliminate barriers to team effectiveness and efficiency

Understand and communicate business & customer needs

Constantly coach and mentor each individual & team

Set a living example for all to follow

Fulfill the leadership role within the test organization

Act as a catalyst for positive results

Facilitate and develop team members' capabilities

Eliminate barriers to team effectiveness and efficiency

Understand and communicate business & customer needs

Constantly coach and mentor each individual & team

Set a living example for all to follow

AgendaAgenda

Introduction

Test Manager

7 Habits of Highly
Effective Test Managers

A Global Perspective &
Challenges with
Distributed Teams

Introduction

Test Manager

7 Habits of Highly
Effective Test Managers

A Global Perspective &
Challenges with
Distributed Teams

Lessons Learned

Best Practices

5 Steps to Successful
Virtual Test Management

Conclusions &
Recommended Reading

Lessons Learned

Best Practices

5 Steps to Successful
Virtual Test Management

Conclusions &
Recommended Reading

66

A Global PerspectiveA Global Perspective

Complexities of ScaleComplexities of Scale

Geography

> Multiple test site locations

Employees

> Multiple test teams and test
managers

Time management

> Attention allocated to each
site

Geography

> Multiple test site locations

Employees

> Multiple test teams and test
managers

Time management

> Attention allocated to each
site

Travel
> Can't be in more than one

location at a time

Resources
> Shared personnel and test

labs

Company cultures
> Multicultural environment
> Trying to transform

multiple companies into
one

Travel
> Can't be in more than one

location at a time

Resources
> Shared personnel and test

labs

Company cultures
> Multicultural environment
> Trying to transform

multiple companies into
one

77

Virtual Test ManagerVirtual Test Manager

Virtual
> Mobile, informed, connected and accessible
> Use of tools (the mobile office)

Test
> Metrics/measurements for all sites

Manager
> Management of multiple test sites and teams
> Common goals and objectives
> Vertical and horizontal accountability

Virtual
> Mobile, informed, connected and accessible
> Use of tools (the mobile office)

Test
> Metrics/measurements for all sites

Manager
> Management of multiple test sites and teams
> Common goals and objectives
> Vertical and horizontal accountability

Example Virtual Test OrganizationExample Virtual Test Organization

QA Engineer

Software Tester Software Tester Software Tester

Lead Software Tester

QA Team Lead

Test Manager
Vancouver

(GMT-8)

Software Tester

Sen. QA Engineer

Software Tester QA Engineer

Sen. QA Engineer

Test Manager
Paris

(GMT-1)

Software Tester Software Tester

Sen. Software Tester

QA Engineer

Test Manager
Tokyo

(GMT+9)

Virtual Test Manager
Stockholm
(GMT+1)

Director of QA
Boston
(GMT-5)

QA Engineer

Software Tester Software Tester Software Tester

Lead Software Tester

QA Team Lead

Test Manager
Vancouver

(GMT-8)

Software Tester

Sen. QA Engineer

Software Tester QA Engineer

Sen. QA Engineer

Test Manager
Paris

(GMT-1)

Software Tester Software Tester

Sen. Software Tester

QA Engineer

Test Manager
Tokyo

(GMT+9)

Virtual Test Manager
Stockholm
(GMT+1)

Director of QA
Boston
(GMT-5)

88

Challenges of Managing Multiple SitesChallenges of Managing Multiple Sites

Sense of identity for each site

History of multiple site expansion
> Mergers and acquisitions, new office, existing site

Time zone differences
> Constantly adjusting your "normal" work day

Distribution and utilization of capabilities

Project management

Process, standards, information technology

Internal vs. external competition
> People vs. product focus

Sense of identity for each site

History of multiple site expansion
> Mergers and acquisitions, new office, existing site

Time zone differences
> Constantly adjusting your "normal" work day

Distribution and utilization of capabilities

Project management

Process, standards, information technology

Internal vs. external competition
> People vs. product focus

AgendaAgenda

Introduction

Test Manager

7 Habits of Highly
Effective Test Managers

A Global Perspective &
Challenges with
Distributed Teams

Introduction

Test Manager

7 Habits of Highly
Effective Test Managers

A Global Perspective &
Challenges with
Distributed Teams

Lessons Learned

Best Practices

5 Steps to Successful
Virtual Test Management

Conclusions &
Recommended Reading

Lessons Learned

Best Practices

5 Steps to Successful
Virtual Test Management

Conclusions &
Recommended Reading

99

Lessons LearnedLessons Learned

There is no substitute for face-to-face interactions

Travel across time zones will disrupt your lifestyle

Get used to working "around the clock"

Time zone "bias" will affect the quality of your relationship with each
site

There's more than just American culture out there

Don't neglect the other sites when you're not there

You will need many tools and techniques to help you do your job

Sharing of test resources may not be that simple

Make sure you have space and connectivity at each site when you visit

There is no substitute for face-to-face interactions

Travel across time zones will disrupt your lifestyle

Get used to working "around the clock"

Time zone "bias" will affect the quality of your relationship with each
site

There's more than just American culture out there

Don't neglect the other sites when you're not there

You will need many tools and techniques to help you do your job

Sharing of test resources may not be that simple

Make sure you have space and connectivity at each site when you visit

Rapid Testing Over Multiple Time ZonesRapid Testing Over Multiple Time Zones

Collaborative effort among the test sites
> Shared resources

Power of duplication
> Concurrently running programs

"24/7 testing"
> Ongoing, multi-level test programs

Test automation
> Maximize testing efficiency and save time

Session-based test management
> Structured exploratory testing

Collaborative effort among the test sites
> Shared resources

Power of duplication
> Concurrently running programs

"24/7 testing"
> Ongoing, multi-level test programs

Test automation
> Maximize testing efficiency and save time

Session-based test management
> Structured exploratory testing

1010

AgendaAgenda

Introduction

Test Manager

7 Habits of Highly
Effective Test Managers

A Global Perspective &
Challenges with
Distributed Teams

Introduction

Test Manager

7 Habits of Highly
Effective Test Managers

A Global Perspective &
Challenges with
Distributed Teams

Lessons Learned

Best Practices

5 Steps to Successful
Virtual Test Management

Conclusions &
Recommended Reading

Lessons Learned

Best Practices

5 Steps to Successful
Virtual Test Management

Conclusions &
Recommended Reading

Best PracticesBest Practices

Hire and empower well-qualified test managers
> Assist them with their recruiting efforts
> Give them as much empowerment as they can handle

Be constantly reminded and respectful of time zone differences
> World time desk clock, dual time wristwatch
> Encourage acceptable real-time communication

Manage and respect cultural and site differences
> Manage goals
> Cultural training

Hire and empower well-qualified test managers
> Assist them with their recruiting efforts
> Give them as much empowerment as they can handle

Be constantly reminded and respectful of time zone differences
> World time desk clock, dual time wristwatch
> Encourage acceptable real-time communication

Manage and respect cultural and site differences
> Manage goals
> Cultural training

1111

Best Practices (cont.)Best Practices (cont.)

Rotate your time spent at each site
> Get involved with their day- to- day activities
> Be part of their team

Keep each team connected and make each site feel like
they are part of one team/one company
> Share news and information among the sites
> Ongoing team ("site- building") exercises
> Group training and "face time" opportunities
> Shared use of tools

Rotate your time spent at each site
> Get involved with their day- to- day activities
> Be part of their team

Keep each team connected and make each site feel like
they are part of one team/one company
> Share news and information among the sites
> Ongoing team ("site- building") exercises
> Group training and "face time" opportunities
> Shared use of tools

AgendaAgenda

Introduction

Test Manager

7 Habits of Highly
Effective Test Managers

A Global Perspective &
Challenges with
Distributed Teams

Introduction

Test Manager

7 Habits of Highly
Effective Test Managers

A Global Perspective &
Challenges with
Distributed Teams

Lessons Learned

Best Practices

5 Steps to Successful
Virtual Test Management

Conclusions &
Recommended Reading

Lessons Learned

Best Practices

5 Steps to Successful
Virtual Test Management

Conclusions &
Recommended Reading

1212

5 Steps to Successful
Virtual Test Management
5 Steps to Successful
Virtual Test Management

1. 'Calibrate' each site to establish a baseline

> Meet with test managers and all team members
> Communicate all goals and objectives
> Perform an assessment and form an improvement plan
> Ensure needs are met and issues are resolved

2. Empower the test managers but be ready to intervene when necessary

> Monitor conflicts among test sites and resource issues
> Remember to constantly coach and mentor

1. 'Calibrate' each site to establish a baseline

> Meet with test managers and all team members
> Communicate all goals and objectives
> Perform an assessment and form an improvement plan
> Ensure needs are met and issues are resolved

2. Empower the test managers but be ready to intervene when necessary

> Monitor conflicts among test sites and resource issues
> Remember to constantly coach and mentor

5 Steps to Successful
Virtual Test Management (cont.)
5 Steps to Successful
Virtual Test Management (cont.)

3. Continually manage each site

> Find out what's really going on
> Determine how you can assist them
> Have ample "face time" with the test team and other

groups

4. When you're not physically there, be there virtually

> Keep communication lines open and touch base often
> Participate in their activities on a weekly basis

5. Maintain harmony and synergy at each site and for the entire test
organization

> Ensure employee satisfaction
> Ensure customer satisfaction

3. Continually manage each site

> Find out what's really going on
> Determine how you can assist them
> Have ample "face time" with the test team and other

groups

4. When you're not physically there, be there virtually

> Keep communication lines open and touch base often
> Participate in their activities on a weekly basis

5. Maintain harmony and synergy at each site and for the entire test
organization

> Ensure employee satisfaction
> Ensure customer satisfaction

1313

AgendaAgenda

Introduction

Test Manager

7 Habits of Highly
Effective Test Managers

A Global Perspective &
Challenges with
Distributed Teams

Introduction

Test Manager

7 Habits of Highly
Effective Test Managers

A Global Perspective &
Challenges with
Distributed Teams

Lessons Learned

Best Practices

5 Steps to Successful
Virtual Test Management

Conclusions &
Recommended Reading

Lessons Learned

Best Practices

5 Steps to Successful
Virtual Test Management

Conclusions &
Recommended Reading

ConclusionConclusion

Virtual Test Manager =

world traveler + test professional + technical manager

Virtual Test Manager is the "glue" that keeps all the "pieces" (the
test sites) together

No matter where you are, you will always be managing virtually

Manage to the organization with the complexities of scale

Communication, travel, and "face time" are essential

Virtual Test Manager =

world traveler + test professional + technical manager

Virtual Test Manager is the "glue" that keeps all the "pieces" (the
test sites) together

No matter where you are, you will always be managing virtually

Manage to the organization with the complexities of scale

Communication, travel, and "face time" are essential

1414

VeriTest Representative CustomersVeriTest Representative Customers

Hardware DevelopersHardware Developers

Networking DevelopersNetworking Developers

Enterprise DevelopersEnterprise Developers

Mobile Tech. DevelopersMobile Tech. Developers

Software/Web DevelopersSoftware/Web Developers

Case Study:
AvantGo Software
Case Study:
AvantGo Software

Challenge
> AvantGo was behind schedule in launching a

complex, multi-tier content synchronization
system in Western Europe.

Action
> VeriTest’s combination of technical and

linguistic testing skills, ready-to-deploy test
beds, and experience in mobile product
technologies eliminated project ramp-up time.

Results
> AvantGo shipped on schedule.

Challenge
> AvantGo was behind schedule in launching a

complex, multi-tier content synchronization
system in Western Europe.

Action
> VeriTest’s combination of technical and

linguistic testing skills, ready-to-deploy test
beds, and experience in mobile product
technologies eliminated project ramp-up time.

Results
> AvantGo shipped on schedule.

“VeriTest was a critical factor in the successful launch our enterprise
software. The VeriTest team uncovered a wide variety of localization
defects. The result was a much more polished product. Working with
VeriTest’s professional staff was a pleasure.”
- Kent Sorsky, Software Testing Manager

AvantGo, Inc.

1515

Recommended ReadingRecommended Reading

Bach, Jonathan. (2000). Session-Based Test Management. Software Testing &
Quality Engineering, November/December 2000, 32-39.

www.stickyminds.com

www.professional-tester.com

Duarte, Deborah and Tennant Synder, Nancy. (1999). Mastering Virtual Teams:
Strategies, Tools, and Techniques That Succeed. Jossey-Bass. ISBN 0-78-
794183-2.

Fisher, Kimball and Duncan Fisher, Maureen. (2001). The Distance Manager: A
Hands-On Guide to Managing Off-Site Employees and Virtual Teams. McGraw-
Hill. ISBN 0-07-136065-4.

Haywood, Martha. (1998). Managing Virtual Teams: Practical Techniques for
High-Technology Project Managers. Artech House. ISBN 0-89-006913-1.

Kostner, Jaclyn. (1996). Virtual Leadership: Secrets From the Round Table for the
Multi-Site Manager. Warner Books. ISBN 0-446-67087-1.

Lipnack, Jessica and Stamps, Jeffrey. (2000). Virtual Teams: People Working
Across Boundaries with Technology. John Wiley & Sons. ISBN 0-471-38825-4.

Key Points

CROSSFIT manages the integration testing of distributed applications
It encourages automation of test suites
Our customers report testing time reductions of 70-80%

Presentation Abstract

Aalayance developed a cross platform open source framework for integration testing (CROSSFIT) to manage the integration testing of
distributed applications. The key design goal of CROSSFIT was to be capable of managing the integration testing of distributed
applications. To meet this goal, we came up with a distributed agent based architecture. CROSSFIT was also designed to be simple,
portable, usable and flexible. It encourages automation of test suites. We have been using it extensively for more than a year now with
great success. Our customers report testing time reductions of 70-80%. In this document, we share some of the design principles, the
implementation strategies and the practical experiences.

About the Author

Dr. Nagesh Vempaty is responsible for development and engineering activities associated with new customers at Aalayance.
Dr. Vempaty's technical expertise is in large-scale software development and systems integration. As the CTO at Zoho, he was
responsible for overall product development and for improving the availability, scalability and performance of Zoho's products. Prior to
Zoho, Dr. Vempaty was the co-founder and CTO of hsupply.com. Prior to hsupply.com, Dr. Vempaty worked at Healtheon, Tenneco
and NASA. Dr. Vempaty has managed several software development teams under extreme situations.

Dr. Vempaty received his Ph.D. in Computer Science from the University of Texas at Austin and is a recipient of the Microelectronics
and Computer Corporation Award for outstanding graduate research and the Gordon Bell Prize in parallel computing. He received his
Master's in Computer Science from the University of Texas at Austin and his Bachelor's in Compute Science from Indian Institute of
Technology (IIT) at Madras.

QW2002 Paper 9T2

Dr. Nagesh Vempaty
(Aalayance Incorporated)

Cross Platform Framework For Integration Testing

1

A Cross-Platform Framework
for Integration Testing

A Cross-Platform Framework
for Integration Testing

Dr. Nagesh Vempaty
VP of Engineering
Aalayance, Inc.

AgendaAgenda

• Background
• Enterprise Application Integration Testing (EAIT)
• Objectives
• Case Study
• Summary

2

BackgroundBackground

• Aalayance is an outsourced software development
firm

• One of our core competencies is Enterprise
Application Integration (EAI)

• We developed a Cross-Platform Framework for
Integration Testing (CROSSFIT) to increase our
efficiency and improve the quality of our deliverables

• CROSSFIT has been in use for over one year and has
dramatically improved the EAI testing process

EAI Testing IssuesEAI Testing Issues

• Software to be tested runs on multiple operating systems
(Windows, Linux, Solaris, …)

• Utilizes a variety of messaging architectures and technologies
(publish/subscribe, queuing, request/reply, DCOM, CORBA,
EJBs, …)

• End applications built using a variety of languages (C, C++,
Java, VB, PERL, …) and

• Flat files, directories, relational and object databases are used
as data stores

• System Under Test (SUT) is distributed. Test logic is distributed
and hence complex

Enterprise Application Integration Testing (EAIT)
is a unique problem

3

CROSSFIT ObjectivesCROSSFIT Objectives

• Focus on EAI Testing (e.g. do not cater to front-end
GUI testing or stand alone application testing)

• Support distributed, heterogeneous environments
• Minimize intrusion into the System Under Test (SUT)
• Support manual interactions with SUT
• Support multiple test scenarios and test cases with

configurable target environments

CROSSFIT PhilosophyCROSSFIT Philosophy

• Test Cases defined using
– Procedural specification (logic and flow)
– Declarative specification (definition of test environment)
– Note: separation of logic and flow from environment allows

tests to be easily retargeted to new environments

• Test organization
– A regression test library consists of a set of test scenarios
– A test scenario consists of a set of test cases

• Support for test ware such as test data, versioning,
etc.

4

CROSSFIT ArchitectureCROSSFIT Architecture

• Test Cases defined using
– Procedural specification

(logic and flow)
– Declarative specification

(definition of test
environment)

– Note, separation of logic &
flow from environment
allows tests to be easily
retargeted to new
environments)

• A test scenario is a collection
of test cases

• A test library is a collection
of test scenarios

Testcase n

Testcase 2

Testcase 1

Distributed Script
API

Provisioning and
Deprovisioning API

App. Procedural
Library API

App. Declarative
Knowledge modules

Testcase Procedural
Specification

Testcase Declarative
Specification

A test scenario

CROSSFIT ArchitectureCROSSFIT Architecture

• Distributed Agents
– Organized in peer to peer

network
– A specific test case is

orchestrated in master-slave
mode

• Test Suite
– Can be launched by any agent
– Launching agent becomes

“designated leader”
– Remaining agents are

subordinate to the leader
– Any subordinate agent can

launch a distributed sub-test

Agent 0
Master

Agent 1
Slave

Agent n
Slave

SUT

Comp
n.0

SUT

Comp
n.m

…

EAI Products

SUT

Comp
n.0

SUT

Comp
n.m

SUT

Comp
n.0

SUT

Comp
n.m

Separate bus for CROSSFIT communication

5

CROSSFIT Implementation IssuesCROSSFIT Implementation Issues

• Extensively used open source tools such as Tcl,
Expect, BASH:
– Used Tcl-DP for communication and synchronization
– Very light weight
– Very minimally intrusive

• Support for test ware management and versioning:
– Test data sets
– Configurations

• Data collection and reporting
– Summary report
– Drill down to issues

CROSSFIT Case StudyCROSSFIT Case Study

HighLowCoverage of features6

1.5 hrs
(~0.5 hrs
of work)

1 person/
day

Time to rerun the
test in a new SUT
configuration

5

3 hrs if
parallel; 1

day if serial

6-7
person/

days

Time required to test
on 6 target platforms

4

1.5 hrs
(~0.5 hrs
of work)

8-10 hrsTime required to test3

18050# of test cases2

6720# of test scenarios1

After
CROSSFIT

Before
CROSSFIT

Item• SUT Components
– Messaging Platform
– Enterprise Application
– An Adapter

• Test Environments
– Six target platforms

(Solaris, AIX, Linux,
HP-UX, Windows,
DEC-UX)

• Test need to be re-run
for every major and
minor release of any
component

6

SummarySummary

• EAIT is a unique problem due to the distributed
nature of the problem

• CROSSFIT addresses this problem via:
– An agent based architecture
– Separation of procedural logic and declarative logic

• We have demonstrated ROI in terms of reduction of
manual work and ability to orchestrate distributed
tests that cannot be run manually

• We have used it successfully for over a year
• For more details, visit http://www.aalayance.com

Aalayance, Inc.
1250 Oakmead Parkway
Suite 312
Sunnyvale, CA 94085
O 408 992 0234
F 408 516 9718
www.aalayance.com

A Cross-platform Framework for Integration Testing
(CROSSFIT)

Final Paper

Submitted By: Aalayance Inc.
Submitted To: QualityWeek 2002 Conference
Date Submitted: July 15, 2002

Copyright © 2002. Aalayance Inc. All rights reserved. This document represents proprietary research on the
part of Aalayance Inc.

Copyright 2002. Aalayance, Inc. All rights reserved.

Page 2 July 15, 2002

 A Cross-platform Framework for Integration Testing
(CROSSFIT)

Prasad Chodavarapu, Rama Kanneganti, Nagesh Vempaty, Lakshmi Athreya,Venkatesh Subramanian,
and Rohith T.S.

Aalayance Inc. (http://www.aalayance.com/)
Abstract

Aalayance developed CROSSFIT, a cross platform framework to manage and automate enterprise
application integration testing. CROSSFIT was designed to be simple, portable, extensible, usable
and flexible. CROSSFIT supports the development, orchestration, and maintenance of distributed test
cases. It addresses the testing needs of distributed systems that are typical in enterprise application
integration scenarios. We have been using it extensively for more than a year with great success. In
this paper, we outline some of the design principles, the implementation strategies and the
experiences.

1. Introduction

1.2 Motivation

Enterprise Application Integration Testing (EAIT) involves testing systems spanning diverse software
applications and integration techniques. This complexity is more challenging if the system under test
runs on different platforms, such as Linux, Solaris, HP-UX, MS Windows NT, MS Windows 2000,
IBM AIX, etc., and uses different types of hardware. This is true most of the time in enterprise
application integration (EAI). Application integration may be enabled via different transport
protocols and techniques. EAI is often accomplished via messaging and some times via file transfer
or request-response. EAIT is hence a complex task.
CROSSFIT addresses this EAIT problem. It helps in managing the complexity of distributed test
cases. It can enable the automation of diverse and complex distributed testing scenarios that are
needed to handle EAIT.

1.3 Overview

CROSSFIT aids EAIT. It does not cater to front-end GUI testing, for which a number of industrial
strength tools exist. It does support traditional integration testing. However, its distinct utility is in
addressing the distributed testing problems that are unique to enterprise application integration (EAI).
We used a planned and disciplined approach to EAIT automation that drew upon the documented
experiences of QA professionals who have practiced and analyzed the art. We also used basic
principles of software engineering, such as re-use of both utilities and data sets, use of version control
for test scripts and adherence to configuration management for test suites. In short, we treated test
automation on par with software development and applied the same principles.
We used an agent-based architecture for CROSSFIT. An EAI test involving multiple applications
running on multiple machines is carried out with the help of multiple distributed agents. A test case is
built as a Tcl script [Ous94] using the CROSSFIT API. A test case is partitioned into a procedural

Copyright 2002. Aalayance, Inc. All rights reserved.

Page 3 July 15, 2002

part and a declarative part. The procedural part concentrates on the test case's logic and flow. The
declarative part deals with details such as command lines, environment specifications and host
information.

1. The procedural API provides for running processes in the foreground/background, managing
input/output in a time-bound fashion, filtering outputs, comparing against golden outputs, and
cleaning up. Although the API makes it look almost like English, as the test case is an Expect
script [Lib94], any legal Tcl/Expect construct can be used.

2. The declarative API deals with command lines, environment specifications, host information
(for distributed testing) and the like. Distributed tests are treated just like single application
tests; only the host information for an application needs to be specified declaratively. Making
this declarative supports the usage of symbolic environment names and host names.
Therefore, the customization of test scripts for each target test bed requires only the editing of
a few configuration files. Thus, modifying a test case to deal with changes in the application
environment and diverse systems is easy.

We used open source tools as much as possible in the implementation, to handle many of the
distributed and cross-platform issues. We used Tcl with Expect, a language widely adopted by the
testing communities worldwide. Distributed processing was handled with Tcl-DP. We have been
able to use CROSSFIT on a heterogeneous network of platforms, including many flavors of UNIX,
LINUX, AIX and Windows.
We have been using CROSSFIT for almost all of our test automation needs for more than a year now.
We were able to reduce the time taken for testing and improve the number of integration tests that we
could run in the reduced time. We are also able to conduct the tests on multiple platforms and test
beds with minimal effort.

2. The Integration Testing Problem

2.1 Problem Definition

Consider a company dealing with application integration testing problem. The applications may be
running on various platforms. There may be numerous operating systems, hardware, applications and
integration tools. These applications are written in a host of languages like C++, VB, Java, PERL,
and so on. The integration solutions may use technologies like DCOM, CORBA, various types of
messaging, and so on. The applications utilize DBMSs, directories, file servers, and so on. The
applications communicate with products in partner companies using established protocols. The
components of the application under test will be distributed across various servers in the network. All
these need to be tested and certified for product releases as well as changes in the configuration of
any of the component systems. Such distributed test scenarios need to be rerun over multiple
environments such as QA, Staging, Production, and so on.

The certification of a system or a change needs to be under taken on a host of operating systems. The
testing time is very limited due to tight deadlines. Future changes to any aspect of the system must
pass a regression test suite. The testing should orchestrate a complex tango of interactions to catch
any potential bugs that could jeopardize the functioning. The testing should be repeatable as many
times as possible, within the deadline, to assure consistency. Due to the asynchronous nature of

Copyright 2002. Aalayance, Inc. All rights reserved.

Page 4 July 15, 2002

messaging, race conditions are a common source of bugs. Foregoing a day of testing activity early in
the project is likely to cost the firm 3 to 10 days of activity downstream [Jon94]. This inefficiency
will undermine the development speed; increase the cost, and the time to market.

The degree of success and repeatability of the above complex scenario will ultimately affect the
bottom-line of the company as well as the trust placed in the IT system integration.

2.2 Nuances of the Problem

Interactive automation complicates the testing problem, as it requires different actions depending on
the intermittent run-time output. In some cases, a temporary transfer of control to the user executing
the automation will be required. Yet, in some other cases where a process outputs a lot of data,
automating the analysis of the data will be required.

It is also important to elegantly control the configuration of a process, its provisioning and de-
provisioning. It is important to restore the original environment after the completion of testing.
Different sub-operations within the testing process should isolate their specific environments from
each other. Testing a fully distributed system involves development of test cases that involve
distributed logic. The manual orchestration of certain scenarios is not practical due to the near real
time synchronization requirements of the test cases. Any delays in manual orchestration intrusively
change the system behavior and cannot catch race conditions spanning multiple applications.

While analyzing test data from a single system itself is a complex task, analyzing test data from
multiple applications and the integration tools in near real time is more complex. Therefore, it is
important to facilitate filtering the reams of output to the specific portions that determine the outcome
of the test and provide clues on the bugs that may exist. It is also desirable to automate matching
actual outputs to the expected or gold output, so that the tester can focus on specific problems and
their diagnosis.

The EAIT tool itself should be lightweight, so that it does not affect the actual performance of the
system under test (SUT). The tool should also minimize intrusion into the behavior of the SUT, so
that it does not alter or mask the defects in the SUT during testing.
Due to the distributed nature of the EAI domain, the testing tool should also be distributed. It should
support its own synchronization and communication mechanisms to support the test programs. These
need to be out of band with respect to the SUT to be non-intrusive.

3. CROSSFIT Solution

3.1 Architectural Details

CROSSFIT uses a framework of distributed agents. The agents are organized in a peer-to-peer
network. A test suite can be launched from any of the agents. The agent network is then managed in a
master-slave mode. The orchestration comes from a designated leader. The rest of the participating
agents are subordinate to the leader. During the execution of a test suite or a test case, it is possible

Copyright 2002. Aalayance, Inc. All rights reserved.

Page 5 July 15, 2002

that one of the slave agents may start a distributed sub-test. It that case, the specific agent becomes
the master of orchestration of the sub-test, and the other agents participating in that sub-test are slaves
in the context of that sub-test. The overall architecture relies on a peer-to-peer agent framework. This
is illustrated in Fig. 1.

The agents launch their portions of the SUT in a controlled sandbox. This is to isolate the testing
tools behavior from the defects in the SUT. A crash in the SUT does not bring down the test harness.

 The test framework itself is lightweight, so that it does not affect the actual performance of the
product being tested. It supports its own synchronization and communication mechanisms that are
utilized exclusively by the test programs and do not interfere with the SUT. The test programs can
create distributed events across the test framework to test the SUT.

At a very high level, a test run consists of three steps:

1. Provisioning: Setting up the SUT, activating necessary agents and launching various
components.

2. Execution: The test program executes in a distributed fashion, starting with the master agent
and percolating across the agent framework.

3. De-provisioning: The test result data are collected in individual agents and collated into a
database by the master agent. The participating systems are restored to the appropriate state. It
is important to support de-provisioning as a large number of participating systems need to be
cleaned up for other tasks after the conclusion of a test run.

CROSSFIT encourages test developers to separate the test code into a declarative piece and a
procedural piece. This philosophy was followed ground up during the design and implementation of

Fig. 1: CROSSFIT agent architectureFig. 1: CROSSFIT agent architectureFig. 1: CROSSFIT agent architecture

Agent 0
Master

SUT

Comp 0.0

SUT

Comp 0.1

Agent 0
Slave

SUT

Comp 1.0

SUT

Comp 1.1

Agent n
Slave

SUT

Comp n.0

SUT

Comp n.m

…
…

EAI Products

…

Copyright 2002. Aalayance, Inc. All rights reserved.

Page 6 July 15, 2002

CROSSFIT. Fig. 2 illustrates the layered design of CROSSFIT. A test scenario is a collection of test
cases. Each test case has a declarative portion and a procedural portion. These are in turn built from
procedural and declarative modules provided by CROSSFIT. The separation of a test case into a
declarative piece and a procedural pieces eases maintenance effort and retargeting the tests to
different configurations and changes in the SUT.

Fig. 2: CROSSFIT layered designFig. 2: CROSSFIT layered designFig. 2: CROSSFIT layered design

Testcase n

Testcase 2

Testcase 1

Distributed Script
API

Provisioning and Deprovisioning
API

Application Procedural
Library API

Application Declarative
Knowledge modules

Testcase Procedural
Specification

Testcase Declarative
Specification

Te
st

 S
ce

na
rio

3.2 Implementation Details

We implemented CROSSFIT using open-source software such as Tcl, Expect and Bash [New98].
Expect, a superset of Tcl, is a very unique language as it meets the requirements of interactive
automation. Bash is used as the glue to bootstrap the driving of test cases. Using Tcl makes the
framework cross-platform. CROSSFIT supports the option to flush output and re-start buffering at
anytime during the test run. This is made possible by use of Expect's internal mechanisms. By tapping
the power of scripting languages like Expect, TCL and Bash, the CROSSFIT tool is very lightweight.

While test outputs are collected by individual agents and analyzed, summary data and problems
detected are collated by the master agent in charge of the test run, and written to a database.
CROSSFIT supports an API and data model to help the collection of such data. The data model is
suitable for summary reporting and drilling down to specific defects.

3.3 Distributed Testing Capabilities

Application components of the SUT can reside anywhere on the network. The test driver on the
master agent just needs the IP address of the machines hosting the components. Tcl has a module,
Tcl-DP, which we used for distributed testing. Internally, Tcl-DP uses RPC for remote execution. A
dedicated port is used for the communication between the agents. This keeps the communication and

Copyright 2002. Aalayance, Inc. All rights reserved.

Page 7 July 15, 2002

synchronization in CROSSFIT clear of the EAI tools used in the SUT. While the agents themselves
are peer-to-peer, there is a designated master agent in charge of running a test case. This agent drives
all the other agents, leading the orchestration of the test case being run over multiple agents running
on multiple machines. During the test case orchestration, the lead agent assumes the designation of a
master role and the other agents take slave roles. The designation of roles is dynamic to suit the need
of a test run.

3.4 Testware Management

Testware is the product of test development. It consists primarily of test data and utility sets.
Testware development is a continuous process and it needs as much discipline as software product
development. Version control and configuration management are two aspects of that discipline.
CROSSFIT supports a version control repository for testware. The details of that repository are
beyond the scope of this paper.

3.5 Benefits

CROSSFIT provides the following benefits in the context of EAIT:
1. Multi-platform support including various flavors of UNIX, LINUX, AIX and Windows.
2. Lightweight and minimally intrusive due to the use of a few simple script files. There are no

executables or DLLs.
3. Easy to learn, code, deploy, version, and change test suites.
4. Ability to develop, run and maintain automated regression test libraries for complex EAI

scenarios.
5. Savings of several days per QA cycle in a complex setup.
6. Ability to run a test case on multiple SUT configurations with minimal effort.

4. Advanced Features

The following advanced features are supported in CROSSFIT:
1. Reporting: A web/HTML report allows a drill down of the results of test execution from the

top. A drill down from the summary graph of results to detailed log files is possible.
2. Test result analysis: CROSSFIT enables a drill-down to failures, so that testers can focus on

identifying and diagnosing defects.
3. Output filtering: A filter is a text conversion program that will read the source from standard

input and write the converted text to standard output. A date filter should be provided to
replace commonly occurring date formats with placeholders like <DATE> and
<TIMESTAMP>. This filter may optionally be configured to replace all/only some of the date
formats.

4. Output comparison: The following comparisons are supported:
a. Exact comparison with a golden output file
b. Searching for the chunk of text specified by a golden output file

Copyright 2002. Aalayance, Inc. All rights reserved.

Page 8 July 15, 2002

5. Case Study

5.1 Project Alpha

Project Alpha involved testing a simple EAI system consisting of a messaging platform, an
application, and an adapter. At a very high level, the business processes consisted of sending data to
the application via the messaging platform and the adapter, and receiving data from the application
via the adapter into the messaging platform. The goal was to test the builds and releases of the
adapter. There were six target platforms (Solaris, AIX, Linux, HPUX, Windows and DEC-UX) to be tested
and certified, for every major release and minor release each of the messaging platform, the application and the
adapter.

5.2 Cost benefit analysis

Prior to CROSSFIT, this was all done manually. The configuration of the system under test (SUT)
was itself a significant task. Testing was limited to a few scenarios that can be managed manually.
Manual testing on each platform took one complete person day of effort. The product was certified
on six different platforms. So it took six person days of effort to test the product manually.

Table 1 Comparison of effort and complexity of testing before and after CROSSFIT.

Item Before CROSSFIT
(Manual)

After CROSSFIT
(Automated)

1 Number of test scenarios 20 67
2 Number of test cases 50 180
3 Time required to test 8-10 hrs 1.5 hrs (about 0.5 hrs of

person work)
4 Time required to test on six target platforms

(Solaris, AIX, Linux, HP-UX, Microsoft
Windows and DEC-UX)

6-7 person days 3 hrs if done in parallel;
one day if serialized.

5 Time to rerun the test in a new SUT configuration
on a given target platform

1 person day 1.5 hrs (about 0.5 hrs of
work

6 Coverage of features Low High

Using CROSSFIT, it was possible to build and manage a regression test suite spanning sixty-seven
test scenarios and a total of one hundred and eighty test cases. These test scenarios were desirable in
QA, but hitherto infeasible. It was also possible to declaratively specify the configuration of the SUT.
The separation of declarative and procedural portions of a test scenario enabled testing on several
target platforms of the product with minimal effort. With the automation provided by CROSSFIT,
executing the whole regression test library took 90 minutes on each platform. Several platforms could
be tested in parallel. It was possible to cover a larger and more comprehensive set of test scenarios
with fewer people and less time. With CROSSFIT, it was possible to complete the entire testing effort
on the six target platforms in one-person day instead of six days, thus reducing the time by nearly 85%.

Copyright 2002. Aalayance, Inc. All rights reserved.

Page 9 July 15, 2002

Another noticeable benefit was that CROSSFIT enabled building regression test libraries in a
reasonable time frame. These libraries can be reused over subsequent product releases and multiple
platforms. This was not practical before.

5.3 Future Directions

The next version of CROSSFIT will support advanced code generation templates for accomplishing a
lot of common tasks. This will aid in developing new test scenarios by reusing templates as building
blocks.
We are also building a GUI for CROSSFIT to ease the building and managing of test scenarios.
Integration with project schedule management software and bug tracking systems is also in design.
This leverages more value already available in other software development and testing tools in an
enterprise. Support will be added for integration with GUI testing tools, for example with tools that
test drive web interfaces.
Another interesting extension is the ability to orchestrate tests across the Internet. An example
business case for this is the ROSETTANET initiative that involves collaboration across a value chain
network of partners. Testing such a scenario would require extending CROSSFIT with a security
protocol to span multiple enterprises.

6. Conclusions

EAIT is an interesting and challenging domain for QA due to the nuances of the problem. The system
under test often spans multiple applications and multiple platforms. The test scenarios involve
distributed techniques that are hard to code, and impossible to orchestrate manually.
CROSSFIT uses an agent-based architecture and a simple distributed programming model that
separates the procedural portion of a test from the declarative portion. It builds on a number of best
practices in software development and testing. The benefit of CROSSFIT is the ease of building,
running and maintaining a large set of test scenarios in a regression suite the context of EAIT. Some
of the scenarios enabled are not executable manually due to the distributed nature of the problem.
CROSSFIT was successfully used by us and our customers to manage EAIT in a number of
scenarios. We see measurable ROI in reduction of costs and improved coverage of test scenarios.
This results in better quality in the end products that are being tested.

References

[Jon94] C. Jones, Assessment and Control of Software Risks, Yourdon Press Computing, ISBN 0-13-746401-
4, 1994.
[Lib94] D. Libes, Exploring Expect: A Tcl-based Toolkit for Automating Interactive Programs, O’Reilly &
Associates, ISBN 1-56592-090-2, 1994.
[New98] C. Newham and B. Rosenblatt, Learning the bash Shell, 2nd Edition, O’Reilly & Associates, ISBN
1-56592-347-2, 1998.
[Ous94] J. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, ISBN 0-201-63337-X, 1994.

Key Points

Risk problems associated with privacy
Risk problems associated with accessibility
Risk problems associated with third party content

Presentation Abstract

Many organizations still lack insight into what users are experiencing on their website and have no means of finding the risk issues that
drive users away. In addition to quality issues that have the potential to damage a company’s brand, new problems have arisen. These
issues include privacy glitches, accessibility issues and managing third-party links. Since these issues are often buried within tens of
thousands of pages, they are cumbersome and difficult to find and resolve. Until now, this has not been an area well addressed by
vendors or internal quality assurance teams.

Understanding the extent of the problems, where they’re located, and where the responsibility lies for creating and addressing the
problems is critical. Current manual testing methods are expensive and ineffective. This lack of a centralized, automated solution often
means customers will find the problems first.

The consequences of these problems can be severe. They can affect your ROI with impacts such as lost customers, brand erosion,
and reduced conversion and customer retention rates. They can also affect the bottom line through decreased productivity, increased
litigation risk from lack of compliance to corporate or government standards, and a lack of e-metrics to manage the website effectively.

Manually auditing and monitoring corporate websites is not a one-time event and can be costly, inefficient and virtually impossible. Mr.
Weider will share his insight on how to better understand potential risk management issues and how businesses can use the latest
technologies to help proactively manage these issues.

When you leave this session, you will learn:
• How to better understand potential online risk management issues
• How to identify common online risk problems
• What can be done to prevent them
• How to bridge the communications gaps between your legal and technical teams
• How new technologies can automate the testing and analysis of sites for risk issues
• How to integrate risk management into the Web publishing process
• What are the best practices that the world’s leading sites are using to test and manage their sites for risk

About the Author

Michael Weider is the Founder and CTO of Watchfire Corporation. Founding Watchfire in 1996, Mr. Weider has spearheaded the
company into a leadership position in the Website Management software market. As CTO, Michael is responsible for product strategy,
engineering, technical support and customer service. Prior to Watchfire, Mr. Weider was a co-founder of a software startup, Quadrillion
Corporation. He holds a B.S. in engineering from Queens University.

Mr. Weider has spoken at numerous high profile industry and business events, including Internet World UK and the annual Privacy by
Design conference. He has been frequently quoted in the business and trade press including the Wall Street Journal and New York
Times, Investor’s Business Daily and USA Today. Mr. Weider has also been a guest on CNNfn on several occasions to discuss various
website management issues including the topics of privacy and risky content. Mr. Weider was voted the 1999 Young Entrepreneur of
the Year by Profit Magazine and was nominated for the young entrepreneur of year by Ernst and Young.

QW2002 Paper 2A1

Mr. Michael Weider
(Watchfire Corporation)

Testing and Managing Risky Content in the Online World

1

Testing and Managing Risky Content Online
Michael Weider, Founder and CTO, mikew@watchfire.com

OVERVIEW

• What are the issues and risks with Web
content?

• Why is this problem not being addressed well?
• What are some solutions to the problem?

2

WATCHFIRE CORPORATION

Private software company (www.watchfire.com)

Focused on content, testing, analysis and reporting

Scalable, enterprise website management solutions: WebXM

Executive headquarters in Boston, Ottawa

Customers include over 50% of F500

Major Partners include: Inktomi, Interwoven, Vignette, SPSS,
PricewaterhouseCoopers and Deloitte and Touché

EMERGING MARKET

3

CONTENT ISSUES AND RISK EXPOSURE

• Web Content Issues:
– Broken links
– Application failures
– Browser compatibility
– Usability issues
– Outdated or stale content
– Search and navigation

issues
– Accessibility
– Privacy
– Security
– Third party exposure

• Potential Risks:
– Lost business
– Brand damage
– Litigation
– Regulatory problems

WHY ARE SITES SO BAD?

1. Lack of standards for content
2. Lack of process
3. Unclear accountability and ownership
4. Lack of automated tools
5. Amount of content is growing too fast

4

SITES GETTING LARGER AND MORE COMPLICATED

Phase 1
Experiment

Phase 2
Deploy

Phase 3
Business Critical

Number of
Contributors
Frequency
of Changes

1-3 <10

Occasional Regular Daily or hourly

Number of
Pages 100’s 1,000’s 10,000’s – 10’s mil

10-10,000+

Com
ple

xit
y

“The Web Wall”

11

22

33

Importance
and risk to
business

low medium high44

NEW SYSTEMS AND PROCESSES REQUIRED

5

BEST PRACTICES FOR TESTING CONTENT

1. Establish standards for your content
2. Establish ownership, accountability and

enforcement
3. Assess site for gaps
4. Fix problems found
5. Integrate prevention system into publishing process
6. Establish ongoing monitoring, reporting and

management

SAMPLE CONTENT STANDARDS

• Common look and feel
• Minimum quality (broken links, spelling, etc)
• Page weight
• Metadata
• Accessibility
• Legal statements
• Privacy
• Security

6

ACCOUNTABILITY AND ENFORCEMENT

• Many different stakeholders:
– Business units, marketing, development, QA, legal,

IT
• Who is accountable for issues?

– Quality, accessibility, privacy, security, etc
• Who is doing the testing?
• Who is going to fix problems?
• Who will enforce the problem if left

unresolved?

ASSESSING CONTENT FOR GAPS

• How does the site stack up against the
standards?

• Where are the gaps?
• Some things to consider:

– What site(s) do you need to check?
– Do you even know what sites you own?
– Do you have an automated solution to scan the

content?

7

FIXING PROBLEMS

• Each content owner needs a custom report
detailing what the issues are.

• Provide guidance how to resolve issues where
not obvious

• Warning, this can be a lot of work.

PREVENTION - INTEGRATE INTO PUBLISHING
PROCESS

Content Testing System

Development Staging Deployment

Check individual
pages for

compliance to
standards

Check whole site
before publishing

to live server

Continuously monitor
live site for ongoing

compliance

8

Approve/Reject Work Flow Example

Content Creator(s)

Submit new content to workflow

Approver 1
Producer

 Reject: missing Alt text
Approve spelling mistakes

Approver 2
Legal Dept.

Reject: missing privacy statement
Approve

Approver 3
QA
 Reject: broken links
 Approve

Deploy

MONITOR AND MANAGE

9

CONCLUSION

• Content is one of your organizations most
important IT assets

• Needs management to avoid to risks
• New approach to content testing required

– Standards
– Accountability
– Assessment
– Remediation
– Prevention
– Monitoring

Testing and Managing Risky Content Online
Michael Weider, Founder and CTO, mikew@watchfire.com

Key Points

Start or improve the process of testing a large scale web application.
Adapt some of the techniques presented to your specific project needs.
Apply cost saving and practical approaches to your own projects.
Understand the areas of your organization impacted by Web conversion.

Presentation Abstract

This article describes a strategic and systemic approach to testing a large scale application conversion to the Web based on the
experience gained from the first phase of conversion.

Public Works and Government Services Canada is a department of the Government of Canada currently participating in major
infrastructure software development projects that will enable existing applications and facilities to be accessible as multi-tiered web-
based applications. The Common Departmental Financial System(CDFS) is an internally developed back-office application offered to
other government departments which is being transitioned from a client server architecture to a multi-tiered web architecture. CDFS is
the financial management system of choice for 20 government departments with in excess of 1000 full time users.

The transition is planned to tale place over a three year-period. This paper describes the process followed, including the development
and application of standards and checklists to facilitate effective and efficient testing of a large, scale web-enabled application. It will
focus on the impact on 30+ experienced testers and developers as well as the problems faced in transforming current facilities with
limited resources. Special testing concerns are introduced by the fact the current data server will remain static while the client server
will be replaced by a web server hosted on a different mainframe.

Although, the team of software development and testing professionals working with the Financial and Reporting Products Directorate
has considerable experience in testing traditional mainframe and client-server applications. The management challenge is to leverage
this experience and practically apply the knowledge to new and emerging web based technologies.

This article will describe the approach taken, some of the problems encountered in this transition including developing new approaches
to knowledge transfer supplemented with real examples and lessons learned which will be applied to subsequent phases.

About the Author

Peter Lafleur is a manager and business analyst with the Government of Canada with 25+ years experience in the areas of quality
assurance, development and testing of government systems.

QW2002 Paper 2A2

Mr. Peter Lafleur
(Public Works & Government Services Canada)

Testing a large scale application

Testing a Large Scale
Web Application

Testing a Large Scale
Web Application

Presented By:

Peter Lafleur, Manager Product Development

Financial & Reporting Products

• Introduction

• Web Enabling CDFS

• Web Testing

• The Human Factor

• Conclusion

OutlineOutline

BackgroundBackground

• Public Works and Government
Services Canada

• Common Departmental Financial
System (CDFS)

Background: Common
Departmental Financial
System (CDFS) Architecture

Background: Common
Departmental Financial
System (CDFS) Architecture

IBM Mainframe

CSM

Desktop

Presentation Layer

Process Layer
Database Layer

Transaction Layer

Transaction Server Layer

Data Server Layer

Web-enabling CDFSWeb-enabling CDFS

Why Web-enable:
• Current user interface has WinDOS screens

• Presentation layer barrier to new clients

• Conversion to web simplifies distribution of client
component

• Simultaneous installation better coordinated

CDFS Standard Accounts
Payable Screen
CDFS Standard Accounts
Payable Screen

CDFS Web Accounts
Payable Screen
CDFS Web Accounts
Payable Screen

CDFS Web ArchitectureCDFS Web Architecture

Web Browser

HTML / DHTML
JavaScript

Applet

WebSphere Application Server

CICS Transaction
Gateway
CSM/J

HTTP Server

IBM Mainframe

CICS TS/DB2

Existing CDFS
Business Layer
Database Layer

HTTP/HTTPS JSP
Servlet

Servlet/JSP Engine

EXCI

ECI

Web-enabling CDFSWeb-enabling CDFS

Scope:

• Testing responsibility split between 3
partnering organizations

• Focus of this presentation on functional
testing and testing on multiple platforms

Web Testing: Strategic
Approach
Web Testing: Strategic
Approach

Two Key Elements:

1. Reduce testing requirement by strategic
decision-making in web design

2. Review and revise test strategy to
identify impact of web conversion on
existing testing approach

Web Testing: Strategic
Approach
Web Testing: Strategic
Approach

Strategic decision-making in web design:

• Adopted thin client implementation

• Phased conversion

• Identify policies, architectural
constraints & page design standards

Web Testing: Strategic
Approach
Web Testing: Strategic
Approach

Review and revise test strategy:

• Testing approach validated

• Changes in scope imposed by web
conversion

• Challenge to get testers ready for
transition

Basic Objectives of
Testing CDFS
Basic Objectives of
Testing CDFS

• Object and testable units function in
accordance with specifications

• Business rules operate as intended including
message handling

• Interfaces operate correctly & effectively
integrated with other components

• Product conforms to system standards and
methodologies

Basic Objectives of
Testing CDFS – cont’d

Basic Objectives of
Testing CDFS – cont’d

• Design documentation adequately
reflects user requirements

• Problems identified before release rolled
out

• Application functions properly on all
supported platforms

Web Testing: Impact on
Objectives
Web Testing: Impact on
Objectives

• Platform verification biggest change to
scope of testing

• Lab environment established to
support multiple platforms

Web Testing: Quality
Factors
Web Testing: Quality
Factors

• Adaptability

• Accessibility

• Auditability

• Dependability

• Functionality

• Integrity

• Interoperability

• Operability

• Performance

• Reliability

• Security

• Usability

Web Testing: Impact on
Quality Factors
Web Testing: Impact on
Quality Factors

• Expanded meaning for assessment of
certain software quality factors:

– Accessibility

– Reliability

– Usability

Web Testing: Impact on
Quality Factors
Web Testing: Impact on
Quality Factors

Accessibility - all users can access the
application

•Common Look and Feel standard which
defines what a web page should look like

•World Wide Web Consortium definition
of accessibility

Web Testing: Impact on
Quality Factors
Web Testing: Impact on
Quality Factors

Reliability - processes perform without
failure

• Number of supported
browser/operating system
combinations

Web Testing: Impact on
Quality Factors
Web Testing: Impact on
Quality Factors

Usability - easy to operate, prepare input
& interpret output

• Page rendering dependent on browser
version & workstation settings

• Verified recommended workstation
browser settings in test lab

Web Testing:
Problem Management
Web Testing:
Problem Management

Traditional Process:
• Problem Management Report (PMR) raised

for all problems and tracked through
automated system

• Raised by anyone who interacts with system

• Tracked through 5 level problem analysis
process

CDFS Problem
Management Report
CDFS Problem
Management Report

Web Testing:
Problem Management
Web Testing:
Problem Management

New process:
• Internal ‘Bug’ report to avoid unnecessary

duplication of reporting

• Ensure ‘bugs’ tested across multiple platforms

• Test team discusses with technical analysts to
establish if real application problem

• PMR raised subsequently, if necessary

Bug ReportBug Report

Description of problem:Language in Application:

- Browser languageObject being Tested:

Action/PMR Number:Test Case/Script Number:

- Operating SystemEnvironment:

- Browser & VersionSystem:

Configuration using: Database:

Tested in Standard screen:Date of Testing:

Description of Script:Tested by/User I.D.:

Web Testing: CDFS Web
Testing Approach
Web Testing: CDFS Web
Testing Approach

Four levels of testing supported by
separate detail test plans:

i. Object Testing

ii. Integration Testing

iii. Interface Testing

iv. Regression Testing

Test ScriptTest Script

04084 Commitment
@1 has been
approved

No EAA applet
download request nor
pop up for EAA - PAN
screen

11.1.1.2 Client option-
EAA options-Section
32-Y; User EAA ind. -
N

04084 Commitment
@1 has been
approved

No EAA applet
download request nor
pop up for EAA - PAN
screen

11.1.1.1 Client options-
EAA options-Section
32-N; User EAA ind. -
N

Test
Result

Expected resultAdditional criteriaTest Script number &
description

Web ChecklistWeb Checklist

Presentation Checklist Check
Mark

1. Aesthetic Conditions:

1 Are the section headings the correct consistent
colour?

2 Are the menu bar and session info field the correct
consistent colour?

3 Are all the section headings in the consistent font?

4 Is the text in all fields consistent with the font?

5 Are all the section headings aligned on the screen?

6 Are all the input boxes and displayed values aligned
on the screen?

Lab Testing ScheduleLab Testing Schedule

Platform Schedule

Browser Time slot Machine Day 49
Jul 2
Tester Objects

Netscape TS01 M001 Man Fong

Netscape TS01 M002 Simon

Netscape TS01 M003 Kumar/Nagma

Netscape TS01 M004 Ivo

Netscape TS01 M005 Nancy

Netscape TS01 M006 Jean-Yves

Netscape TS01 M007 Long/Nagma

Netscape TS01 M008 Loubna

Internet Exp. TSAM1 M000 Leo

Internet Exp. TSAM1 M000 Xiao

Internet Exp. TSAM1 M000 Sameera

Internet Exp. TSAM1 M000 Vo Jing

The Human FactorThe Human Factor

Greatest Challenge:

– Having the right people

– Ensuring necessary skills

– Testing with confidence

The Human FactorThe Human Factor

Management Response:

• Finding appropriate training

• Empowering staff – participate in
finding solutions

Testing a Large Scale

Web Application

Prepared By: Peter Lafleur
 Manager, CDFS Development Division
 Financial and Reporting Products Directorate
 Central Accounting and Reporting Sector
 Government Operational Services
 Public Works and Government Services Canada

Background

Public Works and Government Services Canada

Public Works and Government Services Canada (PWGSC) is the Government of
Canada's major common service organization. It is our job to help keep the wheels of
government turning as smoothly as possible. We are builders and buyers, architects,
engineers, auditors, interpreters, translators, management consultants, environmental
scientists, real estate professionals and telecommunications specialists.

The department is divided into branches that offer services both to the department itself
and to other Government departments. One of the common services offered by
PWGSC is the Common Departmental Financial System (CDFS) which is an endorsed,
shared financial system of the Canadian federal government and is used by twenty
departments and agencies.

The Common Departmental Financial System (CDFS)

CDFS is a comprehensive on-line departmental financial management and reporting
system designed to simplify and streamline financial administration.

A team of government financial specialists developed CDFS jointly with a private sector
consortium of systems and accounting experts - specifically for government use. The
system was developed in the early 90’s following Object Oriented Design techniques as
a multi-layered Client/Server Application. The current design implementation supports
two layers in the client domain primari ly running on client LANs and two layers in the
server domain running on a PWGSC mainframe. The client layers include the
presentation layer that contains the code for all screens and the process layer that
handles message routing, formatting and routine data editing.

IBM Mainframe

CSM

Desktop

Presentation Layer

Process Layer
Database Layer

Transaction Layer

Transaction Server Layer

Data Server Layer

Figure 1: CDFS Standard Architecture

CDFS is one of the largest applications run on PWGSC infrastructure with over
four thousand programs, one hundred and thirty objects and nine hundred
English screens with an equal number of French screens

Web-enabling CDFS

Scope

The web enabling of the Common Departmental Financial System (CDFS) is a joint
effort involving three PWGSC organizations – Financial and Reporting Products
Directorate (FRPD), Application Management Services (AMS) and Network and
Computer Services (NCS). FRPD has product management responsibility for CDFS and
is responsible for the day-to-day operation of the system, operational planning, client
support, system requirement definition and application quality assurance. CDFS is
managed by FRPD with all changes fully documented and compiled in one of the two full
system releases that are done each year. NCS provides the technical infrastructure,
electronic communications infrastructure and support, data center support and web
support services, AMS supplies architecture development, design analysis and
programming services.

The responsibility for testing CDFS is split across the three partnering organizations.
AMS is responsible for program code testing, unit testing and platform certification. NCS
is responsible for operational testing and certification. FRPD is responsible for functional
testing, including functional testing on multiple platforms. This paper focuses on the
FRPD testing experience.

Overview

The current user interface for CDFS employs WinDOS based screens that simulate a
windows application. When CDFS was originally developed Windows was in its infancy
and the decision was made to go with DOS based screens. The presentation layer was
later modified to accommodate the Windows operating systems. Although the
application has very robust functionality the presentation layer remains a major sore
point with our current clients and is the number one obstacle cited by prospe ctive new
clients.

Figure 2: CDFS Standard Accounts Payable Screen

The decision to convert the Client component to the web allows us to redesign the user
interface and take advantage of the increased layout and formatting capabilities of web
pages. This also lessens the burden of finding qualified programmers to support the
application.

Figure 3: CDFS Web Accounts Payable Screen

Conversion to the web also addresses a number of problems with the current distribution
of the client component within the client environment. The client component is distributed
to clients by CD or by NAL object to client LANs with each release of CDFS for
simultaneous installation. Simultaneous installation is required since all clients use the

same version of CDFS. Rather than having to co-ordinate installation across the country
users will access the same address when a new version is released.

The decision to web-enable CDFS was made two years ago. Faced with a number of
implementation options we decided to establish a multi -year project and treat this as a
technological conversion rather than a re -design of the application. Although moving to
the web has an obvious impact on architecture the same basic architectural approach is
being implemented for web as was implemented for CDFS Standard (non-web). The
presentation and process layers will reside on the web server while the transaction and
database layers reside unchanged on the host
server.

Web Browser

HTML / DHTML
JavaScript

Applet

WebSphere Application Server

CICS Transaction
Gateway
CSM/J

HTTP Server

IBM Mainframe

CICS TS/DB2

Existing CDFS
Business Layer
Database Layer

HTTP/HTTPS JSP
Servlet

Servlet/JSP Engine

EXCI

ECI

Figure 4: CDFS Web Architecture

 Web Testing

Strategic Approach to Testing

Collectively the management and staff of FRPD have extensive experience managing
large systems and development projects. Since testing of CDFS is based on both the
defined change requirements and the revised design, we recognized the importance of
reducing our testing domain through strategic decision -making in our web design.
Based on industry experience and recommendations from external consultants we
chose a thin client implementation. The client layers reside on a PWGSC web server
connected to the host server. The presentation layer and process layer will be rewritten
for the web with all data edits removed but will use the same messages for
communicating with the server as the standard version. This limits the degree of change

and minimizes the risk and the scope of testing since two of our four layers will remain
unchanged.

We also chose to implement this conversion on a phased basis by converting linked
objects in groups allowing for a systematic conversion geared towards the majority of
end-users. Conversion of the first twenty-five objects should satisfy the daily,
operational needs of ninety percent of our users. A phased conversion also allows us to
limit the extent of testing in each phase to manageable volumes.

During the design phase we identified policies, architectural constraints and the need for
page design standards, all in support of l imiting test scope. This includes adherence to
corporate standards such as the corporate Common Look and Feel Policy as well as the
development of a Functional Standards Guide and a Web Application Architecture
document specific to CDFS Web. These documents provide the basis for designing our
test cases and standard test checklists.

Recognizing that moving to the web would have serious impacts on both our resources
and our testing approach we undertook the review and revision of our testing strategy to
identify the impact of web conversion on our existing testing approach and highlight the
changes in scope imposed by web conversion. We found that our basic test objectives
had not changed but our role in testing against certain objectives had expanded.

Finally, we took a strategic approach to preparing our business analysts and testers to
begin testing the converted objects. We identified a core group of business analysts to
participate in the conversion process from the design phase through to testing. We also
identified and provided the necessary training to ensure they would be prepared before
testing began.

Objectives and Quality Factors Affecting Testing CDFS

The basic objectives of testing CDFS, established during the development of CDFS
Standard, are:

� object and testable units function in accordance with specifications;
� business rules operate as intended including meaningful message handling;
� interfaces operate correctly and are effectively integrated with other components;
� design documentation adequately reflects user requirements;
� the product conforms to system standards and methodologies;
� any problems are identified before the release is rolled out; and
� the application functions properly on all supported platforms.

The greatest impact resulting from web conversion was on platform verification. We had
traditionally viewed platform testing as strictly a technical item with platform testing as
the responsibility of AMS and NCS. All FRPD testing was done on our regular
workstations on a common platform.

The decision to support both Netscape Communicator and Internet Explorer as browsers
and versions of Windows from 95 up to, but not including XP, necessitated a change in

this view. This was further complicated by the requirements of a bilingual system –
CDFS supports both English and French implementations. The responsibility for final
product quality resides with FRPD so we now conduct platform testing and have
established a lab environment that supports multiple platforms .

We also identified the impact of web conversion on the software quality factors we
currently assess for CDFS Standard:

� Adaptability - functions can be enhanced without major design rework
� Accessibility - all users can access the application
� Auditability - tables present all access and transactions
� Dependability - users can trust results provided
� Functionality - software performs as per specifications
� Integrity - data is stored and returned unaltered
� Interoperability - data can be imported or exported properly
� Operability - software can easily be put into operation- not complex
� Performance - intended functions are performed within predefined time limits
� Reliability - processes perform without failure
� Security - the system and data can only be accessed by authorized users
� Usability - easy to operate, prepare input and interpret output

The factors of accessibility, reliability and usability take on expanded meaning under a
web conversion. Accessibility is impacted by the Common Look and Feel standard
which covers both what a web page should look like and defines accessibility in line with
the World Wide Web Consortium definition . Reliability and usability are impacted by
the number of operating system/browser combinations that are supported and by the
page rendering control that is given up to the browsers. The way in which a page is
rendered is dependant not only on the user’s browser version but also on individual
workstation settings which are at the total control of the end -user. In order to minimize
the impact of this loss of control we developed recommended workstation browser
settings for our clients which we verified in our test lab.

Problem Management

Problem management is also affected by web conversion. Traditionally we identify
problems with CDFS in testing or in production via a problem management report (PMR)
in INFOMAN which is our departmental, automated change and problem management
system.. A PMR can be raised by anyone who interacts with the system as soon as it is
discovered. The problem is then tracked and reported on through a structured five level
problem resolution process.

Figure 5: Sample Problem Management Report

We supplemented this process with internal “Bug” reporting to avoid unnecessary
duplication of problem reporting and to ensure bugs are tested across multiple platforms.
Initially problems are identified as bugs by our business analysts (testers) which are
reviewed by senior business analysts who subsequently review the bugs and determine if
they are really different or if multiple reports identify the same problem. The senior
analysts also identify any supplemental testing that may be needed. On a weekly basis
the entire test team meets with our technical an alysts to review and discuss these bugs to
determine if a real application problem exists or if we are dealing with browser
limitations. Once the bugs have been reviewed and real problems are identified we raise
PMRs which go through the normal problem support process.

Tested by/User ID:
Date of testing:
Database:
System:
Environment:
Object being tested:
Language used in application:
Test case/script number:
Description of script:
Tested in Standard Screen:
Configuration using:
 Operating System:
 Browser & Version:
 Browser Language:
 Description of Problem:

Severity:
Reviewed by:
Action/PMR Number:
Date:

Figure 6: Sample Bug Report

CDFS Web Testing Approach

Our testing strategy identifies four distinct levels of testing each supported by a project
plan and detail test plans. The testing project plan is maintained by a testing co -ordinator
and is used to control testing progress and feeds into our high level release plan. The
detail test plans are developed by senior business analysts based on system design
documentation and, in the case of web conversion, on the existing CDFS Standard
screens.

Although the four levels of testing are generally carried out at different times in our tes t
window they can be done simultaneously. Each level – Object, Integration, Interface and
Regression – has a separate focus and separate test plans.

Object Testing

Object validation is the first level of acceptance testing. It is the software quality
assurance validation of basic object functionality to ensure that the object is operating as
the functional design documentation specified. Object testing is done as much as possible
in a stand alone environment. Object testing validates all four layer s of each object on
both web and non-web versions.

Examples of object testing include:

 - verification that screens and pull down menus appear as per specifications;
 - verification of action availability;
 - verification that lists called are appropria te;

- verification of the format/update of date fields;
 - verification of maximum field lengths; and
 - verification that messages are valid and correct.

Web page format and content are tested for compliance to standards. Addit ionally, all
business edits have been moved from the process layer to the transaction layer so object
tests are used to confirm that the edits have been successfully moved to the transaction
layer.

Changes to the database are initiated by messages from the transaction layer. The updates
to the database layer are verified by comparing the updates made using the web screen

for input and updates made using the standard screen for input. The object tests
performed on the standard screens and the same object test performed on the web page
must update the tables in the same fashion.

 Presentation Checklist Check
MarkC
heckma

rk

1 Aesthetic Conditions:
1 Are the section headings the correct consistent colour?
2 Are the menu bar and session info field the correct consistent

colour?

3 Are all the section headings in the consistent font?
4 Is the text in all fields consistent with the font?
5 Are all the section headings aligned perfectly on the screen?
6 Are all the input boxes and displayed values aligned perfectly on

the screen?

7 Are all field literals aligned correctly on the screen?
8 Can the screen be minimisable?
9 Can the screen be resizable?

10 Are all the field literals spelt correctly?
Figure 7: Presentation Layer Object Checklist

Integration Testing

Integration testing includes testable unit and system wide testing. Testable unit or
functional testing is the testing of an integration of CDFS objects to form business
functions and sub-functions. A testable unit is made up of several objects which combine
to form a discrete business process, such as raising an accounts payable and issuing a
payment, and verifies that the process performs in accordance with the functional design
specifications and responds correctly to all conditions presented by data flows.

System wide testing is designed to test the integration of the transactions from the
beginning of a processing cycle to the end of the processing cycle. In the case of web
conversion this validates the integrity of data entered using web objects and processed
further by non-web objects.

Test Script number & description Additional criteria Expected result Test Result
11.1.1.1 Client options-EAA
options-Section 32-N; User EAA
ind. - N

No EAA applet download
request nor pop up for
EAA - PAN screen

04084 Commitment
@1 has been
approved

11.1.1.2 Client option-EAA
options-Section 32-Y; User EAA
ind. - N

No EAA applet download
request nor pop up for
EAA - PAN screen

04084 Commitment
@1 has been
approved

11.1.2.1 Client options-EAA
options-Section 32-N; User EAA
ind. - N

No EAA applet download
request nor pop up for
EAA - PAN screen

04084 Commitment
@1 has been
approved

Figure 8: Sample Test Script

Interface Testing

Interface testing validates the inter-operability of CDFS with its partnering systems.
CDFS provides multiple interface options including batch, on-line and message file
transfers. The message file transfer capability is included in the first phase of web
conversion and is accomplished using a signed applet. The testing of signed applets adds
a new dimension to our existing tests since they represent true web functionality for
distributing small programs. We now have to assess both the functionality provided by
the applet and its impact on user workstations.

Regression Testing

Regression testing is testing of previously verified functionality ,to ensure that the
process has not been impacted by other system changes. Regression testing is primarily
conducted using using automated testing tools. FRPD uses two different automated test
tools -AutoTester and Rational Robot. Both automated systems support web testing but
new web shells and scripts are required. The benefits of these automated tools will be
seen in subsequent releases of CDFS.

Platform Coverage

In testing CDFS we consider a “Platform” to be the “Hardware” and “Software”
environment on which an application runs. The CDFS Web application must
operate on all supported platforms including operating system/browser
combinations in both English and French. Platform testing is carried out in a lab
environment on a scheduled basis.

There are no individual testplans for platform coverage but a testing schedule is
developed to ensure that sufficient coverage of each supported platform takes
place. Platform testing is conducted continuously throughout our test window
with target coverage determined by a survey of client platforms.

Platform schedule

Browser Time slot Machine Day 49
 Jul 2
Tester Objects

Netscape TS01 M001 Man Fong
Netscape TS01 M002 Simon
Netscape TS01 M003 Kumar/Nagma
Netscape TS01 M004 Ivo
Netscape TS01 M005 Nancy
Netscape TS01 M006 Jean-Yves
Netscape TS01 M007 Long/Nagma
Netscape TS01 M008 Loubna
Internet Exp.TSAM1 M000 Leo
Internet Exp.TSAM1 M000 Xiao

Figure 9: Sample Platform Testing Schedule

The Human Factor

Conversion to the web presents a number of testing challenges to large scale
applications. The need to review testing strategies, limit scope and assign
responsibility for testing addresses some of these challenges however, the greatest
challenge is ensuring that you have the right people with the necessary skills who
can test with confidence. A major technological change can be intimidating even
for highly experienced testers. In FRPD we have a great deal of experience
testing applications and our techniques and approaches are equally valid in a web
environment but moving to the web brings with it a whole new vocabulary, new
technology and new perspectives on testing.

We knew our senior analysts were the right people to lead testing, but we needed
to address the vocabulary, technology and testing perspectives issues. We had to
ensure our analysts had access to the training and information they needed to
master these new concepts. This was by far the most difficult aspect of
conversion because when we started the process all the training we could find
related to writing HTML or managing small web sites. We sent all of our staff,
including management, on web familiarization courses that alleviated some, but
not all ,of our concerns.

Fortunately, we found a series of workshops offered by AMIBUG Inc. that
covered web testing based on real life experiences. We worked with Robert
Sabourin of AMIBUG to adapt the workshop material and provided this training
to all of our managers and business analysts. The result has been successful
completion of our first round of testing with confident testers who understood
what had to be tested and how to perform the testing.

Providing proper training and the opportunity to participate and learn fr om the
design phase through to testing empowered our people to adapt as they

encountered new issues and problems and share their knowledge in finding
solutions.

Conclusion

On July 02, 2002 we successfully completed testing of our first web objects. We
will be running a production pilot in October with three of our clients and plan to
go to full production mid-November. Unfortunately, at the time of writing this
paper we have not conducted a lessons learned session but are planning one for
late July. Based on this round of testing I expect there will be some interesting
comments from our business analysts that will enable us to streamline and refine
our testing approach in time for the next round of testing.

Presentation Abstract

One of the most common yet vexing questions asked of Software Quality Assurance managers and testers is "When will we be done
testing?" Product engineering and marketing groups have a vested interest in knowing when the software under test will be at an
acceptable level of quality. While this question is not at all easy to answer, modeling the arrival of defects during testing can provide
clues such as predictions of when a given percentage of the estimated total defects will be found, or the time at which the rate of newly
arriving defects will be below a given threshold. The Weibull distribution serves as an excellent model for software defect arrival. Three
case studies based on actual projects are provided.

About the Author

Erik Simmons has 15 years experience in multiple aspects of software and quality engineering. Erik currently works as Platform Quality
Engineer in the Platform Quality Methods group, part of the Corporate Quality Network at Intel Corporation. He is responsible for
Requirements Engineering practices at Intel, and lends support to several other corporate software and product quality initiatives. Erik
is a member of the Pacific Northwest Software Quality Conference Board of Directors and the Steering Committee of the Rose City
SPIN. He holds a Masters degree in mathematical modeling and a Bachelors degree in applied mathematics from Humboldt State
University in California, and was appointed to the Clinical Faculty of Oregon Health Sciences University in 1991.

QW2002 Paper 3A1

Dr. Erik Simmons
(Intel Corporation)

Software Defect Arrival Modeling With the Weibull Distribution

1

Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

When Will We be Done Testing?

For information, contact:
Erik.Simmons@Intel.com

Software Defect Arrival Modeling
With the Weibull Distribution

Defect Arrival Data for Project A

y = 0.1885x - 0.0004
R2 = 0.9999

y = 1.7947x - 1.2659
R2 = 0.9619

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

ln(time)

ln
(ln

(1
/[1

-F
(t)

]))
 (s

ca
le

d)

First Failure Mode
Second Failure Mode

Erik Simmons, Intel Corporation

2Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Contents

1. The Weibull Distribution

2. Software Defect Arrival Modeling – the
Basics

3. Fitting the Weibull Distribution to Defect
Arrival Data

4. Case Studies

5. Sources for More Information

1. The Weibull Distribution

2. Software Defect Arrival Modeling – the
Basics

3. Fitting the Weibull Distribution to Defect
Arrival Data

4. Case Studies

5. Sources for More Information

2

3Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

The Weibull Distribution

Discovered in 1937 by Waloddi Weibull

Used since the 1950s to model diverse things:
•Hardware failures
•Radar clutter
•Warranty & support costs
•Spare parts levels
•And many more…

Discovered in 1937 by Waloddi Weibull

Used since the 1950s to model diverse things:
•Hardware failures
•Radar clutter
•Warranty & support costs
•Spare parts levels
•And many more…

βη)/(1)(tetF −−=

The two-parameter Weibull:

4Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

The Weibull Distribution

The parameters of the Weibull distribution:

β - the Shape parameter

η - the Characteristic Life

β < 1 indicates ‘infant mortality’, where the longer the
system runs the less likely failure becomes

When β = 1, the Weibull reduces to the Exponential
distribution, implying random failure

β > 1 indicates wear out, where the longer the system
runs the more likely failure becomes

η is the point at which 63.2% of the failures have occurred

The parameters of the Weibull distribution:

β - the Shape parameter

η - the Characteristic Life

β < 1 indicates ‘infant mortality’, where the longer the
system runs the less likely failure becomes

When β = 1, the Weibull reduces to the Exponential
distribution, implying random failure

β > 1 indicates wear out, where the longer the system
runs the more likely failure becomes

η is the point at which 63.2% of the failures have occurred

3

5Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

The Weibull Distribution

Sample Curves from the Weibull Family

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25

Measured Units (e.g., time)

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

6Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Software Defect Arrival Modeling

Failure model classifications [Lyu95]:

•Failures per time period

•Time between failures

Time domains [Musa87]:

•Execution time

•Calendar time

The execution time domain is generally recognized as
superior to calendar time, but can be harder to measure

This paper uses the number of failures per calendar week

Failure model classifications [Lyu95]:

•Failures per time period

•Time between failures

Time domains [Musa87]:

•Execution time

•Calendar time

The execution time domain is generally recognized as
superior to calendar time, but can be harder to measure

This paper uses the number of failures per calendar week

4

7Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Weibull Model Assumptions

1. Testing occurs in a way that is similar to the way the
software will be operated

2. All defects are equally likely to be encountered

3. All defects are independent

4. There is a fixed, finite number of defects in the
software at the start of testing

5. The time to arrival of a defect follows a Weibull
distribution

6. The number of defects detected in a testing interval is
independent of the number detected in other testing
intervals for any finite collection of intervals

1. Testing occurs in a way that is similar to the way the
software will be operated

2. All defects are equally likely to be encountered

3. All defects are independent

4. There is a fixed, finite number of defects in the
software at the start of testing

5. The time to arrival of a defect follows a Weibull
distribution

6. The number of defects detected in a testing interval is
independent of the number detected in other testing
intervals for any finite collection of intervals

Luckily, the Weibull is robust to most violations…

8Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Fitting the Weibull Distribution

The steps to fit the two-parameter Weibull distribution to
defect arrival data are:

1. Obtain an estimate of the number of defects in the
software

2. Calculate the cumulative proportion of total defects
arriving each period

3. Transform the data to obtain a linear form
4. Fit a least-squares line to the data
5. If the fit is acceptable, use the line to obtain estimates

of β and η.
6. Plot the Weibull distribution versus the actual data

The steps to fit the two-parameter Weibull distribution to
defect arrival data are:

1. Obtain an estimate of the number of defects in the
software

2. Calculate the cumulative proportion of total defects
arriving each period

3. Transform the data to obtain a linear form
4. Fit a least-squares line to the data
5. If the fit is acceptable, use the line to obtain estimates

of β and η.
6. Plot the Weibull distribution versus the actual data

5

9Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Sample Data

945

616

777

1118

824

273

102

51

New DefectsWeek

10Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Estimate the Total Number of Defects

An estimate can be derived in several ways:
•Historical data
•Commercial software
•LOC Function Points Defects
•Etc…

If the estimate is off significantly, you will see it in the
plots as time goes on

The estimate can be revised during the process

You can also use a high and low estimate and plot more
than one model

An estimate can be derived in several ways:
•Historical data
•Commercial software
•LOC Function Points Defects
•Etc…

If the estimate is off significantly, you will see it in the
plots as time goes on

The estimate can be revised during the process

You can also use a high and low estimate and plot more
than one model

Sample data estimate: 1200 defects

6

11Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Calculate the Cumulative Proportions

0.3891118

0.297777

0.233616

0.182945

0.103824

0.035273

0.013102

0.00451

Cumulative
Proportion F(t)

New DefectsWeek
t

12Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Transform the Data to a Linear Form

The two-parameter Weibull can be re-expressed in a
linear form:

The two-parameter Weibull can be re-expressed in a
linear form:

() ()ηββ lnln
)(1

1lnln −=

−

t
tF

Y = mX + B

βη)/(1)(tetF −−=

7

13Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Transform the Data to a Linear Form

4.771166-0.707392.079442

4.434213-1.044341.94591

4.149070-1.329471.791759

3.871539-1.60701.1609438

3.262797-2.215761.386294

2.143905-3.334651.098612

1.102808-4.375740.693147

0-5.478550

Rescaledln(ln(1/(1-F(t)))ln(Week)

14Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Fit a Least Squares Line to the Data

Weibull Plot of Sample Defect Arrival Data

y = 2.4239x - 0.2461
R2 = 0.9846

-1

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5

Defect Arrival
Linear (Defect Arrival)

8

15Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

If the Fit is Acceptable, Estimate β and η

The R2 for the line is .9846, so about 98% of the variation in
the data is explained by the line

β can be read from the regression equation as the slope:
2.4329

η can be calculated by solving the following equation
(remember that we rescaled the data):

The R2 for the line is .9846, so about 98% of the variation in
the data is explained by the line

β can be read from the regression equation as the slope:
2.4329

η can be calculated by solving the following equation
(remember that we rescaled the data):

() 2461.ln4239.247855.5
632.1
1lnln −=+

−
η

Solving, we get η = 10.6 weeks

16Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Plot the Model vs. the Actual Data

Weekly Defect Arrival

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Week

N
ew

 D
ef

ec
ts

Model
Actual Data

9

17Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Plot the Model vs. the Actual Data

Cumulative Defect Arrival

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Week

Pr
op

or
tio

n
of

 D
ef

ec
ts

 A
rr

iv
ed

Model
Actual Data

Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Case Studies

10

19Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Project A

Two-tiered client/server application

4 developers, 1 tester

Manual testing according to a written plan

Weibull fit using 1008 located defects

Two-tiered client/server application

4 developers, 1 tester

Manual testing according to a written plan

Weibull fit using 1008 located defects

20Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Project A: Weibull Plot

Defect Arrival Data for Project A

y = 0.1885x - 0.0004
R2 = 0.9999

y = 1.7947x - 1.2659
R2 = 0.9619

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

ln(time)

ln
(ln

(1
/[1

-F
(t)

]))
 (s

ca
le

d)

First Failure Mode
Second Failure Mode

11

21Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Project A: Weekly Arrival

Weekly Defect Arrival Data: Project A

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Project Week

N
ew

 D
ef

ec
ts

Actual
Model

22Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Project B

Web-enabled three-tiered client/server application

8 developers, 1-2.5 testers

Manual testing according to a extensive, inspected plan

First Weibull fit to 1000 estimated defects

Total defect estimate trimmed to 800 near the end

Final fit to 739 defects

Web-enabled three-tiered client/server application

8 developers, 1-2.5 testers

Manual testing according to a extensive, inspected plan

First Weibull fit to 1000 estimated defects

Total defect estimate trimmed to 800 near the end

Final fit to 739 defects

12

23Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Project B: Weibull Plot

Defect Arrival Data for Project B

y = 3.2529x - 3.806
R2 = 0.9772

y = 0.6713x + 0.0616
R2 = 0.8668

y = 9.4328x - 25.99
R2 = 0.9589

0

1

2

3

4

5

6

7

8

9

0 0.5 1 1.5 2 2.5 3 3.5 4

ln(time)

ln
(ln

(1
/[1

-F
(t)

]))
 (s

ca
le

d)

First Failure Mode
Second Failure Mode
Acceptance Testing

24Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Project B: Weekly Arrival

Weekly Defect Arrival Data: Project B

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Project Week

N
ew

 D
ef

ec
ts

Actual
Model

13

25Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Project B: Cumulative Arrival

Cumulative Defect Arrival: Project B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Project Week

P
ro

po
rti

on
 o

f T
ot

al
 D

ef
ec

ts

Actual
Model

26Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Project C

Traditional two-tiered client/server application

12 developers, 4-7 testers

Mix of mostly manual and some automated testing
according to extensive plans and specifications

First Weibull fit to 2000 estimated defects

Total defect estimate raised to 2500 during testing

Traditional two-tiered client/server application

12 developers, 4-7 testers

Mix of mostly manual and some automated testing
according to extensive plans and specifications

First Weibull fit to 2000 estimated defects

Total defect estimate raised to 2500 during testing

14

27Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Project C: Weibull Plot

Defect Arrival Data for Project C

y = 1.1329x + 0.0533
R2 = 0.9612

y = 0.6128x + 1.3778
R2 = 0.9571

y = 2.6139x - 3.0027
R2 = 0.9951

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4

ln(time)

ln
(ln

(1
/[1

-F
(t)

]))
 (s

ca
le

d)

First Failure Mode
Second Failure Mode
Third Failure Mode

28Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Project C: Weekly Arrival

Weekly Defect Arrival Data: Project C

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Project Week

N
ew

 D
ef

ec
ts

Actual
Model

15

29Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Discussion

•Fits appear to be better when non-cosmetic defects are
used

•‘Infant mortality’ failure is common at the beginning of
testing efforts

•Use care when comparing β parameters between
projects because of nonlinear axes

•Estimates appear to be stable enough to be useful only a
few weeks after the main failure mode appears

•The project’s lifecycle will influence defect arrival patterns

•Fits appear to be better when non-cosmetic defects are
used

•‘Infant mortality’ failure is common at the beginning of
testing efforts

•Use care when comparing β parameters between
projects because of nonlinear axes

•Estimates appear to be stable enough to be useful only a
few weeks after the main failure mode appears

•The project’s lifecycle will influence defect arrival patterns

30Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Comparison of Dominant Failure Modes

Comparison of Dominant Failure Modes

y = 1.4751x - 0.2869
R2 = 0.9762

y = 2.4597x - 1.5736
R2 = 0.9449

y = 1.7138x - 1.0519
R2 = 0.9438

-4

-2

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

ln(Time)

ln
(ln

(1
/[1

-F
(t)

]))
 (s

ca
le

d)

Project A
Project B
Project C

16

31Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Possible Future Work

There are three main areas for more work:

1. What factors influence β?

2. Can the need for an estimate of total defects be
removed?

3. Are results significantly better with execution time
domain and/or time between failures data?

There are three main areas for more work:

1. What factors influence β?

2. Can the need for an estimate of total defects be
removed?

3. Are results significantly better with execution time
domain and/or time between failures data?

32Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

References

Abernethy98 Abernethy, Dr. Robert B., The New Weibull Handbook,
3rd ed., Self-published 1998

Jones97 Jones, Capers, Software Quality – Analysis and
Guidelines for Success, Thompson Computer Press
1997

Kan95 Kan, Stephen H., Metrics and Models in Software
Quality Engineering, Addison Wesley 1995

Lyu95 Lyu, Michael (ed.), Handbook of Software Reliability
Engineering, McGraw-Hill/IEEE Computer Press 1995

Musa87 Musa, John, et al., Software Reliability – Measurement,
Prediction, Application, McGraw-Hill 1987

Putnam92 Putnam, Lawrence, and Myers, Ware, Measures for
Excellence – Reliable Software On Time, Within
Budget, Yourdon Press 1992

17

Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Backup

34Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Relationship Between MTTF and η

)/11(βη +Γ=MTTF

For the Weibull distribution, the Mean Time to Failure is
related to the Characteristic Life η by the following formula:

For the Weibull distribution, the Mean Time to Failure is
related to the Characteristic Life η by the following formula:

where:
Γ is the gamma function, and
β Is the Weibull shape parameter

If β = 1, then the MTTF = η (the Exponential distribution)

If β > 1, then the MTTF < η

If β < 1, then the MTTF > η

If β = 1, then the MTTF = η (the Exponential distribution)

If β > 1, then the MTTF < η

If β < 1, then the MTTF > η

18

35Version 1.1
7/02

Copyright © 2000, 2002 Intel Corporation. No part of this presentation
may be copied without the written permission of Intel Corporation.

Derivation of the Linear Weibull Form

()
()()
()()[])ln()ln()(1/1lnln

)/()(1/1ln
)(1/1

1)(
)/(

)/(

ηββ
η β

η

η

β

β

−=−
=−
=−

−= −

ttF
ttF
etF

etF
t

t

Y = mX + B

Key Points

Integrate defect-tracking with customer support to collect accurate field quality info.
Integrate defect tracking with version control to predict when you have tested enough.
Integrate defect tracking with build tool to eliminate unnecessary last-minute changes.

Presentation Abstract

Defect-tracking tools contain a wealth of information that can provide valuable insights into your QA Process. This presentation will
show case studies from two companies who used integrations to their defect-tracking tool to measure, evaluate and improve their
processes, both within QA, and in other organizations throughout the enterprise.

About the Author

Dr. Shaw has been working in the software development field since 1983, when she was commissioned as a Lt. In the US Air Force. In
the Air Force she held positions as a systems programmer, an operations manager, a database programmer and a configurations
manager. Upon leaving the Air Force, she completed her Ph.D. in Computer Science before joining Autometric, Inc., first as a senior
developer, then as the Technical Director for the Space Applications Division. She joined TeamShare, Inc. as Director of Strategic
Alliances in 1999, and has been responsible for proposing and developing integrations between TeamShare’s defect tracking and
change management tool, and other 3rd party tools.

QW2002 Paper 3A2

Dr. Kelly A. Shaw
(TeamShare, Inc)

Using Defect Tracking Integrations to Improve your QA Process

1

Using Defect-tracking
Integrations to Improve Your

QA Process

Kelly A. Shaw
Director of Strategic Alliances
TeamShare, Inc.

What You Will Learn in This
Presentation

• How one company improved its entire
QA process through an aggressive
defect-tracking integration strategy
– Integrated defect-tracking and customer

support tools
– Integrated defect-tracking and version

control tools
– Integrated defect-tracking and release

management tools

2

What You Will Learn in This
Presentation

• How another company put its testers
back to work testing by integrating
defect-tracking into their company
intranet site

Case 1
Managed Objects

Managed Objects is a Business Service
Management company helping customers
determine how their technology
infrastructure affects business productivity.

3

Case 1
Managed Objects

• Many high profile customers fueled rapid
company growth

• Software product formula® central to their
business strategy

• Challenge: continue to deliver formula as a
quality product to their customers as
managed objects grew and changed

Case 1
Managed Objects

• QA process improvement goals
– Find 95% of all severe software defects in

the lab rather than in the field
– Stop last-minute unnecessary software

changes
– Use benchmarks to determine when the

software is ready for release

4

Case I
Managed Objects

• QA process improvement goals
– Continue to provide high quality customer

support while moving many support
functions from engineering to a dedicated
support center

– Do all this without overburdening existing
QA resources

Find Defects in the Lab, Not in
the Field

• IEEE standards state that 95% of all defects
in top quality software should be found in the
lab rather than in the field

• Very few software products meet this rigorous
standard, in many cases because the defects
are out of the control of the software vendor

• Integrated Customer support and defect-
tracking tools helped Managed Objects drive
toward this goal

5

Find Defects in the Lab, Not in
the Field

• Integrated Customer support and defect-
tracking tools helped Managed Objects drive
toward this goal.
– Gather reliable and accurate information about

defects found in the field.
– Perform a root cause analysis of all defects found

in the field.
– Determine where in the lifecycle the defect should

have been found. (Requirements? Design? Code?
Documentation?)

Find Defects in the Lab, Not in
the Field

• Integrated Customer support and defect-
tracking tools helped Managed Objects drive
toward this goal.
– Calculate the ratio of defects found in the lab vs.

Found in the field to determine if quality goals
have been met.

– If the goals have not been met, take actions to
improve the software quality in the next release.

6

Stop Last-minute
Unnecessary Software

Changes
• Many defects found in the field are a result of

last-minute and unnecessary changes
• Managed Objects QA wanted tight controls

over all software changes at the end of the
development cycle

• Defect-tracking integration with a release
management tool helped them meet this goal

Stop Last-minute
Unnecessary Software

Changes
• Defect-tracking integration with a release

management tool helped them meet this goal
– At the end of the release cycle, QA identifies a set

of defects to be included in the release candidate.
– During source code check-in and check-out,

developers identify the defect associated with
each code change.

– At build time, only code changes associated with
“approved” defects will be included in the release
candidate.

7

Decide When the Software Is
Ready for Release

• Over-testing wastes valuable QA resources
• Under-testing enables the release of software

that does not meet quality goals
• Managed Objects wanted to use measurable

statistics to find the “sweet spot” between
under and over testing

• Integrations to their customer support and
version control tools helped them achieve this
goal

Decide When the Software Is
Ready for Release

• Integrations to customer support and version
control tools helped them achieve this goal
– Integrated customer support and defect-tracking

tools provide reliable and accurate information
about bugs found in the field.

– The defect-tracking tool provides reliable and
accurate information about bugs found in the lab.

– Integrated source code control and defect-tracking
tools provides reliable and accurate information
about how much code has been added, modified
or deleted.

8

Decide When the Software Is
Ready for Release

• Defect density predicts the number of defects
that can be expected in a software release.
See “Gauging software readiness with defect
tracking” IEEE Software, vol. 14, no. 3,
May/June 1997.
– Historical defect data can provide information on

the expected defect rate per KLOC. (Thousand
lines of code)

– Use the historical data to predict the defect density
in new releases.

– Stop testing and release when you find the
expected number of defects

Deploy a Customer Support
Center

• Initially, engineering provided customer
support

• As the company grew, they needed a
department dedicated to supporting the
customer
– Customer support agents needed accurate status

on problems escalated to engineering
– QA needed to see all verifiable problems reported

from the field
– Engineering needed accurate statistics from both

customer support and QA

9

Deploy a Customer Support
Center

• Integration between Customer Support and
defect-tracking tools made this possible
– All defects reported to customer support could be

automatically promoted to engineering.
– Customer support could provide accurate and

timely status about outstanding tickets
– Customers could use web reporting to get status

about their own open tickets.
– Customer support receives updates when a ticket

is closed by engineering.
– Engineering could get reliable and accurate defect

statistics from a single tool.

Impact on Existing QA
Resources

• QA spends less time providing customer
support directly to customers

• QA spends less time tracking down KLOC
information from Engineering

• QA knows exactly what defects have been
changed in each build, and can test
accordingly

• QA knows when it needs to test more, and
when the software is ready for release

10

Conclusion

Integrations between defect tracking tools
and other software development tools

can help you improve your QA process.

However, not all integrations need to be
extensive to be effective.

Transmeta develops and sells software-
based microprocessors, and develops

additional hardware and software
technologies that enable computer

manufacturers to build computers that
simultaneously offer long battery life,

high performance and x86 compatibility.

Case 2
Transmeta

11

Case 2
Transmeta

• Sales and customer care needed defect
rate information

• QA needed to spend less time reporting
status and more time testing

Case 2
Transmeta

• Business Improvement Goals
– Provide sales accurate and timely defect

rate information as an offensive and
defensive sales weapon.

– Provide customer care with accurate and
timely customer-centric defect information.

• QA Process Improvement Goal
– Get QA back into the QA business.

12

Case 2
Transmeta

• Solution to achieve all three goals: integrate
defect-tracking into the company intranet site.
– Sales can run real-time reports to determine return

rates, or to see returns for a specific customer.
– Customer care can run real-time reports to

determine return rates by customer.
– QA spends less time helping sales and customer

care, and spends more time testing.

Case 2
Transmeta

• An interesting success story
– Because this information was available to

customer care, Transmeta was able to help
a customer find a defective piece of
equipment in the customer’s factory that
was manifesting itself as defective
deliveries from Transmeta.

13

Conclusion

• Even small integrations can have
profound effects on your business.

Other Defect-tracking
Integration Ideas

• Project Management
• Test Management
• Requirements Management
• IDE
• Billing

Key Points

Get a deeper understanding of the Unit, Integration, System lifecycle including activities
Learn about the use and role of Unit testing
Move out of UI based testing to test earlier and more focused.

Presentation Abstract

The job of Senior Tester is one that has been somewhat forgotten in the mad rush to get any Tester with experience into a Test Lead
role. In the same rush to get software out the door test teams are asked to do more testing in less time. Test automation is usually the
first solution proposed. However, test automation of black box test cases is still black box testing. There are other solutions. Testers can
test earlier during development, when errors are cheaper to fix, but their skill level and domain of expertise must grow. The goal of this
talk is to develop a new approach to Unit testing from the perspective of learning what tests a tester take on, what tests a developer
ought to be running, though they may not be, and some tools for testers to accomplish these new testing tasks.

About the Author

Michael Hackett, Vice President, is a founding partner of LogiGear Corporation. He has over a decade of experience in software
engineering and the testing of shrink-wrap and Internet based applications. Michael has helped well-known companies including Palm
Computing, Oracle, CNET, Electronics for Imaging, Adobe Systems, The Learning Company, Power Up Software, PC World, and The
Well produce, test, and release applications ranging from business productivity to educational multimedia titles — in English as well as
a multitude of other languages. Michael also teaches software testing for the University of California at Berkeley Extension, the
Software Productivity Center in Vancouver, the Hong Kong Productivity Centre and LogiGear University. Michael is a co-author of the
soon to be published second edition of Testing Applications on the Web (Wiley 2002). Michael holds a Bachelor of Science in
Engineering from Carnegie-Mellon University.

QW2002 Paper 4A1

Mr. Michael Hackett
(LogiGear Corporation)

The mysteries of Unit Testing Explained for Testers

1

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 1 1.

The Mysteries of Unit
Testing Explained for

Black Box Testers

Michael Hackett

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 2

Overview

What is the Problem?

I have been a Black box tester for
a few years but now I need to:

– Test earlier.
– Test at a lower level
– Test functionality of non-UI

code.
– Work closer with my

developers.
Or perhaps…I hear we are

moving to XP development-
what does that mean for me?

2

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 3

Overview

Overview of a tester’s work
Putting Unit Test in that context
Examples of Unit Testing
Tools and a Tool Example
Recommendations

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 4

Overview

Let’s start with the basics of what we,
as testers do?
– We design test cases,
– execute tests and
– analyze or validate results.

We most commonly think of
executing tests by entering input to
the system or application under test
through the User Interface and
getting some kind of output or
behavior to evaluate.

3

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 5

Overview

Let’s focus on the test execution. We
exercise the application or system
through some interface. Whether the
user interface, line command
interface, API (application program
interface), registry, data file or some
other interface- we need an interface
or method to access the program.

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 6

Overview

The User Interface built for your application
provides the easiest and least technical
access to most, but not all, of the program’s
function.

The UI may not allow you complete access
to the application or it may be built late in
the development process. Testing a non-
trivial application through the UI may be so
high-level that when you find a defect
isolation may be tedious and very time
consuming.

If your test project calls for more low-level,
earlier testing or testing the program’s
abilities that are not intended to accept input
through the UI you need to find another
method to access the application other than
the UI.

4

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 7

Overview

Today we will focus specifically on
test execution not using the user
interface. More specifically we will
focus on executing tests early in
product development, often called
coding or Unit phase.

The ideas we will talk about today are
effective for early development
phases whether you call these Unit,
Component or Module Test phase.

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 8

Unit Testing

What is the earliest or lowest level
access I can get to the code of my
application?

The unit of code itself.

5

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 9

A survey of definitions

What is a Unit? Is it a module, an
object, a dll, a routine, a function?
– The smallest building block. A unit is

a coherent set of instructions with
identifiable inputs and output

– Any logically distinct part of the
program.

– A unit is typically a function, a small
collection of functions, a function
library, or a class.

IEEE Glossary
www.Whatis.com

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 10

Unit Testing

"Unit testing" is about pieces-individual
classes, functions and methods.

"Integration testing," on the other hand,
is designed to ensure that the pieces
fit together as designed and that the
system as a whole behaves correctly
under all reasonable conditions.

Reigning in C++ Test Harnesses
SD Magazine
http://www.sdmagazine.com/documents/s=738

/sdm0011c/0011c.htm

6

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 11

Unit Testing

What is Unit testing?

Brian Marick calls it Developer
Testing since it requires knowledge
of the internal program design and
the code itself.

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 12

Is Unit testing effective?

– Find errors early
– Easier to isolate defects
– Highly efficient
– Focused concentration on specific

functions, methods or modules
– Isolate genuine boundaries
– Isolate all branches
– Isolate transitions between

algorithms
– Finer grain measurement (e.g.

coverage)
– Able to assess code coverage
– There is no UI so you have to use

unit test techniques.

7

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 13

Development Phases

Unit Test – test one unit of code at a
time. Usually done by developers.

Integration Test- checking the units
of code work together
incrementally.

System Test- the entire product as it
is intended to be used.

User Acceptance Test-
requirements based testing by the
project sponsor.

Release – testing the production or
release system

Maintenance- continued testing of
the product maintenance releases
or patches.

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 14

Unit Tests

Static:
Tested by default

• Compilers
• Compile-time semantic error checkers

Tool specific (sometimes expensive)
• Complexity metrics
• Code path tracing
• Coverage analyzers
• Data flow testing (based on data flow

tracing)
• Debuggers
• Assertion checking

Tools, Methods (less expensive)
• Syntax checkers
• Style checkers
• Inspections and code walk-through (these

are not “testing” because you don’t
execute the code, but they are important
ways to find bugs).

8

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 15

Unit Tests

Dynamic:
• Unit testing, using stubs &

drivers, especially for driving
modules through boundaries and
error conditions.

• Functional- verify functionality
• Structural - code path and data

structure testing.
• Run time testing- looking for

memory leaks and more
• Code mutation- inject defects

into the code to see if the test
group catches it.

• Fault injection
These are the tests for us!

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 16

Bugs you will find
Unit Testing

Dynamic unit tests:
run-time errors,
data flow errors,
exception handling and errors,
logic errors.

For Integration Testing:
Problems in the services and
behaviors of the constituent
system parts.
Incompatibilities and bottlenecks
between the dependant
components.

9

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 17

Problems that
Unit Testing Often Misses

– Timing-related bugs
– Side effects of interrupts
– Unexpected error conditions
– Special data conditions
– Interaction with background tasks
– Invalid onscreen information
– User interface inconsistency
– User interface everything else
– Failure to comply with contract or

regulation
– Configuration/compatibility failures
– Volume, load, performance
– Hardware faults

Testing Computer Software

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 18

Unit Testing

Let’s take a look at some useful
definitions to help us frame this
discussion.

10

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 19

Unit Testing Terms

Test Scaffold or Test Framework-
A Scaffold or Framework provides
an environment or interface to
build your harness, drivers, stubs
and tests.

Test Harness-A test harness
builds, executes and reports the
results of tests. Harness simulates
the outer context.

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 20

A survey of definitions

Test Driver- An empty function that calls
functions under test. It contains just
enough code to set up parameters and
globals prior calling.

Test Driver is software which executes
software in order to test it, providing a
framework for setting input parameters,
executing the unit, and reading the
output parameters

Test Driver-software modules used to
invoke a module(s) under test and,
often, provide test inputs, control and
monitor execution, and report test
results.

Software Development Glossary
http://webster.cs.ucr.edu/Page_softeng/softDevGuide_co

ntents.html
www.whatis.com
IEEE Glossary

11

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 21

Unit Testing
Stub: An empty to-be-called function that

replaces a function that is yet to be
written. It has the same interface as a
module, and does minimal
manipulation. A stub usually:
– Tests (validates) the input data
– Prints message “test successful” with

parameters to use return as a test.
– Get return values from interactive input
– Return a standard answer regardless of

input
Unit Test Environment
http://cs7132.comp.hkbu.edu.hk/~jiming/

Stubs can be hard to write and maintain
as well as taking as much time as
writing the unit itself!

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 22

Unit Test some definitions

Mock objects are similar to, not the same
as, a stub. It simulates an object that is not
there.

Mock Object
Reasons to mock:

1.real object has non-deterministic behavior
2.real object is difficult to set up
3.real object has behavior that is hard to cause
(e.g., network error) (similar to 1)

4.real object is slow
5.real object has (or is) a UI
6.test needs to query the object, but the queries
are not available in the real object (e.g., "was this
callback called?")

7.real object does not yet exist
www.mockobjects.com

12

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 23

Unit Testing

There are 3 common approaches to
unit testing:
– Top Down
– Bottom Up
– Isolation

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 24

Unit Testing

Unit or module
of code under

test

Input parameter

Input parameter
Return value

What we are testing here is the specific action,
calculation or behavior of the unit of code. The
unit has input parameters, and output or return
values.
The input and output can be a variable, constant,
or another object of type string, number, pointer,
object or many other data types.
The return values will also be a variable, a string,
another object or a state change.

13

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 25

Unit Testing
Top Down

Unit B-
In- test

Unit C-
not tested

Unit A-
Tested

Stub Stub Stub

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 26

Unit Testing
Bottom Up

Unit C

Stub Unit B- not
written

Unit D – not
written

14

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 27

Unit Testing

Unit B-
In- test

Unit C

Unit A

Unit D Unit E Unit F Unit G

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 28

Unit Testing

The next series of examples
use an Online Movie Application
as a basis.

The application has a UI
running in a browser, ASPs, a
database and some stored
procedures.

15

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 29

System Under Test

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 30

Unit Test Example

sp_addmovieMovie name
and year Unique ID

The Addmovie stored procedure inserts a
record in the AllMovie Table. There is a
constraint on the Title column of the table to
not add a movie with an existing title and
year.
The input, under normal use, will come from
user input through the UI in a browser. The
input parameters are movie title and year.
The value returned from this action is a
unique ID for this record.

16

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 31

Unit Test Example

The Stored Procedure under test:

CREATE Procedure sp_addmovie

@NameAndYear nvarchar(65)

As

declare @MovieID int

insert into AllMovies(Title) values
(@NameAndYear)

--select the unique ID of the row just
inserted

select @@IDENTITY as 'MovieID'

Go

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 32

Unit Test Example

The SQL code for the test:

/* enter a new movie */

exec sp_addmovie 'My Movie (2001)'

exec sp_addmovie 'My Movie (2002)'

exec sp_addmovie 'My Movie (2001)'

17

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 33

SQL Unit Test Output

Two rows were added. The third set of
parameters failed, as expected.

MovieID

--
363

(1 row(s) affected)

MovieID
--

364
(1 row(s) affected)

Server: Msg 2627, Level 14, State 2,
Procedure sp_addmovie, Line 6

Violation of UNIQUE KEY constraint
'IX_AllMovies'. Cannot insert duplicate
key in object 'AllMovies'.

The statement has been terminated.

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 34

Unit Test- Stub Example

In this example we will run a test of the
MovieManager object before the stored
procedure it accesses is created. We can
use a Stub in place of the stored procedure.
In the fully functioning application the stored
procedure will return the value of the row
added to the table. This stub of the stored
procedure will return a value of “1” as the
row number for all tests.

The Stub in place of the stored procedure:

create Procedure sp_addmovie

@NameAndYear nvarchar(65)

As

select 1 as 'MovieID'

18

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 35

Unit Test-
Script for Stub Example

<job>

<script language="vbscript">

option explicit

dim strMovieName'variable to hold movie name

dim intYear 'variable to hold the year

dim objMovieMgr 'variable to hold the movie manager
dim intMovieID 'variable to hold movie Id returned by

AddMovie()

'get the command line parameters

strMovieName = cstr(WScript.Arguments(0))

intYear = cint(WScript.Arguments(1))

set objMovieMgr =
CreateObject("MovieDatabase.MovieManager")

objMovieMgr.DBConnection = "DSN=MovieDb;uid=sa;pwd=sa;"

'now call AddMovie

intMovieID = objMovieMgr.AddMovie(strMovieName,intYear)

'now print the movie ID to the screen
WScript.Echo "Added movie #" & intMovieID

</script>

</job>

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 36

Unit Test-
Execution of Stub Example

The results:

19

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 37

Tools for Testers during
Unit Test

www.qacity.com
Other Resources: Tools / Utilities: Source Code

Analyzers
These tools generally check for bad syntax, logic, and

other language-specific programming errors at the
source level. This level of testing is often referred to
as unit testing and component testing. The developer
normally executes this testing.

Unit Test Frameworks
parasoft.com
http://www.parasoft.com/jsp/home.jsp
vbunit.org
junit.org

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 38

Quick Look at one Tool
C++Test from Parasoft

C++Test says it excels at catching
certain kinds of errors:
– GIGO (Garbage In, Garbage Out) for

functions. This is C++Test's bread and
butter.

– Functions and methods will be exercised
with a rich set of parameter combinations.

– Uninitialized member variables.
– Code that doesn't get run. By inspecting

the results of the "Coverage" window, you
can tell at a glance if there are parts of
your code that aren't getting executed.

– Heap overruns and wild pointers-but only if
you're lucky enough to cause an exception
with them,

– Newly-introduced errors. (Building a
Regression Suite)

20

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 39

Using a Test Harness

Two harness frameworks
becoming more popular are
vbunit and junit.

• www.vbunit.org
• www.junit.org

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 40

Using a Test Harness

21

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 41

vbunit Example

• If you don’t know a programming
language and the specific
function of the code enough to
write the unit tests, a developer
friend will have to write some
tests for you.

• The good thing is with some
simple input manipulation you
can create many tests from a few
well written, simple tests.

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 42

Using a Test Harness
vbunit

22

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 43

Using a Test Harness
vbunit

The interesting part for us are the
parameters passed:

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 44

Using a Test Harness
vbunit

You can learn the test harness
interface and create and run many
tests of your own. You can manipulate
the input parameters and/or run the
tests on many different environments.

The example shown passes:
“Unit Testing” and “2002”
as the input parameters into the Movie

Database.
You can easily edit the test to:
1- “ “ “0000”
2- “##$%“ “abcd”
3- “string way too long…”

“2002”
4- “¤W¥«§K¶” “’98”
5- “à l'arrivée” “1999”
6- “a l’arrivee” “1999”

…etc.

23

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 45

eXtreme Programming

How does this type of testing fit in
with Test-Driven/Test-First or
eXtreme Programming?

One of the main premises of XP is
you write tests before you code. Unit
testing is the foundation of eXtreme
Programming. Tests direct the
coding.

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 46

eXtreme Programming

XP, as defined by some, defines
two levels of testing:
– Unit Testing (Developer)

Each class implemented must have
programmer-developed unit tests, for
everything that "could possibly break".

These tests are to be written during coding of
the class, preferably right before
implementing a given feature.

Tests are run as frequently as possible during
development, and all unit tests in the entire
system must be running at 100% before any
developer releases his code.*

*By release, we mean transferring code to the
integration area.

http://www.xprogramming.com/qa/xp_q_and_a_QA.htm

24

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 47

eXtreme Programming

XP defines two levels of testing:
– Functional Testing (QA)

Each feature of the system, which is defined by
something we call a User Story, rather like a
Use Case, must have one or more functional
tests that test it.

The functional tests are the responsibility of
what we call the "customer“ (also responsible
for defining the requirements).

The implementation and running of functional
tests should be performed by the Software
QA group.

http://www.xprogramming.com/qa/xp_q_and_a_QA.htm

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 48

Unit Testing
Solutions for Black box Testers

Now that we have this information, what
part of this can traditional black box
testers do?

The first recommendation:

Focus on excellent Test Case
design and Test Cases
development skill to give the
developer so they can build better
unit tests.

25

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 49

Unit Testing
Solutions for Black box Testers

The second recommendation:
Learn some interface for you to execute
the unit tests the developers write.
Windows Scripting Host, vbunit, SQL,
etc.

The third recommendation is-
If it is important to the project team-
Learn how to develop Unit Tests
yourself.
Learn a language- some scripting
language, VB, SQL, Java, C++ …
Talk with the developers and build your
knowledge of your application’s code.
Build your technology skill set.

Copyright (c) 2002 LogiGear Corporation All Rights Reserved. 50

References

Testing Computer Software Edition 2., Kaner, Falk,
Nguyen Wiley 1986

Testing Applications on the Web, Hung Nguyen, Wiley,
2000

Integrated Test Design and Automation: Using the
Testframe Method, Hans Buwalda, et. Al. Addison-
Wesley Pub Co. 2001

IEEE Glossary
Software Development Glossary
http://webster.cs.ucr.edu/Page_softeng/softDevGuide_c

ontents.html
www.whatis.com
Parasoft. White Papers
http://www.parasoft.com/jsp/pr/tech_papers.jsp
Creating a Test Harness, Frans Coenen, University of

Liverpool
Structural Programming and Data Structures Osmar

Zaiane University of Alberta
Unit, Integration and System Testing Kurt Keutzer,

EECS University of California Berkeley

Key Points

how to reduce project costs by using desktop software for testing processes
Providing accountability for covering all requirements during testing
Providing management with metrics for making informed decisions regarding implementation

Presentation Abstract

The focus on new technology today causes organizations to overlook critical basic functions that affect the quality of software, as well
as impact the overall project costs. A simple approach to making a difference in these areas is structured testing - beginning with
requirements definition, and ending with a postimplementation assessment. This presentation details a structured testing methodology
that focuses on concepts and techniques that are valuable for both legacy systems and new development efforts.

About the Author

Jan Grinnell has an MBA from Fairleigh Dickinson University and over 30 years of application software development life cycle
management experience. Her experience spans both Federal and State Government projects as an employee and a consultant. Her
current position of Testing Practice Manager for GovConnect has given her the opportunity to gain valuable insight into the current
situation with State Government testing environments. Ms. Grinnell has presented her Structured Testing Methodology™ at several
national conferences including Government Technology Conference (GTC) West, the National Child Support Enforcement conference,
and previous GovConnect E-Gov conferences. She offers practical and cost effective solutions to complex systems testing.

QW2002 Paper 4A2

Jan Grinnell
(GovConnect)

Reduce Overall Project Development Costs with Structured Testing

1

@2000 GOVCONNECT ALL RIGHTS RESERVED

Reduce Overall Project Costs
with Structured Testing

Presented at Quality Week 2002

A subsidiary of govOne Solutions
CORPORATE HEADQUARTERS
11311 CORNELL PARK DRIVE SUITE 300
CINCINNATI, OHIO 45242

THE ENCLOSED MATERIAL IS CONFIDENTIAL AND PROPRIETARY TO RENAISSANCE WORLDWIDE INC. AND IS FOR THE INTERNAL USE OF ADDRESSEE ONLY.

@2000 GOVCONNECT ALL RIGHTS RESERVED

Overview

•Industry Statistics
•Background Information
•Software Development Life Cycle and Testing
•Structured Testing Methodology™ Phases
•Structured Testing Methodology™ Tasks
•Key Components of STM
•Sample Documentation

2

@2000 GOVCONNECT ALL RIGHTS RESERVED

Industry Statistics

• Costs of defective software can be as high as 50%
of software development costs

• Origin of software errors:
– 64% Design and Analysis Phase
– 36% Coding Phase

• Studies at IBM demonstrate that compared to
catching defects before or during coding, it is 10
times more costly to correct an error after coding
and 100 times more costly to correct a production
error.

Bala Subramaniam, ISSRe Systems, Inc.
Effective Software Defect Tracking, 1999

@2000 GOVCONNECT ALL RIGHTS RESERVED

How to reduce costs?

• Use structured methodology for testing process
• Use desktop applications instead of automation

until testing process is solidified
• Build for the future if using automation by using the

desktop applications first
• Use standardized templates to enhance process

3

@2000 GOVCONNECT ALL RIGHTS RESERVED

Birth of a Methodology

• 30 years experience in software development
industry

• experience in private and public sectors
• resource restrictions for staff and budget

@2000 GOVCONNECT ALL RIGHTS RESERVED

Background Information

Based upon the Software Quality Engineering
(SQE) STEP methodology and ANSI/IEEE 829

Standard for Software Test Documentation and
ANSI/IEEE 1008 Standard for Software Unit Testing

4

@2000 GOVCONNECT ALL RIGHTS RESERVED

Software Development Life Cycle and Testing

Based upon concept of incorporating the
testing process into the life cycle
development; beginning with the

requirements definition, and participating
throughout the entire project until

implementation

@2000 GOVCONNECT ALL RIGHTS RESERVED

Basic STM Philosophy

Simple and Cost Effective process and procedures
that can be easily incorporated into Government

agencies software development life cycles.

5

@2000 GOVCONNECT ALL RIGHTS RESERVED

Software Development Life Cycle

Figure 1. Software Development Life Cycle

Requirements

Testing

Deployment

Training

Functional Design

Detailed Design

Development

Unit tests Final tests Integration tests Alpha Beta

Rollout

@2000 GOVCONNECT ALL RIGHTS RESERVED

STM™ Phases and Key Documentation
Requirements Phase

Project Plan
Master Test Plan

Requirements Traceability Matrix

Requirements Phase
Project Plan

Master Test Plan
Requirements Traceability Matrix

Functional Design Phase

Testware Design

Functional Design Phase

Testware Design

Detailed Design Phase

Prioritize Risks in Matrix

Detailed Design Phase

Prioritize Risks in Matrix

Development Phase

Create Test Scripts

Development Phase

Create Test Scripts

Acceptance Phase
Execute Tests

Test Report

Acceptance Phase
Execute Tests

Test Report

6

@2000 GOVCONNECT ALL RIGHTS RESERVED

STM™ Tasks - Total Methodology

@2000 GOVCONNECT ALL RIGHTS RESERVED

Project Plan

• Created from Project Plan template using pre-defined
tasks

• Tasks are taken from STM™
• Maintained by Test Manager
• Used as input to overall Project Plan that is

maintained by Project Manager

7

@2000 GOVCONNECT ALL RIGHTS RESERVED

Project Plan Template

ID Task # Task Name Start Finish
1 1.0 Requirements 04/06/01 04/06/01

2 1.1 Establish Test Objectives 04/06/01 04/06/01

3 1.2 Attend requirements sessions 04/06/01 04/06/01

4 1.3 Create requirements traceability matrix 04/06/01 04/06/01

5 1.4 Organize test function 04/06/01 04/06/01

6 1.5 Design testware 04/06/01 04/06/01

7 1.6 Create Master Test Plan 04/06/01 04/06/01

8 1.7 Implement configuration mgt procedures 04/06/01 04/06/01

9 1.8 Sign-off 04/06/01 04/06/01

10 2.0 Functional Design 04/06/01 04/06/01

11 2.1 Identify Design Based Test Objectives 04/06/01 04/06/01

12 2.2 Design Functional Design-Based Test Cases 04/06/01 04/06/01

13 2.3 Create detailed design test plan outline 04/06/01 04/06/01

14 2.4 Sign-off 04/06/01 04/06/01

15 3.0 Detailed Design 04/06/01 04/06/01

16 3.1 Identify and Prioritize Risks 04/06/01 04/06/01

17 3.2 Refine Testing Strategy 04/06/01 04/06/01

18 3.3 Specify Resource and Tool Requirements 04/06/01 04/06/01

F S

@2000 GOVCONNECT ALL RIGHTS RESERVED

Document:
Master Test Plan

Purpose: This document summarizes the organization
of the overall testing approach

• The primary focus of this document is to provide
information that will be used by management to
assess the overall strategy being used for this
testing.

• It is created following Joint Application
Development (JAD) sessions

8

@2000 GOVCONNECT ALL RIGHTS RESERVED

Master Test Plan
EXECUTIVE SUMMARY... 1

SECTION 1... 1

INTRODUCTION... 1

SECTION 2... 2

TEST ITEMS .. 2

SECTION 3... 4

FEATURES TO BE TESTED .. 4

SECTION 4... 9

FEATURES NOT TO BE TESTED ... 9

SECTION 5... 10

APPROACH ... 10

SECTION 6... 13

ITEM PASS/FAIL CRITERIA... 13

SECTION 7... 14

SUSPENSION CRITERIA AND RESUMPTION REQUIREMENTS ... 14

SECTION 8... 15

TEST DELIVERABLES... 15

SECTION 9... 16

TESTING TASKS .. 16

SECTION 10... 20

ENVIRONMENTAL NEEDS .. 20

SECTION 11... 21

RESPONSIBILITIES AND ROLES... 21

SECTION 12... 22

STAFFING AND TRAINING NEEDS... 22

SECTION 13... 23

SCHEDULE.. 23

SECTION 14... 24

RISKS AND CONTINGENCIES .. 24

SECTION 15... 25

APPROVALS.. 25

@2000 GOVCONNECT ALL RIGHTS RESERVED

Document:
Testware Design

Purpose: To design the flow of the requirements
during testing, and to assure that all requirements
will be tested.

• Testware - arrangement of test components to meet
test objectives and requirements in a cost-effective
way

• Test high risk ‘deep’ and low risk ‘thin’

9

@2000 GOVCONNECT ALL RIGHTS RESERVED

Testware Architecture

Change Order
XXXX

Major Function Major Function Major Function Major Function

Requirement
RXXXX.xxx

Requirement
RXXXX.xxx

@2000 GOVCONNECT ALL RIGHTS RESERVED

Document:
Requirements Traceability Matrix

Purpose: assures that all requirements are included in
coding and testing

• Core document to entire methodology
• Coordinates basic project documentation
• Forces accountability of inclusion of requirements

in each phase
• Provides information to make decisions regarding

scope of testing via the Risk Prioritiztion

10

@2000 GOVCONNECT ALL RIGHTS RESERVED

Requirements Traceability Matrix Template

Change Order [#]

Req # Requirement Description Business
Req.

Technical
Spec Test Script # Training Risk

Requirement
from

requirements
document

Cut and paste narrative description from the
requirements document and the technical

specification to assure that it was covered in
both documents

Place and 'X'
when the

requirement
is copied to
the matrix

Place and
'X' when the
requiremen
t is copied

to the
matrix

Insert Test Script number when
completed to test requirement;

more than one requirement
might be covered with one

script, or more than one script
might be required for one

requirement.

Place and 'X'
when the

requirement
is verified as
part of the

training
material

High,
medium or
low rating for
each
requirement
in relation to
this project.

1380.2

Bus Req - The first generation of the report
should include all cases that meet the
criteria from 10/1/2000 to the date of the
report.
Tech Specs - For the initial run of this
program, those currently off aid are those as
of the day the program is run.

X X TS-1380.3 X High

Sample completion of matrix:

@2000 GOVCONNECT ALL RIGHTS RESERVED

Test Requirements

• Bug prevention is far more cost effective than bug
detection

• Test requirements early for understandability and
accuracy

• This can occur prior to code completion

11

@2000 GOVCONNECT ALL RIGHTS RESERVED

Sample RTM Test Results Template

Req # Requirement Description Dependency Risk Input/Comments Output
Pass Fail Pass Fail

Enter #
from Req.
document

Detailed narrative of requirement
which is cut and pasted from

requirements document

What cross
functional

dependencies
exist

Evaluate
requirement as

high, medium, or
low in terms of this

change request

List any inputs that would be
used for testing purposes

List expected
outputs

R1234.01
The onlines should have a new
updatable field for adding the
particpant's address

x x
Case initiation

function should be
reviewed for

impact

High Particpant address

Screen should be
viewed with

updated address
after hitting enter

button

Change Order [#]

These columns are used to
record the test results for

testing accuracy and
understandablity of written

requirement

Sample requirement follows below:

Understandable Accurate

@2000 GOVCONNECT ALL RIGHTS RESERVED

Document: Test Script

Purpose: to provide detailed procedures for testing all
requirements and include expected results prior to
test execution

• Accelerates test results analysis
• Provides documentation of results
• Can be used for future regression testing
• Can use Word template of Access database

12

@2000 GOVCONNECT ALL RIGHTS RESERVED

Sample Test Script - MS Word

Test Case#: TR-PRWORA-01
Scenario:
This will test a collection on a former TANF case with two NCPs. NCP #1 has an order for $250.00 per month child support with
$3,000 arrears. The order is for one child. There is no judgment for the arrears and no periodic payment. NCP #2 has an order
for $100.00 per month child support for one child. There is a judgment for arrears in the amount of $7,500.00 with a periodic
payment of $50.00 per month on arrears.
NCP #1 pays $3,000 via personal check.
Prerequisite:
None

Step Screen Data to be Entered
Action to
be taken

Expected Results Actual Results Pass/
Fail

01. 101 CP name: Jane Doe
CP address: 1 Main
Boston, MA 02025
Hit enter

Review CP
INTAKE
screen

Automatically navigates to
NCP INTAKE screen.
Entry is maintained by
system. Data is correct.

Data disappeared. F

02. 102 NCP name: Joe Doe
Hit enter

Review NPC
INTAKE
screen

Entry is maintained by
system. Data is correct

NCP name was maintained by
the system. Data is correct.

p

@2000 GOVCONNECT ALL RIGHTS RESERVED

Sample Test Script - MS Access

13

@2000 GOVCONNECT ALL RIGHTS RESERVED

Sample Test Script - MS Access

@2000 GOVCONNECT ALL RIGHTS RESERVED

Sample Test Script Spreadsheet
using MS Excel

CP PIN CP Name Office Address SSN Letter Yes Letter No YES NO Pass Fail P.L. #
Req. # 1379.5 1379.3 1379.4 1379.6

1051.1631 X Tyhitia Moore X 19B Ellsworth Ave, Brockton, MA 02401 X 012-58-0726 X X X X
1068.0786 X Cary Castillo X 7 Pidulski Way A587, So. Boston, MA 02127 X 013-58-6443 X X X X
1069.0919 X Rosa Martinez X 42 Beechland St. A187, Roslindale, MA 02131 X 013-60-1255 X X X X
1086.0954 X Lori Turner X 916 Rodman St., Fall River, MA 02721 X 014-62-9244 X X X X
1100.5918 X Alicia Buffalo X 262 Green St.#3, Brockton, MA 02301 X 015-60-2439 X X X X
1423.0874 X Paula Miller X 586 Haverhill St., Lawrence, MA 01840 X 034-56-1234 X X X X
1155.0835 X Ratond Davis X 43 Islandview Pl #201, Dorchester, MA 01253 X 018-58-7347 X X X X
1165.5475 X Laurie Voss X P.O. Box 278, Sagamore, Ma 02561 X 019-50-4634 X X X X
1260.2308 X Marisol Borrero X 103 Robert Dyer Cir., Springfield, MA 01109 X 024-56-9415 X X X X
1189.4844 X Patricia Devlin X 19 1/2 Everard St., Worcester, MA 01605 X 020-56-2883 X X X X
1189.6073 X Tammy Barboza X 229 North St, New Bedford, MA 02740 X 020-56-3132 X X X X

LetterExpected Outcome

Run #:_1379.02_____
Date:__10/18/2000__
Environ.__01______

TS-PR0 1379.2 Review Letters (Actual)

14

@2000 GOVCONNECT ALL RIGHTS RESERVED

Document:
System Test Execution Log

Purpose: To plan for individual test runs, and record
results

• Used to coordinate test team activities
• Used for day start meetings to plan testing
• Record set up procedures
• Can tailor format to project needs

@2000 GOVCONNECT ALL RIGHTS RESERVED

Sample System Test Execution Log

PRWORA Letters and Reports SYSTEM TEST EXECUTION LOG

Test Run Number: TR-1379-11

Test Date: October 26, 2000 Test Time: 8:50 am

Technical Analyst: Sam Smith Environment: DevPrd 01

Business Analyst: John Green, Nancy White

Weekly #3
This test was executed several times due to the tasks being copied from production as scheduled on a
weekly basis. Additional modifications also had to be made to the test team code due to needing to clear
the profile codes when restoring from the local save.

Test Plan/Scenario/Case Comments

CP PIN # - 8732.1234
(PA with arrears)

NCP PIN # - 7654.3210
DP PIN # - 0123.4567
Case # - 1234567

Move from PA to NPA, arrears
stay as PA arrears

Correctly moved

Run IVA-IVD schedule CFT25

Effective date of 10/25
Ran successfully

Verify CFT25 TS-PRO-1379.11 All results were verified as correct,
 including the out of state FIPS code not getting a letter.

15

@2000 GOVCONNECT ALL RIGHTS RESERVED

Document: Test Report

Purpose: Summarizes testing and test results, and
makes recommendation for approval of software

Test Report Outline
– Summary
– Variances (from Test Plan, test designs or test procedures)
– Comprehensive Assessment
– Summary of Results
– Evaluation
– Summary of Activities
– Approvals

@2000 GOVCONNECT ALL RIGHTS RESERVED

Additional Documentation Available

• Organization of Test Function
• Readiness Report
• Organization of Test Function
• Issues Log
• Post Implementation Review Report

Key Points

reusable modular code with a consistent use of automation artifacts
Test automation is software development
Outline the benefits of the automatic (dynamic) creation of test documents

Presentation Abstract

Many organizations attempt to implement test automation, but end up with shelfware instead of testware. This can represent a
substantial loss in costs associated with tool evaluation, licenses, and training. Additionally, this can adversely impact team productivity
& morale, which creates a lost opportunity to improve the effectiveness of the testing process. Testers can spend many hours creating
automated tests only to find the same scripts take much more time to maintain and enhance. There are many reasons why the
maintenance cost of automation tests are high.

As maintenance activities climb, the focus and creativity of the testers quickly turns to software maintenance instead of their real job…
testing the application. Project deadlines approach, the testing schedule falls further behind, and the decision is made to cut your losses
and proceed manually. Management deems the automation effort a failure and the automated tests & tool are relegated to shelfware.
Why did the test automation process fail? What is the real problem?

About the Author

Michael R. Waller is a Senior QA Consultant. He has over 20 years of IT experience including software QA, test automation, software
development, and operations. His business sector experience spans manufacturing, financial, and software development companies.
He has an MS in Management from Florida Institute of Technology and a BS in Math/Computer Science from Boise State University.
Mike can be reached at mwaller@stamptech.net.

Timothy D. Nelson is a Senior QA Test Automation Specialist. He has 25 years of IT and programming experience within the test and
QA industry. He has a BS in EE from the University of Minnesota, with minors in both computer science and business. His experience
has extended across several different engineering and business development sectors. He has engineered diagnostic and automated
test systems for hardware gate and block model simulators to designing custom enterprise wide test automation frameworks for
client/server and Web based technologies. He is now a principle owner in a Software Test and QA consulting firm (STAMP
Technologies, LLC) that is developing a new generation of highly qualified software test and automation specialists. Tim can be
reached at tdnelson@stamptech.net.

QW2002 Paper 6A1

Michael R. Waller & Timothy D. Nelson
(STAMP Technologies)

Reducing Test Automation Maintenance Costs

1

An Enterprise Framework for
Test Automation

Reducing Test Automation
Maintenance Costs

Copyright © 2002 STAMP Technologies LLC, All Rights Reserved

Agenda

Test Automation
• Test Documentation
• Logging Test Results
• Keeping Automation Useable
• Conclusions

2

The state of test automation

• Many organizations attempt to implement test automation, but
end up with shelfware instead of testware.

• This can represent a substantial loss in costs associated with
tool evaluation, licenses, and training and creates a lost
opportunity to improve the effectiveness of the testing process

• Additionally, this can adversely effect team productivity &
morale.

Why does test automation fail?

• On of the primary reasons is maintenance
overload.
– Testers can spend many hours creating automated

tests only to find the same scripts take much more
time to maintain and enhance.

– More time is spent in test maintenance than test
execution.

3

Why does maintenance overload occur?

• Test automation not implemented as a software development
discipline.

• Maintenance overload is often the result of insufficient
planning, brittle tests, bad coding practices and testability
issues.
– Insufficient planning: Not defining enterprise testing goals and the

methods used to attain those goals.
– Brittle Tests: The simplest changes to a user interface or data content

breaks the test script.
– Bad Coding Practices: Many testers do not have a development

background and don’t know about good coding practices .
– Testability issues: A person may be able to see the GUI control,

however an automation tool may not.

COTS Automation Tools

• COTS = Commercial Off The Shelf

• All these tools use record-and-playback technology as
a key component.

• This feature is just a tool in the test automation
development process; it is not the “end all” solution
to test script creation.

• Reliance solely on record-and-playback will result in
brittle tests.

4

COTS Automation Tools

• Many COTS offerings also provide test management tools for
the purpose of managing your test development process from
test planning to test development, execution, defect logging
and status reporting. Again, these are tools that may, or may
not, be applicable to your automation requirements.

• The real power of COTS tools comes from their internal
programming language and their openness to external
languages (VB, C, C++, C#, etc.). This openness allows you
the flexibility to create your own custom solutions that address
your particular needs and processes.

Look before you leap
(define your automation requirements)

• What do you want to achieve with automated testing?
• How will you measure your progress and success?
• How will you measure your test coverage?
• What is your test automation development process?
• Who maintains the scripts, executes them, and analyzes the results?
• What kind of version/source control process will be used?
• What documentation is required and how is it maintained?
• How will you share techniques, methods and code?
• How will you handle a mixture of manual and automated tests?
• What is your budget and what tools are required?
• What existing development tools could be used or shared?
• What terms and definitions will be used?
• How will you continue to improve the process?

5

What is the solution?

This rest of this presentation describes a test automation
framework methodology that provides a solution to three focus
areas:

1. Creating and maintaining test documentation
2. Logging test results so they are easy to analyze &

report on
3. Keeping automation useable in a high-change

environment.

This helps reduce the cost of maintaining your tests, allows for
customization as your process improves, and promotes maximum
code reuse.

Agenda

Test Automation
Test Documentation

• Logging Test Results
• Keeping Automation Useable
• Conclusions

6

Test Documentation

• Identifying what is to be tested (test requirements),
the test coverage required to verify the test
requirements, and the method of reporting the status
is part of any test process. This applies to test
automation as well.

• If not done correctly, automation can actually
increase the workload needed to perform these tasks.

Documentation – Manual tests

• Test case documents (TCDs) are used to plan and
execute tests.
– Each test has a unique identifier, which is especially useful

when correlating to test requirements and results. This
allows you to measure planned coverage, actual coverage,
and test progress (test metrics).

– TCDs can also improve communication and knowledge
transfer to other team members (testers and non-testers).

7

Documentation – Automated tests

• TCDs become reference-only documents.
– The desire is to have TCDs reflect the current state of the

test scripts, but this rarely happens because it simply takes
too long.

• One of two things happen
– The documents are deleted and any benefits they could

provide are lost.
– Documentation overload occurs when detailed step-by-step

documentation is expected.

• Or you can use…

Dynamic Document Creation

• Use existing automation artifacts as the source for the
documents and create them only when needed.
– We utilize a FileParser utility to dynamically create test case

documents. This is done by searching existing automation artifacts for
tags and information.

– This allows you to create up-to-date documents when required. If a
documents are never required, then you haven’t wasted any time
manually writing and updating them.

• There are many artifacts that can be utilized for document
creation, but for the sake of simplicity we will focus on test
requirements and test scripts.

8

Test Requirements

• Identifies the requirements for testing activities.

• Created by gathering information from:
– Software requirement/design documents
– Use cases
– Test Plan documents
– Hallway conversations
– Status meetings
– The application
– Any other source that is available

Test Requirements (cont.)

• This information is traditionally contained in a Test
Plan.

• Instead of creating a document for documentation’s
sake, we recommend storing the information in a
format where it can be used as part of an automation
framework.
– Can be a spreadsheet or a data table.

9

Test Requirement File (TRF)

The TRF includes the following columns:
– Test Group: Identifies a test group identification number.
– Requirement ID: Identifies the test requirement identification number.
– Requirement Description: Contains a description of the test

requirement.
– Test Script: Location & name of the test script used to test the

requirement.

Group Req ID Description Test Script
1 0 Field Verification
1 1 Screen 1 verification Scriptname1
1 2 Screen 2 verification Scriptname2
1 3 Screen 3 verification Scriptname3
2 0 Workflow Tests
3 0 Load Tests

Test Requirement Groups

• Navigation: Verify expected UI navigation.
• GUI Consistency: Verifies the integrity of the GUI screen by screen.

• Required Field Verification: Verifies required fields for all screens.
• Special Business Rules Verification: Verifies special business rules.
• Data Integrity Verification: Verifies data entry characteristics (field length,

types, boundary conditions, etc.).
• Workflow Tests: Verifies data entry throughout a business workflow.

• Performance Tests: Load & Stress tests.
• Others…

Organizing test requirements into groups helps modularize your
tests and can help identify testing gaps.

10

Test Scripts

• Inserting meaningful comments into test scripts
should be done as part of a good coding practice.
– Increases the readability of the code
– Helps keep maintenance costs down

• We’ve expanded on this practice by utilizing tags for
documentation. Two examples could be:
– #-Scenario:
– #-Test Case:

Dynamic Document Creation

Documentation is created by combining the “what” in the TRF...

With the “how” in the test scripts (Scriptname1 contains the following):
#-Scenario: Whatever 1

#-Test Case: Field1 verification
#-Test Case: Field2 verification

#-Scenario: Whatever 2
#-Test Case: Field3 verification

Group Req ID Description Test Script
1 0 Field Verification
1 1 Screen 1 verification Scriptname1
1 2 Screen 2 verification Scriptname2
1 3 Screen 3 verification Scriptname3
2 0 Workflow Tests
3 0 Load Tests

11

Dynamic Document Creation (cont.)

The result would show the following:
1.0 Group: Field Verification

1.1 Requirement: Screen 1 verification [Scriptname1]
1.1.1 Scenario: Whatever 1

1.1.1.1 Test Case: Field1 verification
1.1.1.2 Test Case: Field2 verification

1.1.2 Scenario: Whatever 2
1.1.2.1 Test Case: Field3 verification

1.2 Requirement: Screen 2 verification [Scriptname2]
1.3 Requirement: Screen 3 verification [Scriptname3]

2.0 Group: Workflow Tests
2.0 Group: Load Tests

Numbers are created dynamically

Agenda

Test Automation
Test Documentation
Logging Test Results

• Keeping Automation Useable
• Conclusions

12

Test Execution Logs

• Using a consistent execution logging mechanism across all
projects can make analysis & reporting simpler.

• STAMP uses functions contained in a ResultLib library to
document the results of a test.

• Results are tied to the same dynamic numbers that are used for
documentation. This ensures that errors are easy to track back
to test requirements, the test scripts, and the location within
each test script.

Test Execution Logs (cont.)

• Test log
– Each test case: passed/failed, failure description, script name, test

description, date/time of execution

• Summary log
– Total number of scripts run, number not completed & number

completed
– Total number of scenarios run, number failed & number passed
– Total number of test cases run, number failed & number passed
– Total number of test conditions checked, number failed & number

passed
– Total run time
– Start available resources, end available resources & available resource

delta

13

Agenda

Test Automation
Test Documentation
Logging Test Results
Keeping Automation Usable

• Conclusions

Automation in a
high-change environment

• How do you keep test automation going when
applications are continually being updated?

• Reusable modular code & consistency are the keys.

14

Framework Components

• Entry Process: Performs setup activities – establishes the report location;
clears counts & timers; logs memory/resource information; Etc. This
process calls the Initialization Process and UtilityLib functions.

• Exit Process: Performs cleanup activities – logs counts, timers, and
resource information; unloads dll’s & GUI files.

• FileParser: see previous slides

• FuncLib: This is a library of general and application specific functions.
These functions are geared towards the manipulation of screen objects
(push button, entry fields, etc.).

• GUI Map: A physical to logical mapping of GUI objects.

• INI File: Contains values for global variables. Used by the Initialization
Process.

Framework Components (cont.)

• Initialization Process: Sets up the test automation development & run
environment. Variable & path assignments are made here. This is always
called from an Entry Process, but is separate to allow execution of
individual Test Scripts during development & debugging.

• ResultLib: see previous slides

• Test Requirement File: see previous slides

• Test Data Table: Contains input & verification data.

• Test Script: Performs user & verification actions. Also contains additional
business rules.

• Test Suite: Controls the batch execution of multiple tests. Calls an Entry
Script, one or many Test Scripts, and an Exit Script.

15

Framework Components (cont.)

• UtilityLib: A library of functions that logs system information such as OS,
memory utilization, etc.

• Workflow File: A sequential list of navigation steps thru a workflow
process. Contains information about what windows to use, which buttons to
press, what fields to enter data into, and where to get that data.

Note: All framework components have templates to aid in ease of use and consistent
development.

For more information on GUI Map, Test Script, and Workflow File see the
Workflow Driven Tests whitepaper.

Component Relationships

Test Script

FuncLib

ResultLib

Application
being
tested

Results Collection

User &
Verification

Actions

Exit ProcessEntry Process

Test Suite

Test Data
Database

Initialization Process Test
Requirement

File

Workflow
File

ini f ile

Summary
Report

Result Log

CSV

HTML

XLS

TXT
UtilityLIb

FileParser

GUI Map

16

Consistency

• Provides a common look and feel to your automation
efforts. This aids both maintenance and knowledge
transfer.

• Consistency needs to be implemented for the location
of your files, the structure of your code, and common
utilities.

Consistency (cont.)

STAMP recommends the following directory structure.

Test Requirement File Test Data Tables

Init Process ini file

Entry Process Exit Process

GUI Maps Results Shared Libraries

Test Script

Workflow File(s)

group name

group name

Test Groups

Suite Script

suite name

suite name

Test Suites

Project Root

17

Consistency (cont.)

Test scripts should also have a common look and feel. We use a
script template that supports the FileParser documentation &
dynamic numbering process.

condition 1
condition 2
condition n

Test Case 1

condition 1
condition 2
condition n

Test Case n

Test Scenario 1

condition 1
condition 2
condition n

Test Case 1

condition 1
condition 2
condition n

Test Case n

Test Scenario n

Test Script

Consistency (cont.)

• We have established templates for test scripts to promoting
consistency of use and aid in their creation. Our templates
also include calls to UtilityLib & ResultLib functions to ensure
consistent logging.

• A “high-change” environment can also apply to your staff as
well. Employee turnover can be painful if key knowledge
walks out the door. Having a consistent practice will mitigate
this impact and allow you to continue to meet your testing
needs with the minimum stress.

18

Agenda

Test Automation
Test Documentation
Logging Test Results
Keeping Automation Usable
Conclusions

Conclusions

• A test automation framework has two key
characteristics:
– Reusable modular code reduces the number of

places maintenance is needed when something
changes.

– Consistency reduces the impact that personnel &
organizational changes can have on development,
maintenance and training.

19

Conclusions
(more framework characteristics)

• Incorporates common processes and practices that support
your enterprise goals for test automation.

• Is customizable to your enterprise automation needs.
• Is not strictly related to coding and scripting.
• Is open to incorporating 3rd party or custom tools.
• Reduces the impact of organization or staffing changes.
• Provides time savings in long-term test development.
• Minimizes maintenance and lowers cost of knowledge

transfer.
• Tool independent.
• Establishes a base level of knowledge about test automation.

Conclusions
(a framework provides)

• A file structure for test artifacts (files, scripts, & libraries)
• A means to develop, track, manage, and maintain the test

requirements for each project
• Script templates
• Custom test execution reporting
• Test requirements tracking
• Automated generation of the test case documentation
• Traceability between test requirements, test cases, and test

results
• Implementing an automation framework requires some up-

front investment, but more than pays for itself over time.

20

Questions?

Key Points

The regresion testing dilemma
Risk can be used to solve the delimma
Full and Partial Regresion using sampling

Presentation Abstract

How to set up a risk based regression testing policy to solve the dilemma of when and how much regression
testing to do whan under tight schedule deadlines.

About the Author

Gregory M. Pope is a Computer Scientist at the University of California Lawrence Livermore Laboratory.
Over the past quarter century, Mr. Pope has worked in a variety of capacities at virtually all levels of
software development and testing. He began his career developing software used to test jet engines and
helicopters. He later worked in the defense industry, testing missioncritical software for military and space
applications. Working in the private sector, he has developed and patented techniques for computer-aided
testing. Among his inventions is the Ferret, a highly regarded software-testing tool manufactured and
marketed by his company.

As a consultant and teacher, Mr. Pope has conducted hundreds of seminars for software development
professionals throughout the United States, Asia, Canada, Mexico, South America, and Europe. In his
thriving consulting, training, and testing practice, he has worked with many Fortune 500 companies,
including Microsoft, IBM, Apple Computer, Sun Microsystems, AT&T, Eastman Kodak, DHL Airways, and
Knight- Ridder, as well as NASA, the Pentagon, U.S. defense contractors, the Internal Revenue Service,
and numerous foreign companies.

Mr. Pope is sought out to write articles on the subject of software testing for a number of industry
publications, including CIO Magazine, Computer Design, Industry Week, Computer World, Signal, Electronic
Defense News, San Jose Mercury, and Software Maintenance News. He holds a BS degree from
Connecticut State University, an MBA from University of Phoenix, and is a member of IEEE.

QW2002 Paper 6A2

Mr. Gregory Pope
(University of California LLNL)

Risk Based Regression Testing

1

11

Risk Based Regression TestingRisk Based Regression Testing

By:By:
Gregory M. PopeGregory M. Pope

University of CaliforniaUniversity of California
Lawrence Livermore National LaboratoryLawrence Livermore National Laboratory

Quality WeekQuality Week
San Francisco, CASan Francisco, CA
September, 2002September, 2002

22

Purpose of a Regression TestPurpose of a Regression Test

To reduce the risk that changes made to the To reduce the risk that changes made to the
software, most commonly to repair defects or software, most commonly to repair defects or
add enhancements, have not introduced new add enhancements, have not introduced new
defects or undesired or unintentional side defects or undesired or unintentional side
effects.effects.

A standard technique for reducing this risk is A standard technique for reducing this risk is
to periodically rerun all test cases to make sure to periodically rerun all test cases to make sure
they still pass.they still pass.

2

33

The Regression Test DilemmaThe Regression Test Dilemma

There is seldom time to rerun all test cases There is seldom time to rerun all test cases
every time the software changes.every time the software changes.
Some neophyte project managers still think Some neophyte project managers still think
that testing is a one shot activity, i.e. test it and that testing is a one shot activity, i.e. test it and
we are done.we are done.

44

So What Can Be Done? So What Can Be Done?

Skip regression testingSkip regression testing
Don’t change the softwareDon’t change the software
Faith HealingFaith Healing
Do partial regression testingDo partial regression testing
Do at least one full regression test just prior to Do at least one full regression test just prior to
deploymentdeployment
Automate regression testsAutomate regression tests
Risk based regression testingRisk based regression testing

3

55

Reasonable OptionsReasonable Options

The software is going to changeThe software is going to change
Doing no regression testing is a bad ideaDoing no regression testing is a bad idea
Can not do full regression testing every time Can not do full regression testing every time
the software changesthe software changes
Probably not be able to automate regression Probably not be able to automate regression
testing until the product maturestesting until the product matures
Do full and partial regression testing based on Do full and partial regression testing based on
riskrisk

66

Regression Test Regression Test

Full regression test requires running all test Full regression test requires running all test
casescases
Partial regression test focuses on repaired area Partial regression test focuses on repaired area
and requires rerunning failed cases, and requires rerunning failed cases,
verifications of failed cases, and sampling of verifications of failed cases, and sampling of
other areas.other areas.

4

77

Partial Regression TestPartial Regression Test

ReRe--run test cases that failedrun test cases that failed
ReRe--run test cases related to the one that failedrun test cases related to the one that failed
ReRe--run test cases that the developer suggestsrun test cases that the developer suggests
Run a random set of test cases for the Run a random set of test cases for the
remainder of software under testremainder of software under test
Run ad hoc tests in areas of concernRun ad hoc tests in areas of concern

88

Random Numbers Using ExcelRandom Numbers Using Excel
Using a random number Using a random number
generator to pick N test generator to pick N test
case numbers. case numbers.
For instance to For instance to
RANDBETWEEN (1,100) RANDBETWEEN (1,100)
function in Excelfunction in Excel
N could be 10% or 5%N could be 10% or 5%
So for 100 test cases @ 5% So for 100 test cases @ 5%
sampling dosampling do

2929
8989
6868
77

1717

Random Random
Regression Regression
Test Test
NumbersNumbers

5

99

Assigning Random NumbersAssigning Random Numbers
Test Case Test Case
NameName

Enumerated Enumerated
NumberNumber

Initialize 2Initialize 277

Initialize 1Initialize 166

Shut Down 2Shut Down 255

Initialize 3Initialize 3Etc.Etc.

Shut Down 1Shut Down 144

GUI 3GUI 333

GUI 2GUI 222

GUI 1GUI 111

1010

Risk Based Regression TestingRisk Based Regression Testing

To determine whether to run full or partial To determine whether to run full or partial
regression testingregression testing
Do a risk assessment of the safety Do a risk assessment of the safety
(consequences of failure)(consequences of failure)
Do a developer interview to determine the risk Do a developer interview to determine the risk
based on the nature of the changesbased on the nature of the changes

6

1111

Example Safety CriteriaExample Safety Criteria
RQ1 RQ1 –– Consequences of failure are extreme, for Consequences of failure are extreme, for
instance death or injury to public, violation of laws instance death or injury to public, violation of laws
and regulations, large financial losses.and regulations, large financial losses.

RQ2 RQ2 –– Consequences of failure are moderate, for Consequences of failure are moderate, for
instance injury/illness to public, downtime greater instance injury/illness to public, downtime greater
than a week, moderate financial loss.than a week, moderate financial loss.

RQ3 RQ3 –– Consequences of failure are not so great, for Consequences of failure are not so great, for
instance down time less than an hour, annoying to instance down time less than an hour, annoying to
customers, small financial loss.customers, small financial loss.

1212

Risk CategoriesRisk Categories

Develop safety risk categories appropriate for Develop safety risk categories appropriate for
the product and industrythe product and industry
Develop risk categories based on development Develop risk categories based on development
environmentenvironment

7

1313

Developer Interview RiskDeveloper Interview Risk

What was the nature of the changes to the What was the nature of the changes to the
software:software:

DR1 DR1 -- A foundation class piece of code used A foundation class piece of code used
throughout the software system.throughout the software system.
DR 2 DR 2 -- A piece of code or data used by other A piece of code or data used by other
software.software.
DR 3 DR 3 -- An isolated piece of code or data not used An isolated piece of code or data not used
by in any other software.by in any other software.
These are examples These are examples -- Depends on process and Depends on process and
product.product.

1414

Suggested Levels of Regression Suggested Levels of Regression
TestingTesting

Partial N = 5 %Partial N = 5 %3030--3939
Partial N = 10%Partial N = 10%4040--6464
FullFull6565--100100ScoreScore

1515DR 3DR 31515RQ 3RQ 3
2525DR 2DR 22525RQ 2RQ 2
5050DR 1DR 15050RQ 1RQ 1

PointsPointsDR LevelDR LevelPointsPointsRQ LevelRQ Level

8

1515

When To Perform Regression TestsWhen To Perform Regression Tests

After every modification?After every modification?
After every patch?After every patch?
Wait until all repairs and enhancements Wait until all repairs and enhancements
completed?completed?
After clusters of repairs?After clusters of repairs?
Full regression on each major deployment?Full regression on each major deployment?
Judgment required Judgment required

1616

Configuration Management and Configuration Management and
Regression TestingRegression Testing

Code being regression tested needs to be under Code being regression tested needs to be under
Configuration Management control.Configuration Management control.
Do not want code to be modified after testing Do not want code to be modified after testing
and before it is checked in.and before it is checked in.
Regression tested code needs to have a Regression tested code needs to have a
separate build or view immune to developer separate build or view immune to developer
changes.changes.
Regression testing needs to have a separate Regression testing needs to have a separate
and controlled database.and controlled database.

9

1717

Buy InBuy In

Regression testing policy should be adopted by Regression testing policy should be adopted by
the people who develop the code and do the the people who develop the code and do the
testing.testing.
Adopted by test management. Adopted by test management.
Adopted by development management.Adopted by development management.
Adopted by project management.Adopted by project management.
There will be resistance. There will be resistance.
You may need to negotiate and wordsmith.You may need to negotiate and wordsmith.

1818

WaiversWaivers

Should have an escape valve.Should have an escape valve.
Ability to reduce or eliminate regression testing in a Ability to reduce or eliminate regression testing in a
special case.special case.
Needs to be at a high level (Program Manager or Needs to be at a high level (Program Manager or
Executive) sign off.Executive) sign off.
Should have a risk assessment prepared for a waiver Should have a risk assessment prepared for a waiver
so management makes an “informed” decision.so management makes an “informed” decision.
Somebody (hopefully higher up in management) Somebody (hopefully higher up in management)
signs the waiver!!signs the waiver!!

10

1919

Regression Testing FormRegression Testing Form
BriefBrief
Tester, Date, View, Data Base, Instance, Byte Size, Tester, Date, View, Data Base, Instance, Byte Size,
etc.etc.
Safety Criteria Stated. (RQ Level)Safety Criteria Stated. (RQ Level)
Developer Risk Criteria Stated (DR Level)Developer Risk Criteria Stated (DR Level)
Number and Names of Test Cases RunNumber and Names of Test Cases Run
FindingsFindings
Anything else deemed important to know laterAnything else deemed important to know later
CommentsComments

2020

Follow Up To ImproveFollow Up To Improve

Measure the number of defects not found by Measure the number of defects not found by
risk based regression testing.risk based regression testing.
Do root cause analysis, find the error source.Do root cause analysis, find the error source.
Continue to tune the scoring system and risk Continue to tune the scoring system and risk
criteria.criteria.
Review the test cases, reverse engineer the test Review the test cases, reverse engineer the test
design, measure coverage, etc.design, measure coverage, etc.

11

2121

Actual ExperienceActual Experience

Sampling’s uncanny ability to find problemsSampling’s uncanny ability to find problems
Comfort level of testers following a policyComfort level of testers following a policy
Educational for ManagementEducational for Management
Documentation trail for postmortemsDocumentation trail for postmortems
Low false alarm rate on PLC softwareLow false alarm rate on PLC software
Have made minor changes to form and risk Have made minor changes to form and risk
criteriacriteria

2222

SummarySummary

Regression Testing is ImportantRegression Testing is Important
Regression Testing is ChallengingRegression Testing is Challenging
Multiple Levels of Risk Can Be Used to Multiple Levels of Risk Can Be Used to
Determine How Much Regression Testing is Determine How Much Regression Testing is
AppropriateAppropriate
Consider Adopting a Risk Based Regression Consider Adopting a Risk Based Regression
Testing PolicyTesting Policy
Follow Up To Improve ResultsFollow Up To Improve Results

 1

Risk Based Regression Testing

by Gregory M. Pope

1.0 Purpose
The purpose of this presentation and paper is to present a Risk Based Regression Testing strategy which
can help determine the amount of regression testing to perform and the frequency of performing
regression testing.

2.0 Scope
Would apply to System (Black Box) Testers, Integration Testers, Project Managers, and Software
Developers. Medium to Large scale software projects.

