
INTERNET & SOFTWARE
Q U A L I T Y W E E K

Industry Sponsors

THE FOURTEENTH INTERNAT IONAL

INTERNET & SOFTWARE
Q U A L I T Y W E E K
San Francisco ● May 29 - June 1, 2001

Organized by
Software
Research
Institute

In cooperation
with

The Internet Wave
It's the driving factor in today's technology growth.

QW2001 aims to face internet and software quality
issues directly.

Keynoters and speakers with real-world experience
that you can apply immediately.

Fourteen years of serving the SQA community with
cutting-edge experience and state-of-the-art technology.

e

Media
Sponsors

SOFTWARE RESEARCH

Quality Week 2001 Program

NOTE: The program selections, speaker biographies, and presentation abstracts may be incomplete in some instances;
this material is being updated constantly. All material presented is based on the best information available and may be
subject to change. Updated 23 February 2001.

QUICK ACCESS TO THE FOUR DAY PROGRAM AT QW2001

Pre-Conference Tutorials Tuesday 29 May 2001

Conference Day 1 Wednesday 30 May 2001

Conference Day 2 Thursday 31 May 2001

Conference Day 3 Friday 1 June 2001

Post Conference Workshops Friday 1 June 2001

Vendor Demonstration Sessions Wednesday 30 May 2001
Thursday 31 May 2001

The QW2001 program is linked to speaker biographies and presentation abstracts.
Click on a Speaker or on a Title to read the Presentation Summary and Author

Biography.
Paper descriptions will appear in a separate popup window.

REGISTER FOR QW2001

[BACK TO TOP]

T Tuesday 29 May 2001
PRE-CONFERENCE TUTORIALS

8:30
-

12:00

Tutorial A1

Mr. Tom
Gilb

(Result
Planning
Limited)
Software

Inspection
For The
Internet

Age: How
To Increase
Effect And
Radically

Reduce the
Cost

(Part I)

Tutorial B1

Mr. Erik
Simmons

(Intel
Corporation)
Writing Good
Requirements

Tutorial C1

Dr. Norman
F.

Schneidewind
(Naval

Postgraduate
School)

A Roadmap
To

Distributed
Client-Server

Software
Reliability

Engineering

Tutorial D1

Dr.
Gualtiero
Bazzana
(ONION,

S.P.A)
Web Testing
Techniques
and Tools

(Part I)

Tutorial E1

Mr. Robert A.
Sabourin

(AmiBug.Com)
Getting Started

-- Stressing
Web

Applications:
Stress Early --
Stress Often

Tutorial F1

Mr. Ross
Collard

(Collard and
Co.)
Test

Estimating

Tutorial G1

Mr. Thomas
Drake

(Integrated
Computer
Concepts,
Inc ICCI)

The Quality
Challenge

For Network
Based

Software
Systems

12:00
-

1:30
TUTORIAL DAY LUNCH AND NETWORKING

1:30
-

5:00

Tutorial A2

Mr. Tom
Gilb

(Result
Planning
Limited)
Software

Inspection
For The
Internet

Age: How
To Increase
Effect And
Radically

Reduce the
Cost

(Part II)

Tutorial B2

Mr. Bill
Deibler

(Software
Systems
Quality

Consulting)
Making the

CMM Work:
Streamlining
the CMM for

Todays
Projects and

Organizations

Tutorial C2

Dr. John D.
Musa

(Consultant)
More

Reliable
Software

Faster And
Cheaper

Tutorial D2

Dr.
Gualtiero
Bazzana
(ONION,

S.P.A)
Web Testing
Techniques
and Tools
(Part II)

Tutorial E2

Dr. Edward
Miller

(eValid)
Client-Side

WebSite
Testing

Tutorial F2

Dr. Cem
Kaner

(Florida
Institute of

Technology)
Teaching
Testing: A

Skills-Based
Approach

Tutorial G2

Mr. Ed Kit
(SDT

Corporation)
Establishing

a Fully
Integrated

Test
Automation
Architecture

5:00
-

6:00
Welcome Networking Reception

[BACK TO TOP]

Wednesday 30 May 2001
CONFERENCE DAY #1

QW2001 Exhibition: 10:00 AM to 6:00 PM

1
8:30

-
10:00

PLENARY SESSION

Plenary Session Introduction:
Edward Miller

(Software Research, Inc.)

Keynote 1P1:
Mr. Ed Kit

(SDT Corporation)
Test Automation -- State of the Practice

Keynote 1P2:
Mr. Hans Buwalda

(CMG)
The Three "Holy Grails" of Test Development

(...adventures of a mortal tester..)

10:00
-

10:30
REFRESHMENTS IN EXHIBIT HALL

2

10:30
-

12:00

Vendor
Technical

Track

Technology
Track

Test
Automation

Applications
Track

Using Models

Internet
Track

Web-Oriented
Process

Management
Track

Requirements

QuickStart
Track

Session 2V1

Mr. Steve
Nemzer

(VeriTest)
Testing In
Multi-CPU

Environment

Paper 2T1

Mr. Tobias
Mayer, Mr.

Thomas
Stocking

(eValid, Inc.,
siteROCK)

The Web Site
Testing

Challenge

Paper 2A1

Mr. James
Tierney

(Microsoft)
Getting Started

With
Model-Based

Testing

Paper 2W1

Mr. Adrian
Cowderoy

(Professional-
Spirit Ltd)

Quality in a
Dotcom

Startup --
Fact or
Fiction?

Paper 2M1

Mr. Scott
Jefferies

(Technology
Builders, Inc.)

A
Requirements-

Based
Approach To
Delivering
E-Business

And
Enterprise

Applications

Session 2Q

Mr. Kent Beck
(Author)
Extreme

Programming
Explained

Session 2V2

Mr. Francois
Charette

(TestQuest)
Testing

Configurable
Product

Platforms

Paper 2T2

Ms. Nancy
Eickelmann
& Mr. Allan

Willey
(Motorola

Labs)
An Integrated
System Test
Environment

Paper 2A2

Mr. Klaus
Olsen

(Software-
test.dk)

Using The W
Model To

Institutionalize
Inspections,
And Improve
Knowledge
Transfers

Paper 2W2

Mr. Todd
Hsueh
(IBM)

Innovative
Web Test
Process &

Control Tool

Paper 2M2

Mr. Robert
Benjamin, Ms.

Ruth
Pennoyer &
Ms. Karen

Law
(Spherion

Corporation)
Pre-Defining

Success:
Incorporating
e-Metrics Into
Business And

Technical
Requirements
For Web And

e-Business
Solutions

12:00
-

1:30

CONFERENCE LUNCH AND NETWORKING IN
EXHIBIT HALL

3

1:30
-

3:00

Vendor
Technical

Track

Technology
Track

Process
Models

Applications
Track

Outsourcing

Internet
Track

Performance
& Load

Management
Track

New Methods

QuickStart
Track

Session 3V1

Mr. Christian
Hote

(PolySpace
Technologies)
Bug Detection

Tools for
Productivity

Paper 3T1

Mrs. Manjula
Madan
(Philips
Software
Centre,

Bangalore)
Defect

Reduction
Using

Orthogonal
Defect

Classification
Methodology

Paper 3A1

Mr. Ralph
Dalebout

(IBM Printing
Systems
Division)

Beta Testing
With Rapid

Development

Paper 3W1

Ms. Nancy
Landau
(Alltel

Technology
Services)

Performance
Testing

Applications
In Internet

Time

Paper 3M1

Mr. Timothy
Kelliher, Dr.

Daniel Blezek,
Mr. William
Lorensen &
Mr. James

Miller
(GE Research

&
Development)

Six-Sigma
Meets

Extreme
Programming:
Changing the
Way We Work

Session 3Q

Mr. Tom Gilb
(Result Planning

Limited)
Planguage: A

Defined Language
for Clearer

Requirements and
Design

Session 3V2

Ms. Peggy Fouts
(Compuware)
Test Planning
For Xtreme

Times

Paper 3T2

Dr. Mark R.
Blackburn,
Mr. Robert
Busser, Mr.

Aaron
Nauman &

Dr.
Ramaswamy

Chandramouli
(Software

Productivity
Consortium)
Model-based
Approach To
Security Test
Automation

Paper 3A2

Mr. Roger M.
Records
(Boeing

Commercial
Airplane
Group)

Assuring
Quality In

Outsourced
Software

Paper 3W2

Mr. Steve
Splaine

(Splaine &
Associates)

Modeling The
Real World
For Load

Testing Web
Sites

Paper 3M2

Ms. Elli
Georgiadou
(Middlesex

University) &
Naomi Barber
(University of

North
London)

Investigating
The

Applicability
Of The

Taguchi
Method To
Software

Development

3:00
-

3:30
REFRESHMENTS IN EXHIBIT HALL

4

3:30
-

5:00

Vendor
Technical

Track

Technology
Track

Metrics

Applications
Track

Reliability

Internet
Track

Test Practices

Management
Track

Life Cycle
Issues

QuickStart
Track

Session 4V1

Mr. John Keller
(TeamShare, Inc.)

Collaborative
Product Design

and the New Role
of Testing

Paper 4T1

Prof. Warren
Harrison
(Portland

State
University)
A Universal

Metrics
Repository

Paper 4A1

Mr. Henk
Keesom & Dr.

John Musa
(Ortho-Clinical

Diagnostics)
Using Test
Data To

Calculate
Software

Reliability
Growth

Paper 4W1

Mr. Nikhil
Nilakantan &
Mr. Ibrahim

K. El-Far
(Florida

Tech) Why Is
API Testing

Different

Paper 4M1

Mr. David
Fern (Micros
Systems Inc.)
How Testers

Can And
Should Drive
Development

Cycles

Session 4Q

Mr. Greg Clower
(SDT Corporation)

Establishing a
Telecommunication

Test Automation
System

Session 4V2

Mr. Michael
Smith

(McCabe&Assoc)

Paper 4T2

Mr. Suresh
Nageswaran
(Cognizant
Technology
Solutions

CTS)
Test Effort
Estimation
Using Use

Case Points
(UCP)

Paper 4A2

Mr. Erik
Simmons

(Intel
Corporation)

Product
Triage: A
"Medical"

Approach To
Predicting And

Monitoring
Product

Paper 4W2

Mr. Phil
Hollows

(RadView
Software)

Best
Practices in

Web
Performance

Testing

Paper 4M2

Dr. Cem
Kaner (Florida

Institute of
Technology)

Managing The
Proportion Of

Testers To
Developers

5:00
-

6:00

Mr. Brian Lawrence, Panel 4P Chair

Special Panel Session: How DO You Test Internet Software?

5:00
-

6:30

EXPO RECEPTION
Drinks and hors d'oeuvres are served in the Expo Hall.

7:15

QW2001 Special Event!
Arizona Diamondbacks

VS.
San Francisco Giants

at PacBell Park

[BACK TO TOP]

Thursday 31 May 2001
CONFERENCE DAY #2

QW2001 Exhibition: 10:00 AM to 6:00 PM

5
8:30

-
10:00

PLENARY SESSION

Plenary Session Introduction:
Edward Miller

(Software Research, Inc.)

Keynote 5P1:
Dr. Linda Rosenberg

(GSFC NASA)
Independent Verification And Validation Implementation At NASA

Keynote 5P2:
Dr. Dalibor Vrsalovic

(Intel Corporation)
Issues in Design and Validation of Modern eBusiness Systems

10:00
-

10:30
REFRESHMENTS IN EXHIBIT HALL

6

10:30
-

12:00

Vendor
Technical

Track

Technology
Track

Advanced
Automation

Applications
Track

Field Reports

Internet
Track

Complexity
Estimation

Management
Track

Release Criteria

QuickStart
Track

Session 6V1

Ms. Lauri
MacKinnon

(Vanteon) Three
Customer Case

Studies of
Performance
Testing using

Segue
SilkPerformer

Paper 6T1

Dr. Rainer Stetter
(ITQ Gmbh &

Software Factory
Gmbh)

Test Strategies
for Embedded

Systems

Paper 6A1

Mr. Steve
Whitchurch

(Mentor Graphics
Corp.)

Trials and
Tribulations Of

Testing a
Java/C++ Hybrid

Application

Paper 6W1

Mr. Mark
Johnson

(Cadence Design
Systems)

How Are You
Going To Test All

Those
Configurations?

Paper 6M1

Mr. Geert
Pinxten
(I2B)

The Extended
Product Quality

Model

Session 6Q

Ms. Jeanette
Folkes

(Modem
Media)

WebTesting
101

Session 6V2

Mr. Larry
Markesian

(Reasoning)
Improving

Software Quality
& Delivery
Schedules
Through

Automated
Inspection

Paper 6T2

Mr. Keith B.
Stobie

(BEA Systems,
Inc.)

Automating Test
Oracles and

Decomposability

Paper 6A2

Mr. Juris Borzovs
& Mr. Martins

Gills
(Riga Information
Technology Inst.)

Software Testing in
Latvia: Lessons

Learned

Paper 6W2

Mr. Rakesh
Agarwal, Mr.

Santanu Banerjee
& Mr. Bhaskar

Gosh
(Infosys

Technologies
Ltd)

Estimating
Internet Based

Projects: A Case
Study

Paper 6M2

Ms. Johanna
Rothman

(The Rothman
Consulting

Group)
Using

Requirements To
Create Release

Criteria

12:00
-

1:30

CONFERENCE LUNCH AND NETWORKING IN EXHIBIT
HALL

7

1:30
-

3:00

Vendor
Technical

Track

Technology
Track

Functional
Testing

Applications
Track

Protocol Issues

Internet
Track

Web Lifecycles

Management
Track

Review
Techniques

QuickStart
Track

Session 7V1

Mr. Rick
Banister
(Sesame

Technology)
Clothing
Optional

Relationships
With Your

Customers--How
much should we

expose to our
customers when
it comes to the

product
improvement

process?

Paper 7T1

Mr. Don Cohen
(Princeton
Softech)

Requirements
For A

Comprehensive
Testing

Environment

Paper 7A1

Dr. Holger
Schlingloff & Dr.

Jan Bredereke
(Technologie-

Zentrum
Informatik)

Specification Based
Testing Of the

UMTS Protocol
Stack

Paper 7W1

Mr. Bhushan
Gupta & Mr.
Steve Rhodes

(Hewlett-Packard
Co.)

Adopting A
Lifecycle For

Developing Web
Based

Applications

Paper 7M1

Mr. Michael
Ensminger

(PAR3
Communications)
Walk & Stagger
Through Review

Process

Session 7Q

Mr. James
Bach

(Satisfice Inc)
High

Accountability
Exploratory

Testing

Session 7V2

Dr. Edward
Miller

(eValid, Inc.)
Universal

Client-site Web
Test Engine

Paper 7T2

Mr. James
Lyndsay

(Workroom
Productions)

The Importance
of Data In
Functional

Testing

Paper 7A2

Mr. Michael K.
Jones

(Dromedary Peak
Consulting/Western

International
University)

High Availability
Testing

Paper 7W2

Mr. Eric Patel
(Nokia Home

Communications)
Rapid SQA: Web
Testing At The
Speed Of The

Internet

Paper 7M2

Prof. Warren
Harrison, Dr.

David Raffo &
Dr. John Settle
(Portland State

University)
Process

Improvement As
A Capital
Investment

3:00
-

3:30
REFRESHMENTS IN EXHIBIT HALL

8

3:30
-

5:00

Vendor
Technical

Track

Technology
Track

Novel
Approaches

Applications
Track

Low-Level Testing

Internet
Track

Bug-Based
Methods

Management
Track

Risk-Based
Methods

QuickStart
Track

Session 8V1
Mr. Steve Smith
(QualityLogic)
Develop Great

Stuff,
Repeatedly, On

Time

Paper 8T1

Mr. J. D. Brisk
(Exodus

Communications)
Peer-to-Peer

Computing: The
Future Of
Internet

Performance
Testing

Paper 8A1

Mr. Vince
Budrovich
(ParaSoft

Corporation)
Increasing The
Effectiveness Of
Load Testing:

Unit-Level Load
Testing

Paper 8W1

Dr. James Helm
(Univ. of

Houston Clear
Lake)

Web-Based
Application

Quality
Assurance

Testing

Paper 8M1

Ms. Sandy
Sweeney

(Compuware
Corporation)

Risky Business --
Adding Risk

Assessment To
The Test

Planning Process

Session 8Q

Mr. Robert A.
Sabourin

(AmiBug.Com)
The Effective

SQA Manager:
Getting Things

Done

Session 8V2
Mr. Shel Siegel

(Tescom)
Component

Based
Architecture for

Automated
Testing

Paper 8T2

Mr. Erik
Simmons

(Intel
Corporation)
Quantifying

Quality
Requirements

using Planguage

Paper 8A2

Mr. Scott Trappe
(Reasoning, Inc.)
Building Better
Software Code:

Finding Bugs You
Never Knew You

Had

Paper 8W2

Mr. Kim Davis &
Mr. Robert
Sabourin

(My Virtual
Model Inc.)
Exploring,

Discovering and
Exterminating

Bug Clusters In
Web Applications

Paper 8M2

Mr. Kamesh
Pemmaraju

(Cigital, Inc.)
Software Risk
Management

5:00
-

6:00

Nick Borelli, Panel 8P Chair
Special Panel Session: ASK THE QUALITY EXPERTS!

Stump the Quality Experts If You Can!
Post Your Questions LIVE on the Web!

QW2001 Advisory Board Members Will Answer All Questions!
(In Cooperation With Microsoft Corporation)

[BACK TO TOP]

Friday 1 June 2001
CONFERENCE DAY #3

9

8:30
-

10:00

Vendor
Technical

Track

Technology
Track

Advanced Tools

Applications
Track

Embedded
Systems

Internet
Track

Real-World
Studies

Management
Track

Organizational
Issues

Panel
Session

Session
9V1

Paper 9T1

Mr. Greg Berger
(Lawson
Software)
Creating A

Tool-Independent
Test Environment

Paper 9A1

Dr. Harmen
Sthamer & Mr.

Joachim
Wegener

(DaimlerChrysler
AG)

Evolutionary
Testing Of
Embedded

Systems

Paper 9W1

Ms. Patricia D.
Humphrey

(Neoforma.com)
Quality

Assurance and
the Internet Site

- How To
Effectively Hit a
Moving Target

Paper 9M1

Mr. Michael J.
Hillelsohn
(Software

Performance
Systems)

Organizational
Performance
Engineering:

Quality
Assurance For

The 21st
Century

Session 9Q

Dr. John D.
Musa

- Panel
Chair

(Consultant)
How Will

The Internet
Affect

Software
Quality

Practice?

Session
9V2

Paper 9T2

Mr. Timothy
Kelliher, Dr.

Daniel Blezek,
Mr. William

Lorensen & Dr.
James Miller

(GE Corporate
R&D)

The Frost
Extreme Testing

Framework

Paper 9A2

Mr. Hung Q.
Nguyen

(LogiGear
Technology)

The Design and
Implementation
of a Flexible,
Reusable and
Maintainable
Automation
Framework

Paper 9W2

Mr. Alexey
Kerov

(Amphora
Quality

Technologies)
Iterative

Approach as
Basis For
Effective
Testing

Paper 9M2

Mr. Brian
Lawrence
(Coyote
Valley

Software)
Choosing
Potential

Improvements
-- Comparing
Approaches

10:00
-

10:30
REFRESHMENTS

10
10:30

-
12:30

PLENARY SESSION

Plenary Session Introduction:
Edward Miller

(Software Research, Inc.)

Keynote 10P1:
Ms. Lisa Crispin

(Tensegrent)
The Need For Speed: Acceptance Test Automation in an eXtreme Programming Environment

(QW2000 Best Presentation)

Keynote 10P2:
Dave Lilly

(siteROCK Corporation)
Internet Quality of Service (QoS): The State Of The Practice

Keynote 10P3:
Mr. Thomas Drake

(Integrated Computer Concepts, Inc ICCI)
Riding The Wave -- The Future For Software Quality

AWARDS PRESENTATION
1:00 -
2:00 CONFERENCE LUNCH

[BACK TO TOP]

Friday 1 June 2001
POST-CONFERENCE WORKSHOPS

W
2:00

-
5:00

Technology
Workshop W1
Dr. Cem Kaner

(Florida Institute of
Technology)

Developing The Right
Test Documentation

Applications
Workshop W2
Mr. John Paul

(Minjoh Technology
Solutions)

Automating Software
Testing: A Life-Cycle

Internet
Workshop W3

Mr. Robert A. Sabourin
(AmiBug.Com)

Bug Priority And
Severity

Management
Workshop W4

Ms. Johanna
Rothman, Elizabeth

Hendrickson
(The Rothman

Consulting Group)
Grace Under

Pressure: Handling
Sticky Situations in

Testing

[BACK TO TOP]

SB

Standby Presentations
Technology Track Applications

Track
Internet Track Management

Track

Mr. Michael K. Jones,
Assistant Professor
(Dromedary Peak

Consulting/Western
International University)
Test Strategy Derivation

Dr. John D. Musa
(Consultant)

More Reliable
Software Faster

And Cheaper -- An
Overview

Dr. Kobad
Bugwadia, Kris

Mohan
(Intel Corporation)

Quality Issues,
Requirements &
Challenges For

Multimedia
Streaming On The

Internet

Ms. Joanna
Rothman

(The Rothman
Consulting Group)

Successful Test
Management: 10
Lessons Learned

[BACK TO TOP]

Vendor Demonstration Sessions
Wednesday 30 May 2001 Thursday 31 May 2001

10:00 10:00

10:30 10:30

11:00 11:00

11:30 11:30

1:00 1:00

1:30 1:30

2:00 2:00

2:30 2:30

3:00 3:00

3:30 3:30

[BACK TO TOP]

http://192.9.200.3/QualWeek/QW2001/program.phtml
http://192.9.200.3/QualWeek/QW2001/register.phtml
http://192.9.200.3/QualWeek/QW2001/Papers/A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/B1.html
http://192.9.200.3/QualWeek/QW2001/Papers/B1.html
http://192.9.200.3/QualWeek/QW2001/Papers/B1.html
http://192.9.200.3/QualWeek/QW2001/Papers/B1.html
http://192.9.200.3/QualWeek/QW2001/Papers/C1.html
http://192.9.200.3/QualWeek/QW2001/Papers/C1.html
http://192.9.200.3/QualWeek/QW2001/Papers/C1.html
http://192.9.200.3/QualWeek/QW2001/Papers/C1.html
http://192.9.200.3/QualWeek/QW2001/Papers/C1.html
http://192.9.200.3/QualWeek/QW2001/Papers/C1.html
http://192.9.200.3/QualWeek/QW2001/Papers/C1.html
http://192.9.200.3/QualWeek/QW2001/Papers/C1.html
http://192.9.200.3/QualWeek/QW2001/Papers/C1.html
http://192.9.200.3/QualWeek/QW2001/Papers/C1.html
http://192.9.200.3/QualWeek/QW2001/Papers/D1.html
http://192.9.200.3/QualWeek/QW2001/Papers/D1.html
http://192.9.200.3/QualWeek/QW2001/Papers/D1.html
http://192.9.200.3/QualWeek/QW2001/Papers/D1.html
http://192.9.200.3/QualWeek/QW2001/Papers/D1.html
http://192.9.200.3/QualWeek/QW2001/Papers/D1.html
http://192.9.200.3/QualWeek/QW2001/Papers/E1.html
http://192.9.200.3/QualWeek/QW2001/Papers/E1.html
http://192.9.200.3/QualWeek/QW2001/Papers/E1.html
http://192.9.200.3/QualWeek/QW2001/Papers/E1.html
http://192.9.200.3/QualWeek/QW2001/Papers/E1.html
http://192.9.200.3/QualWeek/QW2001/Papers/E1.html
http://192.9.200.3/QualWeek/QW2001/Papers/E1.html
http://192.9.200.3/QualWeek/QW2001/Papers/E1.html
http://192.9.200.3/QualWeek/QW2001/Papers/F1.html
http://192.9.200.3/QualWeek/QW2001/Papers/F1.html
http://192.9.200.3/QualWeek/QW2001/Papers/F1.html
http://192.9.200.3/QualWeek/QW2001/Papers/F1.html
http://192.9.200.3/QualWeek/QW2001/Papers/G1.html
http://192.9.200.3/QualWeek/QW2001/Papers/G1.html
http://192.9.200.3/QualWeek/QW2001/Papers/G1.html
http://192.9.200.3/QualWeek/QW2001/Papers/G1.html
http://192.9.200.3/QualWeek/QW2001/Papers/G1.html
http://192.9.200.3/QualWeek/QW2001/Papers/G1.html
http://192.9.200.3/QualWeek/QW2001/Papers/G1.html
http://192.9.200.3/QualWeek/QW2001/Papers/G1.html
http://192.9.200.3/QualWeek/QW2001/Papers/A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/B2.html
http://192.9.200.3/QualWeek/QW2001/Papers/B2.html
http://192.9.200.3/QualWeek/QW2001/Papers/B2.html
http://192.9.200.3/QualWeek/QW2001/Papers/B2.html
http://192.9.200.3/QualWeek/QW2001/Papers/B2.html
http://192.9.200.3/QualWeek/QW2001/Papers/B2.html
http://192.9.200.3/QualWeek/QW2001/Papers/B2.html
http://192.9.200.3/QualWeek/QW2001/Papers/B2.html
http://192.9.200.3/QualWeek/QW2001/Papers/B2.html
http://192.9.200.3/QualWeek/QW2001/Papers/C2.html
http://192.9.200.3/QualWeek/QW2001/Papers/C2.html
http://192.9.200.3/QualWeek/QW2001/Papers/C2.html
http://192.9.200.3/QualWeek/QW2001/Papers/C2.html
http://192.9.200.3/QualWeek/QW2001/Papers/C2.html
http://192.9.200.3/QualWeek/QW2001/Papers/C2.html
http://192.9.200.3/QualWeek/QW2001/Papers/C2.html
http://192.9.200.3/QualWeek/QW2001/Papers/D2.html
http://192.9.200.3/QualWeek/QW2001/Papers/D2.html
http://192.9.200.3/QualWeek/QW2001/Papers/D2.html
http://192.9.200.3/QualWeek/QW2001/Papers/D2.html
http://192.9.200.3/QualWeek/QW2001/Papers/D2.html
http://192.9.200.3/QualWeek/QW2001/Papers/D2.html
http://192.9.200.3/QualWeek/QW2001/Papers/E2.html
http://192.9.200.3/QualWeek/QW2001/Papers/E2.html
http://192.9.200.3/QualWeek/QW2001/Papers/E2.html
http://192.9.200.3/QualWeek/QW2001/Papers/E2.html
http://192.9.200.3/QualWeek/QW2001/Papers/E2.html
http://192.9.200.3/QualWeek/QW2001/Papers/F2.html
http://192.9.200.3/QualWeek/QW2001/Papers/F2.html
http://192.9.200.3/QualWeek/QW2001/Papers/F2.html
http://192.9.200.3/QualWeek/QW2001/Papers/F2.html
http://192.9.200.3/QualWeek/QW2001/Papers/F2.html
http://192.9.200.3/QualWeek/QW2001/Papers/F2.html
http://192.9.200.3/QualWeek/QW2001/Papers/G2.html
http://192.9.200.3/QualWeek/QW2001/Papers/G2.html
http://192.9.200.3/QualWeek/QW2001/Papers/G2.html
http://192.9.200.3/QualWeek/QW2001/Papers/G2.html
http://192.9.200.3/QualWeek/QW2001/Papers/G2.html
http://192.9.200.3/QualWeek/QW2001/Papers/G2.html
http://192.9.200.3/QualWeek/QW2001/Papers/G2.html
http://192.9.200.3/QualWeek/QW2001/board.phtml
http://192.9.200.3/QualWeek/QW2001/Papers/1P1.html
http://192.9.200.3/QualWeek/QW2001/Papers/1P1.html
http://192.9.200.3/QualWeek/QW2001/Papers/1P2.html
http://192.9.200.3/QualWeek/QW2001/Papers/1P2.html
http://192.9.200.3/QualWeek/QW2001/Papers/1P2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/2Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/2Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/2Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/2Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/2V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/2M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/3Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/3Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/3Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/3Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/3Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/3Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/3V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/3M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/4Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/4Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/4Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/4Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/4Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/4V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/4P.html
http://192.9.200.3/QualWeek/QW2001/Papers/4P.html
http://192.9.200.3/QualWeek/QW2001/Papers/4S.html
http://192.9.200.3/QualWeek/QW2001/Papers/4S.html
http://192.9.200.3/QualWeek/QW2001/Papers/4S.html
http://192.9.200.3/QualWeek/QW2001/Papers/4S.html
http://192.9.200.3/QualWeek/QW2001/board.phtml
http://192.9.200.3/QualWeek/QW2001/Papers/5P1.html
http://192.9.200.3/QualWeek/QW2001/Papers/5P1.html
http://192.9.200.3/QualWeek/QW2001/Papers/5P2.html
http://192.9.200.3/QualWeek/QW2001/Papers/5P2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/6Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/6Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/6Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/6Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/6M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/7Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/7Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/7Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/7Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/7Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/7Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/7V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/7M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8V1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/8Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/8Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/8Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/8Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/8Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/8Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/8V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8V2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/8P.html
http://msoffweb.rte.microsoft.com/
http://192.9.200.3/QualWeek/QW2001/Papers/9T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9T1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9M1.html
http://192.9.200.3/QualWeek/QW2001/Papers/9Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/9Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/9Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/9Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/9Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/9Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/9Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/9Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/9Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/9Q.html
http://192.9.200.3/QualWeek/QW2001/Papers/9T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9T2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9A2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9M2.html
http://192.9.200.3/QualWeek/QW2001/Papers/9M2.html
http://192.9.200.3/QualWeek/QW2001/board.phtml
http://192.9.200.3/QualWeek/QW2001/Papers/10P2.html
http://192.9.200.3/QualWeek/QW2001/Papers/10P2.html
http://192.9.200.3/QualWeek/QW2001/Papers/10P3.html
http://192.9.200.3/QualWeek/QW2001/Papers/10P3.html
http://192.9.200.3/QualWeek/QW2001/Papers/W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/W1.html
http://192.9.200.3/QualWeek/QW2001/Papers/W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/W2.html
http://192.9.200.3/QualWeek/QW2001/Papers/W3.html
http://192.9.200.3/QualWeek/QW2001/Papers/W3.html
http://192.9.200.3/QualWeek/QW2001/Papers/W3.html
http://192.9.200.3/QualWeek/QW2001/Papers/W4.html
http://192.9.200.3/QualWeek/QW2001/Papers/W4.html
http://192.9.200.3/QualWeek/QW2001/Papers/W4.html
http://192.9.200.3/QualWeek/QW2001/Papers/W4.html
http://192.9.200.3/QualWeek/QW2001/Papers/W4.html
http://192.9.200.3/QualWeek/QW2001/Papers/W4.html
http://192.9.200.3/QualWeek/QW2001/Papers/W4.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB1.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB1.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB1.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB2.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB2.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB2.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB2.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB2.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB8.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB8.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB8.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB8.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB8.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB8.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB8.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB8.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB8.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB4.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB4.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB4.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB4.html
http://192.9.200.3/QualWeek/QW2001/Papers/SB4.html

QW2001 Tutorial A1 & A2

Mr. Tom Gilb
(Result Planning Limited)

Software Inspection For The Internet Age: How To Increase
Effect And Radically Reduce the Cost

Key Points

Streamline inspections through sampling and measurement focus●

Refocus on defect prevention, not debugging●

The one hour flat Silicon Valley version of Inspection●

Presentation Abstract

Software Inspections were initially (1973 and on at IBM) used to clean up bugs,
and to get some quantitative insight into bugs that might be introduced into testing
and the field. This seminar will focus on a radical transformation of the original
inspection. We do not even try to clean up bad work! It probably would pay off to
'burn and rewrite'. Inspection is used to measure the Major defect content of any
software engineering specifications; requirements, design, test plans, code, user
manuals, test cases, outsourcing contracts and web-based business plans. The cost
can be kept down by sampling a few pages. The entire inspection cycle is reduced
to one single hour, as done at a major web business client of ours. The key decision
is to be able to 'Exit' the spec with less than one Major Defect per page, compared
to the over 100 Majors/page which are common today. The key judgement is
whether the spec matches a few critical best-practice 'Rules' of specification. In
short, inspection should not be 'debugging' of bad work. It can be Quality Control
through measurement and sampling.

About the Author

Tom Gilb was born in Pasadena in 1940, emigrated to London 1956, and to
Norway 1958, where he joined IBM for 5 years, and where he resides when not
travelling.

He has mainly worked within the software engineering community, but since 1983
with Corporate Top Management problems, and 1988 with large scale systems
engineering. He is an independent teacher, consultant and writer. He has published
eight books, including the early coining of the term "Software Metrics" (1976)
which is the basis for SEI CMM Level 4. He wrote "Principles of Software
Engineering Management" (1988, now in 13th printing, with 3 chapters on
Evolutionary delivery methods), and "Software Inspection" (1993). Both titles are
really systems engineering books in software disguise. His pro bono systems
engineering activities include several weeks a year for US DoD and Norwegian
DoD, and environmental (EPA) and Third-World Aid charities or organizations.

His clients include Hewlett Packard, Boeing, Microsoft, Ericsson, Alcatel, Nortel,
Oracle, Sun, British Aerospace, UK Civil Aviation Authority, Litton PRC,
Siemens, Medtronic and many others.

QW2001 Tutorial B1

Mr. Erik Simmons
(Intel Corporation)

Writing Good Requirements

Key Points

Discuss and choose from different techniques to specify requirements●

Improve written requirements and tell good requirements from bad ones●

Write non-functional requirements so they are verifiable●

Presentation Abstract

Presented at PNSQC 2000, attended by 54 people. First presentation outside of
Intel, where it was taught to more than 1,000 students around the world this year.
Of the 45 PNSQC evaluations returned, 44 would recommend the workshop to
others and found it either "valuable" or "very valuable". People like the fast pace
and depth of information presented. Poorly written requirements result in lost
productivity, increased re-work, dissatisfied customers, poor end product quality,
and even project cancellations. So, why are good requirements so hard to write?
Many people do not know the key attributes of a "Good Requirement", and have
not been exposed to the various effective ways to specify requirements.

This 1-day workshop focuses on and applies the best-known methods behind
improved requirements writing. Based closely on a popular course taught at Intel,
the course covers the different types of requirements and what activities are
important when specifying requirements. The emphasis is on practical solutions to
common problems, and contains valuable real examples from Intel documents in
both original and improved formats. Students will gain an understanding of the
attributes of a good requirement, and learn ways to identify whether the
requirement is unambiguous, concise, necessary, correct, and traceable. Many
useful "take it home and use it tomorrow" techniques for writing both functional
and non-functional requirements are presented. Several exercises are included to
reinforce the techniques. Attendees are invited to bring their existing requirements
documents for use in the final exercise if desired.

About the Author

Erik Simmons has 15 years experience in multiple aspects of software and quality
engineering. Erik currently works as a Platform Quality Engineer within the
Corporate Quality Network at Intel Corporation. He leads the corporate Software
Engineering Process Team that is charged with improving software development
capabilities across Intel's product development groups, and is responsible for Intel's

product requirements engineering practices.

QW2001 Tutorial C1

Dr. Norman F. Schneidewind
(Naval Postgraduate School)

A Roadmap To Distributed Client-Server Software
Reliability Engineering

Key Points

Software Reliability Engineering●

Distributed Client-Server Systems●

Software Reliability Standards●

Presentation Abstract

The objective of this tutorial is to help practitioners implement or improve a
software reliability program in their organizations, using a step-by-step approach
based on an enhanced version of the ANSI/AIAA Recommended Practice for
Software Reliability, the IEEE Standard Dictionary of Measures of the Software
Aspects of Dependability, and case studies from the NASA Space Shuttle and the
United States Marine Corps logistical systems. Modeling methods, prediction
techniques, and defect analysis for distributed systems will be emphasized.

About the Author

Dr. Norman F. Schneidewind is Professor of Information Sciences and Director of
the Software Metrics Research Center in the Division of Computer and
Information Sciences and Operations at the Naval Postgraduate School, where he
teaches and performs research in software engineering and computer networks. Dr.
Schneidewind is a Fellow of the IEEE, elected in 1992 for "contributions to
software measurement models in reliability and metrics, and for leadership in
advancing the field of software maintenance". He is the developer of the
Schneidewind software reliability model that is used by NASA to assist in the
prediction of software reliability of the Space Shuttle, by the Naval Surface
Warfare Center for Trident software reliability prediction, and by the Marine Corps
Tactical Systems Support Activity for distributed system software reliability
assessment and prediction. This model is one of the models recommended by the
American National Standards Institute and th! e American Institute of Aeronautics
and Astronautics Recommended Practice for Software Reliability. In addition, the
model is implemented in the Statistical Modeling and Estimation of Reliability
Functions for Software (SMERFS), software reliability-modeling tool. He has
published widely in the fields of software reliability and metrics.

In 1993 and 1999 he received an award for outstanding research achievements by
the Naval Postgraduate School. He was Chairman of the Working Group that
produced the IEEE Standard 1061-1992, Standard for a Software Quality Metrics
Methodology and its revision in 1998. In 1993 he was given the IEEE Computer
Society's Outstanding Contribution Award "for work leading to the establishment
of IEEE Standard 1061-1992". In addition, he was given the IEEE Computer
Society Meritorious Service Award "for his longÓterm committed work in
advancing the cause of software engineering standards".

QW2001 Tutorial D1, D2

Dr. Gualtiero Bazzana
(ONION, S.P.A)

Web Testing Techniques and Tools (D1) (D2)

Key Points

The tutorial focuses on testing methods and tools which can be successfully applied to the
testing of Web-based applications, notably, presented from a technical point of view

●

Internet WWW servers●

Intranet dynamic applications●

Extranet 30commerce application●

Presentation Abstract

First of all, peculiarities of Web-based applications will be presented from a
technical point of view, explaining their effects on testing practices. Moreover, the
tutorial will deal with testing management aspects which are fundamentally
affected by the nature of Web applications, including: RAD, regression issues,
Testing solution will then be presented, both for static aspects (related to HTML,
pictures, XML) and dynamic aspects (ASP, CGI, Proxies, Cookies, etc.).Room will
be devoted also to commercial tools available in order to give the audience an
overview of the existing technologies, highlighting also experience reports from
their introduction, including ROI analysis. Special emphasis will then be given to
the Web Accessibility Initiative (WAI) guidelines that have been issued by W3C
and can significantly help testing of Web-based applications. Last but not least, the
tutorial will touch the issues raised by integration testing between ERP and Web
and in the validation of E-business solutions. Case studies will cover: testing of
e-commerce sites, testing of commercial Internet Web sites, testing of Intranet
sites, testing of home banking/ trading on-line applications

About the Author

Born in 1966, at university, he graduated with 110/110 and honour in Information
Science at the University of Milan, in February 1989. His PhD won the special
AICA award for topics related to quality in Information Technology. After
working as software developer in a telecommunication company and as consultant/
manager in a consulting company he set-up ONION. His activities cover two areas
of interest: consulting - projects in software engineering for various industrial
companies and research in the field of software quality and networking (especially
in the Internet/ Intranet domain). As far as consulting/ projects in industry are
concerned, he matured and exploited know-how in conducting various medium

sized and large projects for several companies in various application domains
(telecommunications, data processing, MIS, process control, etc.), covering topics
like: Internet services, Intranet applications, Supply Chain management, etc.
Moreover he has matured significant experiences in the ERP domain, notably with
SAP R/3. He has matured significant technical experiences especially in the
telecommunications domain (notably: switching systems and GSM mobile radio
systems) in CIM and in networking, including Internet/ Intranet/ Extranet services
and solutions. He has also dealt with sw development and testing, testing methods
and tools, quality planning, test planning, reliability analysis, software product
evaluation, process assessment and improvement, definition of quality systems in
accordance to ISO 9001 and 9000/3, reviews and inspections, FDA computer
system validation and so forth His research activity spanned in various fields of
software engineering, ranging from Petri Nets to development methodologies,
functional and structural test coverage, metrics and related tools, CAST, reliability
evaluation, software development process evaluation and improvement,
management by metrics, software product quality evaluation, security technology
transfer and total quality management techniques. Moreover, he has co-ordinated
several European Research Projects. He has published a book: ("Software Metrics
for Product Assessment", McGraw Hill, London, 1995, International Software
Quality Assurance Series, ISBN 0-07-707923-X), contributed to 4 other books (in
the last one he has been author of four chapters dedicated to Software Process
Improvement; it has been published by IEEE Software) and published over 50
papers at international conferences on topics related to software quality and
software testing

QW2001 Tutorial E1

Mr. Robert A. Sabourin
(AmiBug.Com)

Getting Started -- Stressing Web Applications: Stress Early --
Stress Often

Key Points

Stress Testing●

Load Testing●

Performance Testing●

Presentation Abstract

This tutorial outlines very practical steps to follow when setting out to stress web
applications - preferably well before they actually go live. Real examples from
recent e-commerce projects are described - what works - what does not work -
when to use what tools or technique? How to avoid blowing the budget!

What can we tell about the way our application will react to success? Will the
application scale? How well? Can we tell? What can we tell? What can we
simulate?

Can we set up a test lab organization which allows for stress testing at the Unit,
Integration and System testing phases?

Techniques used in live e-commercce development sites are described. Where can
and should stress testing be implemented, at what stage of development? What do
we want to measure, how and why?

Practical tools and techniques are reviewed!

Examples are from the author's current experience related to testing some key
e-commerce sites - noteably the Virtual Model Shopping Experience at
www.landsend.com - www.jcpenny.com and many more extremely popular
e-commerce sites!

The tutorial also includes elements of test planning and some practical examples of
"risk analysis" applied to internet testing!

About the Author

Robert Sabourin has been involved in all aspects of development, testing and
management of software engineering projects. Robert graduated from McGill
University in 1982. Since writing his first program in 1972, Robert has become an
accomplished software engineering management expert. He is presently the
President of AmiBug.Com, Inc.; a Montreal-based international firm specializing

in software engineering and and software quality assurance training, management
consulting and professional development. AmiBug helps companies set up
software engineering and quality assurance teams and process through a
combination of training and management consulting. Robert was the Director of
Research and Development at Purkinje Inc where he was charged with developing
world class critical medical software used by clinicians at the point of care.
Previously, Robert managed Software Development at Alis Technologies for over
ten years. He has built several successful software development teams and
champions the implementation of "light effective process" to achieve excellence in
delivering on-time, on-quality, on-budget commercial software solutions.

Robert has championed many complex international multilingual software
development and globalization efforts involving several intricate business
partnerships and relationships including international government (Czech, Egypt,
France, Morocco, Algeria...) and commercial entities (Microsoft, IBM, AT&T, HP,
Thompson CSF, Olivetti...). Systems included concurrent coordinated multilingual
multiplatform product releases.

Robert's pioneering work with Infolytica Corporation led to the development of the
first commercially available platform independent graphics standard GKS and
several toolkits which allowed for cross platform development and porting of
complex CAD, Graphics, Analysis and Non-Destructive Simulation systems.

Robert is a frequent guest lecturer at McGill University where he relates theoretical
aspects of Software Engineering to real world examples with practical hands-on
demonstrations.

In 1999, Robert completed a short book illustrated by his daughter Catherine
entitled"I Am a Bug" (ISBN 0-9685774-0-7).

Robert has received professional recognition for many accomplishments over the
years. At TEPR 2000 - award for best electronic patient record product to EHS
using the Purkinje CNC component. Byte Middle-East's 1992 Product of the Year
for the AVT-710 product family achieving a ZERO FIELD REPORTED software
defect rate with over 15,000 units installed. (Project involved over 27-man month's
effort!); Quebec Order of Engineers' recognition for creating and managing the
Alis R&D Policy Guide - Development Framework and process.

QW2001 Tutorial F1

Mr. Ross Collard
(Collard and Co.)

Test Estimating

Key Points

Test Estimating Techniques●

What you Need to Know to Estimate the Testing Effort●

Guidelines for the Estimating Process●

Presentation Abstract

Question: When will the system testing be completed? (At the time the question is
asked, you do not know (a) the final scope of the functionality, (b) when the
developers will be done, and (c) what test resources you will have available. The
boss wants a definitive answer in two minutes anyway.)

Answer: Take a wild guess and multiply by two.

Question: What do you do when the boss cuts your agreed-on test duration by
85%?

Answer: Whine pathetically that you thought that he or she really understood
quality is important.

Developing realistic and credible estimates is a critical survival skill for test
professionals and managers.

Topics covered:

Test Estimating Techniques

What you Need to Know to Estimate the Testing Effort
Guidelines for the Estimating Process
Rules of Thumb:
Estimating the Number of Test Cases
Estimating the Test Resources
Estimating the Elapsed Time for Testing
Deadline Pressures & How to Handle Them

About the Author

Ross Collard is president of Collard & Company, a consulting firm which is

headquartered in Manhattan, New York City.

His consulting and training clients have included: ADP, Alcatel, American
Express, Anheuser-Busch, Apple, AT&T, Banamex, Bank of America, Bechtel,
Blue Cross/Blue Shield, Boeing, British Airways, the CIA, Ciba Geigy, Cisco,
Citibank, Computer Associates, Dayton Hudson, Dell, EDS, Exxon, General
Electric, Goldman Sachs, Federal Reserve, Ford, Hewlett-Packard, Hughes
Aircraft, IBM, Intel, Johnson & Johnson, JP Morgan, McGraw Hill, MCI, Merck,
Microsoft, Motorola, NASA, Nortel, Novell, Procter & Gamble, Prudential, Sears
Roebuck, Swiss Bank, U.S. Air Force, Verizon and Worldcom.

He has conducted seminars on business and information technology topics for
businesses, governments and universities, including George Washington, Harvard
and New York Universities, MIT, Stanford and U.C. Berkkeley.He has a BE in
Electrical Engineering from the University of New Zealand (where he grew up), an
MS in Computer Science from the California Institute of Technology and an MBA
from Stanford University. His set of books on software testing is due to be
published next year.

QW2001 Tutorial G1

Mr. Thomas Drake
(Integrated Computer Concepts, Inc ICCI)

The Quality Challenge For Network Based Software Systems

Key Points

Internet quality for network centric systems●

Enterprise testing●

Quality network systems theory●

Presentation Abstract

This tutorial will introduce a biologically inspired model-based conceptual
framework for network-centric testing and systems level quality assurance. It
involves an approach that can deal with computers and software viewed as a set of
interactive and dynamic behavioral objects that are themselves part of a larger
system rather than strictly for data processing and number crunching.

This conceptual framework for testing and quality assurance allows for examining
and dealing with a range of application behaviors and outcomes and the possible
interactions for these application objects without the necessity for fully
understanding them in advance! This can permit testing the fundamental structure
of a program and the application environment with the executable functional
mechanisms and interfaces underneath and across the network.

It permits an “inside out” and end-to-end approach such that testing and quality
engineering activities are based on the “genetic” makeup of the expected and
anticipated dynamic “state” attributes and characteristics of the system using its
own behavioral specifications as the test instruments for locating and stimulating
the “weak” links.

In addition, this tutorial will provide an overview for what I have coined the Rapid
Application Network Testing approach or RANT and examine the significant
challenges posed by network-based software systems for testing and quality
assurance. Tutorial will also consider the context and the background for
understanding the daunting task faced by quality specialists and information
technology management in dealing with the future, today!

This tutorial is meant to engage the participants and have you think “out of the
box” when it comes to the testing and quality assurance choices and challenges we
face every day in our increasingly networked environment.

About the Author

Mr. Drake is a software systems quality specialist and management and
information technology consultant for Integrated Computer Concepts, Inc. (ICCI)
in the United States. He also consults to industry and government on quality
management and software quality engineering and code development issues.

As part of an industry and government outreach/partnership program, he holds
frequent seminars and tutorials covering code analysis, software metrics, OO
analysis for C++ and Java, coding practice, testing, best current practices in
software development, the business case for software engineering, software quality
engineering practices and principles, quality and test architecture development and
deployment, project management, organizational dynamics and change
management, and the people side of information technology.

He is the principal author of a chapter on “Metrics Used for Object-Oriented
Software Quality” for a CRC Press Object Technology Handbook published in
December of 1998. In addition, Mr. Drake is the author of a theme article entitled:
“Measuring Software Quality: A Case Study” published in the November 1996
issue of IEEE Computer. He also had the lead, front page article published in late
1999 for Software Tech News by the US Department of Defense Data & Analysis
Center for Software (DACS) entitled: “Testing Software Based Systems: The Final
Frontier.” He is also one of the featured leading computer scientists interviewed in
the textbook entitled: Problem Solving, Abstraction, & Design Using C++, Third
Edition, 2000 by Friedman and Koffman from Addison Wesley Longman. Mr.
Drake is a member of IEEE and an affiliate member of the IEEE Computer
Society. He is also a Certified Software Test Engineer (CSTE) from the Quality
Assurance Institute (QAI).

QW2001 Tutorial A2

Mr. Tom Gilb
(Result Planning Limited)

Software Inspection For The Internet Age: How To Increase
Effect And Radically Reduce the Cost

Key Points

Streamline inspections through sampling and measurement focus●

Refocus on defect prevention, not debugging●

The one hour flat Silicon Valley version of Inspection●

Presentation Abstract

Software Inspections were initially (1973 and on at IBM) used to clean up bugs,
and to get some quantitative insight into bugs that might be introduced into testing
and the field. This seminar will focus on a radical transformation of the original
inspection. We do not even try to clean up bad work! It probably would pay off to
'burn and rewrite'. Inspection is used to measure the Major defect content of any
software engineering specifications; requirements, design, test plans, code, user
manuals, test cases, outsourcing contracts and web-based business plans. The cost
can be kept down by sampling a few pages. The entire inspection cycle is reduced
to one single hour, as done at a major web business client of ours. The key decision
is to be able to 'Exit' the spec with less than one Major Defect per page, compared
to the over 100 Majors/page which are common today. The key judgement is
whether the spec matches a few critical best-practice 'Rules' of specification. In
short, inspection should not be 'debugging' of bad work. It can be Quality Control
through measurement and sampling.

About the Author

Tom Gilb was born in Pasadena in 1940, emigrated to London 1956, and to
Norway 1958, where he joined IBM for 5 years, and where he resides when not
travelling.

He has mainly worked within the software engineering community, but since 1983
with Corporate Top Management problems, and 1988 with large scale systems
engineering. He is an independent teacher, consultant and writer. He has published
eight books, including the early coining of the term "Software Metrics" (1976)
which is the basis for SEI CMM Level 4. He wrote "Principles of Software
Engineering Management" (1988, now in 13th printing, with 3 chapters on
Evolutionary delivery methods), and "Software Inspection" (1993). Both titles are
really systems engineering books in software disguise. His pro bono systems
engineering activities include several weeks a year for US DoD and Norwegian
DoD, and environmental (EPA) and Third-World Aid charities or organizations.

His clients include Hewlett Packard, Boeing, Microsoft, Ericsson, Alcatel, Nortel,
Oracle, Sun, British Aerospace, UK Civil Aviation Authority, Litton PRC,
Siemens, Medtronic and many others.

QW2001 Tutorial B2

Mr. Bill Deibler
(Software Systems Quality Consulting)

Making the CMM Work: Streamlining the CMM for Todays
Projects and Organizations

Key Points

CMM, Process Assessment, Capability Maturity Model●

ISO 15504, ISO 12207, Software Process Improvement, Software Quality Models●

Software Quality Assurance, Tailoring, Small Projects●

Presentation Abstract

BACKGROUND

The SEI Software CMM is a comprehensive model that can serve as a basis for
assessing and improving the effectiveness of software development organizations.
The CMM was derived from the requirements of government purchasing agencies
overseeing large, complex, third-party development projects. Because of their large
project focus, the practices described in the CMM can appear to small, internal, or
commercial software development organizations to be inapplicable or burdensome
and bureaucratic. Version 1.1 of the CMM is published in two technical reports
containing a total of nearly 600 pages. The size of the CMM makes it difficult to
uncover the interrelationships among the elements that are essential to tailoring the
model to a small software development environment. It also makes the model
intimidating.

LEARNING OBJECTIVES

This tutorial allows participants to identify and leverage the strength of the CMM
to improve software development practices in their company. The tutorial prepares
the attendee to build durable, maintainable software development practices that
exploit the CMM framework. The tutorial ensures that the participant will be able
to: * Implement a realistic and useful strategy for deploying software development
practices in today's commercial organizations * Simplify the CMM to support
appropriate, effective, flexible software development processes for any size
organization * Resolve apparent discrepancies between the guidance in the CMM
and the needs of small, commercial and internal software development projects and
organizations * Identify and prioritize elements of advanced levels that should be
considered by every organization.

About the Author

William J. Deibler II has an MSc. in Computer Science and 20 years experience in
the computer industry, primarily in the areas of software and systems development,
software testing, and software quality assurance. Bill has extensive experience in
managing and implementing CMM- and ISO 9001-based process improvement in
software engineering environments.

Bill is a principal of SSQC. Since 1990, SSQC has specialized in supporting
organizations in the definition and implementation of Software Engineering
Practices, Software Quality Assurance and Testing, Business Process
Reengineering, ISO 9000 Registration and CMM implementation. SSQC offers
HM2, a unique, hybrid appraisal method that defines and correlates the position of
an organization with respect to both ISO 9001 and the CMM. The results of an
HM2 assessment are a plan and framework for improving software engineering
processes and for implementing the requirements of the two models. Bill has
developed and published numerous courses, auditing tools, research papers, and
articles on interpreting and applying the ISO 9000 standards and guidelines and the
SEI Capability Maturity Model for Software. His articles have appeared in
McGraw Hill's Quality Systems Update, IEEE COMPUTER, McGraw Hill’s ISO
9000 Handbook, CrossTALK, and Software Marketing Journal.

He has presented research papers at numerous national and international
conferences, including those sponsored by the American Society for Quality
Control (ASQC), Pacific Northwest Software Quality (PNSQC), the Software
Publishers Association (SPA), Software Technology Support Center (STSC), the
Software Engineering Institute (SEI) and Software Research Inc.. SSQC courses
have been attended by software engineering professionals from many of the
country's leading technology companies. SSQC courses have been sponsored for
their members by professional associations, including the ASQC, CSU Long
Beach's Software Engineering Forum for Training, Semiconductor Equipment and
Materials International (SEMI), Software Engineering Institute (SEI), UC Berkeley
and UC Santa Cruz.

SSQC is an active United States TAG member in the ISO/IEC JTC1 SC7 -
Software Engineering Standards subcommittee which is responsible for the
development and maintenance of ISO 12207 and ISO 15504 (SPICE). SSQC's
software development clients have successfully achieved ISO registration and
advanced CMM maturity levels.

QW2001 Tutorial C2

Dr. John D. Musa
(Consultant)

More Reliable Software Faster And Cheaper

Key Points

Testing●

Operational profiles●

Software reliability engineering●

Presentation Abstract

Software reliability engineering (SRE) can help those who are stressed out by
competitive pressures to produce more reliable software faster and cheaper. It is a
standard, proven, widespread best practice with substantial benefits that has been
used successfully by organizations such as Alcatel, AT&T, Bellcore, CNES
(France), ENEA (Italy), Ericsson Telecom, France Telecom, Hewlett Packard,
Hitachi, IBM, Lockheed-Martin, Lucent Technologies, Microsoft, MITRE,
Motorola, NASA’s Jet Propuls ion Laboratory and Space Shuttle Project, Nortel,
Raytheon, Saab Military Aircraft, Tandem Computers, US Air Force, and US
Marine Corps.

SRE is based on two powerful ideas:
· Determine how often your customers will use the various functions of your
product; then focus your resources in proportion to use and criticality. This
approach greatly increases your development efficiency and hence your effective
resource pool for adding customer value to your product.
· Further increase customer value by setting quantitative reliability objectives that
precisely balance customer needs for reliability, timely delivery, and cost; engineer
project strategies to meet them; and track reliability during test to guide release.
You can apply SRE to any system (new or legacy) using software and to members
of software comp onent libraries. You can start with the next release.

This tutorial quickly, efficiently teaches the practical basics of how to apply this to
your project. It uses a simple, realistic example throughout to illustrate the points.
Participants are strongly encouraged to relate the tutorial material to their
experience and to ask questions. A book Software Reliability Engineering: More
Reliable Software, Faster Development and Testing was written in coordination
with the tutorial; although not provided with the tutorial, its availability as a
follow-on and supplement to the tutorial is very useful for those wishing to pursue
the topic in more detail.

About the Author

John D. Musa is one of the creators of SRE, with more than 30 years varied and
extensive experience as a software development practitioner and manager.
Principal author of the highly-acclaimed pioneering book Software Reliability and
author of the practical Software Reliability Engineering, Musa has published more
than 100 papers on SRE. Elected IEEE Fellow in 1986 for many seminal
contributions, he was recognized in 1992 as the leading contributor to testing
technology. His leadership has been noted by every recent edition of Who’s Who
in America and American Men and Women of Science. Musa, widely recognized
as a leader in SRE practice, initiated and led the effort that convinced AT&T to
make SRE a “Best Current Practice.” Musa has helped a wide variety of companies
with a great diversity of software-based products deploy SRE. He is an
experienced international speaker and teacher (over 200 major presentations) A
founder of the IEEE Technical Committee on SRE, he is closely networked with
SRE leaders, providing a broad perspective.

QW2001 Tutorial E2

Dr. Edward Miller
(eValid)

Client-Side WebSite Testing

Key Points

In the past few years WebSites have grown from simple, static collections of HTML
pages to complex pieces of software using advanced technologies including ASP, XML,
script languages, e-commerce and more

●

Testing of such complexity is a forever-growing challenge●

Testing of passive vs. interactive pages & static vs. dynamic pages will be explored●

The use of a ‘Test Enabled Web Browser’ will be emphasized as the most effective way
of realistically testing most WebSites

●

Presentation Abstract

The Web is a complex place. There is much that is very importnat that can go
wrong. What really counts in terms of quality is how users perceive a site. Because
the client view is all-important, eValid's approach to WebSite testing is through a
Test Enabled Web Browser.

This presentation outlines the reasons why the client-side view is important, and
describes how a Test Enabled Web Browser can help sort out the WebSite quality
issue.

About the Author

Dr. Edward Miller is President of Software Research, Inc., San Francisco,
California, where he has been involved with software test tools development and
software engineering quality questions. Dr. Miller has worked in the software
quality management field for 25 years in a variety of capacities, and has been
involved in the development of families of automated software and analysis
support tools.

He was chairman of the 1985 1st International Conference on Computer
Workstations, and has participated in IEEE conference organizing activities for
many years. He is the author of Software Testing and Validation Techniques, an
IEEE Computer Society Press tutorial text. Dr. Miller received his Ph.D.
(Electrical Engineering) degree from the University of Maryland, an M.S. (Applied
Mathematics) degree from the University of Colorado, and a BSEE from Iowa

State University.

QW2001 Tutorial F2

Dr. Cem Kaner
(Florida Institute of Technology)

Teaching Testing: A Skills-Based Approach

Key Points

Training software testers involves teaching culture, vocabulary, concepts and skills●

We know what many of the basic testing skills are, but we can improve our training of
them

●

Skills are trainable. This session explores techniques for training key testing skills●

Presentation Abstract

Training software testers involves teaching culture, vocabulary, concepts and
skills. I think that many of the commercial seminars (and certification review
courses) teach vocabulary and many concepts quite well. Some of them address
cultural issues. Fewer address skills, but skills development is essential for new
testers.

I've been training testers for 18 years, sometimes personally coaching them,
sometimes teaching a pretty successful commercial seminar, and now teaching
undergraduate and graduate students. Over the past year, I've rethought my
approach to teaching.

When I studied mathematics, we learned a lot of conceptual material, but we also
did a lot of drill--exercise upon exercise--from the course text and from exercise
books like the Schaum's Outlines. These exercises forced the student to learn how
to work with the concepts, and how to apply them under a wide range of
circumstances.

Working primarily with James Bach, James Whittaker and Alan Jorgensen, I've
been trying to develop a list of specific skills that testers use in the normal course
of their work, and then develop exercises that will practice them in those skills. I
have several such exercises now and am developing more as I go.

This session will go through practice exercises in bug reporting, domain testing,
combination testing (all pairs), specification analysis for ambiguity, specification
analysis for holes, and possibly some other areas. The more time we have, the
more techniques we look at. In this session, I'll share course notes, quizzes, exam

questions, and explain how I use them.

About the Author

Cem Kaner is Professor of Computer Sciences at the Florida Institute of
Technology.

Prior to joining Florida Tech, Kaner worked in Silicon Valley for 17 years, doing
and managing programming, user interface design, testing, and user
documentation. He is the senior author (with Jack Falk and Hung Quoc Nguyen) of
TESTING COMPUTER SOFTWARE (2nd Edition) and (with David Pels) of
BAD SOFTWARE: WHAT TO DO WHEN SOFTWARE FAILS.

Through his consulting firm, KANER.COM, he teaches courses on black box
software testing and consults to software publishers on software testing,
documentation, and development management. Kaner is also the co-founder and
co-host of the Los Altos Workshop on Software Testing, the Software Test
Managers' RoundTable, the Workshop on Heuristic & Exploratory Techniques,
and the Florida Workshops on Model-Based Testing.

Kaner is also attorney whose practice is focused on the law of software quality. He
is active (as an advocate for customers, authors, and small development shops) in
several legislative drafting efforts involving software licensing, software quality
regulation, and electronic commerce. Kaner holds a B.A. in Arts & Sciences
(Math, Philosophy), a Ph.D. in Experimental Psychology (Human Perception &
Performance: Psychophysics), and a J.D. (law degree). He is Certified in Quality
Engineering by the American Society for Quality.

QW2001 Tutorial G2

Mr. Ed Kit
(SDT Corporation)

Establishing a Fully Integrated Test Automation
Architecture

Key Points

Discover the components of an effective test automation architecture●

Learn how to bridge test design and automation to provide an integrated test solution●

Understand the balance between process and technology●

Learn how to design and document highly inspectable tests●

Share experiences●

Examine a Web-based case study●

Presentation Abstract

Learn the latest, 3rd generation approach to test design and automation to enable
you to separate, yet integrate test design and automation, accomplish your software
testing more quickly using fewer technical testers and setup a test architecture that
requires far less maintenance. Experience testing a Web application will be
examined as well as tips for getting started with test automation.

About the Author

Edward Kit, founder and president of Software Development Technologies (SDT),
is well known as a test expert, author, and keynote speaker at testing conferences.
An international software consultant with over 20 years experience in software
engineering, Mr. Kit continues to advise clients on bringing practical and proven
software quality practices to their development efforts.

Ed holds a BSEE and MSEE from Purdue University.

QW2001 Keynote 1P1

Mr. Ed Kit
(SDT Corporation)

Test Automation -- State of the Practice

Presentation Abstract

In a world of constantly changing technology, how we do business is changing -
and how we need to test. Kit summarizes key shifts in software test automation and
will present a new automation model which includes an integrated set of testing
processes and techniques.

About the Author

Edward Kit, founder and president of Software Development Technologies (SDT),
is well known as a test expert, author, and keynote speaker at testing conferences.
An international software consultant with over 20 years experience in software
engineering, Mr. Kit continues to advise clients on bringing practical and proven
software quality practices to their development efforts.

Ed holds a BSEE and MSEE from Purdue University.

 Test Automation -
 State-of-the-Practice

Edward Kit
www.sdtcorp.com sdt@sdtcorp.com

© 2001 Software Development Technologies

Agenda

• Automated Software Quality:

– Industry Summary

– Good News / Bad News / Key Trends

• Test Design and Automation for Complex Systems

• Recommendations for Effective Test Automation

Slide 2

© 2001 Software Development Technologies

The Automated Software Quality Industry

• Worldwide Automated Software Quality (ASQ) Industry:

– 10+ Years Old

– $1+ Billion Market

– 30+% Annual Growth Rate

– IDC reports that the ASQ market will grow to over
$2.6 billion by 2004

• Continues to:

– Gain Respect, Business Acceptance

– Be Fueled by the Web
Slide 3

Key Types of Testing Tools

• Requirements Management
• Test Management
• Configuration Management
• Problem Management

• Technical Review Management
• Complexity Analysis

• Data Generators
• Test Case Generators

• Coverage Analysis
• Capture/Playback
• Third Generation Automation
• Memory Testing
• Client/Server
• Simulators & Performance
• Web Testing

Test Planning,
Management & Control

Reviews and Inspections

Test Design and Development

Test Execution
and Evaluation

Slide 4© 2001 Software Development Technologies

© 2001 Software Development Technologies

The Internet

• Permanently altered ASQ for the better

• Greatly increased the need for:

– Test Automation

– Performance, Security, Usability,
Functional Regression Testing

• Enabled Web-based collaborative tools for Management
of Requirements, Reviews, Defects, and Testing

• Opened the door for ASQ Service Providers

• Solidified the perception that automation is the only
practical way to perform web load testing

Slide 5

© 2001 Software Development Technologies

Web Load Testing is not Optional

• Load Testing is the fastest growing segment of the
ASQ market

• Web Application Performance:
– directly influences user satisfaction
– is tied to revenue, profits, brand value
– leads to competitive advantage when customers

are serviced efficiently
– problems can lead to major disasters and losses

• Performance testing tools are required to carry out
web load and stress testing

• A good load tool with a poorly-designed load test will
yield misleading and inaccurate results!

Slide 6

© 2001 Software Development Technologies

The Load Test Revolution

• The market for load testing tools and services grew
55% in 1999

• Market revenue from Web application load testing
tools and services increased 190% in 1999!!

Worldwide Load Test Market Growth
Distributed Environments, 1998 – 2003

$137.7
$214.0

$308.4
$430.2

$570.9

$746.1

0
100
200
300
400
500
600
700
800

1998 1999 2000 2001 2002 2003
Numbers in

Millions

[Reference – Newport Group]
Slide 7

© 2001 Software Development Technologies

Load Testing – Have it Your Way

Flexible Delivery and Pricing Models:

• Traditional buy tool / implement in-house

• Buy tool / contract with Load specialists to use in-house

• Load Test Tool Application Service Provider (ASP):
– Customer rents tool, infrastructure

– Customer designs, develops, manages tests and results

• Hosted Load Testing Management Service Provider (MSP):
– Provide staff, expertise, objectivity, infrastructure, results

Loads can be driven over the Internet
Great – But has Function Testing been forgotten?

Slide 8

© 2001 Software Development Technologies

Automated Function Testing

• Traditionally addressed by capture / playback tools

• The secret is out: Capture / Playback alone does not work

• Automated Function Testing is taking a back seat while
vendors regroup to deal with problems of:

– Maintenance

– Excessive Technical Resources required

– Excessive tool total cost of ownership

– Lack of attention to test design

What is the value of doing the wrong thing in a big way?

Slide 9

© 2001 Software Development Technologies

E-Bugs in E-Software

• Estimated worldwide Internet Commerce sales in 2003:

$3.2 trillion [Reference: Forrester Research]

• Software is a critical success factor for nearly everyone

• Distributed system components multiply complexities

making reliability more difficult to achieve

• Enormous visibility of E-Commerce software defects

• Expected levels of reliability and performance are

generally not being met . . .

Slide 10

© 2001 Software Development Technologies

E-Bugs are Expensive

• Businesses worldwide lose $500 billion each year due to
software failure

• Hershey suffered a $200 million decrease in revenues
due to a software glitch that prevented Halloween
candy from being shipped

• eBay market capitalization decreased $5.7 billion when
investors lost confidence when systems crashed due to a
software problem

• The SEC has fielded over 20,000 complaints from
investors experiencing online trading and banking bugs

[Reference: Payne]

Slide 11

© 2001 Software Development Technologies

Test Tools “Disturbingly Inadequate”

• NASA administrator Daniel S. Goldin:

 “Even as our reliance on software is increasing, the
tools we have for verifying our software are
disturbingly inadequate.”

 “Only about 2 percent of all software programs
are delivered on time, while meeting project
requirements.”

• NASA-UC-Industry team is working on developing
high-assurance software that can detect and
correct errors in itself.

[Reference: NASA]

Slide 12

© 2001 Software Development Technologies

The Current Sad Situation

• Project failure rates are still enormous

• Most software is still not tested well

• Early testing could have saved many failed projects

• The world of software development and testing has
never been more complicated

• Test automation improves test effectiveness, but tools
are often not successfully deployed

• An unfortunate casualty: Sun Java Testing Tools

• We’re in the early days of routine, effective automation

Slide 13

© 2001 Software Development Technologies

Web Application
Scalability Study Conclusions

• More than half of recently deployed transaction-based

Web applications did not meet expectations for how

many simultaneous users the applications could handle

• 94% of the applications that scaled well used automated

load testing tools prior to deployment!

[Reference: Newport Group]

Slide 14

© 2001 Software Development Technologies

Test Automation:
Serious Problems

• Lack of senior management knowledge and support

• Lack of an effective test automation architecture

• Lack of required specialized competencies:

– Test Design

– Technical Automation

– Application

• Lack of sufficient resources:

– Not enough people and / or staff turnover

– Not enough time for automation implementation

– Dedicated capital equipment

Slide 15

© 2001 Software Development Technologies

It’s Time to Specialize:
Roles-Based Testing

• Test Architect -- Creates the testing framework, i.e.,
overall approach to verification and validation, including
an integrated approach to test process and automation

• Test Planner/Manager -- Provides test planning,
schedule, scope, resources, etc.

• Automation Engineer -- Creates automated test case
processing capability

• Test Designer -- Creates and documents test design,
participates in test design inspection

• Test Executor -- Runs and evaluates tests

Slide 16

Test System: Layer / Role /Output

Build

Design

Plan

Run

Manage

Test Planner / Manager

Test Designer

Automation Engineer

Test Executor

Test Planner / Manager

Layer Role Output

Test Plan

Test Design
Test Cases

Test Processor

Test Logs

Test Repository

Slide 17© 2001 Software Development Technologies

* Key Inspection Spots

Roles-Based Key Activity Overview

Roles:

Partition SUT

*Design Test Cases

*Design Automation Software

Build Infrastructure

Prepare Test Run
Run Tests

Analyze Results

Determine Test Effectiveness

Integrate Automation Software

Create Testing Framework
Plan Project

Slide 18© 2001 Software Development Technologies

© 2001 Software Development Technologies

Database /
Repository

Designer Automation Engr.

• Design Test Cases
• Build Infrastructure
for Test Case
Processing

• Prepare for Running
Test Cases

• Process Test Cases
• Generate Test Report

Executor

Early Trend:
Roles-Based Test Environment

 Tools are beginning to support Roles-Based Testing:

[Reference: SDT]

Slide 19

© 2001 Software Development Technologies

Recommendation:
Separate Designer and Automation Engr Tasks

Test Designer:
Functional Test Development

Automation Engineer:
Technical Test Execution

Test Case
Action Word
Worksheets

Test Case
Processor

case action:
 “set position”: ...
 “check response”: ...
 “move”: ...
 “check position”: ...
end

 A B
. . .
set position 300 250 50
check response
move X 10
check position X 310 2.5
. . .

[Reference: Kit, Buwalda]
Slide 20

Action Word Test Case Spreadsheet
 testcase
sheet
version
date
author

 TC001.01
Test the industrial robot position feature

 1.56
 June 7, 2000

 Lisa Robotson
 designer notes Expected result: Pass – position set and checked

 Submitter organization: RSTBU

 axis value
 move X 10
 check response

axis value tolerance

 designer notes

check position X 310 2.5

 section 1. Position Robot
 X Y Z

 set position 300 250 50
 check response

 section 2. Check End Position

check position Y 250 2.5
check position Z 50 2.5

Slide 21© 2001 Software Development Technologies

© 2001 Software Development Technologies

Recommendation:
Assess Your Roles-Based Balance

• Discuss having a balanced Roles-Based Testing Group

• Assess the skills of your existing group (see next slide)

• Identify your problem areas (largely influenced by your

test automation model)

• Adjust your hiring plan to re-balance the group

• Recruit and hire needed candidates

Slide 22

© 2001 Software Development Technologies

Example Roles-Based Assessment

Peter

Ravi

Mary

John

James

Yves

Anna

Li Y

YY

Y

YY

YY

YY

YYYY

Architect Planner Automation Engineer Designer Executor

Slide 23

© 2001 Software Development Technologies

Recommendations:
Preventing E-Bugs

• Verify the Architecture

• Architect the Validation

• Validate the Architecture

• Test for Performance Regression - Automate
Performance Testing

• Actively manage site performance - Hire a service
provider (e.g., Keynote) to monitor and optimize your
site performance

• Manage and Test Expansion - Start executing expansion
plans when capacity reaches 60% of capacity

Different solutions / tools are required for each step

Slide 24

- Inspection

– Automation Architect
- Automate Function Testing

- Automate
Performance Testing

- Hire a service
provider to monitor and optimize your site
performance

- Start executing expansion
plans when capacity reaches 60% of capacity

© 2001 Software Development Technologies

Telecommunication:
Key Elements / System to be Tested

IVR HLR/AuC

• Interactive Voice Response Application – (IVR)
• Home Location Register/Authentication Center - (HLR/AuC)
• Proprietary Protocol over TCP/IP – (VIP*)

SS7/G
SM
VIP* - TCP/IP

ISD
N

 P
R

I
Slide 25

© 2001 Software Development Technologies

The Wireless
Telecommunication Challenge

Key Challenges:

• Test Automation of complex element functionality

• Test Automation for complex integrated system

• Synchronized control of Voice, SS7, TCP/IP interfaces

• GSM / TCAP, ISDN PRI, and Proprietary Protocol Support

• Rapid deployment, cost-effective, maintainable, extensible

• Advanced troubleshooting and reporting capability

Slide 26

Telecommunication
Test Design and Automation Solution

IVR HLR/AuC

SS7/GSM

VIP* - TCP/IP

ISDN PRI

SS7
 Protocol

Stack

ISDN
PRI

Voice

 Action Word Functions

 Test Case Processor

TCP/IP

Telecom
Test
System

 Action Word Test Cases

Off-
the-

Shelf

Custom

Legend:

Slide 27© 2001 Software Development Technologies

Voice
Files

© 2001 Software Development Technologies

Project Benefits

• Cost effective

• Software solution

• Off-the-shelf hardware

• Separation of Test Design and Execution

• Integrated Test solution

• Absolute Interface Control

• Extensible

• Enhanced Test Productivity

See also Greg Clower talk Weds at 3:30

Slide 28

© 2001 Software Development Technologies

Key Testing Success Factors

• Supported by senior management; treated as critical

• Adequately resourced with skilled test engineering
professionals involved continuously with the right tools

• Clear and effective ownership and integration of test
technology and process

• Proper training of participants - testing skills, like
programming skills, cannot be mastered overnight

• Testing discipline independent of development

• Proper mix of verification and validation (V & V)

• Measurement program to know where you are standing

Slide 29

© 2001 Software Development Technologies

Bottom Line

E-Software that contains
 E-Bugs carries extreme
 Business Risks that can lead to

 Business Failure

Sound business strategies include an approach to
 Risk Management that includes identifying
 Software Business Risk and an approach to

 Testing that software is reliable and safe

Slide 30

© 2001 Software Development Technologies

Summary

• Consider Roles-Based Testing

• Strive for a balance of:

– Process and Technology

– Test Design and Automation

– Function and System (e.g., Load Testing)

• Focus on the Keys to Success

• Early Testing can save many projects from failure

• Invest in people, provide training to enhance skills
Slide 31

© 2001 Software Development Technologies

References

• Buwalda, Hans, Testing with Action Words, STAR May 1998

• Forrester Research:
see http://www.forrester.com/

• Graham, Dorothy & Fewster, Mark, Software Test
Automation, Addison Wesley Longman, 1999

• Jorgensen, Paul C., Software Testing - A Craftsman’s
Approach, CRC Press, 1995

• Kit, Edward, Software Testing in the Real World, Addison
Wesley Longman, 1996

• Kit, Edward, Integrated, Effective Test Design and
Automation, Software Development Magazine, February 1999

Slide 32

© 2001 Software Development Technologies

References

• NASA News - High Dependability Computing Consortium:
see http://amesnews.arc.nasa.gov:80/releases/2000/00_81AR.html

• Newport Group Study, June 2000
see http://www.newport-group-inc.com/

• The Payne Report, Sept 2000
see http://www.cigital.com/paynereport/archive/sep2000.html

• Sabourin, Robert, I am a Bug, Sabourin 1999

• SDT – Test Design and Automation:
see Unified TestPro at http://www.sdtcorp.com/unifiedtestpro.pdf

• SDT – Inspection and Technical Review Automation:
see ReviewPro at http://www.sdtcorp.com/reviewpr.htm

Slide 33

© 2001 Software Development Technologies

The End
(The Beginning?)

Slide 34

QW2001 Keynote 1P2

Mr. Hans Buwalda
(CMG)

The Three "Holy Grails" of Test Development
(...adventures of a mortal tester...)

Key Points

Key considerations for test development●

Suggestions to improve the test process●

Implications for management and control●

Presentation Abstract

In the test development process, there are some important choices to make, which
tend to have a key in the influence on its success. These choices can be compared
with "Holy Grails". The Holy Grail is part of the ancient English legend of King
Arthur and the Knights of the Round Table. It is a symbol for something that can
be strived for, but not easily be reached. This is also true for at least some of the
choices to be handled in the development process. In the talk three main topics will
be presented, that have proven in practice to be the most important issues to
address.

The model of the Holy Grails is based on experience with literally hundreds of
testing and test automation projects. The grails provide a quick and very practical
instrument to either plan test development or understand a large amount of
problems in existing test development project, ranging from lack of coverage to
unmotivated testers.

Part of the talk (of the “second grail”) is an introduction to the principle of “Soap
Opera Testing”. In this technique, tests are formulated as small stories. They are
based on the every day business practice for which the system under test is
designed, but represent this compressed and exaggerated, comparable to the many
soap opera shows on television. The stories are expressed with so-called “Action
Words”, which are direct input to automated execution of the tests.

About the Author

Hans Buwalda is project director at CMG, a leading European information
technology services group. He is responsible for new developments around the
TestFrame approach for testing and test automation of which he is the original
developer and main architect. In 1996, he presented the main ideas for the first

time to an international audience in a speech called 'Testing with Action Words,
abandoning record and playback'. Since then the method has become in use in an
increasing number of countries and Hans has become a frequent speaker at
industry conference, tutorials and workshops.

1

The 3 "Holy Grails" of
Test Development

Hans Buwalda

Test Consultant

buwalda@happytester.com

© 2001, Hans Buwalda, all rights reserved

© 2001, Hans Buwalda, all rights reserved

(introduction)

The Quest

2

© 2001, Hans Buwalda, all rights reserved

Typical problems around testing

• Time consuming

• Costly

• Tends to be neglected

• Experienced as boring to do (in particular the
execution)

• Hard to start in time

© 2001, Hans Buwalda, all rights reserved

Even more typical problems with testing

• Difficult to manage:
What is the progress
What is the quality

• The proper resources (users, specialists) are not
(made) available when needed

• Only small parts of the test execution are
automated

3

© 2001, Hans Buwalda, all rights reserved

Challenges for a Test Process

• Testing should be fun

• Testing should be under control

• Testing should be effective

• Testing should be efficient

© 2001, Hans Buwalda, all rights reserved

Re-usable test products

test development

test cluster
(spreadsheet, table, ...)

test execution

navigation scheme

…
check balance
enter customer
…

A B C D
. . .
transfer Houston Klein 210
check balance Klein 210
transfer Savy Klein 150
check balance Klein 360
. . .

4

© 2001, Hans Buwalda, all rights reserved

physical
navigation

target
system(s)

separation

reporting

global test design

• test descriptions
• test lines

cluster level design

test plan

• actual results
• comparison with

expectations
• management

information

• input data
• expected outcomes
• documentation

management

system
development

QA/Auditors

end users

The product life cycle

navigation
scheme• breakdown

• analysis
• clustering

© 2001, Hans Buwalda, all rights reserved

Independence of life cycles

system
development

test
development

test
automation

process oriented dependencies

5

© 2001, Hans Buwalda, all rights reserved

The Holy Grail

• Part of the legend of King Arthur

• Most of all a symbol

• To find the holy grail a knight had to be “pure at
hart”

• To search for it is as important as finding it

© 2001, Hans Buwalda, all rights reserved

The Holy Grail as a model

• General principles, good to “strive” for, but difficult
to fully achieve

• The three principles suggested in this presentation
are for test development

• Coming close to the grails will help quite a bit

• Being far away is a good recipe for trouble

• The first “victim” is the manageability

6

© 2001, Hans Buwalda, all rights reserved

The three “holy grails” of Test Development

• effective “clustering” (break down) of tests

• the proper level of test specification

• the right approach per cluster

© 2001, Hans Buwalda, all rights reserved

The First Grail
clustering

7

© 2001, Hans Buwalda, all rights reserved

Well known, the V Model (simplified)

requirements

logical
design

physical
design

programming module
tests

subsystem
tests

system
tests

acceptance
tests

(inflexible) use of the V Model can involve risks
(see Brian Maricks article: www.testing.com/writings/new-models.pdf)

1. clustering

© 2001, Hans Buwalda, all rights reserved

The “cluster model” as an alternative

• fit to project situation as an explicit step

• V Model is “member of the class”

• further decisions are per cluster:
• how -> which technique, automate or not

• when -> develop, execute

• who -> stake holders, tester, auditor, ...

• why -> business risk, complexity, "made by John", ...

1. clustering

8

© 2001, Hans Buwalda, all rights reserved

Typical examples of what is not likely to be
good clustering
• combinations of low and high level tests

• when you have to change all of them for a new
system release

• if all clusters look alike

• clusters are dependent on each other

• you can’t start developing them now

leading thee in darkness . . . 1. clustering

© 2001, Hans Buwalda, all rights reserved

what could be thy fate . . .

Typical consequences / symptoms

• complaining people, no fun

• unnecessary high test maintenance (high impact
of system changes on the test)

• difficulties in running any test

• “unpleasant” test process

• no (sense of) control

1. clustering

9

© 2001, Hans Buwalda, all rights reserved

Clustering recommendations

• Logical to all concerned

• Independent from other clusters

• Well differentiated and clear in scope

• Fitting the priorities and planning of the project

• Balanced in size and amount

1. clustering

© 2001, Hans Buwalda, all rights reserved

Examples of Clustering Criteria
• Architecture of the system under test

• Functionality and other requirements

• Quality attributes

• Level of detail

• Planning and control

• Level of risks involved

• Complexity of the test

• Technical aspects of test execution

• Stake holders

• Code hand-offs (see Brian Marick)

1. clustering

}STRAIGHTFORWARD

ADDITIONAL}

10

© 2001, Hans Buwalda, all rights reserved
tests subsystem

 4

tests subsystem
 1

tests subsystem
 2

tests subsystem
 3

Clustering in levels (example)

integration

performance

business scenario’s

tests m
odule 1

tests m
odule 2

tests m
odule 3

tests m
odule 4

security

error handling

1. clustering

© 2001, Hans Buwalda, all rights reserved

The Second Grail

approach per cluster

11

© 2001, Hans Buwalda, all rights reserved

Not very cool . . .

• the same approach for everything

• the wrong level of techniques, like using a
boundary value analysis in a high level business
test

• lots of hard labour without interesting results
(“monks work”)

Oh bethink thee, thou courageous tester . . .
2. right approach

© 2001, Hans Buwalda, all rights reserved

THE REALM OF TECHNIQUES

Equivalence Island

Soap Opera
Testing

Joint Testware
Development

Graph Yard Mountains

Data

Va
lu

e B
ou

nd
ar

y

ofD
ecision

Ways

Lake of Error Guessing

(Loch Guess)

Flow

State
Transition

Covering Woods

12

© 2001, Hans Buwalda, all rights reserved

The “mechanical approach” for test
development (example)

• start with (preferably long) list of requirements

• make a test case for every requirement

• use a standardized test technique to translate the
requirements into the test cases

• hire (many) people to peform the tests by hand

• ….

Soap Opera Testing 2. right approach

© 2001, Hans Buwalda, all rights reserved

Some pitfalls with a too mechanical approach

• no fun at all
• inhibiting creativity
• coverage is focussed at single requirement level
• any defects should probably have been found in

an earlier test
• suggests false sense of control
• testset hard to maintain
• doesn’t catch mistakes in the requirements
• ….

Soap Opera Testing 2. right approach

13

© 2001, Hans Buwalda, all rights reserved

Soap Operas

Ashley hears about Jack's deposit when he thought he had
to go. Victoria lectures her father about what's wrong with him
and Nikki but Victor advises her that it's none of her business
Olivia learns Dru has no regrets about leaving and takes great
satisfaction in having Lily as her companion. Dru then asks Olivia
why she is raking Malcolm over the coals. Stopping by Gina's,
Nikki spots Brad and sits with him, admitting she doesn't want to
be alone tonight. Victor stops by Mack's party at the Crimson
Lights. Ashley takes a home pregnancy test. Worried about Billy,
Raul makes call and J.T. claims he doesn't know where Billy is.
Raul rushes over and finds Billy out cold in the snow Raul worries
when he can't find a pulse. . . .

Soap Opera Testing 2. right approach

© 2001, Hans Buwalda, all rights reserved

Properties of Soap Operas

• About “real life”

• But condensed

• And more extreme

Soap Opera Testing 2. right approach

14

© 2001, Hans Buwalda, all rights reserved

Soap Operas for testing

• Define a scope of the test to develop

• Identify with the business environment

• Which elements would make things difficult

• Draft scenario’s (typical some dozen lines)

• Write them down in clusters

Soap Opera Testing 2. right approach

© 2001, Hans Buwalda, all rights reserved

Examples of story lines when used for testing
Pension Fund

World Wide Transaction System for an international Bank

William starts as a metal worker for Industrial Enthropy
Incorporated in 1955. During his career he becomes ill, works
part time, marries, divorces, marries again, gets 3 children, one
of which dies, then his wife dies and he marries again and gets 2
more children….

A fish trade company in Japan makes a payment to a vendor on
Iceland. It should have been a payment in Icelandic Kronur, but
it was done in Yen instead. The error is discovered after 9 days
and the payment is revised and corrected, however, the interest
calculation (value dating)…

Soap Opera Testing 2. right approach

15

© 2001, Hans Buwalda, all rights reserved

Example of test lines

from to amount valuta trans nr
enter payment 123421344 4124244123 120000 yen &keep tx1
check value dating &tx1 $0.47
wait days 9

order to reverse &tx1

from to amount valuta trans nr
enter payment 123421344 4124244123 1200000000 IKr &keep tx2
check value dating &tx2 $7,701.56

. . . .

Soap Opera Testing 2. right approach

© 2001, Hans Buwalda, all rights reserved

Soap Operas (in testing) are not necessarily:

• “Extreme”

• Far fetched

• Long and elaborate

• Pieces of art and creativity

Soap Opera Testing 2. right approach

16

© 2001, Hans Buwalda, all rights reserved

“Killer Soaps”

• More specifically aimed at finding hidden problems

• Run when everything else has passed

• One option: put a killer soap at the end of a normal
cluster

• Ask the “specialists” for input

Soap Opera Testing 2. right approach

© 2001, Hans Buwalda, all rights reserved

What can joint sessions give you

• Test Strategy

• Acceptance Criteria

• Cluster Grouping

• Test conditions

• Evaluation of Results

• Starting up development of scenarios

Joint Testware Development 2. right approach

17

© 2001, Hans Buwalda, all rights reserved

Joint Testware Development (JTD)(tm)

• Moderator / chairman

• Users

• Business specialists

• Developers

• Testers

Joint Testware Development 2. right approach

© 2001, Hans Buwalda, all rights reserved

Set-up of a joint session for a telecom provider

• 1st session
• Introduction by moderator and project manager
• explanation about the JTD procedure
• explanation of the functional area by a specialised user

• 2nd session
• start of production of test conditions

• 3rd session
• start of production of test scenarios

• 4th session
• evaluation test scenarios

Joint Testware Development 2. right approach

18

© 2001, Hans Buwalda, all rights reserved

The Third Grail
level of actions

© 2001, Hans Buwalda, all rights reserved

Composition of Action Words

• Specification of an action, a check or a
documentary statement

• Communication between Navigation and Test
Cases

• Consistent

• Standard

• By-product of the test analysis

3. level of actions

19

© 2001, Hans Buwalda, all rights reserved

• “test all”

• low level “navigation” in a high level test:

• hard to understand “insiders only” language

What is probably not a good action level

type "Hans"
press key "<tab>"
type "Buwalda"
click button "OK"
...

set code Fc122x XX33
...

3. level of actions

© 2001, Hans Buwalda, all rights reserved

what could be thy fate . . .

Typical consequences / symptoms

• tests become quite unreadable (especially for non
experts)

• unpleasant work to make the tests

• hard to understand the results

• high risk of mistakes

• and, of course, heavy maintenance dependency

3. level of actions

20

© 2001, Hans Buwalda, all rights reserved

Designing Action Words

• What actions does the test tool perform with a

specific Action Word

• Scope of the test determines the Action Word level

• Manage the set of Action Words

• Document information about the Action Words

3. level of actions

© 2001, Hans Buwalda, all rights reserved

Low Level Actions

• Aimed at the platform(s) (techical angle)

• Low-level actions take care of the technical
communication with the application

• Low-level actions are used by the higher level
actions

• Typical examples:
push button
select list box item
capture text

3. level of actions

21

© 2001, Hans Buwalda, all rights reserved

Intermediate Level Actions

• Aimed at the interface(s) of the system under test

• Optional, use for complex navigation

• Typically the navigation at the level of:
one window in a gui
one record in a database
one message in a protocol
...

• Used by high level actions (usually in combination
with low level actions)

3. level of actions

© 2001, Hans Buwalda, all rights reserved

High Level Actions

• Aimed at the test (not necessarily the system
under test)

• Defined by testers,
(not by navigators and not in advance)

• Typically the navigation of high level actions:
adds default values
moves across windows
takes care of unexpected situations
...

• Uses low level and intermediate level

3. level of actions

22

© 2001, Hans Buwalda, all rights reserved

The life cycles

• high level business oriented tests
• production acceptance tests

• functional tests
• technical tests

• low level functional tests
• technical tests

specifications

design

. .
 .

. .
 .

system
development

test
development

high level
actions

intermediate
level actions

low level
actions

navigation

Test Execution

programming

© 2001, Hans Buwalda, all rights reserved

Acknowledgements
• Cem Kaner
• Hung Nguyen
• Brian Marick
• Dorothy Graham
• Brett Pettichord
• numerous former colleagues at CMG*

(like Dirk van Dael, Erik Jansen, Dennis Janssen,
Chris Schotanus, Jan Willem de Gruijter and André Kok)

* see also CMG's test approach:* see also CMG's test approach:
(www.testframe.com) (www.testframe.com)

23

© 2001, Hans Buwalda, all rights reserved

References
• Buwalda, Hans, Testing with Action Words, Abandoning Record

and Playback, Eurostar May 1998

• Buwalda, Hans, Testing with Action Words, STAR May 1998

• Buwalda, Hans, and Kasdorp, Maartje, Getting Automated Testing
Under Control, STQE Magazine, November 1999

• Buwalda, Hans, Soap Opera Testing, STAR East May 2000

• Graham, Dorothy, and Fewster, Mark, Automating Software
Testing, 1999

• Kaner, Cem, Nguyen, Hung Quoc, and Falk, Jack, Testing
Computer Software, 2nd Edition, John Wiley & Sons, 1999

• Kit, Edward, Software Testing in the Real World, Addison Wesley
Longman, 1996

QW2001 Panel 4P

Mr. Brian Lawrence
(Coyote Valley Software)

How DO You Test Internet Software?

Key Points

What is working testing Internet software●

How to analyze the your situation to help form a testing strategy●

Experience reports on Internet testing from the real world●

Presentation Abstract

There have been quite a few vendors suddenly proclaiming that they are “the
Internet Experts” or “the E-Business Experts” within the last year or so. These are
the same vendors that were claiming something else prior to that. No doubt they
have something useful to contribute, but where did their instant Internet expertise
come from? Do they really have the last word on what to do, or are they just
re-positioning what they were already doing to conform to the latest jargon?

How about asking your questions of people who’ve been there and done Internet
testing?

This is a 90 minute panel proposal to discuss real circumstances testing Internet
software. My panelists will tell you how they figured out testing strategies, and
what types of testing they chose to perform. They’ll tell you how well it worked,
and what they learned. You’ll have the opportunity to pose questions about your
circumstances, and get their opinions on how to proceed. I’ve chosen thoughtful
panelists who have had a wide variety of testing experience, both in Internet as
well as other types of software. After I introduce the panelists, each panelist will
take a few minutes to present their perspective on testing Internet software. Then I
will open the rest of the session to audience questions.

About the Author

Brian Lawrence has moderated panels in a number of conferences, including at
several past Quality Weeks. He has served as a program chair for the SEPG’97
Conference as well as the 1998 International Conference on Requirements
Engineering. Brian teaches and facilitates requirements analysis, peer reviews,
project planning, risk management, life cycles, and design specification techniques.
Brian serves on the editorial board of IEEE Software and as the editor of Software

Testing and Quality Engineering magazine.

Elisabeth Hendrickson is currently an independent consultant specializing in
software quality. With over a decade in the software industry, Elisabeth has
participated on many projects--some successful, some not successful, and some
disasters. Prior to becoming an independent consultant, Elisabeth was the Director
of Quality Engineering and Project Management at Aveo Inc.

James Bach heads up Satisfice, a software testing consulting firm with a world
class test lab located in rural Northern Virginia. James has extensive experience in
a variety of testing situations, including for Silicon Valley startups, and larger
organizations such as Microsoft, Borland, and Apple Computers.

Keith Stobie is the QA Process & Test Architect for BEA Systems, a leading
provider of e-business solutions. Prior to working a BEA, Keith served in a leading
role in defining testing strategies at firms like Informix and Tandem Computers.

Melora Svoboda is the Director of Engineering Services at Peakstone in Silicon
Valley. Melora has worked in senior QA management positions at several
e-business software firms on the west coast. Prior to that she defined testing
strategies for Microsoft and other software firms.

QW2001 Paper 2V1

Mr. Steve Nemzer
(VeriTest)

Testing In Multi-CPU Environment

Key Points

Testing challenges in multi-CPU “scale-up” environments●

Top 10 reason applications fail in multi-processor environments●

Strategies for testing database scalability●

Presentation Abstract

Join VeriTest founder Steve Nemzer for an insider’s view into the unique challenges of
testing software applications in multi-processor datacenter environments. In this
presentation, you will learn the top reasons applications fail to scale on multi-CPU
systems. You’ll also discover the testing strategies used by OEMs to uncover these flaws
early in the development cycle.

About the Author

One of the pioneers of outsourced testing, Steve Nemzer co-founded VeriTest in 1987 to
provide services to market-leading hardware and software developers. Over the last 14
years, he has led VeriTest to prominence as the premier test lab to the IT community. He is
a frequent speaker at industry conferences including StarEast, Quality Week, COMDEX,
LISA, and SD Forum. VeriTest now operates internationally as a service of Lionbridge
Technologies, a leading provider of test and localization services.

1

AgendaAgenda

Presenter:
Steve Nemzer, Vice President
VeriTest Business Unit
Agenda:

Scalability Defined

Best Practices

Tools to Consider

Success Stories

Questions

Presenter:
Steve Nemzer, Vice President
VeriTest Business Unit
Agenda:

Scalability Defined

Best Practices

Tools to Consider

Success Stories

Questions

What is Scalability?What is Scalability?

Scalability Dimensions

� “Scale-Up” Testing

� “Scale-Out” Testing

Scalability Dimensions

� “Scale-Up” Testing

� “Scale-Out” Testing

2

Internal ScalabilityInternal Scalability

“Internal” Scalability

� Hardware Platform

� Operating System

� Database Platform

� Application Design, Middleware components

� Web Hosting Platform

� Third-party Dependencies

� Internationalization (I18N)

“Internal” Scalability

� Hardware Platform

� Operating System

� Database Platform

� Application Design, Middleware components

� Web Hosting Platform

� Third-party Dependencies

� Internationalization (I18N)

Scalability Test EmphasisScalability Test Emphasis

Performance

� Heavy client load

� High transaction count

� Transaction throughput

� Response time SLA

Performance

� Heavy client load

� High transaction count

� Transaction throughput

� Response time SLA

3

Best PracticesBest Practices

Planning: Buy or Build?

� Buy
� eBiz builders
� Managed Services and Co-Location
� “Integrated” Turnkey Apps

� Build
� Ensure scalability is in the spec from the start

� Establish the success criteria

� Test Strategy
� “White box” architecture testing
� “Black box” user experience testing

Planning: Buy or Build?

� Buy
� eBiz builders
� Managed Services and Co-Location
� “Integrated” Turnkey Apps

� Build
� Ensure scalability is in the spec from the start

� Establish the success criteria

� Test Strategy
� “White box” architecture testing
� “Black box” user experience testing

Best Practices: “Black Box” TestingBest Practices: “Black Box” Testing

Example: eCommerce Site with six different
simultaneous pipelines

� Customer profiling pipeline

� Advertising push pipeline

� Catalog search pipeline

� Shopping cart pipeline

� Credit card transaction pipeline

� Application management pipeline

Example: eCommerce Site with six different
simultaneous pipelines

� Customer profiling pipeline

� Advertising push pipeline

� Catalog search pipeline

� Shopping cart pipeline

� Credit card transaction pipeline

� Application management pipeline

4

Best Practices Best Practices

Hardware Platform Provisioning

� Scaling up: Multi-CPU platforms
� 4-, 8-, 16-, or 32-way?

� Scaling out: Clustered Servers

Operating System Platform

� Solaris 8, Windows 2000 Data Center

Hardware Platform Provisioning

� Scaling up: Multi-CPU platforms
� 4-, 8-, 16-, or 32-way?

� Scaling out: Clustered Servers

Operating System Platform

� Solaris 8, Windows 2000 Data Center

“Scaling Up”: External View“Scaling Up”: External View

5

DevelopmentDevelopment
and testand test

4 processors4 processors

ExchangeExchange
8 processors8 processors

OLTP 16 OLTP 16
processorsprocessors

ee--CommerceCommerce
4 processors4 processors

“Scaling Up”: Internal View“Scaling Up”: Internal View

Scaling OutScaling Out

6

Best PracticesBest Practices

Database Platforms

� Oracle 9i, MS SQL 2000, Informix, Sybase

� “Parallel Server” Technologies

Database Platforms

� Oracle 9i, MS SQL 2000, Informix, Sybase

� “Parallel Server” Technologies

Database platform scalabilityDatabase platform scalability

7

Database platform scalabilityDatabase platform scalability

Best PracticesBest Practices

Third-party Dependencies

� Middleware

� Commerce Engines

� Client-side plug-ins

Internationalization

� Scaling in the linguistic dimension

� Enablement

Third-party Dependencies

� Middleware

� Commerce Engines

� Client-side plug-ins

Internationalization

� Scaling in the linguistic dimension

� Enablement

8

Best PracticesBest Practices

Performance
� Architect the web app with certified modular components

� Ensure end-to-end functionality testing

� Identify and test the simultaneous functional pipelines

� Predict most common ‘business processes

� Predict initial and forecasted client loads

� Develop load test cases

� Execute locale-specific enablement testing

Performance
� Architect the web app with certified modular components

� Ensure end-to-end functionality testing

� Identify and test the simultaneous functional pipelines

� Predict most common ‘business processes

� Predict initial and forecasted client loads

� Develop load test cases

� Execute locale-specific enablement testing

Tools to ConsiderTools to Consider

No right way to scale

Hardware

Software

Network

Testing

No right way to scale

Hardware

Software

Network

Testing

9

SUCCESS!SUCCESS!

Case StudiesCase Studies

Contact InformationContact Information

Steve Nemzer, Vice President
VeriTest Business Unit
Lionbridge Technologies, Inc.
ph. 310-636-8680
Steve_Nemzer@veritest.com

Steve Nemzer, Vice President
VeriTest Business Unit
Lionbridge Technologies, Inc.
ph. 310-636-8680
Steve_Nemzer@veritest.com

10

Comprehensive Testing
� Scalability
� Functionality
� Globalization
� Configuration
� System/Migration
� Compatibility
� Accessibility

Consulting

Certification

� Commercial and Enterprise

Comprehensive Testing
� Scalability
� Functionality
� Globalization
� Configuration
� System/Migration
� Compatibility
� Accessibility

Consulting

Certification

� Commercial and Enterprise

VeriTest ServicesVeriTest Services

CertificationCertification

COMMERCE
SERVER 2000

QW2001 Paper 2V2

Mr. Francois Charette
(TestQuest)

Testing Configurable Product Platforms

Key Points

Test Automation●

Ingrated Devices●

Test Generation and Techniques●

Presentation Abstract

Electronic systems manufacturers are under tremendous pressure to rapidly deliver
competitive products to market. Product development lifecycles have shrunk
enormously and this has forced product engineering to be innovative. One recent
approach borrowed from the manufacturing world has been the use of a
platform-based approach to the hardware and the software. A fully integrated
platform approach to product design allows manufacturers to create better,
full-featured, lower-cost devices.

Such devices are completely configurable in that the graphical user interface and
the behavior of the applications completely changes depending on a set of inputs
provided. Such systems pose unique challenges to the product development
especially from a verification and validation perspective.

About the Author

Mr. Francois Charette, BSEE from the Royal Military College, Kingston, Canada,
has more than a decade of Test Automation and Quality Assurance experience. He
has consulted on a variety of projects for fortune one hundred companies regarding
test automation, quality assurance, and software development for process control,
infra-red devices, set top devices, digital/analog video and electronics
manufacturing.

1

Testing Configurable Products

Francois Charette
Director, Solutions Consulting

Platform-Based Products
1. Prevalent model in multiple industrial segments

Automotive, medical systems, consumer electronics, computing,
control systems
Egs., K-car, VW, Pocket PC,

2. Based on a shared hardware and software base

3. Shared core functionality

4. Data and configuration dependent personalities and capabilities

2

Attributes of Configurable Products
1. Typically is a member of a platform family

2. Product behaviors either factory configured (static) or field
configured (dynamic)

3. Hardware and software constituents/behaviors changed
through configuration changes – multiple data sets

Configurable Gas Control System

Legend:

G
A
S

12

3

3

2

1

4
4

OUT 1 OUT 2

OUT 3

Sensor

Valve

Gas Process Controller

PRINT

HELP

ALPHA

SHIFT

ENTER
RUN

DG ER FI

AJ BK CL

7M 8N 9O

DG DG DG

DG T 3U

0V .WX Y Z

TAB

% UTILIZATION

HUB/MAU NIC

2
BNC
4Mb/s

GUI

3

Test Requirements
1. High fidelity testing of a changing product interface

2. Fully simulated in-context testing with all electro-mechanical
sub-systems active

3. Full characterization of product behavior correlated to
permutations of valid input stimuli

4. All valid configurations to be functionally tested

5. Invalid configurations tested – failure management

6. Reusability of all test artifacts

Challenges – Tools & Frameworks
1. Deploying a functional test tool chain which enables

high-fidelity in-context testing of configurable
products

2. Structuring test frameworks to reflect multiple
possible valid and invalid configurations of the
configurable product.

4

Functional Test Tool - Design Targets
Advanced operating system platforms
High performance applications
Non Windows conformant applications
Heterogeneous applications
I/O intensive applications
Fixed function computing

Test Automation Tool – Design Goals

Target agnostic
Complete non-intrusivity on SUT
Eliminate necessity for manual inputs
Reflect high fidelity usage scenario
Cover standard use cases
Expandable to test accessories

5

TestQuest Pro – Overview

Test Automation Tool

Non-Intrusive black box functional testing for computer-based systems

High productivity script development environment

Industry standard scripting language - C/C++

Open platform for integration of optional modules

Simulate Monitor

Verify &
Document

TestQuest Pro System Approach

6

Simulate Device Input

Simulation Examples
• Keypad
• Pushbuttons
• Keyboard
• Infrared
• Pointing Devices

• Mouse, Trackball...
• Touch Panels
• RS-232/422 Serial Comm.
• Analog
• Discrete

• Power On/Off...

TestQuest Pro I/O Connectivity

Monitor Device Output

Monitoring Examples
• VGA
• Digital LCD
• S-Video
• RS-232/422 Serial Comm.
• Analog
• Discretes

• LED’s
• Audio

TestQuest Pro I/O Connectivity

7

TestQuest Pro - IDE

Develop, Run & Debug Test Scripts in the
Interpretive Script Recorder Environment

Recorder Window - Full
Featured Editor, C
Interpreter and Debugger

Simulation Window –
Virtual Palm keypad or
graffiti entry

Image Verifier Window -
Displays Product screen
During Script Development

TestQuest Pro Palm System Modules

Palm Test Platform Hardware
Hard wired to a single Palm target
Available in Palm III, V, and VII models
Enables Keypad functions
Simulates touch screen functioning
Simulates docking for Hot Sync
Enables discrete functions- power on/off
Enables functioning of peripheral
devices

8

TestQuest Pro Palm System Modules

Palm Test Platform Plug-in
Full Feature Palm plug-in
Virtual Palm device that simulates Palm
Test Platform
Actions performed on virtual Palm will
automatically insert code into test script
Graffiti Simulation
Actions can be performed by clicking on
buttons or onscreen keyboard

Cell Phone – Single Screen

9

Cell Phone – Single Screen

Integration with Gas Controller

Gas Process
Controller

PRINT

HELP

ALPHA

SHIFT

ENTER
RUN

DG ER FI

AJ BK CL

7M 8N 9O

DG DG DG

DG T 3U

0V .WX Y Z

TAB

% UTILIZATION

HUB/MAU NIC

2
BNC
4Mb/s

GUI

TestQuest Pro

LCD

Keypad
Buttons

Valve Monitoring (Digital Outputs)

Sensor Simulation (Analog Inputs)

RS-232

10

Gas Controller Keypad

VGA Screen
SUT

Test Box Plug-In

Recorder
Interface Scripts

Nat’l Inst.
PCI Cards

Gasguard Controller
Test Interface for

Air Products
P/N N0218-000

Standard Video
Capture I/F

Keypad I/F Module

Gas Controller Integration Topology

TestQuest Pro

Integration UI Component

11

Integration UI Components

Test Framework Architecture

TestQuest API

OBJECT LAYER

NAVIGATION TASK LAYER LOGGING &
ERROR

HANDLING

TEST PROCEDURE

DISPATCHER Expert
Sub-

System

12

Test Framework Software Modules
1. Test Procedure

Closely corresponds to test cases

2. Task Layer
Common sequences of actions that are used in multiple
procedures
Set of domain specific utilities

3. Object Layer
Abstraction layer that encapsulates target screen artifacts

4. Dispatcher
Abstract execution layer used by test procedures and tasks

5. Expert Sub-System
Imports and parses core product configuration data to generate
test data sets

Lessons Learned
1. Domain Abstractions

2. Data Independence/Configuration Independence

3. Shared Configuration Data

4. “Getting There” vs. “Testing There”

5. Capture-Replay?

 TESTING CONFIGURABLE PRODUCT PLATFORMS
 4/23/2001

© COPYRIGHT 2001 TESTQUEST, INC. ALL RIGHTS RESERVED. PAGE 1 OF 10

Testing Configurable Product Platforms

François Charette
Solution Consulting, Director

TestQuest Inc.

Keywords: Test Automation, Integrated Devices, Test Generation
and Techniques

Abstract
Electronic systems manufacturers are under tremendous pressure to rapidly deliver
competitive products to market. Product development lifecycles have shrunk
enormously and this has forced product-engineering groups to be innovative. One
recent approach borrowed from the manufacturing world has been the use of
common hardware and software platforms across product lines. A fully integrated
platform-based approach to product design allows manufacturers to create better,
full-featured, and lower-cost devices.

Such devices are often completely configurable in that the graphical user interface
and the behavior of the application completely change depending on a set of inputs.
Such devices pose unique challenges to product development groups especially
from a verification and validation perspective.

Background
Today’s device manufacturers design and productize multi-function and configurable
system instead of fixed configuration systems. This model provides manufacturers

 TESTING CONFIGURABLE PRODUCT PLATFORMS
 4/23/2001

© COPYRIGHT 2001 TESTQUEST, INC. ALL RIGHTS RESERVED. PAGE 2 OF 10

with the ability to quickly deploy a variety of large-scale system with specific and
unique configurations, all using a single configurable platform. This methodology
eliminates the need to create custom solutions to meet customer requirements. This
increases the manufacturers return on investment and reduces long-term
maintenance costs. This design approach is commonly utilized in segments and
industries as varied as defense, command and control, automotive, process control,
and consumer electronics. It is now finding its way into small, embedded, fixed
function devices such as, warehouse inventory scanners, cell phones, pagers,
handheld, set top boxes, etc.

Originally, this concept was applied to hardware components utilizing standard
communication channels and protocol to integrate into a larger system. However, in
today’s complex product architectures, software components are designed using the
same concept. The introduction of CORBA, COM/DCOM and now, .NET, has
created a similar standard communication protocol for creating flexible and
configurable software systems.

To design and implement these systems, engineering teams are tasked with creating
and validating complex software and hardware architectures. The complexity of
these systems, combined with the short development lifecycles imposed by time to
market pressures can be quite difficult on the engineering team.

The product-engineering group that experiences the most pressures is usually the
test organization which is confronted with:

� Shrinking test cycle: Technology companies must engineer and deploy new and
enhanced products quickly to stay competitive. Hence the engineering group is
faced with a much shorter development and test cycle.

� Reduced manpower: Most test organizations are understaffed. This is usually
attributable to two factors: a very tight employment market and the difficulty of
attracting fact qualified test engineers.

� Increasing number of test requirements: With increased product complexity and
flexibility, there are significantly more usage permutations to be tested. Hence the
scope of testing is broadened.

� Increasing test complexity: Because of the product’s flexibility and its inherent
complexity, testing scenarios are becoming more and more complex and lengthy.
Therefore, such test scenarios can only be created by technical staff that possess
intimate knowledge of the system under test.

� High number of test scenarios and permutations: Finally, the number of product
configuration can be very large. Therefore, the permutations of test cases to be
performed must be identified carefully to provide acceptable test coverage.

This paper proposes one method for helping test organizations fulfill these new test
scenarios by utilizing a configurable, automated, test solution. To better illustrate this

 TESTING CONFIGURABLE PRODUCT PLATFORMS
 4/23/2001

© COPYRIGHT 2001 TESTQUEST, INC. ALL RIGHTS RESERVED. PAGE 3 OF 10

we use suitably modified real-world application to describe the testing challenges and
the resolutions to these problems.

The System Under Test
The system under test is an embedded gas process controller. The gas process
controller is used to monitor gas flow and to raise warnings and alarm sequences
when specific conditions occur. This product can be configured to monitor one or
more gas lines. The gas process controller monitors the gas lines using pressure
sensors and controls the warning and alarm sequences using a configurable number
of valves.

The following diagram illustrates a simple configuration composed of one gas
cylinder, three gas lines, four valves and four pressure sensors.

A single gas process controller can monitor and control the gas flows from up to four
gas cylinders. Each gas cylinder can have:

Legend:

G
A
S

12

3

3

2

1

4
4

OUT 1 OUT 2

OUT 3

Sensor

Valve

Gas Process Controller

PRINT

HELP

ALPHA

SHIFT

ENTER
RUN

DG ER FI

AJ BK CL

7M 8N 9O

DG DG DG

DG T 3U

0V .WX Y Z

TAB

% UTILIZATION

HUB/MAU NIC

2
BNC
4Mb/s

GUI

 TESTING CONFIGURABLE PRODUCT PLATFORMS
 4/23/2001

© COPYRIGHT 2001 TESTQUEST, INC. ALL RIGHTS RESERVED. PAGE 4 OF 10

� Up to four lines.

� Up to eight sensors.

� Up to eight valves.

For each sensor, pressure warning and alarm thresholds can be set which can
trigger action sequences to recover from the fault.

The system is physically configured and a configuration file containing information
about the following is downloaded to the gas process controller:

� The number and position of gas cylinders.

� The number and position of the gas lines.

� The number and position of the valves.

� The number and position of the sensors

� The associated warning and alarm sequences which are also configurable.

The configuration information will determine specific aspects of the graphical user
interface of the gas process controller.

Testing Challenges of Configurable Systems
Configurable systems with complex functional behaviors and user interfaces present
a unique set of challenges. Tests must be designed to handle the myriad possible
configurations. Test tools, especially test automation tools, must support these test
designs and must provide a powerful set of capabilities to exercise all functional
elements of the system under test.

In the example of the gas controller described above, full coverage functional testing
requirements include:

1. The graphical user interface of the gas controller must be fully exercised in a
manner identical to normal operator usage. This must be done with a high
degree of fidelity.

2. The complete operating context of the gas controller system, including
operations of valves, sensors, and other electro-mechanical devices must be
fully simulated to a high degree of fidelity.

3. The functional behavior of the gas controller must be fully characterized and
correlated to various permutations of input stimuli. When the gas controller is

 TESTING CONFIGURABLE PRODUCT PLATFORMS
 4/23/2001

© COPYRIGHT 2001 TESTQUEST, INC. ALL RIGHTS RESERVED. PAGE 5 OF 10

stimulated with a complete set of inputs (GUI, valve position, sensor inputs,
etc.) does its complete characteristic output behavior (GUI, control signals,
audio annunciators, etc) match expected output behavior?

4. All legal configurations of the gas controller must be functionally tested using a
uniform and consistent set of tests.

The two main challenges arising from these requirements are:

1. Deploying a functional test tool chain which enables an extreme fidelity, in-
context functional test of the gas controller

2. Structuring the functional test scripts to reflect the multiple possible
configurations of the gas controller.

In the next section we describe a functional test automation tool which powerfully
satisfies such complex test requirements. In the subsequent section we describe the
test strategy and the associated test scripts that were designed to address the
challenges posed by target configurability.

TestQuest Pro – A Functional Test
Automation Tool
TestQuest Pro is a functional test automation that was designed specifically to
enable the testing of complex systems such as the gas controller described earlier.
Through a system of electrical connections to the I/O points of the device under test,
TestQuest Pro can completely, accurately, and with very high fidelity simulate an
operator for the device under test (DUT).

Thus, it can stimulate the DUT with synthesized keyboard, mouse, touchscreen, and
button inputs. It also simulates the visual verification that an operator performs by
capturing the display screens of the DUT and verifying the captured screens for
location and content.

In a general sense TestQuest Pro can synthesize, to a high degree of fidelity, not
only a “virtual operator” for the DUT but also its complete operating context. This
capability allows the DUT to be tested exactly as it would be used in a regular
deployment.

TestQuest Pro provides these capabilities through standard stimulation modules for
keyboard, mouse, touchscreen, keypad, discrete I/O, RS232, etc. and standard
monitoring modules for VGA, Raster LCD, Command LCD, discrete I/O, RS232, etc.
A script development and execution environment controls these modules and
provides access to the complete verification API of the test tool.

 TESTING CONFIGURABLE PRODUCT PLATFORMS
 4/23/2001

© COPYRIGHT 2001 TESTQUEST, INC. ALL RIGHTS RESERVED. PAGE 6 OF 10

In order to validate the functionality of the gas process controller, TestQuest Pro was
integrated with its human and process I/O points. The touch panel and keypad were
instrumented for stimulation and the digital LCD was instrumented for monitoring. In
addition, to fully simulate the operating environment of the controller and to provide a
fully closed-loop, automated test solution, the valve connectors were instrumented to
monitor their status and the sensor lines instrumented to simulate different pressures.
TestQuest Pro programmatically stimulates and monitors these connection points
using integrated digital and analog monitoring and simulation lines. Finally, the
configuration file communication channel using a bi-directional RS-232 was routed to
the TestQuest Pro system.

The integrated combination of TestQuest Pro and the instrumented gas process
controller provide complete functional testability for every possible configuration of
the gas controller.

Test Strategy
The single most important requirement in any automated test solution is the
maintability of the test scripts. There are two important aspects regarding the
maintability of the gas process controller automated test solution. First off, how easy
will it be to make changes without causing unintended effects? This is an important
aspect to consider because of the inherent complexity associated with the gas
process controller. In many cases when the application under test is complex, the
automated test solution is overly complex. Functions are overloaded and the
automated test solution loses conceptual clarity. In order to minimize complexity, test
functions should be conceptually coherent.

Gas Process Controller

PRINT

HELP

ALPHA

SHIFT

ENTER
RUN

DG ER FI

AJ BK CL

7M 8N 9O

DG DG DG

DG T 3U

0V .WX Y Z

TAB

% UTILIZATION

HUB/MAU NIC

2
BNC
4Mb/s

GUI

TestQuest Pro

LCD

Keypad
Buttons

Valve Monitoring (Digital Outputs)

Sensor Simulation (Analog Inputs)

RS-232

 TESTING CONFIGURABLE PRODUCT PLATFORMS
 4/23/2001

© COPYRIGHT 2001 TESTQUEST, INC. ALL RIGHTS RESERVED. PAGE 7 OF 10

The second factor that affects maintainability is the specific ability of a test suite to be
modified when design changes are made in the system under test. There are two
general strategies for minimizing the effort to keep a test suite easy to maintain in the
face of design changes:

1) Functions must be written to test tasks. Most design changes will only require
changes to these functions.

2) Create a model of the user interface as a set of objects. Changes to fonts,
bitmaps and text can be handled simply by updating the object definition
information.

However, how do you create a maintainable and flexible automated test solution
when the system under test is completely configurable? Do you want to create every
possible configuration and create static scripts for each of them? Alternatively,
should you select a configuration subset, but which one? This is where known
automated test methods can fail. In this case, the task created should be aware of
the configuration and perform the necessary associated verifications based on
information for the configuration file.

To create configurable automated test solution, the information contained in the
configuration file can be used to gather expected results, trigger situational events
and even created test cases automatically. Furthermore, the automated test solution
can also be configured to automatically gather the configuration information and
perform tests for the specified configuration. This means that every, or a subset of
the alarm and response sequences could be exercised.

Test Automation Architecture
The test architecture used for the automated test solution is composed of three basic
layers as shown in the figure below:

� Test Procedure Layer

� Task Layer

� Object Layer

 TESTING CONFIGURABLE PRODUCT PLATFORMS
 4/23/2001

© COPYRIGHT 2001 TESTQUEST, INC. ALL RIGHTS RESERVED. PAGE 8 OF 10

TestQuest API

OBJECT LAYER

NAVIGATION TASK LAYER LOGGING &
ERROR

HANDLING

TEST PROCEDURE

DISPATCHER Expert
Sub-

System

Test Procedures Level

The test procedure scripts correspond to defined test cases as closely as possible.
They are specified to a similar level of detail and are contained in simple script files.

� Roughly corresponds with the manual test descriptions in terms of detail and
specificity.

� Can be read by anyone: test technicians, managers, developers, etc.

� Includes calls to task level functions and object methods.

Task Layer

Tasks are common sequences of actions that often appear repeatedly in the tests.
They may take place on a single screen or span a couple screens, but usually do
involve multiple objects. Tasks may also trigger events and verify that the
appropriate responses are performed by the gas controller.

� Tasks will be exposed as keyword functions

� Tasks are composed of calls to other tasks and/or object level functions.

� They represent sequences of events.

Object Layer

The object layer is an abstraction that encapsulates all references to screen
coordinates fonts and bitmaps. Neither tasks nor test procedures shall refer directly
to the TestQuest core API functions, which supports this lower level of functionality.

The object layer is composed of the function interfaces for the objects and screens
as well as the object definitions themselves. Object definitions are separately

 TESTING CONFIGURABLE PRODUCT PLATFORMS
 4/23/2001

© COPYRIGHT 2001 TESTQUEST, INC. ALL RIGHTS RESERVED. PAGE 9 OF 10

specified and can be updated, revised or modified without requiring changes to the
code itself.

� Uses object definitions

� Standard functional interfaces to objects

� Implicit verification

� Screen Based

� Includes testability workaround if needed.

Dispatcher

The dispatcher wraps the code that will be present in all the task code. The
dispatcher is used to hide the error handling functionality from non-technical users.
The dispatcher code is also responsible for error recovery as well as error cleanup.

Expert Sub-System

The expert sub-system will be used to parse the gas controller configuration file and
extract the information required to test it. The Task layer will use the information
gathered from the configuration file to identify the verification process and expected
result of a specific operation.

Architecture Example

Let’s take the implementation of the following example:

“Start a Gas Process and verify that the process is started properly.”
“Generate Fault Alarm and verify appropriate alarm sequence is
generated”
”Stop the Gas Process”

The test procedure layer would look similar to the following:

ConfigureGasController(“myconfigfile.gcf”);

StartCase(“VMB7.2.1”);
StartGasProcess();
GenerateFault();
StopGasProcess();

EndCase();

The script would consist of sequential commands, free of complex decision
statements. If looping were required, it would be implemented using statements that
are as close as possible to natural language.

In this example, the first command ConfigureGasController, would send the
specified configuration file to the gas controller, verify that it is configured properly

 TESTING CONFIGURABLE PRODUCT PLATFORMS
 4/23/2001

© COPYRIGHT 2001 TESTQUEST, INC. ALL RIGHTS RESERVED. PAGE 10 OF 10

and setup the Expert Sub-System. If an error is generated during the configuration
process, the error handler will attempt to recover from the error. If unsuccessful, the
test will be aborted.

Next, the test case will be bounded by a call to StartCase and EndCase, which
will be used to identify the start and the end of a test case. These commands will
also setup the logs and trap failures that may have occurred within the tasks that
were executed.

Each task in the example (StartGasProcess, GenerateFault and
StopGasProcess) will trigger an event and verify that the gas controller control
software takes the expected actions. This functionality will closely emulate how a
real test technician would perform the operation. In the case of StartGasProcess
the following would be performed:

� Enter the gas controller UI menu.

� Enter password.

� Navigate to and select start process.

� Verify that the sequence of events associated with starting the process occurs as
specified in the configuration file.

Conclusion
We have described a highly configurable process control application and outline the
challenges it poses from a test automation perspective. We have described a
commercial functional test automation tool which is designed to interface to and test
complex configurable systems. We have also described a test automation framework
and architecture which makes it possible to test the multiple configurations that such
a target system can assume.

QW2001 Paper 3V1

Mr. Christian Hote
(PolySpace Technologies)

Bug Detection Tools for Productivity

Key Points

Efficiency: PolySpace Verifier turns detection of run-time errors on its head thanks to its
unique technology. It detects run-time errors at compilation time and thus before starting
tests.

●

Quality: PolySpace identifies and checks each possible source of run-time errors of your
software application against all possible behaviors and input values. Thanks to our
technology, we can figure out the future of software applications and predicts where it
will crash or give erroneous computation due to run-time errors.

●

Productivity: PolySpace Verifier does not requires human help to run. It has a very short
learning curve and requires a very small amount of time to setup. It is a non-intrusive
software product that you can plug-in without modifying your developement process.

●

Presentation Abstract

Presentation abstract to be supplied.

About the Author

Christian HOTE obtained his PhD in Physics in 1991. He joined Verilog
(European leader CASE Tools provider) as product manager and participated in
several European Research programs (Eureka, Esprit) for embedded systems
design and development. He joined PolySpace Technologies at its creation and
manages US business development and operations.

QW2001 Paper 3V2

Ms. Peggy Fouts
(Compuware)

Test Planning For Xtreme Times

Key Points

Planning for testing is important●

It is possible for web-time to accommodate test planning●

Planning includes testing activities and the associated environment(s)●

Presentation Abstract

Many organizations are implementing new web-based applications or “webifying”
existing applications. Up front investment in planning can have a significant
impact on the success of the testing efforts and ultimately the success of the
implementation. This is independent of the development methodology employed.

Some feel that implementation speed dictates that we should skip planning and
move directly into test execution and deployment. However, investing time in
planning allows more efficient and predictable execution activities that will
contribute to meeting the time constraints. In addition, good planning of the initial
effort should allow reuse of the deliverables for future projects.

About the Author

Peggy Fouts is a Senior QA Specialist for Compuware Corporation. She is
employed as a consultant in Quality Assurance and Testing Solutions services for
the Minneapolis Professional Services branch has been involved in the software
industry for over 25 years. She serves both as member of the Compuware
corporate-wide planning group for Quality Assurance products and services and is
also involved in the development of the internal training for Compuware's QA and
test personnel.

1

CompuwareCorporation

Test Planning for
Xtreme Times

Presented by Peggy Fouts
Compuware Corporation

Quality Week 2001

CompuwareCorporation

Gen. Dwight D. Eisenhower on his
assessment of the invasion of
Normandy. "The plan is nothing, the
planning is everything."

2

CompuwareCorporation

Test Planning
� The act of planning is valuable
� A plan helps the team to know what to do

and when

But there’s no TIME to plan in our fast-paced environment!

CompuwareCorporation

Considerations for Web
environment

� Speed (WEB time, E-time, Xtreme…)
� Incremental deliveries recommended
� Set up automated regression
� Automate load, performance, site integrity
� What about test environments?

Must be efficient
Must be available
Must be accurate representations of production

3

CompuwareCorporation

What do I need to know
to plan?

� Business goals
� Requirements (business and technical) and

their priorities
� Dependencies
� Acceptance criteria
� Time allotted from requirement specification to

deployment
� Personnel available for test and their skill sets
� Application type

CompuwareCorporation

Then what?
� Quickly develop a Test Strategy
� Quickly develop Test Plans
� Start on test cases as soon as possible

4

CompuwareCorporation

Test Strategy
� If possible modify one from another project
� What types of testing will be performed?
� Should some testing be outsourced to a lab?

– Performance
– Site integrity
– Load

� Should some testing be performed by specialists
- e.g. security

� Should some testing be automated?

CompuwareCorporation

Outsourcing
� They have all the standard hardware

platforms, browsers, operating systems, etc.
� Financial impact in trying to reproduce that

onsite and in rerunning test cases on
different platforms

� Remote testing of web sites on a
subscription basis

� Specialty testing - e.g. security

5

CompuwareCorporation

Automating
� Decide what to automate
� Requires tool purchase and training

CompuwareCorporation

Test Plans
� Create one for each type of testing
� If possible, reuse old ones
� Base them on the identified risks and

priorities
� Make sure that testing can report reliably on

the quality of the application

6

CompuwareCorporation

Test Environment Plan I
� Roles and Responsibilities
� Environment verification – How to verify that what

you think is there is actually there
� Security and controls – Who has access, how is it

applied
� Applications and interfaces to be maintained in sync

with production
� Tools in use for environment maintenance and

testing support
� Hardware

CompuwareCorporation

Test Environment Plan II
� Restoration/refresh processes
� Backup plans
� Promotion from development environment to

test environment
� Data (files, databases, etc.)
� Archiving artifacts

7

CompuwareCorporation

Summary
� A planning cycle provides the opportunity

to ask questions for understanding
� Ask questions to cover the items

presented
� What your documents look like is less

important than that they provide the
direction to cover the key items - risks
and priorities

CompuwareCorporation

Questions

Peggy Fouts: Compuware
(c) Copyright 2001 Compuware. All Rights Reserved.

1

Test Planning for Xtreme times
Many organizations are implementing new web-based applications or “webifying”
existing applications. Up front investment in planning can have a significant
impact on the success of the testing efforts and ultimately the success of the
implementation. This is independent of the development methodology employed.

Some feel that implementation speed dictates that we should skip planning and
move directly into test execution and deployment. However, investing time in
planning allows more efficient and predictable execution activities that will
contribute to meeting the time constraints. In addition, good planning of the initial
effort should allow reuse of the deliverables for future projects.

1 Test Planning
Planning revolves around what has to be tested and how it has to be tested.
Testing is constrained by the acceptance criteria and the time allotted. Although
we would like to think that we have control over schedule we often do not. So we
need to do the best with what we have – clearly describe the associated risks
and make recommendations related to the testing activities. Focus planning on
managing risks and understanding deployment risks as a result of the testing
activities.

1.1 The act of planning has value in itself.
It's what you learn from the plan that's important.
The act of planning implies that we will be communicating with stakeholders,
documenting their desires and figuring out how to please everybody - manage
risk. It implies that we are thinking of what needs to happen and checking your
ideas against those of others (similar to peer review – better that working in a
vacuum and forging ahead on our own).
Get it down on paper, maybe it will change later, but …

1.2 The plan helps team members know what to do (and what is being
done) and when.

It is a communication vehicle. Project failure can often be traced back to
communication problems. It is important for the whole team to have a consistent
view of the project activities.

This plan should be more or less detailed based on the size of the team and the
complexity of the testing requirements. If the entire test and development team
is five co-located people, we can probably communicate face to face and might
only create a checklist for a plan. On the other hand, if the team is ten people
and requires a complicated test environment in order to simulate production the
Test Plan might be quite a bit more detailed.

1.3 Considerations for a WEB-based implementation
These are items that “direct” (constrain) the testing activities for Web
implementations. Items two through four can contribute substantially to fast

Peggy Fouts: Compuware
(c) Copyright 2001 Compuware. All Rights Reserved.

2

turnaround – support of item one, and can be implemented with just a little bit of
planning.
1.3.1 Speed (WEB time, E-time, Xtreme…)
Initial implementations are often rolled out in record time, and any changes to the
production application often must be made “immediately” if the user is impacted.
1.3.2 Incremental deliveries recommended
The prioritization of requirements and incremental deliveries of feature sets as
they are available facilitate fast rollout. These deliveries might be to test only or
might be scheduled to move from test into production.
1.3.3 Set up automated regression testing
Most “light” – agile – methodologies recommend the automation of both unit and
system testing. These tests are run frequently and are required before the
application is put into production. Automation is a necessity to meet these
criteria.
1.3.4 Automate load, performance, site integrity testing
To facilitate fast turnaround these tests should also be automated or outsourced
to a remote lab – which is covered later.
1.3.5 What about the test environment(s)?
The test environment setup and maintenance is a major factor in an efficient,
successful test effort.
� Must be efficient
� Must be available
� Must be accurate representation(s) of production
� Must be “secure” and controlled

Good planning and up front implementation of a test environment that meets
these criteria is essential. If you skip anything, don’t skip this.

2 What do I need to know to plan?
1. Business goals
2. Requirements (business and technical) and their priorities
3. Dependencies
4. Acceptance criteria
5. Time allotted from requirement specification to deployment
6. Personnel available for test and their skill sets
7. Application type

Each of these items has a definite impact on how to conduct the testing effort.
If the business goals include to be first on the web with a particular type of
application, testing priorities will be different from the case where the business
goal is primarily to provide a better user experience than the competition.

These goals should also affect the priorities assigned to requirements and the
acceptance criteria. The acceptance criteria should capture all critical
requirements.

Peggy Fouts: Compuware
(c) Copyright 2001 Compuware. All Rights Reserved.

3

The total time allotted and the time between deliveries drive the automation
decisions. Incremental deliveries with short time spans between each delivery
indicate that we should automate as much as possible.

3 What do I do with what I know?
1. Quickly develop a Test Strategy based on 1 through 7 above
2. Quickly develop Test Plan(s) – if possible, reuse old ones
3. Start on Test Cases as soon as possible, but preferably after strategy has

been approved

3.1 Test Strategy
If possible, modify a Test Strategy completed for another project. This implies
that there is an asset repository where assets are readily available for
modification and reuse

At least have standard template – it may not look like IEEE or…: it may look
more like a checklist. The goal is to convey to all team members what testing will
be performed, how it will be performed and why – so that changes downstream
can be weighed against original goals.

The strategy will be focused on risks. So identify and address risks and gain
consensus on the overall test approach. The strategy should address the risks of
most concern.

Devise new test techniques and methods that address the particular constraints
of the technologies – like rapid turnaround requirements. It is imperative that the
strategy make best use of test automation throughout the test effort.

Make sure the testing results will provide thorough test evidence to help
stakeholders to make the correct release decision. This implies that the tests are
comprehensive and that the results will be available for review. The test cases
may be executed many times, so the test management framework should allow
for each of the testing cycles to be reviewed. (Sometimes it is important to know
whether or not a particular test passed on the previous iteration.)

All testing strategy decisions are made based on business goals and accepted
priorities.
3.1.1 Outsourcing
Should some testing be outsourced to a lab?
One possibility to consider for web applications is to outsource some of the
testing to a testing lab. They are set up to provide all of the standard hardware
platforms, browsers, operating systems, etc. There is a significant financial
impact in trying to reproduce that onsite and in rerunning test cases on different
platforms. So, if the test strategy dictates that this environment is necessary, it
might be worthwhile investigating outsourcing to a testing lab.

Peggy Fouts: Compuware
(c) Copyright 2001 Compuware. All Rights Reserved.

4

Remote testing of web sites is also available on a subscription basis. This
approach allows those with the specialized expertise to handle the testing
removes the necessity to purchase automated testing tools. These services
cover a wide variety of options. For instance, some may monitor the performance
of customer selected web transactions using load testing and network diagnostic
technology. The automated monitoring occurs on a regular (perhaps hourly)
basis, 24 hours a day, 7 days a week or on demand
.
In addition to performance testing they also check the integrity of the entire
website regularly. The scans search for common website problems, ranging from
broken links, to page warnings and image catalog problems. The integrity check
provides summary and detailed information in the areas of accessibility, usability
and functionality of the customer’s site. Results of the performance monitoring
are delivered daily or on demand. The performance trend summaries and
integrity check results might be delivered weekly or as desired.

Should some testing be performed by specialists – e.g. security?
How secure does the site have to be? Are we handling confidential information?
All major products on the market, including browsers, operating system software,
networking software, web server and development products have security
vulnerabilities. Published vulnerabilities have countermeasures or patches
provided by the software suppliers, but local system administrators have the
responsibility to stay up to date and apply the patches. There are standard ways
to test security that require in-depth technical knowledge of the systems under
attack, the tools available to assist and the approach to crack into systems. It is a
highly specialized skill and you may want to hire or outsource to specialists to
perform security testing.
3.1.2 Automation
Should some testing be automated?
In the Xtreme methodology, all tests are automated. There are two levels of test
- unit and acceptance (system). These tests are also used for regression testing.
Xtreme programming is based on providing incremental releases. This
methodology implies that there are frequent integrations, so tests are executed
every day – maybe more than once a day. They can verify the results of small
changes that occur frequently.

During the life of a project an automated test can save you a hundred times the
cost to create it. It provides an efficient way to detect and guard against bugs.
Automated unit tests offer a payback far greater than the cost of creation.

Load tests for web applications should be automated in order to replicate the
user load more efficiently, and to allow for frequent execution of the tests after
changes to the site.

If automating test cases, the test team may require training on the use of the
tools.

Peggy Fouts: Compuware
(c) Copyright 2001 Compuware. All Rights Reserved.

5

3.2 Test Plans
It might be necessary to create a Test Plan for each type of testing that was
referenced in the Test Strategy. Again if possible, modify Test Plans completed
for other projects. Make them as simple as possible, but be sure to cover all
risks and all high priority requirements. In addition, make sure that planned
testing can report reliably on the quality of the application based on the risks and
priorities.

4 Test Environment Preparation

4.1 General
A stable environment is the most critical piece of the test process. An
Environment Setup and Maintenance Plan should be in place. It should cover at
least the following topics:
• Roles and Responsibilities
• Environment verification – How to verify that what you think is there is actually

there
• Security and controls – Who has access, how is it applied
• Applications and interfaces to be maintained in sync with production
• Tools in use for environment maintenance and testing support
• Hardware
• Restoration/refresh processes
• Backup plans

The following may be specific to the application being tested, but the
Environment Setup and Maintenance Plan should cover them in general terms.
• Promotion from development environment to test environment
• Data (files, databases, etc.)
• Archiving – Items from the environment that require saving following

completion of a test cycle, e.g. automated test logs and data recovery restart
and checkpoints

Once this plan is created it can most likely be reused for future test efforts.

5 One approach
This is a sample activity/responsibility list for an organization that has an
enterprise wide test environment that is used for testing. Access to this
environment must be scheduled in advance. For an Xtreme approach, it is
probably more likely that the test environment is constantly available to the team.
However, a lot of the tasks still apply.

Test Planning and Preliminary Setup Activities
Activities Tasks Responsibilities

Peggy Fouts: Compuware
(c) Copyright 2001 Compuware. All Rights Reserved.

6

Definition and
Planning

Create a Test Plan that includes: Application team
with support from
Environment
team

 ° testing objectives,
 ° scope,
 ° approach,
 ° procedures,
 ° products required,
 ° team responsibilities, and
 ° schedule.
 Review and approve the Test Plan with

appropriate application development
management.

Application
management

 Create Test Environment Requirements
document that includes:

Application team
with support from
Environment
team

 ° application or system software
requirements,

 ° hardware configurations
 ° data requirements
 ° backup and restoration procedures
 ° environment verification processes.
 Deliver Test Environment Requirements

document to the Test Environment
Manager.

Application team

 Review Test Environment prerequisites for
entry, procedures related to test time
scheduling, test suspension and test
resumption, set up of and removal of data
and infrastructure support.

Application team

 Schedule entry into Test Lab. Application team
and Environment
team

Preparation and
Validation

Generate tests and procedures and
assemble test data

Application team

 ° Include testing of interfaces to other
systems, applications, or
subsystems as required.

 Communicate the satisfactory completion
of prior system testing to the Test
Environment Manger.

Application team

 Test Environment Manager enables
physical access to the lab for the
application test team.

Environment
Manager

Peggy Fouts: Compuware
(c) Copyright 2001 Compuware. All Rights Reserved.

7

Test Planning and Preliminary Setup Activities
Activities Tasks Responsibilities
Definition and
Planning

Create a Test Plan that includes: Application team
with support from
Environment
team

 ° testing objectives,
 ° scope,
 ° approach,
 ° procedures,
 ° products required,
 ° team responsibilities, and
 ° schedule.
 Review and approve the Test Plan with

appropriate application development
management.

Application
management

 Create Test Environment Requirements
document that includes:

Application team
with support from
Environment
team

 ° application or system software
requirements,

 ° hardware configurations
 ° data requirements
 ° backup and restoration procedures
 ° environment verification processes.
 Deliver Test Environment Requirements

document to the Test Environment
Manager.

Application team

 Review Test Environment prerequisites for
entry, procedures related to test time
scheduling, test suspension and test
resumption, set up of and removal of data
and infrastructure support.

Application team

 Schedule entry into Test Lab. Application team
and Environment
team

Preparation and
Validation

Generate tests and procedures and
assemble test data

Application team

 Establish and verify the test application in
the Test Environment (consider access,
platforms, operating systems, databases
and networking) that will simulate
production.

Environment
Manager

 Load new versions of system software or
application into the testing environment.

Application team
with Environment

Peggy Fouts: Compuware
(c) Copyright 2001 Compuware. All Rights Reserved.

8

Test Planning and Preliminary Setup Activities
Activities Tasks Responsibilities
Definition and
Planning

Create a Test Plan that includes: Application team
with support from
Environment
team

 ° testing objectives,
 ° scope,
 ° approach,
 ° procedures,
 ° products required,
 ° team responsibilities, and
 ° schedule.
 Review and approve the Test Plan with

appropriate application development
management.

Application
management

 Create Test Environment Requirements
document that includes:

Application team
with support from
Environment
team

 ° application or system software
requirements,

 ° hardware configurations
 ° data requirements
 ° backup and restoration procedures
 ° environment verification processes.
 Deliver Test Environment Requirements

document to the Test Environment
Manager.

Application team

 Review Test Environment prerequisites for
entry, procedures related to test time
scheduling, test suspension and test
resumption, set up of and removal of data
and infrastructure support.

Application team

 Schedule entry into Test Lab. Application team
and Environment
team

Preparation and
Validation

Generate tests and procedures and
assemble test data

Application team

team support
 Set up PCs or other terminals for Tester

use.
Lab team

 Ensure appropriate lab support, such that
all required testing could be accomplished.

Environment
Manager

 Define details for test sessions and related
schedules.

Application team
with Environment

Peggy Fouts: Compuware
(c) Copyright 2001 Compuware. All Rights Reserved.

9

Test Planning and Preliminary Setup Activities
Activities Tasks Responsibilities
Definition and
Planning

Create a Test Plan that includes: Application team
with support from
Environment
team

 ° testing objectives,
 ° scope,
 ° approach,
 ° procedures,
 ° products required,
 ° team responsibilities, and
 ° schedule.
 Review and approve the Test Plan with

appropriate application development
management.

Application
management

 Create Test Environment Requirements
document that includes:

Application team
with support from
Environment
team

 ° application or system software
requirements,

 ° hardware configurations
 ° data requirements
 ° backup and restoration procedures
 ° environment verification processes.
 Deliver Test Environment Requirements

document to the Test Environment
Manager.

Application team

 Review Test Environment prerequisites for
entry, procedures related to test time
scheduling, test suspension and test
resumption, set up of and removal of data
and infrastructure support.

Application team

 Schedule entry into Test Lab. Application team
and Environment
team

Preparation and
Validation

Generate tests and procedures and
assemble test data

Application team

team support
 Conduct a pre-test review with the test

team and the Test Lab Manager.
Application team
and Environment
Manager

Peggy Fouts: Compuware
(c) Copyright 2001 Compuware. All Rights Reserved.

10

6 Summary
If we go through a planning cycle and cover the items presented here, we will
learn what we need to know to drive a successful development and testing effort.
What the documents look like is less important than that they provide the
direction to cover the key items - risks and priorities.

QW2001 Paper 4V1

Mr. John Keller
(TeamShare, Inc.)

Collaborative Product Design and the New Role of Testing

Key Points

The Collaborative Product Design (CPD) methodology is essential in today's economic
climate because companies can no longer afford to build products that miss the mark.

●

The role of testing in a CPD paradigm expands beyond simply "Does it work" to "Is it
what the customer is looking for."

●

When it comes to building a CPD development environment, technology isn't everything,
but it is a critical enabler.

●

Presentation Abstract

Collaborative Product Design (CPD) is a relative newcomer to development
methodologies, but it builds on foundational principles found in other more
well-known development paradigms including Extreme Programming, Customer
Relationship Management, and Outward Focused corporations. CPD is essentially
all about creating a collaborative environment where customers, partners and new
product development groups can join together to build products and services that
have a rapid time to market, and to market embrace. CPD is in direct response to
the economic climate of today, where gone is the mentality of "if we build cool
technology, they will come", and in its place is the mentality "we're not going to
build it if there aren't customers who will buy into it."

Historically, testing organizations focused attention on isolating defects in products
simply in terms of finding features that are broken. In the CPD environment, the
testing organization must be more intimately involved with specifically what
customers are looking for, and build test plans that address features in terms of
customer needs.

This presentation will discuss the concepts behind CPD and what it takes to build a
CPD development environment.

About the Author

Speaker bio to be supplied.

1

Collaborative Product Design
and the

New Role of Testing

John Keller

Product Business Manager

TeamShare, Inc.
Quality Week 2001

Quality Week 2001 / May, 2001 / San Francisco, California 2

Agenda

• How today’s economy sets the stage

• What it’s all about and where it came from

• The new role of testing

• What it takes to build a CPD environment

2

Quality Week 2001 / May, 2001 / San Francisco, California 3

Today’s Market Conditions

In these economic conditions, companies cannot afford to build

technology that is simply cool, but that has no viable market.

Motorola cuts 4000 jobs to remain competitive in a
slowing economy - cuts are in Motorola's networks
sector created to provide broadband & wireless
communications products and systems.

3Com said a $1 billion restructuring plan includes
the discontinuation of its consumer Internet
appliance line to help return it to profitability.

Quality Week 2001 / May, 2001 / San Francisco, California 4

The World as We Know It

• 70% of overall product cost is in the design stage1

• Customer profitability increases each year that the
customer is retained, from 2% to 14%2

• Customers don’t know what they want up front

• CPD is how we cut costs and still innovate

2 Customer Relationship Management: A Strategic Imperative in the world of e-Business by Stanley A. Brown, page 15

1 Beating the Competition with Collaborative Product Commerce, Leveraging the Internet for New Product Innovation,
Aberdeen Group, Inc., October 2000 Update, page 4

3

Quality Week 2001 / May, 2001 / San Francisco, California 5

CPD – Aberdeen Market Definition

• Aberdeen defines CPD as a suite of software and services that

integrates several product-centric business processes across
multiple independent enterprises into a single, closed-loop
solution.

• CPD solutions are inherently web-architected and make

extensive use of collaboration technologies to focus disparate

organizations on a common task: producing the best designed,

most advanced products possible.

Quality Week 2001 / May, 2001 / San Francisco, California 6

CPD - Business Needs

• Organizations compete by developing better products in less
time, at less cost, and with fewer defects than rivals.

• Customers demand relevant, current products that are
delivered in a prompt and efficient manner.

• Enterprises are looking to generate a product that is
custom-tailored to customers’ needs. Decision-makers are
being pressured to move from the traditional make-to-stock
model to a build-to-demand model. 4

4Beating the Competition with Collaborative Product Commerce, Aberdeen Group, October 2000 Update, page 1

4

Quality Week 2001 / May, 2001 / San Francisco, California 7

CPD – A Part of C-Commerce

Development &
Design

Management

Customer
Support

Customer
Feedback
for Design

Field Service
&

Support

KM

Proj.
Mgmnt

Doc..
Mgmnt

Procurement
Assembly

Mfg
(SCM)

CAD/CAM

CAE

Collaborative
Marketing

Collaborative
Planning &
Distribution

Quality Week 2001 / May, 2001 / San Francisco, California 8

Successful
Product Line

Embraced
by the
Market

Customers

Partners

Professional
Services

CRMQA

Engineering

Project
Product

Management

Collaborative Product Design
Creating a collaborative environment where customers, partners and new

product groups can join together to build products and services that have a
rapid time to market and time to sales volume

Technical
Support

5

Quality Week 2001 / May, 2001 / San Francisco, California 9

CPD Benefits
• Better products built through collaboration, driven

by customer demand, developed in less time, at less
cost, and with fewer defects than competitors

• Customer-focused development projects with an ear
to the real world

• Long-term customer loyalty and profitability
through products that continue to meet and exceed
market demands

• “Communication + Collaboration = Innovation”
Palm Source 2000

Quality Week 2001 / May, 2001 / San Francisco, California 10

CPD and the New Role of Testing

• Old School: “Find what’s broken”

• New School: “Find the areas that aren’t what the
customer wanted”

• Test plans need to be customer focused

• Analyze the product and the market

• Success is not just measured in “time to market”,
but in “time to volume”

6

Quality Week 2001 / May, 2001 / San Francisco, California 11

What it takes to build a CPD Environment - 1

• Outward focused way of doing business

• No silos

• Expand product knowledge outside of

development / QA walls

• Direct customer input and feedback

Quality Week 2001 / May, 2001 / San Francisco, California 12

What it takes to build a CPD Environment - 2
• Web-based, platform independent design allowing

universal accessibility

• Workflow architecture allowing intra- and inter-
enterprise collaboration

• Built-in security minimizing risk of outside user
break-in

• Common access to a virtual data repository, with
data served up in a form applicable to users’ roles

7

Quality Week 2001 / May, 2001 / San Francisco, California 13

What it takes to build a CPD Environment - 3
• Integrated Development and Support solution that

facilitates collaboration between key technical
groups

• Licenses which allow direct customer involvement

• XML integrations which enable cross application
data exchange

• Hosting option allowing rapid deployment

Quality Week 2001 / May, 2001 / San Francisco, California 14

For more information, contact:For more information, contact:For more information, contact:For more information, contact:

John Keller, Product Business Manager, John Keller, Product Business Manager, John Keller, Product Business Manager, John Keller, Product Business Manager,
TeamShare, Inc.TeamShare, Inc.TeamShare, Inc.TeamShare, Inc.

(719) 457(719) 457(719) 457(719) 457----8884888488848884

john.john.john.john.kellerkellerkellerkeller@@@@teamshareteamshareteamshareteamshare.com.com.com.com

CPD and the New Role of Testing

QW2001 Paper 4V2

Mr. Michael Smith
(McCabe & Assoc)

QW2001 Keynote 5P1

Dr. Linda Rosenberg
(GSFC NASA)

Independent Verification And Validation Implementation At
NASA

Key Points

IV&V is a valuable tool for increasing sofware quality and reliability●

IV&V needs selection criteria for which projects should apply it●

NASA is now requiring IV&V evaluation for all projects and application on some●

Presentation Abstract

This paper will discuss the management approach taken to consistently apply
IV&V on NASA projects. We will discuss the development of the NASA policy
stating that all projects and programs with few exceptions shall employ software
V&V techniques for risk mitigation; criteria shall be applied to determined if
IV&V is warranted. The IV&V selection criteria are based on determining the
extent of risk. Developed by an Agency wide group, the criteria provide an
algorithm for estimating probability of software failure based on quantitative
software complexity, development team, management, and other factors. Factors
for characterizing the consequences of software failure are determined, then
thresholds for performing IV&V based on probability of failure and severity of
impact (consequences) are applied. In this paper, we will discuss how these
guidelines were developed and currently being applied. We will conclude with a
discussion on the approach to projects, how do you convince the project manager
to implement IV&V, and what is the cost to the project.

About the Author

Dr. Rosenberg is the division chief of the Software Assurance Technology Office
(SATO) in the Office of Systems Safety and Mission Assurance Directorate at
Goddard Space Flight Center (GSFC), NASA. She also serves as the Software
Assurance technologist for GSFC and NASA. Dr. Rosenberg is a recognized
International expert in the areas of software assurance, software metrics,
requirements and reliability. She serves on IEEE program committees for software
reliability, software metrics, and software requirements. She has chaired sessions at
many international conferences, included those sponsored by NASA and AIAA.
Dr. Rosenberg also reviews papers for the Department of Defense sponsored
conferences, and other industrial organizations for software quality. She has
presented papers and tutorials in many areas of software assurance, including
reliability, at IEEE and ACM international conferences and the International
Astronautical Congress. Dr. Rosenberg is currentl! y on the steering committee to

evaluate the metrics in the IEEE 982 Reliability Standard. Dr. Rosenberg is also an
adjunct professor at University of Maryland, Baltimore for the Masters/Doctoral
Program.

Dr. Rosenberg holds a Ph.D. in Computer Science from the University of
Maryland, an M.E.S. in Computer Science from Loyola College, and a B.S. in
Mathematics from Towson University. She is a member of Electrical and
Electronic Engineers (IEEE), the IEEE Computer Society, the Association for
Computing Machinery (ACM) and Upsilon Pi Epsilon.

Independent Verification and Validation Implementation
at NASA

Linda H. Rosenberg, Ph.D.

Software Assurance Technology Office, Code 302
Goddard Space Flight Center, NASA

Greenbelt, MD 20771 USA
301-286-0087

Linda.Rosenberg@gsfc.nasa.gov

ABSTRACT
NASA is recognized as a leader in space technology, with cutting edge science probing
galaxies never before seen by mankind. In keeping with this cutting edge technology, much
of the functionality previously done through hardware has transferred to software, including
mission critical functions. But technology implementation is moving so fast, that at times
quality assurance cannot keep up, although we try. The NASA Independent Verification and
Validation (IV&V) Facility was established in 1993 in West Virginia and tasked to provide
the highest achievable levels of safety and cost effectiveness for mission-critical software.
Despite this, NASA has experienced some failures recently that traced, in part, to less than
adequate implementation of mission software. In response in part to these failures, NASA
has taken steps to place an emphasis on implementing improvements in the Agency’s
software process. One of these steps relates to the increased focus on IV&V.

Every industry has data to support the statement that IV&V is cost effective, a very positive
return on investment, yet most projects don’t employ it. NASA decided to investigate the
current use of IV&V, identify projects that should be using IV&V, and start using the
expertise of the NASA IV&V Facility to improve the quality assurance on NASA projects
through the appropriate implementation of IV&V. This paper is not about IV&V, but about
NASA’s new approach to the implementation of IV&V on all software development
throughout the Agency.

Keywords
Independent Verification and Validation, IV&V, risk mitigation

1 INTRODUCTION
NASA determined the need for software Independent Verification and Validation (IV&V)
after evaluating the causes of recent mission failures. These failures were due, in part, to
software issues that should have been identified during development or testing. The NASA
IV&V Facility in West Virginia was developed to be a Center of Excellence, but was under
utilized. Projects that did use the Facility had proven benefits. The focus for improvement
within NASA has turned to the application of Independent Verification and Validation of the
software.

mailto:Linda.Rosenberg@gsfc.nasa.gov

This approach started by looking at the resources available and projects that have applied
IV&Vto determine if there were benefits in the NASA environment. It was quickly
determined that only a few projects were implementing IV&V, not all were taking advantage
of the Facility’s expertise, and there were very definite proven benefits to NASA when
IV&V was applied. These benefits ranged from cost savings to identifying mission critical
errors not previously identified through testing; the application of IV&V on software resulted
in increased safety and reliability of the mission. But deficiencies in the application of IV&V
were also identified, specifically it was randomly applied by projects, with no consistency.

This paper will discuss the approach taken to increase the use of IV&V within NASA. We
will start by defining independent, verification, and validation, what they mean. We will
then discuss the policy written relative to the performance of software IV&V and the criteria
developed to help projects quantify the need for IV&V. We will conclude with a discussion
on the approach and how to convince the project manager to implement IV&V.

2 INDEPENDENT VERIFICATION AND VALIDATION (IV&V)
Although this is not a paper on IV&V, we do need to start with a basic understanding of what
constitutes IV&V, starting first with the definitions of verification and validation, then
determining what is required for “I” – independence. IEEE 610.12-1990, IEEE Standard
Glossary of Software Engineering Terminology, defines verification and validation as
follows.[1] Verification is defined as the process of evaluating a system or component to
determine whether the products of a given development phase satisfy the conditions imposed
at the start of that phase. Validation is defined as the process of evaluating a system or
component during or at the end of the development process to determine whether it satisfies
specified requirements. Another way of stating verification is “Did we built the system
right?” and validation as “Did we build the right system?” IV&V is implement at all phases
of the software development life cycle, not just in testing.

Independence in IV&V is defined by IEEE as three parameters: technical independence,
managerial independence, and financial independence. Technical independence is achieved
by personnel who are not involved in the development of the software. IV&V personnel use
their expertise to assess development processes and products independent of the developer.
They formulate their own understanding of potential problems and how the proposed system
is solving them. Managerial independence requires responsibility for the IV&V effort to be
vested in an organization separate from the organization responsible for performing the
implementation of the system. The IV&V effort independently selects the segments of the
software and system to analyze and test, chooses the IV&V techniques, defines the schedule
of IV&V activities, and selects the specific technical issues and problems to act upon. Most
projects view V&V sufficient and do not recognize the added value the independence brings.
Finance independence has been harder to attain. All work on the project, including quality
assurance, is funded directly by the project, hence, IV&V is also funded directly by the
project. In theory, the project could remove IV&V funding if they are not satisfied with the
findings, but with the implementation of the IV&V policy, the projects are now required to
work with the IV&V Facility to reach an agreement on the amount of IV&V and funding.

Any changes to this must be agreed to by the Center Director with strong justification by the
project manager.

3 IMPLEMENTATION APPROACH
All software project managers, whether government or industry, never have time or money to
spare, so when NASA identified the need for IV&V, it was met with a cry of “Not on my
project!” But the implementation of IV&V was part of a larger effort to improve the
software developed at NASA, to achieve the highest levels of safety and cost effectiveness
possible for mission critical software. To accomplish this, NASA established a group of
software experts from all NASA Centers to advise and develop software policies and
standards.1 Each Center provided two experts in different aspects of software development
to form the NASA Software Working Group (SWG). Their charter is to advise the Agency
on software related matters and recommend software management, engineering and
assurance policies, standards, best practices and guidance, quite a task. They have been
instrumental in the implementation of IV&V at NASA as will be demonstrated in this paper.

In 1993, NASA established the IV&V Facility in Fairmont West Virginia to provide the
highest achievable levels of safety and cost-effectiveness for mission-critical software. The
mission of the IV&V Facility is to become the NASA Center of Expertise for the application
of software verification and validation technology to the development of high quality, highly
reliable software systems to support NASA missions. The IV&V Facility provides tailored
technical, project management and financial analyses for NASA projects, industry, and other
Government agencies, by applying software engineering “best practices” to evaluate software
risk and criticality assessments throughout the system development life cycle. Through the
Facility, NASA has the means for implementing IV&V, but it is under utilized. Only a few
very large NASA projects, such as Space Station, chose to apply IV&V through the Facility.
A few other projects applied IV&V but through another source, usually a contractor.

NASA now has the ability to implement software improvement throughout the Agency
through the Office of the Chief Engineer. It has the body of software experts to write policy
through the Software Working Group. It has the experts in IV&V at the Facility. The
infrastructure is in place, now the process had to begin.

The first step was to write a policy requiring projects to investigate the necessity of doing
IV&V. IV&V is an effective risk mitigation strategy, and since most NASA missions are
cutting edge technology, they also are at high risk. But NASA develops many types of
projects, from ground and flight systems, to instruments and data collection systems. The
specific types of missions potentially requiring IV&V had to be identified. Recognizing that
cost must be balanced against potential benefits, the “amount” of risk incurred by a project
had to be calculated. In order to require projects to investigate the application of IV&V, a
policy was developed identifying the types of projects that must potentially apply IV&V was
developed. The process of determining the need for IV&V, the extent and approach are

1 The author is Goddard Space Flight Center’s primary representative to this group.

specified in the policy. The policy also states all IV&V will be done under the management
of the NASA IV&V Facility, centralizing expertise and ensuring consistency.

The next step was to develop criteria for determining when IV&V must be considered -
quantifying project risk for an initial assessment on which projects may require IV&V.
Project risk is defined as a combination of the probability that an undesirable event will
occur, and the consequence if the event does occur. The IV&V Criteria were written using
probability and consequence. Factors influencing software development were identified, and
risk factors associated with them for a calculation of the probability. Consequences of failure
were classified as Grave, Substantial, Marginal, Insignificant. These are combined for a
determination of the necessity of IV&V.

The final step, and the hardest in some respects, was to identify the projects that potentially
required IV&V and determine to what level IV&V was needed. Money is always an issue,
there is never enough in any software development, so what was the cost and what are the
balancing benefits.

Therefore, the approach to implement IV&V consistently and logically on all NASA
software was broken into 3 steps:

1 – Write a policy for the requirement of IV&V implementation
2 – Write the criteria for an initial determination of IV&V necessity based on project
risk evaluation
3 – Work with projects to implement IV&V

Step 1 – IV&V Implementation Policy
The policy for IV&V implementation was to clearly specify the process of determining when
a program must apply IV&V under the management of the NASA IV&V Facility. The initial
version of the IV&V policy was stated in the IV&V Facility Business Plan in June 2000.[2]
The final version of the policy will be distributed as a NASA policy by the end of 2001,
giving it the authority of being required for all NASA software development.

One strength of the policy is the specification that the NASA IV&V Facility is responsible
for the management of all software IV&V efforts within the Agency. The Facility’s role is to
provide a value-added service to the Agency’s software development efforts. The cost to
perform tailoring and implementation of IV&V is expected to be borne by the project or the
sponsoring HQ Enterprise. All results are to be reported to the project manager and the
cognizant Center Director. This creates a central repository of knowledge, tools, metrics and
lessons learned that can be used to improve the IV&V efforts on future projects throughout
NASA.

The policy identifies all projects that this policy pertains to as those that are covered in
NASA Policy Guideline (NPG) 7120.5 “NASA Program and Project Management Processes
and Requirements Highlight Code”, or other projects within NASA with significant software
effort as determined by the NASA Chief Information Officer (CIO), the NASA Office of the
Chief Engineer (OCE), and the NASA Office of Safety and Mission Assurance (Code Q) or

Center Safety and Mission Assurance. Projects covered in NPG 7120.5 include “all
programs/projects that provide aerospace products or capabilities, i.e., provide space and
aeronautics, flight and ground systems, technologies, and operations.”[3] This covers most
of the projects but may exclude projects where NASA is a minor partner and those developed
by Universities for educational purposes and considered at minor risk due to limited
investment.

The policy states that each project must produce, document, and implement a plan that
addresses the performance of V&V, and if appropriate, IV&V, over the life cycle of the
software, from requirements through delivery and maintenance. The level of IV&V of
software that is performed is based on the cost, size, complexity, life span, risk, and
consequences of failure as defined using the Criteria (explained in the following section).

The policy specifies the following steps for IV&V determination and application:
a. The project manager is to evaluate their project against the criteria (described in Step 2)

to determine if IV&V is indicated.
b. For projects where the criteria indicates software IV&V is warranted, the project manager

is to discuss the results with a representative of the NASA IV&V Facility. Application of
the IV&V criteria simply determines if a project is a candidate for IV&V – not the level
of IV&V nor the resources associated with the IV&V. The Facility personnel will work
jointly with the project office to provide recommendations tailored to the project on what
sections and to what extent IV&V should be performed.

c. With this input from the Facility, the project manager will document in the project plan
what IV&V is intended to be performed. Since IV&V compliments and enhances risk
mitigation, projects are encouraged to achieve the most effective balance of risk
mitigation strategies.

d. The level of IV&V activities selected in the project plan is subject to Facility review. The
Center Director is responsible for resolving differences between the Facility and Project
Office.

e. When IV&V is selected for a project, the Facility, with information from the project, will
make the determination of which IV&V work will be done at the Facility location in WV,
and which work will be done local to the project. The objective over the life of the project
is that at least 50% of the work be done at the Facility.

f. When the project undergoes significant changes that impact the software subsystems, the
project manager must revisit the criteria.

Step 2 - IV&V Criteria
In order to accomplish of goal of increasing the application of IV&V on all appropriate
projects, it had to be determined what was meant by “appropriate” projects, hence the
development of IV&V criteria. Again the members of the NASA Software Working Group
were task with defining when IV&V should be applied to a project. Looking back on the
objective of IV&V for risk mitigation, those projects with high risk had to be identified, but
first, the criteria for what makes a software project high risk had to be defined and quantified.
The quantification was the hardest part.

IV&V is intended to assist mitigating risk, hence, the decision to do IV&V must be risk
based. NASA policy NPD 7120.5 defines risk as the “combination of 1) the probability
(qualitative or quantitative) that a program or project will experience an undesired event such
as cost overrun, schedule slippage, safety mishap, or failure to achieve a needed
breakthrough; and 2) the consequences, impact, or severity of the undesired event were it to
occur.” [3] The exact probability of occurrence and consequences of a given software failure
cannot be calculated early in the software lifecycle. However, there are realistically available
metrics which give good general approximations of the consequences as well as the
likelihood of failures.

Probability Evaluation
The probability of failure for software is difficult to determine at any phase in the software
development life cycle. The NASA Software Working Group (SWG) has identified factors
that impact the difficulty of the development. These factors were then calibrated to determine
the extent of risk for successful software development. While the indicators are not precise
and are currently in Beta testing by NASA software development projects and the IV&V
determination team, they do provide order of magnitude estimates, which are adequate for
assessing the need for IV&V. These factors are described below.
a. Software team complexity – Industry research has shown that the larger the team the

more complex the communication and more points of failure. Smaller teams are generally
co-located, making communication a common occurrence. The larger the development
teams, the more formal communication, often loosing some subtle communication
activities.

b. Contractor support – NASA software is developed by civil servants, contractors or a
combination. The presence of a contractor (other than the prime system developer)
introduces a layer of contract management between the government and the actual
software developer.

c. Organization complexity – This is an indirect measure of communications challenges
inherit in the software developer. A single organization working from multiple locations
faces a slightly greater challenge than an organization in one location. When the
software development is accomplished by multiple organizations working for a single
integrator, the development is significantly complicated. If the developing organizations
are coequal such as in an associate contractor relationship (or a similar relationship
between government entities) then there is no integrator. Experience has shown this
arrangement to be extremely challenging as no one is in charge.

d. Schedule pressure - A deadline is negotiable if changing the deadline is possible although
it may result in slightly increased cost, schedule delays, or negative publicity. A deadline
is non-negotiable if it is driven by immovable event such as an upcoming launch window.
Project working under deadlines are more likely to decrease testing, hence potentially
decreasing the reliability and safety, and increasing the risk.

e. Process maturity of software provider – It has been demonstrated in almost all cases,
application of the Software Engineering Institute’s Capability Maturity Model (CMM)
increases the quality of the software developed, resulting in higher reliability. This
model has 5 levels of attainment, 3 being the most common, and all projects start out at
Level 1. While striving to attain Level 2, projects are implementing some of the

techniques that reduce project risk. The higher the CMM Level achieved, the lower the
risks. A formal assessment is required to determine the CMM Level.

f. Degree of innovation – Innovation is usually found in most of NASA’s software, as
expected. But when attempting to formulate a new equation or concept, there is a higher
risk than if the software has been proven in previous programs.

g. Level of integration – Programs that stand alone and are not integrated with any other
components have a higher probability of success due to simplicity of their interfaces. The
more extensive integration of multiple components, the higher the risk.

h. Requirement maturity – Requirements that are constantly change or change late,
ambiguous or untestable are at a higher risk than those requirements whose objectives are
well defined with few or no unknowns.

i. Software Lines of Code – It has been proven that the larger the project, the higher the
risks. Lines of code is used as a size measurement and is defined to be all code in the
programs, including software that is reused and auto generated code.

Five categories of risk within each factor were identified based on input from software
developers from all NASA centers. Values 1, 2, 4, 8, 16 were assigned to each category.

Factors
contributing
to probability
of software
failure

Weighting
Factor

Likely-
hood of
failure
rating

1 2 4 8 16
Software
team
complexity

Up to 5 people
at one location

Up to 10
people at one
location

Up to 20
people at one
location or 10
people with
external
support

Up to 50
people at one
location or 20
people with
external
support

More than 50
people at one
location or 20
people with
external
support

X2

Contractor
Support

None Contractor with
minor tasks

 Contractor with
major tasks

Contractor with
major tasks
critical to
project
success

X2

Organization
Complexity*

One location Two locations
but same
reporting chain

Multiple
locations but
same reporting
chain

Multiple
providers with
prime sub
relationship

Multiple
providers with
associate
relationship

X1

Schedule
Pressure**

No deadline Deadline is
negotiable

Non-negotiable
deadline

X2

Process
Maturity of
Software
Provider

Independent
assessment of
Capability
Maturity Model
(CMM) Level
4, 5

Independent
assessment of
CMM Level 3

Independent
assessment of
CMM Level 2

CMM Level 1
with record of
repeated
mission
success

CMM Level 1
or equivalent

X2

Degree of
Innovation

Proven and
accepted

Proven but
new to the
development
organization

Cutting edge X1

Level of
Integration

Simple - Stand
alone

Extensive
Integration
Required

X2

Requirement
Maturity

Well defined
objectives - No
unknowns

Well defined
objectives -
Few unknowns

Preliminary
objectives

Changing,
ambiguous, or
untestable
objectives

X2

Software
Lines of
Code***

Less than 50K Over 500K Over 1000K X2

Total

Un-weighted probability of failure score

Table 1 Likelihood of Failures Based on Software Environment

Finally, a weighting factor of 1 or 2 was identified for each factor. This information is
shown in Table 1.

To apply the criteria, the project manager identifies the category of risk for each factor and
multiples the appropriate value (1, 2, 4, 8, or 16) times the weighting factor of 1 or 2. The
sum for all factors yields an initial numerical representation of the project software
development risk. For example, a project might rate the following:
− Software team complexity – “up to 20 people at one location” = 4 * 2 = 8
− Contractor support – “with minor tasks” = 2 * 2 = 4
− Organizational complexity – “two locations but with same reporting chain” = 2 * 1 = 2
− Schedule pressure – “non-negotiable” = 16 * 2 = 32
− Process maturity – “ CMM Level 1 but with a successful history” = 8 * 2 = 16
− Innovation – between proven but new and cutting edge = 8 * 1 = 8
− Integration – almost stand alone = 2 * 2 = 4
− Requirement maturity – “preliminary objectives” = 8 * 2 = 16
− Lines of code = ~ 300K = 2 * 2 = 4
∴ TOTAL = 8+4+2+32+16+8+4 +16+4= 94

This risk information must now be combined with the consequence evaluation.

Consequence Evaluation
In general, the consequences of a software failure can be derived from the purpose of the
software: i.e., what does the software control; what do we depend on it to do. NASA has
many types of software, including flight software which is launched and contains mission
critical functional, ground system that sends commands, scientific software for the
experiments, and just about all other types of software imaginable. Factors which can be used
to categorize software based on its intended function as well as the level of effort expended
to produce the software are defined as follows:
a. Potential for loss of life - Is the software the primary means of controlling or monitoring

systems that have the potential to cause the death of an operator, crewmember, support
personnel, or bystander? The presence of manual overrides and failsafe devices are not
to be considered. This is considered a binary rating: responses must be either yes or no.

b. Potential for serious injury - Serious injury is defined as loss of digit, limb, or sight in one
or both eyes, sudden loss of hearing, or exposure to substance or radiation that could
result in long term illness. This rating is also binary. This rating considers only those
cases where the software is the primary mechanism for controlling or monitoring the
system. The presence of manual overrides and failsafe devices are not to be considered.

c. Potential for catastrophic mission failure - Can a problem in the software result in a
catastrophic failure of the mission? This is a binary rating.

d. Potential for partial mission failure - Can a problem in the software result in a failure to
meet some of the overall mission objectives? This is a binary rating.

e. Potential for loss of equipment - This is a measure of the cost (in dollars) of physical
resources that are placed at risk due to a software failure. Potential collateral damage is
to be included. This is exclusive of mission failure.

f. Potential for waste of software resource investment- -This is a measure or projection of
the effort (in work-years, civil service, contractor, etc.) invested in the software. This
shows the level of effort that could potentially be wasted if the software doesn’t meet
requirements.

g. Potential for adverse visibility - This is a measure of the potential for negative political
and public image impacts stemming from a failure of the system as a result of software
failure. The unit of measure is the geographical or political level at which the failure will
be common knowledge—specifically: local (Center), Agency, national, international.
The potential for adverse visibility is evaluated based on the history of similar efforts.

h. Potential effect on routine operations - This is a measure of the potential to interrupt
business. There are two major components of this rating factor: scope and impact. Scope
refers to who is affected. The choices are Center and Agency. The choices for impact are
inconvenience and work stoppage.

Now the Potential for failure had to be quantified. Four ratings were chosen: Grave,
Substantial, Marginal and Insignificant. Each of the factors above were quantified for each
rating. If any of the conditions are met, the software is considered to reside in that category.
The categories are defined as follows:
- Grave

Potential for loss of life - Yes
Potential for loss of equipment – Greater than $100,000,000
Potential for waste of resource investment – Greater than 200 work-years on software
Potential for adverse visibility - International

- Substantial
Potential for serious injury – Yes
Potential for catastrophic mission failure – Yes
Potential for loss of equipment – Greater than $20,000,000
Potential for waste of resource investment – Greater than 100 work-years on software
Potential for adverse visibility - National
Potential effect on routine operations – Agency work stoppage

- Marginal
Potential for partial mission failure - Yes
Potential for loss of equipment – Greater than $2,000,000
Potential for waste of resource investment – Greater than 20 work-years on software
Potential for adverse visibility - Agency
Potential effect on routine operations – Center work stoppage or Agency inconvenience

- Insignificant
Potential for loss of life - No
Potential for serious injury – No
Potential for catastrophic mission failure – No
Potential for partial mission failure – No
Potential for loss of equipment – Less than $2,000,000
Potential for waste of resource investment – Less than 20 work-years on software
Potential for adverse visibility – No more than local visibility
Potential effect on routine operations – No more than a Center inconvenience

For example, the project described below would determine the consequence as demonstrated.
− Software controls life-support systems (potential loss of life)
− There is no potential for loss of equipment
− There is potential for adverse visibility at the Agency level
− There would be no effect on routine operations
∴ This software would rate the consequence of failure as “GRAVE” because it met one of

the conditions – loss of life support. Software consequence is determined by meeting any
of the conditions within that category.

Combining the software the probability of failure rating and the consequences of failure
yields a risk assessment, which can be used to identify the need for IV&V Application of
these criteria only determines that a project is a candidate for IV&V – not the level of IV&V
nor the resources associated with the IV&V effort. These must be determined as a result of
discussions between the project and the IV&V Facility.

Figure 1 shows a dark region of high risk where software consequences, likelihood of failure,
or both are high. Projects having software that falls into this high-risk area shall undergo
IV&V. The exception is those projects which have already done hardware/software
integration. An IV&V would not be productive that late in the development cycle. The gray
regions of intermediate risk. Projects having software that falls into these areas shall undergo
an evaluation to determine if IV&V is warranted.

Figure 1: Probability & Consequence = Risk

Using the previous project example, a probability of 94 score means that they must perform
IV&V if the consequence of failure is Substantial or Grave. Since the project’s consequence
was determined to be Grave, they must perform IV&V under the NASA IV&V Facility.

Grave

Substantial

Marginal

Insignificant

16 32 64 128 250

96

IV&V

IV&V

IV&V

C
on

se
qu

en
ce

 o
f S

of
tw

ar
e

Fa
ilu

re

Total Likelihood of Failure based on Software Environment
High Risk - IV&V Required Intermediate Risk - Evaluate for IV&V

Step 3 - Project implementation
Prior to implementing IV&V, a company has to know about the software it develops. At
NASA, software development is done at all 10 Centers spread from California, to Florida,
Texas to Ohio, and Alabama to Maryland, and with Universities and industries. NASA
projects are initially funded through multiple Enterprises at Headquarters. Each Enterprise
was requested to compile a list of their projects. Since all projects have a software
component, some very small and some mission critical, this list was used as a starting point
for investigating the application of IV&V.

Approximately 100 projects were identified across all NASA Centers. Project managers
were sent a request from NASA’s Chief Engineer to apply the criteria to determine if their
project was a candidate for IV&V. If they fit the category of potentially requiring IV&V,
they were then ask to apply the criteria, estimating the probability of failure and the
consequence. This information was sent to the NASA IV&V Facility where personnel
evaluated the results and looked for inconsistencies in the data. For example, a project that
indicated they were at a CMM Level 5, the contractor was identified, since very few
companies are at Level 5. If a project marked their deadline was negotiable, the innovation
was proven and accepted and the requirement maturity was well defined, with no unknowns,
indicating a project doing nothing new and in no hurry to get there. This is not usually the
case for NASA software. In many cases, the person completing the information did not
understand a factor, such as what CMM is. In a few cases, the project chose the lowest
possible risk to prevent the need for IV&V. (All data was scanned to identify those projects
who checked the least risk category for each factor.)

Projects were given one week to complete the criteria information. Projects not completing
the data were sent a second letter from NASA Headquarters with notification to appropriate
personnel at the Center. Center Directors were eventually notified of the projects that did not
respond (only two), and the data was promptly received. In total, data was received on
approximately 100 projects. After discussions with projects to clarify the information and
correct erroneous data, approximately seventy projects were identified as candidates for
IV&V.

Applying IV&V to seventy projects immediately however, is an impossibility. The Facility
currently does not have the resources to accommodate this many projects and this much work
at this time. Using the data from the criteria (consequence and probability) and discussions
with the project managers, the following guidelines to focus the IV&V efforts were
implemented.
1. All project currently receiving IV&V will continue.
2. All projects classified as “GRAVE” should be addressed first for IV&V with the highest

priority applied to those closest to operational date as a general rule, with some attention
applied to why it is classified as “GRAVE”.

3. All projects classified as “SUBSTANTIAL” and needing IV&V based on the risk
probability value greater than 32 that are in the requirements or design phase.

4. All remaining projects classified as “SUBSTANTIAL” and needing IV&V based on the
risk probability value greater than 32.

5. All remaining projects classified as “MARGINAL” and needing IV&V based on the risk
probability value greater than 96, prioritized based upon how close to starting they are.

4 RESULTS

The application of IV&V on NASA projects has shown some very positive results and
prevented costly errors. In one project, the IV&V activity identified design flaws in the
Command and Control system which had it not been corrected, would have resulted in a
catastrophic hazard. This critical piece of software sends commands to hardware elements,
and if not working properly, could fail to send emergency response commands leading to the
loss of attitude control, rapid depressurization, and other hazardous conditions. Using a code
analysis, IV&V identified an error which would eliminate the vital command link between
the ground control system and the satellite. A special software patch was generated for the
on-orbit software to correct the problem. IV&V developed policy criteria used by one
Program for non-flight software in integrated tests. This policy was key for insuring testing
integrity while making it possible to keep tight development schedules.

IV&V activities have benefited many different domains of NASA’s software. In the Manned
Space flight domain, over 4,000 problems were identified, 10 of the highest criticality, those
that could result in loss of mission or loss of life. For Experimental Flight Vehicles, IV&V
identified over 300 requirements and design problems. For Ground systems, over 250 legacy
system requirements and mitigation problems were identified.

5 CONCLUSION

The results of NASA’s investigation have shown that in this environment, IV&V has been
cost effective. Companies large and small, in today’s competitive world cannot afford
software that is unreliable. To be effective however, IV&V must be applied effectively and
the independence must not be lost. Project managers must understand the benefits above the
cost, looking at the whole development, not just the current state.

NASA has recognized the value of IV&V and has taken steps to implement IV&V on all
software projects where warranted. The decision to implement IV&V is no longer solely the
decision of the project manager, but through an independent evaluation, the risk of the
project is evaluated, and the need for IV&V is determined. Although the policy and criteria
in this paper were written for NASA projects, they are applicable with minor modification to
any software development.

ACKNOWLEDGEMENTS

Much of the work presented in this paper was a combined effort of NASA IV&V Facility
personnel (Judy Bruner, John Hinkle, and Ken McGill), Goddard Space Flight Center
personnel (Charles Vanek, John Dalton, Linda Rosenberg), and the members of the Software
Working Group under Pat Schuller, Langley Research Center.

REFERENCES

[1] IEEE 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology ,
Institute of Electrical and Electronics Engineers, Inc.

[2] NASA IV&V Business Plan, Office of System Safety and Mission Assurance, NASA
Goddard Space Flight Center, MD , June 2000, http:// ivvplan.gsfc.nasa.gov.

[3] NASA Policy Guideline (NPG) 7120.5 “NASA Program and Project Management
Processes and Requirements Highlight Code”, Office of Chief Engineer, NASA
Headquarters, Washington, DC.

QW2001 Keynote 5P2

Dr. Dalibor Vrsalovic
(Intel Corporation)

Issues in Design and Validation of Modern eBusiness
Systems

Presentation Abstract

Silicon economics helps in reducing cost of building modern eBusiness systems.
However, year after year, the ongoing operations and software maintenance cost is
killing many of the Internet based business models. This is due to two major facts:
high complexity of new eBusiness systems, and low level of design, verification
and management tools involved. In other words there is too little automation, and
too much manual labor involved.

This talk will discuss modern trends in Internet systems architecture. It shows how
higher level system abstractions could save both time and cost during the design,
building, validation and operations of eBusiness systems. Author will also discuss
a concrete example of a high level system model and its benefits.

About the Author

Dalibor F. Vrsalovic is a Vice President and Chief Technology Officer of Intel's
New Business Group. In this position, Dr. Vrsalovic has responsibility for the
long-range development of the architecture for Internet services and systems and
for working with internal and external technology vendors to ensure a continuing
stream of innovation for Intel's Internet platforms and services.

Prior to joining Intel, Dr. Vrsalovic was Vice President of Internet Technology at
AT&T, where he and his team developed Internet service platforms and additional
technologies and components supporting Internet telephony and messaging. Prior
to this assignment, Dr. Vrsalovic was the Advanced Technology Vice President,
AT&T Labs. Before joining AT&T, he was Chief Scientist at Sun Microsystems/
SunSoft, where he managed the Advanced Technology Group. He was also the
Vice President of Engineering at Ready Systems, where he directed worldwide
R&D, product engineering, quality assurance, customer support, and
manufacturing.

Dr. Vrsalovic was a member of the faculty at Carnegie-Mellon University and the
University of Zagreb, has consulted to various governments and companies
worldwide, and helped design several formative data networks. He is a member of
various boards, including the Purdue University Advisory Board, Carnegie-Mellon
University EDRC, Tripwire Security Inc. Board, and the Board of Manufacturing
and Engineering Design of the National Academy of Engineering.

Dr. Vrsalovic holds a B.S. in Electrical Engineering, an M.S. in Computer
Engineering, and a Ph.D. in Computer Sciences, all from the University of Zagreb.
During his studies, Dr. Vrsalovic was also an accomplished athlete as a member of
the national water polo team and the European Water Polo Cup winning club.

The Experts!

Cem Kaner

Bill Howden

Kris Mohan

Elisabeth Hendrickson

Linda Rosenberg

Nick Borelli

QW2001 Panel
8P

Thursday, 31 May 2001
5:00 - 6:30

Mr. Nick Borelli
(Microsoft Corporation)

Stump the Quality Experts If You Can!
QW2001 Advisory Board Members Will

Answer All Questions!

Post Your Questions LIVE on the Web!
(Live question collection and voting
provided by Microsoft Corporation)

How The Ask The Quality Experts Panel Works

This special QW2001 panel session works interactively with you to get your key
questions answered! If you have a burning question about any aspect of Software
or Internet Quality, click on the Ask The Quality Experts! page.

You'll see the current set of questions posed to the Panel Of Experts, rank ordered
based on the number of votes each question has received.

Are The Questions Moderated?

Yes, the questions posted are moderated. From time to time the Ask The Quality

http://192.9.200.3/QualWeek/QW2001/board/kaner.html
http://192.9.200.3/QualWeek/QW2001/board/kaner.html
http://192.9.200.3/QualWeek/QW2001/board/howden.html
http://192.9.200.3/QualWeek/QW2001/board/howden.html
http://192.9.200.3/QualWeek/QW2001/board/mohan.html
http://192.9.200.3/QualWeek/QW2001/board/mohan.html
http://192.9.200.3/QualWeek/QW2001/board/hendrickson.html
http://192.9.200.3/QualWeek/QW2001/board/hendrickson.html
http://192.9.200.3/QualWeek/QW2001/board/rosenberg.html
http://192.9.200.3/QualWeek/QW2001/board/rosenberg.html
http://192.9.200.3/QualWeek/QW2001/board/borelli.html
http://192.9.200.3/QualWeek/QW2001/board/borelli.html
http://msoffweb.rte.microsoft.com/

Experts! Panel Moderator, Nick Borelli, will review the current set of questions.
He'll remove off-topic questions, consolidate obvious duplicates, and make other
necessary corrections. If there are high-scoring questions that seem to be outside
the range of the experts currently on the panel we will add more experts to the
panel.

About The Panelists

The panelists are chosen from among the Quality Week Advisory Board. You can
see who the panelists are on the current Ask The Quality Experts! page.

How Often Can I Vote?

You can vote as often as you like, but, please we ask that you only vote for your
favorite question(s). P.S. QW2001 will have Web workstations available where
you can vote on-site.

How Will I Get Answers to My Question?

During this special session the Advisory Board Experts will answer the top ranking
questions -- using the data from the web as of Noon on Thursday 31 May 2001.
QW2001 will have Web workstations available where you can vote on-site before
then.

Brief summaries of the answers will be posted on the Web shortly after the
conference is over.

About the Moderator

Nick Borelli is currently a Group Test Manager at Microsoft Corporation and is
responsible for the World-Wide releases of the award-winning application,
Microsoft Word.

Nick has over 15 years experience in both Software Testing and Development and
has worked in both small start-ups such as Pensoft, Go and EO, as well as working
at Triad Systems, Apple and Software Publishing Corporation.

http://192.9.200.3/QualWeek/QW2001/board/borelli.html
http://192.9.200.3/QualWeek/QW2001
http://192.9.200.3/QualWeek/QW2001/board/borelli.html

QW2001 Keynote 10P1

Ms. Lisa Crispin
(Tensegrent)

The Need For Speed: Acceptance
Test Automation In an Extreme

Programming Environment (QW2000
Best Presentation)

Key Points

Why Testing for XP is Different, challenging conventional wisdom●

How to educate yourself in the eXtreme Programming (XP) methodology●

How to automate functional tests quickly and leverage them to save time●

Presentation Abstract

In my two and a half years working in a web environment, where quality and time
to market are both essential to success, I've been frustrated by the difficulty in
combining these traits within traditional software process. After reading Kent
Beck's book, eXtreme Programming Explained, I couldn't wait to try this
methodology to enable small teams to deal with short timeframes and changing
requirements while still producing high quality software.

Testing in a Web environment can feel like leaping out of a plane. Testing in an
XP environment feels like competing in a sky-surfing competition. You have to be
better than everyone else, but you don't have much time. You can only hope for a
soft landing. While the eXtreme Programming literature (including Ron Jeffries'
book, eXtreme Programming Installed), centers around unit and integration testing
as part of the XP core process, I felt that functional/acceptance testing from the
customer perspective was incompletely defined. The role of the tester in XP is
clearly defined - to help the customer choose and write functional tests and to
make sure those tests run successfully. The question is, how to do this when the
ratio of developers to testers is quite high (8 - 1 is recommended, and we are in a
more extreme ratio than that) and the development iterations are so short.

Like an extreme-sports competitor, the XP tester needs courage, speed, stamina
and creativity. Working with the developers and with input from an automated test
tool vendor, I have developed an approach to designing modularized, self-verifying
tests that can be quickly developed and easily maintained. I'll present my basic
design and give some examples. I used the test tool WebART, but this
methodology should be applicable to any au tomated tool that includes a scripting
language.

About the Speaker

Lisa Crispin is a Senior Quality Engineer at Tensegrent
(http://www.tensegrent.com/), a very different type of software development
company built around the streamlined eXtreme Programming (XP) methodology.
Consistent with the values of XP, Tensegrent focuses on delivering high quality
software that provides immediate business value, while remaining responsive to
changing requirements.

Lisa has managed to enjoy her work during almost 20 years of non-XP software
development by demonstrating the flexibility needed to dodge the boring projects
and grab the cool ones. Her most recent fun job before joining Tensegrent was as
Quality Boss of TRIP.com, where she embraced the challenge of bringing QA to a
chaotic web startup. While TRIP.com basked in much success - 4.5 stars from
BizRate, in the top 5 of the Keynote Top 40 for performance, sale to Galileo
International for $326M - Lisa was continually frustrated by the difficulty of
finding a process to deliver high quality software quickly in a dynamic and
competitive industry.

Since leaping into the unknown world of XP last June, Lisa has figured out the role
of the XP tester and, with lots of help, developed a test automation methodology
which can keep up with the pace of XP. She's happy to report that XP practices,
well understood and diligently followed, really work! However, she is still trying
to overcome the inherent disadvantages of not being good at Foosball.

Lisa also enjoys wine, horses and testing web applications which contain no
Javascript.

1

1

The Need for Speed: Acceptance Test
Automation in an Extreme Programming
Environment

Lisa Crispin, Senior Quality Engineer,
Tensegrent

2

What is XP?

•Simplicity
•Communication
•Feedback
•Courage

XP Values:

2

3

What Makes it Extreme?

•If testing is good, everybody tests all the time
•If code reviews are good, pair program
•If design is good, refactor every day
•Extremely Practical
•Extremely Productive!

Commonsense Practices to Extreme Levels

4

XP Overview

•4 variables: cost, quality, time and scope
•Planning Game

•Developers estimate stories and velocity
•Customer chooses stories

•Iteration Planning: Write, estimate and accept
tasks
•One- to three-week iterations

Commonsense Practices to Extreme Levels

3

5

XP Overview

•Acceptance tests document customer needs
•Testing concurrent with development
•Test result reports help steer
•Defects may become stories for future iterations

Commonsense Practices to Extreme Levels

6

Automated Testing

•How Testing in XP is Different
•Tools for Writing Acceptance Tests
•Tools for Automating Acceptance Tests
•Tools for Reporting Results
•Lightweight Automated Test Design

This Presentation Will Give Tips On:

4

7

XP Practices

•Pair Programming
•Test First, Then Code
•Do the Simplest Thing that Works
•40-Hour Week
•Refactoring
•Coding Standards
•Small Releases
•Incremental planning

A few XP practices used at Tensegrent:

8

•Customer can change mind anytime
•Lack of written documents UP FRONT
•Short cycles: 1 - 3 weeks
•High developer/tester ratio

XP Differences
How is Testing Different with XP?

5

9

XP Differences

•Unit and integration tests must pass 100%
•Continual customer involvement
•Development team assists with test automation
•Tester is part of development team
•Tester advocates customer viewpoint

How is This OK?

10

XP Test Automation
So, how do we get there?

6

11

XP Test Automation

•Pair test
•Continually refactor
•Verify critical functionality first
•Add automated tests as budget permits
•Use / develop lightweight test tools

XP Test Practices:

12

XP Test Automation

•Test cases and data in spreadsheet or XML
format
•Data and actions separated
•Granular enough to show progress
•Include “nasty path” or “Soap Opera” tests
•Include load, performance criteria

Effective XP Acceptance Tests

7

13

Acceptance Test Automation
Basic User Scenario

14

Acceptance Test Creation
Spreadsheet Template for Customer Tests

Actions:

1. Enter login name and password

2. Click Submit

Data:
Login ID Pas s word Expected Result
Testy tes te r Login successful
jim-bob 11111 Login successful
empty (spaces) Invalid login and/or

password

8

15

Tensegrent Test Tools

•In-house tool to convert test case data for input
to automated tests
•HTTP-based tool - WebART
•Tool inputs test cases to WebART
•In-house tool to convert result files to charts
and graphs

Automated Testing for Web Applications

16

Tensegrent Test Tools

• In-house tool "TestFactor-e"
• Prompts user for repeatable test
• Records pass or fail, comments
• Detail and summary reports
• Extending to input automatically

Automated Testing for GUI Applications

9

17

Tensegrent Test Tools

• Visual feedback
• Drill down for detail
• Post as "mile marker"
• Helps team steer
• Promotes change

Acceptance Test Reports

18

Tensegrent Test Design

• Be modular and self-verifying
• Verify the minimum success criteria
• Contain no duplicate code
• Do the simplest thing that works
• Feature reusable modules

Tests must:

10

19

Tensegrent Test Design

• Create templates for all modules
• Record scenario with capture tool
• Cut and paste into template code
• Use utility/validation modules
• One function per module

Creating Test Scripts

20

Tensegrent Test Design

• Main Script - calls supporting modules
• Interface Modules - one function per module,

validates system responses
• Validation Modules - check for specific

conditions, return pass/fail
• Utility Modules - track execution, log results in

XML format for reporting tools
• http://www.tensegrent.com for sample scripts

Modules

11

21

Automated Testing

• Keep team at maximum safe speed
• Navigate the curves
• Help make needed corrections
• Watch for landmarks
• Keep team informed of progress

Rewards

1

The Need for Speed:
Acceptance Test Automation in an Extreme Programming Environment

Lisa Crispin, Senior Test Engineer, Tensegrent

Contributors: Carol Wade, TRIP.com; Tip House, OCLC.org

"Extreme Programming, or XP, is a lightweight discipline of software development based
on principles of simplicity, communication, feedback, and courage. XP is designed for
use with small teams who need to develop software quickly in an environment of rapidly
changing requirements." Ron Jeffries, http://www.xprogramming.com.