3.0 Regression Testing
The purpose of regression testing is to reduce the risk that changes made to the software under test, most
commonly to repair defects or enhancements, do not cause new defects or undesired or unintentional
side effects. A standard technique to reduce the risk of repairs (or enhancements) made to the software
causing new defects, is to periodically rerun all test cases to make sure they still pass.

3.1 Regression Testing Dilemma
The classic regression testing dilemma on a medium to large scale software project is that if all test cases
were run after each and every change to the software, the length and the expense of all but the smallest
software project would be prohibitive. So the dilemma is how to reduce the risk of undesired side effects
of defect repairs from going undetected without the necessity to run all test cases after every change.

3.2 Regression Testing Options
The best way to reduce risk of undesired side effects from repaired code is to follow good design
principles in building the code in the first place. These include techniques such as modularity, coupling
and cohesion, code inspection and review, coding practices and compliers that promote structured
programming practices, debugging techniques, static code analyzers that identify high risk areas, and
configuration management tools that keep track of and manage all changes to the code. Many of these
development principles are being followed on NIF and are constantly being improved upon.

The secondary way to reduce the risk of undesired side effects from repaired code is to have and enforce
an effective regression testing policy. While this technique does not prevent errors, it will increase the
probability of detecting them should they occur prior to release to the operational environment. An
effective and reasonable regression testing policy must be tailored to the size and complexity of the
project, the consequences of failure, available resources, and budget and schedule constraints.

Automation of regression tests is an ideal strategy for mature products that undergo periodic upgrades.
Automating regression testing while developing a new product is very difficult because the test scripts
will need to constantly be changing along with the new code. The software staff size would need to
almost double to support the developers needed to write the test code. The technical risk then becomes
using new test code to test new software code. Also, who tests the test code? While regression test
automation is clearly a long range solution, it is probably not the best short term solution other than
“smoke tests,” isolated emulators, and performance-related testing.

It goes without saying that a bad option is to skip regression testing altogether because of schedule
pressure. This technique almost always leads to major problems after release to operations.

3.3 Risk Based Regression Testing

 2

The risk based regression testing strategy will address the regression testing dilemma by using a
combination of full and partial regression test strategies, sampling theory, and risk-based regression
testing.

3.4 Full and Partial Regression Testing
A full regression test requires running all test cases for the software under test again, as well as some ad
hoc tests. To pass the regression test, all test cases must pass. (Note: ad hoc tests are tests which do not
have to be written down a priori, but are based on experiential, spontaneous, or intuitive sources. If an ad
hoc test does uncover a defect, the procedure followed should then be fully documented, including
observed results, and added to the set of test cases.

A partial regression test requires:

1. Re-running the test case(s) that previously failed to assure they now pass.
2. Running any test cases closely related to the area that previously failed.
3. Running any test cases that the developer suggests or feels is important.
4. Running a random sample set of test cases for the remainder of the software under test.
5. Running ad hoc tests in areas of concern.

3.5 Sampling Technique for Partial Regression Tests
In partial regression testing, it is important to conduct a random sample of test cases over the software
under test, in addition to testing the effected area, areas related to the effected area, and areas suggested
by the developer. The random sample technique requires use of a random number generator to pick N
test case numbers, where N is the number of test cases to run. A function such as RANDBETWEEN in
Excel can be used to generate random numbers.

Note: If function RANDBETWEEN generates an ?name error on your spreadsheet, you may have to add
it to Excel using the Analysis Tool Pack. This can be done doing the following:

1. On the Tools menu, click Add-Ins.
2. In the Add-Ins available list, select the Analysis ToolPak box, and then click OK.
3. If necessary, follow the instructions in the setup program

For instance, if there are a total of 100 test cases for the software under test, and it is desired to run 5%
of them on a random basis (N=5), then use RANDBETWEEN(1,100) in five cells of a spreadsheet to
generate the five test case numbers. See the example below:

26
53
75
54

6

In this case, test cases 26, 53, 75, 54, and 6 would be run in addition to the specific test cases related to
the problem that was fixed. If all the sample test cases pass, the regression test is complete, if any of the
sample test cases fail, a complete regression test should be done.

4.0 Risk Based Regression Testing
To determine when full versus partial regression testing is appropriate, an evaluation of risks should be
made. The two major risk categories are safety and developer risk. However, other risks may enter into
the decision, such as historical or experiential factors. If there is high risk involved with the software

 3

under test, complete regression testing should be done. For moderate risk, either complete regression
testing or partially regression testing with a large (10%) random sample size should be done. For lesser
risk, a partial regression test with a smaller (5%) random sample size should be done.

4.1 Example Safety Criteria Risk
Concern for safety is a major concern on most software projects, and the most important factor to
evaluate when considering regression testing risk. In this discussion we shall assume 3 levels of safety
criteria:

1. SR1.- A software induced failure could result in the release of hazardous materials to the
environment, or be in violation of a Federal, State, or Local law, or cause death or injury to
the general public or a financial loss over one million dollars or downtime greater than 30
days.

2. SR2. – A failure could result in the release of hazardous materials in a confined space, or

cause injury or illness to workers, or cause critical system downtime of a week or greater or
financial losses between one hundred thousand and one million dollars or downtime from 7
to 30 days.

3. SR3.- A failure could cause damage to the system with downtime of a week or less, or would

annoy workers, or cause financial loses under one hundred thousand dollars.

To determine the risk involved with the software to be regression tested, pick the S level that most
closely fits the description of the consequences of failure. In some cases, consultation with developers or
other technical leads may be required to pick the closest answer. When in doubt, pick the higher risk
level.

4.2 Developer Interview Risk
The second major risk factor concerns the nature of the repair from the perspective of the developers.
The nature of the repair can be determined by interviewing the developer who made the repair, as well
as their supervisor. Working with the developer and their supervisor, see which one of these three levels
of repair risk best describes the repair:

1. DR1. – The repair was made on software or data that is in the frameworks, within a
foundation class, or the repaired software is used numerous places, or the repair was made to
software that has been very troublesome in the past when repaired, or the repair was made to
software that was written by someone who is no longer working on the project.

2. DR2. – The repair was made to software or data that is used in more than one place and the
other places it is used are well understood and have not been troublesome in the past.

3. DR3. – The repair was made on software that is not used anywhere else, is an isolated piece

of code or data not used by anyone else and has not been troublesome in the past.

5.0 Determining Level of Regression Test
After determining the two risk ratings based on safety considerations and the developer interview,
consult the table below to determine the score:

RQ Level Points DR Level Points

 4

SR 1 50 DR 1 50
SR 2 25 DR 2 25
SR 3 15 DR 3 15

For instance, an SR2 safety risk and DR2 developer risk would be a score of 50.

After determining the risk score, consult the regression testing table below to determine the regression
testing technique to use:

Score 65-100 Full
 40-64 Partial N = 10%
 30-39 Partial N = 5 %

For example, for a risk score of 50, partial regression testing must be performed with a random sample
size of 10%

6.0 Determining Frequency of Regression Testing
After determining the type of regression testing that is appropriate based on risk, the next step is to
determine how frequently to conduct the regression testing. One extreme would be to conduct a
regression test after every repair or patch to the software. The other extreme would be to wait until all
repairs and patches are completed before regression testing. The first extreme, regression testing after
every change, would be very time consuming. The second extreme, waiting until all changes and patches
are complete, would be most time efficient, but leave little or no time to repair defects found during
regression testing.

The best choice for regression testing frequency would be a strategy between the extremes. Repairs and
patches usually do not occur evenly throughout the build cycle. Normally they come in clusters of
activity. For instance, the test engineer might run 100 test cases for three days and generate 50 Test
Incident reports. The following week the developers might issue a new release or a set of patches to fix
the defective code. It would be at this point that a regression test might be most efficient. Notice that
there is a relationship between regression testing risk and the number of repairs. The more numerous the
repairs, the greater the likelihood of more than an isolated piece of code being effected, so the developer
risk factor goes up. Testing fewer repairs at a time would tend to lessen the developer risk.

There are exceptions, however. Especially close to the software release date to on-line or operational
environments, where a critical defect is found, fixed, and requires immediate regression testing.

The best point in time to do the regression testing requires judgment on the part of the test engineer and
developer. As a general rule, it should be after a cluster of repairs rather than on a fix by fix or patch by
patch basis, unless of course there is compelling reason to do otherwise. It is common to regression test
the code numerous times during its development. Before final release is another obvious opportunity to
run a regression test.

7.0 Configuration Management and Regression Testing
Before beginning any regression test, assure that the software to be tested is under configuration control.
If the regression testing is performed on code that is not under configuration control the possibility exists
that the developer may make changes to the code after it is tested and before checking it in. These

 5

changes, no matter how small, will invalidate the regression test and require the regression test to be
repeated.

8.0 Summary
Hopefully the Risk Based Regression test approach can help solve the dilemma of how much regression
testing to do on software projects that are under schedule pressure to deliver. The number and levels and
definitions of risk can be tailored to best suit the process and product being developed. The sampling
size and scoring can also be tuned for a particular environment. The examples given in this paper are by
no means universally appropriate for all projects, but the under lying principle of varying the amount of
regression testing based on risk might be worth adding to your arsenal of testing tools.

THE AUTHOR:

 Gregory M. Pope is a Computer Scientist at the University of California Lawrence Livermore
Laboratory. Over the past quarter century, Mr. Pope has worked in a variety of capacities at virtually all
levels of software development and testing. He began his career developing software used to test jet
engines and helicopters. He later worked in the defense industry, testing mission-critical software for
military and space applications. Working in the private sector, he has developed and patented techniques
for computer-aided testing. Among his inventions is the Ferret, a highly regarded software-testing tool
manufactured and marketed by his company.
 As a consultant and teacher, Mr. Pope has conducted hundreds of seminars for software
development professionals throughout the United States, Asia, Canada, Mexico, South America, and
Europe. In his thriving consulting, training, and testing practice, he has worked with many Fortune 500
companies, including Microsoft, IBM, Apple Computer, Sun Microsystems, AT&T, Eastman Kodak,
DHL Airways, and Knight-Ridder, as well as NASA, the Pentagon, U.S. defense contractors, the
Internal Revenue Service, and numerous foreign companies.
 Mr. Pope is sought out to write articles on the subject of software testing for a number of
industry publications, including CIO Magazine, Computer Design, Industry Week, Computer World,
Signal, Electronic Defense News, San Jose Mercury, and Software Maintenance News. He holds a BS
degree from Connecticut State University, an MBA from University of Phoenix, and is a
member of IEEE.

Key Points

Session-based testing can control an unscripted test process
A useful coverage metric for a session-based test process
Session-based testing provides a foundation for improvement

Presentation Abstract

This presentation describes the way that a UK company controlled and improved ad-hoc testing, and was able to use the knowledge
gained as a basis for ongoing, sustained improvement. We detail the methods we used to define test scope, to control the activities of
the team and to measure coverage. The story of how these methods were implemented will include details of problems, solutions, and
the ways that the methods were improved. We will also cover the ways that their results helped put the case for improvements
throughout development, and ways in which the team built on them to arrive at a better overall test process.

About the Author

James Lyndsay is an independent test consultant with more than ten years experience. Specialising in test strategy, he has worked in a
range of businesses from banking and telecoms to the web, and pays keen attention to the way that his clients' focus is shifting away
from functional testing.

Niel vanEeden is the Test/QA Manager at the UK company in question, and has implemented a process of ongoing improvement to the
methods detailed in the presentation.

QW2002 Paper 7A1

Mr. James Lyndsay (Workroom Productions Ltd.) & Niel vanEeden (Jobpartners Ltd.)

Adventures in Session-based Testing

1

Slide 1

© Workroom Productions 2002
www.workroom-productions.com

Adventures in Session-based Testing

James Lyndsay

Workroom Productions

jdl@workroom-productions.com

www.workroom-productions.com

Slide 2

© Workroom Productions 2002
www.workroom-productions.com

?What?

2

Slide 3

© Workroom Productions 2002
www.workroom-productions.com

Session-Based Testing

Manages and controls unscripted testing

• Limited Duration
• Directed Exploration

• Recorded Activities
Supports ‘Agile’ Process
Allows quick metrics
Has wider uses

Slide 4

© Workroom Productions 2002
www.workroom-productions.com

Adventures?

Product

• Internet application, commercial and in use
Team

• Small, inexperienced
Business context

• Rapid change

• Low trust in test team

• Commercial constraints
• Must not find fewer / less significant bugs
• Must not stop or slow down

• No increase in team size / budget

3

Slide 5

© Workroom Productions 2002
www.workroom-productions.com

Strategy

Stay within constraints
Deal with change rather than enforce stasis

• Use lightweight methods
• Encourage learning process

• Generate dynamic, up-to-date metrics
Three goals

• Control scope

• Control work
• Measure risk and coverage

Slide 6

© Workroom Productions 2002
www.workroom-productions.com

Why Session-Based Testing?

Fitted existing methods

• Ad-hoc testing fits well into sessions
Improvement of test techniques

• Helps learning through feedback and review
Improvement of test management

• Control and measurement helped from day 1

• No step-change

• Still hit existing deadlines with good bugs

4

Slide 7

© Workroom Productions 2002
www.workroom-productions.com

Methods

Slide 8

© Workroom Productions 2002
www.workroom-productions.com

Methods: Overview

Control and recording
• Control Scope
• Control Work
• Recording a Session

Assessment and Measurement
• Assessing Risk
• Assessing Coverage

Infrastructure
• Real-time Metrics
• Social techniques

5

Slide 9

© Workroom Productions 2002
www.workroom-productions.com

Methods: Control

Scope - made of Test Points

• Test Point - piece of work
• Estimated cost

• Risk
Work done - made of Test Sessions

• Test Session - piece of time

• 1 - 4 Test Points
• Actual cost

• Coverage

Slide 10

© Workroom Productions 2002
www.workroom-productions.com

Example: Test Points
Test Point ID Title / Description (Comments in brackets) Risks Estimated Time

(mins)
Time spent

(mins)
% Tested /
Complete

Tester
Name

Date Total
time

Time left

TP0100815-0001 Candidate Search Module: Candidates Search in Options now
accessible through postings and requests (DP3.1 PP3.8

3 240 0%Peter 240 240

TP0100815-0001a Add additional test point if needed 0% 0 0
TP0100815-0002 Candidate Search Module: Speculative application (DP3.2

PP3.7 Akash)
2 240 0%Peter 240 240

TP0100815-0002a Add additional test point if needed 0% 0 0
TP0100815-0003 Integration Module: Monster integration (DP4.1, PP8.5.1-2-3,

James)
2 180 0%Peter 180 180

TP0100815-0003a Add additional test point if needed 0% 0 0
TP0100815-0004 Integration Module: CV Online (DP4.2, PP8.1.1-2, Sanjay) 2 180 0%Peter 180 180
TP0100815-0004a Add additional test point if needed 0% 0 0
TP0100815-0005 Integration Module: Totaljobs (DP4.3, PP8.3, Sebastien) 2 180 0%Peter 180 180
TP0100815-0005a Add additional test point if needed 0% 0 0
TP0100815-0006 Integration Module: Mediapp (DP4.4, PP8.2, Sebastien) 2 180 0%Peter 180 180
TP0100815-0006a Add additional test point if needed 0% 0 0
TP0100815-0007 Requests Module: Open-ended interview questions (DP5.1,

PP6.3, Lloyd)
2 180 0%Pinal 180 180

TP0100815-0007a Add additional test point if needed 0% 0 0
TP0100815-0008 Requests Module: Additional Candidate Fields: Salary scale or

grade as well as Salary value (DP5.2.1, PP6.4, Lloyd)
1 180 0%Pinal 180 180

TP0100815-0008a Add additional test point if needed 0% 0 0
TP0100815-0009 Requests Module: Additional Candidate Fields: Job type

classification or category (DP5.2.2, PP6.2, Sumsun)
1 120 0%Pinal 120 120

TP0100815-0009a Add additional test point if needed 0% 0 0
TP0100815-0010 Requests Module: Additional Candidate Fields: Description of

Bank/branch location (DP5.2.3, PP6.5, Anand)
1 120 0%Pinal 120 120

TP0100815-0010a Add additional test point if needed 0% 0 0
TP0100815-0011 Requests Module: Additional Candidate Fields: Location

"Region" for travel (DP5.2.4, PP6.6, Lloyd)
1 120 0%Pinal 120 120

TP0100815-0011a Add additional test point if needed 0% 0 0
TP0100815-0012 JobsatJP: Anonymous/confidential applications (DP6.1.1,

PP7.1.3, Sumsun)
3 60 0%Selena 60 60

6

Slide 11

© Workroom Productions 2002
www.workroom-productions.com

Methods: Control

Recording a Test Session
• Plan, Expectations, Actions, Observations
• Bug details
• Actual Cost
• How done are we? Ì Coverage

Allows
• Review
• Forgetting
• Retrospectives

Slide 12

© Workroom Productions 2002
www.workroom-productions.com

Example: A Test Session
Test Description

Test ID Risk Date + time done

Your name IDs, Machines, Files and other resources used

Estimated time

Actual time

How much more testing does this need?

% complete?

Plan

Notes

7

Slide 13

© Workroom Productions 2002
www.workroom-productions.com

Methods: Assessment

Risk

Coverage

• Ask the Experts - the testers!

• How done are you? How much is left?

• Collect many subjective Ì few objective assessments
• Overall figures can go down as well as up

• Ongoing learning - estimates improved

Likelihood of failure
Risk High Low

Cost of failure High 3 2
Low 2 1

Slide 14

© Workroom Productions 2002
www.workroom-productions.com

Methods: Support

Real-time metrics

• Immediate feedback
• State of testing, not of system

• Fast, frequent, informed re-planning
Soft skills/Social Techniques

• Experimental Approach

• Ongoing learning
• Communication

• Empowerment

8

Slide 15

© Workroom Productions 2002
www.workroom-productions.com

Example: Metrics
We are 95% complete
38% of our tests have been successful
We think we have 7 hours left

No. failed tests 55
No. still not fixed #NAME?
No. fixed not tested 1

% planned tests complete 95%
Time taken so far 125.15
Est. time for these 100.7

total left
Pre-test estimate of time 105.7 -19.45
Post-test new guess 132 7

All tests Planned tests Completed Tests Successful Completion
Est. Actual %Done %Successful

Number Hours Number Hours Number Hours spent Number Number Number
Total 139 182.5 94 92.6 89 106.1 34 95% 38%

H High risk 26 20.1 23 17.1 20 18.9 6 87% 30%
M Med risk 68 80.4 48 46 46 54.5 18 96% 39%
L Low risk 45 82 23 29.5 23 32.8 10 100% 43%

All retests Planned retests Fix tested Successfully fixed Completion
Actual %Done %Successful

Number Hours Number Hours Number Hours spent Number Number Number
Total 64 13.3 63 13.1 63 19.05 49 100% 78%

The spreadsheet looks consistent

Slide 16

© Workroom Productions 2002
www.workroom-productions.com

?
Did it work?

9

Slide 17

© Workroom Productions 2002
www.workroom-productions.com

Results

Short-term
• Stayed within business constraints
• Improved accountability, reporting, trust
• Manager and team ‘in control’

Long-term
• Still in use a year later
• Metrics used within business as a benchmark
• Initial processes enhanced and expanded
• Improved motivation, reduced ‘churn’
• Used for all testing - included scripted and automated

Slide 18

© Workroom Productions 2002
www.workroom-productions.com

Lessons
Learned

10

Slide 19

© Workroom Productions 2002
www.workroom-productions.com

Lessons Learned

Improvements

• Four Groups
• New - driven by changes

• Retests - driven by fixes

• Regression

• Investigatory

• Document tracking

• Earlier involvement
• Design

• Just before delivery to test - late unit test

Slide 20

© Workroom Productions 2002
www.workroom-productions.com

Lessons Learned

Useful, visible, up-to-date metrics
• Increase openness, reduce surprise, blame
• Popular and increasingly well-used

Actively encourage learning process
• Feedback has improved estimating skills
• Session review has improved test techniques
• Test Point ownership has improved planning

and scoping skills
• Weekly 2-hour self-training session as a team
• Greater interest in testing, greater motivation

11

Slide 21

© Workroom Productions 2002
www.workroom-productions.com

Conclusion

Communication

• Sessions gave us the tools to communicate

• Better communication improved trust and
effectiveness

Empowerment

• Improved analysis and estimation skills

• Increased morale
Openness

• All figures available, all of the time, always current

• Encouraged trust and interest

Slide 22

© Workroom Productions 2002
www.workroom-productions.com

Conclusion

Test Sessions are an effective tool to
bring control to unscripted testing

Overall lessons

• Simple measures are the best
• Favour effective communication over knee-jerk

documentation
• Unobtrusive, immediate metrics allow real-

time control

12

Slide 23

© Workroom Productions 2002
www.workroom-productions.com

More

Further details:

• Paper, updates, references etc.
• www.workroom-productions.com

• Contact:
• James Lyndsay

• Jdl@workroom-productions.com

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 1 of 16 Version 1.1

Adventures in Session-Based Testing

Authors James Lyndsay, Workroom Productions Ltd, Niel van Eeden, Jobpartners Ltd.

Biographies James Lyndsay is an independent test consultant with ten years experience. Specialising in test
strategy, he has worked in a range of businesses from banking and telecoms to the web, and
pays keen attention to the way that his clients' focus is shifting away from functional testing.

Niel vanEeden has a background in mechanical engineering, IT hardware, software and retail.
Since relocating to the UK from his native South Africa, he has worked in customer facing roles
and in software quality, and has been involved in testing at JobPartners since May 2000. In
January 2001 he became the test manager, and is currently responsible for product quality.

Abstract This paper describes the way that a UK company controlled and improved ad-hoc testing, and
was able to use the knowledge gained as a basis for ongoing, product sustained improvement. It
details the session-based methods initially proposed, and notes problems, solutions and
improvements found in their implementation. It also covers the ways that the improved test
results helped put the case for change throughout development, and ways in which the team has
since built on the initial processes to arrive at a better testing overall.

Session-based testing can be used to introduce measurement and control to an immature test
process, and can form a foundation for significant improvements in productivity and error
detection.

Keywords Ad-hoc testing, Exploratory testing, Session-based testing, Functional testing

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 2 of 16 Version 1.1

Session-based Testing
Session-based testing is a technique for managing and controlling unscripted tests. It is not a test
generation strategy, and while it sets a framework around unscripted testing, it is not a systematic
approach whose goal is precise control and scope. Rather, it is a technique that builds on the strengths
of unscripted testing - speed, flexibility and range - and by allowing it to be controlled, enables it to
become a powerful part of an overall test strategy.

At the heart of the technique is the idea of effective limits. A Test Session has a well-defined start and
end time, limiting its duration. During a Test Session, a tester engages in a directed exploration of a
limited part of the thing being tested - it should be obvious to the tester that an action or test is inside or
outside these limits. Within these limits, moment-to-moment activities are not controlled, but left to the
tester's judgement. The tester records his or her activity - and includes whatever other information
seems relevant; the reactions of the system, data used, conditions, diagnosis or ideas.

Session-based testing mirrors the activities of experienced testers, but is not the subject of a great many
papers or books. This paper describes one situation in which session-based testing was successfully
implemented.

Context
The product to be tested was an application delivered over the internet, and had been commercially live
for just under a year. The application had a few hundred active users at a few dozen firms, and dealt
with a large amount of incoming data submitted by many thousands of internet users,.

This application had been developed in-house by a medium size team (30-40 people total). The team
continued to develop the application, and released a new version of the application every two weeks or
so. Work was driven by a semi-formal change request process.

Although customers were satisfied with the overall service, there was a perception within the company
that the quality of the product had to improve. Something in the development process (requirements,
analysis, design, coding, testing, infrastructure, release) had to change - and unsurprisingly, attention
initially concentrated on the test process.

The existing test process was immature, and the five-member team had little experience. None of the
team had experience of a well-run test process. The precise nature of the problems cannot be detailed in
this paper, but the process exhibited the following common characteristics.

• Reactive - and therefore uncontrolled, and not necessarily focussed on important areas

• Could miss important bugs which had an immediate effect on customers

• Could not produce reliable information about the readiness of a release, and was not trusted.

The test team were active users of the mature bug tracker Bugzilla. This tool was central to the team’s
processes, and drove much of the fix/retest work in the coding and testing teams. They had been using
the tool for the life of the product, and had a well-established bug list.

To help initiate the changes, the company bought in experience, and engaged one of the authors of this
paper (James Lyndsay) for forty days spread over ten weeks.

Constraints

With a mandate for change, management were supportive of changes within the test team and their test
processes. However, the changes made had to stay within existing budget and resource. The test effort
needed rapid improvement, yet at the same time, the coders were to increase the rate of introduction of
new features, and many known bugs would be fixed for retest.

Existing testing found good bugs, but in a haphazard way. The most significant issues - particularly
those caused by data problems and often characterised by intermittent symptoms - were most regularly
found during ad-hoc testing, and the team were reluctant to move away from a proven approach.
Scripted tests would be ineffective, and would be resisted by management and by the test team.

The team were already stretched. Any time spent on training or setting up new procedures would have
to be saved elsewhere. However, as the existing process was inefficient, time savings were not hard to
find.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 3 of 16 Version 1.1

Basic strategy for test improvement

We needed a simple process which would improve on the existing ad-hoc methods. To allow us to do
this, we had to introduce some element of measurement, so that we could see which parts of the process
were working, and which parts were not. We also needed to introduce control, so that we could define
our tasks, record our actions, and so repeat or improve them.

Canter/Derr had done work at e-greetings.com which inspired the team. Their paper (A Case Study in
Extreme Quality Assurance, referenced below) helped the team to believe that they were not alone, and
that similar problems and pressures had been overcome in other organisations. However, Canter/Derr's
approach introduced change well outside the test team, and while desirable, could not be implemented
under the existing mandate.

James Bach's exploratory test methods (referenced below) meshed well with James Lyndsay's existing
'Empirical Test' techniques, and Jonathan Bach's practical implementation of session-based test
methods (described in the paper Session-Based Test Management) seemed to offer a useful and
practical starting point. Bearing in mind the need for a simple, lightweight process that would form the
basis for ongoing improvement, we set out to do the following things:

• Control the scope of testing

• Control the work

• Measure risk and coverage

Session-based methods
Session-based testing parallels the way that many experienced testers approach unscripted testing.
While not a new technique, it has not been formalised - and there are no hard and fast rules to its
execution. However, session-based testing is characterised by (at least) the following:

• A test session is a unit of time, generally a couple of hours long. It is uninterrupted, as far as
possible, and its limits are well-defined.

• During a test session, testers test something specific. They may test a feature, a characteristic,
a business scenario - they may hunt bugs or introduce failures. These limits are less well-
defined, but they are defined before the start of the test.

By introducing these limits, session-based testing seeks to focus tester attention, allowing control,
increasing the reliability of metrics and the repeatability of tests, and limiting the cost of poor
exploration.

The methods below allowed the team to:

• Control the scope of testing

• Control their work

• Assess coverage

• Assess risk and set priority

Controlling the scope - introducing Test Points

The team had no existing test list, and the project as a whole did not have uniquely-identified
requirements. Each release introduced a wide range of new tests, and although test scope was driven in
part by bug fixes, there was no list of new tests or record of tests done.

We needed some sort of a list of tests, to enable us to:

• select tests and so drive work

• consciously omit certain tests

• make easy and repeatable assessments of the state of testing

• avoid duplicates

• preserve important information, allowing members of the team to move on

• simplify communication within the team, and extend communication outside the team

• generate reliable statistics

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 4 of 16 Version 1.1

The items in this list might be tests, but the concept of a test in unscripted testing is very different from
a scripted test. We tried to avoid some of the characteristics of unscripted testing by carefully choosing
the things we would control. The items on the list:

• Would not be single tests, but aspects of the application that needed to be explored. A tester
would typically conduct many tests in their exploration.

• Needed to be independent units of work - not steps along a path. A tester could start or finish
with any item.

• Needed to be based on a wide range of sources. These included change requests, functional
requirements, development information, release notes , regression test requirements - and on
conversations over lunch, inference from unspoken topics, eavesdropping, wiretapping and
covert midnight operations.

To avoid confusion with 'tests', we call these items Test Points. Our test points have the following
broad characteristics:

• A Test Point is a unit of work and typically takes between 20 minutes and 4 hours. This
estimate of duration is first made at the point when the Test Point is defined, and can be used
as a simple metric for the cost of the test. It is refined during testing.

• Each Test Point has a simple risk assessment. This assessment is also done as part of the
process of defining the Test Point. If a Test Point has a range of risks, it is split.

• Test Points are retained from one release to the next. Some Test Points may only be explored
rarely, some become part of a set of regression Test Points, some crop up each release but
their exploration changes as the functionality changes.

• Every piece of test work has its associated Test Point - including test work from more formal
methods and work for non-functional testing.

Example Test Points:

• Is a field for 'Salary' offered as an optional input at all appropriate points?

• Examine User Access Control, using usertype xxx and usergroup yyy

• Does the 'Forgotten my password' option ever fail to send an email?

• Check navigation in 'Options' part of application, paying particular attention to 'back' button
functionality within application, and within browser.

• Check button text within 'Options' part of application for each language offered

The list of Test Points is dynamic - additions are made frequently, based on bugs found, new
understanding, unanticipated functionality and fixes delivered. We currently hold the list in a
spreadsheet that can be accessed by the team at all times, but the same job might be done as well, or
better, by a database accessible over the internet. The list can only be changed directly by the test team,
but can be (and is) accessed by many others. Regular users outside the immediate test team include the
Development project manager, Professional Services and senior management.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 5 of 16 Version 1.1

Each Test Point is associated with the following information:
Test point ID Unique ID. We found it useful to include the release number in this unique ID.

Test Points related to bugs also had the bug ID as part of their unique ID.

Title/Description Enough to set the boundaries of the test

Risk Simple, repeatable risk assessment. See ' ' below for details

Estimated time to
complete

If the estimated time to complete is >4 hours, it may be an indication that the TP
should be split into two simpler parts. It's hard to do useful exploration in less
than 15 minutes, so a very short time might indicate that something needs to be
re-assessed.

This estimate is updated after test execution to be ÷

Also called 'Cost'

Time spent so far
(this release)

Updated as test sessions are completed. Reset after release - so it records the
time spent to far this release.

% testing
completed

Basic estimate. Will be at 100% if testers feel that the TP has had enough
attention to be passed to the customer. May start at 100% if TP has no need to
be tested. Will generally increase with work done, but may go down if the TP
looks like it needs more testing.

Time remaining Calculated as * (1 -)

Tester Named Tester, responsible for this Test Point

Documentation Cross-references to relevant documentation

We needed to have the best assessment of risk and cost, and felt that this would be made most reliably
by those closest to the Test Points - so individual testers were made responsible for Test Points. This
had the added effect of motivating the team and neatly defining their test tasks. Responsibilities
include:

• identifying the documentation – and raising notice of its absence

• prioritisation of Test Points (with team and Test Manager)

• exploratory testing around these Test Points

• raising bugs found

• filling in the Test Session Report

• updating Test Point information – risk, time spent, necessary testing completed

• adding new Test Points for the release if they feel it is necessary

• talking about the Test Points at group meetings

Controlling the work with Test Sessions

While a Test Point might be described as a unit of work, a Test Session is a unit of time. A Test Point
may be repeated - a Test Session is planned, happens, and is recorded. Each is unique. By setting the
scope of individual tasks, controlling the time taken to do them, and requiring deliverables on
completion, we controlled the work, and were able to dynamically adjust the plan.

A Test Session is an uninterrupted period, generally half a day or less. During a Test Session, testers
will investigate one or more Test Points - with the minimum size of a Test Point at around 20 minutes,
most Test Sessions look at no more than four. The choice of the Test Points to include in a session can
be made on a number of criteria, and for planning, works well when related Test Points are chosen
together. However, in action, it tends to be a very dynamic process, reflecting the team's need to react
to the fast-changing priorities that are characteristic of a rapid-release environment. A plan that cannot
adapt to fit circumstance is worse than useless in a changing environment.

Typically, the Test Manager controls the initial choice of Test Points for a release. The Test Manager
also acts as the driver for change when necessary - and can substantially change test priority and scope
during the process, and at short notice. His/her decision is based on:

• Availability of software

• Availability of test resources

• Time needed to test vs. time available

• Tests done so far, and their coverage of functional areas and risk

• Existing Plan

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 6 of 16 Version 1.1

Session Timeline and Reporting

Before starting a Test Session, Testers print off a blank test session report and fill in the administrative
details - including the Test Points they plan to explore. Test Session Reports have space for the
following information:

Test Session ID Unique ID. It was helpful to include information about the release, and about the
tester doing the test session - although note that including the release ID could
both cause and resolve confusion when testing (particularly fixes) in a release
other than the one being used by the rest of the team.

Title/Description Enough to set the boundaries of the session

Contents Test Points covered in the session (often 1, rarely more than 4)

Administrative details Tester name, release, date + time etc.

Notes To be filled in while testing, although system conditions, available data etc. is
often noted before the start of the session.

While exploring those Test Points, the testers use the Test Session report to record data, impressions,
problems, queries, possible bugs, bugs raised, diagnosis and so on. The reports aren't formal, or neat,
but they are good records - and got better as the testers became more experienced.

A Test Session is a timed activity. At an appropriate point around the end of the allocated time, the
session ends. Testers are not encouraged to spend more time than planned on any one Test Session -
although the Test Points may be returned to in a later session.

The deliverables at the end of the Test Session are:

• completed session report filed appropriately

• updated list of Test Points

It is important to remember that although the Test Session may be finished, testing may not be over.
Although exploratory testing can be controlled by imposing an end-time, problems found during testing
can result in a greatly increased - or decreased - estimate of the time necessary for adequate testing.
Dealing with this was an important factor in deciding what to measure.

Review of Test Session Reports

Although simply writing a Test Session Report helps the testers (see below), recording the events
allows Test Sessions to be reviewed after the event. This helps different people in a wide range of
ways.

• Helps testers and the Test Manager when setting the severity of a bug, looking for duplicates
etc. It is particularly helpful when the severity is queried

• Helps decide how to approach testing if the time needed is more than the time taken so far.

• Helps the Test Manager and individual testers to control and improve the quality of testing.
The Test Session Report is a useful coaching tool; the coach does not have to sit with the
tester for the duration of the test, and more than one session can be reviewed and compared.
The Test Manager also gets a good idea of the approach to testing of each tester, and can re-
direct as appropriate.

• Helps the test team to look back on a session, to be reminded of their actions and results, to
examine the data used in the light of new information etc. Reviews also allow testers to re-
interpret their conclusions, or to use multiple session reports for diagnosis or examples.

• Helps testers to share information - testers can swap Test Session Reports when handing over
areas of responsibility, or can compare their different approaches to the same Test Point.

• Helps coders and designers get over the 'if I haven't seen it, it isn't a bug' problem. Illustrating
the problem by showing the data used can be very helpful, and noting times helps to match
problems with known system events - network failure, batch job etc.

• Having a tangible and discussible record of test work available for review helps the business
have confidence in the test process, and the reviews themselves help the testers and the
business understand each others priorities and desired approaches.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 7 of 16 Version 1.1

Assessing test coverage

Coverage - a brief explanation

Coverage is a measurement of what has been done as a proportion of what could be done, and is an
important test metric. It plays a key role when assessing whether the product has had enough testing to
give the business confidence that it can be released. When broken down by area, it can indicate those
aspects of the product that have had enough, or too little testing, and so becomes a vital input in
adjusting the plan as circumstances change.

There are many ways of measuring coverage - Cem Kaner lists 101 coverage metrics in his paper
Software Negligence and Testing Coverage, some serious, some not so serious. Although they are each
measures of 'testedness', they do not all measure the same thing - so 'good' coverage by one metric may
be inadequate when measured by another (i.e. Statement coverage vs. Service Level Requirements
coverage). It also can be hard to measure some coverage metrics without instrumentation set up prior to
testing (i.e. branch coverage), and others can be impossible to measure in some projects (i.e.
requirements coverage in a project without formal requirements). Indeed, while comprehensive testing
results in good coverage measured by most methods, testing driven by a single formal technique can
result in excellent coverage when measured by one method, and poor coverage when measured by
another.

Formal methods of coverage measurement do not work well with unscripted testing, and can introduce
complexities to test execution that work against many of unscripted testing's better qualities. We
introduced a measurement of coverage that was simple to assess yet gave a good indication of the
testing that had been done compared to what needed to be done, the readiness of the system for live
operation, and the parts of the system that needed more testing.

Our coverage metric

We based our coverage metric on a subjective assessment of 'testedness'. By using Test Sessions to
focus and control the work and take many small-grained assessments, we hoped to be able to make an
objective measurement from the combination of subjective estimates.

At the end of a test session, the testers recorded two figures;

• the amount of time they had spent testing each Test Point.

• an estimate for how ‘tested’ the test point was, as a percentage.

As these figures were recorded, other figures used in planning future work were calculated (new
estimated test cost, time remaining, overall coverage). Calculating these figures on the fly gave the
testers immediate feedback and a more concrete perspective on their estimate, helping them to make
their estimates more consistent.

Example: A Test Point was estimated at 3 hours. The tester completed 3 hours exploration, but felt she
had not yet tested all the things she wanted to test, and estimated she was 75% done.

On recording these figures, two figures were calculated automatically. The Test Cost was raised to
(3 75%=) 4 hours. The time remaining was set to the 1 hour that remained.

Test Point Cost
(Est. Time)

Completed % complete Cost/time
remaining

Before assess email functionality
triggered by …

3 hours 0 0% 3 hours

After assess email functionality
triggered by …

4 hours

calc

3

input

75%

input

1 hour

calc

We hoped that the tester’s expertise would enable them to make a fair judgement – but recognising that
the testers were not yet expert, we encouraged the testers to spend time looking back over past
estimates and discussing their accuracy – and, if necessary to re-assess their current estimates. The
team found this useful, and were also helped by the immediate feedback from their estimates into
figures used for planning.

Special cases -

• Test Points that needed no testing were at 100% coverage from the start. This was achieved by
setting their test cost to 0 and including a special condition in the number crunching functions,

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 8 of 16 Version 1.1

as keeping the cost and setting work done to match it introduced confusion. Note that such
Test Points are excluded from some summaries.

• Tests where the tester had done three hours - but kept the estimate at two - were not listed as
150% done, but were fixed at 100%. However, they were highlighted - to highlight input
mistakes, and to allow the Test Manager to review the test with the tester and avoid the issue
next time.

• A 1-hour test that the tester estimated was 10% complete needed 9 more hours. Some tests
genuinely needed this much more testing, but others could be more accurately re-estimated, or
given special attention by experienced team members or the business to see if the testing could
be made more efficient. Giving feedback to the testers by exposing the planning figures helped
avoid this problem.

• At the start of testing for each release, the amount of testing completed for each Test Point
was reset to zero, and estimated cost and risk was re-assessed for existing Test Points.

Combining estimates for more accurate overall figure

Although each individual estimate was rough and subjective, their worth improved when they were
combined. Note that a less blunt combination, split by risk, would be used for most decision making.
Estimates were combined as follows:

• Overall test time remaining, derived from the sum of (estimated time - completed time). This
was useful throughout testing - it gave an estimate of the effort needed at the start of the
process, and tracking it in real time allowed the Test Manager to see how well the team was
staying on target. It is worth noting that there was always more testing to do – we never
reduced this figure to zero.

• Coverage for the whole release, derived from the (sum of time completed)/(sum of estimated
time to complete). This gave a one-figure summary of the progress of testing. Just as the %
complete of individual test points could go down as well as up, so could the coverage. This
was entirely appropriate - and was usually the result of the addition of new test points from
bugs, or as a result of underestimation of test cost / complexity.

Conclusion

Testers are notoriously bad at informal estimates of how much testing is needed. We aimed to improve
this ability – and, in part, we achieved this by placing the skill at the centre of the planning process.

These metrics assessed not the state of the system, but the state of testing. While necessarily subjective,
the metrics turned out to be repeatable - different testers came up with broadly the same estimates of
completion, particularly as they worked together, and grew more experienced in their methods, in
testing, and in the system. Because the system was assessed in small grains, individual errors in
estimation at a Test Point level were small compared to the overall figures. The team updated their
figures regularly and often, and the metrics became an important feedback to the team, helping them
perceive a common goal and giving good feedback into their process of ongoing improvement.

Management understood that the metrics gave a reliable indication of how the testers felt about how
well they had tested the system. This, in combination with the number, type and severity of problems
found and fixed, was soon an important part of the go-live decision. Rather than wait until the end of
testing to find out how good the system was, the decision could be assessed earlier, allowing warning
of problems and re-prioritisation of effort. The ‘coverage’ figure was both useful and effective.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 9 of 16 Version 1.1

Risk and Prioritisation

The test team needed to be reactive. Their reactions needed to be fast - but could not be allowed to be
uncontrolled. They needed a means of assessing new circumstances against existing tasks quickly and
accurately. In making decisions about importance and urgency, it was good to have information about
risk and cost.

Risk is a combination of cost of failure and likelihood of failure. To allow assessments would be
consistent and repeatable, we needed a simple method of assessing risk. We started with possibly the
simplest:

Likelihood of failure

Risk High Low

Cost of failure High 3 2

Low 2 1

Each Test Point was assessed for risk. Work was prioritised by risk, and metrics were split by risk. We
found that the risk associated with a Test Point was easily communicated to the business, and broadly
matched their expectations.

Note that test work did not concentrate simply on the highest risk test points. It was important to spread
the test effort in case the risk assessment was wrong, and we typically spread the test effort so that all
major functionality had some testing. However, at the end of testing, high risk Test Points generally
had better coverage than low and medium risk Test Points.

In some releases, coverage of high-risk test points never matched the coverage of low- and medium-
risk test points. This was due to two factors

• high-risk elements released to testers / fixed close to live release deadline

• the more testing that was done in high risk areas, the more the testers felt they needed to dig
deeper

We found that the proportions of Test Points over time matched the following profile:
Risk % TP by number % time required % time spent

3 (highest) 15% 20% 25%

2 35% 40% 40%

1 50% 40% 35%

This profile indicates that individual high risk test points generally required more time than low-risk
ones. The difference between %time required and %time spent indicates that when the team were
running out of time, high-risk test points were given priority over low-risk test points.

Note that these figures include a substantial proportion of regression-test-related Test Points, which are
generally judged low- and medium- risk. This lowers the proportion of high-risk tests. If these figures
were for a single release concentrating more on new functionality and fixes than regression testing, it
would have a greater proportion of high-risk tests.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 10 of 16 Version 1.1

Building on the Process
The new methods were not adopted immediately, but good initial results encouraged the team to
persevere. The methods have been in place since June 2001, and have been supplemented with a
number of improvements and refinements.

Process and Techniques

• Some Test Points now include scripted and automated elements if appropriate and effective.

• Test Points are grouped not only by risk, but also by family. The four families are:

• Test Points for new functionality

• Test Points for fixes

• Test Points for regression testing

• Test Points for QA investigation

• The Test Team has a process of ongoing learning:

• A ten-minute daily meeting keeps the team focussed and together, and highlights common
issues

• A two-hour training session, each Friday afternoon, helps the team take a longer-term
look at the application, at test techniques, tools and at process improvement. It allows
them to share their experience, and encourages them to think of testing as a skilled job.

• The figures and feedback have helped the team to improve their estimating skills, and
have encouraged their planning skills

• The practice of recording their test sessions allowed review and improved their ability to
test without scripts. Sessions were reviewed by peers, by senior testers, and by the testers
themselves after the fact.

• The responsibility for individual test points encouraged ownership and interest, improving
test analysis and planning skills

• Communication improvements driven in part by test sessions encouraged skill sharing
and greater interest in the general process of testing and its literature

Metrics

• Refined figures improve the focus for individual testers and Test Point families

• Automated metrics provide a 'Test Dashboard', giving instant feedback of overall summary
and planning figures as test are completed

• Improved metrics allow more complete views and more reliable assessments

• Identification of bugs found in production has allowed the team to start measuring test
effectiveness

• Measurements of estimation accuracy help improve the estimation skills of the team

Early involvement

• The Test Team is now involved earlier in the process, and is able to discuss design and assess
code before delivery to test

• Testers are involved in document review – and find design problems before coding

• Testers spend a short period testing code with a coder, at the coder’s machine, after unit
testing but before promotion to the generally available code. Not only do the testers
increase their familiarity with the deliverable (and the coder), but they also spot simple
problems that have not been apparent from the unit tests.

Changes outside the Test Team

• Improved documentation references allow testers to link each test point to each identified
document and track dates for its completion and availability. Documentation availability has
made work more intensive, but more focussed, and the team is able to be more productive

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 11 of 16 Version 1.1

• Better documentation has improved the linkage between tests and business requirements

• Visible improvement in the Test Team and their processes encouraged process improvement
elsewhere, particularly in the generation of inception, design and implementation
documentation, and in the processing of urgent requirements for live fixes.

Results
Perhaps the most significant result is that testing is now seen as a vital aspect of the development
process, rather than incompetent, obscure, and a hindrance to productivity.

'Tangible results' listed below are those characterised by a deliverable or directly measurable quantity.
'Intangible results' are those characterised by a change in perception.

Immediate, Tangible results

• The team produced a useful coverage metric from the first pass through testing, and showed
that riskier parts of the system had received more attention. This has subsequently become a
central metric.

• The Test Manager was able to review testers' work off-line i.e. without being with the tester
while the work was done.

• Test Session reports were a useful record of unscripted test activities, where previously there
had been nothing but a bug report.

• Because few measurements had been taken before the introduction of these methods, it was
hard to get real results in the early stages. However, the rate at which significant bugs were
found stayed the same on the introduction of these methods, and increased for the next five
months – although this reflects the increasing complexity and size of the code (as so the
number of bugs to be found) as well as process improvements.

Longer term Tangible results

• The product is more stable and has fewer outstanding bugs

• In the last few months, the rate at which significant bugs are found has fallen, although new
functionality is still being introduced as fast as ever. This reduction is thought to be due to the
increasing quality of the code, rather than test failure. The test team’s skills and procedures
have been instrumental in helping the designers and coders achieve this improvement.

• The test team’s metrics are used as a basis for improvement by non-test teams.

• Problems outside the test team were no longer obscured by test team problems, and could be
identified and addressed. This applied particularly to documentation, which was refined to fit a
useful purpose rather than simply generated as part of a deliverable, and to the way that live
problems were handled.

Immediate, Intangible results

• The test team felt in control of their work. They could see the size of it, see how much they
had done, and what was left. They could decide what to do next, and back up those decisions.

• The Test Manager felt more confident in controlling and planning testing.

Longer term Intangible results

• The coders felt that problem logging and diagnosis had improved

• Visibility of test process and progress allowed other teams to trust the Test Team's
information, and the communication that the trust enabled resulted in a ‘virtuous circle’.

• The introduction of more formal, scripted testing was easier as the test sessions helped the
testers to think more rigorously, and to work in a systematic and analytical way.

• The test team take a much greater interest in their jobs, and morale has improved. The team
generate three or more good ideas a week, of which at least one is implemented.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 12 of 16 Version 1.1

Lessons Learned
The team needed a process that enabled learning and encouraged improvement. We recognised that
while we might not start out well, the right attitude and the right tools would allow us to develop an
effective and efficient process.

Three overall factors

While we learnt a number of useful lessons, three key factors stood out. These factors underlay many
key parts of the approach - without any one of them, the approach would have failed

• Communication. The methods above gave us the tools to communicate within and outside the
team. By improving communication, we felt that we reduced the number of
misunderstandings. Communication also helped to increase trust, which both improved
personal relations, but also helped facilitate solutions.

• Empowerment. Testers were individually responsible for Test Points. They were encouraged
to measure their own progress and their estimates were trusted. Morale improved, and the test
team was seen as an interesting and valuable place to work.

• Openness. The list of Test Points, the work done and the work needed were available to the
coders and designers at all times. Although initially attracting little interest, the fact that the
information was always available, and always up-to-date, encouraged the other teams to work
with the test team, take an interest in their activities, and trust their work.

Cost estimation

Test cost - in terms of the time a test would take - was a vital metric. By comparing the actual cost with
the initial estimation, we hoped to improve estimation skills.

Within the first couple of cycles, it became obvious that the whole team were not only underestimating
the cost of risky tests, but their estimates got worse for longer tests. This was bought to the team's
attention, and estimates improved. Analysis of a recent release indicated that 5% of tests done would
have required more than twice the estimate to be fully tested, and that estimates were within 35% of the
required time for 70% of the tests. Over the whole release, the time the testers felt was needed to fully
test the release was 25% more than their original estimate – but note that this straight average is
deceptive – tests that need less time than estimated cancel out those which need more.

We believe that the testers are accurately estimating the time needed to explore a Test Point to an
acceptable level. This is supported by the improvement in test effectiveness (bugs found in live / all
bugs found). This is an important skill, and allows the Test Manager to plan and react with confidence.
It also allows the rest of the business to trust the testers estimates.

Test Points - analysis

The analysis needed to define a list of Test Points was not trivial, but the process of generating Test
Points gave form and repeatability to a necessary analytical task that was not otherwise addressed.
Although this analysis was unfamiliar, it was easy for the test team to see when they had finished - they
had a definition, a cost and a risk. As releases and test cycles passed, the team got better and faster at
doing the analysis.

Test Points are likely to overlap - particularly when defined by someone who is not familiar with the
list. The Test Manager plays an important role in identifying duplicates and overlaps, but his/her job is
made easier because the list is public. Resolution is made simpler because each Test Point has a Tester
assigned.

The task of defining Test Points has been made easier by improved documentation and tester
involvement in design and implementation meetings. The team finds that not only does the increased
familiarity with the requirements help, but that the extra time to think improves the scope of their
analysis.

Test Points - writing descriptions

One of the difficult parts of writing Test Points is to define a non-trivial exploratory area that is well-
defined enough for the testers to know what is in the area, and what is not. Consideration of three
aspects helped:

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 13 of 16 Version 1.1

• time limit - areas that might take a couple of hours to explore were easier to define than larger
areas.

• risk - if an area of exploration had risky parts, and not-so-risky parts, it was probably two Test
Points.

• wide range of different approaches that could be taken - one Test Point might examine the
functionality of 'Back' buttons and return navigation throughout the application, while another
might look at ways that email-sending functionality could be broken.

Test Sessions

Testers may find it productive to collaborate on a test session, particularly when the area is unfamiliar.
Some test sessions, for functionality hidden from the users, may be performed in collaboration with the
coders. Collaboration with coders is also used in short test sessions (called ‘splash testing’ on-site) that
are performed immediately before the coders incorporate new functionality into the main body of code.

Test Session Reports

We found that the act of writing stuff down encouraged better testing, as testers could refer back to
what they had done, and leave distractions for later without losing track of them entirely. They could
draw diagrams, annotate previous notes and use colours and sticky labels – and, under pressure, most
testers found it faster to write than to type (this may because the testers use the same PC to test as to
run the word-processor). Testers using paper documentation did not have to worry about a PC failure
causing the loss of their session log. We also found that when the sessions were reviewed, a hand-
written log was a better visual mnemonic than a typed or on-line document.

It is worth noting that each member of the team has a different style of testing, and each produces a
slightly different style of test session. One of the team feels that the advantage of hand-written
documents are outweighed by the ability to use copy/paste – particularly given the legibility of his
handwriting – and prefers to use a word-processor and other PC tools to record his Test Session report.

Testers got better at writing session reports - partly as a result of reviews, and partly as they started to
use the reports as a tool in themselves

Maps

We found that a map of the navigation of the product helped the testers with aspects of the system that
manifested in many places, acting both as a breadcrumb trail and as a checklist. It also helped them
plan their testing and estimate completion more accurately. However, the map cannot be constructed
automatically and the team has had problems with obsolescence.

Documents needed

An important change in the development process was the introduction, enforcement and tracking of
standardised documentation. These documents helped the testers explore areas more effectively, and
the tracking helped them plan their activities to match the design and coding teams schedules and
events.

• Inception Document: contains the original idea. Describes the way the new feature needs to
work, contains the requirements and the design logic.

• Design Document: Analysis of changes needed to database, classes, modules and pages

• Implementation Document: Details changes actually made. Signed off on delivery of code to
test.

Rapid reactions and real-time results

Once the tracking spreadsheet had been set up to include a real-time test dashboard, the Test Manager
always had an up-to-date picture of the tests that had been done, the tests yet to be done, current issues,
coverage and risk. This knowledge allowed the team to react more quickly to changing circumstance,
without losing track of the overall aims of testing. The improved response had a direct effect on the
way that other teams and staff interacted with the test team, and increased trust and communication.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 14 of 16 Version 1.1

Fixes, retests and regression tests

The team quickly adopted test sessions to drive and record retests and regression tests. Test sessions
allowed a faster response to the arrival of a fix, and served as effective proof that the fix had been well
implemented and tested. The team found that looking at the session for the test when the problem had
been found helped plan the retest.

Test Points are now classified into four families (see "Building on the Process" above), one being
‘Regression Test Points’. This important improvement has resulted in the development of a
comprehensive regression test set. A selection of Test Points for ‘new functionality’ is added to the set
of Regression Test Points at the end of each release, keeping the tests current. The team can isolate
coverage figures by family, allowing ongoing assessment of the depth of regression test coverage for
the release.

Outside the team

Other parts of the organisation can understand and read test points – and the figures summarising test
progress are available at all times. The business may add to the test points, but in practice will always
ask a tester to add any that may be required. This allows control, and directly assigns ownership of the
test point to an individual.

We found that having improved the test process and the visibility of its results, other teams started to
change their processes, as thin spots were revealed. Changes in coding practice and in the preparation
of the design have been initiated partly because testing could reveal and measure the points where
existing practices were not working well. Embarrassment and peer pressure can be an important
motivating factor in the improvement of code quality!

Live bugs

With session-based testing, we were able to get real value from analysis of live bugs. We could look
back over sessions for the current release or previous releases, and could analyse the tests done to
discover how the bug had been missed. This approach, impossible with poorly-recorded ad-hoc testing,
drove a multitude of small process improvements.

Mistakes and problems

We drove the testing from a single, complex spreadsheet. While this allowed good flexibility and quick
improvements, it caused a number of problems:

• Corruption and data loss: The spreadsheet was shared – and sharing did not work perfectly.
Summary test metrics were helpful in identifying corruption, and a few ‘sanity checks’ were
built in. The spreadsheet was backed up regularly. These problems have become less frequent
as the team have become more familiar with the spreadsheet application.

• One line per test point: A spreadsheet is not database. In particular, it does not allow a simple
method of recording many actions to one item, as each item is recorded on a single row. In
this case, the restriction made it hard to input and extract good information for test points
which were performed more than once in a release (inclusion in more than one session, re-
delivery of software after a fix, poor approach the first time etc.). It also caused problems
when a test point was performed by two testers working together, or when adding multiple,
dated comments. There was no easy solution to this, but the numbers involved did not
unacceptably compromise the accuracy of the metrics.

There was no explicit link between Tester, Test Session and Test Point – each Test Point had a Tester,
and each Test session had Tester and Test Point, but there was no linkage to allow the extraction of all
the Test Sessions that had involved a particular Test Point. While this seemed important in planning, in
practice the close ownership of Test Points by individual Testers meant that the information was easy
to reach.

Close ownership of test points meant that testers were unfamiliar with some aspects of the application –
which could lead to poorer testing if one of the testers was unavailable. Once a family of regression
tests was developed, ownership of the regression tests was rotated each release to give each tester
exposure to the full application.

Including the release in the ID of the test point and the test session made good sense during the first
few releases. However, it could become confusing when re-doing test points that had been generated

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 15 of 16 Version 1.1

for previous releases, or test points which were to retest an area following a fix. We now include the
release ID in some, but not all of the Test Point IDs and Test Session IDs.

Naturally, Test Sessions were rarely uninterrupted. We also found it difficult to separate out time spent
setting up / clearing down the test, time spent doing the test, and time spent logging bugs. Some
activities that might be considered part of exploratory testing - such as talking to the coders and
designers about the system and its problems - were not generally part of the test session. Work is in
progress to address this.

Testers dealt with large amounts of information – and the volume of the information means that
sessions can contain errors and omissions. Ideally, the testers would have liked to copy/paste directly
into their handwritten session logs – but without a budget to create an impossible tool, they printed out
information and stapled the printout to the session. This needed a nearby printer to avoid upsetting flow
of work.

The simple risk assessment worked well in the initial stages. However, the business and the testers soon
demanded a more refined scale, although no method has been decided which allows consist assessment
by different people. A priority field is currently being used in conjunction with the risk assessment to
plan testing.

The team are very happy with session-based testing, but this has led to some resistance to systematic
methods and automated tools. The team are, however, finding success in fitting systematic methods,
automated tools and scripted test cases into their familiar system of Test Points and Test sessions.

Failures

It seems obvious to perform related Test Points in the same session, and the testers found that this was
an efficient approach. However, it may bias the testers assessment of the length of time a test needs –
two related Test Points performed together will need less time than if performed separately.

Any testing driven by a single coverage metric is flawed - and the methods described above are indeed
driven by a single coverage metric. Splitting the Test Points by risk and into families helps with this,
but it would be good to see (for instance) requirements coverage being assessed simultaneously.

Each TP is a slice through the system – many overlap, and this can be seen as inefficient testing.
However, inefficiencies tend to be concentrated on commonly-used parts of the application and would
still exist in other approaches.

Test sessions, as hand-written records, cannot be parsed electronically, and any statistics gathered are
based on information logged by the testers in addition to the test sessions.

We are disappointed that our test effectiveness metrics are historically supported by only anecdotes, as
the data has been lost. We hope to be able to extract test effectiveness metrics from current data.

Conclusion
Session-based test techniques worked well on the occasion described in this paper; while staying within
budget and using existing resources, they allowed unscripted testing to be controlled, refined and to add
real value. They may be less effective in a more sophisticated environment, and they are not
appropriate in environments that require systematic and complete approaches to test definition.
However, by bringing control to unscripted testing, session-based techniques are a useful addition to
the test arsenal.

In implementing this approach, we used a number of project-specific measures - as described in this
paper, the methods may not fit other projects. However, they shared the following principles:

• Simple measures are the best

• Favour effective communication over knee-jerk documentation

• Unobtrusive, immediate metrics allow real-time control

Our experience has shown that, when given appropriate feedback, testers can learn to improve both the
effectiveness of their unscripted testing, and the accuracy of their estimates. Central to this process is a
repeatable and trusted coverage metric which allows many subjective assessments to be gathered into
an objective view of the degree to which the product has been tested. Session-based testing allows the
subjective assessment to be controlled so that it can be drawn together in this way.

© Workroom Productions Ltd.

Paper: Adventures in Session-Based Testing

Adventures in Session-Based Testing Session-based Testing 1-1.doc

21 May 2002 16 of 16 Version 1.1

Appendix 1: References
Session-Based Test Management

Jonathan Bach

http://www.satisfice.com/articles/sbtm.pdf

also STQE magazine V2, I6 - 11/2000 and STARWest 2000 conference notes.

also see James Bach's wide range of articles on context-based testing and other practical techniques at
http://www.satisfice.com

A Case Study in Extreme Quality Assurance (XQA)

Authors: Jim Canter/Liz Derr

http://www.stickyminds.com/docs_index/XDD2561filelistfilename2.zip

Near Zero Undiscovered Defects and Shorter Time-to-Market!

Authors: Jim Canter/Liz Derr

http://www.stickyminds.com/docs_index/XUS202021file1.doc

Software Negligence and Testing Coverage

Cem Kaner

http://www.kaner.com/coverage.htm for 101 coverage

A Guerrilla Guide to Empirical Testing

James Lyndsay

http://www.workroom-productions.com/papers.html (may not be available for Spring 2002)

Appendix 2: Acknowledgements
The authors would like to thank the designers, coders and testers involved in the project for putting our
ideas into practice and for supporting us with so many fine ideas. We would also like to thank the
reviewers for their patience and suggestions.

http://www.satisfice.com/articles/sbtm.pdf
http://www.satisfice.com
http://www.stickyminds.com/docs_index/XDD2561filelistfilename2.zip
http://www.stickyminds.com/docs_index/XUS202021file1.doc
http://www.kaner.com/coverage.htm
http://www.workroom-productions.com/papers.html

Key Points

Challenges in testing enterprise software
Introduction to action based testing
Practical experiences and solutions

Presentation Abstract

In 2001, QAD started a project to implement Action Based Testing (ABT), an approach for testing and test automation. In this talk Flavio
Kubagawa of QAD will present how the ABT process was applied, the problems encountered along the way, the challenges due to the
specific environment at QAD, and how they were resolved. The main focus of the case study shared by Flavio is the practical
experiences with Action Based Testing. As part of the discussion, he will show the specifics of the architecture developed by him and
his colleagues at QAD. Hans Buwalda of LogiGear will provide a background introduction to the concepts behind ABT.

About the Author

Flavio Kubagawa is a Test Automation Engineer at QAD Inc and has been working in the testing arena for the past 5 years both as a
tester and a test automation engineer. Currently he is implementing the use of Action Based Testing methodology as QAD's test
automation tool. Prior to joining QAD he has worked in Brazil as a developer and systems analyst for major banks (Itau, Banespa), as
well as in projects for the Brazilian Navy and Brazilian Air Force, where he obtained his degree in Computer Science from Instituto
Tecnológico de Aeronáutica, in the city of São José dos Campos.

Hans Buwalda, ABT Chief Architect, leads LogiGear's Action Based Testing™ research and development, including ABT Toolset™
operations, and oversees the practice of ABT methodology. Prior to joining LogiGear, Hans served as Project Director at CMG The
Netherlands where he was the original architect behind the Action Words approach — an integrated method for planning, managing,
and deploying software testing and test automation. Hans is an internationally recognized expert specializing in action-based test
automation, test development, and test-technology management. He speaks and presents workshops at international conferences on
testing concepts such as Action Based Testing, The Three Holy Grails of Test Development, Soap Opera Testing, and Testing in the
Cold. Hans authored (along with Dennis Janssen and Iris Pinkster) Integrated Test Design and Automation (Addison Wesley 2001). He
holds a Master of Science degree in Computer Science from Free University, Amsterdam.

QW2002 Paper 7A2

Mr. Flavio Kubagawa (QAD Inc.) & Mr. Hans Buwalda (LogiGear Corp.)

Experiences with Action Based Testing, a Case Study

 1

Experiences with
Action Based Testing

a Case Study
Flavio Kubagawa, QAD Inc

Hans Buwalda, LogiGear Corporation

™

(c) 2002, QAD, LogiGear, all rights reserved 2

Agenda

• Introduction to Action Based Testing (ABT)

• QAD and the MFG/PRO test project

• Application of ABT on MFG/PRO

• Experiences

 2

(c) 2002, QAD, LogiGear, all rights reserved 3

Action Based Testing (ABT)

• Actual results
• Comparison with expectations
• Management information

• Input data
• Expected outcomes
• Documentation

Management

System
Development

QA/Auditors

End users

Physical
Navigation

System(s)
Under Test

Report

Global Test Design

"Test Clusters"

Test Planning and Control

Navigation
Scheme• Breakdown

• Analysis
• Clustering

SEPARATION

(c) 2002, QAD, LogiGear, all rights reserved 4

cluster EXAMPLE OF A TEST CLUSTER
version 1.0
author Hans Buwalda

section 1. Entering clients and balances
last name first name account nr balance

enter client Green John 458473948 1500
enter client Wood Anna 422087596 2100

section 2. Money Transfers
from to sum

transfer 458473948 422087596 500
transfer 422087596 785793025 1201

section 3. Checking names and numbers
account nr last name first name

check name 458473948 Green John
check name 422087596 Wood Anna

account nr sum
check balance 458473948 1000
check balance 422087596 1399

Test Lines

 3

(c) 2002, QAD, LogiGear, all rights reserved 5

Test Objectives

...
TO-3.51 The exit date must be after the entry date
...

test objective TO-3.51

name entry date exit date
enter employment Bill Goodfellow 2002-10-02 2002-10-01
check error message The exit date must be after the entry date.

(c) 2002, QAD, LogiGear, all rights reserved 6

Test Cluster

Test
Objectives

Test
Lines
- cases
- scenario's
- ...

ABT Test Cluster
(Excel Workbook)

Other
InfoTest

ObjectivesTest
Lines

Other
Info

 4

(c) 2002, QAD, LogiGear, all rights reserved 7

Navigation Scheme

CONTROL Reports

Low Level Action Layer

High-levelHigh-levelHigh-level

Application

Intermediate Level(s)
Templates

Tables
Intermediate Level(s)

Scripts

(c) 2002, QAD, LogiGear, all rights reserved 8

About QAD

• Producer of advanced enterprise software for
manufacturers

• "collaborative commerce" concept, focusing on integration
between the diverse business processes

• Manufacturers of automotive, food and beverage,
consumer, electronics, industrial and medical
products use QAD applications

• 5,200 licensed sites in more than 80 countries and
in as many as 26 languages

• for more information, please see: www.qad.com

 5

(c) 2002, QAD, LogiGear, all rights reserved 9

About MFG/PRO

• Enterprise software

• Menu with over 2,700 options ("programs")

• For the test automation project, used version with a
textual interface using a terminal emulator

• there is also a newer, web based, version, but the text
version had priority for the test automation

(c) 2002, QAD, LogiGear, all rights reserved 10

Project Objectives

• Create an automated regression test that supports:
– Integration testing against MFG/PRO baseline for:

• "Projects staged"
• "Maintenance fixes staged"

– Service pack testing
– Possible localization testing

• Absorbs project changes

• Represents long term payoff for QAD

 6

(c) 2002, QAD, LogiGear, all rights reserved 11

Criteria for Automation Priorities

• First priorities:
– Modules most impacted by new projects
– Legacy maintenance against baseline

• Prioritize next modules with highest defect-density
– Based on previous release

• Remain responsive
– Be flexible enough to reorder priorities as needed

(c) 2002, QAD, LogiGear, all rights reserved 12

Action Based Testing

• The navigation scheme is basically an interpreter
– Core is the "ABT Engine", with a library of functions

that is loaded from a testing tool
– Reads the test lines from the Excel file
– Calls functions created by the user to execute the

actions and checks
– Processes the results into easy to read reports

• Test step action line

• Test script set of action lines cluster

• MFG/PRO interface interface layer

 7

(c) 2002, QAD, LogiGear, all rights reserved 13

Test Automation:
Development Process

• Test case descriptions are created and streamlined
from system test scripts

• by a test specialist (Robin Kronk)
• 700 pages = 1,600 test steps

• On basis of descriptions ABT test clusters are made
and the actions are implemented with an ABT
navigation scheme plus generic Winrunner functions

• by two test engineers (Flavio Kubagawa and Edward Duran)
• 600 Action Words, 65 scripts in Winrunner

• Tools used to support test automation:
• Winrunner
• ABT Engine
• MS Excel

(c) 2002, QAD, LogiGear, all rights reserved 14

Test Automation:
Execution Process

• Environment
– Dedicated machine to run the tests

• Test run
– Create a “master” cluster to string all clusters together

 8

(c) 2002, QAD, LogiGear, all rights reserved 15

Test Automation:
Challenges

• MFG/PRO ChUI (Character User Interface)
interface

– Created WinRunner functions to work with ChUI

• Maximize reusability
– Developed methodology to create generic action

words to increase reusability

• Minimize need for additional scripts
– Created generic functions to decrease need of coding

(c) 2002, QAD, LogiGear, all rights reserved 16

Test Automation:
Generic Functions Layer

• Implements the middle layers of the ABT
Navigation Scheme (without the use of templates)

• Virtually eliminates the need to create new
WinRunner scripts/functions to implement a new
action word

• Speeds up the process of automating test scripts

• Eliminates need for large number of automation
engineers

 9

(c) 2002, QAD, LogiGear, all rights reserved 17

Main script (WR)

Load functions (ABT + WR)

Front End

ClustersInterface
Layers

MFG/PRO

Log Audit
Files

Action Words
Layers

Process Flow

(c) 2002, QAD, LogiGear, all rights reserved 18

Main script (WR)

Load functions (ABT + WR)

Front End

ClustersInterface
Layers

MFG/PRO

Log Audit
Files

Action Words
Layers

Process Flow

 10

(c) 2002, QAD, LogiGear, all rights reserved 19

(c) 2002, QAD, LogiGear, all rights reserved 20

Main script (WR)

Load functions (ABT + WR)

Front End

ClustersInterface
Layers

MFG/PRO

Log Audit
Files

Action Words
Layers

Process Flow

 11

(c) 2002, QAD, LogiGear, all rights reserved 21

Main script (WR)

Load functions (ABT + WR)

Front End

ClustersInterface
Layers

MFG/PRO

Log Audit
Files

Action Words
Layers

Process Flow

(c) 2002, QAD, LogiGear, all rights reserved 22

 12

(c) 2002, QAD, LogiGear, all rights reserved 23

Main script (WR)

Load functions (ABT + WR)

Front End

ClustersInterface
Layers

MFG/PRO

Log Audit
Files

Action Words
Layers

Process Flow

(c) 2002, QAD, LogiGear, all rights reserved 24

cluster Manufacturing
sheet scenarios
version 1.0
author Flavio Y. Kubagawa
date Jun/2002

...

Enter actuals that are lower than the plan.
section 20.21 Backlog Plan Maintenance

Site Product Line Year

create backlog plan 10000 1000 D>Year+1
January February March April

>>> 10 10 15 15
May June July August

>>> 25 25 35 40
September October November December

>>> 55 65 80 100

 13

(c) 2002, QAD, LogiGear, all rights reserved 25

Main script (WR)

Load functions (ABT + WR)

Front End

ClustersInterface
Layers

MFG/PRO

Log Audit
Files

Action Words
Layers

Process Flow

(c) 2002, QAD, LogiGear, all rights reserved 26

create interface mfg_AWInfo
AW prg menu title frames

interface entity create actual pay rate rwemmt 14.13.21 Actual Pay Rate Maintenan 01,02,03
interface entity browse approval pcbr029 1.9.6.2 Approval Browse 01,Filter,02
interface entity create backlog plan plppmt05 20.21 Backlog Plan Maintenance 01,02
interface entity inquire backlog plan plppiq05 20.22 Backlog Plan Inquiry 01,PRT,SB
interface entity create bom registration wlbmmt 3.22.13.4 BOM Registration Maintena01,02,03,0
interface entity build calendar cross-reference spglclmt 33.1.4 Calendar Cross-Reference B01
interface entity create commodity code ppcommt 1.4.19 Commodity Code Maintena 01,02,END
interface entity inquire co/by-product work ordwojpiq 16.3.13 Co/By-Product Work Order 01,PRT,SB
interface entity initialize compliance clclpm 1.22.24 Compliance Control 01,02
interface entity copy plan to simulation spfpcp01 33.17.1 Copy Plan to Simulation 01,PRT,SB
interface entity copy simulation to plan spfpcp03 33.17.3 Copy Simulation to Plan 01,PRT,SB
interface entity cost roll-up freeze/unfreeze bmfrzmt 13.12.1 Cost Roll-Up Freeze/Unfree01,02,03,P
save interface mfg_AWInfo c:\ActionWords\data\mfg_AWInfo.dat

 14

(c) 2002, QAD, LogiGear, all rights reserved 27

Main script (WR)

Load functions (ABT + WR)

Front End

ClustersInterface
Layers

MFG/PRO

Log Audit
Files

Action Words
Layers

Process Flow

(c) 2002, QAD, LogiGear, all rights reserved 28

create interface plppmt05
interface entity fields_plppmt05
interface entity setting title 20.21 Backlog Plan Maintenance

name class nbr init endkey condition value
interface element frame01 frame 01 3,9

name class tab row col len frame
interface element Site edit 0 3 9 8 1
interface element Product Line edit 1 3 32 4 1
interface element Year edit 2 3 71-74 4 1>

name class nbr init endkey condition value
interface element frame02 frame 02 7,17-23

name class tab row col len frame
interface element Begin edit 0 7 17-23 9 2
interface element January edit 1 8 31-37 9 2
interface element February edit 2 9 31-37 9 2
interface element March edit 3 10 31-37 9 2
interface element April edit 4 11 31-37 9 2
interface element May edit 5 12 31-37 9 2
interface element June edit 6 13 31-37 9 2
interface element July edit 7 14 31-37 9 2
interface element August edit 8 15 31-37 9 2
interface element September edit 9 16 31-37 9 2
interface element October edit 10 17 31-37 9 2
interface element November edit 11 18 31-37 9 2
interface element December edit 12 19 31-37 9 2>
save interface plppmt05 C:\ActionWords\data\fields_plppmt05.dat

 15

(c) 2002, QAD, LogiGear, all rights reserved 29

Main script (WR)

Load functions (ABT + WR)

Front End

ClustersInterface
Layers

MFG/PRO

Log Audit
Files

Action Words
Layers

Process Flow

Test
Results

(c) 2002, QAD, LogiGear, all rights reserved 30

Very Good Reusability

• Interface layer and action words:
“one size fits all”

– Once created, can be reused as often as needed

• Clusters: as reusable as the related manual test

• New clusters can be created reusing existing
action words

– Different business cycles

 16

(c) 2002, QAD, LogiGear, all rights reserved 31

Reusability, Some Numbers

– Top 5% most used Action Words
• Suite 1 = 27% of Total Steps: 7 Action Words = 86 Steps
• Suite 2 = 27% of Total Steps: 10 Action Words = 113 Steps

– Top 10% most used Action Words
• Suite 1 = 39% of Total Steps: 14 Action Words = 123 Steps
• Suite 2 = 39% of Total Steps: 19 Action Words = 168 Steps

– 50% of the Test Suites were completed with:
• Suite 1: 23 Action Words (17%) = 159 Steps (50%)
• Suite 2: 30 Action Words (16%) = 214 Steps (50%)

(c) 2002, QAD, LogiGear, all rights reserved 32

Reusability Example

• Suite 1 – Incorporating Project Enhancements
– added 2 new sections to the manual tests
– 22 pages
– 44 steps
– 12 new Action Words
– Reused 73% of existing Action Words
– Quickly implemented new Action Words using the

layered structure

 17

(c) 2002, QAD, LogiGear, all rights reserved 33

Overall Experiences

• ABT process is a major improvement
– maintainability
– re-usability
– manageability (clear tests and test results)

• LogiGear's support is very effective
– training and coaching
– quick and appropriate answers to all questions

• QAD expects to extend the use of ABT to other
systems and other tests

(c) 2002, QAD, LogiGear, all rights reserved 34

Questions ?

Key Points

Goals of the project (capability determination & process improvement of suppliers)
Project implementation
Results and lessons learnt

Presentation Abstract

The presentation concerns an activity carried out by Fiat Auto in cooperation with the Center for Software Certification (CCS - an
independent organism of the Italian National Research Council that performs evaluation and certification activity in Information
Technology) to set up a methodology supporting the management of software projects and suppliers. The goals that Fiat Auto has set
for this activity are:
- To improve its own process to select suppliers, by taking into account criteria to evaluate confidence in the capability of suppliers. �
To improve the software development process of suppliers, helping them to detect possible weaknesses and risks in specific
processes, to define improvement paths and to provide tools for verifying the results of improvement actions.
- To achieve a better control on the software development project and on the quality of the resulting product. To fulfill the above
objectives it was established to adopt the ISO 15504 (SPICE) approach to evaluate a set of software suppliers, selected on the basis of
possible participation to Fiat projects for new vehicles. During the presentation, the details of every phase of the activities will be given
and the results of the performed assessments will be discussed and analyzed more deeply.

About the Author

Fabrizio Fabbrini obtained his degree in Computer Science from the University of Pisa, Italy, in 1974. Since 1975 he has served as a
scientific researcher at the Institute for Information Processing (IEI) of the Italian National Research Council (CNR), where now he is
Senior Researcher and coordinates the Software Laboratory of the Center for Software Certification. Fabrizio Fabbrini’s present activity
is focused on Software Quality, and more precisely on the development of methodologies and standards for the assessment and the
evaluation of software products and processes, with particular attention to Software Engineering Standards and Software Certification.
Software Process Assessment & Improvement, Software Verification & Validation, Computer Security & Data Privacy represent the
main fields of application of such research activities.

Mario Fusani obtained his degree in Electrical engineering from the University of Pisa, Italy, in 1971. Since 1973 he has served as a
scientific researcher at the Institute for Information Processing (IEI) of the National Research Council (CNR), where now he is Senior
Research. His present activity is focused on Software Quality, including the development of methodologies and standards for the
assessment and the evaluation of software products and processes. Since 1999 he has been the Scientific Coordinator of the Center
for Software Certification of the Italian National Research Council.

QW2002 Paper 8A1

Dr. Fabrizio Fabbrini & Mr. Mario Fusani
(IEI-CNR)

Using Sw Process Assessment to Manage Quality of Suppliers: an Experience
in Automotive

Using Software Process Using Software Process Using Software Process Using Software Process Using Software Process Using Software Process Using Software Process Using Software Process
Assessment to Manage the Assessment to Manage the Assessment to Manage the Assessment to Manage the Assessment to Manage the Assessment to Manage the Assessment to Manage the Assessment to Manage the

Quality of Suppliers: an Quality of Suppliers: an Quality of Suppliers: an Quality of Suppliers: an Quality of Suppliers: an Quality of Suppliers: an Quality of Suppliers: an Quality of Suppliers: an
Experience in AutomotiveExperience in AutomotiveExperience in AutomotiveExperience in AutomotiveExperience in AutomotiveExperience in AutomotiveExperience in AutomotiveExperience in Automotive

F. FabbriniF. FabbriniF. FabbriniF. FabbriniF. FabbriniF. FabbriniF. FabbriniF. Fabbrini********, M. Fusani, M. Fusani, M. Fusani, M. Fusani, M. Fusani, M. Fusani, M. Fusani, M. Fusani********, G. Lami, G. Lami, G. Lami, G. Lami, G. Lami, G. Lami, G. Lami, G. Lami********, E. Sivera, E. Sivera, E. Sivera, E. Sivera, E. Sivera, E. Sivera, E. Sivera, E. Sivera****************

********ISTIISTIISTIISTIISTIISTIISTIISTI--------CNRCNRCNRCNRCNRCNRCNRCNR, Pisa, Italy, Pisa, Italy, Pisa, Italy, Pisa, Italy, Pisa, Italy, Pisa, Italy, Pisa, Italy, Pisa, Italy
****************FIAT Auto, Torino, ItalyFIAT Auto, Torino, ItalyFIAT Auto, Torino, ItalyFIAT Auto, Torino, ItalyFIAT Auto, Torino, ItalyFIAT Auto, Torino, ItalyFIAT Auto, Torino, ItalyFIAT Auto, Torino, Italy

QW2002 San Francisco, 3-6 Sep 2002 2

Vehicle electronic networksVehicle electronic networksVehicle electronic networksVehicle electronic networksVehicle electronic networksVehicle electronic networksVehicle electronic networksVehicle electronic networks

� Comfort electronics
�Seat and window movement

� Real-time critical functions
�Cruise control
�Antilock brakes
�Engine management

� Multimedia applications
�GPS, DVD
�Internet

� Wireless applications
�Tyre pressure control
�Access control

QW2002 San Francisco, 3-6 Sep 2002 3

Vehicle electronic networks Vehicle electronic networks Vehicle electronic networks Vehicle electronic networks Vehicle electronic networks Vehicle electronic networks Vehicle electronic networks Vehicle electronic networks
(Body electronics)(Body electronics)

Source: IEEE Computer

QW2002 San Francisco, 3-6 Sep 2002 4

Vehicle electronic networksVehicle electronic networksVehicle electronic networksVehicle electronic networksVehicle electronic networksVehicle electronic networksVehicle electronic networksVehicle electronic networks
Emerging solutionsEmerging solutionsEmerging solutionsEmerging solutionsEmerging solutionsEmerging solutionsEmerging solutionsEmerging solutions

� More specialized
and reliable control
networks for X-by-
Wire systems
�Brake by wire
�Steer by wire

QW2002 San Francisco, 3-6 Sep 2002 5

Project ParticipantsProject ParticipantsProject ParticipantsProject ParticipantsProject ParticipantsProject ParticipantsProject ParticipantsProject Participants

Center for Software Center for Software Center for Software Center for Software
CertificationCertificationCertificationCertification

Fiat Auto
P&PE - ACEE - E&SI
Software Methodologies

QW2002 San Francisco, 3-6 Sep 2002 6

Center for Software Center for Software Center for Software Center for Software Center for Software Center for Software Center for Software Center for Software
CertificationCertificationCertificationCertificationCertificationCertificationCertificationCertification

� The Center for Software Certification (CCS) The Center for Software Certification (CCS) The Center for Software Certification (CCS) The Center for Software Certification (CCS)
is an is an is an is an organismorganismorganismorganism of the Italian National of the Italian National of the Italian National of the Italian National
Research Council thatResearch Council thatResearch Council thatResearch Council that performs performs performs performs
independentindependentindependentindependent certificationcertificationcertificationcertification activity in the activity in the activity in the activity in the
area of Information Technologyarea of Information Technologyarea of Information Technologyarea of Information Technology

� CCS is part of ISTI, an Institute of the CCS is part of ISTI, an Institute of the CCS is part of ISTI, an Institute of the CCS is part of ISTI, an Institute of the
Italian National Research Council that Italian National Research Council that Italian National Research Council that Italian National Research Council that
performs research in Computer Science, performs research in Computer Science, performs research in Computer Science, performs research in Computer Science,
Information Technology and related Information Technology and related Information Technology and related Information Technology and related
application areas, mostly within the application areas, mostly within the application areas, mostly within the application areas, mostly within the
framework of national and international framework of national and international framework of national and international framework of national and international
research projectsresearch projectsresearch projectsresearch projects

QW2002 San Francisco, 3-6 Sep 2002 7

Center for Software Center for Software Center for Software Center for Software Center for Software Center for Software Center for Software Center for Software
CertificationCertificationCertificationCertificationCertificationCertificationCertificationCertification

� Certification models and methods Certification models and methods Certification models and methods Certification models and methods
are founded on the long acquired are founded on the long acquired are founded on the long acquired are founded on the long acquired
competenciescompetenciescompetenciescompetencies of the ISTI and on of the ISTI and on of the ISTI and on of the ISTI and on
public domain standards as wellpublic domain standards as wellpublic domain standards as wellpublic domain standards as well

� CCS staff members participate in CCS staff members participate in CCS staff members participate in CCS staff members participate in
national and international Working national and international Working national and international Working national and international Working
Groups for ISO standard definition in Groups for ISO standard definition in Groups for ISO standard definition in Groups for ISO standard definition in
the field of Software Engineeringthe field of Software Engineeringthe field of Software Engineeringthe field of Software Engineering

QW2002 San Francisco, 3-6 Sep 2002 8

Center for Software Center for Software Center for Software Center for Software Center for Software Center for Software Center for Software Center for Software
CertificationCertificationCertificationCertificationCertificationCertificationCertificationCertification

The Center has been active since 1984, The Center has been active since 1984, The Center has been active since 1984, The Center has been active since 1984,
providing services providing services providing services providing services to nationalto nationalto nationalto national and and and and
international customers, in the following international customers, in the following international customers, in the following international customers, in the following
fields:fields:fields:fields:
� Software Product Evaluation [ISO/IEC Software Product Evaluation [ISO/IEC Software Product Evaluation [ISO/IEC Software Product Evaluation [ISO/IEC

9126 & ISO/IEC 14598]9126 & ISO/IEC 14598]9126 & ISO/IEC 14598]9126 & ISO/IEC 14598]
� Software Product Evaluation and Software Product Evaluation and Software Product Evaluation and Software Product Evaluation and

Certification according to defined Certification according to defined Certification according to defined Certification according to defined
requirements and requirements and requirements and requirements and standardsstandardsstandardsstandards

� Software Process Assessment (Software Process Assessment (Software Process Assessment (Software Process Assessment (process process process process
improvementimprovementimprovementimprovement, , , , capability determinationcapability determinationcapability determinationcapability determination))))
[ISO/IEC 15504, SPICE][ISO/IEC 15504, SPICE][ISO/IEC 15504, SPICE][ISO/IEC 15504, SPICE]

QW2002 San Francisco, 3-6 Sep 2002 9

Fiat Fiat Fiat Fiat Fiat Fiat Fiat Fiat AutoAutoAutoAutoAutoAutoAutoAuto
Product & Process EngineeringProduct & Process Engineering

Electronic & System EngineeringElectronic & System Engineering

� To define requirements (HW, SW, To define requirements (HW, SW, To define requirements (HW, SW, To define requirements (HW, SW,
communication, reliability, etc.) for communication, reliability, etc.) for communication, reliability, etc.) for communication, reliability, etc.) for
the electronic systems and the electronic systems and the electronic systems and the electronic systems and
components used in all Fiat, Lancia components used in all Fiat, Lancia components used in all Fiat, Lancia components used in all Fiat, Lancia
and Alfa Romeo vehicles.and Alfa Romeo vehicles.and Alfa Romeo vehicles.and Alfa Romeo vehicles.

� To define requirements for the To define requirements for the To define requirements for the To define requirements for the
vehicle “body” electronic systemsvehicle “body” electronic systemsvehicle “body” electronic systemsvehicle “body” electronic systems
– LockLockLockLock----unlockunlockunlockunlock doors, passive entry doors, passive entry doors, passive entry doors, passive entry

system, antisystem, antisystem, antisystem, anti----thief system, seat thief system, seat thief system, seat thief system, seat
movement, windows, mirrors, etc.movement, windows, mirrors, etc.movement, windows, mirrors, etc.movement, windows, mirrors, etc.

TasksTasksTasksTasks

QW2002 San Francisco, 3-6 Sep 2002 10

Fiat Fiat Fiat Fiat Fiat Fiat Fiat Fiat AutoAutoAutoAutoAutoAutoAutoAuto
Product & Process EngineeringProduct & Process Engineering

Electronic & System EngineeringElectronic & System Engineering

� To monitor the Software technologies used in To monitor the Software technologies used in To monitor the Software technologies used in To monitor the Software technologies used in
the embedded electronic systemsthe embedded electronic systemsthe embedded electronic systemsthe embedded electronic systems

� To use standard methodologies in order to To use standard methodologies in order to To use standard methodologies in order to To use standard methodologies in order to
evaluate the “process capability” of the evaluate the “process capability” of the evaluate the “process capability” of the evaluate the “process capability” of the
supplierssupplierssupplierssuppliers

� To control the software lifeTo control the software lifeTo control the software lifeTo control the software life----cycle of the cycle of the cycle of the cycle of the
embedded systemsembedded systemsembedded systemsembedded systems

� To define and apply methodologies to validate To define and apply methodologies to validate To define and apply methodologies to validate To define and apply methodologies to validate
functional requirements of the embedded functional requirements of the embedded functional requirements of the embedded functional requirements of the embedded
systems.systems.systems.systems.

� To define the SW architecture used in To define the SW architecture used in To define the SW architecture used in To define the SW architecture used in
embedded systemsembedded systemsembedded systemsembedded systems

ObjectivesObjectivesObjectivesObjectives

QW2002 San Francisco, 3-6 Sep 2002 11

IssuesIssuesIssuesIssuesIssuesIssuesIssuesIssues in automotivein automotivein automotivein automotivein automotivein automotivein automotivein automotive

� The The The The number of softwarenumber of softwarenumber of softwarenumber of software----basedbasedbasedbased
components in automotive systemscomponents in automotive systemscomponents in automotive systemscomponents in automotive systems isisisis
increasingincreasingincreasingincreasing::::
�NeedNeedNeedNeed to control the development to control the development to control the development to control the development

cost of softwarecost of softwarecost of softwarecost of software----based component.based component.based component.based component.
�Need to manage the development of Need to manage the development of Need to manage the development of Need to manage the development of

the softwarethe softwarethe softwarethe software----based component, to based component, to based component, to based component, to
increase the quality of the final increase the quality of the final increase the quality of the final increase the quality of the final
products.products.products.products.

�Need to define new relationships Need to define new relationships Need to define new relationships Need to define new relationships
with the suppliers, to better managewith the suppliers, to better managewith the suppliers, to better managewith the suppliers, to better manage
swswswsw----based component.based component.based component.based component.

QW2002 San Francisco, 3-6 Sep 2002 12

The ESCAPE ProjectThe ESCAPE ProjectThe ESCAPE ProjectThe ESCAPE ProjectThe ESCAPE ProjectThe ESCAPE ProjectThe ESCAPE ProjectThe ESCAPE Project
GoalsGoalsGoalsGoalsGoalsGoalsGoalsGoals

� To set up a methodology supporting the To set up a methodology supporting the To set up a methodology supporting the To set up a methodology supporting the
management of software projects and management of software projects and management of software projects and management of software projects and
supplierssupplierssupplierssuppliers

� To improve FIAT process to select suppliersTo improve FIAT process to select suppliersTo improve FIAT process to select suppliersTo improve FIAT process to select suppliers
� To improve the software development To improve the software development To improve the software development To improve the software development

process of suppliersprocess of suppliersprocess of suppliersprocess of suppliers
� To provide FIAT with methods to determine To provide FIAT with methods to determine To provide FIAT with methods to determine To provide FIAT with methods to determine

the risks associated to software suppliersthe risks associated to software suppliersthe risks associated to software suppliersthe risks associated to software suppliers
� To give FIAT a better control on the software To give FIAT a better control on the software To give FIAT a better control on the software To give FIAT a better control on the software

development project and on the quality of development project and on the quality of development project and on the quality of development project and on the quality of
the resulting productthe resulting productthe resulting productthe resulting product

QW2002 San Francisco, 3-6 Sep 2002 13

The ESCAPE ProjectThe ESCAPE ProjectThe ESCAPE ProjectThe ESCAPE ProjectThe ESCAPE ProjectThe ESCAPE ProjectThe ESCAPE ProjectThe ESCAPE Project
Action PlanAction PlanAction PlanAction PlanAction PlanAction PlanAction PlanAction Plan

1.1.1.1. Selecting a methodologySelecting a methodologySelecting a methodologySelecting a methodology
2.2.2.2. Selecting suppliersSelecting suppliersSelecting suppliersSelecting suppliers
3.3.3.3. Assessing the software processAssessing the software processAssessing the software processAssessing the software process
4.4.4.4. Defining improvement plansDefining improvement plansDefining improvement plansDefining improvement plans
5.5.5.5. Conducting “maintenance” Conducting “maintenance” Conducting “maintenance” Conducting “maintenance”

assessmentsassessmentsassessmentsassessments

QW2002 San Francisco, 3-6 Sep 2002 14

Reasons for SPAReasons for SPAReasons for SPAReasons for SPAReasons for SPAReasons for SPAReasons for SPAReasons for SPA
� Software Process Assessment is a way to Software Process Assessment is a way to Software Process Assessment is a way to Software Process Assessment is a way to

better understand (and manage) the better understand (and manage) the better understand (and manage) the better understand (and manage) the
software process development of a software process development of a software process development of a software process development of a
supplier. The assessment is done to:supplier. The assessment is done to:supplier. The assessment is done to:supplier. The assessment is done to:

�define a “capability” level and a “risk” level define a “capability” level and a “risk” level define a “capability” level and a “risk” level define a “capability” level and a “risk” level
for each supplierfor each supplierfor each supplierfor each supplier

�have a criterium to choose suppliers based have a criterium to choose suppliers based have a criterium to choose suppliers based have a criterium to choose suppliers based
on their “capability”on their “capability”on their “capability”on their “capability”

�understand weak and strong areas of the understand weak and strong areas of the understand weak and strong areas of the understand weak and strong areas of the
development processdevelopment processdevelopment processdevelopment process

�define better functional requirementsdefine better functional requirementsdefine better functional requirementsdefine better functional requirements
�define better system verification and define better system verification and define better system verification and define better system verification and

validation proceduresvalidation proceduresvalidation proceduresvalidation procedures

QW2002 San Francisco, 3-6 Sep 2002 15

Reasons for SPICEReasons for SPICEReasons for SPICEReasons for SPICEReasons for SPICEReasons for SPICEReasons for SPICEReasons for SPICE

� Definite softwareDefinite softwareDefinite softwareDefinite software----oriented approachoriented approachoriented approachoriented approach
� Applicability over a wide range of application domains, Applicability over a wide range of application domains, Applicability over a wide range of application domains, Applicability over a wide range of application domains,

businesses and sizes of organizationsbusinesses and sizes of organizationsbusinesses and sizes of organizationsbusinesses and sizes of organizations
� Output as process profiles at different levels of detailOutput as process profiles at different levels of detailOutput as process profiles at different levels of detailOutput as process profiles at different levels of detail
� Comparability, reliability and consistency of resultsComparability, reliability and consistency of resultsComparability, reliability and consistency of resultsComparability, reliability and consistency of results
� Independence of organizational structures, life cycle Independence of organizational structures, life cycle Independence of organizational structures, life cycle Independence of organizational structures, life cycle

models, technologies and development modelsmodels, technologies and development modelsmodels, technologies and development modelsmodels, technologies and development models
� Adaptability of the assessment scope to cover specific Adaptability of the assessment scope to cover specific Adaptability of the assessment scope to cover specific Adaptability of the assessment scope to cover specific

processes of interestprocesses of interestprocesses of interestprocesses of interest
� ReReReRe----usability of assessment results, both for process usability of assessment results, both for process usability of assessment results, both for process usability of assessment results, both for process

improvement and capability determinationimprovement and capability determinationimprovement and capability determinationimprovement and capability determination
➜SIG on Automotive initiativeSIG on Automotive initiativeSIG on Automotive initiativeSIG on Automotive initiative

QW2002 San Francisco, 3-6 Sep 2002 16

Assessment PreparationAssessment PreparationAssessment PreparationAssessment PreparationAssessment PreparationAssessment PreparationAssessment PreparationAssessment Preparation
� Planning the AssessmentPlanning the AssessmentPlanning the AssessmentPlanning the Assessment

�OnOnOnOn----site visitsite visitsite visitsite visit
�Time/Cost constraintsTime/Cost constraintsTime/Cost constraintsTime/Cost constraints
�Technical constraintsTechnical constraintsTechnical constraintsTechnical constraints
�Assessment risk identificationAssessment risk identificationAssessment risk identificationAssessment risk identification

� Defining the Assessment PurposeDefining the Assessment PurposeDefining the Assessment PurposeDefining the Assessment Purpose
�Capability DeterminationCapability DeterminationCapability DeterminationCapability Determination
�[Process Improvement][Process Improvement][Process Improvement][Process Improvement]

� Defining the Assessment ScopeDefining the Assessment ScopeDefining the Assessment ScopeDefining the Assessment Scope
�Process SelectionProcess SelectionProcess SelectionProcess Selection

QW2002 San Francisco, 3-6 Sep 2002 17

Assessment Preparation Assessment Preparation Assessment Preparation Assessment Preparation Assessment Preparation Assessment Preparation Assessment Preparation Assessment Preparation
Assessment ScopeAssessment ScopeAssessment ScopeAssessment ScopeAssessment ScopeAssessment ScopeAssessment ScopeAssessment Scope

1.1.1.1. Requirements elicitation processRequirements elicitation processRequirements elicitation processRequirements elicitation process
(CUS.3) (CUS.3) (CUS.3) (CUS.3)

2.2.2.2. System requirements analysis and System requirements analysis and System requirements analysis and System requirements analysis and
design processdesign processdesign processdesign process (ENG.1.1) (ENG.1.1) (ENG.1.1) (ENG.1.1)

3.3.3.3. Software design processSoftware design processSoftware design processSoftware design process (ENG.1.3) (ENG.1.3) (ENG.1.3) (ENG.1.3)
4.4.4.4. System integration and testing System integration and testing System integration and testing System integration and testing

processprocessprocessprocess (ENG.1.7) (ENG.1.7) (ENG.1.7) (ENG.1.7)
5.5.5.5. Project management processProject management processProject management processProject management process (MAN.2) (MAN.2) (MAN.2) (MAN.2)

CUS.3 Requirements elicitation processCUS.3 Requirements elicitation process
• Process purpose: to gather, process and track evolving

customer needs and requirements throughout the life of the
software product/service so as to establish a requirement
baseline that serves as the basis for defining the needed
software work products.

• Process outcomes:
– continuing communication with the customer will be

established
– agreed customer requirements
– a mechanism will be established for continuous monitoring of

customer needs
– a mechanism will be established for ensuring that customers

can easily determine the status and disposition of their
requests

– enhancements arising from changing technology and
customer needs will be identified and their impact managed

ENG.1.1 System requirements analysis and ENG.1.1 System requirements analysis and
design processdesign process

• Process purpose: to establish the system requirements
(functional and non-functional) and architecture, identifying
which system requirements should be allocated to which
elements of the system and to which releases.

• Process outcomes:
– requirements of the system will be developed that match the

customer’s stated needs
– a solution will be proposed that identifies the main elements

of the system
– the requirements will be allocated to each element of the

system
– a release strategy will be developed that defines the priority

for implementing system requirements
– the system requirements will be approved and updated as

needed
– the requirements, proposed solution, and their relationship

will be communicated to all affected parties

ENG.1.3 Software design processENG.1.3 Software design process

• Process purpose: to define a design for the software that
implements the requirements and can be tested against
them.

• Process outcomes:
– an architectural design will be developed that describes the

major software components that will implement the software
requirements

– internal and external interfaces of each software component
will be defined

– a detailed design will be developed that describes software
units that can be built and tested

– consistency will be established between software
requirements and software design

ENG.1.7 System integration and testing ENG.1.7 System integration and testing
processprocess

• Process purpose: to integrate the software component with
other components, producing a complete system that will
satisfy the customer’s expectations expressed in the
system requirements.

• Process outcomes:
– an integration strategy will be developed to build system unit

aggregates according to the release strategy
– acceptance criteria for each aggregate will be developed to

verify compliance with the system requirements allocated to
the units

– system aggregates will be verified using the defined
acceptance criteria

– an integrated system demonstrating compliance with the
system requirements will be constructed

– test results will be recorded
– a regression strategy will be developed for retesting

aggregates or the integrated system, should a change be
made

– regression testing will be carried out as necessary

MAN.2 Project management processMAN.2 Project management process
• Process purpose: to identify, establish, coordinate and

monitor activities, tasks and resources necessary for a
project to produce a product and/or service meeting the
requirements.

• Process outcomes:
– Definition of the scope of the work for the project
– Feasibility evaluation of achieving the goals of the project

with available resources and constraints
– Estimation of the tasks and resources necessary to complete

the work
– Identification of the interfaces between elements in the

project, and with other projects and organizational units
– Development and implementation of the plans for the project

execution
– Actions to correct deviations from the plan and to prevent

recurrence of problems identified in the project will be taken
when project targets are not achieved.

QW2002 San Francisco, 3-6 Sep 2002 23

Project implementationProject implementationProject implementationProject implementationProject implementationProject implementationProject implementationProject implementation
prepre--assessment activitiesassessment activities

� Introductory meetingIntroductory meetingIntroductory meetingIntroductory meeting
� To introduce the SPICE To introduce the SPICE To introduce the SPICE To introduce the SPICE

(ISO15504) approach(ISO15504) approach(ISO15504) approach(ISO15504) approach
� To review the assessment To review the assessment To review the assessment To review the assessment

purpose, scope and constraintspurpose, scope and constraintspurpose, scope and constraintspurpose, scope and constraints
� To introduce the assessment To introduce the assessment To introduce the assessment To introduce the assessment

activities and the provisional activities and the provisional activities and the provisional activities and the provisional
assessment planassessment planassessment planassessment plan

�PrePrePrePre----assessment assessment assessment assessment
questionnairequestionnairequestionnairequestionnaire
� To gather preliminary To gather preliminary To gather preliminary To gather preliminary

information on the projects to be information on the projects to be information on the projects to be information on the projects to be
used as process instancesused as process instancesused as process instancesused as process instances

• sw life cycle
• sw
requirements
• test reports
• test plan
• quality
requirements

• sw life cycle
• sw
requirements
• test reports
• test plan
• quality
requirements

QW2002 San Francisco, 3-6 Sep 2002 24

Project implementationProject implementationProject implementationProject implementationProject implementationProject implementationProject implementationProject implementation
onon--site activitiessite activities

� BriefingBriefingBriefingBriefing
� Assessment purpose,

scope, constraints and
model

� Confidentiality policy
� Assessment schedule

� Data Acquisition & Data Acquisition & Data Acquisition & Data Acquisition &
ValidationValidationValidationValidation

� Presentations
� Document analysis
� Interviews

� Process rating (Process rating (Process rating (Process rating (provisional))))
� DebriefingDebriefingDebriefingDebriefing

} Checklist-based

QW2002 San Francisco, 3-6 Sep 2002 25

The Rating DilemmaThe Rating DilemmaThe Rating DilemmaThe Rating DilemmaThe Rating DilemmaThe Rating DilemmaThe Rating DilemmaThe Rating Dilemma

� Different rating methods can be
applied

� ranging from the mere processing
of measured indicators up to the
unaided assessor’s judgement

� Need to establish the
requirements to be satisfied for a
rating method to be valid

� Trade-off: assessor’s judgement
driven by checklists

QW2002 San Francisco, 3-6 Sep 2002 26

Confidentiality PolicyConfidentiality PolicyConfidentiality PolicyConfidentiality PolicyConfidentiality PolicyConfidentiality PolicyConfidentiality PolicyConfidentiality Policy

� Care has been taken on convincing the Care has been taken on convincing the Care has been taken on convincing the Care has been taken on convincing the
supplier that process assessment does not supplier that process assessment does not supplier that process assessment does not supplier that process assessment does not
disclose sensitive information about disclose sensitive information about disclose sensitive information about disclose sensitive information about
particular techniques used in software particular techniques used in software particular techniques used in software particular techniques used in software
development nor details on proprietary development nor details on proprietary development nor details on proprietary development nor details on proprietary
software or algorithmssoftware or algorithmssoftware or algorithmssoftware or algorithms

� process assessment methods do not need investigation process assessment methods do not need investigation process assessment methods do not need investigation process assessment methods do not need investigation
on technical aspects: they only investigate on on technical aspects: they only investigate on on technical aspects: they only investigate on on technical aspects: they only investigate on
knowledge, experience, skill, confidence, benefits, knowledge, experience, skill, confidence, benefits, knowledge, experience, skill, confidence, benefits, knowledge, experience, skill, confidence, benefits,
resource allocation and management of such aspects.resource allocation and management of such aspects.resource allocation and management of such aspects.resource allocation and management of such aspects.

� any unwanted leakage of information is covered by the any unwanted leakage of information is covered by the any unwanted leakage of information is covered by the any unwanted leakage of information is covered by the
security policy and security process of the assessing security policy and security process of the assessing security policy and security process of the assessing security policy and security process of the assessing
team.team.team.team.

QW2002 San Francisco, 3-6 Sep 2002 27

Project implementationProject implementationProject implementationProject implementationProject implementationProject implementationProject implementationProject implementation
postpost--assessment activitiesassessment activities

� Process rating (final)
� For each process assessed,

assign a rating to each process
attribute

� Record the set of process
attribute ratings as the process
profile and calculate the
capability level rating

� Reporting the results
� Prepare the assessment report
� Present the assessment results
� Finalize and distribute the

assessment report

QW2002 San Francisco, 3-6 Sep 2002 28

Project statusProject statusProject statusProject statusProject statusProject statusProject statusProject status

� Seven assessments performed Seven assessments performed Seven assessments performed Seven assessments performed
(on 10 projects) so far(on 10 projects) so far(on 10 projects) so far(on 10 projects) so far

� Four more assessments Four more assessments Four more assessments Four more assessments
scheduled this yearscheduled this yearscheduled this yearscheduled this year

� Further assessments planned Further assessments planned Further assessments planned Further assessments planned
(next year), including re(next year), including re(next year), including re(next year), including re----
assessments for improvement assessments for improvement assessments for improvement assessments for improvement
verificationverificationverificationverification

CUS3: Requirements Elicitation Process

0

1

2

3

4

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Project

ca
pa

bi
lit

y
le

ve
l

ENG1.1: System Requirement Analysis and
Design Process

0

1

2

3

4

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Project

ca
pa

bi
lit

y
le

ve
l

ENG1.3: Software Design Process

0

1

2

3

4

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Project

ca
pa

bi
lit

y
le

ve
l

ENG1.7: System Integration and Testing Process

0

1

2

3

4

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Project

ca
pa

bi
lit

y
le

ve
l

MAN2: Project Management Process

0

1

2

3

4

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Project

ca
pa

bi
lit

y
le

ve
l

CUS3: Requirements Elicitation Process

0

1

2

3

4

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Project

ca
pa

bi
lit

y
le

ve
l

ENG1.1: System Requirement Analysis and
Design Process

0

1

2

3

4

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Project

ca
pa

bi
lit

y
le

ve
l

ENG1.3: Software Design Process

0

1

2

3

4

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Project

ca
pa

bi
lit

y
le

ve
l

ENG1.7: System Integration and Testing Process

0

1

2

3

4

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Project

ca
pa

bi
lit

y
le

ve
l

MAN2: Project Management Process

0

1

2

3

4

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Project

ca
pa

bi
lit

y
le

ve
l

Project resultsProject resultsProject resultsProject resultsProject resultsProject resultsProject resultsProject results

QW2002 San Francisco, 3-6 Sep 2002 30

Project resultsProject resultsProject resultsProject resultsProject resultsProject resultsProject resultsProject results
((Synthesis)

0

1

2

3

4

CUS.3 ENG.1.1 ENG.1.3 ENG.1.7 MAN.2

process

ca
pa

bi
lit

y
le

ve
l

mean value

median

QW2002 San Francisco, 3-6 Sep 2002 31

Resulting considerationsResulting considerationsResulting considerationsResulting considerationsResulting considerationsResulting considerationsResulting considerationsResulting considerations
� The demand for the use of electronics and

software solutions has been dramatically
growing in the last years and will be even
more in the next future.

� The answer is not completely adequate, as it
comes from an environment (both customers
and suppliers) that is not enough prepared to
the transition - for historical, cultural and
technical reasons: innovation is often
apparent only, actually based on giving old
concepts new names.

� From the case study, some trade-offs seem
to be crucial to the automotive community
and their investigation can provide research
topics to help automotive organizations
respond to the challenges presented by
today’s global competitive environment.

QW2002 San Francisco, 3-6 Sep 2002 32

Concluding issuesConcluding issuesConcluding issuesConcluding issuesConcluding issuesConcluding issuesConcluding issuesConcluding issues
� Trends

� Requirement analysis as a key issue
� Awareness of the customer role in the acquisition

process
� Need for new SW development models

� Trade-offs
� Platform-oriented vs customer-oriented
�Resource (memory size, processor

performance, design complexity) saving vs
maintainability and reliability

� Open issues
� Interoperability at subsystem level (ECU)
� Safety and security implications

Key Points

Training can be established to transition testing team from mainframe to web applications
Many practical lessons learned and problems to avoid are presented
Testing professionals should be taught how their current knowledge can be applied

Presentation Abstract

The Public Works department of the Government of Canada is currently participating in several major
infrastructure software development projects which will enable existing applications and facilities to be
accessible as multi-tiered web based applications. (some internal and some publicly available over the
Internet). This paper describes a simple and effective training program developed to enable the existing,
established, team of software testing professionals, to effectively test the new Web based and Government
On- Line versions of these applications.

About the Author

Robert Sabourin, P. Eng. has 20+ years management experience leading teams of software development
professionals to consistently deliver projects on-time, on-quality and on-budget. He is a well-respected
member of the software engineering community who has managed, trained, mentored and coached
hundreds of top professionals in the field. He frequently writes and speaks to conferences around the world
on software engineering, SQA, testing, management and internationalization.

QW2002 Paper 8A2

Mr. Robert Sabourin
(AmiBug.Com, Inc.)

Training Testing Professionals: Making the transition to Web Based Application
Testing

1

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 1

AmiBug.Com, Inc.

Training Testing Professionals:
Making the transition to Web

Based Application Testing

Robert Sabourin
President

AmiBug.Com, Inc.
Montreal, Canada

rsabourin@amibug.com
www.amibug.com

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 2

AmiBug.Com, Inc.

Training Testing Professionals:
Making the transition to Web Based

Application Testing

2

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 3

AmiBug.Com, Inc.

• Robert Sabourin ,
Software Evangelist

• President
• AmiBug.Com Inc.
• Montreal, Quebec,

Canada
• rsabourin@amibug.com

Training Testing Professionals:
Making the transition to Web

Based Application Testing

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 4

AmiBug.Com, Inc.

• Software Development & SQA
Consulting

• Services
– Training, Coaching and Professional

Development
– Light Effective Process
– Team Building and Organization
– We help people to get things done!

AmiBug.Com, Inc.

3

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 5

AmiBug.Com, Inc.

I am a Bug

Robert & Catherine Sabourin

ISBN: 0-9685774-0-7

www.amazon.com

In the style of a children's book.
Explains elements of software
development process in a fun easy
to read format.

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 6

AmiBug.Com, Inc.

Public Works and
Government Services

Canada

• Government of Canada
• Infrastructure, procurements
• Centralized services

4

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 7

AmiBug.Com, Inc.

Public Works and
Government Services

Canada

• Original mainframe based client server
solution uses combination of intelligent
PC terminals and business logic
implemented on mainframe systems
with large DB2 backend database

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 8

AmiBug.Com, Inc.

Public Works Canada

• Current Major Development Projects
– Common Department Financial System

(CDFS)
• System Management
• Access and Reporting
• Expenditure Management
• Revenue Management
• General Accounting
• Budget and Forecasting

5

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 9

AmiBug.Com, Inc.

Public Works Canada

• Current Major Development Projects
– Common Department Financial System (CDFS)

• Develop web technologies based from end which can be
accessed from desktops of internal users at government
offices via Internet browsers

• Use middleware developed using an IBM Websphere
architecture

• Share DB2 backend with co-existing “traditional”
mainframe solution

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 10

AmiBug.Com, Inc.

Public Works Canada

• Current Major Development Projects
– Common Department Financial System

(CDFS)
• Current system has a defect tracking system

with over 1400 users across Canada
• Defect tracking tied in with internal customer

support and maintenance services

6

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 11

AmiBug.Com, Inc.

Public Works Canada

• Government On-Line
– All Government services to be available

on-line on the Internet
• Complete new web based front end
• Public information about services
• Procurement support including supplier

registration and tracking
• Point of contact
• Point of service

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 12

AmiBug.Com, Inc.

Government On-Line

Canada
- “By 2004, Canadians will be able to request and

receive all key federal services through secure,
interactive and timely on-line transactions.”

- www.gol-ged.gc.cap

7

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 13

AmiBug.Com, Inc.

Government On-Line

Training
- Observed Q3+Q4-2001 and Q1-2002

- High percentage of students are experienced testers moving to GOL
applications from Client Server or Mainframe applications

- High percentage have never used basic testing techniques such as:
- Equivalence Partitioning
- Boundary Analysis
- State Modeling
- Analytic Methods
- Any Code Coverage Techniques

- High percentage have never read more than one book about testing
- High percentage have never attended a course or conference about SQA

or Testing or Software Engineering
- … but they all are enthusiastic and want to learn!

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 14

AmiBug.Com, Inc.

What is needed!

Training
- Get back to basics!

- Testing 101 courses and books all over the place
- Practical books
- Awareness of the many wonderful methods and

techniques available in an objective and open
minded approach

- Encourage a foundation in fundamentals before
overly skill based approaches

8

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 15

AmiBug.Com, Inc.

Maintenance

Testing

Development

Design

Analysis

Requirements

TransitionConstructionInception Elaboration
C

or
e

W
or

kf
lo

w

Phase
Rational Unified
Process (RUP)

When?

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 16

AmiBug.Com, Inc.

Maintenance

Testing

Development

Design

Analysis

Requirements

TransitionConstructionInception Elaboration

C
or

e
W

or
kf

lo
w

Phase
Rational Unified
Process (RUP)

W
ha

t?

9

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 17

AmiBug.Com, Inc.

Starting Point

• Testing teams
– Large team

• Over 100 testing professionals
• Senior in testing experience
• Mainframe focused
• Very limited experience testing Web systems
• Good understand of how to find problems with

financial systems
• Good understand of bug reporting and triage

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 18

AmiBug.Com, Inc.

Starting Point

• Established Testing Methods
– Testing with detailed, complex, procedures which

includes a mix of instructions, outlining step by
step exactly what the tester should do and what
the expected results should be

– Black box oriented functional testing
– Some concepts of scenarios
– Testing designed based on solid analysis of

requirements and systems expected usage

10

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 19

AmiBug.Com, Inc.

Starting Point

• Basic Web Terminology
– All testers offered hands-on training in the

basics of HTML and all relevant Web
Technologies used in the CDFS and GOL
projects

– Three tiered web development architecture
being used

• Which function is implemented on which tier
• Associated failure modes!

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 20

AmiBug.Com, Inc.

Training Approach

• Back to basics
– Start with existing testing process in place
– Teach how test cases are derived from

basic concepts such as
• State modeling
• Equivalence partitioning
• Boundary analysis
• Positive and negative test design

– Use relevant familiar examples

11

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 21

AmiBug.Com, Inc.

Training Approach

• Decouple test procedure from test data
– Data independent

• Decouple user input from test instructions
– GUI independent

• Use familiar examples, show how the
procedures can be written in a technology
independent manner

• Benefit of reuse and shared testing analysis
between two systems (old and new)

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 22

AmiBug.Com, Inc.

Training Approach

• Testing Lab
– Teach by example how platform testing

can be achieved using a testing lab with
Operating System and Browser swapping

– A lab was set up and used as an example
in training courses

12

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 23

AmiBug.Com, Inc.

Training Approach

• Course structure
– Three of ½ day workshops

• All terminology carefully reviewed with team to
ensure consistent

• Dry run and complete content review
• ½ day design can be done on site with minimal

disruption of projects.

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 24

AmiBug.Com, Inc.

Course Outline
• Philosophy, terminology (purpose, risk)
• Types of testing and the development process (workflow, prioritization)
• Quality Factors and what can break (failure modes)
• Testing Web/User Interface Tier

– Lab Set Up / Platforms
– Browser compatibility testing
– Check list approaches
– Tools and techniques

• Testing Application Tier
– Analytic techniques
– Exploratory techniques
– Scenario Based Data Driven approaches

• Testing Data Tier
– Create, Update, Delete
– Search Sort
– Shared Database issues
– SQL – static

13

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 25

AmiBug.Com, Inc.

Results
• 6 sessions to date (June 2002), 90 students
• Group has set up completely functional test lab
• Set up new bug prioritization workflow
• Finding – and getting fixed - large number of

important bugs well in advance of deployment
• 2 Follow up sessions planned for September
• Frequent follow-up meetings, and correspondence, to

help resolve conflicts and confusion as problems are
encountered

• New examples and updated content as feedback is
collected

• New tests being developed will be easier to adapt to
future changes to GUI and any technology shifts

Tuesday, July 16, 2002 © Robert Sabourin, 2002 Slide 26

AmiBug.Com, Inc.

Thank You

• Questions?

Key Points

Common causes of performance problems in J2EE applications
The differences between performance and scalability and how they can be detected
Real world scenarios

Presentation Abstract

The J2EE platform is quickly emerging as a standard for building enterprise applications. Although the platform has been designed to
support high-performance applications, many organizations are discovering that their applications are failing to meet agreed upon
performance criteria.

This talk addresses the common causes of performance problems in J2EE applications. Beginning with a discussion of the differences
between performance and scalability, this presentation separately discusses both types of problems in J2EE applications, illustrated
with some common real-world scenarios. We will also show how these types of problems can be detected and diagnosed in both a
load-testing and production environment.

About the Author

Ed Lycklama M. Sc., CTO & Co-Founder As chief technology officer and co-founder of Sitraka, Mr. Lycklama holds primary
responsibility for directing the company's technology strategy and managing Sitraka's intellectual capital. He has also led the
development of a number of Sitraka's core products.
Mr. Lycklama served as chief architect in the design of Sitraka's award-winning JProbe suite of Java performance and analysis
products and XRT suite of Motif widgets. He also serves on Sitraka's board of directors and has been a driving force behind the
company's exceptional growth. As an expert in Java application performance issues, Mr Lycklama is a wellrespected and frequent
speaker at major industry events.
Mr. Lycklama completed a Master's degree in Computer Science, with a focus on algorithms for distributed systems, at the University of
Toronto (1987). He also holds a B.Math from the University of Waterloo (1984).

QW2002 Paper 9A1

Ed Lycklama
(Sitraka)

Performance and Scalability Bottlenecks in J2EE Applications

1

Performance and
Scalability
Bottlenecks in J2EE
Applications

Ed Lycklama - CTO, co-founder

J2EE Reality

• J2EE application performance a serious problem despite:
• Adequate hardware capability
• Adequate network capability
• Modern JVMs

• Many problems not discovered until:
• Components are assembled
• Application is distributed across machines
• Realistic data and load simulations are used

2

The Technical ChallengeThe Technical Challenge
Complex N-tier Clustered Architecture

Client Database
Web
Tier

Middle
Tier

Network
Bandwidth?

Database
throughput?

Component
efficiency?

CPU
usage?

Memory
usage?

Characterizing Performance Bottlenecks

• By functional tier (servlets, EJB, DB, etc)
• reality: lots of do’s and don’ts

• By J2EE role (developer, deployer, administrator)
• roles aren’t always clear-cut
• too much interdependency

• By underlying principle
• best way to learn “performance patterns”
• categorize new problems

3

Understanding J2EE Performance Obstacles

1. Failure to understand system performance
2. Ignoring the benefits of caching

3. Inter-component (and inter-system) interactions
4. Single-threaded thinking
5. Sharing resources

#1 - Understanding System Performance

• Performance vs. Scalability
• Important Concepts:

• response time
• throughput
• # concurrent users

4

#1 - Understanding System Performance

Concurrent Users (Load)

R
es

po
ns

e
Ti

m
e

Th
ro

ug
hp

ut

U
til

iz
at

io
n

Buckle Zone

Light Load

Heavy Load

Resource Saturated

#1 - Understanding Performance

Little’s Law

N = #users in the system
X = average throughput
R = average response time

Then N=RX when observed over a “long enough” period

Little’s Law applies to any device or system, regardless of
service methodology

5

#1 - Understanding Performance

Little’s Law Applied

Useful in back-of-the-envelope calculations, or simple
capacity planning

Example: Porting a legacy system to J2EE
• services 100 request/sec at avg. response of 2 sec
• then N = RX = 100*2 = 200 concurrent users
• each concurrent user occupies an execute thread
• 20 threads per server ==> min. 10 app servers

#2 - Ignoring Caching

• Retrieving data repeatedly that never (or even rarely)
changes is expensive

• Each tier has opportunities for caching results
• The further upstream you cache, the better your

performance results will be

6

#2 - Ignoring Caching
Presentation Tier

• Browser can cache pages based on information in the
HTML headers (age, expires, etc.)

• implement getLastModified() from HTTPServlet
• cache static data in servlet’s init() method

• only called once in servlet’s lifetime
• JSP caching

• vendor-specific way of caching output
• refer to vendor’s documentation

#2 - Ignoring Caching
Application Tier

• JNDI lookup is very expensive
• cache EJBHome, JMSConnectionFactory, etc.
• Use ServiceLocator pattern to cache these
expensive lookups
• result: only perform one expensive JNDI lookup
per service, instead of once per service use

7

#2 - Ignoring Caching
Data Access Layer

• Identify read-only data from DB and cache
• avoid redundant trips to database

• EJB’s call ejbLoad/ejbStore around transactional
boundaries unless given hints

• read-only EJB’s - never call ejbStore()
• BMP: keep track of whether its been modified
• single app-server (no clusters): set db_is_shared
to false, then app-server will cache results

#3 - Inter-Component Communication

• J2EE is a distributed, multi-tier architecture with many
interconnecting components

• presentation tier -> biz logic -> persistent store
• Java code running on app-server, which runs on
JVM, which runs on OS -- each has its own
performance and tuning quirks

• complex set of interactions, must think about
performance holistically

8

#3 - Inter-Component Communication
Remote Method Invocation (RMI)

• RMI is the default way in which all remote J2EE
communication is done

• when truly remote, network communications overhead
is significant

• serialization of objects is expensive
• entire object graph is persisted and sent to
receiving object

• needs to be considered in any system

#3 - Inter-Component Communication
Remote Method Invocation (RMI)

• Pass-by-value vs. pass-by-reference
• local optimization when EJB’s are co-located
• must explicitly turn on (app-server specific)

• Local EJB’s in newer app-servers
• when you know EJB will be in same JVM
• use EJBLocalObject interface in EJB 2.0-based
application servers

9

#3 - Inter-Component Communication
SessionFacade

• All EJB interactions should go through SessionBean
• never let client objects (e.g. servlets) invoke entity
beans directly
• preserve transactional and security behavior
• avoid excessive fine-grained network traffic

#3 - Inter-Component Communication
Communication with the Database

• Common performance bottleneck
• Typical problems:

• Inefficient queries - sending SQL data that asks
the database to do more work than necessary.
• Excessive querying - efficient queries called too
frequently.
• Large Data Sets - processing large sets of data in
ResultSets

10

#3 - Inter-Component Communication
Diagnosing Database problems

• Standard DB tools can examine performance of
individual queries on the DB itself

• Need to determine performance impact on individual
requests

#4 - Single-threaded Thinking

• J2EE application servers run multiple requests
concurrently on separate threads

• EJB’s are guaranteed to only run on a single thread at
a time

• Tempting to ignore concurrency issues
• But, ...

11

#4 - Single-threaded Thinking

• Any shared state or data must be protected
• servlet’s can be used in multiple threads
• database use requires concurrency protection to

provide data consistency and isolation

• Result: you can’t ignore it

#4 - Single-threaded Thinking
Servlet SingleThreadModel

• Any servlet that implements SingleThreadModel will
only use one-thread per-instance concurrently

• generally app-servers create a small pool
• Problem: severe throughput limitation
• Problem: any shared data must still be protected

• Solution: protect any common data with
synchronized keyword

12

#4 - Single-threaded Thinking
Synchronized Methods

• Java: synchronized implements a mutex, only one
entrant allowed

• If the size of this “critical section” is large, can be
severe throughput limiter

• Strive to keep synchronized sections as short as
possible

#4 - Single-threaded Thinking
Transaction Isolation Levels

• There are five levels, in increasing strictness:
• _NONE
• _READ_UNCOMMITTED
• _READ_COMMITTED
• _REPEATABLE_READ
• _SERIALIZABLE

• NOTE: not all DB’s support all five
• The stricter the isolation level, the less concurrency,

but the more “correct”

13

#4 - Single-threaded Thinking
Transaction Isolation Levels

• Although SERIALIZABLE is the most “correct”, its also
the most throughput restrictive

• consider READ_COMMITTED with optimistic locking if
there is a low likelihood of two transactions updating
the same database rows

• updates only fail if there has been a collision
• WebLogic 7 has built-in support

• you can do-it-yourself in other versions

#5 - Resource Sharing
Background

• Standard application resources:
• CPU
• Memory
• I/O
• Network
• Database

• In J2EE, there are additional resources

14

#5 - Resource Sharing
J2EE Application Servers

• Application Servers control resources:
• Execute threads that request run on
• JDBC connection pools
• stateful session bean cache
• stateless session and entity-bean pools
• JDBC prepared statement cache size

• Correct settings depend on application
• Complex to correlate direct effect of multiple

configuration changes

#5 - Sharing Resources
Diagnosis

• Application knowledge
• Test applications under load
• System-wide performance assurance tools

15

#5 - Sharing Resources
Memory

• The garbage collector is not a panacea!

• Loitering objects can remain with the JVM heap
beyond successive garbage collections.

• Developers must manage object references to remove
loitering objects.

#5 - Sharing Resources
Memory

• Erosion of performance
over time and an
increasing process size

• OutOfMemoryError
thrown by the JVM as it
abnormally terminates

• Use a J2EE
performance assurance
tool to watch heap size.

16

#5 - Sharing Resources
Memory

• Undertake a heap
analysis using
memory debugger to
identify the
unnecessary
references that cause
loitering objects.

#5 - Sharing Resources
CPU

• J2EE application responsiveness often depends upon
the efficiency of the software you write.

• Expensive sorting algorithms, slow XML parsing, etc.
all have their toll

17

#5 - Sharing Resources
CPU

• Use a profiler to identify where the problem lies.

Understanding J2EE Performance Obstacles

1. Failure to understand system performance
2. Ignoring the benefits of caching

3. Inter-component (and inter-system) interactions
4. Single-threaded thinking
5. Sharing resources

18

Performance and
Scalability
Bottlenecks in J2EE
Applications

Ed Lycklama - CTO, co-founder

Key Points

Likely Difficulties/Risks:
a. Managerial
 i. Lack of visibility at the project management/project sponsor level
 ii. Scarcity of testing resources
 iii. Lack of environments/Poor environmental performance
 iv. Lack of business analyst/subject matter expert involvement
 v. Turf issues
b. Technical
 i. High number of defects
Do’s and Don’ts of Data Conversion Testing (rules of thumb)
Key Indicators (How do I know I’m doing it right/wrong)
a. Application schedule
b. Data model slip
c. Performance tuning schedule
d. Resource rhythm
e. Defect counts, including sub-counts of defect classification

Presentation Abstract

Converting data from a legacy application is a lot like making coffee.

The existing data (grounds/beans) work well enough in their current state (if you like pulling beans out of the bag or eating spoonfuls of
grounds, but then we already know we want a new app, don’t we?). To work properly, however, in our new application the data must
undergo change. So first the grinding, either from beans or from a courser grade of grounds (cleansing garbage data from the system
prior to trying to converting it), then the pouring into the filter and running hot water through it (conversion to new schema, applying
different integrity rules, interpolating new fields from existing ones, etc.) until the finished coffee finally resides in the pot (the new
application database). In theory, if all went well, what’s in the pot is what was desired; the user can drink it and be well satisfied with the
temperature, the flavor, the aroma, the viscosity…but theory and fact often part company. So who do we want to drink the first cup, our
user group/customer or our testing group? That was my answer, too.

About the Author

Joshua Kitchen hails from ‘lots of different places’; he was commissioned from Cincinnati, Ohio, but after graduating the Naval
Academy in 1990, he spent the next decade making his home in a variety of different locales, including Florida, Idaho, Hawaii, and
California. A mathematics and system background was augmented by exhaustive training in engineering courtesy of the Navy’s nuclear
power program, and proven at sea aboard the USS Indianapolis, on which he received his final commission of lieutenant and his
qualification as ship’s engineer. Post-Navy, he moved on to work with expert systems for Pilkington in their quality assurance
department, and in the process earned his Black Belt in Six-Sigma techniques. From Pilkington, he moved on to iBeta, a software
quality assurance firm in Denver, Colorado, where he finished his ASQ certification in software quality assurance engineering and
proceeded to implement his training and experience from a variety of sources as one of the companies directors.

QW2002 Paper 9A2

Joshua Kitchen
(IBeta)

Legacy Data Conversion: Making Coffee

1

Legacy Data Conversion:
Making Coffee

Converting data from a legacy application is a lot like
making coffee.

The existing data (grounds/beans) work well enough in their current state (if
you like pulling beans out of the bag or eating spoonfuls of grounds, but then we
already know we want a new app, don’t we?). To work properly, however, in our
new application the data must undergo change yet remain essentially the same.
So first the grinding, either from beans or from a courser grade of grounds
(cleansing garbage data from the system prior to trying to converting it), then the
pouring into the filter and running hot water through it (conversion to new
schema, applying different integrity rules, interpolating new fields from existing
ones, etc.) until the finished coffee finally resides in the pot (the new application
database). In theory, if all went well, what’s in the pot is what was desired; the
user can drink it and be well satisfied with the temperature, the flavor, the aroma,
the viscosity…but theory and fact often part company. So who do we want to
drink the first cup, our user group/customer or our testing group? That was my
answer, too.

2

Tackling the testing problem can follow the coffee analogy also; look at
the different test techniques that are typically applied during data
conversion testing:

Requirements testing (the beans were supposed to be ground to some
fineness; did the coffee turn out that fine, or is it overly course?)

Functional testing (no matter what happens, someone’s still got to taste
the coffee)

Domain testing (pick out beans that best represent the bag)

Performance testing (don’t just drop a tea spoon in and point at colored
water; if conversion has to occur over a two-day weekend, *that’s* the
product we most want to test on, not something that’s been simmering on
the pot for a couple of weeks, converted one slow piece at a time until it’s
well blended)

We all have our own ideas on making coffee, our own preferences; likely nothing in
this white paper will be new. As in making coffee, however, rarely do we sit
down and go over the risks and rules of thumb to be used in effectively testing
data conversion.

Here’s a recipe I used.

The structure of this presentation is simple:

1. A look at the difficulties/risks encountered, with some perspective on
overcoming or mitigating them.

2. Collected of rules of thumb that worked well (or not so well) during test
planning and execution.

3. Summary of items to watch for before, during, and after. Indicators help only
so far as we pay attention to them.

3

Likely Difficulties and Risks

• Lowest priority, at least at the onset
• Technical subject matter
• Low to no budget
• Business involvement
• Development involvement
• High, hard to fix and isolate, defect rates
• Whose bug is it, anyway?

Do’s and Don’ts
• Understand the development process in use
• Have a defined test approach
• Establish close relationships with key people
• Train your team
• Have a communications plan
• Revisit requirements often
• Understand the other group’s plans
• Negotiate your testing scope throughout the process
• Always be prepared for major environmental issues
• Use your tools
• Avoid becoming the sponge for everyone else’s project
• Avoid distractions
• Never, ever negotiate away your time
• Never become a one-person show

Important Indicators

• Overall project schedule slip
• Data model slip
• Performance tuning schedule
• Defect counts by testing category

Data conversion tends to be something of an afterthought
in most projects (now, where did I put the coffee? Must be up here
somewhere…), except those that launch specifically with this goal in
mind.

So many other things seem to be of higher priority:
requirements for the upcoming application, initial coding and testing
of that application, pushing the new application to the required levels
of performance, the various ‘must have’ change control requests, high
priority defects requiring major re-engineering of the application,
usability issues…the list goes on and on.

And, too, data conversion is a more technical, under the
covers event; most of the details are extremely esoteric, the results are
far from exciting, and reporting on progress tends to be rather dry. ‘I
can’t send email from the app!’ gets far more attention than ‘Integrity
enforcement at the app level is complicating conversion of people
records’.

Thus, data conversion tends to be thought of last, usually
about the same time that planning begins for product rollout, an
unfortunate timing as it usually means this effort is last in line for
resources, on the critical path, and with little time to plan let alone
code and test.

Likely Difficulties and Risks

4

With data conversion behind and ill understood
from the onset, testing of data conversion is likewise behind the
curve. Gradually, however, the ramifications of insufficiently
testing the conversion process and final converted data sink in
at various levels and the testing effort receives more and more
(often becoming unwelcome; everyone wants to either help
make a pot or get a taste) attention.

A key factor in the success of the data conversion
testing effort becomes getting enough visibility early on; this
visibility is critical to getting the resources and time assigned
before they become critical, enabling the data conversion
testing effort and, by proxy, the data conversion effort, to
succeed.

Waiting too long makes data conversion testing a
bitter drink no one wants: under resourced, out of time, and
with huge expectations on the part of every stakeholder.

Likely Difficulties and Risks

The key steps to getting the right amount of
(early) attention to data conversion testing are familiar to
any software project manager: take charge, draw up a
rough plan or approach, present to stakeholders (and
present to stakeholders, and present to stakeholders,
and present…).

Taking charge of a sub-project that needs
doing, yet isn’t funded or recognized, is a great deal like
petting a shark: an interesting experience, something to tell
one’s grand-children about, but one earning the nickname
‘Lefty’ if one is not careful. However, there’s really no
other way to go about it; if it needs to be done, and wasn’t
in the project plan from inception, someone’s going to
have to be a hero and stand up for it, or it will likely fail.

This paper focuses on the testing piece of data
conversion, so if you’re deciding on standing up for
testing, likely you’ve a counterpart who’s decided to stand
up for the development. Make friends; you’ll be in this
together, and for the duration, else you’ll be failing
separately.

Likely Difficulties and Risks

5

Once you’ve made friends with your development counterpart,
drawing up a rough plan should be fairly easy; we’ll cover additional
planning considerations elsewhere in this white paper. It will take you
a bit of time to draw up, as most good plans that account for specific
resources needed do, but the majority of the issues you fight your way
through will be organizational rather than technical, so there should be
few surprises (knock on wood).

The presentation bit will be harder, as you’ll have to impress a
non-technical group with the technical ramifications of failure. It
may seem, at this point, that you are antagonistic to your partner on the
development side; after all, you’re the one telling stakeholders that
your buddy’s project may fail. But by making clear the potential issues
associated with data conversion (i.e. That the entire project could fail if
this piece isn’t taken care of), you’re trying to not only get resources of
your own, but also to increase the resources development has available.

Make no mistake, data conversion testing is quality control,
finding errors generated because of short timelines, inadequate or
missing requirements, etc; anything you can do to make development’s
life easier, any resource you can free up to assist their end of the
project, anything you can do to prevent them from having to rush
(without impacting the timeline you’re setting up for yourself), or take
shortcuts, will make the project’s life (and yours) easier.

Likely Difficulties and Risks

As mentioned earlier, data conversion testing tends to be an
afterthought; by the time you come onto the scene, budgets have been made
(and hopefully approved) for development, rollout, and testing of the
application.

The polite battle for resources will continue throughout the
process; accept this. The applications development group will be behind
schedule, and wish to appropriate your testing environment for additional
development; the roll-out group will wish to appropriate your analysts and
subject matter experts to assist in planning, training, or additional requirements
review; the other testing groups likewise want your environment, equipment,
testing staff, or to pass some of their testing scope off to your group.

To say not to give in to these demands/requests for the sake of the
overall project would be naïve; the end goal is still to come out on time, on
budget, with the feature set and reliability targeted. Caution is useful, however,
and a well-managed scope and risk management document is a good tool to
keep your team out trouble.

Likely Difficulties and Risks

6

Your testing environment becomes your most critical
resource, because you need a minimum of two (both a controlled legacy and
a controlled developed application for comparing data and functionality
before and after data transformation), and because your environment is
typically larger than most others, at least until final integration and rollout of
the product: you need legacy data, and lots of it, if you’re to complete your
task.

As an additional hardware/software cost to the project, you’ll have
an uphill battle to get set up; likely you will have to work for at least a portion
of the time in and around development’s environments, the other testing
environments, or perhaps on older equipment handed down from production.
Any of these events will slow your testing when compared to the rest of the
testing group…and any time a milestone in another group is missed, you
will likely lose your testing environment in favor of that group.

Likely Difficulties and Risks

Good business analysts (BA’s/SME’s) are worth their weight in gold;
fortunately or unfortunately, the rest of the development and test groups are
aware of this as well. Data conversion is particularly vulnerable to poor
requirements gathering issues, and the analyst is the person most likely to
minimize this threat. The primary pull on your BA’s time will be
development; after all, if development doesn’t know what to build, they
can’t build it, and if they can’t build it, you’ve nothing to test.

Participating in development’s requirements gathering process (if you can)
will bring big dividends to your testing group down the road: you establish
good relationships with BA’s, get a jump on test planning, and grow an
understanding of the application all in one step. It’s a very worthwhile step;
take it.

A negative, at least from your perspective, of BA involvement may occur
when they are over involved; they may push test priorities (Test this first!
And this! And this!), over-prioritizing defects (No, the system MUST not do
this! What? The system doesn’t do THAT? Unacceptable.), and generally
attempting to do your job (part-time; most BA’s, by definition, could
contribute significantly if managing a testing effort. However, they have
other jobs and can hurt more than help if their role in your project is not
managed.)

Likely Difficulties and Risks

7

BA’s tend to have the ears of the primary stakeholders; if their
concerns, both voiced and unvoiced, are not answered they often go to
these stakeholders with their concerns. This leads to a variety of
unfortunate issues, as you’re well aware/have experienced. Listen to
the BA’s.

Don’t necessarily treat them with kid gloves when they offer a strong
opinion, but don’t ignore them either. Regular communication via
email, or better, regular meetings in which they can make their
concerns known and have them answered go a long way to making
them happy with the testing group and productive members of same.

Everyone may want to drive. Everyone has priorities; these priorities
won’t match each other’s or yours in many respects. Senior people
(Dev, BA’s, VP’s) are necessary to projects to succeed and, by
definition, these are people used to driving.

If they are not hearing what they need to hear, or seeing what they need
to see (i.e. progress, milestones being met, etc.) they have a tendency
to insist on more and more reports, and on direct involvement in your
testing process. This distracts them from their tasks, which are
essential for your success and are definitely necessary for the success
of the project as a whole.

Likely Difficulties and Risks

Give them what they need: regular, organized reporting. Let them smell
the coffee brewing. If they understand what you’re are doing, and where you
are in your project path, they can rest (perhaps not easily) assured that the
right things are being done at the right time, and they will stay out of your
way.

Development is a slightly different animal. When development wants to
drive the testing process, generally two things can happen: the testing staff is
pulled off testing to assist in development (either in reality, in which case
they are punching code for a development manager, or figuratively, in which
case they are diving into testing detail more along the lines of debugging
rather than testing, an inefficient use of their time) or testing is ineffective
(defects are downgraded in priority, repeatedly deferred to other code
iterations, or simply dismissed as unimportant).

Development must not drive your testing. There’s no easy way to say this,
but they must not, or your position will swiftly become irrelevant,
redundant, and a waste of project resources.

Likely Difficulties and Risks

8

High defect rates. Data conversion may encounter a higher number of defects
than other groups; while not inevitable, it is a distinct possibility you will
encounter more defects due to three data conversion specific issues: accelerated
requirements creep, coordination between different groups of developers, and
the impact of database changes.

Every project has requirement creep; its a fact of software development. Data
conversion in particular will suffer from this creep, not only from its own
requirements, but from the requirements of the application. A
defect/requirement added to the application team will push a change to the data
model which will in turn push a change to data conversion code which will in
turn push a change in the testing…this is inevitable.

It is absolutely essential to understand when the data model is due to be
frozen; without a grasp on this date, and the understanding of its importance in
the other development/testing groups, your team will churn farther and farther
behind the rest of the project.

If your development group is different from the application development group,
you will have to deal with another layer or two of communication between the
database team and the application team. Poor communication often leads to
simple, but telling errors in converting the data.

Likely Difficulties and Risks

Due to the typically late start and technical issues
surrounding requirements gathering for data conversion, defects often
arise from misunderstood or missed requirements. Data conversion
is typically very technical, more concerned with field lengths and data
types than with application level processing or interface display; the
requirements often differ enormously from the requirements of the
application team, but require the input from people (the BAs) who may
not have a firm grasp of the technical ramifications involved. This
combined with the late start often results in good code that nevertheless
results in an unsuitable conversion of legacy data (i.e. defects).

Whose bug is it, anyway? There will be recurring debate
between the application and data conversion development groups as to
the cause of a given defect, with either the application’s processes or the
data conversion process being the proximate cause.

Essentially, there are two applications in use: the primary
application under development and the secondary application needed to
transform the data; in most cases, a defect found by your testing group
could be found in either one. Heading off impasses in this area is
critical to successfully resolving defects and speeding the testing
process to completion. If you can’t sort which caused the silt in the
bottom of the pot, the grounds or the filter, you’ll never make a good
cup except by accident.

Likely Difficulties and Risks

9

Understand the development process in use.
Understanding the process development is using will help the data
conversion testing process immensely (especially if you grow to
understand they don’t have a process!).

This applies not just to the data conversion group; to get
defects fixed in a timely fashion, knowing who does what (Mr. Smith
the defect coordinator assigns defects to the engineers on staff), and
how they do it (a fix has to have a code sample to go with it, so no
defect can be marked fixed in the database without that code sample)
will significantly smooth the process.

Where possible, borrow from their processes; things
move faster when both testing and development are speaking the same
language.

Do’s and Don’ts

Have a defined test approach. Conversion testing will be the last
car in a very long train of development and testing; as we’ve already
discussed, this testing is likely an afterthought. Having a defined,
robust, and well-understood test approach is useful both in
communicating the scope and intent of testing and speeding that
testing along successfully.

For data conversion testing, I recommend a four-part approach as
a beginning followed by focus and refinement as testing continues.
In order of priority and general utility, a good organization scheme
is what we referred to as screen to screen (S2S), functionality,
database partitioning, and defect regression.

Do’s and Don’ts

10

The biggest bang for the buck is in the screen to screen
comparisons: an instance of the old system is placed online and a
snapshot of the same database is used on an instance of the new
application.

Testing then becomes a matter of ‘camera one, camera
two’ comparison. Organization further helps this effort; a simple
Excel spreadsheet, for example, with a list of the fields and their
locations in the new app, along with the equivalent fields and
locations from the old app, is extremely handy. Addition of the
transformation logic to the document further enhances its utility.

After the S2S mapping, running a subset of the
functionality testing on the converted data is essential to bug
hunting. Despite all the requirements gathering, development, and
testing to date, until the system is testing on the live data no real ‘feel’
for product progress exists.

Particularly when different teams are doing the conversion
and application development, errors creep into the boundaries
between the software and its data; test data, no matter how well
crafted, never truly compares to the real thing.

Do’s and Don’ts

Database partitioning is a form of equivalence class partitioning in
which the database is sub-divided into categories of data, then again, and
again, until the types of records noted are a representative sample of the
legacy system. This testing gives you a large handful of records that can
then be used to validate the entire converted system.

Be prepared to run a defect regression set, at least initially, to
validate the defect repair failure rate. If that rate is high, resign yourself to
re-testing a significant portion of your previously reported defects with
each major change of code.

As you test, review which of your approaches net the most
relevant defects, and which aren’t netting enough to be worth your time;
prioritize the former and reduce the time spent on the later.

Different development staff and strategies lend themselves to
different types of errors; each of the four approaches above lends
themselves to finding particular types of errors.

Do’s and Don’ts

11

Establish close relationships with key people. As
alluded to earlier, the people you will need to make your testing
successful are already very tasked; at best, you are likely to
have only partial resources for some key activities. BAs
provide you with information you need; project managers can
keep you aware of key timelines or political issues; friendly
developers can help you understand the underlying mechanics
of the new application, or data conversion code, and help your
defect resolution along; other testing groups on the same
application can give you a heads up on new functionality or
recurring issues with the application; Systems folks can get
your environment up in record time; DbAs can get that
database refresh done for you quicker and cleaner than you
expected.

Or not.

Disregarding the political aspects of having/making
friends in key places, knowing these people and how they work
(what information and time they need to perform for you, what
other priorities they have on their plate, etc.) will make your
testing cycle (and preparations for it) much, much easier.

Do’s and Don’ts

Train your team. Largely due to the ‘loaner’ nature of your resources, it
is strongly recommended that you train on your testing process again and
again, especially if there are gaps between iterations. The people assigned
to you will be working their other tasks in, around, and between your
testing cycles and will need refreshing on your process and instruction on
any changes you may (you will) make to said process.

Without a good (not perfect, but good) understanding of the new
application’s functionality, testing how that functionality performs (or
rather, fails to perform) when subjected to real data is difficult. A good
approach is to either mix in some testers from the application group (if
they can be spared), or put some of your test group into the system test
group for a space. If the application group is writing detailed testing
scripts, borrowing these scripts will significantly aid in data conversion
testing.

The databases must have been reviewed for both the conversion team (old
database, plus transformation mapping to the new database) and the
application team (new database); understanding the database schema is
essential to timely completion of testing, as queries for test data must be
run against the old database to find the records of interest in the new
database (reviewed through the application).

Do’s and Don’ts

12

Have a communications plan. Testers need to report to you: defects,
testing completed, significant issues in the testing environments, etc. You
will need to report up as well: project gantts, test status and completion,
opinions of the overall quality of the converted data. You will also have
to track defects to completion, answer development’s questions on those
defects, and digest their answers.

Make a list (check it twice, three times, four…. Know what
the deliverable is, who is suppose to produce it, when it is to be produced,
and, last but not least, make sure you know what its for! Anything used
for communication but without a defined purpose is likely a waste of your
time, and likely your testers’/associated developers’/project manager’s
time as well.

A good laundry list for a communications plan runs along the
following lines: weekly tester meeting, weekly test lead (cross-group)
meeting, monthly project meeting, daily defect review meeting, pre-cycle
meeting (with development, testing, and support present), project gantt,
testing assignments, testing results, defect reports, pre-testing check off,
development’s project gantt (both development groups), etc.

Do’s and Don’ts

Revisit requirements often. Requirements will often change
dramatically on you in data conversion; what was first a hard and fast
will-not-budge business requirement may turn a hundred and eighty
degrees around once that requirement is put into practice and business
can see the results. By revisiting them with business and development,
you ensure the three groups are still on the same page, and save your
testing staff a tremendous amount of time in wasted testing against out of
date requirements.

This ‘revisiting’ can occur a variety of formats; it is useful to set
aside a portion of the defect review meetings to discuss these kinds of
issues (as they will happen anyway during testing, setting the time aside
and designating it as such will both speed the defect review and
accomplish the task: development, testing, and business in the same
room discussing the same requirements and how best to proceed.

Just make sure decisions get documented.

Do’s and Don’ts

13

Understand the other group’s plans, in particular the rollout and
application testing plans. Both of these plans may (should) require your
converted data as a key milestone; they may have particular needs. In a legacy
application with multiple databases, these groups may already have a required
sequence in which those databases will be integrated into the final product. This
sequence will drive your decision(s) of what to test and when.

Prioritize the data you intend to test by these other schedules, and
by complexity; if possible (big time saver) build larger and larger sets of data by
merging these databases in the order they in which they will rollout. You’ll end
up testing larger and larger collections of data, spreading your test cases across
them; you’ll be testing wider rather than deeper, looking for holes in the
merging process.

Do’s and Don’ts

Negotiate your testing scope throughout the
process. As noted above, testing scope creep is something that
will occur, for various reasons; working with this creep rather
than fighting it will move you further ahead. Use scope creep as
an opportunity to negotiate for additional resources and time
rather than attempting to bar it altogether; should the increase
in scope be removed for some reason (and it may, as the
requirements associated with data conversion in particular are
fluid), you’ll lose the added work, but in many cases be able to
hold onto the resources.

Do’s and Don’ts

14

Always be prepared for major environmental issues,
particularly as the version of your application approaches the
version under test by the system test group; the code will be more
developed at that point (read: complicated due to numerous defect
repairs, change requests, etc.) and the likelihood that the converted
data will create ‘significant environmental issues’ when first
deployed rises markedly.

If the standard smoke testing by systems test is an hour
or two, count on a full day or more of smoke test/break
environment cycles. In your smoke tests, focus on database
intensive events: build new records, using high levels of detail;
conduct extensive database searches against large records; etc.
When the environment goes down, be sure to have resources
available to restart or re-deploy the software; having a database
developer and DbA on call as well can be very helpful.

Do’s and Don’ts

Use your tools. Spreadsheets can be used for any management
task; coffee can be made with a simple pot and hot water, but a much
better way of brewing is to use professional tools. Manage your test
schedule and control your tests with Mercury’s Test Director, Segue’s
SilkPlan Pro, Rational’s TestStudio, etc. Manage your defects with
Merant’s PVCS Tracker, Seapine’s Test Track Pro, Segue’s SilkRadar,
etc. Control your code and files with Merant’s PVCS Version Manager,
Rational’s ClearCase, McCabe’s TRUEChange, etc. Automate the
repetitive portion of your testing with Mercury’s QuickTest or
WinRunner, Parasoft’s JTest or WebKing, McCabe’s McCabe Test, etc.
Query the old database for specific records you’ll need to look for in the
new database; push those queries into some of the available regression
tools, where possible, and let the machine do the work.

More so than any other testing group, data conversion testing
is repetitive; the more you automate, the easier your overall task is going
to be.

Do’s and Don’ts

15

The application schedule will drive yours; anticipate slips of your
own based on the tempo of the application’s schedule slips. For instance,
if the data conversion development staff typically lags application’s
iteration schedule by a month, and they slip two weeks, you can expect an
additional week to two weeks of slip in about a month unless the data
conversion development group expends energy to head it off. This
indicator keys off application complexity issues, not other slip drivers; a
slip of schedule due to unavailability of testing personnel in the system
test group will represent a bonus to your timeline rather than an
opportunity for a slip down the road.

The data model is important enough to you that any slip it its
versioning release or final freeze will directly impact your timeline; keep
a close eye on this portion of the overall timeline, and if you have
resources that can assist in the event of a slip, make them available to
help. Knowledge of the data model is key in any event, and if you can
mitigate a slip here, you’ll be mitigating a slip to your testing schedule.

The performance tuning schedule, and its impact on the data model,
is another useful indicator. If they’re behind, they’ll likely extend the time
before the final data model freeze with performance enhancements,
resulting in additional development by the data conversion group, and
requiring both additional testing and a later start for your group than
would be otherwise.

Key Indicators

There will be a rhythm to your resources, as they’re often borrowed;
when your BAs or testing staff are busy working on another portion of the
project, you’ll get only a few hours a day from them, if that. Attempt to
work within this rhythm, anticipate it in your project schedule, and push
your schedule out as far as feasible. Communicate this schedule and get
early commitments from your resources, so when you’ve got data available
to be tested you’ll also have the resources on hand to test it.