What makes XP Extreme?

As Kent Beck says in Extreme Programming Explained, XP takes commonsense
principles and practices to extreme levels. For example: if testing is good, everybody
will test all the time (unit testing), even the customers (acceptance testing). Taking
anything to extremes can feel scary. While you or I might happily go skiing, we're not
likely to ski off the side of a cliff in the manner of Warren Miller. Extreme Programming
isn't about taking risks - it's about reducing risks and having fun. It takes courage, but the
rewards are immediate.

The XP practices we follow at Tensegrent include:
��pair programming
��test first, then code
��do the simplest thing that works (NOT the coolest thing that works!)
��40-hour week
��refactoring
��coding standards
��small releases
��play the planning game

How is Testing in XP Different?

How does acceptance testing in an XP environment deviate from traditional software
testing? First of all, let's look at acceptance testing. Acceptance tests may include load
and performance tests as well as functional and system tests. Acceptance tests prove that
the application works as the customer wishes. Acceptance tests give customers,
managers and developers confidence that the whole product is progressing in the right
direction. Acceptance tests check each increment in the XP cycle to verify that business
value is present. Acceptance tests, the responsibility of the tester and the customer, are
end-to-end tests from the customer perspective, not trying to test every possible path
through the code (the unit tests take care of that), but demonstrating the business value of
the application.

Should I strap on a helmet and elbow pads?

2

Testing in an XP environment feels like a run through a half-pipe when you first try it,
turning the software development model on its head. The customer is allowed to change
her mind anytime. The XP techniques make sure the cost of making changes remain
constant throughout the life of project.

Testers may be dismayed at first by the lack of formal written requirements and
specifications. To produce small releases very quickly, XP minimizes written
documentation. The system is documented through the unit tests, acceptance tests and
the code itself. Customers may create mockups of screens and sample reports, but no
traditional specifications are written. Design is done primarily with a whiteboard.
Collective ownership, promoted by pair programming, reduces the need for written
documentation (Which usually is immediately out of date anyway!)

Question: How do you write acceptance test cases without documents?
Answer: According to the XP books, the customer writes the acceptance tests, assisted by
the tester. In my own experience, I’ve found that for various reasons, customers are not
about to sit down and write out their acceptance tests. However, they will tell me what
acceptance tests they want. I write them down and go over them with the customer,
changing and modifying them until she is satisfied that they will show whether the
software meets her requirements.

Other differences between traditional and XP development are more subtle. It's really a
matter of degree. XP projects move fast even when compared with the pace at the Web
startup where I used to work. It's like running a motocross race when you're accustomed
to a street bike. A new iteration of the software, implementing new customer "stories", is
released every one to three weeks. The tester and customer must start writing acceptance
tests at the beginning of each iteration, as these are the only written "specifications"
available. Acceptance tests should run along with unit tests after each integration - which
could be several times a day.

From a tester's point of view, the developer to tester ratio in XP looks about as
comfortable as street luge. According to Kent Beck, there should be one tester for each
eight-developer team. At Tensegrent, the ratio is even higher.

Eeek! Are you SURE protective armor is not required?

Fear not! XP builds in checks and balances that enable a small percentage of test
specialists to do an adequate job of controlling quality.
��Becuse the developers write so many unit tests , which they must write before they

begin coding - the tester doesn't need to verify every possible path through the code.
��The developers are responsible for integration testing and must run every unit test

each time they check in code. Integration problems are manifested before acceptance
tests are run.

��The customer provides assistance with writing the acceptance tests and is responsible
for deciding when they are complete. The customer usually also helps to execute the
acceptance tests.

3

��The entire development team, not just the tester, is responsible for automating
acceptance tests. Developers also may help the tester produce reports of test results
so that everyone feels confident about the way the project is progressing.

The roles of the players on an XP team are quite blurred compared with those in a
traditional software development process. Thus our Tensegrent XP ("TXP") philosophy
is "specialization is for insects". Here are some of the tasks I perform as a tester:
��Help the customer write stories
��Help break stories into tasks and estimate time needed to complete them
��Help clarify issues for design
��Team with the customer to write acceptance tests
��Pair with the developers to code the application and the test tools
��Pair with the developers to code automated test scripts

Question: Wait a minute. The whole concept of pair programming sounds weird enough.
How can a tester pair with a programmer?
Answer: I'm not a Java programmer and our developers don't know the WebART
scripting language, but we can still pair program. The partner who is not doing the actual
typing contributes by thinking strategically, spotting typos and even serving as a
sounding board for the coder. This is a fabulous way for developers and testers to
understand and work together better. It also gives the tester much more insight into the
system being coded. Pairing may not be an everyday occurrence for the tester as it is for
the developers, but it happens whenever it’s needed.

Once you've mustered the courage to jump in to XP, the water's great.

How do I Educate Myself About XP?

Just as you wouldn't attempt to climb Mount Everest without preparing yourself with
months of intense training. the XP team needs good training to start off on the right path
and stay on it.

Start by reading the XP books. The first book on to be written on XP is Extreme
Programming Explained, by Kent Beck. It's a fascinating and quick read. Two new
books will be published in the fall of 2000, Extreme Programming Installed, by Ron
Jeffries, Ann Anderson, and Chet Hendrickson; and Planning Extreme Programming, by
Kent Beck and Martin Fowler.

You can get an overview and extra insight into XP and similar lightweight disciplines
from the many XP-related websites, including:
http://www.xprogramming.com
http://www.extremeprogramming.org
http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
http://www.martinfowler.com

When we at Tensegrent had assembled our first team of eight developers and a tester, we

4

got together and went through Extreme Programming Explained and Extreme
Programming Installed as a group, discussing each XP principle, recording our questions
(many of them on testing) and deciding how we thought we would implement each
principle. This took several hours but put us all on common ground and made us feel
more secure in our understanding of the concepts.

Once your team has read and discussed the XP literature, it's time to get professional
training. We hired Bob Martin of ObjectMentor, a consulting company with much XP
expertise, for two days of intense training (see www.objectmentor.com for more
information). After Bob answered all our questions, we felt much more confident about
areas that had previously been difficult for us to understand, such as the planning game,
automated unit testing and acceptance testing.

Don't stop there. Talk to XP experts. Look at the Wiki pages and sign up for the
egroups. If no XP user group has been formed in your city, start one.

Automating Acceptance Tests

What can you automate?

According to Ron Jeffries, author of XP Installed, successful acceptance tests are
customer-owned, comprehensive, repeatable, automatic, timely and produce results that
are known to everyone. The "automatic" criterion has given us trouble in some cases,
although our goal is to automate whenever it makes sense. Sometimes a mountain bike is
the best way up the hill; other times it's easier to get off and walk your bike. For
example, we haven't found a cost-effective way to automate Javascript testing. Also
we're struggling with how to automate non-Web GUI testing in an acceptable timeframe.
If we’re just doing a 6 week project for a customer, the customer may not wish to pay for
automation. Even if we can't automate a test right away, we can make it comprehensive,
repeatable and timely, and we can publish our results.

Principles of TXP Test Automation

For ease of development and maintenance, automated test scripts should meet the
following criteria:
• Modular and self-verifying to keep up with the pace of development.
• Verify the minimum criteria for success. Because the unit tests are comprehensive,

we don't need to duplicate them or try to hit every path through the code with our
acceptance tests. Demonstrate the business value, but don’t do more than you need.

• Perform each function in one and only one place to minimize maintenance time.
• Contain modules that can be reused, even for unrelated projects
��Do the simplest thing that works. This XP value applies as much to testing as to

coding.

In addition, the developers try to design the software with testability in mind. This might
mean building hooks into the application to help automate acceptance tests. Push as

5

much functionality as possible to the backend, because it is much easier to automate tests
against a backend than through a user interface.

Follow these XP Test Practices to help keep up with the pace of XP iterations:

• Continually refactor
• Verify most critical functionality first with a "smoke test"
• Add to automated tests as long as maintenance resources not exceeded
• Pair test, especially for defining test cases and automated test scripts.

TXP Automated Test Design

Appendix A describes a lightweight automated test design that works with XP projects.
We use WebART (see the Tools section below) to create and run the scripts. However,
this design should work with any method of automation that permits modularization of
scripts. Please see Appendix A for the details of this test design.

Who automates the acceptance tests?

Some sports appear to be individual, when in actuality, they involve a team. Winners of
the Tour de France get all the glory, but their victory represents a team effort. Similarly,
the XP team may have only one tester, but the entire team contributes to automating
acceptance tests. If tools are needed to help with acceptance testing in an XP project,
write stories for those tools and include them in the planning game with all the other
stories. You'll probably need to budget at least a couple of weeks for creating test tools
for a moderately size project.

In the early days of Tensegrent, we initiated a project for the specific purpose of
developing automated test tools. This had several advantages, in addition actually
producing the tools:
��Practice with XP writing stories, playing the planning game, estimating. This gave

us confidence in our XP skills that served us future projects.
��Practice with development technologies. Developers could experiment with

different approaches and get experience with new tools. For example, the developers
investigated in advance the advantages of using a dom versus a sax parser on the
XML files containing customer test data. Doing this in advance gave us more time to
experiment and research technologies than we might have had later with a client
project.

��Mutual understanding. The team tasked with producing an acceptance test driver
consisted of only four members and me, so I was called on to pair program. This
exercise gave me insight into how tough it is to write unit tests, write code and
refactor the code. The developers gave a lot of thought to acceptance testing and we
had long discussions about what the best practices would be. This is a great
foundation for any XP team.

6

Tools

Sky surfers don't leap out of the plane wearing any old parachutes purchased from a
discount store. They look for state-of-the-art harness and container systems, main and
reserve canopies, helmets and goggles, even altimeters, all designed with their particular
needs in mind. XP testers need a good toolbox too, one containing tools designed
specifically for speed, flexibility and low overhead.

I've asked several XP gurus, including Kent Beck, Ward Cunningham and Bob Martin,
the following question: "What commercial tools do you use to automate acceptance
testing?" Their answers were uniform: "Grow your own". Our team extensively
researched this area. Our experience has been that we are able to use a third-party tool
for Web application test automation, but we need homegrown tools for other purposes.

For unit testing, we use a framework called jUnit, which is available free from
http://www.junit.org. (There are flavors available for other languages besides Java.) It
does an outstanding job with unit tests. Even though I am not a Java programmer, I can
run the tests with jUnit's TestRunner and can even understand the test code well enough
to add tests of my own. It's possible to do some functional tests with jUnit. Some XP
teams use this tool for automating acceptance tests, but it cannot test the user interface.
We didn't find it to be a good choice for end-to-end acceptance testing.

Tools for Creating Acceptance Tests

Some XP pros such as Ward Cunningham advocate the use of spreadsheets for driving
acceptance tests. This isn't a new idea. We want to make it easy for the customer to
write the tests, and most are comfortable with entering data in a spreadsheet.
Spreadsheets can be exported to text format, so that you and/or your development team
can write scripts or programs to read the spreadsheet data and feed it into the objects in
the application. In the case of financial applications, the calculations and formulas your
customer puts into the spreadsheet communicate to the developers how the code they
produce should work.

At Tensegrent, we generally use a spreadsheet format for both acceptance tests –
descriptions of commands, actions, input data and expected results – and for the test case
data which will drive the tests. Most people are familiar with spreadsheets and
comfortable working in that format. If we’re using a test tool that requires another
format such as XML, we do it that way, or convert the spreadsheet data to an XML
format. See Appendix B for a sample acceptance test spreadsheet template.

Appendix C shows a partial excerpt of a sample XML file used for acceptance test cases
that will be run with our homegrown test tool. We enter a description of the test, data and
expected output, steps with actions to be performed and expected results.

7

Automated Testing for Web Applications

Test automation is relatively straightforward for Web applications. The challenge is
creating the automated scripts quickly enough to keep pace with the rapid iterations in an
XP project. Like a motocross racer, I'm zipping down hills and slogging through mud,
trying to keep up with the pack of developers. For that extra burst of speed, I use
WebART (http://www.oclc.org/webart), an inexpensive HTTP-based tool with a
powerful scripting language. WebART enables me to create modularized test scripts,
creating many reusable parts in a short enough timeframe to keep up with the pace of
development. Javascript testing presents a bigger obstacle. We test it manually and
carefully control our Javascript libraries to minimize changes and thus the required
retesting. Meanwhile, we continue to research ways of automating Javascript testing.

Our developers wrote a tool to convert test data provided in spreadsheet or XML format
into a format that can be read by WebART test scripts so that we can automate Web
application testing. Even small efforts like this can help you gain that competitive edge
in the speedy XP environment.

Automated Testing for GUI Applications

Test automation for non-HTTP GUI applications has been more of an uphill climb. You
can travel faster in a helicopter than a mountain bike, but it takes a long time to learn to
fly a helicopter; they cost a lot more than a bicycle and ou may not find a place to land.
Similarly, the commercial GUI automated test tools we've seen require a lot of resources
to learn and implement. They're budget breakers for a small shop such as ours. We
searched far and wide but could not come up with a WebART equivalent in the GUI test
world. JDK 1.3 comes with a robot that lets you automate testing of GUI events with
Java, but it's based on the actual position of components on the screen. Scripts based on
screen content and location are inflexible and expensive to maintain. We need tests that
give the developers confidence to change the application, knowing that the tests will find
any problems they introduce. Tests that need updating after each application change
could cause us to lose the race.

We felt that the most important criteria for acceptance tests is that they be repeatable,
because they have to be run for each integration. We decided to start by developing our
own tool, "TestFactor-e", that will help customers and testers run manual tests
consistently. It will also record the results. We're now enhancing this tool to feed the test
data and actions directly into application backends in order to automate the tests.

Reports

Getting feedback is one of the four XP values. Beck says that concrete feedback about
the current state of the system is priceless. An extreme skier constantly monitors snow
conditions, the course, his speed, the state of his equipment, all while keeping an ear out
for the avalanche that may be coming along behind him. He accommodates these factors
with changes in speed, trajectory and position. The XP team needs a constant flow of

8

information to steer the project, making corrections in mid-course just as the skier would.
The team's continual small adjustments keep the project on course, on time and on
budget. Unit tests give programmers minute-by-minute feedback. Acceptance test
results provide feedback about the "Big Picture" for the customer and the development
team.

Reports don't need to be fancy, just easy to read at a glance. A graph showing the
number of acceptance tests written, the number currently running and the number
currently succeeding should be prominently posted on the wall. You can find examples
of these in the XP books. Our development team wrote tools to read result logs from
both automated tests and manual tests run with "TestFactor-e". These tools produce
easy-to-read detail and summary reports in HTML and chart format.

With all this feedback, you’ll confidently deliver high-quality software in time to beat
your competition. You’ll meet the challenges of 21st century software development!

References

• Beck, Kent, Extreme Programming Installed., Addison-Wesley, 2000
• Jeffries, Ron et al, Extreme Programming Installed, Addison-Wesley, 2001

Appendix A: Test Design Description

XP Automated Test Design

The sample scripts used to illustrate the test design are written with a test tool called WebART
(http://www.oclc.org/webart). Any test tool which permits modularization and paramterization of the
scripts should support this design. To download a soft copy of the sample scripts, go to
http://www.tensegrent.com and click on the “Sample WebART Scripts” link.

Appendix 1 contains a diagram with an overview of the test design.

The Sample Application

Our sample application is a telephone directory lookup website, http://www.qwestdex.com. This is
certainly not intended as an endorsement of Qwest and we have no connection with them, it was just a
handy public application with characteristics that allow us to illustrate the tests.

End User Scenario

Our test will emulate a basic end user path through the code which, in our view, tests the most critical
functionality of the site. Here's the basic scenario we want to test:

Action Minimum Passing Criteria
Go to login page Application challenges for

authentication
Login Valid login name and

password brings up profile
page

Search for valid Table of results

9

Action Minimum Passing Criteria
category in
specified city
Logout Login page

The Test Components

Main Script

The main module calls the supporting module to perform a typical user scenario and to validate the system
responses at strategic points along the way. A basic user scenario is created for each customer story. The
supporting modules are divided into several groups based on their function. These modules are described
below.
The main module passes to the supporting modules test cases from tables of test data along with other
parameters.

Interface Modules

Called by the main script module (and possibly other interface modules) to perform user functions
and to validate the correct system response. Some of these modules such as start, login and exit can
be used by multiple tests for the same application. The main module passes parameters to the
interface modules as follows:

page loaded - An output parameter; it receives the value of the page loaded by the module. For example,
the login module loads the “pQwestDex” page.

page used - An input parameter; it is the handle of the page used by the interface module to know what
page to load. For example, the ???? page is passed to the login module.

test case data - An input parameter; it is data to be parsed by the interface module and used for input or
validation. For example, for a login module, the test case consists of an userid and password .

outcome - An output parameter that receives a value of PASS or FAIL indicating the overall outcome of
the call.

Additional parameters may be used if needed (e.g. more than one page needs to be loaded.)

The script "qwmain" in the sample scripts is an example of a main script. Here's a snippet of how it calls a
supporting module:

zzLogin = zzLoginTable[$user];
zzPassword = zzPasswordTable[$user];
qwlogin(pQwestDex,http://${zzh_host}/cgi/tools/fcg?form==login&from==, zzLogin, zzPassword,
outcome);

The main module passes to the supporting modules test cases from tables of test data along with other
parameters. In this example, the script obtains a login and password from the test case data tables and
passes them along to the supporting login module along with the page loaded, the page used (in this case
supplied as a URL), and a field to return the result.

If the login is successful, the qwmain script then proceeds to call another supporting module to perform a
search, passing the page handle in pQwestDex, and receiving the handle for the resulting page in pResults:

10

qwsrch (pResults, pQwestDex, zzSearchCat, STD, outcome);

Validation Modules

Called by interface modules to check for specific conditions in a system response and return a pass or fail
condition. The validation modules in turn call utility modules to record the results. Parameters are:
results - An output parameter which returns PASS or FAIL to the calling module

controls - An input containing values that control how the validation is done, specific to each
validation module.

response or handle - An input parameter containing either the system response to be validated or
the handle of the page into which the response was loaded.

Currently, there are three validation modules that can be used by any test:
vtext validates that a response contains specified text. Parameters are:

result - PASS or FAIL

text - the text that must be present for the validation to pass

response - the system response to check for the text string.

vlink validates that a page contains a specific link. Parameters are:

result , urlMatch - the value which must exist in a link in the page whose handle is in
pPage

pPage - the page handle of the page being validated.

vform validates that a page contains a specified HTML form. Parameters are:

result , formvars - one or more required variables for the form - if any are missing, the
validation fails.

 pPage - the page handle of the page being validated.

Here's an example from the login supporting module, "zsqwlogin" in the sample scripts. It calls vtext to
determine if two text strings (delimited by vertical bars) appear on the page. If one or both is not present,
vtext will return 'FAIL' in the zzResult variable. The zzrespzz variable contains the system response that
needs to be checked.

vtext (zzResult, Welcome|Edit My Profile|, zzrespzz, qwlogin);

Utility Modules

Currently there are two utility modules which can be used by any test:
trace - Displays execution tracing information in the WebART execution window. Called by interface and
log modules. Without going into detail of the many parameters, they reveal where it was called from/ and
what happened.
log - Records validation outcomes in a log file. Parameters are:

11

type - detail or summary, outcome - PASS or FAIL

validation - describes the validation performed.

The "zslog" module in the sample scripts writes test results out in XML format. An in-house tool from
Tensegrent called TestFactor-e builds an HTML page from this log file showing the results with color-
coding for pass, not run and fail. See Appendix B for an example.

Providing Test Case Data

Test case data can be input to the scripts two ways: 1) at compile time, through the data tables (eg,
zdqwmain); 2) at runtime, through the use of parameters. For example, if you want to be able to run your
script against a test machine, then against a production machine, and compare the results, you can make the
host name a parameter and change it at execution time. Here's how it's done in the sample WebART script
"qwmain":
!param zzh_host(enter host to run against:) = "qwestdex.com"
When you execute this script, you are prompted to enter a host name, with qwestdex.com as the default.

Creating the Scripts

Creating the first set of scripts is the hard work. Once you have a working set of modules, you can reuse
entire modules in some cases or turn them into templates in other cases. Here are the steps I use (preferably
as part of a pair) to create test scripts:

1. Capture a session for the scenario I want to test. See "capqwest" in the sample scripts as an example.

2. Copy "qwmain", "zsqwlogin" and the other supporting modules that I already have to new names. Strip
out the code that was specific to that application.

3. Paste in the code specific to the scenario I want to test, copying from the captured script into the newly
created "templates". Use XP principles here: work in small increments, make sure your scripts work
before you go on. For example, first see if you can get the login to work. Then add the search. Then add
the logic for switching depending on the pass/fail outcome. Remember to do the simplest thing that works
and add complexity only as you need it.

Appendix B: Sample Acceptance Test Spreadsheet Template

12

Appendix C: Partial Excerpt of XML Template for Acceptance Test
Cases

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<!DOCTYPE at-test SYSTEM "at-test.dtd" [
 <!ELEMENT input ANY >
 <!ELEMENT loan-amount ANY >
 <!ELEMENT interest-rate ANY >
 <!ELEMENT term-of-loan ANY >
 <!ELEMENT output ANY >
 <!ELEMENT monthly-payment ANY >
]>

<at-test name="calc-monthly-payment" version="1.0" severity="CRITICAL">

 <at-project>mortgage-calc</at-project>

 <at-description>
 Enter loan amount, interest rate, term of loan (in months)
 to calculate monthly payment.
 </at-description>

 <at-data-sets>
 <at-struct id="values">

13

 <input>
 <loan-amount>1000000000.00</loan-amount>
 <interest-rate>0.5</interest-rate>
 <term-of-loan>1200</term-of-loan>
 </input>
 <output>
 <monthly-payment>A big, fat wad of dough!</monthly-payment>
 </output>
 </at-struct>
 </at-data-sets>

 <at-plan>

 <at-step name="populate-loan-amount">
 <at-action>
 <at-text>Enter "{0}" in the "Loan Amount field".</at-text>
 <at-value dset="values" select="/input[2]/loan-amount"/>
 </at-action>
 <at-expect>
 <at-text>Cursor moved to "Interest Rate" field for input.</at-text>
 </at-expect>
 </at-step>

 </at-plan>

</at-test>

QW2001 Keynote 10P2

Mr. David Lilly
(siteROCK Corporation)

Internet Quality of Service (QoS): The State Of The Practice

Key Points

There is a "Crisis of Quality" in the Internet Economy●

No major corporation in the world today operates without some reliance on the Internet:
for communications with & application delivery to employees, customers, suppliers, and
industry partners; the sale of products and services; or after-the-sale support.

●

Given this reliance on the web and Internet technology to support their internal IT
systems - A Web site or IT infrastructure that is down or performing poorly can cost
company productivity, revenues, and worse, can damage the relationship between a
business and its customers or partners.

●

Dave Lilly will demonstrate how the innovative monitoring, measurement and
management services delivered by siteROCK Corporation are enabling the enterprise to
address this quality challenge head on.

●

Presentation Abstract

In a world increasingly dependent on information technology, there is a growing
"crisis of quality." Every major corporation in the world relies on IT infrastructure
and Internet connectivity for critical aspects of its communication with employees,
customers, and industry partners; development and sale of products and services;
and after-the-sale support. Given this reliance, infrastructure that is down or
performing poorly can cost company productivity, revenues, and worse, can
permanently damage the relationship between a business and its customers or
partners: this is the crisis of quality.

Dave Lilly will address how IT best practices can help corporations meet this
challenge and avert potential crisis. Today, business success is built on the success
of the IT enterprise and its integration with the Internet and other external systems.
Lilly will demonstrate that best practices are the cornerstones of a strong IT
foundation, and he will describe five specific best practices for efficient
monitoring, measurement and management that can help build quality into the IT
process.

About the Author

Dave Lilly, Chief Operating Officer of siteROCK Corporation, has over 20 years
of technical-based project and account management experience, including heading

projects for major industry leaders such as IBM, Sun Microsystems, General
Electric, DEC, and General Motors. Dave served most recently as the COO of
NONSTOP Solutions, Inc., a supply-chain technology provider. Additionally, he
founded and managed the largest division of Integrated Automation and was
president of Teknekron Customer Information Solutions, an imaging and call
center service provider. Dave holds a Bachelor of Science from the U.S. Naval
Academy and an MBA from Rutgers University School of Business.

Internet Quality of Service (QoS): the State of the Practice

Mr. Dave Lilly, Chief Operating Officer, siteROCK Corporation

Abstract

In a world increasingly dependent on information technology, there is a growing "crisis
of quality." Every major corporation in the world relies on IT infrastructure and Internet
connectivity for critical aspects of its communication with employees, customers, and
industry partners; development and sale of products and services; and after-the-sale
support. Given this reliance, infrastructure that is down or performing poorly can cost
company productivity, revenues, and worse, can permanently damage the relationship
between a business and its customers or partners: this is the crisis of quality.

Dave Lilly will address how IT best practices can help corporations meet this challenge
and avert potential crisis. Today, business success is built on the success of the IT
enterprise and its integration with the Internet and other external systems. Lilly will
demonstrate that best practices are the cornerstones of a strong IT foundation, and he will
describe five specific best practices for efficient monitoring, measurement and
management that can help build quality into the IT process.

Biography

Dave Lilly, Chief Operating Officer of siteROCK Corporation, has over 20 years of
technical-based project and account management experience, including heading
projects for major industry leaders such as IBM, Sun Microsystems, General Electric,
DEC, and General Motors. Dave served most recently as the COO of NONSTOP
Solutions, Inc., a supply-chain technology provider. Additionally, he founded and
managed the largest division of Integrated Automation and was president of
Teknekron Customer Information Solutions, an imaging and call center service
provider. Dave holds a Bachelor of Science from the U.S. Naval Academy and an
MBA from Rutgers University School of Business.

QW2001 Keynote 10P3

Mr. Thomas Drake
(Integrated Computer Concepts, Inc.)

Riding The Wave -- The Future For Software Quality

Key Points

Quality for network centric systems●

Software quality engineering●

Future of quality and testing●

Presentation Abstract

How will the software quality market evolve over the next few years? What is at
stake? What is it going to take?

Internet, the Web, and e-Business are increasingly demanding higher and higher
levels of quality for network-based software systems with less and less mean time
between failures.

Why? The impact of poor quality and less than robust systems increasingly affect
the bottomline for many businesses. A lot has happened to improve the situation
and new methodologies and new tools for improving software quality have
emerged in the last few years, but I would suggest that radical new approaches and
initiatives must be created and adopted if the desirable quality levels to support the
e-Economy are to be truly realized and especially at the Internet and global level.

What would that look like? It will take a combination of component-based
development, design by contract, specification-based testing, and statistical process
control. It will require and even demand much higher levels of predictive and
profiling analysis. It will also demand enterprise level and even systems thinking
as more and more complex "web-enabled" applications are deployed into and
amongst various market spaces. So we have the twin challenges of faster and faster
delivery and deployment times requiring higher and higher levels of quality. All of
these changes are placing great pressure on the traditional ways of testing and
viewing quality. The 'target" customer is no longer just the QA or test group.
Increasingly what is demanded is a business and enterprise level focus in addition
to the technical.

Moreover, these challenges are not only technical but also cultural in nature and it
may be useful to describe at a survey level this "new" future in terms of the new
initiatives that are now increasingly required including component-based

development and applied software engineering, specification-based testing, test
coverage and analysis technology, design for test principles, various predictive
software and profiling analysis techniques and approaches, and full life-cycle
application testing activities and content quality and even customer “experience”
methodologies as well as a concentrated focus and emphasis on the various quality
and testing “states” as part of these initiatives. The future of quality demands
nothing less.

About the Author

Mr. Drake is a software systems quality specialist and management and
information technology consultant for Integrated Computer Concepts, Inc. (ICCI)
in the United States. He also consults to industry and government on quality
management and software quality engineering and code development issues. As
part of an industry and government outreach/partnership program, he holds
frequent seminars and tutorials covering code analysis, software metrics, OO
analysis for C++ and Java, coding practice, testing, best current practices in
software development, the business case for software engineering, software quality
engineering practices and principles, quality and test architecture development and
deployment, project management, organizational dynamics and change
management, and the people side of information technology.

He is the principal author of a chapter on “Metrics Used for Object-Oriented
Software Quality” for a CRC Press Object Technology Handbook published in
December of 1998. In addition, Mr. Drake is the author of a theme article entitled:
“Measuring Software Quality: A Case Study” published in the November 1996
issue of IEEE Computer. He also had the lead, front page article published in late
1999 for Software Tech News by the US Department of Defense Data & Analysis
Center for Software (DACS) entitled: “Testing Software Based Systems: The Final
Frontier.” He is also one of the featured leading computer scientists interviewed in
the textbook entitled: Problem Solving, Abstraction, & Design Using C++, Third
Edition, 2000 by Friedman and Koffman from Addison Wesley Longman. Mr.
Drake is a member of IEEE and an affiliate member of the IEEE Computer
Society. He is also a Certified Software Test Engineer (CSTE) from the Quality
Assurance Institute (QAI).

1 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

 - Riding the Wave -
The Future for

Software Quality

Thomas A. Drake
Quality Architect/Software Anthropologist

Enterprise Management and Information Technology Consulting
Certified Software Test Engineer (CSTE)

International Internet & Software Quality Week 2001 - San Francisco

Integrated Computer Concepts, Inc. (ICCI)
http://www.integratedcc.com
thomas.drake@integratedcc.com

© Copyright 2001 by Thomas Drake. All Rights Reserved.

2 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

Facing the Real Quality
Challenge...

Occam's Razor - With all things
being equal, the simplest explanation
tends to be the right one.

3 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

Is the Surf Up or Down, Dude?!

What is going on?

So what difference does software quality
REALLY make?

Just make sure you have a real business
plan, first!

Survey…

4 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

An Historical Perspective...

"The conveniences and comforts of humanity in
 general will be linked up by one mechanism,
 which will produce comforts and conveniences
 beyond human imagination. But the smallest
 mistake will bring the whole mechanism to a
 certain collapse.”

 - Pir-o-Murshid Inayat Khan, 1922
 (Tasawuuf leader)

5 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

Running Rampant in
Cyberspace

Missing the Obvious
Forgetting the Fundamentals

Shortened Product Release Schedules
“Mass Customization”

Testing Never Stops when Content is Continuously
Changing

Web Time is ALL the Time!
What’s Missing “Big Time” ?

Systems Thinking and Perspective!
Where am I from?!

My Request of You...

6 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

The Software Development Challenge:
“Easy to Hack Out - Easy to Hack In…”

Swamp Beehive

Hacker’s
Heaven Software

Factory

High

Low Organizational Maturity

T
ec

hn
ol

og
y

In
ve

st
m

en
t

7 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

Software - NOT a Naturally
Occurring Phenomenon!

If you exclude the time it takes to learn, the money
that it take to train, the elusive reuse benefits, the
resistance to change, the constantly arising trouble
spots, the frequent upgrades, the long lead times
required to build applications from scratch, the
complex programming languages, the lack of

scalability, the shortage of talent, the performance
penalties, the deployment challenges, the heavy

maintenance burdens, the difficulty in comprehension,
and the expense of manually reapplying one’s

customization, then software technology is quite
beneficial. :-)

Completely dependent on who we are as human
beings! After all it is us humans doing the creating!
A product of our fertile imaginations and intellect!

8 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

Sobering Numbers

ü Standish Group Study…
ü Over $250 billion spent annually on IT application development
ü 31% of all projects are cancelled before completion
ü 88% of all projects are over schedule, over budget, or both
ü For every 100 projects started, there are 94 restarts
ü Average cost overrun is 189% of original estimates
ü Average time overrun is 222% of original estimates

ü Even with strong technical skills many project managers and
project team members find themselves in over their heads
ü On projects out of control
ü Without the necessary business, organizational and political

skills

ü Faith is not a management method! Oh, DUHHH!!

9 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

Lack Of Quality - The
Epidemic Of Buggy Software

ü The Software Conspiracy by Mark Minasi

ü We are all guilty! Would you unplug your automated toaster after every
6 slices of bread just to reset the internal software?!
ü The myth that bug-free code is not possible

ü Software publishers/contractors STILL aren’t generally interested in
producing stable, functionally fit, error free software
ü It is features, not quality, that sells! And we buy!

ü By hiring the “best and the brightest” we may actually be sabotaging
our own efforts - it’s embedded in the culture
ü It is the boring but absolutely necessary work that does it!

ü Time to emphasize quality - Remember the car industry in the USA in
the late 50s, 60s, and early 70s??
ü Also see Jeremy Main’s book - Quality Wars

ü And it’s the business side of software quality that gets us in trouble!

10 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

11 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

Conventional Wisdom For
Software Quality Engineering :-)

ü Software Engineering Guidebook on Terminology, v2.0n

ü NEW: Different colors from previous version.

ü ALL NEW: Software is not compatible with previous version.

ü UNMATCHED: Almost as good as the competition.

ü ADVANCED DESIGN: Upper management doesn't understand it.

ü NO MAINTENANCE: Impossible to fix.

ü BREAKTHROUGH: It finally booted on the first try.

ü DESIGN SIMPLICITY: Developed on a shoe-string budget.

ü UPGRADED: Did not work the first time.

ü UPGRADED AND IMPROVED: Did not work the second time.

12 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

Living in a state of constant ambiguity...

Software Failures Can Lead to Financial Catastrophe

13 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

14 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

15 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

What’s Happening?

ü Dynamic and New Information Sources
ü Global Information Network
ü Diversity of Telecommunication Alliances and Global

Arrangements/Alignments
ü New Telecommunication Technologies
ü Explosion of Wireless, IP Telephony, Virtual Numbers and more!
ü Internet and Beyond (Dynamic Roaming)

ü New Information Technologies
ü New Protocol Structures
ü Massive Interdependencies
ü Software can be technically correct, but still not succeed
ü All place HUGE demands and MASSIVE Strain on Quality!

16 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

Where Are We Going?

ü Integrated Component Design and Code
ü Software Reuse (domain/pattern level)
ü Network Common Services
ü XML & Web-Enabled Technologies
ü Intelligent Agents
ü Data Visualization - (2-D versus 3-D)
ü Dynamic Security/Roaming Accounts
ü Private/Public Network/P2P
ü Web-based Workflow/Content Updates
ü Extreme Programming/Rapid Application Network Testing(RANT)!
ü AutoCode Generation/Design Logic Engines
ü Continuous Testing/Experiential-Based/Event-Based Testing
ü The “Old” QA Paradigms Come Up Way Short!

17 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

Differentiator for quality is less the
technology than

the difference the technology makes!

18 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

And Only Getting MORE
Connected

ü The future is not what it used to be!

ü Pace of change (Default Standard)

ü Time, communications, space (compressing)

ü Implication - Speed of light access and impact

ü All linked together in one dense,
interconnected web of information
and data!

ü Places HUGE demands on
QUALITY!

19 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

Internet/Cyberspace Quality

ü Competing for shelf space versus competing for Web space
ü Producing a shift toward the Web and more and more testing

of internet-based/network-based software

ü More complex programs and applications using Java and
Shockwave and Flash are emerging

ü Testing on multiple platforms and operating systems
ü Different Internet service providers and methods of

connecting to the Internet
ü Can't afford to put out a shoddy product on the Web

ü Quality is STILL quality and even more so on the Web
ü Stakes are much higher in this kind of “operating”

environment and bugs/problems/defects are much more visible

20 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

 Quality Makes a Difference!

ü Issue of market cycle time and shelf life

ü Problem of code entropy

ü Impact of incremental patching and upgrading

ü Doing it right the first time - interface design is
everything

ü Simple and elegant solutions - stand the test of time
and the marketplace

ü Quality is, as quality does!

21 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

Best Practices - The Use of
Domain/Design Patterns (1)

ü Set of objects with certain known roles and responsibilities
ü Relationship to each other
ü Common usage
ü Prerequisites
ü Cataloged/documented
ü Refinement/updates/extensibility

ü Emerging due to Internet time/intense schedules

ü Program structures are fundamental
ü Where are the execution cycles
ü “The most efficient instruction set is the one that’s never

executed!”
ü Provides for the abstraction that provides summary/overview

22 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

Best Practices - The Use of
Domain/Design Patterns (2)

ü Patterns should also identify the intended use audience
ü Provide for the external and internal assumptions

ü Document/Document/Document! (1)
ü Name, problem, context, constraints, trade-offs, static

relationships and dynamic rules/behavior,
variants/specializations

ü Examples - sample implementations
ü Known uses - describes known occurrences of the pattern and

its relationship and application within existing systems

ü Generalize! - How can the program be developed such that
it minimizes the code interdependencies among the various
subsystems?

(1) Source: Patterns and Software: Essential Concepts and Terminology - Brad Appleton
(www.enteract.com/~bradapp/docs/patterns-intro.html)

23 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

The Power of Patterns

ü Patterns…
ü Patterns provide a relationship between actions and then “embody” it

in a design artifact
ü Ultimately facilitates the reuse of code and design
ü If clean design is the most difficult and important step in software

engineering, there could be real benefits in adopting

ü Where do patterns come from?
ü Tangible: Architecture/materials

Intangible: process/procedures

ü A domain pattern “sensitivity” problem…
ü Software development culture is still dominated by “bottom-up”

thinkers (trees/forests)
ü For patterns, you need to think “top down” and not just on the bit

level but the aggregate of bits (atoms/molecules)

24 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

So What Is Software Quality
Engineering Really All About??

ü “…Too many organizations have spent too much time obsessing on
the information they want their networks to carry and far too
little time on the effective relationships those networks should
create and support. This is a grave strategic error.”
ü Michael Schrage, MIT Media Lab Research Associate, in a white

paper of The Merrill Lynch Forum

ü The language is not THE answer! But the language is a primary
means of communication with its own syntax, structure, rules and
meaning.
ü Design by Contract - Precise definitions/relationships
ü And it shows in the Code!
ü Rigor and discipline are fundamental
ü And it is the quality of the software “experience” that may

be the real measure of quality!

ü Huh? What is he talking about? Listen to your customers!

25 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

Quality Communication
It’s All About People!

Customer, Customer,
Customer!

26 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

The Future of Quality
Into the Looking Glass! (1)

ü Moving away from large development programs
ü Fixed set of ideas, very difficult to maintain or modify

ü Virtual computing -- 24/7, 365 & around the world!

ü Component-based development

ü Design logic to code!
ü An increasing trend (code engines)
ü Solves many of the “hand” created complexity problems

ü Contract-based/specification-based outcomes

ü Test and Quality By Design Principles (Design by
Contract)

27 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

The Future of Quality
Into the Looking Glass! (2)

ü Do not be overly transfixed by C++ or OO or Java or even
the very latest and greatest! Still way too many buzz
words and ambiguity!

ü Real-time operations across multi-distributed and
heterogeneous environments

ü The network IS increasingly becoming THE program - just
get it!

ü Key to software development innovation is business savvy,
smart developers, and high quality products that meet and
exceed customer expectations and still meet the bottom
line!

ü Managing in this environment requires a “paradigm shift”

28 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

The “Genetic”
Heart and Core of Quality

üDesign is fundamental!

üBusiness Rule Algorithms

üBehavioral modeling

üAttributes - The key for quality

29 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

The Continuing Software
Quality Challenge

ü Taming the “uncontrolled” distribution of data

ü In software, data is an abstraction

ü Software’s strength IS abstraction!

ü Concrete representation vice the abstract notion
ü How do you build software??
ü Concept by concept or brick by brick??

ü Agree on the concept!

ü Information hiding is critical
ü Each module must only access the information it needs
ü And every software element must have a specification
ü Use Design by Contract - architecture is critical!

30 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

Quality Paradigm Shift
Where Do You Live on the Continuum?!

Degree
of

Change

Software
Development

Practices
(Legacy)

Product
Integration
(Transition)

People,
Processes

and Technology
(Transformation)

The
Future!

Time

31 Thomas A. Drake

Riding the Wave - The Future for Software Quality Quality Week 2001

Some Final Thoughts About
Quality and Software

ü Dealing with multiple levels of complexity
ü Quality enemy #1 - orders of magnitude greater

ü Nth Order Computing (modeled after cell life)
ü Computer is 1st order - computational!
ü Autonomous objects/components are 2nd order
ü Interaction of objects is 3rd order - no object alone
ü Result/outcome/state transition is 4th order
ü Nth Order is shifting function onto structure and code onto

data - Built in dynamic living networks - It’s alive!

ü Computers as machines containing cyberspace containing
machines - (Bandwidth, Turnaround Time, and Complexity)

ü So… Are you now ready for this brave new world?! :-)

QW2001 Paper 6V1

Ms. Lauri MacKinnon
(Vanteon)

Three Customer Case Studies of Performance Testing using
Segue SilkPerformer

Key Points

Techniques for capturing, storing, and using multiple dynamically created Session IDs
and other keys

●

A method of customizing IP spoofing●

Overcoming difficulties encountered with implementing secure transactions●

Challenges of recording and replaying encrypted, multi-port TCP/IP traffic●

A method for sending load traffic directly to a database server●

Presentation Abstract

Three customer case studies of performance testing using Segue SilkPerformer will
be presented. Challenges presented for each case study, the techniques used to
meet the challenges, and actual test results and analysis will be reviewed. The
presentation will highlight our solutions in to challenges involving dynamic key
parsing, handling multiple session IDs, directing traffic with IP spoofing, adding
secure transactions and more. Result charts will help provide analysis the
circumstances when the customer web sites and applications were put to the test.
Participants will see a variety of scripting techniques and real world examples of
test results and analysis using Segue SilkPerformer.

About the Author

Lauri MacKinnon is a performance and load testing specialist in Vanteon's
automation group. She is a Segue-certified eConfidence Performance Consultant
and has been using Segue SilkPerformer for a year and half. She has used other
automation tools (including QA Partner and SilkTest) for eight years and has been
in the QA industry for twelve years. Lauri has a Master's degree in Computer
Science and applies her programming background toward automation scripting for
Vanteon's clients.

1

Delivering Innovative Engineering Solutions

SilkPerformerSilkPerformer Case StudiesCase Studies

Presented To

Quality Week 2001
San Francisco, CA

May 31, 2001

Presented By

Lauri MacKinnon
QA Advanced Development Engineer,
Vanteon

Delivering Innovative Engineering Solutions

Vanteon Overview

• A full service development and
Quality Assurance consulting company

• Vanteon specializes in Quality
Assurance performance testing
services

• Vanteon is partnered with Segue to
create performance and load tests for
clients using Segue SilkPerformer

2

Delivering Innovative Engineering Solutions

Case Studies

• Review three case studies of
performance testing engagements with
Segue SilkPerformer

• Identify challenges presented by each
case study

• Show techniques developed to solve
each challenge

• Review actual test results from Segue
SilkPerformer

Delivering Innovative Engineering Solutions

Case Study #1

• A web–based brokerage and
investment solution for the financial
community. The site is intended for
use by brokers to manage client
accounts and portfolios.

• This was a first prototype of the site,
with no real-time trading incorporated.

3

Delivering Innovative Engineering Solutions

Goals
• Determine scalability of the site with up to

1000 concurrent users
• Create a matrix of resource requirements for

different levels of response times and numbers
of users

• Make recommendations for changes to the
application infrastructure and hardware
requirements

• Determine performance of Oracle database
• Establish a testing, feedback, and site

enhancement sequence

Delivering Innovative Engineering Solutions

Requirements
• Ensure correct flow of transaction execution by users on

the site for meaningful results
• Run scripts to clear out the database between load tests
• Create additional custom timers for measuring load

times for specific pages on the web site
• Check performance of secure areas of the site (using

SSL and 128 bit encryption)
• Additional testing requests: Error Recovery,

Uptime/Availability, Load Balancing Effectiveness,
Distributed Object Performance, Adequate Bandwidth,
End-to-End Functionality, and Competitive Positioning

• Client confidentiality is critical in the financial industry

4

Delivering Innovative Engineering Solutions

Challenge – Unique Logins and Session IDs

• Create unique login accounts for
each user

• Capture dynamically generated
session IDs

• Recapture Session IDs as they
change during the user’s session

Delivering Innovative Engineering Solutions

Technique – Building a Unique Login
• For each user, the scripts needed to:

• log in as a unique broker (broker ID is read
in from a spreadsheet file)

• create a new client in the system, using a
unique client name (generated at runtime
by a random variable) and a unique Social
Security Number (read in from a
spreadsheet file)

• Social Security Numbers used must not
already exist in the system or be in use by
manual testers

5

Delivering Innovative Engineering Solutions

Technique – Capturing Session IDs

Session IDs for each user were tricky to
capture:

• IDs were not visible in SilkPerformer record
or replay log files

• IDs were dynamically created at runtime by a
function on a page in the web site

Delivering Innovative Engineering Solutions

Technique – Capturing Session IDs

Parsed the source code, log files, and output files:
• Captured IDs as they were passed from the web server to

the client browser when brokers log into the system
• Recaptured in later transactions as they changed value

(even during the same browser instance) and printed to
output files

• Compared values against those in log files to find changes
• Isolated which lines of the script caused the new value for

the ID to be sent from the web server to the client
machine

• Used parsing functions to get the ID, store it in a variable,
and substitute in URLs and web forms

6

Delivering Innovative Engineering Solutions

Challenge – Dynamic Keys
• Each simulated user needed to: log in as a broker, create an

account for a client, view the client’s details, edit the client’s
profile, add goals for the client, create portfolios and scenarios
for the client, assign holdings into the portfolios, and run
portfolio analysis

• The load testing scripts needed to capture, parse, store, and
use several dynamically-created keys while executing these
transactions for each unique user:

- Broker keys - Portfolio keys
- Asset keys - Client keys
- Account keys - Stock keys
- Allocation keys - Scenario keys

Delivering Innovative Engineering Solutions

Challenge – Dynamic Keys

Complications:
• Several of the keys’ values are

interdependent:
• Portfolio keys are dependent on client

keys and broker keys
• Allocation keys are dependent on stock

keys and asset keys
• Portfolios could contain several assets, and

assets could be contained in multiple
portfolios

7

Delivering Innovative Engineering Solutions

Technique – Capturing Dynamic Keys
• Scan through SilkPerformer’s record and runtime log files

and site page source code for dynamically generated keys.
• Use Silk Performer’s WebParseResponseHeader and

WebParseResponseData functions to capture data coming
from the web server in response to WebFormGet,
WebFormPostEx, and WebURL requests.

• Use SilkPerformer’s SubString and StringSearchDelimited
functions to parse the keys out of the response string and
store them in variables. Check boolean responses to verify
we had correctly captured the keys.

• Substitute variables for hard-coded keys in web forms and
URLs. There were 187 occurrences of using the parsing
functions and 104 occurrences of substituting keys in forms
in this script.

Delivering Innovative Engineering Solutions

Complications
• Midway through scripting the site was moved to a production server

• Modified scripts to run against the new server address
• Discovered that only 3 of 10 assets in each portfolio were now

being created. The relationship between three of the keys had
been changed…

• Also midway through scripting the client requested some changes:
• Increase the transactions that each user executes from 6 to 39
• Create 5 portfolios for each client instead of 1
• Further diversify the assets assigned to the portfolios

• The format required for asset keys in web forms was different than the
format they were captured in. String manipulation functions were used
to concatenate keys into the correct format.

• Delivered scripts to the customer’s developers to review for correct
flow and to indicate any other keys we needed to capture.

8

Delivering Innovative Engineering Solutions

Analysis: 60 Concurrent User Tests

• Ramp up to 60 concurrent users
• Request Data Sent spikes as new users

are added
• HTTP Hits spike as new users get pages

not in the cache, and falls as they get
pages already in the cache

• Graph illustrates good behavior of the
site

Delivering Innovative Engineering Solutions

60 Concurrent User Test

9

Delivering Innovative Engineering Solutions

Analysis: 100 Concurrent User Tests
• Initial 100 User Load Test:

• Drop off in activity between 25 and 32-minute marks
• Errors start appearing after response data throughput

dropped to 0
• Transactions start to time out at 32-minute mark
• Manual observation – individual page loads took between

30 seconds to 2 minutes
• Another 100 User Load Test:

• Transaction completion times increased significantly after
50 users. With a 50 user load the transaction cycle to 10
minutes to complete. With a 100 user load it took 30
minutes to complete.

• The site did not crash

Delivering Innovative Engineering Solutions

Analysis: 200 Concurrent User Test

• Application server died at 29 minutes
(with 140 concurrent users).
Indications:
• Errors started appearing
• Transactions started to time out

• Web Server did not crash

10

Delivering Innovative Engineering Solutions

Analysis: 140 Concurrent User Test

• To isolate the problem noted with 140 users
we ran an additional test with a more gradual
ramp-up to the peak load

• Users were increased from 20 to 140 in
increments of 20

• An error spike occurred just before the end
of the test

• The response data received drops at the last
increase in the number of users (to 140)

Delivering Innovative Engineering Solutions

140 Concurrent User Test

11

Delivering Innovative Engineering Solutions

Case Study #1 Summary

• Ran and refined load tests over a two-
week period

• The client made progress in fixing areas
of the site based on our feedback

• The company was purchased and
stopped doing performance testing

Delivering Innovative Engineering Solutions

• A web–based solution for submitting insurance claim forms for
the commercial trucking industry that allowed clients to submit
insurance claims and review their current safety statistics

• The goal: to determine the scalability of the new web site with
up to 250 concurrent users

• Requirement - only a limited number of connections could be
made for each IP address hitting the web server, so each
virtual user needed to have a unique IP address.

• Site contains both non–secure and secure features and uses
SSL3, HTTP and HTTPS protocols

• New and existing users need to perform transactions on
different areas of the site simultaneously during the simulation
to balance secure and non-secure traffic loads

Case Study #2

12

Delivering Innovative Engineering Solutions

Challenge – Multiple IP Addresses

• Normally when load testing from Silk Performer traffic
is funneled through one port using the IP address of
the agent machine.

• The web server under test was configured (for
security) with a limited number connections allowed
from each IP address. When the limit to the number of
connections was reached, the web server would shut
down or time out.

• Each simulated user was required to have a unique IP
address.

• IP Spoofing was used to distribute unused IP
addresses from our network to each simulated user.

Delivering Innovative Engineering Solutions

Technique – IP Spoofing
• One method - use multiple machines, each running a

SilkPerformer agent, to distribute traffic across the agent
machines and hit the web server with multiple IP addresses.
Note that the connection limit on the web server can still be
reached with high numbers of simulated users.

• IP Spoofing method:
• Identified IP addresses available for use with IT

department. The range had gaps for reserved IP
addresses which changed daily.

• Configured SilkPerformer’s System Configuration tool
with unused IP addresses

• Manually modified scripts to read in available IP
addresses from a spreadsheet and assign an IP address
to each user at runtime

13

Delivering Innovative Engineering Solutions

Challenge – Changing Site Security

• Handling implementation of certificates,
SSL3 protocol and HTTPS protocol
midway through the scripting process

• Change in some of the traffic used in
several transactions from HTTP to
secure HTTPS mode

Delivering Innovative Engineering Solutions

Technique – Adding Secure Transactions
• Users start hitting secure areas of site midway through

transactions
• Modified and appended scripts to handle HTTPS and SSL3

traffic and multiple certificates. Rerecorded transactions that
introduced new security certificates and changes from HTTP
to HTTPS mode for all of the new secure pages in the
transactions

• Randomized transactions to mix up secure and non-secure
site access

• Monitored performance hit incurred from adding security to
the site. Observation: during an initial 50 user test, two of
the secure transactions averaged very high average
response times of 179 seconds and 128 seconds

14

Delivering Innovative Engineering Solutions

Analysis: 50 Concurrent User Test

• Started with 5 users and ramped up 5 users per minute,
as indicated by the blue line

• Timeouts from the web server began to occur at a 50-
user load, as indicated in red

• Following the error spike, HTTP hits, concurrent
connections, and successful connections began to
decline

• Web server CPU peaked at 100% usage and stayed
between 60-90% for most of the run

• Transactions took four times as long to execute during
the 50-user load test than during a two-user load test

• Note: this test was run against a single processor server

Delivering Innovative Engineering Solutions

50 Concurrent User Test50 Concurrent User Test

15

Delivering Innovative Engineering Solutions

Analysis: 20 Concurrent User Test

• After some changes were made to the site, a
smaller 20 concurrent-user test was run.

• This graph show some good, expected behavior
during a test:
• 1 to 1 correlation between requests sent and

received from Silk Performer, shown by the
light blue and orange lines

• The web server adequately handled the
number requests it received

Delivering Innovative Engineering Solutions

20 Concurrent User Test

16

Delivering Innovative Engineering Solutions

Analysis: 250 Concurrent User Test

Changes since last run:
• Second processor added to the web

server and the database server
• MS IIS web server was tweaked for

performance
• Site caching was implemented

Delivering Innovative Engineering Solutions

250 Concurrent User Test

17

Delivering Innovative Engineering Solutions

Analysis: 250 Concurrent User Test
New results:
• Some connection timeout errors occurred at peak load

of 250 users
• Successful connections (silver line) stayed fairly

consistent
• Web server CPU usage stayed below 30% of the

combined processors during the test run
• SQL server maintained around 50% usage of the

combined processors during the test run
• Connection errors indicate that not all requests were

getting through to the web server. A bandwidth limit
was reached on the T1 line. Testing should be moved
to a LAN at this point.

Delivering Innovative Engineering Solutions

Case Study #2 Summary

• The client continued to make
enhancements to the site

• The site was launched a month later

18

Delivering Innovative Engineering Solutions

Case Study #3

• Client/server solution to enable, expedite and
track customer Internet, e-mail and telephone
transactions for large scale customer service
clients.

• Client requested simultaneous playback of
client/server, web, email, telephone, and
database transactions.

• Client had experienced slow performance with
a low number of users. They requested load
testing to help them isolate the problems and
fine-tune their setup.

Delivering Innovative Engineering Solutions

Testing Requests

Web and E-mail Contact Performance and
Scalability Testing

• Load the system with web and e-mail traffic
at the same time and watch the response
times

• E-mail load generated by Mustang software
• Execute several distinct load tests by

keeping one load variable constant while
increasing the other

19

Delivering Innovative Engineering Solutions

Testing Requests

Internal Client-Server testing
• Executed a Proof of Concept phase to verify

that the proprietary protocols used by the
client applications (a Java Console and a
Remedy Forms Maker client) could be
recorded by SilkPerformer

• Resulting scripts were to be used during
Internal Client-Server load testing and also
in Direct Database testing phase

Delivering Innovative Engineering Solutions

Testing Requests

Direct Database testing
• Measure response times of

transactions run directly against the
Oracle database server

• Repeat tests on additional hardware
configurations to determine if the
database should be moved to a Unix
server platform

20

Delivering Innovative Engineering Solutions

Testing Requests

• Simultaneous execution of email/web scripts
and internal client-server scripts. This was
difficult because:
• SilkPerformer 3.5 could only run one script

at a time
• Only one SilkPerformer MMC / agent

machine was available for travel to the
client site at the time

• SilkPerformer 4 now supports running user
groups from multiple scripts at the same time

Delivering Innovative Engineering Solutions

Other Testing Requests
• Make recommendations for server hardware

(CPUs, memory, etc.)
• Computer Telephony (CTI) user simulation

during load runs
• Delivery of a formal schedule, plan, and timeline

to incorporate into their developers’ MS project
• Purchase, configure, train, and use monitoring

tools for their Oracle and application servers
• Purchase site licenses for Oracle and Remedy

users

21

Delivering Innovative Engineering Solutions

Challenges

• Record and generate traffic directly to
an Oracle database from an application
server with no GUI

• Record and play back TCP/IP traffic
over multiple ports simultaneously

• Simulate users with different logins in
TCP/IP traffic

Delivering Innovative Engineering Solutions

Technique – Direct Database Traffic
Need to force traffic directly to an Oracle server
• Recorded scripts on a client machine (with a GUI)
• Played back traffic from port on a data source

server directly to the Oracle server
• Note: replaying the traffic directly to the database

server would have resulted in non-realistic
response times – the play back would use only
one server hop instead of two
(client –> application server –> database server)

• The traffic put a heavy load directly on the Oracle
server for isolated performance testing

22

Delivering Innovative Engineering Solutions

Architecture

Client

Web Server Data Source ServerRemedy HelpDesk and
AR Server

Oracle Server

Java Console Remedy Forms Maker

Delivering Innovative Engineering Solutions

• Set up SilkPerformer to use the correct port on
intermediary data source server as a proxy.

• Determined that scripts created during internal
client-server testing could be reused in direct
database testing. This eliminated the need to
create new scripts using SQL commands,
proprietary DLL calls, and/or API calls to generate
ODBC traffic.

• Next step: create scripts to load 300,000 records
into the Oracle 8 database prior to testing. Client
provided a database template with sample records
and an architecture document (E/R diagram).

Technique – Direct Database Traffic

23

Delivering Innovative Engineering Solutions

Technique – Multiple Port Traffic
Recording and playing back TCP/IP traffic from multiple

ports to several servers simultaneously:
• Verified with Segue that TCP/IP traffic could be recorded

from two ports simultaneously in one script
• Tested in a Proof of Concept phase
• Proof of Concept also used to determine if traffic needed

to be manually merged in the script to synchronize the
actions initiated from the client applications

• Determined that the applications on the client machine
coordinated the traffic themselves before sending traffic
out through either port – it was not necessary to
synchronize actions manually in the scripts

Delivering Innovative Engineering Solutions

Technique – Multiple Logins in TCP/IP

• For the internal client/server test scripts
we needed to simulate multiple users
logging in with unique login accounts and
using different sets of data records at the
same time

• Minimized the dependencies between
user interactions by having each user
work with a different set of data records

24

Delivering Innovative Engineering Solutions

• No web forms available to customize
• Could not use random or increasing value variables to

parameterize accounts because:
• Traffic was TCP/IP only
• TCP/IP traffic was encrypted and no decryption formulas were

available from the client for use in encoding new login names
and decrypting traffic

• Client could not turn off encryption (Note: turning off encryption
would have affected server response times)

• Workaround:
• Re-recorded transactions several times (once per user group)
• Set up each user group to run a different set of transactions
• Executed load tests with one user of each user group type to

simulate different logins

Technique – Multiple Logins in TCP/IP

Delivering Innovative Engineering Solutions

Case Study #3 Summary

• Successfully completed first phase of the engagement,
verifying that:
• Traffic can be recorded from the client machine

(with a GUI) and played back directly to the
database server from the data source server

• Traffic can be recorded using multiple ports,
synchronized, and replayed simultaneously

• Transactions can be created to simulate multiple
login accounts with TCP/IP traffic

• The client company was purchased. The second
phase of this engagement is currently on hold

25

Delivering Innovative Engineering Solutions

Summary of Techniques Used

• Dynamic key parsing
• Handling multiple session IDs
• IP spoofing
• Adding secure transactions
• Implementing direct database transactions

(without a GUI)
• Multiple port recording
• Customizing TCP/IP with unique login IDs

Delivering Innovative Engineering Solutions

Summary of Techniques Used

Questions
&

Answers

QW2001 Paper 6V2

Mr. Larry Markosian
(Reasoning)

Improving Software Quality & Delivery Schedules
Through Automated Inspection

Key Points

The kinds of defects that are detected by InstantQA.●

The benefits of the InstantQA service, and particularly for embedded applications.●

The underlying technology.●

Presentation Abstract

Automated source code inspection tools have been available for decades. Only
recently, however, has the underlying technology matured enough to pinpoint
serious defects-defects that cause an application to crash or corrupt data-without
burying these “nuggets” under reams of false positives and low-interest code
problems. The technology has been developed by Reasoning to focus on defects
such as memory leaks, NULL pointer dereferences, out of bounds array accesses,
and other serious defects that delay functional testing and often escape into the
deployed application. Especially in the case of mission-critical applications and
embedded applications, such defects are a significant cause of delayed releases and
expensive failures in the field.

Reasoning’s InstantQA is a software defect detection service based on advanced
source code analysis technology that can pinpoint critical defects during
development, when they are easiest and least expensive to fix. Early discovery
means that the testing cycle is not interrupted to deal with application crashes,
unpredictable results and other delays caused by these hard-to-identify bugs. Also,
identification by source code analysis provides precise information about where
the bug is located, what type of bug it is, and under what conditions will trigger it.
This information is usually adequate for even junior level developers with limited
knowledge of the application to implement a fix. This is contrasted with the results
of testing, where only the symptom of the failure typically can be reported, and
long hours on the part of experienced developers may be spent tracking the runtime
error to its source.

About the Author

Lawrence Markosian, a founder of Reasoning, Inc., is product manager for
InstantQA, Reasoning's automated source code defect inspection service. Prior to

joining Reasoning, Lawrence was a Research Associate at Stanford University,
where he specialized in models of mathematical and logical inference and learning.
Lawrence is the author of numerous articles on software reengineering, reverse
engineering and defect detection, including articles in Communications of the
ACM and Java Developers Journal. His email address is zaven@reasoning.com.

1

© 2001 REASONING CONFIDENTIAL

Reasoning
Automated Software InspectionAutomated Software Inspection

© 2001 REASONING CONFIDENTIAL 2

Who is Reasoning?

We provide an automated inspection
service for companies that develop
high-reliability software.
We make them more competitive,
enabling them to build better software
in less time and at lower cost.

Located in Mountain View, CA
Founded in 1986
Inspected over 1B LOC

2

© 2001 REASONING CONFIDENTIAL 3

Releasing Reliable Software on
Schedule is Almost Impossible

Increasing
complexity

(more features)

Shortening
product

lifecycles

Limited development
and QA resources

?

The Problem

© 2001 REASONING CONFIDENTIAL 4

The Problem

Need to Find Bugs Sooner

Finding Bugs Late is Expensive
and Time-Consuming

% Defects
Created

% Defects
Found

Cost to
Repair

$16,000

Code Test Production

100%

50%

0%

$8,000

$0

Source: Capers Jones

$25

$1000
$250

Int.

3

© 2001 REASONING CONFIDENTIAL 5

The Need

TestDesign Code

Software Development Lifecycle

Inspection

Looking at
the code

Testing

Running
the code

Int.

Inspection Finds Bugs Sooner

Source: Capers Jones

“Inspection is by far the most
effective way to remove bugs.”

© 2001 REASONING CONFIDENTIAL 6

Depth of
Analysis

High

Ideal
Solution

Existing
Inspection

Tools

Low

Slow and
Limited

Fast and
Broad

Speed and
Scope of
Analysis

Manual
Inspections

The Need
A Practical Way to
Inspect Software

4

© 2001 REASONING CONFIDENTIAL 7

Finds crash-causing bugs

Works on incomplete code

Hardware/environment independent

Does not require test cases

No Development Resources Required

Finds bugs without testing

The Solution
InstantQA:
Automated Software Inspection Service

© 2001 REASONING CONFIDENTIAL 8

Based on multiple technical innovations

Supports C and C++

Finds five types of defects
NULL pointer dereferences
Memory leaks
Out-of-bounds array access
Bad deallocations
Uninitialized variables

Finds Causes of Problems,
Not Just the Symptoms

The Technology

5

© 2001 REASONING CONFIDENTIAL 9

The Technology

Source
Code

Defect
Report

= Reasoning Innovations

ArchitectureArchitecture

Language
Parser

Potential
Violations

Summarize
CAGs by

Function &
Level

Symbolic
Evaluation

Using Value
Lattices

Computation
Analysis Graph
(CAG) Builder

Detection
Rules

Potential
Defects

Manual
Defect
Review

Feasible
Path

Analysis

© 2001 REASONING CONFIDENTIAL 10

What’s Behind InstantQA?

March 2001 Issue of Dr. Dobb’s:

“Value Lattice Static Analysis”

Co-authored by William Brew,
R&D Director, Reasoning

6

Can You Spot the Bug?

void dovec(struct cv *src, struct *cv dst)
{

char *d, *p;
...
if ((src == NULL || src->nchrs == 0) &&

dst->nmcces == 0)
return; /* no src string or no room to copy */

d = &dst->chrs[dst->nmcce[dst->nmcces – 1]];
for (p = src->chrs, i = src->nchrs; i > 0; i--)

*d++ = *p++;
...

}

TRUE
FALSE

Hint: What happens if src == NULL, but dst->nmcces != 0?

NULL Pointer Dereference

Detailed Defect Report
Defect Class Memory Leak Risk Moderate
Location /websrv_1.1/src/os/win32/readdir.c : 43
Description Pointers to blocks allocated bymalloc() on lines 34 and 27 are stored in local variables dp

and fspec. The memory blocks become inaccessible (still allocated, but unreachable) once
dp and fspec go out of scope after line 43.

Preconditions The expression (errno == ENOENT) on line 40 is false and ((handle =
findfirst(fspec, &(dp->fileinfo))) < 0) on line 39 is true

Impact Memory leaks cause performance degradation of the application, and/or the entire
system. Eventually, this may lead to a fatal out-of-memory condition.

Code Fragment
20 API_EXPORT(DIR *) opendir(const char *dir)
21 {
22 DIR *dp;
23 char *fspec;
24 int ix, handle;
26
27 fspec = malloc(strlen(dir) + 2 + 1);
28 strcpy(filespec, dir);
30 if ((ix = strlen(fspec) - 1) >= 0 && (fspec[ix] == '/)
31 fspec[ix] = '\0';
32 strcat(fspec, "/*");
33
34 dp = (DIR *)malloc(sizeof(DIR));
…
39 if ((handle = findfirst(fspec, &(dp->fileinfo))) < 0) {
40 if (errno == ENOENT)
41 dp->finished = 1;
42 else
43 return NULL;
44 }

Sample Defect Report

7

© 2001 REASONING CONFIDENTIAL 13

Quality Metrics

0.00
0.20
0.40
0.60
0.80
1.00
1.20

Defects per
KLSC

ABC Company Comparative Trend

Bottom Third
Middle Third
Top Third

Industry
Average

Previous
Version

Current
Version

© 2001 REASONING CONFIDENTIAL 14

Quality Metrics

File Risk for Current Version

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

Pe
rc

en
ta

ge

Low Very HighMedium High

8

© 2001 REASONING CONFIDENTIAL 15

Quality Metrics

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Defects per
KSLOC

File
 13

7

File
 37

File
 14

File
 18

6

File
 79

File
 17

2

File
 52

File
 207

File
 21

File
 98

File Name

 Current Version Very High Risk Files

Series1

© 2001 REASONING CONFIDENTIAL 16

Reduced Time and Cost
And Increased Reliability

The Benefits

Software Development Lifecycle

Design Code

Design Test

Before

After

SavingsAutomated
Inspections

Code

TestInt.

Int.

9

© 2001 REASONING CONFIDENTIAL 17

The Benefits

Better forecasting
Tighter scheduling
Quality tracking
Highlight training needs

© 2001 REASONING CONFIDENTIAL 18

Situation
– One million lines of code
– Seven-year-old code base

Results
– Found 331 defects
– 10% were “stop-ship” severity

"It exceeded our expectations by helping our team debug software
much faster and at very low cost compared to conventional methods.

… I highly recommend using the service in any project where quality
and highly reliable software are a must."

Jay Bergeron
Director of Product Engineering

Credence Systems –
a Significant Savings

Benefits
– Eliminated 36 man-months of

testing and debugging
– Saved $500K

The Proof

10

© 2001 REASONING CONFIDENTIAL 19

Complements Design and
Testing Tools

InstantQA Completes the Cycle

Software Development Lifecycle

Rational
Rose
(Model)

Reasoning
Automated
Software
Inspection

New

Mercury
XRunner
(Test)
Rational
Purify
(Debug)

Design TestCode Int.

© 2001 REASONING CONFIDENTIAL 20

A Growing Client Base

QW2001 Paper 7V1

Mr. Rick Banister
(Sesame Technology)

Clothing Optional Relationships With Your Customers--How
much should we expose to our customers when it comes to the

product improvement process?

Key Points

Methods for creating limited, direct customer access into your support & quality tracking
systems.

●

How to turn customer access into big advantage for your product line.●

Learn how far you can go and what methodologies can keep you protected.●

Presentation Abstract

No cameras please! This presentation reveals what’s underneath the current trend to allow
customers limited, direct access into your support and quality tracking systems. What was
once considered off-limits is now becoming the norm for progressive product companies
and their customer base. Learn how your customers can serve themselves by directly
entering and tracking enhancement requests and product defects. Learn what data is best to
keep private, and what data keeps customers involved at the appropriate level. See how
providing a direct customer interface allows service staff and engineers to work
proactively, with fewer interruptions. Lastly, learn how product problems and
enhancements can be grouped with other quality issues to create an organized and powerful
overview of your product improvement process, ultimately yielding a better product for
you and your customers.

About the Author

Rick Banister is the Executive Vice-President and CTO of Sesame Technology. He has
developed application systems for over twenty-four years, as a project manager, software
developer, systems integrator, database analyst, and business manager. His extensive
experience in application development includes Oracle and Java programming, database
design, implementation and tuning. Rick is considered by many to be a leading expert in
quality and product improvement processes.

QW2001 Paper 7V2

Dr. Edward Miller
(eValid, Inc.)

A Universal Client-Side WebSite Test Engine

Key Points

Testing WebSites from the Browser has many intrinsic advantages in terms of reality,
accessibility, and flexibility.

●

The eValid WebSite test engine addresses a wide range of needs for WebSite testing, including
functional validation and verification, site timing and page tuning, and complex load imposition.

●

This talk describes the architecture, interfaces, and structure of the eValid engine, and provides a
number of examples of its operation.

●

About the Author

Dr. Edward Miller is President of Software Research, Inc., San Francisco, California,
where he has been involved with software test tools development and software engineering
quality questions. Dr. Miller has worked in the software quality management field for 25
years in a variety of capacities, and has been involved in the development of families of
automated software and analysis support tools.

He was chairman of the 1985 1st International Conference on Computer Workstations, and
has participated in IEEE conference organizing activities for many years. Miller is the
author of Software Testing and Validation Techniques, an IEEE Computer Society Press
tutorial. Dr. Miller received his Ph.D. (Electrical Engineering) degree from the University
of Maryland, an M.S. (Applied Mathematics) degree from the University of Colorado, and
a BSEE from Iowa State University.

1

eValid, Inc.

eValid: The Universal
WebSite Test Engine

Dr. Edward Miller

eValid, Inc.
901 Minnesota Street

San Francisco, CA 94107 USA
Email: miller@soft.com

eValid, Inc.

Presentation Outline
� Overview of Technology
� General Operation Description
� Validation & Verification Modes
� Timing and Tuning
� Load Imposition
� SiteMap Mode
� Performance Considerations

2

eValid, Inc.

Most Common Problems in WebSites
� Quality/Content

Broken Links
Missing Components

� Performance
Too-Slow Download

� Interaction
Failed 1st Layer Transactions

Login
Specialized Controls

Delayed 2nd Tier Transactions
Delayed 3rd Tier Transactions

eValid, Inc.

Alternative Technologies
� Windows

Client/Server Testing
Windows Events
Browser is "opaque"

� Unix
Client/Server Testing
X-Display Events
Browser is "opaque"

� Browser
Everything is open

3

eValid, Inc.

eValid, Inc.

Comparative Technologies
� Windows Desktop

– Operates from Windows Desktop Event Loop
– GUI objects partially opaque

� HTTP Protocol
– Records outbound URLs and response pages

� Browser Proxy
– Records activity in/out from browser on HTML

� InBrowser Technology
– Runs inside IE-compatible browser
– Full context
– Realistic timings

4

eValid, Inc.

eValid, Inc.

WebBrowser Testing Pros/Cons
� Pros

100% User View
Realistic
Natural operation
Accurate timings

� Cons
Not all browsers are alike
UNIX platform support limited

5

eValid, Inc.

eValid, Inc.

eValid General Features

� IE Base
� Simple Script Language
� Point and Click Interface
� Online Documentation
� Advanced Recording
� Variety of User Options

6

eValid, Inc.

eValid, Inc.

7

eValid, Inc.

eValid, Inc.

8

eValid, Inc.

Dynamic Analysis/Testing
Validation

� Text
� Images
� Dialogs
� Sequences
� Other

eValid, Inc.

Dynamic Performance Timing
� Single and Multiple Download Timings
� Overall User-level Response Times
� Perceived User-level Response Times,

Thresholds
� Web Effects

9

eValid, Inc.

eValid, Inc.

Hurdles for Dynamic Testing
� Repeatability
� Databases that “Remember”
� Fancy Page Effects
� Multi-Media Displays
� Browser Differences

– Rendering
– Adaptive Servers

10

eValid, Inc.

Functional Verification & Validation

� Document
URL
Elements
Size
Last-Modified Date

� User-Selected
Text
Image
Table-Cell

� All
Images
Applets
Element IDs

eValid, Inc.

11

eValid, Inc.

Client-Site Timing
� Overall Timer

Total Time
Total Bytecounts

� Page Timing
Base Page
LINKed Files

JavaScript (*js)
Cascading Style Sheets (*css)

Images

eValid, Inc.

12

eValid, Inc.

Load and Capacity Checking/Testing
� Load Imposition
� Load Measurement
� User Scenarios
� Realistic vs. Non-Realistic Experiments
� Client-Based vs. Server-Based Experiments
� Web Variability

eValid, Inc.

13

eValid, Inc.

eValid, Inc.

14

eValid, Inc.

eValid, Inc.

15

eValid, Inc.

eValid, Inc.

16

eValid, Inc.

Typical Monitoring Services
� 24x7
� Geographic Coverage
� What is monitored
� Response method:

– Email
– Page
– Direct

QW2001 Paper 8V1

Mr. Steve Smith
(QualityLogic)

Develop Great Stuff, Repeatedly, On Time

Key Points

Delivering quality products repeatedly requires more than good process. It requires
effective strategy and an enabling culture. All three must be present and in balance for
success.

●

A nine-step formula for delivering good stuff on time…repeatedly.●

Successful quality management the easy way.●

Presentation Abstract

Success in building quality products depends on how well a company’s
management does at setting and enforcing effective corporate Strategy, Process
and Culture. Without conscious attention to these factors, some level of quality just
“happens” or more likely, “doesn’t happen.”

No matter how good the processes and tools, if a team does not have a clearly
communicated strategy and a disciplined culture to implement that strategy, the
probability of delivering good stuff, on time, repeatedly is very small.

QualityLogic has developed the “Quality Success Formula” to work with
companies in successfully delivering quality software products that meet and
exceed your customers’ expectations. The “Quality Success Formula” is a blend of
industry best practices and knowledge gained from QualityLogic’s years of
experience in the software quality business. This includes the management of
strategy, process and culture; Information Quality Assurance; advanced quality
understanding and philosophy; and product life cycle management.

About the Author

Steve Smith has over 30 years experience in software development and Quality
Assurance with companies such as IBM and Mentor Graphics. Steve joined
QualityLogic in April of 2000 and has been a key contributor to building the
QualityLogic Professional Services Practice and the QualityLogic Quality
Assessment Process.

He started his career at IBM. After a tour in the Army he returned to IBM working
in a Quality Engineering group testing IBM’s then fastest computer, the Model
195. His next position was as Manager of Mission Test for the Physical Design
Mission in IBM’s Engineering Design System (EDS) Physical Design Mission

developing application software for IBM’s 26 worldwide labs. In this role he was
responsible for directing the Quality Assurance and Quality Control requirements
of the mission.

Steve moved to Mentor Graphics in the early 1980s as the Manager of Systems
Engineering Support in the Board Systems Division. He helped lead Mentor and
his division to ISO9001 Certification and conducted SEI assessments. Steve then
took on the role of Director of Usability for the PCB Product and then became
Director of Engineering for the Division that was approaching $100 million in size.

1

QualityLogic Inc.
“Deliver Good Stuff,

On Time…Repeatedly”
Quality Week 2001

Quality Is Key

Satisfied Customers New Customers

Right Product

On Time

Right Price

Built Right

2

Quality Doesn’t Just Happen

➤ “Investment in process improvement pays off.
Costs are paid back by better quality and shorter
development time…in addition to avoiding
dissatisfied customers, companies can save time
and effort by adopting quality-assurance
processes.”

Secrets of Software Success
McKinsey & Company Inc.

Harvard Business School Press, 2000

Requirements Design Build/Code Test & Fix Use

It Pays to Invest Early

➤ The cost of finding defects too late

$0

$50

$100

$150

$200

$250
Cost to Fix

Prevent (QA)

3

Quality is More than Testing

Leadership
Policies
People
Processes
Tools

Processes
Discipline

Find
and fix
defects

Examine
Improve

Start again

The Premise–Key to Successful Quality

SStrategytrategy
Setting direction

& priorities

ProcessProcess
Supports repeatable

tactics costed against
priorities & direction

Branding
Image & LoyaltyQuality Customer

Acceptance

CultureCulture
Supports processes as

a system

IQIQ
AAInformation Quality Assurance

6

4

Quality Definitions

What is quality in the new economy?

“It is about both what you do and what
you deliver. Means and ends. Brilliant
leadership, effective strategy, unrelenting
attention to customers and markets,,
the recruitment, training and retention
of exemplary staff, process superiority,
good use of data, and great results.”

Business Week April 17, 2000

8

Quality Definitions

Quality is the delivery of expected:
• Functionality
• Usability
• Reliability
• Performance
• Supportability

on time…repeatedly
This creates and sustains brand image and loy

9

5

Quality Definitions

Quality Assurance
Strategic
Prevention
Business/Risk Management
Process Analysis/Creation
Continuous Improvement

Quality Assurance vs. Quality Control

Quality Control
Tactical
Detection
Minimize Rework
Product & Process Validation
Testing

10

Your Software Quality Resource

➤ 200+ employees

➤ Internally funded

➤ Profitable

➤ Nationwide
� Los Angeles, CA
� Portland, OR
� Seattle, WA
� Boise, ID

Lexington, KY
Sacramento, CA
Cupertino, CA

6

Some QualityLogic Clients

We Deliver…

➤ Assurance that product quality
issues don’t keep you up at night!

➤ By Solving quality problems at the
� Enterprise level
� Department level
� Project level

� Flexible solutions, tailored for you

7

Summary

➤ Quality in software matters

➤ QualityLogic is the partner of choice

➤ “In rapidly growing a company, you
need to outsource everything you can
to reliable vendors. QualityLogic
leads in the software quality area.”

Justin Segal, Co-Founder
Startups.com

QW2001 Paper 8V2

Mr. Shel Siegel
(Tescom)

Component Based Architecture for Automated Testing

Key Points

An automation architecture is necessary to optimize productivity and value.●

A component based automation architecture has inherent advantages.●

Re-use of test artifacts may be optimized by using a component based automation
architecture.

●

Presentation Abstract

As test automation tools flourish it is easy to be lulled into thinking that
automation will increase productivity or add value to the testing process. In this
regard an old saying applies “if you give a fool a tool, the fool will be able to do
what he/she does not know how to do ….. faster”. In other words, a fool with a tool
is still a fool!

Recently I asked an assembly of more than 350 QA and test managers how many
had designed or implemented an architecture for the automated test scripts they
were producing. Less than 5% had architected their automation projects. Shocking
wouldn’t you say?

If we in the test and software quality fields believe that it is desirable for our
developer counterparts to architect and design their software projects why did only
5% of the managers of testing departments architect and design their automation
testing projects?

This talk presents a simple and powerful automation architecture for regression test
scripts using tools like WinRunner or Silk.

About the Author

I co-founded The Alliance for Software Quality (1991) and co-developed the
Quality Optimization (QO) software quality deployment methodology (1993) and
the Hierarchical Testing Approach. (1996). I worked with the American
Electronics Association (AEA) National TQC Steering Committee to provide
“leadership for quality” in the software industry. (1994) I was the technical editor
for Software Quality World and I am known as a dynamic presenter at conferences
on the subjects of project management, quality engineering, and software testing
techniques. I chaired the committee that designed IBM’s System Evaluation

Laboratory at Santa Teresa Labs (1983) and I have built and directed quality
departments for large and small software companies since 1981.

4/25/2001

Copyright Shel Siegel 1995 1

Copyright Shel Siegel - 06/01/00 shelsiegel@hotmail.com 1

COMPONENT BASED
ARCHITECTURE for

AUTOMATED TESTING

Created by Shel Siegel
Version 2.0

Copyright Shel Siegel - 06/01/00 shelsiegel@hotmail.com .2

AUTOMATION ADVANTAGAES

✦ Practical test environment that is easy to
learn and use

✦ Facilitate the reuse of test objects.

✦ Enables greater productivity through the reuse
of test objects.

✦ Frees testing resources to do analysis and
design

4/25/2001

Copyright Shel Siegel 1995 2

Copyright Shel Siegel - 06/01/00 shelsiegel@hotmail.com .3

TEST AUTOMATION VISION
Time spent testing products will be
significantly reduced by automating the time
consuming manual test procedures.

� Defects will be found faster/earlier after a Dev build.

� Fixes may be tested/re-tested quickly.

� Free-up test people to perform more valuable
activities.

� Time to market MAY BE shortened?

Copyright Shel Siegel - 06/01/00 shelsiegel@hotmail.com .4

TEST AUTOMATION MISSION

Automate regression testing for all project
builds.

� For each milestone Dev. build - execute automated
regression test.

� Verify a minimum acceptable level of functionality.

� Focus on high risk areas of the product.

4/25/2001

Copyright Shel Siegel 1995 3

Copyright Shel Siegel - 06/01/00 shelsiegel@hotmail.com .5

TEST AUTOMATION OBJECTIVES

❶ Create a flexible automation infrastructure with a level
of test abstraction.

❷ Create an architecture to be used by other projects.
❸ Define naming conventions & standards that enable

test object identification from the name.
❹ Design test objects that can be managed by an

inventory tool or version control tool.
❺ Create modular & reusable tests.
❻ Use existing product test plans as specifications for

automated regression tests.
	 Use WinRunner for GUI based automation.

Copyright Shel Siegel - 06/01/00 shelsiegel@hotmail.com .6

OBJECTIVE - 1

Objective

Create a flexible
automation
infrastructure with a
level of test
abstraction.

✈ Approach

Use a component based
architecture that views test
artifacts as reusable
components.

Amount of reuse of test artifacts.

Ability to mix and match WinRunner test steps.

4/25/2001

Copyright Shel Siegel 1995 4

Copyright Shel Siegel - 06/01/00 shelsiegel@hotmail.com .7

OBJECTIVE - 2

Objective

Create an architecture to
be used by other
projects.

✈ Approach

Design the test infrastructure
to be project independent.

How easy is it to convert other projects into the
automation architecture.
Ratio of reused test objects to number used by this
project.

Copyright Shel Siegel - 06/01/00 shelsiegel@hotmail.com .8

OBJECTIVE - 3
Objective

Define naming
conventions &
standards that enable
test object
identification from the
name.

✈ Approach
Use a simple byte-position
coding convention to map
key pieces of information
about the test object into
the name.

Number of project test components that meet
agreed upon standards.
Ratio of compliant test objects to total objects being

produced.

4/25/2001

Copyright Shel Siegel 1995 5

Copyright Shel Siegel - 06/01/00 shelsiegel@hotmail.com .9

OBJECTIVE - 4

Objective
Design test objects that
can be managed by an
inventory tool or
version control tool.

✈ Approach
Encode the type of test
object, product/project
and a unique identifier
into the name of the test
object.

Use a standard parsable test
header.

The names are unique and meet the stated name
conventions.
Inspect the test objects for compliance.

Copyright Shel Siegel - 06/01/00 shelsiegel@hotmail.com .10

OBJECTIVE - 5

Objective

Create modular &
reusable tests.

✈ Approach
Use a bottom up approach to

designing tests.
Create single step tests that

correspond to individual
user fields on a specific
GUI screen.

Document very well.

Number of times a test is reused.

4/25/2001

Copyright Shel Siegel 1995 6

Copyright Shel Siegel - 06/01/00 shelsiegel@hotmail.com .11

OBJECTIVE - 6
Objective

Use existing project
test plans as
specifications for
automated regression
tests.

✈ Approach

Convert the Test Plans
(really Test Specifications!)

to the WinRunner Test
Header format.

Number of conversions per person hour.

Ratio of conversions to total number.

Copyright Shel Siegel - 06/01/00 shelsiegel@hotmail.com .12

OBJECTIVE - 7

Objective

Use WinRunner for
GUI based automation.

✈ Approach
Provide WinRunner test case

templates to the
automation team.

Create simple basic
WinRunner test cases for
each field on a screen.

Number of different types of templates needed.

Time to execute individual WinRunner test steps.

4/25/2001

Copyright Shel Siegel 1995 7

Copyright Shel Siegel - 06/01/00 shelsiegel@hotmail.com .13

Screen
Functions

Equivalence class values positive/negative testing

F1
F2

F3 F5

SF1 +S F2
SF3
+
SF4

Regression Test
Int

eg
ra

tio
n T

est

Fields on Screen

Fn

SF 1 =
F1+F2

SF 2 =
F1+F3

SF 3 =
F3+F5 SF4=F4

Indiv.
Field
TestsF4

Use Cases

Drop down
Menus

Component Based Automation Architecture

Copyright Shel Siegel - 06/01/00 shelsiegel@hotmail.com .14

Test Design Architecture Specification Overview

Ea

Use Cases model behavior of a user doing real work. Use cases may be comprised of
one or more system tests.

Reliability, Availability, Serviceability, etc. may be tested with Use Cases.

Documentation and Support may also be evaluated.

Test features and functions involving more than one screen/dialogue.

Test procedures describe environment, setup, and cleanup procedures.

Regression and acceptance test. Use existing XXXXXX “test plans”.

Every screen is considered a dialogue.
Every dialogue has one or more automated test scripts for every
field in the dialogue.
Dialogue test scripts are designed as callable test functions.

Test fields and functionality of a single dialogue.
Will use Data Driven scripts – checks DB and toolkit
interactions.
Each dialogue will be compiled into a test function callable from
the test library. This enables re-usable building block tests.

Check Screen Layout using WinRunner
GUI Maps

Verifies the physical elements of the GUI.

Use Cases

System
Tests

Test Functions

Dialogues

Window

Objects

Data
Sets

WinRunner
GUI Maps

Test
Procedures

Interface

4/25/2001

Copyright Shel Siegel 1995 8

Copyright Shel Siegel - 06/01/00 shelsiegel@hotmail.com .15

Re-Usable Test Components

✦ Individual Field Tests
(Unit)

✦ Screen Tests (Functional)

✦ Menu Tests (Integration)

✦ Regression Test

✦ Use Cases

✦ Create Test Data files for
each field

✦ Use Combinations of
Field Tests

✦ Use Combinations of
Screen Tests

✦ Variations &
Combinations of Menu
Tests

✦ Different Variations of
Menu Test Sequences

Copyright Shel Siegel - 06/01/00 shelsiegel@hotmail.com .16

AUTOMATION CRITICAL SUCCESS
FACTORS

✦ Existing manual test bed
– Use existing test specifications.

✦ Re-usable automation architecture
– Testers trained in:
– Consistent conceptual framework.
– Component based architecture.

✦ Automation tool expertise.
– Requires individuals trained on the tool.

✦ Project manager uses well defined Rolling Wave
SDLC and provides predictable documented
builds.

QW2001 Paper 2T1

Mr. Tobias Mayer, Mr. Thomas
Stocking

(eValid, Inc., siteROCK)

The Web Site Testing Challenge

Presentation Overview

Web sites are becoming increasingly more complex due to:

1. The inclusion of (e.g.) Flash objects, Java Applets, XML,
Javascript.
2. The increased use of Multiple Windows, Secure Log-Ins, Message
Pop-ups and Web-launched applications.

Testing these sites requires tools that can intuitively and accurately adapt to such
complexity.

The first part of this talk will address many of the difficulties in testing a modern
web site from the perspective of a professional web site quality tester. The second
part will discuss the 'Browser-centric' test tool as a solution to some of these
difficulties.

The main focus will be on the qualities that a test tool needs to meet the myriad of
requirements that the web site tester is faced with.

About the Authors

Tobias Mayer is a senior software engineer at Software Research, Inc. He is
reponsible for the main design and implementation of the "eValid" Web Test
engine. Tobias has a (UK) BSc from South Bank University, London. He is a
member of, and OO Metrics consultant to, the Center for Systems & Software
Engineering (CSSE) at South Bank University. Tobias has presented and published
a number of papers on OO metrics, including papers at IEEE 'TOOLS' 1999 and
British Computer Society 'SQM' 1999. During 2000, Tobias presented a number of
seminars on Website Testing strategies in the UK. He also presented the
"Quickstart - Website Testing" seminar at the 'Quality Week 2000' conference in
San Francisco, June 2000.

Thomas Stocking is a systems engineer for SiteROCK Corporation. In this
position he is responsible for the implementation of monitoring systems for
siteROCK’s enterprise customers. He has had the privilege of working with some
of Silicon Valley’s best and brightest in this role over the past two years. Thomas
has over 10 years experience as a systems integration consultant, and has worked

on various IT implementation teams. He has a degree in Applied Mathematics
from the University of California, and is a native of the San Francisco Bay Area.

1

Thomas Stocking
SiteROCK

&
Tobias Mayer
eValid Inc.

Quality Week 2001Quality Week 2001

The Web Site Testing ChallengeThe Web Site Testing Challenge

The Web Site Testing ChallengeThe Web Site Testing Challenge

• Part 1 - Using Web Site Testing Tools
– Presented by Thomas Stocking (SiteROCK)

• Part 2 - The Browser-centric Approach
– Presented by Tobias Mayer (eValid, Inc.)

Quality Week 2001Quality Week 2001

2

Part 1
Using Web Site Testing Tools

Thomas Stocking

Quality Week 2001Quality Week 2001

siteROCK Corporation Page 1.4

Outline

• How siteROCK Tests Sites
• Page Types and Challenges
• Tool Features
• Limits of the Technology
• Examples
• Q&A

3

siteROCK Corporation Page 1.5

How siteROCK Tests Sites

• Availability and Performance Measurement Service

• Monitoring the End User Experience

• Diverse Technologies Tested

• Programmatic Approach – We need good tools!

siteROCK Corporation Page 1.6

Page Types and Specific Challenges

Easy Hard

HTML JavaScript Java/Flash Modal Dialogs Multiple Windows Web-Launched Apps

4

siteROCK Corporation Page 1.7

Tool Features and Trade-Offs

• Interface

• Management

• Client vs. Server

siteROCK Corporation Page 1.8

Test Tool Management

Development QA Staging

Production

5

siteROCK Corporation Page 1.9

Test Scheduling

Production Environment

Scheduling Master

Redundant
Slaves

siteROCK Corporation Page 1.10

More Tool Features

• Implementation models

• Test Management

• Tool Flexibility

• Developer Support vs. Open Source

6

siteROCK Corporation Page 1.11

Getting the Data Out: Reporting

• Availability
– Reports not critical – up/down status captured by

scheduler tool
• Performance

– Reporting essential – threshold “greening”
• Logging Options

– Granularity
– Logging to Text Files
– Logging to a Database

• Data Presentation
– Correlation of Availability and Performance Data
– Graphs

siteROCK Corporation Page 1.12

Limits of the Technology

• Stability
– Tools
– Networks/Infrastructure

• Poorly Designed Sites
– Scripting around minor bugs

• Highly Dynamic Sites
– Scripting around rapidly changing sites
– Technology/Process Work Breakdown Structure

1

Part 2
The Browser-Centric Approach

Tobias Mayer

Quality Week 2001Quality Week 2001

Page 2.2

Web Site Regression Test Approaches

Record-Playback of Web Site interaction is
generally done at one of three levels:

• HTTP Messages
– Get, Post, etc.

• Event Loop Interception
– Mouse Clicks, Key Events at the ‘Desktop’ level

• Browser Interception (a.k.a. ‘Browser-centric’)
– Direct interfacing with the browser objects

2

Page 2.3

The Browser-centric Approach

The Test Engine is the Browser.

Page 2.4

Browser-centric Recording

Test Creation becomes:

• Simple
– No complex initialization of a separate tool.

• Intuitive
– Initialize ‘Record Mode’ and commence to use

the browser in the normal way.

• Realistic
– Recorded sessions are precise encapsulations

of real user interaction.

3

Page 2.5

Browser-centric Playback

Test Execution can:

• Maintain State
– Secure session IDs are always guaranteed to be

valid in any playback at any time.

• Adapt to dynamically created pages
– No reliance on positioning, size or visibility of

the recorded browser objects.

• Simulate Real Users
– Playbacks faithfully reproduce user interaction.

Page 2.6

Browser-centric Features

Other important features of the Browser-centric
approach are:

• Realistic Download Measurements
– Download times are recorded as the user

witnesses them, not in some ideal situation

• Complete Site Mapping
– Site map of actual links together with realistic

download times and selective page filtering.

• Page Complexity Measurement
– Access to Browser objects allows detailed

complexity metrics to be calculated.

4

Page 2.7

Conclusion

There are many complex factors to consider
when testing a web site.

No single solution has been shown to
successfully handle all such factors.

The Browser-centric approach is suggested
as an effective, intuitive, accurate and
realistic method of testing difficult web sites.

QW2001 Paper 2T2

Dr. Nancy Eickelmann & Mr. Allan Willey
(Motorola Labs)

An Integrated System Test Environment

Key Points

Automated Test Environments●

COTS tool integration●

System test technologies●

Presentation Abstract

Software and system testing is a critical activity in the development of high quality
products. When testing is performed manually it is highly error-prone, time
consuming and costly. Automated Test Environments (ATEs) overcome the
deficiencies of manual testing through automating the test process and integrating
testing tools to support a wide range of test capabilities. Industrial use of ATEs
could provide significant benefits by reducing testing costs, improving test
accuracy, improving software quality, and providing for test reproducibility.
Despite the critical importance of ATEs in the development of quality products,
full life cycle integration of test tools is rarely achieved in practice. To understand
what prevents full life cycle integration of tools with respect to data, process,
platforms, user interfaces, and control, Motorola Labs is conducting focused R&D
initiatives.

The Motorola Automated Test Environment (MATE) initiative provides
technology to design, develop, and test high quality software and systems. The
Motorola Automated Test Environment initiative addresses a subset of the product
development issues focusing on testing, which remains a very costly,
time-consuming phase of the product development life cycle.

The Core Process Redesign (CPR) initiative is identifying the necessary integration
factors to insert an automated test environment that seamlessly inter-operates with
the rest of the product lifecycle. The CPR identifies decision criteria, process
input/output pairs, entry/exit criteria and common resource requirements and
constraints. The overriding objectives of MATE and CPR are to radically improve
time-to-market and predictability in schedules, costs, and quality of product
development by:
* Development of a common process that enables consistent practices
* Build a common platform that supports interoperability and reuse
* Increase resource allocation flexibility to facilitate cost effectiveness
MATE and CPR are complementary efforts that focus on standardization,
automation and integration of tools, data and processes.

A primary goal of the MATE initiative is to develop a common and automated test
environment throughout the corporation. With a common environment the entire
corporation would be able to take advantage of optimization improvements made
to the environment based on technology advancements external to Motorola and
technology acquisition internal to Motorola. Therefore the MATE architecture
must accommodate legacy tools, process changes and future needs met by
technology insertion. As such the MATE requirements are a negotiated construct
among the identified stakeholders.

This paper examines software architectural constraints in relation to software and
system test automation environments. The MATE architecture requires a mapping
of multiple views of the environment including structure, functionality, process
and data. An overview of the environment is represented by mapping the test
functionality to hardware and software structures of the environment. An
architectural representation provides a foundation for evaluating the impact of
architectural and COTS choices on system test engineers and test managers. This
paper discusses the integration of COTS tools into MATE including DOORS,
Primavera, ClearQuest and ClearCase; the development of standardized test
management support TMS; and the automation of the system test process. The
MATE architecture is described and a detailed discussion of test automation and
tool integration issues is undertaken. Software architectural analysis is used to
determine if a specific structural decomposition and the functional allocation to
system structures supports or impedes certain qualities. Changes to an ATE such as
enhancements to system functionality, improvements to performance (space and
time), and reuse of components, data representation and changes to processing
algorithm are all sensitive to system architectural constraints.

About the Author

Dr. Nancy Eickelmann is currently a research scientist for Motorola Labs and is
leading the Motorola software and system test process measurement and evaluation
research initiative. Prior to joining Motorola she was program manager at the
NASA/WVU Software Research Laboratory, her research focused on integrating
the Balanced Scorecard into the NASA context to provide a measurement
framework for software test technology improvements. Before joining NASA she
was a member of the Advanced Programs Research Group at MCC where she
developed a measurement framework for guiding the decision-making process in
product line development. Dr. Eickelmann began her research career as a member
of the technical staff at Hughes Research Laboratory (HRL) in Malibu, California
while completing her doctorate at the University of California, Irvine. She was
named a Hughes Doctoral Fellow while working at HRL and received several
research awards while working with Dr. Debra Richardson's Formal Methods and
Software Testing Group at UCI. Dr. Eickelmann has collaborated internationally
on research projects for defense systems, space station applications, space shuttle
and global software.

Allan Willey is a Member of Technical Staff at Motorola Labs in the Software and

System Engineering Lab (SSERL). Allan leads the "Motorola Automated Test
Environments" (MATE) Team. These applied researchers are developing
techniques to improve the capabilities of software development groups to test new
products. Projects using various advanced statistical analysis techniques, formal
modeling, and simulation techniques are being carried out to assess their value for
improving delivered product quality, as well as their impact on productivity and
testing time. The MATE Team collaborates closely with development
organizations in various Motorola product groups to transition successful results.
Allan holds an AB in philosophy from the College of William and Mary, and both
a BS in mathematics and an MBA in management sciences from George
Washington University.

1

Dr. Nancy Eickelmann Quality Week May 2001

An Integrated System Test Environment

Dr. Nancy Eickelmann
Motorola Labs

1303 E. Algonquin Rd.
Schaumburg, IL 60196

USA
(847)538-0745
(847)576-3280

Nancy.Eickelmann@motorola.com

MATE

Dr. Nancy Eickelmann Quality Week May 2001

Agenda

• Why do we need MATE ?
• How do we decompose

the problem space ?
• How do we analyze our

solution sets ?
• What did we learn ?

=
Mobile A

SDL Computer
Simulation

PHYSICAL VIEW

SCESCE

CDEECDEE

CDDCECDDCE
SCESCE

ADICADIC
SASA

SASASASA

2

Dr. Nancy Eickelmann Quality Week May 2001

Distributed Teams

Domain Expertise

Requirements

Tools

Test

Dr. Nancy Eickelmann Quality Week May 2001

Test Management
• Resource Allocations

– Measurement
– Planning
– Control
– Understanding
– Training and Learning

3

Dr. Nancy Eickelmann Quality Week May 2001

Test... Cost Estimating,
Planning and Tracking

tsNoManScripptsNoAutoScri
Durationxoductivity

DurationxtsNoManScripxptsNoAutoScri

⋅+
==

=⋅×+×

3
Pr

)3()(

SDL Models

Dr. Nancy Eickelmann Quality Week May 2001

Agenda

• Why do we need MATE ?
• How do we decompose

the problem space ?
• How do we analyze our

solution sets ?
• What did we learn ?

=
Mobile A

SDL Computer
Simulation

PHYSICAL VIEW

SCESCE

CDEECDEE

CDDCECDDCE
SCESCE

ADICADIC
SASA

SASASASA

4

Dr. Nancy Eickelmann Quality Week May 2001

MATE and CPR

Automation
– Process
– Lifecycle Tools
– Test Technologies

Standardization
– Test Technologies
– Lifecycle Tools
– Process

Integration
– COTS Solutions
– People
– Resources

Dr. Nancy Eickelmann Quality Week May 2001

Lifecycle View
System

Requirements

System
Architecture

Requirements

System
Detailed
Design

Box
Rqmts

Box
Design

System
Functional

Requirements

Box
(auto)Coding

Box
Unit Test

Box
System

Test

System
Early SDL
Integration

testing

System
Early

Integration
testing

System

Integration
Test

System

System
Test

Subsystem
Integration

Test

Subsystem
System Test
(host/target)

Box
Integration

Test

System
Beta
Test

TextText

TextText

eMSCeMSC

SL + SDLSL + SDL

TextText

eMSCeMSC

SDL(process), CSDL(process), C
Box Validation Activities

System Validation Activities

eMSCeMSC Extended Message Sequence Charts
SDLSDL Specification and Design Language
SLSL “SL”, data language

eMSC, SDL(blocs)eMSC, SDL(blocs)

SDL (blocs)SDL (blocs)

5

Dr. Nancy Eickelmann Quality Week May 2001

START

-

always takes
too long

MEETING

 PRESENT
ARGUMENTS

COMPANY X
OPINION

MOTOROLA OPINION

THROW OUT
 IDEA

COMPANY Y
OPINION

AGREESUPERIOR
ARGUMENT

COFFEE
BREAK

where the real
 work is done

PROPOSE
DECISION

MEETING
AGREES

LUNCH
well
deserved

MOTOROLA
WITH

UK USA RMTR

air_in
taxi_in

taxi_out

air_out

UK USA RMTR

air_in
taxi_in

taxi_out

air_out

UK USA RMTR

air_in
taxi_in

taxi_out

air_out

UK USA RMTR

air_in
taxi_in

taxi_out

air_out

UK USA RMTR

air_in
taxi_in

taxi_out

air_out

UK USA RMTR

air_in
taxi_in

taxi_out

air_out

UK USA RMTR

air_in
taxi_in

taxi_out

air_out

value;
_ptr *s;

sll_ptr *ptr1, *ptr2 = s;
if (value == s->car) {

s = s->next;
free(ptr2);

} else {
ptr1 = ptr2;
while (((ptr2 = ptr2->next)!=NUL

&& (!found))
if (value == ptr2->car) {

found = TRUE;
ptr1->next = ptr2->next;
free(ptr2);

} else ptr1 = ptr2;
}

Automated
Code

Generation

Box Test

Design
Verification

Specs

MSCs,
Arch, &

Test
Cases

value;
_ptr *s;

sll_ptr *ptr1, *ptr2 = s;
if (value == s->car) {

s = s->next;
free(ptr2);

} else {
ptr1 = ptr2;
while (((ptr2 = ptr2->next)!=NUL

&& (!found))
if (value == ptr2->car) {

found = TRUE;
ptr1->next = ptr2->next;
free(ptr2);

} else ptr1 = ptr2;
}

Box Reqs

value;
_ptr *s;

sll_ptr *ptr1, *ptr2 = s;
if (value == s->car) {

s = s->next;
free(ptr2);

} else {
ptr1 = ptr2;
while (((ptr2 = ptr2->next)!=NUL

&& (!found))
if (value == ptr2->car) {

found = TRUE;
ptr1->next = ptr2->next;
free(ptr2);

} else ptr1 = ptr2;
}

System
Reqs

Process View
• Task order
• Work product flow
• Skill sets
• Scheduling
• Task completion criteria
• CM
• RM

Dr. Nancy Eickelmann Quality Week May 2001

UK USA RMTR

air_in

taxi_in

taxi_out

air_out

spec D_ALERT
type1

call_id length 14,
time_out length 3,

type2
basic_service_info

type3
facility

endspec

MSC with
PDU Use

PDU
Specs

ptk START

-

always takes
too long

MEETING

 PRESENT
ARGUMENTS

COMPANY X
OPINION

MOTOROLA OPINION

THROW OUT
 IDEA

COMPANY Y
OPINION

AGREESUPERIOR
ARGUMENT

COFFEE
BREAK

where the real
 work is done

PROPOSE
DECISION

MEETING
AGREES

LUNCH
well
deserved

MOTOROLA
WITH

START

-

always takes
too long

MEETING

 PRESENT
ARGUMENTS

COMPANY X
OPINION

MOTOROLA OPINION

THROW OUT
 IDEA

COMPANY Y
OPINION

AGREESUPERIOR
ARGUMENT

COFFEE
BREAK

where the real
 work is done

PROPOSE
DECISION

MEETING
AGREES

LUNCH
well
deserved

MOTOROLA
WITH

START

-

always takes
too long

MEETING

 PRESENT
ARGUMENTS

COMPANY X
OPINION

MOTOROLA OPINION

THROW OUT
 IDEA

COMPANY Y
OPINION

AGREESUPERIOR
ARGUMENT

COFFEE
BREAK

where the real
 work is done

PROPOSE
DECISION

MEETING
AGREES

LUNCH
well
deserved

MOTOROLA
WITH

Test Scripts
• SDL
• TTCN

Functional Requirements
Specification

Executable Test Suite

Conformance Test
Suite

ptk also performs:
• validation of behaviour
• verification of data use

Automation
Test Case Generation

6

Dr. Nancy Eickelmann Quality Week May 2001

Data View

• Traceability
• Reproducability

PRODUCT
CODE

START

-

always takes
too long

MEETING

 PRESENT
ARGUMENTS

COMPANY X
OPINION

MOTOROLA OPINION

THROW OUT
 IDEA

COMPANY Y
OPINION

AGREESUPERIOR
ARGUMENT

COFFEE
BREAK

where the real
 work is done

PROPOSE
DECISION

MEETING
AGREES

LUNCH
well
deserved

MOTOROLA
WITH

value;
_ptr *s;

sll_ptr *ptr1, *ptr2 = s;
if (value == s->car) {

s = s->next;
free(ptr2);

} else {
ptr1 = ptr2;
while (((ptr2 = ptr2->next)!=NU

&& (!found))
if (value == ptr2->car) {

found = TRUE;
ptr1->next = ptr2->next;
free(ptr2);

} else ptr1 = ptr2;
}

PRODUCT
REQUIREMENT

SUK USA RMTR

air_in

taxi_in

taxi_out

air_out

DESIGN
SIMULATION

UNIT TEST

Dr. Nancy Eickelmann Quality Week May 2001

Standardization

• TTCN - 3
• ASN.1
• SDL/SDT- 2000
• MSC - 2000
• UML - 2000

Optional Use
of ASN.1

External
Language 1

TTCN-3
Core

language

Tabular
specification

format
MSC

specification
format

Text format

7

Dr. Nancy Eickelmann Quality Week May 2001

Tools and COTS Views

• COTS Integration
– Analysis and Design tools
– Test tools
– CM and PM
– Resource Management

Dr. Nancy Eickelmann Quality Week May 2001

System Development

Test Assistant

FieldProcess System

PLANNING

PREPARING

EXECUTING
ANALYSING

Strategy Strategy

Resources

Box

Resources

Test plans

PREDICTING

Entry

Reliability

Exit

Entry

Verification Test plans

Exit

RELEASING

TESTING
ACTIVITIES

History Release

Integration
Test Files

ERP

MATE

8

Dr. Nancy Eickelmann Quality Week May 2001

Agenda

• Why do we need MATE ?
• How do we decompose

the problem space ?
• How do we analyze our

solution sets ?
• What did we learn ?

=
Mobile A

SDL Computer
Simulation

PHYSICAL VIEW

SCESCE

CDEECDEE

CDDCECDDCE
SCESCE

ADICADIC
SASA

SASASASA

Dr. Nancy Eickelmann Quality Week May 2001

Data
Process

Test Technologies
Lifecycle Tools

COTS Solutions
People
Resources

Architecture Puzzle
Automation

Standardization

Integration

MATE

UK USA RMTR

air_in
taxi_in

taxi_out

air_out

UK USA RMTR

air_in
taxi_in

taxi_out

air_out

UK USA RMTR

air_in
taxi_in

taxi_out

air_out

START

-

always takes
too long

MEETING

 PRESENT
ARGUMENTS

COMPANY X
OPINION

MOTOROLA OPINION

THROW OUT
 IDEA

COMPANY Y
OPINION

AGREESUPERIOR
ARGUMENT

COFFEE
BREAK

where the real
 work is done

PROPOSE
DECISION

MEETING
AGREES

LUNCH
well
deserved

MOTOROLA
WITH

9

Dr. Nancy Eickelmann Quality Week May 2001

Resource View

TCP/IP
Web-UI

App-UI

Router

TCP/IP TCP/IP

Application Server
Database API

SQL Server

Database Server

28.8 Modems
T1 Internet...

• Resource constraints
by project, business
unit, functional area,
country

•Topology requirements

•Security layer
requirements

Dr. Nancy Eickelmann Quality Week May 2001

Static and Map Views

System
Test Plan

Requirements

DOORS

TMS

Test Planning Test

Development
Test

Execution

Test

Editor(s)

Test

Generator

ClearQuestTeamPlay

Test Management

Test

Driver

Test Execution
Task

Test

Selection

Test
Measurement

Execution
Log

Traceability
Log

ClearCase BSC

M-GATES

Resource
Allocation

Requirements
review + impact

analysis

10

Dr. Nancy Eickelmann Quality Week May 2001

Base
Radio

Base
Radio

Base
Radio

Base
Radio

Zone
Controller

Site
Controller

PHYSICAL VIEWS

SCESCE

CDEECDEE

CDDCECDDCE
SCESCE

ADICADIC
SASA

SASASASA

Physical Views

Dr. Nancy Eickelmann Quality Week May 2001

Combined Views

• System Test Functions
• Hardware/Software Structures
• Components/Interfaces
• Object Management
• External Systems

11

Dr. Nancy Eickelmann Quality Week May 2001

Agenda

• Why do we need MATE ?
• How do we decompose

the problem space ?
• How do we analyze our

solution sets ?
• What did we learn ?

=
Mobile A

SDL Computer
Simulation

PHYSICAL VIEW

SCESCE

CDEECDEE

CDDCECDDCE
SCESCE

ADICADIC
SASA

SASASASA

Dr. Nancy Eickelmann Quality Week May 2001

Lesson Learned

• Need….
– better architectural analysis tools
– understanding of process imposed

architecture constraints
– measures of IT cost/benefit impact at project,

business unit and enterprise level

12

Dr. Nancy Eickelmann Quality Week May 2001

Technology Evaluation

ImplementationImplementationImplementationImplementationImplementationImplementationImplementationImplementation

RefineRefineRefineRefine

FeedbackFeedbackFeedbackFeedback

Plan for ChangesPlan for ChangesPlan for ChangesPlan for ChangesPlan for ChangesPlan for ChangesPlan for ChangesPlan for Changes

FeedbackFeedbackFeedbackFeedback

Objective
Decision Criteria

Dr. Nancy Eickelmann Quality Week May 2001

Tool Insertion Impact Analysis
Data Collection &

Analysis
Data Collection &

Analysis

Build Baseline
Process Model
Build Baseline
Process Model

Validate the ModelValidate the Model

Experiment with ScenariosExperiment with Scenarios

Analysis of ResultsAnalysis of Results

“WHAT“WHAT“WHAT“WHAT----IF”IF”IF”IF”
•SDL/SDT
•MSCs
•PowerToolKit
(ptk)

13

Dr. Nancy Eickelmann Quality Week May 2001

Issues
– Technology

» Test Quality
» Lifecycle traceability
» Test reproducability
» COTS interoperability, variability, stability

– Process Maturity
» Organization(s) maturity
» Multi-site organization maturity variance
» Communication and collaboration

– People
» Distributed teams of people
» Specialization of skill sets required

Dr. Nancy Eickelmann Quality Week May 2001

Questions?
Answers?

Comments?

ABSTRACT
The Motorola Automated Test Environment
(MATE) provides a means of automating the test
process and integrating tools to support required
testing capabilities across the lifecycle. The
MATE architecture is provided as a foundation to
discuss the issues of test tool integration with
COTS products that automate the full system test
lifecycle. Specific tool integration issues include
data, control, process, platforms and user-interface
integration issues. The software architecture of
MATE can facilitate or impede modifications such
as changes to processing algorithms, data
representation, or functionality. Architectural
analysis is conducted to provide insight into the
properties of the Motorola Automated Test
Environment.

Keywords
Automated Test Environment (ATE), COTS Tool
Integration, System Test.

1 INTRODUCTION
Software and system testing is a critical activity in
the development of high quality products. When
testing is performed manually it is highly
error-prone, time-consuming, and costly [9,11].
Automated test environments overcome the
deficiencies of manual testing through automating
the test process and integrating testing tools to
support a wide range of test capabilities. Industrial
use of automated test environments could provide
significant benefits by reducing testing costs,
improving test accuracy, improving software
quality and reliability, and providing for test
reproducibility [12]. Despite the critical
importance of automated test environments in the
development of high quality products, full
lifecycle integration of tools is rarely achieved in
practice. To understand what prevents full
lifecycle integration of tools with respect to data,

process, platforms, user-interfaces and control,
Motorola is conducting concurrent, focused R&D
initiatives, Motorola Automated Test Environment
(MATE) and Core Process Redesign (CPR).

The Motorola Automated Test Environment
(MATE) initiative provides technology to design,
develop, and test high quality software and
systems. The MATE initiative addresses a subset
of the product development issues focusing on
testing, which remains a very costly, and
time-consuming phase of the product lifecycle.

The Core Process Redesign (CPR) initiative is
identifying the necessary integration factors to
insert an automated test environment that
seamlessly inter-operates in the context of the
overall product lifecycle. The CPR identifies
decision criteria (decision gates), process
input/output pairs, entry/exit criteria and common
resource requirements and constraints.

The overriding objectives of MATE and CPR are
to radically improve time-to-market and
predictability in schedules, costs, and quality of
products developed by:

• development of a common core process that enables
consistent practices

• build a common platform that supports interoperability
and reuse

• increase resource allocation flexibility to facilitate cost
effectiveness

The MATE and CPR initiatives are
complementary efforts that focus on
standardization, automation, and integration of
tools, data, and processes. A primary goal of the
MATE initiative is to develop a common and
automated test environment. With a common
environment the entire corporation would be able
to take advantage of optimization improvements
made to the environment based on technology

An Integrated System Test Environment

Nancy S. Eickelmann
Motorola Labs

1303 East Algonquin Road
Schaumburg, IL 60196 USA

+1 847 538 0745
Nancy.Eickelmann@motorola.com

Allan L. Willey
Motorola Labs

1303 East Algonquin Road
Schaumburg, IL 60196 USA

+1 847 576 6343
Allan.Willey@motorola.com

advancements external to Motorola and
technology acquisition internal to Motorola.
Therefore the MATE architecture must
accommodate legacy tools, process changes and
future needs met by technology insertion. As such
the MATE architectural requirements are a
negotiated construct among the identified
stakeholders [8].

This paper examines software architectural
constraints in relation to software and system test
automation environments. The MATE architecture
requires a mapping of multiple views of the
environment including structure, functionality,
process and data perspectives. An overview of the
environment is represented by mapping the test
functionality to hardware and software structures
of the environment. An architectural
representation provides a foundation for
evaluating the impact of architectural and COTS
choices on system test engineers and test
managers. MATE integrates COTS tools such as
DOORS, ClearQuest and ClearCase; internally
developed test management support, TMS; and
automation of the system test process.

2 BACKGROUND
Motorola Labs is the research department of
Motorola Inc. There are groups around the world
conducting research on the leading edge
technologies and on advancements to current
product offerings. A majority of the research
conducted by the Labs is initiated by requests from
the product groups within the Communications
Enterprise (CE) of Motorola. The CE is comprised
of several large business units and accounts for
more than half of Motorola’s sales. The major
businesses in the CE include the cellular handset
and cellular infrastructure businesses, the paging
device and paging infrastructure businesses, and
public and private radio products with their
associated infrastructures. All of these products,
whether handheld or infrastructure, are
computer-based. For the last two decades these
products have evolved from a hardware
component base to a computer platform with
functional layers comprised of software
specifically written to address the product
requirements. The R&D organizations in Motorola
have evolved accordingly so that at this time far
more than half of the engineers developing new
products worldwide in Motorola are software

engineers.

The size of software components in our products
vary according to their function. A simple
one-way handheld pager will have no more than a
few thousand lines of code. A cellular
infrastructure product has over twenty million
lines of code in its various components. A small
core of the infrastructure products are concerned
with “call processing,” on the order of a few
hundred thousand lines of code, and this core will
be the most highly reliable part of the system. A
similar core component of cellular handset and
two-way radios will be key to their functionality,
and will consist of tens of thousands of lines of
highly optimized code. Numerous additional
functions are a part of each product, for example
billing tracking and customer authentication
components of a cellular system. Some of these,
such as authentication, are real-time and interact
with the core call processing functions. Others,
such as system maintenance functions, are less
time-critical but often tend to require large
functional blocks.

The rate of growth of the software component of
all of these products reflects general
telecommunication industry experience. Further,
we expect this evolution to continue as future
product directions seem to show an unabated
demand for new products. For example, while the
popularity of simple one-way paging devices is
declining, two-way short-message-service paging
offerings are a growing market. These two-way
devices are an order of magnitude more complex,
and contain that much more embedded code.

Numerous other examples can be cited of
increased product complexity and size, but
underlying these significant changes is the fact
that testing has remained a very costly,
time-consuming phase of the product development
life cycle [2,9,11,12]. As the market pressures
increase to deliver more, better, and faster
products, testing is being viewed increasingly as a
bottleneck to success.

To bypass the testing bottleneck, Motorola has
launched focused R&D initiatives to provide
technology to design, develop, and test high
quality software and systems. The MATE
initiative addresses a subset of the issues. A
concurrent corporate initiative of Core Process

Redesign (CPR) addresses another view of the
issues. The CPR initiative is instrumental in
identifying the necessary integration factors to
insert an automated test environment that
seamlessly interoperates with the rest of the
product lifecycle. The overriding objective of CPR
is to radically improve time-to-market and
predictability in schedules, costs, and quality of
product development by:

• Development of a common process across the divisions.

• Identify points of synchronicity across divisions.

• Improve efficiency of processes.

• Identify best practice tools to create a common and
global R&D environment

• Build a foundation to propel common platform design
and reuse

• Increase resource allocation flexibility across the
corporation.

The establishment of the Motorola automated test
environment contributes to all of the above goals
as well. The testing activities have tremendous
effect on product time-to-market, cost and quality
[3,4]. The above goals can also be applied to
internal product deliveries from tool development
groups. Establishment of common tools and
processes eliminates the redundancy of the
internal tool groups and allows for reallocation of
personnel to focus on product delivery and not
internal support. It also allows for innovative ideas
to be implemented in a common platform and
taken advantage of by a multitude of users instead
of restricting technological benefits to local
groups. The MATE initiative will bring Motorola
closer to achieving its goals. MATE focuses on
standardization, automation and integration of
tools, data and processes. To facilitate our
discussion and provide common definitions for
terms we introduce the automated test
environment reference architecture used in our
analysis.

3 AUTOMATED TEST ENVIRONMENT REFER-
ENCE ARCHITECTURE
A reference architecture, the STEP model [5]
provides a basis for the representation and
formalization of the MATE architecture. The
reference architecture segments the required
functionality for the environment and captures the
relationships among the functionalities in a
diagrammatic format.

The domain is partitioned into six canonical

functions: test execution, test development, test
failure analysis, test measurement, test
management, and test planning. Each of these
functions is defined to provide consistency in the
use of terms.

• Test Execution includes the execution of the
instrumented source code and recording of execution
traces. Test artifacts recorded include test output results,
test execution traces, and test status.

• Test Development includes the specification and
implementation of a test configuration. This results in a
test suite, the input related test artifacts, and
documentation. Specific artifacts developed include test
oracles, test cases and scripts, and test adequacy criteria.

• Test Failure Analysis includes behavior verification and
documentation and analysis of test execution pass/fail
statistics. Specific artifacts include pass/fail state and test
failure reports.

• Test Measurement includes test coverage measurement
and analysis. Source code is typically instrumented to
collect execution traces. Resulting test artifacts include
test coverage measures and test failure measures.

• Test Management includes support for test artifact
persistence, artifact relations persistence, and test
execution state preservation. Test process automation
requires a repository for test artifacts. A passive
repository such as a file serves the basic need of storage.
However, an active repository is needed to support
relations among test artifacts and provide for their
persistence.

• Test Planning includes the development of a master test
plan, the features of the system to be tested, and detailed
test plans. Included in this function are risk assessment
issues, organizational training needs, required and
available resources, comprehensive test strategy,
resource and staffing requirements, roles and
responsibility allocations, and overall schedule.”

The STEP model, shown in Figure 1, stratifies test
functionalities from the apex of the pyramid to its
base in a corresponding progression of the test
process lifecycle as described in [9]. The test
process evolution is aligned with the arrow to the
right of the pyramid and segments test
functionality according to the test lifecycle focus.
Each segment represented in the pyramid includes
the functionalities of previous periods as you
descend from the apex to the base.

The top section of the pyramid represents the
function of test execution. Test execution is clearly
required by any test process. The test process
focus of debugging includes only test execution.

The second segment of the pyramid, from the
top, is divided into two scalene triangles.

Figure 1. STEP model reference architecture [5].

The smaller scalene triangle represents test
development. The larger scalene triangle repre-
sents test failure analysis. The relative positions
and sizes have semantic significance

Test development played a more significant role
to the overall test process when focused on dem-
onstration and destruction due to the manual inten-
sive nature of test development. Test development
methods have not significantly changed, although
they have improved in reliability and reproducibil-
ity with automation. Thus, their role in test process
diminishes in significance as you automate the test
development process.

Test failure analysis is less important when per-
formed manually, as interactive checking by
humans adds little benefit for test behavior verifi-
cation. The methods that can be applied to test
failure analysis have increased in their level of
sophistication, making test failure analysis more
significant to the overall test process. One of the
most significant advances is specification-based
test oracles [5]. This is a key difference in test pro-
cess focus.

Test measurement is represented by the third
segment in the pyramid. Test measurement is
required to support an evaluation focus for test,
which represents a full lifecycle approach. A sig-
nificant change in the test process focus is that
testing is applied in parallel to development, not
merely at the end of development. Test measure-
ment also enables evaluating and improving the
test process.

Approaching the base of the pyramid, the fourth
segment represents test management, which is
essential to the test process due to the sheer vol-
ume of information that is created and must be
stored, retrieved, and reused. Test management is
critical for test process reproducibility.

The base, or foundation, of the pyramid is test
planning. Test planning is the essential component
of prevention focused test efforts. Test planning
introduces the test process before requirements, so
that rather than being an afterthought, testing is
pre planned and occurs concurrently with develop-
ment. The STEP model provides the core func-
tionality and process focus to describe the MATE
architecture. The architectural description requires
integration of multiple views of the test environ-
ment including structure, functionality, process
and data.

In the next section, the MATE architecture is
described and a detailed discussion of test automa-
tion and tool integration issues is undertaken. Soft-
ware architectural analysis is used to determine if
a specific structural decomposition and functional
allocation to system structures supports or
impedes achieving desired properties for MATE.
Changes to an ATE such as enhancements to sys-
tem functionality, improvements to performance
(space and time), and reuse of components, data
representation and changes to processing algo-
rithms are all sensitive to system architectural con-
straints [8].

4 MATE ARCHITECTURAL VIEWS
There a several architectural views in the litera-

ture including: Map View (mapping of functions
and components), Static View (structure diagram),
Resource View (mapping of software onto hard-
ware), Dynamic View (operational diagrams).

Test
Development

Test
Failure
Analysis

Demonstration

Debugging

Canonical
Functional
Partitions

Test
Process
Evolution

Test
Measurement

Test
Planning

Evaluation

Destruction

Test
Execution

Test
Management

Prevention

Figure 2. SAAM graphical architectural notation
[10].

We provide a diagrammatic representation of the
static, map, and resource architectural views for
MATE. The static and map views are combined by
using the SAAM notation. The resource view uses
a generic representation.

4.1 MATE Architectural Static View and Map View
The Software Architectural Analysis Method

(SAAM) provides a concise notation that includes
a static view and a map view [10]. The static view
represents the structure as a decomposition of the
system components and their interconnections.
The map view groups the components according
to their high level functionality. The canonical
functions for MATE were defined in the reference
architecture.

The SAAM graphical notation is shown in Fig-
ure 2. In this notation there are four types of com-
ponents: a process (unit with an independent
thread of control); a computational component (a
procedure or module); a passive repository (a file);
and an active repository (database). There are two
types of connectors: control flow and data flow,
either of which may be unidirectional or bidirec-
tional.

Components Connections

Process

Computational
Component

Passive Data
Repository

Active Data
Repository

Data Flow

Uni/Bi
Directional

Control Flow

Uni/Bi
Directional

Figure 3. MATE Architecture Static and Map Views

System
Test Plan

Requirements

review, impact

analysis

DOORS

TMS

Test Planning Test

Development
Test

Execution

Test

Editor(s)

Test

Generator

ClearQuest

TeamPlay

Test Management

Test

Driver

Test Execution

 Task

Test

Selection

Resource

Allocation

Test

Measurement

Execution
Log

Traceability
Log

ClearCase

The allocation of domain functionality to the
software completes the graphical representation of
the ATE, see Figure 3. The allocation provides the
mapping of a system’s intended functionality to
the concrete interpretation in the implementation.
The diagram segments the canonical functions for
MATE using a broken line. The COTS active
repositories are not included in the domain func-
tionality as they interact through the TMS man-
agement system. The five functionalities inclusive
in MATE, test execution, test development, test
measurement and test management are discussed
below.

Test Execution includes the execution of the
system in the target environment testbed, and
recording of execution traces. Test artifacts
recorded include test output results, test execution
traces, and test status. The test execution
environment must provide a bridge to interface
with legacy solutions that must be migrated in an
evolutionary versus revolutionary approach.
Testing in a distributed context with
heterogeneous platforms was considered desirable
for flexibility and reusability. Another factor of
significance was language independence and open
interfaces for interoperability.

Test Development includes the specification and
implementation of a test configuration. This
results in a test suite, the input related test artifacts,
and documentation. Specific artifacts developed
include test oracles, test cases and scripts, and test
adequacy criteria. Test development solutions
should support multi-platform and multi-site
access to data while providing adequate response
time and usability in the user interface. Automated
test case generation solutions focused on SDL and
MSC model specifications that support auto test
case generation. Significant process and data
integration issues arose that were addressed by
interfacing ClearCase test data with TMS and
ClearQuest CM and defect data with TMS.
Resource allocations for system test are
documented in TeamPlay and provided on-line to
the test developers.

Test Measurement includes documentation and
analysis of test execution pass/fail statistics.
Specific artifacts include pass/fail state, test failure
reports and test traceability reports. MATE’s

support for test measurement must be addressed
across all the functionality and interface with
legacy data integration issues for test and
development groups. A distributed collection and
repository tool provides for heterogeneity with
transparency of access issues through web-enabled
tools.

Test Management includes support for test
artifact persistence, artifact relations persistence,
and test execution state preservation. Test process
automation requires a repository for test artifacts.
A passive repository such as a file serves the basic
need of storage. However, an active repository is
needed to support relations among test artifacts
and provide for their persistence. Test
management should provide a state-of-the-art
solution with web-based access and interface.
TMS was available on UNIX platforms and was
being migrated to an NT platform as well. Since it
was Java based, TMS would easily adopt to new
platforms as Motorola test groups use them.
Prototypes of TMS had been operational on SUN
Solaris, HPUX, Windows NT, Windows 98,
MacOS and Linux. TMS has been designed to take
advantage of the multi-site features of Oracle and
a software configuration management tool by
using both as underlying technology to the tool.
The TMS API will also allow for a quick
replacement of either technology as improved
technologies become available. A significant
finding through the MATE effort was that
terminology was not used uniformly throughout
the organization. A living glossary was
implemented continues to track and resolve
discrepancies in word usage and understanding.

Test Planning includes the development of a
master test plan, the features of the system to be
tested, and detailed test plans. Included in this
function are risk assessment issues, organizational
training needs, required and available resources,
comprehensive test strategy, resource and staffing
requirements, roles and responsibility allocations,
and overall schedule. Test planning requires inputs
from the DOORS repository and TMS test
management function. Test planning also requires
project management tool support which is
provided by TeamPlay. Test planning is not well
supported by most commercially available tools as
it requires integration with data repositories,
process issues, and tool interfaces.

4.2 Resource View
A common representation for architecture is the

resource view. This view of the MATE architec-
ture is diagrammed in generic terms such as pro-
vided in Figure 4.

Figure 4. MATE Architecture Resource View.

The resource view focuses on essential commu-
nications links such as routers, modems, internet
and intranet connections and the architectural
topology, client/server. Analysis of this view lends
itself to performance analysis, queueing models
and throughput simulations, see Table 1. This view
is also used to evaluate system availability con-
structs using a composite quantification of the sys-
tem hardware failure/time interval and the
corresponding software failure/time interval.
Mean time to repair is estimated for hardware and
corresponding software providing an incidence
frequency with an estimate in hours to restore the
system. The declaration of system hardware and
software computational units also provides for an
affordability analysis. The initial investment costs,
updates, and maintenance costs can be obtained
from the vendors of choice. Given the payback
period, and the minimum time required for return
on investment, a Net Present Value (NPV) com-
parison can provide an objective valuation of hard-
ware and software configurations.

5 CORE PROCESS DESCRIPTION
The CPR identifies decision criteria (decision
gates), process input/output pairs, entry/exit
criteria and common resource requirements and
constraints. The CPR initiative provides a high
level common process with fixed decision gates.
However, it also provides for insertion of
customized process segments for insertion into
organizations with legacy tools and technologies
that impose unique process constraints. The
software development process and software and
system test groups in Motorola follow various
lifecycle models that comply with internal
standards. An external standard that provides a
high level process description for test is the IEEE
Std. 1012-1998, Standard for Software
Verification and Validation. This current standard
is an update of the IEEE Std. 1012-1986. The
updated standard is comprehensive in its scope
and details full lifecycle activities and
cross-references according to compatibility with
other process standards. The substantial benefit of
a well-defined process with objective decision
criteria is realized when it is instantiated in an
automated test environment.

6 TECHNOLOGY TRANSITION PLAN
The MATE transition effort is analyzed in the
context of the 3 vector space of the SEI
Technology Transition Conceptual Framework
[6], see Figure 5. The 3 vector space represents the
relationships among an increasing magnitude of
technological change; the required effort to adapt
or learn new skills, procedures, structures,
strategies, or culture; and time required to adapt

TCP/IP
Web-UI

App-UI

TCP/IP TCP/IP

Application Server

Database API

Router

SQL Server

Database Server

28.8 Modems
T1 Internet...

Table 1: Performance Analysis

Scenarios Comments

Network latency from cli-
ent to server and from
server to client in ms.

Latency time provided by
network specification

Server latency consists of
dequeueing time (Cdq=ms)
and task computation time
(Cfnc=ms)

Latency time provided in
server specification

Distribution time of peri-
odic updates minimum

8@10sec;8@20sec;8@40s
ec;8@80sec

Distribution time of peri-
odic updates maximum

48@10sec;24@20sec;12@
40sec;8@80sec

Figure 5. Dimensions of technology transition
adapted from [CMU/SEI-93-TR-31]

and institutionalize the changes. This structure
supports evaluating the “size” of a change based
on the level of adaptation required. We will
reference this figure in our subsequent discussion
of MATE. The MATE effort as described using the
SEI’s technology life cycle conceptual framework
depicts an effort towards a common test
environment that is comprised of technologies in
various phases of maturity. The majority of MATE
technologies will require new skills and
procedures as a foundation for their introduction.
These changes are seen as requiring typically a
time horizon measured in months.

The time required to achieve a technology
transition is partially dependent on an additional
classification of the technology life cycle. The
technology life cycle includes 3 distinct phases,
R&D, new product development, and adoption
and implementation. Tools and technologies of
MATE span the full technology life cycle and
therefore may be described as short term to long
term change efforts. The insertion of MATE
represents new technologies for the system test
organizations, however the technologies include
both recent R&D developments of Motorola Labs
and mature commercial tools to be integrated into
the common environment.

We outline the steps of each of the 3 technology
life cycle phases as described in Figure 6. The
focus of phase 1, R&D of the technology life

cycle, is primarily the technology itself. Inclusive
in the R&D phase of the life cycle;

• concept formulation
• development and extension
• enhancement and exploration (internal)
• enhancement and exploration (external)
• early popularization.
The aspects relevant to MATE in phase 2, the new
product development phase includes;

• generating new product ideas
• screening those ideas
• testing product concepts
Adoption and implementation, phase 3 of the
technology life cycle includes multiple steps
relevant to the MATE transition effort;

• needs assessment
• selection of candidate products
• evaluation of candidate products
• introduction of product to user groups,

management, stakeholders
• gathering feedback from target groups
• implementation planning and execution

Figure 6. Technology life cycle phases adapted
from [CMU/SEI-93-TR-31].

We will use the steps outlined for the 3 phases of
the technology life cycle in describing the MATE
effort and will reference the tools and technology
maturity with regard to this structure as
appropriate.

Test execution was comprised of primarily mature
technologies in phase 3 of the technology
lifecycle, yet aspects of the total solution for full
automation and integration might represent less
mature technologies. Test case generation

Technological

Change DesiredTime to Adapt

 Skills

Procedures

Strategy

Structure

Culture

Level of Adaptation Required

Transfer Diffusion

Phase 1....... Phase 2....... Phase 3

 Technology Life Cycle

technologies were seen as being in the transfer
phase, or phase 2, of the technology lifecycle and
experiencing the early stages of transfer. The
technology lifecycle maturity of the test
management technologies are typically in the third
phase of the lifecycle. Test measurement
technologies were primarily in phase 3 of the
technology lifecycle and represented the diffusion
of measurement technologies.

The MATE effort as described using the SEI’s
technology lifecycle conceptual framework and
technology lifecycle maturity evaluation depicts
an effort towards a common test environment that
is comprised of technologies in various phases of
maturity. The majority of MATE technologies are
in phase 3 of the technology lifecycle and are
well-supported for successful transition.

7 SUMMARY
The Motorola Automated Test Environment
initiative will enable Motorola to optimize the test
process through standardization of tools;
automation of manual processes; and integration
of data, processes, and interfaces across a common
test environment. Specific benefits of the MATE
initiative relate to test management, automated test
script generation and execution, UI platform
independence, and improved quantification of
release criteria.

• Test management - Provides a central controller for the
test environment, test artifacts and test data.

• Automated test script generation and maintenance -
Provides the automatic generation of test scripts from a
formal requirement representation. Maintenance of the
test scripts as the requirements change is facilitated.

• Automated test execution - Alleviates staffing shortages
at critical process bottlenecks.

• Web front end - Provides for access to the test tools and
the data from anywhere on any platform. The web was
seen as the optimal solution.

• Reliability prediction - Provides objective criteria to
determine when a product can ship based on predicting
remaining defects in a product after a test cycle.

Providing for continuous improvements in core
processes often requires the insertion of tools and
technologies to automate and standardize
industrial practice. Understanding the strengths of
tools and applying them appropriately in the
context of the organizational maturity is essential.

REFERENCES
1. Brown, Alan W., Earl, Anthony N. and McDermid, John

A., Software Engineering Environments: Automated
Support for Software Engineering, McGraw-Hill, 1992.

2. Eickelmann, Nancy S., "Emerging Test Technologies:
Shifting Tester Requirements,” In the Proceedings of the

17th International Conference on Testing Computer
Software, June 12-16, 2000.

3. Eickelmann, Nancy S., "Measuring and Evaluating the
Software Test Process." European Software
Measurement Conference, FESMA `98, Antwerp,
Belgium, May 6-8, 1998.

4. Eickelmann, Nancy S. and Richardson, Debra J.,
"Leveraging the Cost of Software Testing with
Measurable Process Improvement," In the Proceedings of
the Computing in Engineering Conference,
ETCE-ASME `97, Houston, Texas, January 28-30, 1997.

5. Eickelmann, Nancy S. and Richardson, Debra J. “An
Evaluation of Software Test Environment Architectures”
in proceeding of the Eighteenth International Conference
of Software Engineering, 1996.

6. Fowler, Priscilla and Levine, Linda “A Conceptual
Framework for Software Technology Transition”,
Software Engineering Institute Technical Report
CMU/SEI-93-TR-031, December 1993.

7. D. Garlan, G. Kaiser, and D. Notkin. “Using tool
abstraction to compose systems.” IEEE Computer, vol.
25, June 1992.

8. D. Garlan and M. Shaw. “An introduction to software
architecture.”. Advances in Software Engineering and
Knowledge Engineering, Volume I, World Scientific
Publishing Co., 1993.

9. D. Gelperin and B. Hetzel. “The growth of software
testing.” Communications of the ACM, 31(6):687-695,
June 1988.

10. R. Kazman, L. Bass, G. Abowd, and M. Webb. “SAAM:
A method for analyzing the properties of software
architectures.” In Proceedings of the Sixteenth
International Conference on Software Engineering,
81-90, Sorrento, Italy, May 21, 1994.

11. G. J. Myers. The art of software testing. New York, John
Wiley and Sons, 1978.

12. E. Miller. Mechanizing software testing. TOCG Meeting,
Westlake Village, California, April 15, 1986.

13. Guideline for Lifecycle Validation, Verification, and
Testing of Computer Software. National Bureau of
Standards Report NBS FIPS 101. Washington, D.C.,
1983.

QW2001 Paper 3T1

Mrs. Manjula Madan
(Philips Software Centre, Bangalore)

Defect Reduction Using Orthogonal Defect Classification
Methodology

Key Points

Automated Test Environments●

COTS tool integration●

System test technologies●

Presentation Abstract

At the highest level, the eight ODC attributes of a defect i.e. Activity, Trigger,
Target, Defect Type, Defect Qualifier, Source, Impact, and Age, truly capture
orthogonal (non-redundant) pieces of information. They are designed to be at the
right level of granularity (not too large to be useless and too fine to be exhausting)
and arguably sufficient to answer most questions of practical interest on the
software.

At the level of the individual attribute, the orthogonality (say, Defect Type) relates
to the fact that the Defect Type distribution describes the state of a software
product much the same way the three (orthogonal) Cartesian coordinates describe
the location of an object in a three dimensional space. Notice that the evolution of
a software product through a schedule is similar to the motion of an object through
space and time.

Orthogonal Defect Classification (ODC) provides a good framework for
cause-effect analysis. Defect Trigger is also a good idea for providing insight over
verification process. In order to implement this defect classification framework,
one still has to come up with: * * * *
* Effective attributes to be measures
* Process for analysing attributes
* Action plan based on the analysis result for process improvement

Action plan is independent of ODC. However, action plan is required for process
improvement. It would be good if benchmark for applying ODC is available. This
will help in applying and analysing ODC results. This can be achieved only by
accumulating data over a period of time.

About the Author

Manjula Madan, is working at Philips Software Centre, Bangalore, in the capacity
of a Software Quality Engineer from the past 7 months. She has a total of 7 years
experience in the IT Industry in which 3 years is in the areas of Quality Control
and Quality Assurance. Previous to Philips she was working as a Software Quality
Analyst at IBM Global Services India Limited.

Achievements & Awards:
- She is a Certified Quality Analyst (CQA)
- Bronze Medallist in the Programming Exams conducted by National Computer
Education, United Kingdom
- Part of the Core Team involved in CMM Level 5 Assessment at IBM Global
Services India, Bangalore
- Part of the Core Team involved in CMM Level 5 Assessment at Philips Software
Centre, Bangalore
- Part of the team which got ISO 9001 Certification at HCL Perot Systems,
Bangalore
- The Customer of the project in which Manjula is currently working has given her
a rating as "Excellent SQE"

1

Our Experiences in Defect
Reduction using

Orthogonal Defect
Classification Methodology

Our Experiences in Defect Our Experiences in Defect
Reduction using Reduction using

Orthogonal Defect Orthogonal Defect
Classification MethodologyClassification Methodology

Manjula MadanManjula Madan
Philips Software Centre, Bangalore, India

manjula.madan@philips.com

2

Prepared By : Manjula Madan

3

CONTENTS CONTENTS
• Introduction
• Self-correcting Closed Loop System
• Way of Working of DP at PSC
• DP Committee Charter
• Orthogonal Defect Classification

– A Concept for In-Process Measurements

• Improvement Cycle
• Deploying ODC at Philips Software,

Bangalore
• Project “A” details
• Defect Reduction in Project “A”
• Cause Categories
• Project “B” details
• Defect Reduction in Project “B”
• Further Action

Prepared By : Manjula Madan

4

IntroductionIntroduction
• " Most software professionals spend much

of their working lives reacting to defects.
They know that each individual defect can
be fixed but that its near twin will happen
again, and again, and again ….."

- Watts S Humphrey

Software Defects

3

Prepared By : Manjula Madan

5

Introduction (Cont’d)Introduction (Cont’d)

• Traditionally, defects represent the
undesirable aspects of software quality

• Defect Prevention (DP) forms the essence
of Total Quality Management

• DP - key process area in level 5 of the
Capability Maturity Model (CMM)

• Modeled on techniques used in Japan
for decades and is in agreement with
Deming's principles

• Based on three simple steps:
– Analyze existing defects or errors to trace the

root causes
– Suggest preventive actions to eliminate the

defect root causes
– Implement the preventive actions

Prepared By : Manjula Madan

6

E T

V X

Process Step
Definition

Timely Introduction

Stage Kickoff
Meeting

Common
Errors

Reduce Defect Insertion
Stage
Activity

Unique
Actions

Defect Causal Analysis
Meeting

Action Team

Root Cause and
Suggested
Actions

Process Improvement
Team

Process
Owner

Process
Changes or
Techniques

Self-correcting Closed Loop SystemSelf-correcting Closed Loop System

4

Prepared By : Manjula Madan

7

Way of Working of DP at PSC Way of Working of DP at PSC
•• Defect Prevention CommitteeDefect Prevention Committee is "the

Organization level team to coordinate defect
prevention activities and to provide necessary
impetus to the software process improvement”

DP Committee

Defect data from various projects

The collective experience

are given as inputs for
assisting in defect reduction

Prepared By : Manjula Madan

8

DP Committee Charter DP Committee Charter
• Activities performed by the committee :

• Facilitate DP Training’s
• Ensure activities w.r.t. DP Process are carried

out within the projects and LOB's
• Facilitate documentation of the DP data and

tracking
• Presentation of LoB trends and Provide

Consultation on the resulting defect trends
• Facilitate Learning’s across organization of the

DP activities carried out Within projects and
Within LOB’s

• Facilitate Systemic Corrections and updations /
revisions of the DP Process or any other
organization’s standard software processes
resulting from the defect prevention actions

• Quantify the (in terms of effort and hence cost)
benefits obtained as a result of the DP
activities

• Facilitate periodic review of the defect
prevention activities by the senior management

• Facilitate the availability of the necessary tools
required to support defect prevention activities

5

Prepared By : Manjula Madan

9

Orthogonal Defect Classification

A Concept for In-Process Measurements

Orthogonal Defect Classification

A Concept for In-Process Measurements

• Invented by Ram Chillarege at IBM Research
• A measurement concept for software development
• ODC brings a quantitative methodquantitative method useful for

product management, productivity analysis, quality
control and cost management

• ODC makes it possible to push the understanding
and use of defects well beyond quality

• Defects is classified on the basis of 8 angles,
which are:

– Activity
– Trigger
– Defect Target
– Defect Type
– Impact
– Source
– Defect Qualifier
– Age

Prepared By : Manjula Madan

10

PlanPlan -- Prepare a plan
to facilitate
implementation of
Defect prevention
activities throughout
PSC

DoDo - Provide consultation,
execute DP activities , Use
ODC methodology for defect
classification, Identify the
areas of Improvement based on
defects and common causes,
Facilitate sharing of best
practices of DP within and
outside PSC

CheckCheck - Review of Defect
Prevention activities and
Results, Track Implementation /
progress/trends & Causal
Analysis/Root Cause
Analysis/Feedback

ActAct - Verify/Monitor
Implementation,
Report to SEPG,
Provide inputs to the
Software Process
Improvement Plan for
continuous
improvement based on
improvement areas
identified at
organization level

Improvement cycleImprovement cycle

6

Prepared By : Manjula Madan

11

Deploying ODC at PSCDeploying ODC at PSC

• Ample and Effective way of classification
of Defects

• 3 angles used
– Defect Type
– Defect Qualifier and
– Activity

• Collective experiences of the past projects
executed at PSC using the above 3
angles were considered

• I am presenting 2 Case Studies showing
Defect Reduction

Prepared By : Manjula Madan

12

ExplanationExplanation

• Assignment/Initialization
• Checking
• Algorithm/Method
• Function/Method
• Timing/Serialization
• Interface/O-O Messages
• Relationship

Defect Type

• Missing
• Extraneous
• Incorrect

Defect Qualifier

• Detailed
Design Review

• Code Review

Activity

7

Prepared By : Manjula Madan

13

Intro to Project “A”Intro to Project “A”
• Project “A” is a multi-site project with 4 site

locations
• Aimed at developing a DVD Player with Recorder
• Product to have the Player functionality inherited

from the Philips DVD Player and the Recording
functionality inherited from the Philips VCR

• 5 sub systems in the Project
• PSC responsible for the entire

• Front controller
• Parts of RCS,
• Assists customer with

– User Interface
– Audio/Video Switching
– P50 software

• PSC responsible for bug fixing in the entire RCS
and FRC software

• The team was actively involved in the
Requirements Analysis and the Top Level Design
at the overall Project Level

Prepared By : Manjula Madan

14

Phases of the ProjectPhases of the Project
• Component Design
• Implementation
• PR solving (current phase)

• During Implementation phase defect
classification on the lines of ODC thought
about

• This was done to assist causal analysis
• Project Team involved in classification of

defects
• Only code review defects considered for

classification

8

Prepared By : Manjula Madan

15

Phase 1 AnalysisPhase 1 Analysis

Assignment/Initialization 61
Algorithm/Method 23
Checking 14

Defect Type % Defects

Defect Qualifier % Defects

Incorrect 54
Missing 34

Defect SignatureDefect Signature

Prepared By : Manjula Madan

16

Corrective and Preventive Actions (1)Corrective and Preventive Actions (1)

• Assignment/Initialisation:
• Causal Analysis

– Most of the defects were found to be due to
oversight in re-initialising

• Preventive Action
– Code review and Design review checklist

to be updated to check for re-initialisation
– Also the usage of flags to be avoided

during debugging
– The Design Guidelines to be updated with

respect to this

9

Prepared By : Manjula Madan

17

Corrective and Preventive Actions (2)Corrective and Preventive Actions (2)

• Algorithm/Method :
• Causal Analysis

– Most of the defects were due to scattered
inputs and re-use of the code

• Preventive Action
– For scattered inputs and re-used code,

have a Design Kick-off meeting
– Understand the functionality of the re-used

code
– Have a kick-off meeting with the Architect

and Requirements Engineer before the
design, especially when the requirements
are close to hardware

– Training to be provided
– Update the Design Guidelines

Prepared By : Manjula Madan

18

Corrective and Preventive Actions (3)Corrective and Preventive Actions (3)

• Checking
• Causal Analysis

– Most of the defects were found to be due to
oversight

• Preventive Action
– Update the design and code review

Checklist to check for the incorrect or
missing validation of parameters

10

Prepared By : Manjula Madan

19

Corrective and Preventive Actions (4)Corrective and Preventive Actions (4)

• Incorrect
• Causal Analysis

– Most of the defects were found to be due to
oversight

• Preventive Action
– Update codes review checklist and design

review checklist to check for omission of
qualifier

Prepared By : Manjula Madan

20

Phase 2 - AnalysisPhase 2 - Analysis

0

10

20

30

40

50

60

 Algorith / Method Assignment/
Initialization

Checking Function/ Class /
Object

Interface / O-O
Messages

Ist Round 2nd Round

Comparison of Defects across the 2 round of analysis

• At the end of the Implementation
Phase, the defect data of the rest of
the code reviews was consolidated
• The trend of the defects is shown
below

11

Prepared By : Manjula Madan

21

Findings of the ComparisonFindings of the Comparison
• In the category

• Missing - Assignment/Initialization,
the percentage has come down
from 23.16% to 2.56%

• In the category
• Extraneous -

Assignment/Initialization, the
percentage has come down from
10.53% to 0%

• In the category
• Missing - Checking, the percentage

has come down from 7.37% to 0%

Prepared By : Manjula Madan

22

Trend of defects - Both PhasesTrend of defects - Both Phases

W eekly Defect T ren d (Do cu m en ts an d Co d e)

0

25

50

75

100

125

150

175

200

225

99
39

99
41

99
48

99
50

99
51

99
52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Week No

No
. o

f D
ef

ec
ts

M ajor Defects M inor Defects

• The defect trend - major and minor
defects separately
• Tracked by SQE

12

Prepared By : Manjula Madan

23

Post Release Defect TrendPost Release Defect Trend

• Post Release phase defects includes
• Integration, Verification and Acceptance

test defects
• Tests done at the customer site
• Total code size 28 KLOC

Prepared By : Manjula Madan

24

Project “A” ScheduleProject “A” Schedule
Project "A" EVC

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

5000.00

5500.00

6000.00

6500.00

7000.00

7500.00

8000.00

8500.00

9000.00

9500.00

94
3

94
5

94
7

94
9

95
1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Week No.

H
ou

rs

Plan Earned Actual

13

Prepared By : Manjula Madan

25

Causes Category (1)Causes Category (1)

• Defects due to Communication errors result from
a breakdown in communication between groups or
among team members. For example, A design
concept stated by a higher level designer is
misinterpreted by a lower level designer

• Defects due to Education errors: These occur due
to a team member's failure to understand
something causes the error. Educational errors
can be further divided into the following:

• New Function: The programmer does not
understand the function and makes an error

• Old Function: The base code or function is not
well understood, and when a new function is
added to it, the implementation causes the
problem. (i.e. the programmer does not
understand the base code or function well
enough to know that the addition of new
function causes regression problem

• Other: The programmer needs education in a
subject other than the function being
developed. (e.g., compiler knowledge)

Prepared By : Manjula Madan

26

• Defects due to An Oversight : These arise
when all the possible cases or conditions are
not considered or handled. (e.g., an error
condition is missed)

• Defects due to Transcription error: These
occur when the programmer knows every
thing in detail about a program, but simply
makes a mistake. (e.g., types in the wrong
label)

Causes Category (2)Causes Category (2)

14

Prepared By : Manjula Madan

27

Intro to Project “B”Intro to Project “B”
• Software for the (DVDv3S) DVD Video

Player has to be developed
• The aim is at creating the Step DVD

Philips product that will incorporate the
additional features over the DVDv2B+
software stack such as

• DTS
• New Keys for Bit Rate Indicator
• Timesearch
• Disc Lock on the Remote Control
• Late Resume Functionality
• FTD Dimmer
• Jog Shuttle on the Front Panel

Prepared By : Manjula Madan

28

Phase 1 - AnalysisPhase 1 - Analysis

Defect Signature set as a Benchmark

0

20

40

60

Phase

D
e
f
e
c
t
s

Expected Def.

Expected 12.85 24.42 52.7 34.7 25.7 28.27 5.13

Req TLD DD Code Int Test Alpha Beta test

Project "B" Predicted Vs Actual Defect Charts

0

20

40

60

Phase

D
e
f
e
c
t

Actual Predicted

Actual 13 6 21 39 22
Predicted 12.85 24.42 52.7 34.7 25.7 28.27 5.13

Req TLD DD Code Int Test Alpha Beta test

15

Prepared By : Manjula Madan

29

Further ActionFurther Action
To Measure effectiveness of DP
practices at the project level and
also organization level by using

– Cost of Non-quality %: (Person-hours for
review rework for all life-cycle stages till
last completed stage + Person-hours for
regression testing + Person-hours for PR
solving + Person-hours in rework for all life
cycle stages till last completed stage) *
100/ (Project effort in person-hours).

– Number of testing defects against the
number of review defects

– Number of Testing defects * 100 / Total
number of Pre Release Defects

Thank YouThank You

Any
Questions ?

Any
Questions ?

Manjula Madan

© Copyright 2001 Philips Software Centre, Bangalore. All Rights Reserved. Page: 1 of 16

OOuurr EExxppeerriieenncceess iinn DDeeffeecctt RReedduuccttiioonn uussiinngg
OOrrtthhooggoonnaall DDeeffeecctt CCllaassssiiffiiccaattiioonn MMeetthhooddoollooggyy

Manjula Madan, Software Quality Engineer
Philips Software Centre,

Philips Innovation Campus,
No. 1 & 2, Murphy Road, Ulsoor,

Bangalore, India
manjula.madan@philips.com

Phone: +91-80-5579000
Fax: +91-80-5561280

Abstract

In today's software development environment, the ddeemmaannddiinngg compromise over functionality, time to market, and
quality, drives all business decisions. The success of a software development effort is dependent on whether the
development team can efficiently design, code, test and support the software in a timely fashion. This article
describes an objective and time-tested method to meet the needs of all the key people in a software organization:
tthhee pprroojjeecctt mmaannaaggeerr,, qquuaalliittyy aassssuurraannccee mmaannaaggeerr,, ddeevveellooppeerrss,, aanndd tteesstteerrss. The method is based on the application
of software defects as a diagnostic probe in an organization and the capture of semantic information from the
defect analysis via the "Orthogonal Defect Classification" methodology.

Although some approaches to quality improvements involve exhaustive defect classification schemes or complex
mathematical models, the approach that I present relies on basic techniques that can be implemented readily by
the typical software organization. This approach has been tried and used successfully across many projects in
various PPrroodduucctt DDiivviissiioonnss in PPhhiilliippss SSooffttwwaarree CCeennttrree, Bangalore.

This paper describes Orthogonal Defect Classification, a means by which defects can be used to provide feedback
on the development process. A careful selection of classification codes with orthogonal properties provides
signatures in the distribution of the codes. These signatures reflect the progress of the process, detect departures
when they occur, and provide the necessary insight to make adjustments. The paper describes these attributes and
illustrates their use with results from pilot studies in many projects in Philips Software Centre, Bangalore. IItt iiss
nnootteedd tthhaatt OOrrtthhooggoonnaall DDeeffeecctt CCllaassssiiffiiccaattiioonn hhaass tthhee mmeerriitt ooff bbeeiinngg iinnddeeppeennddeenntt ooff pprroodduucctt,, tthheerreebbyy pprroovviiddiinngg aa
ffrraammeewwoorrkk ffoorr ggeenneerraall uussee.

Also this paper provides the overview, motivation, and benefits of using Orthogonal Defect Classification (ODC),
for software process measurement and defect causal analysis. ODC provides a significant step forward in being
able to understand the dynamics of software development by using classification of defects, so that they provide
measurements.

About the Author

Manjula Madan, is working at Philips Software Centre, Bangalore, in the capacity of a Software Quality Engineer
from the past 1-year. She has a total of 7 years experience in the IT Industry in which 3 years is in the areas of
Quality Control and Quality Assurance. Previous to Philips she was working as a Software Quality Analyst at IBM
Global Services India Limited. She is a Certified Quality Analyst (CQA) and Bronze Medallist in the Programming
Exams conducted by National Computer Education, United Kingdom. This is the first time that Manjula is
presenting a paper in a Conference. Her interests are in the areas of Quality Control and Quality Assurance.

Manjula Madan

© Copyright 2001 Philips Software Centre, Bangalore. All Rights Reserved. Page: 2 of 16

OOuurr EExxppeerriieenncceess iinn DDeeffeecctt RReedduuccttiioonn uussiinngg
OOrrtthhooggoonnaall DDeeffeecctt CCllaassssiiffiiccaattiioonn MMeetthhooddoollooggyy

Manjula Madan,
Philips Software Centre, Bangalore, India

manjula.madan@philips.com

" Most software professionals spend much of their working lives reacting to defects. They know that each
individual defect can be fixed but that its near twin will happen again, and again, and again...."

Watts S. Humphrey

Introduction

raditionally, defects represent the undesirable aspects of software quality. Finding and fixing defects
accounts for much of the software development and maintenance cost. When one includes the costs of
inspections, testing and rework, as, much as half or more of the typical development cost is spent in detecting

and removing defects. More so, the process of fixing defects is even more error-prone than original software
creation. Thus with a low quality process, the error rate spiral will continue to escalate. Prevention of defects is
crucial to the software process. The defect prevention process is not itself a software development process. Rather
it is a process to continually improve the development process.

DDeeffeecctt PPrreevveennttiioonn forms the essence of Total Quality Management. The Software Engineering Institute has
identified Defect Prevention as a key process area in level 5 of the Capability Maturity Model (CMM). The Defect
Prevention Process (DPP) was modeled on techniques used in Japan for decades and is in agreement with
Deming's principles. It is based on three simple steps:

� Analyze existing defects or errors to trace the root causes
� Suggest preventive actions to eliminate the defect root causes
� Implement the preventive actions

Way of Working at PSC
The DDeeffeecctt PPrreevveennttiioonn ((DDPP)) process at Philips Software Centre, Bangalore (PSC) works in the following mode.
There is a Defect Prevention Committee, which collects data from the projects and stores it in a central repository
for further analysis. At the project level the analysis is done by the quality engineer and this is consolidated by the
Quality Leader at the Line of Business (LoBs) level and sent to the Defect Prevention Committee.

Purpose
The activities performed by this committee are

� Facilitate documentation of the DP data and tracking across the teams coordinating defect prevention
activities

� Presentation of LoB trends by the LoB representatives to the Committee if consultation or advice is
required

� Provide Consultation on the resulting defect trends. The results of the Defect Prevention activities are
reviewed to ensure the effectiveness of those activities

� Facilitate Audits for
� Defects captured,
� Classification of defects and Causal Analysis
� Defect Prevention activities carried out within the projects and LoBs

� Facilitate Learning’s across organization of the Defect Prevention activities carried out

T

Manjula Madan

© Copyright 2001 Philips Software Centre, Bangalore. All Rights Reserved. Page: 3 of 16

� Within projects
� Within LOB’s
� Facilitate feedback on the status and results of the organization’s and project’s defect prevention
activities on a periodic basis

� Facilitate Systemic Corrections and updations/revisions of the Defect Prevention Process or any other
organization’s standard software processes resulting from the defect prevention actions

� DP Committee is responsible for all the organization level Defect Prevention activities and the review of
systematic elimination of the same

� Normalization of defect data across Projects, Lob’s and PD’s
� Reports to SEPG

� Quantify the (in terms of effort and hence cost) benefits obtained as a result of the DP activities.
� Facilitate periodic review of the defect prevention activities by the senior management

� Facilitate DP Training’s
� Facilitate the availability of the necessary tools required to support defect prevention activities

The Defect Prevention Committee is " the Organization level team to coordinate defect prevention activities and to
provide necessary impetus to the software process improvement". Further this team is a part of the group
responsible for the organization’s software process activities.

DP Committee Charter
DP Committee has set up a Charter for itself to work towards the defect prevention activity. The Committee
comprises of representatives from each of the LoBs of PSC. The DP committee activities are event driven or need
driven or business driven. The purpose of the Defect Prevention Committee is to identify the common cause of
defects and prevent them from recurring. It is achieved by analyzing defects that were encountered in the past and
taking specific actions to prevent the occurrence of those types of defects in the future. This committee reports to
the SEPG (Software Engineering Process Group) on a defined periodicity.

D P C om m ittee

D efect data from various p rojects

T he collective experience
are g iven as inp uts for
assisting in defect reduction

Fig 1: Working of the DP Committee

Manjula Madan

© Copyright 2001 Philips Software Centre, Bangalore. All Rights Reserved. Page: 4 of 16

The improvement cycle involves the following:
•• PPllaann

� Prepare a plan to facilitate implementation of Defect prevention activities throughout PSC

•• DDoo
� Provide consultation and/or training on how to Plan and execute DP activities in projects and then in PD’s

(Product Division)
� Use ODC methodology for defect classification.
� Identify the areas of Improvement based on defects and common causes of defects at organizational level

as reported by LOB’s and PD’s
� Facilitate and Ensure dissemination of DP knowledge across PSC.
� Facilitate sharing of best practices of Defect Prevention within and outside PSC

•• CChheecckk
� Review of Defect Prevention activities and Results.
� Track Implementation/progress/trends & Causal Analysis/Root Cause Analysis

•• AAcctt
� Verify/Monitor Implementation.
� Report to SEPG based on defined periodicity.
� Provide inputs to the Software Process Improvement Plan for continuous improvement based on the Defect

Prevention activities and improvement areas identified at organization level

The Process
For successful implementation of a defect prevention program in a organization, the following system should be in
place: tthhee rriigghhtt pprroocceessss, and ssoommee mmeeaannss ooff mmeeaassuurriinngg tthhee eeffffeeccttiivveenneessss ooff tthhiiss pprroocceessss. But measurement alone is
not sufficient. Analysis, feedback, and suitable action to improve the process on the basis of this feedback should
follow measurement. The defect prevention model depicted in the fig. 2 is a sseellff--ccoorrrreeccttiinngg cclloosseedd lloooopp ssyysstteemm
designed for continuous improvement. Defect prevention is achieved not by correcting the product, but by
correcting the process that produces this product. For each phase of this life cycle model, entry and exit criteria
should be clearly defined and documented.

E T

V X

Process Step
Definition

Timely Introduction

Stage Kickoff
Meeting

Common
Errors

Reduce Defect Insertion
Stage
Activity

Unique
Actions

Defect Causal Analysis
Meeting

Action Team

Root Cause and
Suggested
Actions

Process Improvement
Team

Process
Owner

Process
Changes or
Techniques

Fig 2: .
Self-
correcting
closed loop
system

Manjula Madan

© Copyright 2001 Philips Software Centre, Bangalore. All Rights Reserved. Page: 5 of 16

RRoooott CCaauussee AAnnaallyyssiiss (RCA) and Statistical Analysis have played useful roles in the analysis of software defects.
Effective RCA, while yielding exhaustive details on each defect, takes substantial investment of resources for
completion and points to too many actions as a result. Root Cause Analysis looks at each individual defect through
a magnifying glass. It is very valuable in terms of understanding Cause and Effect relationships in the context of a
single defect. Given the typical workload of a developer or tester, there are not enough resources in an organization
to perform causal analysis on all or even just the important defects. In addition, you end up in identifying too many
actions and as a result you end up looking at the forest from the tree level. The relative prioritization among the
choice of actions becomes a significant part of the process to implement solutions.

SSttaattiissttiiccaall AAnnaallyyssiiss, on the other hand, provides an easy way to monitor trends, but is not capable of suggesting
corrective actions due to the inadequate capture of the semantics behind the defects.

The industry experience with causal analysis has led us to believe it is a very powerful method for making
dramatic reductions in defect numbers, thus reducing both overall project’s costs and cycle time. Causal analysis
can positively engage developers in the quest for continuous improvement. This improvement benefits each
individual who learns how to do his or her job better and the team, which wants to deliver quality products cost
effectively.

Orthogonal Defect Classification
A Concept for In-Process Measurements3

ODC is a measurement concept for software development. It gets its name since it uses the defect stream as a
source of information on the product and the development process. The keyword is measurement - ODC brings a
qquuaannttiittaattiivvee mmeetthhoodd useful for product management, productivity analysis, quality control and cost management.
ODC gives an alternative to provide rapid root cause analysis with prioritization with minimal resources. In most
cases analysis exploiting the eight ODC attributes and the other useful information typically captured by an
organization, such as Open and Closed dates, Component, Subsystem, Severity, etc. are more than adequate to
drive and monitor change.

Invented by Ram Chillarege at IBM Research circa '89, it has grown over the years, at the Center for Software
Engineering, and is now also a subject of active research at a few universities. The concept is in practice in a major
way at IBM, and several software companies such as Motorola and Bellcore.

ODC brings a scientific approach to measurements in a difficult area that otherwise can easily become adhoc. It
also provides an in-process measurement paradigm for extracting key information from defects and enables the
metering of cause-effect-relationships. Specifically, the choice of a set of orthogonal classes, mapped over the
space of development or verification, can help developers by providing feedback on the progress of their software
development methods.

ODC essentially means that we categorize a defect into classes that collectively point to the part of the process
which needs attention, much like characterizing a point in a Cartesian system of orthogonal axes by its (x, y, z)
coordinates. Although activities are broadly divided into design, code, and test, in the software development
process, each organization can have its variations. It is also the case that the process stages in several instances
may overlap while different releases may be developed in parallel. Process stages can be carried out by different
people and sometimes by different organizations. Therefore, for classification to be widely applicable, the
classification scheme must have consistency between the stages. Without consistency it is almost impossible to
look at trends across stages. Ideally, the classification should also be quite independent of the specifics of a product
or organization. If the classification is both consistent across phases and independent of the product, it tends to be
fairly process invariant and can eventually yield relationships and models that are very useful. Thus, a good
measurement system, which allows learning from experience and provides a means of communicating experiences
between projects has at least three requirements:

Manjula Madan

© Copyright 2001 Philips Software Centre, Bangalore. All Rights Reserved. Page: 6 of 16

� orthogonality,
� consistency across phases, and
� uniformity across products

One of the ppiittffaallllss iinn ccllaassssiiffyyiinngg ddeeffeeccttss is that it is a hhuummaann pprroocceessss, and is subject to the usual problems of human
error, confusion, and a general distaste if the use of the data is not well understood. However, each of these
concerns can be handled if the classification process is simple, with little room for confusion or possibility of
mistakes, and if the data can be easily interpreted. If the number of classes is small, there is a greater chance that
the human mind can accurately resolve between them. Having a small set to choose from makes classification
easier and less error prone. When orthogonal, the choices should also be uniquely identified and easily classified.

OODDCC mmaakkeess iitt ppoossssiibbllee ttoo ppuusshh tthhee uunnddeerrssttaannddiinngg aanndd uussee ooff ddeeffeeccttss wweellll bbeeyyoonndd qquuaalliittyy. In the ODC Method
each of the defects is classified on the basis of 8 angles, which are:

11.. AAccttiivviittyy
22.. TTrriiggggeerr
33.. DDeeffeecctt TTaarrggeett
44.. DDeeffeecctt TTyyppee
55.. IImmppaacctt
66.. SSoouurrccee
77.. DDeeffeecctt QQuuaalliiffiieerr
88.. AAggee

Deploying ODC at Philips Software, Bangalore
At Philips Software Centre, Bangalore (PSC) for classifying defects, ODC was found to be an ample way. Of the 8
angles of ODC, 3 were considered and implemented. They were DDeeffeecctt TTyyppee, DDeeffeecctt QQuuaalliiffiieerr and AAccttiivviittyy.

The collective experiences of the past projects executed at PSC using the above 3 angles were considered and the
decision from the DP Committee was to continue with the same. The other rationale was also to have fewer data
points to start working on and show improvements. This implementation happened at a crucial stage of the
continuance of PSC, where in the company was working toward the SEI CMM Level 5 assessment.

In the 2 case studies given below, it can be learned that ODC methodology can be used as a purport means for
classification of defects.

Case Study 1:
•• PPrroojjeecctt ““AA”” IInnttrroodduuccttiioonn
Project “A” is a multi-site project with 4 sites locations, aimed at developing a DVD Player with Recorder. It is
conceived to have the Player functionality inherited from the Philips DVD Player and the Recording functionality
inherited from the Philips VCR. This project was divided into the 5 sub systems. The Bangalore team is
responsible for the entire front controller, parts of RCS, and also assists customer with User Interface, Audio/Video
Switching and P50 software. The Bangalore team is also responsible for bug fixing in the entire RCS and FRC
software. The team was actively involved in the Requirements Analysis and the Top Level Design at the overall
Project Level.

•• PPhhaasseess ooff tthhee PPrroojjeecctt ““AA””
� Component Design
� Implementation
� PR solving (current phase)

Manjula Madan

© Copyright 2001 Philips Software Centre, Bangalore. All Rights Reserved. Page: 7 of 16

During the initial Implementation phase, the project team at Bangalore started classifying the defects on the basis
of defect type and defect qualifier. This classification methodology was agreed upon so that the causal analysis
could be done, and preventive actions could be arrived at for identifying assignable causes and addressing them.
The specific preventive actions that would be arrived at could be used in the same phase of the project that had to
be completed in this project and also future projects wherever applicable.

•• PPhhaassee 11 -- AAnnaallyyssiiss
Orientation on ODC was given to the team so that they could have an understanding of the usefulness of the
classification methodology and also be able to implement it.

Defect Type Defect Qualifier Activity

 AAssssiiggnnmmeenntt//IInniittiiaalliizzaattiioonn
 CChheecckkiinngg
 AAllggoorriitthhmm//MMeetthhoodd
 FFuunnccttiioonn//MMeetthhoodd
 TTiimmiinngg//SSeerriiaalliizzaattiioonn
 IInntteerrffaaccee//OO--OO MMeessssaaggeess
 RReellaattiioonnsshhiipp

 MMiissssiinngg
 IInnccoorrrreecctt
 EExxttrraanneeoouuss

 CCoommppoonneenntt DDeessiiggnn ––
DDeettaaiilleedd DDeessiiggnn
RReevviieeww

 IImmpplleemmeennttaattiioonn--
CCooddee RReevviieeww

� The majority of the defects were found to occur due to 3 defect types and 2 Defect Qualifier types as listed
below

���� In the classification based on Defect Type, about 98% of the defects were categorized under

Defect Type % of Defects
Assignment/Initialization 61
Algorithm/Method 23
Checking 14

���� In the classification based on Defect Qualifier, about 88% of the defects were categorized under

Defect Qualifier % of Defects
Incorrect 54
Missing 34

•• IIddeennttiiffiiccaattiioonn ooff CCaauusseess aanndd PPrreevveennttiivvee AAccttiioonn
Defect analysis data was shared with the project team. The team brainstormed on the causes and the Corrective
and Preventive actions was arrived at. These actions were put into implementation immediately. The details of it is
given below:

� Assignment/Initialization:
 Cause :

Most of the defects were found to be due to oversight in re-initializing

 Preventive Action :
 i. For the defects associated with this defect type, it was decided that the code review and design review

checklist should be updated to check for re-initialization
 ii. Also the usage of flags shall be avoided during debugging
 iii. The Design Guidelines shall also be updated with respect to this

Manjula Madan

© Copyright 2001 Philips Software Centre, Bangalore. All Rights Reserved. Page: 8 of 16

22.1 Update Design and Code Review Checklist
Assigned Info: Re-initialization to be checked during the Design/Code review

Action: Manjula

22.2 Update Design Guidelines

Assigned Info: Raise a Quality System Change Request on the Design Guidelines to include
checking for re-initialization

Action: Manjula

22.3 Re-initializing of Flags to be avoided during debugging

Ongoing Info: Re-initializing of Flags which is inserted during debugging to be checked and
removed

Action: All Developers

� Algorithm/Method :
 Cause:

Most of the defects were due to scattered inputs and re-use of the code.

 Preventive Action :
 i. For scattered inputs and re-used code, have a Design Kick-off meeting
 ii. Understand the functionality of the re-used code
 iii. Have a kick-off meeting with the Architect and Requirements Engineer before the design, especially

when the requirements are close to hardware
 iv. Training to be provided
 v. Update the Design Guidelines

22.4 Kick-off meeting to be held before Design of components with scattered inputs or design
using re-used code

Ongoing Info: Have a kick-off meeting with the Architect and Requirements Engineer before
the design, especially when the requirements are close to hardware

Action: PL, TL

22.5 Functionality of the re-used code to be understood

Ongoing Info: While estimating this activity has to be included and the Estimation Checklist
to have an item to accommodate the study phase of the Functionality

Action: All developers

� Checking :
 Cause:

Most of the defects were due to oversight
 Preventive Action :

Update the review Checklist

22.6 Update Design and Code Review Checklist

Assigned Info: To check for the incorrect or missing validation of parameters or data in
conditional statements

Action: Manjula

� Incorrect:
 Cause:

Most of the defects were found to be due to oversight

Manjula Madan

© Copyright 2001 Philips Software Centre, Bangalore. All Rights Reserved. Page: 9 of 16

 Preventive Action :
Update code review checklist and design review checklist

22.7 Update code review checklist to check for omission
Assigned Info: In correct qualifier

Action: Manjula

� Missing:
 Cause:

Most of the defects were found to be due to oversight
 Preventive Action :

Update code review checklist and design review checklist

22.7 Update code review checklist to check for omission
Assigned Info: Missing qualifier

Action: Manjula

•• PPhhaassee 22 -- AAnnaallyyssiiss
At the end of the Implementation Phase, the similar activity was done of classifying the defects and following was
observed. This is shown in Fig 3. Improvements were observed and the team attributed this to the corrective and
preventive actions put into place.

0

10

20

30

40

50

60

 Algorith / Method Assignment/
Initialization

Checking Function/ Class /
Object

Interface / O-O
Messages

Ist Round 2nd Round

Fig 3: Comparison of Defects across the 2 round of analysis

 TThhee ffiinnddiinnggss ooff tthhee ccoommppaarriissoonn wweerree
� In the category - Missing - Assignment/Initialization, the percentage has come down from 23.16% to

2.56%.
� In the category - Extraneous - Assignment/Initialization, the percentage has come down from

10.53% to 0%.
� In the category - Missing - Checking, the percentage has come down from 7.37% to 0%

The project team has been attributed the above improvements to corrective and preventive actions that were built
into the system. Also at the end of the Implementation phase, the trend of the defects which were being tracked by
the SQE on a weekly basis saw a decline as shown in the figure 4.

Manjula Madan

© Copyright 2001 Philips Software Centre, Bangalore. All Rights Reserved. Page: 10 of 16

W e e k ly D e f e c t T r e n d (D o c u m e n t s a n d C o d e)

0

2 5

5 0

7 5

1 0 0

1 2 5

1 5 0

1 7 5

2 0 0

2 2 5

99
39

99
41

99
48

99
50

99
51

99
52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

W e e k N o

No
. o

f D
ef

ec
ts

M a jo r D e f e c t s M in o r D e f e c t s

Fig 4: The trend of the defects observed weekly

•• DDeettaaiilleedd CCaauussaall AAnnaallyyssiiss aanndd PPrreevveennttiivvee AAccttiioonn
Defect analysis data was again shared with the project team at PSC, Bangalore. The Preventive actions that were
suggested by the project team “A” had been logged in the project database for future projects. The team felt it
necessary to do a complete causal analysis of the defects found in both the phases of the project. This succored to
arrive at preventive actions, so that they could be implemented in the projects of the same Lob and also in the other
projects in the same PD.

 PPoossiittiivvee MMiieenn oonn tthhee PPrroojjeecctt

The post release phase of the project “A” includes integration, verification and acceptance testing. All these are
done at the customer site. For the total code size of the project, which is 28 KLOC and the post release defect as of
February 2001 is 87, this is excellent progress. The trend of the post release defects is shown in Fig 5.

Fig 5: Post Release Defect Trend

Also another positive aspect of the project is that the schedule was adhered to and out of the 4 sites, PSC was the
only team to finish right on target. The EEaarrnneedd VVaalluuee CChhaarrtt of the project is given below in figure 6 for reference.
These factors influenced the Customer in giving good ratings to the project in the quarterly ‘Customer Satisfaction’
feedback.

Manjula Madan

© Copyright 2001 Philips Software Centre, Bangalore. All Rights Reserved. Page: 11 of 16

Project “A” EVC

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

9000.00

10000.00

943945947949951 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

WeekNo.

H
o
u
r
s

Earned
Actual
Plan

Fig 6: Earned Value Chart of Project “A”

Further Momentum in the Defect Reduction path at PSC
After further progress, an Assessment (CBA IPI) was made and PSC was found to be performing at the Optimizing
Level. During this period Defect Prevention Committee decided to go in for the usage of the Cause categories as
cited by Watts Humphrey1.

•• CCaauusseess CCaatteeggoorryy
The causes broadly falling into various categories are discussed below.

� Defects due to Communication errors result from a breakdown in communication between groups or
among team members. For example, A design concept stated by a higher level designer is misinterpreted
by a lower level designer

� Defects due to Education errors: These occur due to a team member's failure to understand something
causes the error. Educational errors can be further divided into the following:

� New Function: The programmer does not understand the function and makes an error
� Old Function: The base code or function is not well understood, and when a new function is added to
it, the implementation causes the problem. (i.e. the programmer does not understand the base code or
function well enough to know that the addition of new function causes regression problem
� Other: The programmer needs education in a subject other than the function being developed. (e.g.,
compiler knowledge)

Manjula Madan

© Copyright 2001 Philips Software Centre, Bangalore. All Rights Reserved. Page: 12 of 16

� Defects due to An Oversight : These arise when all the possible cases or conditions are not considered or
handled. (e.g., an error condition is missed)

� Defects due to Transcription error: These occur when the programmer knows every thing in detail about a
program, but simply makes a mistake. (e.g., types in the wrong label)

•• SSoommee ooff tthhee ddeeffeecctt pprreevveennttiioonn tteecchhnniiqquueess pprrooppoosseedd
� Pre-review & Review Meetings

Before the beginning of each increment or stage in the project life cycle as a part of the previous stage
review a preview is held to discuss the problems anticipated and possible prevention. Review meetings
also help reduce defects though the immediate focus of reviews is defect detection & not prevention.

� Updation of Checklists based on improvements planned
Checklists are tools for defect prevention when these are prepared before the activity based on
improvement planned.

� Concurrent coding and unit testing
Instead of waiting until the entire coding is completed, unit testing can be done in parallel with coding. If
each subprogram is tested as soon as it is coded, then the analysis of errors found in these subprograms can
be used to prevent their re-occurrence in the remaining portion of the code.

� Prototyping
Prototyping helps create a scaled down model of a real-life scenario with the intention of identifying most
of the major issues or problem areas are identified upfront. Once these issues are identified, suitable
measures could be taken to ensure that similar defects are prevented in future. This model can be shown
and sometimes used by the customer, to confirm that the requirements have been fully understood, by both
the parties, and the finished product is going to be correct, especially in terms of functionality. Even
though prototypes can take time to develop, and then therefore sometimes prove to be expensive way of
developing the system, but when the time taken to review and debug the finished product is taken into
consideration, big savings can be done.

� Reuse
Reuse enables usage of code proven to work in one application since it can be safely used in other
applications without the fear of inherent bugs.

Another typical example in which the defect reduction was observed in the similar fashion is described in the
second Case Study. This project is taken from the same Product Division but from a different Line of Business.

Manjula Madan

© Copyright 2001 Philips Software Centre, Bangalore. All Rights Reserved. Page: 13 of 16

Case Study 2:
•• PPrroojjeecctt ““BB”” IInnttrroodduuccttiioonn

The detail of Project “B” is the software for the (DVDv3S) DVD Video Player was to be developed. The aim is at
creating the Step DVD Philips product that will incorporate the additional features over the DVDv2B+ software
stack such as

 DTS
 New Keys for Bit Rate Indicator
 Timesearch
 Disc Lock on the Remote Control
 Late Resume Functionality
 FTD Dimmer
 Jog Shuttle on the Front Panel.

•• PPhhaasseess ooff tthhee PPrroojjeecctt ““BB””

� Complete “V” Model Life Cycle (project currently in progress)

•• PPhhaassee 11 -- AAnnaallyyssiiss
In the case of this project, before the start of the project, there was a similar project using the same stack for which
the defects had been classified as per the ODC Methodology customized to PSC way of working. So the defect
signature was available to the Project “B” to benchmark against. This is depicted is Figure 7.

Fig 7: Defect Signature of the earlier project

Causal Analysis was done at the end of the above project life cycle and the measures to be taken to reduce the
number of defects were documented.

•• PPhhaassee 22 -- AAnnaallyyssiiss
At the current phase of the Project “B”, the figure 8 shows the improvement in the defect reduction maneuver.

Defect Signature set as a Benchmark

0

20

40

60

Phase

D
e
f
e
c
t
s

Expected Def.

Expected 12.85 24.42 52.7 34.7 25.7 28.27 5.13

Req TLD DD Code Int Test Alpha Beta test

Manjula Madan

© Copyright 2001 Philips Software Centre, Bangalore. All Rights Reserved. Page: 14 of 16

Fig 8: Comparison of the Predicted and Actual

Further Action:
Currently we, at PSC are working at measuring the effectiveness of defect prevention process by using the
following measures. This is being piloted in the various projects to measure effectiveness of DP practices at the
project level and also organization level.

� Cost of Non-quality %: (Person-hours for review rework for all life-cycle stages till last completed stage
+ Person-hours for regression testing + Person-hours for PR solving + Person-hours in rework for all life
cycle stages till last completed stage) * 100/ (Project effort in person-hours).

� Number of testing defects against the number of review defects

� Number of Testing defects * 100 / Total number of Pre Release Defects

Project "B" Predicted Vs Actual Defect Charts

0

20

40

60

Phase

D
e
f
e
c
t

Actual Predicted

Actual 13 6 21 39 22
Predicted 12.85 24.42 52.7 34.7 25.7 28.27 5.13

Req TLD DD Code Int Test Alpha Beta test

Manjula Madan

© Copyright 2001 Philips Software Centre, Bangalore. All Rights Reserved. Page: 15 of 16

Summary
Orthogonal Defect Classification (ODC) provides a good framework for cause-effect analysis. In order to
implement this defect classification framework, one still has to come up with:

� Effective attributes to be measures
� Process for analyzing attributes
� Action plan based on the analysis result for process improvement

Action plan is independent of ODC. However, action plan is required for process improvement. It would be good
if benchmark for applying ODC is available. This will help in applying and analysing ODC results. This can be
achieved only by accumulating data over a period of time.

The fundamental objective of defect prevention is to make sure that errors, once identified and addressed, do not
occur again. One or two people cannot do defect prevention, and it cannot be done sporadically. Everyone must
participate by faithfully executing the process – almost as if his or her lives depended on it. As with any other skill,
it takes time to learn defect prevention well, but if everyone on the project participates, it can transform an
organization. The bottom line of the Organization should be as shown in Figure 9.

Software Defects

Fig 9: Software without Defects is “Bulls Eye”

Manjula Madan

© Copyright 2001 Philips Software Centre, Bangalore. All Rights Reserved. Page: 16 of 16

References
1. Managing the Software Process
By Watts S Humphrey

2. Metrics and Models in Software Quality Engineering
By Stephen H Kan

3. Orthogonal Defect Classification
By Chillarege, I S Bhandari, M J Halliday, J K Chaar

4. ORTHOGONAL DEFECT CLASSIFICATION - A BREAKTHROUGH FOR IN-PROCESS
MEASUREMENT

By Ram Chillarege - A Tutorial - Fifth International Symposium on Software Reliability Engineering, Monterey,
California, November 6-9, 1994

5. Project “A” and “B” database
Consumer Electronics, Philips Software Centre, Bangalore

6. Defect Prevention Charter
Philips Software Centre, Bangalore

QW2001 Paper 3T2

Dr. Mark R. Blackburn, Mr. Robert Busser, Mr. Aaron Nauman
& Dr. Ramaswamy Chandramouli

(Software Productivity Consortium)

Model-based Approach To Security Test Automation

Key Points

Test Automation Technology and Experience●

Security Functional Testing●

Test Engineering using Model●

Presentation Abstract

This paper describes the objective of the security functional testing initiative and
the approach applied. It provides both a process perspective describing the roles of
developers and tool automation to reduce significant manual effort from the
traditional security testing process. It illustrates the development of a model for test
automation using a small set of security specifications that deal with “Granting
Object Privilege Capability” in the Common Criteria Security Target Document
for an Oracle Database Server. It provides an overview of the test case generation
process. It also describes the process used to generate test drivers for an SQL
database engine.

To assure that audience that the underlying capabilities of model-based
development and test automation can be applied to their applications, the paper and
presentation will briefly summarize some of the other applications types in which
this model-based approach has been used. Specifically, the approach has been
applied to non-critical applications like workstation-based Java applications with
GUI user interfaces, database applications, as well as critical applications like
telemetry communication for heart monitors, flight navigation, guidance, autopilot
logic, display systems, flight management and control laws, airborne traffic and
collision avoidance while supporting automated test driver generation from
standard languages (e.g., C, C++, Java, Ada, Perl, PL/I, SQL, etc.) as well as
proprietary languages, COTS test injection products and test environments.

About the Author

Dr. Blackburn is a Software Productivity Consortium Fellow, President of T-VEC
Technologies, Inc. and co-inventor of the T-VEC system. He has twenty years of
software systems engineering experience in development, project leadership and
applied research in object technology, requirement and design specification,
model-based development, formal methods, and formal verification. His more
recent technical activities have been focused on transforming various functional,
OO, and control-system models from 3rd party tool systems into a representation

that can support requirement defect removal and test automation. He is also
involved in functional security testing, developing strategies for integrating
knowledge management and e-business, and has also been involved in applied
research and technology demonstrations in web-based knowledge engineering,
domain engineering, and reverse engineering. He has also spent over ten years in
the development of real-time flight critical avionics systems. He earned a BS in
Mathematics from Arizona State, MS in Mathematics from Florida Atlantic
University, and a Ph.D. in Information Technology from George Mason
University.

Mr. Busser is co-founder of T-VEC Technologies, Inc. and co-inventor of the
T-VEC system. He has over twenty years of software systems engineering
experience in development, and management in the area of advanced software
engineering, and expertise in software engineering processes, methods and tools.
He is the chief architect of the T-VEC system. He has extensive experience in
requirement and design methods, real-time systems, model-based development and
test generation tools, model analysis, and verification. He has extensive knowledge
about model transformation systems, theorem prover and constraint solving
systems. In addition, he has extensive avionics engineering experience and has
been involved in several FAA certifications. He has experience applying this
knowledge in the development of highly-reliable software systems and the
development of state of the art requirements-based software modeling and testing
technologies. Mr. Busser has a B.S. in Electrical and Electronics Engineering from
Ohio University.

Mr. Nauman has a wide range of systems and applications development experience
in both real-time (telecommunications) and information systems domains. He is
currently involved in the development of model transformation, and software
verification through specification-based automated testing. His experience includes
all aspects of product development from requirements analysis through test
implementation. Additionally, he has experience in object-oriented technologies,
distributed and client/server systems, web-based and components-based software
and systems integration. He is a representative on the OMG UML Action
Semantics working group. Mr. Nauman graduated Summa Cum Laude from North
Carolina State University with a B.S. in Computer Science.

Dr. Ramaswamy Chandramouli is a computer scientist at NIST with over 15 years
of experience in both Private Sector and Federal Agencies. His professional
interests include Distributed System Security, Access Control Models and Security
Specifications. He was one of the authors of “Role Based Access Control
Protection Profile” which was the first Common Criteria (V 2.0) Protection Profile
to be certified in the U.K. He was also the lead author of the paper titled
“Comparison of Role Based Access Control Features in commercial DBMS”
which won the Best Professional Paper award at the the 21st National Information
Systems Security Conference held at Crystal City, VA, Oct 1998.
Dr.Chandramouli holds an MS degree in Operations Research from the University
of Texas and a PhD in Information Technology from George Mason University.

1

Page 1

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 1

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Model-based Approach
to

Security Test Automation

Mark Blackburn, Robert Busser, Aaron Nauman
T-VEC Technologies/SPC

Ramaswamy Chandramouli (Mouli)
National Institute of Standards and Technology

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 2

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Common Symbols, Terms and Acronyms

Tool

Manual process

Machine readable artifact

Textual document

Object mapping

SCR table

Glossary of Terms and Acronyms
API application programming interface
COTS Commercial off-the-shelf
GUI graphical user interface
Java high-level programming language
JDBC Java Database Connectivity
MCDC Modified Condition Decision coverage
NIST National Institute of Standards and

Technology
NRL Naval research laboratory
ODBC Open Database Connectivity
Perl high-level programming language
TAF Test Automation Framework
SCR Software Cost Reduction
SQL Structured Query Language
SRS system/software requirement

specification
UML Unified Modeling Language

Common Symbols

2

Page 2

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 3

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Problem

• Software security is a software quality issue that continues to
grow in importance as it impacts many aspects of every-day life

• Ubiquitous access to resources through internet-based software
increases importance of security

• Shortened development and deployment cycle makes it difficult to
conduct adequate security functional testing to verify expected
security behavior

• Present practice, developing and performing security functional
testing is costly

– Increased demand for product variations is further increasing cost
impacts on security evaluation laboratories

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 4

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Objective
• National Institute of Standards and Technology (NIST) initiated

program to develop methods and tools for automating Security
Functional Testing

– Assess applicability and cost-effectiveness of model-based approach

• Methodology based on expressing security functional
requirements as a model

• Toolkit required to automate mechanisms:
– Check specification for contradictions, requirement defects, feature

interaction problem or circular definitions

– Generate test vectors from security requirements specifications
expressed as models

– Test vector consists of test inputs, expected outputs and an association
between test and specification

• Provide assurance that generated tests provide needed
coverage, as well as security requirement-to-test traceability

3

Page 3

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 5

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Approach

• Use model-based approach for specification and automated test
generation for Security Testing

• Model set of security requirements in Software Cost Reduction
(SCR) specifications using Naval Research Labs (NRL) SCRtool

• Translate model into T-VEC linear form (specification language)
using model translator

• Generate test vectors from translated model

• Generate test drivers for various target environments and
databases

• Execute generated test drivers against target environments and
databases

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 6

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Process Flow

ISO/IEC 15408
Security Target

scr2tvec
Model

Translator
SCR Security

Verification Model

T-VEC Test
Specification

T-VEC
Test Vector
Generator

Test Vectors

T-VEC
Test Driver
Generator

Test Driver
Schemas

4

Page 4

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 7

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Modeling Requirements Using the SCR Tool
Data Types

Requirement
Modeling and
Clarification

Variables

ISO/IEC 15408
Security Target

Behavior
State Machines
(Mode Table) Events Conditions

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 8

SOFTWARE
PRODUCTIVITY
CONSORTIUM

ISO/IEC 15408 Security Target
(Oracle Specific)

Security Functional Requirements

Target of Evaluation
Specification of Security Functions

Grant Object Privilege
Specification

5

Page 5

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 9

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Requirements Modeled
• Grant Object Privilege (F.APR.GOP):

A normal user (the grantor) can grant an object privilege to another user,
role, or PUBLIC (the grantee) only if:
a) the grantor is the owner of the object; or
b) the grantor has been granted the object privilege with the

GRANT OPTION.
• Revoke Object Privilege (F.APR.ROP) – A normal user (the revoker) can revoke an object privilege from

another user, role or PUBLIC (the revokee), and any further propagation of the object privilege started by the
revokee, only if the revoker is the orginal grantor of the object privilege

• Grant System Privilege (F.APR.GRSP) – A user (the grantor) can grant a system privilege to another user,
role or PUBLIC (the grantee), and revoke a system privilege from the grantee, only if:
a) the grantor (or revoker) is the DBA user; or
b) the database session of the grantor (or revoker) has the GRANT ANY PRIVILEGE privilege effective; or
c) the grantor (or revoker) has been granted that system privilege directly with the ADMIN OPTION.

• Grant Role (F.APR.GRP)– A user (the grantor) can grant a role to another user, role or PUBLIC (the
grantee), and revoke a role from the grantee, only if:
a) the grantor is the DBA user; or
b) the database session of the grantor (or revoker) has the GRANT ANY ROLE privilege effective; or
c) the grantor (or revoker) has been granted that role with the ADMIN OPTION.