Defect counts are important for any project. When the defect rates
start to taper off, when the fixed rate begins to climb, when the delta
between these two measures begins to shrink, things are obviously going
well. However, you also must pay attention to your test approach: which
category of testing is netting you the most bugs for time spent? Which the
least? When should one category get the lion’s share of your valuable
testing time, and when should one be cut out from your testing cycle
altogether? Watching your defects, where they come from, and the time
spent to find them will give you the answer.

Key Indicators

16

Likely Difficulties and Risks

• Lowest priority, at least at the onset
• Technical subject matter
• Low to no budget
• Business involvement
• Development involvement
• High, hard to fix and isolate, defect rates
• Whose bug is it, anyway?

Do’s and Don’ts
• Understand the development process in use
• Have a defined test approach
• Establish close relationships with key people
• Train your team
• Have a communications plan
• Revisit requirements often
• Understand the other group’s plans
• Negotiate your testing scope throughout the process
• Always be prepared for major environmental issues
• Use your tools
• Avoid becoming the sponge for everyone else’s project
• Avoid distractions
• Never, ever negotiate away your time
• Never become a one-person show

Important Indicators

• Overall project schedule slip
• Data model slip
• Performance tuning schedule
• Defect counts by testing category

Legacy Data Conversion: Making Coffee
Joshua Kitchen

Converting data from a legacy application is a lot like making coffee.

The existing data (grounds/beans) work well enough in their current state (if you

like pulling beans out of the bag or eating spoonfuls of grounds, but then we already
know we want a new app, don’t we?). To work properly, however, in our new application
the data must undergo change yet remain essentially the same. So first the grinding, either
from beans or from a courser grade of grounds (cleansing garbage data from the system
prior to trying to converting it), then the pouring into the filter and running hot water
through it (conversion to new schema, applying different integrity rules, interpolating
new fields from existing ones, etc.) until the finished coffee finally resides in the pot (the
new application database). In theory, if all went well, what’s in the pot is what was
desired; the user can drink it and be well satisfied with the temperature, the flavor, the
aroma, the viscosity…but theory and fact often part company. So who do we want to
drink the first cup, our user group/customer or our testing group? That was my answer,
too.

Tackling the testing problem can follow the coffee analogy also; look at the

different test techniques that are typically applied during data conversion testing:

Requirements testing (the beans were supposed to be ground to some fineness; did
the coffee turn out that fine, or is it overly course?)

Functional testing (no matter what happens, someone’s still got to taste the
coffee)

Domain testing (pick out beans that best represent the bag)

Performance testing (don’t just drop a tea spoon in and point at colored water; if
conversion has to occur over a two-day weekend, *that’s* the product we most
want to test on, not something that’s been simmering on the pot for a couple of
weeks, converted one slow piece at a time until it’s well blended)

We all have our own ideas on making coffee, our own preferences; likely nothing

in this white paper will be new. As in making coffee, however, rarely do we sit down and
go over the risks and rules of thumb to be used in effectively testing data conversion.

Here’s a recipe I used.

The structure of this presentation is simple:

1. A look at the difficulties/risks encountered, with some perspective on overcoming
or mitigating them.

2. Collected of rules of thumb that worked well (or not so well) during test planning
and execution.

3. Summary of items to watch for before, during, and after. Indicators help only so
far as we pay attention to them.

Page 1 of 15

Legacy Data Conversion: Making Coffee
Joshua Kitchen

Likely Difficulties and Risks

Lowest priority, at least at the onset
Technical subject matter
Low to no budget
Business involvement
Development involvement
High, hard to fix and isolate, defect rates
Whose bug is it, anyway?

Do’s and Don’ts

Understand the development process in use
Have a defined test approach
Establish close relationships with key people
Train your team
Have a communications plan
Revisit requirements often
Understand the other group’s plans
Negotiate your testing scope throughout the process
Always be prepared for major environmental issues
Use your tools
Avoid becoming the sponge for everyone else’s project
Avoid distractions
Never, ever negotiate away your time
Never become a one-person show

Important Indicators

Overall project schedule slip
Data model slip
Performance tuning schedule
Defect counts by testing category

Page 2 of 15

Legacy Data Conversion: Making Coffee
Joshua Kitchen

Likely Difficulties/Risks

Lowest priority, at least at the onset
Technical subject matter
Low to no budget
Business involvement
Development involvement
High, hard to fix and isolate, defect rates
Whose bug is it, anyway?

Data conversion tends to be something of an afterthought in most projects
(now, where did I put the coffee? Must be up here somewhere…), except those
that launch specifically with this goal in mind.

So many other things seem to be of higher priority: requirements for the

upcoming application, initial coding and testing of that application, pushing the
new application to the required levels of performance, the various ‘must have’
change control requests, high priority defects requiring major re-engineering of
the application, usability issues…the list goes on and on.

And, too, data conversion is a more technical, under the covers event;

most of the details are extremely esoteric, the results are far from exciting, and
reporting on progress tends to be rather dry. ‘I can’t send email from the app!’
gets far more attention than ‘Integrity enforcement at the app level is complicating
conversion of people records’.

 Thus, data conversion tends to be thought of last, usually about the same
time that planning begins for product rollout, an unfortunate timing as it usually
means this effort is last in line for resources, on the critical path, and with little
time to plan let alone code and test.

 With data conversion behind and ill understood from the onset, testing of
data conversion is likewise behind the curve. Gradually, however, the
ramifications of insufficiently testing the conversion process and final converted
data sink in at various levels and the testing effort receives more and more (often
becoming unwelcome; everyone wants to either help make a pot or get a taste)
attention.

Page 3 of 15

Legacy Data Conversion: Making Coffee
Joshua Kitchen

A key factor in the success of the data conversion testing effort becomes
getting enough visibility early on; this visibility is critical to getting the resources
and time assigned before they become critical, enabling the data conversion
testing effort and, by proxy, the data conversion effort, to succeed.

Waiting too long makes data conversion testing a bitter drink no one

wants: under resourced, out of time, and with huge expectations on the part of
every stakeholder.

 The key steps to getting the right amount of (early) attention to data
conversion testing are familiar to any software project manager: take charge, draw
up a rough plan or approach, present to stakeholders (and present to stakeholders,
and present to stakeholders, and present…).

 Taking charge of a sub-project that needs doing, yet isn’t funded or
recognized, is a great deal like petting a shark: an interesting experience,
something to tell one’s grand-children about, but one earning the nickname
‘Lefty’ if one is not careful. However, there’s really no other way to go about it; if
it needs to be done, and wasn’t in the project plan from inception, someone’s
going to have to be a hero and stand up for it, or it will likely fail.

This paper focuses on the testing piece of data conversion, so if you’re
deciding on standing up for testing, likely you’ve a counterpart who’s decided to
stand up for the development. Make friends; you’ll be in this together, and for the
duration, else you’ll be failing separately.

 Once you’ve made friends with your development counterpart, drawing up
a rough plan should be fairly easy; we’ll cover additional planning considerations
elsewhere in this white paper. It will take you a bit of time to draw up, as most
good plans that account for specific resources needed do, but the majority of the
issues you fight your way through will be organizational rather than technical, so
there should be few surprises (knock on wood).

The presentation bit will be harder, as you’ll have to impress a non-
technical group with the technical ramifications of failure. It may seem, at this
point, that you are antagonistic to your partner on the development side; after all,
you’re the one telling stakeholders that your buddy’s project may fail. But by
making clear the potential issues associated with data conversion (i.e. That the
entire project could fail if this piece isn’t taken care of), you’re trying to not only
get resources of your own, but also to increase the resources development has
available.

Make no mistake, data conversion testing is quality control, finding errors

generated because of short timelines, inadequate or missing requirements, etc;
anything you can do to make development’s life easier, any resource you can free
up to assist their end of the project, anything you can do to prevent them from

Page 4 of 15

Legacy Data Conversion: Making Coffee
Joshua Kitchen

having to rush (without impacting the timeline you’re setting up for yourself), or
take shortcuts, will make the project’s life (and yours) easier.

As mentioned earlier, data conversion testing tends to be an afterthought;
by the time you come onto the scene, budgets have been made (and hopefully
approved) for development, rollout, and testing of the application.

The polite battle for resources will continue throughout the process; accept

this. The applications development group will be behind schedule, and wish to
appropriate your testing environment for additional development; the roll-out
group will wish to appropriate your analysts and subject matter experts to assist in
planning, training, or additional requirements review; the other testing groups
likewise want your environment, equipment, testing staff, or to pass some of their
testing scope off to your group.

To say not to give in to these demands/requests for the sake of the overall

project would be naïve; the end goal is still to come out on time, on budget, with
the feature set and reliability targeted. Caution is useful, however, and a well-
managed scope and risk management document is a good tool to keep your team
out trouble.

Your testing environment becomes your most critical resource, because

you need a minimum of two (both a controlled legacy and a controlled developed
application for comparing data and functionality before and after data
transformation), and because your environment is typically larger than most
others, at least until final integration and rollout of the product: you need legacy
data, and lots of it, if you’re to complete your task. As an additional
hardware/software cost to the project, you’ll have an uphill battle to get set up;
likely you will have to work for at least a portion of the time in and around
development’s environments, the other testing environments, or perhaps on older
equipment handed down from production. Any of these events will slow your
testing when compared to the rest of the testing group…and any time a milestone
in another group is missed, you will likely lose your testing environment in favor
of that group.

Business involvement. Good BA’s/SME’s are worth their weight in gold;
fortunately or unfortunately, the rest of the development and test groups are aware
of this as well. Data conversion is particularly vulnerable to poor requirements
gathering issues, and the analyst is the person most likely to minimize this threat.
The primary pull on your BA’s time will be development; after all, if
development doesn’t know what to build, they can’t build it, and if they can’t
build it, you’ve nothing to test.

Page 5 of 15

Legacy Data Conversion: Making Coffee
Joshua Kitchen

Participating in development’s requirements gathering process (if you can)
will bring big dividends to your testing group down the road: you establish good
relationships with BA’s, get a jump on test planning, and grow an understanding
of the application all in one step. It’s a very worthwhile step; take it.

A negative, at least from your perspective, of BA involvement may occur
when they are over involved; they may push test priorities (Test this first! And
this! And this!), over-prioritizing defects (No, the system MUST not do this!
What? The system doesn’t do THAT? Unacceptable.), and generally attempting to
do your job (part-time; most BA’s, by definition, could contribute significantly if
managing a testing effort. However, they have other jobs and can hurt more than
help if their role in your project is not managed.)

BA’s tend to have the ears of the primary stakeholders; if their concerns,
both voiced and unvoiced, are not answered they often go to these stakeholders
with their concerns. This leads to a variety of unfortunate issues, as you’re well
aware/have experienced. Listen to the BA’s.

Don’t necessarily treat them with kid gloves when they offer a strong

opinion, but don’t ignore them either. Regular communication via email, or better,
regular meetings in which they can make their concerns known and have them
answered go a long way to making them happy with the testing group and
productive members of same.

Everyone may want to drive. Everyone has priorities; these priorities
won’t match each other’s or yours in many respects. Senior people (Dev, BA’s,
VP’s) are necessary to projects to succeed and, by definition, these are people
used to driving. If they are not hearing what they need to hear, or seeing what they
need to see (i.e. progress, milestones being met, etc.) they have a tendency to
insist on more and more reports, and on direct involvement in your testing
process. This distracts them from their tasks, which are essential for your success
and are definitely necessary for the success of the project as a whole.

Give them what they need: regular, organized reporting. Let them smell
the coffee brewing. If they understand what you’re are doing, and where you are
in your project path, they can rest (perhaps not easily) assured that the right things
are being done at the right time, and they will stay out of your way.

Development is a slightly different animal. When development wants to
drive the testing process, generally two things can happen: the testing staff is
pulled off testing to assist in development (either in reality, in which case they are
punching code for a development manager, or figuratively, in which case they are
diving into testing detail more along the lines of debugging rather than testing, an
inefficient use of their time) or testing is ineffective (defects are downgraded in
priority, repeatedly deferred to other code iterations, or simply dismissed as
unimportant).

Page 6 of 15

Legacy Data Conversion: Making Coffee
Joshua Kitchen

Development must not drive your testing. There’s no easy way to say this,

but they must not, or your position will swiftly become irrelevant, redundant, and
a waste of project resources.

High defect rates. Data conversion may encounter a higher number of
defects than other groups; while not inevitable, it is a distinct possibility you will
encounter more defects due to three data conversion specific issues: accelerated
requirements creep, coordination between different groups of developers, and the
impact of database changes.

Every project has requirement creep; its a fact of software development.
Data conversion in particular will suffer from this creep, not only from its own
requirements, but from the requirements of the application. A defect/requirement
added to the application team will push a change to the data model which will in
turn push a change to data conversion code which will in turn push a change in
the testing…this is inevitable.

It is absolutely essential to understand when the data model is due to be
frozen; without a grasp on this date, and the understanding of its importance in the
other development/testing groups, your team will churn farther and farther behind
the rest of the project.

If your development group is different from the application development
group, you will have to deal with another layer or two of communication between
the database team and the application team. Poor communication often leads to
simple, but telling errors in converting the data.

The new application’s data model will keep changing due to the efforts of
the application development group and from other testing groups, particularly the
performance group. Performance tuning may significantly change the model in a
stroke (e.g. de-normalizing the data model, or portions of the data model); an
additional feature or defect repair may make a minor change, but require a major
data conversion code revision.

Due to the typically late start and technical issues surrounding

requirements gathering for data conversion, defects often arise from
misunderstood or missed requirements. Data conversion is typically very
technical, more concerned with field lengths and data types than with application
level processing or interface display; the requirements often differ enormously
from the requirements of the application team, but require the input from people
(the BAs) who may not have a firm grasp of the technical ramifications involved.

This combined with the late start often results in good code that
nevertheless results in an unsuitable conversion of legacy data (i.e. defects).

Page 7 of 15

Legacy Data Conversion: Making Coffee
Joshua Kitchen

Whose bug is it, anyway? There will be recurring debate between the

application and data conversion development groups as to the cause of a given
defect, with either the application’s processes or the data conversion process
being the proximate cause.

Essentially, there are two applications in use: the primary application

under development and the secondary application needed to transform the data; in
most cases, a defect found by your testing group could be found in either one.
Heading off impasses in this area is critical to successfully resolving defects and
speeding the testing process to completion. If you can’t sort which caused the silt
in the bottom of the pot, the grounds or the filter, you’ll never make a good cup
except by accident.

Any integrity enforcement at the application level, if not carefully
understood, can create havoc in the application when it is run on converted data.
Records can be completely un-viewable, processes can crash, the database can
error…a host of things can go wrong. Understanding what integrity is enforced at
the application level and what is enforced at the database level is vital for
successful testing of converted data.

Calculations or inferences drawn by the application from the data is
likewise an area of understanding critical to successful testing; if an item is wrong
when viewed at the interface a significant amount of time can be wasted trying to
understand that the application is altering the data before it is being viewed.

Page 8 of 15

Legacy Data Conversion: Making Coffee
Joshua Kitchen

Do’s and Don’ts of Data Conversion Testing (rules of thumb)

Understand the development process in use
Have a defined test approach
Establish close relationships with key people
Train your team
Have a communications plan
Revisit requirements often
Understand the other group’s plans
Negotiate your testing scope throughout the process
Always be prepared for major environmental issues
Use your tools
Avoid becoming the sponge for everyone else’s project
Avoid distractions
Never, ever negotiate away your time
Never become a one-person show

Understand the development process in use. Understanding the process
development is using will help the data conversion testing process immensely
(especially if you grow to understand they don’t have a process!). This applies not
just to the data conversion group; to get defects fixed in a timely fashion, knowing
who does what (Mr. Smith the defect coordinator assigns defects to the engineers
on staff), and how they do it (a fix has to have a code sample to go with it, so no
defect can be marked fixed in the database without that code sample) will
significantly smooth the process. Where possible, borrow from their processes;
things move faster when both testing and development are speaking the same
language.

If the process is written, good; if it is being followed, even better. Look for the
holes, places defects can be lost and not repaired for significant periods of time.
Ask about escalation; how long can a defect remain in the system at a given
priority before it moves up in the queue? What is an acceptable fix failure rate?
20%? 10%? 50%? What does the development staff consider a reasonable
number? Then take that number back to the other testing groups and project
managers and make them aware of it; a high expected failure rate is an indication
you’ll need additional time testing, as you can expect a defect regression test set
to grow significantly during your testing cycle.

What deliverables that development produces can help your testing? The
data model, for one; a summary of application enforce integrities is another; a list
of records that will be deleted from the database is a third. These items can
answer key questions and save time that would otherwise be spent in multiple
meetings or brainstorming sessions.

Page 9 of 15

Legacy Data Conversion: Making Coffee
Joshua Kitchen

Have a defined test approach. Conversion testing will be the last car in a
very long train of development and testing; as we’ve already discussed, this
testing is likely an afterthought. Having a defined, robust, and well-understood
test approach is useful both in communicating the scope and intent of testing and
speeding that testing along successfully.

For data conversion testing, I recommend a four-part approach as a
beginning followed by focus and refinement as testing continues. In order of
priority and general utility, a good organization scheme is what we referred to as
screen to screen (S2S), functionality, database partitioning, and defect regression.

The biggest bang for the buck is in the screen to screen comparisons: an
instance of the old system is placed online and a snapshot of the same database is
used on an instance of the new application. Testing then becomes a matter of
‘camera one, camera two’ comparison. Organization further helps this effort; a
simple Excel spreadsheet, for example, with a list of the fields and their locations
in the new app, along with the equivalent fields and locations from the old app, is
extremely handy. Addition of the transformation logic to the document further
enhances its utility.

After the S2S mapping, running a subset of the functionality testing on the
converted data is essential to bug hunting. Despite all the requirements gathering,
development, and testing to date, until the system is testing on the live data no
real ‘feel’ for product progress exists. Particularly when different teams are doing
the conversion and application development, errors creep into the boundaries
between the software and its data; test data, no matter how well crafted, never
truly compares to the real thing.

Database partitioning is a form of equivalence class partitioning in which
the database is sub-divided into categories of data, then again, and again, until the
types of records noted are a representative sample of the legacy system. This
testing gives you a large handful of records that can then be used to validate the
entire converted system.

Be prepared to run a defect regression set, at least initially, to validate the
defect repair failure rate. If that rate is high, resign yourself to re-testing a
significant portion of your previously reported defects with each major change of
code.

As you test, review which of your approaches net the most relevant
defects, and which aren’t netting enough to be worth your time; prioritize the
former and reduce the time spent on the later. Different development staff and
strategies lend themselves to different types of errors; each of the four approaches
above lends themselves to finding particular types of errors.

Page 10 of 15

Legacy Data Conversion: Making Coffee
Joshua Kitchen

 Establish close relationships with key people. As alluded to earlier, the
people you will need to make your testing successful are already very tasked; at
best, you are likely to have only partial resources for some key activities. BAs
provide you with information you need; project managers can keep you aware of
key timelines or political issues; friendly developers can help you understand the
underlying mechanics of the new application, or data conversion code, and help
your defect resolution along; other testing groups on the same application can
give you a heads up on new functionality or recurring issues with the application;
Systems folks can get your environment up in record time; DbAs can get that
database refresh done for you quicker and cleaner than you expected.

Or not.

Disregarding the political aspects of having/making friends in key places,
knowing these people and how they work (what information and time they need
to perform for you, what other priorities they have on their plate, etc.) will make
your testing cycle (and preparations for it) much, much easier.

Train your team. Largely due to the ‘loaner’ nature of your resources, it is
strongly recommended that you train on your testing process again and again,
especially if there are gaps between iterations. The people assigned to you will be
working their other tasks in, around, and between your testing cycles and will
need refreshing on your process and instruction on any changes you may (you
will) make to said process.

Without a good (not perfect, but good) understanding of the new application’s
functionality, testing how that functionality performs (or rather, fails to perform)
when subjected to real data is difficult. A good approach is to either mix in some
testers from the application group (if they can be spared), or put some of your test
group into the system test group for a space. If the application group is writing
detailed testing scripts, borrowing these scripts will significantly aid in data
conversion testing.

The databases must have been reviewed for both the conversion team (old
database, plus transformation mapping to the new database) and the application
team (new database); understanding the database schema is essential to timely
completion of testing, as queries for test data must be run against the old database
to find the records of interest in the new database (reviewed through the
application).

Page 11 of 15

Legacy Data Conversion: Making Coffee
Joshua Kitchen

Have a communications plan. Testers need to report to you: defects,
testing completed, significant issues in the testing environments, etc. You will
need to report up as well: project gantts, test status and completion, opinions of
the overall quality of the converted data. You will also have to track defects to
completion, answer development’s questions on those defects, and digest their
answers.

Make a list (And check it twice, three times, four... Know what the

deliverable is, who is suppose to produce it, when it is to be produced, and, last
but not least, make sure you know what its for! Anything used for communication
but without a defined purpose is likely a waste of your time, and likely your
testers’/associated developers’/project manager’s time as well.

A good laundry list for a communications plan runs along the following
lines: weekly tester meeting, weekly test lead (cross-group) meeting, monthly
project meeting, daily defect review meeting, pre-cycle meeting (with
development, testing, and support present), project gantt, testing assignments,
testing results, defect reports, pre-testing check off, development’s project gantt
(both development groups), etc.

Revisit requirements often. Requirements will often change dramatically

on you in data conversion; what was first a hard and fast will-not-budge business
requirement may turn a hundred and eighty degrees around once that requirement
is put into practice and business can see the results. By revisiting them with
business and development, you ensure the three groups are still on the same page,
and save your testing staff a tremendous amount of time in wasted testing against
out of date requirements.

This ‘revisiting’ can occur a variety of formats; it is useful to set aside a

portion of the defect review meetings to discuss these kinds of issues (as they will
happen anyway during testing, setting the time aside and designating it as such
will both speed the defect review and accomplish the task: development, testing,
and business in the same room discussing the same requirements and how best to
proceed.

Just make sure decisions get documented.

Separate requirements meetings are also useful even during the testing

cycle if it becomes apparent that significant changes need to be made to the
application and/or data conversion code. Testing’s presence in these meetings are
essential as they may change the scope of testing, invalidate large sections testing
previously scheduled, and generally discuss the overall fate of the application.

Page 12 of 15

Legacy Data Conversion: Making Coffee
Joshua Kitchen

 Understand the other group’s plans, in particular the rollout and
application testing plans. Both of these plans may (should) require your converted
data as a key milestone; they may have particular needs. In a legacy application
with multiple databases, these groups may already have a required sequence in
which those databases will be integrated into the final product. This sequence will
drive your decision(s) of what to test and when.

Prioritize the data you intend to test by these other schedules, and by
complexity; if possible (big time saver) build larger and larger sets of data by
merging these databases in the order they in which they will rollout. You’ll end
up testing larger and larger collections of data, spreading your test cases across
them; you’ll be testing wider rather than deeper, looking for holes in the merging
process.

 Negotiate your testing scope throughout the process. As noted above,
testing scope creep is something that will occur, for various reasons; working with
this creep rather than fighting it will move you further ahead. Use scope creep as
an opportunity to negotiate for additional resources and time rather than
attempting to bar it altogether; should the increase in scope be removed for some
reason (and it may, as the requirements associated with data conversion in
particular are fluid), you’ll lose the added work, but in many cases be able to hold
onto the resources.

 Always be prepared for major environmental issues, particularly as the
version of your application approaches the version under test by the system test
group; the code will be more developed at that point (read: complicated due to
numerous defect repairs, change requests, etc.) and the likelihood that the
converted data will create ‘significant environmental issues’ when first deployed
rises markedly.

If the standard smoke testing by systems test is an hour or two, count on a
full day or more of smoke test/break environment cycles. In your smoke tests,
focus on database intensive events: build new records, using high levels of detail;
conduct extensive database searches against large records; etc. When the
environment goes down, be sure to have resources available to restart or re-deploy
the software; having a database developer and DbA on call as well can be very
helpful.

 Use your tools. Spreadsheets can be used for any management task; coffee
can be made with a simple pot and hot water, but a much better way of brewing is
to use professional tools. Manage your test schedule and control your tests with
Mercury’s Test Director, Segue’s SilkPlan Pro, Rational’s TestStudio, etc.
Manage your defects with Merant’s PVCS Tracker, Seapine’s Test Track Pro,
Segue’s SilkRadar, etc. Control your code and files with Merant’s PVCS Version
Manager, Rational’s ClearCase, McCabe’s TRUEChange, etc. Automate the
repetitive portion of your testing with Mercury’s QuickTest or WinRunner,

Page 13 of 15

Legacy Data Conversion: Making Coffee
Joshua Kitchen

Parasoft’s JTest or WebKing, McCabe’s McCabe Test, etc. Query the old
database for specific records you’ll need to look for in the new database; push
those queries into some of the available regression tools, where possible, and let
the machine do the work.

More so than any other testing group, data conversion testing is repetitive; the
more you automate, the easier your overall task is going to be.

 Avoid becoming the sponge for everyone else’s project needs; if someone
needs an environment you own, and it would honestly further the project, by all
means help. Be prepared to deal, however, and look clearly at your timeline and
resources; play it straight with them, and see if there’s something they can commit
to that will help you (and again, the project as a whole) down the line. Get these
commitments identified and agreed to early, and make them visible at the project
management level to lock them in.

 Avoid distractions. Simply because someone says a particular part of the
sky is falling, even if they have significant presence on the project, don’t drop
what you’re doing to comply. Meet them halfway; talk through the issues,
preferably face to face. If need be, calm them down and discuss how testing for
this particular threat may take resources away from other key areas. Make them a
friend to aid you in getting additional resources and time. And keep in mind that
their point may be very valid, but insulate your testing staff from this point using
the above-recommended methods until you’ve got a chance to validate the
concern (or debunk it) and have a plan to deal with it.

 Never, ever negotiate away your time, even to meet critical project
milestones. As the last caboose on the train, you’ll be lucky to come in anywhere
close to the original project deadlines; the rest of the cars will be in the terminal
and waiting impatiently for you to arrive. That said, there is one (1) instance in
which time (calendar) should be negotiated away; when it results in tangible (i.e.
existing and set up) environments/testing staff who’s presence on your portion of
the project would reduced your timeline well within the time you’re negotiating
away.

 Never give up.

 Never become a one-person show. If you’ve got a staff of one, and that
one is you, you’ll be in trouble no matter what your testing skills.

 Despite the need to guard your own time and resources, keep an eye to the
project overall; if your group is doing well, but there are others not doing so well,
be ready to lend a hand. In the end, you only succeed if everyone succeeds.

Page 14 of 15

Legacy Data Conversion: Making Coffee
Joshua Kitchen

Key Indicators

Overall project schedule slip
Data model slip
Performance tuning schedule
Defect counts by testing category

The application schedule will drive yours; anticipate slips of your own
based on the tempo of the application’s schedule slips. For instance, if the data
conversion development staff typically lags application’s iteration schedule by a
month, and they slip two weeks, you can expect an additional week to two weeks
of slip in about a month unless the data conversion development group expends
energy to head it off. This indicator keys off application complexity issues, not
other slip drivers; a slip of schedule due to unavailability of testing personnel in
the system test group will represent a bonus to your timeline rather than an
opportunity for a slip down the road.

The data model is important enough to you that any slip it its versioning

release or final freeze will directly impact your timeline; keep a close eye on this
portion of the overall timeline, and if you have resources that can assist in the
event of a slip, make them available to help. Knowledge of the data model is key
in any event, and if you can mitigate a slip here, you’ll be mitigating a slip to your
testing schedule.

The performance tuning schedule, and its impact on the data model, is

another useful indicator. If they’re behind, they’ll likely extend the time before
the final data model freeze with performance enhancements, resulting in
additional development by the data conversion group, and requiring both
additional testing and a later start for your group than would be otherwise.

There will be a rhythm to your resources, as they’re often borrowed; when

your BAs or testing staff are busy working on another portion of the project,
you’ll get only a few hours a day from them, if that. Attempt to work within this
rhythm, anticipate it in your project schedule, and push your schedule out as far as
feasible. Communicate this schedule and get early commitments from your
resources, so when you’ve got data available to be tested you’ll also have the
resources on hand to test it.

Defect counts are important for any project. When the defect rates start to
taper off, when the fixed rate begins to climb, when the delta between these two
measures begins to shrink, things are obviously going well. However, you also
must pay attention to your test approach: which category of testing is netting you
the most bugs for time spent? Which the least? When should one category get the
lion’s share of your valuable testing time, and when should one be cut out from
your testing cycle altogether? Watching your defects, where they come from, and
the time spent to find them will give you the answer.

Page 15 of 15

Key Points

A novel technique and tool for measuring the web site's end-to-end response time
A set of new metrics to assess a web site performance and efficiency
A practical performance case study using three commercial web sites

Presentation Abstract

Understanding and measuring end-to-end service performance perceived by the clients is a challenging
task. In this work, we describe a novel technique for measuring the web site's end-to-end response time
which based on reconstruction of web page accesses from passively captured network packets at a web
server side. This technique can effectively determine the set of objects composing web page without parsing
or interpreting the HTML syntax. Exploiting this technique, we built a tool, called EtE monitor. EtE monitor
does not require any changes or modifications to site content or server side infrastructure, or client
browsers, and can be used for sites with static or dynamically generated content.

Relative to existing approaches, EtE monitor offers a set of new benefits. Timestamps extracted from
network packet level provide invaluable information about connection setup time, server side processing
time, and network related transfer time, which can not be directly obtained from other sources. Additionally,
this technique allows us to analyze many other useful and practical metrics, such as number of aborted
page accesses, number of objects retrieved directly from the server versus from network and client browser
caches, number of client connections used to retrieve the web page, amount of packets resent in the
response to reflect network congestion on the path to a client, etc.

About the Author

Ludmila Cherkasova joined Hewlett-Packard Laboratories, Palo-Alto, California, in 1991, where she
currently is a senior scientist in the Internet and Computing Platforms Research Center. Among her latest
works are WebMetrix (a tool for web service providers), MediaMetrics (a tool for media service providers),
content-aware load balancing strategies for web server clusters, a scaleable architecture for shared web
hosting service, the admission control and scheduling algorithms that improve performance of overloaded
web servers. Her research interests include the performance of Internet-based services, computer systems,
network protocols, and characterization of next generation system workloads. She received a PhD in
Computer Science from Novosibirsk Institute of Computing Systems, Russia, in 1984. She is a member of
ACM and USENIX.

Yun Fu is a Ph.D candidate at Computer Science Department of Duke University. He received his B.S. in
computer science and Master degree in computer engineering from Nankai Univeristy in 1995 and 1998
respectively, and his MS in computer science from Duke University in 2001. His research interests include
distributed systems, networking and operating systems.

Wenting Tang is a member of technical staff in Internet System and Storage Laboratory, Hewlett Packard,
Palo Alto, California. His research interests include Internet service performance, content delivery networks,
streaming media and large-scale distributed systems. He received his PhD in computer science from
Michigan State University. He is a member of the IEEE.

Amin Vahdat joined the faculty of the the Computer Science department at Duke University after receiving a
PhD from the University of California, Berkeley in 1998. His research focuses on system support for highly

QW2002 Paper 2I1

Dr. Ludmila Cherkasova,
Dr. Yun Fu, Dr. Wenting
Tang & Dr. Amin Vahdat
(Hewlett Packard Labs)

Web Site Performance and
Qos Monitoring

1

EtE MonitorH 1

Web Site Performance and QoS Monitoring:
Measuring Client Response Time and More …

at the Web Server

Lucy Cherkasova, Yun Fu, Wenting Tang, and Amin Vahdat

HPLabs and Duke University

EtE MonitorH 2

HP.com???

A lot of research is done to
optimize web server performance in
order to improve client experience

BUT
Do we know what is the client

experience?
What are the critical latency

components in the end-to-end
response time?

Do we know whether the
improvements on the web server
side indeed improve end-user
experience?

Do we know who the clients are
and where they are located on the
Internet?

Service provider problems...

2

EtE MonitorH 3

End-to-End Web Service Measurement:
Why Is It Important?

Two main factors impact the response time perceived by the clients:
network latency and server side processing time
Many web sites use complex multi-tiered architecture
A set of new technologies, such as servlets and Javaserver pages,
extend the web servers to generate information-rich dynamic web
pages and to leverage existing business systems
Combination of these technologies could lead to increased server-side
processing time especially in distributed environment
New ad-hoc business metric: web service is considered to be
“unavailable” if its response time exceeds 6 seconds
The service providers need a quantitative analysis of the major latency
components contributing to the response time to achieve given
business and QoS objectives:

Invest in more powerful site infrastructure or
Choose a CDN service?

EtE MonitorH 4

Why Is It Difficult?

Web pages are complex objects with multiple embedded images
HTTP protocol is stateless: different images are requested by
client browser independently:

• Some of them are issued concurrently
• Some of them use persistent connections
• Some of them are obtained from proxies
• Some of them are obtained from user browser caches

The response time of a web page observed by the client is the
result of download of all page related images

3

EtE MonitorH 5

What Are Currently Available Solutions?
Active periodic probing of a particular web page from a fixed number

of clients across the Internet
Keynote service

– Keynote “clients” are not the real web site clients
– Allows monitoring of a particular web page
– Always pulls the entire page (with all embedded images) from the server

Page instrumentation technique based on downloadable JavaScript
or Java Applet to a client web browser

HP Open View “Web Transaction Observer”
– The measurement starts after download of the main html page

(significant portion of the response time is missing)
– Does not provide latency breakdown unless the web server is also

instrumented
eBusiness Assurance (eBA, from Candle Corp)
Quality of Service (QoS) Monitor (IBM, Tivoli)
Research paper by Rajamony and Elnozahy from IBM (Austin) uses
JavaScript to instrument the links to particular pages. Somewhat more limited:
cannot measure directly accessed pages, e.g “index.html”…

EtE MonitorH 6

What Do We Propose?

EtE monitor
Passive monitoring tool for end-to-end response time measurement
Non-intrusive, does not require any changes or modifications to a site content, or server
side infrastructure, or client browsers
Can be used for sites with static or dynamically generated content

What does it provide?
End-to-end response measurement for all the pages and all the clients accessing the site
Analysis of response components:

• Server processing time portion
• Network transfer time portion

Reports the % of data delivered from the server vs the % of data cached on the client side
Reports the % of aborted page accesses and the related performance reasons
Analysis of the most frequently accessed documents and their response time
Client clustering by ASes (Autonomous Systems)

• Requests (bytes) clustering by ASes and the corresponding response time
And more …..

4

EtE MonitorH 7

EtE Monitor Architecture

1. The Network Packet Collector module: collects network
packets using tcpdump and records them in Network Trace
enabling offline analysis.

2. In the Request-Response Reconstruction module, EtE
monitor reconstructs all TCP connections from the Network
Trace and extracts HTTP transactions (a request with
corresponding response) from the payload. EtE monitor
stores the HTTP header lines and other related information in
the Transaction Log

3. The Web Page Reconstruction module is responsible for
grouping the request-response pairs into logical web page
accesses and stores them in the Web Page Session Log

4. The Performance Analysis and Statistics module
summarizes a variety of performance characteristics
integrated across all client accesses

EtE MonitorH 8

EtE Monitor Deployment Configurations

EtE monitor can be deployed in several different ways:

An independent network appliance at a point on the network
where it can capture all HTTP transactions for a web server or web
server cluster

A software solution installed on a web server to monitor web
transactions on a particular web server

A mixed software solution with some modules (Network Packet
Collector module and Request-Response Reconstruction module)
installed on a web server to collect network packet and process
them into Transaction Log, and the other two modules residing on
some other ISP server to minimize the EtE monitor performance
overhead at a given web server

5

EtE MonitorH 9

Web Server
Cluster

Clients

Internet

Load Balancer
or Router

EtE Monitor

Deployment Configuration:
EtE monitor as a Network Appliance

EtE MonitorH 10

Web Server Cluster

Clients

Internet

EtE Monitor

Deployment Configuration:
EtE monitor as a Software Solution

EtE Monitor

EtE MonitorAggregate EtE Data

“Sticky” Connections

6

EtE MonitorH 11

Request-Response Reconstruction
Module

The TCP connections are rebuilt from Network Trace using:
The client IP address
The client port number
The request (response) TCP sequence number

Within the payload of the rebuilt TCP connections, HTTP transactions
are delimited as defined by HTTP protocol
After reconstructing the HTTP transactions, the monitor records the
HTTP header lines and other information of interest in the Transaction
Log and discards the transaction body

EtE MonitorH 12

Request-Response Reconstruction
Module (continuation)

Each entry in the Transaction Log includes:
The client IP address
A unique flow ID for TCP connection
The requested URL
The content type
The payload size
The referer field
The via field
Whether the request was aborted
The number of packets resent in the response
The corresponding timestamps

7

EtE MonitorH 13

Page Reconstruction Module

To measure the client perceived end-to-end response time for
retrieving a web page, we need to group the objects in a web
page access
We use two-pass heuristic method and statistical filtering mechanism
to reconstruct different client page access

First pass: EtE monitor uses the HTTP requests with referer field to
build a Knowledge Base of web pages and their embedded objects
Second pass:
• EtE monitor reconstructs the page accesses without referer field

using the Knowledge Base of web pages and some additional
heuristics

• EtE monitor uses statistical analysis to identify valid access patterns
and filter the accesses grouped incorrectly

EtE MonitorH 14

Example

Example of initial html.file request and the following embedded object request
with corresponding referer field:

8

EtE MonitorH 15

First Pass: Client Access Table

EtE monitor stores web page access information into a hash table
using client IP addresses:
• If the content type is text/html, a new web page entry is created in the
Web Page Table
• For other types, the request URL is inserted according to its referer field

EtE MonitorH 16

Building a Knowledge Base of Web Pages

From the Client Access Table, EtE monitor determines the content
template of any given web page as a combined set of all objects that
appear in all access patterns for this page

9

EtE MonitorH 17

Second Pass: Reconstruction of Web
Page Accesses

With the help of Knowledge Base, EtE monitor processes the
entire Transaction Log again, and creates a new Client Access
Table
This time it processes the objects without referer field:

EtE monitor consults the Knowledge Base while checking all the page
entries in the Web Page Table to find the page an object might be
embedded in, and appends it at the end of that page
If none of the web page entries in the Web Page Table contains the
object based on the Knowledge Base then
• EtE monitor searches for the page accessed with the same flow ID
• Otherwise it appends the object to the latest accessed page (additionally it

uses configurable think time threshold to delimit web pages)
• If the think time threshold is exceeded, the object is dropped

EtE MonitorH 18

Identifying Valid Accesses Using
Statistical Analysis of Access Patterns

Although the above two-pass process is very efficient, there
could still be some accesses grouped incorrectly

We use a statistical analysis to better approximate the actual
content of web pages and filter out the incorrectly constructed
accesses

10

EtE MonitorH 19

Metrics to Measure Web Service
Performance

Response time metrics
End-to-end response time observed by the client for a web page download

Latency breakdown: server related and network related portions

Connection set-up time

Metrics evaluating web service caching efficiency
Server file hit ratio

Server byte hit ratio

Aborted pages and QoS
Why the accesses are aborted:

• Bad performance?

• Client browsing patterns?

EtE MonitorH 20

Example: 1-object page retrieval
(basic timestamps)

11

EtE MonitorH 21

Latency Breakdown for Multiple Concurrent
Connections: Server Processing vs Network

EtE MonitorH 22

Metrics Evaluating Web Service Caching
Efficiency

Original web page url1 (page template):
• 10 objects,
• 100 Kbytes.

Access to url1: Acc1
• 5 objects,
• 70 Kbytes.

Access to url1: Acc2
• 7 objects,
• 80 Kbytes.

FileHitRatio(Acc1) = 5/10, 50%
ByteHitRatio(Acc1)=70/100, 70%

FileHitRatio(Acc1) = 7/10, 70%
ByteHitRatio(Acc1)=80/100, 80%

ServerFileHitRatio(url1) = (5/10 + 7/10) / 2, 60%
ServerByteHitRatio(url1) = (70/100 + 80/100) / 2, 75%

The smaller is the better!

12

EtE MonitorH 23

Aborted Pages and QoS

User perceived QoS is another important metric: aborted
connections might be indicative of the poor site performance

Need to consider only the subset of aborted page accesses with
high end-to-end response time and what is the cause of
performance problems? Are they network or server related?

This will filter out aborted page accesses due to client browsing
habits

EtE MonitorH 24

Case Studies
HPL external site (HPL)

From July12, 2001 to August 11, 2001
The site has mostly static content

Open View Support site (OV-Support)
From October 11, 2001 to October 25, 2001
The site uses JavaServer Pages technology for dynamic page generation

HP External Support Site (IT-Support)
From March 25, 2002 to April 8, 2002
The web pages are both dynamic and customized

13

EtE MonitorH 25

Sites Statistics At-A-Glance (HPL and OV-Support)

EtE MonitorH 26

Sites Statistics At-A-Glance (US-Support)

14

EtE MonitorH 27

HPLabs Site Case Study

• Figure shows the EtE time to index.html on hourly scale during a month
• In spite of overall good performance, hourly averages reflect significant

variation in response time observed by the clients

• Periods of increased latency correspond to weekends!
What is the problem?

HPL site during a month (accesses to index.html page)

EtE MonitorH 28

• Resent packets typically reflect network congestion or network–related bottlenecks
• Periods of increased resent packets correspond to weekends

• The explanation: the client population significantly “changes” during weekends
• Most of the clients access the web site from home via low-bandwidth connections

It is extremely important to understand the client population!
Active probing approach using artificial clients (with typically “good” connection to
the Internet) lacks this information

Understanding the Client Population

15

EtE MonitorH 29

Performance Analysis of Accesses to
itanium.html

First Figure:
• Number of accesses to itanium.html page
• From being the most popular page in the beginning of the study, it gets to
the 7th place after 10 days

Second Figure
• Percentage of accesses above 6 sec to itanium.html page
• Question: why is the latency observed by the clients getting higher?

EtE MonitorH 30

Caching Efficiency of the Page

When the page is getting less popular, “colder”, the number of objects and bytes retrieved
from the original server increases significantly: i.e. fewer network caches store the page
related objects

It translates into increased response time observed by the client

Active probing technique cannot reflect the caching efficiency of the site
The tools based on instrumentation technique cannot provide insight into this problem either

16

EtE MonitorH 31

Clients Clustering by ASes
(IT-Support Site)

• Clients grouped by ASes show a heavy tail distribution
• These figures allow us to see large client clusters and their corresponding

end-to-end response time
• The ability of EtE monitor to measure performance metrics for a certain group of clients

is particularly attractive for Service Providers to validate required SLAs

EtE MonitorH 32

Validation Experiments

We performed two groups of experiments
To validate the accuracy of EtE measurements
To evaluate the page access reconstruction power of EtE
• How dependent are the reconstruction results on the

existence of referer field information?
The results are encouraging:

EtE provides a very close approximation of the response time
EtE monitor does a good job of page reconstruction even when
the requests do not have any referer field!
However, two-pass heuristic method and statistical filtering mechanism
we use to reconstruct page accesses increase the number of
reconstructed pages by about 20-30%

17

EtE MonitorH 33

Limitations

EtE monitor is not appropriate for sites that encrypt much of their data
(e.g., via SSL)
EtE monitor is not appropriate for sites that “outsource” most of their
content to CDNs
Similar limitation applies to pages with “mixed” content: if a portion of
the page is served from some other remote sites. In this case, EtE will
measure only response time for local site content
For clients coming behind the proxy, EtE monitor measures the
response time as observed from the proxy
Since the tool is based on heuristics and statistics to reconstruct the
page content, the best results are obtained when the sample size is
large enough
Dynamically generated content creates additional challenges for EtE
monitor (typical for other analysis tools too): a configuration file provided
by a site administrator is needed

EtE MonitorH 34

Conclusion and Future Work

Understanding performance characteristics of Internet
services is critical to evolving and engineering the web
services to match:

Changing demand levels
Client populations
Global network characteristics

EtE monitor, based on a novel technique, offers a number of
benefits unavailable from other tools and by other means.
EtE monitor can be extended to work in “almost real-time” to
provide timely information about web services and their
performance.
Extended analysis on client clustering will provide an
opportunity to use the information from EtE monitor for
intelligent decision making on service placement and
service optimization

18

EtE MonitorH 35

Acknowledgements

The tool and the study would not be possible without a generous
help of our HP colleagues:

HPLabs team:
• Mike Rodriquez, Annabelle Eseo, and Peter Haddad

HPO, Managed Web Services:
• Guy Mathews

OpenView team:
• Steve Yonkaitis, Bob Husted, Norm Follett, and Don Reab

US support team
• Claude Villermain, Vincent Rabiller, Pierre-Emmanuel Delforge

Their help is highly appreciated !

Web Site Performance and QoS Monitoring�

Measuring Client Response Time and More��� at the Web Server

Ludmila Cherkasovay� Yun Fuyz� Wenting Tangy� and Amin Vahdatz

yHewlett�Packard Laboratories

���� Page Mill Road� Palo Alto� CA ������ USA

email� flucy cherkasova� yun fu� wenting tangg	hp
com

zDept of Computer Science� Duke University

Durham� NC ����� USA

email� ffu�vahdatg	cs
duke
edu

Abstract� In this work� we describe a novel technique for measuring a web site�s end�to�end response time

based on reconstruction of web page accesses from passively captured network packets at the web server side�

This technique can e�ectively determine the set of objects composing a web page without parsing or interpreting

the HTML syntax� Exploiting this technique� we built a tool� called EtE monitor� EtE monitor does not require

any changes or modi�cations to site content or server side infrastructure� or client browsers� and can be used

for sites with static or dynamically generated content�

Relative to existing approaches� EtE monitor o�ers a set of new bene�ts� Timestamps extracted from network

packet level provide invaluable information about connection setup time� server side processing time� and

network related transfer time� which cannot be directly obtained from other sources� Additionally� this technique

allows us to analyze many other useful and practical metrics� such as number of aborted page accesses� number

of objects retrieved directly from the server versus from network and client browser caches� number of client

connections used to retrieve the web page� etc� Our initial implementation and performance analysis across

three di�erent commercial web sites con�rm the utility of our approach�

� Introduction

The rapid growth and business�critical use of the internet have made performance measurement an
essential service for web sites� Understanding and measuring end�to�end service performance is a
challenging task� In general� a web page is composed of an HTML �le and several embedded objects
such as images� A browser retrieves a web page by issuing a series of HTTP requests for all objects�
The requests can be sent through one persistent TCP connection or multiple concurrent connections�
However� HTTP does not provide any means to delimit the beginning or the end of a web page in
order to e�ectively measure the overall response time for corresponding web page retrieval�

Two main factors impact the response time perceived by the clients� the network latency and the
server side processing time�

Many web sites are using complex multi�tiered architecture where the user requests are received by a
front�tier web server playing a role of a web interface� The web server in turn accesses an application
server that itself may issue the requests to a back�end database using middleware technologies such as

�

CORBA� RMI� etc� A set of new technologies� such as servlets ���	 and Javaserver Pages ���	� are the
popular choice for extending and enhancing web servers� Servlets and Javaserver Pages technology
allow web developers and designers to rapidly develop and easily maintain� information�rich� dynamic
web pages that leverage existing business systems�

However� these new technologies for web page generation and more complex web site architecture
could lead to increased server�side processing time and� as a result� require more careful performance
assessment of overall site design and understanding its performance implication to the end�user
observed latency�

The user satisfaction with web site response quality in
uences how long the user stays at the web
site� and determines user�s future visits to the site� Web site response time observed by the actual
users becomes a critical metric to measure and improve� The importance of end�to�end response
time for web page download led to a new performance metric introduced by businesses for measuring
a web service e�ciency� A web site or web service is considered to be unavailable� if its response
time exceeds � sec ���	�

Currently� there are two most popular techniques used to assess the web site�s end�to�end response
time� �� active probing technique ���� ��� ��� ��	 based on periodic polling of web services using a
geographically distributed set of arti�cial clients� and �� a special web page instrumentation with an
additional code �typically written in JavaScripts or using Java applets� which gets downloaded in
a client browser when a web page is accessed ��� �� �� ��	� In Section �� we discuss the merits and
drawbacks of these techniques in more detail�

In this work� we outline a novel technique ��	 to measure web site�s end�to�end response time based
on reconstruction of web page accesses from passively captured network packets on web server side�
This technique can e�ectively determine the set of objects composing web page without parsing
or interpreting the HTML syntax� Then by using this information and a few other heuristics� we
reconstruct web page accesses� Exploiting this technique� we built a tool� called EtE monitor� We
tested this tool to assess performance of three di�erent web sites at Hewlett�Packard Corporation�

Relative to existing techniques� EtE monitor o�ers a number of bene�ts�

� Our system can determine the breakdown between the server and network overhead associated
with retrieving a web page� This information is necessary to understand where performance
optimizations should be directed� for instance to improve server�side performance or to leverage
existing content distribution networks �CDNs� to improve network locality�

� EtE monitor tracks all accesses to web pages for a given service� Many existing techniques are
typically restricted to a few probes per hour to URLs that are pre�determined to be popular�
Our approach is much more agile to changing client access patterns� What real clients are
accessing determines the performance that EtE monitor evaluates� Finally� given the Zipf
popularity of service web pages ��	� our approach is able to track the characteristics of the
heavy tail that often makes up a large overall portion of web site accesses�

� Given information on all client accesses� clustering techniques ���	 can be utilized to deter�
mine network performance characteristics by network region or autonomous system� System
administrators can use this information to determine which content distribution networks to
partner with �depending on their points of presence� or to determine multi�homing strategies
with particular ISPs�

� EtE monitor captures information on page requests that are manually aborted by the client�
either because of unsatisfactory web site performance or speci�c client browsing patterns �e�g��
clicking on a link before a page has completed the download process�� Existing techniques

�

cannot model user interactions in the case of active probing or miss important aspects of web site
performance such as TCP connection establishment in the case of web page instrumentation�

� Finally� EtE monitor is able to determine the actual bene�ts of both browser and network
caches� By learning the likely composition of individual web pages� our system can determine
when certain embedded objects of a web page are not requested and conclude that those objects
were retrieved from some cache in the network�

The rest of this paper is organized as follows� In the next section� we survey existing techniques and
products and discuss their merits and drawbacks� Section � outlines the EtE monitor architecture�
with additional details in Sections ���� In Section �� we present the results of three performance
studies� which have been performed to test and validate EtE monitor and its approach� The studied
web sites include static web pages� dynamic web pages and customized web pages� We discuss the
limitations of the proposed technique in Section � and present our conclusions and future work in
Section ��

� Related Work

A number of companies use active probing techniques to o�er measurement and testing services to�
day� including Keynote ���	� NetMechanic ���	� Software Research ���	� and Porivo Technologies ���	�
Their solutions are based on periodic polling of web services using a set of geographically distributed�
synthetic clients� In general� only a few pages or operations can typically be tested� potentially re�

ecting only a fraction of all user�s experience� Further� active probing techniques cannot typically
capture the potential bene�ts of browser and network caches� in some sense re
ecting worst case�
performance� From another perspective� active probes come from a di�erent set of machines than
those that actually access the service� Thus� there may not always be correlation in the perfor�
mance�reliability reported by the service and that experienced by end users� Finally� it is more
di�cult to determine the breakdown between network and server�side performance using active
probing� making it more di�cult for customers to determine where best to place their optimization
e�orts�

Another popular approach is to embed instrumentation code with web pages to record access times
and report statistics back to the server� For instance� WTO �Web Transaction Observer� from HP
OpenView suite ��	 uses JavaScript to implement this functionality� With additional web server
instrumentation and cookie techniques� this product can record the server processing time for a
request� enabling a breakdown between server and network processing time� However in general�
single web pages with non�HTML Content�Type �elds� such as application�postscript� application�x�
tar� application�pdf� or application�zip� can not be instrumented� Further� this approach requires
additional server�side instrumentation and dedicated resources to actively collect performance reports
from clients� A number of other products and proposals ��� �� ��	 employ similar techniques�

Similar to our approach� web page instrumentation can also capture end�to�end performance infor�
mation from real clients� But since the JavaScript code is downloaded to a client web browser with
the instrumented HTML �le� and is executed after the page is downloaded� typically only the re�
sponse time for retrieving the subsequent embedded images can be measured� it does not capture the
connection establishment time and the main HTML �le download time �which can be a signi�cant
portion of overall response time��

To avoid the above drawbacks� some recent work ���	 proposes to instrument the hyperlinks for
measuring the response times of the web pages that the links point to� This technique exploits
similar ideas of downloading a small amount of code written in JavaScript to a client browser when

�

a web page is accessed via a hyperlink� However� under this approach� the response times for pages
like index�html �i�e� the web pages which are accessed directly� not via links to them� cannot be
measured�

There have been some earlier attempts to passively estimate the response time observed by clients
from network level information� SPAND ���� ��	 determines network characteristics by making
shared� passive measurements from a collection of hosts and uses this information for server selection�
i�e� for routing client requests to the server with the best observed response time in a geographically
distributed web server cluster�

The NetQos� Inc� ���	 provides a tool for application performance monitoring� which exploits similar
ideas proposed in this paper� it collects the network packet traces from server sites and reconstructs
the request�response pairs �the client requests and the corresponding server responses� and estimates
the response time for those pairs�

However� the client�perceived web server responses are the retrievals of web pages �a web page is
composed of an HTML �le and several embedded objects such as images� and not just a single request�
response pair�� Thus� there is an orthogonal problem of grouping individual request�response pairs
into the corresponding web page accesses� EtE monitor provides this additional step of client page
access reconstruction to assess the true end�to�end time observed by the client when downloading a
web page�

� EtE Monitor Design

EtE monitor consists of four program modules shown in Figure ��

Performance
Analysis &
Statistics

Web
Page

Reconstruction

Request−
Response

Reconstruction

Network
Packet

Collector

Web Page
Session

Log

Transaction
Log

Network
Trace

Figure �� EtE Monitor Architecture�

�� The Network Packet Collector module�

It collects network packets using tcpdump���	 and records them to a Network Trace� enabling
o�ine analysis�

�� The Request�Response Reconstruction module�

In the Request�Response Reconstruction module� EtE monitor reconstructs all TCP connections
from the Network Trace and extracts HTTP transactions �a request with the corresponding
response� from the payload� EtE monitor does not consider encrypted connections whose
content cannot be analyzed� After obtaining the HTTP transactions� the monitor stores some
HTTP header lines and other related information in the Transaction log for future processing
�excluding the HTTP payload�� To rebuild HTTP transactions from TCP�level traces� we use
a methodology proposed by Feldmann ��	 and described in more detail and extended to work
with persistent HTTP connections by Krishnamurthy and Rexford ���	�

For e�ciency� this module is written in C�

�

�� The Web Page Reconstruction module�

A web page is generally composed of one HTML �le and some embedded objects such as
images or JavaScripts� When a client requests a particular web page� the client�s browser
should retrieve all the page embedded images from a web server to display the requested page�
The client browser retrieves these embedded images separately� Each object is retrieved by an
individual HTTP request� Entries of the Transaction Log contain the information about these
individual HTTP requests� Our next step is to relate di�erent individual HTTP requests in
the web sessions corresponding to a particular web page accesses� As the outcome of this step�
we build Web Page Session Log�

For
exibility� this module is written in Perl�

�� Performance Analysis and Statistics Presentation module�

After di�erent request�response pairs are grouped into web page retrieval sessions� we can
measure the client perceived end�to�end response time for a web page download� and many
other useful metrics to re
ect the service e�ciency�

EtE monitor can be deployed in several di�erent ways�

�� EtE monitor con�gured as an independent network appliance�

EtE monitor should be placed at a point in the network where it can capture all HTTP
transactions for a web server� e�g�� the same subnet of the web server� It should be a point
where a web server tra�c in both directions can be captured� the request tra�c to web server
and the response tra�c from the server�

If a web site consists of multiple web servers� EtE monitor should be placed at the common
entrance and exit of all the web servers as shown in Figure ��

Figure �� EtE monitor deployed as an independent network appliance�

�

If a web site is supported by geographically distributed web servers� there could be no such a
common point� However� most typically� web servers in a web server farm �or cluster� are using
sticky connections�� i�e�� once the client has established a TCP connection with a particular
web server� the consequent client�s requests are sent to the same server� In this case� EtE
monitor con�gured as a network appliance can still be used to capture a
ow of transactions
�to and from� of a particular web server� representing a part of all web transactions for the web
site� and the measured data can be considered as sampling�

�� EtE monitor con�gured as a software solution deployed on a web server�

EtE monitor can be installed as a software solution at a web server� and used for web transac�
tions monitoring at this particular server�

If a web site consists of multiple web servers� then as in the previous case� the EtE monitor
does work when each web server is using sticky connections� as shown in Figure �� In this
case� the EtE monitor can be installed as a software solution at all the servers or at a randomly
selected web server in the site con�guration� and the measured data should be aggregated to
present overall tra�c or can be considered as sampling�

Figure �� EtE monitor deployed as mixed or sw solution�

�� EtE monitor con�gured as mixed software solution with some modules deployed on a web server
and some modules deployed on independent nodes outside of the web server� The architecture
is similar to the one shown in Figure ��

To minimize the performance impact of additional computations on a web server� only two
modules of EtE monitor are deployed at a web server �or web servers�� the Network Packets
Collector module and the Request�Response Reconstruction module� The resulting Transaction
Log is two to three orders of magnitude smaller than the originalNetwork Trace� It is transferred
to a di�erent� independent node with other two modules installed� Web Page Reconstruction
and Performance Analysis and Statistics Presentation modules� These modules process the
Transaction Logs received from web servers and produce the performance results�

�

� TCP Connection and HTTP Request Reconstruction

As described above� the Request�Response Reconstruction module reconstructs all observed TCP
connections� The TCP connections are rebuilt from the Network Trace using client IP addresses�
client port numbers� and request �response� TCP sequence numbers� Within the payload of the
rebuilt TCP connections� HTTP transactions can be delimited as de�ned by the HTTP protocol�
Meanwhile� the timestamps� sequence numbers and acknowledged sequence numbers for HTTP re�
quests can be recorded for later matching with the corresponding HTTP responses�

When a client clicks a hypertext link to retrieve a particular web page� the browser �rst establishes a
TCP connection with the web server by sending a SYN packet� If the server is ready to process the
request� it accepts the connection by sending back a second SYN packet acknowledging the client�s
SYN �� At this point� the client is ready to send HTTP requests to retrieve the HTML �le and all
embedded objects� For each request� we are concerned with the timestamps for the �rst byte and
the last byte of the request since they delimit the request transfer time and the beginning of server
processing� We are similarly concerned with the timestamps of the beginning and the end of the
corresponding HTTP response� Besides� the timestamp of the acknowledgment packet for the last
byte of the response explicitly indicates that the browser has received the entire response�

EtE monitor detects aborted connections by observing either

� a RST packet sent by an HTTP client to explicitly indicate an aborted connection or

� a FIN�ACK packet sent by the client where the acknowledged sequence number is less than
the observed maximum sequence number sent from the server�

After reconstructing the HTTP transactions �a request and the corresponding response�� the monitor
records the HTTP header lines of each request in the Transaction Log and discards the body of the
corresponding response�

Each entry in the log includes a number of �elds� ��� a unique
ow ID for the TCP connection� ���
the client�s IP address� ��� the requested URL� ��� the content type� ��� the referer �eld� ��� the via
�eld� ��� whether the request was aborted� ��� the number of packets resent during the connection
�potentially an indication of the presence of network congestion�� ��� the size and timestamps of the
request and response� Some �elds in the entry are used to rebuild web pages� while other �elds can
be used to measure end�to�end performance�

� Grouping HTTP Requests into Web Pages

To measure the client perceived end�to�end response time for retrieving a web page� one needs to
identify the objects that are embedded in a particular web page and to measure the response time
for the client requests retrieving these embedded objects from the web server� In other words�
to measure the client perceived end�to�end response time� we must group the object requests into
web page accesses� Although we can determine some embedded objects of a web page by parsing
the HTML for the container object�� some embedded objects cannot be easily discovered through
static parsing� For example� JavaScript is used in web pages to retrieve additional objects� Without
executing the JavaScript� it may be di�cult to discover the identity of such objects�

�Whenever EtE monitor detects a SYN packet� it considers the packet as a new connection unless there is an earlier
SYN packet with the same source port number from the same IP address� A retransmitted SYN packet is not considered
as a newly established connection� However� if a SYN packet is dropped� e�g� by intermediate routers� there is no way
to detect the dropped SYN packet on the server side�

�

Automatically� determining the content of a page requires a technique to delimit individual page
accesses� One recent study ��	 uses an estimate of client think time as the delimiter between two
pages� While this method is simple and useful� it may be inaccurate in some important cases� For
example� consider the case where a client opens two web pages from one server at the same time�
Here� the requests for the two di�erent web pages interleave each other without any think time
between them� Another case is when the interval between the requests for objects within one page
may be too long to be distinguishable from think time �perhaps because of the network conditions��

Di�erent from previous work� our methodology uses heuristics to determine the objects composing a
web page� i�e� the content of the web page� and applies statistics to adjust the results� EtE uses the
HTTP referer �eld as a major clue� to group objects into a web page� The referer �eld speci�es the
URL from which the requested URL was obtained� Thus� all requests for the embedded objects in an
HTML �le are recommended to set the referer �elds to the URL of the HTML �le� However� since the
referer �elds are set by client browsers� not all browsers set the �elds� To solve this� EtE monitor �rst
builds a Knowledge Base from those requests with referer �elds� and uses more aggressive heuristics
to group the requests without referer �elds based on the Knowledge Base information�

Subsection ��� outlines Knowledge Base construction of web page objects� Subsection ��� presents
the algorithm and technique to group the requests in web page accesses using Knowledge Base
information and a set of additional heuristics�

��� Building a Knowledge Base of Web Page Objects

The goal of this step is to reconstruct a special subset of web page accesses� which we use to
build a Knowledge Base about web pages and the objects composing them� Before grouping HTTP
transactions into web pages� EtE monitor �rst sorts all transactions from the Transaction Log using
the timestamps for the beginning of the requests in increasing time order� Thus� the requests for
the embedded objects of a web page must follow the request for the corresponding HTML �le of the
page� When grouping objects into web pages �here and in the next subsection�� we consider only
transactions with successful responses� i�e� with status code ��� in the responses�

The next step is to scan the sorted transaction log and group objects into web page accesses� Not
all the transactions are useful for the Knowledge Base construction process� During this step� some
of the Transaction Log entries are excluded from our current consideration�

� Content types that are known not to contain embedded objects are excluded from the knowl�
edge base� e�g�� application�postscript� application�x�tar� application�pdf� application�zip and
text�plain� For the rest of the paper� we call them independent� single page objects�

� If the referer �eld of a transaction is not set and its content type is not text�html� EtE monitor
excludes it from further consideration�

To group the rest of the transactions into web page accesses� we use the following �elds from the
entries in the Transaction Log� the request URL� the request referer �eld� the response content
type� and the client IP address� EtE monitor stores the web page access information into a hash
table� the Client Access Table depicted in Figure �� which maps a client�s IP address to a Web Page
Table containing the web pages accessed by the client� Each entry in the Web Page Table is a web
page access� and composed of the URLs of HTML �les and the embedded objects� Notice that EtE
monitor makes no distinction between statically and dynamically generated HTML �les� We consider
embedded HTML pages� e�g� framed web pages� as separate web pages�

When processing an entry of the Transaction Log� EtE monitor �rst locates the Web Page Table for

�

HTML 11IP

IP

IP

IP

2

3

n

... ...

Object ObjectHTML

ObjectHTML

Object Object Object

Web Page Table

2

3

Client Access Table

Figure �� Client Access Table�

the client�s IP in the Client Access Table� Then� EtE monitor handles the transaction according to
its content type�

�� If the content type is text�html� EtE monitor treats it as the beginning of a web page and
creates a new web page entry in the Web Page Table�

�� For other content types� EtE monitor attempts to insert the URL of the requested object into
the web page that contains it according to its referer �eld� If the referred HTML �le is already
present in the Web Page Table� EtE monitor appends this object at the end of the entry� If
the referred HTML �le does not exist in the client�s Web Page Table� it means that the client
may have retrieved a cached copy of the object from somewhere else between the client and
the web server� In this case� EtE monitor �rst creates a new web page entry in the Web Page
Table for the referred HTML �le� Then it appends the considered object to this page�

From the Client Access Table� EtE monitor determines the content template of any given web page as
a combined set of all the objects that appear in all the access patterns for this web page� Thus� EtE
monitor scans the Client Access Table and creates a new hash table� as shown in Figure �� which is
used as a Knowledge Base to group the accesses for the same web pages from other client�s browsers
that do not set the referer �elds�

HTML 1

... ...

URL 1

URL 2

URL 3

URL n

Content Template Table

Object

Object

Content Template

Figure �� Knowledge Base of web pages� maps URLs to the corresponding accessed Content Templates�

Since in this pass� the Client Access Table is based on explicit reference relationship� the Content
Template Table constructed from it is relatively trustable and can be used as a Knowledge Base to
group the accesses for the same web pages from other client�s browsers that do not set the referer
�elds�

�

��� Reconstruction of Web Page Accesses

With the help of the Knowledge Base� EtE monitor processes the entire Transaction Log again� This
time� EtE monitor does not exclude the entries without referer �elds� It signi�cantly extends the
number of correctly processed web page accesses� Using data structures similar to those introduced
in Section ���� EtE monitor scans the sorted Transaction Log and creates a new Client Access Table
to store all accesses as depicted in Figure �� For each transaction� EtE monitor locates the Web
Page Table for the client�s IP in the Client Access Table� Then� EtE monitor handles the transaction
depending on the content type�

�� If the content type is text�html� EtE monitor creates a new web page entry in the Web Page
Table�

�� If a transaction is an independent� single page object� EtE monitor marks it as individual page
without any embedded objects and allocates a new web page entry in the Web Page Table�

�� For other content types that can be embedded in a web page� EtE monitor attempts to insert
it into the web page that contains it�

� If the referer �eld is set for this transaction� EtE monitor attempts to locate the referred
page in the following way� If the referred HTML �le is in an existing page entry in theWeb
Page Table� EtE monitor appends the object at the end of the entry� If the referred HTML
�le does not exist in the client�s Web Page Table� EtE monitor �rst creates a new web
page entry in the table for the referred page and marks it as nonexistent� Then it appends
the object to this page� If the referer �eld is not set for this transaction� EtE monitor
uses the following policies� With the help of the Knowledge Base� EtE monitor checks
each page entry in the Web Page Table from the latest to earliest� If the Knowledge Base
contains the content template for the checked page and the considered object does not
belong to it� EtE monitor skips the entry and checks the next one until a page containing
the object is found� If such an entry is found� EtE monitor appends the object to the end
of the web page�

� If none of the web page entries in the Web Page Table contains the object based on the
Knowledge Base� EtE monitor searches in the client�s Web Page Table for a web page
accessed via the same
ow ID as this object� If there is such a web page� EtE monitor
appends the object to the page�

� Otherwise� if there are any accessed web pages in the table� EtE monitor appends the
object to the latest accessed one�

If none of the above policies can be applied� EtE monitor drops the request�

Obviously� the above heuristics may introduce some mistakes� Thus� EtE monitor also adopts a
con�gurable think time threshold to delimit web pages� If the time gap between the object and
the tail of the web page that it tries to append to is larger than the threshold� EtE monitor
skips the considered object� In this paper� we adopt a con�gurable think time threshold of
� sec�

Although the above two�pass process can e�ectively provide accurate web page access reconstruction
in most cases� there could still be some accesses grouped incorrectly� To �lter out such accesses� we
must better approximate the actual content of a web page�

All the accesses to a web page usually exhibit a set of di�erent access patterns� For example� an
access pattern can contain all the objects of a web page� while other patterns may contain a subset of

��

them �e�g�� because some objects were retrieved from a browser or network caches�� We assume the
same access patterns of those incorrectly grouped accesses should rarely appear repeatedly� Thus�
we use the statistical analysis on access patterns to determine the actual content of web pages and
exclude the incorrectly grouped accesses� This technique is described in more detail in our earlier
paper ��	�

� Web Service Performance Metrics

In this section� we introduce a set of metrics and the ways to compute them in order to measure a
web service e�ciency� These metrics can be categorized as�

� metrics approximating the end�to�end response time observed by the client for a web page
download� Additionally� we provide a means to calculate the breakdown between server pro�
cessing and networking portions of overall response time�

� metrics evaluating the caching e�ciency for a given web page by computing the server �le hit
ratio and server byte hit ratio for the web page�

� metrics relating the end�to�end performance of aborted web pages to the QoS�

��� End�to�End Response Time Metrics

We use the following functions to denote the critical timestamps for connection conn and request r�

� tsyn�conn�� time when the �rst SYN packet from the client is received for establishing the
connection conn�

� tstartreq �r�� time when the �rst byte of the request r is received �

� tendreq �r�� time when the last byte of the request r is received�

� tstartresp �r�� time when the �rst byte of the response for r is sent�

� tendresp�r�� time when the last byte of the response for r is sent�

� tackresp�r�� time when the ACK for the last byte of the response for r is received�

Additionally� for a web page P � we have the following variables�

� N � the number of distinct connections used to retrieve the objects in the web page P �

� rk� � ���r
k
nk

� the requests for the objects retrieved through the connection connk �k � �� ���� N��
and ordered accordingly to the time when these requests were received� i�e��

tendreq �r
k
�� � tendreq �r

k
�� � ��� � tendreq �r

k
nk
��

The extended version of HTTP ��� and later version HTTP ��� ��	 introduce the concepts of persistent
connections and pipelining� Persistent connections enable reuse of a single TCP connection for
multiple object retrievals from the same IP address� Pipelining allows a client to make a series of
requests on a persistent connection without waiting for the previous response to complete �the server
must� however� return the responses in the same order as the requests are sent��

We consider the requests rki � ���� r
k
n to belong to the same pipelining group �denoted as PipeGr �

frki � ���� r
k
ng� if for any j such that i � j � � � j � n� tstartreq �rkj � � tendresp�r

k
j����

��

Thus for all the requests on the same connection connk� r
k
� � ���� r

k
nk
� we de�ne the maximum pipelining

groups in such a way that they do not intersect� e�g��

rk� � ���� r
k
i� �z �

PipeGr�

� rki����z�
PipeGr�

� ���� rknk��z�
PipeGrl

�

For each of the pipelining groups� we de�ne three portions of response time� total response time
�Total�� network�related portion �Network�� and lower�bound estimate of the server processing time
�Server��

Let us consider the following example� For convenience� let us denote PipeGr� � frk� � ���� r
k
i g�

Then
Total�PipeGr�� � tendresp�r

k
i �� tstartreq �rk

�
��

Network�PipeGr�� �
iX

j��

�tendresp�r
k
j �� tstartresp �r

k
j ���

Server�PipeGr�� � Total�PipeGr���Network�PipeGr���

If no pipelining exists� a pipelining group only consists of one request� In this case� the computed
server time represents precisely the server processing time for a given request�response pair� If a
connection adopts pipelining� the real� server processing time might be larger than the computed
server time because it can partially overlap the network transfer time� and it is di�cult to estimate
the exact server processing time from the packet�level information� However� we are still interested
to estimate the non�overlapping� server processing time as this is the portion of the server time on
a critical path of overall end�to�end response time� Thus� we use as an estimate the lower�bound
server processing time� which is explicitly exposed in the overall end�to�end response�

If connection connk is a newly established connection to retrieve a web page� we observe additional
connection setup time�

Setup�connk� � tstartreq �rk
�
�� tsyn�connk�

��

otherwise the setup time is �� Additionally� we de�ne tstart�connk� � tsyn�connk� for a newly
established connection� otherwise� tstart�connk� � tstartreq �rk

�
��

Similarly� we de�ne the breakdown for a given connection connk�

Total�connk� � Setup�connk� � tendresp�r
k
nk
�� tstartreq �rk

�
��

Network�connk� � Setup�connk� �

lX
j��

Network�PipeGrj��

Server�connk� �

lX
j��

Server�PipeGrj��

Now� we de�ne similar latencies for a given page P �

Total�P � � max
j�N

tendresp�r
j
nj
��min

j�N
tstart�connj��

For the rest of the paper� we will use the term EtE time interchangeably with Total�P � time�

CumNetwork�P � �
NX
j��

Network�connj��

�The connection setup time as measured by EtE monitor does not include dropped SYNs� as discussed earlier in
Section ��

��

CumServer�P � �

NX
j��

Server�connj��

All the above formulae use tendresp�r� to calculate response time� An alternative way is to use as the

end of a transaction the time tackresp�r� when the ACK for the last byte of the response is received by
a server� Figure � shows an example of a simpli�ed scenario where a ��object page is downloaded
by the client� it shows the communication protocol for connection setup between the client and the
server as well as the set of major timestamps collected by the EtE monitor on the server side� The
connection setup time measured on the server side is the time between the client SYN packet and
the �rst byte of the client request� This represents a close approximation for the original client setup
time� If the ACK for the last byte of the client response is not delayed or lost� tackresp�r� is a more

is sent
ACK is received
request r is sent

response for r
is received

Client

Client observed end-to-end time

syn
t (conn) t (r)start

req t (r)resp
start t (r)resp

end t (r)

SYN

resp

time

 ack

Server

Setup(conn)

EtE time (last byte)

EtE time (ack)

Round trip time

time

Figure �� An example of a ��object page download by the client� major timestamps collected by the EtE

monitor on the server side�

accurate approximation of the end�to�end response time observed by the client� it compensates�
for the latency of the �rst client SYN packet that is not measured on the server side� The di�erence
between the two methods� i�e� EtE time �last byte� and EtE time �ack�� is only a round trip time�
which is on the scale of milliseconds� Since the overall response time is on the scale of seconds� we
consider this deviation an acceptably close approximation� However� to avoid the problems with
delayed or lost ACKs� EtE monitor determines the end of a transaction as the time when the last
byte of a response is sent by a server�

The functions CumNetwork�P � and CumServer�P � give the sum of all the network�related and
server processing portions of the response time over all connections used to retrieve the web page�
However� the connections can be opened concurrently by the browser� To evaluate the concurrency
impact� we introduce the page concurrency coe�cient ConcurrencyCoef�P��

ConcurrencyCoef�P � �

PN

j�� Total�connj�

Total�P �
�

Using page concurrency coe�cient� we �nally compute the network�related and the service�related
portions of response time for a particular page P �

Network�P � � CumNetwork�P ��ConcurrencyCoef�P ��

Server�P � � CumServer�P ��ConcurrencyCoef�P ��

EtE monitor can distinguish the requests sent to a web server from clients behind proxies by checking
the HTTP via �elds� If a client page access is handled via the same proxy �which is typically the
case� especially when persistent connections are used�� EtE monitor provides correct measurements
for end�to�end response time and other metrics� as well as provides interesting statistics on the
percentage of client requests coming from proxies� Clearly� this percentage is an approximation�
since not all the proxies set the via �elds in their requests� Finally� EtE monitor can only measure
the response time to a proxy instead of the actual client behind it�

��

��� Measuring Web Service Caching E�ciency

Real clients of a web service may bene�t from the presence of network and browser caches� which
can signi�cantly reduce their perceived response time� However� none of the existing performance
measurement techniques provide any information on the impact of caches on web services� what
percentage of the �les and bytes are delivered from the server comparing with the total �les and
bytes required for delivering the web service� This impact can only be partially evaluated from
web server logs by checking response status code ���� whose corresponding requests are sent by the
network caches to validate whether the cached object has been modi�ed� If the status code ��� is
set� the cached object is not expired and need not be retrieved again�

To evaluate the caching e�ciency of a web service� we introduce two metrics� server �le hit ratio
and server byte hit ratio for each web page�

For a web page P � assume the objects composing the page are O�� ���� On� Let Size�Oi� denote the
size of object Oi in bytes� Then we de�ne NumFiles�P � � n and Size�P � �

Pn
j�� Size�Oj��

Additionally� for each access P i
access of the page P � assume the objects retrieved in the access are

Oi
�� ���� O

i
ki
� we de�ne NumFiles�P i

access� � ki and Size�P i
access� �

Pki
j�� Size�O

i
j�� First� we de�ne

�le hit ratio and byte hit ratio for each page access in the following way�

FileHitRatio�P i
access� � NumFiles�P i

access��NumFiles�P ��

ByteHitRatio�P i
access� � Size�P i

access��Size�P ��

Let P �
access� ���� P

N
access be all the accesses to the page P during the observed time interval� Then

ServerF ileHitRatio�P � �
�

N

X

k�N

FileHitRatio�P k
access��

ServerByteHitRatio�P � �
�

N

X

k�N

ByteHitRatio�P k
access��

The lower numbers for server �le hit ratio and server byte hit ratio indicate the higher caching
e�ciency for the web service� i�e�� more �les and bytes are served from network and client browser
caches�

Often� a corporate web site has a set of templates� buttons� logos� and shared images� which are
actively reused among a set of di�erent pages� A user� browsing through such a site� can clearly
bene�t from the browser cache� The proposed caching metrics are useful for evaluating the e�ciency
of caching and comparing di�erent site designs�

��� Aborted Pages� QoS and Client Browsing Behavior

User�perceived QoS is another important metric to consider in EtE monitor� One way to measure
the QoS of a web service is to measure the frequency of aborted connections� The logic behind this is
that if a web site is not fast enough a user will get impatient and hit the stop button� thus aborting
the connection� However� such simplistic interpretation of aborted connections and web server QoS
has several drawbacks� First� a client can interrupt HTTP transactions by clicking the browser�s
stop� or reload� button while a web page is downloading� or clicking a displayed link before the
page is completely downloaded� Thus� only a subset of aborted connections are relevant to poor web
site QoS or poor networking conditions� while other aborted connections are caused by client�speci�c
browsing patterns� On the other hand� a web page can be retrieved through multiple connections� A
client�s browser�level interruption can cause all the currently open connections to be aborted� Thus�

��

the number of aborted page accesses more accurately re
ects client satisfaction than the number of
aborted connections�

For aborted pages� we distinguish the subset of pages �bad with the response time higher than the
given threshold XEtE �in our case� XEtE � � sec�� Only these pages might be re
ective of the
bad quality downloads� While a simple deterministic cut o� point cannot truly capture a particular
client�s expectation for site performance� the current industrial ad hoc quality goal is to deliver pages
within � sec ���	� We thus attribute aborted pages that have not crossed the � sec threshold to
individual client browsing patterns� The next step is to distinguish the reasons leading to poor
response time� whether it is due to network or server�related performance problems� or both�

� Practical Case Studies

In this section� we present three case studies to illustrate the bene�ts of EtE monitor in assessing
web site performance�

� The �rst site is the HP Labs external site �HPL Site�� http���www�hpl�hp�com� Static web pages
comprise most of this site�s content� We deployed EtE monitor as an independent network
appliance and measured performance of this site for a month� from July ��� ���� to August
��� �����

� The second site is a support site for a popular HP product family� which we call OV�Support
Site� It uses JavaServer Pages ���	 technology for dynamic page generation� The architecture
of this site is based on a geographically distributed web server cluster with Cisco Distributed
Director ��	 for load balancing� using sticky connections� or sticky sessions�� i�e� once a
client has established a TCP connection with a particular web server� the subsequent client�s
requests are sent to the same server� We used a mixed solution deployed on one of the servers
in the cluster to measure the site performance for � weeks� from October ��� ���� to October
��� �����

� The third site under study is a support site� which provides a variety of technical information
and tools on software� hardware� and the network to help customers manage their multivendor
computing environment� We call it IT�Support site� The architecture of this site is based
on a web server cluster with Cisco Distributed Director ��	 for load balancing� using sticky
connections�� The pages returned to the clients are both dynamic and customized� We deployed
EtE monitor as an independent network appliance and measured the site performance at one
of the site web servers for � weeks� from March ��� ���� to April �� �����

Table � summarizes the three site�s performance at�a�glance during the measured period using the
two most frequently accessed pages at each site�
The average end�to�end response time of client accesses to these pages re
ects good overall perfor�
mance� However in the case of HPL and IT�Support sites� a sizeable percentage of accesses take
more than � sec to complete ����������� with a portion leading to aborted accesses ������������
The OV�Support site had better overall response time with a much smaller percentage of accesses
above � sec ������������ and a correspondingly smaller percentage of accesses aborted due to high
response time ������������

As discussed earlier� the HPL content is static� the OV�Support site content is generated using
dynamic pages� while IT�Support content is both dynamic and customized� This increased complexity
in generation of the corresponding pages is re
ected through the increased fraction of the server
processing time in the overall response time for the corresponding three sites� But in general� the

��

Metrics HPL HPL OV�Support OV�Support IT�Support IT�Support
url� url� url� url� url� url�

EtE time ��� sec ��� sec ��� sec ��� sec ��� sec ��� sec

	 of accesses above � sec
��	
��	 ��
	 ���	 �	 ���	

	 of aborted accesses above � sec ���	 ��
	 ��	 ��	 �
	 ���	

	 of accesses from clients�proxies ���
	 ���
	 ����	 ����	 ���	 ����	

EtE time from clients�proxies ��� sec � sec ��� sec � sec ��� sec ��� sec

Network�vs�Server ratio in EtE time ����	 ����	 ����	 ����	
���	 ���
	

Page size �� KB ��� KB ��� KB � KB NA NA

Server �le hit ratio �
��	 �
	 ����	 �
��	 NA NA

Server byte hit ratio ����	 ����	 ���
	 ����	 NA NA

Number of objects � � �� �� NA NA

Number of connections ��� � ��� ���
�� ���

Table �� At�a�Glance statistics for www�hpl�hp�com and support site during the measured period�

network transfer time dominates the performance for all considered URLs in the table� ranging from
����� for the IT�Support site to ����� for the HPL site�

The pages from the HPL and OV�Support sites are comparable in size� However� the two pages
from the HPL site have a small number of objects per page �� and � correspondingly�� while the
OV�Support site pages are composed of �� di�erent objects� Page composition in
uences the number
of client connections required to retrieve the page content� Additionally� statistics show that network
and browser caches help to deliver a signi�cant amount of page objects� in the case of the OV�Support
site� only ����������� of the �� objects are retrieved from the server� accounting for �����������
of the bytes in the requested pages�

The web pages published on the IT�Support site are both dynamic and customized� The pages
returned to the clients are dynamically generated based on a set of preferences and parameters
customized to the end clients� For example� a client may select among �� di�erent language options
for the site content� The page accessed via the same URL but with di�erent language options might
have a set of di�erently specialized� embedded objects and images� So� each access to a logically
identical URL is de�ned by a di�erent URL expression� The service providers of this site provided
us with a set of policies �regular expressions� on how to generate customized URLs� which are used
to aggregate client�s accesses to these URLs and measure the performance� In this case� the size�
of a web page and the corresponding set of embedded objects� are not uniquely identi�ed� EtE
monitor identi�es a combined set of embedded objects during the construction of the knowledge
base of web pages� and uses this information to correctly reconstruct page accesses� As a result�
some metrics measured by EtE monitor become meaningless such as� the average page size� the
number of embedded objects� the �le and byte hit ratios� etc� However� service providers can use
their knowledge about speci�c web pages of interest together with EtE monitor reported information
on the average size of client page accesses and the average number of requests for objects in a page
in order to approximate the caching e�cientcy of the site�

Given the above summary� we now present more detailed information from our site measurements�
For the HPL site� the two most popular pages during the observed period were index�html and a
page in the news section describing the Itanium chip �we call it itanium�html��

Figure � a� shows the number of page accesses to index�html� as well as the number of aborted page
accesses during the measured period� The graph clearly re
ects weekly access patterns to the site�

Figure � b� re
ects the approximate page size� as reconstructed by EtE monitor� We use this data
to additionally validate the page reconstruction process� While debugging the tool� we manually
compare the content of the �� most frequently accessed pages reconstructed by EtE monitor against

��

a�

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700

N
um

be
r

of
 P

ag
e

A
cc

es
se

s

Time (hours)

Number of Page Accesses and Aborted Page Accesses

Page Accesses
Aborted Page Accesses

b�

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

0 100 200 300 400 500 600 700

S
iz

e
(B

yt
es

)

Time (hours)

Page Size and Size of Page Access in Bytes

Approximated Page Size
Average Page Access Size

Figure �� HPL site during a month� a� Number of all and aborted accesses to index�html 	 b� Approximated

page size and average access size to index�html�

a�

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700

E
tE

 T
im

e
(s

ec
)

Time (hours)

EtE Time

EtE Time

b�

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700

R
es

en
t P

ac
ke

ts
Time (hours)

Resent Packets in Response

Resent Packets in Response

Figure �� HPL site during a month� a� end�to�end response times for accesses to index�html	 b� number of

resent packets in response�

the actual web pages� the EtE monitor page reconstruction accuracy for popular pages is very high�
practically ����� Figure � b� allows us to see� the results of this reconstruction process over the
period of the study� In the beginning� it is a straight line exactly coinciding with the actual page size�
At hour mark ���� it jumps and returns to a next straight line interval at the ��� hour mark� As we
veri�ed� the page has been partially modi�ed during this time interval� The EtE monitor picked�
both the old and the modi�ed page images� since they both occurred during the same day interval
and represented a signi�cant fraction of accesses� However� the next day� the Knowledge Base was
renewed� and had only the modi�ed page information� The second jump� of this line corresponds
to the next modi�cation of the page� The gap can be tightened� depending on the time interval EtE
monitor is set to process� The other line in Figure � b� shows the average page access size� re
ecting
the server byte hit ratio of approximately ����

Figure � a� shows the end�to�end response time for accesses to index�html on an hourly scale during a
month� In spite of good average response time reported in at�a�glance table� hourly averages re
ect
signi�cant variation in response times� This graph helps to stress the advantages of EtE monitor
and re
ects the shortcomings of active probing techniques that measure page performance only a
few times per hour� the collected test numbers could vary signi�cantly from a site�s instantaneous
performance characteristics�

Figure � b� shows the number of resent packets in the response stream to clients� There are three
pronounced humps� with an increased number of resent packets� Typically� resent packets re
ect
network congestion or the existence of some network�related bottlenecks� Interestingly enough� such
periods correspond to weekends when the overall tra�c is one order of magnitude lower than weekdays
�as re
ected in Figure � a��� The explanation for this phenomenon is that during weekends the client
population of the site changes� signi�cantly� most of the clients access the site from home using
modems or other low�bandwidth connections� This leads to a higher observed end�to�end response
time and an increase in the number of resent packets �i�e�� TCP is likely to cause drops more often

��

a�

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

N
um

be
r

of
 P

ag
e

A
cc

es
se

s

Time (hours)

Number of Page Accesses

Page Accesses

b�

0

20

40

60

80

100

0 100 200 300 400 500 600 700

P
er

ce
nt

ag
e

of
 A

cc
es

se
s

(%
)

Time (hours)

Percentage of Accesses Above 6sec

Page Accesses

Figure �� HPL site during a month� a� number of all accesses to itanium�html	 b� percentage of accesses with

end�to�end response time above
 sec�

a�

50

55

60

65

70

75

80

85

90

0 100 200 300 400 500 600 700

%

Time (hours)

Server File Hit Ratio

Server File Hit Ratio

b�

50

55

60

65

70

75

80

85

90

0 100 200 300 400 500 600 700

%
Time (hours)

Server Byte Hit Ratio

Server Byte Hit Ratio

Figure ��� HPL site� a� server �le hit ratio for itanium�html	 b� server byte hit ratio for itanium�html�

when probing for the appropriate congestion window over a low�bandwidth link�� These results
again stress the unique capabilities of EtE monitor to extract appropriate information from network
packets� and re
ect another shortcoming of active probing techniques that use a �xed number of
arti�cial clients with rather good network connections to the Internet� For site designers� it is
important to understand the actual client population and their end�to�end response time and the
quality� of the response� For instance� when large population of clients have limited bandwidth
parameters� the site designers should consider making the pages and their objects lighter weight��

Figure � a� shows the number of page accesses to itanium�html� When we started our measurement
of the HPL site� the itanium�html page was the most popular page� beating� the popularity of the
main index�html page� However� ten days later� this news article started to get colder�� and the
page got to the seventh place by popularity�

Figure � b� shows the percentage of accesses with end�to�end response time above � sec� The
percentage of high response time jumps signi�cantly when the page becomes colder�� The reason
behind this phenomenon is shown in Figure ��� which plots the server �le hit and byte hit ratio�
When the page became less popular� the number of objects and the corresponding bytes retrieved
from the server increased signi�cantly� This re
ects that fewer network caches store the objects as
the page becomes less popular� forcing clients to retrieve them from the origin server�

Figure � b� and Figure �� explicitly demonstrate the network caching impact on end�to�end response
time� When the caching e�ciency of a page is higher �i�e�� more page objects are cached by network
and browser caches�� the response time measured by EtE monitor is lower� Again� active probing
techniques cannot measure �or account for� the page caching e�ciency to re
ect the true� end�to�end
response time observed by the actual clients�

We now switch to the analysis of the OV�Support site� We will only highlight some new observations
speci�c to this site� Figure �� a� shows the average end�to�end response time as measured by EtE
monitor when downloading the site main page� This site uses JavaServer Pages technology for

��

a�

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300 350

E
tE

 T
im

e
(s

ec
)

Time (hours)

EtE Time

EtE Time

b�

82

84

86

88

90

92

94

96

98

100

0 50 100 150 200 250 300 350

%

Time (hours)

Network vs Server Ratio in EtE Time

Network/Server Ratio

Figure ��� OV�Support site during � weeks� a� end�to�end response time for accesses to a main page	 b�

network�server time ratio for the main page�

a�

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350

T
im

e
(S

ec
)

Time (hours)

Connection Setup Time

Connection Setup Time

b�

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300 350P
er

ce
nt

ag
e

of
 E

tE
 T

im
e

Im
pr

ov
em

en
t (

%
)

Time (hours)

Percentage of EtE Improvement due to HTTP1.1

Percentage of EtE Improvement

Figure ��� OV�Support site during � weeks� a� connection setup time for the main page	 b� an estimated

percentage of end�to�end response time improvement if the server runs HTTP����

dynamic generation of the content� Since dynamic pages are typically more compute intensive��
it has a corresponding re
ection in higher server�side processing fraction in overall response time�
Figure �� b� shows the network�server time ratio in the overall response time� It is higher compared
to the network�server ratio for static pages from the HPL site� One interesting detail is that the
response time spike around the ��� hour mark has a corresponding spike in increased server processing
time� indicating some server�side problems at this point� The combination of data provided by EtE
monitor can help service providers to better understand site�related performance problems�

The OV�Support site pages are composed of a large number of embedded images� Two most popular
site pages� which account for almost ��� of all the page accesses� consist of �� objects� The caching
e�ciency for the site is very high� only ��� objects are typically retrieved from the server� while the
other objects are served from network and browser caches� The site server is running HTTP ���
server� Thus typical clients used ��� connections to retrieve ��� objects� The ConcurrencyCoef �see
Section ��� which re
ects the overlap portion of the latency between di�erent connections for this
page� was very low� around ����� �in fact� this is true for the site pages in general�� This indicates
that the e�ciency of most of these connections is almost equal to sequential retrievals through a
single persistent connection�

Figure �� a� shows the connection setup time measured by EtE monitor� We perform a simple
computation� how much of the end�to�end response time observed by current clients can be improved
if the site server would run an HTTP ��� server� allowing clients to use just two persistent connections
to retrieve the corresponding objects from the site� In other words� how much of the response time
can be improved by eliminating unnecessary connection setup time� Figure �� b� shows the estimated
percentage of end�to�end response time improvement available from running an HTTP ��� server�
On average� during the observed interval� the response time improvement for url� is around ���
���� sec is decreased to ��� sec�� and for url	 is around ��� ���� sec is decreased to ��� sec��

��

Figure �� b� reveals an unexpected gap� between ������� hour marks� when there was no im�
provement� due to HTTP ���� More careful analysis shows that during this period� all the accesses
retrieved only a basic HTML page using � connection� without consequent image retrievals� The
other pages during the same interval have a similar pattern� It looks like the image directory was
not accessible on the server� Thus� EtE monitor� by exposing the abnormal access patterns� can help
service providers get additional insight into service related problems�

Client population analysis is another area attracting service provider�s speical interest� Knowledge
about the largest client clusters and their response times is extremely useful for service providers to
make wise decisions on additional server and cache placement ���	�

EtE monitor can provide information about client clustering by associating them with corresponding
ASes �Autonomous Systems�� The service providers of the IT�Support site have a special concern
about their clients from the Asia�Paci�c region �AS numbers between ���������� represent Asia�
Paci�c domains�� Table � shows the average response times for Asia�Paci�c clients �AP clients� and
percentage of their accesses to the four most popular URLs under study�

Metrics url� url�

EtE time �All Clients� ��� sec ��� sec

EtE Time �Asia�Paci�c Clients� ��� sec ��� sec

	 of Asia�Paci�c Clients Accesses ��
	 ���	

Table �� Percentage of the client accesses from the Asia�Paci�c regionto the IT�Support site and end�to�end

response times for these accesses�

As Table � shows� the AP client accesses constitute from ���� to ���� of all clients accesses for two
most popular URLs� The end�to�end response times observed by Asia�Paci�c clients for url� and url	
are only slightly higher than the corresponding average response times observed by all the clients�
which was counter�intuitive�

EtE monitor provides a daily analysis of client population accessing a set of URLs of interest� This
information provides a useful quantitative view on response times to the major client clusters� It can
be used for site e�ciency design to determine if a geographically distributed web cluster is needed to
improve site performance� Such information can also be used for content delivery networks to make
appropriate decisions on data placement for a given client population�

The ability of EtE monitor to re
ect a site performance for di�erent ASes �and groups of IP addresses�
happens to be a very attractive feature for service providers� When service providers have special
SLA�contracts with certain groups of customers� EtE monitor provides a unique ability to measure
the response time observed by those clients and to validate QoS targets for those contracts� This
area is a promising direction for our future work on EtE monitor�

� Limitations

There are a number of limitations to our EtE monitor architecture� Since EtE monitor extracts
HTTP transactions by reconstructing TCP connections from captured network packets� it is unable
to obtain HTTP information from encrypted connections� Thus� EtE monitor is not appropriate for
sites that encrypt much of their data �e�g�� via SSL��

In principle� EtE monitor must capture all tra�c entering and exiting a particular site� Thus� our
software must typically run on a single web server or a web server cluster with a single entry�exit point
where EtE monitor can capture all tra�c for this site� If the site outsources� most of its popular
content to CDN�based solutions then EtE monitor can only provide the measurement information

��

about the rest� of the content� which is delivered from the original site� For sites using CDN�based
solutions� the active probing or page instrumentation techniques are more appropriate solutions to
measure the site performance� A similar limitation applies to pages with mixed� content� if a
portion of a page �e�g�� an embedded image� is served from a remote site� then EtE monitor cannot
identify this portion of the page and cannot provide corresponding measurements� In this case� EtE
monitor consistently identi�es the portion of the page that is stored at the local site� and provides
the corresponding measurements and statistics� In many cases� such information is still useful for
understanding the performance characteristics of the local site�

The EtE monitor does not capture DNS lookup times� Only active probing techniques are capable
of measuring this portion of the response times� Further� for clients behind proxies� EtE monitor
can only measure the response times to the proxies instead of to the actual clients�

As discussed in Section �� the heuristic we use to reconstruct page content may determine incorrect
page composition� Although the statistics of access patterns can �lter invalid accesses� it works best
when the sample size is large enough�

Dynamically generated web pages introduce another issue with our statistical methods� In some
cases� there is no consistent content template for a dynamic web page if each access consists of
di�erent embedded objects �for example� some pages use a rotated set of images or are personalized
for client pro�les�� In this case� there is a danger that metrics such as the server �le hit ratio and
the server byte hit ratio introduced in Section � may be inaccurate� However� the end�to�end time
will be computed correctly for such accesses�

There is an additional problem �typical for server access log analysis of e�commerce sites� about how
to aggregate and report the measurement results for dynamic sites where most page accesses are
determined by URLs with client customized parameters� For example� an e�commerce site could add
some client speci�c parameters to the end of a common URL path� Thus� each access to this logically
same URL has a di�erent URL expression� However� service providers may be able to provide the
policy to generate these URLs� With the help of the policy description� EtE monitor is still able to
aggregate these URLs and measure server performance�

� Conclusion and Future Work

Today� understanding the performance characteristics of Internet services is critical to evolving and
engineering Internet services to match changing demand levels� client populations� and global network
characteristics� Existing tools for evaluating web service performance typically rely on active probing
to a �xed set of URLs or on web page instrumentation that monitors download performance to a
client and transmits a summary back to a server� This paper presents� EtE monitor� a novel approach
to measuring web site performance� Our system passively collects packet traces from the server
site to determine service performance characteristics� We introduce a two�pass heuristic method
and a statistical �ltering mechanism to accurately reconstruct composition of individual page and
performance characteristics integrated across all client accesses�

Relative to existing approaches� EtE monitor o�ers the following bene�ts� i� a breakdown between
the network and server overhead of retrieving a web page� ii� longitudinal information for all client
accesses� not just the subset probed by a third party� iii� characteristics of accesses that are aborted
by clients� and iv� quanti�cation of the bene�ts of network and browser caches on server performance�
Our initial implementation and performance analysis across two sample sites con�rm the utility of
our approach� We are currently investigating the use of our tool to understand the client performance
on a per�network region� This analysis can aid in the placement of wide�area replicas or in the choice

��

of an appropriate content distribution network� Finally� our architecture is general to analyzing
the performance of multi�tiered web services� For example� application�speci�c log processing can
be used to reconstruct the breakdown of latency across tiers for communication between a load
balancing switch and a front end web server� or communication between a web server and the storage
tier�database system�

Acknowledgments� Both the tool and the study would not have been possible without generous
help of our HP colleagues� Mike Rodriquez� Steve Yonkaitis� Guy Mathews� Annabelle Eseo� Peter
Haddad� Bob Husted� Norm Follett� Don Reab� and Vincent Rabiller� Their help is highly appreci�
ated� Our special thanks to Claude Villermain who helped to identify and to correct a subtle bug
for dynamic page reconstruction�

References

�� L� Breslau� P� Cao� L� Fan� G� Phillips� and S� Shenker� Web Caching� and Zipf�like Distributions�
Evidence� and Implications� In Proceedings of IEEE INFOCOM� March� �����

�� Candle Corporation� eBusiness Assurance� http���www�candle�com��

�� Cisco DistributedDirector�� http���www�cisco�com��

�� F�D� Smith� F�H� Campos� K� Je�ay� and D� Ott� What TCP�IP Protocol Headers Can Tell Us About
the Web� In Proceedings of ACM SIGMETRICS� Cambridge� May� �����

�� A� Feldmann� BLT� Bi�Layer Tracing of HTTP and TCP�IP� Proceedings of WWW��� May �����

� Y� Fu� L� Cherkasova� W� Tang� A� Vahdat� EtE� Passive End�to�End Internet Service Performance
Monitoring� In Proceedings of USENIX Annual Technical Conference� June ������ Monterey� CA� �����

�� HP Corporation� OpenView Products� Web Transaction Observer� http���www�openview�hp�com��

�� R� Fielding� J� Gettys� J� Mogul� H� Nielsen� and T� Berners�Lee� Hypertext Transfer Protocol �
HTTP����� RFC �
�
 � IETF� June ����� http���www�w��org�Protocols�rfc�
�
�rfc�
�
�html�

�� IBM Co�Tivoli Web Management Solutions� http���www�tivoli�com�products�demos�twsm�html�

��� JavaServlet Technology� http���java�sun�com�products�servlet��

��� JavaServer Pages� http���java�sun�com�products�jsp�technical�html�

��� T� Keeley� Thin� High Performance Computing over the Internet� Invited talk at Eighth Int�l Symp� on
Modeling� Analysis and Simulation of Computer and Telecommunication Systems �MASCOTS�������

��� Keynote Systems� Inc� http���www�keynote�com�

��� B� Krishnamurthy and J� Rexford� Web Protocols and Practice� HTTP����� Networking Protocols�
Caching� and Tra�c Measurement� pp��������� Addison Wesley� �����

��� B� Krishnamurthy and J�Wang� On Network�Aware Clustering of Web Clients� Proceedings of ACM
SIGCOMM ����� August �����

�
� D� Mosberger and T� Jin� Httperf�A Tool for Measuring Web Server Performance� J� of Performance
Evaluation Review� Volume �
� Number �� December �����

��� NetMechanic� Inc� http���www�netmechanics�com�

��� NetQoS� Inc� http���www�netqos�com�

��� Porivo Technologies� Inc� http���www�porivo�com�

��� R� Rajamony� M� Elnozahy� Measuring Client�Perceived Response Times on the WWW� USENIX Sym�
posium on Internet Technologies and Systems �USITS�� March ����� San Francisco�

��� S� Seshan� M� Stemm and R� Katz� SPAND� Shared Passive Network Performance Discovery USENIX
Symposium on Internet Technologies and Systems� �����

��� Mark Stemm� Randy Katz� Srinivasan Seshan� A Network Measurement Architecture for Adaptive Ap�
plications� Proc� of IEEE INFOCOM� �����

��� Software Research Inc� http���www�soft�com�

��� http���www�tcpdump�org�

��

available and high performance network services. As a graduate student he participated in the design and
implementation of the UC Berkeley Network of Workstations project. Some of this work was later
commercialized as part of the Inktomi search engine. At Duke University, A. Vahdat leads the Internet
Systems Software Group (ISSG). A. Vahdat is a winner of the prestigious National Science Foundation
Faculty Development CAREER award and a member of ACM, IEEE, and USENIX.

Presentation Abstract

Web Services are self-contained, self-describing, modular applications that can be published, located, and
invoked across the Web. QoS of a Web Service is its ability to have some level of assurance that its service
and traffic requirements are satisfied in a timely fashion. That means that all the components of a Web
Service need to be considered when evaluating its QoS: backbone, core, access, and applications.

So, what are the criteria (Quality Indicators) of a usable and reliable Web Service? When dealing with QoS,
it is critical to have an end-to-end view of Web Services because they represent a paradigm shift in the way
applications are developed. Modules are no longer modules by one party. Some of the functionality a user
will get by calling Web services. But then, that user will need to be very careful which services are useful
and which are not. Some sites are doing a great service by providing acceptance tests and expected results,
but they still provide a granular view of QoS since they only validate only one component. This presentation
addresses the end-to-end challenges of Web Services QoS.

About the Author

Dr. Aissi has been involved in the development of Safety-Critical Embedded Systems in the R&D, military,
automotive, and wireless appliances for over twelve years. He worked at the University of Michigan, General
Dynamics (M1A2 Abrams Battlefield Tank Division), General Motors (Embedded Controller Excellence
Center), Applied Dynamics International, and Intel Corporation. Dr. Aissi has played several management
and architecture roles at Intel, and he is currently a Sr. Architect at Intel's Corporate Technology Group in
Hillsboro, Oregon, USA and serves as the Intel representative to several Web Services Standards Working
Groups, including the OASIS CPPA and the UDDI Technical Committees. He holds a Ph.D. in Aerospace
Engineering from the University of Michigan.

QW2002 Paper 2I2

Dr. Selim Aissi
(Intel)

Web Services QoS Indicators

1

Page 1

1

Web Services Web Services
QoS IndicatorsQoS Indicators

Selim Aissi, Ph.D.Selim Aissi, Ph.D.

Senior Security Architect Senior Security Architect
Corporate Technology GroupCorporate Technology Group
Intel CorporationIntel Corporation

September 4, 2002September 4, 2002

2

AgendaAgenda
What are Web Services?What are Web Services?

So, what’s new?So, what’s new?

The 7 Web Services Quality IndicatorsThe 7 Web Services Quality Indicators
–– AccessibilityAccessibility
–– AvailabilityAvailability
–– ReliabilityReliability
–– InteroperabilityInteroperability
–– IntegrityIntegrity
–– PerformancePerformance
–– SecuritySecurity
–– RegulatoryRegulatory

Concluding RemarksConcluding Remarks

2

Page 2

3

What are Web Services?What are Web Services?
SelfSelf--describing, selfdescribing, self--contained, modular applicationscontained, modular applications

Platform and implementation neutralPlatform and implementation neutral

Based on open standards for description, discovery, Based on open standards for description, discovery,
and invocationand invocation

Programmatically connect business process togetherProgrammatically connect business process together

Typically transactional, requiring integration with Typically transactional, requiring integration with
existing systemsexisting systems

Applications that interact with each other
using Web standards

Applications that interact with each other Applications that interact with each other
using Web standardsusing Web standards

4

What are Web Services?What are Web Services?
-- Basic Definitions of Core LayersBasic Definitions of Core Layers--

–– Common Internet Transport Protocols.Common Internet Transport Protocols.
–– Although not specifically tied to any transport protocol, Web SeAlthough not specifically tied to any transport protocol, Web Services rvices

build on ubiquitous Internet connectivity and infrastructure to build on ubiquitous Internet connectivity and infrastructure to ensure ensure
nearly universal reach and support. nearly universal reach and support.

–– In particular, Web Services take advantage of HTTP, the same In particular, Web Services take advantage of HTTP, the same
connection protocol used by web servers and browsers.connection protocol used by web servers and browsers.

–– Extensible Markup Language (XML).Extensible Markup Language (XML).
–– XML is a widely accepted format for exchanging data and its XML is a widely accepted format for exchanging data and its

corresponding semantics. corresponding semantics.
–– It is a fundamental building block for nearly every other layer It is a fundamental building block for nearly every other layer in the in the

Web Services stack.Web Services stack.

–– Simple Object Access Protocol (SOAP).Simple Object Access Protocol (SOAP).
–– SOAP is a protocol for messaging and RPCSOAP is a protocol for messaging and RPC--style communication style communication

between applications. between applications.
–– Based on XML and uses common Internet transport protocols like Based on XML and uses common Internet transport protocols like

HTTP to carry its data. HTTP to carry its data.

3

Page 3

5

What are Web Services?What are Web Services?
-- Basic Definitions of Core LayersBasic Definitions of Core Layers--

– Web Services Description Language (WSDL).
– WSDL is an XML-based description of how to connect to a

particular web service.
– A WSDL description abstracts a particular service’s various

connection and messaging protocols into a high-level bundle and
forms a key element of the UDDI directory’s “green pages.” IBM
recently submitted WSDL to the W3C, and it will likely be adopted
in some form.

– Universal Description, Discovery, and Integration (UDDI).
– UDDI represents a set of protocols and a public directory for the

registration and real-time lookup of web services and other
business processes.

– Version 3 of the specification is available

6

What are Web Services?What are Web Services?
-- ExampleExample--

Example Web Services ArchitectureExample Web Services Architecture

4

Page 4

7

What are Web Services?What are Web Services?

So, what’s new?So, what’s new?

The 7 Web Services Quality IndicatorsThe 7 Web Services Quality Indicators
–– AccessibilityAccessibility
–– AvailabilityAvailability
–– ReliabilityReliability
–– InteroperabilityInteroperability
–– IntegrityIntegrity
–– PerformancePerformance
–– SecuritySecurity
–– RegulatoryRegulatory

Concluding RemarksConcluding Remarks

AgendaAgenda

8

So, what’s new? So, what’s new?
-- continuedcontinued--

Web Services StandardizesWeb Services Standardizes
–– Data definition, exchange, transformation (XML)Data definition, exchange, transformation (XML)
–– Remote procedure call protocol (SOAP)Remote procedure call protocol (SOAP)
–– Description of Web Services (WSDL)Description of Web Services (WSDL)
–– Methods of publishing Web Services (UDDI)Methods of publishing Web Services (UDDI)

Based on realistic assumptions of how IT operatesBased on realistic assumptions of how IT operates
–– Heterogeneous Heterogeneous -- different languages, data structures, different languages, data structures,

operating systems and hardwareoperating systems and hardware
–– Loosely coupled Loosely coupled -- asynchronous, messageasynchronous, message--based based

integration between applicationsintegration between applications

5

Page 5

9

What are Web Services?What are Web Services?

So, what’s new?So, what’s new?

The 8 Web Services Quality IndicatorsThe 8 Web Services Quality Indicators
–– AccessibilityAccessibility
–– AvailabilityAvailability
–– ReliabilityReliability
–– InteroperabilityInteroperability
–– IntegrityIntegrity
–– PerformancePerformance
–– SecuritySecurity
–– RegulatoryRegulatory

Concluding RemarksConcluding Remarks

AgendaAgenda

10

AccessibilityAccessibility
Accessibility is the QoS Indicator of a service that Accessibility is the QoS Indicator of a service that
represents the represents the degree it is capable of serving a Web degree it is capable of serving a Web
service requestservice request. .

It may be expressed as a probability measure It may be expressed as a probability measure
denoting the success rate or chance of a successful denoting the success rate or chance of a successful
service instantiation at a point in time. service instantiation at a point in time.

There could be situations when a Web Service is There could be situations when a Web Service is
available but not accessible. available but not accessible.

High accessibility of a Web Service can be achieved High accessibility of a Web Service can be achieved
by building highly scalable systems. by building highly scalable systems.

ScalabilityScalability refers to the ability to consistently serve refers to the ability to consistently serve
the requests despite variations in the volume of the requests despite variations in the volume of
requests. requests.

6

Page 6

11

AvailabilityAvailability
Availability is the QoS Indicator of whether the Web Availability is the QoS Indicator of whether the Web
Service is present or ready for immediate use. Service is present or ready for immediate use.

Availability represents the probability that a service is Availability represents the probability that a service is
available. available.

Larger values represent that the service is always ready Larger values represent that the service is always ready
to use while smaller values indicate unpredictability of to use while smaller values indicate unpredictability of
whether the service will be available at a particular time. whether the service will be available at a particular time.

Also associated with availability is TimeAlso associated with availability is Time--ToTo--Repair Repair
(TTR). (TTR). TTRTTR represents the time it takes to repair a represents the time it takes to repair a
service that has failed. service that has failed.

Ideally smaller values of TTR are desirable. Ideally smaller values of TTR are desirable.

12

ReliabilityReliability
Reliability is the QoS Indicator of a Web Service Reliability is the QoS Indicator of a Web Service
that represents that represents the degree of being capable of the degree of being capable of
maintaining the service and service qualitymaintaining the service and service quality. .

The number of failures per month or year The number of failures per month or year
represents a measure of reliability of a Web represents a measure of reliability of a Web
Service. Service.

In other words, In other words, reliabilityreliability refers to the refers to the assured and assured and
ordered deliveryordered delivery for messages being sent and for messages being sent and
received by service requestors and service received by service requestors and service
providers. providers.

7

Page 7

13

InteroperabilityInteroperability
•• Interoperability is the QoS Indicator of whether a Web Service cInteroperability is the QoS Indicator of whether a Web Service can an

consume services derived from nonconsume services derived from non--homogeneous applications.homogeneous applications.

•• Current implementation of standards varies enough to make Current implementation of standards varies enough to make
heterogeneous solutions difficult.heterogeneous solutions difficult.

•• WSWS--I (Web Services Interoperability) Organization is about to I (Web Services Interoperability) Organization is about to
publish various Interoperability Profiles: Basic, Security, etc.publish various Interoperability Profiles: Basic, Security, etc.

•• Issues to address in design and verification/validation:Issues to address in design and verification/validation:
•• What does “soap:actor” mean on SOAP headers?What does “soap:actor” mean on SOAP headers?
•• “SOAPAction” HTTP header“SOAPAction” HTTP header
•• FaultFault--propagation (semantics, “soap fault with HTTP status 200propagation (semantics, “soap fault with HTTP status 200--

500”, etc.)500”, etc.)
•• Custom fault codes (remember: SOAP allows for the definition of Custom fault codes (remember: SOAP allows for the definition of

custom SOAP fault codes)custom SOAP fault codes)
•• IntermediariesIntermediaries

14

IntegrityIntegrity
Integrity is the QoS Indicator of how a Web Service Integrity is the QoS Indicator of how a Web Service
maintains the correctness of the interaction in respect maintains the correctness of the interaction in respect
to the source. to the source.

Proper execution of Web Service transactions will Proper execution of Web Service transactions will
provide the correctness of interaction. provide the correctness of interaction.

A A transactiontransaction refers to a sequence of activities to be refers to a sequence of activities to be
treated as a single unit of work. treated as a single unit of work.

All the activities have to be completed to make the All the activities have to be completed to make the
transaction successful. transaction successful.

When a transaction does not complete, all the changes When a transaction does not complete, all the changes
made are rolled back. made are rolled back.

8

Page 8

15

PerformancePerformance
Performance is the QoS Indicator of Web Service, Performance is the QoS Indicator of Web Service,
which is measured in terms of throughput and which is measured in terms of throughput and
latency. latency.

Higher throughput and lower latency values represent Higher throughput and lower latency values represent
good performance of a Web Service. good performance of a Web Service.

ThroughputThroughput represents the number of Web Service represents the number of Web Service
requests served at a given time period. requests served at a given time period.

LatencyLatency is the roundis the round--trip time between sending a trip time between sending a
request and receiving the response. request and receiving the response.

16

SecuritySecurity

Security is the Security is the QoS Indicator QoS Indicator of the Web Service of of the Web Service of
providing confidentiality and nonproviding confidentiality and non--repudiation by repudiation by
authenticating the parties involved, encrypting authenticating the parties involved, encrypting
messages, and providing access control. messages, and providing access control.

Security has added importance because Web Security has added importance because Web
Service invocation occurs over the public Internet. Service invocation occurs over the public Internet.

The service provider can have different approaches The service provider can have different approaches
and levels of providing security depending on the and levels of providing security depending on the
service requestor. service requestor.

9

Page 9

17

RegulatoryRegulatory
Regulatory is the QoS IndicatorRegulatory is the QoS Indicator of the Web Service of the Web Service
in conformance with the rules, the law, compliance in conformance with the rules, the law, compliance
with standards, and the established service level with standards, and the established service level
agreement. agreement.

Web Services use many standards such as SOAP, Web Services use many standards such as SOAP,
UDDI, and WSDL. UDDI, and WSDL.

Strict adherence to correct versions of standards Strict adherence to correct versions of standards
(e.g., SOAP V1.2) by service providers is necessary (e.g., SOAP V1.2) by service providers is necessary
for proper invocation of Web Services by service for proper invocation of Web Services by service
requestors. requestors.

18

What are Web Services?What are Web Services?

So, what’s new?So, what’s new?

The 7 Web Services Quality IndicatorsThe 7 Web Services Quality Indicators
–– AccessibilityAccessibility
–– AvailabilityAvailability
–– ReliabilityReliability
–– InteroperabilityInteroperability
–– IntegrityIntegrity
–– PerformancePerformance
–– SecuritySecurity
–– RegulatoryRegulatory

Concluding RemarksConcluding Remarks

AgendaAgenda

10

Page 10

19

Concluding RemarksConcluding Remarks
8 main Web Services QoS indicators are 8 main Web Services QoS indicators are
describeddescribed

Accessibility, availability, reliability, Accessibility, availability, reliability,
interoperability, integrity, performance, interoperability, integrity, performance,
security, and regulatory.security, and regulatory.

Indicators need to be addressed in the Indicators need to be addressed in the
implementation and implementation and
verification/validation of Web Service verification/validation of Web Service
applications. applications.

20

References:References:
www.webservices.orgwww.webservices.org
wwwwww--106.ibm.com/developerworks/106.ibm.com/developerworks/
msdn.microsoft.com/library/msdn.microsoft.com/library/

Thank you!Thank you!

Selim Aissi, Ph.D.Selim Aissi, Ph.D.

selim.aissi@intel.comselim.aissi@intel.com

Key Points

Web site functions represent a series of process steps
These process steps may be defined, tested and scored
Scores may be used to improve web site performance

Presentation Abstract

The safeshoppingnetwork.com establishes consumer based standards for web site functionality (security,
privacy, safety, usability, performance and availability). These standards are then used to develop and adopt
test software capable of delivering scores to data bases. Web sites are then ranked based on the published
scores thus providing the consumer with guidance in each tested area. For the merchant, the scores along
with published web-wide statistics (over 1000 cases) provide guidance for improvement.

This paper explores the standards, test strategies and software, discusses resulting statistical distributions
and provides guidance for web site quality improvement.

The need to explore configuration control as a key strategy to reducing variation is also discussed.

About the Author

Dr. John M. Ryan one of the company's co-founders and serves as the COO and Senior Vice President of
Test Technology. Dr. Ryan's extensive background in statistics, network controlled quality and highly
efficient flow systems led to his development of the company's Internet based across-the-web test
technologies. This is Dr. Ryan's second Internet start-up having served as president of the Marine Network.

Dr. John Ryan has previously held a number of international management positions with Intel, Seagate
Technology and Read-Rite Corporation and as a private consultant where he has developed and
implemented world-class manufacturing and quality systems throughout Asia. Dr. Ryan is a frequently
published author in several quality, factory of the future and software journals.

QW2002 Paper 3I1

Dr. John M. Ryan
(Safe Shopping Network)

Measuring and Improving Web Site Quality: A Consumer Focused System

1

QW2002 Paper 3I1
Dr. John M. Ryan

(Safe Shopping Network Test Development Center)

Measuring and Improving Web Site Quality:
A Consumer Focused System

www.SafeShoppingNetwork.com
Know Before You Go!

www.SafeShoppingNetwork.com
Know Before You Go!

2

www.SafeShoppingNetwork.com
Know Before You Go!

Scoring Standards (100 Points Each)

Safety: Cart functionality, product delivery, security

Performance: Download time, link validity, HTML validity

Usability: Homepage understandability/eye appeal/balance,
content/product page layouts, customer service,
order processing.

Privacy Policy: Exists, not rent/sell/give individual info,
data collected, opt-out, child protection, etc.

Security: Vulnerability Scanning (1700 items by QualysGuard)

Availability: Page downloads/response time 30 day
monitor/15 minute intervals

www.SafeShoppingNetwork.com
Know Before You Go!

3

www.SafeShoppingNetwork.com
Know Before You Go!

For the Weight Loss category (selected from the “Health” list,
the sites are ranked by the overall scores each web site has
achieved. In this case, Lose Weight & Save has topped the list.

Higher rankings on the list generally means that this web site
will receive more hits, more traffic and higher sales – based
on the quality of the web site (not CPM/CPC or the amount of
money spent on securing other search engine positioning).

The Importance of Web Site Quality
Used as a Ranking Mechanism

Quality = Sales = ProfitQuality = Sales = Profit

www.SafeShoppingNetwork.com
Know Before You Go!

4

www.SafeShoppingNetwork.com
Know Before You Go!

www.SafeShoppingNetwork.com
Know Before You Go!

5

www.SafeShoppingNetwork.com
Know Before You Go!

www.SafeShoppingNetwork.com
Know Before You Go!

6

www.SafeShoppingNetwork.com
Know Before You Go!

USABILITY PERFORMANCE SAFETY PRIVACY
USABILITY 1.00 .09 .41 .25
PERFORMANCE 1.00 .15 -.04
SAFETY 1.00 .21
PRIVACY 1.00

Correlations Among Major Test Factors

www.SafeShoppingNetwork.com
Know Before You Go!

Performance Scores Correlation Analysis

“Performance” is tested across-the-web by software.
Three items are explored and scored by the software:
HTML, Download time and broken (or unbroken) links.

As expected all three of these items correlated significantly
with each other and correlated very positively with the
overall Web Site Performance Score.

All three scores correlate significantly with the Overall Web
Site Score (> . 41).

7

www.SafeShoppingNetwork.com
Know Before You Go!

•First Impression, Balance and Eye Appeal form a significant “Visual” cluster. This
can be explained in that all three items are related to how clean and marketable a web
site looks when visited.

• Customer Contact items form a cluster separate from other Usability scores. Web
sites that do not provide clear and multiple ways for customers to contact the e-
commerce business management, get low scores.

• If the pages are set up in a clear manner, they tend to be easy to navigate.

• Web sites that provide a diverse selection of product types and strong visual appeal
tend to get high scores on Usability. Apparently, having a good site designer pays
off.

Usability Correlation Analysis

www.SafeShoppingNetwork.com
Know Before You Go!

Safety Score Correlation Analysis

“Safety” is tested across-the-web by our patented software.
Three items are explored and scored by the Safety Test:
Availability of E-commerce shippers available, SSL enabled vs
un-enabled, and the addition of shopping cart costs.

As expected all three of these items correlated significantly with
each other (> .73) and correlated very positively (> .71)with the
overall Web Site Safety Score.

All three scores also correlate highly (> .62) with the Overall
Web Site Score.

8

www.SafeShoppingNetwork.com
Know Before You Go!

Privacy Policy Correlation Analysis
(Continuously improving the standards, tests and configuration requirements)

The Privacy Policy scores were analyzed using pair-wise deletion due to the
large number of sites that had no privacy policy published. Excluding the
standard which awards points for a statement regarding child protection, all
inter-correlation coefficients exceeded + . 36 with most well above the + .49
level.

We would expect the inclusion of a Privacy Policy to form a strong correlation
cluster and with the exception of the standard which awards points for the
inclusion of a child protection statement, the group did form a cluster.

Removing the requirement for a child protection statement will be studied
further by the Safe Shopping Network Test Technology Center.

www.SafeShoppingNetwork.com
Know Before You Go!

Early Conclusions From the Correlation Study

There are a number of predicted score cluster components
operating within the overall scoring scheme employed by Safe
Shopping Network test strategies. These clusters will be further
studied to search for improved test strengthening schemes.

It appears that the child protection standard included as part of
the Privacy Policy scoring should be studied further for possible
elimination.

9

Improving Web Site Quality

Test scores in hand, the web site manager is armed with
enough information to set priorities and begin improving
the site.

A comparison of web site scores to established data.

www.SafeShoppingNetwork.com
Know Before You Go!

Web Link 0 22.31 25 20 25 25

Performance

Web load 0 38.38 50 30 32.5 50

25

Total Performance 0 82.89 100 75 80 95

Cart Delivery 0 15.16 20 0 20 20
Safety

Cart Function 0 19.16 45 12.5 15 35

Total Safety 0 61.01 100 75 45 70 90

20

40

Web HTML 0 22.18 25 20 25 25

85

20

20

Cart Security 0 26.69 35 35 25 35 35

UPS Average 0 75.6 100 79.7 67.5 80 86.67

Category Item Tested
Score
Low

Score
Avg

Score
High

Site
Scores

Lower
Quartile Median

Upper
Quartile

10

www.SafeShoppingNetwork.com
Know Before You Go!

Summary

A. Set the standards
B. Test the sites
C. Improve the standards and test technology
D. Provide web sites with the tools to improve quality
E. Develop new low cost test suite software
F. Allow few configuration alternatives which violate quality

standards.

www.SafeShoppingNetwork.com
Know Before You Go!

The Safe Shopping Network is currently establishing
partnerships with:

A. Appropriate test software and hardware companies.

B. Interested in partnerships with merchant portal
companies in a revenue sharing agreement.

Please leave your card if your company is in a position to
discuss a partnership.

Key Points

Modern websites are very complex, with many new kinds of objects.
InBrowser testing -- done in the browser context -- is very simple.
Although certain limits exist, InBrowser testing has many compelling features.

Presentation Abstract

Web sites are becoming increasingly more complex due to:
1.The inclusion of (e.g.) Flash objects, Java Applets, XML, JavaScript.
2. The increased use of Multiple Windows, Secure Log-Ins, Message Pop-ups and Web-launched
applications. Testing these sites requires tools that can intuitively and accurately adapt to such complexity.

The first part of this talk will address many of the difficulties in testing a modern web site from the
perspective of a professional web site quality tester. The second part will discuss the 'Browser-centric' test
tool as a solution to some of these difficulties. The main focus will be on the qualities that a test tool needs to
meet the myriad of requirements that the web site tester is faced with.

About the Author

Dr. Edward Miller is Chairman and President of Software Research, Inc., San Francisco, California, and
Chief Technical Architect for software test tools development and software engineering quality questions. Dr.
Miller has worked in the software quality management field for 25 years in a variety of capacities, and has
been involved in the development of families of automated software, analysis and Web quality tools. He was
chairman of the 1985 1st International Conference on Computer Workstations, and has participated in IEEE
conference organizing activities for many years. He is the Chairman of the Quality Week Conferences since
1988. He is the author of Software Testing and Validation Techniques, an IEEE Computer Society Press
tutorial text. Dr. Miller received his Ph.D. (Electrical Engineering) degree from the University of Maryland, an
M.S. (Applied Mathematics) degree from the University of Colorado, and a BSEE from Iowa State University.

QWE2002 Paper 3I2

Dr. Edward Miller
(eValid, Inc.)

InBrowser WebSite Testing: The Client-Side Approach

1

eValid, Inc.

InBrowser WebSite Testing:
The Client-Side Approach

Dr. Edward Miller

eValid, Inc.
901 Minnesota Street

San Francisco, CA 94107 USA
Email: miller@soft.com

eValid, Inc.

Presentation Outline
� Overview of Technology
� General Operation Description
� Validation & Verification Modes
� Timing and Tuning Process
� Load Imposition Mode
� SiteMap Mode
� Performance Considerations

2

eValid, Inc.

Most Common Problems in WebSites
� Quality/Content

Broken Links
Missing/Broken Components

� Performance
Too-Slow Download
Incorrect Download

� Interaction
Failed 1st Layer Transactions

Login/Authentication
Specialized Controls

Delayed nth Tier Transactions

eValid, Inc.

Alternative Technologies
� Windows Desktop

Client/Server Testing
Windows Events
Browser is "opaque"

� Unix Xwindows
Client/Server Testing
X-Display Events
Browser is "opaque"

� Browser Internal
Everything is open

3

eValid, Inc.

eValid, Inc.

Windows Technology Options
� Windows Desktop

– Operates from Windows Desktop Event Loop
– GUI objects partially opaque

� HTTP Protocol
– Records outbound URLs and response pages

� Browser Proxy
– Records activity in/out from browser on HTML

� InBrowser Technology
– Runs inside IE-compatible browser
– Full context
– Realistic timings

4

eValid, Inc.

eValid, Inc.

eValid Technology Testing Pros/Cons
� Advantages

User View
Realistic
Natural operation
Accurate timings

� Disadvantages
Browser Variations
UNIX platform support

5

eValid, Inc.

eValid, Inc.

eValid Characteristics

� IE Base (IE 5.5+)
� NT/2000/XP
� Simple Script Language
� Point and Click Interface
� Online Documentation
� Multiple Copy Playback
� Built in Spider

6

eValid, Inc.

eValid Opening Menu & Pulldown

eValid, Inc.

Record/Play Preferences Menu

7

eValid, Inc.

Advanced Preferences Meun

eValid, Inc.

eValid Functional Testing
Record/Play Pulldown

8

eValid, Inc.

eValid Documentation/Support
Pulldown

eValid, Inc.

Recording Modes
� Navigation (including Frames)
� Modal Dialog
� Applet
� Application Mode
� Dependent Sub-Window
� Independent Sub-Window

9

eValid, Inc.

Example Script Window

eValid, Inc.

Modal Dialog Recording
� Modal Dialog Has Screen Focus
� Access Recording via Script Window
� Pulldown for Allowable Input Sequences
� Extrinsic Commands on Same Window

10

eValid, Inc.

Sample of Modal Dialog Recording

eValid, Inc.

Validation Modes
� Text Fragments
� Images, Links, Objects
� Image Part (with Synchronization)
� Document Properties
� Table Cells
� Element Ids (ID Tags)
� Applets (Size, Identification)

11

eValid, Inc.

Example Message/Error Log

eValid, Inc.

Performance Timing/Tuning
� Single and Multiple Download Timings
� Overall User-level Response Times
� Perceived User-level Response Times,

Thresholds
� Web Effects
� Page Element Timings (Detailed

Timing)

12

eValid, Inc.

Example Detailed Event Log

eValid, Inc.

Example Event Log in HTML

13

eValid, Inc.

Example Event Log as Spread
Sheet

eValid, Inc.

Playback Report Menu

14

eValid, Inc.

Playback Summary

eValid, Inc.

Alernative Playback Modes
� Play Multiple
� Play Forever
� CallScript/GoScript
� OnErrorCallScript/OnErrorGoScript
� Parameter Passing
� Limitations
� Batch Mode Interface

15

eValid, Inc.

Detailed Timing Data Collection
� Cache Disabled
� Detailed Timing Enabled
� Resolution 1.0 msec.
� Download Time and Size From Internals
� Base Page
� CSS’s
� IMG’s
� Final Page Rendering

eValid, Inc.

Sample “Stack Chart” for Timing/Tuning

16

eValid, Inc.

eValid, Inc.

Dynamic Testing: Unsolved
Problems

� Repeatability With Drags
� Databases that “Remember”

(Initialization)
� Transient Page Effects
� Multi-Media Displays (Except Last

Page)
� “Flash” Media Presentations
� Asynchronous Interactions

17

eValid, Inc.

eValid, Inc.

Alarm/Event Timing
� Overall Timer

Total Time
Total Byte Counts

� Page Timing
Base Page
LINKed Files

JavaScript (*js)
Cascading Style Sheets (*css)

Images

18

eValid, Inc.

Example Alarm Response

eValid, Inc.

Load and Capacity
Checking/Testing

� Load Imposition (Client Side)
� Load Measurement (Server Side)
� User Scenarios (Abstract User)
� Realism
� Bandwidth Issues
� Client Side Machine Capacity

19

eValid, Inc.

Sample Create LoadTest Setup

eValid, Inc.

Completed LoadTest Page

20

eValid, Inc.

User Class Definition/Use
� Artificial “User Class”
� Single *evs file
� Variable Delay Multiplier
� Overall Test Result Timing Aggretation
� No Restrictions on Number of Classes
� No Restrictions on Composition
� Infinite Capability to Emulate Real

Users

eValid, Inc.

Machine Capacity Issues
� RAM
� Virtual Memory
� Heap Space
� Machine Bus Speed
� LAN Speed
� Display Driver Memory
� Other

21

eValid, Inc.

Typical Capacity
� 500+ MHz P-III
� 512 MB RAM
� 64 MB RAM in Video Card
� Heap Space Adjusted
� Virtual Memory Adjusted
� Latest OS Patches
� Result: 75-125 eValid Instances per Machine
� Multiple-Machine Playback Option

eValid, Inc.

22

eValid, Inc.

eValid, Inc.

Example LoadTest Interim Report

23

eValid, Inc.

Example LoadTest Final Report

eValid, Inc.

Sample Multi-User Load Scenario
Chart

24

eValid, Inc.

Conclusions & Recommendations
� Nature of WebSite Testing
� Complexity Required
� Realism Requirement

Key Points

Presents an outline of potential problems testers can find in ecommerce sites
Applies the outline to shopping cart functionality--identifies 300+ specific risks
Illustrates one common approach to risk-based testing

Presentation Abstract

Imagine being asked to test a website's shopping cart. If you hadn't tested one before, where would you
start? What experience would you draw on? Where would you look for more information? Even very
experienced testers have blind spots when they try to generate test ideas for an application that they have
not tested. This session presents a simple outline that will help you generate test ideas and limit your blind
spots. The outline is the result of a year's research on classifying e-commerce related failures and risks. The
result has 60 top-level categories and examples of errors (potential issues to test for) under most categories.
In many cases, we also link to examples of e-commerce defects that have been publicized in the press.

Using the list, you could pick a category of interest (such as accessibility or software upgrade), read
descriptions of several types of problems that fit within that category, and so identify a few issues that would
be appropriate to test for in your application. Based on feedback to the authors of Testing Computer
Software, we believe that many testers will be able to use this list to identify potential problems that they
would otherwise have missed.

We intend the outline to serve similar functions to Kaner / Falk / Nguyen's bug appendix in Testing
Computer Software (TCS): help testers generate ideas; help test plan inspectors check a large set of tests
for thoroughness and coverage; help testers and other stakeholders identify risks during discussions of
prioritizing the testing effort. Kaner expects this to become the successor to the TCS list, and we have
structured the outline (e.g. more top-level categories and fewer levels) based on feedback from many TCS
readers.

About the Author

Giri Vijayaraghavan, giirii@hotmail.com, www.girivijay.com, is a Master's student in Computer Science at
Florida Institute of Technology. This paper summarizes his thesis research on "E-commerce risks and
failures.". Giri holds a Bachelors degree in Computer Science and Engineering and has worked as Research
Assistant in various funded projects of IBM and Texas Instruments and as an intern at Fidelity Investments-
eBusiness.

Cem Kaner, J.D., Ph.D., kaner@kaner.com, www.kaner.com, is Professor of Computer Sciences at Florida
Institute of Technology. He is senior author of Testing Computer Software, of Lessons Learned in Software
Testing, and of Bad Software: What To Do When Software Fails.

QW2002 Paper 4I1

Giri Vijayaraghavan and Cem Kaner
(Florida Tech Dept of Computer Sciences)

Bugs in Your Shopping Cart: A Taxonomy

Bugs in Your Shopping Cart:Bugs in Your Shopping Cart:
A TaxonomyA Taxonomy

Giri Vijayaraghavan
and Cem Kaner

International Software Quality Week
September, 2002

2Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Challenges of EChallenges of E--Commerce TestingCommerce Testing

• Global market: Many languages, currencies and cultural
norms, global shipping, different legal systems (conflicting
advertising / sales laws), etc.

• Multiple platforms: End-to-end, a single transaction
might involve several systems on several continents,
running on different processor and O/S families.

• Multiple clients: Client operating systems, browsers,
peripherals, and ever-so-many different utilities.

• Multiple customer profiles: The user profile varies
greatly by gender, age, language, wealth, etc.

• Multiple partner apps. The application under test relies
on services provided by third parties, which are totally
outside the application developer’s control. For example,
most of the credit card processing steps are done by the
credit card company’s system.

3Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Challenges of EChallenges of E--Commerce TestingCommerce Testing

• Components from strangers. Third party components
allow programmers to snap together large programs (or
make big changes) quickly. Just because the components
were written by someone else doesn’t mean they’re
reliable.

• Multiple clocks, no standard time. There is no shared
reference clock and so events can occur, or appear to
occur, out of sequence.

• Random delays complicate timing. Different services
will be provided at different speeds (and end user client(s)
will receive and respond at varying speeds). Race
conditions and other time-related problems more likely.

• Rapid change. Rapid, iterative development. Constantly
changing UI.

4Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Challenges of EChallenges of E--Commerce TestingCommerce Testing

Most people coming to
e-commerce testing will face
a steep, multi-dimensional

learning curve.

5Copyright © Cem Kaner, 2000-2002. Quality Week 2002

The Bug TaxonomyThe Bug Taxonomy

• An outline that categorizes and lists a large number of potential
bugs.

• The tester who uses the taxonomy can sample from the list,
selecting a potential problem for analysis.
– The tester’s question is whether the software under test could

have a bug analogous to the one from the list.
– If so, the next question is what type of test would expose this

type of bug.
• A good taxonomy

– Has enough detail for a motivated, intelligent newcomer to the
area to be able to understand it.

– Is broad enough to raise at least a few issues new to someone
with moderate experience in the area.

• A good taxonomy is a useful tool for informing a tester who is
new to the area about the types of problems to be tested for.

6Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Using A Bug TaxonomyUsing A Bug Taxonomy

• Kaner published an extensive taxonomy (over 400 bugs)
in 1988 (updated by Kaner, Falk & Nguyen, 1993) and
was frequently contacted by readers who used the list.
Based on that feedback, we expect the following uses of
the Shopping Cart list:
– Tester unfamiliar with an aspect of the program looks for

potential failure modes in the risk list, then explores the
program looking for those types of failures.

– Tester who has run out of good test ideas looks for
plausible failure modes in the risk list, then creates tests
looking for those types of failures.

7Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Using A Bug TaxonomyUsing A Bug Taxonomy

– Test manager, training new testers, walks with the group
through selected examples from the risk list in order to
convey to the trainees the breadth of their work.

– Tester, auditing a test plan, samples from the taxonomy,
selects plausible failures, then checks the test plan to
determine what tests (if any) could have detected the
failure. If none, the test plan has a hole.

8Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Relation to FMEARelation to FMEA

• Failure Mode and Effects Analysis involves a multi-
disciplinary evaluation of a product.

• The analysts identify the functions of the product, the
ways they could fail (the failure modes), the potential
impacts and severity of those failures, likelihood of the
failures and potential causes of them.

• http://www.fmeca.com/ffmethod/fmeaproc.htm
• Given this information, the analysts (or management)

prioritize their research.
• This is strongly analogous to risk-based testing, in which

tests are designed to check whether certain potential bugs
are actually in the product, and are then prioritized if there
isn’t enough time to run them all.

9Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Categorizing the RisksCategorizing the Risks

We put together a list of about 60 categories of potential
bugs, such as performance, understandability,
accessability. Within a given category, we list

– Potential failures;
– Information about causes of the failures, if we have that

information;
– References; and
– Examples of actual failures within the category’s theme,

that were reported in the trade press.

10Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Categorizing the RisksCategorizing the Risks----ExampleExample

Cache Server failure
Cache servers are used as intermediaries for web requests and retains
previously requested copies of resources. The use of a cache server is to
handle common requests locally and improve site performance by better
speed up and reduced overhead on the web servers.
The common issues discussed here are can be found in more detail in
“Known HTTP Proxy/Caching Problems [1]”

Cache may return an outdated shopping cart document if the header is
misrepresented or last modified date is omitted
If shopping cart content is dynamic in nature, then cache server will not be able
to serve new content
If caching proxy server fails during shopping session, sometimes the browser
fails to bypass server and may need to be reconfigured and shopping cart state
may be lost

11Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Categorizing the RisksCategorizing the Risks----ExampleExample

Cache Server failure (continued)
If shopping cart uses any form of encoded response, the proxy might
cache it and send it to a non-encoding capable client
Sensitive shopping cart content may get cached by Interception proxies
that break client cache directives like "No cache" or "Must revalidate"
The cache server may end up blocking some methods used by the
shopping cart software, because the method contained in the request is
unknown to the proxy so instead it generates the default HTTP 501
Error as a response.
Shopping carts that use IP address to track state of the cart, may fail
because Interception proxies at ISP level may alter client's IP to that of
the proxy itself
A caching proxy mesh might break HTTP content serialization resulting
in the user getting older content when the shopping cart page loads

12Copyright © Cem Kaner, 2000-2002. Quality Week 2002

Categorizing the RisksCategorizing the Risks----ExampleExample

Cache Server failure (continued)
Examples of related bugs and other known issues

Is Web caching bad for the Internet?
http://www.cnn.com/2000/TECH/computing/04/18/web.cache.idg/
Known HTTP Proxy/Caching Problems
http://www.wrec.org/Drafts/draft-ietf-wrec-known-prob-03.txt

13Copyright © Cem Kaner, 2000-2002. Quality Week 2002

How We Developed the ListHow We Developed the List

• Brainstormed a first draft top-level list (we thank James
Bach for his assistance)

• Searched electronic bug databases (such as bugnet.com
and cnet.com) for examples

• Searched open source software for bug databases for
specific products. These gave us examples and
indications of the types of bugs possible

• Brainstormed additional types of problems
• Circulated the list and the outline for peer review

14Copyright © Cem Kaner, 2000-2002. Quality Week 2002

What’s Coming SoonWhat’s Coming Soon

• Current taxonomy is a subset of the full set for Shopping
Cart
– We have rougher but extensive draft material for about 20

more categories. This is available on request to people
who have a legitimate, immediate need.

– A more polished version of these, and a few others, will
be in Giri Vijayaraghavan’s M.Sc. thesis, which will
probably be completed in December 2002. Check for it at
www.testingeducation.org in January 2003.

15Copyright © Cem Kaner, 2000-2002. Quality Week 2002

ReferencesReferences

• S. Amland, "Risk-Based Testing and Metrics," EuroSTAR
99, Barcelona, Spain, 1999.

• C. Dilley, "Known HTTP Proxy/Caching Problems," May
14, 2001

• A. Biraj Rath, NIIC (USA), Inc., P. M. Raj Nath, Microsoft
Corporation, P. M. Mukesh Agarwal, Microsoft
Corporation, P. M. Jas Lamba, NIIC (USA), Inc., R.
George Gianopoulos, Microsoft Corporation, and C.
Laura Hargrave, Microsoft Corporation, "Testing
Process," July 2000

• Kaner, Falk & Nguyen, 1993 “Testing Computer
Software” 2nd Edition

• FMECA, "FMEA Methodology.”
http://www.fmeca.com/ffmethod/definiti.htm

Bugs in your shopping cart: A Taxonomy

Giri Vijayaraghavan
Cem Kaner
Florida Institute of Technology

Presented at the International Software Quality Week, San Francisco, CA,
September 2002.

Introduction
Imagine being asked to test a web site's shopping cart. If you hadn't tested one before,
where would you start? What experience would you draw on? Where would you look for
more information? Even very experienced testers have blind spots when they try to
generate test ideas for an application that they have not tested. This paper presents a
simple outline that will help you generate test ideas and limit your blind spots. The
outline is the result of a year's research on classifying e-commerce-related failures and
risks. The result has 60 top-level categories and examples of errors (potential issues to
test for) under most categories. In many cases, we also link to examples of e-commerce
defects that have been publicized in the press.

Goals of this outline
Using the list, you could pick a category of interest (such as accessibility or software
upgrade), read descriptions of several types of problems that fit within that category, and
so identify a few issues that would be appropriate to test for in your application. Based on
feedback to the authors of Testing Computer Software, we believe that many testers will
be able to use this list to identify potential problems that they would otherwise have
missed.
We intend the outline to serve similar functions to Kaner / Falk / Nguyen's bug appendix
in Testing Computer Software (TCS):

 Help testers generate ideas;
 Help test plan inspectors check a set of tests for thoroughness and coverage;
 Help testers and other stakeholders identify risks during discussions of

prioritizing the testing effort.
Kaner expects this to become the successor to the TCS list, and we have structured the
outline (e.g. more top-level categories and fewer levels) based on feedback from many
TCS readers

The nature of e-commerce testing

“E-commerce testing involves testing high value, high risk, and high performance
business critical systems”[1]. The cost of a failure in an e-commerce system is hence
formidable and generally the testing process involves considerable effort in designing and
integrating an effective risk management process into the testing to avoid or minimize the
cost of failures.

The distributed nature of the underlying e-commerce applications also adds to the
complexity in developing a comprehensive risk based testing approach because it makes
it difficult to exactly pinpoint where the risk of failure exists. Which application failed?
Where did it fail? And when did it fail? E-commerce testing only involves testing the
individual underlying components and web applications for potential risks and failures,
along with the e-commerce “web site” as a whole.

A bug in an underlying vendor specific component such as a Web server, transaction
server or database system may be missed or ignored because the focus of testing might be
on the site as a whole or on the code specifically written for the web application.
Unfortunately, an inconspicuous bug in a third-party component might cause a serious
failure when the system is in production, leading to bad publicity, and lost reputation,
customer confidence, and revenue.

The problem of transitioning to e-commerce testing from other
platforms

E-commerce testing involves numerous challenges, such as new or unfamiliar
technologies, or technology-driven business processes or logic that the tester doesn’t
understand how to test. Learning the necessary information or skills may be complex but
can be simplified with strategies for quickly generating test ideas or test plans that
address potential risks. We believe that an outline of well-researched potential failures
can help flatten the steep learning curve involved with e-commerce testing.

It may be worthwhile for any tester who is moving into the e-commerce-testing arena to
remember the following issues:

 “Test Global and Test Distributed”: E-commerce systems are truly global in

spirit and structure. The different underlying systems may be on different
continents, but they appear to integrate seamlessly over large, distributed and
non-homogenous business networks and other communication channels. Risk
analysis and test planning should allow for potential problems caused, for
example, by a side effect of a software upgrade on a transaction server
physically located in Holland on a transaction taking place between a
customer in Korea and a retailer in the US.

 3 Ms where 1st M: Multiple Platform 2nd M: Multiple Clients (Browsers) 3rd

M: Multiple customer profiles: This will be a considerable change for a tester
who comes to e-commerce testing from other traditional testing fields. In the
stand-alone or older client servers, the user’s platform, the client type and the
nature of the user might be well known to the developers and testers. E-
commerce systems involve more uncharted territory, with greater diversity of
operating systems, browsers and other system software and hardware.
The user profile varies greatly in terms of age, gender, taste and usage-testing
business software has become as configurationally complex as testing

consumer software, but with more serious consequences in the event of
failure.

 Learning to count in “web years”: Changes and updates are inherent in E-
commerce sites. Content and target platforms change quickly, without much
time for planning and regression testing of each change. This can be
challenging for testers coming from traditional business applications. The e-
commerce tester must learn to generate effective sets of test ideas rapidly.

 The risk of testing in a “not-so-representative test environment”

In an e-commerce world, creating a completely representative test
environment is often impossible. With a limit on how much can be actually
simulated in a test lab, there is real risk of not knowing how the application
will behave in some environments in the field.

How to use this Outline?

 Generate new test ideas:
The outline provides about 60 top-level categories with examples of errors
under each one of them. The categorized outline inspires test idea
generation if the tester considers the function-under-test, and then
considers how the function would fail with respect to one of the
categories.

 Use the test ideas here, for applicable projects
This paper is a subset of a broader project that will be published in Giri
Vijayaraghavan’s Master’s thesis. You will probably be able to find that
thesis posted on the Net at www.testingeducation.org and
www.girivijay.com in January or February 2003. The thesis fills in details
for more categories of shopping cart problems and less extensively
considers failure modes for some other functions. We use the shopping
cart as the example function because it has rich functionality (and thus
many different failure modes). We use an example function to make the
application of the categories more concrete. The same types of problems
will show up in many other types of e-commerce application functions.
Vijayaraghavan’s taxonomy is not exhaustive. We think the 60 top-level
categories are sufficient, but below that level, you’ll be able to add plenty
of your own examples if you use the outline. We recommend that you
download Vijayaraghavan’s thesis and customize it as you use it on
different projects. The more tailored it is to your company’s applications,
the more long-term value it will have for you. If you do this, we ask that
you send us any non-confidential additions that you’ve made, so that we
can add them to a master list.

 Audit test plans by inspecting for tests for potential errors
 It’s difficult to find the blind spots in a long test plan. There is so much
detail available that it’s hard to see what’s missing. A list of potential
failure modes provides you with and independent cross-check. To audit

the plan, consider each category in turn. Ask yourself whether failures
within that category are possible in the software under test, and if so, what
they might look like. Pick two or three possible failures and then check the
test plan. Does it have tests that would catch these problems? If not,
you’ve found a hole in the plan.

 As teaching material to assist in the training of testers who are new to e-
commerce testing.

The clear structure of the outline, the detailed list of possible risks and
failures, and the concrete examples can help new testers broaden their
understanding of the range of problems open to their discovery. You can
also use them as anchoring points for discussions. For example, some test
groups set up a weekly lunch meeting to improve their knowledge or
skills. One of these lunches, you might talk about how to recognize
accessibility errors. Another day, you might talk about how to recognize
update-installation side effects. This outline can help you focus those
discussions.

 As a presentation tool for explaining to managers the different types of
failures that can occur in an e-commerce site.

Managers don’t necessarily understand the breadth of the scope of risks
involved in e-commerce projects. Use this outline to develop a list of the
types of issues that can be tested for. Cross-reference to published
examples of errors that have shown up in the trade press (use ours or find
your own). A well-organized presentation based on demonstrable risks can
go a long way toward getting you adequate funding.

Failure mode and effects analysis (FMEA)

This outline fits within the tradition of failure mode and effects analysis (FMEA).
“FMEA has been widely used in the automobile, medical equipment, and aviation
industries to focus development teams on potential failures and help them decide
which risk are the most important to mitigate and what actions might be taken to
mitigate them”[2].
Typically a FMEA process starts with identifying functions and identifying failure
modes associated with the functions.
A typical FMEA process looks like fig 1.0:

Source: http://www.fmeca.com/ffmethod/fmeaproc.htm

We follow a similar approach in software: risk-based software test management involves
identifying core system functions, identifying the different risks or failure modes
associated with the functions, determining their severity, sometimes calculating their
criticality and then prioritizing the risks to be addressed in the testing approach (Stale
Amland, Risk-Based Testing and Metrics, EuroSTAR 99, Barcelona, Spain, 1999 [3])
FMEA differs from the risk-based test management approach in an important way--the
FMEA approach often involves more careful attention to the fine details of the potential
failure. In this respect, FMEA is more like the risk-based test design tradition, in which
we work out the design details of tests based on the failure we are trying to detect (Cem
Kaner, Black Box Software Testing course notes, available soon at
www.testingeducation.org.)

If FMEA were applied to an e-commerce site, it would involve:

Identifying the functions
Identifying functions and then generating the different function modes and failure
modes is a tedious and time-consuming process, especially when we try to
analyze a complex system such as a shopping cart driven e-commerce site.
Decomposing an e-commerce site into constituent functions is further
complicated by inter-dependencies between components and the overlapping
architectures of e-commerce sites. My Master’s thesis (Vijayaraghavan, in
preparation) analyzes User-Authentication (Login/Logout), Search, and Shopping

Cart as a few of the functions in a shopping-cart-based, business-to-consumer e-
commerce site.
Identifying failure modes
One of our main goals for the outline (and the thesis) is for it to serve as a
brainstorming tool to help you generate the different failure modes associated
with functions under test.
It’s difficult to generate a comprehensive list of failure modes for a function for a
variety of reasons:

 Lack of knowledge about all related and existing software bugs that have
caused failures in the past or possess the potential to cause a failure in the
future.

 Lack of knowledge about historical data on past failures and the causes
behind them.

 Lack of an organized ‘”Bug Taxonomy” that can remind the tester of
patterns of potential failure/risk.