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 10

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Requirement Analysis

Requirement Statement/Clause Variables Relations
grantor
grantee
object
privilege
grantee type
grantor
grantee
object
privilege
grantor
grantee
object
privilege
object owner
GRANT OPTION
granted object

A normal user (the grantor) can grant an object privilege to
another user, role or PUBLIC (the grantee)

GOP (b) – a grantor (that does not own the object) can grant
object privileges to the grantee if the object owner previously
granted object privilege to the grantor with the GRANT
OPTION

GOP (a) - a grantor can grant an object privilege to a grantee
if the grantor owns the object

grantee constraints
(user, role or PUBLIC)

grantor owns object

granted object privilege

6

Page 6

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 11

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Model Structure

grantObjPriv

Monitored
(Input)

Variables

grantObjPriv

Controlled
(Output)
Variables

grantee_constraints

granted_object_privileges

grantor_owns_object

objOwner

grantee ,
selectedObj,
grantedObject

grantor

granteeType, granteeRoleID, roleID

privName

Key
Condition
Table
(relation)

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 12

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Defining Variables

7

Page 7

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 13

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Defining Data Types

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 14

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Logic For Grant Object Privilege

GOP(b)

GOP(a)

Test
Constraints

Table Name
(grantor_owns_object
OR
 (granted_object_privileges
 AND
 grantee_constraints)
)
AND
(grantor != grantee)
AND
(granteeType = user
 OR granteeType = role
 OR granteeType = PUBLIC
)
AND
(Priv_Name = ALL
 OR Priv_Name = UPDATE
 OR Priv_Name = SELECT
 OR Priv_Name = INSERT
 OR Priv_Name = DELETE
)

NOT(grantor_owns_object)
AND
(NOT(granted_object_privileges)
 AND
 grantee_constraints
)
AND
(grantor != grantee)
AND
(granteeType = user
 OR granteeType = role
 OR granteeType = PUBLIC
)
AND
(Priv_Name = ALL
 OR Priv_Name = UPDATE
 OR Priv_Name = SELECT
 OR Priv_Name = INSERT
 OR Priv_Name = DELETE
)

grantObjPriv = TRUE FALSE

Condition

8

Page 8

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 15

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Term Tables Used for Grant Object Privileges

Table Name
grantor = objOwner NOT(grantor = objOwner)

grantor_owns_object = TRUE FALSE
Table Name

selectedObj = grantedObject
AND
GRANT_OPTION
AND
objOwner != grantor
AND
objOwner != grantee

selectedObj = grantedObject
AND
NOT(GRANT_OPTION)
AND
objOwner != grantor
AND
objOwner != grantee

granted_object_privileges = TRUE FALSE
Table Name

(granteeType = user AND granteeRoleID != roleID)
OR
(granteeType = role
 AND
 roleID != NULL
 AND
 granteeRoleID = roleID)
OR
(granteeType = PUBLIC) FALSE

grantee_constraints = TRUE FALSE

Condition

Condition

Condition

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 16

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Test Vectors for Grant Object Privilege
• Translated model results in 20 test specification elements

– Test specification is logically AND’ed set of conditions for an output

– Resulted in 40 test vectors (2 / test specification)

– Based on 6 Term Variables (not shown) and 12 Monitored Variables

Vector # DCP grantObjPriv grantor grantee privName
grantee

Type objOwner
selected

Obj
granted
Object

GRANT_
OPTION

grantee
RoleID roleID

1 1 TRUE 1 2 ALL user 1 4 4 TRUE 2 2
2 1 TRUE 4 3 ALL user 4 1 1 FALSE 0 0
3 2 TRUE 1 2 UPDATE user 1 4 4 TRUE 2 2
4 2 TRUE 4 3 UPDATE user 4 1 1 FALSE 0 0
5 3 TRUE 1 2 SELECT user 1 4 4 TRUE 2 2
6 3 TRUE 4 3 SELECT user 4 1 1 FALSE 0 0
7 4 TRUE 1 2 INSERT user 1 4 4 TRUE 2 2
8 4 TRUE 4 3 INSERT user 4 1 1 FALSE 0 0
9 5 TRUE 1 2 DELETE user 1 4 4 TRUE 2 2
10 5 TRUE 4 3 DELETE user 4 1 1 FALSE 0 0

.
37 19 FALSE 1 2 DELETE user 3 1 1 FALSE 0 1
38 19 FALSE 4 3 DELETE user 2 4 4 FALSE 2 1
39 20 FALSE 1 2 DELETE role 3 1 1 FALSE 1 1
40 20 FALSE 4 3 DELETE role 2 4 4 FALSE 2 2

9

Page 9

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 17

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Test Driver Generation

• Test drivers typically perform the following functions:

– Initialize the system under test

– Set system outputs to value other than expected

– Inject the test inputs

– Execute the test

– Retrieve and store test outputs

• General algorithm is encoded into test driver schema

• Mappings used to associate modeled objects with implementation
objects or component interfaces

• Test driver generator combines test vectors, schema, and
mappings to build test driver

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 18

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Database System

Elements of a Test Driver

Retrieve
Outputs

Load
Inputs

Test Vectors

Algorithmic pattern

Test
Inputs

Global init;
Forall tests

init target;
set inputs;
execute SUT;
get outputs;
store output;

endforall

Capability
Under Test

Implementation
to Specification

Mapping

Implementation must suit the
general algorithmic pattern(s) used

to automate driver generation

Test
Driver

Test Driver Schema

Actual
Outputs

SQL/ODBC/JDBC

10

Page 10

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 19

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Test Drivers

• Verification model composed of SCR model and one or more
environment mappings

– Verification modeling is best performed in terms of
system/component interfaces and specifications

– Interfaces include SQL language, as well as application program
interfaces (APIs)

– An environment mapping contains the object mappings and schema

• Phase I - generated test drivers for Java application (not
discussed here)

• Phase II - generated test drivers using Phase I model for targets:

– Interbase 6.0 driven with Perl test driver using ODBC interface

– Oracle 8.0.5 driven with Java test driver with JDBC interface

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 20

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Developing Verification Models
• Verification model is refinement of requirements defined in terms

of system interfaces

Verification Models

Verification
Engineers

Database
Developer System

Tests and
Test Drivers

Test
Results

T-VECscr2tvecSCR

Interfaces

SCR
model

ISO/IEC 15408
Security Target

• Java - GUI
• Java - JDBC- Oracle
• Perl - ODBC - Oracle and Interbase

Env 1.
map

schema

11

Page 11

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 21

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Schema Defines Testing Pattern

• Global initialization

– Logon as system, creates table space, users, assigns roles, etc.

• For each vector

– Set inputs

– Setup database (initialize tables, roles, granted privileges)

– Call method for performing operation (e.g., grantObjPriv,
revokeObjPriv, grantSysPriv, grantRole)

– Perform operation

– Test operation

– Access system tables to check for the valid privileges

– Clean-up

– Remove privilege, roles, etc.

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 22

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Execution Trace of Test Execution
• Prior to Line 1, global initialization,

creates uses, and table space

• Line 2, user u1 logs on, drops roles,
create tables (tab1 – tab4) with initial
values of 1 through 4.

• Line 26, 27 u1 creates role1 and
role2 (however not used in this test)

• Line 29 user u1 grants ALL on tab4
to user u2 with GRANT OPTIONS

• Lines 30, 31, user u2 logs on and
updates tab4 values to a value of 0

• Line 32-35, the test operation
performs a logon for SYSDBA and
performs a SELECT from System
Tables (RDB$USER_PRIVILEGES)
to determine if values in tab4 have
been modified - outputs privilege
settings

1. Test Vector #1
2. Logon User -> u1
3. Executed SQL -> DROP ROLE role1
4. Executed SQL -> DROP ROLE role2
5. Executed SQL -> CREATE TABLE tab1 (ID INTEGER)
6. Executed SQL -> INSERT INTO tab1 (ID) VALUES (1)
7. Executed SQL -> INSERT INTO tab1 (ID) VALUES (2)
8. Executed SQL -> INSERT INTO tab1 (ID) VALUES (3)
9. Executed SQL -> INSERT INTO tab1 (ID) VALUES (4)
10. Executed SQL -> CREATE TABLE tab2 (ID INTEGER)
11. Executed SQL -> INSERT INTO tab2 (ID) VALUES (1)
12. Executed SQL -> INSERT INTO tab2 (ID) VALUES (2)
13. Executed SQL -> INSERT INTO tab2 (ID) VALUES (3)
14. Executed SQL -> INSERT INTO tab2 (ID) VALUES (4)
15. Executed SQL -> CREATE TABLE tab3 (ID INTEGER)
16. Executed SQL -> INSERT INTO tab3 (ID) VALUES (1)
17. Executed SQL -> INSERT INTO tab3 (ID) VALUES (2)
18. Executed SQL -> INSERT INTO tab3 (ID) VALUES (3)
19. Executed SQL -> INSERT INTO tab3 (ID) VALUES (4)
20. Executed SQL -> CREATE TABLE tab4 (ID INTEGER)
21. Executed SQL -> INSERT INTO tab4 (ID) VALUES (1)
22. Executed SQL -> INSERT INTO tab4 (ID) VALUES (2)
23. Executed SQL -> INSERT INTO tab4 (ID) VALUES (3)
24. Executed SQL -> INSERT INTO tab4 (ID) VALUES (4)
25. Attempting to create roles.
26. Executed SQL -> CREATE ROLE role1
27. Executed SQL -> CREATE ROLE role2
28. Logon User -> u1
29. Executed SQL -> GRANT ALL ON tab4 TO u2 WITH GRANT OPTION
30. Logon User -> u2
31. Executed SQL -> UPDATE tab4 SET ID = 0
32. Logon User -> SYSDBA
33. Executed SQL -> SELECT * FROM RDB$USER_PRIVILEGES
34. INSERT->1 REPLACE->1 SELECT->1 DELETE->1 UPDATE->1
35. Grant ALL -> Pass

12

Page 12

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 23

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Other Applications
• Industry applications: flight navigation, guidance, autopilot logic,

display systems, flight management and control laws, airborne
traffic and collision avoidance

• Demonstrated to work with critical applications like telemetry
communication, and mode switching logic for cardiac rhythm
management devices

• Automated test driver generation supports standard languages
(e.g., C, C++, Java, Ada, Perl, PL/I, SQL),as well as proprietary
languages, COTS test injection products, and test environments.

• Non-critical applications like workstation-based Java applications

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 24

SOFTWARE
PRODUCTIVITY
CONSORTIUM

08/16/2000Chart No/11 Copyright 2000 by Lockheed Martin
SAFFORD 05 TEST

Summary and Next Step
• Better quality requirements for design and implementation help

eliminate rework in those phases as well as during test
• Verification modeling can reduce the time normally spent in

verification test planning by up to 50%
• Test generation from a verification model can eliminate up to

90% of the manual test creation and debugging effort
• Both the number of test cases and the phasing of their

execution can be optimized, eliminating test redundancy
• A known level of requirements coverage can be planned, and

measured during test execution

LM Aero has implemented this process,
and results are compelling

08/16/2000Chart No/11 Copyright 2000 by Lockheed Martin
SAFFORD 05 TEST

Summary and Next Step
• Better quality requirements for design and implementation help

eliminate rework in those phases as well as during test
• Verification modeling can reduce the time normally spent in

verification test planning by up to 50%
• Test generation from a verification model can eliminate up to

90% of the manual test creation and debugging effort
• Both the number of test cases and the phasing of their

execution can be optimized, eliminating test redundancy
• A known level of requirements coverage can be planned, and

measured during test execution

LM Aero has implemented this process,
and results are compelling

Slide from Ed Safford’s STC `2000 presentation, used with permission

13

Page 13

Copyright © 2001, T-VEC Technologies, Inc. Software Productivity Consortium, NFP. All rights reserved. 25

SOFTWARE
PRODUCTIVITY
CONSORTIUM

Summary

• NIST and sponsors cite cost and effort for security functional
testing as a large and growing problem

• Assessment of model-based approach performed against security
requirements for Oracle Security Target

• Security specifications modeled and tools used to automatically
generate test vectors and test drivers

– Test drivers developed for three environments: Java application, Perl
and ODBC for Interbase, and Java and JDBC for Oracle

• Tools continue to be evolved for other modeling approaches:
functional, OO-UML, control systems and hybrids

• Additional security models being developed for: audit generation,
security management, identification & authentication, and session
management

Copyright © 2001, T-VEC Technologies, Inc. All rights reserved.

Model-based Approach to Security Test Automation
Mark Blackburn, Robert Busser, Aaron Nauman, T-VEC

Ramaswamy Chandramouli, National Institute of Standards and Technology

Security functional testing is a costly activity typically performed by security
evaluation laboratories. These laboratories have struggled to keep pace with
increasing demand to test numerous product variations. This paper
summarizes the results of applying a model-based approach to automate
functional security testing. The approach involves developing models of
security requirements as the basis for automatic test vector and test driver
generation. In the application, security properties were modeled and the
resulting tests were executed against Oracle and Interbase database engines
through a fully automated process. The findings indicate the approach, proven
successful in a variety of other application domains, provides a cost-effective
solution to functional security testing.

1 Introduction

Software security is a software quality issue that continues to grow in importance as software
systems are used to manage continually increasing amounts of critical corporate and personal
information. The use of the Internet to manage and exchange this data on a daily basis has
heightened the need for software architectures, especially internet-based architectures, which are
secure. At the same time, the shortened development and deployment cycles for software make it
difficult to conduct adequate security functional testing to verify whether software systems exhibit
the expected security behavior.

Presently, developing and executing security functional tests is time-consuming and costly.
Security evaluation laboratories are struggling to meet demands to test many product variations
produced in short release cycles. The situation calls for improving the economics of security
functional testing. As a result, the National Institute of Standards and Technology (NIST) initiated
a program to develop methods and tools for automating security functional testing [Cha99].
Security Functional Testing verifies whether the behavior of a product or system conforms to the
security features claimed by the manufacturer (i.e., the product does what it is supposed to do).

NIST and its sponsors initiated a multi-phase investigation to assess the use of a model-based
approach to automate security functional testing. Several model-based approaches were accessed
as part of the investigation. The approach described in this paper succeeded where others failed to
provide end-to-end support including model development, model analysis, automated test
generation, automated test execution in multiple environments, and results analysis. The
assessment of this approach has demonstrated the feasibility of modeling security requirements to
automate testing for various products and target platforms. NIST believes this should improve the
economics of security functional testing for security evaluation laboratories, as well as commercial
organizations that perform security testing.

1.1 Organization of Paper

Section 2 details NIST’s vision for a methodology and toolkit to support automated security
functional testing. Section 3 provides an overview of a methodology and toolkit that have been

Copyright © 2001, T-VEC Technologies, Inc. All rights reserved.

2

effective in satisfying NIST’s objectives and that form the basis of this report. Section 4 uses an
example to illustrate the development of Security Verification Models to support test automation.
Section 5 summarizes the activity of model analysis and test vector generation. Section 6 briefly
discusses aspects of test driver generation and test execution.

2 NIST Requirements For Automated Security Functional Testing

NIST wishes to develop a methodology and a supporting toolkit to automate the process of
Security Functional Testing. This automation will help security evaluation laboratories meet the
demand for product testing. The automation approach is based on expressing a product’s security
functional requirements in a model and using the supporting toolkit to automatically generate tests
needed to verify security properties. A model of system security properties is referred to as a
Security Verification Model. The supporting toolkit processes these models to:

• Check the specification for contradictions, requirement defects, feature interaction
problems, and circular definitions. This analysis ensures that the underlying security
functional requirements are consistent and reasonable as a basis for testing.

• Generate test cases from the security requirements specifications expressed in the
models. These test cases must be effective in demonstrating an implementation
satisfies the security requirements. Ideally, the test cases should include test inputs,
expected behavior or outputs, and an association between each test and the
specification from which it was derived. Test cases of this form are referred to as test
vectors to distinguish them from generated tests cases that include only test inputs.

• Check for requirement-to-test traceability and report whether each requirement has an
associated test.

As a single fault in security functionality can annul the entire system’s security behavior, it is
critical that the model representation of the security requirements be complete. The techniques for
developing tests to verify the security properties must also provide 100 percent test coverage of
the security properties. As system security behavior is often a product of both trusted and
untrusted system component, complete testing minimizes the risk of using untrusted components
in a system. This risk minimization is an additional objective of the NIST effort.

3 Methodology and Toolkit for Automating Security Functional Testing

The basis for the methodology and toolkit described in this paper is a model-based test automation
approach used successfully in various application domains since1996. The approach is referred to
as the Test Automation Framework (TAF). The TAF integrates various modeling tools, like the
SCRtool for modeling system and software requirements with the test automation tool T-VEC.* In
this work, that TAF approach was tailored to automate security functional testing through Security
Verification Models. The result is a set of guidelines for modeling security requirements. The
assessment was based on modeling security requirements in order to automate testing in three
distinct environments, as shown in Figure 1. The specific activities carried out in the assessment
include:

* The Software Productivity Consortium develops TAF translators and methods. The Software Cost Reduction

(SCR) method and associated modeling tool, SCRtool, were developed by the Naval Research Laboratory
[HJL96]. The T-VEC Test Vector Generation System is commercially available from T-VEC Technologies, Inc.

Copyright © 2001, T-VEC Technologies, Inc. All rights reserved.

3

• Model security requirements in SCR specifications using the SCRtool

• Translate SCR specifications into T-VEC test specification using an existing SCR-to-
T-VEC model translator [BBF97; Bla98]

• Generate test vectors from the transformed SCR specification

• Develop test driver schemas for various target test environments

• Generate test drivers for a Java-based application

• Generate Perl test drivers for an SQL database using an ODBC database interface

• Generate Java test drivers for an SQL database using a JDBC database interface

ISO/IEC 15408
Security Target

scr2tvec
Model

Translator
SCR Security

Verification Model

T-VEC Test
Specification

T-VEC
Test Vector
Generator

Test Vectors

T-VEC
Test Driver
Generator

Test Driver
Schemas

Figure 1. Process Flow Through the Tools

Figure 1 illustrates the process for automated security functional testing used in the assessment.
First, security properties from ISO/IEC 15408 Security Target⊥ specification for Oracle 8
Database Server were modeled in SCR with the SCRtool. An SCR-to-T-VEC translator,
developed by the Software Productivity Consortium and T-VEC, was used to translate the SCR
model to a T-VEC test specification. T-VEC tools were then used on the T-VEC representation of
the security properties to automatically generate test vectors (i.e., test cases with test input values,
expected output values and traceability information) and requirement-to-test coverage metrics.
The T-VEC test driver generator was used in the assessment to automatically generate test drivers
to execute tests against a Java application designed to demonstrate the security properties, an
Interbase 6.0 database server and an Oracle 8i database server. These tests were executed and the

⊥ An ISO/IEC 15408 Security Target is a document that contains a set of Security Functional Requirements,

corresponding implementation features and a set of Security Assurance Requirements written in a format that
corresponds to an international standard.

Copyright © 2001, T-VEC Technologies, Inc. All rights reserved.

4

results were compared with the expected results from the test vectors to determine each product’s
compliance to the security properties.1

The primary effort in customizing the TAF approach to support security functional testing
involved developing heuristics for modeling security properties with SCR and finding techniques
for developing test driver schemas to automate execution of SQL statements.

4 Security Verification Model

This section describes the development of a security verification model using the SCRtool through
a process of requirement clarification. First, basic SCR modeling concepts are described. This is
followed by a description of a security requirement that is then refined into a verification model.

4.1 SCR Modeling Concepts

SCR is a table-based modeling approach, as shown in Figure 2 that models system and software
requirements. SCR represents system inputs as monitored variables, system outputs as
controlled variables and intermediate values as term variables. Variables are defined as
primitive types (e.g., Integers, Float, Boolean, Enumeration) or as user-defined types. Behavior is
defined using a tabular approach relating four model elements: modes, conditions, events, and
terms. A mode class is a state machine, where system states are called system modes and the
transitions of the state machine are characterized by guarded events. A condition is a predicate
characterizing a system state. An event occurs when any system entity changes value. Terms and
controlled variables are functions of input variables, modes, or other terms. Their values are
defined in the model through event or condition tables.

4.2 Security Specifications

The security requirements used in the assessment are defined in the Oracle8 Security Target
document [Ora00]. This document describes the security functionality (behavior) claimed by
Oracle and is submitted along with the product for security evaluation. A subset of the security
requirements, referred to as Granting and Revoking Privileges and Roles, was modeled in the
assessment. The test vectors derived from the model were used to generate test drivers for two
different database servers, Interbase 6.0 and the Oracle 8.0.5.

The following sections describe the process of modeling the Granting Object Privilege (GOP)
requirement, which is a part of the Granting and Revoking Privileges and Roles functionality. The
GOP is defined in the Oracle8 Security Target as:

Granting Object Privilege Capability (GOP) - A normal user (the grantor) can grant an object
privilege to another user, role or PUBLIC (the grantee) only if:

a) the grantor is the owner of the object; or

b) the grantor has been granted the object privilege with the GRANT OPTION.

A role represents a group of related users. The keyword PUBLIC represents all users.

1 The process of SCR model translation, test vector generation, test driver generation, and execution against the

Interbase database using Perl and ODBC completed in 2 minutes and 54 second running on a 400 MHz Windows
NT machine with 256 KB of memory.

Copyright © 2001, T-VEC Technologies, Inc. All rights reserved.

5

Data Types

Requirement
Modeling and
Clarification

Variables

ISO/IEC 15408
Security Target

Behavior
State Machines
(Mode Table) Events Conditions

Figure 2. SCR Modeling Constructs

4.3 Requirement Analysis

Developing SCR models requires identifying the system monitored (input) and controlled (output)
variables, and defining the relationships between them. This process is typically iterative. It
involves defining the variables, the data types associated with the variables, and the tables that
define relationships between the variables. A useful guideline for developing SCR models is to
work backwards from each output to make the process goal-oriented. The value of each output is
defined in terms of the system inputs. Term variables are introduced whenever intermediate values
are necessary or useful. The relationships between the inputs and outputs are refined until
complete enough to support both manual review and automated analysis. Manual review
processes can validate the correctness of the model and completeness with respect to the textual
requirements, while automated analysis can identify inconsistencies in the model.

Breaking the GOP requirement into clauses supports identifying variables and relationships. Table
1 contains elaboration and clarification of the GOP requirements to support modeling. In addition,
it identifies the variables and relationships associated with each clause.

Copyright © 2001, T-VEC Technologies, Inc. All rights reserved.

6

Table 1. Variables and Relations

Requirement Statement/Clause Variables Relations
grantor
grantee
object
privilege
grantee type
grantor
grantee
object
privilege
grantor
grantee
object
privilege
object owner
GRANT OPTION
granted object

A normal user (the grantor) can grant an object privilege to
another user, role or PUBLIC (the grantee)

GOP (b) – a grantor (that does not own the object) can grant
object privileges to the grantee if the object owner previously
granted object privilege to the grantor with the GRANT
OPTION

GOP (a) - a grantor can grant an object privilege to a grantee
if the grantor owns the object

grantee constraints
(user, role or PUBLIC)

grantor owns object

granted object privilege

From the analysis above, the monitored (input) variables identified in the system can be refined
into the following set:

• privName – type of object privilege that can be granted (ALL, SELECT, INSERT,
UPDATE, DELETE, etc)

• grantor – user granting an object privilege

• grantee – user being granted an object privilege

• granteeType – type of grantee for a particular grant operation as defined in the first
sentence of the GOP textual requirement; grantee is a user, role, or PUBLIC

• selectedObj – object selected for a particular grant operation

• grantedObject – object for which grant privileges have previously been granted
(identified through GRANT OPTION)

• objOwner – owner of the object

Two other variables are related to the concept of a role; a role is a type of grantee as defined in the
first sentence of the GOP textual requirement. The related variables include:

• roleID – role being granted an object privilege

• granteeRoleID – role of the grantee (if any) being granted an object privilege

There can be one or more roles defined and known by the database system. The variable roleID is
used to refer to a specific role known within the system, and used in various test cases. The
granteeRoleID is a specific role assigned to the grantee.

The GOP requirements specify the conditions when privileges are granted for an object. An SCR
model of these requirements should ensure that when all model conditions are satisfied, the output
indicates the privilege is granted. This output is modeled as the Boolean controlled variable:

• grantedObjPriv– the grant operation executes successfully (TRUE) or fails (FALSE)

Copyright © 2001, T-VEC Technologies, Inc. All rights reserved.

7

4.3.1 Modeling Variables and Data Types

Variables are modeled in the SCRtool through the Variable Dictionary as shown in Figure 3. For
example, the grantee is a monitored (input) variable (MON) of type userIDType.

Figure 3. Variables Modeled in SCR

User-defined types are model through the Type Dictionary. Data types can be numeric (Integer
and Float), Boolean or Enumerated. Figure 4 shows some of the data types used in the GOP
model. The type objectPrivType is an enumerated type whose values define valid privileges
associated with an object. The type objectIDType is defined as an Integer with a range of 0 to 5.
The SCRtool also has a Constant Dictionary for defining constants.

Figure 4. Data Types Modeled in SCR

4.4 Modeling Security Functional Requirements

Once the system’s data is defined, its behavior can be modeled. In SCR, this involves defining the
values of the controlled (output) variables through condition, event, or mode tables. These tables
define the value of a variable in terms of monitored (input) variables, terms (intermediate)
variables, and mode (state) machines. Figure 5 provides a representation of the GOP model. The
output value, grantObjPriv, is defined by a condition table referencing three other terms. The
requirement GOP(a) is directly associated with the term grantor_owns_object and requirement
GOP(b) is directly associated with the term granted_object_privileges. The term

Copyright © 2001, T-VEC Technologies, Inc. All rights reserved.

8

grantee_constraints is derived from the first sentence in GOP that defines a grantee as a user, role
or PUBLIC.

grantObjPriv

Monitored
(Input)

Variables

grantObjPriv

Controlled
(Output)
Variables

grantee_constraints

granted_object_privileges

grantor_owns_object

objOwner

grantee ,
selectedObj,
grantedObject

grantor

granteeType, granteeRoleID, roleID

privName

Key

Condition
Table
(relation)

Figure 5. Model Structure for Grant Object Privilege

A value of a term variable is defined through a condition or event table as an intermediate value.
Terms can be referenced as part of the constraints or value calculations of other terms or
controlled variables. They reduce the complexity of the model by simplifying expressions and
eliminating redundancies. The following sections describe the terms used in defining the value of
grantObjPriv.

4.4.1 Modeling Relation grantor_owns_object

The term grantor_owns_object defines the conditions under which the grantor owns the object for
which privileges are being granted. When these conditions are satisfied, the value of
grantor_owns_object is TRUE. The condition table for grantor_owns_object is shown in Table 2.
It specifies that the term is TRUE (grantor owns the object) when grantor = objOwner, otherwise,
the term is FALSE.

Table 2. Table for Relation grantor_owns_object

Table Name
grantor = objOwner NOT(grantor = objOwner)

grantor_owns_object = TRUE FALSE

Condition

The conditions within a condition table can include:

- input or term variables
- arithmetic operators (+,-,*,etc.)
- relational operators (=, !=, >, <, etc.)
- logical operators (AND, OR, or NOT)

Copyright © 2001, T-VEC Technologies, Inc. All rights reserved.

9

4.4.2 Modeling Relation grantee_constraints

The first clause of the GOP requirement (See Table 1) specifies that a user, role, or PUBLIC can
be granted privileges. These classes of grantees are defined by granteeType. If a role is being
granted privileges, the role is identified by roleID. A user can be associated with a particular role,
which is represented by the monitored variable granteeRoleID. Table 3 shows the term
grantee_constraints that defines the relationships between the granteeType, granteeRoleID, and
roleID. There are three cases:

1. If the granteeType is user, then the grantee is a user. To ensure that the grantee is granted
privileges as a user and not through the grantee’s role, the model specifies that the roleID
must not equal the granteeRoleID.

2. If the granteeType is role, then the roleID must be valid, and the granteeRoleID must
equal the roleID.

3. If the granteeType is PUBLIC, then the other variables can take on any value (i.e., don’t
care situation)

Table 3. Table for Relation grantee_constraints

Table Name
(granteeType = user AND granteeRoleID != roleID)
OR
(granteeType = role
 AND
 roleID != NULL
 AND
 granteeRoleID = roleID)
OR
(granteeType = PUBLIC) FALSE

grantee_constraints = TRUE FALSE

Condition

The grantee_constraints defines condition on variables that must be TRUE for any grant operation
to succeed; therefore, conditions for grantee_constraints are defined when the output is TRUE.

4.4.3 Modeling Relation granted_object_privileges

The GOP(b) requirement states that if a user wishes to grant a privilege to an object and does not
own the object, the user must have been granted the privilege with the GRANT OPTION. The
term granted_object_privileges shown in Table 4 defines these conditions. The term is TRUE
when:

1. the selected object is the object for which the privilege was granted (i.e., the selectedObj is
the grantedObject).

2. the privilege was granted with the option to grant others the privilege (GRANT_OPTION
is TRUE)

3. the owner of the object is not the grantor
4. the owner of the object is not the grantee

Copyright © 2001, T-VEC Technologies, Inc. All rights reserved.

10

Table 4. Table for Relation granted_object_privilege

Table Name
selectedObj = grantedObject
AND
GRANT_OPTION
AND
objOwner != grantor
AND
objOwner != grantee

selectedObj = grantedObject
AND
NOT(GRANT_OPTION)
AND
objOwner != grantor
AND
objOwner != grantee

granted_object_privileges = TRUE FALSE

Condition

The FALSE condition for granted_object_privilege requires similar conditions to be TRUE to
establish the relationships between the selectedObj, grantedObj, grantor, and grantee, but forces
the GRANT_OPTION to be FALSE, because the GRANT_OPTION is the distinguishing
condition between these cases.

4.4.4 Modeling Relation grantObjPriv

The definition of grantObjPriv, shown in Table 5, completes the model for the GOP requirement.
Its definition includes references to the term tables previously described, as well as additional
constraints on monitored variables. The two potential values for grantObjPriv include:

• grantObjPriv = TRUE – test case conditions are such that the privilege should be
granted

• grantObjPriv = FALSE - test case conditions are such that the privilege should not be
granted

Table 5. Condition Table for Grant Object Privilege (grantObjPriv)

GOP(b)

GOP(a)

Test
Constraints

Table Name
(grantor_owns_object
OR
 (granted_object_privileges
 AND
 grantee_constraints)
)
AND
(grantor != grantee)
AND
(granteeType = user
 OR granteeType = role
 OR granteeType = PUBLIC
)
AND
(Priv_Name = ALL
 OR Priv_Name = UPDATE
 OR Priv_Name = SELECT
 OR Priv_Name = INSERT
 OR Priv_Name = DELETE
)

NOT(grantor_owns_object)
AND
(NOT(granted_object_privileges)
 AND
 grantee_constraints
)
AND
(grantor != grantee)
AND
(granteeType = user
 OR granteeType = role
 OR granteeType = PUBLIC
)
AND
(Priv_Name = ALL
 OR Priv_Name = UPDATE
 OR Priv_Name = SELECT
 OR Priv_Name = INSERT
 OR Priv_Name = DELETE
)

grantObjPriv = TRUE FALSE

Condition

Copyright © 2001, T-VEC Technologies, Inc. All rights reserved.

11

The conditions are divided into three groups to support explanation. The groups include:

1. GOP(a) – grantor can grant privilege to a grantee because the grantor owns the object
2. GOP(b) – grantor can grant privilege to a grantee because the grantor has been granted

object privileges with GRANT OPTION
3. Test Constraints – additional conditions that ensure that the GOP(a) and GOP(b)

conditions are fully exercised during test generation. The conditions ensure the following
situations are tested:

- grantor is not the grantee
- all possible combinations of the granteeType (user, role, or PUBLIC)
- all possible privileges on operations (ALL, UPDATE, SELECT, etc.)

The differences between the TRUE and FALSE case for grantObjPriv is that the TRUE case
establishes the required conditions:

1. the grantor_owns_object relationship that is associated with GOP(a), where the grantor
owns the object, or

2. granted_object_privileges and grantee_constraints – that is associated with GOP(b)
3. Test constraints force all combinations to be applied

The FALSE case establishes the conditions under which the grant operation fails:

1. grantor is not the object owner (i.e., NOT(grantor_owns_object))
2. grantor has not been granted object privilege (i.e., NOT(granted_object_privilege))
3. the Test Constraints force complete test coverage of the grant types and privileges

5 Model Analysis and Test Vector Generation

Modeling and test vector generation is typically performed iteratively as the model is developed.
The SCRtool provides a number of checks on the model to ensure that individual tables are
consistent and complete. The SCR-to-T-VEC model translator and T-VEC tools perform
additional checks that identify cross-table inconsistencies and contradictions. These model
analysis capabilities support refining the model by identifying and correcting model defects.

The SCR-to-T-VEC model translator transforms each SCR table into a T-VEC subsystem. The T-
VEC compiler converts each subsystem into a set of primitive test specifications that are used as
the basis of test vector generation [BBF97]. The translated and compiled version of the
grantObjPriv requirement includes 20 test specifications. The test vector generator attempts to
determine two test vectors for each test specification based on a test selection strategy derived
from the concept of domain testing theory2. Table 6 shows a tabular representation of the 40 test
vectors produced for grantObjPriv. The test vectors include 12 monitored variables and 6 term
variables (not shown in the table). The test values shown in Table 6 reflect how the test generator
systematically selects low-bound and high-bound test points at the domain boundaries. The input

2 White and Cohen [WC80] proposed domain testing theory as a strategy for selecting test points to reveal domain

errors. It is based on the premise that if there is no coincidental correctness, then test cases that localize the
boundaries of domains with arbitrarily high precision are sufficient to test all the points in the domain. This
approach produces test input values that satisfy the conditions of the test specification and that localize the decisions
in the specification to maximize defect detection. Once a set of test inputs are selected that satisfy the specification
constraints, these inputs are used to derive the value of the output.

Copyright © 2001, T-VEC Technologies, Inc. All rights reserved.

12

values ranges and constraints (e.g., relational operators) of the specification define the domain
boundaries. For example, vector # 1, grantor has id = 1, grantee has id = 2, is based on low-bound
values of the data type range of userIDType, while vector # 2, grantor has id = 4, grantee has id =
3, is based on the high-bound for the data type range. In addition, the test generator creates a test
for each value of privName and granteeType.

Table 6. Test Vectors for grantObjPriv

Vector # DCP grantObjPriv grantor grantee privName
grantee

Type objOwner
selected

Obj
granted
Object

GRANT_
OPTION

grantee
RoleID roleID

1 1 TRUE 1 2 ALL user 1 4 4 TRUE 2 2
2 1 TRUE 4 3 ALL user 4 1 1 FALSE 0 0
3 2 TRUE 1 2 UPDATE user 1 4 4 TRUE 2 2
4 2 TRUE 4 3 UPDATE user 4 1 1 FALSE 0 0
5 3 TRUE 1 2 SELECT user 1 4 4 TRUE 2 2
6 3 TRUE 4 3 SELECT user 4 1 1 FALSE 0 0
7 4 TRUE 1 2 INSERT user 1 4 4 TRUE 2 2
8 4 TRUE 4 3 INSERT user 4 1 1 FALSE 0 0
9 5 TRUE 1 2 DELETE user 1 4 4 TRUE 2 2
10 5 TRUE 4 3 DELETE user 4 1 1 FALSE 0 0

�����
37 19 FALSE 1 2 DELETE user 3 1 1 FALSE 0 1
38 19 FALSE 4 3 DELETE user 2 4 4 FALSE 2 1
39 20 FALSE 1 2 DELETE role 3 1 1 FALSE 1 1
40 20 FALSE 4 3 DELETE role 2 4 4 FALSE 2 2

Vector # DCP grantObjPriv grantor grantee privName
grantee

Type objOwner
selected

Obj
granted
Object

GRANT_
OPTION

grantee
RoleID roleID

1 1 TRUE 1 2 ALL user 1 4 4 TRUE 2 2
2 1 TRUE 4 3 ALL user 4 1 1 FALSE 0 0
3 2 TRUE 1 2 UPDATE user 1 4 4 TRUE 2 2
4 2 TRUE 4 3 UPDATE user 4 1 1 FALSE 0 0
5 3 TRUE 1 2 SELECT user 1 4 4 TRUE 2 2
6 3 TRUE 4 3 SELECT user 4 1 1 FALSE 0 0
7 4 TRUE 1 2 INSERT user 1 4 4 TRUE 2 2
8 4 TRUE 4 3 INSERT user 4 1 1 FALSE 0 0
9 5 TRUE 1 2 DELETE user 1 4 4 TRUE 2 2
10 5 TRUE 4 3 DELETE user 4 1 1 FALSE 0 0

�����
37 19 FALSE 1 2 DELETE user 3 1 1 FALSE 0 1
38 19 FALSE 4 3 DELETE user 2 4 4 FALSE 2 1
39 20 FALSE 1 2 DELETE role 3 1 1 FALSE 1 1
40 20 FALSE 4 3 DELETE role 2 4 4 FALSE 2 2

The number of vectors generated and the specific test values depend on the test vector generation
mode, test input selection heuristics, and the satisfiability of the test specification conditions. A
test specification is considered satisfiable, if a set of input values exist that satisfy all conditions
and result in a valid expected output value. Unsatisfiable test specifications typically result from
specification errors (e.g., requirement defects).

6 Test Driver Generation and Execution

The last step in the process involves transforming the tests into a test driver that can be executed
against a security target, like the Oracle database. NIST stated that the capability to transform
models into test drivers for a variety of platforms is an important discriminating capability of this
toolset.

The test driver generator combines test driver schemas, user-defined object mappings and test
vectors to produce test drivers as illustrated in Figure 6. The test driver schema encodes generic
descriptions for test execution based on an algorithmic pattern that is applicable to the specific test
environment. The object mappings relate objects in the model to the objects in the implementation
or component interfaces. The test driver generator creates test drivers by repeating the execution
steps defined in the schema for each test vector. There are typically four primary steps for
executing each test case:

• Set the value of the test output to some value other than what is expected

• Set the values of the test inputs

• Cause execution of the test

• Retrieve and save the results of the test execution

Copyright © 2001, T-VEC Technologies, Inc. All rights reserved.

13

Test driver schemas provide a description of how to accomplish each of these steps for a specific
testing environment using a small language that can access information about the specification
model, data objects, types, ranges, test values, and user customizable information. A schema is
also used to describe the form of expected outputs to support test execution and results analysis.

Database System

Retrieve
Outputs

Load
Inputs

Test Vectors

Algorithmic pattern

Test
Inputs

Global init;
Forall tests

init target;
set inputs;
execute SUT;
get outputs;
store output;

endforall

Capability
Under Test

Implementation
to Specification

Mapping

Implementation must suit the
general algorithmic pattern(s) used

to automate driver generation

Test
Driver

Test Driver Schema

Actual
Outputs

SQL/ODBC/JDBC

Figure 6. Elements of a Test Driver

Three different test driver schemas and object mapping descriptions were used with the
grantObjPriv model to test three different applications. First, a GUI-based Java application was
developed to illustrate how test drivers could be injected into an application that has a graphical
user interface. Next test drivers were generated for the InterBase 6.0, and Oracle 8 database
engine. The Interbase test driver was developed in Perl using ODBC interface to issue SQL
commands. The Oracle test driver was developed in both Perl and Java. The Java test drivers used
JDBC to communicate to the database.

7 Summary and Future Work

The TAF approach, customized with specific guidelines for modeling security properties and
developing test drivers for databases, satisfies NIST’s requirements for an automated model-based
approach to automated Security Functional Testing. In the assessment of the approach, security
requirements for the Oracle8 Security Target were modeled using the SCRtool. These models
were then used as the basis of automated test vector and test driver generation with the T-VEC
toolset for multiple product applications and test environments. This approach reduces the time
and effort associated with security testing, while increasing the level of test coverage. NIST cited
the approach’s ability to support driver generation for a variety of platforms as a key
discriminator. These results demonstrate the feasibility of using model-based test automation to
improve the economies of security functional testing. Specifically, the TAF approach is applicable

Copyright © 2001, T-VEC Technologies, Inc. All rights reserved.

14

to security evaluation laboratories and other commercial organizations that need a cost-effective
approach for performing security functional testing.

7.1 Other Applications and Results

The core capabilities underlying this approach were developed in the late 1980s and proven
through use in support of FAA certifications for flight critical avionics systems [BB96]. Statezni
described how the approach supports requirement-based test coverage mandated by the FAA with
significant life cycle cost savings [Sta99; Sta2000]. Safford presented results stating the approach
reduced cost, effort, and cycle-time by eliminating requirement defects and automating testing
[Saf2000]. Safford’s presentation summarized the benefits:

• Better quality requirements for design and implementation help eliminate rework in
those phases as well as during test

• Verification modeling can reduce the time normally spent in verification test planning
by up to 50 percent

• Test generation from a verification model can eliminate up to 90 percent of the
manual test creation and debugging effort

• Both the number of test cases and the phasing of their execution can be optimized,
eliminating test redundancy

• A known level of requirements coverage can be planned, and measured during test
execution

The approach and tools described in this paper have been used for modeling and testing system,
software integration, software unit, and some hardware/software integration functionality. It has
been applied to critical applications like telemetry communication for heart monitors, flight
navigation, guidance, autopilot logic, display systems, flight management and control laws,
airborne traffic and collision avoidance. In addition, it has been applied to non-critical applications
such as workstation-based Java applications with GUI user interfaces and database applications.
The approach supports automated test driver generation in a variety of open languages (e.g., C,
C++, Java, Ada, Perl, PL/I, SQL), as well as, proprietary languages, COTS test injection products,
and test environments.

7.2 Future Work

The development team continues to evolve the model translation capabilities to support functional,
object-oriented, control system and hybrid modeling approaches. In addition, the team is involved
in the Object Management Group, UML Action Language Semantics formalization. The team is
also involved in the development of modeling guidelines and training material that help integrate
commercial modeling approaches with verification tools.

As continued support for NIST, additional models for the Oracle Security Target are being
modeled to address the capabilities of: audit generation, security management, identification,
authentication, and session management.

Copyright © 2001, T-VEC Technologies, Inc. All rights reserved.

15

8 References

[BB96] Blackburn, M.R., R.D. Busser, T-VEC: A Tool for Developing Critical System. In
Proceeding of the Eleventh International Conference on Computer Assurance,
Gaithersburg, Maryland, pages 237-249, June, 1996.

 [BBF97] Blackburn, M.R., R.D. Busser, J.S. Fontaine, Automatic Generation of Test Vectors for
SCR-Style Specifications, In Proceeding of the 12th Annual Conference on Computer
Assurance, Gaithersburg, Maryland, pages 54-67, June, 1997.

[Bla98] Blackburn, M. R., Using Models For Test Generation And Analysis, Digital Avionics
System Conference, October, 1998.

[Cha99] Chandramouli R., Methodology for Automated Security Testing”, NIST Request for
Proposal, Nov 1999.

[HJL96] Heitmeyer, C., R. Jeffords, B. Labaw, Automated Consistency Checking of
Requirements Specifications. ACM TOSEM, 5(3):231-261, 1996.

[Ora00] Oracle Corporation, Oracle8 Security Target Release 8.0.5, April, 2000.

[Sta99] Statezni, David, Industrial Application of Model-Based Testing, 16th International
Conference and Exposition on Testing Computer Software, June 14-18, 1999.

[Sta00] Statezni, David. Test Automation Framework, State-based and Signal Flow Examples,
Twelfth Annual Software Technology Conference, 30 April - 5 May 2000.

[Saf00] Safford, Ed, L. Test Automation Framework, State-based and Signal Flow Examples,
Twelfth Annual Software Technology Conference, 30 April - 5 May 2000.

[WC80] White, L.J., E.I. Cohen, A Domain Strategy for Computer Program Testing. IEEE
Transactions on Software Engineering, 6(3):247-257,May, 1980.

QW2001 Paper 4T1

Prof. Warren Harrison
(Portland State University)

A Universal Metrics Repository

Key Points

Benchmarking●

Decision Support●

Empirical Studies●

Presentation Abstract

A neglected aspect of software measurement programs is what will be done with
the metrics once they are collected. As a consequence, databases of metrics
information tend to be developed as an afterthought, with little, if any concessions
to future data needs, or long-term, sustaining metrics collection efforts. A metric
repository should facilitate an on-going metrics collection effort, as well as serving
as the "corporate memory" of past projects, their histories and experiences. Within
this context, four important limitations of contemporary metrics repositories are:
obsolescence; ambiguity; augmentation (or lack, thereof); and focus. In order to
addresses these issues, we have suggested a transformational view of software
development which treats the software development process as a series of artifact
transformations. Each transformation has inputs (artifacts) and produces outputs
(artifacts). The use of this approach supports a very flexible software engineering
metrics repository.

About the Author

Warren Harrison is Professor of Computer Science at Portland State University.
His research interests include both software engineering and internet technologies.
Professor Harrison's software engineering research includes return on investment
for process improvements, software quality assurance, software measurement, and
empirical studies of software engineering. He is an active member of the software
engineering research community, serving as Editor-in-Chief of the Software
Quality Journal and co-EIC with Vic Basili and Lionel Briand of Empirical
Software Engineering, as well as being involved with the organizing committees of
numerous international conferences and workshops each year. His PhD is from
Oregon State University.

1

Copyright (c) 2000-2001 Warren Harrison 1

A Universal Metrics
Repository

A Universal Metrics
Repository

Warren Harrison
Portland State University

and the
Oregon Master of Software Engineering

Quality Week 2001
May 29-June 1, 2001

Copyright (c) 2000-2001 Warren Harrison 2

Using Measurement to
Gain Information

Using Measurement to
Gain Information

➨ Decision-making with none, partial or
complete information

➨ How frequently has an event occurred?
➨ What happened when we took a particular action?
➨ How many resources did we expend?

➨ The specific information needed depends on
the decision to be made

➨ Information needs to be collected and stored
to support decision-making

2

Copyright (c) 2000-2001 Warren Harrison 3

Metrics
Repositories

Metrics
Repositories

➨ A Repository: a place, room, or container
where something is deposited or stored (Merriam-
Webster's Collegiate Dictionary)

➨ A software metrics repository is a collection
of information pertaining to the development
of a software product

➨ Represents the objective corporate memory

Copyright (c) 2000-2001 Warren Harrison 4

Importance of
Metrics Repositories

Importance of
Metrics Repositories

➨ Basili, 1980: “All the data collected on the
project should be stored in a computerized
data base.

➨ Recommendation from the Workshop on
Executive Software Issues (Martin, 1989):
"Software organizations should promptly
implement programs to: Define, collect, store
in databases, analyze, and use process data".

3

Copyright (c) 2000-2001 Warren Harrison 5

Typical Metrics
Repositories

Typical Metrics
Repositories

➨ Most metrics repositories are designed to
store a predetermined set of metrics
➨DACS Productivity Dataset
➨Architecture Research Facility Error

Repository (ARF)
➨NASA/SEL Dataset

Copyright (c) 2000-2001 Warren Harrison 6

Repository
Consolidation

Repository
Consolidation

➨ Electronic repositories allow consolidation of
experiences - if their structure and
representation is compatible

➨ Consolidation facilitates comparison and
makes historical events more significant

➨ Consolidation is problematic - repositories
evolve and become incompatible

4

Copyright (c) 2000-2001 Warren Harrison 7

Evolving
Repositories

Evolving
Repositories

➨ The data collection process is iterative.
➨ The more we learn, the more we know about

what other data we need and how better to
collect it.

➨ As users learn more about the products,
processes and metrics, we should expect the
information they desire to change.

Copyright (c) 2000-2001 Warren Harrison 8

Contemporary
Repositories

Contemporary
Repositories

➨ Obsolescence
➨ Ambiguity
➨ Augmentation
➨ Focus

➨ leads to an inflexible, product-centric view of
software engineering decision-making

5

Copyright (c) 2000-2001 Warren Harrison 9

The Transformational
Process of Software

The Transformational
Process of Software

➨ Software is comprised of artifacts -
specifications, designs, code, etc.

➨ Artifacts are transformed into other artifacts
➨ Artifact transformation consumes resources
➨ We’re interested in recording information

about transformations and the artifacts we
produce

Copyright (c) 2000-2001 Warren Harrison 10

The Transformation
Process

The Transformation
Process

Artifact Artifact’

Resources

6

Copyright (c) 2000-2001 Warren Harrison 11

Information Associated
With Each Transformation

Information Associated
With Each Transformation

• Inputs - the input object(s) - capture quantity
and characteristics

• Outputs - the output object(s) - capture
quantity and characteristics

• Resources - the resources used to perform
the transformation

Copyright (c) 2000-2001 Warren Harrison 12

The Transformation
Process

The Transformation
Process

Artifact Artifact’

Resources
characteristics

characteristics

characteristics

7

Copyright (c) 2000-2001 Warren Harrison 13

A Hierarchy of
Transformations

A Hierarchy of
Transformations

Delivered
Product

R
equirem

ents

Development

Copyright (c) 2000-2001 Warren Harrison 14

Development

A Hierarchy of
Transformations

A Hierarchy of
Transformations

Delivered
ProductDesign Code

R
equirem

ents

8

Copyright (c) 2000-2001 Warren Harrison 15

Transformation
Granularity

Transformation
Granularity

➨ Some efforts will record information about
very coarse transformations

➨ Some efforts will record information about
very fine transformations

➨ May differ between organizations or even
among projects within the same organization

Copyright (c) 2000-2001 Warren Harrison 16

Artifacts/Transformations
as Entities & Relationships
Artifacts/Transformations
as Entities & Relationships

➨ Entities and Entity Properties - "things" you
want to maintain information about - use
properties to characterize such a "thing".

➨ Relationships and Relationship Properties -
represent relationships between entities -
properties are used to characterize the
relationship.

9

Copyright (c) 2000-2001 Warren Harrison 17

A Transformation Based
Repository

A Transformation Based
Repository

Event

Artifact

Characteristic

TransformsTo

Consumes

Posseses

Copyright (c) 2000-2001 Warren Harrison 18

Representing
Transformations

Representing
Transformations

➨ Represent artifacts as entities
➨ Represent transformations as

relationships

Requirement TransformsTo Tested
Program

10

Copyright (c) 2000-2001 Warren Harrison 19

Representing Artifact
Properties

Representing Artifact
Properties

➨ Relate artifacts to properties
through explicit relationship.

Artifact Possesses Characteristic

Size437 LOC

Copyright (c) 2000-2001 Warren Harrison 20

Current StatusCurrent Status

➨ Proof-of-Concept
➨ Schema implemented using mySQL

(www.mysql.com)
➨ Populated using Air Force data (DACS) - over

1,000 artifacts
➨ Implemented mySQL queries via the web

(http://www.cs.pdx.edu/~reposit)

Copyright 2001 by Warren Harrison, All Rights Reserved

A UNIVERSAL METRICS REPOSITORY
Warren Harrison

warren@cs.pdx.edu
Department of Computer Science

Portland State University
Portland, OR 97207-0751

http://www.cs.pdx.edu/~warren

ABSTRACT

A metric repository should facilitate an on-going metrics collection effort, as
well as serving as the "corporate memory" of past projects, their histories and
experiences. Within this context, four important limitations of contemporary
metrics repositories are: obsolescence; ambiguity; difficulty of augmentation;
and focus. The use of a transformational view of software development
supports a very flexible software engineering metrics repository.

Key Words/Phrases: Software Metrics, Software Engineering Repositories, Software
Engineering Data Collection

Introduction

When metrics are collected pertaining to a software product or process, the measurements
are usually stored for later retrieval. Such a collection of metrics data is known as a
metrics repository. Unfortunately, a neglected aspect of software measurement programs
is what will be done with the metrics once they are collected. As a consequence,
databases of metrics information – we hesitate to call some of these efforts metric
repositories – tend to be developed as an afterthought, with little, if any concessions to
future data needs, or long-term, sustaining metrics collection efforts.

For instance, in what was described as a study in "the process and methods used,
experience gained, and some lessons learned in establishing a software measurement
program" the associated metrics database was simply a collection of ten separate
spreadsheet files [Rozum 1993]. We feel that this state of affairs has a significant affect
on the viability of measurement programs and software engineering research in general.

This document describes a method of viewing the evolution of a software project that
support flexible data collection and describes a prototype repository that addresses these
issues.

Copyright 2001 by Warren Harrison, All Rights Reserved

General Limitations of Contemporary Metrics Repositories

If the only purpose of a metrics repository is as a place to maintain a “tool dump” of a
single project or set of completed projects, then the limitations of most repositories are
minor. However, if the repository is expected to serve as a home for ongoing collection
efforts, then most contemporary metrics repositories are seriously deficient. In our
discussions we assume not only that the metric repository is intended to support an
ongoing metrics collection effort, but we additionally consider the metrics repository as
the “corporate memory” of past projects, their histories and experiences. Within this
context, four important limitations of contemporary metrics repositories are:

1. Obsolescence – In most examples of contemporary metrics repositories we have
surveyed, specific metrics are “built-into” the schema. For instance, consider the
measure of “Delivered Source Lines”, or “Cyclomatic Complexity”. What happens
when a specific metric goes out of vogue? Do we continue to collect the obsolete
metrics in order to remain compatible with the schema? If new metrics become
popular, do we avoid collecting them because “there’s no place to put them?” Or do
we simply chuck what we have and start over?

2. Ambiguity - It may often be the case that users of a particular repository do not know
what a specific field within the repository means unless they were involved in the
original collection efforts. Florac [1992] points out the importance of Communication
(will others know precisely what has been measured and what has been included and
excluded?) and Repeatability (would someone else be able to repeat the measurement
and get the same results?). Layout documentation of most repositories is limited (at
best) to often out-of-date documentation files. When a user sees the word "Design" in
an error report, does that mean the error was injected, found or fixed during the
design phase? Similar issues exist for almost every other property of a project we may
wish to retain - for instance Goethert, et al [1992] propose a definition for counting
staff hours, Park [1992] suggests a method for counting source statements.

3. Augmentation – It is expected that as we gain experience with the use of metrics,
we’ll wish to augment the information set they provide us. A manager who becomes
used to obtaining defect information might then desire information on design events
or maintenance effort. If the repository does not embrace such augmentation of data,
we’ll find groups of additional repositories springing up to meet the information
needs of various stakeholders. The danger in this is that multiple repositories are
terribly difficult to keep consistent and multiple repositories represent significant
inefficiencies in effort to both capture and utilize the information. Additionally, the
difficulty of mining information from diverse repositories makes it less likely that the
entire store of organizational knowledge will be accessed.

4. Focus – Most repositories are historical. That is, they reflect occurrences and
properties from past projects. In addition, because they focus on what has happened
as opposed to what is currently happening, they tend to be product-centric. As such,
they are quite good at reflecting information about products, but not so good at
reflecting information about processes or events. While product information is
important, much decision-making deals with process and event information more than
product information.

Copyright 2001 by Warren Harrison, All Rights Reserved

The current state of repository technology leads to an inflexible, product-centric view of
software engineering decision-making. In the following section, we describe a method of
viewing the software development process that integrates product and process data in a
natural, flexible manner.

The goal of our work is to define, implement, evaluate and populate a "universal" metrics
repository that will address these issues.

 A Model of Development to Support Data Collection

In order to address the issue, the repository design must view a software project as a
dynamic, growing collection of artifacts as opposed to a static, monolithic bucket of code.
Unfortunately, the current view of metrics repositories is exactly that. The general view
considers the software development process as simply a collection of intermediate
products. For instance, we might characterize a software project as consisting of a
requirements specification, a design, and finally a collection of code models.

A Transformational View of Software Development
The transformational paradigm of software development views the software development
process as a series of transformations of artifacts. An artifact is some identifiable product
of an activity that takes place during the software development process. For example, the
needs analysis phase of a software development project produces an artifact we sometime
refer to as a Requirements Specification. In turn, these artifacts are used as inputs to other
transformations to create new artifacts. That is, an activity transforms one or more
artifacts into a new kind of artifact or collection of artifacts. Each transformation has
inputs (artifacts) and produces outputs (artifacts). For example, the process we usually
refer to as “design” transforms a requirements specification into a design document:

The transformations can be described at arbitrary levels of abstraction. For instance, the
requirements could actually be logically (and perhaps physically) separated into two
pieces – say the user interaction and internal processing segments. This implies that the
"Design" transformation actually creates two artifacts: the user interaction and internal
processing artifacts.

Of course, the paradigm supports any level of abstraction desired. So for instance, the
requirements artifacts could be paragraphs, pages, chapters, documents, or the entire set
of requirements depending upon the needs of the user. To illustrate an even more
abstract representation, consider the entire software development process that transforms
a requirements specification into a delivered product:

Requirements
Specification Design High-Level

Design

Copyright 2001 by Warren Harrison, All Rights Reserved

The Transformational Approach to Iterative Software Development
A major weakness of the traditional "intermediate product" view of repositories is its
inability to accommodate iterative development. When a product is returned due to a
change request, it may be awkward to represent the change in a new version of the
product. For instance, should an error be found during testing which results in a code
change, either the revised code unit will not be represented in the repository, or the
changed code unit will replace the original design product. On the other hand, the
transformational view accommodates this situation quite naturally.

Schema Issues

The transformational approach to software development gives rise to the organizational
aspect of our proposed repository, which consists of Artifact entities connected via
transforms relationships:

This provides the flexibility to represent an arbitrary flow of artifacts through a software
development process, regardless of process model or level of granularity. In order to
maintain appropriate information about the transformation, each must be annotated with
descriptive items. A transformation is associated with an event that denotes the sort of
activity or event that took place to effect the transformation, a count of resources
consumed during the transformation, and a completion date. This gives rise to the second
aspect of our proposed repository, which annotates event and end_date of each
transformation and associates it with resources consumed:

Each artifact also is associated with certain specific information. However, rather than
enforcing a standard selection of characteristics (which is what most previous repositories
have chosen to do) the third aspect of the proposed repository is that artifacts are linked
via relationships to as many or as few characteristic entities as data permits.

Requirements
Delivered
ProductDevelop

Artifact1 Artifact2transforms

Copyright 2001 by Warren Harrison, All Rights Reserved

For instance, an artifact such as a code module may be data rich or poor. It may be linked
to dozens of characteristics, or it may be linked to a single one. Each characteristic
includes a name, type and description and the possesses relationship is
annotated to reflect the quantity of the characteristic.

Thus, an artifact characteristic has a property describing the "domain" of interest, such as
complexity, size, application area, etc. In addition, each characteristic has a "working
name", such as Cyclomatic Complexity, Software Science Effort, Lines of Code, etc.
Because the characteristics that can be associated with an artifact may include measures
made over many different time periods, by many different people for many different
reasons, the schema includes the descriptions property. This meta-data allows each
data item to be defined in order to avoid inappropriate combining of data (or discover
opportunities to appropriately combine data which have different names) simply because
the characteristics have similar names (e.g., "Lines of Code" could mean a variety of
different measures which should not be combined).

A Prototype Implementation

We have implemented a proof-of-concept prototype using MySQL. The project
homepage can be found at http://www.cs.pdx.edu/~reposit/. This site
describes the schema and provides limited access to the prototype implementation. The
Prototype Repository consists of the following tables or relations (currently we assume
the repository consists of metrics for a single project, thus we omit a Project entity, future
versions of the repository will support multiple projects):

Entities:
• Artifact (id, name)
• Event (id, name)
• Resource (id, name)
• Characteristic (id, name, type, description)

Relationships (all are n-to-n, and the entire tuple comprises the key):
• transforms (Tid, Artifact.id, Artifact.id, Event.id, EndDate)
• possesses ({Artifact,Resource,Defect,Event}.id,Characteristic.id, qty)
• consumes (transforms.id, Resource.id, quantity)

Each entity instance is assigned a unique unsigned integer identifier (id). This is done by
assigning consecutive, unsigned integers to each entity instance as it is added to the
database. In addition, each Transforms relationship is also assigned a unique id from this
pool of unsigned integers.

The intention is to capture the transformation of one or more artifacts (say a design
specification) to another artifact (say a piece of code), and the resources necessary to
perform the transformation.

http://www.cs.pdx.edu/~reposit/

Copyright 2001 by Warren Harrison, All Rights Reserved

Artifacts represent the specific “trackable” items that make up a project – code units
(files, modules, packages, functions – the level of granularity is aribtrary), specification
documents, design documents, test cases, etc. Events represent types of activities that
occur, such as an inspection, a modification, an error correction, etc. Resources represent
the types of things valued by the project that are consumed in the process of creating the
artifacts – effort, calendar time, computer time, etc. Characteristics represent types of
information about the entities – size, color, weight, etc., as appropriate and available.

The relationships connect various entity instances to other entity instances. The most
significant relationship is the TransformsTo relationship. TransformsTo represents the
transformation of one Artifact into another Artifact because of an Event that occurs. We
are also interested in the Resources that are consumed by a particular transformation, so
the Consumes relationship associates a particular transformation with a particular
resource type as well as the quantity of this type of resource that was consumed during
the transformation. Every Artifact, Event, and Resource Possess a certain set of
Characteristics.

A partial example follows:

Artifact(001,A1)
Artifact(002,A2)
Artifact(005,A3)
Artifact(013,A4)
Event(003,Bug Fix)
Resource(004,Programmer Effort in Hours)
Characteristic(007,Cyclomatic Number,Complexity,V(G) per XYZ tool)
Characteristic(008,LOC,Size,Number of non-blank lines in module)
Characteristic(009,Pages,Size,Number of non-blank pages in document)
Characteristic(010,C Code,Type,File consisting of C source code)
Characteristic(011,Requirements,Type, Features the product implements)
Characteristic(015,Bug Report,Type,Record of a bug)
Characteristic(016,Bug Description,Info,Missing Reply Feature)
TransformsTo(012,002,005,003,11-01-99)
TransformsTo(012,013,005,003,11-01-99)
Possesses(001,011,0)
Possesses(002,010,0)
Possesses(005,010,0)
Possesses(002,008,49)
Possesses(005,008,59)
Possesses(001,009,29)
Possesses(013,015,0)
Possesses(013,016,0)
Consumes(012,004,10)
Recorded(002,006)

This example represents the following facts (among others).

1. Artifact 1 is a 29 page requirements document
2. Artifact 2 is a 49 line C file

Copyright 2001 by Warren Harrison, All Rights Reserved

3. Artifact 5 is a 59 line C file that resulted from a modification of Artifact 2 in response
to a Bug Fix to correct a “Missing Reply Feature”, which took 10 hours of
programmer effort

4. Artifact 13 is a bug report

Summary and Next Steps

We currently have a tentative schema and working prototype for a Universal Metrics
Repository. Our next effort will be to expand the repository by populating it with data
from several other sources. This exercise will address two interesting questions:

(a) can a single repository schema in fact represent data from a variety of
heterogeneous schemas and
(b) can the schema successfully integrate data from the various sources to
seamlessly base answers to queries across multiple sources.

To this end, we are currently working at populating the repository with data from other
sources, including other DACS datasets as well as data from industrial repositories.

References

 [Basili 1980] Basili, Victor R., “Data collection, Validation, and Analysis”, Tutorial on
Models and Metrics for Software Management and Engineering, IEEE Computer Society
Press, 1980).

[Baldo 1997] Baldo J., Butcher, D., Nada, N, Poulin, J., Quinones, Y., Trump, D. Scoy,
F. and Wu, Z., "Software Reuse Metrics Working Group Summary", Proceedings of
Reuse '97, 1997.

 [Boehm, Brown and Lipow 1976] Boehm, B. W., Brown, J.R., and Lipow, M.,
“Quantitative Evaluation of Software Quality”, Proceedings, Second International
conference on Software Engineering, 1976, pp. 592-605.

[DACS 1990] DACS Productivity Dataset
(http://www.dacs.com/databases/sled/prod.shtml)

[Florac 1992] Florac, W., "Software Quality Measurement: A Framework for Counting
Problems and Defects", SEI Technical Report CMU/SEI-92-TR-022 , 1992.

[Goethert, etal 1992] Goethert, W., Elizabeth, K., Bailey, E, and Busby, M., "Software
Effort & Schedule Measurement: A Framework for Counting Staff-hours and Reporting
Schedule Information", SEI Technical Report CMU/SEI-92-TR-021, 1992.

[IEEE 1992] IEEE Standard for Software Productivity Metrics, IEEE Std 1045-1992.

Copyright 2001 by Warren Harrison, All Rights Reserved

[Martin 1989] Martin, R., Carey, S., Coticchia, M., Fowler, P. and Maher, J.,
"Proceedings of the Workshop on Executive Software Issues August 2-3 and November
18, 1988", SET Technical Report CMU/SEI-89-TR-006, 1989,

[Park 1992] Park, R., "Software Size Measurement: A Framework for Counting Source
Statements", SEI Technical Report CMU/SEI-92-TR-020 ADA258304 , 1992.

[Rozum 1993] Rozum, J. , "The SEI and NAWC: Working Together to Establish a
Software Measurement Program", SEI Technical Report: CMU/SEI-93-TR-07,
December 1993.

[Van Verth 1992] Van Verth, P., "A Concept Study for a National Software Engineering
Database", SEI Technical Report CMU/SEI-92-TR-023, 1993.

About the Author

Warren Harrison is a Professor of Computer Science at Portland State University and
Adjunct Associate Professor of Medical Informatics and Outcomes Research at Oregon
Health Sciences University. His software engineering research includes models of return
on investment for process improvements, software quality assurance, software
measurement, formalized decision-making and empirical studies of software engineering.
He is currently Editor-in-Chief of the Software Quality Journal and co-Editor-in-Chief of
the Empirical Software Engineering Journal. Warren received his B.S. in Accounting
from the University of Nevada – Reno, his M.S. in Computer Science from the
University of Missouri – Rolla, and his Ph.D. in Computer Science from Oregon State
University.

QW2001 Paper 4T2

Mr. Suresh Nageswaran
(Cognizant Technology Solutions CTS)

Test Effort Estimation Using Use Case Points (UCP)

Key Points

Test Effort Estimation●

Use Case Points●

Presentation Abstract

This paper presents a new approach based on Use Case Points [UCP] as a
fundamental project effort-estimation measure. The use of UCP on projects is still
in its infancy and it is not a very widely known measure. However, from
preliminary applications on our web-based projects, we conjecture that this could
in fact be more reliable than FP.

The caveat here is that the V-model must be in use and use case generation must
start becoming available right at the requirements gathering phase. The acceptance
test plan is then prepared with the use cases from the requirement documents as
input.

It is known that a use case to test case mapping is possible. This means that the
UCP figure for development can be indirectly used to provide a figure for the
number of test cases. Using organizational test execution time metrics it is now
possible to arrive at a figure for the total test effort.

About the Author

Suresh Nageswaran holds a Bachelor’s Degree in Computer Engineering from the
University of Pune. In addition to this, he also holds the CQA certification. He has
over 4 years of experience in Software Testing, Quality Assurance, Design and
Development. He has also lectured on software engineering and compiler
construction at Pune University.

He currently heads teams of test engineers at Cognizant Technology Solutions
(CTS), Pune. He has worked on varied technologies on different platforms and has
conducted performance and scalability tests on conventional client/server systems
as well as web-based applications.

1

Test Effort Estimation Using Test Effort Estimation Using
UCPUCP

By
Suresh Nageswaran
Netolutions Group

Cognizant Technology Solutions
Pune, India.

http://www.cognizant.com

Copyright, 2001 ©Cognizant, Inc.

The Roadmap !The Roadmap !

Introduction.
Software Test Engineering
Conventional methods of
effort estimation.
The UCP Approach.
Example.
Conclusion.

2

Test Engineering ActivitiesTest Engineering Activities

Test planning
Resource Setup time
Unit Test Rounds
Defect Tracking
Metrics Collection and Analysis
Integration Cycles
System Release Tests

Why Estimate ?Why Estimate ?

An estimate is an appraisal of
the value of something.
The output of an estimation
exercise enables us to plan
ahead.
Project profitability is tied to
the budget.
We can schedule and
prioritize tasks.

3

Why Estimates FailWhy Estimates Fail

Premature estimates - you cannot estimate
what you do not understand
Lack of historical data - estimates are
projections of the past to the future
Lack of estimation process - defined
process required
Failure to manage the estimates
Failure to update the estimates

Estimation TasksEstimation Tasks

Estimate Size of product
LOC
FP
UCP

Effort in person-months
Schedule in calendar months
Cost in currency

4

Conventional ApproachesConventional Approaches

Ad hoc Method
Pre-decided by management or
marketing
Test until time runs out !
Test until money runs out !

Immature process
Error margins of over 100% at
times
Not defendable

Conventional ApproachesConventional Approaches

Percentage of Development
Time

Different organizations use
different percentages
Varies from 10% - 60%
Should be based on the risk

Unscientific
 Schedule overruns from 30% -
60%

5

Conventional ApproachesConventional Approaches

From Function Point Estimates
Capers Jones equation
No of test cases = (FP)1.2

Actual effort calculated with a
conversion factor

Detailed Requirements needed
in advance
Modern OO systems designed
with Use Cases in mind

What are Use Cases ?What are Use Cases ?
Use Cases capture a contract
between stakeholders of a
system about its behavior.
Actors initiate interactions with
the system to achieve a goal.
Different scenarios unfold
depending on requests made.
Use Case collects all those
scenarios with their exception
flows.

6

UCP Approach NeedsUCP Approach Needs
Usage of the V-Model
for development
Treating Test
Engineering as a
process, not a stage
Business Use Cases
should have been
identified
As requirements
become clearer,
estimates are revised.

UCP ApproachUCP Approach

1. Determine number of actors - Unadjusted actor
weights

2. Determine number of use cases in the system -
Unadjusted Use Case Weights

3. Calculate Unadjusted UCP = UAW+UUCW
4. Compute Technical and Environment Factors
5. Compute adjusted UCP

AUCP= UUCP*[0.65+(0.01*TEF)]
6. Arrive at final effort

Effort = AUCP * Conversion Factor

7

ExampleExample

Product Support Web site for North
American software company
Business requirements documented as Use
Cases
Development time estimated in UCP
Test Efforts needed to be budgeted for.
Risks of downtime were significant.
COM/DCOM technology.

ExampleExample

Actor
No of
Use
Cases

Factor UAW

B2C User 15 2 30

Subscribers 13 2 26

Admin User 4 2 8

Total UAW 64

1. Unadjusted Actor Weights Calculation

Total UAW = 64

8

Example [Contd.]Example [Contd.]

2. Unadjusted Use Case Weights Calculation
Legend: Simple – S, Average – A, Complex – C, Very Complex - VC

Use Case Type Factor Reason

Login C 15 Server
integrati
on

Support
Request

VC 20 External
Sys
Query

User
Creation

A 10

Support
Resource
Mgt.

S 5 Code
Reuse

Fix
Notificati
ons

S 5 Trivial

Total 55

Example [Contd.]Example [Contd.]

3. Unadjusted Use Case Points Calculation

UUCP = UAW + UUCW
UUCP = 64 + 55 = 119

9

Example [Contd.]Example [Contd.]

4. Technical Factor Computation
Fac
tor

Description Assig
ned
Value

Weight Extend
ed
Value

T1 Test Tools 5 3 15
T2 Documented

inputs
5 5 25

T3 Development
Environment

2 1 2

T4 Test
Environment

3 1 3

T5 Test-ware
reuse

3 2 6

T6 Distributed
system

4 4 16

T7 Performance
objectives

2 1 2

T8 Security
Features

4 2 8

T9 Complex
interfacing

5 2 10

Total 87

Example [Contd.]Example [Contd.]

5. Adjusted UCP Calculation
AUCP = UUCP * [0.65 + (0.01 * TEF)]
AUCP = 119 * [0.65 + (0.01 * 87)]

= 180.88

10

Example [Contd.]Example [Contd.]

6. Final Effort
Effort = AUCP * Conversion Factor for
COM/DCOM component testing
Effort = 180.88 * 13 = 2351.44
Project Complexity compensation = 15%
Management activity = 10 %
Total Effort = 2351.44 + 352.72 + 235.144

= 2939.3 man-hours
= 367 man-days

Actual Effort = 390 man-days

ConclusionConclusion

Method worked for web project, results for
other projects not guaranteed.
Significant practical advantage if UC
approach is in use.
Further research needed to fine tune the
method e.g. TEF table
Yields accuracy only with historical data
over a period of time.

11

Further ReadingFurther Reading

Capers Jones, “Applied software
measurement”, McGraw-Hill,1996.
Alistair Cockburn, “Writing Effective Use
Cases”, 1999.
Smith John, “Estimation of effort based on
Use Cases”, Rational Software
Dekkers Ton, “Test Point Analysis”, 1999

Thank You!Thank You!
Contact Information

Suresh Nageswaran
Cognizant Technology Solutions, Pune.

Tel : 91-20-6691960 Ext 2267
E-mail: SureshN@pun.cognizant.com

SureshN@iname.com

Quality Week 2001, San Francisco, California, USA, June 2001 Suresh Nageswaran

1 Copyright(c) 2001, Cognizant Technology Solutions
All rights reserved.

Test Effort Estimation Using Use Case Points

Suresh Nageswaran
Cognizant Technology Solutions,

National Games Road,
Yerwada, Pune – 411006.

Maharashtra, India
(+91-020) 669 19 60

SureshN@pun.cognizant.com
SureshN@iname.com

Abstract

This paper presents a new approach to the
estimation of software testing efforts based on
Use Case Points [UCP] as a fundamental
project estimation measure. From preliminary
applications on our web-based projects, we
conjecture that this could in fact be more
reliable than FP. The caveat here is that the V-
model must be in use and use case generation
must start becoming available right at the
requirements gathering phase. The acceptance
test plan is then prepared with the use cases
from the requirement documents as input.
Further work could provide a more exact
relationship between the two.

Introduction

Probably the most crucial difference between the
manufacturing industry and the software industry
is that the former is able to stick to schedules
most of the time. The reason why software
development schedules are so unpredictable is
not because workers in this industry are lazy or
incompetent. To estimate the time make a
product from scratch, and in many cases, without
prior experience of the technology is no mean
feat. However, conventional estimation
techniques address only the development effort
that goes into it.

It is known that a use case to test case mapping
is possible. This means that the UCP figure for
development can be indirectly used to provide a

figure for the number of test cases. Using
organizational test execution time metrics it is
now possible to arrive at a figure for the total test
effort. This is a viable and systematic approach
towards test effort estimation and it makes a leap
in providing more realistic figures. This means
that the cost of testing can now be factored into
projects. The other advantage is that test
engineering gets treated as a process and not
simply as another lifecycle phase.

Software Test Engineering

Test Engineering covers a large gamut of
activities to ensure that the final product achieves
some quality goal. These activities must be
planned well in advance to ensure that these
objectives are met. Plans are based on
estimations.

In the early years, the Waterfall model has been
applied to software development. This model
looks upon test engineering as merely a stage in
the entire development lifecycle. When
techniques evolved over the years for estimating
development time and effort, the concept of
estimating test-engineering time was overlooked
completely.

Test engineering is seldom planned for in most
organizations and as a result, products enter the
market insufficiently tested. Negative customer
reactions and damage to the corporate image is
the natural consequence.

To avoid this, the correct development lifecycle
must be chosen and planning should be done
early on in the cycle.

mailto:SureshN@pun.cognizant.com
mailto:SureshN@pun.cts-corp.com

Quality Week 2001, San Francisco, California, USA, June 2001 Suresh Nageswaran

2 Copyright(c) 2001, Cognizant Technology Solutions
All rights reserved.

Software Project Estimation

According to Rubin [2], the stage-wise effort
distribution on software projects is as shown in
the pie chart below.

Estimation is basically a four-step approach:

1. Estimate the size of the development
product. This is either in LOC [Lines of
Code] or FP [Function Points]. The concept
of using UCP [Use Case Points] is still in its
infancy.

2. Estimate the effort in person-months or
person-hours.

3. Estimate the schedule in calendar months.

4. Estimate the cost in currency.

Conventional Approach to Test
Effort Estimation

Test engineering managers use many different
methods to estimate and schedule their test
engineering efforts. Different organizations use
different methods depending on the type of
projects, the inherent risks in the project, the
technologies involved etc.

Most of the time, test effort estimations are
clubbed with the development estimates and no
separate figures are available.

Here is a description of some conventional
methods in use:

1. Ad-hoc method

The test efforts are not based on any
definitive timeframe. The efforts continue
until some pre-decided timeline set by
managerial or marketing personnel is
reached. Alternatively, it is done until the
budgeted finances run out.

This is a practice prevalent in extremely
immature organizations and has error
margins of over 100% at times.

2. Percentage of development time

The fundamental premise here is that test
engineering efforts are dependent on the
development time / effort. First,
development effort is estimated using some
techniques such as LOC or Function Points.
The next step is using some heuristic to peg
a value next to it. This varies widely and is
usually based on previous experiences.

This method is not defendable since it is not
based on any scientific principles or
techniques. Schedule overruns could range
from 50 – 75% of estimated time. This
method is also by far the most used.

3. From the Function Point estimates

Capers Jones [1] estimates that the number
of test cases can be determined by the
function points estimate for the
corresponding effort. The formula is

Number of Test Cases = (Function Points) 1.2

The actual effort in person-hours is then
calculated with a conversion factor obtained
from previous project data.

The disadvantage of using FP is that they
require detailed requirements in advance.
Another issue is that modern object-oriented
systems are designed with Use Cases in
mind and this technique is incompatible with
them.

Quality Week 2001, San Francisco, California, USA, June 2001 Suresh Nageswaran

3 Copyright(c) 2001, Cognizant Technology Solutions
All rights reserved.

Use Cases

Alistair [5] has this description of a use case:

A use case captures a contract between the
stakeholders of a system about its behavior. The
use case describes the system’s behavior under
various conditions as it responds to a request
from one of the stakeholders, called the primary
actor. The primary actor initiates an interaction
with the system to accomplish some goal. The
system responds, protecting the interests of all
the stakeholders. Different sequences of
behavior, or scenarios, can unfold, depending on
the particular requests made and conditions
surrounding the requests. The use case collects
together those different scenarios.

Mapping Use Cases to Test Cases

Use cases in their most primitive forms are
basically representative of what the user wants
from a system. The advantages of Use Cases are
that they start becoming available early on in the
project lifecycle. The appropriate project
lifecycle model is the V-Model. The figure
below illustrates the same.

The model clearly has one test engineering
activity associated with a corresponding
development activity. The topmost rung of the
model associates the business requirement
identification with the acceptance plan
preparation. Each successive step makes sure
that the test documentation becomes complete
and comprehensive. If the estimation process is
fitted in the second rung after the business
requirements are available, it is obvious that use
cases will serve as the inputs.
The identification of the number of test cases
here can be made quite directly. Each scenario

and its exception flows for each use case are
input for a test case. Subsequently, the
estimation calculations can commence.
As the requirements become clearer further
downstream, the estimates will also undergo
revision.

UCP Approach to Estimation

Estimation using UCP [Use Case Points] is
rapidly gaining a faithful following. The
approach for estimation using UCP only needs
slight modification in order to be useful to
estimate test efforts.

1. Determine the number of actors in the
system. This will give us the UAW – the
unadjusted actor weights.

Actors are external to the system and
interface with it. Examples are end-users,
other programs, data stores etc.
Actors come in three types: simple, average
and complex. Actor classification for test
effort estimation differs from that of
development estimation.

End users are simple actors. In the context
of testing, end-user actions can be captured
easily using automated tool scripts. Average
actors interact with the system through some
protocols etc. or they could be Data stores.
They qualify as average since the results of
test case runs would need to be verified
manually by running SQL statements on the
store etc. Complex users are separate
systems that interact with the SUT through
an API.

The test cases for these users can only be
written at the unit level and involves a
significant amount of internal system
behavioral knowledge.

Actor Weights

Actor Type Description Factor
Simple GUI 1

Average Interactive or
protocol-driver
interface

2

Quality Week 2001, San Francisco, California, USA, June 2001 Suresh Nageswaran

4 Copyright(c) 2001, Cognizant Technology Solutions
All rights reserved.

Complex API / low-level
interactions

3

The sum of these products gives the total
unadjusted actor weights. [UAW]

2. Determine the number of use cases in the
system. Get UUCW.

The use cases are assigned weights
depending on the number of transactions /
scenarios.

Use-case Weights

Use Case
Type

Description Factor

Simple <=3 1

Average 4-7 2

Complex >7 3
The sum of these products gives the total
unadjusted actor weights. [UAW]

3. UUCP = UAW + UUCW

The calculation of the unadjusted UCP is
done by adding the unadjusted actor weight
and the unadjusted use case weights
determined in the previous steps.

4. Compute technical and environmental
factors

The technical and environmental factors for
a test project are listed in the table below.

To calculate one needs to assign weights and
multiply them with the assigned values to
give the final values. The products are all
added up to give the TEF multiplier. The
TEF multiplier is then used in the next step.

Technical Complexity Factor

Factor Description Assigned
Value

T1 Test Tools 5
T2 Documented inputs 5

T3 Development
Environment

2

T4 Test Environment 3
T5 Test-ware reuse 3
T6 Distributed system 4
T7 Performance

objectives
2

T8 Security Features 4
T9 Complex interfacing 5

5. Compute adjusted UCP.

We use the same formula as in the UCP
method for development.

AUCP =UUCP *[0.65+(0.01*TEF)]

6. Arrive at final effort.
We now have to simply multiply the
adjusted UCP with a conversion factor. This
conversion factor denotes the man-hours in
test effort required for a
language/technology combination. The
organization will have to determine the
conversion factors for various such
combinations.

E.g. Effort = AUCP * 20
Where 20 man-hours are required to plan,
write and execute tests on one UCP when
using EJB.

Quality Week 2001, San Francisco, California, USA, June 2001 Suresh Nageswaran

5 Copyright(c) 2001, Cognizant Technology Solutions
All rights reserved.

Example
The project under study is a product support web
site for a large North American software
company. The estimation was done from the
business level use cases made available at the
time of signing the requirements. The actors at
this time were the different types of users
identified in those use cases.

1. UAW Calculation

Actor
No of
Use
Cases

Factor UAW

B2C User 15 2 30

Subscribers 13 2 26

Admin User 4 2 8

Total UAW 64

2. UUCW Calculation

Legend: Simple – S, Average – A, Complex – C, Very
Complex - VC

Use Case Type Factor Reason

Login C 15 Server
integrati
on

Support
Request

VC 20 External
Sys
Query

User
Creation

A 10

Support
Resource
Mgt.

S 5 Code
Reuse

Fix
Notificati
ons

S 5 Trivial

Total 55

3. Calculation of the UUCP - Unadjusted Use
Case Points
UUCP = UAW + UUCW = 64 + 55 = 119

4. Technical factor computation

Fac
tor

Description Assig
ned
Value

Weight Extend
ed
Value

T1 Test Tools 5 3 15
T2 Documented

inputs
5 5 25

T3 Development
Environment

2 1 2

T4 Test
Environment

3 1 3

T5 Test-ware
reuse

3 2 6

T6 Distributed
system

4 4 16

T7 Performance
objectives

2 1 2

T8 Security
Features

4 2 8

T9 Complex
interfacing

5 2 10

Total 87

5. Adjusted UCP calculation

AUCP =UUCP *[0.65+(0.01*TEF)] = 119 *
[0.65+0.01*87] = 180.88

6. Final Effort

Effort = AUCP * Conversion Factor for
COM / DCOM testing
Effort = 180.88 * 13 = 2351.44

Project Complexity needs 15% of the
estimated effort to be added. 10% is spent in
co-ordination and management activity.

Total Effort = 2351.44 + 352.72 + 235.144
= 2939.304 man-hours = 367 man-days

Actual Effort = 390 man-days [Project End]

Quality Week 2001, San Francisco, California, USA, June 2001 Suresh Nageswaran

6 Copyright(c) 2001, Cognizant Technology Solutions
All rights reserved.

Discussion And Future Work

There is never a single silver bullet for every
problem. In the many approaches to test effort
estimation, the UCP approach is one. The author
conjectures that this could become a more robust
method of estimation over a period of time. The
availability of data from past projects will
definitely contribute to the accuracy of these
estimates. The estimation technique is not
claimed to be rigorous, but the approach offers
significant practical advantages over ad hoc
techniques currently in use. Further research and
experimentation will certainly provide more
substantial benefits in arriving at an objective
method to validate the estimates.

References

1. Capers, Jones 1996. Applied software
measurement, McGraw-Hill.

2. Rubin, H. 1995. Worldwide benchmark
project report, Rubin Systems Inc.

3. Kathleen Peters, 1999, Software Project
Estimation.

4. Smith John, The estimation of Effort based
on Use Cases, Rational Software.

5. Cockburn Alistair, 1999, Writing Effective
Use Cases.

6. Dekkers Ton, 1999, Test Point Analysis.

QW2001 Paper 6T1

Dr. Rainer Stetter
(ITQ Gmbh & Software Factory Gmbh)

Test Strategies for Embedded Systems

Key Points

Real life example (control system), project running from 1997 to 2000●

Detailed discussion of every project phase●

Recommendation of approaches, measures and tools●

Presentation Abstract

Embedded Systems are used more and more in the field of mechanical engineering.
This situation leads to an increasing demand for efficient test strategies for
Embedded Systems. In my presentation I would like to demonstrate our approach
with a real life example. In the example IËll discuss the test strategy for a PC104
based control system for a material testing machine.

About the Author

At the Technical University, Munich I studied mechanical engineering and as I was
interested in software engineering I took some classes in computer sciences. While
I was doing my PhD in developing a robot simulation system, which I got in 1993,
I improved my knowledge in software engineering. From 1993 until 1997 I was
working as a Research & Development Manager at Zwick Company, Ulm -
Germany.

Since 1997 I have been one of the General Managers of Software Factory GmbH,
Munich. In addition, since 1998 I have been working with the Munich based firm
itq GmbH as a General Manager. Together, Software Factory GmbH and itq
GmbH form the Software Quality Center. With some partners of the Technical
University of Munich and VDMA (German Machinery and Plant Manufacturers'
Association), we work on approaches to improve the quality especially in the field
of embedded systems.

Since 1998 I'm Vice President of the VDMA Software department.

Test Strategies for Embedded Systems

Dr.-Ing. Rainer Stetter
www.itq.de

2

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

3

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Example: Material Testing

4

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Quality Requirements
• Safety critical

– Medical devices
– Life and health

• Quality Requirements according to the FDA
– stable and detailed process
– Validation plan

5

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Phases of the Validation Plan
• Split whole process into different phases

– Requirements Engineering
– Specification/Design
– Implementation
– Test

• Module
• Integration
• Acceptance
• System

– Deployment

6

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Time schedule (first version)

3.Q.97 4.Q. 97 1.Q.98 2.Q.98 3.Q.98 4.Q.98 1.Q.99 2.Q.99 3.Q.99 4.Q.99 1.Q.00 2.Q.00
7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6

 Test preparation

SW

SW & HW
Requirements
Engineering

Specificati
on

Validation
prototype

Commissioning series,
production release

Deploy
ment

HW
Specification

external
sppplier

Prototype Production
development

Implementation TestDesign

7

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Extract of a validation plan
Validation activity Reference Responsible

1 2 3 4

1. Definition of the user functions of the software x
..\..\..\Analyse\review\A1-Funktionen der
SW.doc uss-kr

2. Definition of the required input data x
..\..\..\Analyse\review\A2-Eingaben der
SW.doc uss-kr

3. Definition of the required output data x
..\..\..\Analyse\review\A3-Ausgaben der
SW.doc uss-kr

4.
Definition of limits, defaults, special input which have to be accepted by
the software x

..\..\..\Analyse\review\A4-Bereiche für Ein-
Ausgaben.doc uss-kr

5. Definition of the required performance x
..\..\..\Analyse\review\A5-Performance der
SW.doc uss-sj

6. Definition of the external interfaces and the user interface x
..\..\..\Analyse\review\A6-Schnittstellen der
SW.doc uss-hib

7. Definition of error classes x
..\..\..\Analyse\review\A7-Definition von
Fehlerklassen.doc uss-kr

8. Definition of the reactions on error classes x
..\..\..\Analyse\review\A8-Reaktion auf
Fehler.doc uss-kr

9. Definition of the system environment x
..\..\..\Analyse\review\A9-
Betriebsumgebung.doc uss-sj

10. Definition of safety requirements, functions and features x
..\..\..\Analyse\review\A10-Sicherheit der
SW.doc uss-bi

11. Software hazard analysis x
..\..\..\Analyse\review\A11-SW-
Gefahrenanalyse.doc uss-bi

12. Traceability of system and software requirements x
..\..\..\Analyse\review\A15-Quercheck-System-
SW.doc uss-sj

13. Design of the system test plan x ..\..\..\Analyse\review\A17-Systemtestplan.doc sf-rs

14. Design of the acceptance test plan x
..\..\..\Analyse\review\A18-
Abnahmetestplan.doc sf-rs

Rating

8

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Requirements Engineering
• Descripition of Requirements

– Prose – Non-formal (50 pages)
• Formalisation subsequently, but not detailled enough

– both forms are sensible
• Prose – Management
• Formalized – Test

• Hazard Analysis
– of the system with special focus on software

• Test plans
– Almost impossible to do in a sensible way

• Trial and error group

9

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Specification and Design
• Specification

– One modularized document (500 pages) in prose
• No additional work for hardware group

– Written from developers for developers
• Inconsistent level
• Not formal enough
• Hard to develop test procedures

• Test
– Structure and elements of tests were designed
– Planning of the integration test

• Software design
– Guideline for software design
– UML with weekly design reviews

10

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Structure of the test activities
Module test Integration test

System and
Acceptance test

HW

SW

Drive system

Safety door

...

HW -prototype

HM 99 1.4.20003 / 99

In krem en ta l-M odu l

P C 104 - M odu l

M ainboard

Pow er
sup ply

Pow er
s u p p ly S S

tes tX pe rt
SS

Dis play -
SS

Mod u l S S

Bedien -
fe ld

M ainboard

Po w er
su pp ly

Pow er
s upp ly SS

tes tXper t
SS

Dis p lay -
SS

Modu l SS

Be dien -
fe ld

Inkrem en tal-M o du lPC 104 - M odul

An triebs -
steu eru ng sb oard

Ma in b oard

Po we r
sup ply

Pow er
sup ply SS

t es tXp er t
SS

Deb ug -
SS

Dr ucker -
SS

Sch utz t ür
- SS

Display -
SS

Mod ul SS

An tr ieb s
s teu er ung

SS

Ve rket tung
SS

Ser vo -
s teue ru ng

10V -
A na log

Ink - Dre h-
imp uls

Schn itts te llen zu Se rvo

Ha upt scha lte r
SS

A ntr iebss chü tz
SS

Siche r heitsbe dien-
e lemen te SS

B ed ie n-
feld

Taste n & Notaus

H a upt-
sc halter

A ntr iebs
- s c hütz

End-
s cha lte r

End scha lte r
SS

Ser vo & M otor

Ink rem e nta l-Modul
D MS -M odul

if(Prüfkraft>=Grenzkraft){
Blockiere_Schutztür()

}

for (i=1;i< pos;i++){
fahre_nach(i);

}

if (a > b) {
Fehlermeldung();

}

Software
New electronics

for(i=1;i< pos;i++){
fahre_nach(i);

}

Review 2 / 99 9 / 99

Control unit

11

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Structure of integration test plan

1st exam.
electro-

magnetical
tolerance

electro-
magnetical
tolerance

Electr/ Mech.
Safety

elect. current
1st examinat.

Functional
safeness

Climatical
influences

(1st)

Climatical
influences

(2nd)

Drive
1st examinat.

Force sensor
1st

examination

Force sensor
2nd exam.

Other functions
1st

examination

Vibration /
Noise

SW
test program

Start
1st

prototype
2nd

prototype
 3rd

prototype

12

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Implementation
• Organisation

– Daily check in and build

• Weekly code reviews
– Social aspect

• Code is no longer a personal secret
• Same philosophy / style of coding

– Technological aspect
• Only low level errors

– Reading was too fast -> Tom Gilb

• Test
– Development of test procedures and approaches

13

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Number of Modules and Lines of Code vs. Time

0

10000

20000

30000

40000

50000

60000

07
.08

.98

28
.08

.98

18
.09

.98

09
.10

.98

30
.10

.98

20
.11

.98

11
.12

.98

15
.01

.99

05
.02

.99

26
.02

.99

17
.03

.99

26
.03

.99

09
.04

.99

21
.04

.99

07
.05

.99

28
.05

.99

18
.06

.99

09
.07

.99

30
.07

.99

20
.08

.99

10
.09

.99

01
.10

.99

22
.10

.99

12
.11

.99

03
.12

.99

24
.12

.99

14
.01

.00

04
.02

.00

25
.02

.00

17
.03

.00

0

50

100

150

200

250

Li
ne

s
of

 C
od

e

N
um

ber of M
odules

NOM

 LOC_all

NOM = Number of Modules

LOC_all = Lines of Code

14

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Integration test
• Theory and practice in planning

– Delays of software or hardware
• Very hard time
• A lot of improvisation

• Design of test plans
– Have to be modular -> flexibility to adapt to new situation

• Control
– Regular tracking is very important
– Visible and understable even for the management

• Code Coverage (starting with module testing)
– Whole system not testable at once
– Had to be divided into parts

15

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Tracking of integration test

Integration step 1
Integration step 2

Integration step 3

16

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

System and acceptance test
• Test environment

– Most critical aspect
• New hardware was not available in required numbers
• Old machines had to be modified

– System and acceptance test ran concurrent

• System reliability and defect tracking
– Very detailled tracking
– Wide ranging set of tests on technical aspects

• Humidity
• Lack of electronic current
• Different temperatures
• Safety

17

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Tracking of the tests

Di 02. Mai

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Mi 03. Mai

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Do 04. Mai

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fr 05. Mai

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2021 2189

2227 2021
2003 2304

2291

2022
2189 2072 0 1787 1787 1787 1787

2072

2348 2126

2348
2250 2258

1787 2251

2347 2021

1787 2304 2003 2201

2289 1519

2015 1932
1828 22912227 1828 2021 2021

2291 2021
2350

2251
2250 1920

2072 2258 2258

2291
2021

EV5.0a.40

V-QMCLLQ-S

18

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Overview of efforts

0

2

4

6

8

10

12

Ap
r 9

7
M

ai
 9

7
Ju

n
97

Ju
l 9

7
Au

g
97

Se
p

97
O

kt
 9

7
No

v
97

De
z

97
Ja

n
98

Fe
b

98
M

rz
 9

8
Ap

r 9
8

M
ai

 9
8

Ju
n

98
Ju

l 9
8

Au
g

98
Se

p
98

O
kt

 9
8

No
v

98
De

z
98

Ja
n

99
Fe

b
99

M
rz

 9
9

Ap
r 9

9
M

ai
 9

9
Ju

n
99

Ju
l 9

9
Au

g
99

Se
p

99
O

kt
 9

9
No

v
99

De
z

99
Ja

n
00

Fe
b

00
M

rz
 0

0
Ap

r 0
0

M
ai

 0
0

Ju
n

00

Deployment

Mechanics

Test

Electronics

Software

Project manager

Analysis Specification
Design

Implementation Test

19

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Length of phases vs. manpower in phases

Comparison of Length and Capacity

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Analysis Specification/Design Implementation Test

Length
Capacity

20

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Test effort

Effort vs. test effort

42,0

17,6

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

whole project sum test

M
Y (42%)

Effort test performance vs. test
preparation

3,6

14,1

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

performance preparation

M
Y

(20%)

21

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Lessons learned (I)
• Validation plan

– gave structure for the whole project
• Most useful for the early phases

– Responsibility for disliked activities
• Some bureaucratic overhead

– Reviews very helpful
• Phases
• Design and coding

• Design
– UML is sensible
– No completion of design without coding

22

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Lessons learned (II)
• Test

– To start test planning early is very hard, but sensible
• Modular design of test/test procedure is very important

– Re-useability of test patterns in critical situations

– Tracking through all phases -> management
• Test procedures
• Defects and reliability

– Environment
• You never have enough

23

Test Test Strategies for Strategies for
EmbeddedEmbedded SystemsSystems

Conclusion
• Embedded Systems <-> inter-disciplinary teams

– Need to encourage communication
• Modules won‘t understand each other,
• if people don‘t talk with each other

• To work in a structured and planned way
– Doesn‘t prevent all problems
– But makes it easier to handle them

• Think before you work !
– Life will be easier

Test Strategies for Embedded Systems

04.04.01 www.itq.de Seite 1/9

__

__

“Test Strategies for Embedded Systems”
Dr.-Ing. Rainer Stetter

ITQ – IT & Quality GmbH, Munich
http://www.itq.de

Introduction:
Embedded Systems are used more and more in the field of mechanical engineering. This
situation has lead to an increasing demand for efficient test strategies for Embedded
Systems. On the basis of a real life example I want to discuss our approach for testing
embedded systems.