The sample list of “shopping cart” failure modes, which was generated using the
outline provides references to known software bugs in e-commerce systems,
provides historical data of past failures by citing issues publicized in the press.

The sample ‘function’: An E-commerce Shopping cart

An Introduction

The familiar metaphor of a shopping cart that is present in many e-commerce sites
has an important function of keeping track of the user’s state while he/she is
“shopping”. A simple cart may just maintain a list of items that the user places in
it and maintains state until the user finishes shopping and exits the system (by
closing the browser). Complex and advanced carts have more sophisticated
functionality such as real-time credit card processing and real-time order tracking.

As e-commerce sites grow in size and popularity, they tend to add more and more
features to their shopping carts. Shopping carts have grown from simple state
tracking functions to a highly sophisticated and creative piece of software offering
a flexible range of user options.

The diversity, the creative imagination and technological innovation that have
gone into the design of these next-generation-shopping carts, make them
fascinating and challenging to test. Some issues that you may want to consider
before testing a shopping cart are:

 The same issue of testing under “web years” that we discussed about
general e-commerce testing applies here. Hence testers will have to reckon
with testing under reduced time and sudden spikes in workload.

 A shopping cart may not scale. It may work well for 100 users but not for
1000. Testers should estimate performance standards early in testing.

 They are prolific and vary greatly in terms of design, size, complexity, and
underlying technology. Hence no standard best practices exist that can

provide a single-point reference on how to efficiently and
comprehensively test a shopping cart.

 Because of the rapid evolution and change in their design and features, it
is common for testers to encounter legacy-shopping carts built with
outdated technology.

 In contrast, the rapid changes in design and functionality might be a
challenge to the less tech-savvy tester, as they add more learning pressure
on the tester.

We thank Ms. Karen Johnson for sharing her experiences on testing a shopping cart and
for her inputs on some of the issues/bugs mentioned in this paper.

Different types of shopping carts

Testing each of the above shopping carts can be very different because of the difference
in the way they have been built and hosted. Except for some in-house shopping carts,
shopping carts tend to have a large number of 3rd party components, which are sometimes
beyond the scope of the testing group.

3rd party built and hosted shopping carts are generally a cheaper alternative. They are
employed by small-scale e-commerce sites with fewer staff to design and maintain the
system. Sometimes the 3rd party host may be the same as your site-hosting provider. But
3rd party hosting wrenches much of the control away from the tester, since the bulk of the
components are not in the tester’s domain. But the positive side of this type of shopping
cart is that the cart is smaller, less complex and generally easier to test.

Out-of-the-box shopping carts are customizable, pre-fabricated, and ready for
deployment. Installation, customization, and configuration bugs are some of the common
types of issues that testers will encounter when testing shopping carts of this genre.
Though many serious security holes have been caught due to bad settings and bad
configurations in out-of-the-box carts, much of the deeper level of testing becomes the
responsibility of the vendor who originally developed the cart software.

And finally there are many free shopping cart scripts available for download in CGI or
ASP script sites. Very simple and small-scale e-commerce sites tend to use these carts.
From the tester’s perspective, the risk is in the script code. While some of these scripts
are well done, others are hastily developed by amateurs.

The Outline

The Structure of the outline:

This introductory material explains the structure of the outline, which is the core of this
paper. The outline presented in this paper is a top-level list of about 60 risk categories
and the list of shopping cart failures is a long and detailed list of different failures that
can occur in a shopping cart under each category of the outline. The shopping cart failure
list is an example of how the outline can be used to generate test ideas.

Both the Outline and the list of shopping cart failures are work in progress. A more
complete list will be available in the Master’s thesis and later publications.

The list of shopping cart failures has been categorized under the 60+ categories shown by
the outline. Some categories have relevant sub-categories for ease of understanding and
structure. We provide definitions and cite relevant literature for each category. The
categories and sub-categories hold detailed lists of risks, errors, bugs, and failures that a
tester might find when testing a shopping cart. Most of the categories also have examples
of published bugs to illustrate the risks. Some categories also have thoughts on methods
to test for this risk. More details on the qualitative categories can found in ISO 9126 [4]
Thoughts on how to use this list to generate test ideas for non-shopping
cart applications
We developed the list of shopping cart failures to study the use of the outline as a test
idea generator. We think the list is a sufficiently broad and well-researched collection that
it can be used as a starting point for testing other applications.
For example, the list contains a generalized collection of risks due to database failures
(Database media failure, database statement failure, database instance failure and
database-user process failure). This collection of database failures is relevant to all
projects that use databases. Failures in web server, database server or cache server are not
specific to just to a shopping cart driven e-commerce sites but to all web sites that use
them. A tester testing a travel/airline ticket web site or an auction web site may find the
list as relevant to his testing as a tester working on a shopping cart web site.

Outline: Table Format

Performance
Reliability
Software Upgrade
UI Risks/Errors/Usability
Maintainability
Conformance
Adaptability
Stability
Analyzability
Operability
Understandability
Fault tolerance
Inter-operability
Accuracy
Internationalizability
Visibility
Accessibility
Localizability
Suitability
Compliance
Maturity

Recoverability
Learnability
Efficiency
Changeability
Testability
Installabality
Replaceability
Insufficient Capacity Planning
Backend Connectivity failure
Bandwidth Sufficiency risks (During Peak)
Human Error
Calculation/Computation
Navigation Flow
Process Flow
Data flow
Transaction flow
User-System Interaction
Third-party Software failure
Database-Statement Failure
Database-Instance Failure
Database-User-Process Failure
Database-Media Failure
Memory failures/Memory Leaks
I/O Data Type Conflicts/Data Mismatch
Network risks
Functionality
Error Message /Exception Handling
Server-Side-Hardware Failure
Client-side-hardware failure
Third-party-hardware failure
Browser problems
Document Confidentiality
System Security
Client Privacy
Database Server failure
Cache Server Failure
Web-server failure
Transaction Server failure
ISP problems

List of shopping cart failures

Database Server failure

A database server is software that manages data in a database. It updates, deletes, adds
changes, and protects data [Network Magazine]. Database servers provide both the access

control and concurrency control. So while testing a shopping cart, if you find empty
catalogs, unpopulated data fields and authentication problems, then you should check the
database server. Some of the issues discussed here are based upon the discussion in the
paper “Managing Database Server Performance within an Electronic Commerce
Framework” [5] Here are different ways a shopping cart can fail, when the database
server goes wrong:

 Inability to load or populate data in the product catalog.
 Inability to load or populate order data in the shopping cart.
 Inability to load or populate customer profiles.
 DB server failure may lead to a complete failure of data retrieval in the system

since DB server manages/serves the data in the system.
 Increase in response time during "browse" transaction. Browse transaction

generates high frequency, random, sequence of queries on the database server.
 The "shopping cart" transaction fails to update/load the billing details/price in the

basket. Shopping cart transaction places medium weight, high frequency
read/write operation.

 Increase in response time to load/update billing details, price lists and total in the
basket.

 Failure or delay to commit the customer order to the database in the "Buy
transaction".

 User-registration failure, unable to execute read-write process during user
registration.

 Search process fails to execute since DB server failure may cause failure of read-
only search process to fail.

 Increase in "search" time may indicate performance problems in Database server.

Cache Server failure
Cache servers are used as intermediaries for web requests and retains previously
requested copies of resources. The use of a cache server is to handle common requests
locally and improve site performance by better speed up and reduced overhead on the
web servers.
The common issues discussed here are can be found in more detail in “Known HTTP
Proxy/Caching Problems [7]”

 Cache may return an outdated shopping cart document if the header is
misrepresented or last modified date is omitted

 If shopping cart content is dynamic in nature, then cache server will not be able to
serve new content

 If caching proxy server fails during shopping session, sometimes the browser fails
to bypass server and may need to be reconfigured and shopping cart state may be
lost

 If shopping cart uses any form of encoded response, the proxy might cache it and
send it to a non-encoding capable client

 Sensitive shopping cart content may get cached by Interception proxies that break
client cache directives like "No cache" or "Must revalidate"

 The cache server may end up blocking some methods used by the shopping cart
software, because the method contained in the request is unknown to the proxy so
instead it generates the default HTTP 501 Error as a response.

 Shopping carts that use IP address to track state of the cart, may fail because
Interception proxies at ISP level may alter client's IP to that of the proxy itself

 A caching proxy mesh might break HTTP content serialization resulting in the
user getting older content when the shopping cart page loads

Examples of related bugs and other known issues
Is Web caching bad for the Internet?
http://www.cnn.com/2000/TECH/computing/04/18/web.cache.idg/
Known HTTP Proxy/Caching Problems
http://www.wrec.org/Drafts/draft-ietf-wrec-known-prob-03.txt

DATABASES
 The approach used here to classify the different databases can be found in more detail in
“Oracle9i Database Administration: Recover Databases [6]”, According to the
definitions provided in it,
Database statement-failure: “Statement failure occurs when there is a logical failure in
the handling of a statement”.
Database-Instance Failure:
“Instance failure occurs when a problem prevents a database instance from continuing to
run. An instance failure can result from a hardware problem, such as a power outage, or a
software problem, such as an operating system crash. Instance failure also results when
you issue a SHUTDOWN ABORT or STARTUP FORCE statement”
Database-User-Process Failure:
“A process failure is a failure in a user, server, or background process of a database
instance such as an abnormal disconnect or process termination”
Database-Media Failure:
“An error can occur when trying to write or read an file on disk that is required to operate
a database. This occurrence is called media failure because there is a physical problem
reading or writing to files on the storage medium”.

Database statement-failure

 User may be attempting to issue a statement referencing a table in the shopping
cart that does not exist

 A user may be attempting to issue a statement referencing a table in the product
catalog, user database for which they have do not have permission to access

 Flawed statement or Flawed query used by the web developer may make
shopping cart data inaccessible to the user.

 Inability of a user to submit information, which is to be stored into a database
because of inadequate table space allocation for the user/operation

 Flawed statement/query may lead to in-correct addition/deletion of items in the
basket

 Incorrect access of tables may lead to incorrect computations/calculations of
shipping/taxes

 Failure to clearly specify required fields, optional fields and edit permissions may
lead to problems when data is being written back into the tables.

 Inefficient queries on the shopping cart tables

Database-Instance Failure

 The number of simultaneous connections allowed is less that the maximum
number required by the system for shopping cart transactions

 Power outage when shopping cart database is being accessed and no recovery
routines exist.

 Check for issues where using a product database and multiple item forms together
would cause an error

Examples of related bugs and other known issues
Database Glitches at Walmart.com
http://www.internetnews.com/ec-news/article.php/4_739221

Database-User-Process Failure

 Risk of user being unable to return to shopping cart after navigating away from
the page since contents of cart not been saved

 User unable to add/delete/modify contents of the basket
 Client PC hangs during shopping cart transaction and user state not

saved/retrievable
 Failure of the shopping cart database to rollback process on detection of user

process failure

Database-Media Failure
 Not enough memory on the system on which the shopping cart database resides
 Disk failures/Hard drive crashes, and other irreversible media corruption of the

shopping cart database may cause complete loss of data
 Corruption of shopping cart Database backup

Error Messages/ Exception Handling
Provided below is a detailed list of errors that you might encounter in an e-commerce site
with a shopping cart and it might be useful to test for appropriate error messages. Testers
should find this list useful to test a shopping cart site for error handling and check if the
error handler handles these common errors. It has also been sub-categorized for ease of
use on the basis of the kind of errors the system has been designed to handle.

• Quantity error-handling
 Ability to erratically checkout an empty shopping cart and check if error

message is displayed.
 Ability to add negative numbers to the quantity field. Check for

appropriate error handling
 Accepts decimal entries for quantity but ignores the decimal point and

either accepts the first or last digit alone, so 7.0 may be interpreted as 7 or
0 and no error handling exists to prompt or correct the error.

 Accepts decimal entries for quantity but again ignores decimal point and
accepts the quantity comprising of both the digits, so 7.0 may be
interpreted as 70! And no error message to prompt or correct the error.

 Quantity field not size-constrained and no error message to prompt user of
acceptable values or data range.

 An over-sensitive error handler may not let a user increase/decrease/edit
the quantity field at an editable stage and may risk rendering the data entry
final!

• Information error-handling
 Forms requiring registration information, shipping address information,

billing address information employ script based entry validation to
validate entries but sometimes the scope of the script exceeds its limit and
pops an error message for entry fields outside the limit of the script or
optional fields.

 Some address fields contain two parts, address 1 and address 2 in order to
accommodate lengthy addresses. But some error handlers count both the
fields as compulsory and pop error messages to users who leave address 2
empty (because their address is short and fits right into the first one!)

 Long addresses may get clipped and no error message or routine exists to
warn the user about the size constraint.

 Lack of error routine to check for valid US zip code in the address section.
 Check for trigger-happy error messages that sometimes pop up to a non-

US shopper’s dismay, to validate an empty US zip code.
 Error message pops up informing the user of incomplete information entry

but does not highlight the field where error exists.
• Interaction and Transaction error-handling

 “An Internal Server error” may be displayed without any fix to the user,
sometimes this error, which may be due to a missing term in the URL, can
be fixed by appending a term, like say &reference to the address.

 “Inventory module error message” may be displayed with no explanation
to the user; sometimes this error occurs when two users access the last

item and the inventory control tries to update the order so that only one
user gets access to the item.

 If you encounter an “ODBC error message“ when you click Checkout,
you may be missing your "session ID", error handler should be enabled to
handle this common error or should provide help to customers with simple
fix to this errors.

 “Timeout Error messages” If any routine exists to check the time of
inactivity and auto times out any shopping cart, such existence of timeout
routines should be communicated to the user beforehand.

• Payment/ Credit-Card error-handling
 An incorrect expiration date (be sure to use a two-digit year, such as "02")

and supporting error message to prompt the user.
 “Invalid Card Number error message”, if the card processing is a real

time event in the cart, then user may be prompted to enter the number
again or try a different card

 Inconsistency between the address in the billing section and the address in
the card. Check for user-understandable error message.

 Browser version too old to support card processing/secure protocols, user
must be pointed to the browser issue and not leave them in a limbo, with a
clueless message pointing to card error instead of browser incompatibility
issue.

 Invalid ABA Number error message: If shopper is paying by check, he/she
must supply valid checking account and "ABA" numbers.

 Site does not support the card used by the customer; provide a message
forehand about the type of cards the site supports.

 “Temporary Network Error messages”: A temporary network problem
may cause a data transmission error between the credit card processor and
your bank.

 Check if alternative error handling exists, when third party billing agents
fail.

• General error messages

 Unable to understand error message; Cryptic & undecipherable error
messages especially in secure areas of the shopping cart may make users
abandon their cart in panic.

 A common mistake in a shopping cart error- handling system is displaying
machine errors or compilation errors to the user instead of understandable
error messages consistent with the language of the site.

 Persuasive VBScript or Javascript error message boxes that pop up on an
erratic entry but don’t close on clicking OK!

 Error-handling routine re-directs you to another page for explaining the
error but provides no way to return back to the original state of the
shopping cart.

 Loads a pop-up error message box, but a 404 “page not found” error
displayed in the error pop-up!

 Over enthusiastic exception handling: pops error message even after the
error has been corrected or error message pops up for correct entries too
due to failed script based validation routine.

 Error message box or an action to close the error box causes illegal
operation or illegal memory reference in the browser software and causes
the browser to close in the middle of a transaction.

 Error boxes written in scripts not supported or incompatible with browser
type.

 Typos, grammatical errors in error messages that change the meaning of
the intended error message

 Illegible error message: A combination of the color scheme of the
message box and the font size and color may cause the legibility of the
error message to degrade.

 Security problems caused by bad error handlers: Sometimes error
messages pose serious security risks by exposing sensitive data like port
numbers, line number of internal code, type of server and internal
configuration of systems. Mixing machine communicated errors and error-
handling system may simplify the process of writing error messages but
the risk of a security lapse runs high when such error messaging systems
unintentionally channels out internal and sensitive data.

Examples of related bugs and other known issues
Problem with "Hotwire.com": lack of a useful error message
http://www.phototour.minneapolis.mn.us/essays/hotwire.html

Human Error
Though human judgement and perception is far more superior to any machine, the human
tendency to err is always a risk. All shopping cart centric e-commerce systems involve
some human action and intervention in the form of data entry, data upgrade, system
upgrade, and system design. The chance of human error is equal on both the retailer’s
side and the user’s side. The Common human errors in shopping cart are incorrect price
entry and erroneous handling of back end processes. Below are some common risks that
exist due to human errors

• Human error on the retailer side
 Risk of price glitches: incorrect price entry, incorrect data feed, incorrect

database configuration and all other forms of incorrect human data entry
 Quantity glitches, incorrect entry of numeric inputs, input in wrong

format.
 System time incorrectly set, all time stamps on order placements out of

sync
 Administrator forgot to restart the web server or shut it down by mistake
 Back-end human error: wrong item sent, or package inter-changed etc
 Shopping cart configured incorrectly
 Administrator erased custom settings by mistake
 System reset to default by mistake

 Security breaches and system security compromises due to deliberate or
non- deliberate human action

 Forgot to backup the files
 Corrupted the configuration file by mistake
 Erased data or deleted files by mistake
 Physical failures induced to the shopping cart system and its underlying

hardware, due to bad handling, accidental damage caused by human action
 Human error in entering the correct email address when sending

confirmation of order placement (in non-automated systems)
 Typos, grammatical mistakes, and incorrect language structure usage in

content pages
 Any large-scale human disaster or man-made disaster that causes physical

damage to underlying e-commerce system.
 Transaction aborted due to non intervention of required personnel

• Human error on the customer side

 In-correct selections, in-correct navigation, in-correct understanding of the
shopping process could be some top-level errors on the shopper’s side.

 Adding the wrong quantity, filling up information in the wrong fields,
filling up incorrect information, specifying wrong shipping address are
some of the other errors that cause the e-commerce system from delivering
the items purchased through the shopping cart.

 Entering the wrong data type, entering in the wrong format (ex. Date),
selecting the wrong shipping options.

 Deliberate or non- deliberate abortion of the transaction process.
 Loss of shopping cart state and subsequent abandonment of shopping cart

due to erroneously closing the browser.
 Entering wrong credit card number or selecting wrong credit card type or

entering the expiration date in the wrong format or order.
 In-correct usage of the shopping cart functionality, like pressing the

confirmation button multiple times, clicking on selection buttons multiple
times causing errors in the order placement.

 Trying to access the shopping cart in an incompatible underlying
environment or using an older incompatible version of the browser, or
having scripts and cookies disabled.

 Do not have/ has not installed the required plug-ins or media software that
is required to view the shopping cart catalog.

 Wrong shipping methods requested for Alaska, Hawaii, Puerto Rico, and
international addresses. Only UPS Second Air, FedEx 2Day, and USPS
Priority Mail deliver to these addresses.

 The Billing and Shipping addresses are reversed
 Wrong e-mail address entered

Examples of related bugs and other known issues

Ashford.com flaw allows "free" purchases
http://news.com.com/2100-1017-233806.html?legacy=cnet

IBM customers buy $1 laptops in site snafu
http://news.com.com/2100-1017-235771.html?legacy=cnet

Pricing mistake prompts Buy.com rush
http://news.com.com/2100-1017-221397.html?legacy=cnet

AOL nightmare: ordered a digital camera from AOL, received McAfee Office 2000
instead!!
http://www.zdnet.com/anchordesk/talkback/talkback_229502.html

United to honor dirt-cheap online ticket fares
http://www.itworld.com/Tech/2409/CWSTO57853/

Amazon.com hit with pricing glitch
http://www.computerworld.com/industrytopics/retail/story/0,10801,47949,00.html

Attache cases go for a penny apiece after pricing glitch at Staples.com
http://www.computerworld.com/industrytopics/retail/story/0,10801,57891,00.html

Customer outrage prompts Amazon to change price-testing policy
http://www.computerworld.com/industrytopics/retail/story/0,10801,50153,00.html

Amazon charging different prices on some DVDs
http://www.computerworld.com/managementtopics/ebusiness/story/0,10801,49569,0
0.html

The Price Isn't Right: A keying mistake set the price at a mere $26.89 instead of $299.
http://thestandard.net/article/0,1902,24690,00.html
Amazon glitch spurs shopping spree
http://www.usaicorp.com/cc/clips/2000/080200/amazonglitch.htm

Coding glitches main culprit in e-tail fire sales
http://news.com.com/2100-1017-244280.html?legacy=cnet
Price goofs in e-commerce
http://www.augustachronicle.com/stories/053101/fea_124-3979.shtml

Risks due to Calculation/Computation errors
A shopping cart has various calculations and computations like discount calculations,
billing calculations, shipping and handling calculations and tax calculations. Summarized
below are some common risks due to calculation and computation errors that cause
shopping carts to fail.

• Discounts/Coupons and special offer calculations

 Coupons in the online world are generally a set of numbers that accord a
pre-mentioned discount. Common errors are Incorrect sequences of
numbers, a mistakenly swapped set of numbers (denoting a different
product and different discount)

 Coupons being accepted by the system, after its expiration date.
 An infamous bug has been that of, allowing the same customer to use the

coupon multiple times until the total price has been completely
discounted.

 Coupon functions OK, but the billing system does not honor the coupon
code and continues to charge the full and non-discounted price.

 Coupons with conditions are also error-prone, because sometimes the
conditions that make the coupon valid have errors and make the coupon
deemable under all conditions!

 Some coupon codes that are still under the development stage and not yet
been open for public view get “crawled” by search crawlers. And the
public gets away with some free shopping!

 One other bug mentioned in the bug list below highlights how a user could
not place a discount over a credit voucher she had, because the system
could process either a discount or credit but cannot process both together!

 Errors in “Quantity available” or “in stock value” displayed in the catalog.
This may be due to incorrect computation of inventory stock value. Risk is
there will be a delay in shipping the order or the order may never be
delivered.

 Check for all discount options. Discount by total percentage may work but
discount by total weight may not work.

 Check for issues caused by duplicate items with quantity discounts.

• Pre-checkout/Check-out calculations
 Some shopping carts show the total only after checkout, but show

incorrect and incomplete calculations when checked in the pre-checkout
stage.

 Some shopping carts display only the price of the item in the pre-checkout
stage but omit all other additional costs like shipping, taxation and tend to
show a large cumulative price when user is checking out,

 Hidden costs not shown in the pre-checkout stage
 Multiplication errors when multiplying prices in real numbers with integer

quantities and subsequent error in displaying the total price.
 Decimalization errors in checkout figures
 Errors may occur in currency conversion when more than one type of

currency is accepted and also subsequently conversion rate tables may be
inaccessible or maybe outdated

• Taxation calculations
 Taxes are applied only to the items, but like one of the bug examples

quoted in this section, sales tax was applied to shipping costs!

 Even when an order has been placed for multiple copies of the same item,
sometimes tax maybe mistakenly applied only to one copy due to the
system’s internal calculation code.

 When the issue of state taxes is encountered, common problems include
wrong application of ‘state’ factor to the tax calculations, mix-up in
estimating taxes for the region of delivery.

• Shipping calculations
 Some sites which interface with other sites such as UPS to calculate

‘Shipping costs’ skip calculations on shipping when the other site is down
and may not provide accurate total costs.

 Again sites that interface with external sites for accessing their shipping
tables, may incorrectly compute shipping costs when large quantities of
heavy items are ordered, this error occurs due to the Maximum limit on
the weight that is available in the cost calculator tables. For Ex. The UPS
site allows calculation of shipping costs for packages with a maximum
total weight of 100 LBS. Any order above that weight may be
miscalculated since the calculation will continue to be based on 100 LBS

 International shipping is another error-ridden area, since most
international air shipping costs keep changing and also vary with respect
to destination, generally the risk remains that the table used for calculation
is outdated.

 Most carts calculate on the basis of price threshold, weight threshold,
quantity threshold, line item threshold and sometimes no charge. Risk is
high that error may occur due to erroneously using the wrong model for
calculation. A single very heavy shipment may then cost very less, if
quantity is mistakenly used for the purpose of calculation.

Examples of related bugs and other known issues

Spring forward leaves eBay behind
http://www.computerworld.com/industrytopics/retail/story/0,10801,59222,00.html

Glitches let net shoppers grab free goods
Botched coupon deals let shoppers waltz out with free or nearly free deals
http://news.com.com/2100-1017-242811.html?legacy=cnet
Macys.com says no to unauthorized coupon codes
http://ciscomp.com.com/2100-1017-251548.html?legacy=cnet
Shoppers seize unauthorized discounts at Macys.com
http://ciscomp.com.com/2100-1017-251334.html?legacy=cnet
AltaVista credits players $1 after contest error
http://news.com.com/2100-1017-242970.html?tag=mainstry
Staples.com nailed again by its own Net coupons
http://ciscomp.com.com/2100-1017-244220.html?legacy=cnet

Online shopping, glitches and gotchas
http://www.nwfusion.com/newsletters/techexec/2001/01156806.html

Risks due to Software Upgrade errors
Due to the dynamic nature of their content, web stores and shopping carts undergo
frequent updates, upgrades and changes. But these frequent changes tend to frequently
break things and cause havoc when the site opens up for business after the upgrade.
Listed below are some of the risks posed by software upgrade in shopping carts and e-
commerce systems

• Software upgrade on the server side
 A common error is the failure to backup the web-store before Upgrade.
 Accidentally over-writing the product database file during upgrade
 Non-removal of staging files before upgrade may lead to corruption of the

shopping cart
 Failure to update or reset correct file permissions in the shopping cart after

upgrade process, this causes some pages to show “Unauthorized to view”
errors when the user clicks on a catalog page

 Many software upgrade processes look for folders with standard names.
For example, CGI based shopping carts look for standard CGI directory
path. Any deviations from the standards pose the risk of an incomplete
install/upgrade

 Some upgrades corrupt the shopping cart by changing the default file
types to newer file types. And this newer file type may not be compatible
with clients that use it.

 Files upgraded successfully but did not to make changes go ” live" after
upgrade!

 Failure to check the OS compliance of host server before the upgrade
 Failure to verify the host server's software and hardware requirements

before upgrade
 Insufficient disk space available for the shopping cart upgrade process and

the upgrade stalls before completion
 Failure to update older and outdated content, before an upgrade or site re-

design
 Risk of mistakenly listing outdated and discontinued products by over-

writing new files with older ones.
 “We ran two programs at the same time that will not run together”,

Upgrades performed without checking inter-compatibility between
existing or newer software processes within the system.

 Post upgrade “internal glitch” have caused orders from being processed in
shopping carts, they generally occur due to new but mismatched data feed
installs, convoluted linking due to addition of new links within the
shopping cycle, Older links not removed and new links installed without
targets.

 Upgrades to some parts of the system, may cause selective failures in
dependent or related sections of the system. A common issue has been
upgrades to client information databases, causing User authentication
failures due to lockouts and denial of access to login processes.

 A fix to one bug causes another! A common problem in conventional
software too. A good example of this type of risk is the example of
DoubleClick Ad failure mentioned in a bug listed below.

 A “newer look” or “fresh look” after an upgrade may not always mean an
error free look for the site, “newer look” changes the GUI and
functionality and this leads to newer problems both in terms of
functionality, usability and technical glitches leading to blackouts.

 Another important risk is the risk of security problems that are caused by
poor installation and in-complete installation that results in some security
features being turned off.

 Software upgrades sometimes sets all options to ‘default’ automatically
after the installation is complete and in this in turn may over-write any
existing customized options This leads to change in e-commerce system
behavior and settings.

• Client side response to server side software upgrade
 Browser incompatible with the new upgraded server side shopping cart

Examples of related bugs and other known issues

Amazon Endures Third Holiday Outage
http://www.ecommercetimes.com/perl/story/5870.html
Webvan stalls on the way to Thanksgiving dinner
http://news.com.com/2100-1017-248798.html?legacy=cnet
E*Trade users locked out of trading
http://news.com.com/2100-1017-221117.html?legacy=cnet
Problems hit E*Trade for third day
http://news.com.com/2100-1017-221192.html?legacy=cnet&tag=rltdnws
Software Glitch Affects DoubleClick's Domestic Clients
http://www.atnewyork.com/news/article.php/8471_441871
Walmart.com runs into glitches
http://news.com.com/2100-1017-249390.html?tag=prntfr

When Buy.com redesigned its Web site on April 26, it mistakenly listed between
4,000 and 7,000 discontinued laser discs for $1.11 apiece
http://news.com.com/2100-1017-225527.html?tag=rn

Dangerous shop service if installed the right way
http://exploiter.virtualave.net/9904-exploits/hhp-WebShop.txt

Yahoo introduces email bug after attack
http://news.com.com/2100-1023-236686.html?legacy=cnet

Document Confidentiality
How secure is the e-commerce site? Is it safe to give my credit card number? Can
someone get my order details and my personal information?
Document confidentiality means protecting private information from being leaked to
third parties [8]. Compromises on this issue lead to serious security related failures. This
category deals with issues like credit card information leaks, order information leaks,
account information leaks, etc.
Shopping carts with advanced features provide direct linking with credit card processing
agencies using secure protocols such as SSL or SET (Secure Electronic Transaction). But
we need to remember that these secure protocols are also prone to failures and attack by
malicious elements and can hence cause sensitive data loss.
Cryptography is a key technology that is used for protecting the system against such leaks
and testers testing shopping carts that encrypt data in bill payment transactions need to
know some simple ways in which cryptography fails?

 The risk of the cryptography algorithm failing because it contains patterns from
the plain text and the algorithm can be guessed.

 The risk of the decryption key being guessed and hence may succumb to attacks
such as brute-force attack.

 Risk of using lower bit keys to encrypt data. Lower the number of bits the easier it
is to crack the key. 128 bits and higher are considered safe.

 Loss or corruption of a private key
 A key is compromised but failure to replace or remove the compromised key.

Cryptography is a well-published topic and lots of information is available on the web on
encryption. It may prove futile for testers to test every aspect of cryptography, due to the
complexity of the subject. But a basic idea of the risks associated with violating a few
basic rules such as safe key selection or failure to replace corrupted keys will help in
validating the security in the transaction stage of the shopping cart.

Apart from encrypting the data transfers to protect information, “Document
Confidentiality” also involves physically safe guarding files and documents that contain
sensitive and confidential information.

Refer to the bug example “Shopping Carts Expose Order Data”, where a poorly
installed shopping cart exposed the order ‘log’ file with names, addresses, credit card
numbers in a world-readable format. People could search for these log files just by
entering simple key words from any search engine!

 Risk of exposing directories that hold sensitive files and allowing an external user
to access the directory or folders from the web!

 Risk of setting improper read and writes permissions to these files due to which
any external user can access and modify these important files.

 Risk of mistakenly configuring the email list server to include sensitive customer
information or attach confidential files in public email listings and postings.

 Script errors that let users edit their URL by changing a few visible parameters
like order number and grant them access to other user’s records!

 Poor configuration of shopping carts may cause an attacker to gain entry to
classified information (refer to the examples for more details)

 Risk of unfixed bugs or new bugs in databases and server software may open up
serious security holes (Refer to the example bugs). www.bugnet.com hosts a long
list of security bugs in this category.

 Check for issues like where the shipping section shows "billing Information" in
non-secure customer, emails.

 Check for issues, where instead of just the last four digits, all numbers of the
credit card are exposed.

Examples of related bugs and other known issues

E-Commerce Fears? Good Reasons
 http://www.wired.com/news/ebiz/0,1272,44690,00.html
Shopping Carts Expose Order Data
http://www.internetnews.com/ec-news/article.php/4_102621

Shopping Carts exposing CC data
http://exploiter.virtualave.net/9904-exploits/cybercash.cc.txt
http://exploiter.virtualave.net/9904-exploits/perlshop.cc.txt
http://exploiter.virtualave.net/9904-exploits/shopping.cart.cc.data.txt
Expert finds hole in shopping carts
http://zdnet.com.com/2100-11-514435.html
HQ for Exposed Credit Numbers
http://www.wired.com/news/ebiz/0,1272,44613,FF.html
Which? under fire over security scare
http://news.bbc.co.uk/1/hi/sci/tech/1402222.stm

Qwest Glitch Exposes Customer Data
http://online.securityfocus.com/news/431

O'Reilly Leaks Geeks' Info
http://online.securityfocus.com/news/408

United Airlines
Frequent fliers who logged onto United Airlines'
Web site got a look at other people's Mileage
Plus account information for more than 12 hours
http://www.siliconvalley.com/docs/news/tech/072275.htm

Hacker Posts Credit Card Info
http://www.wired.com/news/technology/0,1282,33539,00.html

Risks due to Memory Leaks

These are the bane of many a site, and not surprisingly also a major cause of many e-
commerce site crashes and also the cause of deteriorating performance of many e-
commerce sites. Shopping carts are complex systems that use scripting code, run on a
server, need an underlying OS and also need a browser on the client side to function.
Hence a memory leak that occurs in any of the above components can cause the shopping
cart to fail indirectly due to memory leaks!

Just as this article on Web testing in ExtremeTech puts it, “Memory leaks can range from
irritating to debilitating. A merely irritating memory leak might involve a component
growing until it crashes and re-spawns. This is still bad for the site, as a crashed
component forces everyone to wait until it restarts. The worst-case scenario is a
component that uses up more and more system memory (or worse, kernel memory)
without exiting, until the entire system finally grinds to a halt.”

The common issues discussed here is a subset of a larger set of memory leak issues and
bugs that can be found (in more detail) at Labmice.net [9]
(http://www.labmice.net/troubleshooting/memoryleaks.htm)

• Issues due to memory leaks in scripting code

 Some scripts have maximum static string size and violation of which
causes memory leaks, hence shopping cart pages that use heavy and long
scripts to add navigational or functional capabilities may violate these size
constraints resulting in browser throwing up “Out of Memory” errors
when the cart pages are viewed.

 Bugs in the Script DLLs may cause memory leaks under specific
conditions such as when the limit on the number of loops within a script is
exceeded.

 Some inbuilt functions such as ‘string format’ functions (as in VBscript)
in common script languages have known memory leak problems and
frequent use of these functions in a high volume web environment such as
ASP enabled shopping cart page may lead to serious memory leak
problems.

 Enough cannot be said about the negative effects of sloppy programming
practices, which are the root cause to most memory leaks, and badly
written scripts that lock up resources can be equally lethal in shopping cart
pages as in anywhere else.

 Since shopping carts are chiefly database driven, resource locking is a big
risk where a database record or a file becomes unavailable for prolonged

periods of time because a particular site component has an exclusive hold
on it.

 Older version of constituent components in the scripting environment can
also be a potential cause to memory leaks, for example using an older
version of perl interpreter engine in a perl-based shopping cart.

 Some design level decisions can also save the e-commerce site from
potential memory leaks, one of them is to adopt a modular scripting
framework where independent classes can be tested for memory leaks.

• Issues due to memory leaks in browsers

 IE 5.0 and 5.01 have had memory leak problems when images were re-
sized using DHTML (Dynamic Hyper-Text Markup Language) . Since it
is common to use scripts and DHTML to format images in shopping cart
catalogs, care should be taken not to trigger memory leaks. This can
potentially freeze the cart page, and cause performance problems and
loading errors.

 Some browser methods like “StartDownload” methods consume excessive
memory and do not return them back to the system. Hence shopping carts
that offer downloadable files, product, software code and also host large
sized image files are in danger of potential risks of memory leaks,
triggered by calling these risky browser methods.

 Browsers are known to load and access several libraries. And shopping
carts that spawn duplicate product browsers, pop-ups, ad browsers
multiply the total RAM consumption. Since these browsers have known
memory leakage problems associated with their versions, they may cause
the system to come to a cranking stop, freezing any potential transaction
midway.

 Memory Leaks in IE 3.0x: These versions (3.0/3.01a/3.01b) have
progressive memory leaks; one of its manifestations slows down the
performance and response of the browser slowly over a period of time.
And thus media rich or heavy data content shopping cart pages faces
serious performance issues due to these types of memory leaks.

 Another famous memory leak bug in IE 3.x is it caches page information
when using the <Form Method=POST> tag and fails to free the memory
until the application is shut down, this is a serious problem since many
carts use GET and POST methods in their forms.

• Issues due to memory leaks in underlying operating system

 Undeleted threads are a major source of memory leaks in Operating
systems, so if the underlying OS of an e-commerce system starts leaking
memory due to undeleted threads then the hosted shopping cart begins to
fail due to lack of memory available for its functioning

 Any third-party process that may be running on the operating system may
cause unreleased memory, which may indirectly cause the shopping cart to
fail due to underlying OS failure because of lack of sufficient memory.

 Some standard system libraries in older versions of operating systems may
leak memory, so risk of not upgrading to newer underlying operating

systems in e-commerce sites transforms itself into a risk leading to
memory leak.

 Also shopping cart sites, which have user written server side plugins
created by server programming APIs, the user code may introduce serious
memory leaks.

• Issues due to memory leaks in server

 Incorrect use of multithreading in Web server software can be a problem

and may end up in a memory leak, since a shopping cart sits on a web
server, a web server failure leads to a shopping cart being rendered non-
operative.

 According to the different IIS FAQ lists and MS knowledge base articles,
Inetinfo process in Internet Information Server (IIS) may leak memory
when using SSL.

 Some web servers hosting software downloads or shopping carts offering
large documents, eBooks, Media files as downloadable products have a
high risk of suffering from memory leaks the equal to the size of the file
being uploaded/downloaded if transfer is aborted prematurely. The cause
may be due to some methods like Request.BinaryRead being called by
ASP or other similar scripts.

 When trying to access member accounts in a shopping cart, small memory
leaks may occur when a lookup of the current domain name is performed.
A pointer to the domain name may be saved in a global location without
freeing the previous domain name already stored there.

Examples of related bugs and other known issues

IIS Memory Leaks
http://www.iisfaq.com/MemoryLeaks/

Memory Leaks in OS
http://www.labmice.net/troubleshooting/memoryleaks.htm

More on Resource Leaks
http://www.willows.com/listarchives/dev/twindev-1998-jul/0155.html

Risks due to Insufficient Capacity Planning

According to this Microsoft TechNet paper [10] “Capacity planning is the process of
measuring a Web site's ability to serve content to its visitors at an acceptable speed. This
is done by measuring the number of visitors the site currently receives and by how much
demand each user places on the server, and then calculating the computing resources
(CPU, RAM, disk space, and network bandwidth) that are necessary to support current
and future usage levels”. The idea of categorizing the risks into the following three
categories is derived from the same paper.

• Risks based on the number of users and usage

 Shopping cart performance degrades due to increase in site users
disproportionate to existing capacity.

 No Increase in the number of users but increase in the activity of the users,
increase in terms of catalog page hits, latency time, increase in usage of
search activity, increases in shopping cart update cycles. The increase in
such heavy resource consuming activities may upset the capacity planning
equation, which maybe based on the number of users and not usage.

 The most common cause that leads to sudden load and causes deficiency
in system capacity are the seasonal increases in customers especially the
“Holiday shoppers”. Test shopping cart for performance and scalability
under realistic loads

 Increase in the number of transactions involving third party components
like Billing cycles, Credit card authorizations and account transfers, where
the insufficiency in the capacity of the third party systems will indirectly
cause the shopping cart and the e-commerce site to stall.

 Resource consumption also depends on the stage of the shopping cycle.
For Example: The checkout stage uses more pages, more CPU, more DB
transaction cycles and more server utilization than the catalog ‘browse’
stage. One has to always plan for sufficient capacity and availability for all
stages of the shopping cycle keeping in mind the changes in the
requirements at each stage.

• Risks based on computing Infrastructure
 CPU Insufficiency may be a big risk if there is an excessive demand

placed on CPU by the Web Server or the Database Server. Web servers
especially tend to consume more CPU cycles than the corresponding
Database server in the system.

 If the shopping cart spawns a new process every time a user invokes it,
and no mechanism exists to limit the maximum number of shoppers then
very soon the processes will choke the available CPU and cause the entire
system to slowly crash.

 An operation may cost less in terms of resource consumption, but if the
frequency of that operation is high, then very soon we will have a capacity
insufficiency risk. Generally product pages and search pages are moderate
in their cost but search page operation is very frequent due to which very
soon, it may become the largest resource consumer despite its cost being
less.

 Also Shopper capacity is determined by the underlying Operating
Systems. For example According to this paper [10] Win NT reaches CPU
utilization of 96.40% at shopper’s load of 1000 while Win 2000 reaches
CPU utilization of 72.89% at shopper’s load of 1000.

 If any shopping cart operation like basket load or catalog load is memory
intensive, then the underlying web server may run into memory deficit
very soon.

 If any shopping cart operation forces the web server’s page-able process to
page to disk, it is bad news and will affect the performance of the web
server badly.

• Risks based on site content complexity
 Network capacity may become a bottleneck if shopping cart uses high

static content like large images and static HTML.
 Poor site design where heavy elements and heavy content pages are called

more often than the lighter ones due to which the resource consumption
gets unevenly distributed and resource consumption becomes very high.
Higher demand should have ‘light’ content and we can afford to make
pages with lesser demand ‘heavy’.

 Advertisements retrieved from ad databases, Customizations to fit
shopper’s choice, ActiveX control driven Menus and Java based menus
are some of the complex site components that potentially affect the
capacity of the system and tend to pose a risk to the functioning of the
shopping cart.

Examples of related bugs and other known issues

Crashing Success for the Web?
For Online Retailers, a Make-or-Break Year Could Find Sites Overloaded
http://abcnews.go.com/sections/business/TheStreet/onlineretail991202.html

Charles Schwab Web Site Crashes
http://www.binarythoughts.com/article.cfm?StoryID=237
Encyclopaedia Britannica's New Web Site Crashes
http://www.infowar.com/p_and_s/99/p_n_s_102299e_j.shtml
E-tail sites crash over holiday weekend
http://news.com.com/2100-1017-249048.html?legacy=cnet
Webvan running out of Thanksgiving goodies (may also go into process
failure)
http://news.com.com/2100-1017-248881.html?legacy=cnet
Customers locked out of Virgin Megastore's online sale
http://news.com.com/2100-1040-230643.html?legacy=cnet

Accessibility Risks in Shopping Carts

According to statistics provided at www.webaim.org [11] “an estimated 20 percent of
the population in the United States (40.8 million individuals) have some kind of
disability, and 10 percent (27.3 million individuals) have severe disability. The 27.3
million individuals with severe disabilities are limited in the way that they can use the
Internet”. W3C’s Web Accessibility Initiative (WAI) has produced the Web Content

Accessibility Guidelines 1.0 [12], which explain in detail how to make a Web site
accessible for people with a variety of disabilities.

Detailed lists of risks that affect shopping carts in terms of accessibility failure are
provided below. They have been categorized with respect to the different severe
disabilities that affect Internet users and more specifically people who use shopping cart
enabled e-commerce sites.

 Visual Impairments

• Blindness
o In General

 If the cart catalog is categorized under headings and
captions to denote product categories, shipping options,
billing options, test the content with a screen reader and
check if the document's text or other text equivalents make
sense? Test and verify that the change in categorization is
understandable to a person who cannot see the headings or
captions.

 If you are using style-sheets to render your shopping cart
pages, check if it is possible for screen readers and non-
CSS supporting browsers to render the cart page correctly.

 When dynamically updating shopping cart pages, the
equivalents to dynamic content may not get updated when
the products, rates, or prices are dynamically updated. Thus
only non-updated data would be available to impaired or
disabled users.

 If you are using an image-mapped-shopping cart page,
check for redundant links to every navigable section.

 In shopping cart product pages, where size tables, price
tables, shipping tables, schedule tables are used; Test if row
and column headers are identified. Otherwise the screen
reader will output a stream of non-distinguishable data.

 Also when testing tables that use two or more logical
levels, Check if alternative text exists to identify which cell
is a header cell and which contains data.

 When frames or layers are used to create the browse
catalog in the cart, check each frame for title. This will help
identification and navigation when read by screen readers.

 Some of the tools that help disabled or impaired users do
not support programmable objects such as applets or
scripts. Check for alternative functionality in the shopping
cart under a situation when the user has these options
turned off

 Use of pop-up shopping carts, pop-up advertisements, pop-
up alerts, sales pitches in new windows takes the control
off the active window that’s being read and confuses the

reader by making the screen reading software alternate
between the different windows!

 Navigation across the shopping cart pages should be
consistent and straightforward, Look for looping navigation
and random return-backs and other similar issues that cause
the screen reader navigation problems.

o Text Equivalent

 Check for equivalent test for every non-text element in the
product catalog of the shopping cart

 Check for issues where the text equivalent describes the
graphic but not the content in the graphic image!

 Look out for open or broken ALT tag, this disables the
screen reader from reading the content inside the tag.

 If tables are used to format the appearance of equivalent
text, test using a screen reader whether the content read
from the table makes sense. Tables tend to confuse the
screen reader and the screen readers tend to read the
content in different cells in a haphazard way.

 Check if by error the alternative text equivalent is provided
in a language not same as the language of content. Apply
this test to all sites that have multi-lingual international
sites.

 Check for typos, spelling errors and word jumble in the
alternative text. Screen readers do not have the ability or
the intelligence to notice the errors and it reads out non-
tangible words to the user.

 Check for unknown abbreviations, acronyms, and
unfamiliar complex words and jargon describing non-text
elements in the cart

 Check if the items that have been added into the shopping
cart have alternate text, which the screen reader can read
out so that the user can verify that the item she just
purchased, has been added.

 Check if the images of credit cards that are displayed at
checkout have alternative text. Otherwise, the user will not
be able to make out what cards are accepted.

 Test shipping cost calculators, gift-wrapping cost
calculators and other such user-aid tools for equivalent text
support. Test each button and field, for alternative text
describing the functionality.

 In the billing and shipping section of a shopping cart, test
the order of entry and order of tabs with a screen reader.
Sometimes screen readers read tabs in the wrong order.

 Test multimedia presentations and alternative text for
correctness of data and also check if they appear in sync.

• Color-Blindness
o Total Color Blindness

 Testers should test if an alternative text exists for text that

conveys information by means of color. For example, if all
items marked for sale are marked in ‘red’ or new items are
marked in ‘blue’, then equivalent alternatives should exist
in regular black text.

 Testers should test for alternatives when color is used as the

primary way to indicate an action, say links turns purple
from blue, when it is clicked. Similarly some shopping
carts mark ‘visited’ categories by changing its color when a
user clicks on it. This color change is to aid the shopper in
keeping track of what they have seen and what they have
not seen? But a person with color blindness may not notice
the change in color as he has trouble identifying the colors.
An alternative may be using an object like asterix or a
cursor instead of color to identify change in state.

o Color deficiencies

 People with a color deficiency can see some colors but
some pairs of colors look the same to them. So, for
example, foreground and background colors may appear
the same. Look for difficult color combinations in catalog
design, link identification, announcements and so on. Reds,
greens, oranges and yellows are the most likely to cause
problems. . For color combinations, see
http://www.webaim.org/intro/intro

o Low Vision

 People with low vision impairment use screen enlarger
software to increase readability of small text but the
enlarger limits the visible area of the browser screen.
Screen designs that communicate well at normal text size
may be confusing and hard to use when viewed in an
enlarged mode.

 If pages rely on scrolling, screen enlargers will yield pages
that require more scrolling. If items on the screen are not
appropriately grouped, the user will have to remember and
correlate too many details that should be displayed together

 Another risk lies in the use of graphics with embedded text
for product catalogs, because due to enlargement of screen
space, the images may get highly pixilated and embedded
text may become hard to read.

 People with age-related visual impairments—such as
macular degeneration, glaucoma and cataracts prefer

shopping cart pages and functionality that can be enlarged,
scrolled and purely textual devoid of much use of graphics.

 Hearing Impairments

o Deafness
 Lack of visible textual support

In sites where sounds signifies a buying process, purchase
alerts, error message, instant messaging from a live
representative, then testers should look for alternative
visible textual support.

 Test for the absence of subtitles or other text
Sub tittles or alternative synchronized text, should
supplement video catalogs, virtual demos of products
product information sessions and help videos for shopping.

o Deaf-Blindness

 Test for special cases of double disability
Test for all risks that are applicable to Blindness, but since
Deaf-Blind use screen readers that convert text into Braille
(through a refreshable Braille device attached to the
computer), you have to test to confirm that there is text that
is readable by the Braille reader. Sound as an alternative to
visible text is workable for the blind but will not work for
people with double disabilities, such as deafness and
blindness.

 Mobility impairments

 Mobility impairments range from minor to major problems
restricting voluntary muscle movements. Because of lack of
dexterity, the user may find it difficult to click on small
(single letters and alphabets), product links and catalog
navigation links. Similarly, look for small functional
buttons or other tiny targets that must be hit precisely.

 Others using devices to access the keyboard, such as a
mouth stick or a head wand have lower dexterity than
regular users, so test auto refresh, time outs and auto-exits
from secure billing areas and verify that the time available
is sufficient for them.

 Users using devices such as head wand have to shake
their head 20 times to browse through 20 links! Hence test
if the unnecessary links can be minimized, or short cuts to
skim past groups of related links can be offered?

 Keyboard shortcuts and keyboard functionality is vital to
users with mobility impairments; risk is high that they will
be neglected if too much mouse-centric functionality is
added.

 Cognitive impairments
 Some of the better-known cognitive impairments are

the Downs Syndrome, Alzheimer's disease and the lesser-
known cognitive impairments include reading and learning
disorders. Individuals with cognitive impairments often
benefit from graphics or icons that supplement the text,
providing a monotonous small sized ‘text only’ interface
devoid of any meaningful graphics and animations may not
benefit such users much.

 Seizure disorders

 Beware of flickering sales tickers, ad banners,

notifications, alerts, or interactive messages that are
provided in some shopping carts. These seemingly
harmless gizmos may be a serious risk to people with
seizure disorders if their frequency of flickering is between
2 Hz to 55 Hz.

Related Internet Links

1. Western Australian Electronic Commerce Center, Information on Accessibility
and Usability

 (http://www.ecommercecentre.online.wa.gov.au/matrix/acc.htm)

2. Section 508: The amended Rehabilitation Act that requires Federal agencies to

make their electronic and information technology accessible to people with
disabilities.
(http://www.section508.gov)

Usability Risks in Shopping Carts

As per the definition provided by usability.gov, Usability is the measure of the quality of
a user's experience when interacting with a product or system — whether a Web site, a
software application, mobile technology, or any user-operated device.
And hence a general agreement is that a “Usable Web interface is one that is

 Easy to learn
 Easy to use,
 Culturally appropriate
 Not discordant with the user’s expectations of how the program should operate,
 Responsive (fast enough responses that the user doesn’t notice waiting for the

program to catch up).

Provided below is a list of issues that may seriously hamper the usability of a shopping
cart in an e-commerce site. Real life bugs support some of the risks and issues and some
others have Do’s and Don’ts on how to avoid the risk.

 Pop-Ups

 Do not use pop-up window shopping carts because If the user clicks elsewhere
in the main window, the pop-up is sent "behind" the main window

 Test shopping carts with pop-up/Ad eliminating software turned ON. Pop-up
shopping carts may not work if the pop-up eliminator is ON.

 Check if Pop-up shopping carts have sufficient "real-estate" space when the
user adds more items.

 Functionality
 Provide "remove item" or "add item" buttons instead of asking the user to

change "item quantity number"- it is easier and more error free.

 Look for items that have not been linked back to the “item”/catalog page.

 Check if the “number of items” in the cart is displayed. Users prefer carts that
show the current data and state, like how many items are in the cart? What is
the total? Etc

 Check if the "Continue Shopping" and "Proceed to Checkout" buttons are
visible.

 Navigation

 Look for unnecessary steps between item selection and checkout. The more
clicks, the more confusion and the greater the probability that the customer
will abandon the transaction.

 Do not link to any external site/page from the shopping cart page- leads to
shopper getting confused/uninterested-leading to shopping cart abandonment.

 Check if the shopper is able to navigate back to shopping process, after "adding" or
"removing" items

 Check if it is possible to add additional items directly from the cart page,
instead of going back to browsed pages. This improves functionality and
enhances usability.

 If providing detailed info on products to users, then test if you are able to
return back to the shopping cart from the detailed page and also check if the
state of the shopping cart is maintained.

 Ease Of Use

 Check if thumbnail photos of the items can be added to the shopping carts in
addition to a text description, this re-assures the customer that the right item
has been added to the shopping cart

 Try enhancing the usability by providing an auto-update cart facility after user
has added/removed item.

 Check for appropriate positioning of buttons. Place "Continue Shopping" on
the left and "Checkout" button the right, users perceive it analogous to "back"
and "going forward" respectively

 Presence of standard "credit card" images on the UI adds trust psychologically
on the site's security. Check the shopping cart for images or text that might
cause mistrust in the user.

 Check the if the UI provides functionality for discounts and coupons. Provide
separate field in the UI to display discounts due to coupons, it helps user note
the discounts better

 Provide separate columns to display "total" bill as the user adds items to the
cart

 Too much information to type into the cart - this common problem should be
avoided

 Do not limit the features of the shopping cart--keep it flexible

 Cart is too hard to use -reduce functional complexity

 Check if the user is conveyed the information of order placement. Warn the
customer when the transaction becomes final; do not surprise them by
abruptly billing their contents.

 Check forms against data requirement. Collect only essential information
about the user that is absolutely a must for completing the deal, unnecessary
questions and making optional questions compulsory makes the user
experience bad.

 Check for Hi-Tech whiz creations like flash display of catalog and constantly
flashing blue lights in a shopping cart because it may reduce the usability of
the cart. A classic example of a site that got booed away due to its technical
gimmickry was www.boo.com

 Check for plug-ins or media files that are not common in any general browser
software, and recommend not using them. Expecting users to download
software to shop at your site is high handedness! And may cost you heavily in
terms of loss of customers to other competitors.

 Provide the user with the functionality to choose the mode of shipment, Check
for fixed default radio buttons, non-flexible shipping options, erratic
placement of multiple selection checkboxes

 Not sticking to known paths in navigability and sequence of shopping
decreases the usability of the shopping cart, Check for odd sequencing issues
like re-sequencing shipping costs after the user has been billed and charged.
This will confuse the customer about whether the purchase was executed or
not!

 When new functionality is added to the shopping cart- Check if it is user-
understandable otherwise provide help

 Check for odd naming of known metaphors.

 Check if shipping can be calculated before checkout. Shoppers prefer getting
an idea of the total cost of the item.

Eric Myers’s Case study [13] on shopping cart experience and Andrew Starling’s E-
commerce and Usability [14] researches some of the above-mentioned risks in a detailed
manner.

Examples of related bugs and other known issues

I hate waiting
http://www.zdnet.com/anchordesk/talkback/talkback_229493.html
You forgot 'overcomplicated technology'!
http://www.zdnet.com/anchordesk/talkback/talkback_229472.html
Dell Computer's site has got to be the worst for hiding charges
http://www.zdnet.com/anchordesk/talkback/talkback_229509.html
Last minute surprises make me crazy too
http://www.zdnet.com/anchordesk/talkback/talkback_229513.html
Cookie crumbled
http://www.zdnet.com/anchordesk/talkback/talkback_229516.html

Convert Browsers to Buyers (Article)
http://builder.cnet.com/webbuilding/pages/Graphics/Ecommerce/index.html

E-commerce and Usability
http://wdvl.internet.com/Authoring/Design/Basics/ecom1.html

Two usability bug examples: Usability Testing
http://www.smartisans.com/usability_testing.htm

Appendix: Terminology

 Test idea:

A test idea is a brief statement that identifies a test that might be useful. A
test idea differs from a test case, in that the test idea contains no
specification of the test workings, only the essence of the idea behind the
test. Test ideas are generators for test cases: potential test cases are derived
from a test ideas list. A key question for the tester or test analyst is which
ones are the ones worth trying. (We thank Brian Marick for introducing us
to this term, and the level of analysis that comes with it.)

 Risk category
We call the 60 top-level categories that constitute the outline, risk
categories. Each of them identifies a class of problems that might arise in
the function under test.

 FMEA
Failure Modes and Effects Analysis is a common method of risk analysis
for complex or life critical systems. The process involves identifying the
failure characteristics of individual components and determining the
effects of those failures as they propagate across the systems in which they
are embedded.

 Failure mode
By definition, “Failure Modes are sometimes described as categories of
failure. A potential Failure Mode describes the way in which a product or
process could fail to perform its desired function (design intent or
performance requirements) as described by the needs, wants, and
expectations of the internal and external Customers”[2]

 Software bug taxonomy
Taxonomy is the theoretical study of classification including its bases,
principles, procedures and rules [Grolier Incorporated 1993] and
classifications that are created by categorizing the different software bugs
are called bug taxonomies.

 Risk-based testing
Risk-based testing is a strategy for selecting test ideas and designing tests
based on the types of problems you imagine might be present in the
product. Risk-based test management is a prioritization scheme--the test
management team decides which types of tests or potential problems to
invest testing time in based on perceived (or estimated) probability of
failure and expected damage that will result if the product actually fails in
this way.

References:

[1] A. Biraj Rath, NIIC (USA), Inc., P. M. Raj Nath, Microsoft Corporation, P. M.

Mukesh Agarwal, Microsoft Corporation, P. M. Jas Lamba, NIIC (USA), Inc., R.
George Gianopoulos, Microsoft Corporation, and C. Laura Hargrave, Microsoft
Corporation, "Testing Process," July 2000.

 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnentdevgen/html/testproc.asp

[2] FMECA, "FMEA Methodology."
 http://www.fmeca.com/ffmethod/definiti.htm
[3] S. Amland, "Risk-Based Testing and Metrics," EuroSTAR 99, Barcelona, Spain,

1999.
 www.amland.no/PowerPoint/EuroSTAR99Presentation.ppt
[4] I. 9126, "Software engineering -- Product quality -- Part 1: Quality model,"

International Organization for Standardization.

[5] P. Martin, "Managing Database Server Performance within an Electronic

Commerce Framework."
 http://www.cs.queensu.ca/home/cords/publications/m99.pdf
[6] Oracle Corporation, "Oracle9i Database Administration: Recover Databases."
[7] C. Dilley, "Known HTTP Proxy/Caching Problems," May 14, 2001.
 http://www.wrec.org/Drafts/draft-ietf-wrec-known-prob-03.txt
[8] L. D. Stein, Web Security: A step-by-step reference guide, May-2000.

[9] Labmice.net, "Memory Leaks."
 http://www.labmice.net/troubleshooting/memoryleaks.htm
[10] L. Louis de Klerk (Inobits Consulting Pty., Jason Bender (MSNBC), "Microsoft

Enterprise Services White Paper
E-Commerce Technical Readiness," Microsoft TechNet, April 2000 version 1.0.
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions/e
commerce/maintain/optimize/capplan.asp

[11] WebAIM, "Introduction to Web Accessibility," 2002.
 http://www.webaim.org/intro/intro

[12] W3C-WAI, "Web Content Accessibility Guidelines 1.0," 5-May-1999.

http://www.w3.org/TR/WCAG10/

[13] E. G. Myers, "Case Study #4: The Shopping Cart Experience," 2001.
 http://www.egmstrategy.com/carts4.html

[14] A. Starling, "E-commerce and Usability," November 5, 2001.
 http://wdvl.internet.com/Authoring/Design/Basics/ecom1.html

Key Points

Convergence of Wireless Internet Applications with the Desktop and Server
Interoperability of Applications on Wireless Internet Devices
Certification of Internationalised Applications for Standards Compliance

Presentation Abstract

This session will cover the test challenges facing wireless application developers as they integrate their
solutions with those provided by traditional application service providers. It will include an overview of the
changing technologies, and focus on key areas of testing needed for these mobile solutions. A case study
will be presented that illustrates the full range of testing needed for a mobile device (with a microbrowser) in
Brazil that is accessing on-line banking information in Japan. For this example, we will consider functionality
and compatibility issues, as well as the consequences if the application is not internationalised/ localised

About the Author

As VeriTest's Vice President of Marketing, Worlwide Testing Services, Ed is responsible for evangelizing
VeriTest's capabilities in outsourced testing, certification, and consulting. He has over 10 years experience
in the software industry in Product Management, Testing, Development, and Marketing, and is a frequent
speaker on quality and test automation topics. Prior to joining VeriTest, Ed spent 4 years with Rational
Software's automated testing team. He is a member of the Order of the Engineer, ASME, and several
university advisory boards. He holds a B.S. in Mechanical Engineering, a B.A. in English Literature, and an
MBA from The Carroll School of Management at Boston College.

QW2002 Paper 4I2

Mr. Ed Adams
(VeriTest)

Deployment of Globalised Wireless Internet Applications

11

Deployment of Globalised
Wireless Internet

Applications

Deployment of Globalised
Wireless Internet

Applications

Ed Adams
Vice President, Worldwide Testing Services
Ed_Adams@veritest.com
QW 2002 Paper 4I2

Ed Adams
Vice President, Worldwide Testing Services
Ed_Adams@veritest.com
QW 2002 Paper 4I2

2

AgendaAgenda

Introduction
Deployment for Multilingual Environments
Principles of Good Application Design for Wireless

Language – Is it relevant ?

Design Considerations for International

Testing vs. Certification

Globalisation Cost/Implications

Summary

Introduction
Deployment for Multilingual Environments
Principles of Good Application Design for Wireless

Language – Is it relevant ?

Design Considerations for International

Testing vs. Certification

Globalisation Cost/Implications

Summary

22

3

VeriTest: A division of LionbridgeVeriTest: A division of Lionbridge

VeriTest Founded 1987
> Private 12 Years, Public 3 Years (LIOX)

Lionbridge Market Position in
Globalisation and Testing
> $100M+ Revenues in 2001
> 1000+ Employees in 11 Countries

Business
> Globalisation Solutions
> Localisation Services
> Product QA and Certification

Industries
> Fortune 1000 in IT, Financial, Life Sciences, Automotive

VeriTest Founded 1987
> Private 12 Years, Public 3 Years (LIOX)

Lionbridge Market Position in
Globalisation and Testing
> $100M+ Revenues in 2001
> 1000+ Employees in 11 Countries

Business
> Globalisation Solutions
> Localisation Services
> Product QA and Certification

Industries
> Fortune 1000 in IT, Financial, Life Sciences, Automotive

4

Certification at VeriTestCertification at VeriTest

33

5

Deployment for multilingual audienceDeployment for multilingual audience

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60%

Online Penetration

M
ob

ile
 P

en
et

ra
tio

n

Germany

United
Kingdom Sw eden

Norw ay

Finland

Denmark

France

Italy

Spain

Holland

Greece

Portugal Ireland

Belgium

Sw itzerland

Austria

Note: Size of the sphere indictaes Online Web Users by proportion

Source: ICMM V8.1, IDC, Feb 2002

6

Deployment for multilingual audienceDeployment for multilingual audience

Source: ICMM V8.1, IDC, Feb 2002

% of 2006 Internet Users

AP
28%

ROW
16%

US
22%

Japan
8%

US
22%

ROW
16%

WE 25 %

Japan
8%

AsiaPac
28%

44

7

Deployment for multilingual – Case DataDeployment for multilingual – Case Data

Software Incompatibility

Multilingual Content

Regional Issues

Local Partners

Adapt Look/Feel

Domain Expertise

33%

26%

19%

15%

11%

67%

8

Principles of good application designPrinciples of good application design

Goal:Maximise Customer number & frequency
> Value of visit drives velocity of return
Compelling Content
> Fresh, relevant to the solution – is it interesting ?
> Clear and concise – it’s a small screen!
Navigation
> Must be simple, intuitive and consistent
> Cumbersome access results in
Extensibility
> To other markets / demographics

Goal:Maximise Customer number & frequency
> Value of visit drives velocity of return
Compelling Content
> Fresh, relevant to the solution – is it interesting ?
> Clear and concise – it’s a small screen!
Navigation
> Must be simple, intuitive and consistent
> Cumbersome access results in
Extensibility
> To other markets / demographics

55

9

Presentation of ContentPresentation of Content

Menu selection screens
> Limit # of selections (9) and use links to navigate
> Avoid all wrapping of text
Card Titles and Headings
> Openwave / non-openwave browser ?
> Save valuable screen space
Registration

> If possible, eliminate PC based registration !
> Use cookies and choice menus to facilitate entry of

repeated text (.com, .be, .co.uk, etc)
Splash screens
> Use 1 graphic, keep it 1 bit, with no timers

Menu selection screens
> Limit # of selections (9) and use links to navigate
> Avoid all wrapping of text
Card Titles and Headings
> Openwave / non-openwave browser ?
> Save valuable screen space
Registration

> If possible, eliminate PC based registration !
> Use cookies and choice menus to facilitate entry of

repeated text (.com, .be, .co.uk, etc)
Splash screens
> Use 1 graphic, keep it 1 bit, with no timers

10

NavigationNavigation

Minimise # key strokes to access information
Minimise requirements to use ‘back’ key
Minimise dependency on soft keys
> Use soft keys for ‘OK’, ‘Skip’, ‘View’, ‘Home’ etc
> Most phones support at least one soft key e.g. Nokia use a

soft key for the ‘back’ key function – define in WML
Login Screens
> Limit to banking/brokering applications/sites only
Exit Functionality
> Highest source of Customer dissatisfaction !!
> Usability testing should identify exit functionality issues

Minimise # key strokes to access information
Minimise requirements to use ‘back’ key
Minimise dependency on soft keys
> Use soft keys for ‘OK’, ‘Skip’, ‘View’, ‘Home’ etc
> Most phones support at least one soft key e.g. Nokia use a

soft key for the ‘back’ key function – define in WML
Login Screens
> Limit to banking/brokering applications/sites only
Exit Functionality
> Highest source of Customer dissatisfaction !!
> Usability testing should identify exit functionality issues

66

11

Language – Is it Relevant ?Language – Is it Relevant ?

Data Entry / Input Methods….

Optimising data entry for the application

> Postal Codes Used ?
> Date / Time formats used ?
> Alphabetical sorting order for menu items ?
> Some European languages have > 26 characters !
> Limits to address fields
> Line breaking
Translation can increase text size by 50%
> Test for wrapping before releasing

Data Entry / Input Methods….

Optimising data entry for the application

> Postal Codes Used ?
> Date / Time formats used ?
> Alphabetical sorting order for menu items ?
> Some European languages have > 26 characters !
> Limits to address fields
> Line breaking
Translation can increase text size by 50%
> Test for wrapping before releasing

12

Design Considerations – I18NDesign Considerations – I18N

I18N = InternationalisatioN
Test for each level of ‘enablement’
I18N = InternationalisatioN
Test for each level of ‘enablement’

Level 2 exhibits locale awareness

Level 1 is ‘8-bit’ Clean

Level 3 implements Resource/Code Separation

Level 4 is Multi-Byte Enabled

Level 5 is Fully MBCS Enabled supporting input method
editors, sorting, writing directionality etc.

2

5
4
33

11

77

13

Quality Assurance vs. CertificationQuality Assurance vs. Certification

QA / Testing
> Application functions per requirements/design
> Designed to identify design/usability defects

Certification
> Application meets ‘public’ functionality criteria

Stamp of approval for application developer
Reliability statement for application consumer
Consistency for platform provider

QA / Testing
> Application functions per requirements/design
> Designed to identify design/usability defects

Certification
> Application meets ‘public’ functionality criteria

Stamp of approval for application developer
Reliability statement for application consumer
Consistency for platform provider

14

Typical Certification CriteriaTypical Certification Criteria

Basic Support
> Mobile gateways / browsers supported
UI Support
> Good ‘About’ functionality
Processes
> Switching between voice and data
Cards
> Menu selection guidelines
Alerts
> Telco vs. Hardware vs. Software alerts
Input Methods

Basic Support
> Mobile gateways / browsers supported
UI Support
> Good ‘About’ functionality
Processes
> Switching between voice and data
Cards
> Menu selection guidelines
Alerts
> Telco vs. Hardware vs. Software alerts
Input Methods

88

15

Cost/Implications of FailureCost/Implications of Failure

Delayed release of localised applications
Cost to ‘retrofit’ applications to ensure

global wireless internet compliance
Opportunity costs => Consumer migration

to Cultural / ‘Friendly’ applications
Credibility in global market place
> Your application will kill you
> Not vice versa

Delayed release of localised applications
Cost to ‘retrofit’ applications to ensure

global wireless internet compliance
Opportunity costs => Consumer migration

to Cultural / ‘Friendly’ applications
Credibility in global market place
> Your application will kill you
> Not vice versa

16

Case Study DataCase Study Data

99

17

Summary approach to releaseSummary approach to release

Probably works

Compatible

Good “out of the box” experience

Adheres to standards & behaviors

Reliable

Solid as it extends to international

Tr
ad

eo
ff

be
tw

ee
n

co
st

 an
d

gl
ob

al
 re

ac
h

18

SummarySummary

Today, most organisations do not factor
‘international’ into wireless app design

QA can play a more significant role in
outcome of wireless internet than in ‘80-’00

Markets in this decade will be truly global
> …and so will consumer choice!

Today, most organisations do not factor
‘international’ into wireless app design

QA can play a more significant role in
outcome of wireless internet than in ‘80-’00

Markets in this decade will be truly global
> …and so will consumer choice!

1010

Thank You

www.veritest.com

Key Points

Standardizing test processes.
Profiling applications and user workflows.
Working with diverse development teams.

Presentation Abstract

How can a test team simplify the transition from performance testing two-tier client/server applications to
testing complex, multi-tier web applications combined with an exponential growth in testing needs? In this
presentation, Nancy Landau presents case studies that address changes made in performance testing
methods to handle compressed delivery schedules, new architectures and technologies, and changing
customer expectations. The experiences focus on performance testing, but the strategies apply to all test
efforts.

About the Author

Nancy Landau has 15 years of experience in quality assurance and financial services. She has been
involved in design, development, deployment, test, and support of large-scale client/server solutions for the
mortgage banking industry. She is the lead client/server performance test analyst for the Residential
Lending Division of ALLTEL, a Fortune 500 company.

QW2002 Paper 6I1

Ms. Nancy Landau
(Alltel Technology Services)

Performance Testing Applications In Internet Time

Performance Testing Applications
in Internet Time

Nancy Landau

Objectives
• Review performance testing basics
• Describe fundamentals
• Explain success factors
• Review examples

Audience: Web developer, performance
engineer, stress test / QA project manager

Audience: Web developer, performance
engineer, stress test / QA project manager

Terms & Concepts
• Application Under Test (AUT): The software application(s) being tested.
• System Under Test (SUT): The hardware & operating environment(s) being tested.
• Virtual User: Software process that simulates real user interactions with the AUT.
• Process/Workflow: A user function within the AUT.
• Scenario: A set of workflows defined for a set of virtual users to execute.
• Transaction: A subsection of the measured workflow; more granular

user events for which response time will be measured.
• Bottleneck: A load point at which the SUT/AUT suffers significant

degradation.
• Breakpoint: A load point at which the SUT/AUT suffers

degradation to the point of malfunction.
• Scalability: The relative ability or inability of the AUT/SUT

to produce consistent measurements regardless of size
of workload.

Why Performance Test?

• Internet applications
bring performance
issues direct to your
users

• Slow response times
and errors have a
direct cost

Test Development

• Automated testing IS software development
• Lifecycle mirrors product development
• Use iterative test development
• Emphasize planning stages
• Plan for reuse

Plan - System Usage

• Get system usage information
– Identify workflows
– Define typical user profiles
– Define transactions and expected results

• Examine typical and peak workloads
• Define access methods - connection speeds, etc.
• Trace use cases to components and hardware

Case Study #1
• Web application for data analysis reports
• Third party development, limited test environment
• Vendor’s tests stated 1,000 user capacity
• Internal tests initially failed at 30 users
• Cause 1: Different model workflows

– Report sizes
– User actions
– Cached data

• Cause 2: Capacity extrapolated from 30-user tests
• Lesson: understand usage patterns, avoid “good

math gone bad”

Plan - AUT Architecture

• Perform architectural walkthroughs
• Understand security methods
• Review 3rd party components
• Understand queues
• Identify caching models
• Examine session management
• Verify tool compatibility with AUT

Case Study #2

• Web-based customer service application
• 3rd party component for host connectivity

– Bottlenecked only on multi-processor servers
– Vendor provided recompiled component

• Delphi controls, 3270 Active-X
• GUI test tool supported both Delphi and 3270
• BUT not together!
• Lessons: know your components and your tools!

Plan - SUT Architecture

• Review physical infrastructure
• Examine firewalls
• Review connectivity
• Identify load balancing
• Review encryption

Plan - Test Data

• Define representative set of data
• Define appropriate volume of stored data
• Develop test database
• Plan backup and restoration
• Establish data verification points

Plan - Test Environment

• Obtain dedicated environment
• Typify production

– Hardware
– Networks
– Databases

• Perform manual dry run tests
– Identify concurrency risks
– Confirm application behavior

Case Study #3

• Web-based ad-hoc reporting tool
• Development environment limited

– Server processor speed
– Number of processors

• Tests in development had no performance issues
• Early test in near-production environment

uncovered fatal concurrency problems
• Repeatable with just one user
• Lesson: use near-production environment

Plan - Test Metrics
• Response times – what are the AUT’s targets?
• Session abandonment – when will users stop waiting

and leave the site?
• Server utilization – are there target levels defined?
• Network load – how much before capacity is

strained?

• Correlate test metrics to production
monitoring – capture in test what
you can measure in production

Plan - Toolkit

• Automated test tools
– virtual users
– GUI users

• Monitoring methods
– Server performance
– Network load
– Client / virtual user driver

• Logs and log parsers
• Synchronize the measurements!

Create Virtual Users

• Record user actions
• Define wait / think times
• Add transactions
• Add verification checks
• Parameterize data

Create Scenarios

• Establish mix of virtual users
• Ensure a varied, representative workflow
• Establish monitoring points

Perform Dry Runs

• “Test the test”
• Use full logging
• Identify unexpected conditions
• Review instrumentation and monitors
• Validate parameterized data
• Revise test scripts

Case Study #4

• Web-based customer service application
• Web server interpreted response from application

server as success
• Application server returned errors in the response
• Examined return data to identify “true” success
• Lesson: HTTP 200 is not always success!

Validate responses against expected results

Perform Tests

• Reduce logging to production levels
• Ramp-up virtual users
• LAN versus WAN tests
• Identify and troubleshoot bottlenecks
• Track all changes

Analyze Results

• User response times
– Averages
– 75th percentile or higher

• Memory utilization
• CPU utilization
• Server configuration
• Database and SQL tuning
• Code tuning

Report the Results

• Report components
– Executive summary
– Report body
– Appendices

• Identify the audience
• Mirror the test plan
• Acknowledge contributions

Rinse and Repeat

• Emphasize reuse
• Develop plan templates
• Create report templates
• Develop application matrix
• Develop reusable test components
• Define standard measurements
• Define and share toolkit

Conclusion

• Automated testing is development
• Planning is essential
• Plan for reuse
• Profile the users
• Learn the technologies
• Understand the infrastructure

Questions?

Thank You!

Nancy Landau
Nancy.Landau@ALLTEL.com

Key Points

Here’s how to make commercial implications of Web Performance directly tangible
Integration of measurement modalities is tricky but highly rewarding
Blind sports and complementarities of the measurement modalities

Presentation Abstract

One may classify commercially feasible measurements of Internet performance into three broad categories,
which may be placed along a continuum: behind-the-firewall, synthetic, and end-user. As representatives of
industry leaders in these measurements approaches, we set out to compare benefits and blind spots of the
approaches and to see how they complement each other. THIS IS NOT A MARKETING TALK, but rather an
in-depth, balanced discussion of success stories and open questions, both from technical and business
perspectives. We work our way up from statistical prerequisites to a surprising ability to correlate traditional
technical data (such as downtime, other performance problems, and design issues) with traditional
Marketing metrics (such as ROI estimates.) We use an interactive bird’s-eye view of multiple data sources
that allows an unaccustomed ability to spot relationships. Understanding the full spectrum of measurement
integrations will also help prioritize within less ambitious performance management strategies. In addition,
this clarifies desired future progress.

About the Author

Chris Overton is Keynote Statistician & Quantitative Architect. Over the last decade, he has consulted as a
statistician in industry and in academic biomedicine, as a software architect and developer, and in business
model development. He founded Crazy Tulip Corp. to build knowledge modeling software systems. His
responsibilities at Keynote include algorithm and tool design, data analysis & interpretation, internal &
external education, and serving as academic liaison. He architected Keynote’s SLA reporting engine and
has helped several large companies build SLAs both on the provider side and on the customer side. Chris is
the principal architect of Keynote’s streaming media metrics and has published and lectured on related
topics. He got his pure math PhD from Stanford in 1996 and has taught there and at the University of San
Francisco.

Chris Bubinas is webHancer's lead Performance Assessment and Customer Impact Analyst. For over four
years he has consulted in network deployment and in bringing companies? business operations to the Net.
He joined webHancer near inception, sharing the vision that online businesses require and deserve a better
understanding of the Web performance their customers experience. His contributions to webHancer involve
data mining and analysis, building strategies to measure performance impact on audience behavior, and
custom performance measurement projects with some of the Internet's largest players. Mr Bubinas resides
in Ottawa, Canada from where he avidly launches the sounds of his cyber-industrial musical projects into
cyberspace.

James W. MacIntyre, IV is cofounder and chief executive officer of Visual Sciences, Inc., which offers
industry-leading visualization and interactivity for several data domains, especially for various types of
Internet measurements. He is a member of the General Partner at NextPoint Partners, L.P., a seed and
early-stage venture capital fund. A serial entrepreneur, Mr. Maclntyre also served as cofounder, chief
executive officer, or general manager of a number of companies, including OneSoft Corporation, an e-
commerce and managed services company; TGF Technologies, Inc., a software development company;
Together Networks, a regional Internet service provider; Computer and Communications International, a

QW2002 Paper SB1

Dr. Chris Overton
(Keynote Systems, Inc.)

Comparative Strategies for Measuring the Internet: The Whole is More than the
Sum of the P

Venezuelan Internet infrastructure company, and Comprehensive Data Systems, a software applications
company. Mr. Maclntyre holds a B.A. in philosophy and economics from the University of Vermont.

1

Comparative Strategies for
Measuring the Internet:

The Whole is More
than the Sum of the Parts

Chris Overton, Ph.D.
Keynote Systems

Chris Bubinas
Webhancer

James MacIntyre
CEO, Visual Sciences

Agenda

• Introduction
• Two schools of Internet-related measurement
• Discussion of the “three measurement modalities”:

– “Behind-the-firewall”
– Synthetic measurement
– End-user measurement

• Important gaps to fill; important synergies
• Possible data integrations already starting to

happen in industry

2

Introduction

Too many talks in this industry say something like:
– In 2001, $Y Billion was spent on this aspect of

generating and delivering Internet content
– This is projected to grow to $Z Billion by the year

200X
– So therefore, you have to pay attention to this

particular optimization or service that I’m offering…

Introduction (II)
• But what fraction of these large expenditures

is understood quantitatively in the following
terms?
– What value it brings
– What value is lost for “dumb” reasons

• e. g. availability and performance problems
– Much harder: what value is lost due to omissions

• e. g. what potential value is lost due to what is not
offered

3

Introduction (II)
• But what fraction of these large expenditures

is understood quantitatively in the following
terms?
– What value it brings
– What value is lost for “dumb” reasons

• e. g. availability and performance problems
– Much harder: what value is lost due to omissions

• e. g. what potential value is lost due to what is not
offered

• This speaker would assess current
understanding in these areas as pathetic

Introduction (III)
• Ad hoc studies by consulting agencies may

make varying degrees of progress in
answering these questions, but:
– Not in much of a standardized, general, or

scalable way
– Usually not reaching conclusions earlier than

months after gathering data
• More automated conclusions closer to real-

time have to derive from measurement data

4

Introduction (IV)
• In this talk, we’ll show how each class of

measurement strategy fails to provide
comprehensive understanding

• However, we’ll also demonstrate how their
appropriate combination can solve the puzzle of
understanding market impact of Internet presence,
including missed potential value

• One may also use these techniques to quantify
“softer” areas such as site design and navigability

• Leading companies are beginning to figure this out,
suggesting this will soon become a competitive
necessity

Agenda

• Introduction
• Two schools of Internet-related measurement
• Discussion of the “three measurement modalities”:

– “Behind-the-firewall”
– Synthetic measurement
– End-user measurement

• Important gaps to fill; important synergies
• Possible data integrations already starting to

happen in industry

5

The traditional challenges
in managing a web presence

1. Operations: understand in real time what is
going on so you can fix/manage it

2. Product Management/Marketing: (“PMM”)
understand the financial impact of what you are
doing and not doing

– At a planning stage (months in advance)
– Understand how to spin the current situation

• In this context, “current” usually means a time scale of
weeks to months

Ops vs. PMM goals

• Different time scales lead to different
approaches and different data

• However, market impact of smaller time
scale occurrences call for marketing interest
in understanding them and in
developing/automating response strategies

6

Ops goals

• Ops tends to get saddled with responsibilities for
products prioritized and built elsewhere; focus is
on day-to-day (minute-to-minute) management

• Metrics tend to be some proxies for availability
and maybe even performance

• Market for ops-level measurement seems
relatively mature, but discontinuous with PMM
metrics

Product management goals

• Plan for execution that is delayed by development and
deployment times

• The goal is to understand market impact, but errors
arise due to time lag, prediction uncertainty, and
“softer” subject area of human behavior

• Thus metrics aspire to predict market impact
(“predicted profit”), but lack trustworthiness and rigor

• Real-time knowledge is not “actionable” and so is less
relevant

7

What is the market for
quantifying Internet-related

performance for PMM clients?
• Due to perceived budgetary control by PMM, many

measurement companies and services aspire to serve
their needs

• However, most measurement services seem to serve
ops clients

• Fancier reporting and research for PMM clients
appears less scalable

We will argue for a kind of integration that not only
addresses both client sets, but benefits them in the
new way of getting them to speak the same language

Agenda

• Introduction
• Two schools of Internet-related measurement
• Discussion of the “three measurement modalities”:

– “Behind-the-firewall”
– Synthetic measurement
– End-user measurement

• Important gaps to fill; important synergies
• Possible data integrations already starting to happen

in industry

8

The three measurement modalities

We now talk about what actually can be
measured…

This is important preparation for what can be
gained by combining modalities, so we’ll
need to be thorough

We define the modalities and then compare
both what they do measure (capabilities)
and what they do not (limitations,
difficulties)

The three measurement modalities

• Behind-the-firewall (“BTF”)

• Synthetic measurement,
including (part of) Internet

• End-user measurement

9

The three measurement modalities

Basic definitions:
• Behind-the-firewall

– Anything derivable from within a company’s web site

• Synthetic measurement over Internet
– Anything measurable by artificial web traffic

• End-user measurement
– Anything derivable from measurement of real users

(generally acting voluntarily, since non-voluntary
behavior is much cheaper to run synthetically)

The three measurement modalities

Main experience of authors’ companies
• Behind-the-firewall

– Visual Science
• Synthetic measurement over Internet

– Keynote
• End-user measurement

– Webhancer

10

Behind-the-firewall capabilities

• Access to internal corporate information, such as
purchasing behavior

• Proprietary user behavior within domain, before
encryption

• View deeper inside applications, allowing more
granular understanding of performance

• Substantial partial insight into end-user experience
is possible by analyzing packet transit

• Low performance and bandwidth overhead for
measurement

Synthetic measurement capabilities

• More realistic than BTF for response time and
especially for availability, given transit over Internet
– Especially for for load testing

• Easily standardized sampling for simpler
comparability (“benchmarking”)

• Customizable measurement is able to focus on
specific functionalities, useful for SLA’s (such as
intra-company)

• Visibility into optimizations due to distributed server
locations (CDN’s)

11

End-user measurement capabilities

• Most accurate measurement of actual user experience
• More complete view of voluntary user behavior than

possible from behind the firewall:
– What competitors does click-away go to?
– User-side unavailability offers truer picture
– More holistic picture of user traffic

• Subject to privacy limitations, view of unencrypted
data at user end

• Flux and distribution of user load gives a way to
prioritize and weight synthetic measurements

Behind-the-firewall difficulties
• If a user abandons, you don’t fully understand

when or why, and you certainly don’t understand
what they do instead

• Without measuring over the Internet, you’re
missing a big enough piece of the puzzle that this
clouds your conclusions, especially for distributed
content
– You may not know how users are transiting the

Internet, making it difficult to detect and repair Internet
problems

• Lack of visibility into competitors
• Most fundamentally: lack of visibility into what

you are “missing”

12

Synthetic measurement difficulties
• Need server-side or user-side data to know you

are measuring the right thing
– Bias introduced unless data weighted by user traffic!

• You generally sample a small fraction of possible
pages/behaviors

• You necessarily sample from a small fraction of
possible locations

• Either the faster and more important backbone
transit gets lost in last-mile noise, or else you
sample only a small fraction of transit paths
– As measured in the metric of “packet seconds”:

where packets spend their transit time
• Measurement bandwidth cost is very much of a

limiting factor, so intelligent sampling
optimization is crucial

End-user measurement difficulties
• This richest data set is also the noisiest – confounded e.g. by

only partially known user hardware specs, or by performance
degradation due to simultaneously running software

• This richest data set is the hardest to mine; best practices are
still evolving substantially, even at industry leaders

• User-panel generally suffers self-selection bias: most
lucrative users are probably less likely to let you snoop their
behavior; biases are time-varying!

• Trust issues generally imply anonymization – a limitation as
compared to behind-the-firewall

• Low-traffic sites may not allow granular conclusions
• Without synthetic overhead (such as tracert), data are less

actionable

13

must infer much of
Internet latency,
including user loc.
limited view of
user click-away,
competitors

artificial traffic;
limited scope of
behaviors;
Partial view of
Internet;
measurement cost

self-selection bias;
last-mile noise
unwieldy data;
privacy constraints;
limited visibility
into smaller sites

Cons

managed by host,
so no privacy
concern;
granular view
inside applications

easy to schedule;
understandable
Internet latency;
standardized

real performance
& behavior;
maybe follow user
click-away;
high data depth

Pros

Server-side
(behind firewall –
“BTF”)

Synthetic
(across Internet)

End-user
(panel)

Modality

Summary of measurement modalities

Agenda

• Introduction
• Two schools of Internet-related measurement
• Discussion of the “three measurement modalities”:

– “Behind-the-firewall”
– Synthetic measurement
– End-user measurement

• Important gaps to fill; important synergies
• Possible data integrations already starting to

happen in industry

14

Important gaps to fill;
important synergies

• Before we showcase the “dream team”,
let’s suggest strategies for filling gaps arising from
use of a single modality

• For this section, we’ll assume a reasonable single-
modality measurement strategy is already in place
– A huge assumption, by the way!

• We’ll always assume some routine behind-the-
firewall measurement

Additions to synthetic measurement
• A reasonable starting point would include regular synthetic

measurement having alarming
• Knowing how to weight measurements depends critically on an

understanding of one’s user base, available either through end-
user of BTF

• Substantial savings may be realized in choice of measurement
locations based on this knowledge

• Intelligent alarming can benefit from synthetic + BTF by using a
BTF process of elimination to build evidence for specific
Internet problems

• Suppose you’re a synthetic measurement company trying to
decide what to measure (i.e. without BTF knowledge.) This is a
great use for end-user measurement!
“The boomerang effect”

• Correlate with BTF to obtain a (weak) predictor of lost value
based on synthetic measurement; use this to justify PMM
decisions

15

Additions to BTF measurement
• Use synthetic & end-user to manage outside the

firewall
• Use synthetic over long term (sparsely sampled) to

choose providers and understand changing
performance
– Beware long-term shift in synthetic

• Synthetic useful to help quantify BTF improvements
• Use end-user to quantify competitive threats
• Use synthetic to understand competitive performance

– But needed in much less granularity than one’s own!
• End-user can give most timely problem indicator:

a rapidly falling user load

Additions to end-user measurement
Most promising area for development:
1. Disentangle shifting biases by correlation with

synthetic
2. QUANTIFY DOLLAR VALUE OF

PERFORMANCE/AVAILABILITY/OTHER
VARIATION BY INTEGRATION WITH BTF

3. THEN, USE THIS TO INFER ADDITIONAL
LOST VALUE DUE TO USER
ABANDONMENT IN FAVOR OF
COMPETITORS

16

Agenda

• Introduction
• Two schools of Internet-related measurement
• Discussion of the “three measurement modalities”:
• “Behind-the-firewall”

– Synthetic measurement
– End-user measurement

• Important gaps to fill; important synergies
• Possible data integrations already starting to

happen in industry

The solution to all the world’s
problems (in measuring value of web investments)

• We have already seen that measurement strategies
starting from one modality lead naturally to
include the others

• A full combination may be cost-prohibitive for
smaller companies (and infeasible for companies
whose web traffic is too small for end-user to be
sufficiently granular)

• The approach here is still usually not fully realized
• However, some of the largest companies are

beginning to put these pieces together, suggesting
the knowledge will “trickle down”

17

Step one: dollar-based metrics
in near-real time

• Any metrics in units of dollars seem more suspect
than metrics in units of time, because they are
either operationally irrelevant (occurring over
large time intervals or else being “bursty”), or
mere marketing approximations

• However, assuming financial events can be
monitored and aggregated in near-real time, the
results can be quite dramatic

Step one: dollar-based metrics
in near-real time

<demo>: “conversion” events for a financial
company

18

Step two: correlation of web
structure with financial metric

• By identifying which web pages lead to
financial events, very dramatic
consequences of web site design may
become apparent

• This is still possible without use of synthetic
or end-user measurements

Step three: correlation of BTF
with end-user and/or synthetic

• It seems enough of a challenge to correlate only
performance numbers

• However, if end-user measurements are assumed
to reflect the experience of the entire set of users,
this can be correlated with financial metrics (as
calculated BTF, possibly with other predictors) to
estimate actual value of performance

• When investments are then considered, specified
performance improvements can then be cost-
justified and perhaps even contracted for

19

Step four: build in competitive
abandonment to quantify loss to

competitors
• Accurate knowledge on this front requires end-

user data
• Usually, one will start with unjustifiable

simplifying assumptions to make a first
approximation
– For example, all user visits are independent

• This allows first-pass estimation of competitive
landscape and its sensitivity to web experience

Step five (advanced): more
accurate end-user + synthetic

measurement integration
• Since each modality has its biases, it follows that

more accurate results are possible by appropriate
analysis of results

• This greater accuracy is possible without
additional measurement cost, but benefits most
from some knowledge of user geography

• This is an area of continuing development, but
adds more to accuracy (and thus to cost-benefit)
as opposed to functionality

20

Conclusions

• It is now possible for reasonably accurate dollar-
unit metrics to be used near real-time and in an
operations context

• At the very least, these are useful in an ops context
to prioritize problem solving

• Gradually, real-time dollar metrics can narrow the
gap between ops and PMM

• Appropriate measurement integration is vital to
this process

Author Contact Info
• Synthetic measurement over Internet

– Chris Overton, Keynote Statistician
– coverton@crazytulip.com, coverton@keynote.com

• “Behind-the-firewall”
– Jim MacIntyre, CEO, Visual Sciences
– Jim@visualsciences.net

• End-user measurement
– Chris Bubinas, Webhancer
– cbubinas@Webhancer.com

Key Points

Achieving reliable Web site load testing results means generating realistic traffic
It must model both user behavior and network behavior, currently uncommon in Web testing
Network issues(packet loss, link latency, jitter, etc) significantly affect performance

Presentation Abstract

What is real world capacity assessment? It is carefully combining the aspects of not only user realism, but
network realism in order to achieve reliable, accurate results during Web site and network performance
testing. User and network realism includes important measures such as packet loss, link speeds, millions of
IP addresses, browser emulation, SSL, and other factors that can cause significant performance issues. The
Internet has all these issues, and testing with these values are an important part of gaining a clear picture of
system performance from the start and in the safety of the test lab. In-house and industry studies have
shown dramatic performance issues with even small amounts of network realism thrown in: NASA has
shown that only 3% packet loss causes a 50% drop in FTP performance.

About the Author

Philip Joung has worked in various IT related jobs since 1987. After working at a CASE tool software
consultancy for two years, he helped start the company Embark.com (which still thrives today as the largest,
most trafficked Web site for students going to college) in 1996. He joined as the Webmaster to run the
technology side of the 7 person company. By the end of 1999, the company had 300 people, and Mr. Joung
was the Chief Systems Architect. He ran Embark.com’s IT systems, and in 1999, grew the network to a
large $12 million network operations center with 150 servers, redundant Internet lines, 2 tons of battery
backups and a large, 1-ton generator. Scaling this network required testing, but often the testing did not
provide an accurate picture of the performance in production.
After four and a half years with Embark.com, Mr. Joung left to join Caw Networks, a company devoted to
finding the true capacity of network systems and Web sites. He took this opportunity to help them develop a
solution that would solve many of the scalability headaches at Embark.com. Mr. Joung is now helping to get
the word out about this company’s products and the reasons why user and network realism matters.
Philip Joung has presented at various technical seminars internal to the companies he has worked at. At
Caw Networks, he’s presented at various trade shows such as N+I as a demonstrator and more than a
dozen Caw Networks customer workshops. He is also scheduled to speak at STAREast in May, at N+I
Tokyo in July, and CMG 2002 in December.

QW2002 Paper 7I1

Mr. Philip Joung
(Caw Networks)

Get Real! The Importance of Realism in Web Site Capacity Assessment

Quality Week 2002

Philip Joung, pjoung@caw.com, Caw Networks

1

Get Real! The Importance of Realism
for Web Site Capacity Assessment

Get Real!
The Importance of
Realism for Web Site
Capacity Assessment

Philip Joung
Director of Technical Marketing

Quality Week 2002

Agenda

l The Complexity of the Internet
l Capacity Assessment
l User Behavior Emulation
l Network Behavior Emulation
l Study Results
l Conclusions

Quality Week 2002

Philip Joung, pjoung@caw.com, Caw Networks

2

Get Real! The Importance of Realism
for Web Site Capacity Assessment

Quality Week 2002

The Internet

l Network made up of millions of components
– Routers, caches, modems, switches, hubs, servers,

wireless, etc.
l Web sites with complex, multi-tier architectures
l Millions of users

– Personalization
– Security
– Complex functionality
– Different browsers, connection speeds
– Erratic behavior

Quality Week 2002

With all the Variables, What Can be
Done to Improve Performance?

l Faster
– Equipment
– Network

l More
– Equipment
– Network connections

l Redesign
– Applications/database
– Network

l All are costly and complex to do, and often risky

Quality Week 2002

Philip Joung, pjoung@caw.com, Caw Networks

3

Get Real! The Importance of Realism
for Web Site Capacity Assessment

Quality Week 2002

Capacity Assessment to the Rescue!

l Compares different design prototypes
l Helps tune the system
l Validates vendor performance claims
l Demonstrates performance of the final

system
l Ensures ongoing performance in the system

Quality Week 2002

Traditional Capacity Assessment

l Primarily software based
l Careful attention to modeling user behavior

– Scripts of what the simulated user does
– Browser version
– SSL usage

l Increase amounts of load applied to
– Find errors
– Discover bottlenecks
– Cause system failure

Quality Week 2002

Philip Joung, pjoung@caw.com, Caw Networks

4

Get Real! The Importance of Realism
for Web Site Capacity Assessment

Quality Week 2002

What’s Missing?

l The network side of the equation
– Packet loss
– Realistic link speed
– Others…

l Testing with traffic equal to expected loads
rather than extrapolating

Quality Week 2002

Test Network

WebAvalanche 1822, version 3.1
Capacity Assessment Appliance

Netgear 10/100
Ethernet Switch

850 MHz PIII
1 GB RAM
Windows 2000
IIS 5.0

Quality Week 2002

Philip Joung, pjoung@caw.com, Caw Networks

5

Get Real! The Importance of Realism
for Web Site Capacity Assessment

Quality Week 2002

Test Settings

l Test Duration: 148 seconds
l Files: 1 byte, 15 Kb, 1500 bytes, 1 byte, 1 Kb, 100

bytes
l No think time
l HTTP 1.1 protocol
l No packet loss
l No link latency (full network speed)
l Increase load to 3,100 users over 128 seconds

Quality Week 2002

What’s In This Test?

l Under clean conditions, the test network
exhibits no failures

l Successes, failures and timings are recorded
l One condition is altered per assessment, and

the results, including changes, recorded

Quality Week 2002

Philip Joung, pjoung@caw.com, Caw Networks

6

Get Real! The Importance of Realism
for Web Site Capacity Assessment

Quality Week 2002

Clean Run Results

l Attempted number of transactions: 275,010
l Successful number of transactions: 275,010
l Successful transactions/sec: 1,858
l Ave. est. server processing time: 0.003 ms
l Total number of packets: 1,915,904
l Maximum average bandwidth: 58.64 Mbps

Quality Week 2002

User Path and Behavior

l Dynamic content
much more
intensive than
static HTML

l What a user does
on a Web site
matters

– Searches,
logins,
purchases all
create load

Decrease in Performance of
Dynamic CGI vs. Static Files

83%

27%

50%

18%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

IIS
Windows

Apache
Linux

iPlanet
Windows

Zeus Linux

* Source: Server’s Advantage, PC Magazine, January 15, 2002

Quality Week 2002

Philip Joung, pjoung@caw.com, Caw Networks

7

Get Real! The Importance of Realism
for Web Site Capacity Assessment

Quality Week 2002

Browser Version
HTTP 1.0 and HTTP 1.1

l Browsers use particular versions of HTTP
l HTTP 1.0

– Uses separate network connections to transfer objects
(HTML page, graphic, etc)

– Some browsers open multiple connections
l HTTP 1.1

– Uses connection persistence, where one network
connection can transfer multiple objects

– Helps reduce overhead of setting up and tearing down
network connections

Quality Week 2002

HTTP 1.0 versus HTTP 1.1

Bandwidth Utilization

62.633

58.638

57

58

59

60

61

62

63

HTTP 1.0 HTTP 1.1

M
bp

s

Packets (000s)

3221.75

1915.9

0

500

1000

1500

2000

2500

3000

3500

HTTP 1.0 HTTP 1.1

4 Mbps more bandwidth, 6.8% more 1.3 million more packets, 68.2% more
* Source: Caw Networks Realism Study, February, 2002

Quality Week 2002

Philip Joung, pjoung@caw.com, Caw Networks

8

Get Real! The Importance of Realism
for Web Site Capacity Assessment

Quality Week 2002

Security

l Browsers primarily use secure socket layers,
or SSL, for security

l Employs various encryption methods to
improve security

l Increases processing time on both server
and client

l Increases bandwidth utilization

Quality Week 2002

SSL’s Performance Overhead

Ave Bandwidth per Transaction

0.2132

0.471

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

No SSL SSL

Kb
ps

Average Successful TPS

1858

58

0

200

400

600

800

1000

1200

1400

1600

1800

2000

No SSL SSL

Est Server Processing Time

0.003

1.886

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

No SSL SSL

m
il

li
se

co
n

d
s

32 times fewer 335 times more
processing time

2.2 times more
bandwidth

* Source: Caw Networks Realism Study, February 2002

Quality Week 2002

Philip Joung, pjoung@caw.com, Caw Networks

9

Get Real! The Importance of Realism
for Web Site Capacity Assessment

Quality Week 2002

Other User Behaviors to Consider

l Different activities
– Streaming Media
– FTP
– Email

l User frustration
l Cookie usage
l User “think time”

Quality Week 2002

Network Behavior

l Packet loss
l Link speeds
l More later…

Quality Week 2002

Philip Joung, pjoung@caw.com, Caw Networks

10

Get Real! The Importance of Realism
for Web Site Capacity Assessment

Quality Week 2002

What is Packet Loss?

l The Internet carries its data in the form of
packets

l Network congestion
– Networks discard or deny packets on the

network that it can’t handle

l Errors in transmission

Quality Week 2002

Packet Loss on the Internet

* Source: http://average.matrixnetsystems.com/

http://average.matrixnetsystems.com/

Quality Week 2002

Philip Joung, pjoung@caw.com, Caw Networks

11

Get Real! The Importance of Realism
for Web Site Capacity Assessment

Quality Week 2002

Performance with Packet Loss
According to NASA

FTP Throughput Degradation

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8

Percent Packet Loss

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

* Source: The Effect of Packet Loss on TCP Application Performance,
NASA Integrated Services Network, December 11, 1998

3% packet loss halves performance

Quality Week 2002

Packet Loss Effect on Web Servers

Number of Unsuccessful
Transactions

0

50

100

150

200

0 2 4 6 8 10

Packet Loss Pecentage

Maximum Number of Open
Network Connections

0

500

1000

1500

2000

0 2 4 6 8 10

Packet Loss Percentage

* Source: Caw Networks Realism Study, February 2002

Quality Week 2002

Philip Joung, pjoung@caw.com, Caw Networks

12

Get Real! The Importance of Realism
for Web Site Capacity Assessment

Quality Week 2002

Link Speeds

Internet Use by Connection Speed

Broadband
17%

56K Dialup
64%

28.8/33.6K
Dialup
15%

14.4K Dialup
4%

* Source: Nielsen/Netratings, July 2001

Quality Week 2002

Why Does Link Speed Matter?

l Slow connections increase server load
l Differing link speeds exercise the network

differently
l Modeling link speed allows one to accurately

gauge user experience

Quality Week 2002

Philip Joung, pjoung@caw.com, Caw Networks

13

Get Real! The Importance of Realism
for Web Site Capacity Assessment

Quality Week 2002

The Effect of Link Speed

Maximum Open Network
Connections

7098

4264

2357

972
317 86 30

0
1000
2000
3000
4000
5000
6000
7000
8000

9.6
Kbps
WAP

28.8
Kbps
Dialup

53 Kbps
Dialup

128
Kbps
ISDN

384
Kbps
DSL

1.5
Mbps
T1

100
Mbps
LAN

Average Estimated Server
Processing Time

0.712

0.503

0.271

0.113
0.038 0.011 0.003

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

9.6 Kbps
WAP

28.8
Kbps
Dialup

53 Kbps
Dialup

128
Kbps
ISDN

384
Kbps
DSL

1.5
Mbps T1

100
Mbps
LAN

m
ill

is
ec

on
ds

* Source: Caw Networks Realism Study, February 2002

Quality Week 2002

What Other Network Issues Matter?

l IP addresses
l IP fragmentation
l Jitter
l Bursty traffic patterns

Quality Week 2002

Philip Joung, pjoung@caw.com, Caw Networks

14

Get Real! The Importance of Realism
for Web Site Capacity Assessment

Quality Week 2002

Network and Application Performance
Closely Related

l What happens on the application affects the
network

– User behavior
– File sizes
– Security

l Network also significantly affects application
– Memory and CPU utilization
– Stability

Quality Week 2002

Conclusions

l Capacity assessment can make designing, scaling
and maintaining a system much easier and more
effective

l Rigorous capacity assessment requires emulating
– User behavior
– Network behavior

l Network behavior can dramatically affect application
performance

l The combination creates a much more reliable and
accurate set of results

Quality Week 2002

Philip Joung, pjoung@caw.com, Caw Networks

15

Get Real! The Importance of Realism
for Web Site Capacity Assessment

Quality Week 2002

Resources

l Packet loss, latencies: http://www.matrixnetsystems.net/
l Connection statistics: http://cyberatlas.internet.com/
l HTTP protocols: http://www.w3.org/Protocols/HTTP/Performance/
l IP addresses: http://www.arin.net/
l White Paper:

http://www.caw.com/press/wp_capacity_assesment.shtml

Quality Week 2002

Thank You!

pjoung@caw.com if you have questions
or want to discuss this further

http://www.matrixnetsystems.net/
http://cyberatlas.internet.com/
http://www.w3.org/Protocols/HTTP/Performance/
http://www.arin.net/
http://www.caw.com/press/wp_capacity_assesment.shtml

Key Points

There are critical differences between Web and legacy load-test environments
The Internet's internal structure must be considered for realistic load testing
Practical recommendations for highly-realistic load testing of Web sites

Presentation Abstract

Use of traditional tools and techniques designed for clientserver or terminal-host systems on dedicated
networks will almost certainly produce misleading results when used on Web systems. During this intensive
session we'll look at the reasons why traditional load tests fail to produce realistic loads for Web applications
and how such flaws lead to deceptive conclusions and inaccurate business and technical decisions. We'll
look at the difficulties caused by abandonment, poor session structures, diffused servers, and lack of direct
control over many Web and Internet resources. We'll also examine relevant portions of the Internet's
structure (DNS, peering, caching, third-party servers and content distribution networks, server system
connectivity, etc.) that may impact the end-user's perception of your Web site's performance and that must
be considered in designing an accurate test. We'll then give detailed recommendations about how to
construct load tests that realistically depict both the true end-user load and the true end-user experience.

About the Author

Eric Siegel, Principal Internet Consultant at Keynote Systems, has been a member of the Internet
community since 1978. He is the author of "Designing Quality of Service Solutions for the Enterprise" (John
Wiley & Sons) and is an instructor and panelist in Internet performance and QoS at major industry
conferences such as Networld+Interop, CA World, Service Networks, Quality Week, WWW Conferences,
and CMG. Before joining Keynote, Mr. Siegel was a Senior Network Analyst at NetReference, Inc., where he
specialized in network architectural design for Fortune 100 companies, and he was a Senior Network
Architect with Tandem Computers, where he was the technical leader and coordinator for all of Tandem's
data communications specialists worldwide. Mr. Siegel also worked for Network Strategies, Inc. and for the
MITRE Corporation, where he specialized in computer network design and performance evaluation. Mr.
Siegel received his B.S. and M.E.E. degrees in Electrical Engineering from Cornell University, where he was
elected to the Electrical Engineering honor society.

QW2002 Paper 7I2

Eric D. Siegel
(Keynote Systems)

Don't Get Trampled by the Crowd: Realistic Load Testing of Web Sites Across the
Internet

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

(7I2) Don’t Get Trampled by the Crowd:
Realistic Load Testing of Web Sites
Across the Internet

Eric Siegel
Principal Internet Consultant

Keynote Systems
777 Mariners Island Blvd

San Mateo, CA 94404
eric.siegel@keynote.com

http://www.keynote.com

2

AgendaAgenda
Performance Challenges on the Web
Web Architectural Review
Web Load Testing
Internet Statistics

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

3

Performance Is Important!Performance Is Important!
“Twenty-eight percent of shoppers who have suffered failed
performance attempts said they stopped shopping at the Web
site where they had problems, and six percent said they
stopped buying at that particular company’s off-line store.”
(Boston Consulting Group, quoted in Infoworld / Computerworld 3/00)

“[One site] found the bailout rate fell immediately from 30% to
6-8% just because of one tiny second of load time!” (Zona
Research 4/99)

“Surfers say that slow-loading Web sites are the biggest
cause of irritation ... Seven percent of respondents say they hit
their equipment ... 2% say they've become so upset they've hit
the person who sits next to them.” (Market & Opinion Research
International 2/02)

“Perhaps as much as $4.35 billion in e-commerce sales in the
U.S. may be lost each year due to unacceptable download
speeds and resulting user bailout behaviors.” (Zona Research 4/99)

4

A Definition of PerformanceA Definition of Performance
Web e-commerce performance measures the
user's experience interacting with your Web site,
not your in-house experience or the experience
inside your Web hosting center.

– Download time
The dissatisfaction and abandonment points are different for
different types of pages and different classes of users

– Transaction Time
banking, stock trading, purchasing

– Availability
– Errors

Failed connection attempts
Missing or incorrect pages
Missing page components
Broken links
Transaction failure

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

5

Performance ChallengesPerformance Challenges
24x7 availability and geographic distribution;
expectation of universal access
A shared network resource
No control over customers’ environment
Multiple servers and caches, which may be
geographically distributed, participate in a single
user interaction
Poor support for session structures; difficult or
impossible to detect transaction abandonment
Potentially massive peak volumes (“flash” loads)

The Web and Internet are very different from legacy
client:server and terminal:mainframe environments!

6

AgendaAgenda
Performance Challenges on the Web
Web Architectural Review

– Overall Web and Internet Architecture
– Servers
– Internet Backbones and Peering
– Caching
– Content Distribution Networks

Web Load Testing
Internet Statistics

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

7

Web Page Technology OverviewWeb Page Technology Overview
The Domain Name System (DNS), a worldwide hierarchy of
directories, translates fang.dog.com into 10.9.23.22.
TCP/IP carries the data between your browser and 10.9.23.22; it
detects errors and corrects them by retransmitting.
The data consists of HTTP, HTML, and the page’s information.
HTTP (Hypertext Transfer Protocol) carries the Hypertext
Markup Language (HTML) and provides the basic Web page
commands:

– GET
– Query String (e.g., GET fang.dog.com/filename?fur=matted)
– POST

HTML describes the page:
– Formatting
– Content, and the servers/files from which that content can be

downloaded (e.g., pix.fang.dog.com/gifs/picture1.gif)
– Links

8

Internet Architecture OverviewInternet Architecture Overview

UUnet

PSInet

GTE

Mindspring

Sprint

Verio

The Internet

WorldcomBBN

Digex

Access
DevicesRouters

Routers
Access
Provider

DNS
Cache

Servers

Servers

Servers

Some of the additional
servers provide third-party
ads; others are distributed
content providers.

RoutersRouters

Peering
Point

Internet Browser

Digex

Web
Server

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

9

Server Farm ArchitectureServer Farm Architecture

Security Control

Load-balancing Devices

Database Back-End

Web Server Web Server=Web Server Web Server

Servers
Routers

Application Servers

10

Servers:
Load Balancing
Servers:
Load Balancing

An attempt to distribute load reasonably across
local resources

– Often looks at server performance before allocating
incoming load

– May need to maintain transaction context (next slides)
Flash load handling:

– Sends overflow to overflow servers with special content
– Automatically replicates frequently-requested files onto

overflow servers

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

11

Servers:
Web Transactions – 1
Servers:
Web Transactions – 1

Scaling transactions is much more difficult than
scaling simple Web page delivery!

Need to maintain transaction context between
Web pages, associating a user with a transaction

– Use remote IP address?
Different users of one ISP can have same address
Users can switch IP addresses in mid-transaction

– Use a cookie?
Set cookie when user first appears, or after login
Cookie remembers transaction ID, etc.
User can set browser to refuse cookies
Load balancing devices can’t handle encrypted cookies unless
they can decrypt SSL

12

Servers:
Web Transactions – 2
Servers:
Web Transactions – 2

– Embed user, state information within each page and link?
Requires dynamic page generation
Page is generated with each link modified to contain user and state
information:

or with custom-built POST form data:
<FORM NAME=FANG METHOD=POST ACTION=dog.htm>
<INPUT TYPE=HIDDEN NAME="userID" VALUE="123abc">
...
</FORM>

Load balancing devices can’t read a URL or page data unless they
can decrypt SSL

Need to recover resources from abandoned
transactions

– Web transactions usually do not tell server when browser
has abandoned transaction

– Timeout is a reasonable technique

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

13

Internet Routing Between ISPs (Peering)Internet Routing Between ISPs (Peering)
Internet Service Providers enter into legal
contracts to carry each other’s traffic.

– Traffic transfer between ISPs occurs at
peering points

– Peering philosophies differ among ISPs

Congestion may occur at peering points,
especially public ones.

– The primary inter-ISP routing protocol
usually does not look at congestion

The end-to-end route in one direction is
usually different from the end-to-end route
in the other direction!

– Depends on legal and financial
arrangements between ISPs, etc.

RoutersRouters

Peering
Point

ISP “A” ISP “B”

14

Asymmetric Internet RoutingAsymmetric Internet Routing

In “hot potato routing,” each ISP tries to hand off the packet as
quickly as possible to the next ISP, to avoid the expense of
carrying it.

– The route is asymmetric.
– For example, the ACKs for a file transfer may travel over a very

different (longer?) route than the file data itself — but delayed
ACKs will delay the transfer!

Some ISPs act differently, to maintain control over the packet.

X Sprint LA

Y

Sprint NY

UUnet NY

Sprint CHI

UUnet LA UUnet ATL

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

15

CachingCaching
Caching systems are usually located between server
and browser

– They temporarily store commonly-requested, unchanging
objects (images, streaming media files, etc.)

– Caching usually improves performance
Decreases the load on the server and/or communications links
Decreases download time seen by the browser

– There may be a “cache tax” — a slight delay for all objects
– Caches may be used to assist traffic distribution by

mirroring some server content at a remote location
– Some caches may be pre-loaded to handle flash loads

Three types of caches
– Inside the Browser
– Client-Side
– Server-Side

16

Basic Web Cache OperationBasic Web Cache Operation

Traffic is diverted by external or internal switch or router
Cache may handle http, ftp, JavaScript files, streaming media, etc.

Internet Browser
Switch

Cache

Web Server

Transparent: Port 80 traffic goes through cache regardless of original destination

If cache contains requested
object, it sends that content to
the browser. Otherwise, it gets
the object from the Web server.

browser
cache

Proxy: Browser explicitly sends Port 80 traffic directly to cache

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

17

Content Distribution NetworksContent Distribution Networks
Content Distribution Networks (CDNs) have
constructed worldwide systems of caching,
geographic traffic distribution, and content
distribution management devices.

– Usually in partnership with local ISPs
– CDNs specialize in static content (.jpg, .gif, etc.); they

may also be able to handle authentication, streaming
media and some dynamically-generated Web pages.

– End-user must still go to a hosting facility to obtain
base HTML and dynamic content

– True transactions must be handled by hosting facility
Distribution can be over the Internet or by
alternate paths (satellite, dedicated link)

– Content can be pre-positioned before major events

18

Summary of Web Performance FactorsSummary of Web Performance Factors
The Web page seen by the browser is often
generated from a number of different sources:

– Ad servers
– Geographically-distributed content servers
– Caches

Download performance is affected by:
– Protocol behavior
– Number of concurrent download connections; persistence
– Geographic location of the browser
– Congestion and latency between servers and browser
– Performance of load-distribution and load-distribution

schemes
– Performance of the servers and their back-end databases

For example...

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

19

Web Page Download Time ComponentsWeb Page Download Time Components

K
EY

N
O

TE

This page includes “Akamaized” content distribution and DoubleClick ad servers

application delay

redirection delay

external ad
server

slow
downloading

image

Akamai server

20

AgendaAgenda
Performance Challenges on the Web
Web Architectural Review
Web Load Testing

– Web Testing vs. Legacy Testing
– The “Concurrent Users” Fallacy
– Load Metrics
– Testing Types
– Test Tools and Scripting for Realism

Internet Statistics

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

21

Web vs. Legacy Differences – 1Web vs. Legacy Differences – 1
(“Legacy” is client:server or terminal:host over a
private network; e.g., IBM 3270 SNA)
Abandonment

– Legacy operators do not abandon (“click away”) if
response time is poor; they will complete the transaction

– Abandonment decreases the load (especially on
subsequent pages) as performance degrades

Session Termination Signaling
– Legacy systems usually give a clear indication of session

termination or abandonment; Web protocols usually do not
– Abandoned Web sessions use resources until they’re

forced to close by the server after timeout, etc.
– “Concurrent sessions” statistics may be misleading

It may include abandoned sessions that have not yet been forced
to close by timeout, etc.

22

Web vs. Legacy Differences – 2Web vs. Legacy Differences – 2
Variable Loading

– Legacy loads are externally buffered
Computer load can be very uniform, because queuing is in the call
center’s telephone system or at the computer system’s input port
Computer load cannot exceed the number of call center operators or
input ports
Diverted customers are still handled by someone or something

– Web loads are extremely variable and hit the system directly
Steady state “concurrent users” load test is very unrealistic
Extreme (“Flash”) load may crash system, deny service
Possible customer dissatisfaction crisis

Skill Uniformity
– Web customer skills and behaviors are much more varied

than legacy operator skills
– Multiple skill profiles are necessary to model wide variations

in skills and behaviors

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

23

Web vs. Legacy Differences – 3Web vs. Legacy Differences – 3
Network Complexity

– Web networks are much more geographically distributed
and varied than legacy networks

Important customers may have poor connectivity, but you must
still provide acceptable service
Connection latency and bandwidth have a large effect on the
time that the browser connection and server resources are held

– Web networks contain elements that affect performance
of the enterprise site, but are under only indirect control
of the enterprise. They must nevertheless be evaluated.

DNS
ISP backbones and peering
Geographically distributed servers; Caching; CDNs

Client Complexity
– Web client (“browser”) is usually more complex, and

varied, than a legacy terminal or client
Browser cache; Cookies
Javascript, plug-ins, etc.

24

Web Load Testing Must Include:Web Load Testing Must Include:
Variable loading, for realism and to test flash loads
Satisfaction measures, based on response time
Abandonment behavior, for realism and to evaluate resource
recovery mechanisms
Distributed loading, to test the Internet connections,
peering, caching, and content distribution networks
Multiple geographic profiles, to represent the wide variations in
Web access technology and location
Multiple user connectivity profiles, because latency and
bandwidth affect the load seen by the servers
Multiple user profiles, to model the wide variation in user skills
present in the Web community
Script variability, of both data and paths, to avoid creating
unrealistic hot spots that are handled by caching
True browser emulation, of varied browsers, including browser
caching, cookies, Javascript, SSL, etc.

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

25

a note about:
“Concurrent Users”
a note about:
“Concurrent Users”

time →
“concurrent users”
“real load”

time →

ar
riv

al
 ra

te

Presented Load ≠ Concurrent Users
– Because of abandonment behavior,

“concurrent users” is an unrealistic
substitute for “load.”

It’s really an output, not an input.
If system capacity increases, the
number of concurrent users may
decrease, because they’re
completing their work quickly.

– There’s no standard definition or
measurement of concurrency

When does a session end? Most Web
connections are stateless.

– And real Web loads are not uniform
– Therefore, use:

User session starts, page view starts,
or hit starts per unit time
Arrival Rate distribution

26

a note about:
Path Variation
a note about:
Path Variation

Web user paths are
more variable (and
sometimes “random”)
than legacy user paths

Web system caching in
browsers, the network,
and the servers can
create extremely
inaccurate results if test
variation is too low

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

27

Load Characterization and
Measurement Tools
Load Characterization and
Measurement Tools

Most tools work by examining server log files off-line
Different tools usually give different results.
If the site is not yet live:

– Statistics from similar sites that are publicly available
– In-house trials
– “Intuition”
– Anything is better than ignoring all the variables and

creating a load characterization that’s identical for each
user and ignores think time, abandonment, etc.

28

Load MetricsLoad Metrics
Load metrics are affected by user class:

– New users
– Experienced users during normal conditions
– Experienced users during unusual conditions

Typical metrics:
– Connection speed, location (geography, access ISP)
– Browser configuration
– Counts and averages for standard metrics:

User Sessions (may be difficult to measure),
Page Views (number of full pages requested), Average Page Size
Hits (number of HTTP GETs and POSTs), Average Hit Size

– Note: Caches and CDNs may absorb many of these!
– Major transaction paths and histogram of requested pages

Percentage of major paths that resulted in purchases
– Think time and tolerance for wait time

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

29

Types of Testing – 1Types of Testing – 1
Functional / Regression testing – does the site work
at all? – is critically important, but it’s not enough.

– These tests find missing elements, broken links, errors.
– They’re exactly repeatable, so software testing is simpler.
– They can be scripted by simple record/replay tools.
– They succeed even if they have to wait a long time; most

real Web users have abandoned the site by then.
Load testing measures the response of the site to a
specified load.

– The load in a “load test” doesn’t need to stress the system;
many load tests are designed to emulate a normal load.

– The load test parameters (characterization, load levels,
scripts) can be validated by comparison to real loads.

– This type of testing can be used to measure the effects of
changes to the Web system.

30

Types of Testing – 2Types of Testing – 2
Stress testing finds the instantaneous breaking
points.

– Under what load level, and what type of load, does the
system fail or provide unacceptable response times?

– Will load-distribution devices fail?
– Will database replies time-out and result in empty pages?

Endurance testing measures system performance
after a sustained high load.

– System performance may degrade after a large number of
users

Poor re-use of system resources
Poor handling of abandoned sessions

– Some systems may break entirely after a sustained high
load.

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

31

Testing ToolsTesting Tools
Most testing is done within the server site.

– Functional / Regression Testing (if all page components
are within the site)

– Initial stress testing
– Testing of Web server and back-end database

integration
Final testing should be done across the network.

– Find problems with geographically-distributed systems
Distributed servers and Content Distribution Networks
DNS difficulties
Traffic distribution technology

– Find problems in Internet connectivity
ISP connectivity
Network aggregation bottlenecks (routers, etc.)
Caching problems in caches that you don’t control
Peering to ISPs that are used by customers

32

Statistics, Scripting, and RealismStatistics, Scripting, and Realism
Get meaningful statistics for each page, not just an
arithmetic average for the entire transaction.

– Arithmetic means can be misleading; extreme delays that
may cause abandonment will be hidden. It must be
possible to obtain abandonment and dissatisfaction rates.

– “Total” transaction time hides poor single-page
responses.

Get meaningful error statistics, page by page.
– Include dissatisfaction and abandonment

Create different classes of users with different
characteristics (familiarity with site, think time,
tolerance for delay, etc.)
Insert enough randomness to avoid creating
unrealistic hot spots or caching

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

33

AgendaAgenda
Performance Challenges on the Web
Web Architectural Review
Web Load Testing
Internet Statistics

34

Statistical Behavior of Internet Traffic Statistical Behavior of Internet Traffic
Internet traffic is self-similar and heavy-tailed

– Result of mixing long files, small files, ACKs, compressed
video, human think time, etc.

– (Connection arrival rate is still normally distributed)
Self-similar traffic is very bursty

– No natural length to the bursts
– Bursts are not quickly smoothed by larger time scales
– Capacity problems can appear at 50% utilization!

Heavy-tailed (right tail) traffic can have an arbitrarily
large amount of very large values

heavy tail

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

35

Performance Statistics for Heavy-
Tailed Traffic
Performance Statistics for Heavy-
Tailed Traffic

With heavy-tailed traffic:
– Arithmetic Mean may be misleading.

Individual long measurements can distort the mean, especially if the
typical measurement is very short (e.g., DNS, TCP Connect)
This is more troublesome for SLAs and long-term trending than for
problem diagnosis, which involves detailed examination of datapoints
If you have 10,000 measurements of 0.02 seconds, plus TEN
measurements of 20 seconds, the arithmetic mean is 0.04 seconds
— a doubling of the mean because of only ten measurements!
Geometric Mean or Median are better, more stable indicators of
typical performance as seen by users

– Standard Deviation is very misleading in measuring heavy
tail data

Can be massively distorted by a single large measurement!
Geometric Deviation or 85th percentile are better, more stable
indicators of variance

36

Computation of Performance Statistics Computation of Performance Statistics
Arithmetic Mean is easy and useful for “quick looks”

– Arithmetic means can be aggregated (e.g., DNS + TCP
Connect time) by simple addition; other statistics cannot.

(85th Percentile of DNS) + (85th Percentile of TCP Connect) is NOT
the 85th Percentile of (DNS + TCP Connect)

– “Trimming above n seconds” is a computationally-simple
method for improving the stability of the arithmetic mean, but
the number of trimmed values must also be considered.

Other measures require more manipulation
– Percentiles give a reasonable, but coarse, estimate

Median is the 50th percentile
– Geometric Mean is the best measure

It’s the nth root of the product of the n measurements.

Geometric Deviation is a good measure of variance
– “Geometric Deviation” is a factor = 10^(std deviation{log(xi)})

See Keynote website “Resources/White Papers” for statistics articles

Copyright © 2002 by Keynote Systems and Eric D. Siegel. All Rights Reserved.

37

the inevitable ad. . .
LoadPro Load Testing
the inevitable ad. . .
LoadPro Load Testing

Completed Abandoned

Uses accurate statistics (geometric mean,
per-page measures, etc.); provides statistics
on user dissatisfaction, lost revenue, etc.
Keynote also offers self-service functional
testing, etc.

LoadPro™ realistic,
distributed load testing
service for Web sites

– A full service, not
just a box of software

– Geographically
distributed,
coordinated,
realistic loading
across the Internet

– Service includes
fast development of
custom user profiles
that include
abandonment behavior,
geography, types of
connections used, path
variation, etc.

– massive capacity

38

Keynote Systems (www.keynote.com), “The Internet Performance Authority®,” is the world’s
leading supplier of Internet performance measurement, diagnostic, load testing, and consulting
services to companies with e-commerce Web sites. Keynote® captures over 20 million performance
measurements daily, using Keynote’s global infrastructure of over 1500 measurement computers
connected to the major Internet backbones from over 100 statistically selected Internet access
locations in 50+ metropolitan areas worldwide. Internet performance and availability data are
collected at Keynote’s sophisticated operations center and are instantly available to customers
through any Web browser, by real-time XML transfer, or by FTP. Keynote currently measures
individual Web pages as well as transactions, streaming media, and wireless. Keynote also
supplies highly-accurate, distributed Web load testing services.

Eric Siegel is Principal Internet Consultant with Keynote Systems, Inc. and is the author of
Designing Quality of Service Solutions for the Enterprise (John Wiley & Sons, 1999). Before joining
Keynote Systems, Mr. Siegel was a Senior Network Analyst at NetReference, Inc., which specializes
in network architectural design and strategic planning, and he was a Senior Network Architect with
Tandem Computers, where he was the technical leader and coordinator for all of Tandem's data
communications specialists worldwide. Mr. Siegel also worked for Network Strategies, Inc. and for
the MITRE Corporation, where he specialized in computer network design and performance
evaluation. Mr. Siegel received both his B.S. and M.E.E. degrees in Electrical Engineering from
Cornell University, and he has been a member of the Internet community since 1978.

Key Points

Hackers make use of recently discovered vulnerabilities to prey on commonly used software.
CVE is an international industry, academia, & government software vulnerability effort.
CVE allows for integration of multiple security services, products and databases.

Presentation Abstract

This presentation will discuss the CVE Initiative, an international, community-based effort from industry,
government, and academia, that is creating an organizing mechanism that will make the finding and fixing of
software product vulnerabilities more rapid, predictable, and efficient. The opportunities that this initiative is
creating for software developers, security practitioners, and systems owners will be explored. These
opportunities are in their systems, products, and services, as well as for their customers. Attendees will be
shown the details of several of the most common types of vulnerabilities and their causes, with examples
from recent real-world products that have the vulnerabilities. Additionally, the attendees will leave with an
understanding of how the CVE Initiative is helping enterprise security management of vulnerabilities and
exploits become more predictable, structured, and effective as a result of CVE-enabled information security
products, services, and methodologies.

About the Author

A. Martin is the primary point of contact for CVE Compatibility efforts, a co-lead for MITREs Cyber Resource
Center web-site and a Principal Engineer in MITREs Information Technologies Directorate. At the
culmination of his five years of Y2K leadership and coordination efforts, Mr. Martin served as the Operations
Manager of the Cyber Assurance National Information Center, a 24x7 cyber security watch center within the
Presidents Y2K Information Coordination Center. Prior to these efforts, Martin developed a standardized
software quality assessment process that was used to helped over 100 of MITREs Air Force, Army, and
FAA customers improve their software acquisition methods as well as the quality, cost, and timeliness of
their delivered software products. Today, Martin's efforts are focused on the interplay of cyber security,
critical infrastructure protection, and e-Business technologies and services. Martin received a bachelors
degree and a masters degree in electrical engineering from Rensselaer Polytechnic Institute and a masters
of business degree from Babson College. He is a member of the ACM, AFCEA, IEEE, and the IEEE
Computer Society.

QW2002 Paper 8I1

Robert A. Martin
(The MITRE Corporation)

Vulnerabilities and Developing for the Net

1

MMMMIIIITTTTRRRREEEE

1

Vulnerabilities and Developing for the Net

Robert A. Martin
The MITRE Corporation

5 September 2002

Quality Week 2002

The views expressed in this presentation are those of the authors and do not necessarily reflect the policies or position of The MITRE Corporation.
Editorial graphics © 1996, 1997, 1998, 1999, 2000, 2001 Martin, used with permission. © 2001 The MITRE Corporation

MMMMIIIITTTTRRRREEEE

2

Outline

0 Background and Motivation
0 Finding Out About Vulnerabilities
0 The Problem and a Solution - CVE
0 CVE Compatibility
0 The CVE Process
0 Summary

2

MMMMIIIITTTTRRRREEEE

3

DoD started w/stand-alone computers, terminals & custom S/W

mid-70’s Mainframes with
direct wired “Terminals”

mid-80’s Mainframes
w/BIU interfaced “TCP/IP LAN”

 w/PC-based “Terminal Emulators”

DoD started w/stand-alone computers, terminals & custom S/W --
Then came PCs w/COTS S/W terminal emulators and TCP/IP LANs

MMMMIIIITTTTRRRREEEE

4

Now systems are being built using commercial products &
S/W and connected within IP-based networks

wireless,
fixed, or
satellite-

based

wireless,wireless,
fixed, or fixed, or
satellite-satellite-

basedbased

Commercial Technologies

Commercial Infrastructures

Commercial Services

I
P
-
b
a
s
e
d

n
e
t
w
o
r
k
s

3

MMMMIIIITTTTRRRREEEE

5

CERT/CC Incidents Reported

0

20000

40000

60000

80000

100000

120000

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

Projected based on Q1 2002 actual reported incidentsProjected based on Q1 2002 actual reported incidents

Many Motivations for Getting on top of Vulnerabilities

http://www.eweek.com/article/0,3658,s=701&a=23193,00.asp

http://www.baselinemag.com/article/0,3658,s=1867&a=23195,00.asp

http://www.theregister.co.uk/content/53/24244.html

http://www.cert.org/advisories/CA-2002-06.html

MMMMIIIITTTTRRRREEEE

6

Defense Automated Printing Service
http://dodssp.daps.mil

AOL Keyword: AOL-Files
http://www.aol-files.com

12 October2000

12 February 2001

11 January 2001

HQ USAREUR/7A

8 January 2001

NASA

19 February 2001

Compaq

19 February 2001

Compaq

19 February 2001

Compaq

19 February 2001

Compaq

19 February 2001

Compaq
22 February 2001

Hewlett-P
ackard

Organization’s Internet-visible “Faces” are being
abused through Vulnerabilities in Commercial S/W

4

MMMMIIIITTTTRRRREEEE

7

The Wrong Publicity Can Be Bad...

ORACLE 8i ?”

MMMMIIIITTTTRRRREEEE

8

Software problems with security implications are
referred to as Vulnerabilities or Exposures

0 Vulnerabilities are security related software problems that could
directly allow serious damage

0 Examples:
– phf, ToolTalk, Smurf, rpc.cmsd, etc.
– Oracle XSQL servlet 1.0.3.0 and earlier allows remote attackers

to execute arbitrary Java code by redirecting the XSQL server to
another source via the xml-stylesheet parameter in the xslt
stylesheet. [9 Jan 01 Georgi Guninski]

0 Exposures are security related software problems that could be
used as stepping stones for a successful attack

0 Examples:
– Running finger, poor logging practices, etc.

5

MMMMIIIITTTTRRRREEEE

9

Top Ten Vulnerability Types in CVE
(Issues publicized between Jan 2000 and April 2001)

37

45

45

50

66

71

71

79

115

383

Trusted CGI Form Fields

Weak Encryption

Insecure Permissions

Format String

Symlink Following

Shell Metachars/Quoting

Unprotected Privileged Op's

Malformed Input DoS

Dir. Traversal/Dot Dot

Buffer Overflow

1540 total CVE entries and
candidates analyzed
(yes, that’s 100 per month)

MMMMIIIITTTTRRRREEEE

10

Vulnerabilities Have Been Found in Almost Every
Type of Commercial Software There Is

Routers
3220-H DSL Router
650-ST ISDN Router
Ascend Routers
Cisco Routers
R-series routers

Web servers & tools
Domino HTTP Server
IIS
NCSA Web Server
Sawmill
WebTrends Log Analyzer

Operating Systems
AIX
BeOS
BSD/OS
DG/UX
FreeBSD
HP-UX
IRIX
Linux
MacOS Runtime for Java
MPE/iX
NetWare
OpenBSD
Palm OS
Red Hat
Security-Enhanced Linux
Solaris
SunOS
Ultrix
Windows 2000
Windows 95
Windows 98
Windows ME
Windows NT

Firewalls
Firewall-1
Gauntlet Firewall
PIX Firewall
Raptor Firewall
SOHO Firewall

Development Tools
ClearCase
ColdFusion
Flash
Frontpage
GNU Emacs
JRun
WebLogic Server
Visual Basic
Visual Studio

Network Applications
BackOffice
Meeting Maker
NetMeeting

Security Software
ACE/Server
BlackICE Agent
BlackICE Defender
Certificate Server
CProxy Server
ETrust Intrusion Detection
GateKeeper
InterScan VirusWall
Kerberos 5
Norton AntiVirus
PGP
SiteMinder
Tripwire

Mail Servers
1st Up Mail Server
All-Mail
ALMail32
Avirt Mail Server
Becky! Internet Mail
CWMail
Domino Mail Server
Exchange Server
Hotmail
Internet Anywhere Mail Server
ITHouse Mail Server
Microsoft Exchange
Pegasus Mail
Sendmail

Internet
AFS
Apache
BIND
CGI
Cron
IMAP

Desktop Applications
Acrobat
Clip Art
Excel
FrameMaker
Internet Explorer
Napster client
Notes Client
Novell client
Office
Outlook
PowerPoint
Project
Quake
R5 Client
StarOffice
Timbuktu Pro
Word
Works
Workshop

DBMSs
Access
DB2 Universal Database
FileMaker Pro
MSQL
Oracle

Sample of Vulnerabilities Announced in 1999 & 2000

6

MMMMIIIITTTTRRRREEEE

11

Outline

0 Background and Motivation
0 Finding Out About Vulnerabilities
0 The Problem and a Solution - CVE
0 CVE Compatibility
0 The CVE Process
0 Summary

MMMMIIIITTTTRRRREEEE

12

So how do you find out about commercial software
vulnerabilities if the vendors aren’t going to tell you?

Three groups have emerged who share that same curiosity

0 Hackers
– want to find vulnerabilities and exposures so they can exploit

them to gain access to systems

0 Commercial interests groups
– want to be hired to find, or want you to buy their tools to help you

find, the vulnerabilities and exposures
– offer services to come and do an evaluation of your systems

0 Philanthropists
– include security researchers in various government, academic,

and non-profit organizations, as well as unaffiliated individuals
that enjoy searching for vulnerabilities and exposures

– usually share their knowledge and tools freely

7

MMMMIIIITTTTRRRREEEE

13

There are Many Different types of Groups Involved
in Providing Information about Vulnerabilities

•Mailing lists, Newsgroups,
and Hacker sites

•Academic
 Studies
•Advisories

•Vulnerability
 Assessment Tools

•Databases
•Newsletters

•Intrusion
 Detection
 Systems

•Incident
 Response
 Teams
•Incident
 Reports

Discovery

Analysis

Protection

CollectionDetection

Incident
Handling

MMMMuuuullllttttiiiipppplllleeee
NNNNaaaammmmeeee

SSSSppppaaaacccceeeessss ffffoooorrrr
VVVVuuuullllnnnneeeerrrraaaabbbbiiiilllliiiittttiiiieeeessss

The rule has been, “Whoever finds it, names it”

MMMMIIIITTTTRRRREEEE

14

Implications of multiple name spaces for information
on vulnerabilities

0 Difficult to correlate data
across multiple organizations
and tools
– IDS and assessment tools
– Security tools and fix

information
– Incident information

0 Difficult to conduct a detailed
comparison of tools or
databases (Vulnerabilities are
counted differently)

8

MMMMIIIITTTTRRRREEEE

15

Difficult to Integrate Information on
Vulnerabilities and Exposures

VulnerabilityVulnerability
ScannersScanners

Incident ResponseIncident Response
& Reporting& Reporting

Vulnerability WebVulnerability Web
Sites & DatabasesSites & Databases

Software VendorSoftware Vendor
PatchesPatches

Intrusion DetectionIntrusion Detection
SystemsSystems

SecuritySecurity
AdvisoriesAdvisories

PriorityPriority
ListsLists

ResearchResearch

?????????

?????????

????????? ?????????

?????????

?????????

????????? ?????????

?????????

??????????????????

?????????

?????????

?????????

?????????

?????????

?????????

?????????

?????????

MMMMIIIITTTTRRRREEEE

16

Outline

0 Background and Motivation
0 Finding Out About Vulnerabilities
0 The Problem and a Solution - CVE
0 CVE Compatibility
0 The CVE Process
0 Summary

9

MMMMIIIITTTTRRRREEEE

17

Finding and sharing vulnerability information has
been difficult: The Same Problem, Different Names

Organization Name

CERT CA-96.06.cgi_example_code

CyberSafe Network: HTTP ‘phf’ Attack

ISS http-cgi-phf

AXENT phf CGI allows remote command execution

Bugtraq PHF Attacks – Fun and games for the whole family

BindView #107 – cgi-phf

Cisco #3200 – WWW phf attack

IBM ERS Vulnerability in NCSA/Apache Example Code

CERIAS http_escshellcmd

NAI #10004 - WWW phf check

Which has been caused by the rule, “Whoever finds it, names it”Along with the new rule, “Whoever finds it, gets a CVE name for it”

The adoption of CVE Names by the Security
Community is starting to address this problem

MMMMIIIITTTTRRRREEEE

18

The Vulnerability Information Sharing Process with
CVE - - “Whoever finds it, gets a CVE name for it”

0 Assigning a unique identifier to each problem
0 Remaining independent of any particular perspective

– Not just a developer’s, researcher’s, tester’s, or analyst’s view
0 A community-wide effort via:

– the CVE Editorial Board, the CVE Advisory Council, and the
organizations adding

 CVE names into
 their tools,
 databases,
 web sites,
 & services

0 Publicly open
 and shared

– Will eventually
 list all
 publicly
 known
 security problems

10

MMMMIIIITTTTRRRREEEE

19

The Common Vulnerabilities and Exposures (CVE)
Initiative
0 An international security community activity

led by MITRE focused on developing a list
that provides common names for publicly
known information security vulnerabilities
and exposures.

0 Key tenets
– One name for one vulnerability or

exposure
– One standardized description for each

vulnerability or exposure
– Existence as a dictionary rather than a

database
– Publicly accessible for review or

download from the Internet
– Industry participation in open forum

(editorial board)
0 The CVE list and information about the CVE

effort are available on the CVE web site at
[cve.mitre.org]

22
23

 a
pp

ro
ve

d
en

tri
es

, 2
41

9
be

in
g

vo
te

d
on

, ~
50

00
 u

nd
er

 an
al

ys
is

,

~1
00

-1
50

 n
ew

/m
on

th

MMMMIIIITTTTRRRREEEE

20

Unreviewed
Bugtraqs, Mailing lists,
Hacker sites

Reviewed Advisories
CERT, CIAC,
Vendor advisories

Discovery
time

Policy

Methodologies
Purchasing
Requirements
Education

Scanners, Intrusion Detection,
Vulnerability Databases

Security Products

2. Establish CVE at security
 product level in order to ... 3. … enable CVE to permeate

 the policy level.

1. Inject Candidate
 numbers into
 advisories

Commercial S/W Products
Update and Fix Sites &
Update Mechanisms

4. Establish CVE in vendor fix-it
 sites and update mechanisms

The CVE Strategy

11

MMMMIIIITTTTRRRREEEE

21

assigned CAN-2001-0869 to this issue.assigned CAN-2001-0869 to this issue.

Many organizations are reserving CVE names and
using them in their alerts and advisories

To-date, CVE names have been
included in initial advisories from:
• ISS X-Force • IBM
• Rain Forest Puppy • @stake
• BindView • HP
• CERT/CC • SGI
• COMPAQ • Microsoft
• Ernst & Young • eEye
• CISCO • Rapid 7
• NSFOCUS • Sanctum
• SecurityFocus • Red Hat
• VIGILANTe • Apache
• Apple

http://www.redhat.com/support/errata/RHSA-2001-150.html

MMMMIIIITTTTRRRREEEE

22

Outline

0 Background and Motivation
0 Finding Out About Vulnerabilities
0 The Problem and a Solution - CVE
0 CVE Compatibility
0 The CVE Process
0 Summary

12

MMMMIIIITTTTRRRREEEE

23

What does CVE-compatible mean?

0 CVE-compatible means that a tool or database can “speak CVE”
and correlate data with other CVE-compatible products

0 CVE-compatible means it meets the following requirements:
– Can find items by CVE name (CVE searchable)
– Includes CVE name in output for each item (CVE output)
– Provided MITRE with “vulnerability” item mappings to validate

the accuracy of the product or services CVE entries
– Makes a good faith effort to keep mappings accurate

MMMMIIIITTTTRRRREEEE

24

Timeline of CVE Compatibility Declarations
(as of 1 July 2002)

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 00

Now at 95 products and services from 62 organizations

O
ct

o
b

er
-1

99
9

N
o

ve
m

b
er

-1
99

9

D
ec

em
b

er
-1

99
9

Ja
n

u
ar

y-
20

00

F
eb

ru
ar

y-
20

00

M
ar

ch
-2

00
0

A
p

ri
l-

20
00

M
ay

-2
00

0

Ju
n

e-
20

00

Ju
ly

-2
00

0

A
u

g
u

st
-2

00
0

S
ep

te
m

b
er

-2
00

0

O
ct

o
b

er
-2

00
0

N
o

ve
m

b
er

-2
00

0

D
ec

em
b

er
-2

00
0

Ja
n

u
ar

y-
20

01

F
eb

ru
ar

y-
20

01

M
ar

ch
-2

00
1

A
p

ri
l-

20
01

M
ay

-2
00

1

Ju
n

e-
20

01

Ju
ly

-2
00

1

A
u

g
u

st
-2

00
1

S
ep

te
m

b
er

-2
00

1

O
ct

o
b

er
-2

00
1

N
o

ve
m

b
er

-2
00

1

D
ec

em
b

er
-2

00
1

Ja
n

u
ar

y-
20

02

F
eb

ru
ar

y-
20

02

M
ar

ch
-2

00
2

A
p

ri
l-

20
02

M
ay

-2
00

2

Ju
n

e-
20

02

Ju
ly

-2
00

2

A
u

g
u

st
-2

00
2

13

MMMMIIIITTTTRRRREEEE

25

Organizations With Products That Use CVE
(as of 1 July 2002)

Advanced Research Corp
Alliance Qualité Logiciel
Application Security, Inc.
ArcSight, Inc.
BindView Corporation
CERIAS/Purdue University
CERT Coordination Center
Cert-IST
Cisco Systems
Citadel Security Software, Inc.
CSS (China National Computer Software & Technology Service Corporation)
E*MAZE Networks S.P.A
E-Soft Inc.
eEye Digital Security
Enterasys Networks (bought Network Security Wizards)
Entercept Security Technologies
esCERT-UPC
eSecurityOnline
Foundstone, Inc.
FuJian RongJi Software Development Company, Ltd
Harris Corporation
Internet Security Systems
Intranode
INTRINsec
Inzen
Kavado Inc.
LURHQ Corporation
nCircle (formerly Hiverworld)
The Nessus Project
NetIQ
NetSecure Technology, Inc.

Network Associates Inc.
Network Security Systems
NIST
NFR Security
NSFOCUS Information Technology Co., Ltd
N-Stalker, Inc.
nSecure Software (P) LTD.
Penta Security Systems
Qualys
Resource Technologies
Red Hat Inc.
SAINT Corporation (formerly World Wide Digital Security, Inc.)
Sanctum Inc.
SANS
SecureInfo Corporation
SecureSoft, Inc.
Security Focus, Inc.
SecurityWatch
Shake Communications Pty Ltd
Snort.org
spiDYNAMICS
Strongbox Security Inc. (SSI)
Symantec Corporation
Tiger Testing
Tivoli Systems Inc.
Tsinghua UnisNet Technology, Ltd.
UC Davis, Computer Security Lab
Venus Information Technology Inc.
VIGILANTe (merged with Cyrano’s Networks Vigilance subsidiary)
Vigilinx, Inc.
Wins Technet Co., Ltd.

0 These (62) organizations have publicly declared that they are working
on (95) CVE-compatible tools, databases, web sites, or services

Up-to-date list at http://cve.mitre.org/compatible

MMMMIIIITTTTRRRREEEE

26

Advanced Research Corporation
ArcSight, Inc.
Application Security, Inc.
BindView Corporation
CERIAS, Purdue University
CERT/CC
Cisco Systems, Inc.
Citadel Security Software, Inc.
eEye Digital Security
Enterasys Networks, Inc.
Entercept SECURITY TECHNOLOGIES
ESecurityOnline
Foundstone, Inc.
Harris Corporation
ISS - Internet Security Systems, Inc.
KaVaDo Inc.
LURHQ Company
NCircle Network Security
NetiQ Corporation
Network Associates Inc.
Network Security Systems, Inc.
NFR Security, Inc.
NIST
Qualys, Inc.
Recourse Technologies, Inc.
SAINT Corporation
Sanctum Inc.
The SANS Institute
SecureInfo Corporation
SecurityFocus
Snort.Org
SpiDYNAMICS
Strongbox Security Inc.
Symantec Corporation
Tiger Testing Inc.
Tivoli Systems, Inc.
UCDavis Computer Security Laboratory
VIGILANTe.Com, Inc.
Vigilinx, Inc.

38 Organizations, 62 Items38 Organizations, 62 Items

Red Hat Inc.

2 Items2 Items

E*MAZE Networks S.P.A.

1 Item1 Item

nSecure Software (P) Ltd.

1 Item1 Item

Shake Communications Pty Ltd

1 Item1 Item

INZEN CO., Ltd.
NetSecure Technology, Inc.
Penta Security Systems, Inc.
SecureSoft, Inc.
Wins Technet Co., Ltd.

9 Items9 Items

SecurityWatch.Com

1 Item1 Item

Where CVE-compatible Items Have Come From

+1, 7+1, 7

+1, 1+1, 1

and Where the New Ones Are Coming From

5 Items5 Items

Alliance Qualité Logiciel
Cert-IST
INTRANODE Software Technologies
INTRINsec
The Nessus Project

+2, 2+2, 2

(as of 1 July 2002)

E-Soft Inc.

1 Item1 Item

EsCERT-UPC

1 Item1 Item

N-Stalker, Inc.

1 Item

China National Computer Software & Technology Service Corporation
FuJian RongJi Software Development Company,Ltd
NSFOCUS Information Technology Co., Ltd
Tsinghua UnisNet Ltd.
Venus Information Technology Inc.

9 Items9 Items

+1, 1+1, 1

+1, 5+1, 5

+3, 3+3, 3

+2, 2+2, 2
+12, 29+12, 29

+1, 1+1, 1

+2, 2+2, 2

+2, 2+2, 2

+1+1

14

MMMMIIIITTTTRRRREEEE

27

Examples of CVE-compatible items:
The ICAT Metabase

CVE-names

http://icat.nist.gov

08.13.01 Government Computer News

MMMMIIIITTTTRRRREEEE

28

Examples continued:
Cassandra

https://cassandra.cerias.purdue.edu

CVE-names

15

MMMMIIIITTTTRRRREEEE

29

CVE compatibility provides a path for integrating
information on Vulnerabilities and Exposures

CVE compatibility means that a tool or database can “speak CVE” and
correlate data with other CVE-compatible products.

MMMMIIIITTTTRRRREEEE

30

Example using CVE compatibility to go from
Advisories to Vulnerability Scanners to IDSes

Tool 1
CVE-1
CVE-2
CVE-3

Tool 2

CVE-3
CVE-4

IDS

CVE-1
CVE-3
CVE-4

Do my systems
have these
problems?

CVE-1
CVE-2
CVE-3
CVE-4

Popular
Attacks

Do my tools
test for these

problems?

Does my IDS
have the

signatures?

Since I can’t detect
exploits of CVE-2

 I better be sure that
Tool 1 is real good
at checking for it.

16

MMMMIIIITTTTRRRREEEE

31

A CVE-Enabled Process Leverages
CVE compatibility

MMMMIIIITTTTRRRREEEE

32

Outline

0 Background and Motivation
0 Finding Out About Vulnerabilities
0 The Problem and a Solution - CVE
0 CVE Compatibility
0 The CVE Process
0 Summary

17

MMMMIIIITTTTRRRREEEE

33

CVE Editorial Board

0 Includes mostly technical
representatives from 32 different
organizations including
researchers, tool vendors,
response teams, and end users

0 Reviews and approves CVE
entries

0 Discusses issues related to CVE
maintenance

0 Holds monthly meetings (face-
to-face or phone)

0 Maintains publicly viewable
mailing list archives
[cve.mitre.org/board/archives]

MMMMIIIITTTTRRRREEEE

34

Candidates in New
Alerts & Advisories

5–15
per/month

Where the CVE List comes from

Editorial Board

Yes Yes Yes

CVE
List

~2223~2223

4

CVE Content
 Team

CVE
Candidates

~2419~2419

AXENT, BindView, Harris,
Cisco, CERIAS, Hiverworld,
SecurityFocus, ISS, NAI,
Symantec, Nessus

Vulnerability Databases

Vulnerability Databases

~8400~8400

Legacy Submissions

New
Vulnerabilities

New Submissions
150–500 per/month

ISS, SecurityFocus,
Neohapsis, NIPC
CyberNotes

 →→→→
2,500 | 3,900 | 1,100 | 900———

dups info study
 563——

18

MMMMIIIITTTTRRRREEEE

35

Status
(as of July 1, 2002)

• 2223 entries
• 2419 candidates

CVE Growth

S
ep

-9
9

O
ct

-9
9

N
ov

-9
9

D
ec

-9
9

Ja
n-

00
F

eb
-0

0
M

ar
-0

0
A

pr
-0

0
M

ay
-0

0
Ju

n-
00

Ju
l-

0
0

A
ug

-0
0

S
ep

-0
0

O
ct

-0
0

N
ov

-0
0

D
ec

-0
0

Ja
n-

01
F

eb
-0

1
M

ar
-0

1
A

pr
-0

1
M

ay
-0

1
Ju

n-
01

Ju
l-

0
1

A
ug

-0
1

S
ep

-0
1

O
ct

-0
1

N
ov

-0
1

D
ec

-0
1

Ja
n-

02
F

eb
-0

2
M

ar
-0

2
A

pr
-0

2
M

ay
-0

2
Ju

n-
02

0

5 00

1 00 0

1 50 0

2 00 0

2 50 0

3 00 0

3 50 0

4 00 0

4 50 0

5 00 0

Candidates
CVE Entries

MMMMIIIITTTTRRRREEEE

36

Major CVE Milestones

8/01

9/01

10/01

11/01

12/01 3/02

1/99

First
CVE
Presentation

5/99

First
face-to-face

Editorial
Board

Meeting

First
CVE

Version
Released

9/99

10/99

CVE
Booth

attended
by

Board
Members

Databases
Contributed

by Board
 Members

11/99

Boston
Globe
Article

12/99

1/00

Candidates
on

CVE
Web Site

2/00

Board
consultation

on
DDoS

roadmap

Board
Meeting at AXENT

3/00

4/00

SANS
 Technology

Leadership Award

5-6/00

First
 Candidate
 Numbers

In
Security

Advisories

6/00

SANS
Top
Ten
List

Released

7/00

8/00

9/00

10/00

Board Meeting
in

Denver

 Candidate Number
in

CERT Advisory

Voting
Web Site
for Board
Members

1000
CVE

Entries

11/00

12/00

 Candidate
 in

 SGI
 &

 IBM
Advisories

 CVE
 Booths

at SANS,
NISSC, &
FedCIRC

CVE
Presentation
at
AFCEA
Federal DB
Colloquim

CVE Presentation
at NDIA Sys

Eng Conference

CVE Presentation at
QualityWeek Europe 2001

CVE Booth at InfoSec World

CVE
Presentation

at FIRST
Conference

CVE Booth at
SANS

CVE Booth
LISA2001

Candidate
Number in

HP and
Cisco

Advisories

SANS / FBI
Top 20 List
Released

CVE paper
published in

IEEE’s
COMPUTER

Magazine

Candidate
Number in
Red Hat
Advisory

2000
CVE Entries

1/01

2/01

3/01

4/01

5/01

7/01

Board
Meeting

in
Austin

Candidate in
Microsoft
Advisory

CVE Booth at
InfoSec
World

 Candidate in
COMPAQ

Advisory

CVE paper
published in

DoD’s
CrossTalk
Magazine

CVE Presentation
at DoD Software
Technology Conference
& DOE Security
ConferenceFirst CVE-

compatible Service

CVE
Presentation
at
BlackHat

10/02

11/02

CVE
double

Booth at
SANS

CVE
Presentations
& CVE Booth

at Sector5
Conference

1/01 6/02

7/02

8/02

9/02

Draft
NIST

recommendation
w/ request for

comments,
published on

Use of
CVE

CVE Presentation at
21st Digital Avionics
Systems Conference

12/02

1/03

CVE Presentation at
Quality Week 2002

proposed

19

MMMMIIIITTTTRRRREEEE

37

0

10000

20000

30000

40000

50000

60000

70000

80000

90000Unique IP's
CVE Downloads
Candidate D/L

Notes

• Referers: Search
engines, security
tools, databases,
security
advisories, college
campuses

• Main countries:
Japan, France, UK,
Canada, Germany,
Korea, etc.

O
ct

 1
99

9
N

ov
 1

99
9

D
ec

 1
99

9
Ja

n
20

00
F

eb
 2

00
0

M
ar

 2
00

0
A

pr
 2

00
0

M
ay

 2
00

0
Ju

n
20

00
Ju

l
20

00
A

ug
 2

00
0

Se
p

20
00

O
ct

 2
00

0
N

ov
 2

00
0

D
ec

 2
00

0
Ja

n
20

01
F

eb
 2

00
1

M
ar

 2
00

1
A

pr
 2

00
1

M
ay

 2
00

1
Ju

n
20

01
Ju

l
20

01
A

ug
 2

00
1

Se
p

20
01

O
ct

 2
00

1
N

ov
 2

00
1

D
ec

 2
00

1
Ja

n
20

02
F

eb
 2

00
2

M
ar

 2
00

2
A

pr
 2

00
2

CVE Web Site Statistics

MMMMIIIITTTTRRRREEEE

38

- 51 plus (11 countries)
- 11 to 50 registered (39 countries)
- 1 to 10 registered (71 countries)

CVE email Lists Have an International Readership

Representing ~ 2200 registered email subscribers

20

MMMMIIIITTTTRRRREEEE

39

Outline

0 Background and Motivation
0 Finding Out About Vulnerabilities
0 The Problem and a Solution - CVE
0 CVE Compatibility
0 The CVE Process
0 Summary

MMMMIIIITTTTRRRREEEE

40

SANS Institute 2001 Top Ten uses CVE names
 …another step down the policy road

http://www.sans.org/topten.htm

CVE-names

21

MMMMIIIITTTTRRRREEEE

41

FBI/SANS Institute 2001 Top Twenty uses CVE names
 …yet another step down the policy road

MMMMIIIITTTTRRRREEEE

42

Several Parts of the Federal Government Have Called for
the Use of CVE and CVE-Compatible products

22

MMMMIIIITTTTRRRREEEE

43

Example:
CVE helping to make Detailed Product Comparisons

MMMMIIIITTTTRRRREEEE

44

CVE is Even Being Used to to
Compare and Contrast products

23

MMMMIIIITTTTRRRREEEE

45

Unreviewed
Bugtraqs, Mailing lists,
Hacker sites

Reviewed Advisories
CERT, CIAC,
Vendor advisories

Discovery
time

Policy

Methodologies
Purchasing
Requirements
Education

Scanners, Intrusion Detection,
Vulnerability Databases

Security Products

3. … enable CVE to permeate
 the policy level.

1. Inject CVE Names
 into advisories

Commercial S/W Products
Update and Fix Sites &
Update Mechanisms

4. Establish CVE in vendor fix-it
 sites and update mechanisms

The CVE Strategy

CVE names have been included
in initial advisories from ISS X-
Force, Rain Forest Puppy, IBM,
@stake, BindView, CERT/CC,
HP, SGI, COMPAQ, Microsoft,
Ernst & Young, eEye, CISCO,
Rapid 7, NSFOCUS, Sanctum,
SecurityFocus, VIGILANTe,
Red Hat, Apache, and Apple.

• SANS / FBI Top 20 uses CVE names
• Network Computing IDS & Scanner

Comparisons included CVE
• Draft NIST Rec. calls for use of CVE
• DSB Report calls for CVE compatibility
• Network World IDS Comparison

included CVE coverage

 (as of 1 July 2002)

• Adding CVE names broached with 13 groups.

: Where are we?

• 2223 CVE Entries --
2419 Candidates.

• 95 CVE-compatible
products from 62 groups.

• 53 more from 26 others
in “the works”.

2. Establish CVE at security
 product level in order to ...

MMMMIIIITTTTRRRREEEE

46

CVE is the center of many activities and efforts…
 ...and it’s still growing

ISS X-Force,
Security Focus,

NIST ICAT,
More to come...

Public Databases

Private Databases

CERIAS,
Ernst & Young

Academic

SANS ,
CERIAS

Common Problems

SANS Top
Ten List

 ISS,
 CERT/CC,
 BindView,

 Others

 Advisories

IDS ,
Assessment,
Comparison

Tools

 Incident
 reporting,

 Translations,
 “Comprehensive”

 info source

Other

Press

>70
Articles

~5
Languages

24

MMMMIIIITTTTRRRREEEE

47

CVE is even getting used by Hackers !

MMMMIIIITTTTRRRREEEE

48

And Yes, In Case You Wondered…
 …the Hacking Continues

25

MMMMIIIITTTTRRRREEEE

49

 CVE web site
 http://cve.mitre.org

For More Information

MMMMIIIITTTTRRRREEEE

50

information about vulnerabilities and exposures in commercial
software. With common name integration and cross-referencing
abilities emerging in vulnerability and exposure tools, web sites,
and databases, it is becoming possible to deal with these mis-
takes and improve our systems' security. Handling security inci-
dences is more systematic and predictable as CVE is supported
within the commercial and academic communities. As vendors
respond to user requests for CVE-compatible fix sites, the com-
plete cycle of finding, analyzing, and fixing vulnerabilities will
be addressed.u

On-Line Resources
The on-line resources of this article contain hyperlinks to fur-
ther references. For the full list please see page 32 of this on-lne
version.

References
1. Mann, David E. and Christey, Steven M., Towards a

Common Enumeration of Vulnerabilities, 2nd Workshop on
Research with Security Vulnerability Databases, Purdue
University, West Lafayette, Ind., Jan. 21-22, 1999.

2. Jackson, William, Top 10 System Security Threats Are
Familiar Foes, Government Computer News, Jun. 12, 2000.

3. Sullivan, Bob, Hospital Confirms Hack Incident, MSNBC,
Dec. 9, 2000.

4. Lemos, Robert, Power Play: Electric Company Hacked,
ZDNet News, Dec. 15, 2000.

5. Mell, Peter, The ICAT Metabase, Computer Security
Division at the National Institute of Standards and
Technology, icat.nist.gov/icat.taf Dec. 19, 2000.

Notes
1. Vulnerability is a mistake that someone can directly use to

gain access to things they are not supposed to have. An expo-
sure is a mistake that gives that person access to information
or capabilities that he or she can then use, as a stepping
stone, to gain access.

2. A computer hacker broke into a hospital in the Seattle area
and thousands of medical records were downloaded. The
hacker's activities went unnoticed by the hospital, and when
the hacker went public with his accomplishment, his claims
were initially denied. The next day, the hospital confirmed
the intrusion [3].

3. A Microsoft Web site was penetrated by a Dutch hacker
through the Web server's "IIS Unicode" vulnerability that let
him copy files, execute commands, and change files [4].

4. Unlike its original meaning that referred to a hacker as a pro-
lific and inventive software programmer, hacking during the
past few years has come to refer to the act of circumventing
security mechanisms of information systems or networks.
"Black-hat" hackers are those intent on doing harm, as
opposed to "white-hat" hackers, who are usually working in
support of organizations to help them assess and understand
the vulnerabilities and exposures in their systems. Black-hat

hackers are sometimes referred to as crackers.
5. As an alternative to tracking and recording each update,

patch, and upgrade that gets applied to each platform in the
enterprise, the use of vulnerability scanners is an attractive
choice for monitoring the health of software applications.
These tools are benefiting from the vigor of the market
place's hunt for vulnerability information and the develop-
ment of testing approaches that can turn up the presence of
vulnerabilities or exposures in the "deployed" systems of an
organization. However, due to "false positives," "false
negatives," and incomplete coverage to date, these tools are
not a panacea.

6. MITRE, working in partnership with government, is an
independent, nonprofit corporation working in the pub-
lic interest.

7. The CVE initiative is in the process of analyzing and cate-
gorizing all of the "legacy" vulnerabilities and exposures, and
assigning them CVE numbers. Numerous members of the
security vulnerabilities reporting and tracking community
have donated their legacy databases to the CVE effort to
support this effort.

8. The ICAT Metabase is a searchable index of computer
vulnerabilities and exposures. ICAT is not itself a
vulnerability and exposure database, but is instead a
searchable index leading to vulnerability resources and patch
information [5].

About the Author
RRoobbeerrtt AA.. MMaarrttiinn is a co-lead for MITRE's Cyber
Resource Center Web-site, and a principal engineer in
MITRE's Information Technologies Directorate. At the
culmination of his five years of Y2K leadership and
coordination efforts, Martin served as the operations
manager of the Cyber Assurance National Information
Center, a 24x7 cyber security watch center within the

President's Y2K Information Coordination Center. Today, Martin's
efforts are focused on the interplay of cyber security, critical infrastructure
protection, and e-Business technologies and services. Martin received a
bachelor's degree and a master's degree in electrical engineering from
Rensselaer Polytechnic Institute and a master's of business degree from
Babson College. He is a member of the ACM, AFCEA, Institute of
Electrical and Electronics Engineers (IEEE), and IEEE Computer
Society.

Robert A. Martin
The MITRE Corporation, MS B155
202 Burlington Road
Bedford, MA 01730-1420
Voice: 781-271-3001
E-mail: ramartin@mitre.org

Web-Based Applications

10 CROSSTALK The Journal of Defense Software Engineering April 2001

Did this article pique your interest?
Would you like to learn more about correcting vulner-
abilities and exposures in commercial software that is used to
develop your organizations infrastructure? Then attend the
Thirteenth Annual Software Technology Conference 2001 on
April 29-May 4 in Salt Lake City. Robert A. Martin will speak on
this topic in Track 9 on May 2.u

Key Points

Web Based Testing Frameworks, Do they really work
Will a project team use a Web Based Testing Framework if its provided
What type of Information should be included/shared through a Web Based Testing Framework

Presentation Abstract

This paper will describe a Web Based Testing Framework that ties together Product Requirements, Test
Plans, Test Specifications, Testing Status, and Defect Reporting. I will talk about why this framework was
used in place of the more traditional Software Engineering documents and tools. I will also talk about the
construction of the testing frame work and how it has evolved through use and feedback from the project
team. I will talk about the interaction of the project team with the testing framework, (what they liked and
what they did not like). I will also talk about future enhancements like Automatic Test Data Collection, and
Test Execution.

About the Author

Steve Whitchurch has been in the Software QA arena for 18 years. During that time he has worked at Intel,
Mentor Graphics, Summit Design, Tektronics, and is currently a QW Team lead at Network Associates, Inc..
Steve has also been involved in testing everything from Real Time OS Software, Video Editing and Special
Effects Software, to Electronic Design Automation Software.
Steve has also been active outside of the work environment as a Speaker at PNSQC, STAR, Quality Week,
and SAO Forums. Steve was also the creator and publisher of the Software QA Magazine (now known as
Software Testing & Quality Engineering Magazine, published by SQE). Steve has also written for the
QA/Testing Web Site, Sticky Minds.

QW2002 Paper 8I2

Mr. Steve Whitchurch
(Network Associates, Inc.)

Implementing a Web Based Testing Framework

1

Implementing
A

Web Bases Testing Framework

By
Steve Whitchurch

Network Associates, Inc.

The Goals of the Project
• Goal #1: A solution that everyone agreed added value to the project

• Goal #2: A way to communicate not only test status, but current defect count,
defect status, build status, test statistics by build, a quick health check of the
product, and any special test information that may come up.

• Goal #3: Easy to use. The solution needed to be implemented in such a way
that anyone on the project could access the information from any type of
system (i.e. Unix or Windows).

• Goal #4: There needed to be links between all project documents. This would
help with link test items to functional specification and requirements, etc.

2

Overview
of

Web Based Testing Framework

•Quick Status web page
•Supporting web pages

Why Use a
Web Based Testing Framework

3

The Construction of
the

Web Based Testing Framework

Information that should be shared
Using a Web Based Testing

Framework

• Project Document
• Test Data
• Defect Data
• Defect Trends
• Testing Status

4

How did the
Web Based Testing Framework

Evolve Over Time

How Did The Project Team
Interact with the

Web Based Testing Framework

5

Future Plans

•Automatic Test Data Collection
•Test Execution
•Automated Reports
•Email Notification

Conclusion

•Did we meet the project goals?
•Would I do it Again?

Implementing a Web Based Testing Framework

By

Steve Whitchurch
Network Associates, Inc.

Beaverton, OR
steve_whitchurch@NAI.com

Abstract:

This paper will describe a Web Based Testing Framework that ties together Product
Requirements, Test Plans, Test Specifications, Testing Status, and Defect Reporting. I
will talk about why this framework was used in place of the more traditional Software
Engineering documents and tools. I will also talk about the construction of the testing
framework and how it has evolved through use and feedback from the project team. I will
talk about the interaction of the project team with the testing framework, (what they liked
and what they did not like). I will also talk about future enhancements like Automatic
Test Data Collection, and Test Execution.

About the Author:

Steve Whitchurch has been in the Software QA arena for 18 years. During that time he
has worked at Intel, Mentor Graphics, Summit Design, Tektronics, and is currently the
Sr. QA Team Lead Engineer for the ePO Server group at Network Associates, Inc.. Steve
has been involved in testing everything from Real Time OS Software, Video Editing and
Special Effects Software, to Electronic Design Automation Software. Steve has also been
active outside of the work environment as a Speaker at PNSQC, STAR, Quality Week,
and SAO Forums. Steve was the creator and publisher of the Software QA Magazine
(now known as Software Testing & Quality Engineering Magazine, published by SQE).
Steve has also written for the QA/Testing Web Site, Sticky Minds.

1. The Goals of the project, what the team was looking for and why

The problem was to solve a communications gap between QA, Development,
Marketing, and Management. The solution had to be one that would work for
everyone associated with the project. It also had to be something that everyone would
use, and added value to the project. The top-level goals were:

• Goal #1: A solution that everyone agreed added value to the project

• Goal #2: A way to communicate not only test status, but current defect count,

defect status, build status, test statistics by build, a quick health check of the
product, and any special test information that may come up.

• Goal #3: Easy to use. The solution needed to be implemented in such a way that

anyone on the project could access the information from any type of system (i.e.
Unix or Windows).

• Goal #4: There needed to be links between all project documents. This would

help with link test items to functional specification and requirements, etc.

2. Overview of the Web Based Testing Framework

The Testing Framework consisted of two parts, the main web page and the supporting
web pages:

• The main web page:
The main or “Quick Status” web page was at the top level of the hierarchy.
This web page displayed the most resent test status and defect information, as
well as links to more detailed project information.

• Supporting web pages:
The next web pages in the hierarchy were what I have called supporting web
pages. These web pages contained the more detailed test data, test case
information, defect data, links to supporting documentation (i.e. Functional
Specifications, Test Plans), etc.

The web page hierarchy looked like the following:

3. Why use a Web Based Testing Framework over traditional Software
Engineering documents?

The more traditional engineering documents (i.e. Functional Specifications, Test
Plans, Test Specifications, etc.) mainly consist of paper. These types of documents
are hard to update, and time consuming to distribute every time an update is made.
Because of this, most of the time these documents are out of date. In some cases,

these documents are never updated.

The inverse of the traditional document is a Web Based document. These documents
are very easy to update and very easy to distribute. Mainly because the deployment of
these document is usually to one central place, a web server. There is no running
around handing every project team member an updated copy of a current document.
As long as everyone one the project team has access to the web server, then everyone
on the project team will have access to current project documents and information.

There is still that discipline factor as with any document update. If no time is given to
updating the project documents, the project documents will be out of date no matter
what type of documentation system you have. The use of the web-based system just
makes distribution a whole lot easier.

When it comes to status information, automated works in most cases. This type of
project information can be setup to update without any time taken away from
engineering tasks. The automatic updating process can also be applied to some of the
project documents as well. Any time you can show a positive impact on a project
schedule, you have a winning process. This is a big plus for the web-based approach.

4. How the Web Based Testing Framework was constructed. What

tools, if any, were used

One of the goals was to have an information source that was easy to uses and
accessible by anyone in on the project team. A web based “html” framework was
selected. This made the testing framework accessible from any web browser running
on any type of platform.

The tool used to create the framework web pages, was the Netscape Composer. There
were those occasions, where the html file had to be opened in an editor, and changed
to produce the exact result we wanted. But for the most part this tool worked out just
fine.

The other tools that were used occasionally were screen capture tools. I used the
native tools that came as part of the SunOS. The screen capture files where saved as
gif images, allowing ease importing into the html code to be displayed as part of the
web pages.

5. What information should be shared through a Web Based Testing

Framework

I’m not sure if there is any information that should NOT be shared through a web-
based system. Maybe the filter would be information that only needs to be seen by

certain people because of the nature of its contents. But all other project information
could be shared using a web-based system.

The top-level information that my project shared was:

• Project Requirement
• Functional Specifications
• Design Level Specifications
• GUI Specifications
• Test Plans
• Test Design Specifications
• Testing Status
• Defect data
• Defect Trends

6. How did the Web Based Testing Framework evolve from the first

web page? How did the project team help mold the testing
framework.

The current web based framework took five iterations to finalize a look and feel that
everyone on the project agreed was usable. The group also reviewed the data that was
being presented.

The key to making a system like this work, is to get buy in from the complete project
team. This is a very important step in the design process. If you do not get full buy
in, I would be concerned that your project will eventually fail. This is not a step to
skip.

I feel that the success of this project was largely do to the involvement of the project
team in the review of the Web Based Testing Framework. They defined the data, they
defined the look and feel, and they used the end product.

7. How does the Project Team interact with the Web Based Testing

Framework?

• What did the project team like?

• For the most part, the team like the complete system.
• The team liked the linkage between the test cases and the defects filed. It was

a kind of one-stop shopping. The user of the system did not need to visit one
web site to review defect information. Then visit another to review or run the
test case / test data that found the problem. This could all be done from one

web site.

• What did the project team NOT like?

• The team would like to see more automation in the updating of the project

(e.g. Test data, defect data, test status, project documentation) information.

• Links into the source code control system. This would allow test case, defect,

and code linkage. This would better document any fixes that where linked to a
bug found through testing.

8. Future Plans for the Web Based Testing Framework

• Test Execution from the Web Page

One of the areas of improvement that I’m very excited about is Test Execution.
The plan is to have a button or menu that will allow the user of the web site to
execute test cases at will. Each of the Test Specification pages will have this
mechanism available. This will allow a developer or test engineer to execute any
test he or she wants at anytime on any build.

Example; Suppose a development engineer has added some new code. Could be a
bug fix or new feature. He then wants to run a set of test cases that will verify that
his new code has not broken other functionality. He can go to the Testing
Framework web site, select the test or tests that he wants to run, and click a button
to run them. The result of the test run would be a report that tells the engineer if
his code is working.

This feature would be very valuable to any project team member. It would also
give the power of running test cases to anyone on the project team. What better
way to get others testing.

• Automatic Test Data collection

At the time this paper was written, the only automated part of the framework was
some test statistics gathering. This was a large part of the data communicated on
the Quick Status (top-level) web page. But a lot more automation needs to be
completed.

Example: It would be nice if test suites would run automatically after a build, then
update the appropriate web pages on completion.

This is just one example; there are lots of opportunities for automation with a
system like the Web Based Testing Framework.

• Project Team Wish List

The following is a list of features that the project team would like added to the
Web Based Testing Framework:

• Automated Test execution.
• Automated reports.
• A solid connection between the testing framework and the defect

tracking system.
• Email notification.

9. Conclusion

• Did the Web Based Testing Framework meet the goals

Yes it did, in fact the project team used the Web Based Testing Framework all the
time. Lets review each of the goals that were set at the start of the project:

• Goal #1: A solution that everyone felt added value to the project.

This goal was met by including everyone in the design of the tool. Everyone
had input, everyone reviewed the progress of the tool, everyone uses the web
site.

• Goal #2: A way to communicate not only test status but, current defect count,
defect status, build status, test statistics by build, a quick health check of the
product, and any special test information that may come up.

This goal was met by making sure the information communicated through the
Web Based Testing Frame Work was what the team members wanted access
to. Through reviews of the framework and its data, the team made the desition
of what types of data should be communicated.

• Goal #3: Easy to use. The Testing Framework needed to be implemented in

such a way that anyone on the project could access the information from any
type of system (i.e. Unix or Windows).

The Web Based Testing Framework was written in html making it accessible
from any system and any type of web browser. This made the project data
available to anyone that needed it.

• Goal #4: There needed to be links between all the project documents.

Each test case, reported defect, etc. had links all the way back to the original
project requirements document.

• Would I do it again

You bet!

I believe that the Web Based Testing Framework had a large impact on the
quality of the product. It gave every team member access to current and timely
test and defect information. It gave team members one place to go to run test
cases, and respond to problems found.

The best indicator that this project was a success, was that every team member
used the Web Based Testing Framework as part of their everyday work.

Key Points

Introduction of a typical wireless solution
Review of risks involved in implementation
Provide set of tools to assess risks

Presentation Abstract

The presentation will review the various players in a typical enterprise wireless solution. It will then review
the risks associated with the implementation and finally provide the attendants a set of tools that they can
take with them and apply to their own process.

About the Author

Yiftach Resheff has more than 10 years in various aspects of software testing and quality assurance. Yiftach
currently manages the QA team at Antenna Software where he is charge of the entire quality assurance life
cycle from the requirements verification, to software validation and release schedule. Yiftach holds a BA in
mathematics from Queens College and an MS in Operation Research from Columbia University in New
York.

QW2002 Paper 9I1

Yiftach Resheff
(Antenna Software)

Assessing Risks In Wireless Solution Implementation

1

Page 1

Assessing Risks in Wireless
Solution Implementation

QW 2002 Conference

Assessing Risks in Wireless
Solution Implementation

QW 2002 Conference

September 3-6, 2002
San Francisco, CA

Yiftach Resheff

Page 2

IntroductionIntroduction

Antenna Software develops web and wireless
solutions that extend existing Client Relationship
Management applications to the mobile workforce.
Antenna’s solutions run on an array of devices
such as the Pocket PC family, Blackberry RIM and
the Motorola PageWriter.

Yiftach Resheff is the Quality Assurance Manager
at Antenna Software, Inc. The Quality Assurance
group at Antenna is responsible for all aspects of
web and wireless testing, including verification of
requirements, functional testing and performance
testing.

2

Page 3

IntroductionIntroduction

The presentation has 3 main goals :
– Overview of a typical wireless solution
– Review of risks and challenges involved in

implementation of wireless solutions
– Tools and methods to assess risks

in implementation of wireless solutions

Page 4

Overview of a Typical
Wireless Solution

Overview of a Typical
Wireless Solution

3

Page 5

Overview of a Typical Wireless SolutionOverview of a Typical Wireless Solution

CRM
Translator

Li
st

en
er

ATA Server

R
ou

te
r

CRM

HTTP

Wireless
Client Binder

Li
st

en
er

ATA Server

R
ou

te
r

Build Router

Li
st

en
er

ATA Server

R
ou

te
r

Wireless
Translator

Li
st

en
er

ATA Server

R
ou

te
r

Wireless
Translator

Li
st

en
er

ATA Server

R
ou

te
r

ATA Gateway

Li
st

en
er

ATA Server

R
ou

te
r

Network
Router

Li
st

en
er

ATA Server

R
ou

te
r

Wireless
Capacitor

Li
st

en
er

ATA Server

R
ou

te
r

Protocol
Router

Li
st

en
er

ATA Server

R
ou

te
r

Internet Access
Gateway

MSMQ

MSMQ

MSMQ

MSMQ

MSMQ

MSMQ

Named
Pipes

Carrier

Device

TCP/IP

Wireless Protocol

CRM Data
Manager

Li
st

en
er

ATA Server

R
ou

te
r

ATA Logging

Li
st

en
er

ATA Server

R
ou

te
r

Wireless
Admin Entry

Li
st

en
er

ATA Server

R
ou

te
r

Named
Pipes

MSMQ

MSMQ

HTTP

Wireless
Admin 2.1

named
pipes

Named
Pipes

Named
Pipes

MSMQ

MSMQ

Key
CRM to Device

Device to CRM

Sync Data

ATA Log
DB

All ATA Services

MSMQ

Named
Pipes

Notification
Filter

Li
st

en
er

ATA Server

R
ou

te
r

Notification
Rules Engine

Li
st

en
er

ATA Server

R
ou

te
r

Notification
Delivery

Li
st

en
er

ATA Server

R
ou

te
r

Notification
Recipients

MSMQ

MSMQ

SMTP

MSMQ

MSMQ/
COM

HTTP

Page 6

Overview of a Typical Wireless SolutionOverview of a Typical Wireless Solution

Backend
server

Operator/CarrierOperator/Carrier

Radio tower Middleware

Network

Land Line

ServerDevice

Mobile

The bird’s eye view

4

Page 7

Review of Risks and Challenges
Involved in Implementation of

Wireless Solutions

Review of Risks and Challenges
Involved in Implementation of

Wireless Solutions

Page 8

Review of Risks and ChallengesReview of Risks and Challenges

All issues in traditional client/server and web testing still apply.
Almost all wireless implementations include various web interfaces
where users can view and modify their preferences and system
administrators can control system configurations. Therefore issues
such as browser compatibility, link checking and page response time
are still valid and should be incorporated in the master test plan.
Large number of players

As an example the Compaq IPAC, running the POCKETPC
operating system from Microsoft and using the Sierra Wireless
network card can connect over AT&T Wireless CDPD network
provided by GO America

5

Page 9

Review of Risks and ChallengesReview of Risks and Challenges

Multiple networks, standards and protocols

High Speed Data, Media (Handheld,
Notebooks)PacketNo128 kbsMetricomMetricom

High Speed Data (Handhelds,
Notebooks)PacketNo11,000 kbsNA802.11b

One way, Two way, Alphanumeric,
Light Data (RIM, Palm VII)PacketNo~8 kbsRIM, SkyTelPaging

Data (Phones, Handhelds,
Notebooks)PacketNo721 kbsNABluetooth

Voice, SMS, Data, Media (3G
Phones, Handhelds)PacketYes28.8-128 kbsVoiceStream, Cingular,

AT&T WGPRS

Data (Phones, Handhelds,
Notebooks)PacketNo19.2 kbsAT&T W, Go America,

OmniSky, VerizonCDPD

Voice, SMS, Data (Phones)CircuitYes14.4 kbsSprint PCS, VerizonCDMA

Voice, SMS, Data (Phones)CircuitYesNoAT&T, CingularDAMPS/TDMA

Voice, SMS, Data (Phones)CircuitYes9.6/14.4 kbsVoiceStream, CingularGSM

Main UsageTypeVoiceData Speed
Lead US

Carrier/Operator

Network

Technology

Page 10

Fault tolerance - Different networks resolve
messages failure in different ways. Some will
retry to send the message until it is delivered.
Others will notify the sender of the failure and rely
on the sender to re-send it.

Delivery quality detection. Some network will
notify the sender or the receiver when the quality
of the message is low, others will not

Latency - Predicting the latency of individual
messages is very hard to achieve as it depends
on a lot of different factors such as device
location, weather conditions, NOC current load
and signal strength.

Review of Risks and ChallengesReview of Risks and Challenges

6

Page 11

Sequencing- network does not always sends
messages in the order in which they are received.
If the application relies on the correct sequence
for data integrity this issue can pose a serious
risk

Operator/CarrierOperator/Carrier

Server

“you pick up Ken, I’ll
pick up Jim.”

Review of Risks and ChallengesReview of Risks and Challenges

I’ll pick up
“Jim pick you up

Ken.”

Page 12

Character string limitations - some networks will not
deliver certain characters or character combinations.
It is impossible to find out all possible combinations.
Some characters might be used in the network logic
for message parsing. Often the operators themselves
do not have a comprehensive list of constraints.

Message size limitation - some operators will limit the
size of each individual message, either truncating or
splitting it. The size usually includes spaces, non-
printable characters, html tags, etc.

Review of Risks and ChallengesReview of Risks and Challenges

7

Page 13

Review of Risks and ChallengesReview of Risks and Challenges

Storage limitation- some operator will not keep an
undelivered message for more than a set period
of time.

Volume limitation- Operators set limitations on the
number of messages that can be sent
simultaneously or over a set period of time. (e.g.
Skytel has a limitation of 500 messages over 72
hours, Bellsouth over Mobitex has a limit of
25,000 characters a month per device)

Page 14

Large number of devices- mobile phones, PDAs
and pagers - using various operating systems-
Symbian, Pocket PC, Palm OS, J2ME, Linux,
Wisdom

Limited Resources - battery life. The battery
might not be able to support what is considered a
typical work load of an end user. Also, messages
might get lost if the battery ‘dies’ while messages
are processed by the operating system or by the
application.

Review of Risks and ChallengesReview of Risks and Challenges

8

Page 15

Review of Risks and ChallengesReview of Risks and Challenges

Limited Resources - memory. The combination of
limited amount of memory and the relative
immaturity of code written for wireless devices
poses a serious risk.

A memory leak is an error that occurs when
usage increases the allocated memory without
releasing that memory when the program is
finished with it. The amount of allocated memory
increases until it exceeds the physical memory;
at this point, performance degrades dramatically
and ultimately crashes the device.

Some IDEs (Integrated Development
Environments) provide a memory leaker tool.
Some functions are memory leak prone (e.g. the
PageWriter is known to leak through the
consecutive beeps).

Page 16

Review of Risks and ChallengesReview of Risks and Challenges

Available Memory

0

50000

100000

150000

200000

250000

1 6 11 16 21 26 31 36 41 46 51 56 61

transaction

By
te Series1

9

Page 17

Review of Risks and ChallengesReview of Risks and Challenges

Usability - Among the challenges in designing for
wireless devices are:
– Devices should be usable in your hand, not on a

desk
– Input is done via various means- stylus, mini

keyboard, QWERTY keyboard
– Navigation on small screen is difficult- easy to get

lost . Site maps are hard to fit.
– Since there is no standardization of functions and

buttons it is hard to achieve a consistent ‘look and
feel’ across devices

Page 18

Tools and Methods to Assess Risks
in Implementation of Wireless

Solutions

Tools and Methods to Assess Risks
in Implementation of Wireless

Solutions

10

Page 19

Tools and MethodsTools and Methods

Network Notification of successful or unsuccessful message delivery

Page 20

Tools and MethodsTools and Methods

Network logs including time stamps and message body

11

Page 21

Tools and MethodsTools and Methods

Coverage
No Coverage

Coverage Testing - this is a combination of network and
device functions. operators have a map of coverage.
Behavior under poor coverage. Test at the edges- when
device goes in and out of coverage.

Page 22

Tools and MethodsTools and Methods

sp
ac

e

time

Coverage

No Coverage

12

Page 23

Tools and MethodsTools and Methods

sp
ac

e

time

Coverage

No Coverage

Presumed
Coverage

Presumed No
Coverage

Page 24

Tools and MethodsTools and Methods

Simulator- The simulator is a
window that appears when you
execute your program in the IDE. It
provides a "virtual device" that mimics
the characteristics of the device for
which you are developing your
program. Clicking a button on the
simulator keypad with your mouse
generates an event almost exactly as
it would if you had pushed the button
on the real device.

It is strongly recommended that you
deploy your application in the
Simulator before downloading to your
device. This could shorten the testing
life cycle substantially. At the same
time final testing should always be
conducted on the real device as they
do not always behave the same.

13

Page 25

Tools and MethodsTools and Methods

Sync Testing enables the device to communicate
with a desktop computer using a cable, cradle, or
infrared. You can also use your existing computer
to connect to other resources through its internet
connection.

Sync testing helps isolate issues by taking the
wireless aspect of messaging out of the equation.

Server

Desktop

Page 26

Tools and MethodsTools and Methods

Data loaders - Some wireless IDEs have a data
loader with which you can feed data into the
device without relying on wireless connection.
You can use the data loader to test the
application’s behavior with extreme, incorrect and
boundary values.

14

Page 27

Tools and MethodsTools and Methods

Inbound and outbound
queues and log are
essential in order to
make sure that
messages arrive and
get sent.

Page 28

Tools and MethodsTools and Methods

Automated testing tools that run on the actual
device are expensive. Most of them are OS
specific and will not be compatible with all
required devices.

You can create a stress test scenario on the
device by turning off the radio and then manually
creating a large number of inbound and outbound
messages. Turning the device back on will result
in a burst of messages going in both directions.

15

Page 29

Tools and MethodsTools and Methods

Client server automated tools can be used in
order to simulate messages coming from the
device to the backend server through a gateway
server

Backend
server

Operator/CarrierOperator/Carrier

Radio tower

Middleware

Desktop

Gateway

Page 30

Questions/Comments?Questions/Comments?

Contact: Yiftach Resheff
QA Manager

Antenna Software
Email: yresheff@antennasoftware.com

Key Points

Key software testing challenges with WAP applications
Model-based test automation for testing protocols and markup languages
Setting up wireless test environments

Presentation Abstract

The Wireless Application Protocol or WAP is an open de facto industry wide standard for developing
applications over wireless communications networks. WAP specifications present a variety of solutions
analogous to those employed by the traditional Internet ex-cept they are more optimized for wireless
applications. Examples include the Wireless Session Protocol for hypermedia transfer and the Wireless
Markup Language which was designed to suit browsing on telephony and other mobile devices. With these
new tech-nologies come testing problems and concerns, some of which we have attempted to ad-dress
while testing a smart phone device. In this presentation, we give a detailed account of this experience. We
show how to build a framework for testing client and server wire-less applications and how we employ
models of protocols and markup languages to drive test automation. We discuss some of the difficulties in
setting up the test environment and in generating and evaluating our tests.

About the Author

Ibrahim K. El-Far is a doctoral candidate in computer science under James A. Whittaker at the Florida
Institute of Technology, Melbourne, Florida. He has nearly six years of ex-perience in model-based testing
with state machines. Mr. El-Far is currently preparing a dissertation on testing software modeled with formal
grammars and developing the G-Factory™ tool that performs much of the automated testing effort described
in the pres-entation. His interests are in investigating software models, appropriateness of models to specific
contexts, test automation and tools, and software testing education.

Roussi Roussev is a Master’s student in computer sciences and he currently works for the Center for
Software Engineering Research, Florida Institute of Technology, Melbourne, Florida. He has extensive
experience in Windows programming and has worked with the Windows Kernel group at Microsoft in 2000
and 2001. He is interested in software test-ing methods, operating systems and distributed software.

Nattawut Sridranup is a doctoral student in computer science at Florida Institute of Tech-nology, Melbourne,
Florida, and he develops contract test solutions at the Center for Software Engineering Research at the
university. He is interested in applying formal methods in software testing.

QW2002 Paper 9I2

Ibrahim K. El-Far, Roussi Roussev, and Nattawut Sridranup
(Florida Institute of Technology)

A Framework for Testing Wireless Applications

1

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 1

A Framework for Testing
Wireless Applications

Ibrahim K. El-Far Roussi Roussev Nattawut Sridranop

Florida Institute of Technology
Melbourne, Florida, United States

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 2

Agenda

A word about the project
A quick background on WAP
An introduction to model-driven testing
A report on project activities and status
A discussion of future work
Summary and conclusions

2

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 3

About the Project

History – contract, initial problems
Staff – abilities, skills, assignments
Scope – extent of activities
Requirements – deliverables, demonstrations
Approach – planning, solutions, tools
Status – achievements, remainder of work

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 4

Handheld Wireless Devices

Low power requirements
Low and variable bandwidth
High latency
Ephemeral network connectivity
Weak processing power
Typically small displays
Limited user input

3

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 5

Wireless Application Protocol
Consists of a collection of specifications of
wireless solutions
Solutions are claimed to address the
aforementioned constraints of handheld
wireless devices
Proposed by the WAP Forum (now Open
Mobile Alliance)
Possesses backing of various major industry
players

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 6

WAP: The Big Picture

4

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 7

Architecture: WAP vs. Internet

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 8

Wireless Session Protocol

A binary hypermedia transfer protocol
Provides both connection-oriented and
connectionless modes of service
Provides a Push mechanism

5

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 9

continued

Wireless Session Protocol
Connection-oriented mode

Reliable transfer of packets
Transient network connectivity is addressed

Connectionless mode
Unreliable transfer of packets
Stateless

Provides a Push mechanism
Initiated by server
Intended for software updates and provisioning

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 10

Wireless Markup Language

A markup language that extends
XHTML
Provided for backward compatibility
Earlier versions were extensions of XML
We were asked to consider WML 1
WAP 2 requires XHTML Mobile Profile
Addresses the peculiar needs of
narrowband wireless devices

6

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 11

WML 1.3

Information is organized into decks and
cards
A card specifies units of interaction
Cards are grouped into decks
A deck is analogous to an HTML page

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 12

WML 1 Sample
<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML
1.1//EN""http://www.wapforum.org/DTD/wml_1.1.xml">

<wml>

<card id="card1" title="WML test page">

<p>Content</p>

</card>

</wml>

7

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 13

Model-Driven Testing

Understanding
of Application

Understanding
of Application Build &

Validate Model

Model
of

Application Generate Tests
Test Suites

&
Scripts

R
un Scripts

Application
Under
Test

Test
Oracle

Get expected result

Get actual result
Test Pass
& Failure

Data
Analyze

Data

Decide whether to
• Generate more tests
• Modify the model
• Stop testing

Estimate
• Reliability & other

quality measures

Test Objectives &
Stopping Criteria

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 14

Grammars
A grammar is a formal system of an alphabet
and a number of rules
The rules describe how to form words and or
sentences based on the alphabet
A grammar defines a language or the
collection of all words and or sentences that
can be formed using its rules
ISO 14977 standard defines a notation that
can be used to express grammars

8

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 15

Grammars: Example
Sentence = Noun Phrase, Verb Phrase;

Noun Phrase = Proper Noun | Determiner, Common Noun;

Proper Noun = “John” | “Jill”;

Common Noun = “car” | “hamburger”

Determiner = “a” | “the”

Verb Phrase = Verb, Adverb | Verb;

Verb = “drives” | “eats”;

Adverb = “slowly” | frequently”;

(Example taken almost verbatim from Thomas Sudkamp’s
“Languages and Machines: An Introduction to the Theory of Computer
Science,” published by Addison-Wesley, 1997)

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 16

Example Generated Sentences
John eats slowly

The car drives frequently

Jill drives slowly

.

.

.

.

9

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 17

Project Deliverables

Test design
Test automation framework
Test suites used
Problem reports

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 18

Scenario 1

WML Test Environment Set Up

10

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 19

Scenario 2

WSP Test Environment Set Up

WSP tests

W
AP

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 20

Modeling the WSP Get

Fields in every PDU
TID (associates requests with replies)
Type (identifies PDU type; 0x40 for Get)

Fields of the Get PDU
URILen (length of the URI Field)
URI (Universal Resource Identifier)
Headers (headers associated with request)

11

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 21

continued

Modeling the WSP Get

General PDU = TID, Specific Type PDU;

Specific Type PDU = Get PDU | … other PDUs …;

Get PDU = Get Type, URILen, URI, Headers;

Get Type = “0x40”;

URILen = uintvar; (* unsigned variable-length integer*)

URI = (* list of test URI’s *)

Headers = (* Extracted from grammar in specifications *)

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 22

Modeling WML 1.3
Verbatim from DTD:

<!-- flow covers "card-level" elements, such as text
and images -->

<!ENTITY % flow "%text; | %layout; | img | anchor |a
|table">

<!-- Task types -->
<!ENTITY % task "go | prev | noop | refresh">

12

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 23

continued

Modeling WML 1.3
Equivalent rules in grammar:

(* ENTITY flow *)

flow = text | layout | img | anchor | a | table;

(* ENTITY task *)

task = go | prev | noop | refresh;

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 24

continued

Modeling WML 1.3
Verbatim from DTD:

<!ELEMENT wml (head?, template?, card+)>

Rule in grammar:

wml element = "<wml", wmlAttr, ">", [head],
[template], card, {card}, "</wml>";

13

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 25

Demo

Or What Kind of Tool is Needed to
Model Applications and Generate

Tests

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 26

Future Work

Model other components of WAP
Improve collecting & evaluating results
Automate model building for certain
types of systems
Develop better techniques for
generating interesting tests
Enhance existing tools to help users
better visualize models

14

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 27

Questions and Comments

Friday 6 September 2002 (c) 2002 The Authors. All Rights Reserved. 28

Contact Information

You can reach Ibrahim K. El-Far by
Email: ielfar@acm.org
Web: http://www.testingresearch.com/

You can reach Roussi Roussev by
Email: rroussev@se.fit.edu

You can reach Nattawut Sridranop by
Email: bird@se.fit.edu

Key Points

Role of outsourced services in QA/QC
Cost savings and leverage gained by outsourced testing services
Issues and experiences of using outsourced services

Presentation Abstract

Recent downward market trends, waning revenues and emphasis on the bottom line has prompted a
resurgence in the trend of outsourcing. Nearly half of Fortune 500 companies are using outsourced services,
whether they are business process management, customer service, software development, transcription or
QA and testing. All the top 20 ISVs now have software development and QA labs in countries such as India,
Ireland, China, Israel amongst several others. Questions range from whether outsourcing QA and testing
been a productive experience for companies to whether the promise of cost savings was fulfilled.

About the Author

Vijay Sikka is the co-founder and principal of Nirixa, Inc. a company providing comprehensive QA and
testing outsourced services. Vijay's more than 15 year executive career and strengths span business
development, engineering, and operations. Vijay has done marketing at IBM in Madison Avenue, New York
and engineering management for 7 ½ years at Intel Corporation headquarters in Santa Clara. In 1996, Vijay
founded IBrain Software, Inc. and served as its CEO until its acquisition by Entigen Corp in 1998. In 1999,
Vijay started Bodha.com, Inc. and served on its board of directors until its acquisition by Peregrine Systems
(NASDAQ: PRGN) in 2002. Vijay has built international teams and engineering organizations with
successful multi - year operations. Vijay is an advisor and a consultant to several bay area companies.

Anurag Khemka is the co-founder and principal of Nirixa, Inc. a company providing comprehensive QA and
testing outsourced services. Anurag has more than fifteen years of experience in enterprise software
development, product architecture, and executive management. Anurag is the founder of MarketFirst
Software, a pioneer and leader in Enterprise Marketing Automation, and currently serves there as Vice
President and Chief Technology Officer. Prior to founding MarketFirst in 1996, Anurag was the director of
research and development at Cambio Networks, and previous to that held positions as the chief product
architect and R&D manager for UB Network's enterprise-wide, client/server based network management
products.

QW2002 Paper 2P1

Mr. Vijay Sikka & Mr. Anurag Khemka
(Nirixa, Inc.)

Outsourcing in QA and Testing

1

Nirixa, Inc.

Software QA and Testing Services

Vijay Sikka

Copyright © 2001-02 Nirixa, Inc.

QA and Testing is a Key Component of
Software Development

Application
Design

Strategic
Planning

•Strategic Planning
•Business Analysis
•Project Management

•Systems Analysis
•Architecture

•Systems Design
•Development
•Documentation
•QA and Testing

•Implementation
•Training
•Test
•Validation

Development Deployment

QA and Testing

Inspect Test CertifyPlan

•Test Plan Outline
•Proposal
•Contract

•Test Plan Doc
•Discussion

•QA management
•Reporting
•Test case creation

•Certification
•Training and
•Consulting

2

Copyright © 2001-02 Nirixa, Inc.

Global IT Services Marketplace

Source: IDC

Copyright © 2001-02 Nirixa, Inc.

Global IT Services Marketplace

According to International Data Corporation
Total Market size: $315B(1999) ⇒ $465B (2003)
Processing Services $79B (17%)
IS Outsourcing $72B (15%)
QA Testing Services is part of above two categories

According to Sanford Bernstein
Total Market size: ~500B in 2003
Software QA Testing and Business Processing Services forms
15% ($75B) of it

QA Testing Services & Outsourcing is
significant Market

3

Copyright © 2001-02 Nirixa, Inc.

Major Outsourcing Destinations
Critical Capabilities

Q
ua

lit
y

Cost
Low

LowHigh

High

India

China

Israel

Ireland Singapore

Mexico

Russia

Phillipines

Source McKinsey & Co. 2001 and Nirixa authors research
Quality depends on resource availability, capability maturity model (Software Engineering Institute) and cultural fit.
Labor costs include taxes, markups, risks, and insurance
Trend arrows are based on Nirixa research.

Hungary

• High Quality
• Lower costs
• Depth of IT resources

• Time to Market
• Specialized Skills
• Project Management

Copyright © 2001-02 Nirixa, Inc.

Typical Services offered by a QA
Outsourcing Company

Test Plan Generation
Functional and Stress QA testing
Validation and Quality testing of product
documentation
QA management and reporting
Process improvement, training and
consulting
Management and access to bug
databases

4

Copyright © 2001-02 Nirixa, Inc.

How to Evaluate Outsourcing
Destination Country

Large Software Industry
Engineering Resource Pool
English Speaking Skills
Hard Working Culture
Low Cost of Development
High Quality
SEI CMM and ISO Certifications
Good Communication and Power
Infrastructure

Copyright © 2001-02 Nirixa, Inc.

How do you Evaluate a Good QA
Outsourcing Company

Team

Infrastructure

Technology

Strategy

5

Copyright © 2001-02 Nirixa, Inc.

Evaluation: Team

Key executives in US for effective
management
Experienced management team in outsourced
country

US educated or trained for workstyle match
Familiarity with local government and cultural issues

World class QA and Test engineering team
Computer Science graduates with diverse experience
Specially trained in QA methodology and techniques
Blend of software development experience
Low price point – high value

Copyright © 2001-02 Nirixa, Inc.

Evaluation: Infrastructure
Established development and training center
Web based round the clock operations
Established QA lab
Emphasis on customer privacy and security
Remote workgroup productivity infrastructure

Multiple ISPs
PC Video/Audio conferencing
VPN
Source control, bug tracking with remote access

Network of specialists, educational institutes,
and partners

6

Copyright © 2001-02 Nirixa, Inc.

Evaluation:Strategy

Strategic focus on QA
Maintain low cost and Flexibility of scale
Staff incentives for customer satisfaction

Established Partnerships

Target specific industries

Copyright © 2001-02 Nirixa, Inc.

Evaluation :Technology
Faster results through building IP

QA methodology
Best practices
Standards Documents
Test components

Continuous emphasis on leading edge
technologies

Multiple OS, Test tools (scripting), languages
Value add offerings

Training
Education
Certification
Quality consulting

7

Copyright © 2001-02 Nirixa, Inc.

The most asked Question

What is the ideal ratio of Developers to
Testers?

Microsoft [1:1] {Cusamano, Michael A. and Richard W. Selby,
Microsoft Secrets, Simon and Schuster, Inc., New York, 1995.}

Ecommerce projects [4:1] {SQATester.com}

We recommend:
Well defined requirements, APIs, peer
reviews & unit testing early on with a ratio
of [5:2 or better] {Software Program Manager's Network, Best
Practices, 1999, on www.spmn.com; McConnell, Steve. Rapid Development,
Microsoft Press, Redmond WA, 1996.}

Copyright © 2001-02 Nirixa, Inc.

Co-sourced QA and Test Model
Cost advantages comparison

Monthly cost per developer and
tester = $10,000.00. One year
project duration
Average team size = 10
developers and variable testers
Assumes good software
engineering, well defined APIs,
and well defined requirements

Co-sourced QA and Test
offers cost advantages and
has a higher likelihood of
success than all outsourced

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ra
tio

 5
:1

Ra
tio

 5
:4

 N
o

C
os

ou
rc

in
g

Ra
tio

 5
:4

 w
C

os
ou

rc
in

g

Ra
tio

 5
:4

 a
ll

O
ut

so
ur

ci
ng

Total Costs $
Testing $
Development $

8

Copyright © 2001-02 Nirixa, Inc.

Cost savings using a co-sourced
model

Development
mm$

1.2 1.2 1.2 1.2

Testing mm$ 0.24 0.96 0.456 0.288

Total Costs
mm$

1.44 2.16 1.656 1.488

Ratio 5:1 Ratio 5:4 No
Co sourcing

Ratio 5:4 w
Co sourcing

Ratio 5:4 all
Outsourcing

Copyright © 2001-02 Nirixa, Inc.

Summary

Outsourced QA and Testing is here to stay
Check references from existing customers
Look for focus on QA and Testing
Look for English language skills
High quality --- best value
Use Co-sourced instead of Outsourced
model

303 Almaden Boulevard, 6th Floor
San Jose, CA – 95110
408.998.7844 (Phone)
408.998.7845 (Fax)

www.nirixa.com
info@nirixa.com

Outsourcing in QA and Testing
Authors: Vijay Sikka and Anurag Khemka

Table of Contents
OUTSOURCING IN QA AND TESTING

ABSTRACT

ABOUT THE AUTHORS

VIJAY SIKKA – PRINCIPAL, NIRIXA, VSIKKA@NIRIXA.COM
ANURAG KHEMKA – PRINCIPAL, NIRIXA, ANURAGK@NIRIXA.COM

MARKET SIZE AND GLOBAL OUTSOURCING TRENDS

MOST FREQUENTLY ASKED QUESTIONS

A. HAS OUTSOURCING QA AND TESTING BEEN A PRODUCTIVE EXPERIENCE?
B. DID YOU SAVE COSTS WHILE MAINTAINING THE TIMELINESS OF YOUR PRODUCT
DELIVERABLES?
C. WHICH COMPANIES YOU FOUND DID A GOOD JOB FOR YOU?
D. WHICH COUNTRY DID YOU OUTSOURCE TO? IRELAND, CANADA, ISRAEL, INDIA,
CHINA OR OTHER?
E. WAS THE TIME DIFFERENCE A HURDLE FOR TEAM COMMUNICATION?
F. WAS LANGUAGE AN ISSUE IN COMMUNICATION?
G. WHAT TYPE OF TESTING DID YOU SUCCESSFULLY OUTSOURCE? BLACKBOX? UNIT?
FUNCTIONAL? LOAD? REGRESSION?
H. DID YOU COMPLETELY REPLACE YOUR QA DEPARTMENT OR DID YOU USE
OUTSOURCING AS AN EXTENSION?
I. DID YOU REQUIRE THE QA AND TESTING PEOPLE TO HAVE COMPUTER SCIENCE OR
SOFTWARE BACKGROUND?
J. WHICH STANDARDS BODIES DID YOU FIND MOST RELEVANT TO YOUR QA AND
TESTING? ISO? ASQC?

THE “CO-SOURCED” QA AND TESTING MODEL

WHAT IS THE IDEAL RATIO OF DEVELOPERS TO TESTERS?
COST SAVINGS USING A CO-SOURCED MODEL WHILE MAINTAINING SUITABLE DEVELOPER
TO TESTER RATIO

SUMMARY

303 Almaden Boulevard, 6th Floor
San Jose, CA – 95110
408.998.7844 (Phone)
408.998.7845 (Fax)

www.nirixa.com
info@nirixa.com

Abstract
Recent downward market trends, waning revenues and emphasis on the bottom line have
prompted resurgence in the trend of outsourcing. Nearly half of Fortune 500 companies are using
outsourced services, whether they are business process management, customer service, software
development, transcription or QA and testing. All the top 20 ISVs now have software
development and QA labs in countries such as India, Ireland, China, and Israel amongst several
others. According to IDC, global information systems outsourcing market is expected to pass
$72B by 2003.

Today’s more complex software systems pose increasingly difficult challenge for software
vendors when it comes to QA, testing, and certification of these software systems. Parallel
processing, distributed multi-tiered components, multitude of operating systems, databases,
Internet platforms etc., make it very difficult for a software vendor to build in-house
infrastructure to QA and timely release their products with quality. Outsourced services, where
hardware and software infrastructure as well as expert resources are available with ability to
timely scale based on the need, provide solution to this challenge. As companies across the
board are beginning to consider outsourcing essential services, the information technology
professional is faced with a daunting set of questions about outsourcing. This paper discusses
some of these questions and experiences gathered by authors and other IT professionals,
customers, and providers during last few years of outsourced services growth.

Questions range from whether outsourcing QA and testing been a productive experience for
companies to whether the promise of cost savings was fulfilled. Specific experiences of dealing
with communication, time zone and cultural differences are discussed. Background requirements
of people who work on QA and testing as well as the types of testing outsourcing lends itself best
to will be identified. Finally, the authors discuss the models, processes and QA standards that
make outsourcing experience the most effective for business executives and information systems
professionals.

About the Authors

Vijay Sikka – Principal, Nirixa, vsikka@nirixa.com
Vijay's more than 15 year executive career and strengths span business development, engineering and operations. Vijay
has done marketing at IBM in Madison Avenue, New York and engineering management for 7 ½ years at Intel
Corporation headquarters in Santa Clara. In 1996, Vijay founded IBrain Software, Inc. and served as its CEO until its
acquisition by Entigen Corp in 1998. In 1999, Vijay started Bodha.com, Inc. and served on its board of directors until
its acquisition by Peregrine Systems (NASDAQ: PRGN) in 2002. Vijay has built international teams and engineering
organizations with successful multi - year operations. Vijay is an advisor and a consultant to several bay area
companies. Vijay holds a Masters degree in Artificial Intelligence from Syracuse University New York, and dropped
out of Stanford Ph. D program to start his first company.

Anurag Khemka – Principal, Nirixa, anuragk@nirixa.com
Anurag Khemka has more than fifteen years of experience in enterprise software development, product architecture,
and executive management. Anurag is the founder of MarketFirst Software, a pioneer and leader in Enterprise

303 Almaden Boulevard, 6th Floor
San Jose, CA – 95110
408.998.7844 (Phone)
408.998.7845 (Fax)

www.nirixa.com
info@nirixa.com

Marketing Automation. Anurag founded MarketFirst in 1996 and managed all aspects of the company for the first two
years as President and CEO. After growing the company to about 40 people, Anurag attracted senior executives (from
companies such as Oracle, Netscape, Informix etc.) to manage the company growth while he focused on the product
and vision as CTO. Prior to founding MarketFirst, Anurag was the director of research and development at Cambio
Networks, where he developed enterprise management software. Before Cambio Networks, he served as the chief
product architect and R&D manager for UB Network's enterprise-wide, client/server based network management
products. Anurag holds a B.S. in Electrical Engineering from the Indian Institute of Technology, Delhi, India and an
M.S. in Computer Science from the University of Louisiana, Lafayette.

Market and global outsourcing trends
Software IT Services is a big market, all analysts agree that the size of the total IT Services market in US
will be close to $500B in 2003. According to IDC QA Testing services is part of Business Processing and
IS outsourcing which is a combined $150B market1. According to Sanford Bernstein, in 2003 Software QA
Testing and Business Processing Services will be $75B or 15% of the total IT Services Market. Gartner
Dataquest have also forecasted that the market of global business process outsourcing (BPO), will grow to
$543 billion in 2004, at a compound annual growth rate of 21 percent. Though no analyst specifically calls
out QA outsourcing as a separate category, even a 5% share of the corresponding major category gives it a
significant market size.

Gartner recently forecasted that by December’02 more than 80 percent of multinationals will use IT
outsourcing to save money, overcome skills shortages or increase flexibility. Gartner’s research indicates
that 200 of the Fortune 500 companies used offshore application outsourcing2 in the year 2000. Meta
group, in 2002, recommends “Global 2000 organizations should rigorously evaluate offshore outsourcing
possibilities for IT and related services and projects for possible inclusion in their overall portfolio of
sourcing options”. During the economic downturn of the past 12 months, efforts by Global 2000
organizations to reduce
IT costs have added a
counter-recessionary
impetus to the long-
term trend toward
increased use of
offshore outsourcing
service providers.

A McKinsey report, on
topmost software
outsourcer countries,
places India all alone in
the quadrant that boasts
high quality and the
lowest costs, making it
a very attractive high
quality outsourcing
destination3. Nirixa
research indicated that
countries including

1 According to IDC Processing Services will be $79B and IS Outsourcing Services will be $72B in 2003
2 Offshore outsourcing is mainstream for Fortune 500 Enterprises, Author R. Terdiman. Gartner Research September, 7 2001
3 Programmers abroad: A primer in offshore software; Author Inigo Amoribieta et al. McKinsey Quarterly 2001 Number 2

303 Almaden Boulevard, 6th Floor
San Jose, CA – 95110
408.998.7844 (Phone)
408.998.7845 (Fax)

www.nirixa.com
info@nirixa.com

China, Russia and others through extensive government incentives and infrastructure development are
rapidly improving the quality of software outsourced.

We believe that the QA and Testing are very suitable for leveraged outsourced offshore services as it
provides easily measurable benefits, and quantifiable ROI. Most IT and development organizations find it
difficult to have adequate QA resources and lab infrastructure, and end up shipping substandard products
under time to market pressures. In the current outsourced model followed by many companies including
Nirixa, not only these companies can easily get highly trained untainted QA resources, but can also rent
large QA lab infrastructure for expanded quality testing at a fraction of the cost of doing themselves.

We talked to several CTOs, Directors of QA and VP Engineering colleagues and customers regarding their
experiences with outsourced QA and testing. Our questions and the general answers we got from them
regarding their experiences are listed below.

Most frequently asked questions

a. Has outsourcing QA and Testing been a productive experience?

Most of the colleagues believed that pure outsourcing models didn’t work as intended. They had no
proximity with the QA team and closed loop interaction. They felt that outsourced QA work resulted in the
following common feedback:

- Outsourcer didn't understand our product
- Outsourcer didn't find a lot of bugs they should have found
- Outsourcer didn't understand what they were supposed to do
- We didn't get good reporting

Several of them had more pleasant experiences if they had internal QA managers interacting and
controlling the outsourcing team.

b. Did you save costs while maintaining the timeliness of your product
deliverables?

Responses on this ranged from some very successful and well-managed projects and product deliverables
resulting in cost savings to unhappy campers who shipped products that didn’t work and spent more than
planned. Another key aspect that emerged was that cost should never be the only consideration when
outsourcing QA. Cost of not doing QA or doing poor QA would be increased exponentially if a product
were released with bugs that prevent users from using it.

c. Which companies you found did a good job for you?

Most of those surveyed preferred to keep the names of the companies they worked with anonymous. All of
the colleagues believed that asking the companies for current customer references and checking them for
satisfaction worked well. Several outsourced QA and test companies maintain a satisfaction percentage
metric of their customers through established interviews and questionnaires. It is a good idea to ask the
outsourcing provider for a report on this metric.

303 Almaden Boulevard, 6th Floor
San Jose, CA – 95110
408.998.7844 (Phone)
408.998.7845 (Fax)

www.nirixa.com
info@nirixa.com

d. Which country did you outsource to? Ireland, Canada, Israel, India,
China or other?

Most respondents had worked with Indian outsourcing vendors. Most cited proficiency in English and
quality of work from Indian companies as better than other outsourcing countries. Some cited experience
working with Indian companies that maintained strong management presence in America as well as QA
labs in India as better suited to their working style. A few didn’t enjoy working with outsourcers from any
other country.

e. Was the time difference a hurdle for team communication?

All agreed that the time difference in team communication could become a hurdle in productivity if the
outsourcing company with a good methodology and process didn’t address it. It was observed also that the
addressing time difference issue with good process led to better handling of tighter build/regression
schedules as release dates came closer. Most of the colleagues observed the following cycle to be very
effective in proactively handling the time difference to an advantage.

1. Developers deposited latest build and release in the source control at night before
leaving for the day.

2. The QA and test experts in the outsourcing company would run the test cases and
generate reports on the release and upload the bug tracking system for the developers

3. Developers would review the bugs and test result reports and work on fixing the bugs.

This cycle reportedly worked very effectively with outsourcing QA and test companies in India that were
12.5 hours ahead in time.

Some outsourcing companies reportedly worked in multiple shifts to accommodate overlaps with the
developers in USA for conferencing and one on one communication.

f. Was language an issue in communication?

People reported issues with accented English from outsourcing companies and the fact that Americans are
not trained to talk at ESL (English as Second Language) speeds. Both of these issues were addressed by
companies that used outsourcing through Internet Relay Chat and teleconferencing that involved people
from the outsourcing companies who were in United States. It helped to work with outsourcing companies,
which maintained offices and key executives and management in United States.

g. What type of testing did you successfully outsource? Blackbox? Unit?
Functional? Load? Regression?

Most of the companies that have used outsourcing reported trying functional, unit, white-box and black box
testing.

303 Almaden Boulevard, 6th Floor
San Jose, CA – 95110
408.998.7844 (Phone)
408.998.7845 (Fax)

www.nirixa.com
info@nirixa.com

h. Did you completely replace your QA department or did you use
outsourcing as an extension?

All of the companies that have worked with outsourcing QA and test providers reported working with them
as extensions of their existing QA departments. That was the model that worked best with them. Some
companies who once had QA departments reportedly replaced them with an outsourced company. Often
the outsourcing company in the beginning acted as overflow for QA departments who were overloaded.
Sometimes outsourcing QA and test experts were brought in where the customers never had QA and used
the outsourcing company to help them transition into having their own QA team.

i. Did you require the QA and testing people to have computer science or
software background?

Most companies and colleagues we talked to wanted QA and testing people with computer science and
software background. However, they sometimes lamented that QA outsourcing companies gave them
people with limited or no HTML, JavaScript, DHTML, C++/Java backgrounds. Companies also warned
against accepting at the face value claims by the outsourcing company that they had “Unix experts” or
“Windows experts”. Most recommended finding out if the QA and test people had certifications by Sun or
Microsoft or some other US based training and certification organization.

An important factor in each successful outsourcing partnership was having a QA manager who is already
familiar with the product and company-testing practices should be leading the offshore team -- onsite at the
remote location.

j. Which standards bodies did you find most relevant to your QA and
testing? ISO? ASQC?

All companies and colleagues reported that standards bodies had no relevancy. They didn’t recommend
ISO 9000 or any standards certifications of the outsourcing companies.

The “co-sourced” QA and testing model

All of us agreed that the model that tends to work best is a “co-sourced” model in which an outsourcing QA
team is not completely replacing the in-house QA team. Instead, the outsourced QA team is working as an
extension of the in-house team with a key QA manager on the in-house team maintaining full knowledge
and control of the QA tasks and project plan. Also, another model that has been reported to work is one of
a “expert-contributor” model. In the mentor-student model, the in-house team maintains a key expert and
the outsourced QA team provides one or more contributors. This model provides a “round the clock
operation” where contributors work as extensions of the expert with his/her guidance and complete most of
the work in an offshore location. The keyword in successful co-sourcing model is “control”. Whether all
the QA and testing resources are in house, outsourced or co-sourced using the definition we have provided
above, a frequently asked question in the minds of IT executive in a company is the following.

303 Almaden Boulevard, 6th Floor
San Jose, CA – 95110
408.998.7844 (Phone)
408.998.7845 (Fax)

www.nirixa.com
info@nirixa.com

What is the ideal ratio of Developers to Testers?
Let’s start to answer this question by first pointing out Microsoft. It is known that this ratio is 1 to 1 in
Microsoft.4 Others have reported a more extreme 4 to 1 ratio for Ecommerce projects5 and a dependence
on several factors including software engineering 6, 7,8.

Based on our experience, authors recommend a ratio of 5 to 2 or better as more appropriate for usage
intensive GUI oriented enterprise software applications. Testing of wireless, mobile and more modular
applications may be handled by a lesser number of testers. However, the key to success in any project
regardless of the ratio of developers to testers is well-defined requirements, APIs, peer reviews & unit
testing early on in the project lifecycle.

Cost savings using a co-sourced model while maintaining suitable
developer to tester ratio

Authors believe that pure outsourcing while it offers price advantages in off shoring to a country such as
India, Russia or China doesn’t work as effectively as co-sourcing where existing QA and testing resources
are supplemented by offshore teams. Let’s work through some numbers to illustrate this point.

Let’s imagine an enterprise software application with significant amount of user interface and ecommerce
backend work involving
database access and multiple
threads of business usage.

The project duration is of 1 year
with the first major release
happening in 6 months and
subsequent releases happening
on a quarterly basis. For the
sake of simplicity, monthly cost
per developer and tester is
assumed to be $10,000.00.
Since we are focusing on the
team size of QA and testing, we
will assume a fixed development
team size of 10 developers. A
key underlying assumption we
are using is that there is a good
software engineering practice
being followed by development
teams including well defined

4 Cusamano, Michael A. and Richard W. Selby, Microsoft Secrets, Simon and Schuster, Inc., New York,
1995
5 SQATester.com
6 It Depends: Deciding on the Correct Ratio of Developers to Testers. 2000. Johanna Rothman
7 Software Program Manager's Network, Best Practices, 1999, on www.spmn.com
8 McConnell, Steve. Rapid Development, Microsoft Press. Redmond WA, 1996.

303 Almaden Boulevard, 6th Floor
San Jose, CA – 95110
408.998.7844 (Phone)
408.998.7845 (Fax)

www.nirixa.com
info@nirixa.com

APIs, bug tracking systems and source control systems as well as product requirements definitions and
functional requirements are well defined. We are assuming that an offshore team fully burdened costs
$3000 per tester. For the one-year duration, we get the following numbers (All values are in millions).

 Ratio 5:1 Ratio 5:4 No
Co sourcing

Ratio 5:4 w
Co sourcing

Ratio 5:4 all
Outsourcing

Development $ 1.2 1.2 1.2 1.2
Testing $ 0.24 0.96 0.456 0.288
Total Costs $ 1.44 2.16 1.656 1.488

As mentioned earlier, Nirixa recommends developers to testers ratio of 5:2 or better. In this case study we
are assuming if there are 10 developers and 2 testers then the testing staff will be overwhelmed. A ratio of
5:4 with no co-sourcing becomes very expensive. On the other hand, if the 2 testers who started with the
project are supplemented by 6 testers from an off-shore company in a co-sourced model, the chances of
project success and delivering high quality products on time is significantly increased. The outsourcing
model where all testing staff is outsourced is not very effective because QA and testing is highly
communication-oriented activity. With newer trends in software development including emphasis on web
services, QA and testing is becoming more intertwined with early development. Consequently, it is more
effective to retain some in-house QA resources and supplement them with co-sourced offshore QA and test
resources.

Summary
The outsourcing QA and testing trend is here to stay in the current market conditions and need for better
product quality while controlling the costs. Business executives and information systems professionals are
better off carefully considering all the criteria and available choices before taking a decision to outsource to
an offshore entity. What country are they planning to outsource to, the quality, culture, communication and
English speaking skills all should be taken into account. References of other customers that have been
serviced by the vendor they are considering should be obtained and checked early on. Preference should be
to the co-sourced model than a complete outsourced one. The offshore vendor should be used to
supplement existing QA and test resources rather than replace them en mass. Those companies that
maintain offices and key executives in USA should be given consideration. It will provide an important
communication and problem-solving intermediary with the offshore team

Key Points

A fully-functional test department takes time
Get ready to simultaneously take on multiple roles and responsibilities
Make sure the quantity of your tasks does not adversely affect the quality of your tasks

Presentation Abstract

With more and more companies realizing the need for testing throughout the product development process,
there’s a growing demand for bigger, better QA teams. If you find yourself the first member of a newly
formed department, it’s likely you’ll be asked to do the testing and build the team simultaneously. This
presentation presents a strategy for meeting the day-to-day testing challenges, while planning for the future
of the department. It tells you how you can lay the foundation and build the house ? all at the same time.

About the Author

Eric Patel is Chief Quality Officer for RapidSQA, a Software Quality Service Provider (SQSP) of training and
consulting solutions. He is co-founder of the Nokia Quality Forum (NQF) Boston and the QAI Greater Boston
Software Quality Assurance Association, and also is creator of the RapidSQA methodology for Web testing.
Eric has 11+ years of experience in software testing, test management, and software quality assurance.

Eric is a frequent presenter at software quality conferences and meetings. He has been certified by ASQ as
a quality manager and software quality engineer, and by QAI as a software test engineer. As Deputy
Regional Councilor for the ASQ Software Division Region 1, Eric maintains active memberships in ASQ and
IEEE. Published in Software Quality Professional (SQP) and STQE, he also serves as a reviewer for SQP
and The Journal of Software Testing Professionals. In addition, Eric is co-founder and instructor with
Northeastern University's new Certificate Program in Software Quality Assurance. He holds a BSEE from
the University of Vermont.

QW2002 Paper 2P2

Mr. Eric Patel
(RapidSQA)

Creating Quality From Scratch: How To Build a Test Organization

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 1 RapidSQA

Creating Quality From ScratchCreating Quality From Scratch
How to Build a Test Organization

Eric Patel
CQM, CSQE, CSTE

Chief Quality Officer
RapidSQA

epatel@rapidsqa.com
www.rapidsqa.com

International Internet & Software Quality Week
September 4, 2002

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 2 RapidSQA

Agenda
• The Situation

– Dealing with Perceptions
and Expectations

– Day-to-Day Testing
Challenges

– Managing the Effects of
"Solitary Confinement"

• Test Planning and Time
Management
Techniques

• Mistakes to Avoid

• The Balancing Act
– Laying the Foundation

while Building the House
– Planning for the Future
– Resource Planning

Matrix
• Lessons Learned
• Action Plan
• Conclusion
• Resources

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 3 RapidSQA

The Situation
• You're the first – and only – hire
• There are no formal testing or quality assurance

activities
• The product may be at any stage of development
• You have to do all the work of an entire

department
• The question you find yourself asking:

"What did I get myself into?"

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 4 RapidSQA

Dealing with Perceptions
and Expectations

Perception/
Expectation What to Do
You are the “expert” and
know what you’re doing

• Obtain education/training

They don’t know what you
should be doing

• Write your job description
• Educate them on testing

You are solely responsible
for testing

• Document what you will
and will not be testing

• Consider outsourcing
You will help hire future
members of your team

Manage the recruitment
process

You are the acting Test
Manager until someone is
hired

Learn to manage yourself,
others, and the test
process

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 5 RapidSQA

Day-to-Day
Testing Challenges

• Hands-on, manual testing
• Bug reporting
• Bug triage meetings
• Product quality status
• Fighting the daily "fires"
• High visibility role
• Feeling of "solitary confinement"

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 6 RapidSQA

Managing the Effects of
"Solitary Confinement"

• Interact and build relationships with the
developers, designers, and others

• Involve and solicit testing assistance from
others

• Leave the office and/or go out to lunch
• Make time to train and educate yourself
• Cultivate your professional network
• Be prepared to work longer and harder but try

to work smarter
• Watch for burnout symptoms

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 7 RapidSQA

Test Planning Techniques
• Test documentation

– Quality Manual
• Overview of the quality principles

policies, procedures, and guidelines
– Test Plan

• Description of what will (and will not) be tested

• Resource planning
– Team members
– Equipment
– Time

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 8 RapidSQA

Time Management
Techniques

• Effectiveness- doing the right things
• Efficiency- doing things right
• 7 Habits of Highly Effective People by

Stephen Covey

Urgent but not important

Urgent and important Not urgent but important

Not urgent and not important

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 9 RapidSQA

Mistakes to Avoid
• Unrealistic and overly-optimistic

expectations or assumptions
• Not getting buy-in and support
• Not documenting your testing efforts or

creating a testing schedule
• Implementing test automation prior to manual

testing
• Not having a coach or mentor
• Loosing sight of the end goal
• Not learning from your mistakes

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 10 RapidSQA

The Balancing Act
• Test Engineer

– Test execution
– Defect management
– Test reporting

• Test Manager
– Recruiting/HR
– Test planning
– Test management

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 11 RapidSQA

Laying the Foundation
while Building the House

• Juggle hands-on contributor and test manager
responsibilities
– "Holding down the fort" as you "wait for

reinforcements"
• Establish yourself as a knowledgeable and

competent tester
– Capitalize on your strengths
– Convert weaknesses to strengths

• Demonstrate test management skills
– Show that you can do the job
– Inform management of your career goals/intentions

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 12 RapidSQA

Planning for the Future
• Initially, the majority of your tasks will be of

the test engineer
• Over time, more of your responsibilities may

include test management
• Demonstrate your leadership capabilities
• Take your career path into consideration
• Don't forget about corporate culture

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 13 RapidSQA

Resource Planning Matrix

Area

Short term,
Low cost

Long term,
Increased cost

Bug tracking

Spreadsheet

Defect management
system

Project
management

Spreadsheet

Project
management tool

Test
automation

Scripting

Automated test
software

Test
environment

Workstation

Test lab

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 14 RapidSQA

Lessons Learned
• A fully-functional test department takes time
• Mentally prepare yourself for the long haul
• Get ready to simultaneously take on multiple roles

and responsibilities
• A written and approved test plan keeps everyone

honest
• Make sure the quantity of your tasks does not

adversely affect the quality of your tasks
• Educate others on features and benefits of testing
• Diligent recruiting pays off in the long run
• You may be asked to "step up to the plate"

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 15 RapidSQA

Action Plan
• Assess the present situation

– Business plan
– Corporate goals and objectives
– What is the desired quality level?
– Promises made to the customer

• Plan the current testing effort
– Risk Analysis
– Quality Manual
– Test Plan

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 16 RapidSQA

Action Plan (cont.)

• Perform daily testing activities
– Manual testing
– Bug reporting

• Plan for long-term test improvement
– Roadmap all testing activities and resources
– Acquire additional resources
– Obtain upper management buy-in on the plan

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 17 RapidSQA

Conclusion

• "Creating quality from scratch" involves "building
the house" while simultaneously "laying the
foundation"

• Building a testing organization involves a
balancing act between individual contributor and
team lead/management roles

• Tackle the most important issues adequately…
simultaneously building for today…
while also planning for tomorrow

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 18 RapidSQA

Resources
• ASQ Quality Management Division. (2001). The Certified

Quality Manager Handbook. ASQ Quality Press. 0-87389-
487-1.

• Black, Rex. (1999). Managing The Testing Process.
Microsoft Press. 073560584X.

• Frank, Barbara; Marriott, Phil; and Warzusen, Chett.
(2000). The Software Quality Engineer Primer. Quality
Council of Indiana.

• Humphrey, Watts S. (1989). Managing the Software
Process. Addison-Wesley. 0-201-18095-2.

• Kit, Edward. (1995). Software Testing in the Real World.
Addison-Wesley. 0-201-87756-2.

• Pressman, Roger S. (1997). Software Engineering: A
Practitioner’s Approach. McGraw-Hill. 0-07-052182-4.

Creating Quality From Scratch Copyright 2001-2002, Eric Patel. 19 RapidSQA

Resources (cont.)
• American Society for Quality (ASQ): www.asq.org
• QA Forums: www.qaforums.com
• Quality Assurance Institute (QAI): www.qaiusa.com
• RapidSQA: www.rapidsqa.com
• Software Quality Engineering: www.sqe.com
• Software Quality Page:

swquality.com/users/pustaver/index.shtml
• SQA Tester: sqatester.com
• StickyMinds: www.stickyminds.com

Key Points

Software Process Improvement by Six Sigma
Load Testing of a Multi-Tier Client/Server Application
Data Analysis by The Kolmogorove-Smirov statistical means

Presentation Abstract

This paper applied the Six Sigma quality cycle: Define, Measure, Analyze, Improve and Control (DMAIC) to
improve software process. We plotted user complaints against response time (define), drew up a test plan
and executed the load testing (measure), collected testing data from different client sites for analysis
(analyze), found where the bottleneck was and fixed it (improve) and monitored the status to satisfy users'
requirement (control).

About the Author

Dr. Huey-Der Chu is currently the director of Computer Centre at the National Defense Management College
in Taiwan as well as the member of Committee of Software Quality at the Chinese Society for Quality. His
research currently interests in Software Process Improvement, Knowledge Management and Quality
Management. Dr. Chu received a Ph.D. (1998) in the Centre for Software Reliability at the University of
Newcastle upon Tyne, England, funded by the National Science Council in Taiwan.

Jin-Chuan Lu is studying Management of Information Science at Institute of Information Research, National
Defense Management and he will get his master science degree in July 2002. His research interests include
software quality and testing process issues. Before this he worked at DCGS for Communications Electronics
& Information, Ministry of National Defense, R.O.C. and specialized Defense Information System
development and project management over 10 years.

QW2002 Paper 3P1

Dr. Huey-Der Chu & Mr. Jin-Chuan Lu
(National Defense Management College)

Applied Six Sigma to Software Process Improvement

1

Applied Six Sigma to Applied Six Sigma to
Software Process ImprovementSoftware Process Improvement

National Defense National Defense
Management CollegeManagement College

HueyHuey--Der ChuDer Chu

66σσ
SPISPI

第 2頁

OutlineOutline

IntroductionIntroduction
An Overview of Six SigmaAn Overview of Six Sigma
Performance TestingPerformance Testing
Case StudyCase Study
ConclusionConclusion

2

第 3頁

ZonaZona Research concluded that a majority Research concluded that a majority
of users would tend to abandon a web site if of users would tend to abandon a web site if
the web page cannot be accessed in 8 seconds.the web page cannot be accessed in 8 seconds.

Research by Robert Miller andResearch by Robert Miller and JakobJakob
Nielsen further indicated that most users who Nielsen further indicated that most users who
browse the Internet tend to spend no more browse the Internet tend to spend no more
than 10 seconds concentrating on an than 10 seconds concentrating on an
interactive web page .interactive web page .

IntroductionIntroduction

第 4頁

IntroductionIntroduction

Internet base ApplicationsInternet base Applications
No geological constrainNo geological constrain
The Number of usersThe Number of users
RealReal--time interactiontime interaction

From customer viewFrom customer view
do not care how the problem got there do not care how the problem got there
just know that Web site just know that Web site ““do not workdo not work””

Getting the deliverable right the first Getting the deliverable right the first
time aroundtime around

3

第 5頁

IntroductionIntroduction

Six SigmaSix Sigma
a quality concept made popular by a quality concept made popular by

MotorolaMotorola’’s quality Improvement s quality Improvement
during 1988during 1988--19891989
applied successfully in many serviceapplied successfully in many service--

based organizationsbased organizations
Planning Six Sigma into an IT projectPlanning Six Sigma into an IT project

第 6頁

IntroductionIntroduction

We applied the Six Sigma quality cycle: We applied the Six Sigma quality cycle:
Define, Measure, Analyze, Improve and Define, Measure, Analyze, Improve and
Control (DMAIC) to resolve this problem.Control (DMAIC) to resolve this problem.

plotted user complaints against response time plotted user complaints against response time
(define),(define),
drew up a test plan and executed the load drew up a test plan and executed the load
testing (measure), testing (measure),
collected testing data from different client sites collected testing data from different client sites
for analysis (analyze),for analysis (analyze),
found where the bottleneck was and fixed it found where the bottleneck was and fixed it
(improve)(improve)
monitored the status to satisfy usersmonitored the status to satisfy users’’
requirement (control).requirement (control).

4

第 7頁

An Overview of Six SigmaAn Overview of Six Sigma

What is Six Sigma?What is Six Sigma?
---- Six Sigma is the management philosophy that Six Sigma is the management philosophy that

is sweeping the world by storm. Created first by is sweeping the world by storm. Created first by
Motorola in the 1980s, then popularized by Motorola in the 1980s, then popularized by
AlliedSignal and General Electric (GE) in the AlliedSignal and General Electric (GE) in the
1990s1990s. .

----Six Sigma has more than proven its worth to Six Sigma has more than proven its worth to
organizations attempting to improve their organizations attempting to improve their
productivity and profitability.productivity and profitability.

第 8頁

---- It is first and foremost a business process that It is first and foremost a business process that
enables companies to increase profits dramatically enables companies to increase profits dramatically
by streamlining operations, improving quality and by streamlining operations, improving quality and
eliminating defects or mistakes in everything a eliminating defects or mistakes in everything a
company does.company does.

---- It provides specific methods to reIt provides specific methods to re--create the create the
process itself so that defects are never produced in process itself so that defects are never produced in
the first place.the first place.

An Overview of Six SigmaAn Overview of Six Sigma

5

第 9頁

---- Most companies operate at a threeMost companies operate at a three-- to fourto four--
sigma level, where the cost of defects is roughly 20 sigma level, where the cost of defects is roughly 20
to 30 percent of revenues.to 30 percent of revenues.

---- By approaching Six Sigma By approaching Six Sigma –– 3.4 defects per 3.4 defects per
million opportunities million opportunities –– the cost of quality drops to the cost of quality drops to
less than 1 percent of sales. less than 1 percent of sales.

---- When GE reduced its costs from 20 percent to When GE reduced its costs from 20 percent to
less than 10 percent, it saved a billion dollars in less than 10 percent, it saved a billion dollars in
just two yearsjust two years——money that goes directly to the money that goes directly to the
bottom line.bottom line.

An Overview of Six SigmaAn Overview of Six Sigma

第 10頁

The method to improve processes is DMAIC:The method to improve processes is DMAIC:
Define.Define. Defining the team to work on improvement, Defining the team to work on improvement,

defining the customers of the process, their needs and defining the customers of the process, their needs and
requirements and creating a map of the process to be requirements and creating a map of the process to be
improved.improved.
Measure.Measure. Identifying key measures of effectiveness and Identifying key measures of effectiveness and

efficiency and translating them into the concept of sigma.efficiency and translating them into the concept of sigma.
Analyze.Analyze. Through analysis, the team can determine the Through analysis, the team can determine the

causes of the problem that needs improvement.causes of the problem that needs improvement.
Improve.Improve. The sum of activities that relate to generating, The sum of activities that relate to generating,

selecting and implementing solutions.selecting and implementing solutions.
Control.Control. Ensuring that improvement sustains over time.Ensuring that improvement sustains over time.

An Overview of Six SigmaAn Overview of Six Sigma

6

第 11頁

The Issues of Performance TestingThe Issues of Performance Testing

The key indicator in performance testing,The key indicator in performance testing,

a process in which the observation is madea process in which the observation is made

to the changes of a web siteto the changes of a web site’’s response times response time

under a designed load, has been the userunder a designed load, has been the user’’ss
average response time.average response time.

a performance testing is best be a performance testing is best be

implemented in the early stage of a systemimplemented in the early stage of a system

developmentdevelopment

第 12頁

---- Given simulating the userGiven simulating the user’’s behavior pattern has s behavior pattern has
been a crucial prerequisite in performance testing, most been a crucial prerequisite in performance testing, most
performance testing tools often come with capture and performance testing tools often come with capture and
replay functions that allow prereplay functions that allow pre--record a userrecord a user’’s access s access
operations, which are then loaded onto the system operations, which are then loaded onto the system
through the replay functionthrough the replay function..

---- This not only allows the loading status be This not only allows the loading status be
incrementally increased to simulate logon by multiple incrementally increased to simulate logon by multiple
users, but can best simulate a more realistic online access users, but can best simulate a more realistic online access
via the builtvia the built--in dialog modification recording file in in dialog modification recording file in
simulating a usersimulating a user’’s access informations access information..

The Issues of Performance TestingThe Issues of Performance Testing

7

第 13頁

---- the monitoring functions provided by the system the monitoring functions provided by the system
hardware and software also offer valuable data and an hardware and software also offer valuable data and an
array of analysis reports that would help the tester array of analysis reports that would help the tester
understand the systemunderstand the system’’s operating criteria and response s operating criteria and response
at the time.at the time.

The Issues of Performance TestingThe Issues of Performance Testing

第 14頁

The selected company has an islandThe selected company has an island--wide wide
presence, with a total of 1,022 user points at the presence, with a total of 1,022 user points at the
present time, where the merchandise of all outlets present time, where the merchandise of all outlets
are requisitioned through the companyare requisitioned through the company’’s s
merchandising distribution information system, merchandising distribution information system,
which has been streamlined toward the end of which has been streamlined toward the end of
2001.2001.

Case StudyCase Study

8

Intranet

Broker Server

Client

Hybrid
ApServer - 1

Hybrid
ApServer - 2

Hybrid
ApServer - 3

Database Server

Dial-up Server

ClientClient Client Client Client

第 16頁

Define Phase:Define Phase:
While company assessment estimating the requestWhile company assessment estimating the request

interval to business volume puts the maximum roofinterval to business volume puts the maximum roof
on simultaneous companyon simultaneous company--wide online requests atwide online requests at
168 users, the system loading capacity should be168 users, the system loading capacity should be
sufficient to accommodate the demand of 168 userssufficient to accommodate the demand of 168 users
simultaneously executing their online commandssimultaneously executing their online commands

Case StudyCase Study

9

第 17頁

there is no way of knowing how the system will there is no way of knowing how the system will
respond under such loading demand since the systemrespond under such loading demand since the system
has not yet encountered such loading demand,has not yet encountered such loading demand,
let alone that it may be difficult to grasp when suchlet alone that it may be difficult to grasp when such
type of similar loading requirement will occur in thetype of similar loading requirement will occur in the
actual processing, hence the study has aimed toactual processing, hence the study has aimed to
utilize effective testing to examine the systemutilize effective testing to examine the system’’ss
response vs. its loading performance.response vs. its loading performance.

Case StudyCase Study

第 18頁

Measure Phase:Measure Phase:
The project rates the systemThe project rates the system’’s overall response efficiencys overall response efficiency

as the objectivity of the assessment, together with predefinedas the objectivity of the assessment, together with predefined
test requirements, to come up with 100 test accounts test requirements, to come up with 100 test accounts
(Test001 (Test001 –– Test100), in which a multiTest100), in which a multi--sequencing testsequencing test
program has been devised by project researchers to program has been devised by project researchers to
sequentially activate the test program according to differentsequentially activate the test program according to different
account numbers, whereby a designated test hits are loadedaccount numbers, whereby a designated test hits are loaded
to the server end, and the database is checked for inquiryto the server end, and the database is checked for inquiry
update in every test cycleupdate in every test cycle..

Case StudyCase Study

10

第 19頁

AP Server

T1

Client端

Broker

T6

T4

T5

T2 T3

資料庫

LAN

Test FrameworkTest Framework

Case StudyCase Study

第 20頁

Case StudyCase Study

Correlation of response time vs. users

0

10

20

30

40

50

60

70

80

90

11
:0

5:
15

11
:0

8:
45

11
:1

2:
15

11
:1

5:
45

11
:1

9:
15

11
:2

2:
45

11
:2

6:
15

11
:2

9:
45

11
:3

3:
15

11
:3

6:
45

11
:4

0:
15

11
:4

3:
45

11
:4

7:
15

11
:5

0:
45

11
:5

4:
15

11
:5

7:
45

12
:0

1:
15

12
:0

4:
45

12
:0

8:
15

12
:1

1:
45

Recording time

U
se

rs
/R

es
po

ns
e

tim
e

Users

Response time

Analyze Phase:Analyze Phase:

11

第 21頁

Case StudyCase Study
TheThe KolmogoroveKolmogorove--SmirovSmirov statistical means concluded from the test statistical means concluded from the test

data include a rating of 0.158189 as shown in belowdata include a rating of 0.158189 as shown in below

第 22頁

Class
Groups of values

Factual(x)
Actual value

Fexpected(x)
Expected value

| Factual(x)- Fexpected(x)|

0~2 0.000000 0.000000 0.000000

3~4 0.014815 0.000016 0.014799

5~6 0.029630 0.000239 0.029391

7~8 0.096296 0.001974 0.094332

9~10 0.133333 0.010306 0.123027

11~12 0.192593 0.037473 0.155120

13~14 0.251852 0.101467 0.150385

15~16 0.311111 0.215386 0.095725

17~18 0.370370 0.373954 0.003584

19~20 0.451852 0.551197 0.099345

21~22 0.555556 0.713745 0.158189

23~24 0.711111 0.838229 0.127118

25~26 0.807407 0.919024 0.111617

27~28 0.881481 0.964025 0.134978

29~30 0.933333 0.985767 0.052434

31~32 0.992593 0.994965 0.002372

32~34 0.992593 0.998401 0.005808

34~ 1.000000 1.000000 0.000000

12

第 23頁

Analysis the test dataAnalysis the test data
Login in stage(T1Login in stage(T1--T2)T2)：：

More test dataMore test data ，， more the more the
time for login time for login

Business process stage Business process stage
(T3(T3--T6)T6)

More test data, no more More test data, no more
time to processtime to process

AP Server

T1

Client端

Broker

T6

T4

T5

T2 T3

資料庫

LAN

Case StudyCase Study

Case StudyCase Study
Response time rate

0

20

40

60

80

100

120

1

15
8

31
5

47
2

62
9

78
6

94
3

11
00

12
57

14
14

15
71

17
28

18
85

20
42

21
99

23
56

25
13

26
70

Test order

Ti
m

e
(S

ec
on

d)

Transaction time

Login

Business processing

13

第 25頁

Improve Phase:Improve Phase:
Case StudyCase Study

Case StudyCase Study

14

Response Time ComparisonResponse Time Comparison

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

登入時間 業務時間 總時間

單Bro k er系統

３Bro k er系統

第 28頁

Case StudyCase Study
Control Phase:Control Phase:

15

Case StudyCase Study

Case StudyCase Study

16

第 31頁

ConclusionConclusion

---- Management problems in software development Management problems in software development
---- Six Sigma is the most powerful breakthroughSix Sigma is the most powerful breakthrough

management tool management tool
---- The method of Six Sigma mapped the softwareThe method of Six Sigma mapped the software
development life cycle for client/server applicationsdevelopment life cycle for client/server applications
against the Six Sigma quality cycle (DMAIC)against the Six Sigma quality cycle (DMAIC)

---- and then aligned those cycles against the qualityand then aligned those cycles against the quality
management life cycle (PDCA)management life cycle (PDCA)

第 32頁

ConclusionConclusion

---- The case is shown in this paper to demonstrate thatThe case is shown in this paper to demonstrate that
this method not only assisted the development teamthis method not only assisted the development team

to focus on reducing development variation, but alsoto focus on reducing development variation, but also
gave the rest of the company an understanding of thegave the rest of the company an understanding of the
IT involvement necessary for success. IT involvement necessary for success.

Applied Six Sigma to Software Process Improvement

Huey-Der Chu Jin-Chuan Lu
Graduate School of Defense Information

National Defense Management College, Taiwan

Abstract

To achieve high quality software, it is essential to prevent errors from occurring and
to test the software sufficiently before the product is delivered. The aim must be to ensure
work is done "right first time" at every stage of the software development process. An
experience of software process improvement by Six Sigma quality concept is illustrated.
The application in the selected company is a multi-tier framework system and there are
1,022 client sites distributed in Taiwan area, one broker server site and three application
server sites, which concurrently access and store data from a center database server.
When delivering application to the Intranet, users dissatisfaction was at an all time high.
We applied the Six Sigma quality cycle: Define, Measure, Analyze, Improve and Control
(DMAIC) to resolve this problem. We plotted user complaints against response time
(define), drew up a test plan and executed the load testing (measure), collected testing
data from different client sites for analysis (analyze), found where the bottleneck was and
fixed it (improve) and monitored the status to satisfy users’ requirement (control).
Keywords: Six Sigma, Software Process Improvement, Client/Server Applications

1. Introduction

Zona Research concluded that a majority of users would tend to abandon a web site
if the web page cannot be accessed in 8 seconds. Research by Robert Miller and Jakob
Nielsen further indicated that most users who browse the Internet tend to spend no more
than 10 seconds concentrating on an interactive web page [7]. While the profitability of
commercial web sites is inextricably tied to the traffic, an under-performing system can
spell losses for it could lead to reduced profit at the very least, or a compromised business
reputation at the worse scenario.

While there is virtually no geological constrain to the user thanks to the rapid
development of the World Wide Web Internet as the user can be anywhere thanks to the
Internet access, the number of users also quadrupled when compared with the
conventional client/Server applications, in which the predominant emphasis of a real-time
interaction has also made system performance a critical issue. Since the customer is next
in line, there is no room for error. When customer use that application, they do not care
how the problem got there, they just know that the Web site “does not work.” The last
thing a company wants in this seamless and competitive environment is to tarnish its
image and efforts with inferior Web quality. However, one bottleneck in the information
technology development remains: “Getting the deliverable right the first time around.”

Six Sigma is a quality concept made popular by Motorola’s quality improvement during
the 1988-1989 timeframe and, since that time, has been applied successfully in many

service-based organizations [2, 4]. When Web development and Six Sigma are used
together, the result is Internet excellence [4]. Therefore, the purpose of this research is
planning Six Sigma quality into an information technology project adds the benefit of a
shared vision toward excellence and smooth transactional service.

2. An Overview of Six Sigma

Six Sigma is the management philosophy that is sweeping the world by storm.
Created first by Motorola in the 1980s, then popularized by AlliedSignal and General
Electric (GE) in the 1990s, Six Sigma has more than proven its worth to organizations
attempting to improve their productivity and profitability [2,5]. It is first and foremost a
business process that enables companies to increase profits dramatically by streamlining
operations, improving quality and eliminating defects or mistakes in everything a
company does, from filling out purchase orders to manufacturing airplane engines. While
traditional quality programs have focused on detecting and correcting defects, Six Sigma
encompasses something broader: It provides specific methods to re-create the process
itself so that defects are never produced in the first place.

Most companies operate at a three- to four-sigma level, where the cost of defects is

roughly 20 to 30 percent of revenues [5]. By approaching Six Sigma – 3.4 defects per
million opportunities – the cost of quality drops to less than 1 percent of sales. This is
because the highest quality also results in the lowest costs. When GE reduced its costs
from 20 percent to less than 10 percent, it saved a billion dollars in just two
years—money that goes directly to the bottom line.

The method GE and several other organizations use to improve processes is

summarized by the initials DMAIC as following [2]:
(1) Define. Defining the team to work on improvement, defining the customers

of the process, their needs and requirements and creating a map of the
process to be improved.

(2) Measure. Identifying key measures of effectiveness and efficiency and
translating them into the concept of sigma.

(3) Analyze. Through analysis, the team can determine the causes of the
problem that needs improvement.

(4) Improve. The sum of activities that relate to generating, selecting and
implementing solutions.

(5) Control. Ensuring that improvement sustains over time.

3. The Issues of Performance Testing

Although time and money consuming, performance testing remains highly regarded
as a cost efficient operation of its potential yield being that it acts to uncover potential
system glitch, with which system resources can be reshuffled or more precision
computation can be found to address the demand.

The key indicator in performance testing, a process in which the observation is made
to the changes of a web site’s response time under a designed load, has been the user’s
average response time. And what make the testing findings crucial are how they can
help us understand the functionality provided by the combination of hardware and
software allocated. In general, a performance testing is best be implemented in the early
stage of a system development, where a variety of feasible hardware and software
combinations can be simulated to help an organization decide whether to purchase an
expensive hardware that saves the development time, or investment in optimal software
developing technology [1].

Given simulating the user’s behavior pattern has been a crucial prerequisite in
performance testing, most performance testing tools often come with capture and replay
functions that allow pre-record a user’s access operations, which are then loaded onto the
system through the replay function. This not only allows the loading status be
incrementally increased to simulate logon by multiple users, but can best simulate a more
realistic online access via the built-in dialog modification recording file in simulating a
user’s access information, such as the account number, modification on purchasing
quality, modification on logon interval, print out and save file features. Also, the
monitoring functions provided by the system hardware and software also offer valuable
data and an array of analysis reports that would help the tester understand the system’s
operating criteria and response at the time.

This paper attempts to apply the DMAIC method from Six Sigma to Software Process
Improvement. A case study will demonstrate the techniques used by one company to
combine Six Sigma quality with the performance testing effort.

4. Case Study

The selected company has an island-wide presence, with a total of 1,022 user points
at the present time, where the merchandise of all outlets are requisitioned through the
company’s merchandising distribution information system, which has been streamlined
toward the end of 2001. Despite an array of operating functions, the user units and
company executives remain skeptic of the system’s loading response performance.
Bound by the pressing development timetable and the lack of auditing manpower, the
absence of a complete software validation prior to the system’s induction speaks of a
potential concern in most system development processes. Although the chances of the
firm’s nationwide branches coming online simultaneously are rather slim, it is
nevertheless prudent to seek remedy by rechecking the execution efficiency of the
merchandising distribution information system before severe consequences may result.
This has spawned the desire to have the system’s loading capacity validated through
professional testing before the system is fully streamlined.

The system has a three-tier framework design, divided into the users on the client
end; web server, broker server and application server on the application end; database
server on the server end. Currently, there are 1,022 users on the client end, one broker
server and three application servers on the server end. And the user goes online through

the company’s Intranet or the dial-up service. The system’s hierarchical framework is
shown in Fig. 1.

Intranet

Broker Server

Client

Hybrid
ApServer - 1

Hybrid
ApServer - 2

Hybrid
ApServer - 3

Database Server

Dial-up Server

ClientClient Client Client Client
Fig. 1 Diagram of the Merchandising Distribution Information System

The system operates on the WinSock protocol, instead of the more popular HTTP
protocol. The user logs on to a broker server via an exclusive operating program, where
the broker server routes the user’s account number and password to compare with the
user’s account number data retrieved from the database, and the validation signals are
routed to one of the application server, where an operating program executes the request
and inquiry. While the web page server supports business data inquiry and downloads
operating programs for update purposes.

(1) Define phase:

While company assessment estimating the request interval to business volume puts
the maximum roof on simultaneous company-wide online requests at 168 users, the
system loading capacity should be sufficient to accommodate the demand of 168 users
simultaneously executing their online commands. Nevertheless, there is no way of
knowing how the system will respond under such loading demand since the system has
not yet encountered such loading demand, let alone that it may be difficult to grasp when

such type of similar loading requirement will occur in the actual processing, hence the
study has aimed to utilize effective testing to examine the system’s response vs. its
loading performance. Moreover, the company also wishes to determine if the system’s
design framework has been sufficient, and if there is any improvement needed to clear of
any potential bottleneck to its anticipated efficiency.

Taken into account the system settings, several difficulties stand to confront the test:

 Despite there are many effective testing tools for the three-tier system out in the
software market today, the system’s WinSock protocol makes it difficult to locate a
simpler version of the testing tools that can completely support the required test
items.

 The system is best not be interrupted by the testing operations being that an already
streamlined operating system needs to support service demands coming from the
users across the island on a daily basis.

 Unlike what most automated testing tools taken to the capture and replay mode in
executing the test, which allows a small amount of input for duplicating a large
amount of test data needed to simulate a multiple number of virtual users operating
online for conducting peak load testing, there are factual difficulties in adopting
automated testing tools being that the system’s users are assigned with fixed account
number under strict clearance, and that the operating sequence being executed are
limited to what has been authorized.

 It may be infeasible to measure the system’s actual loading response unless the
required users come online at the same time, and there are many questions to be
overcome in terms of preparing the test setting, coordination of the operation,
manpower and budget, before the method can be applied.

In light of the above, the test team’s assessment leads to surveying for valid samples
before the system’s performance variation tendency can be concluded via statistical
analysis, which may then be used for estimating the system’s response time under a
designated load; following depicts the final implementation sought.

(2) Measure phase:

The project rates the system’s overall response efficiency as the objectivity of the
assessment, together with predefined test requirements, to come up with 100 test accounts
(Test001 – Test100), in which a multi-sequencing test program has been devised by
project researchers to sequentially activate the test program according to different
account numbers, whereby a designated test hits are loaded to the server end, and the
database is checked for inquiry update in every test cycle; its designed functions are
described as follows,

a. Time synchronization is executed during the initial online linkup, designed to
synchronize the timing sequence between the client end and the server end.

b. The test procedure is then executed automatically at the designated time according to
the number of hits programmed.

c. Actual commands of insert, update, delete and select are simulated to the
merchandising distribution information system.

d. A testing diagram, as shown in Fig. 2, has six time sequencing recording points (T1 –
T6) designed according to the system framework, where data on each time
sequencing point occurred from T1 – T6 in each cycle are recorded in the log file.

Fig. 2 Testing Framework

e. Each execution program’s startup time and related parameters are encoded for

identification purposes. And once the program has been executed in full, pertinent
data on the timing sequencing of the program ID, startup time, end time and error are
reloaded to the log file, where the log files are identified by session. The logging
process is as follows,

(a) Log files are created on the client end’s test computer, where timing

synchronization and startup time are recorded.
(b) With the client end’s startup time command defined as T1, the program is then

linked to the broker server for identification validation, where the broker server
will link to the back-end database to carry out identification validation; a correct
identification will allow the broker server to assign an application server to the
client end’s program, and a time sequencing point T2 is recorded.

(c) The client end’s program retrieves the business program at the application server,
and a time sequencing point T3 is recorded.

(d) The application server then executes a business program containing SQL
statements to retrieve data from the database, where the starting time being T4
and the end time being T5.

(e) The application server reverts the retrieved data to the client end’s test program,
and a sequencing time T6 is recorded.

(f) As soon as the data transmission is completed, the client end’s program will call
out a business program from the application server and reverts the application
server’s execution timing of T4 to T5. Where a multiple number of SQL
statements contained in a group of programming will require the timing of each
SQL statement be recorded, meaning that there will be corresponding time of T3
and T6 being recorded.

(g) As each transaction is completed, the response time of T1 to T6 and related data
are recorded on the client end log files, readying for subsequent analysis.

The testing procedure has been conducted on the existing operating environment,
consisting of,

a. Database: The existing database server has been used.

Operating system: Solaris UNIX.
Database: Oracle Database Server 8.

b. Broker Server:
Operating System (OS): Microsoft NT 4.0.

c. Application Server:
Operating System (OS): Microsoft NT 4.0.

d. Web Server:
Operating System (OS): Red Hat Linux 6.3.
Web Server; Apache Server.

e. Client Setting:
Operating System (OS): Microsoft Windows 98.
Browser: Microsoft IE 5.0.

For security, a complete backup of the database server, including the operating systems,
database and so forth, is run eight hours prior to the testing is to being.

In support of testing the test data segments on the database server in order to run the
application server under the existing system framework, the service programming
contained on the application server are modified without jeopardizing the normal
operations so that both the automated test program accessing the designated test data
segments and the normal users accessing online data can both log on and access the
system. To ensure the accuracy of testing, the client ends’ hardware and software
equipment are kept uniform, where the database server, broker server, application server
and web server are tested using the existing servers and conducted during normal office
hours of between 8am and 17pm, seeking to conclude dependable ratings on the loading
performance of the servers.

Given that time delay invariably occurs in every step of the program execution to
and from the client server via the networking, most of the delays are created by the
router’s storage and transmission characteristics if the retrieval is conducted over the
Internet or an Intranet, a factor that is largely dependent on the number of routers
between the server and user [4]. To best avoid the impact of such delays, the test sites
are selected on those nearest the server end, together with the client ends’ six test
computer hardware and software setup kept uniform, to cut down the performance
variations on each of the equipment which may affect the accuracy of test data
concluded.

The testing procedure, sequentially carried out by the test team, has the test
procedure perfected through repeated data testing and experience accumulation. While
some of the test values had not been as ideal for the lack of system comprehensive in the
initial stage; for example, the excessive repetitive user hits or the extended interval in the
increasing user load would invariably lead to a surge in system response time to drag out
the test schedule and result in having to abandon a test intermittently. After repeated
experiments, an optimal repetitive execution on every test account has been concluded
with cumulative experience indicating that an average performance timing at 2.251
second per hit being the best in executing a cycle of the test program.

To obtain a large sample of statistics without dragging on the test schedule due to
interruption of networking or interfering the normal operations, timing interval that
suffices to screen out 30 sets or more has been set under the increased system loading to
allow the execution time be completed within no more than two hours as the number of
users decreases. We have adopted the design of Poisson distribution model as means
for evaluation a user-loading model [5]. Eventually a 30-second interval has been used
for testing the surge user model, in which six computers are used to execute the test and
each test computer is to sustain six execution programming, starting from one and
incrementally increased to up to thirty-six test programming as shown in Table 1, where
the entire test schedule has been manipulated to run within a 2-hour span.

Table-1 Summary of Test Account Placement
Test
Computer No.1 No.2 No.3 No.4 No.5 No.6

Test
Account

Test001
To
Test006

Test007
To
Test012

Test013
To
Test018

Test019
To
Test024

Test024
To
Test030

Test031
To
Test036

(3) Analyze Phase

In the actual testing process as the number of users increases, the response time will
also go as indicated in Fig. 3 for a correlation of response time vs. user base, indicating
how detailed changes occur when the system is loaded. Despite there may not be clear
indication of a maximum system loading capacity, we are somehow able to establish a
response tendency of a loaded system under the test model.

Correlation of response time vs. users

0

10

20

30

40

50

60

70

80

90

11
:0

5:
15

11
:0

8:
45

11
:1

2:
15

11
:1

5:
45

11
:1

9:
15

11
:2

2:
45

11
:2

6:
15

11
:2

9:
45

11
:3

3:
15

11
:3

6:
45

11
:4

0:
15

11
:4

3:
45

11
:4

7:
15

11
:5

0:
45

11
:5

4:
15

11
:5

7:
45

12
:0

1:
15

12
:0

4:
45

12
:0

8:
15

12
:1

1:
45

Recording time

U
se

rs
/R

es
po

ns
e

tim
e

Users

Response time

Fig. 3 Comparison of Response Time vs. User Base

The test load is increased at a 30-second interval, using every 30 seconds for
grouping the time sequencing data created, starting from the first test account until all test
accounts are run through, which took a total of 4,056 seconds. From which, a total of

135 time segments can be derived. The Kolmogorove-Smirov statistical means
concluded from the test data include a rating of 0.158189 as shown in below,

Class
Groups of
values

Factual(x)
Actual value

Fexpected(x)
Expected value

| Factual(x)- Fexpected(x)|

0~2 0.000000 0.000000 0.000000
3~4 0.014815 0.000016 0.014799
5~6 0.029630 0.000239 0.029391
7~8 0.096296 0.001974 0.094332
9~10 0.133333 0.010306 0.123027
11~12 0.192593 0.037473 0.155120
13~14 0.251852 0.101467 0.150385
15~16 0.311111 0.215386 0.095725
17~18 0.370370 0.373954 0.003584
19~20 0.451852 0.551197 0.099345
21~22 0.555556 0.713745 0.158189
23~24 0.711111 0.838229 0.127118
25~26 0.807407 0.919024 0.111617
27~28 0.881481 0.964025 0.134978
29~30 0.933333 0.985767 0.052434
31~32 0.992593 0.994965 0.002372
32~34 0.992593 0.998401 0.005808
34~ 1.000000 1.000000 0.000000

At a significant level where α equals to no more than 0.005, and the abandoned area
being C = {d135 d 135 ≥ 0.16081} as located from the chart, The K-S statistical means of
0.158189 that has not fall within the abandoned area of 0.16081 will not rule out the
data’s experience distribution as a Poisson Distribution based on the theoretic model that,

Κ3,2,1,0,
!

)(=⋅= x
x

exf
xλλ

What can be concluded from the theoretic model are,

Κ3,2,1,0,
!
)089.20()(

089.20

==
−

x
x

exf
x

The model’s average means, λ, has been concluded at 20.089 persons per hit as the
test rating, which indicates that the system is able to process 20.089 persons/hit on the
online login-logout command; in other words, the average timing of online login-logout
per person can be concluded at 30/20.089, or 1.4933 seconds.

Given that the average response time of 1.4933 seconds has been concluded from
the test, in conjunction with the company’s estimated loading capacity of 168 persons to
go online simultaneously, the average response time per person will roughly be at 4.18
minutes when the system is processing a 168 person load. As to whether this response

time falls within a normal range, it will require the company executives to further look
into the normal processing time afforded by the system design.

A further examination of the test record files indicate that no excessive variations
have been found in the business processing stages of between T3 and T6. To decipher
the state of changes in processing time, we further divide the transaction time into two
segments – one being the log in phase, meaning that covering T1 to T2, and the other
being the business processing phase, meaning T3 to T6, where the sum of both will
provide the transaction time of a given test. While plotting a total of 2,715 of the
processing time and total transaction time concluded from the two stages as shown in Fig.
4 indicates that the longer the transaction is dragged on, the more ominous the login time,
the yellow zone, will become, but variations in the business processing time, the red zone,
remains unchanged. This clearly indicates that the system’s login processing sequence
is ominously reduced of its processing speed when the load increases, an eventual bottle
neck when the system is fully streamlined and an area that calls for system developers to
further examine it for viable solutions.

Fig. 4 Proportional ratings of the system’s processing time

(4) Improve phase:

The example that a loading test can be completed without being aided by any of the

automated testing tools available on the market, however the test objectives were
achieved, does allow company executives to review estimated ratings of a response time,
while the bottleneck created by the system’s login time, between T1 and T2, remains the
focal point of improvement in this phase. The system developer has already begun to
modify the system framework by adding the number of broker servers, modifying the
login module on the client end for an interactive selection of broker servers, switching the

Response time rate

0

20

40

60

80

100

120

1

16
0

31
9

47
8

63
7

79
6

95
5

11
14

12
73

14
32

15
91

17
50

19
09

20
68

22
27

23
86

25
45

27
04

Test order

Ti
m

e
(S

ec
on

d)

Transaction time

Login

Business processing

account number validation function to under the application server for execution, to
address concerns of bottleneck in system login time.

(5) Control phase:

 In this case study the team wanted to be sure that the improvements, once

implemented, held value and did not revert to error-riddled baseline. The team modified
the test framework to be a monitor to watch the application performance whether or not it
satisfies users requirement. The tool for monitoring the application is as shown in Fig 5.

Figure 5: Tool for monitoring the application

5. Conclusion

Management problems in the development of software have been addressed over the last
years by a strong focus on the improvement of the development processes. Six Sigma is
the most powerful breakthrough management tool ever devised, promising increased
market share, cost reductions and dramatic improvements in bottom-line profitability for
companies of any size. The method of Six Sigma mapped the software development life
cycle for client/server applications against the Six Sigma quality cycle (DMAIC): Define,
Measure, Analyze, Improve and Control and then aligned those cycles against the quality
management life cycle (PDCA): Plan, Do, Check and Action. The case is shown in this
paper to demonstrate that this method not only assisted the development team to focus on
reducing development variation, but also gave the rest of the company an understanding
of the IT involvement necessary for success.

Acknowledgement
 This research is supported by National Science Council, Taiwan, R.O.C. under
contract NSC91-2416-H-123-002.

References

1. Chang, S.K. (2001), Introduction to Function Test on E-commerce Web Sites, Quality

Monthly.
2. Eckes, G. (2001), Making Six Sigma Last—Managing the Balance Between Cultural

and Technical Change, John Wiley & Sons, Inc..
3. Fang, S.R. (1999), Fundamental Statistics, Hua Tai Publishing, Taiwan.
4. Harrington, H.J. and McNellis, T. (2001), Six Sigma for Internet Application

Development, Software Quality Professional, 4(1).
5. Harry, M and Schroeder, R. (2000), Six Sigma—The Breakthrough Management

Strategy Revolutionizing the World’s Top Corporations, Random House, Inc..
6. Nguyen, H.Q., (2000), Testing Application on the Web, John Wiley & Sons, Inc..
7. Spolverini, M. (2000), Measuring and Improving the Quality of Web Sites, 4th

International Software Quality Week Europe (QWE2000).

Key Points

Typical SDLC model
Effort estimation of QA projects
Statistical approach

Presentation Abstract

Effective effort estimation is one of the most challenging and important activities in software project lifecycle.
Though there are too many variables human, technical, environmental, political which can affect the ultimate
effort applied to develop it, software project estimation can be transformed from a black art to a series of
systematic steps that provide estimate with acceptable risk.

There are many popular options available for estimations of projects, which follows SDLC. However in case
of projects involving only testing, there is not much of insight to evolve with a proper estimation model.
Traditionally estimation of effort for testing has been more of a ballpark percentage of the rest of the
development life cycle stages. This approach to estimation cannot be applied for projects, which do not have
much insight into the other phases of the SDLC. Also there is no estimation model for projects doing only
test planning or scripting for the customers. Hence overall and LC wise estimation for testing related projects
is still a challenge.

In this paper we will discuss the step by step approach that we followed at Infosys in evolving a model for
effort estimation of such projects using statistical multivariate regression model. We will discuss the typical
SDLC for QA projects, challenges faced in estimation, different parameters affecting the estimation, test of
significance of each and every parameter and finally finding out the partial regression co-efficient.

This method has been deployed in some projects at Infosys and we will also discuss the outcome.

About the Author

Raja Bibhash has a Bachelor’s degree in Electrical Engineering from Calcutta University. Prior to joining
Infosys he was working with Larsen and Tourbo Ltd, India as an Executive and involved into Engineering,
project planning & Quality Assurance activities for Manufacturing and process industry. He was also
involved there in ISO 9001 initiative and SAP implementation. In Infosys Bibhash is working as a Software
Quality Advisor and extensively involved in Process deployment, Metric Analysis, Statistical Process Control
and various improvement initiatives in Infosys.

Raja Mohapatra has a Master’s degree in Mechanical Engineering from University of Roorkee. Prior to
joining Infosys he was working with Reliance Industries Ltd, India as an Asst Manager- Inspection, involved
in Quality Assurance activities, subcontracting management, maintenance planning and monitoring in
various plants like power, process and fibre. He was also involved there in ISO 9001 initiative and SAP
implementation. In Infosys Raja is working as a Software Quality Advisor and extensively involved in
Process deployment, Metric Analysis, Statistical Process Control and various improvement initiatives in
Infosys.

QW2002 Paper 3P2

Mr. Raja Mohapatra & Mr. Bibhash Saha
(Infosys Technologies Ltd)

Effort Estimation for QA Projects Statistical Approaches &
Challenges

1

Effort Estimation for QA (Testing) projects
Statistical Approaches & Challenges

ByBy
Bibhash Saha & Raja MohapatraBibhash Saha & Raja Mohapatra

(Infosys Tech Ltd., India)(Infosys Tech Ltd., India)

Why Talk about this subject ??

• Estimation of effort required is first step to any project and software
projects are no exception.

• Effort estimation in software projects is most challenging as it depends
on so many variables which are different every time.

2

Traditionally how effort estimation
is done?

Top down Approach

• First the size of the software is
arrived at.

o Counting FP and Use Cases are
some ways

• Then the total project effort is
calculated.

o Past productivity data is used to
arrive at this figure

Bottom up Approach

• Effort required for build
is calculated first.

o Estimating the number
of programs and giving
them some weight-age.

• Efforts required for different stages are then arrived at.

o “past effort distribution” data is used for this.

What is a QA (Testing) project ?

• The projects which does only the system, integration or
acceptance testing on behalf of the client.

• The code is developed or enhanced by some other vendors.

3

What is the difficulty in estimating these kind of
projects ?

• The total size of the software is not known.

• Effort spent in other LC stages is not known.

• As never estimated past data was not available.

What to do then ?

Following approach was taken…

• Understanding and analyzing the exact Life Cycle stages.

• Understanding the different scenarios and problems faced.

• Defining the metrics to be collected as a basis for
estimation.

• Analyzing the collected metrics.

• Deriving an estimation model.

• Validating and fine-tuning the model with further data
points.

4

Life cycle of typical QA project

The QA (Testing) projects under consideration typically

follow the following LC stages.

• Preparing master test strategy.
• Test case scripting.
• Manual testing

o Sanity testing or Regression testing
• Preparing test result summary

Life cycle of typical QA project

The project gets following three kinds of requests depending
on the customer requirements and contract.

• Test planning which involves preparation of test scripts only.
• Test execution where customer supplies test scripts.
• Test planning and test execution.

As majority of the requests received are of first two kinds, for
the sake of uniformity the third kind of request were
considered as combination of “Test Planning” and “Test
Execution” requests.

5

Challenges in Estimation

• There are many different platforms under which the project
has to work which affects the consistency of productivity.

• Movement of manpower across platforms also contributes to
inconsistent productivity.

• High attrition of man power as team size is very large. Hence
human factor is a variable.

• Effort requirement in test execution is largely dependent upon
the interdependency of the test cases and success of the
program being tested.

Definition and Collection of Metrics

• After extensive brain
storming some metrics
were decided to be
collected along with the
actual effort taken for any
request.

• Metrics were grouped into
three categories

o Generic
o Application specific
o People related

Example
• Number of scripts to be

prepared
• Number of impacted

screens
• Number of validations
• Number of impacted

programs
• Skill level of the team

members
• Type of database update
• Clarity of the test

requirement specification

6

• Some of the metrics defined
were not available for all
requests and hence discarded
for further analysis.

• There are two types of
variables

o Quantitative

o Qualitative

Data Segregation

Example
• Number of scripts to be

prepared
• Number of impacted screens
• Number of validations
• Number of impacted programs

Example
• Skill level of the team

members
• Type of database update
• Clarity of the test requirement

specification

The quantitative variables were used to
fit the regression model where the
qualitative ones were used to fine tune
the model to minimize the error further.

Typical Collected Metrics

Set No

m n p q
Y

(p.Hrs)
1 11 12 330 39 247
2 1 11 4 11 96
3 1 13 3 9 97
4 16 12 50 37 160
5 1 14 12 2 27
6 2 13 3 3 26
7 - - - - -

Where
m = Number of scripts to be prepared
n = Number of impacted screens
p = Number of validations
q = Number of impacted programs
Y = Actual Effort

7

Scatter Diagram for different sets of Data

Actual effort of different sets of data

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7

Y
Linear (Y)

One set of
data

(m1, n1,
p1, q1)

Corresponding
Actual effort

Best fit line equation of
which will be found out

from Multivariate
Regression Method

Residual
Error

Evolution of the Multivariate Regression Model (1)

How the regression equation looks like ?

Estimated Effort (Y) unadjusted = β0+ β1m+ β2n+ β3p + β4q + e

Where
m = Number of scripts to be

prepared
n = Number of impacted

screens
p = Number of validations
q = Number of impacted

programs
Y = Actual Effort

Y-intercept
Partial

regression
co-efficient of

variable ‘n’

Residual error
(Distributed normally with
mean at zero and standard

deviation σ2)

8

To best fit the estimation:

• So we should have (k+1) data points where k is the no. of variables.

• The least square method will be adopted to minimize the residual
error.

• Partial differentiation of the sum of the squared residual error ∑e2

with respect to each partial regression coefficients β0 ,β1 , β2… will
be equated to zero.

• Thus (k+1) number of linear equations will be obtained where k is
the no. of variables.

• Then the linear equations are to be solved simultaneously to get
individual partial regression coefficients and the y-intercept

Evolution of the Multivariate Regression Model (2)

Going back to the example we are following:

The solved regression equation looks like

Y = (- 74.0 - 13.2 m + 7.14 n + 0.0023 p + 9.74 q)

Evolution of the Multivariate Regression Model (3)

Not to worry !!!! There are so many tools available
in market to do this whole job on just a click of
mouse.

9

It is important now to understand the effect and strength of each and

every predictor variable on the response variable.

What next ??

How to do this ?

• Compare the partial
regression coefficients.

• Compare the ratio (t-value)
of partial regression
coefficient and standard
error with the pre-selected
alpha level.

If the selected confidence limit is 95%
then the alpha level will be (1-

0.95)=0.05. The t-value (without signs)
should be more than the alpha level

6.569.743q

0.030.00229P

1.207.14n

-4.84-13.24m

-0.92-73.96Constant

‘t’-valuePartial
Regression
coefficient

Predictor
Variable

Example

• The ‘t’ value for predictor variable ‘p’ is less than 0.05 (selected ‘α’
level of confidence). Also the co-efficient of regression is very
insignificant as compared to others. Hence variable ‘p’ was discarded
from the final formula.

• The equation was solved again after discarding the variable ‘p’ and
the new formula is as follows

Y = (- 75.8 - 13.3 m + 7.27 n + 9.79 q)

• The co-efficient of determination (R2) is as high as 99.8 %
showing the equation is a good fit.

The final formula

10

My project is totally different and
the kind of requests we
execute is different every
time.

Can any software estimation follow any such
formula?

The team changes so frequently
that any formula cannot
accommodate that.

Do you mean to say project
manager does not have any
flexibility to decide?

A lot depends on the clarity of the requirement. Otherwise there are so
many issues and they take all the time to get resolved.

Other such questions and doubts

• Hence to take care of the effect of so many qualitative variables the
effort thus calculated from the regression equation can adjusted as
demonstrated below.

Y (adjusted) = Y (from regression equation) x C

Where
C = C1 x C2 x C3 x …
C1, C2, C3…= Weightage given to different qualitative variables in a scale

of 0 to 2 (exclusive of the boundary values)

Giving flexibility and taking care of Qualitative
Variables

11

• It helped to understand the productivity of the team and thus
the resource loading. This leads to clear resource allocation
methodology.

• Made us able to estimate defects in test plans and thus in
controlling the review process.

• And finally to track and report the progress.

What the projects reaped out of this ?

• The regression model may be refitted as and when required
depending on the changing scenario.

• The estimation for test execution has a drawback in case of
regression testing when the effort for regression is appreciable.
Re-estimating every time at the beginning of regression
testing may be a solution but an overhead.

The road map ahead

12

Thanks A Lot for Patient Listening

Effort Estimation for QA (Testing) projects

– Statistical Approaches & Challenges

By Bibhash Saha & Raja Mohapatra (Infosys Technologies Limited, India)

1.0 INTRODUCTION:

Effective effort est im at ion is one of the m ost challenging and im portant act iv it ies in software
project lifecycle. Though there are too m any var iables – hum an, technical, environm ental, polit ical
which can affect the ult im ate effort required to develop it , software project est im at ion can be
t ransform ed from a black art to a ser ies of system at ic steps that prov ide est im ate with acceptable
risk and deviation. On time delivery cannot be achieved without a proper effort estimate.

There are m any popular opt ions available for est im at ions of projects, which follows any Software
Development Life Cycle. However in case of projects involv ing only test ing, there is not m uch
insight to evolve with a proper est im at ion m odel. Tradit ionally est im at ion of effort for test ing has
been more of a ballpark percentage of the rest of the development life cycle stages. This approach
to est im at ion cannot be applied for projects, which do not have m uch idea about the other phases
of the Life Cycle. Also there is no est im at ion m odel for projects doing only test planning or
scripting for the customers. Hence overall and life cycle wise estimation for testing related projects
is still a challenge.

2.0 APPROACH:

The following step-by-step approach needs to be followed in developing the est im at ion m odel for
QA (Testing) projects.

Understanding and analyzing the exact Life Cycle stages

Understanding the different scenarios and problems faced

Defining the metrics to be collected as a basis for estimation

Analyzing the collected metrics

Deriving an estimation model

Validating and fine- tuning the model with further data points.

2.1 PROJECT OVERVIEW:

2.1.1 SDLC Overview

The QA (Testing) projects under consideration typically follow the following LC stages.

1. Preparing master test strategy.
2. Test case scripting.
3. Manual testing

a. Sanity testing or Regression testing
4. Preparing test result summary

2.1.2 Different Kinds of Request

The project gets following three kinds of requests depending on the custom er requirem ents and
contract.

1. Test planning which involves preparation of test scripts only (step 2 of LC only).
2. Test execution where customer supplies test scripts (step 3 and 4)
3. Test planning and test execution (all steps mentioned above)

As majority of the requests received are of first two kinds, for the sake of uniformity the third kind
of request were considered as combination of “Test Planning” and “Test Execution” requests.

2.2 PROJECT CHALLENGES:

Following are som e of the challenges in est im at ion keeping in v iew the nature of request , project
cross section, target set by customers and variety of platforms etc.

As the project either gets or breaks up the requests into two separate requests as
m ent ioned above, there was a need for separate est im at ion for test planning and test
execution.

There are m any different plat form s under which the project has to work which affects the
consistency of productivity.

Movement of manpower across platforms also contributes to inconsistent productivity.

High attrition of man power as team size is very large.

Effort requirem ent in test execut ion is largely dependent upon the interdependency of the
test cases and success of the program being tested.

2.3 MEASUREMENTS AND ANALYSIS:

After extensive brain storm ing with various cross sect ions of people, the project team collected
various m et r ics, though at that stage the im pact of various variables on the actual effort was not
very clear.

Met r ics were grouped into three categories like generic, applicat ion specific and people related.
Separate m et r ics were defined for test planning and test execut ion type of requests. Typical
metrics defined are number of test scripts, number of screens, type of database update, skill set of
people etc.

The data was collected for 20 varied kinds of requests and analysis was carr ied out to understand
the dependency of each parameter on the actual effort. Following are the observations.

Som e of the m et rics defined were not available for all requests and hence discarded for
further analysis.

There are two types of variables; quant itat ive and qualitat ive. The quant itat ive var iables
were used to fit the regression m odel where the qualitat ive ones were used to fine tune
the model to minimize the error further.

2.4 EVOLUTION OF THE MODEL:

2.4.1 Regression Model

I n this k ind of scenario, m ult ivariate regression m odel was chosen to be used. The regression
equation can be written as follows.

Y = ß0+ ß1X1+ ß2X2+………. + ßkXk + e

Where

Y=the response variable i.e. the estimated effort
X1, X2, …. Xk= Predictor variables.
ß0= Constant Y intercept of the best fitted line
ß1, ß2, …..ßk = partial regression co-efficient of each predictor variable
e= Residual error distributed normally with mean zero and variance s 2

To m inim ize the residual error, the part ial different iat ion of e w.r. t ß0,ß1, ß2… etc was taken and
the addition was equated with zero. Number of composite samples was taken to solve the equation
thus formed.

After this it was im portant to understand the effect and st rength of each and every predictor
variable on the response variable. To test the effect, significance test of each variable was done by
using null hypothesis and the st rength was com pared by com paring the part ial regression co-
efficients and looking at the variance of regression.

One more way to check the significance of each variable is to compare the t-values (ratio of partial
regression co-efficient and the standard error in the co-efficient) with the pre-decided confidence
limit.

Based on the above tests variables having less effect and st rength were discarded and the
regression curve was refitted.

All these are basic pr inciples and one need not dig into theor ies for solv ing the equat ion
traditionally as there are so many tools available in the market to help.

The sam e exercise was done both for test planning and test execut ion to com e out with different
effort regression equations.

2.4.2 Fine tuning the model

Once the regression equation is evolved using quantitative parameters, it was required to fine tune
the m odel further using the various qualitat ive param eters like nature of j ob, skill set of people,
database update etc. Numerical weightage to various variables were given based on past
experience and interv iewing people across var ious cross sect ions. A typical exam ple of fine tuning
is as follows

Y (adjusted) = Y (from regression equation) x C

Where
C = c1 x c2 x c3……
c1, c2, c3 … = Constant depending on qualitative variables.

3.0 EXAMPLE:

As an exam ple to further explain the concept , for a typical test planning kind of request the
selected quantitative predictor variables were as follows

Number of scripts to be prepared (m)

Number of impacted screens (n)

Number of validations (p)

Number of impacted programs (q)

Now fitting the regression equation for the unadjusted value of effort

Estimated Effort (Y)unadjusted = ß0+ ß1m + ß2n+ ß3p + ß4q + e

The sample input set of data from various requests are as follows

m n p q
Y

(p.Hrs)
11 12 330 39 247
1 11 4 11 96
1 13 3 9 97
16 12 50 37 160
1 14 12 2 27
2 13 3 3 26
- - - - -

(N.B.: These are only indicative data for explanation purpose)

Now solving the above equation as described in Sec 2.4.1 aiming for minimum residual error we
got the following regression equation.

Y = (- 74.0 - 13.2 m + 7.14 n + 0.0023 p + 9.74 q)

Then test of significance was done for each of the variables and the ‘t’ values for each variable is
as follows.

Predictor Coef of
Regression

T

Constant -73.96 -0.92
m -13.244 -4.84
n 7.141 1.20
p 0.00229 0.03
q 9.743 6.56

As evident from the above data, the ‘t’ value for predictor variable ‘p’ is less than 0.05 (selected ‘a’
level of confidence) . Also the co-efficient of regression is very insignif icant as com pared to others.
Hence variable ‘p’ was discarded from the final formula.

The equation was solved again after discarding the variable ‘p’ and the new formula is as follows

Y = (- 75.8 - 13.3 m + 7.27 n + 9.79 q)

The co-efficient of determination (R2)

is as high as 99.8 % showing the equation is a good fit.

Some of the qualitative variables that also affect the estimated effort are as follows

Skill level of the team members

Type of database update

Clarity of the test requirement specification

Hence to take care of the above effect the effort thus calculated from the regression equat ion was
adjusted as demonstrated below.

Y (adjusted) = Y (from regression equation) x C

Where C = C1 x C2 x C3 and

Constant Constant
depending On

High Medium Low

C1 Skill level of
team

1.05 1.00 0.95

C2 Type of
database
update

1.05 (Batch +
Online update)

1.00 (Batch
Update)

0.95 (Online
update)

C3 Clarity of
requirement

spec

1.05 1.00 0.95

These qualitative parameters will adjust the estimated effort within ± 15 %.

4.0 BENEFITS:

Earlier the project was unable to est im ate the effort and there was no choice other than going by
the customer’s schedule leading to the following problems

Unable to understand the product iv ity of the team and thus the resource loading. This
leads to unclear resource allocation methodology.

Unable to estimate defects in test plans and controlling the review process.

Unable to track the progress etc.

Now with the evolved m odel, above problem s were solved. The project could est im ate its effort
with an accuracy of ± 20 %.

5 .0 ROAD MAP AHEAD:

The regression m odel m ay be refit ted as and when required depending on the changing
scenario.

The est im at ion for test execut ion has a drawback in case of regression test ing when the
effort for regression is appreciable. Re-est im at ing every t im e at the beginning of
regression testing may be a solution but an overhead.

6 .0 CONCLUSION:

The model holds good for any project and the parameters can be very well standardized across the
organizat ion and constants can be f ine tuned to suit the project specific needs. The effort
est im at ion based on m ult ivariable regression m odel is more convincing than all other convent ional
m odels of giving weightage to various param eters and finally arr iv ing with the effort . Sam e m odel
can be extended to other life cycle stages of software development also.

Author’s Profile

Bibhash Saha

Bibhash has a Bachelor’s degree in Elect r ical Engineering from
Calcut ta University. Pr ior to joining I nfosys he was working with
Larsen and Tourbo Ltd, I ndia as an Execut ive and involved into
Engineering, project planning & Quality Assurance act iv it ies for
Manufactur ing and process indust ry. He was also involved there
in I SO 9001 init iat ive and SAP im plem entat ion. I n I nfosys
Bibhash is working as a Software Quality Advisor and extensively
involved in Process deploym ent , Met r ic Analysis, Stat ist ical
Process Control and various improvement initiatives in Infosys.

Raja Mohapatra

Raja has a Master’s degree in Mechanical Engineering from
University of Roorkee. Prior to joining I nfosys he was working
with Reliance Indust r ies Ltd, I ndia as an Asst Manager-
I nspect ion, involved in Quality Assurance act iv it ies,
subcontract ing m anagem ent , m aintenance planning and
m onitor ing in var ious plants like power, process and fibre. He
was also involved there in I SO 9001 init iative and SAP
implementation. In Infosys Raja is working as a Software Quality
Advisor and extensively involved in Process deploym ent , Metr ic
Analysis, Stat ist ical Process Cont rol and var ious im provement
initiatives in Infosys

-- EOD --

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

Key Points

We should find a development process suitable to our environment.
Extreme Programming offers always good points to think about.
Some XP techniques can be harmful in large projects.

Presentation Abstract

This paper explains the software development process chosen by NTE in case of large projects and
compares it with the so-called Extreme Programming. The main conclusion is that the rules of the Extreme
Programming are also valid in large projects.

About the Author

Joan Bosch was born in Barcelona (Spain) in 1971. He has a degree in Physics but he has been working in
Computer Science since 1988. He has mainly worked in Civil Engineering and Medical Device applications.
He has actively collaborated with the Universitat Central de Barcelona as a researcher, applying neural
networks to economy. From the University he moved to NTE (New Space Technologies, develops Software
for Space and Medical application); he entered as SW senior engineer, right now he is the responsible of the
Software Quality Construction Department.

QW2002 Paper 4P1

Joan Bosch Sole
(NTE, s a.)

Big And Complex Projects: Beyond Extreme Programming

1

Joan Bosch - Quality Week
2002

Large projects: beyond
Extreme Programming

NTE, s.a. / Joan Bosch
joanb@nte.es

Joan Bosch - Quality Week
2002

Prejudice about XP

Extreme Programming may sound to
you as:

Fast development.
Neither analysis nor design.
Small projects.
Type code first... And later we’ll figure
out what we have to do with it!

2

Joan Bosch - Quality Week
2002

Who is NTE?

NTE started as a company devoted
to the aerospatial market.
Her main customers were NASA and
the European Space Agency.
Later on a SW division was started
to develop applications for medical
devices.

Joan Bosch - Quality Week
2002

The NTE SW target process

The NTE development process must
be compatible with:

Reliability and robustness
Maintainability
Flexibility in front of changes in
requirements.

3

Joan Bosch - Quality Week
2002

The TOP project
In 1999 NTE was asked to develop the
SW to control a high throughput
coagulation analyzer.
The starting point was an existing HW
and thousands of requirements written as
atomic sentences.
Two years later, the SW is ready for beta
testing without important flaws.

Joan Bosch - Quality Week
2002

NTE & XP

The following of the presentation
tries to answer the questions:

How is the development
process/practices followed in this
project?
Is this process compatible with XP?

4

Joan Bosch - Quality Week
2002

Requirements analysis
practices (I).

Identify user typologies.
Write Use Cases to understand what the
application is supposed to do.
Usability test on a prototype for the most
used areas.
Complete conceptual model of the user’s
world.
Data dictionary.
Screen dictionary.

Joan Bosch - Quality Week
2002

Requirements analysis
practices (and II)

After the functional analysis, reword
all the requirements in traceable
atomic sentences.
Set up a Change Control Board and
select a Product Manager.
“The developer proposes, the
Product Manager chooses”

5

Joan Bosch - Quality Week
2002

Design practices

Tight mapping between user
concepts and implementation
classes.
Public reviews of design.
Classes packaged in subsystems.
Early definition of all interfaces
between subsystems.

Joan Bosch - Quality Week
2002

Development practices (I)

Monitoring the project status
according to implemented feature.
Unit test at subsystem level.
Continuous integration.
Use of coverage tools.

6

Joan Bosch - Quality Week
2002

Development practices (II)
– Unit Test

All subsystems have unit test.
The unit test must be:

Automatic.
Regressive.
Incremental.
White Box.

Joan Bosch - Quality Week
2002

Development practices (III)
– Unit Test

Unit Test benefits:
Early bug detection.
Avoid introducing bugs in old
functionality.
Developers are fully independent.
Easier the transfer of responsibility of a
subsystem between developers.
Easier the use of code coverage tools.

7

Joan Bosch - Quality Week
2002

Development practices (IV)
– Continuous Integration

The application must compile, link, and
pass a basic functional test, at any time.
Benefits:

Early detection of integration bugs.
Allow the developers to test the implemented
functionality in an informal way at any time.
Allows the PM to monitor the status of the
project at any time.

Joan Bosch - Quality Week
2002

Development practices (and
V) – Code Coverage Tools

A coverage tool allows to know which
lines of code have been exercised by the
Unit Test.
Benefits:

Provides an idea of the exhaustiveness of the
Unit Test.
Detection of dead code.
Detection of a requirements
misinterpretations when some code
impossible to be exercised is found.
Detection of developers overwork.

8

Joan Bosch - Quality Week
2002

QA Practices

An independent QA team reviewed:
Specifications.
Design.
Code.

Automatic system test.
Continuous qualification test.

Joan Bosch - Quality Week
2002

The XP rules

9

Joan Bosch - Quality Week
2002

NTE vs. XP: shared rules (I)
Make frequent small releases.
The project is divided into iterations.
Iteration planning starts each iteration.
Symplicity.
Create spike solutions to reduce risk.
Refactor whenever and wherever
possible.

Joan Bosch - Quality Week
2002

NTE vs. XP: shared rules
(and II)

Code must be written to agreed
standards.
Leave optimization till last.
All code must have unit tests.
All code must pass all unit tests before it
can be released.
When a bug is found tests are created.
Acceptance test are run often and score is
published.

10

Joan Bosch - Quality Week
2002

NTE vs. XP: compatible
rules (I)

User stories are written.
Release planning creates the
schedule.
The Project Velocity is measured.
A stand-up meeting starts each day.
Fix XP when it breaks.
Choose a system metaphor.
Use CRC cards for design sessions.

Joan Bosch - Quality Week
2002

NTE vs. XP: compatible
rules (and II)

No functionality is added early.
Code the unit test first.
Only one pair integrates code at a
time.
No overtime.

11

Joan Bosch - Quality Week
2002

NTE vs. XP: non-compatible
rules

Move people around.
All production code is pair
programmed.
Use collective code ownership.

Joan Bosch - Quality Week
2002

Non-compatible rules
analysis.

The high level of specialization of
the NTE projects works against:

Move people around.
Use collective code ownership.

Pair programming has never been
tried, at least in a formal way, due
to the NTE company culture.

12

Joan Bosch - Quality Week
2002

Conclusions

NTE and XP practices are highly
compatible.
There are some differences due to:

The high level of specialization of her
projects.
NTE company culture.

Key Points

How to use Excel as a tool to manage and report test status
How to build the worksheets and reports
Benefits of using the tool for test status reporting

Presentation Abstract

One tough question to answer as a tester is when will testing be done. A tool is needed to report on status.
An effective alternate solution to a commercial tool is available using Microsoft Excel. Using specific
functions and linked worksheets a test status a report tool can be built.

About the Author

Jim Hazen has 15 years experience in software development and testing. Jim is a Test Engineer with
SysTest Labs in Denver, Colorado. Jim has worked in various lead positions in his career and has worked
with a wide variety of applications on DOS, OS/2, Windows, and Web environments.

QW2002 Paper 4P2

Mr. Jim Hazen
(SysTest Labs)

'Excel'erating Test Status Reporting

111

‘‘ExcelExcel’’erating Test erating Test
Status ReportingStatus Reporting

Earl Burba and Jim HazenEarl Burba and Jim Hazen

IntroductionIntroduction
• Earl Burba

– Sr. Project Manager
– Twenty years of software development and testing experience
– Experience with Windows, Web, Unix, & Embedded

environments and applications
– Software Test Evaluation Process Tool Patent

• Jim Hazen, CSTE
– Test Engineer
– Fifteen years of software testing experience
– Experience with DOS, OS/2, Windows, & Web environments

and applications
– Presenter at STARWest 2001

222

Introduction cont.Introduction cont.
• SysTest Labs, LLC

– Independent 3rd Party Test Lab
– Founded in 1990, QA Test lab opened in 1996
– Projects range from Desktop applications to Client/Server to

Web to WAP
– FEC/NASED accredited Independent Test Authority (ITA)

for voting systems
– Clients range from Fortune 100 to small development

companies
– Strategic partners

• IBM and Microsoft
• Compuware, Segue,RadView, and Rational

ObjectivesObjectives
• Focus of Presentation

– How to use Excel to develop a test status reporting
tool

• Items to be discussed
– Why build a tool with Excel
– Features and functions used in Excel
– Test system architecture
– Test Case & Status worksheet layouts
– Report Generation
– Benefits of system
– Lessons learned from development and use

333

Why use ExcelWhy use Excel
• Readily available, part of MS-Office

– Can be tied into other tools (Word)
• Relatively inexpensive to implement

– Alternative to expensive commercial tools
• Flexible

– Can be customized to fit needs

Features of ExcelFeatures of Excel
• Formula functions and logic constructs

– Example: Countif and IF
• = COUNTIF(D13:D38,"x") – Count steps passed in test case
• =IF(E7 = 0,"",IF(G7>0,"Failed",IF(D7 = F7, "Passed",

"Pending"))) – determine if test case passed on status worksheet

• Linking cells and worksheets/workbooks
– Allows for consolidation of data for analysis and

reporting
• Statistical data collection
• Presentation graphs and charts

444

When & How to When & How to
Implement the ToolImplement the Tool

• Why implement the tool
– Allow for ease of status reporting
– Allow for higher accuracy in reporting

• When to implement the tool
– As early in project lifecycle as possible, at least by

time the test plan is completed.
• Initial effort to implement

– Up front time can be high. Have to build the
worksheets and formulas first then link them
together. Reports and charts can be built later.

Test Status Reporting Test Status Reporting
System ArchitectureSystem Architecture

• Components of a testing system
– Test Cases (core component)

• Test Case data
• Test Case history

– Test Case Status Report (core component)
• Test Case Summary Report (Functional effort)
• Master Summary Report (Overall effort)

– Requirements Traceability Matrix (RTM)
• Can be added in if time allows

555

Test Case Worksheet Test Case Worksheet
LayoutLayout

Test Case Worksheet Test Case Worksheet
FormulasFormulas

• Example calculated field formulas are:
– Status: = IF(D11 + E11 + F11 = 0, "Not Started", IF(A11 =

D11 + F11, "Passed", IF(A11 <> D11 + E11 + F11, "Not
Complete", IF(E11 > 0, "Failed"))))

– # of Steps: = COUNTA(A13:A38)
– Number of steps complete by status: =

COUNTIF(D13:D38,"x") for Pass, =
COUNTIF(E13:E38,"x") for Fail, and =
COUNTIF(F13:F38,"x") for N/A

– % Complete: = (D11 + E11 + F11) / A11

666

Status Worksheet Status Worksheet
LayoutLayout

Status Worksheet Status Worksheet
FormulasFormulas

• Example calculated field formulas are:
– # of Test Cases Comp.: = COUNTIF(C7:C9,"Passed")

+COUNTIF(C6:C9,"Failed")
– Total # of Test Cases:

=COUNTA(A7:A7)+COUNTA(A8:A8)
– # of Test Cases Passed: =COUNTIF(C7:C8,"Passed")
– Passed/Failed: =IF(E7 = 0,"",IF(G7>0,"Failed",IF(D7 = F7,

"Passed", "Pending")))

• Example test case linked field formulas are:
– Steps Executed: ='[TestCaseTemplate.xls]IE5.x'!D11 +

'[TestCaseTemplate.xls]IE5.x'!E11 +
'[TestCaseTemplate.xls]IE5.x'!F11

777

Status Report ChartStatus Report Chart
Tundra

0

10

20

30

40

50

60

70

80

90

100

6/3 6/4 6/5 6/6 6/7 6/8 6/9 6/10 6/11 6/12 6/13 6/14 6/15 6/16 6/17 6/18 6/19

Date

Te
st

 C
as

e
C

ou
nt

Planned

Actual

Tying it All TogetherTying it All Together
• Links can be formed between

spreadsheets to share information
• Statistics are formulated automatically

from the available data
• No active participation from the tester to

provide information to the status
tracking system

888

Report GenerationReport Generation
• Daily / overall project status

– Cut and paste from the Status Reporting System
– Link into other applications or documents via OLE.

• Trend analysis and reporting
– Master Status Report can provide trending view
– Different levels of detail can be presented based on

management needs

BenefitsBenefits
• How it saves time and money

– Most businesses use Microsoft Office or have
access to spreadsheets with similar functionality

– For very little capital expenditure a working test
case status reporting system can be implemented

• Higher accuracy of reporting test status
– No direct tester interaction, automatically

generated from test cases
– Automatically generated reports, graphs etc.
– Individual or project progress can be tracked
– Easily incorporated into daily and project reports
– Status of testing is readily apparent and estimates

of completion can be made

999

Working ModelWorking Model
PPresentation resentation

• Demonstration of working model
– Test Cases

• Test Case format
• Test Case formulas

– Test Case Status Report
• Test Case Summary Report

– Format and formulas

• Master Summary Report
– Format and formulas

Lessons LearnedLessons Learned
• The system does take some time to

initially set up
• Cells that are critical for statistical

analysis must not be moved or changed
(formulas and position are static)

101010

SummarySummary
• Up to the minute status aids in

management knowledge of testing
progress

• A low cost tool can be easily created to
track testing status
– Particularly during the crunch time of

testing

Contact InformationContact Information

SysTest Labs
1630 Welton Street, Suite 500

Denver CO, 80202
(303) 575-6881

www.SysTest.com

Earl Burba - eburba@systest.com
Jim Hazen - jhazen@systest.com

 Page 1 of 9

‘Excel’erating Test Status Reporting

Jim Hazen & Earl Burba, SysTest Labs
303.575.6881 jhazen@systest.com eburba@systest.com

Extended Abstract:

This presentation will show how to implement a test status reporting tool and strategy
using Microsoft Excel. The presentation will discuss how to use Excel as a tool to
develop, manage, and report on testing status for the testing effort during a project. It
will show how to build worksheets for test cases, summary reports, and status reports. It
will show which of the features, and how to use them, in Excel to develop the test status
reporting tool. The presentation will discuss the benefits of effective test status reporting
and how Excel supports it. Also, when the tool needs to be built and implemented will be
discussed. Attendees will come away with a working model for their use.

1.0 Introduction

As a tester you are often asked how far along is the testing effort and when will it be
done. This is one of the tougher questions to answer, and usually the most nerve racking.
Especially when the testing effort for a project is just starting up, or close to being
finished. A process is needed to help gather information and effectively report on this
item. The problem is that a lot of companies cannot afford a complex commercial tool
due to financial reasons, or time constraints to evaluate and implement the tool.

A solution is available using commercial spreadsheet products, specifically Microsoft
Excel. Using the logic and formula functions along with a combination of linked
worksheets an easy to implement and use test status report tool can be built. This paper
will discuss the following:

• Microsoft Excel and the features / functions used for system
• When and how to implement the tool / system
• Test Status reporting system architecture
• Test Case worksheet layout and formulas
• Test Status worksheet layout and formulas
• Report generation
• Benefits of using the tool for test status reporting
• Time needed to build and maintain the system
• Lessons learned using the tool

1.1 Microsoft Excel features and functions

Microsoft Excel is a very robust spreadsheet application. Its numerous features and
functions allow the user to build simple to complex calculation & query formulas within
it. This allows a user to gather and analyze data from anywhere. These functions and
features are the building blocks for the test reporting system.

 Page 2 of 9

The function used most often is COUNTIF. It counts the number of cells within a range
that meet a given criteria. The format is: COUNTIF(D13:D38,"x"); where D13:D38 is
the range and “x” is the criteria to count. In the Test Case worksheet, which we will
discuss in detail later, the COUNTIF func tion is used to count the number of test steps
that have a specific status (PASS, FAIL, N/A). This in turn feeds into another calculation
to determine if the Test Case itself is complete or incomplete, and if it passed or failed.
This information is then fed into another worksheet / workbook that calculates and
reports on the test status progress.