Example: Control System for Material Testing Machines
Material testing machines are used in a broad area. Any material has to be tested once
before it’s used in any construction. Therefore there is a high safety and security demand
for the control system of a material testing machine. The control system which is to be
discussed has to collect all machine data in real time which are used for the determination
of the actual control parameters. The real time operating system used is VxWorks. The
software runs on a standardized PC module with a 486 processor. The processor has to
supervise ten input channels at the same time which are refreshed every two ms. For the
design of the software we used UML, based on Rose98 including the code generation and
the round trip engineering component.
The development process is to be validated by the FDA because this kind of machine is
used for testing medical devices, too. According to the FDA demands we used a validation
plan to manage all project activities. The validation plan describes all activities which have
to be fulfilled in a project, including all phases from the requirements engineering up to the
point of the product release.

Fig. 1: Overview of the project schedule

3.Q.97 4.Q. 97 1.Q.98 2.Q.98 3.Q.98 4.Q.98 1.Q.99 2.Q.99 3.Q.99 4.Q.99 1.Q.00 2.Q.00
7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6

 Test preparation

SW

SW & HW
Requirements
Engineering

Specificati
on

Validation
prototype

Commissioning series,
production release

Deploy
ment

HW
Specification

external
sppplier

Prototype Production
development

Implementation TestDesign

Test Strategies for Embedded Systems

04.04.01 www.itq.de Seite 2/9

__

__

Fig. 1 gives an overview of the project. The project was splitt into several phases. The
preparation of the test started quite early and ran parallel to all other activities until the start
of test phase.

According to the validation plan we had to work on a software hazard analysis in the
requirements engineering phase to show how the system would react in the case of a
severe software fault. This analysis influenced the system design in general. Because we
couldn’t guarantee an error free software system we had to provide a (mechanical)
hardware backup component for any potential safety critical situation. Otherwise we would
have had to use a two-processor system which was out of the question because of the
additional costs. Another validation activity in this phase was planning the structure of the
system and the final acceptance test. Even though you can read about software testing in
almost any publication, that consideration of the test process should begin at a very early
point in the project, we experienced that it is very hard to this in a effective way.

The description of the requirements was written in prose in a non-formal style. After a
review of the requirements specification through the test group we formalized them
subsequently. In the test phase we had to go through the experience that the level of
formalization used wasn’t detailed enough because the requirements were hard to test. To
improve the testability of the requirements we will strengthen formalization. But you still
need some requirements written in prose because it’s hard to convince management or
marketing people to read heavily formalized requirements.

After a review of the requirements engineering phase, in which all validation plan activities
were discussed in detail, the design phase was started.

In the specification and design phase we had to determine in more detail which system
function had to be implemented in hardware (electronics) or in software. In this phase it was
quite difficult to keep the hardware and software team in touch. Both of these groups were
ready to go into details even though their main job at that time was to determine the
interfaces.

The specification document was written in prose, too. It contained about 500 pages. To
admit concurrent working of several persons we organized the document to be modular. To
write a specification document was neither new nor additional work for the hardware group.
They were used to work in this way. To convince the software team not to start with more
exciting things was quite hard. In the test phase we had to repeat the experience that our
work could have been better. Once more we had found out that the specification should be
more formal to make it easier to develop good test procedures and test cases, in addition
we had to recognize that the level of abstraction was inconsistent.

For the software design we introduced UML. As a matter of fact, the use of the Rose98 was
very helpful. The sequence diagrams were especially useful because in this view the
dynamic behaviour of the system was quite easy to model. After a period of familiarization,
the software engineers worked in small groups interactively with the tool. This was very
efficient because the communication between the software engineers was highly

Test Strategies for Embedded Systems

04.04.01 www.itq.de Seite 3/9

__

__

stimulated. In addition the software design was reviewed weekly. The design reviews were
continuously attended by a member of the test team.

In this phase the test team worked on the design of all test activities. The structure and the
interdependencies of the test activities are shown in fig. 2.

Fig. 2: Structure of the test activities

To describe a module test for hardware modules was quite easy. Due the OO-design of the
software it was almost impossible to design a module test for the software. Therefore we
decided to run code reviews and to do code coverage tests through the implementation
phase to reduce risks and improve software quality. According to the module test plan an
initial version of an integration test plan was developed. For the visualization of the
interdependencies of the modules and the different test procedures we used a flow chart
graphic, see fig. 3.

Module test Integration test
System and
Acceptance test

HW

SW

Drive system

Safety door

...

HW -prototype

HM 99 1.4.20003 / 99

Inkrem en ta l-M odul

PC 10 4 - M odu l

M ainboard

Po w er
supply

Po w e r
s up p ly SS

te s tXp er t
SS

Dis pla y -
SS

Mo d u l SS

B edien-
feld

M ainboard

P ow er
su pply

Pow er
s upp ly SS

tes tXpert
SS

Dis p lay -
SS

Modu l SS

B edien-
fe ld

Inkremental-ModulPC 104 - M odu l

A ntriebs-
s teuerungsboard

M ainb oard

Po we r
supp ly

Po w e r
su p ply S S

tes tXp e r t
S S

De bu g -
SS

Dr uc ke r-
S S

S ch u tztü r
- SS

Dis pla y -
SS

Mo du l SS

A ntr ie bs
ste u e ru n g

SS

V e r kettu n g
S S

Se r vo -
s te ue r un g

1 0 V -
A na lo g

In k- Dr e h-
imp uls

Sc hnittste llen zu Ser vo

Ha u pts c ha lte r
S S

A ntr ie bs s c hü tz
S S

Sic h er h e its b e die n -
e leme n te S S

B edien-
fe ld

T aste n & N ota us

H aupt-
schalter

A ntriebs
- schütz

E nd-
schalter

En ds c ha lte r
SS

S ervo & M otor

In krem enta l-M odul
DM S-M odul

if(Prüfkraft>=Grenzkraft){
Blockiere_Schutztür()

}

for (i=1;i< pos;i++){
fahre_nach(i);

}

if (a > b) {
Fehlermeldung();

}

Software
New electronics

for(i=1;i< pos;i++){
fahre_nach(i);

}

Review 2 / 99 9 / 99

Control unit

Test Strategies for Embedded Systems

04.04.01 www.itq.de Seite 4/9

__

__

Figure 3: Structure of the integration test plan

During the implementation phase the different levels of the test plans were detailed. The
weekly code reviews were attended by a member of the test team, too. Together with the
software engineers the test team worked on the preparation of the white box tests. For the
calculation of the code coverage we used CodeView. At the beginning of the project we
planned an almost 100% coverage. After a while we figured out that it was more helpful to
concentrate on some critical modules than to try to do all at once.

At the beginning of the implementation phase we thought that we already designed around
90 % of all needed classes (modules). But we had to figure out in the first weeks of the
implementation that there was still a lot of detail work to be done. Therefore there is a steep
increase of the number of classes in fig. 4 at the very beginning. After some weeks there
was a stabilization of the number of modules. On the other hand there was a more or less
steadily increasing number of lines of code.

1st exam.
electro-

magnetical
tolerance

electro-
magnetical
tolerance

Electr/ Mech.
Safety

elect. current
1st examinat.

Functional
safeness

Climatical
influences

(1st)

Climatical
influences

(2nd)

Drive
1st examinat.

Force sensor
1st

examination

Force sensor
2nd exam.

Other functions
1st

examination

Vibration /
Noise

SW
test program

Start
1st

prototype
2nd

prototype
 3rd

prototype

Test Strategies for Embedded Systems

04.04.01 www.itq.de Seite 5/9

__

__ Fig.4: Number of modules (classes) and lines of code vs. time

The test phase started with the testing of some hardware modules. This period was quite
tough because on one day the situation occurred that a hardware module was completed
but the corresponding software wasn’t finished. On the next day for another module the
software was finished but the hardware was delayed. Looking back over this period we had
to learn to accept that even with the best planning some improvisation can’t be avoided. To
be flexible in this situation you have to design your test procedures quite modularly. It has
been our experience that the templates which are suggested by the IEEE were a good
basis for tailoring our own templates.

After getting to a certain level of maturity in the basic modules we started with the
integration of the system. To track the progress of the integration we used a coloured flow
chart graphic.

0

10000

20000

30000

40000

50000

60000

07
.08

.98

28
.08

.98

18
.09

.98

09
.10

.98

30
.10

.98

20
.11

.98

11
.12

.98

15
.01

.99

05
.02

.99

26
.02

.99

17
.03

.99

26
.03

.99

09
.04

.99

21
.04

.99

07
.05

.99

28
.05

.99

18
.06

.99

09
.07

.99

30
.07

.99

20
.08

.99

10
.09

.99

01
.10

.99

22
.10

.99

12
.11

.99

03
.12

.99

24
.12

.99

14
.01

.00

04
.02

.00

25
.02

.00

17
.03

.00

0

50

100

150

200

250

Li
ne

s
of

 C
od

e

N
um

ber of M
odules

NOM

 LOC_all

NOM = Number of Modules

LOC_all = Lines of Code

Test Strategies for Embedded Systems

04.04.01 www.itq.de Seite 6/9

__

__

Fig.5: Progress tracking of the integration

(released modules are shown in green, unreleased modules are shown in red)

The basic idea of our approach is shown in fig. 5. For every module which is represented by
a rectangle in the plan we tracked general information, such us the version, the date of
release, the name of the person who released the module and the test procedures which
were the basis for the release of the module. In addition we defined in advance which
modules had to be tested in each integration step. In matching every integration step there
were some integration test procedures which had to be performed. Through this
visualization we always had a good overview of the actual situation. This was especially
helpful in discussions with the management. After getting to the final point of the integration
test we started with the system test. To do the system test we used a modified machine
from a previous generation. After some weeks we got a pre-release of the new hardware
module (mechanical and electronic components) so we could start the acceptance test
concurrently with the system test.

Fig 6: Tracking of the system performance and the occurrence of defects

Integration step 1
Integration step 2

Integration step 3

Di 02. Mai

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Mi 03. Mai

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Do 04. Mai

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fr 05. Mai

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2021 2189

2227 2021
2003 2304

2291

2022
2189 2072 0 1787 1787 1787 1787

2072

2348 2126

2348
2250 2258

1787 2251

2347 2021

1787 2304 2003 2201

2289 1519

2015 1932
1828 2291 2227 1828 2021 2021

2291 2021
2350

2251
2250 1920

2072 2258 2258

2291
2021

EV5.0a.40

V-QMCLLQ-S

Test Strategies for Embedded Systems

04.04.01 www.itq.de Seite 7/9

__

__

The system performance and the defect rate were tracked by a spreadsheet with the format
shown in fig. 6. The green colour shows that the system ran without any problems. All
defects are marked by a rectangle. The colour of the rectangle identifies the severity of the
defect and the most likely contaminated module. The number in the rectangle refers to the
defect identifier in the error database.

Based on this type of spreadsheet and some other interpretations of the test results the test
team could come to the decision whether or not the product was ready to release.

Effort:
The whole project was designed to learn how to manage projects of this type. One of the
key questions of project management is, which effort has to be invested in which phase and
of which team. According to this goal we measured not only technical aspects but also
some management aspects. Figure 6 shows the progression of the ongoing project. The
effort of the project staff was measured in percentage of theoretically available man power.
We found out that a realistic percentage of real working on the project is for developers
about 60-70%.

Figure 6: Overview of the efforts

The shape of the curves indicates that the product release worked quite well because there
is a decline of the effort at the end of the project. Projects which end in a crisis have
normally a steep increase in the effort by about two thirds of the theoretically estimated end
date.

0

2

4

6

8

10

12

Ap
r 9

7
M

ai
 9

7
Ju

n
97

Ju
l 9

7
Au

g
97

Se
p

97
O

kt
 9

7
No

v
97

De
z

97
Ja

n
98

Fe
b

98
M

rz
 9

8
Ap

r 9
8

M
ai

 9
8

Ju
n

98
Ju

l 9
8

Au
g

98
Se

p
98

O
kt

 9
8

No
v

98
De

z
98

Ja
n

99
Fe

b
99

M
rz

 9
9

Ap
r 9

9
M

ai
 9

9
Ju

n
99

Ju
l 9

9
Au

g
99

Se
p

99
O

kt
 9

9
No

v
99

De
z

99
Ja

n
00

Fe
b

00
M

rz
 0

0
Ap

r 0
0

M
ai

 0
0

Ju
n

00

Deployment

Mechanics

Test

Electronics

Software

Project manager

Analysis Specification
Design

Implementation Test

Test Strategies for Embedded Systems

04.04.01 www.itq.de Seite 8/9

__

__

Figure 7: Length of phases vs. manpower in phases

Fig. 7 compares the lengths of the periods of time with the manpower invested in the
different phases. The first phases seem to be quite long, but a look at the percentage of the
manpower spent shows that the first phases needed only a small portion of the whole effort.
We spent about 25% of the overall effort for requirement engineering and design but
needed about 40% of the time. We think this ratio is quite realistic, because there is a big
demand for interdisciplinary discussion in the first phases. These discussions are the basis
for decisions and important decisions normally need time.

Finally we compared the test effort with the overall effort. In addition we figured out how
much we invested in test preparation and test performance. The results are shown in fig. 8.
The overall effort was about 42 man years. In test activities we spent about 42%. 20% of
the test effort was needed for preparation, the rest to perform the tests.

Comparison of Length and Capacity

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Analysis Specification/Design Implementation Test

Length
Capacity

Test Strategies for Embedded Systems

04.04.01 www.itq.de Seite 9/9

__

__

Figure 8: Test effort

Summary:
The project described ran from July 1997 to completion some months ago with a delay of
only about 4 weeks. This result underlines the fact that collateral test activities conducted
through the whole project are very helpful. But on the other hand it demonstrated that it may
be quite hard to do meaningful test planning in a very early phase of the project. It’s fairly
predictable that the basic test approach might be quite wrong. Therefore it’s very important
that the structure of the test documents is modular to give the flexibility of adapting your test
procedures very quickly to real circumstances.

Finally, we can conclude that the strategy of using a validation plan was very sensible.
Firstly it gave the whole project a certain framework and some regulations. Secondly it
forced us to start our test activities in a very early phase of the project which was eventually
one of the preconditions for project success.

We spent a long period of time and a lot of money to prepare and plan the project in a
sensible and serious way. In the eyes of the management this philosophy takes too much
time for things which you can’t see. Therefore it’s very important to inform the management
regularly and in a way which is understandable for non-insiders. Otherwise you are quite
soon forced to work on getting understandable results rather than to spend time for
thinking. Even though everybody knows that life is easier if think before you act.

Effort vs. test effort

42,0

17,6

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

whole project sum test

M
Y (42%)

Effort test performance vs. test
preparation

3,6

14,1

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

performance preparation

M
Y

(20%)

Effort vs. test effort

42,0

17,6

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

whole project sum test

M
Y (42%)

Effort test performance vs. test
preparation

3,6

14,1

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

performance preparation

M
Y

(20%)

QW2001 Paper 6T2

Mr. Keith B. Stobie
(BEA Systems, Inc.)

Automating Test Oracles and Decomposability

Key Points

Patterns for verifying test case results: external vs. internal checking●

Patterns for how to check: external vs internal data (data driven testing)●

Test logging strategies●

Presentation Abstract

All of the test patterns given below deal with test result handling.

The first patterns are complementary patterns for solving the same problem. They
deal with internal (in-line check) versus external (batch check) checking of the
results and internal (hard-coded) versus external (data driven) inputs and outputs.
Batch check (or Benchmark) is particularly useful for changing the Judging pattern
into Solved Example.

The second patterns are supplemental Test Automation Designs. Separable Tests
(or Atomic Tests) deals with selection and independence of tests. All behavior (or
whole function) deals with post-conditions of an Item Under Test (IUT).

All of these patterns also address test logging strategies.

About the Author

Keith directs and instructs QA and Test process and strategy. He plans, designs,
and reviews software architecture and tests for BEA. His most recent project was
BEA WebLogic Collaborate and previously WebLogic Exterprise. Keith was Test
Architect at Informix designing tests for the Extended Parallel Server product and
Manager of Quality and Process Improvement. With over 20 years in the field,
Keith is a leader in testing methodology, tools technology, and quality process. He
is a qualified instructor for Systematic Software Testing and software inspections.
Keith is active in the software task group of ASQC, participant in IEEE 2003 and
2003.2 standards on test methods, published several articles and presented at many
quality and testing conferences. Keith is an ASQ Certified Software Quality
Engineer with a BS from Cornell University.

Keith Stobie - Automating Test Oracles and Decomposability

1

3/31/01 1Keith Stobie - Automating Test Oracles and Decomposability

Automating Test Oracles and
Decomposability

Test Patterns for
 Test Result Handling

Keith Stobie
BEA Systems, Inc.

3/31/01 2Keith Stobie - Automating Test Oracles and Decomposability

Introduction

Test Oracles A means to determine Pass/Fail
Decomposability A means to break down tests to

smaller, more separable pieces.
Patterns A way of describing a solution in a

given context.
Anti-pattern Tells how to go from a problem to a

bad solution
Test Result Handling How your store, compare, and record

test results (expected and actual
outputs)

Keith Stobie - Automating Test Oracles and Decomposability

2

3/31/01 3Keith Stobie - Automating Test Oracles and Decomposability

Generic Test
Software

Under
Test

Logic to apply
inputs and
retrieve outputs

input

Environment Internal State

Actual
Output

New Environment

New Internal State

Expected
output

Test
Result
OracleTest Oracle

3/31/01 4Keith Stobie - Automating Test Oracles and Decomposability

Output – Effect Input
Cause Expected Actual

Pattern / Anti-Pattern

Test Data Location patterns
Output – Effect Input

Cause Expected Actual

Pattern / Anti-Pattern

Internal Internal Internal
Internal Internal External
Internal External Internal
Internal External External
External Internal Internal
External Internal External
External External Internal
External External External

Output – Effect Input
Cause Expected Actual

Pattern / Anti-Pattern

Internal Internal Internal Self-contained data
Internal Internal External Move actual to Internal
Internal External Internal Cause without Effect
Internal External External Cause without Effect
External Internal Internal Effect without Cause
External Internal External Effect without Cause
External External Internal Move actual to External
External External External Data-driven data

Keith Stobie - Automating Test Oracles and Decomposability

3

3/31/01 5Keith Stobie - Automating Test Oracles and Decomposability

Self-contained data
Context: You are creating a reusable test.

Problem: Where do you keep the test input data and test
expected output data?

Forces:

qWant to read and understand a test with as few external
references as possible.

q Tests are each relatively unique in their parameters (or
sequences of actions).

Indications: The amount of input and output per result is
relatively small and easy to understand.

Solution: Include the data in the test script or test code.

3/31/01 6Keith Stobie - Automating Test Oracles and Decomposability

Self-contained data
Rationale: Test script logic becomes less complicated or more

obvious when it is included directly with the logic.
Resulting Context/Consequences
Make it impossible to lose part of test, if it is only in one file.
Maintainability is sometimes reduced if bulk updates of

expected results are needed.
Reduces code reusability if inputs and results are hard-coded or

expressed as symbolic constants in the code.
Examples/Known Uses
Typically used in API tests, for example Posix Verification.
Code Samples: See Check as you Go using Self-contained data.

Keith Stobie - Automating Test Oracles and Decomposability

4

3/31/01 7Keith Stobie - Automating Test Oracles and Decomposability

Move actual to Internal
Run DB lock test (internal)
for I=1,numlocks {getDBlock();}
try { getDBlock(); logFail(); }
 catch (TooManyLocksException e){/*Got expected exception*/}
 catch (Exception e) { logFail(); }

diff DBlog expectedDBlog (external)

Run DB lock test (internal)
for I=1,numlocks {getDBlock();}
try { getDBlock(); logFail(); }
 catch (TooManyLocksException e){/*Got expected exception*/}
 catch (Exception e) { logFail(); };
System.exec(“diff DBlog expectedDBlog”);

See also Smart Dependency Checking

3/31/01 8Keith Stobie - Automating Test Oracles and Decomposability

Effect without Cause
Input file:
set onn # should fail because it should be “set on”
set Off # should succeed: Off should be case insensitive

Actual & expected outputs:
Illegal Set argument

Expected output: Effect with Cause
set onn # should fail because it should be “set on”
Illegal Set argument
set Off # should succeed: Off should be case insensitive

Actual output:
set onn # should fail because it should be “set on”
set Off # should succeed: Off should be case insensitive
Illegal Set argument

Effect without cause

Keith Stobie - Automating Test Oracles and Decomposability

5

3/31/01 9Keith Stobie - Automating Test Oracles and Decomposability

Data-driven data
Context: You are creating a reusable test and you have

many data combinations to be tested.

Problem: Where do you keep the test input data and test
expected output data?
Hard-coding data in test scripts makes it laborious to create
lots of related tests.

Forces: • Output is voluminous.
• Output is difficult to predict and can frequently change

from release to release.
• Additional, similar tests may need to be added.
Indications: 1) Test data is to be provided externally

2) You have existing legacy data.

3/31/01 10Keith Stobie - Automating Test Oracles and Decomposability

Data-driven data
Solution: Separate test data from scripts.

This makes it easier to create multiple related tests.
Rationale: Separating data from procedure is a classic computer

science technique for structuring code.
Resulting Context/Consequences
Mentally tracing through the test requires an extra level of

indirection to substitute the data-driven values in the
specific situation. Test script logic becomes more
complicated or less obvious when data is separate.

Examples/Known Uses: Compiler tests.
SQL optimizer tests showing optimizer strategy (changing release to release).

Stub generation for distributed methods (for example CORBA IDL, or Java RMI).

Code Samples: See Batch Check using Data Driven Data.

Keith Stobie - Automating Test Oracles and Decomposability

6

3/31/01 11Keith Stobie - Automating Test Oracles and Decomposability

Move actual to External
Compile <testInput >actualOutput
if [$? != 0] ; then logFail(); #Internal
diff actualOutput expectedOutput # External

Compile <testInput >actualOutput
echo “ResultCode $?” >>actualOutput
diff actualOutput expectedOutput # External

3/31/01 12Keith Stobie - Automating Test Oracles and Decomposability

Cause without Effect
Input file: 1 4 9 –1 0
Test code:
For I=1 to 3; do get num;
 if (square(squareRoot(num)) != num)
 print “fail $num”;

done
For I= 1 to 2; do get num;
 if (squareRoot(num) != “illegal”)
 print “fail $num”;
done

Keith Stobie - Automating Test Oracles and Decomposability

7

3/31/01 13Keith Stobie - Automating Test Oracles and Decomposability

Cause with Effect

Test code:
While read in_num, out_result; do
if (out_result = “illegal”)
 then if (squareRoot(in_num) != “illegal”)
 print “fail $in_num”;
 else if (squareRoot(in_num) != $out_result)
 print “fail $in_num”;
done

Input file: 1 1
 4 2
 9 3
-1 illegal
 0 illegal

Cause Effect

3/31/01 14Keith Stobie - Automating Test Oracles and Decomposability

Comparison Timing
(check patterns)

BeginTest
 Insert database record # Test operation
 Verify successful return code # post condition1
EndTest

BeginTest
 Retrieve same database record
 Verify actual retrieved record matches

(expected) input record. # post condition2
EndTest

Anti-Pattern: Pass Each Post-Condition

Keith Stobie - Automating Test Oracles and Decomposability

8

3/31/01 15Keith Stobie - Automating Test Oracles and Decomposability

Check as you Go
using Self-contained data

BeginTest
Insert database record # Test operation
Verify successful return code # post condition1
Retrieve same database record
post condition2
Verify actual retrieved record matches

(expected output) input record.
EndTest

Check each post condition
immediately (as you go)

Data for verification
in the test code

3/31/01 16Keith Stobie - Automating Test Oracles and Decomposability

Actual sent out to
external file

Batch check using
Data-driven data
BeginTest
Read input for database record
Insert database record # Test operation
Print return code # post condition1
Retrieve same database record
Print actual retrieved record # post condition2
Verify actual printout matches

expected printout
EndTest

Check post conditions at
the end (in batch)

Data for verification
in external file

Input data from
external file

Keith Stobie - Automating Test Oracles and Decomposability

9

3/31/01 17Keith Stobie - Automating Test Oracles and Decomposability

Pattern Conditions
Question Answer Pattern / Anti-Pattern

All internal Self-Contained Data Where to store test
results? All external Data-Driven Data

At each step Check as you Go When to check?
At the end Batch Check

No Separable Tests Depend on previous
test? Yes Smart Dependency Checking

No Whole Function Pass a test for each
post-condition? Yes Pass Each Post-Condition

3/31/01 18Keith Stobie - Automating Test Oracles and Decomposability

 Check as you Go
Aliases: In-Line check
Context: You have a Test Oracle for verifying the test results.
Problem: Do you compare actual results to known expected

results at each step as you go, or all at the end?

Forces:

• Future results may be invalid if early results don’t pass.
• Data from the environment is dynamically needed to

evaluate correctness.
• Correctness requires specific relationships to occur, for

example complex data structures like trees.
• Either the checks are very cheap to make or the test is not

highly performance sensitive.

Keith Stobie - Automating Test Oracles and Decomposability

10

3/31/01 19Keith Stobie - Automating Test Oracles and Decomposability

 Check as you Go
Indications
• The desired results are precisely known ahead of time.
• The result of each set of inputs is easily checked.
• Test is meaningless if early discrepancy for a post-condition.
Solution

Check each result in-line as finely as possible immediately after
its inputs are submitted. If a validation fails, log the failure
and then don’t proceed forward with the rest of the test.

Rationale
It generally aids comprehensibility if the expected results

appear in the same file and as close to the inputs as possible.
Code Samples: See Check as you Go using Self-contained data.

3/31/01 20Keith Stobie - Automating Test Oracles and Decomposability

Batch check
Aliases: Benchmark, baseline, golden results,

canonical results, gold master
 - a benchmark file containing expected results is used.

Context: You have a Test Oracle for verifying the test results or
the specification may be via the pattern Judging actual results
when expected result is not necessarily known.

Problem: Do you compare results at each step as you go or all at the end?

Forces
• The set of inputs is not easily separable
• The output can be compared easily with minimal filtering.
• The checks are expensive to make or the test is highly

performance sensitive and it is relatively cheap to just
record the results.

Keith Stobie - Automating Test Oracles and Decomposability

11

3/31/01 21Keith Stobie - Automating Test Oracles and Decomposability

Batch check
Indications: A failure near the start of the test doesn’t

invalidate the results that follow.
Solution: Provide a benchmark file of expected results.

Collect actual results as the test executes. At the end
compare the expected and actual results.

Rationale: Tests are very easy to develop.
Expected results can be generated by the program once,
and hand-checked for accuracy once, and then reused again
and again. This changes the Judging pattern into Solved
Example. Expected results can be updated without
affecting any code (since they are in a separate file).
Batch processing may be the nature of item under test.

3/31/01 22Keith Stobie - Automating Test Oracles and Decomposability

Batch check
Resulting Context/Consequences
Frequently testers get lazy when the expected output has to change and

don’t scrutinize the initial results carefully enough for correctness. In
this case, the actual incorrect output gets canonized as the expected
output.

Batch check can make maintenance more difficult if the relationship
between inputs and outputs is not very clear.

Frequently special filtering patterns (regular expressions) are needed to
ignore uncontrollable extraneous differences, for example machine
names, time stamps, etc.

Examples/Known Uses
Compiler testing or any transformation type program. It is generally too

expensive to test each feature completely individually, and a great deal
of common setup exists to test any one feature.

Code Samples: See Batch Check using Data Driven Data.

Keith Stobie - Automating Test Oracles and Decomposability

12

3/31/01 23Keith Stobie - Automating Test Oracles and Decomposability

Smart Dependency Checking
A test of some data storage mechanism might have three test

methods, testBind(), testLookup() and
testUnbind(). You want to run the bind test first; the
lookup test second; and the unbind test last and only if the
bind test passed.

If you only require a test method to have had a chance to run,
but not necessarily to have passed, you can prefix the test
name with a '%'.

 public boolean testBind() { ... }
 public boolean testLookup() {
 require("Bind"); ... }

 public boolean testUnbind() {
 require("Bind,%Lookup"); ... }

3/31/01 24Keith Stobie - Automating Test Oracles and Decomposability

Smart Dependency Checking

BeginTest MaxLocks
for I=1 to numlocks {getDBlock();}
EndTest
BeginTest ExceedLocks requires(MaxLocks)
try { getDBlock(); logFail(); }
 catch (TooManyLocksException e)

{/*Got expected exception*/}
 catch (Exception e) { logFail(); };
System.exec(“diff DBlog
expectedDBlog”);

EndTest

Extending the Move actual to Internal example

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 1 of 20

Automating Test Oracles and Decomposability

Conceptually all tests have three parts:

q the input (including the environment and internal state) is the stimulus provided by a test designer
q the expected output (including environment and internal state) is what the test requires to consider

the software correct, it is generated via some Test Oracle
q the actual output (including environment and internal state) is the result of executing the software

with the given input.
The output is a result of a set of post-conditions associated with the software being tested.

Where and how do you check results? What information do you record about results?
How does result checking impact test design?

Test Data Location questions: Where do the input, expected output, and actual output reside? In the test
case code? In a separate set of files or a database?

Comparison Timing questions: How close in time after the execution of a test is the check of the result
made? As each step of the test is made? After the entire test? After a set of tests?

If there were only one answer to these questions, they would have been solved long ago. Instead, a series
of trade-offs (forces), helps determine when each method is most appropriate. This paper uses the concept
of patterns1 to describe the details of why you choose a particular test result handling method to automate a
test design.

Context
You are designing tests and need to consider how much to reasonably include in a given test.
You are choosing how to automate tests that have been designed and need to make the tests as
understandable and maintainable as possible.
This doesn’t apply to ad hoc testing, exploratory testing or testing without an Oracle.

Test Data Location (data patterns):
The input, expected output, and actual output may be coded directly into the test (program code, test script,
etc.) or apart from it (input file, expected result database, etc.). The Co-locate Data pattern tells us that we
should make them all internal or all external resulting in the Self-contained data or Data-driven data
patterns respectively. The helper patterns Move actual to Internal and Move actual to External allow
transformations into the all internal or all external patterns. The anti-patterns, Cause without Effect and
Effect without Cause, show what results from separating the input from the output.
The table below lists patterns in italics and anti-patterns using outlined text.

Output – Effect Input -
Cause Expected Actual

Pattern / Anti-Pattern

Internal Internal Internal Self-contained data
Internal Internal External Move actual to Internal
Internal External Internal Cause without Effect
Internal External External Cause without Effect
External Internal Internal Effect without Cause
External Internal External Effect without Cause
External External Internal Move actual to External
External External External Data-driven data

1If necessary see “A Pattern Language for Pattern Writing” by Gerard Meszaros and Jim Doble at
http://www.hillside.net/patterns/Writing/patterns.html for the more details about the meaning of the
headings in the patterns used in this paper.

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 2 of 20

Comparison Timing (check patterns)
Many of the features of software that are tested result in multiple post-conditions. Each post-condition
must be checked, but is each post-condition its own test? See Pass Each Post-Condition anti-pattern for
why using only a single post-condition as a test is misleading. The Whole Function pattern considers a
single test to include the evaluation of all of the relevant post-conditions.
Thus the following is considered incorrect:

BeginTest
Insert database record # Test operation
Verify successful return code # post-condition1
EndTest
BeginTest
Retrieve same database record
post-condition2
Verify actual retrieved record matches (expected) input record.
EndTest

Instead the following should occur using either the Check as you Go pattern or the Batch check pattern
described later:

BeginTest [Check as you Go using Self-contained data]
Insert database record # Test operation
Verify successful return code # post-condition1
Retrieve same database record
post-condition2
Verify actual retrieved record matches (expected output) input
record.
EndTest

or
BeginTest [Batch check using Data-driven data]
Read input for database record
Insert database record # Test operation
Print return code # post-condition1
Retrieve same database record
Print actual retrieved record # post-condition2
Verify actual printout matches expected printout
EndTest

Notice there are two verify steps in the Check as you Go case above. Either verify step can cause the test to
mark the feature as failed.
However the timing and number of verifies is not prescribed. It is not even required that a verify be a
direct part of the test code. Sometimes several tests will output their results before any of the comparison
(verification) is done. However, each test is not considered complete until the results of all successful
comparisons are done. It is acceptable to not complete the comparisons if a discrepancy has already been
shown. The primary consideration for continuing comparisons after a discrepancy is whether it would
provide additional useful information for diagnosing the failure. It does not impact the outcome of the test.

Question Answer Pattern / Anti-Pattern
All internal Self-Contained Data Where to store test results? All external Data-Driven Data
At each step Check as you Go When to check? At the end Batch Check

No Separable Tests Depend on previous test? Yes Smart Dependency Checking
No Whole Function Pass a test for each post-

condition? Yes Pass Each Post-Condition

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 3 of 20

The following patterns are a linkage between the Test “Oracle Micro-Patterns” for “Pre-Specification
Oracles” (Solved Example, Simulation, Approximation, and Parametric) and “Test Automation Design
Patterns” approaches of Built-in Test and Test Cases as described in Testing Object-Oriented Systems:
Models, Patterns, and Tools (http://www.rbsc.com/TOOSMPT.htm). [See appendix for summaries of these
patterns.]

The second pair of patterns are complementary patterns for solving the same problem. Check as you Go is
the generally preferred method for ease of understanding. Batch check (or Benchmark) is particularly
useful for changing the Oracle Judging pattern into Solved Example.

The third pair of patterns are supplemental Test Automation Designs. Separable Tests (or Atomic Tests)
deals with selection and independence of tests. Smart Dependency Checking is used when decomposability
to satisfy the Separable Tests pattern precludes the second test from being independent.

Whole Function (or All behavior) deals with post-conditions of an Item Under Test (IUT).

Note that patterns can be combined as the situation demands. You might use Check as you Go for some of
the post-conditions which increases the ability to create Separable tests and yet use Batch check for
voluminous post-conditions which may change frequently.

The rest of this paper presents the patterns followed by an appendix with pointers to other patterns and
references.

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 4 of 20

Pattern Name: Co-Locate Data

Context
Reusable tests are being created and the data for the tests must be stored.

Problem
Inputs come from various sources including the test script, the environment, or internal state. Similarly
output consists of various sources including the environment, internal state, test script, or output files
(including standard out, standard error, log files, and database files).

Forces
Input and Output are naturally separated streams and are usually not mixed.

Solution
Put the input, expected output, and actual output either within the test code or put them all centralized
external to the test code. It should be possible to see the input and expected output together (either in the
code, in a file, or in an extract from a database). Transform input or output from other sources either into
the code or the centralized external location.

Indications
Input data and expected output data are separated.

Rationale
Having the input and expected output in the same place (either internal or external) increases readability
and understandability (including for maintenance). If you separate them, then you end up with the anti-
patterns: Cause without Effect and Effect without Cause.

Generally, tests are designed to transform the cases where the expected and actual output reside in different
locations, into the cases where they are all the same.

Resulting Context/Consequences
Verification of the correct expected output is easier since it is all in one place.

Related Patterns
See Self-contained data for putting the data inside the test script or program.
See Data-driven data for keeping the data outside the test script or program.
See Move actual to Internal or Move actual to External to make the actual data co-located with
the input and expected output.
The anti-patterns Cause without Effect and Effect without Cause describe problems with bad
solution of having the input not co-located with the expected output.

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 5 of 20

Pattern Name: Self-contained data
Aliases: internal data

Context
You are creating a reusable test.

Problem
Where do you keep the test input data and test expected output data?

Forces
q Want to read and understand a test with as few external references as possible.
q Tests are each relatively unique in their parameters (or sequences of actions).

Solution
Include the data in the test script or test code.

Indications
The amount of input and output per result is relatively small and easy to understand.

Rationale
Test script logic becomes less complicated or more obvious when it is included directly with the logic.

Resulting Context/Consequences
Makes it impossible to lose part of the test, if it is only in one file.
Sometimes reduces maintainability if bulk updates of expected results are needed.
Reduces code reusability if inputs and results are hard-coded or expressed as symbolic constants in the
code.

Related Patterns
Contrast with Data-driven data.
See also Move actual to Internal.

Examples/Known Uses
Typically used in API tests, for example Posix Verification Suite.

Code Samples
The Check as you Go pattern Code Sample demonstrates simple Self-contained data.
The Batch check pattern Code Sample demonstrates input and output contained within the test script.

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 6 of 20

Pattern Name: Move actual to Internal

Context
The result of running a program is some external post-condition, for example writing a message in a
separate log-file, but the input and other post-conditions (expected output) are internal.

Problem
The check of post-conditions is distributed between external script code and internal script code.
Forces

q Post-conditions occur in different environments.
Solution
The external actual output is read into or checked by the test program to transform it into the internal actual
output case.

Indications: Input and most output are internal.

Rationale: It is most convenient to compare between expected output and actual output in the same
location. Since the input and exptect output are already internal, they are the majority, and the actual
output must be made to match them.

Resulting Context/Consequences: You have Self-contained data after moving actual to internal.

Related Patterns: See Self-contained data.

Code Samples
A call to lock a record in a database that is out of locks might have two post-conditions:

1. an exception is returned to the caller indicating no locks (internal), and
2. a message is written to the operations log indicating the database has run out of locks (external).

The first example shows an external post-condition (DBlog output) causing comparison being done
external to the test program in addition to the internal post-condition (exception raised) because of the
internal input.

Run DB lock test (internal)

for I=1,numlocks {getDBlock();}
try { getDBlock(); logFail(); }
 catch (TooManyLocksException e){/*Got expected exception*/}
 catch (Exception e) { logFail(); }

diff DBlog expectedDBlog (external)

Applying this pattern results in all post-conditions being checked for internally in the code
Run DB lock test (internal)

for I=1,numlocks {getDBlock();}
try { getDBlock(); logFail(); }
 catch (TooManyLocksException e){/*Got expected exception*/}
 catch (Exception e) { logFail(); };
System.exec(“diff DBlog expectedDBlog”);

The above shows all post-conditions being checked from within the test code even though external actual
output is involved.

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 7 of 20

Pattern Name: Data-driven data2
Aliases: external data

Context
You are creating a reusable test and you have many data combinations to be tested.

Problem
Where do you keep the test input data and test expected output data?
Hard-coding data in test scripts makes it laborious to create lots of related tests.

Forces
• Output is voluminous.
• Output is difficult to predict and can frequently change from release to release.
• Additional, similar tests may need to be added.

Solution
Separate test data from scripts. This makes it easier to create multiple related tests.

Indications
Test data is to be provided externally, for example from domain experts.
You have existing legacy data.

Rationale
Separating data from procedure is a classic computer science technique for structuring code.

Resulting Context/Consequences
Mentally tracing through the test requires an extra level of indirection to substitute the data-driven values in
the specific situation. Test script logic becomes more complicated or less obvious when data is separate.

Related Patterns
Frequently used with Batch Check. Contrast with Self-contained data.
See also Move actual to Internal.

Examples/Known Uses
Compiler tests.
SQL optimizer tests showing optimizer strategy (which may change release to release).
Stub generation for distributed methods (for example CORBA IDL, or Java RMI).

Code Samples
If the Batch check pattern Code Sample had an external existing actualOutput file, instead of creating
it on the fly, it would demonstrate Data-driven data.
The Move actual to External code sample also shows Data-driven data.
The Cause without Effect code sample also shows Data-driven data.

2 Much of this material is a derivation from Data-driven testing pattern presented at PoST 1, Jan. 2001

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 8 of 20

Pattern Name: Move actual to External

Context
The result of running a program is some internal post-condition, for example an exception being raised, but
the input and other post-conditions (expected output) are external.

Problem
The check of post-conditions is distributed between external script code and internal script code.

Forces
q Post-conditions occur in different environments,

Solution
The internal post-condition effect is outputted to transform it into the actual external output case.

Indications
Input and most output are external.

Rationale
It is most convenient to compare between expected output and actual output in the same location. Since the
input and expected output are already external, they are the majority and the actual output must be made to
match them.

Resulting Context/Consequences
You have Data-driven data after moving actual to external.

Related Patterns
See Data-driven data.

Code Samples

For bad syntax a compiler is supposed to have two post-conditions:

1. display an error (external output), and
2. exit with a non-zero status code (internal to script check).

Below is a mixture of checking a post-condition in the script (internal) and externally.
Compile <testInput >actualOutput
if [$? != 0] ; then logFail(); # Internal
diff actualOutput expectedOutput # External

After applying the pattern you get:

Compile <testInput >actualOutput
echo “ResultCode $?” >>actualOutput
diff actualOutput expectedOutput # External

The above shows all post-conditions being checked externally to the test code even though internal actual
output is involved.

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 9 of 20

Anti-Pattern Name: Effect without Cause
Aliases: output only

Context
Expected output is recorded without knowing the input.

Problem
Outputs can match, but for the wrong reasons.

Forces

Solution
Record input with the outputs. It is also possible to derive the input as an extraction from the expected
output.

Rationale
It is easier to review for correctness when the inputs and outputs are together.
It is easily verified if each effect occurs due to its cause.

Resulting Context/Consequences
Test may have to echo or otherwise copy the input into the output stream.

Code Sample

Input file:
 set onn # should fail because it should be “set on”
 set Off # should succeed because Off should be case insensitive
Actual & expected outputs:
 Illegal Set argument

Test marks product as passed because it got expected output. Although this has the input, expected output,
and actual output all external files, this input is external to the expected output file.
Correct way:

Expected output:
 set onn # should fail because it should be “set on”
 Illegal Set argument
 set Off # should succeed because Off should be case insensitive
Actual output:
 set onn # should fail because it should be “set on”
 set Off # should succeed because Off should be case insensitive
 Illegal Set argument

Test marks product as failed.
The product only looks at first 2 letters (“on”) and is not case insensitive.

Notice how the expected output is easy to understand since both the cause and effect show up in the file.

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 10 of 20

Anti-Pattern Name: Cause without Effect
Aliases: input only

Context
Input is recorded externally to the expected output.

Problem
Matching the expected output with the input is error-prone during maintenance.

Forces

Solution
Record expected output with the input.

Rationale
It is easier to review for correctness when the inputs and outputs are together.
It is easily verified if each effect occurs due to its cause.
Additional inputs can be easily added since their expected output is recorded with them.

Code Samples

Input file: 1 4 9 –1 0

Test code:
For I=1 to 3; do get num;

if (square(squareRoot(num)) != num) print “fail $num”;
done

For I= 1 to 2; do get num;
if (squareRoot(num) != “illegal”) print “fail $num”;
done

Note that the test code (internal effects) is tightly tied to the input (external cause) and changing either
creates test (not product) failures. This is a very brittle coding style.

Better, using Data-driven data pattern is:
Input file:

 1 1
 4 2
 9 3
-1 illegal
 0 illegal

Test code:
While read in_num, out_result; do

if (out_result = “illegal”)
then if (squareRoot(in_num) != “illegal”) print “fail $in_num”;
else if (squareRoot(in_num) != $out_result) print “fail $in_num”;
done

This prevents the brittle code and is easily expandable. You can add additional test cases by changing the
input file without changing the test code. This is an example of Data-Driven Data.

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 11 of 20

Pattern Name: Check as you Go
Aliases: In-Line check

Context
You have pre-specification of the test results.

Problem
Do you compare actual results to known expected results at each step as you go, or all at the end?

Forces
• Future results may be invalid if early results don’t pass (see also Separable Tests).
• Data from the environment is dynamically needed to evaluate correctness.3
• Correctness requires specific relationships to occur, for example complex data structures like trees.
• Either the checks are very cheap to make or the test is not highly performance sensitive,

 that is, you can afford to spend time to do the checks during the test.

Solution
Check each result in-line as finely as possible immediately after its inputs are submitted. If a validation
fails then log the failure and optionally don’t proceed forward with the rest of the test. For example, when
bounding the time of the result, if a connection isn’t made within a timeout period, abort the test rather than
waiting to get more output.

Indications
• The desired results of a test input are precisely known ahead of time.
• The test is programmable, that is, the result of each set of inputs is easily checked.
• The test is long running, and could be meaningless if there is an early discrepancy for one of the post-

conditions.

Rationale
It generally aids comprehensibility of the tests if the expected results appear in the same file and as close to
the inputs as possible.

Resulting Context/Consequences
Complete list of post-conditions being checked may be spread throughout the test code.

Related Patterns
See Batch check for the same problem, but different forces.

Examples/Known Uses
Frequently used for API/Class Drivers approach.

Junit – See http://www.junit.org/
Expect tool – See http://expect.nist.gov/
POSIX Verification Test Suite – See http://www.opengroup.org/testing/downloads/vsx-pcts-faq.html

Code Samples
Note below that the result is checked as you go in the code and not by some external entity.

3 For example, you want to verify the timestamp on a log record. You can print the time before and after
you expect the log record, but now your batch comparison requires relative checks (less than and greater
than) instead of just equals. This is usually a significantly more difficult comparison algorithm.

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 12 of 20

Java/C++

result = squareRoot(1);
if (result != 1) {

LogError(“squareRoot(1) resulted in “+result
 +” where 1 was expected”)

}
result = squareRoot(4);
if (result != 2) {

LogError(“squareRoot(4) resulted in “+result
 +” where 2 was expected”)

}
Shell

result=`squareRoot 1`
if [“$result” != “1”] ; then
 echo “squareRoot 1 resulted in $result, where 1 was expected.”
fi
result=`squareRoot 4`
if [“$result” != “2”] ; then
 echo “squareRoot 4 resulted in $result, where 2 was expected.”
fi

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 13 of 20

Pattern Name: Batch check

Aliases: Benchmark, baseline, golden results, canonical results, gold master
 - where a benchmark file containing expected results is used.

Context
You have pre-specification of the test results or the specification may be via the pattern Judging actual
results when expected results are not necessarily known.

Problem
Do you compare results at each step as you go or all at the end?

Forces
• The set of inputs is not easily separable (for example compiler input file).
• The output can be compared easily with minimal filtering.
• The checks are expensive to make or the test is highly performance sensitive and it is relatively cheap

to just record the results.

Solution
Provide a benchmark file of expected results. Collect actual results as the test executes. At the end
compare the expected and actual results.

Indications
• A failure near the start of the test doesn’t invalidate the results that follow.

Rationale
Tests are very easy to develop. Expected results can be generated by the program once, hand-checked for
accuracy once, and then reused again and again. This changes the Judging pattern into Solved Example.
Expected results can be updated without affecting any code (since they are in a separate file). Batch
processing may be the nature of Item Under Test (IUT).

Resulting Context/Consequences
One dangerous Consequence frequently seen is testers get lazy when the expected output has to change and
don’t scrutinize the initial results carefully enough for correctness. In this case, the incorrect actual output
gets canonized as the expected output. See Test Automation Snake Oil at
http://www.satisfice.com/articles/test_automation_snake_oil.pdf

Batch check can make maintenance more difficult if the relationship between inputs and outputs is not very
clear.

Frequently special filtering patterns (regular expressions) are needed to ignore uncontrollable extraneous
differences, for example machine names, time stamps, etc. This filtering has a small risk of missing
incidental problems, such as the time being reported incorrectly. Generally you rely on other tests to
specifically verify what most of these types of tests ignore.

Related Patterns
See Check as you Go as an alternate method.

Examples/Known Uses
Compiler testing or any transformation type program. It is generally too expensive to test each feature
completely individually, and a great deal of common setup exists to test any one feature.

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 14 of 20

Code Samples
The abbreviated example below shows the expected output stored in a separate file and then a batch
comparison done.

Shell:

cat <<EOINPUT >|expectedOutput
input output
1 1
4 2
EOINPUT

Set up for read from fd=4 with above data
exec 4<expectedOutput

read -u4 input_value?"headings " output_value
echo $input_value $output_value >| actualOutput
while read -u4 input_value?"input and output" output_value; do
 echo "$input_value \c" >> actualOutput
 squareRoot $input_value >> actualOutput
done

diff expectedOutput actualOutput

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 15 of 20

Pattern Name: Separable Tests
Aliases: Atomic Tests, Independent Tests
Context
You know the nature of the tests you want to run and easily identify exactly which existing tests or subset
of tests you need.

Problem
How do you run as few tests as possible and as small a set of tests as possible if you know what you want
to test?
How can you run tests in any order if they each require a different setup?

Forces
• Tests may have setup dependencies.
• Tests should be as small and specific as possible.
• Tests need to be efficient and not repeat operations excessively.

Solution
Provide as fine grain a selection mechanism as possible. For API tests this means being able to select tests
within a program via GUI, command line, or environmental options. Provide many ways to categorize tests
(see Test Keywords Management in the Appendix).

Indications
• Developers or Managers request: can we run a test that just does X?
• Tests require different resources (for example network connections or database access)

Rationale
Quicker reruns of tests are usually possible if only a single small test must be run.
When development is doing defect reproduction or review, it is easier to understand small tests rather than
large, multi-condition tests.

Resulting Context/Consequences

q Tests can be independently run based on each test’s unique characteristics.
q Separating into very point-specific tests reduces the chances of serendipitous findings and may

also avoid testing of any interactions – both of which can reduce bug-finding abilities of tests.4
q Running several small tests may take more time than running one large test. At a minimum there

may be extra data recording time (start, stop, success or failure) for each small test.
q If a large test is broken into several smaller tests:

q it is easier to run them in different orders, which can increase the chance of finding defects.
q it is possible to run tests which might have been blocked by an early failure in the big test
q there is a cleaner isolation of pass/fail for each feature

Related Patterns
Smart Dependency Checking describes methods of stating and satisfying test dependencies.
Test Keywords Management (in the Appendix) describes methods of selecting separable tests.

Examples/Known Uses
TET (http://tetworks.opengroup.org/) provides tet_testlist to allow “invocable components” within
a program to be separately run.
Rational Test Manager – See http://www.rational.com/products/testmanager/index.jsp

4 Craft of Software Testing by Brian Marick

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 16 of 20

 Pattern Name: Smart Dependency Checking

Context
A test requires same environment setup as provided by another test. Conversely, a large test can be broken
up into parts such that the early parts could be run without running the later parts and still be useful tests.

Problem
How do we allow running of any arbitrary test if the test requires other tests to run before it?

Forces
• Tests need to be efficient and not repeat operations excessively.

Solution
Provide methods of stating and satisfying test dependencies. Tests must indicate any dependencies
required, and the execution harness must order tests to meet the dependencies.

Indications: Tests share a lot of common code that each must execute.

Rationale
By having each test state its dependencies, an intelligent execution harness can order the tests to satisfy the
dependencies and run as few tests as possible.

Resulting Context/Consequences
Dependencies between tests are automatically accommodated.

Examples/Known Uses
TestFrameWork provides the requires()5 method to automatically build the tree of required tests.
For example a test of some data storage mechanism might have three test methods, testBind(),
testLookup() and testUnbind(). Obviously you want to run the bind test first; the lookup test
second; and the unbind test last and only if the bind test passed. To do this you'd write the methods this
way. If you only require a test method to have had a chance to run, but not necessarily to have passed, you
can prefix the test name with a '%'.
 public boolean testBind() { ... }
 public boolean testLookup() { require("Bind"); ... }
 public boolean testUnbind() { require("Bind,%Lookup"); ... }

Code Samples
A test for exceeding the database locks could be as shown in Move actual to Internal.
However, the database test would typically be decomposed into two tests: the first test to verify the
expected maximum number of locks can be reached and a second test to verify the error condition. This
would result in the overflow test being dependent upon maximum number of locks. But, the MaxLocks test
can be run independently of the ExceedLocks test if that is all that is needed for testing.
 BeginTest MaxLocks

for I=1 to numlocks {getDBlock();}
EndTest
BeginTest ExceedLocks requires(MaxLocks)
try { getDBlock(); logFail(); }
 catch (TooManyLocksException e){/*Got expected exception*/}
 catch (Exception e) { logFail(); };
System.exec(“diff DBlog expectedDBlog”);
EndTest

5 “Creating a Testing Culture” by Keith Stobie, Quality Week 1999

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 17 of 20

Pattern Name: Whole function
Aliases: All behavior

Context
An Item Under Test (IUT) has multiple post-conditions associated with it. Is each post-condition a separate
test?

Problem
What does it mean for a test to pass, or how fine-grained should comparisons be?

Forces
q Comparisons must be fine-grained.
q Tests must not report false positives (a successful execution when the product doesn’t actually work).

Solution
Verify all of the post-conditions associated with a function being tested before considering a test as having
shown the function passing.

Indications
Function has multiple post-conditions.

Rationale
If only one post-condition is checked, then a contradiction between post-conditions may not be detected,
thus missing a defect!

Resulting Context/Consequences
A test can show a failure for multiple reasons (at least one per post-condition).

Related Patterns
Typically used in conjunction with Separable Tests.
See the anti-pattern Pass Each Post-Condition.

Examples/Known Uses
TET distinguishes between a “Test Purpose” and an “Invocable Component” which may have several test
purposes, but can’t be run separately.

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 18 of 20

Anti-Pattern Name: Pass Each Post-Condition

Context
An Item Under Test (IUT) has multiple post-conditions associated with it. Each post-condition is
considered a separate test.

Problem
How to indicate that each post-condition has been checked?

Forces
q Management likes to see lots of tests.
q A post-condition can be thought of as a test.

Solution
Print pass or fail after each post-condition check or after each comparison.

Indications
Function has multiple post-conditions.

Rationale
The reasoning for not considering each post-condition as a test is as follows:
If the second test shows the second post-condition as failing, then it might be incorrect to say that the first
post-condition in the first test succeeded. Yet, as written, the tests will indicate you should get a successful
first post-condition even if the second post-condition fails.

For example:

BeginTest
Insert database record # Test operation
Verify successful return code # post-condition1
EndTest
BeginTest
Retrieve same database record
post-condition2 or test of retrieve?
Verify actual retrieved record matches (expected) input record.
EndTest

The reasoning for not considering these as two tests is as follows:
If the second test shows the database record is missing, then it might be incorrect to say that the insert in
the first test succeeded and that the return code should have been a successful one. Yet, as written, the
tests will indicate you should get a successful return code from a failing insert and say the Retrieve (Find)
function has failed!

Resulting Context/Consequences
Functions are considered partially passing when they present inconsistent post-conditions, that is, there
exists a “test” of the function that succeeds.

Related Patterns
See Whole function for correct usage pattern.

Code Samples

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 19 of 20

A typical example looks like:
 insert (expectedRecord)
 if insert doesn’t fail, then print PASS
 else print FAIL

The other post-condition, that the insert had the desired effect is left to another test!
For example:

 read (actualRecord)
 if (expectedRecord != actualRecord) the print PASS
 else print FAIL

and the failure might be ascribed to the read instead of the insert. In fact, without additional tests, it is
impossible to distinguish whether it is the read or the insert that failed. A good failure message in this
case would be something like,

“Read of actual record:<actual record> didn’t match expected record: <expected record> that was
inserted.”

Keith Stobie Automating Test Oracles and Decomposability 31 Mar 01

 Page 20 of 20

__

Appendix

To be written:
Test Keywords Management describes methods of selecting separable tests.

Logging strategies. – only logging on failure. Include and identify expected and actual results.
Known failure – providing a three way result Pass, Fail-known, Fail-unknown instead of typical Pass/Fail

From Testing Object-Oriented Systems: Models, Patterns, and Tools
(http://www.rbsc.com/TOOSMPT.htm):

Oracle Patterns (micro-pattern schema)

Approach Pattern Name Intent
Judging Judging The tester evaluates pass/no-pass by looking at the output on a

screen or at a listing, or by using a debugger or another suitable
human interface.

Pre-Specification Solved Example Develop expected results by hand or obtain from a reference
work.

 Simulation Generate exact expected results with a simpler implementation
of the IUT (e.g., a spreadsheet.)

 Approximation Develop approximate expected results by hand or with a
simpler implementation of the IUT.

 Parametric Characterize expected results for a large number of items by
parameters.

Test Automation Design Patterns

Capability Pattern Name Intent
Built-in Test Percolation Perform automatic verification of super/subclass contracts.
Test Cases Test Case/

TestSuite Method
Implement a test case or a test suite as a method.

 Catch All
Exceptions

Test driver generates and catches IUT's exceptions.

 Test Case /
Test Suite Class

Implement test case or test suite as an object of class TestCase.

QW2001 Paper 7T1

Mr. Don Cohen
(Princeton Softech)

Requirements For A Comprehensive Testing Environment

Key Points

Heightened Testing Need●

Automated Testing●

Creating and Maintaining Test Data●

Presentation Abstract

This presentation outlines the driving forces in the business community today that
are behind the increased importance of a comprehensive testing scheme, including
application quality and “time to market” for customer-facing applications, and the
processes and tools that need to be in place in order to accomplish the testing job.

The presentation will look back over changes to the business climate over the last
five years that have precipitated a heightened awareness of application quality and
‘time to market” and why testing is becoming a “critical business need” for many
IT groups today. The presentation will also look at the advent of “test factories” as
a new approach to testing by large corporations, both domestically and
internationally.

Once the heightened need for testing is established, the presentation will survey the
processes and tools that must be present in every IT organization if they are to have
a “fighting chance” to meet the new Service Level Agreements. It will further
explore the “must have”, “nice to have” and “other” facilities typically embodied
in these tools and the reason why such capabilities are important.

Examples of the sub-topics covered include; the key requirements when using
automated testing (scripting) tools, creating meaningful test data in a relational
database environment (for both new and enhanced applications), dealing with
differences between the production environment and the test environment, and the
value of intelligently comparing test results in an automated manner.

About the Author

Don Cohen is Vice President of Research and Development at Princeton Softech, a
New Jersey-based provider of DB2 productivity software. He has been involved in
the development of sophisticated system software products in the areas of

communications, operating systems, languages and relational databases for over 20
years as a developer, development manager, product manager and VP at Bell
Laboratories, Applied Data Research (ADR), Computer Associates (CA),
Automated Data Processing (ADP) and Princeton Softech. Mr. Cohen has been a
speaker and trainer at conferences and for clients in Europe, Australia, South
America and North America.

1

Requirements for a
Comprehensive Testing Scheme

in a RDBMS Environment

Don Cohen
VP Development

dcohen@princetonsoftech.com

Slide 2

Today’s Agenda

The Price of “Short Changing” Testing

The Wish List….

- What you should want and why

2

Slide 3

At the Core of the Business

..Today: IT is the
Business!

Yesterday:

IT Systems
Supported the
Business….

Slide 4

The Importance of the Testing Process

❝❝❝❝Application and data quality have always been
important, but with the advent of ‘customer
facing’ applications that expose applications
to the outside world, it has become a critical
issue for IT and the business as a whole. ❞❞❞❞

3

Slide 5

Testing: The Value Proposition

Application Reliability

Time-to-Market

Cost of Quality

Competitive Advantage
Yesterday quality wasn’t a business weapon -- Today it is

Quality is becoming a competitive differentiator

Slide 6

Reliability

The
“System”

• Yesterday, since we were
dealing with internal users,
we could compensate for
poor reliability via Internal
Users and Intermediaries.

The
“System”

• Today we can’t due to
the dual impact of Direct
Customer Contact and
the fact that Customers
have Choices.

4

Slide 7

Time-to-Market

Yesterday longer life cycles may have been tolerable,

Today there’s less tolerance!

0%

10%

20%

30%

40%

50%

Analysis Design Coding Testing
% of Time and Effort by Phase

Slide 8

The “Typical” Testing Phases

Unit Testing - Low level testing at a specific function
(module) or unit (subsystem) level. Typically for new
features, usually done by developer.

Integration Testing – Mid level testing at integration points
between units or functions. Typically for new features,
usually done by developer.

System Testing – Higher level, end-to-end testing of new
functionality. Usually done by QA organization.

Load Testing (or Performance, or Stress) – Focused on
response time and throughput, not functionality. Usually
done by QA organization.

Regression Testing - Higher level, end-to-end testing of
previously existing functionality. Usually done by QA
organization.

5

Slide 9

Cost of Quality

Cost
per
Bug

Unit Integration System Regression Production
Testing Testing Testing Testing

“Defects in code cost 10x
to 100x as much to repair after

code is deployed. It makes much better
economic sense to bring in strong Quality

Control practices, tools and organizational
structure up front.”

-- META Group

Slide 10

Cost of Quality

Cost of Quality = Cost of Fixing Defects Alone

Yesterday quality didn’t have the CEO’s attention -- Today it does!

A
na

ly
si

s

D
es

ig
n

C
od

e

Te
st

Pr
od

uc
tio

n

Relative Cost of
Fixing Defects

Business Cost of Defects

Lost Sales

Lost Customers

Lost Suppliers

Contractual Penalties

. . .

6

Slide 11

Why is Testing a Challenge?

Many organizations treat Testing as if it is of
minor importance

A comprehensive testing scheme can be “as
challenging” of designing the application

Requires diligence and perseverance and …

Often, by the time organizations recognize the
situation they are in, they already have a problem!

Slide 12

Application Lifecycle
Generalization

Create Test Environment:
Tools, Process, Data

Test Validation:
Compare Application
and Data w/ Expected
Results

TEST

Go Production !!!

Development:
Create and/or Modify
Application

Refresh Test Data

7

Slide 13

The Testing Goal: Utopia

A repeatable process, which as much as
possible is automated, that when utilized
raises the level of application quality
as close to 100% as possible, which
balances the organization’s
requirement for “time to market”,
“quality” and “expense tolerance”.
Sometimes this is easier said than done ...

Let’s, consider the “parts of the puzzle”…

Slide 14

A Repeatable Process

• Test Plans – Enables a team (or pooled resources) approach.

• Automated Scripting Tool – Enables repeated tests without
manual intervention.

• Automated Test Data Creation – Enables utilization of
“meaningful” data subsets with minimal manual labor.

• Automated Comparison Tool – Enables discovery of ALL
changes – expected or not. Testing verification.

A Growing Trend:
The Automated Test Factory

8

Slide 15

Scripting and Automation
• Repeatable Scripts – Minimal human intervention,

speed, predictable results, “testing factory”
• Open Interfaces – Must be able to incorporate

other tools, and those tools must be “open”
• Numerous Critical Features
- Logical View of UI – (e.g. Grid Support)
- Ability to “Record” and “Playback” THEN Augment…
- Reusable Test Scripts – Modular, Utilize Record & Playback
- Ability to Pinpoint Errors and Re-Execute Failed Scripts
- Ability to Document Script Structure
- Ability to “reasonably” administer Application Updates
- “Good” support for all Platforms, and …

needs to work in your environment w/ your equipment
- Etc…

Slide 16

Data, A Critical Element

• Want “meaningful” test data
- critical to successful testing

• Production environment a good
place to get realistic data,
but it’s not easy…

• Many organizations have used alternative
approaches which have shortcomings
- Cloning
- Writing Extract Programs

9

Slide 17

Capturing the “Right” Test Data

Copyright© 1997 - Princeton Softech, Inc.
Slide 18

Why is this Difficult?
Managing the Database Traversal

Extract: All ORDERS for all CUSTOMERS with
any ORDERS outstanding for 60 days or more

Extract: CUSTOMERS with any ORDERS which
include the ITEMS screwdrivers

-- -- ------ -- --------- ----
-- -- ------ -- --------- ----
-- -- ------ -- --------- ----
-- -- ------ -- --------- ----

ORDERS
-- -- ------ -- --------- ----
-- -- ------ -- --------- ----
-- -- ------ -- --------- ----
-- -- ------ -- --------- ----

ITEMS

-- -- ------ -- --------- ----
-- -- ------ -- --------- ----
-- -- ------ -- --------- ----
-- -- ------ -- --------- ----

CUSTOMERS

-- ---- ---- ---- ------- ----
-- ---- ---- ---- ------- ----
-- ---- ---- ---- ------- ----
-- ---- ---- ---- ------- ----
-- ---- ---- ---- ------- ----

DETAILS

10

Slide 19

Test Data Creation

Option 1: Use Existing Data if you can…
Need to handle complex data models characterized by:
- DB defined Referential Integrity, as well as Application
enforced RI
Typically the Application enforced RI does not adhere to the
DB rules (e.g. “compatible” data types, composite columns,
data driven)

- Need to be able to define Test Data Criteria in a repeatable
and convenient manner (i.e. automation)

Option 2: Synthesize New Data, if must…
- When there is no existing data

Slide 20

Use of Existing Data

Selecting the Right Data – Data Partitioning
- Standard Selection Criteria – Of Course!
- Random Selection
- Partitioning / Grouping
- Limiting the Data – By Table, By Relationship

Transforming the Data
- Masking Sensitive Data
- Altered Data Model
- “Looking Up” Valid, Random Values

11

Slide 21

Synthesizing Data

Synthesizing the Right Data
- Definition of Domains
- Complete Subsets

Multiplying Sets
- Key Propagation

Slide 22

Creating the Test Database

Test Database may not Exist

Identical or Modified

As a “fraction” of the Source

Source and Target may be Heterogeneous
- Need awareness of DDL and Data differences

12

Slide 23

Validating the Changes

Finding the “needle in the haystack”
- The “volume” problem
- Related Changes

Variety of Changes
- Inserts, Deletes, Updates
- Direct, Related
- Ignore “expected” Changes

Another “interesting” anomalies
- Orphans, Duplicates, Altered Parents

Slide 24

Miscellaneous Facilities

Quickly Re-establishing the Test Environment
- Testing is an Iterative Process

Dynamic SQL vs. Load Utilities
- Large Volumes

Extracting Data from Image Copies

Browse and Edit
- Production environment may not have everything you need

13

Slide 25

Testing: Typical “As Is” Process(es)

#1 Cloning
Request for Copy

Repeat?*%$!

• Complex
• Subject to

Change

Extract
#2 Write Extract

Extract

•RI Accuracy?
•Right Data?Right data?

What Changed?
Correct results?
Unintended Result?
Someone else modify?
Manual examination.

Production
Database

Copy

After

Changes

Production
Database

Copy

Share Test Database
with everyone else

Wait

After
Changes

Expensive,
Dedicated Staff,
Ongoing
Responsibility.

Slide 26

Test Data: “Could Be” Process

Create Personalized
Test Database

Subset Production
Database

IT Professional
Technology
Empowered

Repeat as necessary!

Refre
sh

Data

After

Run TestsCompare
Before/After

Differences

SeedTest Cases

Before

14

Slide 27

Gartner on “Solution Requirements”

Automation Tools
- Need to be able to repeat process over the course of the application

life cycle

Intelligent Test Data Generation Tools
- Need to be able to repeatedly create realistic and manageable test data
- Needs to understand application RI and be heterogeneous

Intelligent Browsing and Editing Functionality
- Needs to understand relational subsets

Intelligent Data Comparison Tools
- Need to understand relational subsets

Stress Testing Tools
- Need to accurately reflect user community

Thank You

Requirements for
Testing in the DB Environment

QW2001 Paper 7T2

Mr. James Lyndsay
(Workroom Productions)

The Importance of Data In Functional Testing

Key Points

Plan the data for maintenance and flexibility●

Know your data, and make its structure and content transparent●

Use the data to improve understanding throughout testing and the business●

Presentation Abstract

A system is programmed by its data. Functional testing can suffer if data is poor.
This presentation gives an understanding of the ways that data work fits into the
overall test effort, and gives an overview of the ways that good data can be used to
improve functional testing.

There are three kinds of test data;
* Environmental data tells the system about its technical environment.
* Setup data tells the system about the business rules.
* Input data is information input by day-to-day system functions. Some input data
is fixed and available at the start of the test. Some is consumable, and forms the
test input.

The presentation deals with how to recognise these types and their common
problems during pre-test, testing and go-live.

Data can be loaded into the system manually, or by tools. The presentation
discusses the advantages and pitfalls of various methods and suggests partitioning
strategies to allow reliability and flexibility in the same dataset. The frequency and
timing of data loading is also discussed.

Data maintenance is a substantial task, often comparable in size with test script
maintenance. The presentation discusses common problems and possible solutions.
A key solution is that good data content can help reduce the workload of data
maintenance.

Good data can allow testing to carry on in areas not covered by the initial scripts
and requirements. Naming conventions can help data to be accurate, and can make
test results easier to interpret. A good test data structure promotes a common
understanding and helps avoid mistakes. Accurate and appropriate content reduces
the number of test process errors.

Data can help the business focus when requirements are vague. User involvement
in data descriptions allows early insight into possible problems. The presentation

discusses the pitfalls and advantages of sourcing data from the business.

Before winding up, a brief mention is made of operational profiles, non-functional
testing, and data verification before/during live operation.

About the Author

James Lyndsay is an independent test consultant with ten years experience.
Specialising in test strategy, he has worked in a range of businesses from banking
and telecomms to the web, and pays keen attention to the way that his clients' focus
is shifting away from functional testing.

1

The Importance of Data
in Functional Testing

James Lyndsay
Workroom Productions

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 2

Data is important to functional testing.

A system is programmed by its data.

Functional testing suffers if data is poor.

Good data is vital to reliable test results.

Good data can help keep testing on schedule.

2

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 3

Problems caused by poor data
The following problems can be caused by poor data;

• Unreliable test results

• Degradation of test data over time

• Increased test maintenance budget

• Reduced flexibility in test execution

• Obscure results and bug reports

• Larger proportion of problems can be traced to poor data

• Less time spent hunting bugs

• Confusion between developers, testers and business

• Requirements problems can be hidden in inadequate data

• Simpler to make test mistakes

• Unwieldy volumes of data

• Business data not representatively tested

• Inability to spot data corruption caused by bugs

• Poor database integrity

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 4

Topics

1) Recognising types of data

2) Avoiding common problems

3

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 5

Types of Data

Environmental data
tells the system about its technical environment.

Setup data
tells the system about the business rules.

Input data
information input by day-to-day system functions.

• Fixed input data is available at the start of the test.

• Consumable input data forms the test input.

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 6

Avoiding problems

Systems are programmed by their data . . .
If the functionality of your system is at all affected by the setup data;

TEST THE DATA
Why?
Problems found will;

1) Improve testing

2) Help get the data right before live operation

3) Help pinpoint bugs in live operation

How?
Data testing can be incorporated in functional testing, by looking at;

Data load and maintenance

Organising the data

Data and the business

4

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 7

Ways of loading data

• Using the system you're trying to test
– Manually entered

– Automated tool, making keystrokes into application

• Using a data load tool
– All new data, created for testing

– Old data, selected for testing / filtered and migrated

– Complete set, migrated and loaded, identical but for personal
details

• Not loaded
– Already set up for testing / Left in the system

– You are working on the live system

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 8

Frequency of data load

• At the start of testing

• With each release

• First thing Monday

• Whenever I want

• Before every test

NB: Straw poll of ‘When does the data usually get loaded’ also came back with the following

answers;

• Before I ever got involved

• The developers left it there

• The last testers / tests left it

• Whenever we get enough time

• After we've found out what shape the database is

• When we know what it means

5

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 9

Data Maintenance

When and why?
Replacing consumed data

Repairing broken data

Responding to change - database schema, code,
requirements

New test requirements

Problems:
Sizeable task - can be a substantial fraction of
overall test maintenance

Prone to error

Performed by more than one group

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 10

Solutions to Loading and Maintenance headaches

1) Automate data load and
maintenance where possible

2) Control / measure data change

3) Recognise and prepare for
problems

4) Use good data

6

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 11

Good Data

Good data increases data reliability, reduces data maintenance
time and can help improve the test process.

Good data assists testing, rather than hinders it.

Good data is based on;

1) Permutations
2) Clarity
3) Partitions

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 12

Data Permutations 1

Permutations are familiar from test planning
Utility Customer Care / Billing Example:
A customer can have one of three products (1,2,3). They may be billed Monthly or Quarterly,
be High or Low value, and their last bill was either Paid or Unpaid. There are 3x2x2x2 = 24
combinations - and so the number of possible permutations climbs rapidly as system
complexity increases.

By requiring that the list holds not all possible combinations, but all possible pairs, the list can
be reduced. All possible pairs; M1, M2, M3. Q1, Q2, Q3. H1, H2, H3. L1, L2, L3. P1, P2, P3.
U1, U2, U3. MH, ML, QH, QL, MP, MU, QP, QU. HP, LP, HU, LU.

The following six permutations contain all the pairs;

Customer Account Product Care Bill

1 M 1 H P

2 M 2 L P

3 M 3 H U

4 Q 1 L U

5 Q 2 H U

6 Q 3 L P

7

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 13

Data Permutations 2

Permutation is appropriate when:
Fixed input data consists of many rows

Fields are independent

You want to do many tests without loading / you do not load fixed input
data for each test.

Permutation helps because:
Achieves good test coverage without having to construct massive datasets

Can perform investigative testing without having to set up more data

Can be used to test other data - particularly setup data

Permutation is familiar from test planning.

Reduces the impact of functional/database changes

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 14

Clarity
Developers and the Business don’t need to understand test data / data requirements -
so some of them won’t. We can make our data clearer by using available free text
fields;

Customer Name Account Product Care Bill
HP1 Monthly M 1 H P

LP2 Monthly M 2 L P

HU3 Monthly M 3 H U

LU1 Quarterly Q 1 L U

HU2 Quarterly Q 2 H U

LP3 Quarterly Q 3 L P

Clarity helps because:
Improves communication within and outside the team

Reduces test errors caused by using the wrong data

Helps when checking data after input

Helps in selecting data for investigative tests

8

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 15

Partitioned data
Data load/reload can be inconvenient. Data can be partitioned into:

1) Safe area
Used for enquiry tests, usability tests etc. No test changes the
data, the area can be trusted. Many testers can use simultaneously

2) Change area
Used for tests which update/change data. Data must be reset or
reloaded after testing. Used by one tester at a time.

3) Scratch area
Used for investigative update tests and those which have unusual
requirements. Existing data cannot be trusted. Used at own risk!

Data can be partitioned by machine / database / instance. Can also be partitioned by
disciplined use of text / value fields.

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 16

Data and the Business

‘The Business’ is good at looking at data;
Easier to understand than tests

Can be compared with existing systems

Advantages
Helps focus when requirements are vague

Helps UAT

Increases trust and understanding

Helps early user identification of problems

Disadvantages
Data creep

Vague requirements can lead to vague data

Incomplete data can lead to incomplete testing

9

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 17

Further data issues

Operational Profiles

Non-functional testing

Data verification

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 18

Topics: conclusion

1) Recognising types of data
Environmental Data

Setup Data

Input Data - Fixed and Consumable

2) Avoiding common problems
Recognise the problems

Automate loading and maintenance

Test your data

Use good data

Involve the Business

10

© Workroom Productions 2001
www.workroom-productions.com

The Importance of Data in Functional Testing

Slide 19

Summary

• Plan the data for maintenance and flexibility
• Know your data, and make its structure and

content transparent
• Use the data to improve understanding

throughout testing and the business

James Lyndsay
Workroom Productions

www.workroom-productions.com
jdl@workroom-productions.com

QW2001 Paper 8T1

Mr. J. D. Brisk
(Exodus Communications)

Peer-to-Peer Computing: The Future Of Internet
Performance Testing

Key Points

Web testing: Load/Stress testing●

Peer-to-Peer Computing●

Distributed Computing●

Presentation Abstract

In this presentation, JD Brisk, Managing Director of Exodus Performance Labs,
will discuss how Peer-to-Peer Computing will revolutionize Web performance
testing by creating the world’s largest, most realistic testing environment possible.
Specifically, he will address the opportunities and challenges of using the
Peer-to-Peer Computing method of Web testing.

Peer-to-Peer Computing, - individual computers exchanging data without a central
server - has been around for more than 20 years in various forms. It works by
taking large tasks and dividing them into many smaller tasks, all of which are
disseminated to many computers running simultaneously via a network such as a
private corporate network, or the Internet. After the tasks are processed,
block-by-block via individual computers, the data is transmitted back to a central
server that then assembles an answer.

Most recently, Napster and the SETI@home project have helped increase
awareness of the Peer-to-Peer, also known as Distributed Computing. However, a
more powerful use of the technology is not to exchange music, but to combine the
processing power of thousands of networked PCs to create a virtual
supercomputer. This testing environment provides an unprecedented level of
reality-based testing that is expected to propel the limits of Web site performance,
capacity and scalability.

Peer-to-Peer Computing opens a new door of possibilities for organizations to use
distributed bandwidth resources to realistically perform large-scale stress, load and
scalability testing of e-commerce Internet sites. With this technology,
organizations can improve the efficiency and accuracy of Internet testing methods.

Exodus Performance Labs is using Peer-to-Peer Computing to create a testing
environment that utilizes hundreds of thousands, and potentially millions, of real
web clients that characterize the variants found in real life. This real-world testing

model uses the power of the Internet to test the Internet.

Hundreds, even thousands of simulated users created on one machine are generally
not representative of real world situations. The Distributed Computing model
greatly expands testing capabilities by utilizing real user machines in diverse
locations and introduces the actual variants found daily on the Internet.

Recent studies report that about one billion personal computers, each with an
average processing speed of 500 megahertz, are now connected to the Internet.
Leveraging this user base gives creates a large, diverse pool of resources at a
fraction of the cost of buying the machines and building the environment. With this
technology, Web testing companies can create and utilize the worlds largest test
environment.

The Peer-to-Peer Computing testing model not only exercises the transaction
processing systems, in-route components like firewalls and load balancers, but also
provides the flexibility to test based on select user demographics incorporating the
"last mile" which previously has not been addressed. Companies now have access
to load testing that's as close to live as you can get because it uses real client
machines in homes and small businesses around the world with real variants found
in real life with the advantage of repeatability from scripted applications.

About the Author

J.D. Brisk is Managing Director of Exodus Performance Labs, formerly KeyLabs.
Prior to its acquisition by Exodus, J.D. was President and CEO of KeyLabs, based
in Linden, UT. Initial COO and one of the original founders of KeyLabs, J.D.
became President and CEO after he and two colleagues formed another new
company in August 1998 called Altiris and spun out their highly successful
software business. Somewhat of a maverick in the industry, JD is known for his
unique ability to get things done. He worked as a hardware/software test engineer
and technical manager for 5 years prior to joining Novell in 1985 where he spent
11 years in various technical management positions. At Novell, JD managed
Sustaining Engineering and most of the other core Testing Departments. He
pioneered the concept of behavioral testing. He designed and implemented the
Corporate Interoperability Testing programs and as Director of Engineering in
Novell Labs, designed and implemented the "YES" and "Tested and Approved"
Software Certification Programs. He was also responsible for the world's largest
network test facility.

1

Exodus Performance Labs

Peer-to-Peer Computing: The Future
of Internet Performance Testing

J.D. Brisk, Vice President

Exodus Performance Labs

2

Topics for Discussion

• Evolution of Website testing
• Simulated Load Testing
• In-Lab Load Testing
• Expanded IDC Load Testing
• Distributed P2P Load Testing
• Case Study – Follow the Sun
• Methodology Study – Simulated vs.

Distributed Load Testing
• Customer Story – Zoom Culture
• Future –other uses-
• Exodus Performance Labs
• Questions

2

3

Concern for Site Performance

The success of a Website depends
largely on its performance.

– Page download times
– Functionality of the Web-based

applications
– Thoroughness of the transaction

processing systems

4

Evolution of Web Site Testing

• Simulated Load Testing
– Using 1 or 2 machines to simulate thousands of

users either over the net or in-house
• Lab Environment Load Testing

– Use multiple machines to create an environment
of realistic of users

• Expanded IDC Load Testing
– Utilize distributed machines to re-recreate real

users from various locations
• Distributed Peer to Peer Load Testing

– Using actual users, spread across the world, to
provide real load and stress testing.

3

5

Evolution of Web Site Testing

Simulated Load Lab Environment

Extended IDC
Distributed Peer-to-Peer

6

Simulated Load Tests

• Pro
– Allows the use of existing resources
– Synthetic simulation of many users
– Low barrier to entry

• Con
– Unrealistic connectivity (mostly inside the firewall)
– Equipment Under Test is usually local
– Requires machines, expertise, and time
– Work load at server not accurate representation of real

users
– Inaccurate correlation between baseline and heavy loads
– Generally located at single

location
– Tools often misused
– False feeling of security
– Limited scalability
– Last mile not taken

into account

4

7

In-Lab Load Testing Environment

• Pro
– Target Website remain at customer site or in IDC
– More realistic in terms of re-creating the environment of the

Internet
– Scalable for most websites
– Considerably less expensive than setting up own lab

• Con
– Single route
– No distributed testing

capabilities
– Limited scale; number

of simultaneous tests
– Last mile not taken

into account

8

Expanded IDC

• Pro
– Website locations not an issue
– Even more realistic in terms of recreating the environment

of the Internet
– Not limited by bandwidth
– Greater number of multiple routes
– Able to run multiple, simultaneous tests
– More cost effective
– Semi-distributed

• Con
– Equipment is always

“down the hall”
– Last mile not taken

into account

5

9

Distributed P2P Model

• Pro
– Unlimited testing capabilities
– REAL: using the Internet to test the Internet
– Utilizing various and diverse ISPs
– Ability to test target site using machines in target site area

worldwide
– Multiple, simultaneous tests from any location around the

world
– Monitoring from any geographic location
– Allows for testing of

the Last Mile
– Cost effective

• Con
– Machines not under lab

environment

10

Cumulative Load Generation Capabilities

6

11

Case Study –Follow the Sun-

• A Website sees traffic patterns which
indicate excessive numbers of users are
accessing the site early in the morning from
each time zone throughout the United States.

• The customer wants to understand the end
user experience in each of the time zones
and make modifications to the site during
these heavy loads, but cannot afford to have
the site perform worse or go down during
business hours.

12

7

13

14

Methodology Study – Simulated vs.
Distributed Load

Testing the load testing tools

• Test Constants
– 15 to 150 users browsing the site
– Pentium II 450 with 128MB RAM

• Distributed Load
– 15 machines driving load

• Simulated Load
– 1 machine driving load

8

15

Methodology Study – Areas Monitored

• Web Server CPU Utilization
– The web server CPU utilization shows how much

work is being exerted on the server
• Script Execution Time

– The execution time is the time that it took to
execute the script

• Get Requests Per Second
– The get requests are monitored to determine

how many get requests are being issued against
the web site by the test tool

• Throughput
– The throughput is monitored to determine how

many Bytes per Second are being requested
from the server by the test tool

16

Methodology Study – Test Results cont.

• 150 users running on 1 machine do not exert the
same amount of work on the web server as 150
users distributed between 15 machines

Web Server CPU Comparison

0

5

10

15

20

25

13
.4 15

28
.3 30

43
.3 45 58 60

72
.1 75

86
.9 90 10
3

10
5

11
9

12
0

12
9

13
5

14
3

15
0

Users

C
PU

 U
til

iz
at

io
n

15 machines
1 machine

9

17

Methodology Study – Test Results

• 1 machine running 150 users is not able to process
the scripts a efficiently as 15 machines running the
same script distributing the (90 second average on
1 machine, 10 second average on 15 machines).

Comparing Script Execution Time

0
10
20
30
40
50
60
70
80
90

100

13
.50

7 15 30 45

59
.02

5 60 75

88
.81

1 90 10
5

11
2.5

9
12

0
13

5
13

5
15

0

Users

Ti
m

e

15 Machines
1 Machine

18

Methodology Study – Test Results cont.

• 1 machine running 150 users cannot issues get
requests as efficiently as 15 machines running the
same script distributing the users (111 hits per
second on 1 machine, 536 hits per second on 15
machines).

Comparing Get Requests

0

100

200

300

400

500

600

13
.4 15

28
.3 30

43
.3 45 58 60

72
.1 75

86
.9 90 10
3

10
5

11
9

12
0

12
9

13
5

14
3

15
0

Users

H
its

 P
er

 S
ec

on
d

15 machines
1 machine

10

19

Methodology Study – Test Results cont.

• 1 machine running 150 users cannot transfer data
a efficiently as 15 machines running the same
script distributing the users (215,000 Bps on 1
machine, 2,000,000 Bps on 15 machines).

Comparing Throughput

0

500000

1000000

1500000

2000000

2500000

13
.35 15 30 45

57
.95

4 60 75 90
10

2.8 10
5

12
0

13
5

14
2.6

8

Users

B
yt

es
 P

er
 S

ec
on

d

15 machines
1 machine

20

Methodology Study – Conclusions

• Unrealistic simulated loads on a single
machine will not provide accurate
results

• Machine limitations
• Distributing the load will provide a

more accurate and realistic user load
• “Realistic” users vs. “Simulated”

users
• Which testing methodology are you

using now?
• Which is right for your application?

11

21

Case Study – Zoom Culture

• North Carolina based media company
• “Zoom Directors” shoot digital video content

broadcast by ZC.TV, Fox and Sports Networks
• Board raised questions of site robustness…

simply wanted to know the “breaking point”
• Considered buying tool and using simulated

user service from a competitor
• Our environment matched well their needs,

– Unique streaming video capabilities negated
options for simulated users

– Connect, register and download metrics
– ramped tests
– fix as we go

• Time was of the essence

22

Case Study – Zoom Culture

Initial results:

• Site designed for concurrent 250
users
– failed at 5 concurrent requests

After project completion:

• 700% increase in the number of
concurrent streaming users

12

23

Case Study – Zoom Culture

“Working with Exodus Performance Labs was
great. The load testing process was
interactive so while it was in progress we
could talk about what was happening as it
happened. The test engineer made
recommendations that we agreed upon and
within a couple of hours, they were
implemented. It was tremendous. We have
plans to test with Performance Labs again.”

-Bill Graham, Vice President of Technology Operations

24

Exodus Performance Labs Background

• KeyLabs formed in January 1996
• Acquired by Exodus in February 2000
• We’ve been doing this for over 5 years
• Focus on networking gear. HW, SW,

Systems and Infrastructure
components and Internet testing

• Full service test lab
• Certification programs
• PEN Testing, Vulnerability Scans

13

25

The feeling you will have…

26

Summary

• Risk Taker?
• Use the right methodology for your

application
• Consequences (as per Bill at Zoom Culture)

– Unwilling to burden potentially huge financial
consequences

– Annoyed, even lost customers
– Decreased investor’ confidence
– Negative perception in public eye

• Unrivaled capabilities/resources/expertise to
understand your needs and architect tests
accordingly

• We’re your Partner and extension of your
resources

• Provides “peace-of-mind” or “controlled fear”

14

Questions?

QW2001 Paper 8T2

Mr. Erik Simmons
(Intel Corporation)

Quantifying Quality Requirements using Planguage

Key Points

Designed to quantify qualitative statements in plans, specifications, and designs,
Planguage is a keyword-driven language that allows measurable, testable quality
requirements to be written.

●

Planguage has many benefits; it is easy to learn, compact, extensible, and provides a
consistent way to specify quality requirements.

●

Examples and experiences introducing Planguage at Intel are provided.●

Presentation Abstract

"Planguage" is a new industrial engineering language, designed for planning,
projects and processes. Developed by Tom Gilb and others, it is a new language
for communicating about engineering and management work. Users of planguage
include Intel, IBM, HP, Ericsson and Boeing.

Planguage is a keyword-driven language. Simple to learn, it also prevents omission
of critical information when specifying quality requirements. The resulting
requirements are less ambiguous and more measurable than requirements written
using other syntaxes or methods.

This workshop presents Planguage keywords and syntax, and then uses actual
examples from Intel to illustrate how Planguage can simplfy, clarify, and improve
quality requirement specification using a "before and after" format. Students
participate in several exercises to help drive home the concepts, and are invited to
bring their own requirements documents for use during the final exercise.

About the Author

Erik Simmons has 15 years experience in multiple aspects of software and quality
engineering. Erik currently works as a Platform Quality Engineer within the
Corporate Quality Network at Intel Corporation. He leads the corporate Software
Engineering Process Team that is charged with improving software development
capabilities across Intel's product development groups, and is responsible for Intel's
product requirements engineering practices.

1

® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Quantifying Quality Requirements Using
Planguage

Erik Simmons, Intel Corporation

TAG:TAG:

GIST:
SCALE:
METER:

PLAN:PLAN:
MUST: RECORD:

PAST:

TREND:

{collection}

<fuzzy concept>

[qualifiers][qualifiers]

source

2® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Quantifying Qualitative Requirements

The system must be easy to learn. ← Can you test this?

The system must be used successfully to place an order in
under 10 minutes without assistance by at least 80% of test
subjects with no previous system experience.

How about:

Can we do even better?

2

3® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

What is Planguage?

Created by Tom Gilb, Planguage stands for Planning
Language, a simple but powerful set of keywords and
syntax that can be used within:

•Requirements Specifications

•Business Plans, Success Criteria, Vision Statements

•Design documents, Strategies, etc.

Created by Tom Gilb, Planguage stands for Planning
Language, a simple but powerful set of keywords and
syntax that can be used within:

•Requirements Specifications

•Business Plans, Success Criteria, Vision Statements

•Design documents, Strategies, etc.

Planguage aids communication
about complex ideas.

4® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Why use Planguage?

Planguage:

• Permits quantification of qualitative statements

• Parameterizes those statements to prevent omissions

• Offers better clarity and comprehension than ordinary
structured English

• Captures lots of information in a small space

• Excels at expressing quantified quality requirements

• Can be customized or extended for different
environments and new uses

• Is intuitive and simple enough to be used with almost
any audience

Planguage:

• Permits quantification of qualitative statements

• Parameterizes those statements to prevent omissions

• Offers better clarity and comprehension than ordinary
structured English

• Captures lots of information in a small space

• Excels at expressing quantified quality requirements

• Can be customized or extended for different
environments and new uses

• Is intuitive and simple enough to be used with almost
any audience

3

5® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Common Planguage Keywords

TAG: A unique, persistent identifier
GIST: A short, simple description of the concept contained in the

Planguage statement
STAKEHOLDER: A party materially affected by the content of

the statement
SCALE: The scale of measure used to quantify the statement
METER: The process or device used to establish location on a

SCALE
MUST: The minimum level required to avoid failure
PLAN: The level at which good success can be claimed
STRETCH: A stretch goal if everything goes perfectly
WISH: A desirable level of achievement that may not be

attainable through available means

TAG: A unique, persistent identifier
GIST: A short, simple description of the concept contained in the

Planguage statement
STAKEHOLDER: A party materially affected by the content of

the statement
SCALE: The scale of measure used to quantify the statement
METER: The process or device used to establish location on a

SCALE
MUST: The minimum level required to avoid failure
PLAN: The level at which good success can be claimed
STRETCH: A stretch goal if everything goes perfectly
WISH: A desirable level of achievement that may not be

attainable through available means

6® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Common Planguage Keywords

PAST: An expression of previous results for comparison
TREND: An historical range or extrapolation of data
RECORD: The best known achievement
DEFINED: The official definition of a term
AUTHORITY: The person, group, or level of authorization
Fuzzy concepts requiring more details: <fuzzy concept>
Qualifiers (used to modify other keywords): [when, which, …]
A collection of objects: {item1, item2, …}
The source for a statement:

PAST: An expression of previous results for comparison
TREND: An historical range or extrapolation of data
RECORD: The best known achievement
DEFINED: The official definition of a term
AUTHORITY: The person, group, or level of authorization
Fuzzy concepts requiring more details: <fuzzy concept>
Qualifiers (used to modify other keywords): [when, which, …]
A collection of objects: {item1, item2, …}
The source for a statement:

4

7® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Learnability

TAG: Learnable
GIST: The ease of learning to use the system.
SCALE: Time required for a Novice to successfully complete a

1-item order using only the online help system for assistance.
METER: Measurements obtained on 100 Novices during user

interface testing.
MUST: No more than 7 minutes 80% of the time
PLAN: No more than 5 minutes 80% of the time
WISH: No more than 3 minutes 100% of the time
PAST [our old system]: 11 minutes recent site statistics
Novice: DEFINED: A person with less than 6 months

experience with Web applications and no prior exposure to
our Website.

TAG: Learnable
GIST: The ease of learning to use the system.
SCALE: Time required for a Novice to successfully complete a

1-item order using only the online help system for assistance.
METER: Measurements obtained on 100 Novices during user

interface testing.
MUST: No more than 7 minutes 80% of the time
PLAN: No more than 5 minutes 80% of the time
WISH: No more than 3 minutes 100% of the time
PAST [our old system]: 11 minutes recent site statistics
Novice: DEFINED: A person with less than 6 months

experience with Web applications and no prior exposure to
our Website.

8® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Planguage in Practice

In practice, the TAG keyword is often dropped and the Tag
used in place of the GIST keyword. For example, the
learnability requirement could be written:

LEARNABLE: The ease of learning to use the system

instead of

TAG: Learnable

GIST: The ease of learning to use the system

This convention is used in most of the examples that follow.
You may use either format in your work.

In practice, the TAG keyword is often dropped and the Tag
used in place of the GIST keyword. For example, the
learnability requirement could be written:

LEARNABLE: The ease of learning to use the system

instead of

TAG: Learnable

GIST: The ease of learning to use the system

This convention is used in most of the examples that follow.
You may use either format in your work.

5

9® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Using Qualifiers

Examples (not related to each other):

PLAN [Q1 ’00]: 20,000 units sold

MUST [First year]: 120,000 units sold

WISH [First release, enterprise version]: 1 Dec. 2000

PLAN [US market, first 6 months of production]: Defects
Per Million < 1,000

METER [Prototype]: Survey of focus group

METER [Release Candidate]: Usability lab data

Examples (not related to each other):

PLAN [Q1 ’00]: 20,000 units sold

MUST [First year]: 120,000 units sold

WISH [First release, enterprise version]: 1 Dec. 2000

PLAN [US market, first 6 months of production]: Defects
Per Million < 1,000

METER [Prototype]: Survey of focus group

METER [Release Candidate]: Usability lab data

Qualifiers allow for precise description of conditions and
events. They add richness,precision, and utility to Planguage.

10® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Finding Scales

•Divide the measured quality into its elementary
components first if possible

•Use known, accepted scales of measure when possible
•Derive new scales from known scales by substituting
terms

• Incorporate qualifiers in the scales to increase
usefulness and specificity

•Don’t confuse scale with meter
•Share effective scales with others

•Divide the measured quality into its elementary
components first if possible

•Use known, accepted scales of measure when possible
•Derive new scales from known scales by substituting
terms

• Incorporate qualifiers in the scales to increase
usefulness and specificity

•Don’t confuse scale with meter
•Share effective scales with others

Scales exists for just about any concept. Here are some helpful
hints for locating/defining scales:

6

11® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Examples of Scales

Software Security: Time required to break into the
system

Software Maintainability: Average engineering time from
report to closure of defects reported prior to release

Software Reliability: The Mean Time to Failure (MTTF)
of the system

Software Learnability: Average time for <novices> to
become <proficient> at a defined set of tasks (this can
be measured on competing prototypes)

Software Security: Time required to break into the
system

Software Maintainability: Average engineering time from
report to closure of defects reported prior to release

Software Reliability: The Mean Time to Failure (MTTF)
of the system

Software Learnability: Average time for <novices> to
become <proficient> at a defined set of tasks (this can
be measured on competing prototypes)

12® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Meters

First, study the scale carefully. If no meter comes to mind:

•Look at references, handbooks, examples, etc. for ideas
•Ask others for their experience with similar methods
•Look for examples within test procedures

•Look at references, handbooks, examples, etc. for ideas
•Ask others for their experience with similar methods
•Look for examples within test procedures

Once you have a candidate, check to see that:

•The meter is adequate in the eyes of all stakeholders
•There is no less-costly meter available that can do the
same job (or better)

•The meter can be measured before product release or
completion of the deliverable

•The meter is adequate in the eyes of all stakeholders
•There is no less-costly meter available that can do the
same job (or better)

•The meter can be measured before product release or
completion of the deliverable

7

13® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Examples of Meters

Software Security: An attempt by a team of experts to
break into the system using commonly available tools

Software Maintainability: Analysis of at least 30
consecutive defects reported and corrected during
development

System Reliability: A Probability Ratio Sequential Test
demonstration with α=10%, β=10%, Discrimination
Ratio = 3

Software Learnability: UI testing & HCI usability tests,
survey responses from focus groups, etc.

Software Security: An attempt by a team of experts to
break into the system using commonly available tools

Software Maintainability: Analysis of at least 30
consecutive defects reported and corrected during
development

System Reliability: A Probability Ratio Sequential Test
demonstration with α=10%, β=10%, Discrimination
Ratio = 3

Software Learnability: UI testing & HCI usability tests,
survey responses from focus groups, etc.

14® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

An Actual Requirement

As written:

The third key requirement is power consumption.
Generally, the power consumption requirements are driven
by noise requirements, or CE compatibility. The customers
expressed the need for lower active power consumption so
that passive cooling can be used. However, this is one
possible implementation, and other implementations need
to be addressed by engineering. Standby power
consumption should meet the levels obtained by CE
devices; 5-10W, and be achievable with the fan off. Cost is
a factor. 10W standby is acceptable if the implementation
cost is less than that of 5W standby. These requirements
were articulated by Company1, Company2, Company3,
Company4, and Company5.

The third key requirement is power consumption.
Generally, the power consumption requirements are driven
by noise requirements, or CE compatibility. The customers
expressed the need for lower active power consumption so
that passive cooling can be used. However, this is one
possible implementation, and other implementations need
to be addressed by engineering. Standby power
consumption should meet the levels obtained by CE
devices; 5-10W, and be achievable with the fan off. Cost is
a factor. 10W standby is acceptable if the implementation
cost is less than that of 5W standby. These requirements
were articulated by Company1, Company2, Company3,
Company4, and Company5.

8

15® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

An Actual Requirement

Rewritten using Planguage:

STANDBY: Standby Power Consumption ←{Company1,
Company2, Company3, Company4, Company5}

GIST: The amount of power consumed by the system with the
fan off and the HDD not spinning

SCALE: Watts
METER: Measurement on 3 units for 10 seconds at 23°C, ± 2°C
MUST: 10W
PLAN[CostOK]: 5W
CostOK: Design and manufacturing costs do not exceed 10W

cost by more than 25%
NOTE: Relates to noise and CE compatibility requirements.

Passive cooling within the system is desired.

STANDBY: Standby Power Consumption ←{Company1,
Company2, Company3, Company4, Company5}

GIST: The amount of power consumed by the system with the
fan off and the HDD not spinning

SCALE: Watts
METER: Measurement on 3 units for 10 seconds at 23°C, ± 2°C
MUST: 10W
PLAN[CostOK]: 5W
CostOK: Design and manufacturing costs do not exceed 10W

cost by more than 25%
NOTE: Relates to noise and CE compatibility requirements.

Passive cooling within the system is desired.

16® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Defect Correction

Maintainability.Debug: The ease of correcting defects in the
system.

SCALE: Average engineering hours needed to correct defects
once they are located.

METER: Measurement of 50 defects corrected during system
testing (all severities).

MUST: Less than 12 hours average
PLAN: Less than 6 hours average

Maintainability.Debug: The ease of correcting defects in the
system.

SCALE: Average engineering hours needed to correct defects
once they are located.

METER: Measurement of 50 defects corrected during system
testing (all severities).

MUST: Less than 12 hours average
PLAN: Less than 6 hours average

X

9

17® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Scalability.CPU: The CPU usage pattern under increasing
application stress.

SCALE: Minimum application transactions per second required
to sustain 100% CPU utilization for at least 15 seconds.

METER: Stress testing of the application using automated
software drivers and a representative operational profile.

MUST [Single Processor, 500MHz]: At least 45 TPS
PLAN [Single Processor, 500 MHz]: At least 60 TPS

Scalability.CPU: The CPU usage pattern under increasing
application stress.

SCALE: Minimum application transactions per second required
to sustain 100% CPU utilization for at least 15 seconds.

METER: Stress testing of the application using automated
software drivers and a representative operational profile.

MUST [Single Processor, 500MHz]: At least 45 TPS
PLAN [Single Processor, 500 MHz]: At least 60 TPS

Scalability

18® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Security

Security.Access: The resistance of the system to
<unauthorized access>.

SCALE: Time required to obtain <unauthorized access> to the
system using commonly available tools and techniques.

METER: Attempted <access> by a team of two skilled security
engineers with no special knowledge of the system.

MUST: At least 8 hours
PLAN: At least 16 hours

Security.Access: The resistance of the system to
<unauthorized access>.

SCALE: Time required to obtain <unauthorized access> to the
system using commonly available tools and techniques.

METER: Attempted <access> by a team of two skilled security
engineers with no special knowledge of the system.

MUST: At least 8 hours
PLAN: At least 16 hours

10

19® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Usability/Documentation Quality

Usability.UserGuide: The usefulness of the user guide.
SCALE: Average response to usability survey questions,

scored on a 5-point scale.
METER: Surveys administered to end-users who are

members of the product focus group.
MUST [Gold]: Average response > 4
PLAN [Gold]: Average response > 4.5

Usability.UserGuide: The usefulness of the user guide.
SCALE: Average response to usability survey questions,

scored on a 5-point scale.
METER: Surveys administered to end-users who are

members of the product focus group.
MUST [Gold]: Average response > 4
PLAN [Gold]: Average response > 4.5

20® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Planguage Templates

Usability: The ease of use of the system under stated conditions

SCALE: Minutes on average for <target users> to complete <a
defined set of tasks> correctly using the system

METER: Testing prior to release using <n target users>

MUST [first release]: z minutes or less, 90% of the time

PLAN [prototype complete]: x minutes or less, 80% of the time

PLAN [first release]: y minutes or less, 90% of the time

Usability: The ease of use of the system under stated conditions

SCALE: Minutes on average for <target users> to complete <a
defined set of tasks> correctly using the system

METER: Testing prior to release using <n target users>

MUST [first release]: z minutes or less, 90% of the time

PLAN [prototype complete]: x minutes or less, 80% of the time

PLAN [first release]: y minutes or less, 90% of the time

Planguage can be used to create requirements templates for reuse:

11

21® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

Sub-Parameters for METER

METHOD: The method for measuring to determine a point on
the Scale

FREQUENCY: The frequency at which measurements will be
taken

SOURCE: The people or department responsible for making
the measurement

REPORT: Where and when the measurement is to be
reported

METHOD: The method for measuring to determine a point on
the Scale

FREQUENCY: The frequency at which measurements will be
taken

SOURCE: The people or department responsible for making
the measurement

REPORT: Where and when the measurement is to be
reported

As one example of Planguage extensibility, the METER
keyword has been detailed using four sub-parameters.

As one example of Planguage extensibility, the METER
keyword has been detailed using four sub-parameters.

22® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

An Example with Sub-Parameters

Before
METER: Measurement of 50 randomly-selected defects

corrected during system testing (all severities).
After
METER: Measurement of 50 defects corrected during system

testing (all severities).
METHOD: Random selection from defect logs
FREQUENCY: Once prior to Beta milestone; repeated if

needed based on outcome
SOURCE: SQA Lead, based on data from Test Lead
REPORT: Weekly product development team meeting

Before
METER: Measurement of 50 randomly-selected defects

corrected during system testing (all severities).
After
METER: Measurement of 50 defects corrected during system

testing (all severities).
METHOD: Random selection from defect logs
FREQUENCY: Once prior to Beta milestone; repeated if

needed based on outcome
SOURCE: SQA Lead, based on data from Test Lead
REPORT: Weekly product development team meeting

12

23® Copyright © 2001 Intel Corporation. No part of this presentation may
be copied without the written permission of Intel Corporation.

For More Information

The following are all authored by Tom Gilb:

Competitive Engineering, available free at
http://www.result-planning.com.

Requirements-Driven Management using Planguage,
available free at http://www.result-planning.com.

Principles of Software Engineering Management, Addison
Wesley 1988

Quantifying the Qualitative, available free at
http://www.result-planning.com.

A Requirements Engineering Language, available free at
http://www.result-planning.com.

Quantifying Quality Requirements Using Planguage

Erik Simmons
Intel Corporation
JF1-46
2111 NE 25th Ave.
Hillsboro, OR 97214-5961
erik.simmons@intel.com

V rsion 1.1, 03/30/01

P

K

A
E
E
C
p
E
M
H

A
W
b
o
s
q
D
k
h
a
a
e

e

© Intel Corporation 2001. All rights reserved.

repared for Quality Week 2001

ey Words: Product Quality; Quality Requirements; Quantified Quality

uthor Biography
rik Simmons has 15 years experience in multiple aspects of software and quality engineering.
rik currently works as Platform Quality Engineer in the Platform Quality Methods group, part of the
orporate Quality Network at Intel Corporation. He is responsible for Requirements Engineering
ractices at Intel, and lends support to several other corporate software and product quality initiatives.
rik is a member of the Pacific Northwest Software Quality Conference Board of Directors. He holds a
asters degree in mathematical modeling and a Bachelors degree in applied mathematics from
umboldt State University in California.

bstract
ithin the last decade, requirements engineering has benefited from increased attention. Several good

ooks are now available, from general textbooks on requirements engineering to specific monographs
n advanced topics. Among the many benefits has been an increased awareness of the importance of
pecifying quality requirements. However, outside of structured English, few methods for specifying
uality requirements have been established. Planguage, created by Tom Gilb, is one notable exception.
esigned to quantify qualitative statements in plans, specifications, and designs, Planguage is a
eyword-driven language that allows measurable, testable quality requirements to be written. Planguage
as many benefits; it is easy to learn, flexible, compact, extensible, and prevents omissions by providing
 consistent set of parameters for quality requirements. In this paper, Planguage keywords and syntax
re introduced. Examples of quality requirements before and after using Planguage are given, and the
xperiences of introducing Planguage within a product engineering environment are discussed.

mailto:erik.simmons@intel.com

© Intel Corporation 2001. All rights reserved.

Introduction
The last decade has seen an increased focus on the methods, process, and benefits of good
requirements engineering. In the past few years alone, several very good books have been
published on the topic. Undergraduate and graduate programs now more commonly introduce
students to the fundamental concepts and techniques of requirements engineering.

Despite these and other advances, few techniques are taught for properly specifying quality
attributes like performance, reliability, scalability, and ease of use. In most cases, structured
English sentences are used to express the underlying requirements using terms that are difficult
or impossible to test adequately. Qualitative terms like easy, fast, reliable, secure, scalable,
efficient, robust, and a host of others are fertile ground for misunderstandings between product
stakeholders.

Planguage was created by Tom Gilb in order to overcome these problems by quantifying
qualitative terms [Gilb01, Gilb97a, Gilb97b]. Planguage is a keyword-driven language whose
name is derived from a contraction of the words planning and language1. Planguage can be used
in requirements specifications, design documents, plans, and other places where qualitative
statements are common. Its primary benefits are quantifying the qualitative and improving
communication about complex ideas. In addition to these, Planguage has several other desirable
features and benefits:

Ease of Learning and Use
Planguage can be taught effectively to individuals and groups in a short period. At Intel,
Planguage is covered in only a few hours as part of the requirements engineering curriculum.
Although this brief exposure is not enough to guarantee successful adoption and use of
Planguage, when combined with a small amount of follow-up mentoring and a catalog of
examples the results have been quite good. More than 1,200 students at Intel have been
exposed to Planguage within the past 12 months, and Planguage has made its way into many
product development efforts. It is used by engineering, quality assurance, marketing, and
program management alike in a widening array of documents, plans, and designs.

Flexibility and Extensibility
Planguage is designed to be extensible and customizable to fit local needs. This includes the
addition of keywords and the rich structure of Planguage, with its ability to create and label
statements, collections, and other internal structures for reuse. These properties have made
Planguage popular and useful across differing product development efforts � an essential
capability in order to obtain broad adoption and use in as diverse an environment as Intel.

Prevention of Omissions
One of the most powerful benefits of Planguage is its ability to prevent omissions when
quantifying qualitative statements. Because keywords are prescribed for all the important
dimensions, users of Planguage are less likely to omit necessary information. Planguage is
equally effective in this regard whether implemented as a table within a document or as part of an
automated requirements repository. In both cases, users praise its ability to bring issues to light
through its complete, separate, and consistent treatment of the important dimensions of
quantification.

Separation of Success and Survival
When considering qualitative concepts, there are usually many levels of achievement (or a range
of achievement) possible. The question is not whether a system is reliable or secure, but how
reliable or secure. Planguage excels at expressing these ideas through its use of more than one
level of achievement. By allowing for specification of the best recorded level of performance, the

1 The term Planguage is also used as the name of some programming languages for parallel
processors, but that use is not related to its use in this paper.

© Intel Corporation 2001. All rights reserved.

optimum level, the planned level, and the level below which financial or political failure occurs,
Planguage paints a detailed and complete picture of success and survival, allowing for informed,
due-diligent decision making.

Planguage Keywords & Syntax
Planguage has a rich set of keywords. The commonly used keywords are given in Table 1.

Table 1: Planguage Keywords

TAG A unique, persistent identifier
GIST A short, simple description of the concept contained in the Planguage

statement
STAKEHOLDER A party materially affected by the requirement
SCALE The scale of measure used to quantify the statement
METER The process or device used to establish location on a SCALE
MUST The minimum level required to avoid failure
PLAN The level at which good success can be claimed
STRETCH A stretch goal if everything goes perfectly
WISH A desirable level of achievement that may not be attainable through

available means
PAST An expression of previous results for comparison
TREND An historical range or extrapolation of data
RECORD The best-known achievement
DEFINED The official definition of a term
AUTHORITY The person, group, or level of authorization

As an example of the extensibility of Planguage, four sub-keywords have been created for the
keyword METER. The sub-keywords are designed to add precision and specificity to the METER
statement, and are given in Table 2.

Table 2: Sub-keywords for the METER Keyword

METHOD The method for measuring to determine a point on the Scale
FREQUENCY The frequency at which measurements will be taken
SOURCE The people or department responsible for making the measurement
REPORT Where and when the measurement is to be reported

Besides keywords, Planguage also offers several convenient and useful sets of symbols:

• Fuzzy concepts requiring more details are marked using angle brackets: <fuzzy concept>
• Qualifiers, which are used to modify other keywords, are contained within square

brackets: [when, which, �]
• A collection of objects is indicated by placing the items in braces: {item1, item2, �}
• The source for a statement is indicated by an arrow: Statement � source

Using Qualifiers
Qualifiers allow for precise description of conditions and events. They add richness, precision,
and utility to Planguage. Here are several (unrelated) examples of qualifier use:

PLAN [Q1 ’00]: 20,000 units sold
MUST [First year]: 120,000 units sold

WISH [First release, enterprise version]: 1 Dec. 2000
PLAN [US market, first 6 months of production]: Defects Per Million < 1,000

METER [Prototype]: Survey of focus group

© Intel Corporation 2001. All rights reserved.

METER [Release Candidate]: Usability lab data

A Basic Application of Planguage
Requirements often contain statements like the following:

“The system must be easy to learn.”

When presented with this first requirement, nearly everyone would agree that it is not testable as
written. It is up to the tester or someone else downstream to decide what �easy� is, what �learn�
means, and how to test whether the product meets minimum levels of goodness.

A second common form of the statement of usability is made in structured English:

“The system must be used successfully to place an order in under 10 minutes without
assistance by at least 80% of test subjects with no previous system experience.”

This is an improvement over the first requirement, and represents the typical state of the practice.
The second wording gets a better response for testability, and many believe that they could write
and execute tests for it.

Here is the Planguage version:

TAG: Learnable
GIST: The ease of learning to use the system.
SCALE: Time required for a Novice to complete a 1-item order using only the online help system

for assistance.
METER: Measurements obtained on 100 Novices during user interface testing.
MUST: No more than 7 minutes 80% of the time
PLAN: No more than 5 minutes 80% of the time
WISH: No more than 3 minutes 100% of the time
PAST [our old system]: 11 minutes � recent site statistics
Novice: DEFINED: A person with less than 6 months experience with Web applications and no

prior exposure to our Website.

This statement provides a great deal of information in a compact format. Additionally, it is testable
and far less ambiguous than the previous structured English statement.

Finding Scales and Meters
Scales exists for just about any concept. Here are some helpful hints for locating/defining scales:

• Divide the measured quality into its elementary components first if possible
• Use known, accepted scales of measure when possible
• Derive new scales from known scales by substituting terms
• Incorporate qualifiers in the scales to increase usefulness and specificity
• Don�t confuse scale with meter
• Share effective scales with others

Examples of scales for several situations are given in Table 3:

Table 3: SCALE Examples

Environmental Noise dBA at 1.0 meter
Software Security Time required to break into the system
Software
Maintainability

Average engineering time from report to closure of defects
reported prior to release

© Intel Corporation 2001. All rights reserved.

System Reliability #1 The Mean Time To Failure of the system
System Reliability #2 The time at which a certain percentage of the system failures

have occurred (known as the B-life). For example, at the B10
life, 10% of the units have failed.

System Learnability Average time for <novices> to become <proficient> at a defined
set of tasks (this can be measured on competing prototypes)

Vendor Of Choice Gaps between customer�s expressed importance and
satisfaction for various product and service attributes

Revenue Total sales in US$, Average Selling Price, etc.
Market Share Percentage of Total Available Market (TAM)

To locate a meter, study the scale carefully. If no meter comes to mind:

• Look at references, handbooks, examples, etc. for ideas
• Ask others for their experience with similar methods
• Look for examples within test procedures

Once you have located a candidate meter, be sure that:

• The meter is adequate in the eyes of all stakeholders
• There is no less-costly meter available that can do the same job (or better)
• The meter can be measured before product release or completion of the deliverable

Examples of Meters for several situations are given in Table 4:

Table 4: METER Examples

Environmental Noise Lab measurements performed according to the Environmental
Test Handbook

Software Security An attempt by a team of experts to break into the system using
commonly available tools

Software
Maintainability

 Analysis of at least 30 consecutive defects reported and
corrected during development

System Reliability #1 A Probability Ratio Sequential Test demonstration with α=10%,
β=10%, Discrimination Ratio = 3

System Reliability #2 Weibull analysis of 50 sample units bench tested to failure

Planguage Examples
In practice, the TAG keyword is often dropped, as is the GIST keyword. Instead, the tag itself is
placed before the text of the gist, like this:

LEARNABLE: The ease of learning to use the system

instead of

TAG: Learnable
GIST: The ease of learning to use the system

Most of the examples that follow use the shorter format combining the tag and gist.

Example 1: Power Consumption
Before Planguage, here is an actual requirement as written. Only the company names have been
altered:

© Intel Corporation 2001. All rights reserved.

�The third key requirement is power consumption. Generally, the power consumption
requirements are driven by noise requirements, or CE compatibility. The customers expressed
the need for lower active power consumption so that passive cooling can be used. However, this
is one possible implementation, and other implementations need to be addressed by engineering.
Standby power consumption should meet the levels obtained by CE devices; 5-10W, and be
achievable with the fan off. Cost is a factor. 10W standby is acceptable if the implementation
cost is less than that of 5W standby. These requirements were articulated by Company1,
Company2, Company3, Company4, and Company5.�

The same requirement written using Planguage:

STANDBY: Standby Power Consumption �{Company1, Company2, Company3, Company4,
Company5}
GIST: The amount of power consumed by the system with the fan off and the HDD not spinning
SCALE: Watts
METER: Measurement on 3 units for 10 seconds at 23°C, ± 2°C
MUST: 10W
PLAN[CostOK]: 5W
CostOK: Design and manufacturing costs do not exceed 10W cost by more than 25%
NOTE: Relates to noise and CE compatibility requirements. Passive cooling within the system is
desired.

This rewritten statement is traceable (since it is uniquely and persistently identified by its TAG),
measurable (and testable), and more precise than the original while taking up less space and
using fewer words than before.

Example 2: Acoustic Noise
Another actual requirement, as originally written:

�The second key requirement is that the acoustic noise generated by the PC be at levels similar
to common consumer electronics equipment. Based on OEM feedback, this acoustic noise level
while the PC is active (HDD active) needs to be in the range of 25-33dB. Company1 shared the
progress they have made in this area. They have moved from 38dB active in 1996 to 33dB active
in 1997. Their goal is to maintain less than 33dB. Company2’s requirement is 25dB during active
state.�
Rewritten using Planguage:

NOISE: Acoustic Noise �{Company1, Company2}
GIST: The amount of acoustic noise generated by the system with the fans running and HDD
spinning.
SCALE: dBA
METER: Acoustic Sound Pressure test from the current Environmental Test Handbook,
measured on 3 units
MUST [Company1]: 33dBA
MUST [Company2]: 25dBA
PLAN: 25dBA
TREND [1996 � 1997, Company2]: 38dBA � 33dBA

Note that other solutions are possible. The original requirement does not make clear whether the
PLAN should be 33dB, 25dB, or some other value. Similarly, the MUST statement(s) could be
written in several other ways. It is the conversations required to determine which expression is
correct that are valuable.

Example 3: Development Process Efficiency
This example makes use of the optional sub-keywords for the Meter (Method, Frequency,
Source, and Report).

© Intel Corporation 2001. All rights reserved.

EFFICIENT: The efficiency of the development process
SCALE: Rework as a percentage of total effort expended
METER: Examination of defect logs and project data
METHOD: Total Rework (defect logs) divided by total effort (project tracking database)
FREQUENCY: Measured monthly
SOURCE: Software Process Engineering Team data
REPORT: Senior Staff Meeting
MUST: No more than 45%
PLAN: No more than 35%
PAST: 50-60% � guess, based on industry averages.

Example 4: Software Scalability
Scalability.CPU: The CPU usage pattern under increasing application stress.
SCALE: Minimum application transactions per second required to sustain 100% CPU utilization
for at least 15 seconds.
METER: Stress testing of the application using automated software drivers and a representative
operational profile.
MUST [Single Processor, 500MHz]: At least 45 TPS
PLAN [Single Processor, 500 MHz]: At least 60 TPS

Example 5: Security
This example illustrates how fuzzy concepts can be marked as needing clearer definition. The
requirement could be used as a template for several projects, with the terms and achievement
levels defined as needed for each one:

Security.Access: The resistance of the system to <unauthorized access>.
SCALE: Time required to obtain <unauthorized access> to the system using commonly available
tools and techniques.
METER: Attempted <access> by a team of two skilled security engineers with no special
knowledge of the system.
PLAN: At least 16 hours
MUST: At least 8 hours

Example 6: Memory Use
TAG: MemoryUse
GIST: The amount of memory used by the application.
SCALE: Megabytes
METER: Performance Log observations made during system testing.
PLAN [Peak committed memory, Representative Operational Profile]: No more than 24 MB
PLAN [Peak committed memory, Stress Profile]: No more than 40 MB
PLAN [Average committed memory, Representative Operational Profile]: No more than 16 MB
PLAN [Average committed memory, Stress Profile]: No more than 24 MB
Representative Operational Profile: DEFINED: An operational profile that is likely to occur during
use of the system after deployment. Specifically not a profile designed to stress the application in
ways not possible or rarely encountered in actual use.
Stress Profile: DEFINED: An operational profile designed to cause extreme resource
consumption or challenge the system's performance, regardless of whether the profile is likely or
even possible to occur in actual use.

Lessons Learned Introducing Planguage at Intel
Planguage has been among the most popular topics in the requirements engineering coursework
taught at Intel. The material has been presented to a broad cross section of the company, in
terms of both job function and geographic location. Students embrace Planguage because it
solves a real problem with elegance and simplicity. Most teams have felt the pain of mismatched

© Intel Corporation 2001. All rights reserved.

expectations that stemmed from weak, qualitative terms. Planguage presents an opportunity to
avoid those problems from the start. Test teams and quality assurance personnel also like the
clarity and accountability that comes with Planguage requirements.

If students have any difficulty as they learn Planguage, it is usually when they first attempt to
locate scales and meters for Planguage statements. Students sometimes confuse scale and
meter, so a simple example such as natural gas service or residential water supply is useful and
provides a way to clarify thinking for less-obvious situations.

Although Planguage is a simple concept that has innate appeal, students typically require some
additional assistance before they become independently proficient with the techniques involved
(especially scales and meters). Two strategies work well to provide this assistance: follow-on
mentoring from experienced Planguage users and a catalog of example Planguage requirements
from which to draw ideas and templates. This catalog can be extended with new material as it is
developed, and could be nicely implemented as a Website.

Planguage is designed for a much broader application than just quality requirements. Once
Planguage use has been established on a team or in a business unit, others pick the language up
for roadmaps, marketing objectives, vision statements, plans, and other uses. The positive
benefits of such cross-pollination are significant.

References

Gilb01 Gilb, Tom, A Handbook for Systems & Software Engineering Management

using Planguage , Addison Wesley 2001
Gilb97a Gilb, Tom, Requirements-Driven Management: A Planning Language ,

Crosstalk, June 1997
Gilb97b Gilb, Tom, Quantifying the Qualitative, available at http://www.result-

planning.com

QW2001 Paper 9T1

Mr. Greg Berger
(Lawson Software)

Creating A Tool-Independent Test Environment

Key Points

Discussion of some of the problems and concerns of developing tests using a specific
automated test tool.

●

How Object Oriented Programming Techniques can minimize the impact of tool specific
changes.

●

How integrating multiple technologies can create a test environment that makes use of
the strengths of 3rd Party automated test tools, yet keeps your test environment and
regression tests independent of the test tool.

●

Presentation Abstract

Our company has gone through many growing pains, starting from manual testing
to automating much of the testing. In our situation, we had built up a regression
base of client/server tests using a 3rd party test tool when our focus expanded to
web testing. We now had to add another test tool for the web portion of our testing,
while continuing to support our client/server testing. In order to accomplish this,
we developed a testing environment that is tool independent.

With this idea in mind, we integrated many types of technologies and used as much
of the Object-oriented programming techniques as possible. At present, we have
common code that will run using Rational Robot and Mercury Interactive's
WinRunner. We have implemented a VB ActiveX library and a C DLL for this
purpose. We have also written our scripts/code in such a way that we have been
able to isolate test tool specific calls (interface layer). We have written much of our
functionality using objects and encapsulation.

Our final goal was to create a test environment that could use common code and
functionality across several test tools and not be tied to a specific test tool. This has
allowed us to use the strengths of each test tool and not have to re-develop those
functionalities. The end result should give us flexibility to change, allow us to use
our regression base in many other ways and cut our testing costs.

The talk discusses

* Present ways companies use automated test tools and how their test regression
bases are being built up
* Problems and concerns that need to be addressed with developing tests using the
current methods
* Solutions to minimize the impact of changes to the test tool or applications under

test
* Solutions to make your test environment more independent of a specific test tool
* Advantages to using the new test development methods

About the Author

Greg Berger is a Senior Systems Quality Engineer at Lawson Software
(www.lawson.com) with responsibility for functional testing and test architectural
design/implementation. Greg has been in the software test area for seventeen years,
the last five of which using and developing in a wide variety of automated test
tools, including Autotester, Mercury Interactive's WinRunner and Rational Robot.

Before Lawson, Greg worked in a variety of areas and technologies at companies
such as Unisys and Pitney Bowes. Greg can be reached at
greg.berger@lawson.com (651) 767-4061.

1

1

Creating a Tool-Independent Test
Environment

Greg Berger
Lawson Software

14th International Software/Internet Quality Week (QW2001)

Lawson Software

2

Overview

• Standard automation test methods
• Problems encountered
• Solutions

Lawson Software

2

3

Standard Automation Test
Methods

• Automation Decision
• Test tool selection
• Create Test bed

– Record & Playback
– Code development/scripting
– Combination of R&P and Code Development
– Problems & Concerns

Lawson Software

4

Record & Playback

• Advantages
– Quick & easy

• Problems & Concerns
– Platform/OS dependency
– No dynamic window captioning
– No support for stress testing
– No code re-use
– High Maintenance

Lawson Software

3

5

Code/Script Development

• Advantages
– Code re-use
– Less Maintenance
– Robust

• Problems & Concerns
– Changes within the test tool
– AUT changes

Lawson Software

6

Combination of Record &
Playback and Code Development

• Advantages
– Less expensive than total code development

• Problems & Concerns
– Changes within the test tool
– AUT changes

Lawson Software

4

7

Changes in the Test Tool

• Problem:
– Syntax changes

• Solution:
– Interface functions

• Test tool specific calls
• Protects against syntax changes

Lawson Software

8

Interface Functions
Script Without Using Interface Functions

Sub Main
Dim result As Integer

SQALogMessage sqaNone, “Test Message”, “Sub
Main”

Window SetContext, GV_captiontitle, ""

' Clear out the window
InputKeys "clear"

' Bring up the application screen
InputKeys "execute Form100 {ENTER}"

End Sub

Script Using Interface Functions

Sub Main
Dim result As Integer

PRT_Print (PRT_MESSAGE, “Test Message”, _
“Sub Main”)

Window_SetContext (CAPTION, GV_captiontitle, "”)

' Clear out the window
CMD_Execute (CMD_CLEARSCREEN)

' Bring up the application screen
CMD_Execute (CMD_GENERAL, "execute Form100“)
CMD_Execute (CMD_ENTER)

End Sub

Lawson Software

5

9

Changes by the AUT

• Problems:
– User Interfaces
– Functionality

• Solution:
– Object Oriented Design (OOD) approach

Lawson Software

10

Object Oriented Design

• Most tools do not support OOD
• Emulate some OOD features:

– User Interface functions
– Private functions
– Assessor functions
– No global variables

Lawson Software

6

11

Object Oriented Design
Lawson Software

Test Cases

Test Case script 1
Test Case script 2
Test Case script 3

...

Data
Structure

Functions to
Set and
Retrieve

Data

Object1

User
Interface
functions/

scripts

Internal
functions/

scripts

encapsulation

Data
Structure

Functions to
Set and
Retrieve

Data

Object2

User
Interface
functions/

scripts

Internal
functions/

scripts

encapsulation

12

Lawson Software’s Automation
Process

• Automation Decision
• Test tool selection
• Test bed

– Interface functions
– OOD

• Second test tool needed
– Problems & concerns

Lawson Software

7

13

Adding Test Tools

• Problems and Concerns:
– Expense of creating a new test bed
– Maintenance of two test beds
– Addition of future test tools

• Solution:
– Component Object Model (COM)

Lawson Software

14

Lawson’s COM Implementation

Lawson Software

C++ Standard
Dll

Enable_Automation
Disable Automation

CreateObj()
ExecuteObj()
DeleteObj()

Mercury Tool

Does not support COM,
Supports Pascal calling

Dlls

Rational Tool

Supports COM
Can call object directly

Automation Object
Create_Object

Execute_Object()
Delete_Object()
Execute_Trace()

Trace Object

Options_Set()
File_Set()

Trace()
...

Com Library
(ActiveX Dll)

Common Data

8

15

Disadvantages to COM Approach

• Requires up-front investment
– Additional development tools
– More training

• Initial Test development
• More code development expertise

Lawson Software

16

Advantages to COM Approach

• Changes in technology and industry trends
• Code re-use
• Less maintenance
• Cost effective

Lawson Software

9

17

Lawson Software’s Automation
Process

• Automation Decision
• Test tools selection
• Test bed

– Test tool specific code base
– COM objects

18

Conclusions

• Automated with standard methods
• Encountered problems
• Developed a tool-independent approach
• Benefits

– Better code re-use
– Less Maintenance
– Less Cost

Lawson Software

10

19

Questions & Answers

Lawson Software

Creating a Tool-independent Test Environment
Greg Berger

Senior Systems Quality Engineer
Lawson Software

greg.berger@lawson.com
http://www.lawson.com

(651) 767-4061

International Quality Week, 2001

Abstract
Lawson Software has experienced many growing pains, starting from manual testing
to automating much of the testing. In our situation, we had built up a regression
base of client/server tests using a 3rd party test tool when our focus expanded to web
testing. Because the current tool did not have some functionality we needed, we
added a second test tool for the web portion of our testing, while continuing to
support our client/server testing. In order to accomplish this, we developed a
testing environment that is tool independent.

With this idea in mind, we integrated many types of technologies and used as many
of the Object-oriented programming techniques as possible. At present, we have
common code that will run using Rational Robot and Mercury Interactive's
WinRunner, implemented a VB ActiveX library and a C DLL for this purpose. We
have also written our scripts/code in such a way that we have been able to isolate
test tool specific calls (interface layer). We have written much of our functionality
using objects and encapsulation.

Our final goal was to create a test environment that could use common code and
functionality across several test tools and not be tied to a specific test tool. This has
allowed us to use the strengths of each test tool and not have to re-develop those
functionalities. The end result should give us flexibility to change, allow us to use
our regression base in many other ways and cut our testing costs. This paper reflects
the author's perspective gained from experience in the testing field and from helping
to develop the existing test architecture at Lawson Software.

Overview of Automated Test Tool Usage
In today's market, companies have a wide range of automated test tools to choose from.
Each tool has its strengths and weaknesses. For the sake of this discussion, an application
that is tested by an automated test tool will be called Application Under Test (AUT).

Companies also have the option of writing their own automated test tools. This can lead to
high development and maintenance costs.

http://www.lawson.com/

The initial step a company will typically take when it wants to start automating its testing is
to evaluate and select an automated test tool. Once a tool has been selected that best fits its
needs, a regression test bed can then start to be built up.

A test bed is usually made up of the following:
• Test Cases

A test case is a process that is performed against the AUT and the results of
the process are checked and reported.

• Verification points
A verification point is a checkpoint in a test case that results in a pass or fail.

• Supporting functionality such as windowing, AUT functionality and control flow.

These tests and supporting functionality are coded in scripts. A script is be made up of
functions, sub-procedures and calls to other scripts.

Common methods of building a test bed are:
• Record and Playback
• Code/Script Development
• Combination of Record and Playback and Code/Script Development

Method: Record and Playback

Usage
Record and playback simply records an operator's keystrokes and actions as they are using
the AUT. These scripts can then be played back. This method can produce scripts fast and
with little programming expertise needed.

Problems and Concerns
• Does not support multiple hardware configurations/operating systems

When multiple servers and operating systems are tested (such as Unix and
NT), there can be differences in execution, such as system commands and
responses. This creates a situation where scripts have to be recorded for
each operating system.

• Does not support dynamic window captioning.
Dynamic captioning is when the AUT window’s caption can change during
execution depending on circumstances and data input. For example, the
caption for a Microsoft Word window contains the file name. If two files are
open, the caption name depends on which file is active at the time. Because
most test tools use the window caption attribute for their windowing, record
and playback will not work.

• Does not support stress testing
To perform stress testing, actions and functionality are executed multiple
times through the use of looping. Record and playback does not support
looping.

• No code re-use

All scripting is done as straight line coding. If there are actions that are done
multiple times, they are recorded in multiple places. Record and playback
does not promote code re-use.

• High maintenance
If changes are made to the application, scripts will need to be updated or
recorded again. The changes can affect many or all of the scripts depending
on how many places the code reside in.

Method: Code/Script Development

Usage
Coding scripts, instead of recording them, can stabilize the regression bed. Code can be
written as straight-line, or can be coded with modularity (functions and sub-procedures).
Code containing modularity takes advantage of code re-use.

Problems and Concerns with Straight Line Code
• Does not support multiple hardware configurations/operating systems
• Does not support dynamic window captioning
• Does not support stress testing
• No code re-use
• High maintenance

Problems and Concerns with Scripts Coded with Modularity
• Test tool changes such as syntax changes, added functionality, or the elimination

of functionality necessitates changes in the test scripts and functions.
• If an additional test tool is needed along with your current test tool, another test

bed must be built and maintained with no re-usable code between the two.
• If the current test tool is no longer adequate for your testing, and another test

tool replaces it, your entire test bed must then be rebuilt.

Method: Combination of Record and Playback and Code/Script Development

Usage
A mixture of recording and coding can be used. In this method, recording is done initially
to create a template or shell of basic logic flow. Code is then added to the recorded scripts
making them more robust.

Problems and Concerns
• Test tool changes such as syntax changes, added functionality, or the elimination

of functionality necessitate changes in the test scripts and functions.
• If an additional test tool is needed along with your current test tool, another test

bed must be built and maintained with no re-usable code between the two.
• If the current test tool is no longer adequate for your testing, and another test

tool replaces it, your entire test bed must then be rebuilt.

Minimizing the impact of changes to the test tool and AUT
Changes in your automated test tool or AUT can result in high maintenance costs and
downtime of your regression test bed. The following two sections discuss methods to
reduce these obstacles.

Minimizing the Impact of Changes to the Automated Test Tool
The initial step is to minimize the impact of any test tool changes. This can be accomplished
by creating interface functions that perform all test tool specific commands. All other
scripts would then call those interface functions instead of using the tool's commands
directly.

The following example is given using the Rational Robot test tool.

Script Without Using Interface
Functions

Script Using Interface Functions

Sub Main
 Dim result As Integer

 ' Make the host window the active window
 Window SetContext, GV_captiontitle, ""
 Window SetPosition, "", "Coords=" +
 GV_termcoords +
 ";Status=NORMAL"

 ' Clear out the Unix window
 InputKeys "clear"

 ' Bring up the application screen
 DelayFor 2000
 InputKeys "execute Form100 {ENTER}"
End Sub

Sub Main
 Dim result As Integer

 ' Make the host window the active window
 WM_Window_SetContext(WM_Window,
 GV_captiontitle)
 WM_Window_SetPosition(WM_Window
 GV_captiontitle,
 GV_termcoords)

 ' Clear out the Unix window
 CMD_Execute(CMD_CLEARSCREEN)

 ' Bring up the application screen
 Call WM_Window_Delay(2000)
 CMD_Execute(CMD_GENERAL,"execute ")
 CMD_Execute(CMD_GENERAL,
 "Form100")
 CMD_Execute(CMD_ENTER)
End Sub

In this example, the functions WM_Window_SetContext, WM_Window_SetPosition,
WM_Window_Delay and CMD_Execute are the interface functions. By structuring your
scripts this way, you have now protected a majority of those scripts from any test tool
changes that might occur.

Minimizing Changes to Your AUT
Scripts written using object-oriented methods can help minimize the impact of changes
made to your AUT. Even though most automated test tools do not support object-oriented

design (OOD); you can still emulate some of the OOD features. High cohesion should be
the goal to strive for in OOD.

High cohesion has the following attributes:
• A well defined set of related functions that are exposed to the user (Public

functions)
• A set of functions that implement the functionality of the object that are not

exposed to the user (private functions)
• A set of assessor functions used to access the data of the object (the data is

private)
• No global variables

All of the attributes listed above are used to create an object. The object contains scripts
and functions of common functionality. All of the data needed for this object and its
implementation of that data is hidden from all external scripts (encapsulation). External
scripts access the object's data through a function (assessor). Functions and scripts within
the object would also use those functions to access its data. This allows the object's data
structures to be changed or added to without affecting any of the functions or scripts
accessing that data. By encapsulating the data, the module also has control on what data can
be modified and viewed. This is in contrast to using global variables to hold your data where
there is no control.

Here is a diagram of what an OO design might look like:

Test Cases

Test Case script 1
Test Case script 2
Test Case script 3

...

Data
Structure

Functions to
Set and
Retrieve

Data

Object1

User
Interface
functions/

scripts

Internal
functions/

scripts

encapsulation

Data
Structure

Functions to
Set and
Retrieve

Data

Object2

User
Interface
functions/

scripts

Internal
functions/

scripts

encapsulation

Here is a sample of scripts and functions using the OOD approach with Rational Robot
used as an example:

Master Shell to control test execution (script)

Option Explicit
'$Include "SetupD.sbh"
'$Include "WindowD.sbh"
'$Include "PrintD.sbh"

Sub Main
 Dim iReturn As Integer
 Dim iWindowID As Integer
 Dim iCurrentSession As Integer
 Dim sServer As String

 Call Setup ' Get test parameters from user and open up terminal emulation window

 sServer = TTY_Session_GetServer() ' Retrieve server that testing is being done on
 CALL PRT_PRINT(PRT_MESSAGE, "** START testing on Server: " & sServer, _

 "Sub Main")
 iWindowID = WM_Window_GetID() ' Get the current window that has focus
 iCurentSession = WM_Session_GetCurrent() ' Get the current emulation session

 iReturn = TTY_Session_Connect(iWindowID, iCurrentSession)
 Callscript "Test_case_1" ' Run Test Case 1
 Callscript "Test_case_2" ' Run Test Case 2
 iReturn = TTY_Session_Disconnect(iWindowID) ' Disconnect emulation session
End Sub

Test Case Scripts

' Test Case 1
Option Explicit
'$Include "WindowD.sbh"
'$Include "PrintD.sbh"
'$Include "CommandD.sbh"

Sub Main
Dim iReturn As Integer

 CALL PRT_Print(PRT_MESSAGE, "** START Test Case 1 " , "Sub Test Case 1")
 iWindowID = WM_Window_GetID() ' Get the current window that has focus
 CMD_Execute(CMD_CLEARSCREEN)
 CMD_Execute(CMD_GENERAL,"cd TestDir")
 VP = WM_Window_Check("File YYY") ' Perform Verification Point check
 CMD_Execute(CMD_OSTRANSMIT)
End Sub

--
' Test Case 2
Option Explicit
'$Include "WindowD.sbh"
'$Include "PrintD.sbh"
'$Include "CommandD.sbh"

Sub Main
Dim iReturn As Integer

 CALL PRT_ Print (PRT_MESSAGE, "** START Test Case 2 ", "Sub Test Case 2")
 iWindowID = WM_Window_GetID() ' Get the current window that has focus
 CMD_Execute(CMD_CLEARSCREEN)
 CMD_Execute(CMD_GENERAL,"ls TestDir")
 VP = WM_Window_Check("File XXX") ' Perform Verification Point check
 CMD_Execute(CMD_OSTRANSMIT)
End Sub

Objects

'**** PRINT OBJECT - QUICK REFERENCE ************
'
'**** ASSESSORS
' PRT_Get
' PRT_Set

'**** METHODS
' PRT_Print
 …
'**** PRIVATE METHODS
' PRT_RobotLog_Write

…
'**

'$Include "Print.sbh"
Option Explicit

'**
'***** Data Definitions for the Print Object *****
'**
Type m_PrintData
 iState As Integer 'State of Printing
 sFileName As String 'File name Parameter Setting

…
End Type

Global m_aTableSettings(PRT_LOWERDIM To PRT_UPPERDIM) As m_PrintData
'**
'***** Assessors for this Object *****
'**

'******************** Function PRT_Get ***********
Function PRT_Get(iDevice As Integer, _
 sAttribute As String) As Variant

 Select Case sAttribute
Case PRT_STATE

 PRT_Get = m_aTableSettings(iDevice).iState
Case m_FILENAME

 PRT_Get = m_aTableSettings(iDevice).sFilename
 End Select
End Function

'******************** Sub PRT_Set ***************
Sub PRT_Set(iDevice As Integer, _
 sAttribute As String, _
 vValue As Variant)

 Select Case sAttribute
Case PRT_STATE

 m_aTableSettings(iDevice).iState = vValue
Case m_FILENAME

 m_aTableSettings(iDevice).sFilename = vValue
 End Select
End Sub

'**
'***** Methods for Print Object *****
'**

'******************** Function PRT_Print **********
' *** User Interface to the Print Object ***
Sub PRT_Print(sType As String, _
 sMessage As String, _
 sFunctionName As String)
 Dim iReturn As Integer
 Dim iTraceFile As Integer

 iTraceFile = PRT_GET (PRT_TRACEFILE, PRT_STATE)
 If (iTraceFile = PRT_ON) Then
 iReturn = PRT_File_Message(PRT_TRACEFILE, sType, sMessage,
 sFunctionName)
 End If

 iReturn = PRT_RobotLog_Write(sType, sMessage, sFunctionName)
End Sub

Test Tool Interface Functions

'***** FUNCTION PRT_RobotLog_Write ********
Function PRT_RobotLog_Write(sType As String, _
 sMessage As String, _
 sFunctionName As String) as Integer
 Dim iReturn As Integer

 iReturn = PRT_PASS

 Select Case sType
 Case "PASS"

 SqaLogMessage SqaPass, sMessage, sFunctionName
 Case "FAIL"

 SqaLogMessage SqaFail, sMessage, sFunctionName
 Case "WARNING"

 SqaLogMessage SqaWarning, sMessage, sFunctionName

 Case "MESSAGE"
 SqaLogMessage SqaMessage, sMessage, sFunctionName

 End Select

 PRT_RobotLog_Write = iReturn
End Function

Making Your Test Environment Independent of a Test Tool
Developing your scripts and functions using Object Oriented methods better protects your
test bed from test tool and AUT changes. This also does a good job of utilizing code-reuse.

However, what happens when your company now shifts paradigms and goes to web
applications instead of client server applications, or adds web applications to the client server
applications already being used and tested? The test bed that was built up for the client
server testing can still be used for that testing. The scripts and functions developed for that
test bed would most likely not work on the web applications without some modifications. If
the scripts and functions were designed properly, the only scripts and functions that may
need updating are the test tool interface and lower level functions. In some cases, two test
beds will be needed and maintained, one for client server and one for web applications.

A more severe problem occurs when the current test tool you are using cannot be used
against the new applications because the tool does not support some functionality that is
needed. In this situation, a new test tool will be needed, causing a new test bed to be
created. If you are still supporting the existing applications, then you will have to maintain
both test beds.

In our situation, we were using Rational Robot for our client-server testing. Lawson
Software then began developing web applications in addition to the client-side applications.
We found that Robot did not support some functionality that we needed for the Netscape
web-browser at that time, therefore, we added the Mercury's WinRunner tool that did
support that functionality.

Both a change in testing and a change in tools result in modifications of scripts and
functions or replacement of those scripts and functions. There is also the task of
maintaining multiple sets of code. This can become a very large and expensive process,
especially if the entire test bed must be rebuilt. It would be nice if all the common
functionality between the two technologies could be shared, keeping the code base
minimized and the maintenance low. The good news is that they can.

The use of mixed development environments and languages can be used to accomplish code
re-use between automated test tools or for the replacement of test tools. Our test group at
Lawson Software chose the Component Object Model (COM) as our framework to create
common code objects. COM is based on components that can be instantiated from any
programming language (Visual Basic, Visual C++, etc.). We chose Visual Basic as our main
programming language. Common code functions were written as an ActiveX DLL using VB.
ActiveX components allow an application to use objects supplied by another application, or

expose its own objects for use by another application. An ActiveX DLL is an in-process
component that runs in another application’s process.

We initially moved the common functionality from Rational Robot to the ActiveX DLL.
Rational Robot supports COM calls therefore the test runs using the ActiveX DLL ran
without problems. We now wanted to take the ActiveX DLL and make calls into the
WinRunner test scripts. This would give us the code re-use we were looking for.

We found that WinRunner does not support COM. Therefore, we could not create the
ActiveX Object and run it directly from WinRunner. WinRunner was able to call standard
'C' DLLs however, therefore we wrote a standard 'C' DLL using VC++ which contained the
functions necessary to access and manipulate the ActiveX Objects. By using this indirect
approach, we were able to run successfully with WinRunner.

We now had an environment where we could share functionality between the two test tools.
In addition, we are currently writing our startup routine (input test parameters, runtime tool
parameters, etc.) as a VB application that will run with either Robot or WinRunner.

Our goal is to produce as much of a common code base as possible for AUT specific
functionality and support functionality. This in turn helps keep maintenance low and re-use
high. We still want to take advantage of the strengths of each test tool however, whether it
is managing the running of tests, logging of test results or verifying object properties. This
gives us a distinct division of code between AUT and test tool functionality.

Here is a diagram to help illustrate this approach:

C++ Standard
Dll

Enable_Automation
Disable Automation

CreateObj()
ExecuteObj()
DeleteObj()

Mercury Tool

Does not support COM,
Supports Pascal calling

Dlls

Rational Tool

Supports COM
Can call object directly

Automation Object
Create_Object

Execute_Object()
Delete_Object()
Execute_Trace()

Trace Object

Options_Set()
File_Set()

Trace()
...

Com Library
(ActiveX Dll)

Common Data

Here is a sample of scripts and functions from Rational Robot and Mercury using the COM
approaches. In this example, the common code is tracing functionality used for debugging.
Note that these functions are incomplete and are used for demonstration purposes only.

Mercury Test Script Rational Robot Test Script

******* Initialize test **************
load_dll ("c:\Winnt\system32\Comlib.dll");
load("trace");

extern int Enable_Automation();
extern int Disable_Automation();

iReturn = Enable_Automation();
TRC_SetTraceObject();
#*********************************
TRC_File_Set(TRC_TRACEFILE,
 TRC_FILENAME,
 "c:MercuryTest.txt");
TRC_OptionsSet(TRC_TRACEFILE,
 TRC_STATE,
 TRC_ON);

******* Main section of testing *******
TRC_Trace(TRC_DEBUG_ LVL1,
 MSG_ENTERREC,

'$Include "TraceD.sbh"

Sub Main

'******* Initialize test ******************
 Call TRC_SetObjectActive()

'**************************************
 Call TRC_File_Set(TRC_TRACEFILE,
 TRC_FILENAME,
 "c:RationalTest.txt")
 Call TRC_OptionsSet(TRC_TRACEFILE,
 TRC_STATE,
 TRC_ON)

'******* Main section of testing *************
 Call TRC_Trace(TRC_DEBUG_ LVL1,
 MSG_ENTERREC,

 "tracetest");

TRC_Trace(TRC_MESSAGE,
 "Test Log message #1",
 "tracetest");

TRC_Trace(TRC_DEBUG_ LVL1,
 MSG_EXITREC,
 "tracetest");

******* Clean-up test ***************
TRC_File_Close(TRC_TRACEFILE);
TRC_DeleteTraceObject();

iReturn = Disable_Automation();

unload_dll ("c:\Winnt\system32\ Comlib.dll");
unload("trace");

 "tracetest")

 Call TRC_Trace(TRC_MESSAGE,
 "Test Log message #1",
 "tracetest")

 Call TRC_Trace(TRC_DEBUG_ LVL1,
 MSG_EXITREC,
 "tracetest")
'***************************************
'******* Clean-up test *******************
 Call TRC_File_Close(TRC_TRACEFILE)
 Call TRC_DeleteTraceObject()
'***************************************

End Sub

Mercury Interface Functions Rational Robot Interface Functions

extern int CreateObj(string iString);
extern int ExecuteObj(int iObject,
 string sMethod, string sParm1,

 string sParm2, string sParm3,
 string sParm4);
extern int DeleteObj(int iObject);

#***** Data Definitions for the Trace Object *****
public oTrace = -1;

#***** FUNCTION TRC_SetTraceObject ******
public function TRC_SetTraceObject()
{

oTrace = CreateObj("TRACE");
}

#***** FUNCTION TRC_DeleteTraceObject ***
public function TRC_DeleteTraceObject()
{

auto iReturn;
iReturn = DeleteObj(oTrace);

}

#***** FUNCTION TRC_Trace **************
public function TRC_Trace(sType,
 sMessage,
 sFunctionName)
{
 auto iReturn;

 iReturn = ExecuteObj(oTrace, "TraceItem", sType,
 sMessage, sFunctionName,

 "*WR");
 iReturn = TRC_MercuryLog_Write(sType,
 sMessage,
 sFunctionName);
}

'$Include "Trace.sbh"

Option Explicit

'***** Data Definitions for the Trace Object *****
Global oTrace As Object

'***** SUB TRC_SetObjectActive *************
Sub TRC_SetObjectActive()

 Set oTrace = CreateObject("ComLib.cTrace")
End Sub

'***** FUNCTION TRC_DeleteTraceObject ****
Sub TRC_DeleteTraceObject()

 Set oTrace = Nothing
End Sub

'***** FUNCTION TRC_Trace ***************
Sub TRC_Print(sType As String, _
 sMessage As String, _
 sFunctionName As String)
 Dim iReturn As Integer

 Call oTrace.TraceItem(sType,
 sMessage,
 sFunctionName,
 "*RR")
 iReturn = TRC_RobotLog_Write(sType,
 sMessage,
 sFunctionName)
End Sub

#***** FUNCTION TRC_MercuryLog_Write ***
static function TRC_MercuryLog_Write(sType,
 sMessage,
 sFunctionName)
{
 tl_step(sFunctionName, 0, sMessage);
}

'***** FUNCTION TRC_RobotLog_Write ********
Function TRC_RobotLog_Write(sType As String, _
 sMessage As String, _
 sFunctionName As String) as Integer

 SqaLogMessage SqaPass, sMessage, sFunctionName
End Function

C++ DLL Interface Between WinRunner and
the ActiveX DLL

ActiveX DLL

_cAutomation oAutomation;

/***** FUNCTION Enable_Automation ****/
int Enable_Automation()
{
 oAutomation.CreateDispatch(
 "lawsonLib.cAutomation");
 return 1;
}

/***** FUNCTION Disable _Automation ***/
int Disable_Automation()
{
 oAutomation.DetachDispatch();
 return 1;
}

/***** FUNCTION CreateObj ***********/
int CreateObj(const char *sObject)
{
 short iReturn;
 BSTR bMode = NULL;
 wchar_t *bString;
 bString = (wchar_t *)malloc(strlen((
 const char *)sObject));

 mbstowcs(bString,sObject,strlen((
 const char *)sObject)+1);
 bMode = NewBSTR(bString);
 iReturn = oAutomation.Create_Object(
 &bMode);
 SysFreeString(bMode);

 return (int) iReturn;
}

/***** FUNCTION ExecuteObj **********/
int ExecuteObj(int iObject, char *sMethod,
 char *sParm1, char *sParm2,
 char *sParm3, char *sParm4)
{
 int iReturn;

Class cAutomation

Dim oObject As Object

'***** FUNCTION Create_Object ***********
Public Function Create_Object(sObject As String)
 As Integer

 Set oObject = New cTrace
End Function

'***** FUNCTION Execute _Object *********
Public Function Execute_Object(iObject As Integer,
 sMethod As String, sParm1 As String,
 sParm2 As String, sParm3 As String,
 sParm4 As String) As Integer
 Dim iReturn As Integer

 iReturn = Execute_Trace(iObject, sMethod,
 sParm1, sParm2, sParm3, sParm4)

 Execute_Object = iReturn
End Function

'***** FUNCTION Delete _Object ***********
Public Function Delete_Object(iObject As Integer)
 As Integer

 Set oObject = Nothing
 Delete_Object = iObject
End Function

'***** FUNCTION Execute_Trace ***********
Private Function Execute_Trace(iObject As Integer,
 sMethod As String, sParm1 As String,
 sParm2 As String, sParm3 As String, _
 sParm4 As String) As Integer
 Dim iReturn As Integer
 Dim iDevice As Integer
 Dim iMode As Integer

 iReturn = 0

 short shObject;

 iReturn = oAutomation.Execute_Object(
 &shObject, &bMethod,
 &bParm1, &bParm2, &bParm3,
 &bParm4);

 return (int) iReturn;
}

/***** FUNCTION DeleteObj **********/
int DeleteObj(int iObject)
{
 short iReturn;
 short shObject;

 shObject = (short) iObject;
 iReturn = oAutomation.Delete_Object(
 &shObject);
 return (int) iReturn;
}

 Select Case UCase(sMethod)
 Case "OPTIONSSET"
 iReturn = iObject.OptionsSet(iDevice,
 sParm2, iMode)
 Case "TRACEITEM"
 Call iObject.TraceItem(sParm1, sParm2,
 sParm3, sParm4)
 End Select

 Execute_Trace = iReturn
End Function

Class cTrace

'***** FUNCTION OptionsSet

Public Function OptionsSet(iDevice As Integer,
 sAttributes As String,
 iMode As Integer) As
Integer

… Code Here
End Function

'***** FUNCTION TraceItem

Public Sub TraceItem(sType As String,
 sMessage As String,
 sFunctionName As String,
 Optional sPrefix As Variant)

… Code Here
End Function

…

Sample Output for Mercury

"***"
" TEST RUN STATUS LOG"
"***"
" LOG CREATED: 9/13/00 9:42:15 AM"
" LOG LOCATION: i:MercuryTest.txt"
"***"
"9:42:15 AM: STATUS LOG OPENED"
"9:42:15 AM: tracetest *WR*LEVEL1* Enter Rec"
"9:42:15 AM: tracetest *WR*MESSAGE* Test Log message #1"
"9:42:15 AM: tracetest *WR*LEVEL1* Exit Rec"
"9:42:15 AM: STATUS LOG CLOSED"

Sample Output for Rational Robot

"***"
" TEST RUN STATUS LOG"
"***"
" LOG CREATED: 9/13/00 8:42:15 AM"
" LOG LOCATION: i:RationalTest.txt"
"***"
"8:42:15 AM: STATUS LOG OPENED"
"8:42:15 AM: tracetest *RR*LEVEL1* Enter Rec"
"8:42:15 AM: tracetest *RR*MESSAGE* Test Log message #1"
"8:42:15 AM: tracetest *RR*LEVEL1* Exit Rec"
"8:42:15 AM: STATUS LOG CLOSED"

Conclusion
Under most circumstances record and playback scripts are the least desirable. These scripts
are sensitive to application changes, test tool changes, multiple environments, dynamic
captioning and many other factors. In most cases, these scripts will have to be maintained
regularly or even replaced periodically. The only times I would recommend using this
method would be for demos and one time only runs.

Scripting (coding) is more robust and allows for code re-use. For this to be effective
however, the scripts should be written in an object-oriented fashion. Interface functions
should also be used to isolate test tool specific calls.

If scripts are developed using these techniques, then they should be protected from most
AUT changes. These scripts will require less maintenance and be more robust. Code re-use
will also be higher for use with different hardware and operating system configurations.
Under some circumstances, these scripts may also be used for different types of testing, such
as client server vs. web testing. These scripts do not however go across test tools. If for
some reason you are using two test tools, or you have to switch to another test tool, and you
need the same functionality in both, then the scripts will have to be converted.

By developing your common test functionality using COM objects, ActiveX objects, etc.,
you can use the same code for all test tools. This method can be more expensive up front,
and more technical and code development expertise is needed in your test development
group than with using the other methods. However, the savings from code re-use and lower
maintenance will pay off in the long run. You will also have more control over your test bed
and will have more flexibility in selecting alternative test tools or other solutions if the
situation should arise.

QW2001 Paper 9T2

Mr. Timothy Kelliher, Dr. Daniel
Blezek, Mr. William Lorensen & Dr.

James Miller
(GE Corporate R&D)

The Frost Extreme Testing
Framework

Key Points

The frost software testing framework●

Test result collection●

Test result storage●

Test reporting●

Presentation Abstract

It has been our experience that small to medium software development efforts in a
distributed environment do not have the resources to staff a full software quality
assurance department. Indeed, having a SQA for a small or medium development
team can significantly impede the development and release process. Software
quality should not be ignored in these cases, rather it should be built in to the
development process itself, effectively ensuring high quality software. To address
this need, we have built a non-intrusive framework to collect, summarize, and
trend software and system testing results. Our system, named Frost (Frequent
Regular, On-Demand System Testing), allows the developer in the small project to
easily deploy a software testing infrastructure in the initial phases of the project.
Incorporating software testing using Frost in the early stages of development leads
to increased project transparency, and quality.

About the Author

Timothy P. Kelliher is a Computer Scientist at GE's Corporate Research and
Development Center in Schenectady, NY. He has over 15 years experience in
systems and software engineering. At the center he has worked on Software
Engineering CASE tools, Human Computer Interaction, and Software Quality
systems. He is a Six Sigma Master Black Belt and spends much of his time
instructing and mentoring the GE software development community. He is
co-author of “Engineering Complex Systems with Models and Objects” published
by McGraw-Hill, 1997.

Daniel Blezek is a Computer Scientist in the Visualization and Computer Vision
Program at GE's Corporate Research and Development center. He holds a Ph.D.
from the Mayo Graduate School in Biomedical Engineering. His research interests

include medical image segmentation, advanced rendering algorithms, and practical
software quality techniques.

William Lorensen is a Graphics Engineer at GE's Corporate Research and
Development Center in Schenectady, NY. He has over 30 years of experience in
computer graphics and software engineering. William is currently working on
algorithms for 3D medical graphics and scientific visualization. William is the
author or co-author of over 60 technical articles on topics ranging from finite
element pre and postprocessing, 3D medical imaging, computer animation and
object-oriented design. He is a co-author of "Object-Oriented Modeling and
Design" published by Prentice Hall, 1991. He is also co-author with Will
Schroeder and Ken Martin of the book "The Visualization Toolkit: An
Object-Oriented Approach to 3D Graphics" published by Prentice Hall in
November 1997. Mr. Lorensen holds twenty seven US Patents on medical and
visualization algorithms.

James Miller is a Computer Scientist at GE's Corporate Research and Development
Center in Schenectady, NY. He joined GE after receiving his PhD from Rensselaer
Polytechnic Institute in 1997. His thesis topic was in Computer Vision. At GE
James has become a primary contributor to vtk software algorithm development
and testing. For the past year, he has been the project leader on a research project
for Lockheed Martin involving the inspection of large airframes using laser
ultrasonic techniques.

Timothy P. Kelliher

DFSS Software Toolset 1

The Frost Extreme Testing
Framework

Dan Blezek, Tim Kelliher,
Bill Lorensen, Jim Miller
GE CRD
1 Research Circle
Niskayuna, NY 12309

Frequent, Regular, On Demand System Testing

What is Frost?

❚ Software Testing Data Collection Framework
❙ Data Collection
❙ Archive
❙ Presentation

❚ Goal and Objectives
❙ Improve Productivity and Quality of Software Projects

❘ Reduction in Rework
❘ Early Error Detection
❘ Reduction in Administration Time

❙ Apply Six Sigma Principles
❘ Quantitative Management
❘ Requirements Validation

Timothy P. Kelliher

DFSS Software Toolset 2

Extreme Testing

❚ “If testing is good, everybody will test all the
time, even the customers” -- Kent Beck

❚ Qualities of an Extreme Testing Framework
❙ Reusable
❙ Distributed
❙ Persistent
❙ Structured
❙ Executed Regularly
❙ Independent of presentation
❙ Dynamic

Frost: Extreme Testing Framework

❚ Frequent, Regular, On Demand System Testing

Two roads diverged in a wood, and I --
I took the one less traveled by,
And at has made all the difference.

-- Robert Frost

❚ Software testing is often the road less traveled,
but it does make all the difference

Timothy P. Kelliher

DFSS Software Toolset 3

Extreme Testing

❚ Short software engineering life cycle
❙ Design, implement, test

❚ The Software should ALWAYS work
❚ Find and fix defects in hours not weeks

❙ Bring SQA inside the development cycle
❙ Break the cycle of letting users find bugs

❚ Automate everything
❚ All developers are responsible for testing

The Importance of Early Testing

❚ Testing early and often is critical to high quality
software

❚ Retain measurements to assess progress and
measure productivity

❚ Present results in concise, informative ways
❚ Know and Show the status of the system at any

time

❚ Our customers expect it to be the way we work

Timothy P. Kelliher

DFSS Software Toolset 4

❚ We develop the “Visualization Toolkit”
❚ Open Source
❚ 600 C++ classes
❚ 240,000 Lines of Code

❙ 100,000 executable
❚ 20+ developers
❚ 6 years of development

“We don’t sell VTK, we sell what we do with VTK.”

Motivation (Historical Perspective)

Testing Constraints

❚ We only have 15 active developers, spread
across many projects and sites
❙ Can’t afford separate SQA division

❚ We don’t have dedicated testing hardware
❙ Testing cannot hinder project work

❚ We are “algorithm developers” not “software
engineers”
❙ Testing must be automated and concise

Timothy P. Kelliher

DFSS Software Toolset 5

Testing Design Goals

❚ Frequent testing
❙ Identify defects as soon as they are introduced
❙ Too hard to find cause if not done frequently

❚ Minimally invasive to daily activities
❚ Automated testing
❚ Automated report generation/summaries

❙ Must be concise yet informative
❚ Track testing results over time

A day in the life of VTK quality

❚ The day starts at 8pm (EST)
❚ Determine what has changed in the system
❚ Update the testing system’s version of the

software
❚ On 11 different system configurations, we

❙ Build the software
❙ Run over 500 regression tests

❚ Dynamic memory analysis
❚ Coverage analysis
❚ Check on coding style and documentation

Timothy P. Kelliher

DFSS Software Toolset 6

A Good Day

❚ Real work begins at 7:05am

7:00am - A Bad Day

❚ We are “prisoners of quality”...

Timothy P. Kelliher

DFSS Software Toolset 7

How do we use VTK SQA?

❚ Track the effects of major changes
❚ Identify what needs to be changed
❚ Portability leads to quality
❚ Navigate software features
❚ Build and test on future OS releases
❚ Test new 3rd party software (e.g. OpenGL) for

compliance

Has truly “Changed the way we work.”

The road to Frost

❚ VTK SQA exceeded our expectations
❚ VTK SQA process generated a lot of interest
❚ VTK SQA is

❙ “vtk-centric”
❙ daily snapshot of quality
❙ a collection of csh, tcl, awk, grep, sed scripts
❙ hard to port to new software projects
❙ hard to navigate through time

❚ Step back, re-load, … Frost

Timothy P. Kelliher

DFSS Software Toolset 8

Critical To Quality

❚ Reusable
❙ Test frameworks are often custom, and hard to

transition
❙ VTK testing is an example
❙ Frost is adaptable to many different projects
❙ Contains concepts that capture the essence of

testing

Critical To Quality

❚ Distributed
❙ Anyone should be able to contribute testing data from

anywhere, on any device.
❙ Test results should be available from anywhere
❙ Frost allows collection through a variety of

mechanisms
❘ TCP/IP, HTTP, SMTP, FTP

❙ Language independent XML format for reporting

Timothy P. Kelliher

DFSS Software Toolset 9

Critical To Quality

❚ Persistent
❙ Observations should be retained over the life of the

project, and throughout the product life
❙ Readily available for trending and analysis
❙ Frost is built on relation database technologies

❘ Provides persistence of observations
❘ Query capabilities
❘ Facilitates data import and export

Critical To Quality

❚ Structured
❙ The collected data must be structured
❙ Can immediately detect missing, or incomplete test

data
❙ Facilitates efficient summarization
❙ The core concepts of Frost completely characterize

the testing structure
❘ Gauges collect Measurements during testing
❘ Tests group Gauges into logical clusters
❘ TestGroups organize Tests and other TestGroups into a

hierarchy

Timothy P. Kelliher

DFSS Software Toolset 10

Critical To Quality

❚ Executed Regularly
❙ Frequent: encourages frequent code changes
❙ Regular: collects overall view of incremental

development activities
❙ On Demand: enables each developer to make local

changes with immediate evaluation
❙ Frost supports all of these modes

Critical To Quality

❚ Independent of Presentation
❙ The usual case is one tool - one log

❘ Need to look in multiple places
• Build log
• Purify
• Coverage
• Regression test log

❙ Frost collects from each tool into a central location
❙ Presents a comprehensive dashboard
❙ “Quality-at-a-glance”

Timothy P. Kelliher

DFSS Software Toolset 11

Critical To Quality

❚ Dynamic
❙ Must always have up to date dashboard
❙ If Extreme Testing is the goal, it must be supported

with immediate feedback
❙ Frost always presents most recent test results

Frost Concepts

Parts

Frost DB

Measurements

Gauge

Test Groups

Dashboards

❚ Gauge
❙ Takes a measurement

during a TestRun
❙ May be Part specific

❚ Test
❙ Organized in

TestGroups
❚ Part

❙ A component to be
tested

❙ Organized in a
hierarchy

Timothy P. Kelliher

DFSS Software Toolset 12

Gauge

❚ Core component of Frost
❙ Associated type

❘ integer, double
❘ text, HTML, XML, etc…

❙ Records Measurements during TestRuns
❙ Organized into Tests
❙ Are named

❘ i.e. TimeInSeconds of type double
❘ BuildLog of type text

Test

❚ Collection of Gauges
❚ Executed to produce a TestRun
❚ Produce a pass/fail status

❙ Frost automatically records a NotRun status
❚ Organized into TestGroups

❙ May be in more that one TestGroup

Timothy P. Kelliher

DFSS Software Toolset 13

TestGroup

❚ Hierarchical
❙ May contain Tests
❙ May contain TestGroups

❚ Example

❚ Inbound Test Data
❙ Testing
❙ XML
❙ Server
❙ Oracle

Data Flow

❚ Queried results
❙ Web server
❙ PHP
❙ SQL query
❙ Oracle

Timothy P. Kelliher

DFSS Software Toolset 14

Frost Schema XML

❚ Simple format
❚ Describes structure
❚ Language independent

Frost Testing XML

❚ Example of Test XML
❚ Java API

Timothy P. Kelliher

DFSS Software Toolset 15

System Architecture

❚ No live connection required
❙ FTP & email can be used to transport test results
❙ Test data is time stamped
❙ Provides flexibility
❙ Allows for global test data to be collected

Case Studies

❚ VTK Testing
❙ Features cross-platform comparison
❙ Instant trending

❚ Help Desk
❙ Summary of data in remote database
❙ Highlevel view and trending

❚ Frost performance
❙ Drill down capabilities to find the source of problems
❙ Tracks source code changes

Timothy P. Kelliher

DFSS Software Toolset 16

VTK Testing

❚ Transition from static to
dynamic

❚ Comparison between
yesterday and today

Cross platform comparison

❚ Graphical overview
❚ “Quality-at-a-glance

• Green: Passed
• Yellow: Failed
• Red: Not Run

Timothy P. Kelliher

DFSS Software Toolset 17

Help Desk

❚ Captures ticket statistics
❚ Continuous open ticket log
❚ Trends

Muse: Testing Frost

❚ Collect summary of source code changes
❙ For instantaneous code review
❙ Links to code changes

❚ Checks 7 critical dashboards for time to load
❙ 8 seconds is upper limit
❙ Detailed drill down information

❚ Monitors database size
❚ Checks pages for errors and warnings

Timothy P. Kelliher

DFSS Software Toolset 18

Extreme Code Review

Muse

❚ Not so good day
❙ Drill down for details

Timothy P. Kelliher

DFSS Software Toolset 19

Dashboard Response Details

❚ eQuality Dashboard failed
❙ Wall time is 16.3 seconds
❙ Generation took 13.3 seconds

❚ Is this a trend?
❙ Yup!

Conclusions

❚ Frost is our Extreme Testing tool of choice
❙ Based on open standards
❙ Flexible, scalable architecture

❚ Concepts are simple, powerful and elegant
❙ Gauge, Test, TestGroup, Part

❚ Frost provide a solid foundation for Extreme
Programming

Timothy P. Kelliher

DFSS Software Toolset 20

The Frost Extreme Testing
Framework

Dan Blezek, Tim Kelliher,
Bill Lorensen, Jim Miller
GE CRD
1 Research Circle
Niskayuna, NY 12309

Frequent, Regular, On Demand System Testing

The Frost Extreme Testing Framework

Frequent Regular On-demand System Testing

Daniel Blezek
518-387-5481, blezek@crd.ge.com

Timothy Kelliher
518-387-6691, kelliher@crd.ge.com

William Lorensen
518-387-6744, lorensen@crd.ge.com

James Miller
518-387-4005, millerjv@crd.ge.com

 GE Corporate R&D
KW/C218C
1 Research Circle
Niskayuna, NY 12309

Frost: Frequent Regular On-demand System Testing Blezek/Kelliher/Lorensen/Miller

2

Introduction

It has been our experience that small to medium software development efforts in a distributed
environment do not have the resources to staff a full software quality assurance department.
Indeed, having a SQA for a small or medium development team can significantly impede the
development and release process. Software quality should not be ignored in these cases, rather it
should be built in to the development process itself, effectively ensuring high quality software. To
address this need, we have built a non-intrusive framework to collect, summarize, and trend
software and system testing results. Our system, named Frost (Frequent Regular, On-Demand
System Testing), allows the developer in the small project to easily deploy a software testing
infrastructure in the initial phases of the project. Incorporating software testing using Frost in the
early stages of development leads to increased project transparency, and quality.

Extreme Programming

Extreme Programming (XP) is an emerging philosophy aimed at introducing a lightweight
methodology for small-to-medium development teams. XP takes commonsense principles and
moves them to extreme levels. One of the tenants of XP is testing. To quote Kent Beck: "If
testing is good, everybody will test all the time (unit testing), even the customers (functional
testing)".

The Extreme Programming (XP) tenet of testing is often overlooked in software development
efforts. Frequently, this is due to tight development schedules, and reluctance on the part of
developers to expend effort in areas that are perceived to have no value to the final software
product. It is only when testing is an integral part of the software development processes that it
becomes effective. Only when the developer has an easy mechanism of creating, running, and
verifying tests does the Extreme Testing (XT) aspect of XP become a reality.

A significant barrier to implementing XT within a project is the overhead of designing, creating,
and maintaining a XT framework. Usually, these test frameworks are hastily put together by a
single developer, without a thought to reuse in future projects. In our experience testing
frameworks prove to be highly non-portable, even with significant effort on the part of the
framework developer or developers.

To overcome this barrier in our group, we have obtained a set of items that are Critical To Quality
(or CTQ’s) of a testing framework. The framework must be:

• Reusable
 A general framework that can be adapted by different projects.

• Distributed
Anyone should be able to contribute testing data from anywhere on any device.

• Persistent
Testing observations must be preserved for future analysis, and for trending information.

• Structured
Structured test observations facilitate efficient summarization of the data.

• Executed regularly
To be effective, an XT framework must allow several levels of execution: frequent, regular, and
on-demand. Frequent testing encourages frequent code changes. Regular testing is performed at
scheduled intervals, often nightly, and collects the overall view of software development activities
for the past 24 hours. On-demand testing allows each developer to make local changes and
immediately evaluate them against the established gold standard.

• Independent of presentation
Often testing results are created as part of a web page, or in some difficult to use file format.

Frost: Frequent Regular On-demand System Testing Blezek/Kelliher/Lorensen/Miller

3

• Dynamic
Test observations should be summarized on-demand, as it is collected, and available in many
different formats.

The Frost framework addresses these CTQ’s, and has proven to be a robust and capable
infrastructure. The name Frost has dual meanings, first it is an acronym for Frequent Regular On
Demand Systems Testing, and secondly honors the poet Robert Frost who wrote:

Two roads diverged in a wood, and I--
I took the one less traveled by,
And that has made all the difference.

Robert Frost

Software testing is often the road less traveled, but it does make all the difference.

This paper details the origins of Frost, the current architecture, and demonstrates some of the
projects currently using Frost.

Background

Frost is a powerful component of XP. At the core of Extreme Programming is testing. By testing
the software throughout the development process, XP ensures the software always performs to the
project requirements. Though several testing frameworks exist, they fail to address the problems
of collection, summary and trending over the development lifecycle. Frost provides for distributed
collection of software testing results and a central location of trending and summarization of
testing results. Frost has grown out of the desire to disseminate the VTK testing framework to
other development efforts, and to distill our knowledge of software testing as presented by Bill
Lorensen at Software Quality Week 2000.

Frost is our new system, built upon the lessons and experiences of VTK, providing mechanisms for
collecting, summarization and trending of test observations by distributed developers. Frost is
designed to give the developer a transparent view of the software at any time. Dashboards provide
the top-level overview of the project’s quality, with detailed information available at a click. By
increasing the project’s transparency, Frost allows development to proceed unhampered by the
need to correct for errors and bugs introduced by other developers. Bugs that would normally be
caught by the SQA department, or worse, by the end user, can be found and eliminated before
leaving the developers hands. The Frost framework consists of three components: test result
collection, result storage, and reporting front end. In the diagram below, the Testing Hardware
performs testing and reports the results to the Frost DB Server. This process frequently happens
overnight and perhaps throughout the day, to create a continuous snapshot of the project’s quality.
The Frost DB Server processes the test results, validates their content, and stores the results into an
Oracle RDBMS. At any time, a developer may make a query of any testing results. Typically, a
project will have created a dashboard page that is delivered through the web server farm. From the
dashboard, the developer can drill down into any of the testing results captured by the testing
hardware.

Frost: Frequent Regular On-demand System Testing Blezek/Kelliher/Lorensen/Miller

4

Frost

Philosophy

In XP, if a thing is good to do, take it to the extreme. In Extreme Testing, we feel that there are
two central tenets:

• If it isn’t tested, it’s broken.
• If it isn’t automated, it doesn’t get done.

We have repeatedly found that portions of our software that are not tested are the primary source
of user reported bugs. Our group primarily develops application libraries: as with any library, their
exist functions and objects that are used with less frequency. During the course of development,
little used and untested code is considered broken. It is often the case that bugs are found in
“dusty” code that has not been covered in a test case. VTK has been developed over the course of
the last 7 years, and through time, essentially all of the code has been scrutinized for correctness
and regression tests have been written for it.

In many software projects, attempts are made to raise the quality of the development process, but
they often fall to the wayside as schedules slip. Our software is no exception. We have found that
by automating each project that normally would have raised the quality of the project temporarily,
we are able to use the project to permanently raise the quality of the software. For instance, a
project may involve instrumenting the code to test for memory leaks. If this is done once, the
quality of the project is temporarily raised; if it is automated, each day the development team can
look at the testing dashboard to see if any memory leaks have cropped up in the code.

Concepts

Frost has several key concepts: Parts, Gauges, Tests and TestGroups. Parts are components of the
system to be tested, and can range from a single class, or file, to an entire sub-system and are
organized hierarchically. Gauges are defined to take a single measurement, and may be applied to
Parts. Tests are collections of Gauges that are applied while performing a TestRun. TestGroups
organize Tests into a hierarchy, and instances of TestGroupRuns are created during the execution
of a TestGroup. These concepts succinctly represent the informal process through which we had
been doing software testing. The concepts are general in nature, allowing a wide range of system
and software testing to be supported by Frost.

Frost: Frequent Regular On-demand System Testing Blezek/Kelliher/Lorensen/Miller

5

Gauges

Gauges are at the core of Frost. Each Gauge has an associated type, corresponding to the sort of
data the Gauge records as a Measurement. The current Gauge types are: integer, double, text,
html, string, URL, Gif, Jpeg, XML, and XML processed by XSL. For instance, the number of
CPU seconds that a process consumes would be recorded using a Gauge of type double. For
Gauges with a type of XSLT, the Gauge is associated with an XSL description of how to process
the XML Measurements collected by the Gauge. As an example, consider an existing process that
produces compiler warnings in XML. By recording this log with a Gauge of type XSL, the error
log can be formatted on the fly into any desirable configuration.

For Gauges that collect arbitrary sized data and may not require the data to be stored indefinitely,
the Gauge may be defined to have a LifeTime in days. After the LifeTime of the Gauge has
expired, the Measurement that the Gauge collected is removed from Frost. Gauges such as integer
and double are never removed from Frost.

Tests

Tests are simply collections of Gauges. Generally, Tests group similar Gauges together. When a
Test is executed, a TestRun of that Test is created. At the conclusion of the TestRun, the Test
writer evaluates the pass/fail status of the Test. This information, along with Test start and end
times is recorded into Frost.

TestGroups

TestGroups organize and cluster Tests and sub-TestGroups. A TestGroup normally is defined to
contain only one copy of each associated Test. However, a TestGroup may be defined to have a
cardinality of 0..N, indicating that each contained Test may be recorded zero or many times during
the execution of the TestGroup (known as a TestGroupRun).

Example

Consider a TestGroup called Project that contains a Test called Summary, and two TestGroups,
Build and Regression. Summary contains two Gauges: Status, a string Gauge, and Report, an
HTML Gauge. Build contains two TestGroups, Libraries and Applications. Libraries and
Applications each contain two Tests, Compile and Link. In turn, Compile and Link have three
Gauges associated with them, Warnings and Errors, integer Gauges, and Log, a text Gauge. The
Regression TestGroup has a cardinality of 0..N, and contains only one Test, UseCase. The Test
UseCase contains the previously defined Log Gauge, a double Gauge called Time, and a Gif
Gauge called Image. The hierarchy is graphically represented below.

Frost: Frequent Regular On-demand System Testing Blezek/Kelliher/Lorensen/Miller

6

System Architecture

Testing

Testing results are collected by Frost in the Extensible Markup Language (XML). Thus, the
developer need not have access to any special software libraries, and is free to do testing in any
language and/or platform desired. When testing results are ready, the XML is processed by a
server connected to the underlying Oracle RDBMS. The XML results may be delivered through a
variety of mechanisms, direct socket connection, HTTP, FTP, or SMTP, supporting distributed
development. The Frost XML file format is rigorously described in a Document Type Definition
(DTD) format, allowing XML code to be validated before delivery to Frost. The server, written in
Java, parses the XML file, validates the correctness against the stored definitions of Gauges, Tests

Frost: Frequent Regular On-demand System Testing Blezek/Kelliher/Lorensen/Miller

7

and TestGroups, and then enters the testing results into the database for later retrieval and trending.
Although the server expects XML data, any programming language may be used to generate and
deliver the XML to the server. Currently, Java and Tcl are the two provided API’s, presenting the
test developer with an easy to use mechanism for creating and delivering XML to Frost.

Test Reporting

From the RDBMS, testing results are presented, summarized and trended using the PHP server
side scripting language. To query the stored testing results, an object of the TestGroup class is
instantiated and test results are queried from the RDBMS, filling out the testing hierarchy. All
reports are generated on-demand, and delivered via the browser. The Frost web site is designed to
allow easy navigation to any desired level of granularity, from an individual gauge on a particular
day, to the full history of a particular test for the past year. PHP includes graphing capabilities,
providing an on-demand trend view of the stored test results through time.

Case Studies

VTK Testing

The VTK testing framework has been extended to include a Frost dashboard. The VTK library is
built on 11 different platforms nightly, and 500+ regression tests are performed. The figure below
shows the VTK Frost dashboard. A cell is colored green if the change from yesterday was
positive, red if the change was negative and gray if there was no change. The first row of the table
shows 1 build error for the “hp” platform, with no change from yesterday. The second row shows
that the “irix65” platform had one less build warning than yesterday, but one more test failed today
in the “Tcl Image Tests” TestGroup.

A feature of Frost is the ability to compare the performance of a test across platforms. The figure
below shows a table comparing test results across platforms. The rows of the table are the tests,
and the columns are the platforms. A green result indicates the test passed, yellow indicates a
failure, and red indicates that the test did not run on that platform. This view of the data enables
the developer to quickly scan a graphical view of the nightly regression tests searching for trends
in the data.

Frost: Frequent Regular On-demand System Testing Blezek/Kelliher/Lorensen/Miller

8

Help Desk Status

The Help Desk project was created to provide a high level view of the IT support function of our
center. Each night, statistics are collected from the help desk’s Clarify database and reported in a
Frost dashboard. The number of tickets created, and closed in the previous day are presented on
the dashboard, including a month to date total. Tickets that were closed outside of the time limit
for the urgency are also collected. The long-term trends show a gradual increase in the number of
pending tickets. A log of currently open tickets is recorded every 20 minutes through the day,
providing up to date information about the status of the Help Desk system. From the open ticket
report, a link goes directly to the details for an individual ticket in the Clarify system.

Frost performance

Frost is also used to monitor itself in a project called Muse. The Muse dashboard presents a
summary of the source code changes from the previous day, and the results of nightly testing.
Several tests are available: each core function of Frost is executed and evaluated for errors and
warnings. Each dashboard in the Frost system is tested to ensure that it loads within 8 seconds,

Frost: Frequent Regular On-demand System Testing Blezek/Kelliher/Lorensen/Miller

9

and the available disk space on the Oracle server is monitored to avoid depleting the available
capacity. The dashboard below gives a quick overview of the system quality to the Frost
developer, with immediate drill down capabilities.

Conclusions

We have developed a web based testing framework designed to give the small to medium sized
development team a non-invasive method of incorporating testing, trending, and analysis into their
development efforts. Frost is based on open standards, XML, SQL, Java, and PHP, resulting in a
flexible, scalable architecture for gathering, storing, and reporting on software and system testing.

The Frost system has proved to be extremely flexible in handling a wide range of software and
system testing tasks. The core concepts of Gauges, Tests and TestGroups have proved to cover the
requirements for all projects we have encountered. The simplicity of the framework, and the ease
of generating testing results is beneficial to the rapid acceptance and adoption of the Frost
framework.

QW2001 Paper 2A1

Mr. James Tierney
(Microsoft)

Getting Started With Model-Based Testing

Key Points

How to improve your effectiveness through model-based testing●

How to test with models from Day One of your project●

How to keep “growing” your models so that they keep finding bugs●

Presentation Abstract

Traditional testing Traditional software testing consists of the tester studying the
software system and then writing and executing individual test scenarios that
exercise the system. These scenarios are individually crafted and then can be
executed either manually or by some form of capture/playback test tool. But
hands-on testing and handcrafted test scripts are labor-intensive and inefficient
ways to test modern software. These methods of creating and running tests face at
least two large challenges: First, these traditional tests will suffer badly from the
“pesticide paradox” (Beizer, 1990) in which tests become less and less useful at
catching bugs, because the bugs they were intended to catch have been caught and
fixed. Second, handcrafted test scenarios are static and difficult to change, but the
software under test is dynamically evolving as functions are added and changed.
When new features change the appearance and behavior of the existing software,
the tests must be modified to fit. If it is difficult to update the tests, it will be hard
to justify the test maintenance costs. Model-based testing alleviates these
challenges by generating tests from explicit descriptions of the application. It is
easier, therefore, to generate and maintain useful, flexible tests. Modeling
Modeling is a way to represent the behavior of a system. Models are simpler than
the system they describe, and they help us understand and predict the system’s
behavior. Models are a useful method of representing software behavior. Models
provide an easy way to update tests to keep pace with applications that are
constantly changing and evolving. In recent years, there has been a growing
movement in software testing to use the information contained in explicit models
of software behavior to make it simpler and cheaper to do testing. Model-Based
Testing Model-based testing is a black-box technique that offers many advantages
over traditional testing:

Constructing the behavioral models can begin early in the development
cycle.

●

Modeling exposes ambiguities in the specification and design of the
software.

●

Simple models can be used for testing from the very first day of the project.●

Models embody behavioral information that can be re-used in future testing,
even when the specifications change.

●

The model is easier to update than a suite of individual tests.●

The models can evolve alongside the software and will continue to find bugs
throughout the development cycle.

●

Getting Started With Model-Based Testing Using simple programmatic test tools
and familiar applications, this presentation makes the case for intelligent,
model-based test automation and shows how to apply it from the very first day of
the product life cycle to deliver high-quality software.

About the Author

James Tierney moved into his current position of Test Architect for Microsoft
Windows User Experience after being a Test Manager, Test Training Manager and
Director of Test. He first got interested in Model-based testing in 1983 while
testing at Fortune Systems in Silicon Valley. Finding Microsoft fertile ground for
advanced testing ideas, he is helping create a company wide Model-based testing
architecture. He has a couple of patents on Model-based testing, and has given
presentations on MBT, Software Reliability Engineering, Poka Yoke (Mistake
Proofing) Software, Testing, and Test Management.

1

Getting Started with Model-
Based Testing
Harry Robinson
James Tierney
Jason Taylor

K

J

I

H

G

F

E

D

C

BA

Why Model-Based Testing?

• Improve specs
• More nimble test automation
• Earlier test automation
• Better relationship with Dev/PM, working

side by side, rather than against.
• Attract and retain high quality testers

2

What is Model-Based Test
Automation?

• Develop a model or map of testable parts of
the application

• Determine verification points in the model
• Create test scripts by traversing the model
• Execute test scripts, fix bugs
• Note which important bugs the model

missed, improve the model to catch

Traditional Testing

Imagine that the projector is your software under test ...

3

Traditional Testing

Here’s traditional testing

Traditional Testing

But what happens when the software changes?

4

Model-Based Testing

Now imagine that the top projector is your model ...

Model-Based Testing

Here’s model-based testing

5

Model-Based Testing

When the software changes ...

Model-Based Testing

… so do the tests.

6

Approaches to Automated Testing

Static Tests

Model-Based Tests

Monkey Tests

7

The NT Clock

• Familiar
• Simple enough
• Complex enough
• Hard to test

NT Clock Behavior

Analog

Start Stop

Analog

Digital

StartStop

Digital

CLOCK
NOT

RUNNING

CLOCK
NOT

RUNNING

8

Static Tests vs. The Clock

Analog

Start Stop

Analog

Digital

StartStop

Digital

CLOCK
NOT

RUNNING

CLOCK
NOT

RUNNING

Test Case 1: Start Stop

Analog

Start Stop

Analog

Digital

StartStop

Digital

CLOCK
NOT

RUNNING

CLOCK
NOT

RUNNING

Test Case 2: Start Digital Analog Stop

Static Tests vs. The Clock

9

Analog

Start Stop

Analog

Digital

StartStop

Digital

CLOCK
NOT

RUNNING

CLOCK
NOT

RUNNING

Test Case 3: Start Digital Stop Start Analog Stop

Static Tests vs. The Clock

Analog

Start Stop

Analog

Digital

StartStop

Digital

CLOCK
NOT

RUNNING

CLOCK
NOT

RUNNING

Test Case 4: Start Analog Digital Digital Analog Stop

Static Tests vs. The Clock

10

Static Tests vs. The Clock
• Hard-coded test cases – lots of ‘em
• Tests do only what you tell them to
• Scripts wear out due to pesticide paradox

Analog

Start Stop

Analog

Digital

StartStop

Digital

CLOCK
NOT

RUNNING

CLOCK
NOT

RUNNING

Start Analog Analog Analog Analog Analog Analog …

Monkey Tests vs. The Clock

11

Monkey Tests vs. The Clock

• Programmatic
• Goes pretty much where it wants
• Small investment in any one app
•Typically finds only crashing bugs
• Resistant to pesticide paradox
• Hypnotizing to watch

So What’s a Model?

• A model is a description of a system’s behavior.

• Models are simpler than the systems they describe.

• Models help us understand and predict the system’s behavior.

12

We All Use Models Already

Digital

hmm …

if I am in Analog mode

and I select Digital mode

I should end up in Digital mode

How to Use Models in Testing

Digital

Setup: Clock is in Analog mode

Action: Select Digital mode

Outcome: Did Clock go correctly to Digital mode?

13

How to Create Model-Based Tests

1. Create a behavioral model of the application

2. Generate interesting test actions

3. Execute the test actions

4. Determine if the application worked

5. Find bugs

Step 1:

Create a behavioral model
of the application

14

Clock Behavior

Analog

Start Stop

Analog

Digital

StartStop

Digital

CLOCK
NOT

RUNNING

CLOCK
NOT

RUNNING

Operational Modes in The Clock
The System is either

•RUNNING or
•NOT_RUNNING.

The Setting is either

•ANALOG or
•DIGITAL.

Analog

NOT_RUNNING

ANALOG

RUNNING

ANALOG

Start Stop

Analog

Digital RUNNING

DIGITAL

NOT_RUNNING

DIGITAL

StartStop

Digital

15

Clock = NOT RUNNING

AND

Action = Stop

Rule: You can’t execute the Stop action
if the Clock is not running

All Actions Aren’t Always Available

Deriving Rules from Operational Modes

Stop

• When the System is NOT_RUNNING, the user cannot execute the Stop action.

• When the System is RUNNING, the user can execute the Stop action.

• After the Stop action executes, the System is NOT_RUNNING.

16

possible = TRUE ‘ assume the action is possible

if (action = “Stop”) then ‘ want to do a Stop action?

if (system_mode = RUNNING) then ‘ if clock is in running mode

new_system_mode = NOT_RUNNING ‘ clock goes to not running mode

else ‘ otherwise

possible = FALSE ‘ Stop action is not possible

endif
endif

if (possible = TRUE) then ‘ if action is possible

print system_mode;”.”;setting_mode, ‘ print beginning state

print action, ‘ print the test action

print new_system_mode;”.”;new_setting_mode ‘ print ending state
endif

Using VT Code to Build the Model

The Generated Finite State Table
Beginning State Action Ending State

NOT_RUNNING.ANALOG Start RUNNING.ANALOG

NOT_RUNNING.DIGITAL Start RUNNING.DIGITAL

RUNNING.ANALOG Stop NOT_RUNNING.ANALOG

RUNNING.DIGITAL Stop NOT_RUNNING.DIGITAL

RUNNING.ANALOG Analog RUNNING.ANALOG

RUNNING.ANALOG Digital RUNNING.DIGITAL

RUNNING.DIGITAL Analog RUNNING.ANALOG

RUNNING.DIGITAL Digital RUNNING.DIGITAL

17

Step 2:

Generate interesting test actions

Analog

NOT_RUNNING

ANALOG

RUNNING

ANALOG

Start Stop

Analog

Digital RUNNING

DIGITAL

NOT_RUNNING

DIGITAL

StartStop

Digital

A Random Walk

Start
Analog
Analog
Analog
Analog
Analog
Analog
Digital
Digital
…

re-invent the monkey

18

Chinese Postman

Start
Analog
Digital
Digital
Stop
Start
Analog
Stop

Analog

NOT_RUNNING

ANALOG

RUNNING

ANALOG

Start Stop

Analog

Digital RUNNING

DIGITAL

NOT_RUNNING

DIGITAL

StartStop

Digital

execute every action

State-Changing Postman

Start
Digital
Stop
Start
Analog
Stop

Analog

NOT_RUNNING

ANALOG

RUNNING

ANALOG

Start Stop

Analog

Digital RUNNING

DIGITAL

NOT_RUNNING

DIGITAL

StartStop

Digital

execute every state-changing action

19

Shortest Paths First

Analog

NOT_RUNNING

ANALOG

RUNNING

ANALOG

Start Stop

Analog

Digital RUNNING

DIGITAL

NOT_RUNNING

DIGITAL

StartStop

Digital

Length = 2
Start Stop

Length = 3
Start Analog Stop

Length = 4
Start Analog Analog Stop
Start Digital Analog Stop

and so on …

execute every path (eventually!)