Another function used extensively is the IF logic construct. IF is used to conduct
conditional tests on values and formulas. Returns one value if a condition you specify
evaluates to TRUE and another value if it evaluates to FALSE. The format is:
IF(logical_test,value_if_true,value_if_false). An example of the statement is:
IF(D11 + E11 + F11 = 0, "Not Started", IF(A11 = D11 + F11,"Passed", IF(A11 <> D11 +
E11 + F11, "Not Complete", IF(E11 > 0,"Failed")))). This compound IF statement is
used in the Test Case worksheet to determine the status of the test (Passed, Failed, Not
Started, and Not Complete). Again this information feeds into the report analysis /
generation worksheet.

The method used to tie the worksheets together is ‘linking’. The formula that is created
uses the link reference to the data to be collected. This formula will contain a reference
to the workbook (.xls file), the worksheet, and cell. An example of the statement is:
[TestCaseTemplate.xls]IE5.x!A11; where “[TestCaseTemplate.xls]” is the workbook
file, “IE5.x” is the worksheet name, and “A11” is the cell to reference. The
exclamation point (!) separates the worksheet name from the cell range referred to. Excel
can automatically build this link for you in just a few steps (look up “Create a formula to
calculate data on another worksheet or workbook” in Help for the procedure).

Finally, the typical mathematical operators (*, +, -, /) along with the other functions
(SUM, MIN, MAX, etc.) used are to calculate the various statistics for reports.

Basically it is only a few functions used in Excel that make the whole thing work.
Sounds pretty simple and straight forward? It is, and that is the beauty of the system.

2.0 When and how to implement the system

Ideally implementation should be as early in the project lifecycle as possible. The
template files can be created with out all of the testing task information (requirements and
functionality to test, and associated test cases). If the templates are built early on it helps
in the tracking and reporting of status of test case creation. This is a bonus for both the
test team and project management.

Reality occurs though and the system typically is implemented right as the test plan is
being completed.

 Page 3 of 9

How to implement the system is very straightforward. Create a repository on the
network, this is just a directory/folder that everyone has access to. All interested parties
will need access to the information. First, build the template files. The first one is the
Test Case template (this includes the format and formulas in it). The next one will be the
Test Status template (this includes the format and formulas in it). Second, link the
worksheet templates together. The test cases, and their data, will need to be associated to
the status worksheet. Finally, begin building actual test cases and update/add them into
the test status worksheet. Again, straightforward.

2.1 Test Status system architecture

The architecture of the system is simple. Each Test Case worksheet is linked into the
Test Status worksheet. The data that is recorded and calculated in the test case is pulled
into the test status worksheet where it is again crunched for project level statistics for
reporting. Once the links are established data can be collected and reported on in any
manner.

Test # Steps

1

2

3

7

7

Executed

Completed

Not Run

Completed

Pass/Fail

Fail

N/A

Pass

7

Step Action
1
2
3
4
5
7

Pass
X
X
X
X
X

Fail

X

Step Action
1
2
3
4
5
7

Pass Fail

Step Action
1
2
3
4
5
7

Pass
X
X
X
X
X
X

Fail

Test Status worksheet

Test Case 1

Test Case 2

Test Case 3

 Page 4 of 9

2.2 Test Case worksheet

The test case worksheet itself is basic in its format and content. Specific fields are
calculated (Status, % Complete, and Num. of steps complete by status) and are pulled
into the test status worksheet for further analysis and reporting. Other static fields (Test
Case Name, T/C #, number of Steps, Name of Tester, Build Number, etc.) can also be
pulled into the test status worksheet if desired.

The calculated fields formulas are:
Status: = IF(D11 + E11 + F11 = 0, "Not Started", IF(A11 = D11 + F11, "Passed", IF(A11 <> D11 + E11 +
F11, "Not Complete", IF(E11 > 0, "Failed"))))
of Steps : = COUNTA(A13:A38)
Number of steps complete by status : = COUNTIF(D13:D38,"x") for Pass, = COUNTIF(E13:E38,"x") for
Fail, and = COUNTIF(F13:F38,"x") for N/A
% Complete: = (D11 + E11 + F11) / A11

Test Case Name: T/C #:
Description: Status: Not Started

Start Conditions: CR#(s):
Overall Pass Criteria:

Test Information
Name of Tester: Date:
Build Number: Time:

Test Data Used (acct, ssn): O/S:
Comments Browser:

25 steps Number of steps complete by status: 0 0 0 % Complete: 0%

Step Action Expected Result
P

ass

F
ail

N
/A

Comments CR#
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

End of Test Case

 Page 5 of 9

2.3 Test Status worksheet

The test status worksheet has numerous calculated fields (# of Test Cases Comp. / Total #
of Test Cases, # of Test Cases Passed / # of Test Cases Failed, Total # of Steps, Count of
Steps Passed, Count of Steps Failed, % Test Cases, % Steps Passed, % Steps Failed, and
P/F) and others that contain information pulled from the test case worksheet (Number of
Steps, Steps Executed, Steps Passed, Steps Failed, Date Tested, Bld Ver.). Additional
information can be pulled in from test case worksheet (Tested By). Whatever is
important to status reporting.

The calculated fields formulas are:
of Test Cases Comp. : = COUNTIF(C7:C9,"Passed")+COUNTIF(C6:C9,"Failed")
Total # of Test Cases : =COUNTA(A7:A7)+COUNTA(A8:A8)
of Test Cases Passed: =COUNTIF(C7:C8,"Passed")
of Test Cases Failed: =COUNTIF(C7:C8,"Failed")
Total # of Steps/Count of Steps Executed: =SUM(D7:D8)
Count of Steps Passed: =SUM(F7:F8)
Count of Steps Failed: =SUM(G7:G8)
Percent # of Test Cases Comp. / Total # of Test Cases : =C2/C3
Percent of Steps Passed: =IF(F2 > 0,G2/F2,0)
Percent of Steps Failed: =IF(F2 > 0,H2/F2,0)
Passed/Failed: =IF(E7 = 0,"",IF(G7>0,"Failed",IF(D7 = F7, "Passed", "Pending")))

The test case linked fields formulas are:
Number of Steps : ='[TestCaseTemplate.xls]IE5.x'!A11
Steps Executed: ='[TestCaseTemplate.xls]IE5.x'!D11 + '[TestCaseTemplate.xls]IE5.x'!E11 +
 '[TestCaseTemplate.xls]IE5.x'!F11
Steps Passed: ='[TestCaseTemplate.xls]IE5.x'!D11
Steps Failed: ='[TestCaseTemplate.xls]IE5.x'!E11
Date Tested: =IF(E7 <> 0,'[TestCaseTemplate.xls]IE5.x'!G6, "")
Build Version (Bld. Ver.): =IF(E7 <> 0,'[TestCaseTemplate.xls]IE5.x'!C7, "")

In each of the calculations (local to the sheet or the link to the test case worksheet) the
cell ranges (i.e., C7:C8) can vary in number (range), it depends on how the spreadsheets
are built. Again, the “[TestCaseTemplate.xls]” is the workbook file, “IE5.x” is the
worksheet name, and “A11” is the cell to reference. Notice how the IF statement is
used to either get data from the test case worksheet (as in Build Version) or calculate a
value based on other cells in the status worksheet.

Summary # of Test Cases
Comp. / Total #
of Test Cases

of Test
Cases

Passed / #
of Test
Cases
Failed

Total # of
Steps /Count

of Steps
Executed

Count of
Steps Passed/

% Steps
Passed

Count of
Steps Failed/

% Steps
Failed

Totals 1 1 25 25 0
1 0

Percent 100% 100% 0%

Test Cases P/F
Number
of Steps

Steps
Executed

Steps
Passed

Steps
Failed Date Tested

Bld
Ver.

Test1 Basic Test Passed 25 25 25 0 1/0/00 0

 Page 6 of 9

Presented here is the core functionality, and it can be expanded upon based on need.

This information can also be pulled into another worksheet. As in the case of
compatibility testing another worksheet can show which platforms (Software version,
Operating System, Browser version/type, etc.) have been tested and their status. To do
this duplicate the test case worksheets for each platform (i.e., browser version and type)
in that test cases workbook. Then in the test status workbook create summary worksheets
for each platform. Finally, create a summary worksheet that pulls its information from
the platform worksheets. As an example,

where each column is the platform being tested.

From here any type of report can be generated (tabular or chart).

3.0 Report Generation

The test summary spreadsheets themselves are used as the standard reports. Most people
(management and other groups outside of Test/QA) want to know how many tests passed
and failed, how many tests are executed, and how many are left to execute. They may
also want to know who executed them or who is assigned to execute them. This last item
helps in keeping tests assigned to staff and ensuring that the tests are being executed in a
timely fashion. There is nothing worse than at the end of a project realizing an important
test was not executed because it fell through the cracks, or that an important platform was
not tested.

The reports can also be converted into charts for a visual view. Bar, Line, and Pie charts
can be used to show status. Line charts show progress over time. This can include tests
executed per week, or tests passed vs. failed per week, or number of test cases written vs.
total to be written (this last one is done early in the project lifecycle and is beneficial in
that it shows readiness of the Test group). Pie charts can be used to show status for
coverage. This can include percent test cases executed vs. not executed, or percent
platforms tested vs. not tested. Either of these can then be combined with defect status
reports to show effectiveness of testing (number of new defects found per week that are
attributable to test case execution, meaning that any ad-hoc testing defects are left out and
just the ones found by the test cases are considered). Or it can be used to show system

Test Case Status of Primary Platforms
of Test Cases Comp. / Total #

of Test Cases
of Test Cases Passed / # of

Test Cases Failed

Totals 2 2
2 0

Percent 100% 100%

Completion IE5.5 NS4.7

Test1 Passed Passed

 Page 7 of 9

stability (more defects are closed than found in a week for the amount of test cases
executed). An example line chart is shown below.

Tundra

0

10

20

30

40

50

60

70

80

90

100

6/3 6/4 6/5 6/6 6/7 6/8 6/9 6/10 6/11 6/12 6/13 6/14 6/15 6/16 6/17 6/18 6/19

Date

T
es

t C
as

e
C

o
u

n
t

Planned

Actual

4.0 Benefits of using the tool

• Higher accuracy of reporting testing status. Because the tool is automated and the
format is standardized the chance for miscalculation is minimized, no direct
interaction from tester.

• Earlier warning if project / test effort is in trouble.

• Individual or project progress can be tracked. Allows for better estimates of
completion to be made.

• Can be incorporated into daily and project reports in other documents. This saves
time and effort on the part of the test manager, and other interested parties.

• The data is in a centralized repository and is more accessible.

• It saves time and money. Because Excel is part of Microsoft Office it is readily
available and the cost of the system is in the time spent to build it. No other
software is needed. There isn’t any ramp up time to learn or develop a 3rd party
tool.

 Page 8 of 9

5.0 Summary

Using Excel as an alternative to a third party tool is a viable solution for companies who
do not have the time or the budget to implement other tools. Utilizing its built in
functions and formulas, and a little bit of inspiration, a customized and flexible test status
reporting system can be built. With the information presented here anyone can jumpstart
the implementation process.

We have found, out of necessity, that proper test management and status reporting are
vital to the success of a project. By using the test status system we have saved ourselves
time and money, increased our reporting accuracy, and been able to keep our testing
projects under control.

 Page 9 of 9

Author(s) Biography:

Jim Hazen - Jim has 15 years experience in software development and testing. Jim is a
Test Engineer with SysTest Labs in Denver, Colorado. Jim is a Certified Software Test
Engineer through the Quality Assurance Institute.

Jim has worked in various capacities as a test lead / project manager, automation
developer, and department manager. He has worked with a wide variety of applications
on DOS, OS/2, Windows, and Web environments.

Earl Burba – Earl has over 20 years experience in software development and testing.
Earl is a Sr. Project Manager with SysTest Labs in Denver, Colorado.

Earl has worked in various positions within industry. Earl’s experience includes flight
systems, telephony, database, business and embedded operating systems. Earl is an
award winning author, and holds patents on software testing tools & methodologies.

Key Points

Product quality results from the right mix of test activities
Six Sigma can help me measure what will work best
Six Sigma makes it possible to achieve a target quality for my software

Presentation Abstract

This paper will present case study findings from a Six Sigma Black Belt Project. Every Black Belt Project has
a charter that defines the customer focus and the goals of the project. This project is designed to identify the
key factors that impact test effectiveness for static and dynamic test technologies. Empirical data is collected
and simulation models of the generic processes are created. The models that are created abstract away
unnecessary details of the process and provide a test-bed to evaluate the two test technologies relative to
their effectiveness, cost in effort, time required (duration), and complexity of the activity. The project results
quantify the relative productivity of static analysis techniques versus dynamic automated test technologies.

About the Author

Dr. Nancy Eickelmann is currently a research scientist for Motorola Labs and is leading the Motorola
software and system test process measurement and evaluation research initiative. Prior to joining Motorola
she was program manager at the NASA/WVU Software Research Laboratory, located at the NASA
Independent Verification and Validation research facility. Before joining NASA she was a member of the
Advanced Programs Research Group at MCC where she developed a measurement framework for guiding
the decision-making process in product line development. Dr. Eickelmann began her research career as a
member of the technical staff at Hughes Research Laboratory (HRL) in Malibu, California while completing
her doctorate at the University of California, Irvine. She was named a Hughes Doctoral Fellow while working
at HRL and received several research awards while working with Dr. Debra Richardson's Formal Methods
and Software Testing Group at UCI. Dr. Eickelmann has collaborated internationally on research projects for
defense systems, space station applications, space shuttle and global software development. Dr.
Eickelmann holds a B.S. Finance, M.B.A., M.S. and Ph.D. Computer Science.

QW2002 Paper 6P1

Dr. Nancy Eickelmann
(Motorola)

Optimizing Test Productivity to Maximize Product Quality

1

1

Optimizing Test Productivity to Maximize Optimizing Test Productivity to Maximize
Product Quality: Product Quality:

A Six Sigma Case StudyA Six Sigma Case Study
Nancy S. Eickelmann, Ph.D.

Motorola Labs
1303 E. Algonquin Rd.

Schaumburg, IL, 60196, USA
(847) 538-0745

Nancy.Eickelmann@motorola.com

September 5, 2002

2

OutlineOutline

• What is Six Sigma?

• Six Sigma Methodology

• 8 Steps of Experimental Design

• The Study

• The Results

• Conclusion

2

3

What is Six Sigma?What is Six Sigma?What is Six Sigma?

“Six Sigma is a 4-step high performance system to
execute business strategy.” Matt Barney, Motorola Inc.

1. Align executives to the right objectives and targets
2. Mobilize improvement teams
3. Accelerate results
4. Govern sustained improvement

4

DMAIC: Six Sigma MethodologyDMAIC: Six Sigma MethodologyDMAIC: Six Sigma Methodology
• Define: requires a project charter which must include a

business case with (financial impact), problem statement, goal
statement, project scope, team member roles,
milestones/deliverables and support required.

• Measure: builds a factual understanding of existing process
conditions and problems. A critical part of the measure phase
is a Gage R&R report that isolates the amount of variation
introduced through the data collection process versus the
technical or business process to be studied.

• Analysis: applie a design of experiments for the Six Sigma
project.

• Improve: consists of implementing the process changes
isolated in the analysis phase.

• Control: monitors and ensures that the new process is being
followed.

3

5

Six Sigma for SoftwareSix Sigma for SoftwareSix Sigma for Software
Only 16.2% of software projects are completed on-time and on-

budget.

In larger companies, a meager 9% of technology projects come in
on-time and on-budget. In addition, about one third of all projects
will be canceled before they ever get completed.

Further results indicate 53% of projects will cost an average of 189%
of their original estimates. In financial terms this analysis revealed
that over $100 billion in cancellations and $60 billion in budget
over runs occur in the Software Sector annually. The numbers just
don’t lie.*

Source: http://www.bmgi.com/course_SS_Software.htm

6

8 Steps of Experimental Design8 Steps of Experimental Design8 Steps of Experimental Design
1. State the Problem with Clarity
2. Select the Output or Response Variables
3. Identify the Process Variables
4. Select the Factor Levels and Ranges of Factor

Settings
5. Select the Appropriate Experimental Design
6. Plan the Experiment
7. Execute the Experiment
8. Analyze and Interpret the Results

4

7

Step 1:State the Problem with ClarityStep 1:State the Problem with ClarityStep 1:State the Problem with Clarity

What are the impacts of changing the inspection
process?

Are the effects limited to the inspection process or
are there larger impacts across the lifecycle?

8

Step 2: Select the Output or Response VariablesStep 2:Step 2: Select the Output or Response VariablesSelect the Output or Response Variables

• The output variables selected were:

– staff hours of effort by activity type
– total staff hours of effort
– total cycle time
– defects found
– fault density

5

9

Data Analysis: Average Effort per Process StepData Analysis: Average Effort per Process StepData Analysis: Average Effort per Process Step

10

Step 3: Identify the Process VariablesStep 3: Identify the Process VariablesStep 3: Identify the Process Variables

• Number of staff per
inspection team

• Number of process steps
• Overview effort
• Planning effort
• Meeting effort
• Preparation effort

PLANNING OVERVIEW PREPARATION MEETING REWORK FOLLOW-UP

THIRD HOUR

PLANNING STUDY MEETING FOLLOW-UP

NASA/JPL Formal Inspection Process

Motorola CGISS Forma Technical Review Process

6

11

Step 4: Select the Factor Levels and
Ranges of Factor Settings

Step 4: Select the Factor Levels and Step 4: Select the Factor Levels and
Ranges of Factor SettingsRanges of Factor Settings

Table 1. High Low Conditions by Experimental Factor
Simulation
Run/Condition

Factor1
Team Size

Factor 2

SLOC/Pages

Factor 3
Defects

1 3 100 5
2 7 600 5
3 3 100 5
4 7 600 5
5 3 100 50
6 3 600 50
7 3 100 50
8 7 600 50

12

Step 5: Select the Appropriate
Experimental Design

Step 5: Select the Appropriate Step 5: Select the Appropriate
Experimental DesignExperimental Design

• The design selected was a 2X2X2 Full Factorial that
evaluates the 3 input factors for inspections.

• Two of these factors team size and product size inspected
are both measurable and controllable by management.

• The third factor or number of defects present is considered
uncontrolled but measurable and a key factor.

7

13

Step 6 &7: Plan and Execute the ExperimentStep 6 &7: Plan and Execute the ExperimentStep 6 &7: Plan and Execute the Experiment

14

Simulation Modeling StepsSimulation Modeling StepsSimulation Modeling Steps

Data Collection &
Analysis

Data Collection &
Analysis

Build Baseline
Simulation Model

Build Baseline
Simulation Model

Validation of the ModelValidation of the Model

Experiment w/ ScenariosExperiment w/ Scenarios

Analysis of ResultsAnalysis of Results

“WHAT-IF”

8

15

Data Analysis: Inspection EffectivenessData Analysis: Inspection EffectivenessData Analysis: Inspection Effectiveness

16

Step 8: Analyze and Interpret the ResultsStep 8: Analyze and Interpret the ResultsStep 8: Analyze and Interpret the Results

• time plots of responses
• residual plots
• pareto charts
• normal probability plot of effects
• P-values of effects
• main effects plots
• interaction plots
• cube plots

9

17

Data Analysis: Defects Vs. Detection EffortData Analysis: Defects Vs. Detection EffortData Analysis: Defects Vs. Detection Effort

– Detection Effort = Overview Effort + Preparation Effort +
Inspection Meeting Effort

– After about 35 hours, Effectiveness decreases

Detection Effort Vs. Defects Found

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

Hours of Detection Effort

N
um

be
r o

f D
ef

ec
ts

 F
ou

nd

18

Step 8: Analyze and Interpret the ResultsStep 8: Analyze and Interpret the ResultsStep 8: Analyze and Interpret the Results

Effect Tests
Source N DF Sum of

Squares
F Ratio Prob > F

No. of Inspectors 1 1 63.28125 2392.486 0.0130
Estimated Faults 1 1 708.00845 26767.81 0.0039
Size 1 1 52.73645 1993.817 0.0143
No. of Inspectors
*Estimated Faults

1 1 37.93205 1434.104 0.0168

No. of
Inspectors*Size

1 1 0.08405 3.1777 0.3255

Estimated Faults
*Size

1 1 33.04845 1249.469 0.0180

10

19

Step 8: Analyze and Interpret the ResultsStep 8: Analyze and Interpret the ResultsStep 8: Analyze and Interpret the Results

Pareto Plot of Transformed Estimates

Estimated Faults [5]
No. of Inspectors [3]
Size[100]
No. of Inspectors [3]*Estimated Faults [5]
Estimated Faults [5]*Size[100]
No. of Inspectors [3]*Size[100]

Term
-9.4075000
-2.8125000
-2.5675000
 2.1775000
 2.0325000
-0.1025000

Orthog Es timate

20

Fault Density vs. Prep RateFault Density vs. Prep RateFault Density vs. Prep Rate

0

0.5

1

1.5

2

Fa
ul

t D
en

si
ty

0 50 100 150 200 250
Prep Rate

11

21

Size vs. Pre_Time_SpentSize vs. Pre_Time_SpentSize vs. Pre_Time_Spent

0

100

200

300

400

500

600

700

800

900

1000

1100

SI
ZE

S

0 20 40 60 80 100 120 140 160
PRE_TIME_SPENT

22

Fault Discovery Rate vs. SizeFault Discovery Rate vs. SizeFault Discovery Rate vs. Size

-1

0

1

2

3

4

5

6

7

8

Fa
ul

t D
is

co
ve

ry
 R

at
e

0 10 20 30 40 50 60 70 80 90 100 110
SIZES

12

23

Productivity… InspectionsProductivity… InspectionsProductivity… Inspections

…Summary of measures

• Number of Staff/Inspection
• Staff effort expended in preparation and meeting time
• Preparation Rate per Page
• Preparation Rate per LOC
• Average Defects Found

Lifecycle productivity is not measured by these
measures….

24

Lifecycle Productivity Inspection & TestLifecycleLifecycle Productivity Inspection & TestProductivity Inspection & Test

• Defects Found
– Inspections: 65 %
– Tests: 35 %

• Inspection Effort to Test Effort
– 20 % (Inspections)
– 80 % (Tests)

• Productivity of Inspections
– 65% Defects/20% Effort = 3.25 Defects/Unit Effort

• Productivity of Tests
– 35% Defects/80% Effort = .44 Defectss/Unit Effort

• Productivity Inspection to Test
• 3.25/.44 = 7.4 Times More Productive

13

25

Lifecycle Productivity Inspection & TestLifecycleLifecycle Productivity Inspection & TestProductivity Inspection & Test

• Defects Found
– Inspection : 5%
– Test: 95%

• Inspection Effort to Test Effort
– 10 % (Inspection) to 90 % (Tests)

• Productivity of Inspection
– 5% Errors/10% Effort = 0.5 Defects/Unit Effort

• Productivity of Tests
– 95% Defects/90% Effort = 1.06 Defects/Unit Effort

• Productivity Inspection to Test
– 0.5/1.06 = 0.4 as Productive as Tests

26

SummarySummarySummary

• Six Sigma driven Quantitative Management of…
– Strategic Planning
– Process Improvement
– Technology Adoption

• Software Problems:
– Resource optimization of distributed development is not well

supported
– High maturity teams break their process when adopting

changes.
– Pilot programs often yield inconclusive evidence of technology

benefits due to process interactions.

14

27

-Predict Schedule
-Predict Effort
-Predict Quality
-Quantify Productivity
-Quantify Cycle Time

ConclusionConclusionConclusion

Data Collection &
Analysis

Data Collection &
Analysis

Build Baseline
Simulation Model
Build Baseline

Simulation Model

Validation of
the Model

Validation of
the Model

Experiment with Scenarios

Mot Labs Process Simulation Modeling is the only technology that
provides an experimental test bed for Six Sigma based software

improvement!

Perfect Knowledge

Knowledge level of
engineers
and scientists

Knowledge
GAP

Optimizing Test Productivity to Maximize Product Quality:
A Six Sigma Case Study

Nancy S. Eickelmann, Ph.D.
SSERL, Motorola Labs
 1303 E. Algonquin Rd.

Schaumburg, IL, 60196, USA
(847) 538-0745

Nancy.Eickelmann@motorola.com

ABSTRACT

This paper will present case study findings
from a Six Sigma Black Belt Project. Every
Black Belt Project has a charter that defines the
customer focus and the goals of the project.
This project is designed to identify the key
factors that impact test effectiveness for static
and dynamic test technologies. Empirical data
is collected and simulation models of the
generic processes are created. The models that
are created abstract away unnecessary details
of the process and provide a test-bed to
evaluate the two test technologies relative to
their effectiveness, cost in effort, time required
(duration), and complexity of the activity. The
project results quantify the relative productivity
of static analysis techniques versus dynamic
automated test technologies.

Keywords : Process Improvement, Defect
Prevention, Process Characterization and
Simulation.

1. INTRODUCTION
Extensive studies of the inspection process
have been conducted at IBM, NASA, JPL and
now Motorola to evaluate the normative effort
and duration levels per process step and to
evaluate and predict defect detection capability
for the process. Several studies have been

conducted over the last few decades concerning
the effectiveness of inspections and the
following data has been published concerning
their efficacy.

• Errors Found:
Fagan Inspections: 65 %
Tests: 35 %

• Inspection Effort to Test Effort
Fagan Inspections: 20 %
Tests: 80 %

• Productivity of Inspections

65% Errors/20% Effort = 3.25 Errors/Unit Effort

• Productivity of Tests
35% Errors/80% Effort = .44 Errors/Unit Effort

• Productivity Ratio Comparison of Inspections
to Test
3.25/.44 = Fagan Inspections are 7.4 Times
More Productive than Test

In addition, normative values for effort,
duration, number of people required (and their
respective roles) and defect detection have
been documented and validated. Figure 2
provides a diagram of the Fagan Inspection
process.

The primary factor correlated to defect
detection for inspections was the number of
hours spent in the overall process as well as
individual process steps. In our study we

Figure 1. Fagan Inspection process steps.

wanted to determine if modifying the Fagan
Inspection process would have an impact on
overall product quality as well as test efficiency
across the life cycle. Specifically, if the early
life cycle static analysis techniques were to
become less effective what would be the
impact for integration test and system test?

Figure 2. Number of Defects Found per Hours of Effort Spent.

The graph in Figure 5, is adapted from a study
reported by NASA/JPL with 171 inspections.
The total number of hours and number of
defects increase in a non-linear relationship up
to 28-32 hours of effort and then additional
hours spent may reduce or increase with equal
likelihood the number of defects found.
However, at low levels of effort8hours or less a

more direct relationship exists between number
of defects found and number of hours of effort
expended.

This study investigates the relationships
between key factors in inspections and the
direct impact on inspection effectiveness and
the resulting impact on overall lifecycle
productivity and quality. The paper is
organized as follows. Section 2 describes our
approach. Section 3 describes the actual
experiment and modeling and simulation
method used in the experiment. Section 4
discusses the results. Section 5 provides our
conclusions.

2. Six Sigma Case Study Approach

Six Sigma is a quantitative approach to
strategic management through analytical and
experimental initiatives. The defined, rigorous
and disciplined approach to process
improvement is encapsulated in one of two five
phase processes, DMAIC or DMADV. This
paper will focus on DMAIC, Define, Measure,
Analyze, Improve, Control. The define phase
requires a project charter which must include a
business case with (financial impact), problem
statement, goal statement, project scope, team
member roles, milestones/deliverables and
support required. The measure phase goal is to
build a factual understanding of existing
process conditions and problems. A critical part
of the measure phase is a Gage R&R report that
isolates the amount of variation introduced
through the data collection process versus the
technical or business process to be studied. The
analysis phase is applied using a full factorial
design of experiments for the Six Sigma
project. The improve phase consists of
implementing the process changes isolated in
the analysis phase. The control phase is applied
to monitor and ensure that the new process is
being followed. This paper will focus on the
analysis phase and the use of process modeling

Detection Effort Vs. Defects
Found

0
10
20
30
40
50
60
70

0 20 40 60 80
Hours of Detection Effort

Nu
m
be
r
of
De
fe
ct
s
Fo
un

and simulation to conduct full factorial design
of experiments.

The experimental approach is to create a
simulation model of the organisation’s current
static test process. The simulation models can
be executed to determine the impact of
inserting a new technology with respect to
productivity, schedule, quality, reliability
and/or cost. A prototype tool is developed that
provides an objective decision support
mechanism that a manger can use to evaluate
the impact of changing the current process or
technology.

To conduct these experiments we follow a
scientific approach to experimental design.
Consisting of essentially 8 steps.

1.) The initial step is to state the problem with
enough detail and clarity to communicate the
intended objective of the experiment and thus
the purpose of the model. A requirements
document must be created. Executable
simulation models (like most software) require
that multiple views of the model be
documented in text or graphic form. The
required views include data view, decision-gate
view, process view, resource usage view, and
user view. The data view must describe the
flow of information (possibly in the form of
data flow diagrams) and formally specify data
formats and data bindings. The second view is
to document the critical decision gates, the
decision mechanism used, and the decision
criteria applied. The canonical decision
example is when do we stop testing? The
process view documents the process steps; the
entry/exit criteria, process step inputs and
outputs, and required resources for an instance
of that step. The resource usage view describes
the sequence and magnitude of resources
required, and defines resources groups that
must occur at critical stages of the process. The
user view consists of use-case scenarios that
describe the actual activities that a test engineer

or test manager would engage in to perform
specific test functions.

2.) Next the researcher must select the response
set or output variables of interest. In industry
based models the response variable is generally
cycle time, effort, and/or number of defects
detected and removed.

3.) Third, the process variables must be
identified. The selection of the process
variables includes the design parameters
(control factors) and the noise variables. In
addition the interactions among these variables
must be isolated and quantified. Noise factors
are uncontrolled variables that may or may not
have significant impact on the response
variable. The experimenter or researcher may
modify the simulation model to mitigate any
untoward effects resulting from noise variables.
This is accomplished by altering the variable
values of the noise and design parameters for
various conditional levels.

4.) This step requires that a set of factor levels
and ranges of factor settings (values) be
determined and documented. The ranges of
values for the model factors may be context
sensitive and therefore the assumptions that the
researcher makes when creating the model are
very important to the accuracy and validity of
the results. A design of experiments is a tool
used in a Six Sigma project to evaluate the
cause and effect relationships between
numerous process variables (independent
variables) and an output variable or (dependent
variable). The design of experiments is an
effective and efficient approach to isolating the
key factors that are the significant sources of
process variation. By isolating the key
variables and their relationships, it enables the
prediction of the impact measured in gains or
losses from changes in process conditions or
contexts. A full factorial design of experiments
permits changing several factors or variables
simultaneously versus one at a time. The full

factorial design begins with only two
conditions per factor, requiring 8 simulation
runs overall, see table 1. The two factors are
assigned high and low values for the two
conditions however, a full factorial can
consider all combinations of factor conditions
and in this instance a normative condition per
factor is suggested. The resulting number of
simulation runs with three conditions, 3X3X3
= 27 simulation runs.

Table 1. High Low Conditions by Experimental Factor
Simulation
Run/Condition

Factor1
Team Size

Factor 2
SLOC

Factor 3
Defects

1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - +
7 - + +
8 + + +

All factor combinations can be tested for their
degree of variability and each factor can be
isolated to document the degree of common-
cause variation versus special cause variation.
In addition, process variation may result from
main effects or from interaction effects. To
calculate main affects the average of all
observations at the low level are subtracted
from the average of all observations at the high
level. Interaction effects occur when the effect
one factor has on a response variable is not the
same for each conditional level of another
factor. For example, Factor 1 and Factor 2
interaction is equal to the value of the Effect of
Factor 1 for a low value of Factor 2 subtracted
from the Effect of Factor 1 for a high value of
Factor 2, which is then divided by the number
of factors. Calculating a P-value, creating a
Pareto chart of the effects, or constructing a
probability plot of the effects achieves deciding
which effects are statistically significant.

5.) Choice of appropriate experimental design,
full factorial and reduced fractional including
screening, Plackett-Burman designs, fractional
factorial and response surface. Each type of

design is chosen based on how much you
already know about your process and how
many factors you want to test.

6. & 7.) Experimental planning and
experimental execution.

8.) Experimental data analysis and
interpretation. This is the final step of the
process and requires the data generated by the
experiment be analyzed to support the
researcher in drawing conclusions, verifying
that those conclusions are accurate and valid,
and then generating a report and presentation of
the results. Implicit in this step is
recommending actions to the project sponsor.
In reporting to the sponsor the researcher must
identify the potential causes of variation
isolated, justify why the study focused on
specific aspects and factors, what data was
collected to support the conclusions and how
that data was interpreted.

3. THE EXPERIMENT

Step 1. State the problem: What are the impacts
of changing the inspection process? Are the
effects limited to the inspection process or are
there larger impacts across the lifecycle?
Specific questions we wanted to answer:

• What is the impact on inspection
effectiveness and productivity of
reducing the number of preparation
effort hours expended?

• What is the impact on inspection
effectiveness and productivity of
eliminating or combining steps in the
inspection process to save time or
effort?

• Is there an impact on test effectiveness
if inspection effectiveness is
diminished?

• How can I measure that my full life
cycle test and analysis activities are

optimized to deliver the product with
certifiable degree of quality?

Step 2. Select the output variables: The output
variables selected were staff hours of effort by
activity type and total staff hours of effort; total
cycle time; defects found and fault density.

Step 3. Identify the process variables: The
process changes that had been made included:
reducing the number of staff per inspection
team; combining rework and follow-up process
steps; eliminating overviews; and reducing
planning effort. The diagram in figure 3
contrasts the five required and two optional
steps for Fagan Inspections and the four steps
of the Formal Technical Review.

PLANNING OVERVIEW PREPARATION MEETING REWORK FOLLOW-UP

THIRD HOUR

PLANNING STUDY MEETING FOLLOW-UP

NASA/JPL Formal Inspection Process

Motorola CGISS Forma Technical Review Process

Figure 3. Overlay of two process diagrams,
Fagan Inspections (top portion) and Formal
Technical Reviews (bottom portion that
represents a Modified Fagan process).

Step 4. Set the factor levels and ranges of
factor settings: The 4 general assumptions
behind the Inspection model are the following:

1) The nominal effort for an inspection
is 30.5 staff-hours on average and the
nominal cycle time for an inspection is
3 weeks. The nominal size for an

inspection is 400-600 LOC for a 2-hour
duration inspection meeting.

2) The nominal effort for the inspection
occurs when the estimated fault density
is between 50 – 75 faults/KLOC. For
fault densities greater than 75
faults/KLOC, the inspection effort and
cycle time are higher while for fault
densities less than 50 faults/KLOC, the
inspection effort and cycle time are on
average lower than the nominal.

3) If the inspection is a Document
Inspection with size in Pages, the model
converts the size to LOC using the
following relationship:
For Size Less than 20 pages

Size in LOC = Size in
pages * 20

For Size Between 20 and 40 pages
Size in LOC = 10 * Size

in pages + 200
For Size Greater than 40 pages

Size in LOC = Size in
pages * 15

4) The number of faults found during an
inspection depends on the defect
detection effort and the estimated faults.
The defect detection effort is the sum of
the overview effort, preparation effort,
and inspection meeting effort.
Increasing the defect detection effort
increases the number of faults found.

Using the model assumptions, results of the
NASA studies, and the empirical data collected
for this study we populated the factor table
with high (+) and low (-) values. The factor
ranges were derived from empirical data and
are not shown.

Table 1. High Low Conditions by Experimental Factor
Simulation
Run/Condition

Factor1
Team Size

Factor 2

SLOC/Pages

Factor 3
Defects

1 3 100 5
2 7 600 5
3 3 100 5
4 7 600 5
5 3 100 50
6 3 600 50
7 3 100 50
8 7 600 50

Step 5. Choice of Experimental Design: The
design selected was a 2X2X2 Full Factorial
that evaluates the three input factors for
inspections. Two of these factors team size and
product size inspected are both measurable and
controllable by management. The third factor
or number of defects present is considered
uncontrolled but measurable and a key factor.

Step 6 & 7: Experimental planning and
execution. The plan was to use an abstract
model of the inspection process. The model
needed to support representing the Fagan
Inspection process as well as support a re-
configured model to reflect the changes that
were implemented and resulted in the formal
technical review process. The model was built
using the Extend software modeling and
simulation environment and incorporated the
data values and factor relationships and
interactions identified through our analysis of
the empirical data.

The simulation model was developed using the
Extend software modeling tool. The tool
provides for the creation of a graphical user
interfaces for the models and the simulation
experiments, initialization modules to set initial
values for model factors and process variables,
and separate constructs for process fragments
such as reviews or test execution modules, and
finally reporting modules that output the data
from the experiment. In this section, we will
describe each part of the model and the
resulting data from the experimental
simulation.

The executable model has a manual input and
selection screen that allows the researcher to
set the factor values for the study. The input
screen has several key control aspects that are
used to design the experiment and are
described in order of placement top left to right
see Figure 4.

Figure 4. Extend Model input screen for design set-up and
factor values.

The first object in the screen is the blue circle
in the topmost left-hand corner. This object is
used to select discrete event or continuous
modeling as the time mechanism for the
simulation. The yellow box directly below it is
the manual input slots for the model factor
values of number of team size, estimated
number of defects, size of product (pages or
SLOC) The switch is applied to provide the
units of measurement for the size of the
product based on the format of the product
(pages versus SLOC).

The green box to the right of the screen has 7
switches that are essentially on/off devices to
include or exclude a process step from a set of
static techniques including Fagan inspections,
reviews, walkthroughs, peer reviews and other
manual analysis techniques. In Figure 3 the

Fagan Inspection process steps include five
mandatory steps and two optional steps. The
mandatory steps are shown in Figure 3 in
yellow; planning, preparation, inspection
meeting, rework, and follow-up. There are 2
optional steps; an overview meeting and a third
hour or extension to the inspection meeting.

The on/off switches essentially provide the
ability to reconfigure the model of the process
including or excluding process steps and providing
various ranges of input values for each factor.

3.1 Model Input Initialization

The Extend model requires an initialization
block that provides the initial values for the
model input factors. The Initialization block is
shown in Figure 5. The first DE Equation on
the left is used to convert from Pages to LOC,
if the Inspection is a Document Inspection. The
Set A(5) block is used to set the Team Size and
the Estimated Faults. There are 5 Stop blocks
that are used to stop the simulation if the input
values are out of range. For example, the
simulation stops if the inspection size is greater
than 800 LOC. The Initialization block
includes a Ratio block, which calculates a ratio,
based on the estimated fault density. This ratio
is then used to increase or reduce the estimated
effort and cycle time based on the estimated
fault density. For example, if the estimated
fault density is between 75 and 100 faults per
KLOC, the Ratio is between 0.93 and 1.18.

Figure 5. Extend Model initialization block.

3.2 Inspection Process Component

The principle component of the model is the
inspection process itself. This component of the
model represents the activities associated with
the process steps and creates the linkages for
the relationships between team size, product
size, effort in staff hours and defect detection
effectiveness. The inspection process module is
shown across 3 figures

Figure 6. Inspection process module (Part1)

The Inspection block is made up of the 7
inspection process steps: Planning, Overview,
Preparation, Meeting, Third Hour, Rework and
Follow Up. Figure 6 shows the portion of the
Inspection block from Planning to Preparation.
The Inspection block has a number of activity
delay blocks to calculate the cycle time for
each process step. The activity delay blocks
(these blocks are readily identifiable by the
Timer on them. One such block is the block
just to the left of Planning) are connected to a
Random Distribution block that gives a value
to the cycle time based on the triangular
distribution. The Planning, Overview and
Preparation blocks are used to calculate the
effort spent in these process steps.

Figure 7. Inspection process module (Part 2)

Figure 7 shows the portion of the Inspection
block from Preparation to Rework. There are 2
activity delay blocks to calculate Meeting
Cycle Time and Third Hour Cycle Time. The
Preparation, Meeting, Third Hour and Rework
blocks are used to calculate the effort spent in
these process steps. The Calc. Defects block is
used to calculate the number of defects found
in the inspection, based on the defect detection
effort and the estimated faults in the inspection
item. The Meeting Duration is calculated based
on the Inspection Size and the Inspection Rate.
The Inspection Rate is a triangular distribution.
The Meeting Effort is calculated by
multiplying the team size with the meeting
duration.

Figure 8. Inspection process module (Part 3)

STEP 8.) Experimental data analysis and
interpretation. The statistical analysis required
to evaluate the results of the experiment
include time plots of responses, residual plots,
pareto charts, normal probability plot of
effects, P-values of effects, main effects plots,
interaction plots and cube plots.

The time plots are to evaluate whether or not
factors are associated with trends or cycles
associated with time. The significance of
effects is evaluated using pareto charts, normal
probability plot of effects and P-values of
effects.

Effect Tests
Source N DF Sum of

Squares
F Ratio Prob > F

No. of Inspectors 1 1 63.28125 2392.486 0.0130
Estimated Faults 1 1 708.00845 26767.81 0.0039
Size 1 1 52.73645 1993.817 0.0143
No. of Inspectors
*Estimated Faults

1 1 37.93205 1434.104 0.0168

No. of
Inspectors*Size

1 1 0.08405 3.1777 0.3255

Estimated Faults
*Size

1 1 33.04845 1249.469 0.0180

Effect Screening

The parameter estimates are not correlated.
The parameter estimates have equal variances.

 Lenth PSE
t-Test Scale 56.804348
Coded Scale 3.26625

Normal Plot

N
or

m
al

iz
ed

 E
st

im
at

es
 (

O
rt

ho
g

t)

-200

-150

-100

-50

0

50

100

150

200

No. of Inspectors[3]

Estimated Faults[5]

Size[100]

No. of Inspectors[3]*Estimated Faults[5]Estimated Faults[5]*Size[100]

-3 -2 -1 0 1 2 3

Normal Quantile

Blue line is Lenth's PSE, from the estimates population.
Red line is RMSE, Root Mean Squared Error from the residual.

The effects analysis provides P-Values for
main effects and P-Values for interaction
effects. The main effects are low values for
number of inspectors (3), low values for
number of defects (5) and low values for
product size (100 SLOC). There were
significant interaction effects number of
inspectors (3) and defects (5), and number of
defects (5) and product size (100 SLOC). There
was no interaction between number of
inspectors (3) and product size (100 SLOC).

4. CONCLUSION

A great deal of study has been focused on
evaluating the inspection process as applied in
software engineering. Inspections are a static
analysis technique that brings a team of
software professionals together to manually
inspect the evolving software products from
requirements, design, code, and tests. A
formalized structured approach to inspections
was introduced in 1974 at IBM, and was
championed by Michael Fagan. Although there
is a substantial published empirical evidence of
the defect reduction, defect prevention, and
lifecycle cost reduction associated with Fagan
Inspections, industry is prone to “modify” the
inspection process as a quick cost cutting
measure.

A reduction of the number of preparation effort
hours expended resulted in a drop in the
number of defects detected per inspection, thus
impairing inspection effectiveness and
productivity. In addition, eliminating or
combining steps in the inspection process to
save time or effort resulted in further decreases
of defect detection.

To evaluate the trade off of changing one part
of the process the researcher must look at the
full life cycle to evaluate true impacts from a
lifecycle view, that is from requirements to test,

am I truly improving or just shifting resources.
In other words, how can full life cycle test and
analysis activities be optimized to deliver the
product with a certifiable degree of quality?

The calculation for full life cycle evaluation if
total amount of effort to each activity and the
defects detected by that activity.

Six Sigma uses process modeling and
simulation as a powerful tool to achieve the
development of high quality products through
quantitative control of process improvements,
technology adoption strategies, defect
prevention efforts and automation strategies. It
has been successfully applied in diverse areas
such as manufacturing, chemical production,
performance analysis, and more recently in
software process evaluation and analysis. A
rigorous method for empirical studies of the
software engineering domain should prove a
valuable tool in advancing knowledge in the
profession and contributing to establishing
objective evidence of best practices for
industry.

5. REFERENCES

1. Basili, V., “A Plan for Empirical Studies”,

In the Proceedings of the 1st Workshop on
Empirical Studies of Programmers,
Washington, D.C. June 5-6, 1986.

2. Curtis, B., “By the Way, Did Anyone Study
Real Programmers,” In the Proceedings of
the 1st Workshop on Empirical Studies of
Programmers, Washington, D.C. June 5-6,
1986.

3. Eickelmann, Nancy S., "Measuring and
Evaluating the Software Test Process."
European Software Measurement
Conference, FESMA `98, Antwerp,
Belgium, May 6-8, 1998.

4. Eickelmann, Nancy S. and Richardson,
Debra J., "Leveraging the Cost of Software

Testing with Measurable Process
Improvement," In the Proceedings of the
Computing in Engineering Conference,
ETCE-ASME `97, Houston, Texas, January
28-30, 1997.

5. Eickelmann, Nancy S., Evaluating
Investments in Emerging Test
Technologies. Seventeenth International
Conference on Testing Computer Software.
Bethesda, MD, June 12-16, 2000.

Key Points

Testing needs and value related to beta testing.
Review of a successful program refined and honed over a number of years.
Extensions which can be made to beta test programs.

Presentation Abstract

Today's competitive world demands rapid product development and deployment of new products. While the
time-to-market window is shrinking, the sheer number and complexities of product and solution tests are
increasing. Beta test environments encompassing complex, high-availability, worldwide networked
environments are very often required to test end-to-end hardware and software solutions.

The key to successful beta testing is adapting to new challenges. The shrinking "time-to-market" schedules
dictate shorter development and test cycles. There are increased product complexities with extensive
hardware and software interdependencies. It is increasingly difficult to mirror the "real world" customer
environments within internal test labs. Beta testing can be a very time and cost effective means of
augmenting and complementing "core" testing programs.

The IBM Printing Systems Division (PSD) has implemented a comprehensive beta test program and has
achieved a high level of success over a number of years. An eighteen step process has evolved, which
covers beta test procedures from product inception to product introduction and release.

About the Author

Ralph Dalebout is a Beta Test Project Manager in the IBM Printing Systems Division's Development Test
and Support group. He manages hardware and software Beta Tests with customers inside and outside IBM.
Ralph's career with IBM spans 30 plus years. He has held a number of different positions in marketing (IBM
Systems Engineer and Account Representative), product development (Product Planner), competitive
analysis / market research and product test.

Ralph has a degree in Mechanical Engineering from the University of Utah and a MBA degree from the
University of Washington.

QW2002 Paper 6P2

Mr. Ralph Dalebout
(IBM Corporation)

Beta Testing -- Boot Camp Basics and Beyond

Beta Testing Beta Testing
Boot Camp Basics Boot Camp Basics

and Beyondand Beyond
Ralph Dalebout

Phone: (303) 924-8130
E-mail: dalebout@us.ibm.com

IBM Printing Systems Division
Boulder, Colorado

September, 2002

Introduction

Quick IBM Printing Systems Division
(PSD) Profile

IBM has developed and manufactured printers for over 40 years.

5,000 employees worldwide.

Full Spectrum of Product Development and Delivery ... Research,
Development, Manufacturing, Marketing, Maintenance and Professional
Services.

Wide range of products (hardware, software and supplies) and services
(maintenance, professional and custom) in 130 countries worldwide.

Specializes in print solutions for the enterprise (large and small), delivering
customized and comprehensive "output management" solutions.

Today's competitive world demands rapid product development and deployment
of new products. While the time-to-market window is shrinking, the sheer
number and complexities of product and solution tests are increasing.

The focus of testing is naturally migrating from specific hardware and/or
software testing to customer "solution" testing. One of the challenges is
understanding how a new product will fit into the customer's environment from a
"work flow" point of view. We can no longer ask customers to adapt their
operations to our new and enhanced products.

Market Realities and External Forces
That Keep Us From A Perfect World

Why Beta Test?
A number of enterprises and organizations don't Beta test products and solutions.
Some have tried it and discontinued Beta testing for various reasons.

Shrinking "time-to-market" schedules dictate shorter development and test cycles.
At the same time, there are increased product complexities with extensive hardware
and software interdependencies. It is increasingly difficult to mirror the "real world"
customer environments within internal test labs.

Alpha and Beta tests are the first place where the developed product or solution
and the customer are introduced to one another. In order to assure delivery of a
solid product or solution to the customer, Beta tests are a natural way to test in a
complete customer environment, with a focus on the end-to-end customer solution.
For printing products, the customer is often willing to use the product in complex
environments and with production applications and systems. This customer
capability inevitably finds product defects and problems that cannot be found in the
test lab that has a strictly printing focus.

The successful integration of Beta testing into your overall Quality Assurance
strategy, procedures and processes can improve development time and reduce
your overall development costs! In addition, it can significantly improve your
confidence index relative to the acceptability of the product in real customer
environments, before you formally release the product.

Major Beta Test Objectives
Evaluate products and offerings in customer environments.

Remove product defects and improve and correct product documentation during
the Development and Test cycle.

Provide feedback to Development, ID (Information Development) and Service
prior to the general release of the product or offering.

Strengthen the working relationship between the customer and IBM.

Obtain early experience with new products using normal technical support
channels on a controlled basis.

Beta Test Phases
Planning Phase

Customer Nomination Phase

Customer Selection and Commitment Phase

Execution Phase

Completion and Wrap Up Phase

Beta Test Phase Details

Planning Phase
Define and convene Beta Test core team.
Define the functional attributes and/or applications that need to be tested.
Define reliability, availability and serviceability attributes to be tested.
Establish general test procedures, Beta Test metrics and test entry / exit criteria.
Establish the number of Beta Tests (customers) needed and the duration of each.
Develop initial Beta Test plan.
Solicit input form the various support organizations, who will be involved in the Beta
Test.
Publish final Beta Test Plan and distribute to the implementation. Team.
Describe customer profiles required to ensure successful Beta Tests.
Identify the customer's technical support profile to ensure a successful Beta Test.
Rank priorities of all Beta Test customer variables for selecting final Beta Test
customers.
Review the Beta Test Plan and selection criteria with the Customer Marketing and
Service account teams.
Create customer questionnaire.

Customer Nomination Phase
Provide Marketing qualification criteria for Beta Test candidates.

Have Marketing submit nominations for Beta Test candidates and provide
customer profiles.

Obtain initial approvals and legal clearances to disclose unannounced
product(s) and offering(s) to customer.

Formally disclose unannounced product(s) to customer.

Have customer complete profile questionnaire.

Customer Selection
and Commitment Phase

Review Beta Test candidates profiles and select accounts which best fit the
selection criteria.

Develop and review a draft State of Work describing the responsibilities of both
parties and the guidelines of the Beta Test with the customer.

Finalize the Beta Test Statement of Work and have both parties sign.

Execution Phase
Conduct Beta Test Readiness Review

Schedule kickoff meeting or conference call for the Beta Test.

Initiate the Beta Test.

Conduct weekly status meetings / conference calls to monitor the Beta Test.

Completion and Wrap-up Phase

Obtain consensus with the customer the Beta Test has completed on or about
the Beta Test target completion date.

Have customer complete Final Beta Test Survey form, including any
suggestions concerning the Beta Test.

Publish final Beta Test Report.

Combine Beta test results with normal Test results for an overall Risk
Assessment for the product.

Key Fundamentals and Rules
For Beta Test

Beta Test Ground Rules

Initially (and on a continuing basis), manage the expectation level with the customer and
the customer account team. Explain in great detail what the Beta test is and what is isn't.
Explain what the impact could be on the customer's resources and any potential risks.
There is no cost or obligation for the Beta Test to the customer.
The software and/or the hardware is provided at no charge to the customer. The
understanding is the customer will return the hardware (e.g. printer) at end of the Beta
Test. In the case of software, the customer agrees to delete the Beta Test software from
their system(s).
In some cases, we will even provide the required hardware (e.g. server) for a software
Beta test.
In the case of printer Beta Tests, basic supplies (e.g. ribbons and toner) will be supplied
at no charge for the duration of the Beta Test.
The Beta Test Statement of Work is intended to explain the general responsibilities of the
two parties. Either party has the option of terminating the Beta Test prior to its normal
completion.
The level of expectation has to be carefully set with the customer prior to initiating the
Beta Test.
Normal product support channels are used for Beta tests. For problems, the customer
call the regular 1-800 service support number and a formal problem is opened in the
problem tracking data base.

Management Commitment
Contrary to the adage "The best things in life are free!," there is no "free lunch"
in test. Beta Testing offers a number of potential benefits, but the benefits
come at a price. And the "cost" of Beta Tests goes beyond the Test
organization. It extends to all the support organizations which have to
participate in the Beta Test.

Management in all the organizations which participate in the Beta Test
programs needs to be committed to Beta Testing.

Key Requirements of
Successful Beta Testing

Planning Phase
Complete management chain buy-in and commitment.

You need to pull together the Beta Test core team (Marketing, Software
Development, Engineering, Information Development (Publications), Education,
Product Test and Technical Support and Service) very early and insist on full
participation for the duration of the Beta test.

You need to initiate the planning phase very early. This will force the different
organizations to focus on the specific requirements for the Beta Test.

Customer Nomination Phase

Define in detail the customer profiles (environment, required installed software
and hardware, technical support, etc.) describing the customers you are looking
for. Exclude competitive situations, where the Beta Test is being used to counter
competitive activities or pressures.

Communicate request for nominations to field operations and personnel.

Avoid problem accounts.

Customer Selection and
Commitment Phase

Assess whether the new product / offering has direct value to the customer.
There needs to be "pony" in the Beta Test for the customer and a "pony" for the
product / offering provider.

Assess whether the customer is fully committed to the Beta Test from a customer
management point of view.

Assess whether the customer has the technical resources to effectively
participate in the Beta Test. Many IT organizations are overcommitted and
adding another series of "To Do's" to their workload isn't realistic.

Assess whether product / offering provider has the local resources and
commitment to support the Beta Test. Competent / on-site personnel supporting
the Beta Test can significantly insure the success of the Beta Test.

Developing a Beta Test customer profile / selection criteria matrix can help
simplify the customer selection process. Developing a weighting scheme for the
criteria will allow you to come up with a numeric value to rank the candidates
with.

Execution Phase
Closely monitoring all the Beta Test activities is key to a successful Beta Test.
You need to make sure there is complete follow through and closure on all the
problems, action items and To Do's which surface in the Beta Test and in a
timely fashion.

Follow-up ... Follow-up ... Follow-up.

Flatten problems quickly.

Probability of Success and
Beta Test Shortcomings

Realistic Expectations

A number of Beta tests will be unsuccessful.

A number of Beta tests will be moderately successful.

A very few will be highly successful!

Shortcomings and Exposures

Mergers and acquisitions impacting IT operations.

"Resource" actions impacting staffing of Beta test program

Regular "Day Job" priorities.

Changing management support commitments.

Beyond Traditional Beta Testing -
Improving The Odds

Development Partnership Program (DPP)

Select group of customers (based on previous Beta test experience).

Continuity - two year program and renewable.

Known environments, known personnel and working relationships ...
predictable results.

Eliminate the twelve steps (and associated time) involved in the Beta Test
Planning Phase.

Summary

Beta testing has a very positive payoff for IBM.

Beta testing augments and complements basic testing programs.

Managing a successful Beta test program presents many challenges.

New approaches (e.g. Development Partnership Program) can shorten time table
and achieve a higher probability of success.

Key Points

Issues in managing testware
The significance of a product model
Practical solutions for testware management

Presentation Abstract

Software development is organized around products. Code is produced in source files, data models are
based on descriptions and documentation is available as documents and help files. Tests however seem to
move away from that model now. More and more tests are kept as a collection of single test cases! Also
automation scripts are maintained within test tools and are not treated the same way as other software.
Version control and configuration management are likely victims and maintainability gets under pressure.
This talk will take the audience through the main considerations that apply in managing tests and scripts as
what they are, namely development products.

About the Author

Hans Buwalda, ABT Chief Architect, leads LogiGear's Action Based Testing™ (ABT) research and
development, including ABT Toolset™ operations, and oversees the practice of the ABT methodology. Prior
to joining LogiGear, Hans served as Project Director at CMG in The Netherlands where he was the original
architect behind what has now become TestFrame™ - an integrated method for planning, managing, and
deploying software testing and test automation. Hans is an internationally recognized expert specializing in
test automation, test development, and test management. He speaks and presents workshops at
international conferences on testing concepts such as Action Based Testing, The Three Holy Grails of Test
Development, Soap Opera Testing, and Testing in the Cold. Hans authored (along with Dennis Janssen and
Iris Pinkster) Integrated Test Design and Automation: Using the TestFrame Method (Addison Wesley 2001).
He holds a Master of Science degree in Computer Science from Free University, Amsterdam.

QW2002 Paper 7P1

Mr. Hans Buwalda
(LogiGear Corporation)

Managing Test Products, The Next Challenge

1

Managing Test Products

Hans Buwalda

LogiGear® Corporation

Presentation 7P1

(C) 2002 Logigear Corporation, all rights reserved

(C) 2002 Logigear Corporation, all rights reserved 2

Key Issues in Testing

• Appropriate Test design
• Comprehensive automation architecture

• manageable, maintainable

• Management of the test process
• managers want to know what is going on

• Documentation
• Clear and useful reporting

• progress, results

• Quality Assurance
• efficient and effective involvement of stake holders, users, auditors

• Management of the tests
• tests and test scripts are products that need to be managed

2

(C) 2002 Logigear Corporation, all rights reserved 3

What is a Product

• Dictionary: "Something produced by effort, or
some mechanical or industrial process"

• In our case a product can be a combination of
products, we will call that a complex product

• What is Important for a Product
To produce it
To manage it

(C) 2002 Logigear Corporation, all rights reserved 4

Examples of Software Products

• Source files

• Data models

• Design documents

• Manuals

• Help files

• Binaries and intermediate files

3

(C) 2002 Logigear Corporation, all rights reserved 5

Is a Test to be Considered a Product

• "No way, it is an activity to improve the quality of
other products"

can be a relevant angle
at least some testers like to work this way (and are good at it)
see also: exploratory testing (James Bach)

• "Sure, it is the outcome of a test development
effort"

either manual test plans or automated tests
for a large group more motivating to be a test developer
easier to audit or otherwise control

(C) 2002 Logigear Corporation, all rights reserved 6

Advantages of a Product Angle

• Easier to be structured and systematic

• Long term value re-use value

• Good basis for audits

• If automated, repeatable execution

• Can be developed well in advance

4

(C) 2002 Logigear Corporation, all rights reserved 7

Disadvantages of a Product Angle

• More work

• Tends to be less aggressive (tame)

• Inhibits variation

• Products have to be managed to keep their value

(C) 2002 Logigear Corporation, all rights reserved 8

Source Products Come in Levels

• System Source, consisting of

• Source files, consisting of

• Functions, consisting of

• Statements, declarations, etc

common
level of
management

5

(C) 2002 Logigear Corporation, all rights reserved 9

Levels in Test Products

• Test suite, consisting of

• Application test, System Test, etc, consisting of

• Test Plans, consisting of

• Test Cases
lowest level in
test management
tools

typical focus for
manual tests

(C) 2002 Logigear Corporation, all rights reserved 10

Comparison with Software Development

• Test plans are typically documents, (more or less)
like source files, designs and manuals

• Test cases could be compared to functions, but
there are differences:

a test case is usually self contained, not related to other test cases
it is possible to have logical and physical test cases
closest similarity in software are object or components

• In more and more projects part of the test cases
are implemented with automated test scripts

typically on case by case basis

6

(C) 2002 Logigear Corporation, all rights reserved 11

• Based on a notion that a test can be broken down in a
number of consecutive actions

• Not only the test data but also the actions are in the
test file, they are defined by the tester

• Instead of implementing test cases, the engineer
concentrates on the programming individual actions

we call this person the "navigation engineer" or "navigator"

• Reporting is done at the level of the test

• Most actions are high-level
test oriented instead
of object oriented

enter customer Jones
instead of

push_button New
type_keys Jones
push_button Process

Basic Principles of Action Based Testing (ABT)

(C) 2002 Logigear Corporation, all rights reserved 12

Test Product Life Cycle

• Actual results
• Comparison with expectations
• Management information

• Input data
• Expected outcomes
• Documentation

Management

System
Development

QA/Auditors

End users

System(s)
Under Test

Report

Global Test Design

"Test Clusters"

Test Planning and Control

Navigation
Scheme• Breakdown

• Analysis
• Clustering

SEPARATION

Physical
Navigation

7

(C) 2002 Logigear Corporation, all rights reserved 13

cluster EXAMPLE OF A TEST CLUSTER
version 1.0
author Hans Buwalda

section 1. Entering clients and balances
last name first name account nr balance

enter client Green John 458473948 1500
enter client Wood Anna 422087596 2100

section 2. Money Transfers
from to sum

transfer 458473948 422087596 500
transfer 422087596 785793025 1201

section 3. Checking names and numbers
account nr last name first name

check name 458473948 Green John
check name 422087596 Wood Anna

account nr sum
check balance 458473948 1000
check balance 422087596 1399

INPUT

EXPECTED
OUTCOMES

HEADER

Example of an ABT Test Cluster

(C) 2002 Logigear Corporation, all rights reserved 14

ABT Reporting Example

TEST RUN SUMMARY

test cluster: Minibank business test
test sheet: demonstration scenarios
test version: 1.2
test author: Hans Buwalda, all rights reserved
test date: April, 2001

run date and time: Tue Nov 06 12:49:06 2001

SCENARIO MB01 -- Entering customers using manual numbering
In this scenario the account numbers are entered manually.

Enter Customers - Entering 5 customers in the Relation Entry screen

14, enter customer: Johnson Jean 500103381 1500

15, enter customer: Juet Christian 423137538 2100

16, enter customer: Savy Anne 848656467 1700...

8

(C) 2002 Logigear Corporation, all rights reserved 15

Reporting Example Continued

Check Balances - Check if the balances are conform the entry and the transfers

36, check balance: 500103381 1000
check: balance
expected: 1000
recorded: 1000
result passed

37, check balance: 423137538 555
check: argument 2
expected: 555
recorded: 2600
result failed

RESULTS TEST EXECUTION

overall statistics for this test run:
number of checks: 21
number of passes: 20
number of failures: 1

fail(s) were found in these line(s):
37

..

(C) 2002 Logigear Corporation, all rights reserved 16

Test Objectives

...
TO-3.51 The exit date must be after the entry date
...

test objective TO-3.51

name entry date exit date
enter employment Bill Goodfellow 2002-10-02 2002-10-01
check error message The exit date must be after the entry date.

9

(C) 2002 Logigear Corporation, all rights reserved 17

Build Up of an ABT Test Cluster

Test
Objectives

Test
Scenarios
(Cases)

ABT Test Cluster
(Excel Workbook)

Other
InfoTest

ObjectivesTest
Scenarios
(Cases)

Other
Info

(C) 2002 Logigear Corporation, all rights reserved 18

ABT Test Project

Global
Test

Design

ABT Test Cluster
(Excel Workbook)

Other
InfoTest

ObjectivesTest
Scenarios
(Cases)

ABT Test Cluster
(Excel Workbook)

Other
InfoTest

ObjectivesTest
Scenarios
(Cases)

. .
 .

N
avigation
Schem

e

10

(C) 2002 Logigear Corporation, all rights reserved 19

Navigation Scheme

CONTROL Reports

Low Level Action Layer

High-levelHigh-levelHigh-level

Application

Intermediate Level(s) Intermediate Level(s)

(C) 2002 Logigear Corporation, all rights reserved 20

• High Level Business Oriented Tests
• Production Acceptance Tests

• Functional Tests
• Technical Tests

• Low Level Functional Tests
• Technical Tests

Specifications

Design

. .
 .

. .
 .

System
Development

Test
Development

High Level
Actions

Intermediate
Level Actions

Low Level
Actions

Navigation
Test Execution

Programming

Product in Perspective

11

(C) 2002 Logigear Corporation, all rights reserved 21

Our Take on Test Products

• The test cluster are treated as source files
interpreted by the navigation scheme
"compiled" into a test management tool or environment

• The test plan identifies the clusters
no test cases in a test plan, they go in the clusters

• Product Management is done at cluster level
test cases have a documentary role

• Results are also regarded as products
"produced by some mechanical or industrial process"

• We do not write automated scripts for test cases
in stead we have a navigation scheme implementing the actions (which
also consists of products, not treated in this presentation)

Good "clustering" (cluster identification) is essential

(C) 2002 Logigear Corporation, all rights reserved 22

Clustering Recommendations

• Logical to all concerned

• Independent from other clusters

• Well differentiated and clear in scope

• Fitting the priorities and planning of the project

• Balanced in size and amount

12

(C) 2002 Logigear Corporation, all rights reserved 23

Examples of Clustering Criteria
• Architecture of the system under test

• Functionality and other requirements

• Quality attributes

• Level of detail

• Planning and control

• Level of risks involved

• Complexity of the test

• Technical aspects of test execution

• Stake holders

• Code hand-offs (Brian Marick)

{STRAIGHTFORWARD

ADDITIONAL

(C) 2002 Logigear Corporation, all rights reserved 24

Three Environments for Products

ABT Test Cluster
(Excel Workbook)

Other
InfoTest

ObjectivesTest
Scenarios
(Cases)

RESULTS

Test
Execution

Collaborative Environment

Local Work Environments Test Run Environment

DATA FILES

NAVIGATION

13

(C) 2002 Logigear Corporation, all rights reserved 25

Fitting in with a Test Management Tool

Test Manager:
- test plan
- test cases information
- control

Requirements,
specifications, ...

Progress and
test reporting

ABT Test Clusters, using Excel:
- test cases
- test actions
- test objectives

ABT Navigation Scheme:
- action implementations
- intermediate level actions
- interface information
- ABT Engine

Automation tool:
- scripts for low level actions

ABT Test
Reporting

(C) 2002 Logigear Corporation, all rights reserved 26

Advantages

• The (explicit) identification of clusters has proven a good
basis for control of the entire test process

we call this "clustering"

• Work assignment is more straightforward
based on developing, assessing, running and maintaining clusters

• There is a local and central environment, making it easier
to organize work

just like with program sources

• Having a well delimited document makes it easier to
communicate, manage, assess etc

if . . . you do good
clustering . . .

14

(C) 2002 Logigear Corporation, all rights reserved 27

Summary

• Tests can be regarded as products
but that is not always necessary or even desirable

• A test set can be developed and managed as a structured
collection of cases or as a set of documents

both angles have advantages

• ABT treats test development like software development,
test clusters as source documents
with a local and a collaborative environment

• When managed as test clusters, the clustering is essential

(C) 2002 Logigear Corporation, all rights reserved 28

Some References
• Buwalda, Hans, Testing with Action Words, Abandoning Record and Playback, Eurostar

1996
• Buwalda, Hans, Testing with Action Words, STAR 1998
• Buwalda, Hans, and Kasdorp, Maartje, Getting Automated Testing Under Control, STQE

Magazine, November Issue 1999
• Buwalda, Hans, Soap Opera Testing, STAR East 2000
• Buwalda, Hans, Janssen, Dennis, and Pinkster, Iris, Integrated Test Design & Automation

Using The TestFrame Method, Addison Wesley, 2001
• Buwalda, Hans, The Three Holy Grails of Test Development, Quality Week 2001
• Graham, Dorothy, and Fewster, Mark, Automating Software Testing, Addison Wesley, 1999
• Kaner, Cem, Bach, James, and Pettichord, Bret, Lessons Learned in Software Testing, 2001

(expected)
• Kaner, Cem, Nguyen, Hung Quoc, and Falk, Jack, Testing Computer Software, 2nd Edition,

John Wiley & Sons, 1999
• Kit, Edward, Software Testing in the Real World, Addison Wesley Longman, 1996
• Marick, Brian, New Models for Test Development, www.testing.com/writings/new-

models.pdf, 1999
• Nguyen, Hung, Testing Applications on the Web, Wiley, John & Sons, Incorporated, 2000
• Splaine, Steven, and Jaskiel, Stefan, The Web Testing Handbook, STQE Publishing, 2001

Key Points

Rock climbers have some important lessons about QA to teach software developers
3 Lessons: Have a Process, Seek Peer Review, and Focus on Details
Quality is ultimately an individual activity, yet cultural climate is essential.

Presentation Abstract

The sport of modern technical rock climbing has some important similarities with software development.
They are both demanding technical disciplines, often performed under pressure, where even a trivial
mistake may have profound consequences. This paper will examine the quality assurance activities
undertaken by rock climbers and consider the implications for software developers.

About the Author

Dr. John Dalbey is an experienced rock climber and wilderness guide and leads mountaineering courses for
Outward Bound. He is also on the Computer Science faculty at California Polytechnic State University in
San Luis Obispo, California, where he teaches software engineering.

QW2002 Paper 7P2

Mr. John Dalbey
(Cal Poly Computer Science Department)

A Climber's View of Software Quality

John Dalbey

A Climber’s View of Software Quality 1

A Climber’s View
of

Software Quality

Dr. John Dalbey

© Copyright 2002 Dr. John Dalbey

QualityWeek 2002

Author Biography

• Faculty member, Computer Science Dept.
Cal Poly, San Luis Obispo

• Wilderness Guide, Pacific Crest Outward
Bound School

• 25 years rock climbing experience

John Dalbey

A Climber’s View of Software Quality 2

Climbing and Software?

Important similarities:
• Demanding technical disciplines.
• Performed under pressure.
• Tiny mistakes have profound consequences.

Factors in “big wall” climbing

• Multi-day climb.
• Haul all water, food, and equipment.
• Complicated logistics.
• Eating and sleeping on the cliff.
• Predominantly “direct aid” climbing (as

opposed to “free” climbing).
• Gear intensive.

John Dalbey

A Climber’s View of Software Quality 3

QA in Climbing

• Scaling vertical cliffs presents obvious
hazards.

• Modern rock climbing is a very technical
pursuit.
– Sophisticated equipment.
– Technical procedures and skills.

• QA is essential to the sport - called “safety.”

What can software professionals
learn from climbers?

• Many aspects of climbing “safety” are
analogous to QA in the software world.

• QA for climbers must be simple,
lightweight, practical, and reliable.

• Considering QA in this framework can help
software professionals focus on the
essentials.

• Creating a “culture” of quality.

John Dalbey

A Climber’s View of Software Quality 4

Climbing’s Three QA Practices

• Follow a process.
• Focus on details.
• Seek peer review.

Practice 1: Follow a Process

• There are technical procedures for almost
all aspects of climbing safety:
– Tying knots.
– Anchor setup.
– Communication protocols.

• While there may be several acceptable
solutions, good climbers establish a
personal process and follow it religiously.

John Dalbey

A Climber’s View of Software Quality 5

Benefits of Process

• Avoids errors.
• Simplifies verification.
• Efficiency.
• Avoid complex decisions or judgements

under pressure.

Practice 1: Anecdotes

• Stranded rappellers - First person neglected
to untie knot.

• Stranded rappeller - failure to back clip, red
tree ants, dropped rope.

• Salathe Wall - “redundant anchor points”
saved lives.

John Dalbey

A Climber’s View of Software Quality 6

Practice 2: Focus on Details

• Keen awareness of details is crucial as even
small mistakes (e.g. forgetting to screw the
gate shut on a carabiner) can be fatal.

• Three mental attitudes support the required
focus:
– Do one thing at a time.
– Do each thing right.
– Fix it now.

Do One Thing At A Time

• Stay focused on the task at hand so as not to
be distracted at a crucial moment.

• Anecdote
– Lynn Hill: unfinished tie-in.

John Dalbey

A Climber’s View of Software Quality 7

Do Each Thing Right

• It’s easier to maintain quality from the start
than to try to repair it later in the process.

• Anecdotes
– cleaning tool snags shoe lace.
– sloppy rope stacking causes stuck rope.
– shirt jams rappel device.

Fix It Now

• Complex systems are highly coupled -
defects propagate quickly.

• Fix each small anomaly before it multiplies.
• It’s cost effective to fix defects close to time

of injection.
• Anecdote

– unanticipated haul bag weight snarls rope
system.

John Dalbey

A Climber’s View of Software Quality 8

Practice 3: Seek Peer Review

• Climbers solicit peer review of their work.
– Inspect tie-in before starting ascent - “How do I

look?”
– Inspect anchor setup.
– Inspect rappel brake before descending.

Culture of Safety

• A culture of safety can strongly influence
the extent to which safety is practiced.

• Numerous subtle and overt behaviors
provide social cues as to safety
expectations.

• Senior or lead climber can model desired
standards.

John Dalbey

A Climber’s View of Software Quality 9

Behavioral “Cues”
• Inquiring about partner’s process.
• Asking for peer review.
• Articulating process steps.

– Knot tying.
• Articulating checklists.

– “buckle, tie-in point, knot”
• Allowing time for anomaly correction.
• Consistent use of communication protocols.

Lessons for Software Developers

• A few key QA practices can make a big
difference.

• A “culture” of quality influences individual
practices.

• If human lives depended on your software
how would that change your practices?

John Dalbey

A Climber’s View of Software Quality 10

Where to learn more - climbing
• Mountaineering: The Freedom of the Hills

1992, The Mountaineers
• Rock Climbing Instruction in Yosemite

– Yosemite Mountaineering School
www.yosemitepark.com/html/mountain.html

• For information on Wilderness Adventure
Challenge courses:
– Pacific Crest Outward Bound School

www.pcobs.org

Where to learn more - quality

“Personal Software Quality”

Five day course based on W. Humphrey’s
A Discipline for Software Engineering.

Redpoint Research
www.redpoint.org

Key Points

Common causes of shelfware in tool adoption
Solutions to those problems
Example process for integrating tools

Presentation Abstract

Many organizations acquire new tools, and six months later, find they have shelfware rather than a tool that
improves probability. This paper describes eight common problems, along with examples from real-life
organizations. Examples will be from a variety of different tool acquisitions, such as defect tracking systems,
configuration management, code coverage tools, testing tools, as well as project management tools. It
continues to provide different solutions for each problem in a format readers can integrate into their own
organizations. Finally, it provides a process for introducing tools that integrates all solutions.

One of the most common challenges is the motivation for introducing a new tool. Many organizations decide
to adopt a new tool because someone read an article in a journal. An individual reads about the importance
of measuring code coverage as part of testing. He looks at reviews, and selects the tool with the highest
rating. He brings the tool in, and asks the testing group to start using the tool. The testing group agrees, and
everyone expects testing will improve because code coverage information is now being collected. The paper
will explain the problems leading to this situation, as well as information on how to prevent the problems.

About the Author

Karen King, founder and principal consultant of Quality Improvement Solutions, has a special interest in
implementing improvement projects. With 20 years experience in software quality improvement, she is
widely known for her work in using defect metrics to direct process improvement initiatives. She has
participated in the software development process in a variety of roles, including: systems programmer, QA
lead, applications engineer, supplier engineer, quality manager, IV&V lead, and SEPG chair. Ms. King can
be reached at karenk@alumni.rice.edu

QW2002 Paper 8P1

Karen S. King
(King Consulting)

Common Problems in Tool Adoption

09/19/101 1Copyright 2001, Karen S. King. All
Rights Reserved

Common Problems in Tool Adoption

Karen S. King
Quality Improvement Solutions
Karenk@alumni.rice.edu
(503) 626-0274

Software Quality Week

Shelfware
• How many tools are unused on your shelf?
• How many tools aren’t used effectively?
• How much money and time have you

wasted on products that don’t work?

Stories from the Field
• Based on real-life experiences
• Describes problems leading to shelfware
• Includes information on how problems

were solved

Organization Not Ready
• Know why you want tool
• Automate existing process
• Collect information manually first
• What is your current capability?

Not Enough Buy-In
• Locate all stakeholders
• Within each group, find opinion leaders
• Collect requirements from all stakeholder

groups
• Consider politics

Wrong Tool Selected
• Do your research
• Rank requirements
• Get live demonstrations
• Try tool in-house

Tool Not Integrated into Process
• What processes will be affected by this

tool?
• Develop high-level documentation
• Keep process documentation easily

accessible

Inadequate Training
• Train users “just in time”
• Conduct hands-on training
• Develop specific training for new

employees
• Have tool experts available to help

No Follow-up
• Schedule follow-up sessions with users
• Develop metrics
• Set realistic expectations at start of project

Not Enough Resources
• Provide resources for the improvement

project
• Provide schedule relief for users learning

new tool

No Plan for Maintenance
• Be prepared for follow on development
• Develop maintenance plan at project start
• Commit resources to maintaining the tool

Putting It All Together
• How do you integrate the best practices?
• Develop a tool adoption process
• High-Level Process included, and can be

tailored

High Level Process
Pl ann i ng

R e qui r e m en ts

S e l ec ti on

A ll R e qs
m e t ?

Need mi s si ng
r eqs?

Upda t e
R e qui r e m en ts

Gap Ana l ys is

Im pl em en t a ti on

Ro ll- Ou t

M ai nt e nance

Planning
• Who?
• What?
• Where?
• When?
• Why?
• How?

Requirements
• Maintain under configuration control
• Document owner for each requirement
• Document verification method for each

requirement

Selection
• Review tools against all requirements
• Verify requirements using your criteria
• It’s possible no tool will meet all

requirements
• If no tool meets all requirements,

reevaluate your requirements

Gap Analysis
• What will it take to meet requirements?
• Can the tool vendor develop changes?
• Can you develop develop changes?
• Is the project still cost effective?
• Revise plan to reflect new development

Implementation
• Develop process for using the tool
• Develop training
• Create documentation
• Develop changes, if any

Rollout
• Introduce new tool to users
• Schedule based on

– Complexity of tool
– Number of users
– Resources for rollout
– Number of groups
– Frequency of tool use

Maintenance
• Monitor acceptance
• Collect suggestions from users
• Implement changes and improvements

recommended by users
• Provide support to users

09/19/101 41Copyright 2001, Karen S. King. All
Rights Reserved

Questions?

Copyright 2001-2002, Karen S. King. All Rights Reserved

Common Problems in Tool Adoption

Karen S. King
Quality Improvement Solutions

Abstract

Many organizations acquire new tools, and six months later, find they have shelfware
rather than a tool that improves productivity. This paper describes eight common
problems, along with examples based on experiences from real-life organizations.
Examples will be from a variety of different tool acquisitions, such as defect tracking
systems, configuration management, code coverage tools, testing tools, and project
management tools. It continues to provide different solutions for each problem in a
format readers can integrate into their own organizations. Finally, it provides a high-level
process for introducing tools and describes where you’d apply each best practice.

Karen S. King, founder and principle consultant for Quality Improvement Solutions,
has a special interest in effectively implementing tools to improve the software process.
With twenty years experience in software quality improvement, she is widely known for
her work in using defect metrics t o direct process improvement initiatives. She has
participated in the software development process in a variety of roles, including: systems
programmer, QA lead, applications engineer, supplier engineer, quality manager, IV&V
lead, and SEPG chair. Ms. King can be reached at karenk@alumni.rice.edu

Copyright 2001-2002, Karen S. King. All Rights Reserved

How many software tools do you have on the shelf that you do not use? How much
money has your organization wasted, hoping to improve productivity? If you are like the
typical company, the answer is more than you can count. If you consider tools you use,
but not to the extent intended, the number soars. Someone in your organization spent
significant effort justifying the purchase of each of those tools, as well as integrating
them into your organization. Why don’t you use them? Here are stories from eight
projects at Hilanderas International, a fictitious company experiencing problems common
in real-life organizations. The stories explain how tools become shelfware, along with
solutions.

1. Organization not Ready
The Project Jupiter managers heard about a tool to measure code quality. They were
concerned about funds spent on maintaining their code, and thought they could decrease
their maintenance costs by purchasing a code quality tool. Management established goals
for each quality metric, and developers slavishly modified code to meet the numbers.
Project Jupiter abandoned the tool when developers complained they could not meet
schedule because they were modifying code to meet the goals. The problem was that no
one had researched the metrics to understand how to effectively use the measurements.

Solutions:
A) Decide why you want the tool. Explicitly document the benefit to the

organization. All users must understand “what’s in it for me”. If they see no
benefit, they will not be interested in using the product.

B) Acquire tools to automate existing processes. If you already perform the function
manually, you will simply improve an existing process and the acquisition will
more likely be successful.

C) When acquiring tools for new practices, simulate the tool manually to better
understand your needs. I once simulated new defect tracking fields by
interviewing developers to manually collect data. By collecting the information, I
identified useful data fields, and was able to manually calculate metrics that
measured progress against our goals. Without collecting actual data, our team
would have relied on the literature for data fields and metrics, and the tool would
not have met our organizational needs.

D) Consider your organization’s ability to assimilate new practices, and the current
capability in the practice. Many organizations purchase tools with more
capabilities than necessary, figuring they will “grow into it”. It would be similar
to buying an Indy racecar for a beginning driver, figuring that someday he might
want the additional features.

2. Not All Stakeholders Involved in Introducing Tool
Tom has been studying the Capability Maturity Model, and believes a configuration
management tool would solve many of the problems on Project Neptune. He found a tool,
purchased it, and worked weekends to put the project’s code under configuration
management. Tom believed everyone would be eager to use the new system because it
would provide a rigorous method for tracking past code releases. After the tool was in

Copyright 2001-2002, Karen S. King. All Rights Reserved

place, Tom could not convince his colleagues to use it because they said it violated their
personal development processes.

Solutions:
A) List job functions that could be affected by the tool. For a code coverage tool,

developers might need to change their coding style, management might be involved
in interpreting the metrics, system administrators must maintain the tool, and all
testers must enable the tool when running tests. Ensure that you represent all
functions in your tool adoption team.

B) Determine opinion leaders who understand the impact of the tool on their
communities. These people are the stakeholders. If you involve opinion leaders,
other people within the groups will be more likely to accept the new tool.

C) Work with stakeholders to collect requirements you have not anticipated. If you are
selecting a defect tracking system, service might require customers be able to submit
defect reports and receive limited information on the status of their report. If you
only collect requirements from engineering, this higher-level requirement would
never surface.

D) Consider the politics in your organization. If there are factions that could oppose
your effort, talk to them about their concerns about adopting the new tool.
Understand what it would take for them to support your effort. In Tom’s case, he did
not understand that his colleagues viewed their personal “code stashes” as power,
and that they were resentful about Tom’s efforts to consolidate the code.

3. Wrong Tool Selected
Jean was tasked to select a defect tracking system for project Apollo. She assembled a
team of stakeholders and collected seventy requirements from the team. After researching
products, Jean found a tool that met fifty of the requirements. She purchased that tool, but
later found the tool would not support custom business rules, and users could not get
email when new defects were assigned. Users would not accept the tool because it did not
support their business processes.

Solutions:

A) Conduct complete research on the strengths and weaknesses of potential products.

One major source of shelfware is acquiring tools at the end of the year, and making a
quick decision on a tool because otherwise you’ll lose funding. If you acquire a tool
without doing the homework, it is almost guaranteed the tool will become shelfware.
It would be better to lose funding for a risky tool, rather than have to justify buying a
second tool.

B) Rank your requirements. Rather than producing a list of equally weighted
requirements, work with your stakeholders to distinguish the most critical, “must-
have” features from the “nice to haves”. A prioritized list will prevent your selecting
a product that meets 90 percent of the requirements, but does not address a critical
need.

Copyright 2001-2002, Karen S. King. All Rights Reserved

C) Meet with representatives of the tool vendors and have them demonstrate their tool in
your environment. For a code coverage tool, a demonstration might include running
some tests in your standard work environment, and verifying the product produces the
expected results.

D) Get a demo copy of the tool or a short-term license. Before bringing the tool in-house,
have a plan in place on how you’ll evaluate the tool, and have resources available to
do the evaluation. Determine your minimum criteria to acquire the product, and do
not be pressured into purchasing the product until you are satisfied the tool meets the
minimum criteria.

4. Tool not Integrated into the Process
Al acquired a tool to collect code metrics. He always ran the metrics tool before he
integrated his code. Mary ran metrics after she’d completed unit testing. Project Saturn
management noticed the highly divergent data, and decided the code metrics were
meaningless for managing projects. No one understood that differing processes caused
the data disparity, rather than quality of the tool.

Solutions:
A) If you have process documentation, determine how the tool will best fit within your

established development and quality processes. If the tool is complex, you might
include a separate work instruction for using the tool and modify the main process to
reference the new work instruction. If the tool is straightforward, you could simply
modify the current process documentation to include the new tasks associated with
the tool. Each function should examine their processes and coordinate changes.

B) If you do not have process documentation, at a minimum, draw a high-level flowchart
of your development process. Mark where the tool will be used, and who will be
using it. Then describe steps for using the tool. Even without other written process
documentation, rudimentary documentation on using the tool increases successful
tool adoption. Additionally, after several tools have been introduced and documented,
your organization might see the benefit of documenting the remainder of your
development process.

C) Make the tool documentation easily accessible. Consider providing a quick reference
card or online process help, so users can easily find information about using the tool
in the context of your process.

5. Inadequate Training
Joe acquired an estimation tool for the Minerva division. He trained all project managers
at once so they would use the tool consistently. Joe tracked when the tool was used, and
found project managers were not using the tool consistently. The problem became more
pronounced over time. The data in the estimation database became unusable because
there was too much variance.

Solutions:

Copyright 2001-2002, Karen S. King. All Rights Reserved

A) Train users “just in time”. If they are trained before they need to use the tool, they
might not see the relevance of the training (it’s not what I’m doing now), and they
will not effectively learn. Even if they do learn, they will probably forget their
training by the time they need to use it.

B) Provide hands-on training. People need to try new ideas before they can accept them.
Create an instance of the tool where users can safely experiment without corrupting
live data. For example, when implementing a defect database, have a test database
where users can enter defect data and route defects among users without affecting
project metrics.

C) Develop training for new employees. It is not uncommon to give new employees
documentation and tell them to figure out the tool themselves. Slightly better is when
a current user demonstrates the tool to the new employee. Often only less experienced
users have time to demonstrate the tools, and the training is inconsistent.

D) Have tool experts available on call to help users with any problems. Users will be
more likely to use the tool if they know there are resources available to help.

6. No Follow-up on Tool Deployment
Project Arachne purchased a GUI test tool. The quality assurance engineers wrote tests
and developed automated test scripts. About a year later, one of the quality assurance
engineers was out during a verification cycle. Their manager assumed the test cases were
run automatically, and asked to see the test report. There was no test report because tests
were run manually over the past year. When questioned, the QA staff said the tests were
run manually because it took more time to analyze the results from the automated scripts
than running the tests manually. No one had questioned the effectiveness of the tool, and
the tool became shelfware without management’s knowledge.

Solutions:
A) Schedule periodic times to talk with users about how the tool is working. Collect

information on positives, negatives, and opportunities for improvement. Implement
suggestions that will improve the system.

B) Develop metrics to monitor tool usage. For a configuration management tool, you
might want to monitor number of check-ins, average size of check-ins, number of
code branches, etc. for significant changes. If the metrics vary from past history
(positively or negatively), talk with the users to understand why. Do not use the
metrics to make judgements about people.

C) Set expectations on the results you expect in the tool adoption. In the short term, the
tool will probably not improve productivity. You will not see results until the
organization is able to use the tool effectively, which will take multiple experiences.
Many companies have abandoned tools before the organization has mastered the new
tool, and the result is extreme frustration for everyone.

7. No Resources for Adopting Tool
Bob was working on a critical project on a tight schedule. He was concerned about
keeping the project on track, and convinced Hilandares to acquire a project tracking tool.
Bob asked his team to use the tool to track their progress on the project. At the same time,

Copyright 2001-2002, Karen S. King. All Rights Reserved

there was extreme pressure on the team to complete the project as soon as possible. The
team was overwhelmed, and figured they would enter status information when they had
time available. As a result, Bob was not able to use the tool effectively because status
information was not up to date. Bob soon became frustrated, and stopped using the tool.

Solutions:
A) Rather than using “volunteer time”, work with a sponsor to get a time commitment,

preferably from an improvement resource, as well as the people on the tool adoption
team. If possible, try to get dedicated resources. If that isn’t possible (project is small
or organization is small), at a minimum, get project relief for team members. Set
realistic expectations about the amount of time required to work on the tool adoption
project. In Bob’s situation, his highest priority was getting the product out on time.
Although he had strong incentives to adopt the project tracking tool, it was a “spare
time” activity. If Bob had help from an outside improvement resource, there would
have been more effort available to deal with the user resource issues.

B) Before acquiring the tool, ensure all users will have time to learn the new tool. If
users are already overloaded, look for ways to offload some of their work to ensure
they can use the tool.

8. No Plan for Maintaining Tool
Susie worked with customer service to acquire a customer complaint system. Through
detailed interviews with customers, Susie found the most critical aspect was usability,
and Hilanderas’ customers wanted a tool with pulldowns to easily select answers. Susie
and her team implemented the system, and the customers were very pleased. Shortly
afterwards, the number of complaints logged in the system decreased drastically.
Hilanderas management believed they were being more responsive to their customers’
complaints, which resulted in happier customers. Instead, the salespeople reported the
customers were frustrated because they could not report their actual complaints because
the selections on the pulldowns were too limited. Although the product offerings had
changed, the product names in the pulldowns had not been updated. No one had been
assigned to maintain the system after roll out, and what had been designed as a user-
friendly system quickly became unusable.

Solutions:
A) Develop a maintenance plan at the beginning of the project. Be sure to provide

enough resources to answer user questions, as well as make necessary changes to the
system. The maintenance plan should be updated as the team learns more about the
final solution.

B) Include extra maintenance time throughout roll out and into production. The new
system is almost never perfect, and users will need help in successfully transitioning
to the new system. Also, users always have suggestions on ways to improve the
system. It is important to be responsive to new ideas to help users accept the new
system.

Copyright 2001-2002, Karen S. King. All Rights Reserved

Putting it All Together

Now you have ideas about improving the way you adopt tools, but how do you put it all
together? It’s helpful to have a collection of best practices, but the next step is to
determine how the practices can be incorporated into your process. Do you currently have
a process for adopting tools? If so, do you follow it? This section includes a high-level
process for tool acquisition you can use as an outline to define your own specific process.

Typical Tool Adoption Process

Figure A shows a basic tool adoption process that you can tailor for your organization.
Customize this process to include your specific steps. When developing the process,
include guidelines for determining ways to tailor the process for different tools. For
example, you might not want to follow all steps in the process when adopting a simple
tool that all users accept. When determining processes, also consider the consequences of
failure. If critical business processes are dependent on successfully adopting the tool, it is
more important to follow the complete process.

Planning – Prepare for the project by developing an improvement plan covering all
aspects of the project. The plan should be documented, agreed to by all major
stakeholders, and updated when there are changes to the project.
(1A,1B,1C,1D,2A,2B,2D,6C,7A,7B,8A,8B)

Requirements – Collect requirements from all stakeholders. As a group, reach consensus
on the priorities. Document how each requirement will be verified. Maintain all
requirements under configuration control to keep track of requirements changes.
Document an owner for each requirement. The owner will be the expert on the
requirement. If there are any questions or issues related to the requirement, there will be a
single focus. (2C,3B)

Selection – Choose the supplier that best meets your requirements. Note that the best
supplier might not meet all requirements. If not, revisit your requirements to reevaluate
the importance of missing requirements. (3A,3C,3D)

Copyright 2001-2002, Karen S. King. All Rights Reserved

1) \\
Planning

Requirements

Selection

All Reqs
met?

Need missing
reqs?

Update
Requirements

Gap Analysis

Implementation

Roll-Out

Maintenance

Figure A: Basic Tool Adoption Process

Copyright 2001-2002, Karen S. King. All Rights Reserved

Gap Analysis – If no product meets all requirements, consider either developing your
own customizations, or negotiate with the tool vendor to have customizations developed.
If you need customizations, treat the development as a miniature development project,
including project planning, requirements, project tracking, etc. Note that it might not
always be cost effective to continue the project if the gap is too great. At this point,
evaluate whether the project is still cost effective. Update the plan to reflect changes from
the gap analysis.

Implementation – Develop the new process, training, documentation, etc. If there is any
product development required, it would be done during implementation. Track progress
against the plan throughout the implementation phase. (4A,4B,4C,5A,5B,5C,6B)

Rollout – When the implementation is complete, the new tool will be rolled out based on
the rollout plan. Rollout might include test runs with a pilot group. The rate of rollout
should be dependent on the number of people who will be using the new tool, number of
resources available for rollout, as well as the complexity of the tool. (5D,6A)

Maintenance – Once the tool is rolled-out, the improvement project proceeds to a
maintenance phase. Like development projects, improvement projects are almost never
perfect. Users will provide feedback on areas to change, as well as ideas for
improvement. It is critical to have resources available to monitor the success of the
improvement project and make any necessary changes. (6A,6B)

Conclusion

There are many reasons tools become shelfware, many of which you can mitigate by
implementing best practices and good project planning. Try spending more effort on each
tool adoption to ensure your organization will get maximum benefit from the tool. In
addition to saving money on wasted tools, you will help your organization achieve its
goals by using tools effectively.

Key Points

Introduce the audience to an open source stress test tool that they can use.
Explain the benefits of a general-purpose reusable stress test tool.
Describe some of the implementation details involved in building a heavy-duty test driver.

Presentation Abstract

Describes a reusable stress test tool that I designed while at Convex Computer Corporation, and is now
available under an open source license.

About the Author

Danny R. Faught is an independent software quality consultant, calling his practice Tejas Software
Consulting. He has been in the industry for ten years. He has a BS in Computer Science from the University
of North Texas. He is a senior member of the American Society for Quality, and is also a member of the
Project Management Institute and the Fort Worth Chamber of Commerce. Danny is the maintainer of
testingfaqs.org and is cofounder of the swtest-discuss mailing list. He serves on the Practicality Gauntlet for
STQE magazine. He speaks and writes frequently on software quality topics.

QW2002 Paper 8P2

Danny R. Faught
(Tejas Software Consulting)

The Making of an Open Source Stress Test Tool

1

The Making of
an Open Source
Stress Test Tool

Danny R. Faught
Tejas Software Consulting

Quality Week 2002

Slide 2Quality Week 2002
© 2002 Danny R. Faught

Objectives

• Introduce you to an open source stress
test tool, the stress_driver, which you can
use and modify in your own environment.

• Explain the benefits and limitations of a
general-purpose reusable stress test tool.

• Describe some of the implementation
details involved in building a heavy-duty
test driver using a scripting language.

2

Slide 3Quality Week 2002
© 2002 Danny R. Faught

History

• Perl prototype
• C++ “production” version
• Then back to Perl because of

problems with the C++ version
– Ran on SPP-UX, HP-UX 9 & 10

• Dormant for several years
• Now open-sourced, and ported to

Windows/Cygwin and Linux

Slide 4Quality Week 2002
© 2002 Danny R. Faught

Stress_driver command line

stress_driver [-log logfile]
[-life time] [-iterate n]
[-tmout_max time] [-tmout_min time]
[-max n] [-min n] [-user username]...
[-user_array basename]... [-seed n]
[-sig signame] [-fail_max n] [–iterate n]
[-config filename]
[-- (test program args)] test_program

3

Slide 5Quality Week 2002
© 2002 Danny R. Faught

Two test program styles

Test program, doesn’t exit

Short test program

×
Killed by stress_driver

Killed by stress_driver

Started by stress_driver

Test exited

×

Slide 6Quality Week 2002
© 2002 Danny R. Faught

When to stop?

• By default, stress_driver never stops. To
specify an end do one or more of these –
– Use -iterate
– Use -life
– Use -fail_max
– Set the stress_time environment variable

4

Slide 7Quality Week 2002
© 2002 Danny R. Faught

How to run tests?

• -max and –min specify how many
• -tmout_max and –tmout_min specify

how long to run
• -user and -user_array specify which

account to run under
• Specify test program arguments after “--”

on the command line or in the config file

Slide 8Quality Week 2002
© 2002 Danny R. Faught

Randomize test arguments

• Example:
[string1 string2 string3] [0-4]

• Each time it starts a test, stress_driver
can choose randomly between:
– a list of strings, or
– a integer range

5

Slide 9Quality Week 2002
© 2002 Danny R. Faught

Stress_factor scaling

• Stress_factor 1-10 chosen by user
• Config file says what to do with

stress_factor:
--
Factor 6-10
-s

• Run with something like:
stress_driver -config testprogconfig
/usr/bin/testprog

Slide
10

Quality Week 2002
© 2002 Danny R. Faught

Longer stress_factor example
stress_driver

configuration for
the misc/forker05
test

-fail_max 100
Factor 1
-max 1
Factor 2
-max 2
Factor 3
-max 4
Factor 4
-max 6

Factor 5
-max 8
Factor 6
-max 10
Factor 7
-max 12
Factor 8
-max 15
Factor 9
-max 20
Factor 10
-max 30

6

Slide
11

Quality Week 2002
© 2002 Danny R. Faught

Processor scaling

• Use xCPU to scale on the number of
processors:

#Factor 1
-min 1xCPU -max 2xCPU
...
#Factor 10
-min 10xCPU -max 30xCPU

*Not working at the moment

Slide
12

Quality Week 2002
© 2002 Danny R. Faught

One more example: shell_stress
-tmout_min 1
-tmout_max 30
-user test -user cshtst -

user shtst -user nettst
#Factor 1
-min 1xCPU -max 2xCPU
#Factor 2
-min 2xCPU -max 4xCPU
#Factor 3
-min 3xCPU -max 6xCPU
#Factor 4
-min 4xCPU -max 8xCPU
#Factor 5
-min 5xCPU -max 10xCPU
#Factor 6
-min 6xCPU -max 12xCPU

#Factor 7
-min 7xCPU -max 15xCPU
#Factor 8
-min 8xCPU -max 20xCPU
#Factor 9
-min 9xCPU -max 25xCPU
#Factor 10
-min 10xCPU -max 30xCPU
#Factor 1-10
--
-seed [1-4294967295]
-shell [/usr/bin/sh

/usr/bin/csh
/usr/bin/ksh:sh]

-o

7

Slide
13

Quality Week 2002
© 2002 Danny R. Faught

Reproducible test runs?

• Ideally, using the same pseudo-random
seed should produce the same test run
and find the same bugs

• In reality, nondeterministic responses
from the OS causes skew

• Even if stress_driver did everything
exactly the same, we still would have
hard-to-reproduce bugs

Slide
14

Quality Week 2002
© 2002 Danny R. Faught

Porting to Cygwin & Linux

• Test-First Maintenance
– used Test::More and Test::Harness

• Event module
• Perl 4’isms

– h2ph files & syscall vs. POSIX
– local vs. my
– NGetOpts vs. GetOptions

• config file hack

8

Slide
15

Quality Week 2002
© 2002 Danny R. Faught

Limitations

• Designed for OS testing on the SUT
• Requires Cygwin on Windows,

command-line oriented
• Generality leads to inefficiencies

– Each test is a new process
– Wrappers to add additional functionality

also require starting extra processes

Slide
16

Quality Week 2002
© 2002 Danny R. Faught

Ideas for enhancement
• Increase test coverage.
• Port and test on other systems.
• Fix the cpu scaling feature.
• Add a graphical interface using Tk.
• Validate the math used in the adaptive scheduler.
• Provide hooks that would allow dynamically

modifying the stress_driver and test program
arguments.

• Improve process management.
• Implement a slow start feature.
• Allow math expressions in arguments.

9

Slide
17

Quality Week 2002
© 2002 Danny R. Faught

Getting the code

• You’re all invited to use and contribute
to the project

• The code is at:
http://www.tejasconsulting.com/stress_driver/

• For Windows, get Cygwin (including the
Cygwin Perl) at http://cygwin.com/

• Install Event and Test::More from
http://cpan.org/. May need to upgrade
Test::Harness.

Slide
18

Quality Week 2002
© 2002 Danny R. Faught

Acknowledgements

• Eric Schnoebelen, for getting the
stress_driver code released under an
open source license

• Bob Clancy and Mark Wiley, for
reviewing the paper

• The Convex System Software Test Team
for their contribution to stress_driver

• Art credit – Alex, age 8, and Kelly, age 3

10

Slide
19

Quality Week 2002
© 2002 Danny R. Faught

References
• “Test-First Maintenance: A diary”, Danny R. Faught,

Dallas/Fort Worth Unix Users Group Newsletter, June
2002. http://tejasconsulting.com/DFWUUG/test-first-
maintenance.html (included with the paper)

• “Event-Driven Scripting”, Danny R. Faught, presented at
the July 12, 2001 meeting of the Dallas/Fort Worth Unix
Users Group. Slides at:
http://tejasconsulting.com/papers/event-driven/Event-
Driven.htm.

• “Perl Scripting: A Test Automation Task Master”, Danny R.
Faught, Software Test Automation Conference tutorial,
Fall 2002. Includes a walkthrough of some of the
stress_driver code.

Slide
20

Quality Week 2002
© 2002 Danny R. Faught

Danny Faught
faught@tejasconsulting.com
http://tejasconsulting.com/
+1 817 294 3998

Thanks for listening!

To stay in touch, sign up for my newsletter
mailing list at http://tejasconsulting.com/#news.

The Making of an Open Source Stress Test Tool page 1 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

The Making of an Open Source Stress Test Tool

Danny R. Faught
http://www.tejasconsulting.com
faught@tejasconsulting.com

The objectives of the paper are:

1. Introduce you to an open source stress test tool, the stress_driver, which you
can use and modify in your own environment.

2. Explain the benefits and limitations of a general-purpose reusable stress test
tool.

3. Describe some of the implementation details involved in building a heavy-duty
test driver using a scripting language.

History
The saga of the stress_driver tool starts in 1993, when I wrote a prototype of a general-
purpose stress test tool using the Perl scripting language. I then handed it over to
another test developer to reimplement in a compiled language because I felt that a Perl
script would not have sufficient performance to be able to stress the supercomputers I
was testing.

A year later, we were trying to track down some mysterious problems in the tool, and I
declared the C++ version to be unmaintainable. It didn't help that the programmer had
left the company and we didn't have many C++ experts on staff. So I dusted off the
Perl version, and that's the code base that survives to this day.

Some very recent news that makes the story much more interesting is that Hewlett-
Packard, the current owner of the stress_driver tool after acquiring Convex, has
granted an open source license for a large body of test tools and automated test cases,
including the stress_driver and a suite of stress tests that use it. So I (no longer an HP
employee) have been able to resume the development of the tool.

The code is now available for download, but it's buried within 21 megabytes of other
data, nobody knows that it's there, and it would only work on specially configured
versions of Perl running on SPP-UX or HP-UX 9, which few people now have access to.
I have ported the stress_driver to Windows and Linux using the standard Perl
distribution so that it's useful for a much broader audience.

The stress_driver tool is currently about 700 lines of Perl code, plus a manual page.
The stress_driver runs a given test program, possibly scheduling random numbers of
parallel invocations and randomly choosing parameters based on the user's

The Making of an Open Source Stress Test Tool page 2 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

specifications. It can scale the load based on the number of CPUs in the system and a
user-specified 1-10 scale, and it can run the tests under different user IDs. It can vary
the run time of each test process within a given range, and it can vary the number of
parallel invocations of the test within a given range using an adaptive scheduling
algorithm. The tool was used by a suite of operating system stress tests, testing the
filesystem, memory management, process and thread management, and it was also a
key part of a large-scale system reliability test.

What stress_driver does
The stress_driver is a generic stress test tool; you must provide a test program for
stress_driver to run. You can use stress_driver in a variety of ways. There are basically
two different ways it interacts with the test program. If the test program is designed to
run for an indefinite period of time, then stress_driver will run the program once for
each time slot that it sets up for the test, and it will kill the test at the end of the time
slot. The degenerative case is when you only want one copy of the test to run at a time.
Stress_driver doesn't add much value in that case, except to stop the test when the
time period that you specify is done.

You can tell stress_driver how many tests to run at a time, and stress_driver will start
that many copies of the test. You might randomize the parameters that each test
receives, and you might scale both the test's parameters and the number of test
programs according to a 1-10 scale provided at runtime. Stress_driver also used to be
able to scale up automatically based on the number of processors on the system, but
I've disabled this feature until I get access to another multiple-processor system.

The second type of interaction with the test program is the case where the test
executes some defined transaction and then exits. In this case, stress_driver will
usually need to schedule more than one iteration of the test during each time slot.
Perhaps the degenerative case of just running one test at a time is somewhat more
useful here, because stress_driver will continue re-running the test until the specified
time period or number of iterations is complete.

Test program, doesn’t exit

Short test program

×

×

Killed by stress_driver

Killed by stress_driver

Started by stress_driver

Test exited

Figure 1. One stress_driver time slot, for a test with no
built-in end point, and for a short-running test.

The Making of an Open Source Stress Test Tool page 3 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

Here's an overview of stress_driver's options. For a more complete reference, see the
manual page in the stress_driver source distribution. A Unix man-style synopsis is:

stress_driver [−log logfile] [−life time] [−iterate n] [−tmout_max time] [−tmout_min time]
[−max n] [−min n] [−user username]... [−user_array basename]... [−seed n] [−sig
signame] [−fail_max n] [–iterate n] [−config filename] [−− (test program args)]
test_program

Stress_driver keeps a detailed log, named "stress_driver.log.<pid>" where <pid> is
stress_driver's process id. The −log option specifies a name for the log file. On Unix-
like systems, you can specify /dev/tty as the log file to see the log in your terminal
window without cluttering the disk with a log file.

By default, stress_driver will never exit. There are three options and an environment
variable that affect stress_driver's immortality. You can use the -life option to define
the lifespan of the test run in minutes. Or with this and all the other time options, you
can append the letter "s" to the time and it will be interpreted as seconds, which is
useful when you're testing the tool. You can also use the stress_time environment
variable, which works the same as -life if you don't use the -life option.

Another way to specify the end of a test run is using −iterate, which gives a maximum
number of iterations of the test that stress_driver will run before exiting. And finally,
there's the −fail_max option, which gives stress_driver a bit of common sense, so it
will exit after encountering the specified number of errors in the test program (either a
non-zero exit code or dying from a signal) and any internal errors. You may use all
three of these options, and stress_driver will use the first one that applies.

There are also a few options that relate to the lifetime of the test programs. By default,
the test programs are not interrupted except at the very end of the stress_driver run.
The -tmout_min option specifies that individual invocations of the test program will
not be allowed to run longer than the specified time. If you also use -tmout_max, then
stress_driver will randomly choose a time between the min and the max timeout each
time it starts the test program.

Stress_driver's default action when it decides it needs to stop a test program is to send
a SIGINT signal. You can use the -sig option to specify a different signal. The signal is
specified using its symbolic name, without the "SIG" prefix (like "TERM", "HUP", etc.).
The test program may catch the timeout signal if it needs to do any cleanup. It needs
to be able to clean up and exit within 30 seconds, or else it will receive a KILL signal.

If the test program starts any child processes, it is responsible for cleaning them up.
The test program should not report an error just because it received the timeout
signalthis is a normal occurrence. It's okay if the test program simply dies from the
timeout signal, though. Stress_driver doesn't log an error in this case.

The Making of an Open Source Stress Test Tool page 4 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

If you don't specify the -max option, stress_driver will start only one invocation of the
test program at a time. The -max gives the maximum number of test programs to run
in parallel. This is really where the tool starts to become useful! If you use -max and
not -min, then stress_driver will try to keep the maximum specified number of test
programs active all the time. If you use both -max and -min, then stress_driver will
first start at the maximum, and then let the load vary randomly between the max and
min. It uses an adaptive algorithm to try to keep the average number of active test
programs close to the average of max and min. Note that the load may never fall down
exactly to the minimum specified.

There is no built-in maximum for the number of test programs that stress_driver can
run. In practice, the maximum will be determined by the demands of the test program,
and the level of resources that are available on the test system (including memory, the
size of the process table, and the processing horsepower). Stress_driver doesn't have
any mechanism for distributing the load across more than one test system, though it
is conceivable that an intermediary program between stress_driver and the test
program could facilitate this with no change to the stress_driver design or to the test
program.

The -seed option specifies a seed for the pseudo-random number generator. If you
don't specify the seed, you'll get different random choices every time you run
stress_driver. You can attempt to reproduce the results of a previous run by looking at
the seed that is stored in the log file (even if you didn't use the -seed option before) and
then feeding that seed into a later run. But later in this paper I'll explain why this isn't
very useful.

You can tell stress_driver how to manage user accounts. By default, the test program
will run under the same user id as the user who runs stress_driver. If you run
stress_driver with administrator privileges, you can use the -user option to specify one
or more accounts to use instead. If you give more than one account, stress_driver will
randomly choose one of them each time it starts the test program. It won't guarantee
that the accounts won't be reused for another invocation of the test program at the
same time, though.

For more sophisticated account handling, you can use -user_array, which specifies
the root name of a list of accounts that you've created (like "user1", "user2", "user3",
etc.). Stress_driver assumes that the accounts are named using the root name you
specify, followed by a number counting up to the maximum number of concurrent test
programs allowed. You can use -user_array more than once to give multiple root
names (I've done this before to have three different banks of users, with each bank set
to a different login shell). Each bank must have enough accounts to handle the
maximum load.

Rather than put all of the arguments on the command line, you can create a config file
and tell stress_driver where it is using the -config option. You can put any command
line options and test program options in the config file except for the test program,

The Making of an Open Source Stress Test Tool page 5 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

described below. Arguments on the command line will override any arguments that are
specified in the config file.

After you have specified all of the stress_driver options, you can specify options to
send to the test program. First use "--" on the command line to designate the end of
the options for stress_driver. Then you may include any arguments that you want
stress_driver to pass down to the test program every time the test program starts.

You may randomize the test program arguments either by providing a list of strings, or
by specifying an integer range. Here are two randomized test program arguments:

[string1 string2 string3] [0-4]

Stress_driver will pass two arguments to the test program based on this specification -
first, either "string1", "string2", or "string3", and then an integer in the range 0-4
inclusive. Note that in some shells you need to quote the square brackets when using
this notation from the command line, though in practice, I generally use a config file
when I use randomized parameters.

The final argument on the stress_driver command line is the absolute pathname for
the test program. The test program must always be specified as the last argument on
the stress_driver command line, not in a config file.

Stress_factor scaling
There are two different ways to scale a stress_driver run, based on a user-specified
stress_factor environment variable, and based on the number of processors in the
system.

The stress_factor environment variable is an integer from 1 to 10. (The fact that it's an
environment variable and not a command line argument is based on the historical
design of the test infrastructure at Convex that ran on top of the stress_driver.) The
default stress_factor is 1this is intended to be a minimal load for the software under
test. A stress_factor of 10 is the maximum load that the software can withstand
without encountering spurious errors related to resource shortages. For example, you
wouldn't want to exhaust the memory on the system unless you're testing memory
management. Numbers between 1 and 10 can be gradations in between.

To scale the test based on stress_factor, the test engineer must use a config file,
because of the line-oriented syntax of the "factor" lines. Sections of the config file are
partitioned using "factor" lines that look like "#Factor n[-m]". The "n" represents a
number from 1 to 10. The optional "-m" turns it into a range, like 1-3. All lines after
the factor line and before the next factor line will be used if the current stress_factor
setting is within the specified range. Thus, the stress_factor scaling involves no magic,
just a mechanical way to select options from the config file as they were set up by the
test engineer. The engineer is responsible for configuring the test at each stress level,
either by scaling the arguments to stress_driver, the arguments to the test program, or
both.

The Making of an Open Source Stress Test Tool page 6 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

Note that you don't have to set up 10 distinct stress levels. In fact, the different
stress_factor settings don't even have to have any relationship to each other, but they
are set to scale up from 1 to 10 by convention.

As a simple example, consider a case where the test program only takes one
argument, "-s", and whatever it does, the argument makes the test more stressful. We
will only have two distinct stress levels, so we decide that stress_factor 1-5 will be the
low stress level, and 6-10 will be the high stress level.

--
Factor 6-10
-s

The "--" tells stress_driver that you're going to list test program options, just like on
the command line. Then we have a factor line, telling stress_driver only to use the
following lines if the stress_factor is in the range 6-10. We didn't give any test program
arguments for stress_factor 1-5, so the test program won't get any arguments when we
set stress_factor somewhere from 1 to 5. If the test program is "/usr/bin/testprog",
and the config file is named "testprogconfig" in the current directory, we could call
stress_driver like this:

stress_driver -config testprogconfig /usr/bin/testprog

Here's a more complex example from the Convex test suites:

stress_driver configuration for the misc/forker05 test
-fail_max 100
Factor 1
-max 1
Factor 2
-max 2
Factor 3
-max 4
Factor 4
-max 6
Factor 5
-max 8
Factor 6
-max 10
Factor 7
-max 12
Factor 8
-max 15
Factor 9
-max 20
Factor 10
-max 30

The Making of an Open Source Stress Test Tool page 7 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

The -fail_max argument comes before any of the Factor lines, so it applies to all stress
levels. Then we define a different stress level for each of the 10 stress_factor settings,
by passing in a different -max argument to the stress_driver at each level. Note that
the -max settings do not scale linearly. Stress_factor 10 is 30 times as stressful as
stress_factor 1. This format gives us the freedom to scale however we want to.

This 1-10 scaling scheme makes more sense when we look at a suite of tests. The
Convex operating system stress test suite was designed to run under the CITE
functional test harness. Sometimes we would run a stress test by itself, in which case
CITE didn't provide much value. But sometimes we wanted to do a regression test
where we would run all of the stress tests for a brief period of time. So we could set the
stress_time environment variable to, say, 30 minutes, and we could set stress_factor
to, say, 3. Some of the tests recognize both stress_time and stress_factor, some by
using stress_driver, and some using other mechanisms. Others may use one or the
other. Tests that don't use stress_time are designed to do just one task and then exit.
Anyway, with these settings, we'll get uniform coverage across all of the stress tests, at
a fairly low stress level, for a fairly short period of time. So we can have global control
across all the tests by setting these two environment variables.

Processor-based scaling
There's another type of scaling that we might want to do on a multi-processor system.
A test that is stressful on a single-processor system might not be stressful at all on a
system with eight processors. So stress_driver had the ability to scale the test based
on the number of processors on the system. Note that this feature is currently not
functioning in the version of stress_driver that I'm distributing, because it worked only
on systems supported by the "getsysinfo" utility that was part of the Convex test
suites. But the infrastructure for doing the scaling is still in the code, and all that is
needed is a mechanism to count the number of processors on the system in order to
get it working. The code currently assumes that there is only one processor on the
system. The mechanism is worth discussing nonetheless.

To use processor scaling, you append the text "xCPU" to an integer argument. Here are
two sections from the config file for the shell_stress test that show two types of scaling
at work:

#Factor 1
-min 1xCPU -max 2xCPU
...
#Factor 10
-min 10xCPU -max 30xCPU

On a single processor system, at stress_factor 1, the number of test programs will vary
from 1 to 2. If there are 4 processors, at stress_factor 1, the number of test programs
running will range from 4 to 8. And at stress_factor 10, with 4 processors, the number
of test programs will range from 40 to 120 (10 times 4 to 30 times 4).

The Making of an Open Source Stress Test Tool page 8 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

You can also use floating point numbers when you use xCPU. The fractional part will
be truncated after multiplying, so the result will always be an integer. For example,
you might want to use finer control with the scaling like so:

-min 1xCPU -max 2.5xCPU

So with 1 processor, the range is still 1 to 2, but with 4 processors, the range is 4 to
10.

You may combine xCPU with randomized integer ranges for test program arguments,
and you may use fractional numbers here as well.

-foo [1-4]xCPU -bar [1-1.5]xCPU

The scaling is applied before the randomization, so you get the full range of
possibilities. So with 4 processors, the above example is scaled to:

-foo [4-16] -bar [4-6]

And then the randomization is done within the multiplied ranges.

Further examples
Here is the first part of the config file for the thread01 test. It illustrates the ways you
can get creative with the Factor lines. The arguments to stress_driver have two
different stress levels. But the arguments to the test program have ten different levels
(the first two are shown here).

Factor 1-5
-min 2 -max 8
Factor 6-10
-min 4 -max 12
--
Factor 1
200
Factor 2
400
...

The shell_stress test tries to accurately simulate an interactive user load on an
operating system. This is probably the most elaborate use of stress_driver in the
Convex tests. The shell_stress tool itself is a fairly complex tool, but it's designed to
only simulate one user, so it integrates quite well under stress_driver. For this test, we
call stress_driver like so (this is one long line):

stress_driver -fail_max 100 -log shell0.log
 -config shell_stress.cf $testbin/shell_stress

The Making of an Open Source Stress Test Tool page 9 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

The stress_driver arguments are split across the command line and the config file for
no good reason that I can recall. Here is the full config file:

-tmout_min 1
-tmout_max 30
-user test -user cshtst -user shtst -user nettst

#Factor 1
-min 1xCPU -max 2xCPU
#Factor 2
-min 2xCPU -max 4xCPU
#Factor 3
-min 3xCPU -max 6xCPU
#Factor 4
-min 4xCPU -max 8xCPU
#Factor 5
-min 5xCPU -max 10xCPU
#Factor 6
-min 6xCPU -max 12xCPU
#Factor 7
-min 7xCPU -max 15xCPU
#Factor 8
-min 8xCPU -max 20xCPU
#Factor 9
-min 9xCPU -max 25xCPU
#Factor 10
-min 10xCPU -max 30xCPU

#Factor 1-10
--
-seed [1-4294967295]
-shell [/usr/bin/sh /usr/bin/csh /usr/bin/ksh:sh]
-o

There are some stress_driver options at the top that apply to all stress levels. Note that
I took advantage of the free-form format of the file to try to make it more readable. I
specify four different user accounts to choose from. These were standard accounts
that were always set up on systems that were configured to run any of the operating
system tests.

The -min and -max arguments to stress_driver are scaled based on the stress_factor
and the number of processors, as described earlier. Then at the bottom of the file, I
specify the test program arguments that don't scale on stress_factor. I likely forgot the
"#Factor 1-10" line when I first wrote the config file, and was surprised to find that my
test program only got its options at stress_factor 10, since the "#Factor 10" line is still
in effect until the next Factor line.

For the test program arguments, I set the pseudo-random seed for shell_stress. This is
based on a random choice across a wide range, and that random decision in turn is
based on stress_driver's seed. This was an attempt to make the test run reproducible,
so that all random decisions at all levels are tied to stress_driver's seed. Note that I

The Making of an Open Source Stress Test Tool page 10 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

didn't use stress_driver's -seed option here - we just let stress_driver randomize the
seed. It's easy to confuse the two different drivers here. For our big reliability test,
which had a somewhat different setup, we did hard-code a seed for stress_driver,
using a large prime number.

In practice, I found that the results for two different shell_stress runs with
stress_driver using the same seed weren't necessarily the same. Keep in mind that the
types of bugs that shell_stress found often depended on exact timings that occurred by
random chance more than intentional test design. Even if we ignore that factor, just
comparing the logs from two stress_driver runs with the same seed show that
stress_driver wasn't making the same random decisions in both cases.

Why did the seed not do what I wanted it to? I haven't studied the reason in depth, but
here's a theory. Complex computer systems are not completely deterministic. When we
have hundreds of processes running, there is no guarantee that they will exit in the
same order each time. Perhaps the disk is fragmented in a different way and its
response time is different, or perhaps you ran a command on the system that was the
equivalent of a butterfly flapping its wings and changing the weather on the other side
of the globe. In any case, as soon as a stress_driver action is done in a different order
than the previous run, then the next number in the pseudo-random sequence may be
applied for a different purpose than for the last run. Then the place where that
number was used last time gets a later number in the sequence instead. That's all it
takes for the test run to skew wildly. Further study would be needed to figure out how
to prevent this, and whether identical behavior from stress_driver is likely to have
much effect on reproducing failures in the first place.

The "-shell" argument is a use of the string type of randomization, telling shell_stress
which shell to use. You may have noticed that the names of some of the user accounts
also suggest a type of shellthese are the login shells for the accounts. Neither
stress_driver nor shell_stress (in this particular test) does a full login, so the shell is
chosen independently of what the login shell for the account is. The “:sh” notation tells
shell_stress to use Bourne shell-style syntax when setting the shell prompt and
checking that status of the commands.

Porting stress_driver
Now we can fast forward to 2002. Eric Schnoebelen, another ex-Convex employee, was
doing contracting work for the Hewlett-Packard division that had acquired Convex. HP
was no longer actively using the test suites that it had acquired with Convex. Eric
convinced HP to release the tests and their associated tools under an open source
license. Eric volunteered his time to audit the tests to remove the functional tests that
Convex has licensed from Perennial, and the tests are now available, along with the
CITE test harness that many people had requested a copy of during it heyday.

I decided to pull out one particular part of this valuable but obscure resource, and
help others take advantage of it. So I ported stress_driver to the Cygwin environment
on Windows (a library that facilitates porting Unix utilities to Windows, plus the Unix-

The Making of an Open Source Stress Test Tool page 11 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

style utilities that use it), and Linux. I did most of the work on Windows because I had
a Windows system handy. When I tried the tool on Linux for the first time, it required
no changes in order to run properly. The tests, however, required some significant
porting work because of the way I had designed them.

I adopted one tenet of extreme programming, and did a sort of test-first development,
or in this case, test-first maintenance. I published a brief write-up about this effort, in
the article "Test-First Maintenance", which is included at the end of this paper.

One of the first things to go from the stress_driver code was the references to several
"h2ph" files. These files are produced by a script that tries to convert C header files
into Perl. I referenced some of these files for the advanced signal handling that is
required to support the event-driven aspects of stress_driver. These perl headers were
very fragile, and I had to work around a few bugs in them. Another big hack in the
code was a use of the "syscall" function to invoke a system call directly from perl, also
for the purpose of advanced signal handling.

I wanted to rip out my home-grown event-handling code and use something like the
Event module instead. The Event module is part of the Comprehensive Perl Archive
Network (CPAN), though it doesn't install with Perl by default. I was apprehensive
about removing my event handling code. I had put a lot of work into making it robust,
and it was a core part of the code, though there was still an occasional mysterious
failure. I decided to put off the port to the Event module for a while.

Since I wanted to make the script portable, I decided to port the signal handling code
to use POSIX signals. The POSIX module was not available when I first wrote
stress_driver using Perl 4. Using the POSIX module would not only make the code
more portable, but it would also get rid of the dependence on the most egregious
hacks in the codethe h2ph files and the use of the syscall function. I had the port
partially done, and at the same time I was writing automated tests to verify the
stress_driver code. I found that one of my tests was failing intermittently. It looked like
I had a race condition in my code. At this point, I decided it was time to bite the bullet
and make the big changeover to the Event module rather than trying to fix the existing
code.

The changeover wasn't as traumatic as I had feared. I ended up removing about 90
lines of code that were replaced by functionality in the Event module. I still need to do
more testing to verify that stress_driver is working as well it used to, though.

There are some other Perl 4'isms that I've been working on removing. To parse the
command line arguments, I used the NGetOpts function from the newgetopt.pl library,
which was the latest and greatest method for argument handling in Perl 4. I used
NGetOpts to get stress_driver's command line arguments, and I also crafted a hack to
use NGetOpts to parse the config file. I have ported the code to use the GetOptions
function in the Getopt::Long module instead. So some nasty perl 4 hacks with
"package" are replaced with some "write-only" code that deals with the hash that now

The Making of an Open Source Stress Test Tool page 12 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

stores the arguments. A bit of a hack is still required to convince GetOptions to
process the config file, but it's not nearly as crufty.

Another Perl 4 relic was the fact that I localized my variables using local(), which uses
dynamic scoping. For Perl 5 programs, programmers are strongly encouraged to use
my() instead of local(). The my() syntax specifies lexical scoping, which is a safer and
much more familiar mechanism (even if you don't know what lexical scoping is). But
for the config file hack mentioned above, I found that I still had to use "local(@ARGV)"
because GetOptions references @ARGV as a global variable. When I naively tried
"my(@ARGV)", the value wasn't available to GetOptions because of the lexical scope.

Limitations
While stress_driver was written to be general-purpose, it's not likely to be appropriate
for everyone. It was designed for operating system testing, and it runs directly on the
system under test. So there are no special features for starting the application under
test.

Stress_driver is Unix-centric, and it doesn't have a graphical user interface. Though it
runs under Windows with a lot of help from the Cygwin environment. someone who
isn't familiar with Unix or Cygwin may have trouble using the tool.

You can only specify one test program to stress_driver. If you wanted to use more than
one test program, you could write a wrapper program that called your test programs
using whatever criteria you wanted. In fact, you could consider the shell_stress test to
be an example of this. Shell_stress runs many different programs from its user profile
database. The downside is that all these layers of control steal performance from the
system (and shell_stress itself is two layers - a perl script to parse the database and an
expect script to execute the commands). While running the shell_stress test, I found
that the system spent a sizable fraction of its resources running all the driver scripts.
This takes resources away from the tests themselves. If you write a test driver
specifically for a particular type of test, you have more opportunity to optimize the
driver. This is the tradeoff we make for a general solution.

The performance issue might could be mitigated if stress_driver could execute tests in
a distributed fashion, so that one machine executes the driver and other machines
execute the tests. It is possible, of course, to add a layer underneath stress_driver that
distributes the tests, which would bring with it all the caveats of the previous
paragraph. For one incarnation of shell_stress, I did add such a layer. I only used it to
test networking in a loopback, i.e., doing telnet, rlogin, and ftp back to the same
machine, but it did serve as a proof of concept for doing distributed testing.

Another factor to consider is that each invocation of the test program requires starting
a new process. This wouldn't be ideal for situations where the test cases are very
lightweight. For example, if the test runs in a tenth of a second, then the time required
to start a new process, clean up after it, and log each step along the way would dwarf
the time spent actually running the test code.

The Making of an Open Source Stress Test Tool page 13 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

Ideas for enhancement
There are always more features to implement that resources available to implement
them. Here are a few ideas for stress_driver that may also give you ideas for improving
other tools that you work with. Whether any of these get implemented will depend on
the interest from the user community and on how many people volunteer to help with
the development.

• Increase test coverage. The current test suite is very sparse and there are likely
many more bugs to root out.

• Port and test on other systems. It's likely to port easily to any system that
supports Perl and the Event module (probably only Unix-like environments).

• Fix the cpu scaling feature. For each supported operating system, it just needs
to have a mechanism to count the number of processors on the system. Also,
perhaps add a command-line option to specify the number of processors, which
could be used before the automatic processor count is ready, and could also be
used to spoof the number of processors for purposes of experimentation.

• Add a graphical interface using Tk. This would make stress_driver easier to set
up and monitor.

• Validate the math used in the adaptive scheduler. I suspect that it doesn't quite
work the way it's supposed to, in managing the average number of active test
processes.

• Provide hooks that would allow dynamically modifying the stress_driver and test
program arguments. Users could use their own adaptive algorithms.

• Improve process management. Several possibilities here, such as: using process
groups to make cleanup more robust, modify priorities so stress_driver gets
more cpu cycles when under heavy load, and test stress_driver's operation
when the process table or memory is full.

• Implement a slow start feature. Rather than always blasting the system with the
maximum number of tests all at once, it might be useful to be able to start up
more slowly in order to mimic more of a real-world scenario.

• Allow math expressions in arguments. The current scaling mechanisms are
fairly flexible, but we could get even more flexibility by allowing arbitrary
expressions and further generalizing the scaling.

Call for participation
Consider yourself invited! Perhaps you want to be a user of the tool, or you just want
to borrow the code for other purposes. You could hone your test automation skills by
contributing to the stress_driver test suite, or you could exercise your perl
programming skills by working on the stress_driver code itself. Both the original code
from Hewlett-Packard and my enhanced version of the stress_driver is released under
a modified Apache Project license.

The Making of an Open Source Stress Test Tool page 14 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

To obtain the enhanced version of the stress_driver and its test suite, go to
http://www.tejasconsulting.com/stress_driver/.

To run stress_driver on Windows, you will need to install Cygwin and the Cygwin build
of Perl. See http://www.cygwin.com/. On Linux and Unix systems, you will need a
recent version of Perl. I used Perl 5.6.1 on both Windows and Linux.

You will need the optional Perl modules: Event, Test::More, and probably an upgrade
of Test::Harness. The easiest way to install these if you have a live Internet connection
is to run “perl –MCPAN –e shell” and type “install Event” and “install Test::Harness”.
Note that on Windows 2000, one of the Test::Harness self-tests will fail, so you have to
do a forced install.

For the original stress_driver as of the time of its 2002 release from HP (the script was
actually last modified in 1996), including the suite of stress tests that used it, see
ftp://ftp.cirr.com/pub/cite/test-suites-19961217.tar.gz. The script is located in
bin/stress_driver, and the test suites are under os/stress. This version of the script is
also included in my stress_driver distribution, named “stress_driver_orig”.

The test suites are designed to run using the CITE test harness, which can be found at
ftp://ftp.cirr.com/pub/cite/cite-4.4.tar.gz. Stress_driver itself is not dependent on
CITE.

Note that the originally released testware in test-suites-19961217.tar.gz and cite-
4.4.tar.gz run only on a limited set of now outmoded platforms. It's difficult even to
determine which platforms they did run on when development ceased. So don't expect
to be able to make use of what you find there without porting it to your platform.

Acknowledgments
Big thanks go to Eric Schnoebelen for taking the initiative and applying the elbow
grease to get the stress_driver code and megabytes of other interesting test assets
released to the public, and to Hewlett-Packard for agreeing to make it available.
Thanks also to the System Software Test Team at Convex Computer Corporation for
their role in the development of stress_driver, the infrastructure it worked within, and
all the suites that used it.

I'd like to acknowledge Bob Clancy for reviewing early drafts of this paper and for
being to first to volunteer to participate in the further development and testing of
stress_driver.

References
“Test-First Maintenance: A diary”, Danny R. Faught, Dallas/Fort Worth Unix Users
Group Newsletter, June 2002. (included below)

The Making of an Open Source Stress Test Tool page 15 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

Event-Driven Scripting, Danny R. Faught, presented at the July 12, 2001 meeting of
the Dallas/Fort Worth Unix Users Group. Slides at:
http://tejasconsulting.com/papers/event-driven/Event-Driven.htm.

“Perl Scripting: A Test Automation Task Master”, Danny R. Faught, Software Test
Automation Conference tutorial, Fall 2002. Includes a walkthrough of some of the
stress_driver code.

The Making of an Open Source Stress Test Tool page 16 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

Appendix

Test-First Maintenance: A Diary
Published in the Dallas/Fort Worth Unix Users Group Newsletter, June 2002

Hurrah! A stress test tool that I wrote while employed at Convex Computer
Corporation has been released with an open source license. It's called "stress_driver"
and it's sitting hidden in a 20 meg tar file where no one will likely find it, and anyone
who does find it won't know what to do with it. It runs on an operating system version
that few people use. It was written using Perl 4, and though it's been ported to Perl
5, it still uses a Perl 4 style, including requiring some header files that are conjured
via black magic. But I found that it was a very useful tool, and I bet that it could easily
be ported to other operating systems.

I've been talking to Extreme Programming (XP) and other agile development advocates
about test-first development. So why not test first maintenance? The idea with test-
first development is that when you develop a new feature, you first write a test, you
run the test to verify that it fails, you develop the feature, then run the test and see if
it passes.

Here I have an 816-line perl script that doesn't run on any system I have access to.
There are no tests. I'm going to dive into the deep end and try test-first maintenance
for legacy code, while porting stress_driver to the Cygwin environment on Windows NT
4.0. I'm keeping a diary along the way. Here are some highlights and extra
commentary.

Oh, by the way, I'm not familiar with Perl's test harness modules, though I know that
several exist. Having run the test suite for Perl itself and some of its modules, I choose
the same basic "Test" module that they use, and I decide to use Test::Harness in a
script that will kick off all of the tests.

2002-05-08
2:08pm
The simplest test I can write is one that uses no command line arguments. It turns
out that this is a negative test - the expected result is an error message, because at
least one argument is required. I don't think agile developers write a lot of negative
tests. Oh well. I write the "badopt" test. It passes, but I didn't verify the text of the
error message. It turns out that the stress_driver is croaking because I haven't starting
porting it to Cygwin yet. So I add another check based on the error message, and that
fails.

Seems like I have a lot of work to do to get this first test to pass. Hmmm, the XP tenets
say I should keep things simple. So I simply comment out the parts that don't work
and are preventing the program from getting as far as the code that checks the
command line arguments. I have my first passing test!

The Making of an Open Source Stress Test Tool page 17 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

I decide to add some subtests to "badopt." As a tester, I find negative tests more fun
than positive tests. :-) One new test passes a test program path to stress_driver that
doesn't exist. (Talking about testing a test tool can be confusing - when using
stress_driver, you give it the path of a test program that it will run) Cool, that passes.

2:24pm
I want to add another test that specifies a program that isn't executable. Now is when I
start wishing for a more complete test environment. I need to create a file and make
sure the execute bits are off. Normally, I expect the test harness to give me a working
directory where I can create any files that are needed. I hack my test harness script so
it creates a working directory and put the path in an environment variable. That
subtest passes. In retrospect, I wonder why I didn't just create a non-executable file
ahead of time in the test suite directory. Maybe because it it's too easy for file
permissions to be botched when installing a test suite.

2:45pm
Okay, I'll force myself to write some positive tests. I create the second test, named
"simple." I'll tell the stress_driver run "sleep 100000" and then interrupt it shortly after
it starts. There is a -life option that tells stress_driver how long to run. Unfortunately,
the lowest it can go is one minute, which is unacceptable for a test case that should be
able to do its job in a few seconds. I modify stress_driver so that the -life option can
understand seconds as well as minutes.

Testers often have to ask developers to add testability features to their programs. It's
such an easier sell when I'm both the tester and the developer. I recall when I
originally developed the code, I modified it so that minutes were interpreted as seconds
while I was testing, but since I didn't write any reusable tests, I didn't bother to
support both.

2002-05-11
9:33am
A big change that I've been planning to make is to rip out my home-grown event loop
and use the Event module instead. I now have 12 subtests in three files, 15 seconds
runtime. All usually pass, but one intermittently fails in the event code. I decide it's
time to do the big changeover rather than trying to fix the old code.

2002-05-13
2:41pm
All tests are now passing after the event code changeover (and the code is about 90
lines leaner now). But I'm suspicious - that was too easy. I examine the logs created
from running the "simple" test, and I see that stress_driver never actually started any
test programs. My tests need to do a lot more verification. I realize that I'm using a
unit testing framework to do high-level functional testing. Verification would be much
easier and more thorough if I were doing true unit testing and had more access to the
program state.

The Making of an Open Source Stress Test Tool page 18 of 18
© 2002, Danny R. Faught, Tejas Software Consulting

2:49pm
Oops! I learn that when commenting out some of my event code libraries, I also
commented the code that initially starts the child processes, which is still needed in
the new event design. Fixed. I'm glad I tend to comment out code and test the program
before actually deleting the code.

10:05pm
Fixed several other problems, and the post-Event module code now passes all 12 tests.

2002-05-17
5:19pm
I'm getting tired of setting -life to one second for my positive tests. It's not elegant, and
it's still not as optimized as it could be. So I give stress_driver a new -iterate option
that specifies the maximum number of times to iterate the test program. For many of
my stress_driver tests, I'll specify just one iteration, and many will complete in less
than a second. I wonder why I never thought to create that feature before. Chalk up
another one for testability.

Well, that's where I'll leave you for now. Along the way, I found bugs in my original
stress_driver design (including a minor Y2K bug) as well as the new code I added. I
found bugs in the Event module and perl itself, including a reproducible crash in the
perl interpreter. I found myself wishing for a more full-featured test environment, so I
plan to investigate the other Test modules that are available.

If you're a Perl hacker who's interested in participating in the test-first maintenance
project and in using an alpha version of a general-purpose stress test tool, let me
know. There's plenty more testing to be done.

Key Points

Discuss the current software development environment and how it effects test teams
Describe methods for combining test activities to complete them in shorter timeframes
Ms. List tips and techniques for working more efficiently as a test team

Presentation Abstract

With today’s fast-paced software development cycles, there is seldom enough time for complete testing.
Shortened test cycles, a smaller staff, and an increasing need for product quality mean that test groups have
to do more testing in less time. This presentation identifies some ways that test groups can work more
effectively in shortened timeframes. It describes common testing activities and discusses ways to combine
them to get more test coverage. The presentation also covers ways your test team can work more efficiently
and more effectively. Attendees will discover:
·Methods for combining test activities to complete them in shorter timeframes
·Tips and techniques for working more efficiently as a team
·Resources for more information on effective testing practices

About the Author

Lauri is currently a Principal QA Engineer at Phase Forward Incorporated. She is a QA professional with 13+
years of experience in QA methodologies, documentation, testing, QA implementations, and team
leadership across all phases of product development. Her background in programming lends to her
experience in the more technical aspects of testing.

Lauri’s main role at PhaseForward is to implement the testing of several webbased and client-server
software applications created specifically for use by the pharmaceutical industry. Lauri recently worked at
Vanteon where her main task was to drive the research, training, and implementation of new technologies,
testing methodologies, and automation tools across multiple projects for clients in a variety of industries,
including financial, educational, tool vendor, ecommerce, graphics, and shrink-wrapped markets.

Lauri has presented at several conferences on topics including configuration testing, performance testing,
usability testing, and test management, and has written technical white papers that have been printed in
industry newsletters. She is a Segue-certified eConfidence Performance Consultant and has been involved
with UL ISO9000, ISO9001 certifications, and SEI quality assessment processes, standards, and
inspections. Lauri is a participant in local chapters of ASQ, IEEE, SPIN, and NESQAF. Lauri has a
Bachelor’s degree in Computer Science and a Master’s degree in Computer Science from Boston College.

QW2002 Paper 9P1

Lauri MacKinnon
(PhaseForward Incorporated)

Testing Efficiency: Taking Advantage of Test Overlap

1

Testing Efficiency:
Taking Advantage of Test Overlap

Lauri MacKinnon

Agenda

Describe the current testing environment
Define common test types
Discuss ways to combine testing for
greater efficiency
List some team efficiency tips
List resources

2

The Current Test Environment:
Industry Effects

Increased market pressure

Reorganizations

.com failures

Budget cutbacks leave little money for

Employees

Contractors and consultants

Equipment and tools

Incentives and reimbursements

The Current Test Environment: The
Software Development Industry

Shorter time-to-market

Rapid product development

Feature sets must be maintained

Quality of product becomes critical

Usability becomes more important and
affects a wider product audience

3

The Current Test Environment:
The Effect on QA Groups

Less money for testing tools and
equipment

Smaller test staff

Less time for testing

Shortened test cycles

Fewer test cycles

Something has to give…

Test Techniques: Cutting Back
on Testing Tasks

Unit testing that can be done
by development

Critical test types

Repetitive tests that are easy
to automate

Testing complex code

Testing older configurationsTesting prominent and/or
advertised code

Testing little-used codeTesting vital code

Testing legacy codeTesting new and changed
code

More Risky to Skip Less Risky to Skip

4

Common Test Types & Activities

Product Familiarization

Test documentation

Acceptance testing

Feature testing

System testing

Configuration testing

Compatibility testing

Common Test Types & Activities

Performance testing

Unit testing

Error / Recovery testing

Load testing

Stress testing

Ad-hoc testing

Scenario-based testing

Usability testing

5

Usability Testing During the
Product Lifecycle

Requirements

High Level Design

Low Level Design
& Implementation

QA & Testing

Alpha & Beta Releases

Release to Clients

User Profiles

Usability Goals
& Priorities

Use Cases

Usability Measures

Exploratory
(Usability) Testing

Assessment
(Usability) Testing

Validation
(Usability) Testing

Comparison
(Usability) Testing

Specification
& UI Design

Test Techniques: Combining User
Profiles & Requirements Gathering

Target User:
User role identification

Demographics (age, education, etc.)

Learning style

Skills background

Domain knowledge (subject matter)

Computer skills (overall experience
and daily use)

Special restrictions or considerations

6

Test Techniques: Combining User
Profiles & Requirements Gathering

Product Usage:

Goal or purpose

Frequency of use

Task analysis

Work flow analysis

Surfing vs. searching

End-user environment

Test Techniques: Combining Usability
Evaluations & Product Familiarization

Usability Evaluations:

Heuristic / Expert Evaluation

Live Tests (Focus Group, Talk Aloud,
Paper Prototypes, Video/Audio)

Questionnaires and Survey

Consistency Evaluation (Style Guides)

Standards Evaluation

Feature Evaluation

7

Test Techniques: Combining Usability
Walkthroughs & Test Documentation

Use Case or Task Scenario Review (Cognitive
Walkthrough)

Multi-user Evaluation (Pluralistic Walkthrough)

Test Documentation

Test Plans

Test Cases

Traceability Matrix

Use Cases

Test Techniques: Re-use of
Use Cases

Usability Testing

X-treme Programming Testing

Scenario Testing

Acceptance Testing

Requirements Validation

Design Validation

Documentation Templates

8

Test Techniques: Combining Acceptance
Testing & Configuration Testing

Stick to supported platforms

Automate minimal acceptance test suite

Execute simultaneously on platforms
Automated

Manual

Alternate execution across configurations

Test Techniques: Combining Scenario
Testing & System Testing

Write Scenario test cases that:

Walk through typical user tasks
(start-to-finish)

Exercise System test areas:

Recovery testing

Security testing

Stress testing

Performance testing

9

Test Techniques: Combining Load
Testing & Performance Testing

Use a configurable automated load
testing tool

Baseline with 1 user; doubles as
performance test

Increase the load in increments

Record and compare results

Save results as a benchmark

Compare to future product releases

Test Techniques: Combining
Usability Testing & Beta Programs

Other test types

Requirements validation

Acceptance tests

Scenario tests

Ad-hoc tests

Configuration tests

Usability tests

Familiarization
tasks

Use cases

End-user tasks

End-users may also find issues that
testers and developers may not notice

Beta program participants can re-run:

10

Test Techniques: High Performance
Work Teams

Multi-task

Rotate tasks & staff

Track product area coverage

Cross-train through concurrent activities

Overlap training and testing

Leverage testers’ strengths and talents

Test Techniques: High Performance
Work Teams

Alternate full feature & directed test passes

Have frequent communication

Track progress

Use post-mortem results

Hold bug triage reviews

Improve their estimating and scheduling

Use simpler methods when necessary

Delegate common IT infrastructure tasks

Reward staff

11

Test Techniques: Using Resources
Outside of the QA Team

Inside the company

Development Group

Customer Support Group

Documentation & Training
Groups

Sales & Marketing Groups

Managers & Executives

IT Group

Outside the company

Beta Sites

Customers

Contractors

Consultants

Outsourcing
companies

Summary

Described the current QA environment

Went over some of the more common
test types and activities

Discussed ways to combine test activities
to complete them in shorter timeframes

Identified some tips and techniques for
working more efficiently as a team

12

Resources – Books & Articles

Buckingham, Marcus and Coffman, Curt. 1999.
First, Break All the Rules. Simon & Schuster. ISBN:
0684852861.
Connor, Daryl R. 1992. Managing at the Speed of
Change: How Resilient Managers Succeed and
Prosper Where Others Fail. Random House. ISBN:
0679406840.
Drucker, Peter. 1995. Managing in a Time of Great
Change. Dutton/Plume. ISBN: 0525940537.
Pressman, Robert S. 1992. Software Engineering,
A Practioner’s Approach. ISBN: 0-07-050814-3.

Resources – Books & Articles

Jakob Nielsen, Designing Web Usability
Jakob Nielsen, Usability Inspection Methods
Donald Norman, The Design of Everyday Things
Stephen Krug, Don’t make me think!
Ben Schneiderman, Designing the User Interface:
Strategies for Effective Human- Computer
Interaction
Russell R. Hurlbut, A Survey of Approaches for
Describing and Formalizing Use Cases,
Document: XPT-TR-97-03

13

Resources – Web Sites

http://www.useit.com

http://www.jnd.org

http://www.microsoft.com/usability/

http://webword.com

http://usableweb.com

http://usability.gov

http://www.asktog.com

http://www.usablesites.com

Key Points

Measures of individual performance are often dysfunctional
In many companies, we have to measure individual performance
Some combinations of measures might do more good than harm

Presentation Abstract

The Software Test Managers Roundtable (STMR) meets twice a year to discuss issues of interest to
experienced test managers. The May 2002 meeting discussed measurement of the effectiveness of
software testers. This talk reports ideas from that meeting.

We will look at several examples of dysfunctional approaches to employee measurement, why they are
dysfunctional, and how you might explain to your management that they are best left unused. We will also
look at examples of multi-dimensional approaches that different test managers have found useful, asking
why they were useful and how you might apply the ideas underlying them to your job. Finally, we'll note that
much employee performance "measurement" is qualitative and interactive. Some managers operate by
discussion and demonstration, much more than by the numbers. We'll discuss some of the interactions that
some people have found effective.

About the Author

Cem Kaner is Professor of Computer Sciences at the Florida Institute of Technology. Prior to joining Florida
Tech, Kaner worked in Silicon Valley for 17 years, doing and managing programming, user interface design,
testing, and user documentation. He is the senior author (with Jack Falk and Hung Quoc Nguyen) of
TESTING COMPUTER SOFTWARE (2nd Edition) and (with David Pels) of BAD SOFTWARE: WHAT TO
DO WHEN SOFTWARE FAILS.

Through his consulting firm, KANER.COM, he teaches courses on black box software testing and consults
to software publishers on software testing, documentation, and development management. Kaner is also the
co-founder and co-host of the Los Altos Workshop on Software Testing, the Software Test Managers'
RoundTable, the Workshop on Heuristic & Exploratory Techniques, and the Florida Workshops on Model-
Based Testing.

Kaner is also attorney whose practice is focused on the law of software quality. He is active (as an advocate
for customers, authors, and small development shops) in several legislative drafting efforts involving
software licensing, software quality regulation, and electronic commerce. Kaner holds a B.A. in Arts &
Sciences (Math, Philosophy), a Ph.D. in Experimental Psychology (Human Perception & Performance:
Psychophysics), and a J.D. (law degree). He is Certified in Quality Engineering by the American Society for
Quality.

QW2002 Paper 9P2

Mr. Cem Kaner
(Florida Institute of Technology)

Measuring the effectiveness of software testers

Presentation Abstract

The presentation will provide an insight into an automated testing environment employed at a wireless carrier which
allows the same test environment and the same automated test scripts to be executed against different models of
handsets from different handset manufacturers with little maintenance or setup from the carrier.

About the Author

Mitch Krause is a Managing Consultant in the Mobile and Wireless business division of TestQuest Inc, a leading
provider of operating system independent testing solutions. He has over 15 years of software test experience
including commercial, military and class III medical device software development environments.

QW2002 Paper 2V1

Mr. Mitch Krause
(TestQuest, Inc.)

Carrier Compliance Testing of Mobile Handsets

1

Wireless Carrier Compliance
Testing of Mobile Handsets

Presentation Outline

Problem Statement and Challenges

Test Scenarios

Testing Options

Test Solution

2

Challenges for Mobile & Wireless Products

Product
Commoditization

Expanding
Software
Content

Increasing
Product

Complexity

Global
Competition

Automated
Testing

Mobile Market Objectives

1. Maximize ARPU

2. Minimize subscriber churn

3. Increase market penetration of services and
devices

4. Deploy revenue generating services

5. Increase adoption of advanced handsets

3

Primary Influencers

1. Postpaid & high-end subscriber demand for reliable,
high-bandwidth data services for enterprise
applications

2. Prepaid & low-end subscriber need for dependable
communication appliances

3. Subscriber perception of on-air Quality of Service
4. Differentiated device capabilities and value-add

service

1. Typical vendor has 15 models & 8-10 revs/model
2. Typical service provider certifies about 35 handsets a

year from each of about 12 vendors
3. Certification takes 90-120 days
4. Involves 8-10 revs of handset software and firmware
5. Tests are repeated when problems are found &

corrected
6. Certification is generally manual
7. Handset complexity is increasing with convergence,

3G, and data services

Carrier Testing Problem

4

End-to-End Network Architecture

OSS
BSS

M
ob

ile
 D

ev
ic

es
/T

hi
n

C
lie

nt
s

In
fo

rm
at

io
n

R
ep

os
ito

ry

Network Infrastructure Service Layer

R
ad

io
 A

cc
es

s

R
AN

/U
TR

AN

C
or

e
N

et
w

or
k

IP
 S

er
vi

ce
 A

cc
es

s
Service Enabling Layer

Middle Tier

Application Tier

Applications

Portal

3rd Party
Apps

APIs

Mobile Device – Subscriber’s View

Service Enabling Tier
egs. SMS, Location Info, IN

Middle Tier
egs. WAP gateways, web

Portal
egs. Web Browsers

3rd Party Apps
egs. push content, pull data

Operational Support
egs. Status & event logs,

Service management,
QoS negotiations

Radio
Air interfaces, Multi-band

Multi-mode, Codecs

Core
Interaction with core network

Elements egs. Pre-pay etc

IP Service Access
Access to Internet and

Corporate Intranets

Corporate Network Access
Corp email, intranet,

egs., Blackberry

Business Support
Egs., Charging Info

User Interface

Content
egs. MP3 file

Applications
egs. media player

APIs
egs. physical, SDKs

Service Core
egs. Voice, IP

Operating Sys
egs. PPC, Symbian

Software
egs.codecs

Hardware
egs.radio, memory

5

Presentation Outline

Problem Statement and Challenges

Test Scenarios

Testing Options

Test Solution

Carrier Test Scenarios

1. Stage 1: RF Parametric
In conjunction with BSEs and T&M systems

2. Stage 2: Mobile station – Base Station Interop
System determination; mobile originate; SMS handling

3. Stage 3: Drive test on live infrastructure
Multi-band performance; call performance

4. Handset functionality

5. Value-add services

6

Application Examples
Functional and Regression Testing
User Interface (UI) testing
Application testing – browser, SMS,
phonebook, etc.
End-to-end test:

PC/handset synchronization
Server & handset (client/server applications)
Base station emulator control
Bluetooth and wi-fi

Field testing
Interoperability test (IOT)

Presentation Outline

Problem Statement and Challenges

Test Scenarios

Testing Options

Test Solution

7

Client
Strategy

Creative

Production

1. Grow the manual test organization
Does not shorten the test cycle
Does not scale to technical requirements
Expensive

2. Automate handset certification
Multiple handsets can be tested in parallel
Potential to significantly shorten the test cycle
Shrink time-to-market
Can handle complex test scenarios
Tests can be moved upstream to handset
vendors thus reducing burden on service
providers

Testing - Options

Presentation Outline

Problem Statement and Challenges

Test Scenarios

Testing Options

Test Solution

8

Solution Goals

1. Increase quality and maturity level of
handsets released to service providers for
test

2. Reduce vendor & service provider test cycles
by 50%

3. Deploy completely carrier-specific turnkey
test solutions

Solution Elements
1. TestQuest Mobile and Wireless Test System

Baseline test systems and software

2. Carrier Specific Test Infrastructure
Test framework for a specific carrier including standard
reports, databases, logs etc

3. Carrier Specific Test Cases
Implementation of a specific carrier’s test cases

4. “Stay-Connected” Handset Connectivity
Package of hardware and software connectivity to
handsets

5. Network Emulator Connectivity
Library for controlling network emulators

9

Carrier Specific Test Infrastructure

Sys/Sel MO SMS BO SMS Enh Roam 2Way SMS EMS

TestQuest Carrier Test Solution

Handset Connectivity Emulator Connectivity

Test Execution Platform

Handset API Emulator API

Carrier Specific Test Infrastructure

Sys/Sel MO SMS BO SMS Enh Roam 2Way SMS EMS

Stimulate Monitor

Verify &
Document

TestQuest Pro System Approach

10

TestQuest Pro – Product Overview

Test Automation Tool for mobile and wireless devices
applications, and services

High productivity script development environment

Industry standard scripting language - C/C++

Open platform for integration of optional modules

TestQuest Pro – Product Modules

Three main modules in the product which together
enable high-fidelity functional test automation

1. Connectivity hardware/software
Drive the inputs and capture the outputs of the SUT

2. A powerful Integrated Development Environment
(IDE) & Software libraries

Generate, edit, and debug automation test scripts

3. Test Management
Manage and execute scripted automation

11

Target Connectivity Methods
Device Under Test

Software
Agents

Major OS
PPC, Palm, Symbian

Resident
Diagnostics

Custom
Developed

Hardware
Instrumentation

First-Time
Integration

Repeat Integration

TestQuest Performed

Customer Performed

TestQuest Performed

Customer Performed

Handset Connectivity Options

1. Hardware instrumented connectivity
Zero software footprint; maximum coverage;
complementary with software tools

2. Software agents on major commercial OSs
Symbian, PPC, Palm

3. Agents for proprietary OSs
iTRON, in-house

4. Connection to Baseband chipset DM ports
CDMA; W-CDMA;

12

Handsets – Hardware Connectivity

Denso 2200 Sanyo 5150

Samsung 250

Software Connectivity

13

Recorder Window
Code Editor,
C Interpreter
& Debugger

Image Verifier Window
Dynamic snapshot of target screen

Simulation Window
Virtual Interface to Device

14

Test Information
Manager (TIM)

Enables organization of tests
into test frameworks

Allows structured execution
of hundreds of tests
Enables unattended testing

Provides an organized
approach to extensive
product testing

Test Runtime & Management

15

1. UI and Navigation differences across handsets

2. Access to handset interfaces – driving the
keypads and monitoring the screens

3. Variety of Base Station Emulators – Anritsu,
Spirent, Agilent, Racal

4. No common test language

5. Automation development skills

Automation – Rollout Challenges

16

Mobile Test Architecture

1. Approximately 150 handset
and BSE neutral commands

2. Test automation is
expressed in problem-
specific terms vs. handset-
specific terms

3. Insulates test
implementation from
handset and BSE specifics

4. Greatly reduces test
development and
maintenance requirements

Start A Test Case

Marks start of test case,
setups internal variables

Test Case Logic

Actual test case implementation

 int main()
{

 TEST_CASE_START("66_12 Go to date")
 {

 // 1. Scroll through the full window choice item and select Calendar
 // 2. Press the "Options" softkey.
 // 3. Scroll to "Go to date" choice item.

 NAVIGATE_INTO_SCREEN("Go to date");

 // Verify the phone will display the date query with the header "Date"
 // and the softkeys are "OK" and "Back".

 VERIFY_TEXT("Date", MENU);

 VERIFY_SOFTKEY("OK")
;
 VERIFY_SOFTKEY("Back");

 SET_DATE(&aDate[0]);

 VERIFY_DAY_VIEW(&aDate[0],NO);

 //%B
 }

 TEST_CASE_CLEANUP()
 {
 NAVIGATE_HOME();
 }
 TEST_CASE_CLEANUP_END()

}

Basic ATC Info

Test Case Environment

Only header file required

#include "ManufacturerTest.h"

// Script: 66_12 Gp tp date/cs;
// Creator: EnterName
// Template: Default.csl

// Creation Date: 7/13/2001 3:22:43 PM

// Function Template Set: 1

Logs results and performs any
cleanup operations that may
be required

Test Case Cleanup

Summary

Vendors and carriers needed a common broadly accepted
and “endorsed” turnkey test solution

TestQuest understood the shared problem that
carriers and handset manufacturers have

TestQuest has the solution that has been widely
adopted and endorsed by handset vendors and
carriers

TestQuest has expertise with handsets, carriers, and
test to ensure the success of our customers

Presentation Abstract

Software process improvement (SPI) is an effective means by which software development and maintenance
organizations can move toward higher performance. But SPI can easily become a bureaucratic, slow, ineffective
endeavor. This does not have to be the case. This presentation will describe an approach to software process
improvement that is streamlined but effective. It can be used by large and small organizations to develop “lean and
mean” SPI projects.

About the Author

Jessee Ring has twenty-five years experience in systems and software development. He has fulfilled roles of
software developer, tester, integrator, systems analyst, project manager, department manager, software quality
manager, corporate executive, and independent consultant. He has experience in both large and small
organizations and diverse environments. He has a Bachelor’s and Masters degree in electrical engineering, and
achieved numerous scholastic honors. He is currently working as an independent consultant in the areas of
software quality, testing, process improvement, metrics, and project management.

QW2002 Paper 2V2

Mr. Jessee Ring
(Software Quality First)

Agile Software Process Improvement

1

Agile Software Process Improvement

Jessee Ring
Software Quality First

40119 San Carlos Place
Fremont, CA 94539

510-915-2353
Fax: 510-573-7464

Email: sqa1st@attbi.com
Web: www.sqa1st.com

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Certification vs. Improvement

Use the process
model as a guide to
making
improvements.
Using the model as
a criteria for
“certification” often
leads to irrational
behavior.
All improvement
projects should be
linked to business

Time

Pe
rfo

rm
an

ce

2

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI - Appraisal

Done by one person
Must have extensive
experience in
multiple areas:

Systems and software
development
Testing
SQA
SPI
As an individual
contributor &
manager

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI – Appraisal Process

Plan

Kick-off

Collect
Data

Process
Data

Evaluate
Data

Write
Report

Present
Results

Make
Judgments

Take Action

Reference: “CMM Appraisal Framework” – SEI publication dated Feb., 1995

3

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI – Time Requirements For
Appraisal

One Calendar Week
40 – 50 hours by the appraiser
Kick-off Meeting: 1 hour
Participants: 2 – 3 hours during the week
Results presentation: 1 Hour

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI – Appraisal Data Collection

Questionnaire
Based upon the process
model being used.

Small group
discussions
Groups can be by job
function or cross -functional.

Document review
Selected documents.

4

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI – Appraisal Questionnaire
Data Analysis

2.414.30.00.00.00.00.0% of Don't Know

100000Number of Don't Know (4)

2.40.014.30.00.00.00.0% of N.A.

010000Number of N.A. (3)

31.057.157.114.342.90.014.3% of No

441301Number of No (2)

64.328.628.685.757.1100.085.7% Yes

226476Number of Yes (1)

431212Person 7

222211Person 6

221211Person 5

221111Person 4

221111Person 3

111111Person 2

111111Person 1

RM-allRM-6RM-5RM-4RM-3RM-2RM-1Name

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI – Process Model Based Ratings

7

Goal 3: Affected groups and individuals agree
to their commitments related to the software
project.

5
Goal 2: Software project activities and
commitments are planned and documented.

5.03

Goal 1: Software estimates are documented
for use in planning and tracking the software
project.

Software Project Planning

10

Goal 2: Software plans, products and
activities are kept consistent with the system
requirements allocated to software.

10.010

Goal 1: System requirements allocated to
software are controlled to establish a baseline
for software engineering and management
use.

Average Per KPARatingRequirements Management

5

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI – Process Model Based Ratings
– Graphical Presentation

0
1
2
3
4
5
6
7
8
9

10

RM SPP
SPTO

SQA
SCM

OPF
OPD ISM SPE IC PR TP

Software XYZ

Sc
al

e
of

 1
 –

10
 w

ith
 1

0
Be

in
g

H
ig

he
st

KPA Ratings

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI – Appraisal Results

Summary of Results
Overall Strengths
Major Issues
Consequences
Recommendations

Detailed Results
Per KPA
Strengths
Issues
Recommendations

6

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI – Appraisal Results

“Consequences" of the
issues that were found
are described.
Makes the issues of more
immediate interest.
Answers the question:
“So what?”.
Justifies the allocation of
resources.

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI – Appraisal Results

“Recommendations” are a critical
element of the Agile SPI approach. By
including them in the Appraisal Report,
people become focused on
Improvement action. It also speeds up
the whole process since the
organization doesn’t have to wait to
find out what to do.

7

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI – Improvement Action

Don’t do anything just because the
process model tells you to do it.
All improvement actions should be
driven by a belief in the business
benefit to be received.
Be results oriented. Identify some
metric that will show the effect of
improvement actions.

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI – Metrics Plan

Two types of metrics: product & process
Product Metrics

• Number of open defects by
severity

• Defect density
• Defect arrival rate
• Total size of the software
• Number of lines of code

added, deleted, modified
• Number of new features

and/or fixes contained in a
new version

• Reliability growth
• Complexity of the software

Process Metrics
• Test effectiveness (number of

“escaped” bugs)
• Percent of bugs found by test

and inspections.
• Amount of time to find a bug by

test and by inspections.
• Cycle time of regression testing.
• Test coverage
• Inspection coverage
• Process maturity ratings over

time

8

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI – Sample Metrics

0
20
40
60
80

100
120
140
160

Version
1.1

Version
1.2

Version
1.3

Version
1.4

Version
1.5

Version
1.6

Version
1.7

Crash, lock-up, etc. Functionality - major Functionality - medium
Functionality - minor Cosmetic

Open Defects at Time of Release
N

um
be

r o
f D

ef
ec

ts

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI – Sample Metrics

0
5

10
15
20
25
30
35
40
45
50

Aug. 1

Aug. 2

Aug. 3

Aug. 4

Aug. 5

Aug. 6

Aug. 7

Aug. 8

Aug. 9

Aug. 1
0

Aug. 1
1

Aug. 1
2

Aug. 1
3

Crash, lock-up, etc. Functionality - major Functionality - medium
Functionality - minor Cosmetic

Defect Arrival Rate - Software XYZ

N
um

be
r o

f D
ef

ec
ts

9

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI – Sample Metrics

0

50

100

150

200

250

300

30 Days 60 Days 90 Days Over 90 Days

Crash, lock-up, etc. Functionality - major Functionality - medium
Functionality - minor Cosmetic

Defect Aging
N

um
be

r o
f D

ef
ec

ts

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI – Sample Metrics

0
100
200
300
400
500
600
700
800
900

1000

Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.

Mean time between failure

Software Reliability Growth

H
ou

rs

10

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

The Need For Software Process
Improvement

Mars Climate Orbiter
Lost because of failure to convert from English to metric units in the
navigational (orbiting) program.

Mars Polar Lander
Lost because of a “missing line of code” that caused the braking
engines to shut down prematurely.

Result
• $360 million out-of -pocket cost

• Indefinitely postpone all future launches to Mars

• Address shortcomings at JPL in areas ranging from systems analysis
and testing to staffing and communications.

© 2002 Software Quality First sqa1st@attbi.com www.sqa1st.com

Agile SPI - Summary

Use the process model as a guide; not a mandate.
Link all process improvements to business results.
Use process maturity ratings to guide improvement
actions, not as a final goal. Don’t publish them.
Process appraisal done by one very experienced
person.
In the process appraisal report, identify consequences of
the issues that were found, and recommendations.
Use metrics to manage the improvement actions.
KISS

Presentation Abstract

As a result of increased competition, businesses are currently pushing their products out to the market in record
time. Some e-commerce businesses even are on a weekly release cycle. Add to that the current economic
conditions coupled with the demand for higher quality software, testers are now facing unprecedented challenges.

Many test groups have developed hundreds if not thousands of automated and manual test scenarios. As
developers constantly change code, and as the amount of time given to testers decreases, finding out how to test
the changed code becomes more and more problematic. It is neither practical nor efficient to run all the scenarios
on such a frequent basis due to a few code changes. Approaches that address the impact of code changes and
identify which scenarios to execute will save time and increase quality.

This presentation will discuss an effective unit/integration testing strategy for rapid release schedules. The focus
will be on

Identifying changes
Assessing the change impact
Identifying which scenarios to execute

Time permitting, client success stories will be discussed as well.

About the Author

Joe Ponczak is a Regional Account Manager for McCabe & Associates, a leading provider of QA and CM
solutions. He has 10 years of QA and consulting experience in a wide range of programming languages,
applications, and environments.

QW2002 Paper 3V1

Mr. Joe Ponczak
(McCabe & Associates)

Change Impact Testing

1

Making IT RightMaking IT Right

PresentationPresentation
McCabe IQ McCabe IQ

Change ImpactChange Impact
AnalysisAnalysis

McCabe
Associates 22

McCabe in the ProcessMcCabe in the Process

DevelopmentDevelopment
–– Code ReviewsCode Reviews
–– Developer TestingDeveloper Testing
–– Quality MeasuresQuality Measures

MaintenanceMaintenance
–– ComprehensionComprehension
–– Change ManagementChange Management
–– Regression TestingRegression Testing

Quality AssuranceQuality Assurance
–– MeasurementMeasurement
–– Automated ReportsAutomated Reports
–– Metrics TrendingMetrics Trending

Functional/System TestFunctional/System Test
–– SystemSystem--Wide CoverageWide Coverage
–– Focus TestingFocus Testing
–– Prioritise EffortPrioritise Effort
–– Improve EfficiencyImprove Efficiency

2

McCabe
Associates 33

Code QualityCode Quality
Developer TestingDeveloper Testing

Code ReviewsCode Reviews
Testing TimeTesting Time

Defect ReductionDefect Reduction
TestednessTestedness

ComprehensionComprehension
Metrics TrendingMetrics Trending

Coverage of Changed CodeCoverage of Changed Code
Tracking ChangesTracking Changes

McCabe
Associates 44

McCabe QAMcCabe QA
Code QualityCode Quality

Code ReviewsCode Reviews
Defect ReductionDefect Reduction
ComprehensionComprehension
Metrics TrendingMetrics Trending

3

McCabe
Associates 555.6s

What is McCabe IQ?What is McCabe IQ?

Source
Code

CC
C++C++
JavaJava
JSPJSP

FortranFortran
COBOLCOBOL

AdaAda
PL/1PL/1
VBVB

Parsing McCabe
Database

McCabe
IQ

Static Analysis ProcessStatic Analysis Process

Measure
Quality

Identify
Changes

McCabe
Associates 66

Measuring QualityMeasuring Quality
flowgraphsflowgraphs

function_test(y)
0 {

x=3;
1 if (y < 4)
2 x=sin(y);

else
3 x=cos(y);
4 x=x*x;
5 }

0

1

3

4

5

2

5.3o-5s

4

McCabe
Associates 77

Example 1Example 1

McCabe
Associates 88

Example 2 Example 2

5

McCabe
Associates 99

Example 3Example 3

McCabe
Associates 1010

Software MeasurementSoftware Measurement
complexitycomplexity

5.4o-7s

•• Flowgraphs Visualize LogicFlowgraphs Visualize Logic

•• Useful for:Useful for:
–– ComprehensionComprehension

–– Test DerivationTest Derivation

•• How Can Tests be Derived How Can Tests be Derived
Using Flowgraphs?Using Flowgraphs?

6

McCabe
Associates 1111

18 times

How many testsHow many tests
are needed to exerciseare needed to exercise

every line of codeevery line of code
at least once?at least once?

Code Coverage
Testing Technique

5.11s

Software MeasurementSoftware Measurement
testing testing efforteffort

McCabe
Associates 1212

Example ‘A’Example ‘A’ Example ‘B’Example ‘B’

Which function is more complex?Which function is more complex?

5.12s

Software MeasurementSoftware Measurement
code coveragecode coverage

7

McCabe
Associates 1313

Example ‘A’ Example ‘B’

2 Tests Required

2 Tests Required

Code Coverage is Code Coverage is notnot proportional to complexityproportional to complexity

5.13s

Software MeasurementSoftware Measurement
code coveragecode coverage

McCabe
Associates 14145.14s

Software MeasurementSoftware Measurement

One Additional Path One Additional Path
Required to Determine Required to Determine
the Independence of the Independence of

the 2 Decisionsthe 2 Decisions

McCabe ComplexityMcCabe Complexity
Number of linearly independent paths Number of linearly independent paths

8

McCabe
Associates 1515

Software MeasurementSoftware Measurement
McCabe McCabe unit levelunit level metricsmetrics

ComplexityComplexity
–– Simple / ScalableSimple / Scalable
–– Language IndependentLanguage Independent
–– Easy to MeasureEasy to Measure
–– Indication of Testing EffortIndication of Testing Effort

Essential ComplexityEssential Complexity
–– StructureStructure
–– MaintainabilityMaintainability
–– ReRe--engineering effortengineering effort

McCabe
Associates 1616

Software ComprehensionSoftware Comprehension
Visualize Visualize softwaresoftware

Unit Level ViewsUnit Level Views
–– Flowgraphs & Code ListingsFlowgraphs & Code Listings
–– Detailed Metrics AnalysisDetailed Metrics Analysis
–– Summary ReportsSummary Reports

Context Sensitive
Measurement and Visualisation

6.4o-4s

System Level ViewsSystem Level Views
–– Complete System ArchitectureComplete System Architecture
–– Overlay of Quality MetricsOverlay of Quality Metrics
–– Interaction of ModulesInteraction of Modules
–– Identify impact of changesIdentify impact of changes

9

McCabe
Associates 1717

Metric Impact of ChangeMetric Impact of Change

McCabe
Associates 1818

Impact of ChangeImpact of Change
on Structureon Structure

Changed Code
from last version

Unchanged Code
from last version

10

McCabe
Associates 1919

Platforms / LanguagesPlatforms / Languages
Languages:Languages:
•• COBOLCOBOL

•• Many DialectsMany Dialects
•• CC
•• C++C++
•• Java/JSPJava/JSP
•• FortranFortran
•• AdaAda
•• Visual BasicVisual Basic
•• PL/1PL/1
•• Model 204Model 204

Platforms:Platforms:
•• WindowsWindows

•• NT/2000/XPNT/2000/XP
•• 95/9895/98

•• UnixUnix
•• SolarisSolaris
•• AIXAIX
•• HPUXHPUX

McCabe
Associates 2020

McCabe TestMcCabe Test
Developer TestingDeveloper Testing

Testing TimeTesting Time
TestednessTestedness

Coverage of Changed CodeCoverage of Changed Code

11

McCabe
Associates 21215.6s

What is McCabe IQ?What is McCabe IQ?

Source
Code

CC
C++C++
JavaJava

FortranFortran
COBOLCOBOL

AdaAda
PL/1PL/1
VBVB

Parsing McCabe
Database

Dynamic Analysis ProcessDynamic Analysis Process
Export

N
ew

 C
ode

New Source
Code

Trace Statements
Inserted Automatically

Compile Executable
Program

Trace
Information

Execute

Read Trace

McCabe
IQ

Measure
Testing

Measure
Changes

McCabe
Associates 2222

Coverage ModeCoverage Mode

•• Static BattlemapStatic Battlemap
•• Color Scheme Color Scheme

Represents CoverageRepresents Coverage

7.13s

NoNo Trace File ImportedTrace File Imported

12

McCabe
Associates 2323

Coverage ResultsCoverage Results

•• Colors Show Colors Show
“Testedness”“Testedness”

•• Lines Show Execution Lines Show Execution
Between ModulesBetween Modules

PartiallyPartially
TestedTested

TestedTested

UntestedUntested

Trace File ImportedTrace File Imported

3 67%
My_Func1ion

McCabe
Associates 2424

McCabe TestMcCabe Test

Import CoverageImport Coverage
Assess Coverage for Assess Coverage for
“Critical” Code“Critical” Code
–– Coverage Report for Coverage Report for

“Critical” Group“Critical” Group
–– Examine Untested BranchesExamine Untested Branches

32 67%
Runproc

39 52%
Search

56
My_Func1ion

CriticalCritical
CodeCode

48% Coverage48% Coverage

75% Coverage of Critical Code75% Coverage of Critical Code

13

McCabe
Associates 2525

McCabe ChangeMcCabe Change

Version 1.0 Version 1.0 -- Coverage ResultsCoverage Results Version 1.1 Version 1.1 -- Previous CoveragePrevious Coverage
Results Imported Into New AnalysisResults Imported Into New Analysis

Changed
Code

V1.1 Changed
Code

McCabe
Associates 2626

McCabe TestMcCabe Test

Verify Test SuitesVerify Test Suites
–– Confirm Test EffectivenessConfirm Test Effectiveness

Derive Additional TestsDerive Additional Tests
–– New Functional CombinationsNew Functional Combinations

Prioritise Remaining Test EffortsPrioritise Remaining Test Efforts
–– Focus on Critical Code ElementsFocus on Critical Code Elements

Remove DuplicationRemove Duplication
–– Remove “Low Value” Test SetsRemove “Low Value” Test Sets

14

McCabe
Associates 2727

DemonstrationDemonstration

McCabe IQMcCabe IQ
McCabe TestMcCabe Test

Presentation Abstract

Most software engineering quality tools are analysis-centric point-solutions: they provide one kind of very specific
specific analysis. If you can't find what your company needs off the shelf, however, building a custom tool is almost
impossibly expensive. What is really needed is an available, agile cost-effect technology for not only doing custom
analyses, but coupling those analyses to mechanically reliable change processes to effect improvements
suggested by the analyses.

This talk will describe DMS, a customizable analysis and modification engine that can automatically analyze and
change large scale software systems. We will show how the undelying technology works and can be used to read
and transforms programs written in arbitrary langauges. We will provide a number of interesting production
application examples, including removal of preprocessor directives, XML parser generation, duplicate code
detection, and automated translation of one programming language to another.

About the Author

Dr. Baxter has been building systems software for over 30 years. He is presently the Chief Technology Officer of
Semantic Designs, a software-tools building company. He is also active in academic conferences, and is presently
the Program CoChair for the International Conference on Software Maintence 2002 (Montreal).

QW2002 Paper 3V2

Dr. Ira Baxter
(Semantic Designs, Inc.)

DMS: Software Quality Enhancement via Automated Software Analysis,
Modification and Generation

1

© Semantic Designs, Inc. 17/29/2002

DMS®

Software Quality Enhancement
via

Automated Software Analysis,
Modification and Generation

Ira D. Baxter
Semantic Designs, Inc.
www.semdesigns.com

Quality Week 2002

© Semantic Designs, Inc. 27/29/2002

Automation In Software Engineering
• Manual coding/analysis expensive

– Typical: $100K/year/man/4KSLOC $25/SLOC
– Presently not much automated help; very expensive to build

• Automation possible
– For problem domains with well-defined semantics

• Computer languages, specification languages, …
– For well-defined tasks

• Analysis: error detection, test support,
documentation extraction, reverse engineering, …

• Modification: structure improvement, error handler insertion,
API change, code porting, …

• Code generation: from specs, diagnostics, test cases,….
– Using Program Transformation technology

• = Generalized compiler componentry
• Researched by community over past 25 years

2

© Semantic Designs, Inc. 37/29/2002

DMS® Software Reengineering Toolkit
• Customized, automated

analysis, modification, porting or generation
– Enables wide variety of source-based SE tasks to be automated
– For sources for large scale software systems

• Scalable to millions of source lines, tens of thousands of files
• Parallel processing foundations to support scale

– Handles many and mixed languages simultaneously
• C, C++, Java, Ada, Fortran, SQL, XML, assembler, …

– Generalized compiler technology conveniently integrated
• Parsing, Analyzing, Transforming, Prettyprinting
• Enables practical customization for desired automation task
• Predefined support for standard computer languages
• Huge infrastructure cost amortized over many tasks/customers

• Semantic Designs Supporting Services and Tools
– Consulting & Training to customer on DMS usage
– Implementation of DMS customization
– Selected SE tasks prepackaged: formatting, test coverage, …

© Semantic Designs, Inc. 47/29/2002

DMS Impact on Quality and Process
• Quality

– (Re)use of tested specification techniques
• avoids ad hoc descriptions

– Reuse of abstract generative components (transforms)
• Not code reuse, but rather implementation knowledge reuse

– Specifications and implementation steps inspectable by others
– Reuse of tested synthesis/modification methods
– Mechanical, reliable construction of product
– Easier recovery from errors: correct mistake, re-execute task

• Process
– Reliable components --> avoid rework after changes
– Mechanically repeatable implementation steps
– Focus on knowledge acquisition rather than repeated coding events

3

© Semantic Designs, Inc. 57/29/2002

Overview
• DMS® Software Reengineering Toolkit

– Defining notations (“domains”) for specs and legacy systems
– Parsing and prettyprint
– Transformation mechanics

• Applications for Software Quality Improvement
– C++ preprocessor conditional removal
– Automatic Code Generation (XML Parsers)
– Clone Detection/Removal
– Porting application software to new languages

• Purpose: Educate audience about new generation of tools

© Semantic Designs, Inc. 67/29/2002

DMS Domain Parts
• Syntax

– External Form (what you can say: string or graphical)

– Internal Form (How DMS stores it)

– Parser (how to convert external form to internal form)

– PrettyPrinter (how to display the Internal Form)

• Semantics (what the Internal Form means)
– Optimizations (how to optimize in the domain)

– Refinements (how to transform IF to another IF)

– Analyzers (how to analyze in the domain)

– Attachments (procedures to enhance DMS efficiency)

4

© Semantic Designs, Inc. 77/29/2002

nested_class_declaration = nested_class_modifiers class_header class_body ;
<<PrettyPrinter>>: { V(H(nested_class_modifiers,class_header),class_body); }

class_header = 'class' IDENTIFIER ;
<<PrettyPrinter>>: { H('class',IDENTIFIER); }

class_header = 'class' IDENTIFIER 'implements' name_list ;
<<PrettyPrinter>>: { H('class',IDENTIFIER,'implements',name_list); }

class_header = 'class' IDENTIFIER 'extends' name;
<<PrettyPrinter>>: { H('class',IDENTIFIER,'extends',name); }

class_header = 'class' IDENTIFIER 'extends' name 'implements' name_list ;
<<PrettyPrinter>>: { H('class',IDENTIFIER,'extends',name,'implements',name_list);

class_body = '{' class_body_declarations '}' ;
<<PrettyPrinter>>: { V(H('{',STRING(" "),class_body_declarations),'}'); }

nested_class_modifiers = nested_class_modifiers nested_class_modifier ;
<<PrettyPrinter>>: { H(CH(nested_class_modifiers[1]),nested_class_modifier); }

DMS Domain for Java
Parser + Pretty Printer

… + 300 more rules…(COBOL is 3500!)

© Semantic Designs, Inc. 87/29/2002

Parsing to Abstract Syntax Trees
A Program Representation analyzable by Computers

• Use DMS grammar domain to define language syntax
• DMS generates lexer/parser automatically
• Parser reads source file(s)

– Captures comments
– Carries out lexical conversions (e.g, FP text -> IEEE binary fp)

– Builds Abstract Syntax Tree
– Records Position of every node (file, line, col)

• Present capability for the following domains
– Specification: Spectrum, BNF, Rose Models
– Technology: XML, IDL, SQL
– Implementation: C/C++, COBOL, Java, Ada, VB6, Fortran, Verilog

5

© Semantic Designs, Inc. 97/29/2002

A Simple Java Program

/* Fib.java */

public class NumberTheory
{
int Fib(int x)
{ if (x < 1) return 1; // base case

else return Fib(x-1)+Fib(x-2);
}

}

001
002
003
004
005
006
007
008
009
010

© Semantic Designs, Inc. 107/29/2002

Abstract Syntax Tree (AST) for Fib Class
… free of lexical properties (‘text shape’) of program ...

Class
Header

Class
Body

Method
Declaration

Type
INT

ID
`x’

Type
INT

Parameter

ID
`Number
Theory’

Method
Modifiers

ID
`Fib`

Parameters
Empty

Throwlist

Block

Stmt
Sequence

If
Then
Else

<

ID
`x’

NUMBER
1

Return

NUMBER
1

Return

+

Function
Call

Function
Call

ID
`Fib’

-
ID

`Fib’
-

ID
`x’

NUMBER
1

ID
`x’

NUMBER
2Not shown:

File/line/column
annotation on each node

/* Fib.java */

public class NumberTheory
{
int Fib(int x)
{ if (x < 1) return 1; // base case

else return Fib(x-1)+Fib(x-2);
}

}

6

© Semantic Designs, Inc. 117/29/2002

PrettyPrinting: “AntiParsing”
• Conversion of AST back to text file
• Handles indentation, comments, literal formats...
• Uses DMS Box language to compose PP fragments

If
Then

<

ID
`x’

NUMBER
1

Return

NUMBER
1

V(H(‘if’,’(‘,condition,’)’),
I(then_stmt));

H(‘return’,expression,’;’);

H(expression1,’<‘,expression2);

Prettyprinted result:
if (x<1)
return 1;

© Semantic Designs, Inc. 127/29/2002

W
inner: O

bfuscated “C
” C

ontest
The M

aintenance Program
m

er’s N
ightm

are
#
i
n
c
l
u
d
e

<
m
a
t
h
.
h
>

#
i
n
c
l
u
d
e

<
s
y
s
/
t
i
m
e
.
h
>

#
i
n
c
l
u
d
e

<
X
1
1
/
X
l
i
b
.
h
>

#
i
n
c
l
u
d
e

<
X
1
1
/
k
e
y
s
y
m
.
h
>

d
o
u
b
l
e

L

,
o

,
P

,
_
=
d
t
,
T
,
Z
,
D
=
1
,
d
,

s
[
9
9
9
]
,
E
,
h
=

8
,
I
,

J
,
K
,
w
[
9
9
9
]
,
M
,
m
,
O

,
n
[
9
9
9
]
,
j
=
3
3
e
-
3
,
i
=

1
E
3
,
r
,
t
,

u
,
v

,
W
,
S
=

7
4
.
5
,
l
=
2
2
1
,
X
=
7
.
2
6
,

a
,
B
,
A
=
3
2
.
2
,
c
,

F
,
H
;

i
n
t
N
,
q
,

C
,

y
,
p
,
U
;

W
i
n
d
o
w

z
;

c
h
a
r

f
[
5
2
]

;

G
C

k
;

m
a
i
n
(
)
{

D
i
s
p
l
a
y
*
e
=

X
O
p
e
n
D
i
s
p
l
a
y
(

0
)
;

z
=
R
o
o
t
W
i
n
d
o
w
(
e
,
0
)
;

f
o
r

(
X
S
e
t
F
o
r
e
g
r
o
u
n
d
(
e
,
k
=
X
C
r
e
a
t
e
G
C
(
e
,
z
,
0
,
0
)
,
B
l
a
c
k
P
i
x
e
l
(
e
,
0
)
)

;
s
c
a
n
f
(
"
%
l
f
%
l
f
%
l
f
"
,
y

+
n
,
w
+
y
,

y
+
s
)
+
1
;

y

+
+
)
;
X
S
e
l
e
c
t
I
n
p
u
t
(
e
,
z
=
X
C
r
e
a
t
e
S
i
m
p
l
e
W
i
n
d
o
w
(
e
,
z
,
0
,
0
,
4
0
0
,
4
0
0
,

0
,
0
,
W
h
i
t
e
P
i
x
e
l
(
e
,
0
)

)
,
K
e
y
P
r
e
s
s
M
a
s
k
)
;

f
o
r
(
X
M
a
p
W
i
n
d
o
w
(
e
,
z
)
;

;

T
=
s
i
n
(
O
)
)
{
s
t
r
u
c
t

t
i
m
e
v
a
l
G
=
{

0
,
d
t
*
1
e
6
}

;

K
=
c
o
s
(
j
)
;

N
=
1
e
4
;

M
+
=

H
*
_
;

Z
=
D
*
K
;

F
+
=
_
*
P
;

r
=
E
*
K
;

W
=
c
o
s
(

O
)
;

m
=
K
*
W
;

H
=
K
*
T
;

O
+
=
D
*
_
*
F
/

K
+
d
/
K
*
E
*
_
;

B
=

s
i
n
(
j
)
;

a
=
B
*
T
*
D
-
E
*
W
;
X
C
l
e
a
r
W
i
n
d
o
w
(
e
,
z
)
;

t
=
T
*
E
+

D
*
B
*
W
;

j
+
=
d
*
_
*
D
-
_
*
F
*
E
;

P
=
W
*
E
*
B
-
T
*
D
;

f
o
r

(
o
+
=
(
I
=
D
*
W
+
E

*
T
*
B
,
E
*
d
/
K

*
B
+
v
+
B
/
K
*
F
*
D
)
*
_
;

p
<
y
;

)
{

T
=
p
[
s
]
+
i
;

E
=
c
-
p
[
w
]
;

D
=
n
[
p
]
-
L
;

K
=
D
*
m
-
B
*
T
-
H
*
E
;

i
f
(
p

[
n
]
+
w
[

p
]
+
p
[
s

]
=
=

0
|
K

<
f
a
b
s
(
W
=
T
*
r
-
I
*
E

+
D
*
P
)

|
f
a
b
s
(
D
=
t

*
D
+
Z

*
T
-
a

*
E
)
>

K
)
N
=
1
e
4
;

e
l
s
e
{

q
=
W
/
K

*
4
E
2
+
2
e
2
;

C
=

2
E
2
+
4
e
2
/

K

*
D
;

N
-
1
E
4
&
&
X
D
r
a
w
L
i
n
e
(
e

,
z
,
k
,
N

,
U
,
q
,
C
)
;

N
=
q
;

U
=
C
;

}

+
+
p
;

}

L
+
=
_
*

(
X
*
t

+
P
*
M
+
m
*
l
)
;

T
=
X
*
X
+

l
*
l
+
M

*
M
;

X
D
r
a
w
S
t
r
i
n
g
(
e
,
z
,
k

,
2
0
,
3
8
0
,
f
,
1
7
)
;

D
=
v
/
l
*
1
5
;

i
+
=
(
B

*
l
-
M
*
r

-
X
*
Z
)
*
_
;

f
o
r
(
;
X
P
e
n
d
i
n
g
(
e
)
;

u

*
=
C
S
!
=
N
)
{

X
E
v
e
n
t

z
;
X
N
e
x
t
E
v
e
n
t
(
e

,
&
z
)
;

+
+
*
(
(
N
=
X
L
o
o
k
u
p
K
e
y
s
y
m

(
&
z
.
x
k
e
y
,
0
)
)
-
I
T
?

N
-
L
T
?

U
P
-
N
?
&

E
:
&

J
:
&

u
:

&
h
)
;

-
-
*
(

D
N

-
N
?

N
-
D
T

?
N
=
=

R
T
?
&
u
:

&

W
:
&
h
:
&
J

)
;

}

m
=
1
5
*
F
/
l
;

c
+
=
(
I
=
M
/

l
,
l
*
H

+
I
*
M
+
a
*
X
)
*
_
;
H

=
A
*
r
+
v
*
X
-
F
*
l
+
(

E
=
.
1
+
X
*
4
.
9
/
l
,
t

=
T
*
m
/
3
2
-
I
*
T
/
2
4

)
/
S
;

K
=
F
*
M
+
(

h
*

1
e
4
/
l
-
(
T
+

E
*
5
*
T
*
E
)
/
3
e
2

)
/
S
-
X
*
d
-
B
*
A
;

a
=
2
.
6
3

/
l
*
d
;

X
+
=
(

d
*
l
-
T
/
S

*
(
.
1
9
*
E

+
a

*
.
6
4
+
J
/
1
e
3

)
-
M
*

v

+
A
*

Z
)
*
_
;
l

+
=

K
*
_
;
W
=
d
;

s
p
r
i
n
t
f
(
f
,

"
%
5
d

%
3
d
"

"
%
7
d
"
,
p

=
l

/
1
.
7
,
(
C
=
9
E
3
+

O
*
5
7
.
3
)
%
0
5
5
0
,
(
i
n
t
)
i
)
;

d
+
=
T
*
(
.
4
5
-
1
4
/
l
*

X
-
a
*
1
3
0
-
J
*

.
1
4
)
*
_
/
1
2
5
e
2
+
F
*
_
*
v
;

P
=
(
T
*
(
4
7

*
I
-
m
*

5
2
+
E
*
9
4

*
D
-
t
*
.
3
8
+
u
*
.
2
1
*
E
)

/
1
e
2
+
W
*

1
7
9
*
v
)
/
2
3
1
2
;

s
e
l
e
c
t
(
p
=
0
,
0
,
0
,
0
,
&
G
)
;

v
-
=
(

W
*
F
-
T
*
(
.
6
3
*
m
-
I
*
.
0
8
6
+
m
*
E
*
1
9
-
D
*
2
5
-
.
1
1
*
u

)
/
1
0
7
e
2
)
*
_
;
D
=
c
o
s
(
o
)
;

E
=
s
i
n
(
o
)
;

}

}

7

© Semantic Designs, Inc. 137/29/2002

Pretty Printing to un-obfuscate
#include <math.h>
#include <sys/time.h>
#include <X11/Xlib.h>
#include <X11/keysym.h>
double L, o, P, _ = dt, T, Z, D = 1, d, s[999], E, h = 8, I, J, K, w[999],

M, m, O, n[999], j = 3.3e-2, i = 1e3, r, t, u, v, W, S = 7.45e1,
l = 221, X = 7.26, a, B, A = 3.22e1, c, F, H;

int N, q, C, y, p, U;
Window z;
char f[52];
GC k;
main()
{

Display * e = XOpenDisplay(0);
z = RootWindow(e, 0);
for (XSetForeground(e, k = XCreateGC(e, z, 0, 0), BlackPixel(e, 0));
scanf("%lf%lf%lf", y + n, w + y, y + s) + 1; y++);
XSelectInput(e, z = XCreateSimpleWindow(e, z, 0, 0, 400, 400,

0, 0, WhitePixel(e, 0)), KeyPressMask);
for (XMapWindow(e, z);; T = sin(O))

{
struct timeval G = { 0, dt * 1e6 };
K = cos(j);
N = 1e4;
M += H * _;
Z = D * K;
F += _ * P;
r = E * K;
W = cos(O);
m = K * W;
H = K * T;
O += D * _ * F / K + d / K * E * _;
B = sin(j);
a = B * T * D - E * W;
XClearWindow(e, z);
t = T * E + D * B * W;
j += d * _ * D - _ * F * E;
P = W * E * B - T * D;
for (o += (I = D * W + E * T * B, E * d / K * B + v + B / K * F * D) * _; p < y;)

{
T = p[s] + i;
E = c - p[w];
D = n[p] - L;
K = D * m - B * T - H * E;
if (p[n] + w[p] + p[s] == 0 | K < fabs(W = T * r - I * E + D * P) | fabs(D = t * D + Z * T - a * E) > K)

N = 1e4;
else

{
q = W / K * 4e2 + 2e2;
C = 2e2 + 4e2 / K * D;
N - 1e4 && XDrawLine(e, z, k, N, U, q, C);
N = q;
U = C;

}
++p;

}

L += _ * (X * t + P * M + m * l);
T = X * X + l * l + M * M;
XDrawString(e, z, k, 20, 380, f, 17);
D = v / l * 15;
i += (B * l - M * r - X * Z) * _;
for (; XPending(e); u *= CS != N)

{
XEvent z;
XNextEvent(e, & z);
++ * ((N = XLookupKeysym(& z.xkey, 0)) - IT ? N - LT ? UP - N ? & E : & J : & u : & h);
-- * (DN - N ? N - DT ? N == RT ? & u : & W : & h : & J);

}
m = 15 * F / l;
c += (I = M / l, l * H + I * M + a * X) * _;
H = A * r + v * X - F * l + (E = 1e-1 + X * 4.9 / l, t = T * m / 32 - I * T / 24) / S;
K = F * M + (h * 1e4 / l - (T + E * 5 * T * E) / 3e2) / S - X * d - B * A;
a = 2.63 / l * d;
X += (d * l - T / S * (1.9e-1 * E + a * 6.4e-1 + J / 1e3) - M * v + A * Z) * _;
l += K * _;
W = d;
sprintf(f, "%5d %3d"

"%7d", p = l / 1.7, (C = 9e3 + O * 5.73e1) % 0550, (int) i);
d += T * (4.5e-1 - 14 / l * X - a * 130 - J * 1.4e-1) * _ / 1.25e4 + F * _ * v;
P = (T * (47 * I - m * 52 + E * 94 * D - t * 3.8e-1 + u * 2.1e-1 * E) / 1e2 + W * 179 * v) /

2312;
select(p = 0, 0, 0, 0, & G);
v -= (W * F - T * (6.3e-1 * m - I * 8.6e-2 + m * E * 19 - D * 25 - 1.1e-1 * u) / 1.07e4) * _;
D = cos(o);
E = sin(o);

}
}

© Semantic Designs, Inc. 147/29/2002

Optimization transform
for DMS Rewrite Rule Language

Domain Syntax

Domain Name

We’ll see this idea again later.

default base domain Java;

rule merge-ifs(\condition1,
\condition2,
\then-statements)

“if (\condition1)
if (\condition2)

{ \then-statements
}

”
rewrites to
“if (\condition1 && \condition2)

{ \then-statements } ”;

8

© Semantic Designs, Inc. 157/29/2002

DMS transforms work on ASTs, not text
Not fooled by any lexical properties of text!

If
Then

\condition1
If

Then

\condition2
\then

statements

If
Then

\condition1 \condition2

\then
statements

&&

rewrites
-to

To modify programs:
1) define transforms
2) Parse program
3) Apply transforms

a) match LHS pattern
b) replace with RHS substitution

4) Prettyprint program

Right hand sideLeft hand side

© Semantic Designs, Inc. 167/29/2002

Overview
• DMS® Software Reengineering Toolkit

– Defining notations (“domains”) for specs and legacy systems
– Parsing and prettyprint
– Transformation mechanics

• Applications for Software Quality Improvement
– C++ preprocessor conditional removal
– Automatic Code Generation (XML Parsers)
– Clone Detection/Removal
– Porting application software to new languages

• Purpose: Educate audience about new generation of tools

9

© Semantic Designs, Inc. 177/29/2002

Useless Conditional Elimination

• Problem: Too many configuration #IFs
– Application on many platforms: WNT, SUN, VAX, ...
– #IFs still in code
– Too many to remove by hand, confusing to manage
– Does delivered system work with all combinations?

• Solution: Use DMS to remove designated #IF
– Engineer names dead configuration variables (VAX)
– DMS use transforms to remove #IFs

© Semantic Designs, Inc. 187/29/2002

C++ simplifying transforms
rule simplify_and_false(e:expression): expression->expression

= “\e & 0” -> “0”.

rule simplify_and_true(e:expression): expression -> expression
= “\e & 1” -> “\e”.

rule simplify_or_true(e:expression): expression->expression
= “\e ! 1” -> “1”.

rule simplify_or_false(e:expression): expression -> expression
= “\e ! 0” -> “\e”.

rule pp_if_true_simplify(b:block):statement->statement
= “#if 1

\b
#endif” -> “{\b}”.

rule pp_if_false_simplify(b:block):statement->statement
= “#if 0

\b
#endif” -> “;”.

rule pp_if_then_else_false_simplify(b1:block,b2:block):statement->statement
= “#if 0

\b1
#else
\b2
#endif” -> “{\b2}”.

10

© Semantic Designs, Inc. 197/29/2002

C++ sample code… simplified
Add Rule for dead configuration variables

rule VAX: expression -> expression = “VAX” -> “0”.

Before

#IF VAX!UNIX
syslog(logfile->file_descriptor,”display output”);

#ENDIF
...

#IF VAX
sysclose(logfile->file_descriptor);

#ELSE
fclose(logfile->file_descriptor);

#ENDIF

After

#IF UNIX
syslog(logfile->file_descriptor,”display output”);

#ENDIF
...
fclose(logfile->file_descriptor);

© Semantic Designs, Inc. 207/29/2002

XML Parser Generation
• XML enables Electronic Data Interchange

– Neutral form for moving information between systems
• Problem: Need System1 to XML to System2 translators

– For arbitrary data
– Must be fast to support high-volume EDI

• Typical solution: Use Standard XML -> DOM reader
– Incomplete: Doesn’t solve “to XML” problem
– Slow: Parse arbitrary XML, validate against DTD schema
– Slow: Procedural interface interpreting DTD for data access
– Clumsy: DOM calls clutters application code

• Idea: Generate DTD-specific XML parser/generators
– Produce application-target-language code specific to DTD
– Free validation; XML data in direct-access native data structures
⇒Faster parsing/processing, Easier application coding

11

© Semantic Designs, Inc. 217/29/2002

Sample orderform

<orderform>
<name>Wiley Coyote</name>
<company>Dinner, Inc.</company>
<address><street>1 Mesa Highway</street>

<city>Southwest Park</city>
<country><zipcode>98765</zipcode></country>

</address>
<items>

<item><partnumber>RocketSkates</partnumber>
<quantity>2</quantity><price>29.95</price></item>

<item><partnumber>BirdSeed</partnumber>
<quantity>2000</quantity><price>.01</price></item>

<items>
</orderform>

<?xml version='1.0' ?>
<!DOCTYPE orderform [

<!ELEMENT orderform (name,company,address,items) >
<!ELEMENT name (firstname, lastname)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT company (#PCDATA)>
<!ELEMENT address (street, city, country)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city(#PCDATA)>
<!ELEMENT country (zipcode | nation)>
<!ELEMENT zipcode (#PCDATA)>
<!ELEMENT nation (#PCDATA)>
<!ELEMENT items (item)+ >
<!ELEMENT item (partnumber, quantity, unitprice)>
<!ELEMENT partnumber (#PCDATA)>
<!ELEMENT quantity (#PCDATA)>
<!ELEMENT unitprice (#PCDATA)>
]>

Simple XML DTD for OrderForm

items is
“list of item”

© Semantic Designs, Inc. 227/29/2002

Java Code Generation Plan
• For each DTD element:

– Produce an “element” class to hold data for that element
• PCDATA for leaves
• Class references for non-leaves

– Produce an element-specific parsing procedure
– Produce an element-specific unparsing produre

• Handle sequences as array of element class references
• Handle choices as class reference

+ “which alternative” integer (1..n)
<!ELEMENT name (field)+ > name Parse()

{ while … sequence[i]=field.Parse(); }
class XML_Element_name implements Union
{ public Union sequence[] = new Union[]; }

12

© Semantic Designs, Inc. 237/29/2002

Sample Code Generation Transforms
pattern CLASS_SEQUENCE(name:NAME,sequence:cp_sequence):class_body_declarations@Java =

"\JavaClassName\(\name\) Parse() throws XML.NotValidForDTD
{ if (!XML.QueryOpeningTag(\JavaXMLOpenTagString\(\name\))) return null;

\JavaClassName\(\name\) result=new \JavaClassName\(\name\)();
{ \SEQUENCE_FETCH\(\sequence\,\SEQUENCE_LENGTH\(\sequence\)\,sequence1\) }
XML.RequireClosingTag(\JavaXMLCloseTagString\(\name\));

return result; }

class \JavaClassName\(\name\) extends XML_IO implements Union
{ \XML_PARSER_DECLARATIONS_FOR_CP_SEQUENCE\(\sequence\,1\,\>XML\:NAME

\%contentspec sequence1 \<\:NAME\) // produces nested subclasses
public Union sequence[]= new Union[\SEQUENCE_LENGTH\(\sequence\)];
public Generate()

{ XML.WriteOpeningTag(\JavaXMLOpenTagString\(\name\));
for (i=1;i<=\SEQUENCE_LENGTH\(\sequence\);i++)

sequence[i].Generate();
XML.WriteClosingTag(\JavaXMLOpenTagString\(\name\));

}}
".

rule refine_ELEMENT_sequence_to_class(name:NAME,sequence:cp_sequence)
:elementdecl -> class_body_declarations =

"\%markupdecl <!ELEMENT \name (\sequence) >" -> CLASS_SEQUENCE(name,sequence).

Generates
class

Generates Parser method

About 100 rules ~~ 2000 lines for all transforms

© Semantic Designs, Inc. 247/29/2002

Generated Java code for items

class XML_Element_item extends XML_IO implements Union
{ public Union sequence[] = new Union[3]; }

XML_Element_item Parse()
throws XML.NotValidForDTD {
if (!XML.QueryOpeningTag("item"))

return null;
XML_Element_item result = new XML_Element_item();
{ if ((sequence[1] = XML_Element_partnumber.Parse()) == null)

throw XML.NotValidForDTD;
if ((sequence[2] = XML_Element_quantity.Parse()) == null)

throw XML.NotValidForDTD;
if ((sequence[3] = XML_Element_unitprice.Parse()) == null)

throw XML.NotValidForDTD;
}
XML.RequireClosingTag("item");
return result;

}

class XML_Element_items extends XML_IO implements Union
{ public Union sequence[] = new Union[1]; } }

XML_Element_items Parse()
throws XML.NotValidForDTD {
if (!XML.QueryOpeningTag("items"))

return null;
XML_Element_items result = new XML_Element_items();
{ if ((sequence[1] = XML_Element_item.Parse()) == null)

throw XML.NotValidForDTD; }
XML.RequireClosingTag("items");
return result; }

13

© Semantic Designs, Inc. 257/29/2002

Generated Java code for item content:
partnumber, quantity, unitprice

class XML_Element_unitprice extends XML_IO implements Union
{ public String PCDATA; }

XML_Element_unitprice Parse()
throws XML.NotValidForDTD {
if (XML.QueryOpeningTag("unitprice"))
return null;

XML_Element_unitprice result = new XML_Element_unitprice();
result.PCDATA = XML.AcceptNonEmptyPCDATA();
XML.RequireClosingTag("unitprice");
return result; }

class XML_Element_partnumber extends XML_IO implements Union
{ public String PCDATA; } }

XML_Element_partnumber Parse()
throws XML.NotValidForDTD {
if (XML.QueryOpeningTag("partnumber"))
return null;

XML_Element_partnumber result = new XML_Element_partnumber();
result.PCDATA = XML.AcceptNonEmptyPCDATA();
XML.RequireClosingTag("partnumber");
return result; }

class XML_Element_quantity extends XML_IO implements Union
{ public String PCDATA; } }

XML_Element_quantity Parse()
throws XML.NotValidForDTD {
if (XML.QueryOpeningTag("quantity"))
return null;

XML_Element_quantity result = new XML_Element_quantity();
result.PCDATA = XML.AcceptNonEmptyPCDATA();
XML.RequireClosingTag("quantity");
return result; }

© Semantic Designs, Inc. 267/29/2002

Orderform orderform =new Orderform.Parse(); // exception thrown if invalid w.r.t. DTD
{ Print(“Customer: ”);

Print(orderform.name.firstname.PCDATA);Print(“ “);

Print(orderform.name.lastname.PCDATA); }

{ Print(“Company: ”); Print(orderform.company.PCDATA); PrintNewline(); }

{ Print(“Address: ”); Print(orderform.address.street.PCDATA); PrintNewLine();
Print(orderform.address.city.PCDATA); PrintNewline();
if (orderform.addreess.region.which=1)

Print(orderform.address.region.zipcode.PCDATA);
else Print(orderform.address.region.country.PCDATA);
PrintNewline(); }

Print (“ITEMS” Product Quantity Cost Extension”);
float Total=0;
for (item=1;item<length(orderform.items.item);1)

{ PrintNumber(item); PrintTab();
Print(order.items.sequence[item].partnumber.PCDATA); PrintTab();
Print(order.items.sequence[item].quantity.PCDATA); PrintTab();
Print(order.items.sequence[item].price.PCDATA); PrintTab();
float extension=Value(order.items[item].quantity.PCDATA)

*Value(order.items[item].price.PCDATA);
PrintNumber(extension);PrintNewline();
Total+=extension;

}

Print “Invoice total”;PrintNumber(Total);PrintNewline();

Application Code to Print Orderform

Note direct access
to XML data

14

© Semantic Designs, Inc. 277/29/2002

DMS Scale Application:
Clone Removal

Original System with code clones
1 M SLOC

DeCloned System with automatic names
10-20% reduction

// sort array A
for (I=1,I<10,I++)

for (j=i,j>1,J--)
if (A[j]>A[j-1])

swap(A[I],A[J]);

for (I=1, I<2*Q, I++)
for (I1=i, I1>1, I1--)
// exchange if less
if (K[I1] > K[I1-1])

swap(K[I], K[I1]);

// sort my data
for (z=1,z<1000,z++)

for (j=i,j>1,J--)
if (D[j]>D[j-1])

swap(D[z],
D[J]);

// sort array A
Clone27(I,10,j,A);

Clone27(I,2*Q,I1,K);

// sort my data
Clone27(z,1000,j,D);

#define
Clone27(a,b,c,d)\
for (a=1,a<b,a++)\

for (c=a,c>1,c--)\
if (d[c]>d[c-1])\

swap(d[a],d[c]);

for (a=1,a<b,a++)
for (c=a,c>1,c--)

if (d[c]>d[c-1])
swap(d[a],d[c]);

Skeleton of detected clones

... code block 1 ...

... code block 2 ...

... code block 3 ...

... code block 4 ...

... code block 1 ...

... code block 2 ...

... code block 3 ...

... code block 4 ...

© Semantic Designs, Inc. 287/29/2002

COBOL Clone Detection/Removal
• Find Clones by matching every program fragment (AST)

to every other
– Expensive!

• California Community Colleges application
– Course Inventory Construction for each campus

• Parameters:
– 77,000 SLOC ANSI COBOL 85 --> 774,645 AST nodes

• 128 Second Parse time, 40 minutes for clone detection
• 500 Mb RAM, 6 CPUs

– Number of exact clone pairs = 78, near miss pairs = 95
– Largest clone: 5 copies, 1017 lines each, *1* parameter!
– Number of cloned lines = 30727 --> can remove 15363

• SLOC reduction by removing clones = 19.7%

d d

15

© Semantic Designs, Inc. 297/29/2002

Sample COBOL Clones
Similarity = .99178082191781
from 35179 to 35204 file = example.cbl

9700-OUTPUT-REPORT-TOTALS.
MOVE CURRENT-COLLEGE-ID

TO REPORT-CODE1 REPORT-CODE2 REPORT-CODE3.
SET EDIT-ERROR-LITERAL-INDEX TO 1.
SET DISTRICT-COUNT-ROW-INDEX TO 1.
PERFORM 9710-OUTPUT-TOTALS1

UNTIL EDIT-ERROR-LITERAL-INDEX > 30.
PERFORM 9720-OUTPUT-TOTALS2.
PERFORM 9730-OUTPUT-TOTALS3.

9710-OUTPUT-TOTALS1.
MOVE REPORT-SUM1 TO TOTALS-ID1.
MOVE ELEMENT-NUMBER (EDIT-ERROR-LITERAL-INDEX)

TO DED-NUMBER.
MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 1)

TO EXCEPT-COUNT.
MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 2)

TO UNKNOWN-COUNT.
MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 3)

TO REASON-COUNT.
MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 4)

TO GRP3-COUNT.
WRITE REPORT-TOTALS-RECORD1.
SET EDIT-ERROR-LITERAL-INDEX UP BY 1.
SET DISTRICT-COUNT-ROW-INDEX UP BY 1.

from 15368 to 15393 file = example.cbl

9700-OUTPUT-REPORT-TOTALS.
MOVE HOLD-DISTRICT-ID

TO REPORT-CODE1 REPORT-CODE2 REPORT-CODE3.
SET EDIT-ERROR-LITERAL-INDEX TO 1.
SET DISTRICT-COUNT-ROW-INDEX TO 1.
PERFORM 9710-OUTPUT-TOTALS1

UNTIL EDIT-ERROR-LITERAL-INDEX > 17.
PERFORM 9720-OUTPUT-TOTALS2.
PERFORM 9730-OUTPUT-TOTALS3.

9710-OUTPUT-TOTALS1.
MOVE REPORT-SUM1 TO TOTALS-ID1.
MOVE ELEMENT-NUMBER (EDIT-ERROR-LITERAL-INDEX)

TO DED-NUMBER.
MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 1)

TO EXCEPT-COUNT.
MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 2)

TO UNKNOWN-COUNT.
MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 3)

TO REASON-COUNT.
MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 4)

TO GRP3-COUNT.
WRITE REPORT-TOTALS-RECORD1.
SET EDIT-ERROR-LITERAL-INDEX UP BY 1.
SET DISTRICT-COUNT-ROW-INDEX UP BY 1.

#2 ==> 30
==> 17

#1
==> CURRENT-COLLEGE-ID
==> HOLD-DISTRICT-ID

#1

#2

Report by College-ID Report by District-ID

© Semantic Designs, Inc. 307/29/2002

The generated COPYLIB
9700-OUTPUT-REPORT-TOTALS .

MOVE PARAMETER-1
TO REPORT-CODE1 REPORT-CODE2 REPORT-CODE3 .

SET EDIT-ERROR-LITERAL-INDEX TO 1 .
SET DISTRICT-COUNT-ROW-INDEX TO 1 .
PERFORM 9710-OUTPUT-TOTALS1

UNTIL EDIT-ERROR-LITERAL-INDEX > PARAMETER-2 .
PERFORM 9720-OUTPUT-TOTALS2 .
PERFORM 9730-OUTPUT-TOTALS3 .

9710-OUTPUT-TOTALS1 .
MOVE REPORT-SUM1 TO TOTALS-ID1 .
MOVE ELEMENT-NUMBER (EDIT-ERROR-LITERAL-INDEX)

TO DED-NUMBER .
MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 1)

TO EXCEPT-COUNT .
MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 2)

TO UNKNOWN-COUNT .
MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 3)

TO REASON-COUNT .
MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 4)

TO GRP3-COUNT .
WRITE REPORT-TOTALS-RECORD1 .
SET EDIT-ERROR-LITERAL-INDEX UP BY 1 .
SET DISTRICT-COUNT-ROW-INDEX UP BY 1 .

16

© Semantic Designs, Inc. 317/29/2002

Source file change
MOVE DISTRICT-INT-CNT (11)

TO INT-CNT-OUT-B.
WRITE PRINT-RECORD-2 FROM INTEGRITY-ERROR-B

AFTER ADVANCING 2 LINES.
MOVE DISTRICT-INT-CNT (12)

TO INT-CNT-OUT-C.
WRITE PRINT-RECORD-2 FROM INTEGRITY-ERROR-C

AFTER ADVANCING 2 LINES.

9700-OUTPUT-REPORT-TOTALS.
MOVE HOLD-DISTRICT-ID

TO REPORT-CODE1, REPORT-CODE2, REPORT-CODE3.
SET EDIT-ERROR-LITERAL-INDEX TO 1.
SET DISTRICT-COUNT-ROW-INDEX TO 1.
PERFORM 9710-OUTPUT-TOTALS1

UNTIL EDIT-ERROR-LITERAL-INDEX > 17.
PERFORM 9720-OUTPUT-TOTALS2.
PERFORM 9730-OUTPUT-TOTALS3.

9710-OUTPUT-TOTALS1.
MOVE REPORT-SUM1 TO TOTALS-ID1.
MOVE ELEMENT-NUMBER (EDIT-ERROR-LITERAL-INDEX)

TO DED-NUMBER.
MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX, 1)

TO EXCEPT-COUNT.
MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX, 2)

TO UNKNOWN-COUNT.
MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX, 3)

TO REASON-COUNT.
MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX, 4)

TO GRP3-COUNT.
WRITE REPORT-TOTALS-RECORD1.
SET EDIT-ERROR-LITERAL-INDEX UP BY 1.
SET DISTRICT-COUNT-ROW-INDEX UP BY 1.

9720-OUTPUT-TOTALS2.
MOVE REPORT-SUM2 TO TOTALS-ID2.
MOVE DISTRICT-INT-CNT (1)

TO INTEGRITY-ERROR-COUNT.
MOVE '01' TO INTEGRITY-ERROR-CODE.
WRITE REPORT-TOTALS-RECORD2.
MOVE REPORT-SUM2 TO TOTALS-ID2.
MOVE DISTRICT-INT-CNT (2)

TO INTEGRITY-ERROR-COUNT.
MOVE '02' TO INTEGRITY-ERROR-CODE.

MOVE DISTRICT-INT-CNT (11)
TO INT-CNT-OUT-B.

WRITE PRINT-RECORD-2 FROM INTEGRITY-ERROR-B
AFTER ADVANCING 2 LINES.

MOVE DISTRICT-INT-CNT (12)
TO INT-CNT-OUT-C.

WRITE PRINT-RECORD-2 FROM INTEGRITY-ERROR-C
AFTER ADVANCING 2 LINES.

COPY CDR_clone10
REPLACING PARAMETER-1

BY == HOLD-DISTRICT-ID ==
PARAMETER-2

BY == 17 ==

9720-OUTPUT-TOTALS2.
MOVE REPORT-SUM2 TO TOTALS-ID2.
MOVE DISTRICT-INT-CNT (1)

TO INTEGRITY-ERROR-COUNT.
MOVE '01' TO INTEGRITY-ERROR-CODE.
WRITE REPORT-TOTALS-RECORD2.
MOVE REPORT-SUM2 TO TOTALS-ID2.
MOVE DISTRICT-INT-CNT (2)

TO INTEGRITY-ERROR-COUNT.
MOVE '02' TO INTEGRITY-ERROR-CODE.

© Semantic Designs, Inc. 327/29/2002

Clone Detection/Removal Statistics
Application

Process
Control

PARLANSE
Compiler

CCC
Registration

Roccade
Accounting

SLC
Insurance

SWING
Toolkit

Language

C

C

COBOL85

IBM
COBOL

PROGRESS

Java

SLOC

427921

42413

77631

567798

356413

241460

Removable
SLOC (est.)

54346
12.7%

4133
9.7%

15500(39967)
20.0 (51.5)%

130494
23%

58783
16.5%

26355
10.9%

Removed
SLOC

N.A.
(pre removal

capability for C 6/98)

2568
6.0%

15034
19.9%

N.A. (not yet
performed)

N.A. (not yet
performed)

N.A. (not yet
performed)

17

© Semantic Designs, Inc. 337/29/2002

Typical Porting Scenarios
• JOVIAL73 on MIL1750 C on PowerPC

– Military Avionics + Weapons management
• COBOL74 + IDMS COBOL85 + SQL

– UNISYS 1100 retirement; must move data, too!
• K&R C + custom RTOS ANSI C + VXworks

– Microprocessor modernization
• Clipper + green screen Delphi + GUI

– Legacy 3GL data processing language
• MODCOMP ASM C

– Defense Radar modernization; 12 computer languages!
• Verilog VHDL

– Reuse of Chip Design in new context

© Semantic Designs, Inc. 347/29/2002

How DMS handles Porting
• Accepts definitions of source, target and design languages

– Syntax, Semantics, Optimization Transforms and Analysis rules

• Accepts specifications of (porting) transformations
– Written in terms of the language syntax, conditioned by analyses
– Source-language idioms often map directly to Target-language idioms
– Transforms for Complex idioms/OS/Library calls

abstracted to design languages, then refined to target languages

• Parses entire source system (thousands of files!)
• Apply Porting transformations, then Optimizing transforms
• PrettyPrints the results in compilable target language form
• Test Result using Application Regression Test
• Revise transforms and repeat till done

18

© Semantic Designs, Inc. 357/29/2002

default source domain Jovial;
default target domain C;

private rule refine_data_reference_dereference_NAME
(n1:identifier@C,n2:identifier@C)

:data_reference->expression
= "\n1\:NAME @ \n2\:NAME" -> "\n2->\n1".

private rule refine_for_loop_letter_2
(lc:identifier@C,f1:expression@C,
f2:expression@C,s:statement@C)

:statement->statement
= "FOR \lc\:loop_control :

\f1\:formula BY \f2\:formula; \s\:statement“
->

"{ int \lc = (\f1);
for(;;\lc += (\f2)) { \s } }“

if is_letter_identifier(lc).

A few DMS porting transforms
Jovial to C

Domain Name

So
ur

ce
 D

om
ain

 Sy
nta

x

Target Domain Syntax

Patt
ern

 V
ar

iab
les

© Semantic Designs, Inc. 367/29/2002

Porting Transforms in Action
Jovial to C

JOVIAL Source:

FOR i: j*3 BY 2 ;
x@mydata = x@mydata+I;

Translated C Result:

{ int i = j*3;
for (;;i+=2)

{ mydata->x = mydata->x + i}

Typically lots of small transforms for full translation
~1500 rules to translate full Jovial

19

© Semantic Designs, Inc. 377/29/2002

A More Complex Example
Jovial to C

START
TABLE TFP'D'TWRDET (1:109,12:37);
BEGIN
% Main status boolean %
ITEM TFP'G'TWRDET STATUS (V(YES),V(NO));

END
TYPE TFP'D'TWRDET'TABLE TABLE (7:23) W 3;
BEGIN
ITEM TFP'ITM S 3 POS(0,3); "cube axis"

END

%begin proc%
PROC PROC'A(c1) S;
BEGIN
ITEM match'count U 6;
%an item%

ITEM c1 C 5; "parameter value"
ITEM c2 C 7;
IF c1 <= c2 AND c2 > c1;

match'count = UBOUND(TFP'D'TWRDET,0) +
UBOUND(TFP'D'TWRDET'TABLE,0);

"result off by 1 so adjust"
match'count = match'count+1;
BEGIN
match'count=match'count/2;
PROC'A = match'count; % return answer %

END "cleanup and exit";
END "end proc"

TERM

#include "jovial.h"
static struct
{ /* Main status boolean */
enum { V(yesOFtfp_g_twrdetOFtfp_d_twrdet),

V(noOFtfp_g_twrdetOFtfp_d_twrdet) }
tfp_g_twrdet _size_as_word;

} tfp_d_twrdet[109][26];
typedef union
{ W(3);
struct
{ POS(0, 3) S(3) tfp_itm:4 _align_to_bit; /* cube axis */
};

} tfp_d_twrdet_table[17];

static S proc_a(C(5) c1);
/* begin proc */
static S proc_a(C(5) c1)
{ __typeof__(proc_a(c1)) RESULT(proc_a);
_main:
{ U(6) match_count;
C(7) c2;
if (CHARACTER_COMPARE(BYTE_CONVERT(C(7), c1, 7), c2) <= 0

&& CHARACTER_COMPARE(c2, BYTE_CONVERT(C(7), c1, 7)) > 0)
match_count = UBOUND(tfp_d_twrdet, 2, 0) + 16;

/* result off by 1 so adjust */
match_count = (S(6))match_count + 1;
{ match_count = (S(6))match_count / 2;
RESULT(proc_a) = (S(6))match_count; /* return answer */

} /* cleanup and exit */
;

}
_return:
return RESULT(proc_a);

} /* end proc */
packed tables with bit offsets,
typedefs, functions,
string operations, comments

Equivalent C
(used with hand-coded macro library)

© Semantic Designs, Inc. 387/29/2002

Porting Process

Run
DMS
Port

Develop
Porting

Transforms

Test
Ported
System

Success

ErrorsAnalyze
Existing
Software

transforms

Ported
Code

Continuing
Application
Development

Code
1 M SLOC

DMS

DMS

Engineer

Repeated Port Cycles
No Impact On Development!

20

© Semantic Designs, Inc. 397/29/2002

Porting by DMS is practical
• Enabled by generalized compiler technology

– Requires:
• Specification of source, target and design languages
• Specification of inspectable transforms

– Automates:
• Source file parsing and prettyprinting of results
• Application of sets of transforms

– Scalable, fast, repeatable
• Transform thousands of files/millions of lines in one day
• Iterative development/testing of porting transforms/result

• Organizational benefits
– Development team not disturbed by porting team
– Application functionality preserved happy users!
– Far more cost effective than hand translation

© Semantic Designs, Inc. 407/29/2002

DMS: Conclusion
• Useful to automate analysis/modification of programs

– Many possible custom reengineering possibilities
– A key technology for software quality improvement

• Need generalized compiler-like infrastructure
– Definable parsers, prettyprinters, transforms
– Must scale to application systems with MSLOCs

• DMS provides these capabilities
– on path to design capture/analysis/modification
– growing infrastructure and standard language modules

www.semdesigns.com

21

© Semantic Designs, Inc. 417/29/2002

Where can DMS be applied?
• Program modification

– Application evolution
• Functionality change
• Performance change
• Technology change

– Massive changes
• Porting: new language, target APIs, ...
• Restructuring: Clone removal, Y2K fix, ...
• Optimization: Dead code, parallelize, ...

– Customize reusable component
in new context

• Program Analysis
– Metrics

• SLOC, conditional, complexity
– Organization style checking
– Programming information extraction

• Clones, Slices, Call Graphs, Side effects
– Domain information extraction

• Business rules
• Idiom recognition

– Semantic Faults
• erroneous/dead/useless code

• Domain-specific program generation
– Partial Differential Equation solvers
– Factory control synthesis
– Entity-Relationship compilers

• DB conversion generators
– Protocol compilers
– Automated Test Generation

• Legacy code reverse engineering
– design recovery to domain abstractions

• aid code understanding
• enable application evolution

– Incremental design capture
– reusable component extraction
– component extraction for domains
– Legacy mergers

• Unify data schemas
• Modify applications
• Convert existing data

– Business rule extraction
• Make explicit, easy to read/change

Presentation Abstract

Action Based Testing (ABT) is becoming a more popular method to architect testing and test automation. The
method has been proven for a wide range of applications including GUI, embedded software, Web, and client-
server systems; and industries such as bioscience, logistic, transportation, telecommunication, finance and
consumer product. In this session, Hans Buwalda offers a summary of ABT practices through the demonstration of
the ABT Toolset™.

This test-development oriented toolset will elegantly puts you in control of the development, management and
automation of even the most complex test sets. Take this opportunity to see how the method and supporting tools
together will deliver the hidden weapon that has been missing from your testing arsenal.

About the Author

Hans Buwalda, ABT Chief Architect, leads LogiGear's Action Based Testing™ (ABT) research and development,
including ABT Toolset™ operations, and oversees the practice of the ABT methodology. Prior to joining LogiGear,
Hans served as Project Director at CMG in The Netherlands where he was the original architect behind what has
now become TestFrame™ - an integrated method for planning, managing, and deploying software testing and test
automation. Hans is an internationally recognized expert specializing in test automation, test development, and test
management. He speaks and presents workshops at international conferences on testing concepts such as Action
Based Testing, The Three Holy Grails of Test Development, Soap Opera Testing, and Testing in the Cold. Hans
authored (along with Dennis Janssen and Iris Pinkster) Integrated Test Design and Automation: Using the
TestFrame Method (Addison Wesley 2001). He holds a Master of Science degree in Computer Science from Free
University, Amsterdam.

QW2002 Paper 6V1

Mr. Hans Buwalda
(Logigear Corporation)

Test Automation, Build to Last Action Based Testing Methods and Tools at Work!

Key Points

The main factors contributing to performance and availability on the Web and Internet
Covers relevant Web and Internet protocols (TCP, IP, HTTP, SSL, DNS)
Covers peering, routing ; server-room connectivity; caching; CDNs

Presentation Abstract

This tutorial provides a thorough grounding in Web and Internet technologies that affect performance and
availability. It explains the fundamentals of Internet performance engineering, which is not just a matter of
bandwidth! We'll cover both the protocols and the Internet and Web architectures, but only those pieces that
are relevant to performance. It concentrates on the differences between the protocols used on legacy
networks (e.g., SNA) and those of the Internet (TCP/IP, DNS, HTTP), along with the differences between a
private network based on owned links (leased lines, frame relay, etc.) and a network based on the Internet
(Internet routing protocols, connection points between networks owned by different organizations, internal
caching, load distribution technologies, etc.) If you're new to the problem of assuring quality over the
Internet, come to this tutorial to gain a solid foundation in the relevant technologies.

About the Author

Eric Siegel, Principal Internet Consultant at Keynote Systems, has been a member of the Internet
community since 1978. He is the author of "Designing Quality of Service Solutions for the Enterprise" (John
Wiley & Sons) and is an instructor and panelist in Internet performance and QoS at major industry
conferences such as Networld+Interop, CA World, Service Networks, WWW Conferences, Quality Week,
and CMG. Before joining Keynote, Mr. Siegel was a Senior Network Analyst at NetReference, Inc., where he
specialized in network architectural design for Fortune 100 companies, and he was a Senior Network
Architect with Tandem Computers, where he was the technical leader and coordinator for all of Tandem's
data communications specialists worldwide. Mr. Siegel also worked for Network Strategies, Inc. and for the
MITRE Corporation, where he specialized in computer network design and performance evaluation. Mr.
Siegel received his B.S. and M.E.E. degrees in Electrical Engineering from Cornell University, where he was
elected to the Electrical Engineering honor society.

QW2002 Paper W1

Eric Siegel
(Keynote Systems)

Introduction to Performance on the Internet and Web

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

Technology Workshop W1:
Introduction to Performance
on the Internet and the Web

Eric Siegel
Principal Internet Consultant

Keynote Systems
777 Mariners Island Blvd

San Mateo, CA 94404
eric.siegel@keynote.com

http://www.keynote.com

2

AgendaAgenda
Performance Challenges
Web Protocol Performance and Server Performance

– DNS, TCP, UDP, SSL, HTTP, Browser Behavior
– Transaction Considerations

Architecture of the Web and Internet
– Load and Traffic Distribution
– Internet Backbone Behavior

Caching
Content Distribution Networks
Server-Farm Access to the Internet
Internet Statistics and SLAs
Managing for High Performance

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

3

Performance Is Important!Performance Is Important!
“Twenty-eight percent of shoppers who have suffered failed
performance attempts said they stopped shopping at the Web
site where they had problems, and six percent said they
stopped buying at that particular company’s off-line store.”
(Boston Consulting Group, quoted in Infoworld / Computerworld 3/00)

“[One site] found the bailout rate fell immediately from 30% to
6-8% just because of one tiny second of load time!” (Zona
Research 4/99)

“Surfers say that slow-loading Web sites are the biggest
cause of irritation ... Seven percent of respondents say they hit
their equipment ... 2% say they've become so upset they've hit
the person who sits next to them.” (Market & Opinion Research
International 2/02)

“Perhaps as much as $4.35 billion in e-commerce sales in the
U.S. may be lost each year due to unacceptable download
speeds and resulting user bailout behaviors.” (Zona Research 4/99)

4

What Is “Good” Performance?What Is “Good” Performance?
Commonly-cited “Eight-Second Rule”
But a better measure is competitors’ performance

– What is your end-user’s frame of reference?
Competitors
Commonly-accessed consumer sites (Yahoo!, etc.)
(how will you measure these sites?)

– What does your end-user care about?
Impulse buying from a “fat” home page
Quickly browsing up and down your catalog’s tree structure
Placing orders quickly, without failures or delays
Does a “fat” page generate more revenue? You must watch
competitors closely: “Why are they doing that?”

– Benchmarks: www.keynote.com/company/html/services.html
The location of your end-user affects expectations.

– At home, on a 28.8k modem
– At work, on an uncongested T3?

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

5

A Definition of PerformanceA Definition of Performance
Web e-commerce performance measures the
user's experience interacting with your Web site,
not your in-house experience or the experience
inside your Web hosting center.

– Download time
The dissatisfaction and abandonment points are different for
different types of pages and different classes of users

– Transaction Time
banking, stock trading, purchasing

– Availability
– Errors

Failed connection attempts
Missing or incorrect pages
Missing page components
Broken links
Transaction failure

6

Performance ChallengesPerformance Challenges
24x7 availability and geographic distribution;
expectation of universal access
A shared network resource
No control over customers’ environment
Multiple servers and caches, which may be
geographically distributed, participate in a single
user interaction
Poor support for session structures; difficult or
impossible to detect transaction abandonment
Potentially massive peak volumes (“flash” loads)

The Web and Internet are very different from legacy
client:server and terminal:mainframe environments!

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

7

AgendaAgenda
Performance Challenges
Web Protocol Performance and Server Performance

– DNS, TCP, UDP, SSL, HTTP, Browser Behavior
– Transaction Considerations

Architecture of the Web and Internet
– Load and Traffic Distribution
– Internet Backbone Behavior

Caching
Content Distribution Networks
Server-Farm Access to the Internet
Internet Statistics and SLAs
Managing for High Performance

8

Web Page Technology OverviewWeb Page Technology Overview
The Domain Name System (DNS), a worldwide hierarchy of
directories, translates fang.dog.com into 10.9.23.22.
TCP/IP carries the data between your browser and 10.9.23.22; it
detects errors and corrects them by retransmitting.
The data consists of HTTP, HTML, and the page’s information.
HTTP (Hypertext Transfer Protocol) carries the Hypertext
Markup Language (HTML) and provides the basic Web page
commands:

– GET
– Query String (e.g., GET fang.dog.com/filename?fur=matted)
– POST

HTML describes the page:
– Formatting
– Content, and the servers/files from which that content can be

downloaded (e.g., pix.fang.dog.com/gifs/picture1.gif)
– Links

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

9

Domain Name System (DNS) RecordDomain Name System (DNS) Record
A domain’s owner creates the Authoritative
Record, which provides:

– host name → IP address translation
– IP address → host name translation (“reverse lookup”)
– email server information, etc.
– It can provide alternative or multiple translations

The Authoritative Record is stored on a DNS
Server controlled by the domain’s owner

10

DNS SearchDNS Search
The DNS Resolver in the end-user’s system asks
the end-user’s local DNS server to translate the
host name (fang.dog.com) into an IP address
(10.9.22.23)
If the end-user’s DNS server doesn’t have the
requested information, it searches the DNS tree to
find the authoritative record or a cached copy

– It may find cached information for a less-specific
domain (e.g., dog.com) that points to the authoritative
server

– It may have to go to the root (e.g., .com) to find a pointer
to the authoritative server

– DNS servers cache DNS information for a period of time
(Time To Live, TTL) controlled by an entry in the
authoritative record

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

11

DNS IssuesDNS Issues
DNS performance and resilience

– DNS failures occur during 0.4% of Keynote’s Web page
retrieval attempts

– Long TTL uses the DNS tree’s caches, increasing
performance and resilience but decreasing your control

– Short TTL gives you greater control, but there will be a
delay when cache expires and a new fetch of the
authoritative record is necessary

– Authoritative server (or backup) must always be
available

Some alternative DNS systems provide greater
control and performance than the standard
system

– But they’re not free

12

TCP FundamentalsTCP Fundamentals
TCP creates a virtual circuit

– Received data, if it arrives, will arrive without errors, in the
correct sequence.

– Setup is to the receiving host’s TCP stack only, not all the
way into the receiving application.

– TCP header’s port number identifies an application
– When first connected, TCP selects a packet size.

Typical packet size = 1500 bytes

TCP typically sends an acknowledgement:
– When it can piggyback on data going in the other direction
– If a time delay (typically 200+ ms.) has elapsed

Packet loss is implied by repeated receipt of the
same acknowledgement or by timeouts

– TCP stack performs a complex calculation of network
round-trip time (RTT)

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

13

TCP WindowTCP Window
The TCP Window equals the number of bytes that
the receiver is currently willing to accept.

– Windows/98 default receive window = 8192 bytes;
Windows/NT = 8760 bytes

Long Fat Networks (e.g., satellite) need large
windows

– Maximum window size can be increased by window scale
option (RFC 1323)

14

TCP Flow ControlTCP Flow Control
Slow Start ramps up traffic slowly, instead of abruptly
trying to fill the receiver’s window.

– Used at start of connection
– Used after a long pause in transmission or a lost end packet

Slow Start begins by transmitting only one packet
and waiting for the ACK.

– When the ACK is received, it transmits two packets.
– When the ACKs for those two are received, up to four

packets can be transmitted (assuming the window has
capacity), etc. — an exponential increase.

– The standards now allow Slow Start to begin with 2 packets.
TCP can’t send packets faster than ACKs arrive back
at the sender

– ACKs are delayed by slow links
– “Self-Clocking Behavior”

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

15

TCP Congestion and Packet LossTCP Congestion and Packet Loss
TCP infers congestion from packet loss

– If a packet in the middle of the received stream was lost:
transmission rate is cut in half, then increases linearly,
depending on Round Trip Time (RTT): large RTT, slow
increase

– If the packet at the end of the received stream was lost:
Transmission starts all over again with Slow Start
When it recovers to half of the original transmission rate, it
uses the midstream-loss algorithm to increase the rate linearly
Timeouts cause much more degradation than midstream
losses

16

TCP Performance ExampleTCP Performance Example
Bandwidth is not the same as latency

– “Ping” isn’t a good measure of download time!
– Example: with 250 ms. one-way latency on a 1 GB pipe. . .

throughput is 16 kb/s with standard Windows/98 defaults!
Windows/98 default receive window = 8192 bytes; /NT = 8760

– And a 9 kb file takes one second to transmit!
Slow Start, with frame size = 1500 bytes

ACK

ACK
ACK

3 kb

6 kb

0.5 s

1.0 s

Typical one-way, direct-link latencies:
3 ms. through a local digital telephone

exchange
12 ms. through a local analog telephone

exchange
20 ms. New York to San Francisco

100 ms. New York to Melbourne, Australia
260 ms. through a geosynchronous satellite

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

17

TCP Performance NotesTCP Performance Notes
Use large frame size, window sizes, SACK (RFC 2018)

– Window size is limiting factor for broadband
– The defaults are often small

Set Slow Start to start with two packets, not one
– TCP Slow Start is limiting factor for small objects
– Startup of a TCP flow and recovery from errors depends on

round-trip time.
If you control both ends of the link, and you’re using a
Long Fat Network, use large windows and SACK.
TCP works best if the error rate is low

18

User Datagram Protocol (UDP)User Datagram Protocol (UDP)
UDP’s very simple header carries port numbers
Each UDP packet stands alone

– No sequence numbering
– No guarantee that the packet arrives at the destination

No error detection
No automatic retransmission to correct errors or lost packets

– No flow control or windows to handle congestion
Network can’t signal, even indirectly, to UDP flow’s source

Used by:
– Audio and video real-time transmission

There’s no time to retransmit bad packets anyway!
– Broadcast and Multicast

Who would generate the acknowledgements?

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

19

UDP PerformanceUDP Performance
UDP applications are responsible for managing
their own performance

– They rarely respond as quickly as TCP to congestion
– Some don’t respond to congestion at all

Uncontrolled UDP applications may interfere with
important TCP traffic
Router configurations can use queues to throttle
UDP flows; excess traffic should be discarded at
the network entrance.

20

Secure Sockets LayerSecure Sockets Layer
SSL (HTTPS:) is used for secure connections

– It fits between HTTP (or FTP, etc) and TCP
There are two major SSL phases:

– Connection Handshake Phase
This phase can be time-consuming
Each session has a Session ID
The setup information is cached and can be reused

– Record Transfer Phase
Encryption overhead is not large
Encrypted data is not compressible and is not cacheable

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

21

HTTP BehaviorHTTP Behavior
HTTP is a simple protocol, consisting of requests:

– GET, GET with Query String
– POST

And responses:
– 200 (OK)
– 300 (Redirect)
– 400 (Client Error)
– 500 (Server Error)

Redirection may be done by HTTP (e.g., 302), by
“Refresh,” by JavaScript, etc.

22

Browser BehaviorBrowser Behavior
The browser may use a separate TCP connection
for each GET

– Server closes connection after file is delivered
Or it may use persistent connections:

– All GETs in a persistent connection must go to the
same host

– Each file needs a length header or “chunking” to
indicate file end

The browser may support a number of
connections in parallel, but they all share the
same bandwidth

– Parallel connections speeds up slow-starts
– Each browser version/OS combination has a different

maximum number of parallel connections,
reconfigurable by user

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

23

CookiesCookies
Cookies are short name=value pairs stored on
the browser by a server

– The cookie is returned in the browser’s HTTP Request
in every subsequent request to that domain

This may be restricted to requests for specific directories
– Cookie expiration time is set by the server

Cookie set by server:
HTTP/1.1 200 OK
...
Set-Cookie: ASPSESSIONIDGQQGGKWQ=FGMHJFMDK; path=/fang
(file)

Cookie returned by browser:
POST /fang/dog.htm HTTP/1.1
Cookie: ASPSESSIONIDGQQGGKWQ=FGMHJFMDK
(form data)

24

HTTP ExampleHTTP Example
Request (GET with Query String):
GET /dog/fangface/bonnie.htm?fur=matted HTTP/1.1
Host: web202.furbearers.com
Accept: */*
User-Agent: Mozilla/4.0 (compatible;MSIE 4.01;WindowsNT;)

Reply (including content length, cookie, and cache control):
HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Sat, 06 May 2000 18:06:02 GMT
Content-Length: 483
Content-Type: text/html
Set-Cookie: ASPSESSIONIDGQQGGKWQ=FGMHJFMDKEDJ; path=/
Cache-control: private

(file)

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

25

Dynamic Page GenerationDynamic Page Generation
Page is built “on the fly” instead of being a pre-
built, unchanging, fixed-length file

– Usually can’t be cached
– Because length changes, needs special handling to

insert length headers for persistent connections
Typical dynamic page generators:

– Server-Side Include (SSI, .shtml)
– Common Gateway Interface (cgi-bin)
– Java Server Pages, Active Server Pages (.jsp, .asp)
– Others (Cold Fusion, etc.)

26

Web Transactions – 1Web Transactions – 1
Scaling transactions is much more difficult than
scaling simple Web page delivery!

– This has massive implications for load balancing and
geographic distribution schemes

Need to maintain transaction context between
Web pages, associating a user with a transaction

– Use remote IP address?
Different users of one ISP can have same address
Users can switch IP addresses in mid-transaction

– Use a cookie?
Set cookie when user first appears, or after login
Cookie remembers transaction ID, etc.
User can set browser to refuse cookies
Load balancing devices can’t handle encrypted cookies unless
they can decrypt SSL

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

27

Web Transactions – 2Web Transactions – 2
– Embed user, state information within each page and link?

Requires dynamic page generation
Page is generated with each link modified to contain user and state
information:

or with custom-built POST form data:
<FORM NAME=FANG METHOD=POST ACTION=dog.htm>
<INPUT TYPE=HIDDEN NAME="userID" VALUE="123abc">
...
</FORM>

Load balancing devices can’t read a URL or page data unless they
can decrypt SSL

Need to recover resources from abandoned
transactions

– Web transactions usually do not tell server when browser
has abandoned transaction

– Timeout is a reasonable technique

28

Summary of Web Performance FactorsSummary of Web Performance Factors
The Web page seen by the browser is often
generated from a number of different sources:

– Ad servers
– Geographically-distributed content servers
– Caches

Download performance is affected by:
– Protocol behavior
– Number of concurrent download connections; persistence
– Geographic location of the browser
– Congestion and latency between servers and browser
– Performance of load-distribution and load-distribution

schemes
– Performance of the servers and their back-end databases

For example...

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

29

Web Page Download Time ComponentsWeb Page Download Time Components

K
EY

N
O

TE

This page includes “Akamaized” content distribution and DoubleClick ad servers

application delay

redirection delay

external ad
server

slow
downloading

image

Akamai server

30

Web Protocol and Server PerformanceWeb Protocol and Server Performance
Now that we’ve finished our discussion of the
Web’s technical underpinnings . . .
It’s time for a review and list of “best practices”
that combines:

– Our performance notes from those discussions
– Our experiences from dealing with performance issues

at thousands of major Web sites . . .

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

31

Web Protocol and Server Performance – 1Web Protocol and Server Performance – 1
Decrease the size of page elements

– Shrink the color palette and the number of pixels/inch
– Use www.gifwizard.com, Pagemaker, Macromedia Fireworks...

Minimize the number of elements on each Web page
– Have a reason that you’re using each element
– Combine small elements into larger ones
– Reuse elements within and among pages when possible, and

give them identical names.
– Allow an element to be obtained and cached in the browser

before you use it again.
Minimize the total size of the page

– Regardless of the number of concurrent download threads, or the
degree of pipelining, all data shares the same bandwidth

– Use style sheets
– For slow-speed links, compressing the HTML may be useful

32

Web Protocol and Server Performance – 2Web Protocol and Server Performance – 2
Design the page to allow rendering to start quickly

– Minimize use of long or deeply-nested tables and Frames
– Avoid items that are difficult or slow to render
– Specify HEIGHT and WIDTH of embedded images
– Flush partially-built buffers
– Put major information and links at the top of the page

Avoid changing hostnames in the page
– Avoid using different hostnames for the same server

Avoid redirection
– Redirection takes time

HTTP (30x) redirection is the fastest
HTML redirection (HTTP-EQUIV="refresh"...) or other script or
applet redirection requires that the page be parsed first

– Avoid accidental redirection
If you use a directory name as a URL, you should end it with “ / ”

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

33

Web Protocol and Server Performance – 3Web Protocol and Server Performance – 3
Enable Persistent Connections (in HTTP 1.1)

– Allows reuse of a TCP connection to GET more than one file
from a host, but it may tie up server ports

– Use “Content-Length:” headers, chunked encoding, etc.
– Look at a trace to be sure that persistence is really working!

Applets are slow and may need to download libraries
Avoid animated .gifs
Secure pages are slow

– SSL overhead
Try to have all TCP threads directed to the same server or
server process, so that they can share a Session ID
Consider using a hardware-accelerated SSL device

– Encrypted data is usually uncompressible and uncacheable
A string of spaces will be uncompressible after encryption

34

AgendaAgenda
Performance Challenges
Web Protocol Performance and Server
Performance

– DNS, TCP, UDP, SSL, HTTP, Browser Behavior
– Transaction Considerations

Architecture of the Web and Internet
– Load and Traffic Distribution
– Internet Backbone Behavior

Caching
Content Distribution Networks
Server-Farm Access to the Internet
Internet Statistics and SLAs
Managing for High Performance

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

35

Internet Architecture OverviewInternet Architecture Overview

UUnet

PSInet

GTE

Mindspring

Sprint

Verio

The Internet

WorldcomBBN

Digex

Access
DevicesRouters

Routers
Access
Provider

DNS
Cache

Servers

Servers

Servers

Some of the additional
servers provide third-party
ads; others are distributed
content providers.

RoutersRouters

Peering
Point

Internet Browser

Digex

Web
Server

36

Server Farm ArchitectureServer Farm Architecture

Security Control

Load-balancing Devices

Database Back-End

Web Server Web Server=Web Server Web Server

Servers
Routers

Application Servers

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

37

Load-distribution RequirementsLoad-distribution Requirements
Load-distribution distributes the page-serving and
transaction load across all servers in a server
farm

– To increase system capacity and scalability
– To improve system availability
– While using mid-scale conventional computer servers

Challenges:
– Context-sensitive page serving (“stickiness”)
– Handling SSL and Session ID
– Fine-grain scalability
– Encouraging locality of reference
– Building a resilient, manageable system
– Security, Denial of Service defense
– Special handling for particular clients

38

Basic Load Distribution
Technologies
Basic Load Distribution
Technologies

DNS-based
– DNS Authoritative Server sends different IP addresses in

response to resolution request
– Address will be cached near requester if DNS TTL > zero
– Traffic will be sent to a server even if it has failed

Network Address Translation (NAT)-based
– Load-distribution device appears as a “virtual IP

address/port” on the Internet. That address is then
mapped to a back-end server whose address/port is
concealed.

– Load-distribution device provides some security and QoS

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

39

Web Content SwitchesWeb Content Switches
“Layer 4/7” or “Web Content Switches”

– Examine incoming request’s details
– “Delayed Binding” terminates browser’s connection in

load balancer, creates connection to desired Web server
and moves packets between the two connections.

– Send image requests, searches, etc. to dedicated servers
Some balancers perform SSL processing

– Performs the SSL key-handling and decryption in the
load distributor, usually in hardware

– Allows load distributor to examine headers and cookies

40

Health/Performance CheckHealth/Performance Check
Load distribution system should look at health
and performance of servers, to increase reliability
and end-user performance:

– Monitor for server failure, incorrect pages, failed
transaction

– Monitor server statistics (CPU busy, queues, etc.) for
performance

– Monitor the number of in-process connections
– Monitor round-trip query time to servers

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

41

Association PersistenceAssociation Persistence
Do you need persistence?

– Build context-independent pages
– Put all context into the dynamic page or the cookie

Share context data among servers
– Shared data; single-system-image server
– But you’ll still need a transaction ID in the GET or POST

Load-distribution device can provide “sticky”
context-based forwarding based on:

– Remote IP address
– Cookie
– Query String or POST Parameter

Load-distributor reads Transaction ID in GET query string

42

Load HandlingLoad Handling
If all traffic passes through load distributor, it:

– Creates two separate connections (to browser; to
server), or

– Rewrites headers between browser and server
Sophisticated schemes may bypass load
distribution device after first routing decision
Flash load handling:

– Sends overflow to overflow servers with special content
– Automatically replicates frequently-requested files onto

overflow servers

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

43

Geographic Traffic DistributionGeographic Traffic Distribution
What is the requesting browser’s address?

– Approximate it by using the DNS request
Traffic Distributor acts as Authoritative DNS Server, examines
source of DNS request
DNS request comes from the browser’s local DNS server, not
from the browser itself
The local DNS server may be far away from the browser!

– Wait for TCP Connection
Must redirect with HTTP or “Refresh” or JavaScript, etc.

Which server is best?
– Classify by requester’s IP address
– Discover topological distance
– “Ping” the browser address or local DNS server address

from the various Web servers to evaluate round trip time
May resemble a Denial of Service attack!

– Evaluate load on server or responsiveness of server
Decision may need to be persistent

44

AgendaAgenda
Performance Challenges
Web Protocol Performance and Server
Performance

– DNS, TCP, UDP, SSL, HTTP, Browser Behavior
– Transaction Considerations

Architecture of the Web and Internet
– Load and Traffic Distribution
– Internet Backbone Behavior

Caching
Content Distribution Networks
Server-Farm Access to the Internet
Internet Statistics and SLAs
Managing for High Performance

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

45

Internet Routing Within An ASInternet Routing Within An AS
An AS (Autonomous System) is a domain
on the Internet
Routers read every packet’s header and
select an outgoing path for the next hop

– Each hop adds delay
– Routing information is imperfect

Packets can be lost
– Hopelessly looping packets are discarded. (Each packet has

a “Time To Live” that’s decremented at each hop; an error
message is sent and the packet is discarded when TTL = 0.)

– Noise in the communications link can corrupt packets,
causing them to be discarded by the hardware

– Temporary overflow of router buffers causes packet loss

Routers
Routers

Routers

Routers

46

Internet Routing Between ISPs (Peering)Internet Routing Between ISPs (Peering)
Internet Service Providers enter into legal
contracts to carry each other’s traffic.

– Traffic transfer between ISPs occurs at
peering points

– Some peering points are public; e.g.,
MAE-EAST (and MAE-WEST !)

– Other peering points are privately
arranged, with the ISPs sharing the cost

– Peering philosophies differ among ISPs
Congestion may occur at peering points,
especially public ones.

– The primary inter-ISP routing protocol,
BGP-4, usually does not look at congestion

The end-to-end route in one direction is
usually different from the end-to-end route
in the other direction!

– Depends on legal and financial
arrangements between ISPs, etc.

RoutersRouters

Peering
Point

ISP “A” ISP “B”

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

47

ISP Peering PerformanceISP Peering Performance
Peering Costs Money

– The ISP can’t use the router port to connect to a customer
– The ISP must pay some of the cost of the connection link
– The ISP may need to pay the other ISP if the amount of

traffic in the two directions isn’t roughly equivalent
– The other ISP may not be willing to peer

Therefore, an ISP’s business model is usually to
congest the peering points!

– If customers don’t measure and complain, the ISP has no
incentive to improve peering.

– Some ISPs concentrate on their internal backbone
performance and don’t spend much money on peering

You must evaluate your ISP’s peering to your
customers’ ISPs

48

BGP-4BGP-4
BGP-4 handles routing among ASes and ISPs

– The interior details of an AS are hidden
– BGP-4 can contain rules to enforce peering agreements

Route selection can depend on the local AS’s policies as well as the
policies and decisions made by all other ASes in the path!
ISPs manipulate routes depending on financial arrangements and
business decisions!
“Inter-AS routing has often been described as an art rather than a
science, and a black art at that.” — Geoff Huston, ISP Survival Guide

BGP-4 does not usually consider congestion
– It balances load by looking at destination, not congestion
– It does not directly consider latency in route selection

BGP-4 withdraws a route only if it is completely dead
– Network operators will sometimes kill a congested route to

force BGP-4 to re-route around it.

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

49

Asymmetric Internet RoutingAsymmetric Internet Routing

In “hot potato routing,” each ISP tries to hand off the packet as
quickly as possible to the next ISP, to avoid the expense of
carrying it.

– The route is asymmetric.
– For example, the ACKs for a file transfer may travel over a very

different (longer?) route than the file data itself — but delayed
ACKs will delay the transfer!

Some ISPs act differently, to maintain control over the packet.

X Sprint LA

Y

Sprint NY

UUnet NY

Sprint CHI

UUnet LA UUnet ATL

50

TracerouteTraceroute

Traceroute uses ICMP Echo or UDP packets
Traceroute shows separate round-trip times to each node.

– A packet with a short “Time To Live” (TTL) is sent; an ICMP “TTL
time limit exceeded” or “port unreachable” error returns. That is the
round-trip time.

Each measurement (9 x 3 of them in this example) is separate.
Return path for the ICMP TTL error packet
is probably different than the outgoing path!

1 <10 ms <10 ms 10 ms 63.67.132.1

2 <10 ms <10 ms <10 ms Ser7.GW3.PAO1.ALTER.NET [157.130.230.53]

3 <10 ms <10 ms 10 ms 5.ATM2-0.X2.PAO1.ALTER.NET [152.63.53.94]

4 <10 ms 10 ms <10 ms 2.at-1.XR2.SAC1.ALTER.NET [152.63.49.206]

5 10 ms 10 ms <10 ms 1.ATM.BR2.SAC1.ALTER.NET [152.63.52.85]

6 10 ms 10 ms 10 ms 208.50.172.25

7 80 ms 70 ms 80 ms 4-622M.cr2.LGA2.gblx.net [208.48.234.106]

8 70 ms 70 ms 80 ms 1-622M.hr3.LGA2.gblx.net [208.48.234.121]

9 70 ms 70 ms 80 ms 208.48.26.200

TTL value

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

51

Traceroute Example (Surprise!)Traceroute Example (Surprise!)

Start 1 2

5

3
4

End
88

Mars TokyoMars Tokyo

88
Return paths can be stranger than this example
This certainly affects the round-trip timings!

– Round-trip timings to intermediate nodes can be very misleading.
– (What happened to that route through Mars? It isn’t used by the

real end-to-end route; we shouldn’t care about it!)
The only accurate way to see the return path is to initiate a
traceroute from the End to the Start

– (And that still won’t tell you about the irrelevant trip through Mars!)
– One-way traceroutes can be very misleading!

52

Internet Access ProvidersInternet Access Providers
End-users connect to an Access
Device maintained by an Internet
Access Provider or by their
corporate IS department

– Dial-in, DSL, cable from home
– LAN link at the office

Access Device connects to
routers and then to the Internet
End-users convert host name
(fang.dog.com) into an IP address
(10.9.23.22) by using Domain Name
System (DNS) distributed directory

– A worldwide hierarchy of
directories

– Controlled by authoritative record
created by host name’s owner

Cache or Distributed Content
system may also be locally available

Access
Provider

Internet
Browser

Routers
Routers

DNS
Cache

Access
Devices

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

53

AgendaAgenda
Performance Challenges
Web Protocol Performance and Server
Performance

– DNS, TCP, UDP, SSL, HTTP, Browser Behavior
– Transaction Considerations

Architecture of the Web and Internet
– Load and Traffic Distribution
– Internet Backbone Behavior

Caching
Content Distribution Networks
Server-Farm Access to the Internet
Internet Statistics and SLAs
Managing for High Performance

54

CachingCaching
Caching systems are usually located between server
and browser

– They temporarily store commonly-requested, unchanging
objects (images, streaming media files, etc.)

– Caching usually improves performance
– There may be a “cache tax” — a slight delay for all objects
– Caches may be used to assist traffic distribution by

mirroring some server content at a remote location
– Some caches may be pre-loaded to handle flash loads

We’ll look at:
– Three types of caches (browser, client-side, server-side)
– Cache control
– Content distribution
– Performance notes

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

55

Basic Web Cache OperationBasic Web Cache Operation

Traffic is diverted by external or internal switch or router
Cache may handle http, ftp, JavaScript files, streaming media, etc.

Internet Browser
Switch

Cache

Web Server

Transparent: Port 80 traffic goes through cache regardless of original destination

If cache contains requested
object, it sends that content to
the browser. Otherwise, it gets
the object from the Web server.

browser
cache

Proxy: Browser explicitly sends Port 80 traffic directly to cache

56

Browser CachingBrowser Caching
Every browser has a built-in cache

– Varies in size; can be set by user
User can set browser’s basic caching rules

– Whether or not to cache secure files
– When to check for object changes

User can force generation of “pragma: no-cache”
in HTTP request header, which (theoretically)
bypasses network caches and goes directly to
server.

– This is not done just by pressing the “Reload” button,
which checks for object expiration and reloads only if
necessary

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

57

Client-Side CachingClient-Side Caching
Client-side caches (“forward proxy caches”) are
located at the Internet Access Provider

– Decreases the amount of traffic that the provider must pull
through adjacent ISPs and usually increases the speed.

– May be configured in the browser (“proxy” cache)
– May be invisible to the browser (“transparent” cache)

Extensive use by enterprises, access providers, AOL
– Enterprises use the cache to provide firewall, filtering, and

caching functions
– Access providers use cache to decrease uplink costs and

increase performance
Cache can use more efficient TCP parameters (window size, MSS,
SACK, etc.) than the typical browser
Especially useful in locations that are far away from servers

58

Server-Side CachingServer-Side Caching
Server-side cache (“reverse proxy cache,” “content
accelerator”) is placed in front of the server farm

– Decreases load on the servers; increases speed,
availability

Can cache more types of content, because it’s
owned by the enterprise and is easily controlled

– May be able to cache the results of queries, .asp, etc.
– Can cache long ftp files, applets, streaming media
– Server, through an API, may be able to force flushing of

specific cached content (e.g., invalidated query results)
“Event-based” freshness, instead of “time-based”

– System administrator can force flushing of any cached
content

Can be placed at a remote location for content
replication

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

59

Caching Headers – 1Caching Headers – 1
Object’s server tries to control network caching by using HTTP
reply headers

HTTP/1.1 200 OK
Date: Sat, 06 May 2000 18:06:07 GMT
Content-Type: text/html
Set-Cookie: IsClient=0; path=/MyKeynote
Cache-control: private ← Cache in browser only, not in network

Network caches do not look at HTML caching instructions
– HTML’s META HTTP-EQUIV tags are not seen or used by network

caches, although they are used by browser caches
– Some Web servers automatically build HTTP headers from the

META HTTP-EQUIV tags when they transmit objects
Non-HTTP objects (e.g., FTP files) don’t have headers

– Expiration times are set by cache administrator

60

Caching Headers – 2Caching Headers – 2
The Expires header is the basic way to set expiration
– Expires: Mon, 30 Oct 2000 14:19:41 GMT

– A zero or -1 means “expired”
– HTTP/1.1 also has Cache-Control: max-age = <seconds>

If there’s no Expires header, cache may use a Last-
Modified header to infer an expiration time

– Header indicates the time when the object was last modified
(e.g., its file’s modification date)

– Cache heuristics then derive an expiration time. Example:
Delete after object becomes 20% older than it was when fetched

Most caches will not cache an object that doesn’t have
either a Last-Modified or an Expires header

– A surprising number of servers don’t generate these headers
by default!

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

61

Caching Headers – 3Caching Headers – 3
Cache sends Get If Modified Since request to server
– GET...<cr> IF-MODIFIED-SINCE : <timestamp>

Caching is controlled by direct header commands:
– Pragma: no-cache

This is normally placed in an HTTP request; it asks the cache to
fetch the object from the server instead of from cache
This is not officially a response option in HTTP; therefore, it is usually
ignored when it is in a reply.

– Cache-Control: headers are for HTTP/1.1 only
Cache-Control: Public (cache anywhere)
Cache-Control: Private (cache in browser only)
Cache-Control: No-Cache or No-Store (don’t cache)

– Internet Explorer won’t cache this for use with “back” button

62

Cache RestrictionsCache Restrictions
Dynamic objects are not usually cached

– Caches won’t store cgi, .asp, .jsp, GET query-string, POST
Server-side caches may store some dynamic objects and
provide an operator interface and/or an API to control behavior

– HTTP 302 Redirect without Expires header isn’t cached
– Server Side Include (SSI) pages usually don’t have cache

headers, so they usually aren’t cached
Cookies shouldn’t be cached

– Cache is supposed to remove the Set-Cookie header string
– It’s safest to mark an object containing a cookie as “private”

Caches usually will not handle negotiated content
– For example, a server may look at USER-AGENT field to decide

which object to send
– Vary: header may be used, but many caches don’t handle it

Secure objects are usually not cached
– Objects with authorization headers may be cached
– SSL-encrypted objects are not cached

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

63

Content DistributionContent Distribution
Cache and traffic-distribution vendors have
created tools that can be used to manage the
distribution of content to remote caches that you
control

– Tight control over expiration
– Can handle versioning/rollback
– Can distribute only changed content
– Additional content can be distributed as needed by load
– Regional content can be distributed to regional caches
– Content can be pre-positioned before major events

Distribution can be over the Internet or by
alternate paths (satellite, dedicated link)

64

Performance Notes: Caching – 1Performance Notes: Caching – 1
Set the HTTP headers to encourage caching

– Use the “Last Modified” and “Expires” headers. Set the expire
date far into the future; if you need to kill the element, rename it.

– Some caches ignore the HTTP “Pragma: No-Cache” tag,
especially if it is in the reply instead of in the request.

– Non-browser caches generally ignore HTML caching instructions
Reuse content and use identical URLs each time
CGI, .ASP, .JSP pages are usually not cached
You may force cache headers into Server Side Include (SSI)
pages to allow caching
Query-string results and POSTs are usually not cached
Avoid URLs with embedded session numbers that make them
unique and uncacheable
Redirected responses are usually not cached

– Don’t redirect by accident
Cookies have varying interactions with caches
Secure objects are usually not cached

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

65

Performance Notes: Caching – 2Performance Notes: Caching – 2
If possible, avoid content negotiation and parsing of User-Agent
Very long files and applets are sometimes not cached
If you need to count hits, use a small one-pixel uncacheable .gif
Use server-side caching

– Some dynamic pages can be cached on server-side caches
If streaming media is cached, it may be possible for it to serve
different bandwidth feeds from one cached file
Optimize your cache’s TCP, HTTP stack

– MSS, Receive Window, SACK, Slow Start, HTTP/1.1 persistence
– The browser may have a non-optimal stack, but you can use an

optimized stack to fetch data from the server!
Performance varies with cache location

– A cache that’s close to the server will handle more traffic than a
cache that’s farther away, as cache misses are handled faster

Public caches may disobey your caching instructions
– And you shouldn’t assume they’ll use advanced caching

techniques, store streaming media, etc.

66

AgendaAgenda
Performance Challenges
Web Protocol Performance and Server
Performance

– DNS, TCP, UDP, SSL, HTTP, Browser Behavior
– Transaction Considerations

Architecture of the Web and Internet
– Load and Traffic Distribution
– Internet Backbone Behavior

Caching
Content Distribution Networks
Server-Farm Access to the Internet
Internet Statistics and SLAs
Managing for High Performance

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

67

Content Distribution NetworksContent Distribution Networks
Content Distribution Networks (CDNs) have
constructed worldwide systems of caching,
geographic traffic distribution, and content
distribution management devices.

– Usually in partnership with local ISPs
– CDNs specialize in static content (.jpg, .gif, etc.); they

may also be able to handle authentication, streaming
media and some dynamically-generated Web pages.

– In some cases, they use distribution systems (leased
lines, satellite, etc.) that completely bypass the
Internet’s core and may preload cache content.

68

CDN TechnologyCDN Technology
CDN typically hosts only static content

– Not the base HTML
– Not the dynamic content (stock price, ads, etc.)

End-user must go to a hosting facility to obtain
base HTML and dynamic content

– Remember the example at the beginning of this
workshop?

The base HTML and/or the content provider’s
hosting setup probably will need some modification

– End result is that browser asks CDN’s Authoritative DNS
record for directions to the CDN-served content, and the
CDN uses very sophisticated traffic-distribution
technology when it gives those directions

True transactions must be handled by hosting
facility

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

69

CDN Advantages – 1CDN Advantages – 1
Performance

– Akamai study with Keynote measurements shows median
download time of major sites was 7 times faster on a CDN

– Speedup during peak business hours was much larger
This is because the CDN insulates the end-user from most
congestion at peering points and at the server farm
CDN greatly decreases end-user performance variation

– Error rate was also much lower using a CDN: 30% or more
– Additional content can be distributed as needed by load
– Content can be pre-positioned before major events

Offloads hosting Web center
Streaming media files can be pre-positioned at CDN

– CDN can transcode (derive) lower-bandwidth streams
locally

70

CDN Advantages – 2CDN Advantages – 2
Management tools

– The advantages of running content distribution with
caches, but you don’t have to pay for it all yourself!

Tight control over object freshness
Can handle content synchronization / versioning / rollback
Can distribute only changed content
Can distribute large files, applets, streaming media and know that
the cache will store them instead of throwing them out

– Better statistics than by using “one-pixel gif” objects
– Some traffic distribution devices can distribute to CDNs

Better localization
– CDN usually excellent at finding geographic location
– Regional content can be distributed to regional caches

May save money
– Billing typically based on actual bandwidth used

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

71

Evaluating CDNsEvaluating CDNs
How does the CDN choose the “closest” server?

– If it’s dependent on DNS, how does it ensure that most of the
DNS requests come from DNS servers close to the browsers?

What is the latency between the CDN’s “closest” servers and
your customers? What is the capacity?

– Some CDNs have thousands of small cooperating caches; some
have a few dozen large data centers; others have a mix

How does the CDN ensure that the data is available at the
server and can be delivered quickly?
How can you control your data?
Does the CDN provide useful metrics?

– To count user page views and gather near-real-time statistics
– To evaluate CDN performance

Be sure to evaluate CDN performance vs. the optimized, cache-
friendly performance of your non-CDN Web page

72

AgendaAgenda
Performance Challenges
Web Protocol Performance and Server
Performance

– DNS, TCP, UDP, SSL, HTTP, Browser Behavior
– Transaction Considerations

Architecture of the Web and Internet
– Load and Traffic Distribution
– Internet Backbone Behavior

Caching
Content Distribution Networks
Server-Farm Access to the Internet
Internet Statistics and SLAs
Managing for High Performance

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

73

Access to the InternetAccess to the Internet
Each server farm must choose:

– The type of access they’ll have to the Internet
– The ISPs that will be used to provide access

And those connections must then be tuned for
performance and managed

74

Access Types – 1Access Types – 1
Single-homed

– One connection to one ISP is used for all Internet Access
Load may be shared across multiple parallel access links

– BGP-4 isn’t necessary
Multiconnected, single-homed

– One ISP, but multiple connections to that ISP
Each connection may have multiple parallel access links that
share the load
ISP picks “closest” connection to enter into server farm
Server farm shares outgoing load by manipulating outgoing
default router for different address ranges

– This is not based on load
Connections provide mutual backup for each other

– Routes may be asymmetric, entering on one connection
and exiting on another

– BGP-4 isn’t necessary

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

75

Access Types – 2Access Types – 2
Multihomed

– Multiple ISPs and multiple connections
Each connection may have multiple parallel access links that
share the load
Choice of entry and exit connections may be complex

– May pick “closest” connection to destination address
– May use BGP-4 filtering and other rules
– This is not based on load

Connections provide mutual backup for each other
– Routes may be asymmetric, entering on one connection

and exiting on another
– BGP-4 is required
– Large hosting facilities should be multihomed

76

Choosing ISPsChoosing ISPs
Measure your ISP’s peering to your customers’ ISPs

– Performance depends on the number of peering points,
their location relative to your position and your
customers’, the congestion at and surrounding the peering
points, the configuration of BGP-4, and more.

It’s easy to tell a story; you’d better measure!
– Performance will be changing rapidly over the next years

as the industry changes
– Performance should be measured in terms of latency and

page download time; latency and error rate are insufficient
for evaluating Web and streaming media performance.

Satisfaction with an ISP depends on much more than
technical performance and cost. For example:

– Technical help with your routing configurations and tuning
– Influence with other ISPs at their peering points
– Responsiveness to problems

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

77

Working With ISPs – 1Working With ISPs – 1
A few hints about working with ISPs to improve
performance:

– Your only real leverage is through ISPs that you pay
– Remember that Traceroute shows the path in only one

direction, the intermediate timings can be irrelevant, and
Internet routing is asymmetric. There’s a chance that
you’re blaming the wrong ISP.

– The ISPs can look at their internal router statistics, and get
a definitive answer, much more quickly than you can run a
series of Traceroutes to get much less useful information.

No ISP will ever let you see their router statistics.
– There’s inter-ISP politics and money involved

Therefore:
– Look for a way to do triage, not diagnosis

“All the Keynote Agents on UUnet are reporting problems”
– Work through your own ISP

78

Working With ISPs – 2Working With ISPs – 2
An accurately-reported squeaky wheel gets the grease

– Fixing problems takes thinking, and peering costs money
And there’s a shortage of thinkers and money nowadays (sigh)

– If you don’t complain, it won’t get fixed
But if you repeatedly complain about problems that don’t exist, or
using traceroutes that you don’t understand . . .
And if you have six different people complain to the ISP about the
same problem without coordinating with each other . . .
You’ll build a reputation that isn’t helpful when you need help!

Try to build a relationship with your support person
– Coordinate the contacts at your end
– Avoid finger-pointing, but present convincing triage data

when you claim there’s a problem
Educate your own support team

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

79

AgendaAgenda
Performance Challenges
Web Protocol Performance and Server
Performance

– DNS, TCP, UDP, SSL, HTTP, Browser Behavior
– Transaction Considerations

Architecture of the Web and Internet
– Load and Traffic Distribution
– Internet Backbone Behavior

Caching
Content Distribution Networks
Server-Farm Access to the Internet
Internet Statistics and SLAs
Managing for High Performance

80

Statistical Behavior of Internet Traffic Statistical Behavior of Internet Traffic

heavy tail

Internet traffic is self-similar and heavy-tailed
– Result of mixing long files, small files, ACKs, compressed

video, human think time, etc.
– (Connection arrival rate is still normally distributed)

Self-similar traffic is very bursty
– No natural length to the bursts
– Bursts are not quickly smoothed by larger time scales
– Capacity problems can appear at 50% utilization!

Heavy-tailed (right tail) traffic can have an arbitrarily
large amount of very large values

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

81

Performance Statistics for Heavy-
Tailed Traffic
Performance Statistics for Heavy-
Tailed Traffic

With heavy-tailed traffic:
– Arithmetic Mean may be misleading.

Individual long measurements can distort the mean, especially if the
typical measurement is very short (e.g., DNS, TCP Connect)
This is more troublesome for SLAs and long-term trending than for
problem diagnosis, which involves detailed examination of datapoints
If you have 10,000 measurements of 0.02 seconds, plus TEN
measurements of 20 seconds, the arithmetic mean is 0.04 seconds
— a doubling of the mean because of only ten measurements!
Geometric Mean or Median are better, more stable indicators of
typical performance as seen by users

– Standard Deviation is very misleading in measuring heavy
tail data

Can be massively distorted by a single large measurement!
Geometric Deviation or 85th percentile are better, more stable
indicators of variance

82

Computation of Performance Statistics Computation of Performance Statistics
Arithmetic Mean is easy and useful for “quick looks”

– Arithmetic means can be aggregated (e.g., DNS + TCP
Connect time) by simple addition; other statistics cannot.

(85th Percentile of DNS) + (85th Percentile of TCP Connect) is NOT
the 85th Percentile of (DNS + TCP Connect)

– “Trimming above n seconds” is a computationally-simple
method for improving the stability of the arithmetic mean, but
the number of trimmed values must also be considered.

Other measures require more manipulation
– Percentiles give a reasonable, but coarse, estimate

Median is the 50th percentile
– Geometric Mean is the best measure

It’s the nth root of the product of the n measurements.

Geometric Deviation is a good measure of variance
– “Geometric Deviation” is a factor = 10^(std deviation{log(xi)})

See Keynote website “Resources/White Papers” for statistics articles

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

83

AgendaAgenda
Performance Challenges
Web Protocol Performance and Server
Performance

– DNS, TCP, UDP, SSL, HTTP, Browser Behavior
– Transaction Considerations

Architecture of the Web and Internet
– Load and Traffic Distribution
– Internet Backbone Behavior

Caching
Content Distribution Networks
Server-Farm Access to the Internet
Internet Statistics and SLAs
Managing for High Performance

84

Why Measure?Why Measure?
Without measures, we can’t ensure that we have
good performance in the unstable Internet
technical and business environment.

– The Internet backbones are rapidly changing
– Massive new loads are appearing daily
– Internet routing tables are becoming unwieldy
– Some ISPs are having financial problems

Measurement Goals:
– Trending and Service Level Agreements
– Executive Status Reporting
– Quick problem detection and credible triage
– Diagnosis
– Tuning
– Load testing and test validation

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

85

Measurement of Individual ElementsMeasurement of Individual Elements
Measurement of individual network and server
elements is:

– Great for system operators and for triage
– Necessary for tracking load vs. element utilization

Typical element measures:
– Device status: CPU, memory, link utilization; queue

sizes; queue overflows
– Identity of heavy users; traffic on hardware ports
– Bandwidth usage
– Application statistics (page hits, user counts,

abandoned shopping carts, etc.)
– Some passive measurement tools can examine frame

or packet headers to track response times, etc.
SNMP Polling is the basis for most element
measurements

86

Measurement of the End-User ExperienceMeasurement of the End-User Experience
Network-level pings, etc. are useful for problem
diagnosis, but are not a true measurement of end-
user experience.

– Reaches only outskirts of Web hosting system, not the
application

– Does not indicate the health of application
– Usually is not directly correlated with end-user’s Web

page experience
Automated measurement agents run scripts to
download Web pages and run transactions.

– Includes non-network (e.g., server) time
– May include detailed component measurements that are

useful for triage and trending
– Finds errors as seen by users

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

87

Typical Active End-User MeasurementTypical Active End-User Measurement
Details of download
can be timed and
displayed.
Download details can
be trended over time.
Includes:

– DNS lookup
– TCP connection complete

round-trip network time
– First packet (“first byte”)
– Redirections complete
– Base page complete
– Content (images, etc.)

complete

K
EY

N
O

TE

88

Load Testing an Enterprise System
vs. Load Testing a Web System
Load Testing an Enterprise System
vs. Load Testing a Web System

For example, a call center vs. a Web site:
– Call center operators do not abandon (“click away”) if

response time is poor; they remain on-line and will
eventually continue through the transaction sequence.

– Call center protocols usually give a clear indication of
session termination; Web protocols usually do not.

Abandoned Web sessions use resources until they’re timed out.
Web site’s “concurrent session” statistics may be misleading.

– Call center load are much more uniform than Web loads,
and they cannot exceed the number of operators.

Excess incoming traffic is buffered by busy signals, etc.
– Call center operator skills are more uniform.
– Call center access speeds are more uniform.
– Web networks contain elements that affect performance

of the enterprise site and must be evaluated.
– Web client (“browser”) is usually more complex than

legacy terminal or client

Copyright © 2002 by Keynote Systems and Eric Siegel. All Rights Reserved.

89

Web Load Testing Must Include:Web Load Testing Must Include:
Variable loading, for realism and to test flash loads
Satisfaction measures, based on response time
Abandonment behavior, for realism and to evaluate resource
recovery mechanisms
Distributed loading, to test the Internet connections,
peering, caching, and content distribution networks
Multiple geographic profiles, to represent the wide variations in
Web access technology and location
Multiple user connectivity profiles, because latency and
bandwidth affect the load seen by the servers
Multiple user profiles, to model the wide variation in user skills
present in the Web community
Script variability, of both data and paths, to avoid creating
unrealistic hot spots that are handled by caching
True browser emulation, of varied browsers, including browser
caching, cookies, Javascript, SSL, etc.

90

Keynote Systems (www.keynote.com), “The Internet Performance Authority®,” is the world’s
leading supplier of Internet performance measurement, diagnostic, load testing, and consulting
services to companies with e-commerce Web sites. Keynote® captures over 20 million performance
measurements daily, using Keynote’s global infrastructure of over 1500 measurement computers
connected to the major Internet backbones from over 100 statistically selected Internet access
locations in 50+ metropolitan areas worldwide. Internet performance and availability data are
collected at Keynote’s sophisticated operations center and are instantly available to customers
through any Web browser, by real-time XML transfer, or by FTP. Keynote currently measures
individual Web pages as well as transactions, streaming media, and wireless. Keynote also
supplies highly-accurate, distributed Web load testing services.

Eric Siegel is Principal Internet Consultant with Keynote Systems, Inc. and is the author of
Designing Quality of Service Solutions for the Enterprise (John Wiley & Sons, 1999). Before joining
Keynote Systems, Mr. Siegel was a Senior Network Analyst at NetReference, Inc., which specializes
in network architectural design and strategic planning, and he was a Senior Network Architect with
Tandem Computers, where he was the technical leader and coordinator for all of Tandem's data
communications specialists worldwide. Mr. Siegel also worked for Network Strategies, Inc. and for
the MITRE Corporation, where he specialized in computer network design and performance
evaluation. Mr. Siegel received both his B.S. and M.E.E. degrees in Electrical Engineering from
Cornell University, and he has been a member of the Internet community since 1978.

Key Points

Implement effective and maintainable tests using Action Based Testing™ (ABT) approach
Win and keep the necessary management commitments
Deal with common technical challenges such as testing Web applications, legacy systems, load testing, and
complex multi-platform environments

Presentation Abstract

Whether you’re looking for a new testing approach through automation or re-examining existing test
automation strategies, your objectives are the same: Maximize test coverage, save time, and keep testing
under control. A delicate combination of technical problems and management issues, test automation is a
challenging task. Hung Nguyen and Hans Buwalda discuss how to start up or improve test automation to
meet your goals. They address topics such as how to set up the right team, options for an effective and
stable architecture, and how to deal with managerial issues you’re likely to encounter.

About the Author

Hung Q. Nguyen is founder, president, and CEO of LogiGear® Corporation. He’s held leadership roles in
business management, product development, business development, engineering, quality assurance,
testing, and information technology. Hung is an international speaker and contributor to industry
publications. He authors and teaches software testing curriculums for LogiGear University and the University
of California. He is the original architect of TRACKGEAR™, a Web-based defect management system, and
the author of Testing Applications on the Web (Wiley). He also wrote (with Kaner and Falk) the best-selling
book Testing Computer Software (Wiley), which is also published in Japanese. He holds a B.Sc. in Quality
Assurance from Cogswell Polytechnical College, is an ASQ-Certified Quality Engineer, and a member of the
Advisory Council for the Department of Applied Computing and Information Systems at UC Berkeley
Extension.

Hans Buwalda, ABT Chief Architect, leads LogiGear's Action Based Testing™ (ABT) research and
development, including ABT Toolset™ operations, and oversees the practice of the ABT methodology. Prior
to joining LogiGear, Hans served as Project Director at CMG in The Netherlands where he was the original
architect behind what has now become TestFrame™ - an integrated method for planning, managing, and
deploying software testing and test automation. Hans is an internationally recognized expert specializing in
test automation, test development, and test management. He speaks and presents workshops at
international conferences on testing concepts such as Action Based Testing, The Three Holy Grails of Test
Development, Soap Opera Testing, and Testing in the Cold. Hans authored (along with Dennis Janssen and
Iris Pinkster) Integrated Test Design and Automation: Using the TestFrame Method (Addison Wesley 2001).
He holds a Master of Science degree in Computer Science from Free University, Amsterdam.

QW2002 Paper W2

Mr. Hung Nguyen & Mr. Hans Buwalda
(LogiGear Corporation)

Jump Starting Your Test Automation

Jump Starting Your
Test Automation

Hung Nguyen

Hans Buwalda

LogiGear® Corporation

Applications Workshop W2

© 2002 LogiGear Corporation. All Rights Reserved.

© 2002 LogiGear Corporation. All Rights Reserved. 2

Agenda for Today

• Overview of test automation strategies

• Introduction to Action Based Testing as an
approach

• Jump starting your test automation with an
integrated approach

Test design strategies and methods

Automating tests ("Navigation Engineering")

Test management

© 2002 LogiGear Corporation. All Rights Reserved. 3

Objectives

• Focus on sharing testing automation strategies
through

Ideas
Concepts
Experiences

• To a lesser extent:
In-depth treatments
Full coverage of possible issues

• Illustrating an integrated approach to test
automation through "Action Based Testing"

Incorporates most of the key ideas and concepts
Home match for your teacher

© 2002 LogiGear Corporation. All Rights Reserved. 4

Specification Development Test

Testing Under Pressure

© 2002 LogiGear Corporation. All Rights Reserved. 5

Testing Under Pressure

Develop tests in time:
• Test design

• Description of tests (Actions and checks)
• Ways to execute tests

• Manually or automatically

Specification Development Test

© 2002 LogiGear Corporation. All Rights Reserved. 6

Strategic Position of Test Processes

Test Development

Test Automation
Technology/
Infrastructure

ProductionMarketing/
Sales

System
Development

End User
Departments

Quality Assurance

Management

After Sales/
Help Desk

Customers

Vendors

Government
Agencies

Publicity

EXTERNAL INTERNAL

© 2002 LogiGear Corporation. All Rights Reserved. 7

Key Issues in Testing

• Effective test design

• Comprehensive automation architecture
• Consider manageability and maintainability.

• Methodical management of the tests
• Tests and test scripts are products. They need to be managed.

• Competent management of the test process
• Managers want to know what is going on. Give them what they want.

• Thorough documentation

• Clear communication through useful reporting
• Communicating progress status and test results.

• Firm distinction between testing and quality assurance
• Solicit involvement of stakeholders, users, auditors and decision makers.

© 2002 LogiGear Corporation. All Rights Reserved. 8

What are the Typical Problems?

• Poorly designed test cases won’t catch bugs

• Lack of test automation architecture makes automation expensive and
difficult to manage and maintain

• Disorganized test processes
• Test designers and test automators require/have different skill sets
• The stakeholders don't know what is going on

• Testing effort is underestimated or deferred
• Testing is difficult and expensive
• Management might be in denial
• It is unattractive to spend money on testing
• Cost shifting

• Unclear about the three separate test automation problems that need
to be addressed: Test design, automating tests, and test management.

• No clear direction.

• Focus on tools and technology
• The engineers are bottlenecks

© 2002 LogiGear Corporation. All Rights Reserved. 9

Recommendations

• Integrate testing and test automation
• Don't automate manual testing

• Put the test engineers in control of the test logic
independent to test execution strategies

• Pay attention to good test design and test automation
architecture

• Actively solicit and manage the involvement of
stakeholders

• Structurally implement testing and test automation strategy
• Test automation is not a hobby

© 2002 LogiGear Corporation. All Rights Reserved. 10

Test Design Considerations

• Understand the difference between passive and active test

• Understand the difference among black-box, white-box and
gray-box testing

• Understanding S.I.C.O
Storing (data), Input, Computing, and Output

• Start with component-based and file-based inventory lists

• Identify various types and points of interface

• Identify various actions used by each interface

• Identify various data used by each interface

© 2002 LogiGear Corporation. All Rights Reserved. 11

Why Do We Automate Tests?

• It is more interesting and fun

• Let the machine do the work

• Save time and money

• Reduce the misuse of valuable test engineering
resources

• Formulate a structured way of working

• Shorten time-to-market

• Improve test coverage

© 2002 LogiGear Corporation. All Rights Reserved. 12

Some Approaches to Test Automation

• Dumb Monkeys

• Record/Playback

• Scripted Approach

• Data-Driven Testing

• Action Based Testing

"Software Test Automation”
by Mark Fewster and
Dorothy Graham,
Addison Wesley, 1999

© 2002 LogiGear Corporation. All Rights Reserved. 13

Record/Playback

Target
System

Log

Recorded test
scripts

Test Tool
(Invisible for the
target system)

Test data,
entered by the

tester

• One time recording of
actions and checks

• Multi time playback

• Actions
• Checks
• Results

• Actions
• Checks

© 2002 LogiGear Corporation. All Rights Reserved. 14

Beware of the R/P Pitfalls

• Sensitivity to changes leads to high maintenance
cost

• Test cases are difficult to access

• Affected by the working system or environment

• Only suitable for GUI systems

• Upside
A useful way to learn about the tool and automation

© 2002 LogiGear Corporation. All Rights Reserved. 15

Scripted Approach

• Automation is regarded as a programming task

• Improved reusability
Parameterize hard-coded values
Separate data from code by moving variables to include files
Create utility functions to be shared

• Produce and maintain like any other software

• Train test specialists to run the scripts

© 2002 LogiGear Corporation. All Rights Reserved. 16

Scripted Approach

• A much better approach

• Reusability of scripts for common tasks

• Improved maintainability

• Issues
Tests are programmed, and are relatively hard to access
Affected by a working system or environment
Test implementation must be done by engineers
3000 tests mean 3000 automated scripts
Manageability is still an issue

© 2002 LogiGear Corporation. All Rights Reserved. 17

Data-Driven Approach

• Take advantage of tester’s familiarity with test
case design and creation using tables and
matrices

• Accommodate localization projects

• Recognize the importance of patterns in test cases

• Enable testers to catalog test cases with Excel
spreadsheets

• Enable testers to specify expected results in
spreadsheets

© 2002 LogiGear Corporation. All Rights Reserved. 18

Data-Driven Example

GOODMORNING

goodmorning

GoodMorning

Input DataInput Data

© 2002 LogiGear Corporation. All Rights Reserved. 19

Data-Driven Example

Text file used in the test:

Data driven script:

• File with test data:
nr case whole pattern matches
1 off off GOODMORNING 4
2 off on GOODMORNING 3
3 on off GOODMORNING 1
4 on on GOODMORNING 1
5 off off goodmorning 4
6 off on goodmorning 3
7 on off goodmorning 1
8 on on goodmorning 1
9 off off GoodMorning 4

10 off on GoodMorning 3
11 on off GoodMorning 2
12 on on GoodMorning 1

goodmorning
GOODMORNING
GoodMorning
GoodMorningVietnam

for each line in the file do
open the find dialog
read a line from the file
use the values to fill dialog
press find button
check amount of matches
close the dialog

© 2002 LogiGear Corporation. All Rights Reserved. 20

Scripted/Data-Driven Approach

• Separation of action and data

• Test data can go in separate file or spreadsheet

• Improved reusability and maintainability

• Issues
Actions (containing business logic) remained in automated scripts
Sensitivity to changes
Manageability is still a burden

© 2002 LogiGear Corporation. All Rights Reserved. 21

Action Based Testing Approach

Test DevelopmentTest Cluster
(Spreadsheet, Table, ...)

Navigation Scheme

Navigation
Engineering

…
transfer sum

check balance

…

A B C D
. . .
transfer sum Houston Klein 210
check balance Klein 210
transfer sum Savy Klein 150
check balance Klein 360
. . .

*expected values

*

*

© 2002 LogiGear Corporation. All Rights Reserved. 22

cluster EXAMPLE OF A TEST CLUSTER
version 1.0
author Hans Buwalda

section 1. Entering clients and balances
last name first name account nr balance

enter client Green John 458473948 1500
enter client Wood Anna 422087596 2100

section 2. Money Transfers
from to sum

transfer 458473948 422087596 500
transfer 422087596 785793025 1201

section 3. Checking names and numbers
account nr last name first name

check name 458473948 Green John
check name 422087596 Wood Anna

account nr sum

check balance 458473948 1000
check balance 422087596 1399

INPUT

EXPECTED

OUTCOMES

HEADER

Example of an ABT Test Cluster

© 2002 LogiGear Corporation. All Rights Reserved. 23

Example of a Test Product Life Cycle

• Actual results
• Comparison with expectations
• Management information

• Input data
• Expected outcomes
• Documentation

Management

System
Development

QA/Auditors

End users

System(s)
Under Test

Report

Global Test Design

"Test Clusters"

Test Planning and Control

Navigation
Scheme• Breakdown

• Analysis
• Clustering

SEPARATION

Physical
Navigation

© 2002 LogiGear Corporation. All Rights Reserved. 24

Example of ABT Test Reporting

TEST RUN SUMMARY

test cluster: Minibank business test
test sheet: demonstration scenarios
test version: 1.2
test author: Hans Buwalda, all rights reserved
test date: April, 2001

run date and time: Tue Nov 06 12:49:06 2001

SCENARIO MB01 -- Entering customers using manual numbering
In this scenario the account numbers are entered manually.

Enter Customers - Entering 5 customers in the Relation Entry screen

14, enter customer: Johnson Jean 500103381 1500

15, enter customer: Juet Christian 423137538 2100

16, enter customer: Savy Anne 848656467 1700

...

© 2002 LogiGear Corporation. All Rights Reserved. 25

Example of ABT Test Reporting

Check Balances - Check if the balances are conform the entry and the transfers

36, check balance: 500103381 1000
check: balance
expected: 1000
recorded: 1000
result passed

37, check balance: 423137538 555
check: argument 2
expected: 555
recorded: 2600
result failed

RESULTS TEST EXECUTION

overall statistics for this test run:
number of checks: 21
number of passes: 20
number of failures: 1

fail(s) were found in these line(s):
37

..

© 2002 LogiGear Corporation. All Rights Reserved. 26

Designing a Tool Independent Architecture

• For example, ABT sits on top of many test
automation tools including, but not limited to:

WinRunner

QA Run

SILKTest

Visual Test

Rational Robot

ATF

eValid

C/C++, Visual Basic, Java, etc.

Various scripting languages

© 2002 LogiGear Corporation. All Rights Reserved. 27

Test Design Strategy

• Input data
• Expected outcomes
• Documentation

Global Test Design

Test Clusters

• Breakdown
• Analysis
• Clustering

© 2002 LogiGear Corporation. All Rights Reserved. 28

Test Design Strategy

• About 70-80% of the work

• Separated from the automation

• The bulk of the work is done at the cluster level
• Easier to organize and manage

• Separation between "test objectives" and test
cases or test scenarios

• Global Test Design is can be organized based on
either logical abstraction or physical abstraction

© 2002 LogiGear Corporation. All Rights Reserved. 29

Test Design Strategy

1. Global Test Design
• Key product: Cluster identification

2. Test Analysis
• Key product: Test objectives

3. Test Development
• Key product: Scenarios/Cases with actions

ClusterCluster
LevelLevel

ProjectProject
LevelLevel

© 2002 LogiGear Corporation. All Rights Reserved. 30

Test Product Management Strategy

Global
Test
Design

ABT Test Cluster
(Excel Workbook)

Other
InfoTest

ObjectivesTest
Scenarios
(Cases)

ABT Test Cluster
(Excel Workbook)

Other
InfoTest

ObjectivesTest
Scenarios
(Cases)

. .
 .

N
avigation
S

chem
e

© 2002 LogiGear Corporation. All Rights Reserved. 31

Test Cluster Build-Up Strategy

Test
Objectives

Test
Scenarios
(Cases)

ABT Test Cluster
(Excel Workbook)

Other
InfoTest

ObjectivesTest
Scenarios
(Cases)

Other
Info

© 2002 LogiGear Corporation. All Rights Reserved. 32

Test Case and Test Objective Referencing

...
TO-3.51 The exit date must be after the entry date
...

test objective TO-3.51

name entry date exit date
enter employment Bill Goodfellow 2002-10-02 2002-10-01
check error message The exit date must be after the entry date.

© 2002 LogiGear Corporation. All Rights Reserved. 33

Clustering Recommendations

• Logical to all concerned

• Independent from other clusters

• Well differentiated and clear in scope

• Fitting the priorities and planning of the project

• Balanced in size and amount

© 2002 LogiGear Corporation. All Rights Reserved. 34

Examples of Clustering Criteria

• Architecture of the system under test

• Functionality and other requirements

• Quality attributes

• Level of detail

• Planning and control

• Level of risks involved

• Complexity of the test

• Technical aspects of test execution

• Stake holders

• Code hand-offs (Brian Marick)

STRAIGHTFORWARD

ADDITIONAL

© 2002 LogiGear Corporation. All Rights Reserved. 35

Navigation Engineering Strategy

Physical
Navigation

Target
System(s)

Navigation
Scheme

© 2002 LogiGear Corporation. All Rights Reserved. 36

Role of Test Execution Tools

• The leading test tools are high quality

• Embedded in suites

• Strong in GUI and Web testing

• Less dominant in technical testing

© 2002 LogiGear Corporation. All Rights Reserved. 37

Common Components of a Playback Tool

• Recorder of actions

• Check points

• Playback engine

• Test results bookkeeping

• Built-in script language

• GUI handling

© 2002 LogiGear Corporation. All Rights Reserved. 38

Scripting Language

• Regular programming language
control flow (like if-then-else, loops, etc.)
constants, variables and data structures
numeric and string expressions
functions, subroutines

• Extra: specific testing functions

• Interpreted
Easier to debug
Slower than a compiled language (but that is usually not a problem)

• Extra facilities to help the non-technical user
However, automation remains a programming task

© 2002 LogiGear Corporation. All Rights Reserved. 39

Multi Level Navigation Strategy

CONTROL Reports

Low Level Action Layer

High-levelHigh-levelHigh-level

Application

Intermediate Level

Templates

Tables

Intermediate Level

Scripts

© 2002 LogiGear Corporation. All Rights Reserved. 40

Test Product Architecture

ABT Test Cluster
(Excel Workbook)

Other
InfoTest

ObjectivesTest
Scenarios
(Cases)

RESULTS

Test
Execution

Collaborative Environment

Local Work Environment Test Run Environment

DATA FILES

NAVIGATION

© 2002 LogiGear Corporation. All Rights Reserved. 41

Typical Division of Labor

Test Development
- The more to test, the more to develop
- Efficient partly self-documenting style
- Improved control and focus by clustering

Navigation:
- Logarithmic growth of action words
- Multi level approach leads to lesser efforts per word

amount to test

ef
fo

rt
s

© 2002 LogiGear Corporation. All Rights Reserved. 42

Multiple System Access Strategy

System(s) Under Test

ABT Multilevel Navigation Scheme

direct api
access

protocol
access

UI
access

database
access

 Test Clusters: Driving either
single or multiple interfaces

© 2002 LogiGear Corporation. All Rights Reserved. 43

Multiple Test Station Distributing Strategy

System(s)
Under Test

robot
navigation

robot
navigation

robot
navigation

master
navigation

Test Cluster(s), driving
multiple test stations

© 2002 LogiGear Corporation. All Rights Reserved. 44

Web Testing

• Shooting at a moving target

• Performance is number one issue

• Selection and planning can help

• Use clustering to manage

© 2002 LogiGear Corporation. All Rights Reserved. 45

There is a Lot of Web Testing

• "Classic" functionality

• Multimedia

• Links

• Compatibility
• (Combinatorial explosion, see www.argreenhouse.com)

• Client and server scripts

• Databases, middleware, etc.

• Load and performance

• Reliability

© 2002 LogiGear Corporation. All Rights Reserved. 46

Web Testing

• Order in the chaos

• Test specification is not particularly hard

• Navigation can be hard, depending on the tooling

© 2002 LogiGear Corporation. All Rights Reserved. 47

Legacy Batch System Testing

Transfer Jones Williams 100
Check Balance Jones -100
Check Balance Williams 100 Jones Williams 100

Batch Run

Jones -100

Williams 100

Test Cluster

"Delayed Checks" Cluster

Batch Input File

Batch Output File

D Check Balance Jones -100
D Check Balance Williams 100

1

1

2

2

3

© 2002 LogiGear Corporation. All Rights Reserved. 48

Performance Testing

• The topic is complex

• To formulate tests in actions is usually surprisingly
straightforward

• Navigation can be straightforward as well,
depending on your tooling and environment

© 2002 LogiGear Corporation. All Rights Reserved. 49

Test Management Strategy

Test Planning and Control

© 2002 LogiGear Corporation. All Rights Reserved. 50

Key Strategic Issues

• Shorter Time to Market

• Improved Quality to Market

• Better Control

• Commitment

© 2002 LogiGear Corporation. All Rights Reserved. 51

Test Design/Development

Test Analysis

Global Test
Design

Cluster and Test
Development

Test Engineering

Navigation
Architecture

Navigation
Development

Test Ware
Management

Test Execution/Follow-Up Test Maintenance

Test Planning and Strategy

Q
A

/T
es

t
M

an
ag

em
en

t
an

d

C
o

n
tr

o
l

ABT
• Training
• Coaching
• Support
• Tooling

ABT Project Model

© 2002 LogiGear Corporation. All Rights Reserved. 52

Assembling the Team

• Within a project
Test consultant: setup and coaching
Test management: managing the test process
Test development: production of the test clusters

• test leads
• test analysts
• end users, business specialists

Navigation Engineering: production of the navigation scheme for
automatic execution

• senior navigator / test architect
• one or more navigators

• General, at the organization level
Support on the method
Keeping navigation schemes
Keeping test clusters

© 2002 LogiGear Corporation. All Rights Reserved. 53

initiation, know how, support, ...

experiences, products, people, ...

pilot projects

training

coaching

resource mediation

test quality assurance

test environments

testware management

vendor contacts

TEST BUSINESS POLICY
(significance, position, organization)

m
an

ag
em

en
t &

 c
on

tr
ol

Test
Maintenance

Test
Execution

Test
Development

Test
Design

Test Strategy
& Planning

TEST PROJECT MANAGEMENT
(solution focus)

ABT Test Governance Model

TEST COMPETENCE MANAGEMENT
(process improvement focus)

© 2002 LogiGear Corporation. All Rights Reserved. 54

Getting Commitment for Test Automation

• Testing is often not popular

• Nobody wants an extra problem (No time, next year, ...)

• Offer solutions, not additional problems

• Tell managers that a good tested system creates a positive image (Not
only negative reasons for testing)

• Present/show what you're doing (Glass box)

• Try to get clarity about “Test Policy”

• Keep in mind that managers want things to be under control (Give
information about progress and results)

• Use outsiders, use books and/or published articles to make your case

• Try to find some bugs

© 2002 LogiGear Corporation. All Rights Reserved. 55

Getting Commitment for Test Automation

• “No time, no money, ...”
Back to the problem
You should not become the problem owner!

• “It is so expensive/It is so difficult”
Testing is expensive and difficult
Test automation is difficult

• “The others should do the testing”
Figure this out
You can't deal with this yourself

• General vagueness
Hidden problems and conflicts

© 2002 LogiGear Corporation. All Rights Reserved. 56

Jump Starting Automated Testing

• Treat it as an organizational change (Although it

is not necessarily a reorganization)

• Use pilots, training and coaching

• No standard recipe. It depends on
Skills available

Experience with testing and test automation

Time (and budget) constraints

• Coaching and support is essential
(There are many lessons to learn)

© 2002 LogiGear Corporation. All Rights Reserved. 57

Strategic Awareness

Initial
Training

Additional
Training

Concept Ownership

Initial
Project

Projects

Long Term:
• Process

Improvement
• Test

Governance

ABT Jump Starting Model

• Training

• Coaching

• Support

• Tooling

© 2002 LogiGear Corporation. All Rights Reserved. 58

LogiGear and Action Based Testing

• The leading provider of quality engineering strategy and
testing services

• The leading provider of quality engineering and test
automation knowledge-transferring

• The leading Action Based Testing practitioner

• ABT partnership model offering flexibility in offerings:
Training
Consultancy
Implementation
Tooling
Outsourcing

© 2002 LogiGear Corporation. All Rights Reserved. 59

Some References
• Buwalda, Hans, Testing with Action Words, Abandoning Record and Playback, Eurostar 1996

• Buwalda, Hans, Testing with Action Words, STAR 1998

• Buwalda, Hans, and Kasdorp, Maartje, Getting Automated Testing Under Control, STQE
Magazine, November Issue 1999

• Buwalda, Hans, Soap Opera Testing, STAR East 2000

• Buwalda, Hans, Janssen, Dennis, and Pinkster, Iris, Integrated Test Design & Automation Using
The TestFrame Method, Addison Wesley, 2001

• Buwalda, Hans, The Three Holy Grails of Test Development, Quality Week 2001

• Graham, Dorothy, and Fewster, Mark, Software Test Automation, Addison Wesley, 1999

• Kaner, Cem, Bach, James, and Pettichord, Bret, Lessons Learned in Software Testing, 2001
(expected)

• Kaner, Cem, Nguyen, Hung Quoc, and Falk, Jack, Testing Computer Software, 2nd Edition, John
Wiley & Sons, 1999

• Kit, Edward, Software Testing in the Real World, Addison Wesley Longman, 1996

• Marick, Brian, New Models for Test Development, www.testing.com/writings/new-models.pdf, 1999

• Nguyen, Hung, Testing Applications on the Web, Wiley, John & Sons, Incorporated, 2000

• Nyman, Noel, Using Monkey Test Tools, STQE magazine, Issue January 2000

• Splaine, Steven, and Jaskiel, Stefan, The Web Testing Handbook, STQE Publishing, 2001

© 2002 LogiGear Corporation. All Rights Reserved. 60

About LogiGear® Corporation

 LogiGear Corporation is the first Silicon Valley-based software
testing company to offer a full range of solutions to advance
individual and organizational excellence in software testing.
LogiGear offerings include in-depth technical and management
expertise in software quality engineering, comprehensive
advanced test engineering such as Action Based Testing™, a
structured approach to testing and testing automation, and
outsource testing solutions, skill-based training curriculum for
software testing professionals through LogiGear University, and
world-class testing support products including TRACKGEAR, a
Web-based defect management solution.

 www.LogiGear.com

Key Points

How to prepare for the Performance Testing? : Planning phase
How to conduct Performance Testing? : Test Execution phase
How to analyze the results and identify the bottlenecks? : Post-test phase

Presentation Abstract

Performance problems related to Web applications are known to all organizations. Many companies have
developed or integrated their critical applications using Web Technologies. As these applications become
more complex, testing of such applications is critical, particularly from the standpoint of performance.
Performance depends, among other things, upon the load on the system at peak time under varying
conditions. To test such complex applications requires proper planning, which includes business
benchmarking and profiling, setting up environment and testing process. Performance testing is normally
conducted in a simulated environment with the help of performance testing tools. Such testing process will
have many practical issues to address. This tutorial provides an in-depth study of how to plan and conduct
performance testing in an automated environment. Also, the tutorial provides how to analyse the
performance results to find the bottlenecks and provide remedies through a case study.

About the Author

Dr. Subraya B.M. currently working as Senior Principal Consultant to Education and Research Department
of Infosys Technologies Limited, Bangalore, India. Before he comes to Infosys, he was working as a
Professor and head of Computer Centre, at S.J. College of Engineering, an affiliated college of University of
Mysore, a reputed engineering college in southern part of India, since more than 20 years.

Dr. Subraya holds PhD from Indian Institute of Technology, Delhi from Computer Science & Engineering
Department, in the area of Testing and Verification. He has guided many projects at graduate and under
graduate level. His area of interest includes Software Engineering, Operating System and Distributed
databases.

He is currently responsible for managing the Web Performance Testing Centre of the Organization. He has
offered tutorials on Web Performance Testing in many pre-conference Tutorials including QAI, SEPG, and
PSQT international Conferences. He has published many papers in international conferences in the area of
Performance Testing of Web applications.

QW2002 Paper W3

Dr. Subraya BM
(Infosys Technologies Ltd)

Web Performance Testing & Issues

1

Performance Testing & Performance Testing &
Issues: Web ApplicationsIssues: Web Applications

Dr. Subraya BM
subraya@infy.com

Infosys Performance Testing Centre(InPTC)
ITL Infosys, Bangalore

www.infy.com

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 2

INTRODUCTION

Please introduce Yourself
What you Expect from this Tutorial!

2

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 3

Session Plan
• Performance in General

(Introduction, definitions, objectives, need for Performance testing)

• Issues in Performance Testing
(Quality characteristics, Architecture, Performance Peculiarities)

• Preparation for Performance Testing
(Definition Phase, Design and Build Phase)

• Performance Test Execution
(Setting parameters, execution, analyse results)

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 4

What is Performance Testing?

• Performance means the capacity to function(well)
(as in The Cassell – concise Dictionary)

• Performance means
• response time
• throughput
• resource utilization

• Performance Testing is not Features Testing

3

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 5

What kind of Systems?

Systems

Batch Interactive Web based

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 6

Performance Testing: Different
Views

Performance Testing

Load and Stress Testing

Response Time Testing

Throughput Testing

Capacity Testing

4

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 7

• Similar to Black box testing

• Looks like an end user to the system
under test

• Performed by recording or scripting the
actions

How do You Conduct
PERFORMANCE TESTING ?

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 8

Myths on Performance Testing
• Performance problems can usually be fixed by

simply plugging in a more powerful Processor, …

• If features work correctly, users do not mind a little
slow

• No elaborate plans are required; it is intuitively
obvious how to measure the system’s performance

• Needs few hours to check performance before the
deployment

• Do not required expensive tools; few users can play
the role of the tools

• Anyone can measure and analyze the performance;
does not require any specialized skills

Bulldozer
Approach
Qualitative
Management

Simplistic
Approach

Unstructured
Approach

Testing after
Thought

Layman
Approach

5

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 9

Need for Performance Testing

60%

8%

26%

38%

0%

Was not AcceptableWas Acceptable

6%Did not do performance or load
testing at all

0%Did post-deployment testing

38%Test late in development

35%Test early in development

21%Reviewed or simulated
(Performance during RA, and
design phases)

Organization in which Operational Performance
Performance Testing Practices

Survey Speaks itself

Ref: Computer world 1999(survey results of 117 organizations)

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 10

• Support of maximum number of concurrent
users(for proposed configurations for acceptable
performance)

• Assess performance of current configurations
• Identify location of bottlenecks within the

application architecture
• Impact of a software or hardware change
• Address Scalability issues

PERFORMANCE TEST OBJECTIVES

Bottom Line: How do you achieve?

6

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 11

Performance Testing : Definition

• Measured as a weighted mix of three characteristics of a system:
1. Throughput
2. Response
3. Availability

• Carried through:
• Load Testing : Measurement of performance under heavy load:

peak or worst-case conditions

• Stress Testing : Deliberate stress on a system beyond
specified limits

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 12

Test for
– Load

– Endurance

– Stress

– Spike

Variations Of Performance
Testing

Test-LESS: An approach to ensure complete Performance Testing
(LESS is More!)

7

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 13

•Resources
– Time
– Money
– Staff

•Profits
•Customers

Poor Performing Systems Will Cost You...Poor Performing Systems Will Cost You...

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 14

Benefits of Performance Testing
• Improved quality from a user’s perspective
• Reduced cost of change
• Reduced system costs
• Increased profits
• Early identification of major application

defects and architectural issues
Cost Per Defect

1 10 100
Design Test Production

Cost Per Defect

1 10 100
Design Test Production

8

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 15

Discussions

1. What are the important objectives of Performance Testing?

2. Why the load testing cannot be conducted manually?

3. Specify at least two reasons why Performance testing is
mandatory ?

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 16

Discussion on Case Study

Study the banking case study and identify
the performance requirements, if any.

9

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 17

Issues to be Addressed
• Client/Server vs. Web Applications

• Setting the Quality

• Understanding the Architecture

• Testing Types and Issues

• Addressing Peculiarities

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 18

• Web is relatively a new area compare to C/S

• There is a difference in testing Client/ Server
and Web Applications

• Automated testing of Websites is an opportunity
and a Challenge

CLIENT/SERVER vs. WEB
APPLICATION TESTING

C
lie

nt
/S

er
ve

r v
s .

W
eb

 A
pp

lic
at

io
ns

10

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 19

C/S Application vs.Web Site ?

• How do you differentiate Web Application & typical

Client/Server Application?

• Who are all the clients for an Web Site compare to C/S?

• Can you suggest HW/SW for a Web client?

C
l ie

nt
/ S

e r
ve

r v
s.

W
eb

 A
pp

li c
at

io
ns

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 20

Unknown & Uncertainities

U Place

U User & level

U User know ledge

U PlatformU Brow sers

U Architecture

U User
Requirements

U Place U User & level U User know ledge

U Platform U Brow sers U Architecture

U User Requirements

Clien
t/Serv

er:
Desig

n Uncer
tain

ties

Web: R
un Time U

ncer
tain

ties

C
lie

nt
/ S

e r
ve

r v
s.

W
eb

 A
pp

li c
at

io
ns

11

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 21

What do you Expect?

•Client friendly

•Most Reliable

•Performance Conscious

Bottom Line: How do you achieve?

C
l ie

nt
/ S

e r
ve

r v
s.

W
eb

 A
pp

li c
at

io
ns

We Expect:

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 22

Quality ?
Bottom Line: How do you set Quality aspect?

Se
t ti

ng
 t h

e
Q

ua
li t

y

12

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 23

Quality Characteristics

CL - MScalability
CMExtensibility
MMMaintainability
L – MM - CPortability

CCUsability

CCEfficiency
CCReliability
CCFunctionality
WEBClient/ServerTypes

Legend: Critical(C) , Moderate(M), Low(L)

Se
t ti

ng
 t h

e
Q

ua
li t

y

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 24

• Poor Quality
- broken pages and faulty images,
CGI-Bin error messages, user
experience, etc(WEB)
- Impact on Client leads to
cost/effort(C/S)

Impact Of Quality

Se
tti

ng
 t h

e
Q

ua
li t

y

13

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 25

• Design Test suites

• Plan Test sessions

• Conduct set of repeatable tests automatically

• Analyse Test Results

HOW to ENSURE QUALITY
AUTOMATICALLY?

Se
tti

ng
 t h

e
Q

ua
li t

y

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 26

• C/S Applications: Client + Server

• Web Applications: Network + Server

WHAT TO TEST?

Bottom Line: Be clear, which side testing produce effective results?

Se
tti

ng
 t h

e
Q

ua
li t

y

14

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 27

Discussions

1. What are the essential differences between Web Testing
and Client/Server Testing?

2. What is the most relevant quality characteristics that you have
found in your project?

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 28

Web Technology

U
nd

er
st

an
di

ng
 th

e
A

rc
hi

t e
ct

ur
e

15

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 29

A Web-based Thin client

CLIENT SERVER

Web Server

Database

Browser

Scripts
Services

Components

TCP/IP
Network

U
nd

er
st

an
di

ng
 th

e
A

rc
hi

t e
ct

ur
e

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 30

A Web-based Thick client

CLIENT SERVER

Web Server

Database

Browser

Script
Services

Components

TCP/IP
Network

Components

Script
Services

U
nd

er
s t

an
di

ng
 th

e
A

rc
hi

t e
ct

ur
e

16

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 31

Three-tiered Web-based System

CLIENT

Script

C
om

po
ne

nt
s

B
ro

w
se

r

Script

W
eb

 S
er

ve
r

Se
rv

ic
es

Database

ADO/OLE-DB

SERVER

UI Services/Rules/Logic Data

Database

SERVER

JD
B

C

U
nd

er
s t

an
di

ng
 th

e
A

rc
hi

t e
ct

ur
e

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 32

Fi
re

w
al

l

Web System ArchitectureWeb System ArchitectureWeb Browsers
AOL
Explorer
Mosaic
Navigator
Opera
Lynx
WebTV
Cyberdog

Operating System
Linux
Macintosh
Unix
Windows

Network Trafic
HTTP, HTTPS
SSL,TSL,PCT
FTP,TCP/IP
DCOM
LDAP, ODBC

Web Server
MS IIS
Netscape ES
Apache

Database

Database
IBM DB2
Informix
MS SQL
Oracle
Sybase

Backoffice/ERP
Oracle
Peoplesoft
SAP, Seibel

Application Serve
BEA Weblogic
IBM Websphere
MA Asp
SUN Netdynamics
Middleware
BEA Tuxedo
CORBA
MS DCOM
eCommerce Serve
Ariba
Broad vision
Callico
Vignette

In
te

rn
et

17

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 33

Typical E-Architecture

Client Browser

Client Browser

Internet

SICAV

Data Storage

SQL Server SQL Server

Fund Station

WLBS Cluster of
machines

MSCS Cluster

IIS,MTS & Site Server

IIS,MTS & Site Server

IIS,MTS & Site Server

U
nd

e r
s t

an
di

ng
 th

e
A

rc
hi

t e
ct

ur
e

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 34

• Business Related functional
Testing
– Unit and integration Testing

• Client Related functional
Testing

Types of Testing

Te
st

in
g

Ty
pe

s a
nd

 Is
su

es

18

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 35

Client Related functional Testing

YesYes Performance

YesNoAnimation

YesNoSecurity

YesYesReliability & Recovery

YesYesUsability

YesYesPresentation

YesYesForms

YesNoFrames

YesNoWeb Page

YesNoCompatibility

YesYesNavigation

YesYesCode related Validation

WebC/STesting Types
Te

st
in

g
Ty

pe
s a

nd
 Is

su
es

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 36

Peculiarities of a Web Site

RAD Approach

Compressed
deadlines

Change in
Technology

Round-trip
Engineering

Incompetent
Designers

Need for
Evolutionary
Maintenance

Developers
negligence on
performance

Third party
Components

Complex User
Interface

Mushrooming of
Browsers

Security Threat

Compatibility

Regression
Testing is a
Headache

Variety of
Scripting

Languages

Technical
PeculiaritiesPro

jec
t

Pe
cu

lia
riti

es

Bottom line: How do you test such a complex environment?

A
dd

re
ss

in
g

Pe
cu

lia
rit

ie
s

19

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 37

Possible Strategy

• Understand the Performance concept of Web Applications

• Define Performance goals unambiguously

• Develop Workloads based on Business Benchmarking

• Prepare proper Test Plan and Schedule

• Use suitable Environment for Testing

• Analyze Results & use good feedback mechanism for improvement

• Ensure the Reliability

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 38

Discussions
1. Does the Technology influences the performance of the system?
2. Should I understand the architecture before working on

performance Testing?
3. Did you face any compatibility issues with systems from multi-

vendors?
4. Do you conduct performance testing with out a test plan?
5. Whether Performance testing can be done prior to the

functional testing?

20

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 39

Preparation for Performance Testing

Test Preparation

Definition Phase Design Phase Build Phase

• Benchmark Design
• Operation Profile
• Workload Design
• Tools Selection

• Test Plan
• Test Environment
• Test Scripts
• Test Schedule
• Testing Process

•Performance Requirement
Document

•Test Strategy Document

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 40

Performance Requirements
Document

• Business Related
• Understand both C/S and Web applications business plans

• Business Background
• Business Operations
• Business Objectives for the System
• Logistics of Operations
• Business Growth Projections
• Infrastructure

• Proposed System Related
• Functions of the System
• Interfacing System, If any

• Service level Agreements
• Management Conditions and Constraints

D
ef

in
iti

on
 P

ha
se

21

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 41

How to Prepare Performance
Requirement Document?

Analysis•Business Req Doc
•Customer Interactions
•Infrastructure

• Performance
Requirement
Document

D
ef

in
iti

on
 P

ha
se

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 42

Exercise I
Study the requirements of the case study given to you. From the
case study, list the following :

• What are the performance objectives of the proposed
system?
• How do you organize the performance requirements?

List them properly.

22

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 43

Build Strategy Document
• Performance Test Related

• Identifying Performance Test Objectives
• Defining Performance pass/fail criteria
• Identifying measurement criteria
• Operation Profile
• Analyzing Test approaches and selecting best one
• Responsibilities
• Automated Testing facilities

D
ef

in
iti

on
 P

ha
se

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 44

How to Build Strategy document

Strategy
Process

•Performance Req Doc
•Business Req Doc
•Customer Interactions

• Performance
Test Strategy
Document

D
ef

in
iti

on
 P

ha
se

23

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 45

Exercise II

Study the strategy document given to you. Answer the following:

1. Identify the performance objectives listed in the document

2. List the pass/fail criteria which, you think, is most critical

3. What is the scope of the performance testing?

4. List the key transactions for effective performance testing

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 46

Benchmarks: What and WhyBenchmarks: What and Why
• What is a benchmark?
• Domain specific

– No single metric possible
– The more general the benchmark, the less useful it is for anything

in particular.
– A benchmark is a distillation of the essential attributes of a

workload

• Desirable attributes
– Relevant meaningful within the target domain
– Understandable
– Good metric(s) linear, orthogonal, monotonic
– Scaleable applicable to a broad spectrum of

hardware/architecture
– Coverage does not oversimplify the typical environment
– Acceptance Vendors and Users embrace it

D
es

ig
n

Ph
a s

e

24

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 47

Benefits and LiabilitiesBenefits and Liabilities

• Good benchmarks
– Define the playing field
– Accelerate progress

• Engineers do a great job once objective is measurable and
repeatable

– Set the performance agenda
• Measure release-to-release progress
• Set goals
• Something Users/managers can understand (!)

D
es

ig
n

Ph
a s

e

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 48

Benchmark Design Issues
• A representative workload of a real life Scenario used for the

Performance Testing

• More than one benchmark is required for better Performance Results

• Consider mix of demands on the system and the frequency of

occurrence of the various demands

• Complexity depends on the Size of the Benchmark

• Select transactions with more concurrency and interacting with others

• Consider Background Noise during Benchmark design

D
es

ig
n

Ph
a s

e

25

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 49

Benchmark Standards
(Web)

TPC-W (Web) is a transactional web benchmark.

TPC-W models a controlled Internet Commerce environment

that simulates the activities of a business oriented web server.

The application portrayed by the benchmark is a Retail Store

on the Internet with a customer browse-and-order scenario.

TPC-W measures how fast an E-commerce system completes

various E-commerce-type transactions

D
es

ig
n

Ph
a s

e

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 50

TPC-W Characteristics
• The simultaneous execution of multiple transaction types that span

a breadth of complexity.
• On-line transaction execution modes.
• Databases consisting of many tables with a wide variety of sizes,

attributes, and relationship.
• Multiple on-line browser sessions.
• Secure browser interaction for confidential data.
• On-line secure payment authorization to an external server.
• Consistent web object update.
• Transaction integrity (ACID properties).
• Contention on data access and update.
• 24x7 operations requirement.

D
es

ig
n

Ph
a s

e

26

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 51

TPC-W Work Profile

• There are three workloads in the benchmark,
representing different customer environments.
– Primarily shopping (WIPS). Representing typical browsing,

searching and ordering activities of on-line shopping.

– Browsing (WIPSB). Representing browsing activities with
dynamic web page generation and searching activities.

– Web-based Ordering (WIPSO). Representing intranet and
business to business secure web activities.

D
es

ig
n

Ph
a s

e

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 52

Number of Benchmarks
• Separate benchmark is needed for each significant

and distinct work load

• A typical project employs five benchmarks:

1. Routine Business workload

2. Routine Peak demand

3. Specialized requirement

4. Top managements specialized demands

5. Projected growth based demand

D
es

ig
n

Ph
a s

e

27

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 53

Discussions

1. Discuss different possible benchmarks for the given
Banking System?

2. Design a TPC-W equivalent benchmark for the ABC
banking System

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 54

Operation Profile

• Lists the major demands on a system or likely demands
of the system actually occurring in live operations

• Provides a usage patterns of the expected system

• Requires Business Knowledge to prepare the operation profile

D
es

ig
n

Ph
a s

e

28

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 55

Characteristics of Operation
Profile

• Target Users, their demographics and number of users

• How the target users use the proposed system

• Target time of usage

• Target Locations

• Rates of utilization of set of Activities/Scenarios

D
es

ig
n

Ph
a s

e

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 56

Operational Scenarios

• Reflects a performance business goals
•Attributes

• Identification of Key Transactions
• Identification of Transaction Mixes
• Selection of Data and Size

• Small data volume
• Large data volume

• Determine number of Operational Scenarios

D
es

ig
n

Ph
a s

e

29

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 57

What is a Workload ?

• An instrument required to simulate the
real world environment

• Represents the user groups and activity types
• Needs a benchmark of typical business to

formulate a workload
• There may be several workloads for a Project

D
es

ig
n

Ph
a s

e

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 58

Characteristics of a Workload
• Selection of type of transactions

• Business Domain Specific
• Resource hungry
• Concurrency
• Interacting
• Infrastructure related

• Grouping of Transactions vs. Users group
• Weightage to each transactions
• Sequencing of transactions within a user group

D
es

ig
n

Ph
a s

e

30

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 59

Workload Planning
• Identify User Groups

• Identify Representative subset of users.

• Develop Activities/Scripts (Test cases).

• Consider whether any batch jobs need to be

started manually in the background.

• How long should run last?
• Identify the different times of day.

D
es

ig
n

Ph
a s

e

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 60

Sample Workload

D
es

ig
n

Ph
a s

e

31

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 61

Selection of Test Automation
Tool

• Depends on goals and Performance Measurements
• Cost of the tool
• Ability to use virtual databases users
• Support of database connectivity methods

(ODBC, RDO, DBLib, etc,)
• Types of protocols support

D
es

ig
n

Ph
a s

e

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 62

Discussions

1. What are the parameters that determines the accuracy
of the performance testing results?

2. Design a simple workload for the given ABC banking system

32

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 63

Performance Test Plan
• Plan Identification
• Description of the system being tested
• Performance goals of the System
• Performance Test Objectives & Success Criteria
• Test Constraints
• Performance Measurements
• Operational Profile(s)
• Test Environments
• Test Execution Process
• Test Schedule

B
ui

ld
 P

ha
s e

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 64

Plan data

• How much data?

• Which data?

• How do I generate it?

• How do I reset it (- and do we need space to store copy)?

• Do I have enough disk space on the driver machine(s)?

B
ui

ld
 P

ha
s e

33

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 65

Plan Team

• Project manager
• Real users for recording
• Scripter/Scheduler

Should be technical with the ability to change a program
• DBA should be available

Need passwords
Restore/backup

• Sys Administrator
Install products
Restore/backup

• Network Administrator

B
ui

ld
 P

ha
s e

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 66

Plan Test Environment

• Replicate the real world operating environment
as much as possible

• Check whether multiple environment is possible

• Choose appropriate configuration for the
performance testing

• Avoid shared environment as for as possible

B
ui

ld
 P

ha
s e

34

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 67

System Under Test

Hardware-Based Testing
• Many physical computers required

– One per test
• One tester required

B
ui

ld
 P

ha
s e

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 68

• At least one physical computer emulating
many users

• One tester required

Software-Based Testing

System Under Test

B
ui

ld
 P

ha
s e

35

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 69

System Under Test

Master Computer

Additional Playback Computers

Combined Hardware and Software-
Based Testing

B
ui

ld
 P

ha
s e

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 70

Typical Testing Environment(WEB)

B
ui

ld
 P

ha
s e

36

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 71

START

PREPARE TEST
PLAN

SELECT PROPER
TOOL

CREATE TEST
ENVIRONMENT

P
L
A
N
N
I
N
G N

O

N
O

N
O

YES

YES

NEEDS APPLICATION
MODIFICATION

CREATE NEW TEST
SCENARIO

SET PERFORMANCE
PARAMETERS

SET THE STRESS LEVEL

EXECUTE TEST SCENARIO

ANALYSE
PERFORMANCE RESULTS

SATISFIED? CHANGE
STRESS LEVEL

SCENARIO
EXHAUSTE

D?
EXIT

SATISFIED?

Design and
Implement

Execute
and

Analyse

Build Phase

Testing process

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 72

Test Execution Phase

• Entry/ Exit Criteria

• Elaboration Testing

• Issues in Test Schedule

• Issues in Test Execution

• Analyze results

• Address feedback mechanism

37

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 73

Entry Criteria/ Pre-requisite

• System under test must be functionally error free

• System development must be completed

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 74

Exit Criteria

• Once completed the number of runs planned

• In each run, once a specified duration reaches

• When it reaches the required number of virtual users

• When the performance measurement matrix is satisfied

38

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 75

Issues in Test Schedule
• Scripts must be ready before the schedule

• In C/S, clients must be initialized before the schedule

• Sequence the schedule with different configurations

• Ensure the Performance Test teams availability

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 76

Issues during Test Execution
• Run Performance testing more than once with different

levels of background activity(noise) to get the true picture

• Before start testing, check for following Test entry criteria

• All major business functions and features are present and working

• All major defects have been fixed and re-tested

• Test environment is ready and test it properly

• Test workloads and related tools are ready

• Proper configuration management and change control are in place

• Test Schedule be ready

39

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 77

Issues during Test Execution(contd)

• Conduct Exploratory Test
• During Execution

• Monitor performance counters
• Monitor test duration
• Avoid external interference
• Monitor the test execution by probing client

• Log the results with timings

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 78

Sample Results
(generated from Rational Test Manager)

40

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 79

Sample Results
(generated from Rational Test Manager)

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 80

Sample Results
(generated from Rational Test Manager)

41

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 81

Sample Results
(generated from Rational Test Manager)

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 82

Analysis of Results and
Reporting

• Who will be using the results

• Business managers, Marketers, Sr. management, etc,.

• Critical success factors for each category

• Representation of results to different stakeholders

• Graphs, Tables, abstracts, bottlenecks isolation, ….

• Follow guidelines for analysis

42

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 83

General Guidelines for Analysis

• Identify Resource utilization and bottlenecks with any resource

• In C/S, clients resource utilization is also important

• Identify script level problems

• script level response time, resource usage, …

• Isolate excess queue lengths at the server, if any.

• Address code level optimization at the end

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 84

Load Simulation

• Single Browser for both C/S and Web

– Mostly in C/S, single browser is targeted

• Multiple Independent Browsers

• Multiple Coordinated Browsers

43

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 85

Suggestion For Load Testing

• Identify the system components
• Describe each configuration
• Create a chart of use cases
• Develop load-testing objectives for

acceptance criteria
• Allow time for script development
• Perform proof-of-concept to see if the tool

works with the application

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 86

Performance Issues
• Poor understanding of User Perceptions

• Complexity in Developing Usage Profiles

• Difficulty in setting up the environment

• Expensive testing tools: ROI not well understood

• Performance Testing is a late activity in the life cycle

• Difficulty in selecting performance parameters

44

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 87

CONCLUSION

Functional Testing is a must before addressing
performance issues
Plan for performance testing from the beginning
Prepare a strategy and a method for performance Testing
Select suitable automation tools for Web Performance Testing
Select proper environment for Web applications
Give more importance to benchmarking and workload
Analysis of results needs experienced skill set

QW2002 Tutorial at San Francisco,
Sept 6, 2002

Subraya BM @ www.infy.com 88

Reference

• Capacity Planning and Performance Modeling
by Daniel a. Menasce etal

• The Web Testing Handbook
by Steven Splaine and Stefan p. Jaskiel

• www.softwareqatest.com
• www.tpc.org
• www.w3c.com
• www.sof.com

45

Thank you
subraya@infy.com

Please give/send your valuable feedbacks

QW2002 Performance Testing and Issues: Web Applications Tutorial 6-Sep-2002
 www.infy.com

 1

ABC BANK
Brief Business Requirements Document

Name: QW2002 Tutorial
Application: Performance Testing Automation
Author: Dr. Subraya BM(subraya@infy.com)
Date: 6-Sep-2002

QW2002 Performance Testing and Issues: Web Applications Tutorial 6-Sep-2002
 www.infy.com

 2

A Simplified Banking System

ABC Bank is a global banking organization that provides standard banking services to its
customers spread across the globe. The vision of the bank is anywhere banking any time. The
head office is located in Chicago with several hundred centres situated outside USA. The aim of
this proposed banking system is to create a paperless Bank. Both the bank employees as well as
account holders will use the proposed system through the web-based interface. However, majority
of the bank employees prefer to use the system in a Client/Server(C/S) environment. The bank
has several branches in different cities; each branch is identified by an n digit code.

Types Of Accounts:

1. The Bank Provides Current, Cash, Savings and Loan Accounts to its Customers
2. The Bank will maintain Office Accounts internally for Double Book Entry system of

Accounting
3. Inter Bank and Foreign Bank accounts will be maintained by the bank to facilitate

clearing of cheques of different banks, countries and currency.

Opening an A/C:
1. Account Number should be generated by system in the ascending order.
2. The system should record the name and address of the A/C holder. These are mandatory.
3. The minimum amount to open an A/C is $500/-.
4. Each Account Number Starts with ‘100’ and is followed by the n digit branch code
5. Each user gets a user name and password that he can use to login from web

Operating an A/C:
Deposits:
1. A deposit should be for a minimum amount of $100/-.
2. Any Amount Greater than equal to $100 is valid provided it is with in the normal range.
3. Whenever a deposit is made, the final balance should be made known to the A/C holder.
4. The account may be operated using a web interface
5. Fund Transfers, DD Request, Password Changes, Account Statements, Request for Cheque

Books etc may be obtained using web interface

Withdrawals:
1. Minimum amount of withdrawal is $100/-.
2. A/C balance should never be less than $500/-.
3. Whenever a withdrawal is made, the final balance should be made known to the A/C holder.
4. Withdrawals may be made from any of the branches or through ATM outlets as designated by

the bank
5. Using ATMS should be possible irrespective of a centralised or distributed database and the

ATMs must be immune to link failures and should be able to operate in both online and
offline modes

Loans:

1. Bank will provide loans to its account holders charging a higher rate of interest than that
given by the bank to saving and current account customers.

2. Loans that are not paid as per the schedule will attract a fine.

QW2002 Performance Testing and Issues: Web Applications Tutorial 6-Sep-2002
 www.infy.com

 3

Closing an A/C:

1. The Record will be deleted permanently on closing.
2. All Accounts that have not been operated for 10 years will be considered as dormant accounts

Other details:
1. The Account Numbers should be generated beginning with 100
2. Account number should be generated in sequence.
3. It should not be possible to modify the Account Number at any stage.
4. An enquiry option should be provided, so those users can see the Account Number, name and

balance sorted either by Account Number or by A/C holder's name.

The banking system is divided into three modules:

1. Accounts Maintenance:

This module is used to perform the operations on accounts such as opening an account,
closing of existing account, Navigation through accounts etc. Some of the characteristics of
the module are:

• The module is displayed through a form.
• When the form loaded it displays the first Account Number and it’s details.
• The 4 navigational buttons used to move across accounts.

They are…
• MoveFirst : Navigates to the first record
• MovePrevious : Navigates to the previous record
• MoveNext: Navigates to the next record
• MoveLast: Navigates to the last record.
• Insert Button allows the user to insert a new account in the Accounts table. First it will clear

all the text fields on the screen and except the Account Number text box, here new Account
Number is generated automatically by the system. The user has to fill up all the remaining
fields legibly and then presses commit to insert the record.

Validations:
• The initial deposit should be a number greater than $500/-, otherwise it will display an error

message “Invalid amount…enter number greater than $500”.
• The date should be a valid date, other wise it will display an error message “Invalid Date”.
• Delete button allows the user to delete the current record of which details are existing on the

screen. Upon selection of Delete the system display a message box “Are you sure you want to
delete?” If the user selects ‘Yes’ it will delete the record else it will undone the operation.

• Close closes the child window that is accounts operations screen.

2. Transactions Maintenance:

This module provides facilities to user to perform different transactions on accounts such as
deposits, withdrawals etc.

Validations:
• After the withdrawal transaction if current balance less than $500/- then system will prompt

the message “Balance less than $500/-“.

QW2002 Performance Testing and Issues: Web Applications Tutorial 6-Sep-2002
 www.infy.com

 4

• If the user enter any non numeric data or number less than 100 for amount then the system
will report an error message “Enter number greater than 100”.

• If the date given is not a valid date then there will be an error message says that “Invalid
Date”.

• If the user didn’t select any transaction and then click Commit the error message comes which
prompt that ‘Select type of Transaction (deposit/Withdraw)’

3. Account Enquiry Details:

This module helps to enquire the list A/C details (A/C number, A/C holder’s name, address and
balance) sorted either by Account Number or by A/C holder's name.

The user can select either sorting by Account Number or name.
• If he chooses sorting by Account Number, he has to select Account Number radio button. He

may choose a starting Account Number of 1001. In that case, details of all A/Cs whose
Account Number has the digits ‘1001’ will be displayed in the ascending order of account
number in a separate page. The user can navigate back to the enquiry screen through a link.

• Similarly, he may choose a listing of details sorted by name and then Name radio button has
to be selected. If the starting name field is populated with "Ra", system displays all the
records sorted by name in the ascending order, whose name has the characters "Ra". If the
“starting name” field is not populated, a listing of all account holders should be displayed in
the order of increasing names.

4. Transaction Enquiry Details:
This module facilitates the user to generate the reports and statements of a particular account in
the specified range of dates.

• By default the system displays the following screen with all existing Account Numbers under

combo box, so that the user has to select one Account Number and also the type of transaction
(withdraw or deposit) and the range of dates between which the transactions has committed.
After that when (s) he selects ‘Retrieve’ it will display all the transactions on specified
account of type either withdraw or deposit or both based on selection criteria of check boxes.

Validations:

• The user has to select either Deposits or Withdrawals or both. If (s) he selects neither then the
error message “Select type of Transaction (Deposit/Withdraw)” will be displayed.

• The user has to enter the start date in such a way that it should be a valid date and also

greater than accounts open date other wise the error message “Invalid date” will appear. The
same message will appear if the user selects the end date, which is greater than current date or
less than accounts open date.

QW2002 Performance Testing and Issues: Web Applications Tutorial 6-Sep-2002
 www.infy.com

 5

ABC Bank
Performance based Requirement Document

Name: QW2002 Tutorial
Application: Performance Test Automation
Author: Dr. Subraya BM(subraya@infy.com)
Date: 06-Sep-2002

QW2002 Performance Testing and Issues: Web Applications Tutorial 6-Sep-2002
 www.infy.com

 6

Performance based Requirements Document

ABC Bank

ABC Bank is a global banking organization that provides standard banking services to its
customers spread across the globe. The vision of the bank is anywhere banking any
time. The head office is located in Chicago with several hundred centers situated outside
USA. The proposed system supports both Client/Server and Web platform. A detailed
specification on business functions is available in a separate document (see business
Requirement documentation). In this document, we capture the details that are required
for performance testing in addition to the existing business requirements document.

Following Sections provides brief details on performance-based requirements necessary
for addressing the performance issues of the proposed system.

A. Business Related:

1. Business Background
To create a unique banking system through automation of all its services like customer
service, managerial operations and inter-banking transactions in a more competitive
prices.

To support this business goal, ABC Bank is in the process of building a comprehensive
new information system.

2. Business Operations
ABC Bank is organized into four main groups: a) Senior Management, b) Customer
Division, c) Middle Management d) The Information System Groups. The functions of
each group is given elsewhere and not highlighted in this document.

3. Business Objectives of the System
The overall business goals of the system are to a) grow business at the rate of 20% every
year, b) improve profitability, and c) increase customer satisfaction.
The specific business objectives for the new proposed system are as follows:

o Fulfill all requirements listed in the requirements doc
o Improve the productivity in the customer service by 30%
o Maintain the highest level of security for all accounts
o Ensure the system as performance conscious for the customer

4. Logistics of Operations
The business activities of the bank are distributed across the globe since the Sr.
management believes in anywhere banking concept. However, the major business
activities is concentrated in and around of USA with the head quarter located in Chicago.
Most of the customer oriented business is carried out through Internet which is in turn
depends on ISP providers and quality of connection to the system at the customer place.
Set of in-house operations is carried out in an C/S environment.

QW2002 Performance Testing and Issues: Web Applications Tutorial 6-Sep-2002
 www.infy.com

 7

5. User base
User base is split into two categories:

o Internal users
Most of the administrative functions are performed by internal users
(employees of the bank) in an C/S environment. Current internal users base is
around 2000, which will grow at the rate of 20% every year.

o Customers
Customers are both Account holders and prospect customers who want to start
business with the bank in due course. All customers are Web clients who will
be using the system via Internet. Current Web clients base is around 30,000
and the growth projection is given elsewhere in this document.

6. Business Growth Projections
The system must be upgradeable to support growth rates of 20% per year for the next 5
years. The growth depends on providing an Internet based banking and percentage of
changing over from traditional banking to Internet banking. The traditional banking is
carried out in C/S environment. The growth rate depends on customer satisfaction, which
is of paramount importance to the business. One of the customer satisfactions is the quick
response time for any query. The changing over from traditional banking to the Internet
banking is proposed as:

 Percentage of banking
Time frame By traditional banking By Internet banking
Current Year 90 % 10 %
2 years ahead 40 % 60 %
4 years ahead 70 % 30 %
5 years ahead 10 % 90 %

7. Infrastructure
The infrastructure proposed/available for ABC Bank is outlined below:

Network Environment:
The system will operate in a client/server network as well as supported by Web. There
will a cluster of LAN situated at different places. Some of the clusters may have their
own web server. All clusters are linked to the head quarters by a wide area network
(WAN) situated in India. The client server network will include approximately 2000
users, with one client workstation per user. A complete topology of the Network
environment is available with the IS department of the Bank.

The Backend Servers:
The system will have a centralized database servers situated at the head office. There will
a set of multiple database servers, which will be used for data base mirroring. In other

QW2002 Performance Testing and Issues: Web Applications Tutorial 6-Sep-2002
 www.infy.com

 8

words, all updates will be made concurrently to both copies of the databases, and these
updates will be periodically monitored by the database management system (DBMS).

A complete back-up copy of the database will be taken once every night and the process
will take approximately 30 minutes. During this time, the user response time may be
slow. No guarantee will be given to the user about the amount of slowness, i.e. worst-
case performance of the system. However, the managers would like to know the complete
details, which is within the scope of the performance objective.

The Web Servers:
There will a host of Web servers connected to routers, which in turn connected to the
Internet through multiple T1 lines. Each T1 line has a sufficient capacity to accommodate
required sessions using 56 kbps modems. Firewalls are provided on the Web servers,
which may slow down the overall performance.

Though the Web servers will have its own databases, it will not contain all the data
needed to answer queries or process the requests, as they need to access the data base
servers.

Software:
Standard software like Windows 2000, Oracle, Apache software are used.

B. Proposed System Related:
Based on the business process and requirements, the proposed system is viewed from two
angles: i. Business functionality and ii. Performance of the system. The business
functions are mapped to a set of use cases, which will be used to model the system. While
modeling the system, performance issues also to be considered. Following Sections
provide information on both functionality and performance issues.

8. Proposed Functions of the System
The major functions of the banking system are:

o Creation and maintenance of accounts
o Providing fast queries
o Routine banking transactions
o Faster Transactions thru ATMs
o Overall maintenance of the system

The proposed system must comply with the W3C standards. The detailed functions are
available in the business requirements document.

9. Interfacing System, If any,
ABC Banking is planning to connect with other global banking system for inter-banking
transactions.

C. Performance Test Related:

QW2002 Performance Testing and Issues: Web Applications Tutorial 6-Sep-2002
 www.infy.com

 9

In order to ensure the performance of the system, it is necessary to conduct the
performance testing in an isolated environment with automated tools. To use the
automated tools we need to define the objectives and responsibilities before starting the
performance testing. Following Sections provides brief information on requirements for
conducting performance testing.

10. Responsibilities
The main responsibilities include testing the performance of the new system for response
time, throughput, scalability and ability to handle peak loads. Immediate requirement is
to prepare high-level strategy to describe the above task.(See high level Strategy
document)

11. Performance Test Objectives

o Working out a satisfactory response time of the system under a realistic load.
Response time consistency has to be worked out in consultation with the IS
team (say 25 %). This means, if the average response time for a transaction is
expected to be 2 seconds, then 90% or more of the measured response times
should fall within the range of 1.5 and 2.5 seconds.

o Reliability of the system (checking memory leaks etc,.)
o Capability of handling of peak load
o Understanding of the systems capability to handle load beyond its planned

capacity.
o Scalability

12. Operation Profile
Main features of the system are high lighted in the business requirements document. The
frequency of utilization for each group is listed below:

User Group Features/Business Functions Frequency of Utilization Priority
 Normal Hours Peak hours
Customer Web site hits by external users
Service Main page only 2000 8000 high
Group Banking features query 1500 5000 high
 Request for new A/Cs 100 300 avg
 Deposit amount 500 1500 high
 Withdraw amount 900 1800 high

Managers Creation of new A/Cs 50 250 avg
Group Deletion of new A/Cc 10 20 low
 Routine report generation 5 08 low
 Monitoring of A/Cs 150 600 avg

Senior Ad-hoc query 0 100 high
Management Daily on-line status report 15 150 avg
Group Weekly status summary 20 200 low
 Monthly/Quarterly reports 10 50 low

QW2002 Performance Testing and Issues: Web Applications Tutorial 6-Sep-2002
 www.infy.com

 10

Note:

• Frequency of utilization is expressed in terms of transactions per hour.
• Normal load is obtained during the routine business hours of transaction observed

over a week.
• A peak hour of transaction represents the expected load during the worst-case

hour in a typical week.
• The operation profile do not include overhead and background transactions, if

any.

13. Testing Methodology
It is proposed to have two different teams: a) Functional testing team, which interacts
with the development team and conforms the correctness of business functions of the
system, b) Performance testing team, which plans and conducts the performance testing
in cooperation with the Functional testing team. Each team will use their own test plan
and strategy.

14. Automated Testing facilities
The team will use appropriate testing tools for functional and performance testing. They
will use Rational Robot for functional and Test Manager for performance testing.

15. Service level Agreements (SLA)
A separate SLA has been developed for each operational groups and the agreement has
been signed by the manager of the bank and the IS department.

16. Miscellaneous:
The Sr. Management would like to know the impact on performance if the web site
generates dynamic contents.

17. Management Conditions and Constraints
No budget constraints to achieve the goal. No deadline on the schedule. However, once
the strategy document is prepared and presented, cost and deadline will be determined.

QW2002 Performance Testing and Issues: Web Applications Tutorial 6-Sep-2002
 www.infy.com

 11

ABC Bank
High level Strategy document for Performance Testing

Name: QW2002
Application: Performance Test Automation
Author: Dr. Subraya BM(subraya@infy.com)
Date: 6-Sep-2002

QW2002 Performance Testing and Issues: Web Applications Tutorial 6-Sep-2002
 www.infy.com

 12

High level Strategy document for Performance Testing
ABC Bank

This document provides high-level strategies for the smooth conduction of performance
testing of the proposed banking system before the deployment. The exhaustive list will
not be presented to the senior management, but it has been prepared as a necessary
document before taking their approval to proceed with the project.

1. Identifying the Performance Testing Objectives
The primary goal of this system is to provide adequate information to the senior
managers about the likelihood that the system will perform adequately in actual
operation. This includes information about the capability of the system to handle, a)
typical daily business workloads, b) daily, weekly, and monthly periods of peak demand,
c) specialized needs such as the need to generate volumes of inter banking transactions,
documents transfer, etc, d) adhoc demands like bursting loads during an odd day, e)
likely future growth over the next 5 years.

Main questions that typically arises are:

• Is it the response time is acceptable when the system is operating under a realistic
load? (Acceptable response time will be elaborated in the SLA)

• Is the system capable of handling peak load?
• Does the system operate correctly when accessed simultaneously by multiple

users? (Check problems such as business functions, data base optimization,
resource contention and transaction priorities)

• Whether the system is Scalable?
• Does the system provide the consistency in performance and reliability?
• Is the entire system tuned optimally?
• Does the system degrade gracefully or fail abruptly when the load is pushed

beyond its limit?

2. Defining Performance Pass/Fail Criteria
To determine the success of the performance testing activity, it is of paramount
importance to determine pass/fail criteria for each of the key performance goals. We need
to define what constitutes passing the goal and what constitutes falling short of achieving
it. The pass/fail criteria should be unambiguous so that it is measurable in absolute terms.
Otherwise the clients may challenge the pass/fail criteria later.

3. Identifying the Measurement Criteria
Once the performance objectives and pass/fail criteria for each of them is successfully
established, then we can start determining how each will be measured. Performance must
be measured in absolute terms so that it can be easily compared with the pass/fail criteria.
In order to establish proper measurements, it may be necessary to fine-tune or re-examine
the goal as well as pass/fail criteria. An example might be instead of providing overall
response time for an event, it may be required to determine the split response times
among various hardware’s devices that associated with the execution of the event.

QW2002 Performance Testing and Issues: Web Applications Tutorial 6-Sep-2002
 www.infy.com

 13

4. Stakeholders
Expectations on performance among many groups with in the organization is different
and difficult satisfy all. For example, senior management may expect the results at
abstract level whereas middle management wants more microscopic level details.
Therefore identifying the stakeholders is an important activity. Let us assume for the
ABC banking as:

• Senior managers of ABC Bank are the major stakeholders.
• Customer Service Group needs to have sufficient confidence that the system

will be able to support the workload of their department. Is it possible to
satisfy the productivity goal (if any) as desired by the Sr management?

• The IS group of the Bank needs information about the levels of compliance
with the SLAs which are likely to be achievable in live system operation.

• The clients expect the system must be performance conscious and robust one.

5. Project Scope
The scope of performance testing will include load, stress, spike and endurance testing in
C/S and Web environment. The performance testing team must also analyse the results
and suggest solutions to bottlenecks (if any) in fulfilling the SLA.

Note: Functional testing and related problems will not be part of the scope. It is assumed
that the system is functionally correct before handing over to the performance test team.
(Activities, which are outside the scope of the performance testing, must be elaborated in-
detail).

6. Identifying the Key transactions
This activity is aimed at gaining more in-depth understanding of the system and how it is
expected to be used in real-world operations. This is another key area that is critical to the
success of C/S and Web applications. Identify the applications real life use and capture
this information in operational scenarios. There may be different sets of customers, each
with their own distinct operational scenarios. Once the operational scenarios have been
clearly identified, then we can determine the key transactions or the mixture of
transactions that are being generated by each operational scenario. This activity helps in
understanding the technical details of the product’s design when each operational
scenario is executed, such as objects being invoked, interaction with outside object,
calling ODBC/SQL drivers etc. These operational scenarios represent business
transactions of some kind, not necessarily SQL transactions being processed on the
Server’s database.

It is essential to identify the proper operational scenarios that it generates the correct
percentage of transactions and the correct mixture for each operational scenario. For
example, the baseline for a performance goal on ABC banking system could be 10
concurrent connections doing simultaneous database synchronization, each with unique
object instances, broken down as follows:

QW2002 Performance Testing and Issues: Web Applications Tutorial 6-Sep-2002
 www.infy.com

 14

• 3 clients creating new customer accounts (30% of the transaction mix)
• 4 clients creating new deposits incident objects (40% of the transaction mix)
• 3 clients creating new debit incident objects (30% of the transaction mix)

If the next performance measurement is scaling from 10 to 20 concurrent connections, the
new test cases would reflect:

• 6 clients creating new customer accounts (30% of the transaction mix)
• 8 clients creating new deposits incident objects (40% of the transaction mix)
• 6 clients creating new debit incident objects (30% of the transaction mix)

This must be pattern for any number of concurrent users for the given key transactions
and transaction mix.

7. System Acceptance Criteria
The Service Level Agreement (SLA) has to be met in all respect. Also justify that the
SLAs can be met in actual live operation.

8. Early Component-Level Performance Testing
Any component (third party developed or in-house built) is used in the system will be
tested early before the actual performance testing of the system begins.

9. Performance Measurements
While testing, it is proposed to collect the following performance measurement data to
get the complete picture:

• Response times of transactions as per the workloads defined.
• Consistency of responses
• Throughput (measured in transactions per second)
• Resource utilization during testing

o Server and client processor utilization
o Memory utilization (RAM and Disks)
o Network utilization (LAN and T1 lines)
o Thread utilization (the number of concurrent users of critical hardware and

software components).
• Availability: ability to access the system resources such as databases, printers and

the Internet, while the system is running.
• Bottleneck related

o High resource consumption by each software and hardware components
during the testing

o Network collision rates
o Page-in page-out rates
o Number of hits blocked (blocking the web site visitors)
o Number of threads blocked
o Buffer and queue lengths overflows

QW2002 Performance Testing and Issues: Web Applications Tutorial 6-Sep-2002
 www.infy.com

 15

10. Test Load – Volume and Mix
The load used for measuring the performance is based on:

• Typically daily business workloads,
• Daily peak demand,
• Weekly and monthly peak demand,
• Adhoc demands, if any
• Future growth demand over the next 5 years
• Quarterly, half yearly and yearly demands
• Spike test demand

11. Test Environment
Real environment is ideal to conduct load testing but difficult to have it. In such
circumstances, the better option is to have the subset of the real environment. In case of
C/S applications, following points to be addressed before finalizing the environment:

• Generic Vs Specific equipments: Some application may not work with all
machines and may require specific equipments.

• Network Communication protocols and Network Operating Systems: Some of the
automation tools may not work with all protocols and NOS.

• Server Operating system housing the RDBMS: Incompatibilities with certain
automation tools or requires a OS (like Linux, Unix, NT) specific tool.

• Specific Browser compatibility
• Determine how many physical client machines are required to simulate virtual

clients.

12. Selection of Proper Test Automation Tool
The main objective of this activity is to determine a better automation tool for
performance testing. Since the cost of any performance automation tool is high, more
attention must be given before finalizing the tool. Following points helps during the
selection process:

• Appropriate tool must be selected based on performance goals. The tool must
support all measurements that have been envisaged.

• Selected tool must be cost effective.
• The tool must have ability to use virtual databases users. Most significant of this

is the database connectivity method or methods, such as ODBC or other RDBMS
specific methods like RDO, DBLib, ADO, OLA DB for MS SQL Server.

13. Test Data Sources
The main database will be updated with real environment database. The test scripts
captured in functional testing will be modified and used for performance testing. A test
data generator will be used to create test data wherever it is necessary.

QW2002 Performance Testing and Issues: Web Applications Tutorial 6-Sep-2002
 www.infy.com

 16

14. User Think Time
This is the time that a person takes to respond to a system, which can have a significant
impact on its performance.

15. Stress and Duration Testing
After the load testing, a final stress and duration test will be executed. A proper workload
will be selected and executed for 24 hours. Response time, throughput and resource
utilization will be measured continually during testing.

16. Project activities and Schedule
A detailed schedule will be prepared in consultation with the IS department. Approximate
duration for the entire test is approximately 4 weeks.

17. Project Risks
The major risks identified in this project are:

• Non-availability of the proper testing tools
• Skill set required for testing and analyzing results
• Cost involved in setting up of the testing environment
• Untimely submission of the final product for the performance testing
• Non-availability of database network administrators.

18. Conclusion
Since Senior management is not interested in microscopic details of the strategy, only
brief details has been highlighted. A detailed comprehensive document based on this
report and feedback from the management, may have to be prepared.

Key Points

Many bugs are not fixed because they weren't well enough reported
Here are some ideas for making bugs easier to reproduce, or simpler to describe
Here are some ideas for gaining a better understanding of the severity of a bug.

About the Author

Cem Kaner is Professor of Computer Sciences at the Florida Institute of Technology. Prior to joining Florida
Tech, Kaner worked in Silicon Valley for 17 years, doing and managing programming, user interface design,
testing, and user documentation. He is the senior author (with Jack Falk and Hung Quoc Nguyen) of
TESTING COMPUTER SOFTWARE (2nd Edition) and (with David Pels) of BAD SOFTWARE: WHAT TO
DO WHEN SOFTWARE FAILS.

Through his consulting firm, KANER.COM, he teaches courses on black box software testing and consults
to software publishers on software testing, documentation, and development management. Kaner is also the
co-founder and co-host of the Los Altos Workshop on Software Testing, the Software Test Managers'
RoundTable, the Workshop on Heuristic & Exploratory Techniques, and the Florida Workshops on Model-
Based Testing.

Kaner is also attorney whose practice is focused on the law of software quality. He is active (as an advocate
for customers, authors, and small development shops) in several legislative drafting efforts involving
software licensing, software quality regulation, and electronic commerce. Kaner holds a B.A. in Arts &
Sciences (Math, Philosophy), a Ph.D. in Experimental Psychology (Human Perception & Performance:
Psychophysics), and a J.D. (law degree). He is Certified in Quality Engineering by the American Society for
Quality.

QW2002 Paper W4

Dr. Cem Kaner
(Florida Institute of Technology)

Bug Advocacy: Effective Bug Reporting

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 1

Bug Advocacy

Cem Kaner J.D., Ph.D., ASQ-CQE

Florida Institute of Technology

Quality Week 2002

How to

Win Friends,

and

SToMp BUGs.
(Not necessarily in that order.)

influence programmers

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 2

Bug Advocacy?

Have you ever reported a bug that was dismissed
as unrealistic or unlikely to be encountered by
any normal person?
Have you ever reported a bug that was closed as
irreproducible even though you were sure it
would show up again in the field?
Have you ever worked on a recall or a crisis dot-
release triggered by a bug that you found, but
that wasn’t fixed, before release?
In mass-market software, most of the bugs
customers call to complain about were
discovered during testing but not fixed. Why
weren’t they fixed?

So can you do anything to improve your
company’s handling of bug reports?

YES

Think of a bug report as a tool that
you use to sell the company on the
idea of spending time and energy
to fix a bug.

Bug Advocacy?

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 3

1. The point of testing is to find bugs.
2. Bug reports are your primary work product. This

is what people outside of the testing group will most notice
and most remember of your work.

3. The best tester isn’t the one who finds the most bugs or
who embarrasses the most programmers. The best tester
is the one who gets the most bugs fixed.

4. Programmers operate under time constraints and competing
priorities. For example, outside of the 12-hour workday, some
naughty programmers prefer sleeping to fixing bugs.

Note: When I say “the best tester is the one who gets the most bugs fixed,”
I’m not encouraging bug counting metrics. These are almost always
counterproductive. I’m suggesting that the effective tester looks to the effect
of the bug report, and tries to write in a way that gives each bug its best
chance of being fixed. Also, a bug report is successful if it enables an
informed business decision. Sometimes, the best decision is to not fix the
bug. The excellent bug report provides sufficient data for a good decision.

Bug Advocacy?

Selling Bugs
Time is in short supply. If you want to convince the
programmer to spend his time fixing your bug, you
may have to sell him on it.

(Your bug? How can it be your bug? The
programmer made it, not you, right? It’s the
programmer’s bug. Well, yes, but you found it so
now it’s yours too.)

Sales revolves around two fundamental objectives:
Motivate the buyer (Make him WANT to fix the bug.)
Overcome objections (Get past his excuses and
reasons for not fixing the bug.)

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 4

Motivating the Bug Fixer
Some things will often make programmers want to fix the bug:

It looks really bad.
It looks like an interesting puzzle and piques the
programmer’s curiosity.
It will affect lots of people.
Getting to it is trivially easy.
It has embarrassed the company, or a bug like it
embarrassed a competitor.
One of its cousins embarrassed the company or a
competitor.
Management (that is, someone with influence) has said
that they really want it fixed.
You’ve said that you want the bug fixed, and the
programmer likes you, trusts your judgment, is
susceptible to flattery from you, owes you a favor or
accepted bribes from you.

Overcoming Objections
These make programmers resist spending time on a bug:

The programmer can’t replicate the defect.
Strange and complex set of steps required to induce the
failure.
Not enough information to know what steps are
required, and it will take a lot of work to figure them out.
The programmer doesn’t understand the report.
Unrealistic (e.g. “corner case”)
It will take a lot of work to fix the defect.
A fix will introduce too much risk into the code.
No perceived customer impact
Unimportant (no one will care if this is wrong: minor
error or unused feature.)
That’s not a bug, it’s a feature.
Management doesn’t care about bugs like this.
The programmer doesn’t like / trust you (or the
customer who is complaining about the bug).

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 5

Bug Advocacy

Motivating Bug Fixes

By Better Researching

The Failure Conditions

Motivating Bug Fixes: Looking at the Failure
Some vocabulary

An error (or fault) is a design flaw or a deviation from a
desired or intended state.
An error won’t yield a failure without the conditions that
trigger it. Example, if the program yields 2+2=5 on the
10th time you use it, you won’t see the error before or
after the 10th use.
The failure is the program’s actual incorrect or missing
behavior under the error-triggering conditions.
A symptom might be a characteristic of a failure that
helps you recognize that the program has failed.
Defect is frequently used to refer to the failure or to the
underlying error.

• Nancy Leveson (Safeware) draws useful distinctions
between errors, hazards, conditions, and failures.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 6

Motivating Bug Fixes: Looking at the Failure
VOCABULARY EXAMPLE

Here’s a defective program

– INPUT A
– INPUT B
– PRINT A/B

What is the fault?
What is the critical condition?
What will we see as the failure?

Motivating Bug Fixes
When you run a test and find a failure, you’re
looking at a symptom, not at the underlying fault.
You may or may not have found the best example
of a failure that can be caused by the underlying
fault.
Therefore you should do some follow-up work to
try to prove that a defect:

is more serious than it first appears.
is more general than it first appears.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 7

Motivating Bug Fixes: Make it More Serious
LOOK FOR FOLLOW-UP ERRORS

When you find a coding error, you have the program in a
state that the programmer did not intend and probably did
not expect. There might also be data with supposedly
impossible values.
The program is now in a vulnerable state. Keep testing it
and you might find that the real impact of the underlying
fault is a much worse failure, such as a system crash or
corrupted data.
I do three types of follow-up testing:

Vary my behavior (change the conditions by changing
what I do)
Vary the options and settings of the program (change
the conditions by changing something about the
program under test).
Vary the software and hardware environment.

Follow-Up Testing: Varying Your Behavior
Keep using the program after you see the problem.
Bring it to the failure case again (and again). If the program fails when
you do X, then do X many times. Is there a cumulative impact?
Try things that are related to the task that failed. For example, if the
program unexpectedly but slightly scrolls the display when you add
two numbers, try tests that affect adding or that affect the numbers.
Do X, see the scroll. Do Y then do X, see the scroll. Do Z, then do X,
see the scroll, etc. (If the scrolling gets worse or better in one of these
tests, follow that up, you’re getting useful information for debugging.)
Try things that are related to the failure. If the failure is unexpected
scrolling after adding, try scrolling first, then adding. Try repainting
the screen, then adding. Try resizing the display of the numbers, then
adding.
Try entering the numbers more quickly or changing the speed of your
activity in some other way.
And try the usual exploratory testing techniques. So, for example, you
might try some interference tests. Stop the program or pause it or
swap it just as the program is failing. Or try it while the program is
doing a background save. Does that cause data loss corruption along
with this failure?

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 8

Follow-Up: Vary Options and Settings
In this case, the steps to achieve the failure are
taken as given. Try to reproduce the bug when the
program is in a different state:

Use a different database.
Change the values of persistent variables.
Change how the program uses memory.
Change anything that looks like it might be
relevant that allows you to change as an option.

For example, suppose the program scrolls
unexpectedly when you add two numbers. Maybe
you can change the size of the program window, or
the precision (or displayed number of digits) of the
numbers, or background the activity of the spell
checker.

Follow-Up: Vary the Configuration
A bug might show a more serious failure if you run the program with
less memory, a higher resolution printer, more (or fewer) device
interrupts coming in etc.

If there is anything involving timing, use a really slow (or very fast)
computer, link, modem or printer, etc..
If there is a video problem, try other resolutions on the video card.
Try displaying MUCH more (less) complex images.

Note that we are not:
checking standard configurations
asking how broad the circumstances that produces the bug.

What we’re asking is whether there is a particular configuration that will
show the bug more spectacularly.
Returning to the example (unexpected scrolling when you add two
numbers), try things like:

Different video resolutions
Different mouse settings if you have a wheel mouse that does semi-
automated scrolling
An NTSC (television) signal output instead of a traditional (XGA or
SVGA, etc.) monitor output.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 9

Follow-up: Is This Bug New to This Version?
In many projects, an old bug (from a previous shipping release
of the program) might not be taken very seriously if there
weren’t lots of customer complaints.

(If you know it’s an old bug, check its complaint history.)
The bug will be taken more seriously if it is new.
You can argue that it should be treated as new if you
can find a new variation or a new symptom that didn’t
exist in the previous release. What you are showing is
that the new version’s code interacts with this error in
new ways. That’s a new problem.
This type of follow-up testing is especially important
during a maintenance release that is just getting rid of a
few bugs. Bugs won’t be fixed unless they were (a)
scheduled to be fixed because they are critical or (b)
new side effects of the new bug fixing code.

Motivating the Bug Fix: Show it is More
General

LOOK FOR CONFIGURATION DEPENDENCE

Bugs that don’t fail on the programmer’s machine
are much less credible (to that programmer). If
they are configuration dependent, the report will
be much more credible if it identifies the
configuration dependence directly (and so the
programmer starts out with the expectation that it
won’t fail on all machines.)

Question: How many programmers does it take to
change a light bulb?

Answer: What’s the problem? The bulb at my desk works fine!

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 10

LOOK FOR CONFIGURATION DEPENDENCE
In the ideal case (standard in many companies), you test on 2 machines

Do your main testing on Machine 1. Maybe this is your
powerhouse: latest processor, newest updates to the operating
system, fancy printer, video card, USB devices, huge hard disk,
lots of RAM, cable modem, etc.
When you find a defect, use Machine 1 as your bug reporting
machine and replicate on Machine 2. Machine 2 is totally different.
Different processor, different keyboard and keyboard driver,
different video, barely enough RAM, slow, small hard drive, dial-up
connection with a link that makes turtles look fast.
Some people do their main testing on the turtle and use the power
machine for replication.
Write the steps, one by one, on the bug form at Machine 1. As you
write them, try them on Machine 2. If you get the same failure,
you’ve checked your bug report while you wrote it. (A valuable
thing to do.)
If you don’t get the same failure, you have a configuration
dependent bug. Time to do troubleshooting. But at least you know
that you have to.

AS A MATTER OF GENERAL GOOD PRACTICE, IT PAYS TO
REPLICATE EVERY BUG ON A SECOND MACHINE.

Motivating bug fixes: Show it’s more general
UNCORNER YOUR CORNER CASES
We test at extreme values because these are the
most likely places to show a defect. But once we
find the defect, we don’t have to stick with
extreme value tests.

Try mainstream values. These are easy settings
that should pose no problem to the program. Do
you replicate the bug? If yes, write it up, referring
primarily to these mainstream settings. This will be
a very credible bug report.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 11

Motivating bug fixes: Show it’s more general
UNCORNER YOUR CORNER CASES

If the mainstream values don’t yield failure, but the
extremes do, then do some troubleshooting around the
extremes.

Is the bug tied to a single setting (a true corner case)?
Or is there a small range of cases? What is it?
In your report, identify the narrow range that yields
failures. The range might be so narrow that the bug gets
deferred. That might be the right decision. In some
companies, the product has several hundred open bugs a
few weeks before shipping. They have to decide which
300 to fix (the rest will be deferred). Your reports help the
company choose the right 300 bugs to fix, and help
people size the risks associated with the remaining ones.

Bug Advocacy

Overcoming

OBJECTIONS
By Better Researching
The Failure Conditions

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 12

Overcoming Objections: Analyze the Failure
Things that will make programmers resist
spending their time on the bug:

The programmer can’t replicate
the defect.
Strange and complex set of steps required to
induce the failure.
Not enough information to know what steps are
required, and it will take a lot of work to figure
them out.
The programmer doesn’t understand the report.
Unrealistic (e.g. “corner case”)
It’s a feature.

Objection, objection: Non-reproducible errors
Always report non-reproducible errors. If you report them well, programmers
can often figure out the underlying problem.
To help them, you must describe the failure as precisely as possible. If you
can identify a display or a message well enough, the programmer can often
identify a specific point in the code that the failure had to pass through.

When you realize that you can’t reproduce the bug, write down
everything you can remember. Do it now, before you forget even
more. As you write, ask yourself whether you’re sure that you did
this step (or saw this thing) exactly as you are describing it. If not,
say so. Draw these distinctions right away. The longer you wait, the
more you’ll forget.
Maybe the failure was a delayed reaction to something you did
before starting this test or series of tests. Before you forget, note
the tasks you did before running this test.
Check the bug tracking system. Are there similar failures? Maybe
you can find a pattern.
Find ways to affect timing of your program or of your devices, Slow
down, speed up.
Talk to the programmer and/or read the code.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 13

Non-Reproducible Errors
The fact that a bug is not reproducible is data. The program is
telling you that you have a hole in your logic. You are not
entertaining certain relevant conditions. Why not?
See Watts Humphrey, Personal Software Process, for
recommendations to programmers of a system for discovering and
then eliminating characteristic errors from their code. A non-
reproducible bug is a tester’s error, just like a design bug is a
programmer’s error. It’s valuable to develop a system for
discovering your blind spots. To improve over time, keep track of
the bugs you’re missing and what conditions you are not attending
to (or find too hard to manipulate).
The following pages give a list of some conditions commonly
ignored or missed by testers. Your personal list will be different in
some ways, but maybe this is a good start. When you run into a
irreproducible defect look at this list and ask whether any of these
conditions could be the critical one. If it could, vary your tests on
that basis and you might reproduce the failure.

--
(Note: Watts Humphrey suggested to me the idea of keeping a list
of commonly missed conditions. It has been a tremendously
valuable insight.)

Non-Reproducible Errors:
Examples of Conditions Often Missed

Some problems have delayed effects:
a memory leak might not show up until after
you cut and paste 20 times.
stack corruption might not turn into a stack
overflow until you do the same task many
times.
a wild pointer might not have an easily
observable effect until hours after it was mis-
set.

If you suspect that you have time-delayed failures, use
tools such as videotape, capture programs, debuggers,
debug-loggers, or memory meters to record a long series of
events over time.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 14

Non-Reproducible Errors:
Examples of Conditions Often Missed

I highlighted the first three in lecture because so many
people have trouble with time-delayed bugs. Until you think
backwards in time and ask how you could find a defect that
has a delayed reaction effect, you won’t be able to easily
recreate these problems.
The following pages give additional examples. There are
plenty of other conditions that are relevant in your
environment. Start with these but add others as you learn of
them. How do you learn? Sometimes, someone will fix a
bug that you reported as non-reproducible. Call the
programmer, ask him how to reproduce it, what are the
critical steps that you have to take? You need to know this
anyway, so that you can confirm that a bug fix actually
worked.

Non-Reproducible Errors:
Examples of Conditions Often Missed

The bug depends on the value of a hidden input variable. (Bob
Stahl teaches this well.) In any test, there are the variables that we
think are relevant and then there is everything else. If the data that
you think are relevant don’t help you reproduce the bug, ask what
other variables were set, and what their values were, in the course
of running or preparing this test.
Some conditions are hidden and others are invisible. You cannot
manipulate them and so it is harder to recognize that they’re
present. You might have to talk with the programmer about what
state variables or flags get set in the course of using a particular
feature.
Some conditions are catalysts. They make failures more likely to
be seen. Example: low memory for a leak; slow machine for a
race. But sometimes catalysts are more subtle, such as use of one
feature that has a subtle interaction with another.
Some bugs are predicated on corrupted data. They don’t appear
unless there are impossible configuration settings in the config
files or impossible values in the database. What could you have
done earlier today to corrupt this data?

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 15

Non-Reproducible Errors:
Examples of Conditions Often Missed

The bug might appear only at a specific time of day or day of the
month or year. Look for week-end, month-end, quarter-end and
year-end bugs, for example.
Programs have various degrees of data coupling. When two
modules use the same variable, oddness can happen in the
second module after the variable is changed by the first. (Books
on structured design, such as Yourdon/Constantine often analyze
different types of coupling in programs and discuss strengths and
vulnerabilities that these can create.) In some programs,
interrupts share data with main routines in ways that cause bugs
that will only show up after a specific interrupt.
Special cases appear in the code because of time or space
optimizations or because the underlying algorithm for a function
depends on the specific values fed to the function (talk to your
programmer).
The bug depends on you doing related tasks in a specific order.

Non-Reproducible Errors:
Examples of Conditions Often Missed

The bug is caused by a race condition or other time-
dependent event, such as:

An interrupt was received at an unexpected time.
The program received a message from another device or
system at an inappropriate time (e.g. after a time-out.)
Data was received or changed at an unexpected time.

The bug is caused by an error in error-handling. You have
to generate a previous error message or bug to set up the
program for this one.
Time-outs trigger a special class of multiprocessing error
handling failures. These used to be mainly of interest to
real-time applications, but they come up in client/server
work and are very pesky.
Process A sends a message to Process B and expects a
response. B fails to respond. What should A do? What if B
responds later?

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 16

Non-Reproducible Errors:
Examples of Conditions Often Missed

Another inter-process error handling failure -- Process A
sends a message to B and expects a response. B sends a
response to a different message, or a new message of its
own. What does A do?
You’re being careful in your attempt to reproduce the bug,
and you’re typing too slowly to recreate it.
The program might be showing an initial state bug, such as:

The bug appears only the first time after you install the
program (so it happens once on every machine.)
The bug appears once after you load the program but
won’t appear again until you exit and reload the
program.

– (See Testing Computer Software’s Appendix’s discussion of
initial state bugs.)

The program may depend on one version of a DLL. A
different program loads a different version of the same DLL
into memory. Depending on which program is run first, the
bug appears or doesn’t.

Non-Reproducible Errors:
Examples of Conditions Often Missed

The problem depends on a file that you think you’ve thrown
away, but it’s actually still in the Trash (where the system
can still find it).
A program was incompletely deleted, or one of the current
program’s files was accidentally deleted when that other
program was deleted. (Now that you’ve reloaded the
program, the problem is gone.)
The program was installed by being copied from a network
drive, and the drive settings were inappropriate or some
files were missing. (This is an invalid installation, but it
happens on many customer sites.)
The bug depends on co-resident software, such as a virus
checker or some other process, running in the background.
Some programs run in the background to intercept
foreground programs’ failures. These may sometimes
trigger failures (make errors appear more quickly).

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 17

Non-Reproducible Errors:
Examples of Conditions Often Missed

You forgot some of the details of the test you ran, including
the critical one(s) or you ran an automated test that lets you
see that a crash occurred but doesn’t tell you what
happened.
The bug depends on a crash or exit of an associated
process.
The program might appear only under a peak load, and be
hard to reproduce because you can’t bring the heavily
loaded machine under debug control (perhaps it’s a
customer’s system).
On a multi-tasking or multi-user system, look for spikes in
background activity.
The bug occurred because a device that it was attempting
to write to or read from was busy or unavailable.
It might be caused by keyboard keybounce or by other
hardware noise.

Non-Reproducible Errors:
Examples of Conditions Often Missed

Code written for a cooperative multitasking system can be
thoroughly confused, sometimes, when running on a
preemptive multitasking system. (In the cooperative case,
the foreground task surrenders control when it is ready. In
the preemptive case, the operating system allocates time
slices to processes. Control switches automatically when
the foreground task has used up its time. The application is
suspended until its next time slice. This switch occurs at an
arbitrary point in the application’s code, and that can cause
failures.
The bug occurs only the first time you run the program or
the first time you do a task after booting the program. To
recreate the bug, you might have to reinstall the program. If
the program doesn’t uninstall cleanly, you might have to
install on a fresh machine (or restore a copy of your system
taken before you installed this software) before you can see
the problem.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 18

Non-Reproducible Errors:
Examples of Conditions Often Missed

The bug is specific to your machine’s hardware and system
software configuration. (This common problem is hard to
track down later, after you’ve changed something on your
machine. That’s why good reporting practice involves
replicating the bug on a second configuration.)
The bug was a side-effect of a hardware failure. This is
rarely the problem, but sometimes it is. A flaky power
supply creates irreproducible failures, for example. Another
example: One prototype system had a high rate of
irreproducible firmware failures. Eventually, these were
traced to a problem in the building’s air conditioning. The
test lab wasn’t being cooled, no fan was blowing on the unit
under test, and several of the prototype boards in the
machine ran very hot. (Later versions would run cooler, but
these were early prototypes.) The machine was failing at
high temperatures.
Elves tinkered with your machine when you weren’t looking.
There are several other ideas (focused on web testing) at
http://www.logigear.com/whats_new.html#article

Putting Bugs in the Dumpster
Problem:

Non-reproducible bugs burn a huge amount of programmer troubleshooting
time, then get closed (usually abandoned). Until they’re closed, they show up
in open-bug statistics. In companies that manage more by bug numbers than
by good sense, there is tremendous pressure to close irreproducible bugs
quickly.

The Dumpster:
A resolution code that puts the bug into an ignored storage place. The bug
shows up as resolved (or is just never counted) in the bug statistics, but it is
not closed. It is in a holding pattern.
Assign a non-reproducible bug to the dumpster whenever you (testers and
programmers) spend enough time on it that you don’t think that more work
on the bug will be fruitful at this time.

Dumpster Diving:
Every week or two, (testers and/or programmers) go through the dumpster
bugs looking for similar failures. At some point, you’ll find a collection of
several similar reports. If you (or the programmer) think there are enough
variations in the reports to provide useful hints on how to repro the bug,
spend time on the collection. If you (or the programmer) can repro the bugs,
reopen them with the extra info (status is now open, resolution is pending)
Near the end of the project, do a final review of bugs in the dumpster. These
will either close non-repro or be put through one last scrutiny

(This is an unusual practical suggestion, but it has worked for clients of mine.)

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 19

Overcoming Objections: Analyze the Failure
Things that will make programmers resist spending their
time on the bug:

The programmer can’t replicate the defect.

Strange and complex set of steps
required to induce the failure.
Not enough information to know what
steps are required, and it will take a lot
of work to figure them out.
The programmer doesn’t understand
the report.
Unrealistic (e.g. “corner case”)
It’s a feature!

Bug Advocacy

Writing the Bug Report

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 20

Reporting Errors
As soon as you run into a problem in the software, fill out a
Problem Report form.
In the well written report, you:

Explain how to reproduce the problem.
Analyze the error so you can describe it in a minimum
number of steps.
Include all the steps.
Make the report easy to understand.
Keep your tone neutral and non-antagonistic.
Keep it simple: one bug per report.
If a sample test file is essential to reproducing a
problem, reference it and attach the test file.
To the extent that you have time, describe the
dimensions of the bug and characterize it. Describe
what events are and are not relevant to the bug. And
what the results are (any characteristics of the failure)
and how they varied across tests.

The Problem Report Form
A typical form includes many of the following fields

Problem report number: must be unique
Reported by: original reporter’s name. Some forms add an
editor’s name.
Date reported: date of initial report
Program (or component) name: the visible item under test
Release number: like Release 2.0
Version (build) identifier: like version C or version
20000802a
Configuration(s): h/w and s/w configs under which the bug
was found and replicated
Report type: e.g. coding error, design issue, documentation
mismatch, suggestion, query
Can reproduce: yes / no / sometimes / unknown. (Unknown
can arise, for example, when the repro configuration is at a
customer site and not available to the lab.)

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 21

The Problem Report Form
A typical form includes many of the following fields

Severity: assigned by tester. Some variation on small /
medium / large
Priority: assigned by programmer/project manager
Customer impact: often left blank. When used, typically
filled in by tech support or someone else predicting actual
customer reaction (such as support cost or sales impact)
Problem summary: 1-line summary of the problem
Key words: use these for searching later, anyone can add
to key words at any time
Problem description and how to reproduce it: step by step
repro description
Suggested fix: leave it blank unless you have something
useful to say
Assigned to: typically used by project manager to identify
who has responsibility for researching/fixing the problem

The Problem Report Form
A typical form includes many of the following fields

Status: Tester fills this in. Open / closed / dumpster—see prev
slide on dumpster.
Resolution: The project manager owns this field. Common
resolutions include:

Pending: the bug is still being worked on.
Fixed: the programmer says it’s fixed. Now you should check it.
Cannot reproduce: The programmer can’t make the failure happen.
You must add details, reset the resolution to Pending, and notify the
programmer.
Deferred: It’s a bug, but we’ll fix it later.
As Designed: The program works as it’s supposed to.
Need Info: The programmer needs more info from you. She has
probably asked a question in the comments.
Duplicate: This is just a repeat of another bug report (XREF it on this
report.) Duplicates should not close until the duplicated bug closes.
Withdrawn: The tester who reported this bug is withdrawing the
report.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 22

The Problem Report Form
A typical form includes many of the following fields

Resolution version: build identifier
Resolved by: programmer, project manager, tester (if
withdrawn by tester), etc.
Resolution tested by: originating tester, or a tester if
originator was a non-tester
Change history: datestamped list of all changes to the record,
including name and fields changed.
Comments: free-form, arbitrarily long field, typically accepts
comments from anyone on the project. Testers programmers,
tech support (in some companies) and others have an
ongoing discussion of repro conditions, etc., until the bug is
resolved. Closing comments (why a deferral is OK, or how it
was fixed for example) go here.

This field is especially valuable for recording progress and
difficulties with difficult or politically charged bugs.
Write carefully. Just like e-mail and usenet postings, it’s easy to
read a joke or a remark as a flame. Never flame.

The Problem Report Form
The best discussion in print of bug reporting and bug
tracking system design is probably still the one in my book,
Testing Computer Software, chapters 5 & 6. (Not because
it’s so wonderful but because not enough good stuff has
been written since. For more, see Rex Black’s Managing the
Testing Process.)
Brian Marick has captured some useful material at his site,
www.testingcraft.com. (You should get to know this site,
and ideally, contribute to it. This is a collection point for
examples.)
Hung Quoc Nguyen (who co-authored TCS 2.0 and is
working with us on 3.0) published TrackGear, a web based
bug tracking system that has a lot of thought behind it. You
can get a 30-day free eval.
The Testing Tools FAQ lists other bug tracking software
that you can get eval copies. The FAQ is linked from the
main comp.software.testing FAQ at
http://www.rstcorp.com/resources/hosted.html

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 23

Important Parts of the Report: Problem Summary
This one-line description of the problem is the most
important part of the report.

The project manager will use it in when reviewing the list
of bugs that haven’t been fixed.
Executives will read it when reviewing the list of bugs
that won’t be fixed. They might only spend additional
time on bugs with “interesting” summaries.

The ideal summary gives the reader enough information to
help her decide whether to ask for more information. It
should include:

A brief description that is specific enough that the
reader can visualize the failure.
A brief indication of the limits or dependencies of the
bug (how narrow or broad are the circumstances
involved in this bug)?
Some other indication of the severity (not a rating but
helping the reader envision the consequences of the
bug.)

The Report: Can you reproduce the problem?
You may not see this on your form, but you should always
provide this information.

Never say it’s reproducible unless you have recreated
the bug. (Always try to recreate the bug before writing
the report.)
If you’ve tried and tried but you can’t recreate the bug,
say “No”. Then explain what steps you tried in your
attempt to recreate it.
If the bug appears sporadically and you don’t yet know
why, say “Sometimes” and explain.
You may not be able to try to replicate some bugs.
Example: customer-reported bugs where the setup is
too hard to recreate.

The following policy is not uncommon:
If the tester says that a bug is reproducible and the
programmer says it is not, then the tester has to
recreate it in the presence of the programmer.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 24

The Report—Description: How to reproduce it.
First, describe the problem. What’s the bug? Don’t rely on
the summary to do this -- some reports will print this field
without the summary.
Next, go through the steps that you use to recreate this
bug.

Start from a known place (e.g. boot the program) and
Then describe each step until you hit the bug.
NUMBER THE STEPS. Take it one step at a time.
If anything interesting happens on the way, describe it.
(You are giving people directions to a bug. Especially in
long reports, people need landmarks.)

Describe the erroneous behavior and, if necessary, explain
what should have happened. (Why is this a bug? Be clear.)
List the environmental variables (config, etc.) that are not
covered elsewhere in the bug tracking form.
If you expect the reader to have any trouble reproducing
the bug (special circumstances are required), be clear
about them.

The Report—Description: How to reproduce it.
It is essential keep the description focused:

The first part of the description should be the
shortest step-by-step statement of how to get to
the problem.
Add “Notes” after the description if you have
them. Typical notes include:

Comment that the bug won’t show up if you do
step X between step Y and step Z.
Comment explaining your reasoning for running
this test.
Comment explaining why you think this is an
interesting bug.
Comment describing other variants of the bug.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 25

Keeping the Report Simple
If you see two failures, write two reports.
Combining failures on one report creates problems:

The summary description is typically vague. You say
words like “fails” or “doesn’t work” instead of
describing the failure more vividly. This weakens the
impact of the summary.
The detailed report is typically lengthened. It’s common
to see bug reports that read like something written by an
inept lawyer. Do this unless that happens in which case
don’t do this unless the first thing and then the testcase
of the second part and sometimes you see this but if not
then that.
Even if the detailed report is rationally organized, it is
longer (there are two failures and two sets of conditions,
even if they are related) and therefore more intimidating.
You’ll often see one bug get fixed but not the other.
When you report related problems on separate reports,
it is a courtesy to cross-reference them.

Keeping it Simple: Eliminate Unnecessary Steps (1)
Sometimes it’s not immediately obvious what steps can be
dropped from a long sequence of steps in a bug.

Look for critical steps -- Sometimes the first symptoms
of an error are subtle.

You have a list of all the steps that you took to show the
error. You’re now trying to shorten the list. Look carefully
for any hint of an error as you take each step -- A few things
to look for:

Error messages (you got a message 10 minutes ago.
The program didn’t fully recover from the error, and the
problem you see now is caused by that poor recovery.)
Delays or unexpectedly fast responses.
Display oddities, such as a flash, a repainted screen, a
cursor that jumps back and forth, multiple cursors,
misaligned text, slightly distorted graphics, doubled
characters, omitted characters, or display droppings
(pixels that are still colored even though the character
or graphic that contained them was erased or moved).

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 26

Keeping it Simple: Eliminate Unnecessary Steps (2)
Sometimes the first indicator that the system is
working differently is that it sounds a little different
than normal.
An in-use light or other indicator that a device is in
use when nothing is being sent to it (or a light that
is off when it shouldn’t be).
Debug messages—turn on the debug monitor on
your system (if you have one) and see if/when a
message is sent to it.

If you’ve found what looks like a critical step, try
to eliminate almost everything else from the bug
report. Go directly from that step to the last one
(or few) that shows the bug. If this doesn’t work,
try taking out individual steps or small groups of
steps.

Keep it Simple: Put Variations After the Main Report
Suppose that the failure looks different under slightly different
circumstances. For example:

The timing changes if you do a additional two sub-tasks
before hitting the final reproduction step
The failure won’t show up at all or is much less serious if
you put something else at a specific place on the screen
The printer prints different garbage (instead of the garbage
you describe) if you make the file a few bytes longer

This is all useful information for the programmer and you
should include it. But to make the report clear:

Start the report with a simple, step-by-step description of
the shortest series of steps that you need to produce the
failure.
Identify the failure. (Say whatever you have to say about it,
such as what it looks like or what impact it will have.)
Then add a section that says “ADDITIONAL CONDITIONS”
and describe, one by one, in this section the additional
variations and the effect on the observed failure.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 27

Overcoming Objections: Analyze the Failure
Things that will make programmers resist
spending their time on the bug:

The programmer can’t replicate the defect.
Strange and complex set of steps required to induce the
failure.
Not enough information to know what steps are
required, and it will take a lot of work to figure them out.
The programmer doesn’t understand the report.

Unrealistic (e.g. “corner case”)
It’s a feature!

Overcoming Objections:
Unrealistic (e.g., Corner Conditions)
Some reports are inevitably dismissed as unrealistic (having
no importance in real use).

If you’re dealing with an extreme value, do follow-up testing
with less extreme values.
If you’re protesting a bug that has been left unfixed for
several versions, realized that it has earned tenure in some
people’s minds. Perhaps customer complaints about this
bug have simply never filtered through to developers.
If your report of some other type of defect or design issue
is dismissed as having “no customer impact,” ask yourself:

Hey, how do they know the customer
impact?

Then check with people who might know:
-- Technical marketing -- Technical support
-- Human factors -- Documentation
-- Network administrators -- Training
-- In-house power users -- Maybe sales

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 28

Overcoming Objections: Analyze the Failure
Things that will make programmers resist spending their
time on the bug:

The programmer can’t replicate the defect.
Strange and complex set of steps required to induce the
failure.
Not enough information to know what steps are required, and
it will take a lot of work to figure them out.
The programmer doesn’t understand the report.
Unrealistic (e.g. “corner case”)

It’s a feature!
Later in the course, we’ll think about
this. The usual issues involve the costs
of fixing bugs, the company’s
understanding of the definitions of
bugs, and your personal credibility.

Bug Advocacy

Editing the Bug Report

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 29

Editing Bug Reports
Some groups have a second tester (usually a senior tester)
review reported defects before they go to the programmer.
The second tester:

checks that critical information is present and
intelligible
checks whether she can reproduce the bug
asks whether the report might be simplified, generalized
or strengthened.

If there are problems, she takes the bug back to the original
reporter.

If the reporter was outside the test group, she simply
checks basic facts with him.
If the reporter was a tester, she points out problems with
an objective of furthering the tester’s training.

Editing Bug Reports
This tester might review:

all defects
all defects in her area
all of her buddy’s defects.

In designing a system like this, beware of
overburdening the reviewing testers. The
reviewer will often go through a learning curve
(learning about parts of the system or types of
tests that she hasn’t studied before). This takes
time. Additionally, you have to decide whether the
reviewer is doing an actual reproduction of the
test or thinking about the plausibility and
understandability of the report when she reads it.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 30

Editing Bugs--Practice at Home
Go through your bug database and find some bugs that
look interesting

Do an initial review of them
Replicate them
Revise the descriptions to make them clearer and
more useful.

Assignment:
Give two improved bugs to a co-worker
Review two improved bugs from a co-worker
Compare notes

(Note: When I teach this course to undergraduates, I
require them to successfully edit bugs before they can
write any. It is effective training.)

Editing Bugs: Assignment Procedure
First times:
The tester gives you the bug report before entering it into the
bug tracking system.

The reporter should give you a hard copy of the proposed
bug report or a file in a format you can read. If you can’t
read the reporter’s file format, the reporter has to give you
the bug in some other format. This is the reporter’s
responsibility, not yours.
Read over the report. If you can’t understand it or if there
are obvious problems, note those problems and return it to
the reporter. If there are significant problems when you try
to read the report, don’t spend any time trying to replicate
it. Just give it back and deal with it again later, when it has
been fixed.
If the report is OK to read (not perfect, but OK), make some
comments (maybe on a printout, maybe in the text file that
the reporter gave you) and then try to replicate the bug.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 31

Editing Bugs: Assignment Procedure
First times:
Make comments as appropriate. Then hand the commented
report back to the reporter. The reporter can review your
comments, decide what to change, and then either:

Submit the bug directly into the bug tracking system, or
Give the bug back to you for a second review.

You are only obligated to review a bug once. If you review the
bug and bounce it because it is unintelligible, you don’t have
to accept it back for replication. If you replicated it and gave
feedback, you don’t have to review the improved version.
If the reporter is submitting a bug to you that was previously
reviewed by someone else, she MUST give you a copy of the
report that she gave to that other person and their comments,
along with the new improved report.

Editing Bugs: Assignment Procedure
Later times:
If the tester gives you the bug report before entering it into the bug
tracking system.

Same procedure as before
If the tester gives you the report AFTER entering it into the bug
tracking system

Review the report for clarity and tone (see “first
impressions”, next slide) and send comments back to the
reporter by email
Attempt to replicate the bug and send comments back to
the reporter by email on the replication steps, your overall
impressions, and any follow-up tests you recommend
You may edit the bug report yourself, but ONLY in the
following ways.

Add a comment indicating that you successfully replicated
the bug on XXX configuration in YYY build. (This is only
valuable if the configuration or build is different from the
reporter’s.)
Add a comment describing a simpler set of replication steps.
Make sure these are clear and accurate. (Continued . . .)

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 32

Editing Bugs: Assignment Procedure
Later times:
You may edit the bug report yourself, but ONLY in the
following ways. (. . . Continued)

Add a comment describing why this bug would be important
to customers (this is only needed if the bug looks minor or
like it won’t be fixed. It is only useful if you clearly know what
you are talking about, your tone is respectful).
Your comments should NEVER appear critical or
disrespectful of the original report or of the person who
wrote it. You are adding information, not criticizing what was
there.

If you edit the report in the database, never change what the
reporter has actually written. You are not changing his work,
you are adding comments to it at the end of the report
Your comments should have your name and the comment
date, usually at the start of the comment, for example:
“(Cem Kaner, 12/14/01) Here is an alternative set of
replication steps:”)
Send the reporter an email, telling her that you have
reviewed the report and made changes.

Editing Bugs—A Checklist
The bug editor should check the bug report for the
following characteristics:

First impressions—when you first read the report:
• Is the summary short (about 50-70 characters) and

descriptive? (see the slide: Important Parts of the Report:
Problem Summaries)

• Can you understand the report? As you read the
description, do you understand what the reporter did? Can
you envision what the program did in response? Do you
understand what the failure was?

• Is it obvious where to start (what state to bring the program
to, to replicate the bug)?

• Is it obvious what files to use (if any)? Is it obvious what
you would type?

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 33

Editing Bugs—A Checklist
The bug editor should check the bug report for the following
characteristics:

First impressions—when you first read the report:
• Is the replication sequence provided as a numbered set of steps,

which tell you exactly what to do and, when useful, what you will
see?

• Does the report include unnecessary information, personal
opinions or anecdotes that seem out of place?

• Is the tone of the report insulting? Are any words in the report
potentially insulting?

• Does the report seem too long? Too short? Does it seem to have
a lot of unnecessary steps? (This is your first impression—you
might be mistaken. After all, you haven’t replicated it yet. But
does it LOOK like there’s a lot of excess in the report?)

• Does the report seem overly general (“Insert a file and you will
see” – what file? What kind of file? Is there an example, like
“Insert a file like blah.foo or blah2.fee”?)

Editing Bugs—A Checklist
The bug editor should check the bug report for the following
characteristics:
When you replicate the report:

Can you replicate the bug?
Did you need additional information?
Did you get lost or wonder whether you had done a step
correctly? Would additional feedback (like, “the program will
respond like this...”) have helped?
Did you have to guess about what to do next?
Did you have to change your configuration or environment in
any way that wasn’t specified in the report?
Did some steps appear unnecessary? Were they unnecessary?
Did the description accurately describe the failure?
Did the summary accurate describe the failure?
Does the description include non-factual information (such as
the tester’s guesses about the underlying fault) and if so, does
this information seem credible and useful or not?

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 34

Editing Bugs—A Checklist
The bug editor should check the bug report for the
following characteristics:
3. Closing impressions:
• Does the description include non-factual information

(such as the tester’s guesses about the underlying
fault) and if so, does this information seem credible
and useful or not? (The report need not include
information like this. But it should not include non-
credible or non-useful speculation.)

• Does the description include statements about why
this bug would be important to the customer or to
someone else? (The report need not include such
information, but if it does, it should be credible,
accurate, and useful.)

Editing Bugs—A Checklist
The bug editor should check the bug report for the following
characteristics:
4. Follow-up tests:

• Are there follow-up tests that you would run on this report if you had
the time? (Refer to the slides on follow-up testing)?

• What would you hope to learn from these tests?
• How important would these tests be?
• You will probably NOT have time to run follow-up tests yourself, or if

you run any, you will not / should not take the time to run more than
1 or 3 such tests.

• Are some tests so obvious that you feel the reporter should run
them before resubmitting the bug? Can you briefly describe them to
the reporter?

• Some obvious style issues that call for follow-up tests. The report
describes a corner case without apparently having checked non-
extreme values. Or the report relies on other specific values, with no
indication about whether the program just fails on those or on
anything in the same class (what is the class?) Or the report is so
general that you doubt its accuracy (“Insert any file at this point” –
really? Any file? Any type of file? Any size? Maybe this is accurate,
but are there examples or other reasons for you to believe this
generalization is credible?)

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 35

Black Box Testing

Bug Reporting Exercises

Bug Reporting Exercise 1 (1)

Create a sample database of cheques. Enter many new cheques.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 36

Bug Reporting Exercise 1 (2)

Now search the cheques to find one.
Here, I searched for the word “testing”.
The program searches backwards, from
the currently selected cheque to the start
of the register. It doesn’t find any
instances of “testing” so it asks whether
it should keep searching from the end of
the register backwards.

Bug Reporting Exercise 1 (3)

Kaboom! A General Protection Fault!
• The “First Aid” application tries to protect the customer from losing

data when there is a GP fault. It’s always possible that the crash was
caused by an interaction between Quicken and First Aid, so try the
test again after turning off First Aid.

• When I re-ran the test, Quicken crashed again, with a Win 95 system
window that identifies a GP Fault. (These are harder to screen shoot,
so it’s not here.) Therefore the bug was not due to First Aid.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 37

Bug Reporting Exercise 1 (4)

When analyzing a bug, it’s wise to try to
recreate it on another computer. I did
that. This time, the search didn’t crash.
The crashing computer is a Pentium with
32 megs RAM, a Logitech trackball, the
MS keyboard, a 1.6 gig hard drive, no
disk compression, a 4 meg high res
MPEG video card and a big monitor. The
other is an 8 meg 486 with an MS
Mouse, an old standard keyboard, a 540
meg hard drive (compressed) and basic
SVGA video.

Bug Reporting Exercise 1 (5)
Because this is a crash, you decide to get it into the
tracking system right away. You’ll do more troubleshooting
later. So here is your assignment.
1 Write these two sections of the bug report:

Problem Summary
Problem Description

2 What other tests should you run? Why? Write down
your list.

3 Meet with your group to read each other’s reports.
How good is the summary?
How clear is the description?
How complete is the description?
How accurate is the description?
How promising is your list of ideas?

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 38

Notes

Notes

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 39

Notes on Exercise
I do some analysis before writing. Here’s a structure for
making your notes:

NOTESOTHER CONDITIONS
(maybe irrelevant)
Configurations (list them all)

CONDITIONS
search for non-existent text
search backwards
Yes to query, search from end
of register

OBSERVED FAILURES

General protection fault

Notes on Exercise
MY SUMMARY
GPF on search for non-existent text. (Configuration dependent.)
MY PROBLEM DESCRIPTION
1. Start the program
2. Open a database (I used the TESTING file)
3. Search (backwards) for a string that doesn’t appear in the database
4. When Quicken asks whether to search from end of register, click YES
5. Result = GPF
NOTES: This bug is configuration dependent. The two machines involved
are the two at my desk, if you need to replicate while I’m gone. I’ll do
further analysis later, but I put this into the database now in order to give
you an early warning of a serious bug. The configurations of the two
machines are:

Replicates Fails to Replicate
Pentium 486
etc etc

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 40

Notes

Bug Reporting Exercise 2 (1)
The following group of slides are from Windows Paint
95. Please don’t spend your time replicating the steps
or the bug. (You’re welcome to do so if you are
curious, but it is not necessary for analysis of this
exercise.)
Treat the steps that follow as fully reproducible. If you
go back to ANY step, you can reproduce it.
In case you aren’t familiar with paint programs, the
key idea is that you lay down dots. For example, when
you draw a circle, the result is a set of dots, not an
object. If you were using a draw program, you could
draw the circle and then later select the circle, move
it, cut it, etc. In a paint program, you cannot select the
circle once you’ve drawn it. You can select an area
that includes the dots that make up the circle, but that
area is simply a bitmap and none of the dots in it have
any relationship to any of the others.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 41

Bug Exercise 2 Continued

Here’s the opening
screen. The
background is
white. The first
thing that we’ll do
is select the Paint
Can
We’ll use this to lay
down a layer of
grey paint on top of
the background.
Then, when we cut
or move an area,
we’ll see the white
background behind
what was moved.

Bug Exercise 2 Continued

Here’s the screen
again, but the
background has been
painted gray.

The star in the upper
left corner is a
freehand selection
tool. After you click
on it, you can trace
around any part of
the picture. The
tracing selects that
part of the picture.
Then you can cut it,
copy it, move it, etc.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 42

Bug Exercise 2 Continued

This shows an area
selected with the
freehand selection tool.
The bottom right corner is
selected. (The dashed line
surrounds the selected
area.)
NOTE: The actual area
selected might not be
perfectly rectangular. The
freehand tool shows a
rectangle that is just big
enough to enclose the
selected area. For our
purposes, this is not a bug.
This is a design decision by
Microsoft.

Bug Exercise 2 Continued
Next, we’ll draw a circle
(so you can see what’s
selected), then use the
freehand select tool to
select the area around
it.

When you use the
freehand selection tool,
you select an area by
moving the mouse. The
real area selected is
not a perfect rectangle.
The rectangle just
shows us where the
selected area is.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 43

Bug Exercise 2 Continued
Now we cut the
selection. (To do
this, press Ctrl-X.)

The jagged border
shows exactly the
area that was
selected.

Bug Exercise 2 Continued

Next, select the
area around the
circle and drag it up
and to the right.
This works.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 44

Bug Exercise 2 Continued

This time, we’ll try the
Rectangular Selection
tool.
With this one, if you move
the mouse to select an
area, the area that is
actually selected is the
smallest rectangle that
encloses the path that
your mouse drew.
So, draw a circle, click the
Rectangular Selection
tool, select the area
around the circle and
move it up. It works.

Bug Exercise 2 Continued
Well, this was just too boring, because
everything is working. When you don’t find a
bug while testing a feature, one tactic is to
keep testing the feature but combine it with
some other test.
In this case, we’ll try Zooming the image.
When you zoom 200%, the picture itself
doesn’t change size, but the display doubles
in size. Every dot is displayed as twice as tall
and twice as wide.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 45

Bug Exercise 2 Continued
Bring up the Custom Zoom dialog, and select
200% zoom, click OK.

Bug Exercise 2 Continued

It worked. The paint
area is displayed
twice as tall and twice
as wide. We’re looking
at the bottom right
corner. To see the
rest, we could move
the scroll bars up or
left.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 46

Bug Exercise 2 Continued
So, we select part of
the circle using the
freehand selection
tool. We’ll try the
move and cut
features.

Cutting fails.

When we try to cut the
selection, the dashed
line disappears, but
nothing goes away.

Bug Exercise 2 Continued

Draw the circle, zoom
to 200%, select the
area.

Drag the area up and
to the right. It works.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 47

Bug Exercise 2 Continued

Draw the circle, zoom to 200%, select the area.
Now try this. Select the area and move it a bit. THEN
press Ctrl-X to cut. This time, cutting works.

Bug Exercise 2 Continued

Draw the circle,
zoom to 200%, and
this time, grow the
window so you can
see the whole
drawing area.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 48

Bug Exercise 2 Continued

Now, select the
circle. That seems
to work.

Bug Exercise 2 Continued

But when you
press Ctrl-X to cut
the circle, the
program cuts the
wrong area.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 49

Bug Exercise 2 Continued
Now, write a bug report. I want two sections:

The Problem summary (or title)
The Problem Description (how to reproduce the
problem)

Additionally, please describe three follow-up tests
that you would run with this bug

Notes

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 50

Bug Advocacy

Advocating for
bug fixes

by alerting people
to costs.

Supplementary Reading:
Kaner, Quality Cost Analysis: Benefits & Risks.

Money Talks:
Cost of Finding and Fixing Software Errors

This curve maps the traditionally expected increase of cost as
you find and fix errors later and later in development.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 51

Money Talks:
Cost of Finding and Fixing Software Errors

This is the most commonly taught cost curve in software
engineering.
Usually people describe it from the developers-eye view. That is,
the discussion centers around

•how much it costs to find the bug
•how much it costs to fix the bug
•and how much it costs to distribute the bug fix.

But sometimes, it pays to adopt the viewpoints of other
stakeholders, who might stand to lose more money than the
development and support organizations.

Money Talks:
Cost of Finding and Fixing Software Errors

Costs escalate because more people in and out
of the company are affected by bugs, and more
severely affected, as the product gets closer to
release. We all know the obvious stuff

• if we find bugs in requirements, we can fix
them without having to recode anything;

• programmers who find their own bugs can fix
them without taking time to file bug reports or
explain them to someone else;

• it is hugely expensive to deal with bugs in the
field (in customers’ hands).

Along with this, there are many effects on other
stakeholders in the company. For example, think
of the marketing assistant who wastes days trying
to create a demo, but can’t because of bugs.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 52

Money Talks:
Cost of Finding and Fixing Errors

It is important to recognize that this cost curve is
predicated on a family of development practices.
When you see a curve that says,

“Late changes are expensive”
you can reasonably respond in either of two ways:

• Make fewer late changes.
• This is the traditional recommendation

• Make it cheaper to make late changes.
• This is a key value of the agile development

movement (see Beck’s Extreme Programming
Explained, or go to www.agilealliance.org)

In this testing course, I will push you to find ways to
find bugs earlier, but my development philosophy
is agile.

Quality Cost Analysis
Quality Cost Measurement is a cost control system
used to identify opportunities for reducing the
controllable quality-related costs

The Cost of Quality is the total amount the company
spends to achieve and cope with the quality of its
product.

This includes the company’s investments in
improving quality, and its expenses arising from
inadequate quality.

A key goal of the quality engineer is to help the
company minimize its cost of quality.

Refer to my paper, “Quality Cost Analysis: Benefits
& Risks” available at www.kaner.com.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 53

Quality-Related Costs

External FailureInternal Failure
Cost of dealing with errors that
affect your customers, after the
product is released.

Cost of dealing with errors
discovered during development
and testing. Note that the
company loses money as a user
(who can’t make the product
work) and as a developer (who
has to investigate, and possibly
fix and retest it).

Cost of inspection (testing,
reviews, etc.).

Cost of preventing customer
dissatisfaction, including errors
or weaknesses in software,
design, documentation, and
support.

AppraisalPrevention

Examples of Quality Costs

External FailureInternal Failure
Lost sales and lost customer goodwill
Technical support calls
Writing answer books (for Support)
Investigating complaints
Supporting multiple versions in the field
Refunds, recalls, warranty, liability costs
Interim bug fix releases
Shipping updated product
PR to soften bad reviews
Discounts to resellers

Bug fixes
Regression testing
Wasted in-house user time
Wasted tester time
Wasted writer time
Wasted marketer time
Wasted advertisements
Direct cost of late shipment
Opportunity cost of late shipment

Design review
Code inspection
Glass box testing
Black box testing
Training testers
Beta testing
Usability testing
Pre-release out-of-box testing by customer
service staff

Staff training
Requirements analysis & early prototyping
Fault-tolerant design
Defensive programming
Usability analysis
Clear specification
Accurate internal documentation
Pre-purchase evaluation of the reliability
of development tools

AppraisalPrevention

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 54

Customers’ Quality Costs

These illustrate costs absorbed by the
customer who buys a defective product.

Wasted time
Lost data
Lost business
Embarrassment
Frustrated employees quit
Failure during one-time-only tasks,
e.g. demos to prospective
customers
Cost of replacing product
Reconfiguring the system
Cost of recovery software
Tech support fees
Injury / death

These illustrate costs absorbed by the
seller that releases a defective product.

Lost sales and lost customer
goodwill
Technical support calls
Writing answer books (for Support)
Investigating complaints
Refunds, recalls, warranty, liability
costs
Government investigations
Supporting multiple versions in the
field
Interim bug fix releases
Shipping updated product
PR to soften bad reviews
Discounts to resellers

Customer: failure costs
(seller’s externalized costs)

Seller: external costs

Influencing Others Based on Costs
It’s often impossible to fix every bug. But sometimes the
development team will choose to not fix a bug based on their
assessment of its risks for them, without thinking of the costs
to other stakeholders in the company.

Probable tech support cost.
Risk to the customer.
Risk to the customer’s data or equipment.
Visibility in an area of interest to reviewers.
Extent to which the bug detracts from the use of the
program.
How often will a customer see it?
How many customers will see it?
Does it block any testing tasks?
Degree to which it will block OEM deals or other sales.

To argue against a deferral, ask yourself which stakeholder(s)
will pay the cost of keeping this bug. Flag the bug to them.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 55

Bug Advocacy

What About the
Objection that it’s
Not Really a Bug?

Really, it’s a feature.

Or, at least, it’s not a problem for my release so I
don’t have to fix it.

It won’t matter until we ship it to Germany. Let them
fix it.

Supplemental reading: Kaner, What is a Software Defect?

Software Errors: What is Quality?
Here are some of the traditional definitions:

Fitness for use (Dr. Joseph M. Juran)
The totality of features and characteristics of a
product that bear on its ability to satisfy a given need
(ASQ)
Conformance with requirements (Philip Cosby)
The total composite product and service
characteristics of marketing, engineering,
manufacturing and maintenance through which the
product and service in use will meet expectations of
the customer (Armand V. Feigenbaum)

Note the absence of “conforms to specifications.”

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 56

Software Errors: What is Quality?
Juran distinguishes between Customer Satisfiers and
Dissatisfiers as key dimensions of quality:

Customer Satisfiers
the right features
adequate instruction

Dissatisfiers
unreliable
hard to use
too slow
incompatible with the customer’s equipment

Software Errors: What Should We Report?

I like Gerald Weinberg’s definition:
Quality is value to some person

But consider the implication:
It’s appropriate to report any deviation from high
quality as a software error.
Therefore many issues will be reported that will
be errors to some and non-errors to others.

Glen Myers’ definition:
A software error is present when the program does not
do what its user reasonably expects it to do.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 57

Quality is Multidimensional

Project
Manager

Programming
User Interface

Design Marketing

Glass Box
Testing

Black Box
Testing

Customer
Service

Writing

Manufacturing

When you sit in a project team meeting, discussing a bug, a new
feature, or some other issue in the project, you must understand
that each person in the room has a different vision of what a
“quality” product would be. Fixing bugs is just one issue.
The next slide gives some examples.

Multimedia
Production

Content
Development

Quality is Multidimensional: Different People, Different Visions

Localization Manager: A good product is easy to translate and to
modify to make it suitable for another country and culture. Few
expereienced localization managers would consider acceptable a
product that must be recompiled or relinked to be localized.
Tech Writers: A high quality program is easily explainable.
Aspects of the design that are confusing, unnecessarily inconsistent,
or hard to describe are marks of bad quality.
Marketing: Customer satisfiers are the things that drive people to
buy the product and to tell their friends about it. A Marketing
Manager who is trying to add new features to the product generally
believes that he is trying to improve the product.
Customer Service: Good products are supportable. They have
been designed to help people solve their own problems or to get help
quickly.
Programmers: Great code is maintainable, well documented, easy
to understand, well organized, fast and compact.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 58

Software Errors: What Kind of Error?
You will report all of these types of problems, but it’s valuable
to keep straight in your mind, and on the bug report, which
type you’re reporting.

Coding Error: The program doesn’t do what the
programmer would expect it to do.
Design Issue: It’s doing what the programmer intended,
but a reasonable customer would be confused or unhappy
with it.
Requirements Issue: The program is well designed and
well implemented, but it won’t meet one of the customer’s
requirements.
Documentation / Code Mismatch: Report this to the
programmer (via a bug report) and to the writer (usually via
a memo or a comment on the manuscript).
Specification / Code Mismatch: Sometimes the spec is
right; sometimes the code is right and the spec should be
changed.

Software Errors: Why are there Errors?
New testers often conclude that the programmers on their
project are incompetent or unprofessional.

This is counterproductive. It leads to infighting instead of
communication, and it leads to squabbling over bugs
instead of research and bug fixing.

And as we saw when we discussed private bug rates,
programmers actually find and fix the large majority of
their own bugs.

Bugs come into the code for many reasons. It’s worth
considering some common systematic (as distinct from
poor individual performance) factors. You will learn to vary
your strategic approaches as you learn your companies’
weaknesses.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 59

Software Errors: Why are there Errors?
Bugs come into the code for many reasons:

The major cause of error is that programmers deal with
tasks that aren’t fully understood or fully defined. This is
said in many different ways. For example:

Tom Gilb and Dick Bender quote industry-summary
statistics that 80% of the errors, or 80% of the effort
required to fix the errors, are caused by bad
requirements;
Roger Sherman recently summarized research at
Microsoft that the most common underlying issue in
bug reports involved a need for new code.

If you graduated from a Computer Science program, how
much training did you have in task analysis?
Requirements definition? Usability analysis? Negotiation
and clear communication of negotiated agreements? Not
much? Hmmmm

Software Errors: Why are there Errors?
Some companies drive their programmers too hard. They
don’t have enough time to design, bulletproof, or test their
code. Another Sherman quote: “Bad schedules are
responsible for most quality problems.”
Late design changes result in last minute code changes,
which are likely to have errors.
Some third-party components introduce bugs. Your program
might rely on a large set of components that display a
specific type of object, filter data in a special way, drive a
specific printer, etc. Many of these, bought from tool vendors
or hardware vendors, are surprisingly buggy. Others work,
but aren’t compatible with common test automation tools.
Failure to use source control tools creates characteristic
bugs. For example, if a bug goes away, comes back, goes
away, comes back, goes away, then ask about your
company’s source control or configuration management
process.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 60

Software Errors: Why are there Errors?
Some programs or tasks are inherently complex. Boris Beizer
talks perceptively about the locality problem in software. Think
about an underlying bug, and then about symptoms caused by
the bug. When symptoms appear, there’s no assurance that
they’ll be close in time, space, or severity to the underlying bug.
They may appear much later, or when working with a different
part of the program, and they may seem much more or much
less serious than the bug.
Some programmers (some platforms) work with poor tools.
Weak compilers, style checkers, debuggers, profilers, etc. make
it too easy to get bugs or too hard to find bugs.
Similarly, some third party hardware, or its drivers, are non-
standard and don’t respond properly to standard system calls.
Incompatibility with hardware is often cited as the largest single
source of customer complaints into technical support groups.
When one programmer tries to fix bugs, or otherwise modify
another programmer’s code, there’s lots of room for
miscommunication and error.
And, sometimes people just make mistakes.

Family Drug Store v. Gulf States Computer
(563 So.2d 1324, Louisiana Court of Appeal, 1990). The basic holding of
this case is that a computer program that is honestly marketed can be
extremely awkward to use without imposing liability on the seller.

Two pharmacists bought a computer program known as the Medical
Supply System from Gulf States. After they realized what they had bought,
they asked for, and then sued for, a refund. Here were some of the
problems of the system:
“1 all data had to be printed out, and could not be viewed on the monitor;
2 the information on the monitor would appear in code;
3 numerical codes were needed in order to open a new patient file
4 the system was unable to scroll.”

The court found that the seller had not in any way misrepresented the
system, and that it was not useless even though it was awkward to use.
Further, the price of the software was about $2500 compared to $10,000
for other packages. The plaintiffs had gotten what they’d paid for.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 61

Notes

Bug Advocacy

Decision Making,
Information Flow, and

Credibility

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 62

The Signal Detection & Recognition Problem

Refer to Testing Computer Software, pages 24, 116-118

Response
Bug Feature

Ac
tu

al
 e

ve
nt

Fe
at

ur
e

Bu
g

Hit Miss

False
Alarm

Correct
Rejection

Lessons From Signal Detection:
We Make Decisions Under Uncertainty
When you try to decide whether an item belongs to one
category or the other (bug or feature), your decision will be
influenced by your expectations and your motivation.

Can you cut down on the number of false alarms
without increasing the number of misses?
Can you increase the number of hits without
increasing the number of false alarms?
Pushing people to make fewer of one type of
reporting error will inevitably result in an increase in
another type of reporting error.
Training, specs, etc. help, but the basic problem
remains.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 63

Lessons From Signal Detection:
Decisions Are Subject To Bias
We make decisions under uncertainty.
Decisions are subject to bias, and much of this is
unconscious.
The prime biasing variables are:

perceived probability:
If you think that an event is unlikely, you will be
substantially less likely (beyond the actual probability) to
report it.
perceived consequence of a decision:
What happens if you make a False Alarm? Is this worse
than a Miss or less serious?
perceived importance of the task:
The degree to which you care / don’t care can affect
your willingness to adopt a decision rule that you might
otherwise be more skeptical about

Lessons From Signal Detection:
Decisions Are Subject To Bias

Decisions are made by a series of people.
Bug reporting policies must consider the effects on the
overall decision-making system, not just on the tester and
first-level bug reader.

Trace these factors through the decisions and decision-makers
(next slides). For example, what happens to your reputation if
you

Report every bug, no matter how minor, in order to
make sure that no bug is ever missed?
Report only the serious problems (the “good bugs”)?
Fully analyze each bug?
Only lightly analyze bugs?
Insist that every bug get fixed?

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 64

Decisions Made During Bug Processing
Bug handling involves many decisions by different people,
such as:
Tester:

Should I report this bug?
Should I report these similar bugs as one bug or many?
Should I report this awkwardness in the user interface?
Should I stop reporting bugs that look minor?
How much time should I spend on analysis and styling of
this report?

Your decisions will reflect on you. They will cumulatively have
an effect on your credibility, because they reflect your
judgment.
The comprehensibility of your reports and the extent and skill
of your analysis will also have a substantial impact on your
credibility.
Refer to Testing Computer Software, pages 90-97, 115-118

Decisions Made During Bug Processing-2
Bug handling involves many decisions by different people, such as:

Programmer:
Should I fix this bug or defer it?

Project Manager:
Should I approve the deferral of this bug?

Tester:
Should I appeal the deferral of this bug?
How much time should I spend analyzing this bug further?

Test Group Manager:
Should I make an issue about this bug?
Should I encourage my tester to

investigate the bug further
argue the bug further,
or to quit worrying about this one,
or should I just keep out of the discussion this time?

Refer to Testing Computer Software, pages 90-97, 115-118

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 65

Decisions Made During Bug Processing - 3
Customer Service, Marketing, Documentation:

Should I ask the project manager to reopen this bug?
(The tester appealed the deferral) Should I support the
tester this time?
Should I spend time trying to figure this thing out?
Will this call for extra work in the answer book / advertising
/ manual / help?

Director, Vice President, other senior staff:
Should I override the project manager’s deferral of this
bug?

Decisions Made During Bug Processing - 4
Who else is in your decision loop?

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 66

Issues That Bias People Who Evaluate Bug Reports

These reduce the probability that the bug
will be taken seriously and fixed.

Language critical of the programmer.
Severity inflation.
Pestering & refusing to ever take “No” for an
answer.
Tight schedule.
Incomprehensibility, excessive detail, or apparent
narrowness of the report.
Weak reputation of the reporter.

Issues That Bias People Who Evaluate Bug Reports

These increase the probability that the bug
will be taken seriously and fixed.

Reliability requirements in this market.
Ties to real-world applications.
Report from customer/beta rather than from
development.
Strong reputation of the reporter.
Weak reputation of the programmer.
Poor quality/performance comparing to
competitive product(s).
News of litigation in the press.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 67

Clarify Expectations
One of the important tasks of a test manager is to clarify
everyone’s understanding of the use of the bug tracking
database and to facilitate agreements that this approach is
acceptable to the stakeholders.

Track open issues / tasks or just bugs?
Track documentation issues or just code?
Track minor issues late in the schedule or not?
Track issues outside of the published spec and
requirements or not?
How to deal with similarity?

Make the rules explicit.

Biasing People Who Report Bugs
These will reduce the probability that bugs will be reported, by
discouraging reporters, by convincing them that their work is
pointless or will be filtered out, or by creating incentives for
other people to pressure people not to report bugs.

Never use bug statistics for employee bonus or discipline.
Never use bug statistics to embarrass people.
Never filter reports that you disagree with.
Never change an in-house bug reporter’s language, or at
least not without free permission. Add your comments as
additional notes, not as replacement text.
Monitor language in the reports that is critical of the
programmer or the tester.
Beware of accepting lowball estimates of bug probabilities.

UCITA AND CONSUMERS

Copyright (c) Cem Kaner, 1999 68

Biasing People Who Report Bugs
These help increase the probability that people will report
bugs.

Give results feedback to non-testers who report bugs.
Encourage testers to report all anomalies.
Adopt a formal system for challenging bug deferrals.
Weigh schedule urgency consequences against an
appraisal of quality costs. (Early in the schedule, people
will report more bugs; later people will be more hesitant to
report minor problems).
Late in the schedule, set up a separate database for design
issues (which will be evaluated for the start of the next
release).

Key Points

Typical challenges of testing and test automation
"Essentials", key considerations for success
Benefits and consequences of applying or ignoring essentials

Presentation Abstract

Testing and test automation are among the important and at the same time most difficult tasks in IT.
Effective test design and efficient test automation are key to the success of many organizations, even at the
business level. However, they are often a constant source of costly nightmares and are often neglected by
management sometimes purely out of frustration.

If you look carefully at many of the projects that go on it turns out that the a relatively small set of key issues
re-appear over and over again, in many disguises. One could call them the "essentials". These essentials
are equally divided among:
• Test development
• Test automation
• Test management

This talk will present what, from the perspective of the speaker, are the essential considerations to be
successful with testing and test automation. For each of the considerations attention will be paid to what the
benefits are in applying it and the typical pitfalls if you don't!

The considerations are based on 8 years of experiences in numerous projects, many of them using earlier
presented concepts like the actions words and soap opera testing. The audience is invited to take the
essentials home and use them to become more successful.

About the Author

Hans Buwalda, ABT Chief Architect, leads LogiGear's Action Based Testing™ research and development,
including ABT Toolset™ operations, and oversees the practice of ABT methodology. Prior to joining
LogiGear, Hans served as Project Director at CMG The Netherlands where he was the original architect
behind the Action Words approach - an integrated method for planning, managing, and deploying software
testing and test automation. Hans is an internationally recognized expert specializing in action-based test
automation, test development, and test-technology management. He speaks and presents workshops at
international conferences on testing concepts such as Action Based Testing, The Three Holy Grails of Test
Development, Soap Opera Testing, and Testing in the Cold. Hans authored (along with Dennis Janssen and
Iris Pinkster) Integrated Test Design and Automation (Addison Wesley 2001). He holds a Master of Science
degree in Computer Science from Free University, Amsterdam.

QW2002 Paper SB4

Hans Buwalda
(LogiGear Corporation)

The Essentials of Testing and Test Automation

1

Essentials of Testing and
Test Automation

Hans Buwalda

LogiGear® Corporation

Process Track Standby Presentation

© 2002 Logigear Corporation, All Rights Reserved.

© 2002 LogiGear Corporation. All Rights Reserved. 2

Objectives of this Presentation

• To share some (personal) views

• Not necessarily the "final answers"
practice makes modest

• No pretension of completeness

• Little details (see also the book refs at the end)

• Discussion invited (now or later)

2

© 2002 LogiGear Corporation. All Rights Reserved. 3

Challenges for a Test Process

• Testing should be effective

• Testing should be efficient

• Testing should be fun

• Testing should be under control

© 2002 LogiGear Corporation. All Rights Reserved. 4

Questions to Answer With the Tests

1. Does the system comply to the requirements

2. Are there any problems (defects and/or failures)
we should know about

3. Will the system work in practice

3

© 2002 LogiGear Corporation. All Rights Reserved. 5

Three Dimensions of Testing

• Test Development

• Test Automation

• Test Organization and Management
including people

© 2002 LogiGear Corporation. All Rights Reserved. 6

Test Development Essentials

• Good breakdown of the tests ("clustering")

• Smart and effective testing techniques

• Efficient ways to express the tests

4

© 2002 LogiGear Corporation. All Rights Reserved. 7

Typical Price of not Understanding

• No (sense of) control

• Tests are not smart and only moderate effective
• ROD Testing ("Requirements driven Open Door")

• Complaining people, no fun
• also low in the food chain

• Unnecessary high test maintenance
• high impact of system changes on the test

© 2002 LogiGear Corporation. All Rights Reserved. 8

Examples of Clustering Criteria
• Architecture of the system under test

• Functionality and other requirements

• Quality attributes

• Level of detail

• Planning and control

• Level of risks involved

• Complexity of the test

• Technical aspects of test execution

• Stake holders

• Code hand-offs (Brian Marick)

{STRAIGHTFORWARD

ADDITIONAL

5

© 2002 LogiGear Corporation. All Rights Reserved. 9

Test Automation Essentials

• Separation between test development and test
automation

• Automate at action level, keep the "test logic" out
of the scripts

• Place maximum attention to re-usability

• Keep testers in the lead
avoid domination by engineers

© 2002 LogiGear Corporation. All Rights Reserved. 10

Typical Price of not Understanding

• Testers are out of control

• Tests are hard to access and assess

• Either test automation percentage is low or the
tests are uninteresting

• like just following all controls in the GUI..

6

© 2002 LogiGear Corporation. All Rights Reserved. 11

• Based on a notion that a test can be broken down in a
number of consecutive actions

• Not only the test data but also the actions are in the
test file, they are defined by the tester

• Instead of implementing test cases, the engineer
concentrates on the programming individual actions

we call this person the "navigation engineer" or "navigator"

• Reporting is done at the level of the test

• Most actions are high-level
test oriented instead
of object oriented

enter customer Jones
instead of

push_button New
type_keys Jones
push_button Process

Action Based Testing™

© 2002 LogiGear Corporation. All Rights Reserved. 12

ABT Product Life Cycle

• Actual results
• Comparison with expectations
• Management information

• Input data
• Expected outcomes
• Documentation

Management

System
Development

QA/Auditors

End users

System(s)
Under Test

Report

Global Test Design

"Test Clusters"

Test Planning and Control

Navigation
Scheme• Breakdown

• Analysis
• Clustering

SEPARATION

Physical
Navigation

7

© 2002 LogiGear Corporation. All Rights Reserved. 13

cluster EXAMPLE OF A TEST CLUSTER
version 1.0
author Hans Buwalda

section 1. Entering clients and balances
last name first name account nr balance

enter client Green John 458473948 1500
enter client Wood Anna 422087596 2100

section 2. Money Transfers
from to sum

transfer 458473948 422087596 500
transfer 422087596 785793025 1201

section 3. Checking names and numbers
account nr last name first name

check name 458473948 Green John
check name 422087596 Wood Anna

account nr sum
check balance 458473948 1000
check balance 422087596 1399

INPUT

EXPECTED
OUTCOMES

HEADER

Example of an ABT Test Cluster

© 2002 LogiGear Corporation. All Rights Reserved. 14

Example of a Test Objective

...
TO-3.51 The exit date must be after the entry date
...

test objective TO-3.51

name entry date exit date
enter employment Bill Goodfellow 2002-10-02 2002-10-01
check error message The exit date must be after the entry date.

8

© 2002 LogiGear Corporation. All Rights Reserved. 15

Build Up of an ABT Test Cluster

Test
Objectives

Test
Scenarios
(Cases)

ABT Test Cluster
(Excel Workbook)

Other
InfoTest

ObjectivesTest
Scenarios
(Cases)

Other
Info

© 2002 LogiGear Corporation. All Rights Reserved. 16

ABT Test Project

Global
Test

Design

ABT Test Cluster
(Excel Workbook)

Other
InfoTest

ObjectivesTest
Scenarios
(Cases)

ABT Test Cluster
(Excel Workbook)

Other
InfoTest

ObjectivesTest
Scenarios
(Cases)

. .
 .

N
avigation
Schem

e

9

© 2002 LogiGear Corporation. All Rights Reserved. 17

Test Organization Essentials

• Use a product approach for both test development
and test automation

see my other presentation

• Keep project level and organization level separate
projects need solutions
the organization needs improvements

© 2002 LogiGear Corporation. All Rights Reserved. 18

Typical Price of not Understanding

• Test product grow out of control

• Project priorities frustrate improvement processes
• and improvement processes frustrate projects

• Legitimate Project interests are not adequately
serviced

10

© 2002 LogiGear Corporation. All Rights Reserved. 19

Test Organization Essentials

• Treat test projects as difficult
high risk by definition
much external dependencies, that are hard to control

• Be suspicious about standard life-cycles
tend to be to simple and not fitting

• Developers and other stakeholders are not the
enemy

neither are the testers
present and document tests and outcomes well

© 2002 LogiGear Corporation. All Rights Reserved. 20

Typical Price of not Understanding

• Quality defects remain into production

• Testing causes delays, conflicts and frustration

• Other project priorities go at the expense of testing
• resources, time, but also environments

• Unfitting and unnecessary activities eat time and
money

11

© 2002 LogiGear Corporation. All Rights Reserved. 21

Strategic Position of Test Processes

Test Development

Test Automation
Technology/
Infrastructure

ProductionMarketing/
Sales

System
Development

End User
Departments

Quality Assurance

Management

After Sales/
Help Desk

Customers

Vendors

Government
Agencies

Publicity

EXTERNAL INTERNAL

© 2002 LogiGear Corporation. All Rights Reserved. 22

initiation, know how, support, ...

experiences, products, people, ...

pilot projects

training

coaching

resource mediation

test quality assurance

test environments

testware management

vendor contacts

TEST BUSINESS POLICY
(significance, position, organization)

m
an

ag
em

en
t &

 c
on

tro
l

Test
Maintenance

Test
Execution

Test
Development

Test
Design

Test Strategy
& Planning

TEST PROJECT MANAGEMENT
(solution focus)

ABT Test Governance Model

TEST COMPETENCE MANAGEMENT
(process improvement focus)

12

© 2002 LogiGear Corporation. All Rights Reserved. 23

Testing People

• Understanding testing

• Understanding the system under test
• at least some of them...

• Smart, independent thinkers, able to find bugs
• at least some of them...

• Test automators might not be the best
• tend to be smart at automation, not at the tests

© 2002 LogiGear Corporation. All Rights Reserved. 24

Typical Price of not Understanding

• Test teams seem busy, but are not effective

• Outcomes are not followed up, because
developers dominate

• Management looses grip on quality
• typical symptom: extra money doesn't help

13

© 2002 LogiGear Corporation. All Rights Reserved. 25

Getting the Right Teams

• If possible use a mix of different skills

• Education might help:
training in testing, subject matter expertise, IT, ...
visits to conferences

• Introduce test leads
control quality
pull up the others

• Let people share knowledge and experiences
for example: setup/stimulate Special Interest Groups

• Promote cooperation with developers, users and
other stakeholders

© 2002 LogiGear Corporation. All Rights Reserved. 26

Some Books for Further Reading

• Lessons Learned in Software Testing, Cem Kaner,
James Bach, Bret Pettichord

much more lessons than in this presentation

• Integrated Test Design and Automation, Hans
Buwalda, Dennis Janssen, Iris Pinkster

how to integrate action words into your approach

• Testing Computer Software, Cem Kaner, Jack
Falk, Hung Nguyen

one of the "bibles" on software testing

IN COOPERATION WITH...

The American Society for Quality is a membership organization dedicated to promoting the
principles and practices of quality improvement, with a mission to "be recognized throughout the
world as the leading authority on, and champion for, quality." The ASQ Software Division, which
represents over 5000 professionals worldwide, is dedicated to "improve the ability of individuals and
organizations to satisfy their customers with quality software products and services through

education, communication, research, outreach, and professional development. (http://www.asq.org)

World Organization of Webmasters Description to be supplies.

ORGANIZERS...

Software Research Institute (SR/Institute), a not-for-profit subsidiary of Software Research, Inc., was founded to
promote the issues of Software Quality throughout the software development community. In addition to the
Quality Week Conference series SR/Institute sponsors continuing education seminars in the general area of

software quality and software engineering, and Software Quality Forums at which software quality industry leaders provide
state of the art technology transfer to industry executives about how to best apply current technology to immediate software
quality needs.

MEDIA SPONSORS...

SD Times is filled with authoritative reporting written specifically for software development
managers. It covers the entire industry to keep you informed and up to date on Java,
Linux, XML, embedded wireless, components, e-business and much more! We cover the
things the technical monthlies rarely touch: the trade shows, the vendor roadmaps, the
trends, the tools, the alliances, the people, the NEWS! Subscribe today. SD Times is free
to qualified professionals like yourself. BUT you must sign up now!

Software Business is The Magazine for Software Executives! Every issue of Software
Business Magazine includes the following editorial features: . CEO Strategies . Electronic
Distribution . ASP Reports . Financial Reports . Business Automation . Software
Replication . Product Development . Packaging/Fulfillment . Support/Customer Service .

International Opportunities . And More...!

Software Research, Inc.'s TestWorks, an integrated suite of software test tools, is the broadest test tool suite available. TestWorks tools help automate and
streamline the software development and testing process with product lines that work independently or as an integrated toolsuite. TestWorks is the only tool suite
that offers Regression Testing, Test Suite Management, and Test Coverage support for Web and Windows and UNIX Platforms.

Software Research, Inc.
901 Minnesota Street

San Francisco CA 94107 USA

PHONE: [+1] (415) 550-3020 FAX: [+1] (415) 550-3030
Comments & Suggestions: suggest@soft.com

© Copyright 2001 by Software Research, Inc.

TestWorks Products

Windows/Coverage:

 TCAT/Java
 DEMO
 EVAL
 TCAT/C-C++
 DEMO
 EVAL
 Product Comps

Windows/Regression:

 CAPBAK/MSW
 SMARTS

UNIX Evals:

 SPARC/Solaris
 x86/Solaris
 RS6000/AIX
 HP9000 HPUX
 DEC-Alpha
 SGI/Irix
 SCO ODT5

Subscribe

TestWorks
For Windows

TestWorks for Windows, an integrated suite of automated testing tools, is the broadest suite of
tools available to test applications running under MS/Windows (Win3.1), MS/Windows 9x/Me or
MS/Windows NT/2000.

Testworks for Windows has two main bundles of tools:

TestWorks/Regression
CAPBAK/MSW
SMARTS/MSW

TestWorks/Coverage
TCAT C/C++
TCAT for Java/Windows

TestWorks
For UNIX

TestWorks for UNIX is designed to work independently or as an integrated tool suite to provide
an efficient, automated testing environment for most UNIX-based platforms.

TestWorks for UNIX consists of three product lines:

TestWorks/Regression
CAPBAK
SMARTS
EXDIFF

TestWorks/Coverage
TCAT C/C++
TCAT for Java/UNIX
TCAT/S-TCAT Ada/f77

TestWorks/Advisor
METRIC
TDGEN
STATIC

Downloading
Products DOWNLOAD PRODUCTS Download Datasheets

License Key Request QuickStart Manuals

User Manuals

 Tell A Friend About This Site

 Go!

Distance Learning
Members of the IEEE Computer Society enjoy FREE access

to a comprehensive online training program for computer

professionals. Join today and take any or all of 100 online

course titles through our Distance Learning Campus. Subjects

include Java, project management, Cisco networks, UNIX,

Windows, HTML, Oracle, SQL, and more.

Magazines and Journals
To help you stay informed and competitive, the IEEE Computer

Society publishes numerous specialized magazines and journals

that are available to members at deeply discounted rates. Plus,

you get a FREE subscription to Computer magazine included as

part of your membership.

Conferences and Workshops
Enhance your knowledge and share practical experiences at more

than 140 conferences, workshops, and symposia held each year

worldwide. Members save at least 25% on registration fees and

get advance notice of the meetings.

Other Valuable Benefits
• FREE membership in your local chapter

• FREE e-mail alias of Your.Name@computer.org

• FREE membership in up to four of 40+ Technical Committees

• FREE membership in 200+ Standards Working Groups

• Member discounts on hundreds of books and conference

proceedings

Join Today!
Apply online at http://computer.org/join

Do it now! Join the IEEE Computer
Society today for many valuable
benefits including…

Do it now! Join the IEEE Computer
Society today for many valuable
benefits including…

The most complete WebSite performance solution today –
 at a fraction of the price!

eValid: Testing from the Web BrowsereValid: Testing from the Web Browser

Your e-business partner

Easy 	

Fast 	
Real
Deep 	

Precise 	

Thorough

Visual
Value 	

The most complete WebSite performance solution today –
 at a fraction of the price!

 	

If you can browse it,

eValid can test it, at

the click of a mouse.

It's . . .

Up and running in minutes	

Immediate test results

Shows the users' real experience – no simulations

Handles complex transactions

Finds load bottlenecks

Visits every page – reveals site tree

Reports problems in graphs, tables or spreadsheets

Superior return on investment

About eValid -- The Internet Quality Authority
eValid Home

eValid enhances your e-business success by assuring that your WebSite is trouble-free, reliable, speedy, and available 24x7. In a Web-paced world your WebSite
is your key asset. eValid checks, protects and insures.

eValid -- Your E-Business Partner

eValid -- offering products and custom services -- is your one stop solution provider for WebSite quality. eValid is your true e-business partner.

eValid, Inc.
901 Minnesota Street

San Francisco, CA 94107 USA

Phone [+1] 415.550.3020
FAX [+1] 415.550.3030

info@soft.com.

eValid™ -- The Internet Quality Authority™
Client-Side Browser-Based WebSite Quality Checking,
Testing, Validation, Tuning, Loading, 24x7 Monitoring

Training, Consulting, Seminars
© Copyright 2002 by eValid, Inc.

eValid Products

eValid's Test Enabled Web Browser™ is a test engine that provides you with
browser based 100% client side quality checking, dynamic testing, content
validation, page performance tuning, and webserver loading and capacity
analysis.

This new cutting-edge technology is 100% client side based and is
completely object-oriented. eValid offers a unified approach to WebSite
testing that is unique in its simplicity, power, efficiency, effectiveness, and
superior ease of use.

By focusing entirely on the users' view of WebSite quality, eValid results are
accurate, complete, repeatable, and highly effective -- all as experienced by
your users. The eValid test engine is available in several product
configurations.

Mapping: eValid Site Analysis Mode will systematically examine a
WebSite or a sub-WebSite for critical quality factors such as slow
downloading pages, unavailable links, too-long pages.

Testing: eValid test scripts can exercise the key parts of your site,
confirm links, check content, and simulate users' activities. Make sure
your customers get the right message! More...

Validation: eValid can confirm selected content, validate document
properties, images and applets. Have confidence that you are delivering
correct information! More...

Loading: eValid load testing scenarios can simulate 100's or 1000's
of users. Can your WebSite handle the traffic when a serious crunch
comes? More...

Tuning: eValid timing capabilities let you identify slow-loading pages
so you can "tune up" your site for optimum performance. Keep
customers from clicking away! More...

eValid Services

eValid website quality services are all based on the eValid test engine, and
are supported through training, consulting, and technical seminars.

Standard Monitoring: eValid monitoring, based on the eValid test
engine, runs standard tests on your site. eValid's 24x7 website
performance monitoring provides for email and/or pager/beeper alert
service, plus customer access on our WebSite to historic testing and
monitoring data. Be the first to know whenever your site is misbehaving.
More...

Custom Monitoring: Use eValid test services to contract us to run
tests you have recorded and proved out yourself using the standard
eValid test engine. Custom eValid test executions run on standard
intervals, in varying time zones, and are all 24x7. Make sure your own
tests run successfully all the time. More...

WebSite Testing, Qualification, Verification, Loading: eValid
consulting services include WebSite testing, test suite development,
WebSite qualification, e-commerce verification, and WebSite loading
and capacity checking exercises. All work is based on application of the
eValid test engine plus other non-released WebSite analysis facilities.
More...

WebSite Quality Consulting & Seminars: eValid website quality
experts can work along side your web developers to make sure your site
meets the highest reliability, quality, performance, and capacity
standards. eValid seminars and workshops are aimed at bringing your
own team up to speed. More...

 Tell A Friend About This Site

 Go!

LogiGear Corporation® is the first Silicon Valley-based software testing company to

offer a full range of services, including technical and management expertise in

software quality engineering, comprehensive outsource testing solutions, a skill-based

training curriculum for software testing professionals, and world-class testing support

products. Our value-added services include application testing, automated testing,

white-box testing, and load/performance testing for business and consumer

applications; TRACKGEARTM, a web-based defect-tracking solution; and QA

Training through LogiGear University's Software Testing Training Series. LogiGear

specializes in testing web and client-server systems, software applications, hand-held

communication devices, and consumer electronic products. For more information,

please visit our website at www.logigear.com.

Some things just have to

work right the first time...

Some things just have to

work right the first time...

McCabe
Associates

1-800-638-6316
www.mccabe.com

For Configuration Management,
Testing and QA products

Especially your software applications.Especially your software applications.

9861 Broken Land Parkway • Fourth Floor • Columbia, MD 21046
(410) 381-0036 • Toll Free 800 638-6316 • FAX (410) 381-7912•

URL - http://www.mccabe.com

McCabe & Associates enables IT to deliver better applications by
providing products and process that implement a relevant, repeatable,
and measurable approach to managing software changes and their effects
on the testing and quality of applications. McCabe products include
McCabe QA, McCabe Test, and McCabe TRUEchange and Release Rocket
Verify. Release Rocket Verify identifies, tracks, and reports on
software-testing efforts at the change level. Verify focuses on
validating changes and testing results across an application via real-
time feedback, enabling rapid delivery of releases with high confidence.
Verify reduces testing time, maximizes testing resources, and increases
the manageability of application releases.

©2002 Recommended Test Labs, Inc. www.testlabs.com CONFIDENTIAL

Recommended Test Labs, Inc. (RTL) is an outsource testing services vendor with offices in San Francisco, CA
Portland, OR, Ashburn, VA and Pittsburgh, PA. RTL has been helping top software and hardware companies
ship high quality products on–time and within budget since 1989. Whether to augment their internal QA staff or
fully manage their testing projects, Fortune 500 companies have turned to RTL's full-time, experienced, and
highly trained staff for their off-site testing needs.

RTL provides a comprehensive range of testing services from compatibility testing to web services testing to in-
depth feature conformance testing:

• Network Testing • Wireless Testing (802.11b, 802.1x, Bluetooth)
• Windows testing on 95/98/ME/NT/2K and XP • Macintosh OS with access to Apple's ADR Labs
• Web Site and Application Functional and

Performance Testing
• Localization & Translation Validation Testing

• Test Planning and Design • Driver testing

To find out more about RTL and learn how our clients have been able to meet their testing needs and deliver
their products on time, stop by our booth or contact RTL at 800-464-LABS (5227), http://www.testlabs.com, or
info@testlabs.com.

Company Description:

 Semantic Designs

Semantic Designs offers off-the-shelf and customizable tools to mechanize the analysis,
modification, enhancement, translation or generation of large-scale software systems in
virtually any language. The company also provides services for building custom testing
and quality enhancment tools.

The DMS Software Reengineering Toolkit, based on generalized compiler technology,
can parse/analyze/transform/prettyprint software. It is absolutely different from any other
tool available for handling automated analysis and software modifications. DMS handles
multiple and mixed programming language, for systems of several million lines. It has
language modules for C, C++, Java, C#, VisualBasic, COBOL, Fortran, Ada, XML, and
others, and is designed to accept new and proprietary language definitions very quickly.
DMS has been used for many custom tasks, including building HTMLized cross
references for complete systems, finding dead code, removing useless preprocessor
directives, automatic synthesis of target-language fast XML readers and writers, and full
translation of legacy languages such as JOVIAL to C.

Off-the-shelf products are derived from DMS. They include CloneDR, a tool that finds the
typically 10-20% redundant code in every system, and TestCoverage tools provide
extremely low-overhead ways to determine and interactively display code coverage for
standard and custom langauges, along with full summary reports.
<http://www.semdesigns.com>

Software Quality First

We take a very practical and do-able approach to software quality assurance and quality improvement. Our
focus is on those things that will be effective in a particular organization given its current situation and future
plans. Our goal is to obtain measurable improvements in the product and process which in turn lead to
improved business results. Our extensive experience in software development, testing, project management,
and software quality assurance allow us to quickly determine the highest priority issues and to develop an
effective approach for dealing with them.

Software Quality First
Jessee Ring, Principal Consultant

40119 San Carlos Place
Fremont, CA 94539
sqa1st@attbi.com
www.sqa1st.com
510-915-2353

fax: 510-573-7464

If you are here,

You want to be here.

Time

R
es

ul
ts

Your source for solutions in software quality

systems, testing, process improvement, metrics, and
project management.

Software Quality First provides consulting and/or contract services in software quality

assurance, testing, metrics, process improvement and project management. We can handle

short term or long term assignments that may require less than one full time person or several

people. Our principle consultant is Jessee Ring, who has a masters degree in electrical

engineering and over twenty-five years experience in software development, management,

SQA, and process improvement in diverse environments and application areas. We can help

companies that are just getting started on the quality or process improvement journey or ones

who have been working on it for awhile, since we tailor our services to the specific needs of

each individual organization. We draw upon a wide variety of industry best known methods

that have been shown to be effective. Our approach is based upon sound fundamentals while

at the same time being practical and results oriented.

Please visit our website at www.sqa1st.com.

We may be reached at: 510-915-2353, sqa1st@attbi.com, fax: 510-573-7464.

Founded in 1996, TeamShare, Inc. delivers Web-architected collaborative software

solutions. The company's product line, powered by the TeamTrack workflow engine,

enhances process management, speeds resolution and encourages collaboration within

and across enterprises. TeamTrack provides enterprise business process management

and enables collaborative product development with business customers and partners.

TeamTrack Workgroup is the robust defect and issue management solution for teams on

a limited budget. TeamShare solutions are highly configurable, simple to implement and

maintain a low cost of ownership. TeamShare's customers and partners include Dell,

Hewlett-Packard, KPMG, CitiGroup, 3-Com, Siemens, and ADP. TeamShare has been

named to Computerworld's "'Top 100 Emerging Companies" and the "SoftLetter 100" lists.

For more information, contact TeamShare, Inc. by phone at 888-TEAMSHARE (832-

6742), via e-mail at inquiries@teamshare.com or on the Web at www.teamshare.com.

Toll-free (800) 439-7782
International (925) 871-3900

The New Standard for Defect and Project Tracking Software

In Your Quest To Find The Best Defect Tracking Software,
You'll Find DevTrack 5.0 Is The Only Clear, Rational Choice.

DevTrack 5.0
Announcing

See for yourself!
View a brief, pre-recorded

demonstration on DevTrack 5.0's
new features.

www.devtrack.com

NEW!

NEW!

NEW!

DevTrack 5.0 is designed to meet your specific business needs.

DevTrack 5.0 Enterprise Edition___
� Advanced workflow & issue/sub-issue integration for multitasking
� Test plan automation and management
� Web interface for beta customers

DevTrack 5.0 Standard Edition___
� Comprehensive, single-page issue submission
� Integrated, user-defined custom reports
� Public and private issue templates for default values
� Quick selection of saved search queries

DevTrack 5.0 Small Business Edition___
� Same feature-rich product as DevTrack 5.0 Standard Edition

priced specifically for small businesses

DevTrack 5.0 is the only
product on the market that
comprehensively manages
and automates your
development management,
defect tracking, and test
plan automation processes
within one seamlessly
integrated application.

Primary
Issue

QA Testing
Sub-Issues

DevTrack 5.0 – The New Standard for Defect and Project Tracking Software

DevTrack 5.0 comprehensively manages and automates development management, defect
tracking, and test plan management processes within one seamlessly integrated application. It
provides powerful workflow and process automation features, seamless source code control
integration with Microsoft Visual SourceSafe (VSS) and Perforce, robust searching and reporting,
and comprehensive point-and-click customization. New features include advanced workflow &
issue/ sub-issue integration for multitasking and a Web interface for beta customers.

Since its introduction in 1997, DevTrack has become one of the top defect- and project-tracking
tools on the market. Industry giants such as Hewlett Packard, Texas Instruments, and Honeywell
have all deployed DevTrack with teams of over one hundred developers. Many smaller software
companies have deployed DevTrack as well because of its unique combination of power,
flexibility, and ease of use.

With DevTrack 5.0, TechExcel now offers three new editions of DevTrack designed specifically
to meet any company’s product development and engineering process automation.

DevTrack 5.0 Enterprise Edition

 Advanced workflow & issue/sub-issue integration for multitasking
 Test plan automation and management
 Web Interface for beta customers

DevTrack 5.0 Standard Edition

 Comprehensive, single-page issue submission
 Integrated, user-defined custom reports
 Public and private issue templates for default values
 Quick selection of saved search queries

DevTrack 5.0 Small Business Edition

 Same feature-rich product as DevTrack 5.0 Standard Edition priced specifically for small
businesses

For more information, please call 800-439-7782 or visit us on the Web at www.techexcel.com.

TestQuest, Inc.

TestQuestTM Pro is the only non-intrusive
automated test solution that provides

comprehensive support for a wide range of
electronic devices including embedded systems,

computer systems, handheld devices, cell
phones and Interactive TV set-top boxes.

Simulating the presence of a "virtual" user,
TestQuest Pro executes pre-defined streams of
actions, and compares the output to valid states
to determine whether the test was successful. A

scripting facility provides a foundation for
consistent, reliable and repeatable testing.

18976 Lake Drive East

Chanhassen, MN 55317
Phone: 952.936.7887
www.testquest.com
info@testquest.com

TestQuest, Inc.
18976 Lake Drive East
Chanhassen, MN 55317
+1.952.936.7887
info@testquest.com
www.testquest.com

TestQuestTM Pro is the only non-intrusive automated test solution that provides
comprehensive support for a wide range of electronic devices including embedded
systems, computer systems, handheld devices, cell phones and Interactive TV set-top
boxes. Simulating the presence of a "virtual" user, TestQuest Pro executes pre-defined
streams of actions, and compares the output to valid states to determine whether the test
was successful. A scripting facility provides a foundation for consistent, reliable and
repeatable testing. The benefits of using TestQuest Pro include:

Reduced test cycle time: Complete test cycles faster – customers report up to 90% time
savings compared to manual methods. TestQuest Pro can run tests 24 hours a day, 7 days
a week, dramatically expanding the time available for testing. This means dramatic
savings in the time it takes to get products tested and into the market.

Reduced test cost: Customers report rapid ROI and dramatic cost savings by eliminating
the need to dedicate staff to testing or outsource testing to 3rd parties.

Improved product quality: Build sophisticated test scripts that thoroughly exercise your
products and reliably uncover defects. With TestQuest, repeating an advanced regression
test is as easy as running a script.

Testing Testing 123 is a client driven company with the goal to provide our customers with
services that fit their specific needs. Our company mission is to empower our clients to
produce the highest quality software possible. Our experienced personnel specialize in time
critical performance, delivered with exceptional value and service.

Testing Testing 123’s outsourced testing allows your company to reduce or eliminate the
overhead required to maintain testing equipment or the additional cost of adding new staff for
your project. Our testing facility is designed to change, which allows us to "ramp-up" quickly
for new projects and new equipment configurations. We can test your project in our lab or
provide personnel for testing at your site. Our staff can also provide consulting, project
management and test planning services for your project.

Quality Assurance is crucial to the overall success of your business. When additional
expertise is needed or when time is short and resources are few, let Testing Testing 123
show you how we can help your business increase efficiency and improve your bottom line.

If you have any questions, please contact us.

	Quality Week 2002
	Conference Program
	Pre-conference Tutorials
	Conference Day #1
	Conference Day #2
	Conference Day #3
	Post-Conference Workshops
	Standby Presentations

	Tutorials
	A1: Hoffman & Pettichord
	B1: Collard
	C1: Miller
	D1: Simmons
	E1: Sabourin
	F1: Black
	G1: Lyndsay
	A2: Pettichord & Hoffman
	B2: Nguyen
	C2: Galen
	D2: Simmons
	E2: Sabourin
	F2: Black
	G2: Kaner

	Conference
	Keynotes
	1G1: Baker
	Abstract/Bio

	1G2: Simmons
	Abstract/Bio
	Slides

	5G1: Hamlet
	Abstract/Bio
	Slides

	5G2: Binder
	Abstract/Bio

	10G1: O'Neill
	Abstract/Bio
	Paper

	10G2: Pope
	Abstract/Bio
	Slides

	QuickStart
	2Q: Nguyen
	Abstract/Bio
	Slides

	3Q: Kaner
	Abstract/Bio
	Slides

	6Q: Sabourin
	Abstract/Bio
	Slides

	7Q: Hoffman
	Abstract/Bio
	Slides
	Paper

	9Q: Faught
	Abstract/Bio
	Slides

	Technology
	2T1: El-Far, Mottay & Thompson
	Abstract/Bio
	Slides
	Paper

	2T2: Withalm
	Abstract/Bio
	Slides

	3T1: Blackburn, Busser & Nauman
	Abstract/Bio
	Slides
	Paper

	3T2: Prowell & Swain
	Abstract/Bio
	Slides

	4T1: Breslin
	Abstract/Bio
	Slides

	4T2: Miller
	Abstract/Bio
	Slides

	6T1: Khemka & Sikka
	Abstract/Bio
	Slides

	6T2: Magoffin
	Abstract/Bio
	Slides

	7T1: Overton & Robins
	Abstract/Bio
	Slides

	7T2: Kubagawa & Buwalda
	Abstract/Bio
	Slides

	8T1: Baxter
	Abstract/Bio
	Slides

	8T2: Arnold
	Abstract/Bio
	Slides
	Paper

	9T1: Adams
	Abstract/Bio
	Slides

	9T2: Vempaty
	Abstract/Bio
	Slides
	Paper

	Applications
	2A1: Weider
	Abstract/Bio
	Slides

	2A2: Lafleur
	Abstract/Bio
	Slides
	Paper

	3A1: Simmons
	Abstract/Bio
	Slides

	3A2: Shaw
	Abstract/Bio
	Slides

	4A1: Hackett
	Abstract/Bio
	Slides

	4A2: Grinnell
	Abstract/Bio
	Slides

	6A1: Waller & Nelson
	Abstract/Bio
	Slides

	6A2: Pope
	Abstract/Bio
	Slides
	Paper

	7A1: Lyndsay & vanEeden
	Abstract/Bio
	Slides
	Paper

	7A2: Kubagawa & Buwalda
	Abstract/Bio
	Slides

	8A1: Fabbrini & Fusani
	Abstract/Bio
	Slides

	8A2: Sabourin
	Abstract/Bio
	Slides

	9A1: Lycklama
	Abstract/Bio
	Slides

	9A2: Kitchen
	Abstract/Bio
	Slides
	Paper

	Internet
	2I1: Cherkasova
	Abstract/Bio
	Slides
	Paper

	2I2: Aissi
	Abstract/Bio
	Slides

	3I1: Ryan
	Abstract/Bio
	Slides

	3I2: Miller
	Abstract/Bio
	Slides

	4I1: Vijayaraghavan & Kaner
	Abstract/Bio
	Slides
	Paper

	4I2: Adams
	Abstract/Bio
	Slides

	6I1: Landau
	Abstract/Bio
	Slides

	6I2: Overton
	Abstract/Bio
	Slides

	7I1: Joung
	Abstract/Bio
	Slides

	7I2: Siegel
	Abstract/Bio
	Slides

	8I1: Martin
	Abstract/Bio
	Slides
	Paper

	8I2: Whitchurch
	Abstract/Bio
	Slides
	Paper

	9I1: Resheff
	Abstract/Bio
	Slides

	9I2: El-Far, Roussev & Sridranup
	Abstract/Bio
	Slides

	Process
	2P1: Sikka & Khemka
	Abstract/Bio
	Slides
	Paper

	2P2: Patel
	Abstract/Bio
	Slides

	3P1: Chu
	Abstract/Bio
	Slides
	Paper

	3P2: Mohapatra & Saha
	Abstract/Bio
	Slides
	Paper

	4P1: Sole
	Abstract/Bio
	Slides

	4P2: Hazen
	Abstract/Bio
	Slides
	Paper

	6P1: Eickelmann
	Abstract/Bio
	Slides
	Paper

	6P2: Dalebout
	Abstract/Bio
	Slides

	7P1: Buwalda
	Abstract/Bio
	Slides

	7P2: Dalbey
	Abstract/Bio
	Slides

	8P1: King
	Abstract/Bio
	Slides
	Paper

	8P2: Faught
	Abstract/Bio
	Slides
	Paper

	9P1: MacKinnon
	Abstract/Bio
	Slides

	9P2: Kaner
	Abstract/Bio

	Panels
	4Q: Collard & Pettichord
	Abstract/Bio
	Paper

	8Q: Aissi
	Abstract/Bio

	Vendor Technical
	2V1: Krause
	Abstract/Bio
	Slides

	2V2: Ring
	Abstract/Bio
	Slides

	3V1: Ponczak
	Abstract/Bio
	Slides

	3V2: Baxter
	Abstract/Bio
	Slides

	6V1: Buwalda
	Abstract/Bio

	Workshops
	W1: Siegel
	Abstract/Bio
	Slides

	W2: Nguyen & Buwalda
	Abstract/Bio
	Slides

	W3: BM
	Abstract/Bio
	Slides
	Paper

	W4: Kaner
	Abstract/Bio
	Slides

	Standby
	SB4: Buwalda
	Abstract/Bio
	Slides

	Sponsors
	In cooperation with
	American Society for Quality
	World Organization of Webmaster

	Industry
	eValid
	LogiGear Corporation
	Software Research, Inc.

	Media
	Software Development Magazine
	Software Business
	IEEE

	Expo
	eValid, Inc.
	Ad
	Description

	LogiGear Corporation
	Ad
	Description

	McCabe & Associates
	Ad
	Description

	Recommended Test Labs
	Ad
	Description

	Semantic Designs, Inc.
	Description

	Software Quality First
	Ad
	Description

	TearmShare, Inc.
	Ad
	Description

	TechExcel, Inc.
	Ad
	Description

	TestQuest
	Ad
	Description

	Testing Testing 123, Inc.
	Ad
	Description