Step 3:

Execute the test actions

20

Visual Test functions

Run(“C:\WINNT\System32\clock.exe”) Starts the Clock application

WMenuSelect(“Settings\Analog”) Chooses the menu item “Analog” on the “Settings” menu

WSysMenu(0) Brings up the System menu for the active window

WFndWnd("Clock") Finds an application window with the caption “Clock”

WMenuChecked("Settings\Analog") Returns TRUE if menu item “Analog” is check-marked

GetText(0) Returns the window title of the active window

Executing the Test Actions
open "test_sequence.txt" for input as #infile ‘get the list of test actions

while not (EOF(infile))

line input #infile, action ‘read in a test action

select case action

case “Start“ ‘ Start the Clock
run("C:\WINNT\System32\clock.exe”) ‘ VT call to start clock

case “Analog“ ‘ choose Analog mode
WMenuSelect("Settings\Analog") ‘ VT call to select Analog

case “Digital“ ‘ choose Digital mode
WMenuSelect("Settings\Digital") ‘ VT call to select Digital

case “Stop“ ‘ Stop the Clock
WSysMenu (0) ‘ VT call to bring up system menu
WMenuSelect ("Close") ‘ VT call to select Close

end select

wend

21

Step 4:

Determine if the application worked

Use Rules as Heuristic Test Oracles

if ((setting_mode = ANALOG) _ ‘if we are in Analog mode

AND NOT WMenuChecked("Settings\Analog")) then ‘but Analog is not check-marked

print "Error: Clock should be Analog mode“ ‘alert the tester
stop

endif

22

Step 5:

Find bugs

The Incredible Shrinking Clock

Start
Maximize
Stop
Start
Minimize
Stop
Start
Restore
Stop

23

Where Have the Years Gone?

Start
Minimize
Stop
Start
Restore
Date

Actions in the Demo Model

• Invoke
• Analog
• Digital
• Set_font
• GMT
• No_title
• Seconds

• Date
• About
• Close_clock
• Ok_about
• First_font
• Random_font
• Last_font

• Ok_font
• Cancel_font
• Double-click
• Minimize
• Restore

24

Chinese Postman

invoke seconds restore no_title double-click minimize restore
maximize minimize restore seconds restore GMT double-click
double-click digital set_font random_font last_font first_font
cancel_font set_font ok_font seconds restore no_title
double-click maximize set_font random_font last_font first_font
cancel_font minimize restore set_font ok_font seconds restore
GMT double-click double-click digital date close_clock

invoke analog date analog about ok_about close_clock

Shortest Paths First
invoke close_clock

invoke analog close_clock
invoke date close_clock
invoke GMT close_clock

... and so on ...

invoke seconds restore close_clock
invoke seconds seconds close_clock

25

Model-Based Testing

• Programmatic

• Efficient coverage

• Tests what you expect and what you don’t

• Finds crashing and non-crashing bugs

• Significant investment in tested app

• Resistant to pesticide paradox

• Still fun to watch

Models Find Bugs in Specs

• Detailed Models find missing transitions,
undefined states and actions.

• Scenario / high level models find missing
features –what would a user want?

• Complain to PMs about issues early, when
they can be fixed.

26

Why Model-Based Testing?

• Improve specs
• More nimble test automation
• Earlier test automation
• Better relationship with Dev/PM, working

side by side, rather than against.
• Attract and retain high quality testers

27

For more info …

www.model-based-testing.org

or

harryr@microsoft.com
jamesti@microsoft.com

Thanks!

QW2001 Paper 2A2

Mr. Klaus Olsen
(Softwaretest.dk)

Using The W Model To Institutionalize Inspections, And
Improve Knowledge Transfers

Key Points

We want to build quality into the system●

Defect prevention instead of defect detection●

Knowledge transfer●

Presentation Abstract

This paper introduces the W-model as a development model. The W-model makes
inspection and review activities visible during the development lifecycle. In the
W-model test planning starts as early as possible, and through the different types of
review meetings knowledge transfer between analysis, programmers and testers are
build in as an integrated part of the development process. All the knowledge
collected during work with business representative analysing the requirement is
often hard to transfer to the group of people programming and testing the
application. The W-model suggests a work method that solves this problem.

About the Author

Klaus Olsen has created his own company in April 2000 “Softwaretest.dk” in order
to focus entirely on software testing, and process improvement through the testing
perspective of developing software. Klaus Olsen has worked with developing
software for 15 years, during 12 of these years Klaus worked as a consultant in
Cap Gemini. Klaus has specialised in software testing since 1993 and he was until
he created his own company responsible for introducing new employees to Cap
Gemini in the Nordic area (Europe) to “Working Methods Test”, as Cap Gemini
were using it. Klaus has also been involved in improving Cap Gemini best practice
in Software Testing, this is documented in the company’s PERFORM Testing
Guide, available to all of the companies more than 55.000 employees. Klaus is
member of two Danish special interest groups in software testing, as well as he is a
member of Swedish Association of Software Testers, SAST.

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 1

Using the W-model to
Institutionalise Inspections

and Improve Knowledge Transfer

Presented at the 14th Annual
International Internet & Software Quality Week 2001

San Francisco, California, USA

by
Klaus Olsen, Test Adviser
Softwaretest.dk - Denmark
© Copyright 2001 Klaus Olsen. All Rights Reserved.

I have worked with IT development projects since 1987.
I have focused on test of software since 1993.
I have been involved in integration of test tool both as
part of regular testing and as a regression test facility.
I have worked with test process improvement and more
broad software process improvement.
I have participated in improving test methods on a
Danish, Scandinavian and Global level in Cap Gemini
during a period of 3 years. (1997-2000)
I have created my own company Softwaretest.dk
focusing on all aspect of software testing as a Test
Adviser.

Who is Klaus Olsen

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 2

Environment settings

Presentation

Walkthrough of W-model

Knowledge transfer

Conclusion

Development models

Experienced presented is from a project
with a solid kernel functionality in
production.
Application = billing system.
Changes and new functionality added.
New release every 5 month.
W-model in use 16 months when I wrote
this paper.

Environment settings

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 3

Require-spec.

Analyse

Design

Code

Test

Maintenance

Classic Waterfall Model

Accept test

Analyse
User test

System test

Design Integration test

Module design Module test

Code

V-Model

Require-spec.

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 4

55 %
30 %
15 %

0 %

Sources:
Boehm, Barry W Software Engineering Economics
Engelewood Cliffs, N.J: Prentice Hall, Hughes
DOD composite Software Error History

Software Development
Phases

Errors
introduced

Errors
observed

Requirement analysis
Design
Construction and System Test
Acc. Test and operation/maintenance

5 %
10 %
40 %
45 %

We wanted to build quality into the system

We were trying to accomplish defect
prevention instead of defect detection

Knowledge transfer between team members

Main objectives

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 5

Test Planning Test Execution

Time

W-Model
Requirement
specification 1

Design
specification 3

Requirement
review 2

Interpretation
review 4

Test
planning 5 Internal hand

over review 6

Integration 10

Release 12

Acceptance
14 Acceptance

testing 13

System
testing 11

Function
testing 9

Code 7 Code review,
Unit testing 8

Test Planning Test Execution

Time

Requirement
specification 1

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 6

Result of this process is a Technical
Enhancement Specification (TES) document

As support to facilitate the work:
TES Template
TES writing guideline

Requirement Specification

Test Planning Test Execution

Time

Requirement
specification 1 Requirement

review 2

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 7

Early in process, a “brainstorm” type of meeting
The objective is to come up with all possible
solutions, and to have focus on selecting the best
and most feasible solution.

As support to facilitate the work:
Checklist before calling the meeting
Suggested agenda for the meeting

Requirement Review - 1

Late in process, a Prebaseline review meeting
Focus is to ensure quality before we deliver the
TES-document for Quality review with following
baseline of document at the customer office

As support to facilitate the work:
Checklist before calling the meeting
Suggested agenda for the meeting

Requirement Review - 2

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 8

Formal Quality review with customer
Focus is to ensure the right quality as viewed
by Business before baseline of document.

Requirement Review - 3

Test Planning Test Execution

Time

Requirement
specification 1

Design
specification 3

Requirement
review 2

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 9

Site-project leader has to decide if Technical
Enhancement Design (TED) is mandatory.

If TED is not mandatory the developer may decide
to prepare a TED or a less formal work document
as preparation for the Interpretation review.

As support to facilitate the work:
TED Template
TED writing guideline

Design specification

Test Planning Test Execution

Time

Requirement
specification 1

Design
specification 3

Requirement
review 2

Interpretation
review 4

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 10

Developer(s) assigned to this TES / TED
explains how he/she understands the
contents of the TES / TED.
The TES / TED author and the Site Project
Leader must confirm or correct the
interpretation.
To achieve knowledge hand over there must
be a tester present at the meeting.

As support to facilitate the work:
Checklist before calling the meeting
Suggested agenda for the meeting

Interpretation Review

Test Planning Test Execution

Time

Requirement
specification 1

Design
specification 3

Requirement
review 2

Interpretation
review 4

Test
planning 5

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 11

Result of this process is a Test Specification
Plan (TSP), which is preparation for the
Internal hand over review meeting.

As support to facilitate the work:
TSP Template
TSP Checklist
Checklist for test of online screens

Test Planning

Test Planning Test Execution

Time

Requirement
specification 1

Design
specification 3

Requirement
review 2

Interpretation
review 4

Test
planning 5 Internal hand

over review 6

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 12

Developer explains what and how the TES / TED
has been implemented.
Tester makes a walkthrough of the TSP and
explains the testing approach.

Objective is to improve the test planning quality
and ensure focus on right part of area under test.

As support to facilitate the work:
Checklist before calling the meeting
Suggested agenda for the meeting

Internal handover

Test Planning Test Execution

Time

Requirement
specification 1

Design
specification 3

Requirement
review 2

Interpretation
review 4

Test
planning 5 Internal hand

over review 6

Code 7

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 13

Test Planning Test Execution

Time

Requirement
specification 1

Design
specification 3

Requirement
review 2

Interpretation
review 4

Test
planning 5 Internal hand

over review 6

Code 7 Code review,
Unit testing 8

Type is neighbour reviews
Purpose is to ensure focus on difficult
parts of code, i.e. restart in complex
surroundings in order to prevent defects
from entering the code.
Knowledge handover in programming
skills from experience developers to
newcomers in the team.

Code Review

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 14

Test Planning Test Execution

Time

Requirement
specification 1

Design
specification 3

Requirement
review 2

Interpretation
review 4

Test
planning 5 Internal hand

over review 6
Function
testing 9

Code 7 Code review,
Unit testing 8

Test Planning Test Execution

Time

Requirement
specification 1

Design
specification 3

Requirement
review 2

Interpretation
review 4

Test
planning 5 Internal hand

over review 6

Integration 10

Function
testing 9

Code 7 Code review,
Unit testing 8

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 15

Test Planning Test Execution

Time

Requirement
specification 1

Design
specification 3

Requirement
review 2

Interpretation
review 4

Test
planning 5 Internal hand

over review 6

Integration 10

System
testing 11

Function
testing 9

Code 7 Code review,
Unit testing 8

External hand over meeting with people
from System test team.
Goal is knowledge transferring to tester
from the system test team to make a
“warm” testing start possible.

System Testing

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 16

Test Planning Test Execution

Time

Requirement
specification 1

Design
specification 3

Requirement
review 2

Interpretation
review 4

Test
planning 5 Internal hand

over review 6

Integration 10

Release 12

System
testing 11

Function
testing 9

Code 7 Code review,
Unit testing 8

Test Planning Test Execution

Time

Requirement
specification 1

Design
specification 3

Requirement
review 2

Interpretation
review 4

Test
planning 5 Internal hand

over review 6

Integration 10

Release 12

Acceptance
testing 13

System
testing 11

Function
testing 9

Code 7 Code review,
Unit testing 8

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 17

Test Planning Test Execution

Time

Requirement
specification 1

Design
specification 3

Requirement
review 2

Interpretation
review 4

Test
planning 5 Internal hand

over review 6

Integration 10

Release 12

Acceptance
14 Acceptance

testing 13

System
testing 11

Function
testing 9

Code 7 Code review,
Unit testing 8

Using different types of reviews we gained
knowledge transfer between project members.
We captured some of the unspoken, undocu-
mented knowledge between team members.
Knowledge handover between analyst and
developer / tester issued from the meetings hold
between analysts and business representatives.
Knowledge handover between developer and tester
to ensure focus on complex areas during test.
Knowledge handover from supplier testers to
customers testers to ensure shorter time to market.

Knowledge transfer

© Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001

Page 18

Using the W-model we have succeeded in changing
the development model to more focus on review and
early test planning.
All project members takes an active part in
knowledge transfer.
Defect prevention and early defect detection is being
recognized as the right way to build quality into the
system.
Different types and levels of Inspection have been
institutionalised by the W-model.
SPI works, but it requires continually follow-up on
the use of processes.

Conclusion

Contact information:
www.softwaretest.dk

Klaus.Olsen@softwaretest.dk

 © Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001 Page 1

Using the W-model to
Institutionalise Inspections

and Improve Knowledge Transfer

Presented at the 14th Annual International Internet & Software Quality Week 2001
San Francisco, California, USA by

Klaus Olsen, Test Adviser. Softwaretest.dk - Denmark
klaus@softwaretest.dk web-site: www.softwaretest.dk

 Summary:

This paper introduces the W-model as a development model. The W-model makes
inspection and review activities visible during the development lifecycle. In the W-
model test planning starts as early as possible, and through the different types of
review meetings knowledge transfer between analysis, programmers and testers are
build in as an integrated part of the development process. All the knowledge
collected during work with business representative analysing the requirement is often
hard to transfer to the group of people programming and testing the application. The
W-model suggests a work method that solves this problem.

1. Introduction

Traditional software development often uses the waterfall model, in which each phase is finalised, before
the next starts. An extension of this model is the V-model, which is traditionally passed through once to
complete a development cycle. The benefit of the V-model is the parallel preparation of test specification
(test plans) and development within each development stage. The W-model indicates yet another pass
through: first the same steps as the V-model are processed, followed by a shadow V that provides
continuous product review to support the development activities. What we have tried to accomplish is
the W-model. We wanted to start test planning earlier and at the same time we wanted to institutionalise
Inspection and improve knowledge transfer between team members.

2. The environment

In order to improve the knowledge transfer to readers of this paper I have included information on the
set-up surrounding the project. This experience is gathered from a project, which had a solid kernel of
functionality running in daily production. Changes and new functionality were added to this existing
kernel. New releases were delivered to the customer every 5th month, and when this paper was written,
the development process described in the W-model had been in use for 16 months, with our delivery
cycle, this implies that we had been through the complete lifecycle of the W-model 3 times. Even though
we didn’t look at the project as an iterative project, we in fact used the W-model as an iterative
development model.

3. Introducing the W-model

The decision to use the W-model [/1/ Burr, Owen] as the development process in the project, was an
attempt to improve the quality of the product and the work process. In order to improve the quality of the
product we wanted to formalise Inspections, which until that point had been recommended but was

mailto:klaus@softwaretest.dk
http://www.softwaretest.dk/

 © Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001 Page 2

optional. In this paper Inspection is used as a quality improvement process for written material as
defined by [/2/ Gilb - Graham]. Project management agreed on enforcing Inspections throughout the
development with different goals at different stages. The W-model is useful to make this focus on
Inspection visible, because the shadow V provides continuous product reviews to support the
development activities.

Figure 1, W-model as used in this project

By introducing different focus areas in the different stages, “quality” review, interpretation review and
internal- and external-handover review meetings we have succeeded in transferring knowledge between
team members working on analysis, development and testing. We have improved the process by
developing templates, writing guidelines and checklists to be used in the different stages.

3.1 The W-model in details
To each phase visible in Figure 1 the process being carried out is described with reference to documents
developed and available to the project in order to facilitate the work. The following section describes the
W-model as it has been implemented. Number refers to different parts of the processes of the W-model
above. E.g. 3.1.1 = process 1 in the W-model

3.1.1. Requirements specification
The result of the requirement process is a Technical Enhancement Specification (TES) -document. Two
documents are available to facilitate the work, TES template and a TES writing guide.

3.1.2. Requirements review
The reviews actually consists of three meetings, the first two internal in the development project, the
third external quality review at the customer’s office with users, followed by a formal baseline of the
document.

• Meeting 1 - Early in process, a "brainstorm" type of meeting.

The objective is to suggest all possible solutions, and to focus on selecting the best and most feasible
solution. The TES-author is responsible for calling the review meeting. Two documents are

 © Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001 Page 3

available to facilitate the work, checklist before calling the meeting, and a proposed agenda for the
meeting.

Participants in this first meeting should be persons who can add something to the issue under
review. A suggested list of participants is included in the project, but left out of this paper. The TES-
author is responsible for updating the TES after review meeting.

• Meeting 2 - Late in process, a pre-baseline review meeting.

Focus of this review is to ensure quality before the TES-document is delivered for quality review as
the last step before the document is baseline of document at the customer’s office. The TES-author
is responsible for calling the review meeting. Two documents are available to facilitate the work,
checklist before calling the meeting, and a proposed agenda for the meeting.

A review only using mail could be a solution to this review, but having a formal meeting creates
more synergy between participants of the review and tends to result in better quality of the TES-
document before baseline. Participants in this second review should be people who either
participated in the first and/or people working with documentation. The TES-author is responsible
for updating the TES after review meeting.

• Meeting 3 - Formal quality review with the customer.

Participants in this review should be people who have participated in the analysis meeting with the
customer and the TES author participates from development side.
Following the quality review meeting there is a formal baseline procedure as described in the TES
writing guide.

3.1.3. Design specification
Site-project leader has to decide if a Technical Enhancement Design (TED) document is mandatory. If a
TED is not mandatory the developer may decide to prepare a TED or a less formal work document as
preparation for the Interpretation review (described in the paragraph below). Two documents are
available to facilitate this work, a TED template and a TED writing guide.

3.1.4. Interpretation review
These are internal development meetings, where the developer(s) assigned to this TES/TED explains
how he/she understands the contents of the TES/TED. The TES/TED author and the project manager
must confirm or correct the interpretation. To achieve knowledge handover a tester must be present at
the meeting.

The project manager is responsible for calling the review meeting. Three documents are available to
facilitate the work, a checklist before calling the meeting, a proposed agenda for the meeting and as a
prerequisite either a TED or a work document created by the developer must be available. The
responsibility for updating the TED, and if necessary the TES, must be nominated at the meeting.

3.1.5. Test planning
The result is a function test plan, which is a preparation for the internal hand over review meeting. Three
documents are available to facilitate the work, first a Test Specification Plan (TSP) template, then a TSP
checklist and finally a checklist to be used when executing test of online screens.

3.1.6. Internal hand over review meeting
This is an internal development meeting. Developer explains what and how the TES / TED has been
implemented. This includes mentioning of special areas where another solution than the one specified in
the TES has been used, and areas of complexity that the tester needs to pay special attention to. The
developer must also explain what has been tested in component test.

 © Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001 Page 4

The tester makes a walkthrough of the TSP and explains the testing approach. The objective is to
improve the quality of test planning and ensure focus on the most important areas during the test.
The project manager is responsible for calling the review meeting. Three documents are available to
facilitate the work, a checklist before calling the meeting, a proposed agenda for the meeting and as a
prerequisite: that implementation has taken place and that the tester has created a TSP document. If
necessary, the responsible for updating the TES and TED will be nominated at the meeting. The TSP
author is responsible for updating the TSP.

3.1.7. Coding
The development team performs this activity. One document is available to facilitate the work, a
checklist to be used when executing test of online screens.

3.1.8. Code review and unit testing
The purpose is to ensure focus on difficult parts of code, e.g. restart in complex surroundings in order to
prevent defects from entering the code. One document is available to facilitate the work, a proposed
agenda for the meeting.

3.1.9. Function testing
This is performed in the test environment by the internal development test team. Documents created
during test planning (see section 3.1.5) are used in conjunction with a document added after collecting
best practice from all testers, a checklist to be used when executing test of online screens.

3.1.10. Integration released
Transfer from development to external test environments.

3.1.11. System testing
An external hand over meeting with persons from the external test team takes place. The objective is
knowledge transfer to testers at the customer site in order to make a kick-start of the testing possible.
The knowledge transfer is focused on new or changed functionality. The knowledge transfer includes
comments on reference data needed in order to execute the test. If necessary (e.g. when external testers
have limited application experience) each handover should explain the necessary parts of the
surrounding system areas as well.

The external test manager is responsible for calling the meeting. Four documents have been created on to
facilitate the work, a questions and answers template to facilitate external testers test preparation and
testplanning process, as well as keeping track of knowledge gathering. A pre-meeting template used to
communicate and clarify as much as possible before the meeting. A checklist to be used in the planning
process by the development test team member. And a PowerPoint template including a proposed agenda
for the external handover meeting.

3.1.12. Release
This includes a formal review to approve updates in the system description, or perhaps a new chapter in
the system description, based on TES/TED documents. The objective is to keep the quality of the
application system documentation as high as possible.

3.1.13. Acceptance testing
The customer’s Accept Test Team performs this.

3.1.14. Acceptance
A go / no go meeting to decide if this product is ready to put into production.

 © Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001 Page 5

4. Knowledge Transfer

A main reason for choosing the W-model as the development process in the project was improvement of
knowledge transfer between project team members. Even though analysis and design authors try to
document as much as possible, there will always be space for further interpretation. By using different
types of reviews we gained knowledge transfer between the project members and at the same time
captured some of the unspoken and undocumented knowledge between team members. This further
expanded into knowledge handover between developer and testers. After developing an area, each
programmer involved would explain what was implemented, and discrepancies from the original
requirements or analysis if any. And as the last step we included an external knowledge handover
between internal tester and external tester.

4.1 The Classic Waterfall model

When the project started we were using the Classic Waterfall model [/3/ Georgiadou], where each phase
was completed before the next phase started. This model is visualised below:

 © Copyright 2001 Klaus Olsen. All Rights Reserved.
Presented at Quality Week 2001 Page 6

4.2 The V-model

Gradually the project moved towards the V-model, as attention grew on test planning and test execution
throughout the project. One version of the V-model is visualised below:

5. Conclusion

With the shift from the classic waterfall model through the V-model to the W-model we have succeed in
shifting the visual view on the development model to a model with focus on review and early test
planning. Equally important has been the shift for all project members to take an active part in
knowledge transfer, and that defect prevention is starting to be recognized as the right way to build
quality into the system. Quality is free [/4/ Crosby] compared to the cost of doing things wrong – and
then having to redo and retest the corrections later. Different types and levels of Inspection have been
institutionalised by the W-model, and internal education in Inspection has been executed thus changing
the type and effectiveness of Inspection. Software Process Improvement works, but it takes time and
demands continually follow-up on the use of processes by each team member, and still we find new
areas that can be improved in our development process.

References
1. Burr, Adrian & Owen, Mal “Statistical Methods for Software Development: Using Metrics to Control

Process and Product Quality”, ISBN 1-85032-171-X
2. Gilb, Tom & Graham, Dorothy “Software Inspection”, ISBN 0-201-63181-4
3. Georgiadou, Elli and Milankovic-Atkinson, M. “Testing and Information Systems Development

Lifecycles” paper presented at the 3rd. EuroSTAR’95.
4. Crosby, Philip B. “Quality is Free – The Art of Making Quality Certain”, ISBN 0-451-62585-4

QW2001 Paper 3A1

Mr. Ralph Dalebout
(IBM Printing Systems Division)

Beta Testing With Rapid Development

Key Points

Traditional Beta Test processes don't work well in today's rapid development
environment.

●

There is a new Beta Test approach which embraces a "total solution" focus.●

The preliminary results of the new Beta Test approach have been very positive for IBM.●

Presentation Abstract

Today’s competitive world demands rapid product development and deployment.
While the time-to-market window is shrinking, the sheer number and complexities
of Beta Tests are increasing. Beta Test environments encompassing complex,
high-availability, world wide networked environments are required to test
end-to-end solutions. Traditional Beta Test approaches no longer work or are not
cost-effective. IBM has implemented a new approach to Beta Testing and the
results have been very positive.

About the Author

Ralph Dalebout has a degree in Mechanical Engineering from the University of
Utah and a MBA degree from the University of Washington.

Ralph’s career with IBM spans 30 plus years. He has held a number of different
positions in marketing (IBM Systems Engineer and Account Representative),
product development (Product Planner), competitive analysis / market research and
product test.

Ralph is currently a Beta Test Coordinator in the IBM Printing Systems Division’s
Development Test and Support group. He manages hardware and software Beta
Tests with customers inside and outside IBM. Ralph developed and implemented
the Development Partnership Program, which is the focus of the technical paper
and presentation.

Beta Testing With
Rapid Development

Ralph E. Dalebout, dalebout@us.ibm.com
Mary A. Barez, mbarez@us.ibm.com
IBM Printing Systems Division
Boulder, Colorado

IntroductionIntroduction
Presentation Scope and Audience:Presentation Scope and Audience:

Definition of Beta TestDefinition of Beta Test
Applicable principles and test process changesApplicable principles and test process changes
Business relationships most applicable for:Business relationships most applicable for:

Medium to large customersMedium to large customers

Medium to large providers of productsMedium to large providers of products

Major Points in the Presentation: Major Points in the Presentation:
Shifting paradigmsShifting paradigms
Challenge to deliver better products faster and cheaperChallenge to deliver better products faster and cheaper
Traditional Beta Test process limitations Traditional Beta Test process limitations
 Improving and leveraging Beta Tests Improving and leveraging Beta Tests
The Development Partnership Program (DPP)The Development Partnership Program (DPP)

1-2 03/30/01

Product Development & Deployment ModelsProduct Development & Deployment Models

Past: Manufacturer Past: Manufacturer
Aggregated development Aggregated development
"Casters-up" development "Casters-up" development
Fairly long development cyclesFairly long development cycles
Few new products releasedFew new products released

Present: Hardware (and Software) IntegratorPresent: Hardware (and Software) Integrator
Disaggregated products and customer environments Disaggregated products and customer environments
Using a leveraged model to face strong competitionUsing a leveraged model to face strong competition
Shorter development cyclesShorter development cycles
Many new / enhanced products releasedMany new / enhanced products released

Future: Customer-Environment IntegratorFuture: Customer-Environment Integrator
Complete disaggregation Complete disaggregation
Even shorter development cyclesEven shorter development cycles
Customer-site integration of productsCustomer-site integration of products
Focus on the customer solution Focus on the customer solution

D
ev

el
op

m
en

t T
im

e/
Q

ua
nt

ity
/C

om
pl

ex
ity

D
ev

el
op

m
en

t T
im

e/
Q

ua
nt

it
y/

C
om

pl
ex

it
y

Past Present Future

Few

Many

Low

High

Months

Years

Complexity
of Solutions

Number of
Products

TIME FRAME

Time to Market

Major Development TrendsMajor Development Trends

3-4 03/30/01

Why Focus on Beta Testing?Why Focus on Beta Testing?

Beta Testing is a natural focus for rapid deployment.Beta Testing is a natural focus for rapid deployment.

Beta Test is often the first customer contact with Beta Test is often the first customer contact with
new product or new product enhancement.new product or new product enhancement.
Customer environments already exist. Customer environments already exist.
Beta Testing often has to be done anyway.Beta Testing often has to be done anyway.
Quicker product delivery dictates assessment of all Quicker product delivery dictates assessment of all
test activities, test activities, including Beta Test.including Beta Test.

Beta Testing can be the easiest and least expensive Beta Testing can be the easiest and least expensive
way to mitigate test, schedule, and delivery risks.way to mitigate test, schedule, and delivery risks.

Traditional Beta Test Limitations Traditional Beta Test Limitations

Time-consuming ProcessTime-consuming Process
As many as 18 steps or phases before even starting As many as 18 steps or phases before even starting
Beta TestingBeta Testing

Complicated By External Factors Complicated By External Factors

Marketing / competitive pressuresMarketing / competitive pressures
Misunderstandings and miscommunications Misunderstandings and miscommunications
Changing IBM and customer commitmentsChanging IBM and customer commitments
Resource limitations and reassignments Resource limitations and reassignments
Changing customer prioritiesChanging customer priorities

Low or Limited Probability of SuccessLow or Limited Probability of Success

5-6 03/30/01

Development and DeploymentDevelopment and Deployment

Beta
Test

Development
Processes

Deployment
Processes

CustomerProduct Provider

Customer Requirements
Development
Unit Test
Function Test
System Test

Marketing
Service
Installation
Documentation
Solutions Assurance

Using Beta Tests to Facilitate Using Beta Tests to Facilitate
 Rapid Deployment Rapid Deployment

Using complex, disaggregated customer environments Using complex, disaggregated customer environments

Integrating Beta Testing with other testing phasesIntegrating Beta Testing with other testing phases

Early validation of installation, service, and maintenance Early validation of installation, service, and maintenance
proceduresprocedures

Augmenting test coverageAugmenting test coverage

Addressing customer feedback and problems in the Addressing customer feedback and problems in the
product, improving final product qualityproduct, improving final product quality

Improving customer satisfaction and product acceptance Improving customer satisfaction and product acceptance

7-8 03/30/01

 Development Partnership Program (DPP) Development Partnership Program (DPP)

Program was initiated in the middle of last year.Program was initiated in the middle of last year.

Participants are selected based on previous Beta Test Participants are selected based on previous Beta Test
involvement and/or established relationship.involvement and/or established relationship.

The DPP is two years in duration and renewable.The DPP is two years in duration and renewable.

Participants are given product plan previews.Participants are given product plan previews.

Participation in any given Beta Test is optional.Participation in any given Beta Test is optional.
Based on account environment / requirementsBased on account environment / requirements
Available resources / timing / commitmentsAvailable resources / timing / commitments

A simple agreement between IBM PSD and an A simple agreement between IBM PSD and an
established customer is put in place. established customer is put in place.

 Development Partnership Program (DPP) Development Partnership Program (DPP)

Major program elements:Major program elements:
Customer review of all products prior to announcementCustomer review of all products prior to announcement
Early validation of selected products via a Beta Test Early validation of selected products via a Beta Test
Test coverage in new or complex environmentsTest coverage in new or complex environments
Earlier installation and integration, resulting ultimately in Earlier installation and integration, resulting ultimately in
earlier customer deployment earlier customer deployment
Cultivation of customer referencesCultivation of customer references

Major Beta Test deliverables:Major Beta Test deliverables:
Defect reporting and tracking during and after testDefect reporting and tracking during and after test
Periodic status reports published to all stakeholdersPeriodic status reports published to all stakeholders
Product evaluation and feedback to developmentProduct evaluation and feedback to development
Lessons-learned (final report) for each productLessons-learned (final report) for each product

9-10 03/30/01

Development Partnership Program ResultsDevelopment Partnership Program Results

Representative printing market segments are covered.Representative printing market segments are covered.
"Continuous" Beta Tests within a customer relationship "Continuous" Beta Tests within a customer relationship
eliminated much of the overhead of individual Beta Tests.eliminated much of the overhead of individual Beta Tests.
The DPP relationship with the customer helped isolate product The DPP relationship with the customer helped isolate product
deployment from external and internal factors. deployment from external and internal factors.
The DPP provided flexibility and benefits for both IBM and its The DPP provided flexibility and benefits for both IBM and its
customers. customers.
The success rate and the value of the Beta Test increased The success rate and the value of the Beta Test increased
dramatically under the DPP.dramatically under the DPP.
The DPP resulted in much faster and better customer The DPP resulted in much faster and better customer
acceptance of the product(s). acceptance of the product(s).
The DPP can be used outside of IBM Printing Systems. The DPP can be used outside of IBM Printing Systems.

Extrapolating the DPP Beta Test ModelExtrapolating the DPP Beta Test Model

Future Challenges:Future Challenges:

Still shorter development time to marketStill shorter development time to market

Difficulty keeping pace with Difficulty keeping pace with
Technology Technology
Changing customer environments Changing customer environments
Increasing user sophisticationIncreasing user sophistication

Addressing cost containment Addressing cost containment whilewhile staying competitive staying competitive

Effective Effective andand timely product quality assurance timely product quality assurance

11-12 03/30/01

Using the DPP to Respond to the Challenges:Using the DPP to Respond to the Challenges:

Get the product into customers' hands as early as Get the product into customers' hands as early as
possible in the cycle, reducing overall time to market. possible in the cycle, reducing overall time to market.

Establish ongoing Beta customer relationships to Establish ongoing Beta customer relationships to
facilitate integration of products into customer facilitate integration of products into customer
environments, without the traditional Beta Test overhead.environments, without the traditional Beta Test overhead.

Use Beta Test relationships to leverage and integrate all Use Beta Test relationships to leverage and integrate all
phases of testing.phases of testing.

Provide early service process validation.Provide early service process validation.

Extrapolating the DPP Beta Test ModelExtrapolating the DPP Beta Test Model

Future DPP ExtensionsFuture DPP Extensions

Expand the number of participantsExpand the number of participants

Add new / more complex customer environmentsAdd new / more complex customer environments

Modify interfacing processes to take advantage of DPP Modify interfacing processes to take advantage of DPP

Analyze other test phases to reduce redundant testingAnalyze other test phases to reduce redundant testing

Provide quality assurance not conducive to lab testingProvide quality assurance not conducive to lab testing

Port to non-printing productsPort to non-printing products

13-14 03/30/01

Conclusions Conclusions

Test organizations need to aggressively change in Test organizations need to aggressively change in
order for companies to stay competitive.order for companies to stay competitive.

Beta Test can play a critical role in test changes.Beta Test can play a critical role in test changes.

The traditional Beta Test process doesn't help much.The traditional Beta Test process doesn't help much.

The DPP gives flexibility to Beta Testing.The DPP gives flexibility to Beta Testing.

The initial DPP Beta Test results are very positive.The initial DPP Beta Test results are very positive.

15-16 03/30/01

Beta Testing With
Rapid Development

Ralph E. Dalebout
and

Mary A. Barez

IBM Printing Systems Division
Boulder, Colorado

May, 2001

Introduction

Today’s competitive marketplace and global economy require rapid product development and
deployment. While the time-to-market window is shrinking, the sheer number and complexities of
products are increasing. In order to meet the dictates of rapidly advancing technology and rapidly
increasing customer sophistication and demands, the frequency and quality of hardware and software
releases must find a way to keep pace.

Over time, the focus of testing is naturally migrating from specific hardware and/or software testing to
customer “solution” testing. Also, many providers of services and products still appear unaware how to
successfully leverage and integrate different test efforts and activities, and some even seem unaware of
the value and bottom-line (revenue) criticality of test effectiveness.

Other than performance testing for networks, operating systems, and web loading, testing tools and test
automation have limited applicability and value in a dynamic and fast-paced development environment.
In addition to the limitations of tools and the expensive tool requirements (co-requisite software and
hardware), tool licenses and the training to obtain tool skills and expertise are in themselves costly. Test
tools and test automation, therefore, are often not cost-justifiable, and cannot be implemented or
updated fast enough to meet aggressive development schedules. Most importantly, tools often cannot
be used with a diverse product set, particularly integrated hardware and software products such found
with printing products. With printing products, simulation, particularly of hardware, is often difficult;
test tools are not as much value or are too costly for product development and testing to be competitive.

This development framework and the need for rapid market response are occurring at a time when
development and test organizations are facing spiraling costs and cost containment pressures. This is
especially true with printers and other peripherals, where the competition is fierce and profits are
constrained.

Beta Test environments encompassing complex, high-availability, and worldwide networked
environments are required to test end-to-end solutions. In many cases, traditional Beta Test
approaches are no longer cost-effective or are simply too slow to implement. To address these
challenges, IBM Printing Systems Division has implemented a new approach to Beta Testing, the
Development Partnership Program (DPP), and the initial results have been very positive.

.

Beta Testing with Rapid Development

May, 2001 2 IBM Printing Systems Division

Product Development and Deployment Models

To understand the new challenges that need to be addressed by the Beta Testing process, an
understanding of how the product development process has evolved is required. Next a basic
understanding of the Beta Test Process, the relationship of Beta Test to other test efforts, and the
reasons for a new Beta Test approach are important. Finally, from a print-product perspective, the use
of Beta Test to support and promote rapid product development and deployment becomes a reality,
addressing the shift in the product development paradigm.

The Past: Manufacturing -> A “Casters-Up” Approach

IBM’s development model was to completely design and develop printers from the ground up. The
entire design was IBM’s, with the exception of the power supplies, and those were developed to IBM’s
specifications. This development model is sometimes referred to as a “casters-up” design and
development approach, with IBM in the role of manufacturer.

One of the major problems with the “casters up” process was the time required to develop and deliver a
new product. Tremendous technical resources (engineering, testing, and production planning) were
expended to develop a complete product. During the development period, significant changes could
occur in the marketplace, including new customer requirements and increased competition, as well as
the introduction of new technologies that could not be incorporated into the developing product.

The result of this approach was that very few major new printer products were delivered each year.
However, with such a long development cycle and only a few new products introduced each year, it
was fairly easy to fit product quality assurance and Beta Tests into the overall development and
production cycle.

The Present: Leveraging -> Hardware Integration or Purchase Complete

Over time, IBM, and most other computer companies, made a dramatic shift in their product
development model. They moved from a “casters up” model to the current “leveraged development
model.” Rather than develop the entire hardware and/or software product, components were
purchased from other companies. These other companies / suppliers are often competitors in two
ways. The competitor may use the purchased component (under the covers) in their own product.
Secondly, the component is also sold to multiple companies other than IBM. This is commonly seen in
the automotive industry, where auto makers will acquire transmissions and engines from other
automotive companies for some of their automobiles.

Within this model, IBM provides product differentiation in their products by providing standardization
and architecture, additional functionality, and component integration and testing. In addition, IBM
provides the co-requisite services offerings, resulting in a complete end-to-end solution for customers.
The “buy versus make” options are continually evaluated. In comparing past development to the

Beta Testing with Rapid Development

May, 2001 3 IBM Printing Systems Division

present development model, one of the dramatic differences has been the number of new and enhanced
products delivered each year. In 2000, IBM Printing Systems Division delivered many new and
enhanced hardware and software products to the marketplace, and these new products are often far
more complex and sophisticated than the few products delivered using the past manufacturing
development model.

With this hardware-leveraging model, the time to market has improved markedly. On a recent printer
announced by IBM, the project inception to delivery of the new printer was under six months. With this
leveraged model, IBM can be viewed as a hardware integrator and value-added supplier.

These industry trends are depicted in the above diagram.

Beta Testing with Rapid Development

May, 2001 4 IBM Printing Systems Division

D
ev

el
op

m
en

t
T

im
e/

Q
ua

nt
ity

/C
om

pl
ex

ity
D

ev
el

op
m

en
t T

im
e/

Q
ua

nt
it

y/
C

om
pl

ex
it

y

Past Present Future

Few

Many

Low

High

Months

Years

Complexity
of Solutions

Number of
Products

TIME FRAME

Time to Market

Major Development TrendsMajor Development Trends

Traditional Beta Test Process

To better understand the challenges facing test organizations, especially as they pertain to Beta Testing,
one must first understand the traditional Beta Test process. The following sections provide an overview
of the traditional Beta Test process, using the IBM Printing Systems Division as a point of reference,
followed by the challenges associated with the process.

A Long and Involved Process

The following is a summary of the possible steps, not necessarily consecutive or in order, involved with
a traditional Beta Test, from initial project definition to actual start of Beta Test. Given that an individual
product could have several customers involved in the Beta Test, the amount of work and project
management required can be staggering.

1. Define and convene Beta Test core team.
2. Define the functional attributes and/or applications that need to be tested.
3. Define reliability, availability and serviceability attributes and/or applications to be tested.
4. Establish general test procedures, Beta Test metrics and test entry / exit criteria.
5. Establish the number of Beta Tests (customers) needed and the duration of each.
6. Develop an initial Beta Test plan.
7. Solicit input from the various support organizations who will be involved in the Beta Test.
8. Publish final Beta Test Plan to the implementation team.
9. Describe customer profiles required to ensure successful Beta Tests.
10. Identify the customer’s technical support profile to ensure a successful Beta Test.
11. Rank priorities of all Beta Test customer variables for selecting final Beta Test customers.
12. Review the Beta Test Plan and selection criteria with Marketing and Service account teams.
13. Request Marketing to nominate Beta Test candidates and provide account profiles.
14. Review Beta Test candidates and select accounts which best fit the selection criteria.
15. Obtain approvals and legal clearances to disclose unannounced product to customer.
16. Disclose unannounced product(s) to customer.
17. If customer is interested in participating in the Beta Test, review the draft Statement of Work

describing the responsibilities of both parties and the guidelines of the Beta Test.
18. Finalize the Beta Test Statement of Work and have both parties sign.
19. Initiate the Beta Test.

When you review the number of steps leading up to the initiation of a Beta Test, it is fairly clear this can
be a time-consuming process. While you can do a number of things early in the cycle, there are many
things that can’t be done until fairly close to the actual start of the Beta Testing.

Beta Testing with Rapid Development

May, 2001 5 IBM Printing Systems Division

Beta Test Limitations and Restrictions
There are a number of limitations and restrictions inherent in the traditional Beta Test process.

Influenced by External Factors and Dependencies

The successful execution of the Beta Test process can be impacted by a number of factors. In many
cases, Marketing input and customer relationships (and, therefore, marketing commitment and time) are
necessary to provide qualified candidates for the Beta Test. In some cases, the marketing and sales
staff attempt to use the Beta Test to resolve a competitive situation and/or marketing issue. Also, there
are many trials and tribulations on the road to the final list of Beta Test candidates.

Once you get into the actual Beta Test, a number of problems can surface.
� There is a misunderstanding between IBM and the customer relative to the scope of the Beta Test,

the deliverables, and/or the commitments agreed to by each party.
� There isn’t sufficient support from all the parties (IBM and customer) who need to be involved in

the Beta Test.
� The resources necessary to assure a successful Beta Test aren’t available. Work priorities change

or assignments and roles change. Support personnel aren’t available when required due to personal
problems such as medical leave, attrition, or a death in the family.

� Customer mergers, acquisitions, and consolidations can significantly impact Beta Tests.
� If schedules for the Beta Test shift, the window of opportunity or interest level for some customers

can change.

Low Probability of Success

At the end of the Beta Tests for a new product, the level of success achieved in the Beta Test is
evaluated by mapping the test results back to the original Beta Test objectives and assessing the degree
of success. Also, the results, or average, of multiple Beta Tests can be combined and/or summarized to
make a more general product assessment. Experience has proven that a majority of the Beta Tests
don’t meet their planned objectives. This conclusion does not eliminate the need for Beta Tests, but it
does indicate that is there is much room for improvement in the Beta Test process.

Not an Integrated Test Approach

Beta Testing is often viewed as an early predictor of product success and not often viewed as part of
the overall product Quality Assurance strategy and efforts. That is, Alpha and Beta Tests are rarely a
fully integrated phase in the testing of the product. In many instances, the Beta Test may be coordinated
by a completely different group or department then the group that is providing product quality assurance
services.

Beta Testing with Rapid Development

May, 2001 6 IBM Printing Systems Division

High Cost and Overhead

The overhead required to plan and implement a Beta Test is costly and time-consuming, and some
overhead must be expended for each Beta Test customer/site. There are almost always multiple Beta
sites for a major hardware or software product.

The Role and Importance of Beta Tests

There are a number of reasons why a focus on Beta Testing is valuable to understanding how to
improve time to market, and for addressing cost containment while staying competitive, and while
concurrently providing effective and timely product quality assurance.

Beta Testing can be the easiest and least expensive way to mitigate test, schedule, and delivery risks.
and to are becoming a more critical factor in the total testing process.

Natural Uses of Beta Testing

Alpha and Beta Tests are the first place where the developed product and the customer are introduced.
In order to assure delivery of a solid product / solution to the customer, Beta Tests are a natural way to
test in a complete customer environment with a focus on the end-to-end customer solution. For printing
products, the customer is often willing to use the product in complex environments and with production
(non-printing) applications and systems. This customer capability inevitably finds product defects and
problems that cannot be found in the test lab that has a strictly printing focus.

The beauty of Beta Testing is product transparency to the user and to the provider of the product being
tested.

New Testing Requirements

There are always new or changing requirements for the testing of a product. Many of these cannot
easily or quickly be tested within the test lab or within the planned testing phases. Some examples of
new requirements that are best tested in the customer’s environment are National Language Support
(NLS) and enablement, cultural basis and use of products (this is particularly relevant for printing),
accessibility, interoperability, network configurations, access and security.

Beta Testing with Rapid Development

May, 2001 7 IBM Printing Systems Division

Strong Impetus for Improving Beta Testing

There are a number of reasons Beta Tests are becoming a more critical factor in the complete test
process to assure delivery of a solid product / solution to the customer. Some of the facets of Beta
Testing that make it a place for improvement are:

�Uses complex, disaggregated customer environments
�Potential for integration of Beta Testing with other testing phases
�Early validation of installation, service, and maintenance procedures
�Potential for augmenting test coverage
�Addresses customer feedback and problems to improve final product quality
�Potential to improve customer satisfaction and product acceptance

Augment Product and System Testing

The integration of Beta Test into overall Quality Assurance strategy and phases can improve
development time and lower development costs.

� The importance of getting the solution or product to the customer sooner dictates shorter test
cycles, and promotes either earlier or concurrent Beta testing in all cases.

� Testing is not only a viable career path, but testing discipline and services are costing companies
more and requiring more skills and training. Therefore, integrating and capitalizing on all the test
activities is critical to quick and effective quality assurance. There is little room for testing overlap
and redundant work.

� It is easier and faster to leverage test efforts to improve quality than to try to achieve the same
results through development economies or re-engineering of product development processes.

� Beta Test, unlike other test phases, assures product viability for the customer in the customer’s
environment. This is an extremely powerful concept.

Complex, Real World Customer Environments

A primary objective of test is to simulate customer environments (usage and workload) to ensure the
new products / solutions will operate correctly in the customers environments.

Actual customer environments have become more complex over time. With continuing globalization,
operations are worldwide and products must be available 24 hours a day, seven days a week.
Networking and connectivity are paramount and many of the communicating devices are remote. Many
customers manage thousands of networked printers located around the world from a single center.

To recreate typical customer environments (hardware, software and networking) in a test lab today is
nearly impossible. Beta Testing can not only be an attractive extension to address this testing
requirement, but a way to meet the specific needs of valued customers.

Beta Testing with Rapid Development

May, 2001 8 IBM Printing Systems Division

Increasing Interdependency of Hardware and Software

In the past, the interdependency between hardware and software was fairly limited. The interfaces /
protocols were well-defined and could be fairly easily simulated on either side of the hardware /
software equation.

In contrast, consider a printer and the components required to make the printer operational. The printer
itself can have over thirty microprocessors managing different components of the printer. For printer
front-end processing, there may be a control unit communicating via different communications networks
and protocols to printing services software (IBM and non-IBM). The printing services software can be
running on five (or more) different operating system platforms that are, in turn, running on a multitude of
different processor architectures. The printing services software can be communicating with an
Enterprise Resource Planning (ERP) system that is creating print spool files and handing them off to the
printing services output manager. Finally, all this can be operating in a high availability environment with
automatic backup and fail-over capabilities!

It is apparent that there are a huge number of combinations and permutations. The testing challenge is
enormous, with inherent problems with test coverage, variations, risk mitigation, and scope. Setting up
a test lab to reflect even the most common customer environments is difficult.

Providing Customer Solutions

Customers want assurances that new and enhanced products have been tested in an end-to-end
environment similar to theirs. It isn’t enough to have tested a few of the components / elements with one
another. The emphasis is on testing complete environments or solutions. This is where Beta Testing can
complement traditional development testing, and provide an early method of product integration into not
only the customer environment but the customer’s solution.

Beta Testing with Rapid Development

May, 2001 9 IBM Printing Systems Division

Development and Deployment Impacts

The following diagram depicts the role of Beta Test within the development and deployment processes,
and hopefully shows why a focus on Beta Test can expedite and improve both development and
deployment cycles.

Rapid Product Development and Deployment

There is a serious mismatch between the new rapid development paradigm and the traditional Beta Test
model. One of the major problems is that the shortened development cycles don’t allow enough time to
implement a traditional Beta Test. The traditional approach requires too much time leading up to the
actual start of the Beta Test.

Another major problem is that the probability of success of the traditional Beta Test is too low and
needs to be improved. With a traditional Beta Test approach, the customer sometimes cannot afford or
tolerate the overhead or time required to support the effort.

Beta Testing with Rapid Development

May, 2001 10 IBM Printing Systems Division

Development and DeploymentDevelopment and Deployment

Beta
Test

Development
Processes

Deployment
Processes

CustomerProduct Provider

Customer Requirements
Development
Unit Test
Function Test
System Test

Marketing
Service
Installation
Documentation
Solutions Assurance

The Development Partnership Program (DPP)

IBM Printing Systems Division has developed a new Beta Test program, the Development Partnership
Program (DPP), that addresses a number of these problems and requirements. The DPP isn’t an
complete answer and it isn’t a one-for-one replacement for traditional Beta Testing. However, it has a
number of advantages and the initial results have been quite positive. The Development Partnership
Program provides a vehicle to streamline the overall Beta Test process, while significantly improving the
Beta Test’s probability of success. It shrinks the end-to-end time for the Beta Test selection and
implementation and does this using less test resources.

DPP Program Overview

An overview of the program is as follows:

� Participants are selected based on previous involvement in one or more hardware and/or software
printing product Beta Tests. Experience shows many of the same Beta Test customers show up
again and again with Beta Tests for new or enhanced products.

� The program is two years in duration and is renewable. The guidelines and framework are very
similar to what is included in a normal Beta Test Statement of Work.

� Two major elements of the program are pre-announce and/or pre-development product evaluation
and early product validation.

1. The program participants are given previews of product plans, to assist them in determining
what new and enhanced products they would be interested in Beta Testing.

2. The DPP participant has the choice of what Beta Tests they want to participate in based on
applicability to their environment and available resources (people and hardware). For
example, a company who has decentralized operations and doesn’t utilize high-end printers
(1,000 plus pages a minute) wouldn’t be interested in Beta Testing a new high-end printer.

� The major Beta Test deliverable is product feedback and evaluation to development groups, but
other deliverables include:

1. Defect reporting and tracking during and after test
2. Periodic status reports published to all stakeholders
3. Lessons-learned (final report) for each printing product.

� A simple agreement between IBM Printing Systems Division and an established customer is put in
place.

Beta Testing with Rapid Development

May, 2001 11 IBM Printing Systems Division

Advantages of the Development Partnership Program

� Over time, the customer environment and requirements are well-known and are updated, as well as
the customer’s profile.

� The customer has practical experience and realistic expectations on how the Beta Test works.

� The relationship between the two parties is well-established. There is a low probability of any
surprises. DPP capitalizes on established customer relationships and established Beta Test
agreements to provide ongoing Beta Tests for many/several software and hardware products.

� The DPP is a two-way street in several ways, providing faster and better quality delivery and

support for the customer and providing IBM with difficult-to-do-in-house testing, early product
integration, and faster product delivery. Some examples of this symbiotic relationship are:
ó Defect tracking and the resulting fast(er) delivery of fixes
ó Using the customer environment and/or test regions to validate a product with less

investment and hardware / software infrastructure on both sides
ó Customizing or configuring the product to assure integration and use in the customer

environment and with the customer’s applications
ó Marked improvement in the contents, timeliness, and quality of installation instructions, tips

and techniques, and user guides for both the Beta customer and the final product
ó Customer jobs are run by both sides, improving and refining other product test phases for

the benefit of the specific customer.

� DPP allows leveraging of regular test resources and test lab environments, saving not only on testing
time, but on expenses for test equipment, lab space, equipment setup and support.

� The time-consuming process of qualifying a new Beta Test candidate is avoided.

� The probability of success is significantly improved.

� Less staff and critical resources are required to conduct a Beta Test under the DPP, including fewer
builds and fewer requirements on delivery mechanisms and formal documentation.

� Joint and fairly seamless integration of the product into the customer’s environment.

� Dependencies on external factors and groups are markedly mitigated, including mitigation of
marketing, sales, and customer changes and problems.

Beta Testing with Rapid Development

May, 2001 12 IBM Printing Systems Division

Results Of The Development Partnership Program

Current Status

The accounts participating in the Development Partnership Program currently provide Beta Test
coverage for the major printing marketing segments. The program was initiated in the middle of last
year, focusing initially on IBM internal accounts that provide printing services to IBM and to non-IBM
customers.

The program has allowed IBM Printing Systems Division to support a greater number of Beta Tests in
shorter timeframes with less personnel. "Continuous" Beta Tests within a customer relationship
eliminated much of the overhead of individual Beta Tests.

The DPP relationship with the customer helped isolate product deployment from external and internal
factors. The DPP has provided flexibility and benefits for both IBM and its customers.

The DPP has resulted in greater customer satisfaction, providing reference accounts with positive
experiences and product recommendations. This is due to the fact that the DPP has resulted in much
faster and better customer acceptance of the product(s).

The success rate and the value of Beta Testing has increased dramatically under the DPP, and the DPP
is applicable outside of IBM Printing Systems Division.

Next Steps

The intent is to expand the number of participants, focusing on external accounts. Specifically, there is a
focus on the selection of Beta Test customers who improve product test coverage and who best
represent the product marketplace. This focus includes addressing global, cultural, accessibility, or
special customer product requirements that are difficult to test outside of the customer’s environment.
IBM is also actively using Beta Test as a means to verify that customer printing jobs and applications
run successfully prior to product announce. This strategy is crucial to successful and earlier product
deployment to all customers, not just Beta Test accounts.

Beta Testing with Rapid Development

May, 2001 13 IBM Printing Systems Division

The Future: Extrapolating the DPP Beta Test Model

Shorter Development Cycles

The future brings a continued challenge, as refinements to the existing leveraged-development and the
purchase-complete development models occur. The ongoing time-to-market pressures and additional
customer requirements will dictate further shortening of the development and test product cycles.
Additionally, the need for rapid deployment will escalate in order for products to take advantage of new
technologies and hardware improvements.

Complexity of Customer Environments

The use of Beta Testing provides products that not only exactly meet the customer’s specifications and
requirements, but provides for a smoother integration of the product in the customer’s environment.
This is mandatory for printing products, but is also valuable for other software and hardware products.

Strong Customer Relationships

The idea of having an ongoing Beta relationship with a whole set of customers promotes a
plug-and-play mentality for new products. This is particularly useful with new printers, but can be
applied with almost any software or hardware product. Facilitating early product deployment in an
almost continuous Beta Test environment also provides a validation of product marketing requirements.
Customer Beta Test feedback can be used to adjust marketing plans and sales objectives.

Early Product Integration

Having products already integrated in the customer’s environment promotes and expedites integration of
replacement products and the addition of new products. The customer is experienced with the product
set and installation procedures, and already has contacts and staff in place.

Summary

Therefore, the DPP promotes and expedites migration to, and integration of, new products. With an
established Beta relationship, the customer is more likely to use (and hopefully purchase) products that
would not be included in a separate Beta Test or considered critical for outright purchase. The DPP
better enables the paradigm shift from product manufacturer to product integrator than traditional Beta
Tests. This paradigm shift must be made as quickly as possible to provide products that function and
integrate easily in today’s disaggregated environments.

Beta Testing with Rapid Development

May, 2001 14 IBM Printing Systems Division

QW2001 Paper 3A2

Mr. Roger M. Records
(Boeing Commercial Airplane Group)

Assuring Quality In Outsourced Software

Key Points

Knowledge, experience and skills required to achieve successful subcontract management●

Definition of seven essential subcontract management functions to ensure quality
products

●

Maximize quality assurance with high leverage QA reviews for both products and
processes

●

Presentation Abstract

This paper shows how to mange the quality of subcontracted (out-sourced)
software through the use of high-leverage quality reviews. The reviews address
key process and product issues across the entire subcontracting life cycle (from
RFP preparation to product acceptance). The context for the review discussion is
our Subcontract Process Model which is compliant with SEI/CMM Level 2. The
supporting SQA process and product reviews can be tailored for project/contract
size to assure quality built-in for the subcontracted deliverables. The model
provides the foundation to describe a proven strategy for validating the
achievement of project objectives, while avoiding cost and schedule overruns.

About the Author

Roger M. Records is an Associate Technical Fellow with Boeing Commercial
Airplanes. He is currently working with a Software Quality Assurance group with
responsibilities in SQA courseware design and SQA technology transfer. He also
works as a project manager in Airplane Safety Engineering with responsibility for
offshore subcontracting. From his experience with five subcontracted projects, he
has established and validated a QA solution for the subcontracting lifecycle and is
currently training other project managers in its use. Prior to his work in Software
Quality Assurance, Mr. Records supported contract work in the human factors
domain for NASA and the FAA with Boeing's Flight Deck Research group. He is a
co-inventor for a U.S. patent held by Boeing for electronic checklist software. He
has authored or co-authored 11 technical papers for national publication and
conference presentations.

1

Assuring Quality in
Outsourced Software

Roger M. Records
Associate Technical Fellow

roger.records@pss.boeing.com

Problem: How to get . . .

New groups doing
subcontracting

New suppliers
providing service

Facts & Data
to attain

Build the right stuff

Deliver on time

Deliver it for contract
price and make a profit

RESULT:

• Successful contractors

• Quality products —
useful to the Project

• Delivery: On time,
within budget

GOAL:

Successful
Contract

2

Right Process
– Based on SEI/CMM Experience
– Documented Process and Project Roles

Experience
– Tailored Procedures and Reviews
– Verify Quality of SSM Deliverables

SQA Training\Coaching
– Utilize Proven QA Process
– Training and Coaching Using Templates

The Keys to Success in SSM

Project Role in SSM
Contract Admin Project

Identify Software Project
for Subcontracting

•••• Provide Guidelines •••• Evaluate Application
Candidates

Prepare RFP •••• Draft RFP
•••• Legal Requirements
•••• Procurement
•••• Technical

•••• Provide Technical
Requirements

•••• Answer Supplier Queries

Select Supplier •••• Review Proposals
•••• Qualify Legal
•••• Qualify Procurement

•••• Review Proposal
•••• Technical
•••• Supplier Competent

Manage and Monitor
Supplier

•••• Monitor Performance
•••• Coordinate Payment

•••• Review Deliverables
•••• Quality Assurance

Accept Software Product •••• Coordinate w/Project •••• Quality Assurance
•••• Acceptance Testing

Evaluate Supplier •••• Performance Tracking
•••• Coordinate w/Project

•••• Quality Assessment
•••• Performance Assessment

3

Subcontract Process Model
Identify Software

to be
Subcontracted

Monitor & Review
Software Supplier

Accept Software
Supplier’s Product

Manage Software
Supplier

Select Software
Supplier

Evaluate Software
Supplier’s Performance

Maintain & Support
Acquired Software

032.PSM
Project

Subcontract
Management

Joint Project/Contract Admin

Identify Project Candidate
Identify S/W to be

Subcontracted

Monitor & Review
S/W Supplier

Accept Software
Supplier’s Product

Manage S/W Supplier

Select S/W Supplier
Evaluate Supplier’s
Performance

Maintain & Support
Acquired Software

032.PSM
Project

Subcontract
Management

Checklist

����

����

����

Checklist

����

����

����

Software
Needs

����

����

����

Evaluate candidates for
subcontracting using selection
guidelines

Checklist

����

����

����

Checklist

����

����

����

Subcontract
Guidelines

ApplyApply

Checklist

����

����

����

Checklist

����

����

����

Software
Needs

����

����

����

Checklist

����

����

����

Checklist

����

����

����

Software
Needs

����

����

����

Potential QA Review(s):

RFP Requirements

4

Select Supplier
Identify S/W to be
Subcontracted

Monitor & Review
S/W Supplier

Accept Software
Supplier’s Product

Manage S/W Supplier

Select S/W SupplierEvaluate Supplier’s
Performance

Maintain & Support
Acquired Software

032.PSM
Project

Subcontract
Management

Checklist

����

����

����

Checklist

����

����

����

Proposal

����

����

����

Provide technical input for
evaluating proposals, applying
documented selection criteria

Checklist

����

����

����

Checklist

����

����

����

Selection
Criteria

ApplyApply

Checklist

����

����

����

Checklist

����

����

����

Proposal

����

����

����

Checklist

����

����

����

Checklist

����

����

����

Proposal

����

����

����

Potential QA Review(s):

Proposal Evaluation

Manage S/W Supplier
Identify S/W to be
Subcontracted

Monitor & Review
S/W Supplier

Accept Software
Supplier’s Product

Manage S/W Supplier

Select S/W Supplier
Evaluate Supplier’s
Performance

Maintain & Support
Acquired Software

032.PSM
Project

Subcontract
Management

Checklist

����

����

����

Checklist

����

����

����

Subcontract
Mgmt Process
����

����

����

Track Supplier performance and
report deviations for corrective
action

Checklist

����

����

����

Checklist

����

����

����

Schedule
Deviations

Project Plan

+

Potential QA Review(s):

Project Plan, SSM Process

5

Review Supplier’s Deliverables

Monitor & review
S/W Supplier

Identify S/W to be
Subcontracted

Accept Software
Supplier’s Product

Manage S/W Supplier

Select S/W Supplier
Evaluate Supplier’s
Performance

Maintain & Support
Acquired Software

032.PSM
Project

Subcontract
Management

Verify Supplier’s product has
value and quality by applying QA
reviews and processing findings

Checklist

����

����

����

Checklist

����

����

����

Deliverables

Apply QA
Apply QA

Checklist

����

����

����

Checklist

����

����

����

Product
Checklist

����

����

����

Checklist

����

����

����

Checklist

����

����

����

SQA Plan

+

Findings

Potential QA Review(s):

Requirements Spec,
Design Doc, Change
Process, Corrective
Action Process

Accept Supplier’s Products
Identify S/W to be
Subcontracted

Monitor & Review
S/W Supplier

Accept Software
Supplier’s Product

Manage S/W Supplier

Select S/W Supplier
Evaluate Supplier’s
Performance

Maintain & Support
Acquired Software

032.PSM
Project

Subcontract
Management

Perform acceptance tests on executable delivered
by supplier and generate acceptance report.

Checklist

����

����

����

Checklist

����

����

����

Code and
Executable

Checklist

����

����

����

Checklist

����

����

����

Acceptance Test
Process

����

����

����

Test Cases

+ Test Results

Potential QA Review(s):

Code Review, Acceptance
Test, User’s Manual

6

Maintain Delivered Software
Identify S/W to be
Subcontracted

Monitor & Review
S/W Supplier

Accept Software
Supplier’s Product

Manage S/W Supplier

Select S/W Supplier
Evaluate Supplier’s
Performance

Maintain & Support
Acquired Software

032.PSM
Project

Subcontract
Management

Perform Subcontract Delivery
Procedure using contracted
deliverables.

Checklist

����

����

����

Checklist

����

����

����

Subcontract
Deliverables

Checklist

����

����

����

Checklist

����

����

����

Maintained
Software

Potential QA Review(s):

Delivery Process, Status
Reporting

Subcontract

Delivery Process

Evaluate Supplier’s Performance

Identify S/W to be
Subcontracted

Monitor & Review
S/W Supplier

Accept Software
Supplier’s Product

Manage S/W Supplier

Select S/W Supplier
Evaluate Supplier’s
Performance

Maintain & Support
Acquired Software

032.PSM
Project

Subcontract
Management

Project Manager assists in
evaluation of supplier and
recording lessons learned.

Checklist

����

����

����

Checklist

����

����

����

Subcontract
Final Report

Potential QA Review(s):

Completion Process, Final
Report

Subcontract

Closure Process

7

The Project’s Real Work in SSM
 Contract Admin Project
Identify Software Project
for Subcontracting

•••• Provide Guidelines •••• Evaluate Application
Candidates

Prepare RFP •••• Draft RFP
•••• Legal Requirements
•••• Procurement
•••• Technical

•••• Provide Technical
Requirements

•••• Answer Supplier Queries

Select Supplier •••• Review Proposals
•••• Qualify Legal
•••• Qualify Procurement

•••• Review Proposal
•••• Technical
•••• Supplier Competent

Manage and Monitor
Supplier

•••• Monitor Performance
•••• Coordinate Payment

•••• Review Deliverables
•••• Quality Assurance

Accept Software Product •••• Coordinate w/Project •••• Quality Assurance
•••• Acceptance Testing

Evaluate Supplier •••• Performance Tracking
•••• Coordinate w/Project

•••• Quality Assessment
•••• Performance Assessment

After the Contract
is Issued ...

60-80% of Subcontract
Management Activity is
Quality Assurance for
Contract Deliverables

SQA Process Model

Planning

Reviews
& Audits

Status
Reporting

Findings
Tracking

SQA
Plan

New

Reviews

8

Communication Offshore is a Challenge

Project Manager

Needs Experience
with SQA

SQA Coaching for SSM
Step 1: Awareness Training

Identify Software
to be Acquired

Select Software
Supplier

Manage Software
Supplier

Monitor & Review
Software Supplier

Accept Software
Supplier’s Product

Evaluate Software
Supplier’s Performance

Software Subcontract
Management

Maintenance & Support

RFP Input

Reqmt Spec

Change Process

Accept Test Suite

Delivery Process

Final Report

Project
Subcontract Mgmt

Process

Project Completion
Process

Accept Test Process

User’s Manual

Status Report

Project Plan

Design Doc
Source CodeAccept Test Plan Corrective Action

Process

Exploratory
Prototype

9

SQA Coaching for SSM
Step 2: Select Reviews

Identify S/W to be
Subcontracted

Monitor & Review
S/W Supplier

Accept Software
Supplier’s Product

Manage S/W
Supplier

Select S/W Supplier
Evaluate Supplier’s
Performance

Maintain & Support
Acquired Software

032.PSM
Project

Subcontract
Management

Checklist

����

����

����

Checklist

����

����

����

Product
Reviews

����

����

����

Checklist

����

����

����

Checklist

����

����

����

Process
Reviews

SelectSelect
Checklist

����

����

����

Checklist

����

����

����

Selected
Reviews

����

����

����

Project Manager, SQA Focal and domain
specialists choose high leverage QA reviews

SQA Coaching for SSM
Step 3: Tailor Reviews

Project Manager , SQA Focal and
domain expert use group standards
to tailor checklists.

Checklist

����

����

����

Checklist

����

����

����

Selected
Reviews

Tailored
Subcontract

ReviewsChecklist

����

����

����

Checklist

����

����

����

Group
Standards

10

SQA Coaching for SSM
Step 4: Modify SQA Plan

SQA
Plan

Tailored
Subcontract

Reviews

Extended
SQA
Plan

Project Manager and SQA Focal
add SSM Reviews to SQA Plan

SQA Coaching for SSM
Step 5: Apply Modified Plan

& Perform Reviews

Project Manager, SQA Focal, and
domain specialists perform selected
reviews on contract deliverables.

Checklist

����

����

����

Checklist

����

����

����

Subcontracted
Products

Checklist

����

����

����

Checklist

����

����

����

Completed
Review

Product Delivery

Extended
SQA
Plan

1 © Copyright 2001 The Boeing Company. Published by Software Research, Inc with permission

Assuring Quality in Outsourced Software

Roger M. Records, Associate Technical Fellow
Boeing Commercial Airplanes Group

1.0 Introduction

1.1 Why Subcontract?

It’s one of the newest buzzwords – subcontracting or outsourcing. Today there is
considerable interest in subcontracting software development or maintenance generated
from the Information Systems (IS) community. There are predictions in IS journals that
the amount of offshore work will triple in the next three years. So, what is the attraction?
Probably some of the allure is just the fact that everyone is doing it. If my competitor is
going offshore for software, maybe I should too. The other attraction is the perception
that there is money to be saved in offshore subcontracting. India and Russia are holding
a software sale! You can get 50 percent off if you buy over there! Are these claims
valid? It probably depends on whose data you trust.

But there is one certainty most software shoppers will agree on – there is a definite risk
associated with the decision to go to the outside. This risk can take several forms,
including (but not limited to):

1. Product risk – will it work?
2. Schedule risk – will it be completed when it is needed?
3. Cost risk – will subcontracting really save the money we think we’re saving?
4. Legal risk – this is a contract. Might this activity result in litigation?
5. Personnel risk – will morale suffer? Could we lose key staff by

subcontracting?
The topic of this paper is, how to reduce this risk?

1.2 What About Reducing the Risk?

There are several components to a risk reduction strategy. We need to ensure we have
the right project and are subcontracting for the right reasons. We need to get the right
supplier – one that is competent and reliable. We also need to do a good job of
monitoring the quality of both the product and the subcontracting process. This implies
that we have explicitly defined what a successful project looks like.

1.2.1 First Risk Reduction Activity - Select the Right Project

The issues in project selection begin with current project personnel. The risks are, you
might lose key project personnel or see a huge decline in morale. How do your current
employees view the decision to subcontract a portion of your work? Is there a morale
issue ready to surface? Most current software personnel look at offshore subcontracting

2

as exporting jobs. And a key question should be, what kind of jobs will be exported? If
it is the work assignment that no one wants to get stuck with, the resistance will not be so
great. Conversely, if the subcontracted work is challenging and a very desirable
assignment, you can expect pushback. So, look for a package of work that will not be
missed by your current staff. You want to make your team support subcontracting!

The kind of work that will be missed by current employees is work that leads to career
development. Don’t outsource your leading edge assignments. Your employees will be
pleased when they can see the opportunity to acquire new skills. So, a parallel effort in
your IS group should be opportunity for new training. If some of the money saved by
subcontracting is used to enhance the careers of the hometown folks, the response will be
much more positive. Recently our organization had an example of a legacy FORTRAN
application that was subject to a certain amount of change each year. The decision to
outsource the maintenance of this software, leaving the in-house developers opportunity
to enhance their C++ skills was well received by folks who saw no future in analyzing
FORTRAN code.

There is a second issue in project selection – defining a well bounded and well
understood problem is essential for offshore development or maintenance. The risk is
one of escalating cost and extending scheduled delivery. This issue will be expanded in
the discussion of good requirements specifications later in this paper. Sufficient to warn
at this point, if you can’t find a robust problem definition and boundary, you’ve opened
up a giant hole in which to pour subcontracting money.

The third issue for selecting the right project is to consider what happens when you
export your code. If your code contains proprietary information, it is at risk offshore.
Your risk is the loss of competitive advantage. In spite of non-disclosure agreements or
other legal ploys, you have lost a considerable amount of control of your intellectual
property. It is difficult to monitor foreign journals to ensure your algorithms are not
being published. In addition, there are legal restrains on what kind of data can be
exported. You need to verify that you are in compliance with U.S. law when you send
data overseas. There will be a cost associated with verifying your compliance (one of
many which might impact that 50 percent savings you think is on the horizon).

Finally, there is the issue of how to maintain the code that is returned to you at the
contract’s end. The risk is the increase in cost of continued operations. This is, in fact, a
quality issue which will be addressed in more detail in the code review discussion
following.

1.2.2 Second Activity for Risk Reduction - Selecting the Right Supplier

The attributes for the right supplier are straightforward to define, but not so easy to find.
First on the list would be experience in the application domain. You don’t want to spend
your training dollars on your subcontractor. In fact, you really want a proven track
record in the specific domain. The way to assess this experience is to request a

3

description in the Request for Proposal (RFP). Then you must define the experience
acceptance criteria for your proposal evaluation.

Another factor in selecting a supplier is the evidence that the supplier understands the
requirements and has sufficient knowledge to do the job. The bid can be evaluated for
this expertise. Was sufficient thought given to create a reasonable bid? One way to
make this judgement is to have your staff create an estimate for the proposal, then
compare with the supplier’s estimate. A large discrepancy might suggest that the supplier
doesn’t understand the problem, or that insufficient thought was given for an accurate
bid. Either condition should raise some concern about that supplier’s qualifications. An
example is a project that our business group put out for bid. One of the responses gave a
quote for the project total which was about three times our estimate. Our RFP consisted
of five tasks, and the bidder simply divided the total into five equal parts and estimated
each task with equal cost. Since we had estimated one of the tasks as about ten times the
cost of the second, we concluded that this potential supplier had not thought about the
individual tasks at all! Is that the kind of company you want developing your software?

A caveat that should be stated is to document the reasons for your evaluation of each
proposal. You may have to supply a justification for your choice of suppliers, and
documented criteria for your selection (along with the evaluation of the bidder) will
ensure you are not open to charges of bias.

The final issue to consider in the selection of the right supplier is the advantage of a long-
term working relationship. Your new supplier needs to learn how to work with your
organization. This is an investment in training that you can recoup if there is ongoing
collaboration. There is also the need for you to learn you supplier’s strengths and
weaknesses. You can leverage the strengths, possibly focusing your next contract to
maximize their contribution in this area. But, if there is a commitment to a long-term
relationship, you can create an opportunity for growth in the areas of weakness. Our
organization worked with a supplier who had an obvious lack of understanding of
usability testing. We tutored them about selecting test personnel with characteristics
similar to our end users. We demonstrated how additional use cases could be generated
from observing target audience usage. These are non-trivial problems when the supplier
is overseas and has to give considerable thought to locate candidates for usability testing.
Our second contract with this supplier was much more successful in front-end testing.
They had benefited from our investment in their testing process. And so did we!

1.2.3 Third Activity for Risk Reduction - Monitor Quality Throughout the Project’s
Life Cycle

This is one of those truisms that is obvious to Quality Assurance (QA) people (so this
paper is probably preaching to the choir). For many IS practitioners and for some project
managers, it is not a self-evident truth! So a prerequisite to software subcontracting is to
have a Software Quality Assurance (SQA) function installed and implemented. While
the scope of this paper is not “how to establish your SQA function,” we can offer a few
suggestions if you have no documented SQA function in place. For the project about to

4

initiate subcontract management, our recommendations will make SQA installation more
feasible.

To be successful, the SQA function must be cost effective. From experience, this means
SQA must be perceived by the project manager and project personnel as being value
added. It must also address the concern many project managers and developers hold,
“you are piling more on my already full plate!” We will provide specific suggestions for
establishing an operational SQA function in the “Third Key” section below.

With a useable SQA function in place, the next question is, “How can Quality Assurance
be used to mitigate risk in outsourced work?” The remainder of this paper will address
that issue.

2.0 How is Quality Assured When Software is Outsourced?

There are three key components for assuring quality in outsourced software. The first
key is having the right process, the second is having the right project manager, and the
third is having an effective SQA function tailored for outsourcing. For success in
subcontracting, all three must be in place.

2.1 First Key – Have the Right Process.

The road to successful subcontracting has many potential potholes to fall into. We have
already discussed several. You could choose the wrong project to outsource. You could
select the wrong supplier. You could be subcontracting for the wrong reason. A well-
defined process to follow will minimize these and a host of additional risks. Fortunately
there is a voice of experience to listen to, which will not only identify additional potential
problems, but also recommend procedures to safeguard the project. The Software
SEI/CMM Level 2 addresses Software Subcontract Management (SSM) as one of its Key
Process Areas (KPA). Even if there is no interest in SEI/CMM assessment, the SSM
KPA offers insight into the main issues to consider when outsourcing software. Our
business group has developed a process model that addresses the issues found in the SSM
KPA.

5

Subcontract Process Model
Identify Software

to be
Subcontracted

Monitor & Review
Software Supplier

Accept Software
Supplier’s Product

Manage Software
Supplier

Select Software
Supplier

Evaluate Software
Supplier’s Performance

Maintain & Support
Acquired Software

Project
Subcontract
Management

Figure 1. SSM Process Model

As shown in Figure 1, this process has seven components, which come into scope at
various stages of the SSM life cycle. We have already discussed, at a high level, the
component for the pre-contract phase, identifying the software to be subcontracted and
the component for the contract phase, selecting the software supplier. We will re-visit
each of these topics, but in the more detailed context of assuring quality.

2.1.1 Identify Software to be Subcontracted.

In this phase the project manager’s prime responsibility is to prepare the statement of
work input for the RFP. The goal is to give the potential supplier all the information
required to create an accurate bid. The project manager must define the requirements
with enough detail to produce a good estimate, yet not drift into the design (since you’re
paying the supplier to furnish design specs). To enhance the supplier’s understanding of
the desired functionality, it is very useful to supply use cases and scenarios along with
requirements definition for the RFP. Any supplement that you as a developer would find
useful, is probably useful to the bidder as well. For very small projects, the project
manager may have sufficient background to supply all the RFP input. But most projects
will require the expertise of a domain expert and a system user as well. The concept of
using a team of experts will be the preferred approach to most of the tasks defined in our
SSM Process. The quality of the RFP requirements is one of the SSM QA reviews that is
recommended. This QA review will reduce the risk of providing poorly defined
requirements that result in costly changes later in the contract cycle. Usually the project

6

manager and an SQA focal will be responsible for performing the reviews, but additional
evaluation may involve other specialists for specific reviews.

Preparing and issuing an RFP is a task for someone other than the project manager. Most
projects will find that the skills of a purchasing agent and a contracts specialist will be
required for issuing and processing responses to the RFP. The project manager does have
a significant role. Most RFPs are issued with a provision for the bidder to submit queries
if clarification is needed. Some queries might be about payment schedules or contract
language (such as nondisclosure agreements). The appropriate specialist would answer
those queries. When the query involves system-related topics, the project manager or the
team application specialist must respond. Usually these queries are collected and
answers are distributed to all prospective bidders.

RFP queries are a source of quality improvement in the next subcontracting iteration.
These queries will suggest additional questions to include on the RFP Input QA Review.
At project completion, a part of the project evaluation should include analysis of the
queries to see if they reveal the need for additional review questions.

2.1.2 Select Software Supplier

Our organization has found there is a savings of both time and money expended in
supplier selection by eliminating suppliers not in compliance with the RFP guidelines.
Rarely do we appreciate the potential supplier’s innovative approach of ignoring the
required response format. We want all the proposals to be evaluated on an equal basis,
and that demands comparing each response section by section. There are additional
considerations beyond format. It is well to document these criteria prior to proposal
evaluation. Some of the selection criteria are evaluated by the contract specialist and
some by the purchasing agent. The project team does play a significant role in evaluating
the technical approach and domain expertise outlined in the proposal. In addition, they
may be able to evaluate the bidder’s interest in the project by “reading between the lines.”
The desired supplier not only has the qualifications to do the job, but also has an interest
in working with our company, preferably over a long term.

There may be cases in which the selection is already determined, and the RFP is in reality
an RFQ (request for quote). These cases of “single source” relationships may reflect a
previous work relationship or a case of unique skills that only that supplier offers. The
proposal or the bid quotation still needs to be evaluated using many of the same criteria
used in competitive bidding. It is a good practice to prepare your own work estimates
for single source bids – to be used as a reality check.

The recommended candidates for QA reviews during supplier selection include a review
for your documented selection criteria, and another for your supplier selection process.
These reviews will reduce the cost risk of charges of bias from losing bidders when you
can demonstrate consistent application of selection criteria for all proposals according to
the application of a documented procedure.

7

2.1.3 Managing the Software Supplier

Managing the supplier begins with a well-defined working relationship. The foundation
for this working relationship is the Project Plan. The plan, prepared by the subcontractor,
contains a minimum of a list of project deliverables along with the delivery schedule.
One consideration for the first-time subcontract project manager is the time required to
complete the inspection of each deliverable. This time is significantly greater than a
corresponding QA review for a software developer in next cubical. Communication by e-
mail or telephone across the ocean (with a person speaking English as a second language)
is time consuming. There is a time difference of nearly 12 hours. Your workday is the
supplier’s nighttime. Communication usually has a one day cycle time. Clarification of
issues takes time! It is rare to complete the review of a document in less than a week.

There should also be a description of the roles and responsibilities for both the supplier
and the customer. Giving precise definitions of both roles and responsibilities will
reduce the risk of costly negotiation (where all that finger pointing takes place) or even
litigation later in the contract. The Project Plan QA Review is considered essential. This
review addresses issues such as the completeness of the list of deliverables, the feasibility
of the schedule and the completeness of role and responsibility assignment. Performing
this QA review will reduce the risk of schedule overruns as well as the cost associated
with negotiating corrective actions.

The Project Plan should also include references to key processes that affect the working
relationship between the project group and the supplier. The three processes that are
referenced in the plan are all owned by the project group, but contain information
relevant to the supplier. The first is the Software Subcontract Management Process,
which is a documented procedure for the SSM Process Model in Figure 1. The other
vital processes are the Change Management Process and the Corrective Action Process.
Each of these processes comes into scope during quality assessment of subcontracted
deliverables. While it is outside the scope of this paper to describe each of these
processes, a diagram for a candidate process is included in the Appendix. Including the
reference to these procedures in the Project Plan ensures that the supplier is aware of the
procedures that will be followed during the duration of the contract.

2.1.4 Monitor and Review the Software Supplier

Following agreement on the Project Plan, the contract is initiated with production and
delivery of contracted deliverables. There are two primary activities in the production
phase: Project Tracking and QA Reviewing for products delivered. These activities
require monitoring by the project manager.

The Project Plan defines a set of contracted deliverables and their delivery schedule.
Monitoring delivery of these products is an ordinary project management function, and is
conducted using a procedure nearly identical to any other schedule monitoring.
Deviations from the established schedule are documented and reported in normal project
status format. Corrective actions for deviations are negotiated between the project

8

manager and the offshore subcontract project manager, using the Corrective Action
Process cited in the Project Plan. When the delivery of contracted products is back on
schedule, this new status is reported in the next status report. When the Corrective
Action Process is performed, we recommend a QA review of this process to insure
compliance. Following the documented procedure agreed to in the Project Plan reduces
the risk of additional contract charges being levied by the supplier.

The second activity, QA review of delivered all contracted products, is the foundation for
successful subcontracting. The principle is simple: Verify quality as early and as often
as possible. Beginning with the Project Plan, perform a Quality Review on every
product received from the supplier. This is a significant investment of project resources.
Our organization’s experience with six completed subcontracts in software development
shows the time expended is about 5 percent on Pre-contract activity, 20 percent on
ordinary project management, 15 percent on Process QA, 55 percent on Product QA and
another 5 percent on Project closure activity. While these data varied from subcontract to
subcontract (and all the subcontracts were small), we find nearly 60-80 percent of the
time a project manager spends on subcontract activity is quality related. This includes
performing quality reviews, documenting QA findings, communicating the nature of
defects found to the supplier and verifying the fixes supplied have repaired the defect.
Our organization performs quality reviews on every intermediate deliverable including
the Requirements Specification, the Exploratory Prototype (if one is created), the Design
Specification, any sample output screens or documents, and the test plan with test cases.
With every quality review performed we reduce the risk of having a final product
delivered with missing functionality.

 There are two lessons learned in the monitoring and review activity that saved significant
project resources:

Reuse current checklists for each of these products by tailoring them for the
subcontract environment. If you don’t have a current checklist for one of these
products, borrow one from a peer group within your company or find a sample in
the literature or on the web. Tailoring simply involves examining each question
on the checklist for relevance to you current subcontract and the application
domain. Omit or revise irrelevant questions and add new questions appropriate
for this specific subcontract.

The second lesson is to use a team for both tailoring the checklists and performing
the reviews. Our team consists of the project manager, the SQA focal and
additional personnel with specific skills and experience for the review being
performed. For example, one test of a requirement that is well defined and robust
is its testability. If you can define a test for the requirement, you can probably
define the completion criteria and probably a testing scenario. So, use a testing
specialist for the Requirements Specification review. Document the completion
criteria and the scenario for use in the Test Plan and test cases. This is not time
wasted, since the test plan will need to be defined at some point. If the
Requirements Specification is well defined, a test plan can be generated. In a

9

similar case, a well-written Design Specification will produce a set of test cases
with boundary conditions and other variables documented. When it comes to
code reviews, enlist a good programmer as a team member to assist the project
manager and SQA focal.

As the QA reviews are defined, they should be added to the current project SQA
function. We define this function with more detail in section 2.3.

2.1.5 Accept the Software Supplier’s Product

Product acceptance is probably one of the most familiar activities. Most of the project’s
current acceptance testing practices will be reusable for the subcontracting domain. The
supplier is ready to deliver the source code, the executables, the user documentation and
the training required to install, initialize, run and maintain the contracted software. The
project manager’s job is to ensure everything functions per the contract. The Acceptance
Test Procedure will be in scope and will call out various QA reviews. Onsite delivery is
essential. The offshore subcontract project manager needs to be present for processing all
the test findings. It is also essential that both the Acceptance Test Plan and the Suite of
Test Cases be prepared and previously passed the QA review prior to the arrival of the
offshore personnel. The focus is then on identifying defects, with corrective action taken
in real time. Testing defects are logged, transmitted offshore by the (now resident)
subcontract manager for correction, and the new (corrected) version(s) is installed for re-
testing. Depending on project size, one or two weeks of acceptance testing will be
sufficient for most system testing. Our organization’s policy is to contract for a 90-day
(no cost) post contract warranty for all software including user and systems
documentation. As in each of the previous phases, QA findings for product acceptance
are logged in the SQA Findings Log, and are tracked to resolution by the project
manager. Potential QA reviews concurrent with acceptance include source code reviews,
user manual review, as well as process compliance reviews on both the testing and
quality assurance procedures. These reviews address the risk of accepting software with
undiscovered defects.

2.1.6 Maintain and Support Acquired Software.

Preparation for software maintenance begins with the subcontractor’s training delivery.
Beyond functional testing, the installation procedure, the configuration management of
the new products, and the provision for product dissemination need to be addressed. If
these functions are part of the normal project operation, some tailoring for the
subcontracting activity will probably be required. The QA reviews that are usually
performed will be tailored as well. The recommended reviews include a QA review on
the delivery process and any product reviews remaining from acceptance. It is helpful to
document your delivery process for subcontracted work. A sample process is included in
the Appendix.

10

2.1.7 Evaluation of the Supplier’s Performance

This brings us to the final activity in the subcontracting process, project completion.
There are several tasks that will ensure that quality is maximized in future subcontracting
activity. Final payment to the subcontractor is one important task. Care must be taken to
verify all the contracted deliverables are completed. Performing all the QA reviews
discussed previously in this paper makes this verification a certainty! A notification of
satisfactory completion is generated for the purchasing agent or Accounts Payable
Department. When the contract is completed, project closure should include an
evaluation of the supplier by the project manager. A portion of this evaluation is a list of
lessons learned. Both the lessons learned and the supplier evaluation should be made
available to other groups within the company who are considering subcontracting
activity. It is suggested that a project closure procedure be defined prior to initiating a
contract. This will ensure important issues will all be addressed while the supplier is still
available to project personnel. A sample procedure is included in the Appendix. The QA
review for this final report will mitigate the risk of having to re-learn lessons and use
resources for additional corrective action.

2.2 The Second Key – Have the Right Project Manager

The choice of a project manager is vital for successful subcontracting. As described the
in the last section, most of the activities in the subcontracting process were focused on the
project manager. And the principle for this choice is this: Subcontract Management is
not identical to project management. Project management is centered on the triple
constraint – cost, schedule and quality. Many subcontracts are built on fixed price
contracts, so cost is a constant (ignoring changes), and the schedule is also fixed in most
contracts. This leaves one significant issue – QUALITY. The risk is that changes will
occur and that schedules will slide, in spite of contract stipulations. The challenge for
the project manager is to deliver the contracted deliverables, on time, within budget, and
still obtain quality. As we have previously stated, once the contract is in place, about 60-
80 percent of the effort expended by the project manager is in some way connected to
verifying quality for each deliverable at its scheduled time to mitigate this risk. So, the
project manager who would manage a subcontract better come to the job with extensive
SQA experience, or get ready to climb a steep learning curve for SQA.

A second difference between subcontract management and normal project management is
that the project manager is a people manager, whereas the subcontract manager is not.
Experts suggest people skills are primary in importance for successful project
management. But when the work is performed offshore, the subcontract project manager
never sees the people doing the work. Instead, the primary skill becomes the ability to
communicate with the offshore subcontract manager (who, by definition, resides on
another continent.) To be more specific, even verbal communication skills are mostly
utilized in the project definition activity and again at product delivery (when the project
manager is face-to-face with the supplier). For offshore collaboration, written
communication skills are the success factor.

11

The project manager who will become a manager of a subcontract needs to be familiar
with the application domain, or be closely teamed with application domain specialists.

2.3 The Third Key – SQA: Review Early; Review Often; But Review the Right
Stuff!

Since we’ve discussed the importance of quality assurance in both of the first two keys to
successful subcontracting, it should come as no surprise that the third key to success is
Software Quality Assurance. The best advice is to make sure you are performing SQA
reviews on the right stuff! There are both products and processes to consider, and
selecting the right review will produce the best return on investment (ROI). Even as the
contract is being defined and responses are being collected, the quality issues will
determine the success or failure of the entire subcontracting activity. So, what is the most

important SQA review? Is it a product review or a process compliance review? The
answer is, “Yes!”

Before the project group can implement a successful subcontract management process,
they need to have an operational software quality assurance process in place. While it is
beyond the scope of this paper to define the SQA procedure, a brief overview is provided.
As shown in Figure 2, the foundation of the SQA procedure is the SQA Plan. It is
created by a planning activity that defines the SQA reviews to be completed for the
lifecycle of the project. The SQA Plan also includes a description of the procedure for
recording and tracking review findings. Finally, the plan defines the reporting of SQA
status to management. These four components of the SQA function are a prerequisite for
the SQA activity performed during each phase of the subcontract.

2.3.1 The Pre-Contract Issue – Highest Leverage Product Review

With an SQA function in place, the project can initiate the subcontract process. The first
task is to select the software to be outsourced. The primary product in this task is the
RFP, and the most important component of the RFP is the requirements for the project.
Producing a good set of requirements is a non-trivial task. The goal is to produce a set of

SQA Process Model

Planning

Reviews
& Audits

Status
Reporting

Findings
Tracking

SQA
Plan

Figure 2. SQA Process Model

12

requirements that are so well defined that the bidders for the RFP can produce an
accurate bid. The consequence of failing to do a good job on requirements definition is
either a large number of queries from potential bidders, or (much worse) many conflicts
later in the contracting life cycle. With this in mind, many project managers experienced
in subcontracting would state that a QA review for the RFP Requirements is the highest
leverage review to perform. Well-defined requirements are the foundation for an
accurate proposal, which is the basis for a contract with minimal change potential.

The topics of requirements engineering and requirements acceptance have been covered
in many publications. Our goal in this section will be to provide a methodology for
creating a quality assurance review for the RFP requirements, given their importance. It
begins with defining the quality attributes for software requirements. These attributes
might include (but are not limited to):

1. Lack of Ambiguity
2. Feasibility
3. Consistency
4. Testability
5. Completeness

Ideally, the QA review for RFP requirements will include questions to verify each of
these attributes has been evaluated. Fortunately, there are published examples of
checklists for requirements that address these attributes, and more. Obtaining one of
these checklists and tailoring it for your application domain is a good first step toward
initiating your subcontracting process with a quality contract.

There are enhancements for the RFP Requirements that will improve the potential
bidder’s understanding. One of these is specific use cases or scenarios. By including a
use case that would describe the input and output, along with a description of the data
transformation, the bidder’s understanding of the requirement becomes more concrete.

2.3.2 The Post-Contract Activity – Perform High Leverage Product and Process
Review

An operational SQA Function will provide both product and process reviews. The same
can be said for performing QA in the subcontracting domain. It is not the intent of this
paper to define and describe all the QA reviews that have potential within the subcontract
domain. Rather, several candidate reviews are recommended for both contract
deliverables and associated subcontracting processes. The approach is to determine
which of the candidate reviews carry the highest potential value. It is better to perform a
few high-leverage reviews than many QA reviews with low return on resource invested.

Throughout this paper we have recommended QA reviews for both products and
procedures. A summary of our recommended list of contract product reviews include:

1. RFP Requirements
2. Project Plan

13

3. Software Requirements Specification
4. Design Document
5. Source Code
6. Acceptance Test Plan
7. Acceptance Test Suite
8. User’s Manual
9. Subcontractor’s Status Report
10. Project Final Report

The RFP Requirements, Acceptance Test Plan, Acceptance Test Suite and Project Final
Report are products created by the project. The subcontractor creates the remaining
products as contract deliverables. There may be other products for a specific contract,
such as an exploratory prototype, which would be candidates for additional QA reviews.

The summary of our recommended list of process reviews include:

1. Change Procedure
2. Corrective Action Procedure
3. Acceptance Test Procedure
4. Delivery Procedure
5. Project Completion Procedure
6. The Subcontract Management Process

The purpose of a process review is to verify project compliance with “the way we do
things.” Each of these procedures and processes is owned by the project. There may be
additional processes or procedures, such as a vendor selection procedure, which would be
candidates for additional QA reviews.

Attempting to perform all 16 QA reviews is not recommend for a small contract or for
your first subcontracting activity. You can choose those reviews that have the highest
potential ROI. The RFP Requirements review is recommended as a high leverage QA
review. Since incomplete requirements are frequently cited as the reason for project
overrun or project failure, perhaps a second review might be on the supplier’s Software
Requirements Specification, or on the following deliverable – the Design Document. The
goal is to collect facts and data that can be used to verify there is quality built into this
project at each step, not just in the final delivery. Waiting until acceptance testing to
discover the absence of quality is unacceptable (and costly!)

3.0 Finally – A Few Words About Cost and Schedule Overruns

If you’ve read this far, you’ll be happy to learn the best has been saved for last! We live
in a culture where contract cost and schedule overruns are not only common, but also
expected! How can this be avoided, or at least minimized, in software subcontracting?

Quality Assurance is the mandatory component! It is the essential activity to protect not
only quality, but scheduling and cost as well. It begins with your preparation. The best
advice is to reuse wherever possible. Consider the quality reviews required. If you have

14

an SQA function in place, examine each of your current checklists to see if any might
apply to the list of product or process reviews listed above. Most checklists that might
apply to subcontract management will need to be tailored to fit this new environment.
You are no longer the developer, now you are the customer. Your checklist must have a
customer perspective. To save additional resources, minimize the amount of tailoring.
Your team of project manager, SQA focal and selected domain specialists should
accomplish the tailoring. This team can be efficient in identifying modifications or
generating new review questions.

If you do not have a candidate checklists in your current SQA function, there are at least
two additional sources. Check with a peer group to see if they have additional candidate
checklist. If your software group has a process assets library (PAL), check this source for
additional candidates. Finally, the literature, including the web, is a source of initial
checklist candidates. One Web site that offers a variety of examples for use by the public
is http://www.processimpact.com/. So, cost is minimized by reuse and tailoring. As a
last resort, you can invent a new checklist.

In addition to QA checklists, you’ll need additional processes. These processes are
available from the same sources as the checklists, and will require similar tailoring.
Looking at the sample procedures in the Appendix, the Subcontract Change Procedure
has been tailored to show an amended contract, which would not be part of an ordinary
change procedure. In a similar manner, the Subcontract Corrective Action process might
contain a reference to the Legal Department, which is not a part of the usual corrective
action process.

4.0 Lessons Learned in Subcontracting

There are several valuable lessons learned that have been stated in the preceding text.
These will be summarized at the end of this section. A few additional insights may serve
to help project managers new to subcontracting.

Invest in a long-term working relationship with your supplier. If outsourcing is new to
you, working in your business culture is new to your supplier. Begin this working
relationship with a goal of continued success. This will require good communication of
expectations, with timely and candid feedback. Most offshore contractors put a high
value on customer satisfaction. Your investment of informal training in “the way we do
things” for you supplier will pay large dividends in future work.

Promptly completing your QA reviews on delivered products and sending the QA
findings to the supplier immediately will establish your quality standards. Obtain an
estimated completion date for all bug fixes, and monitor these commitments.

Testing early, even on partially completed products, will make acceptance testing much
more successful. If your contract calls for the supplier to perform unit testing, provide
test cases and request output for specific modules to ensure the design is being coded
functionally correct. For complex or leading edge work, exploratory (throw-away)

15

prototype evaluation is used an very early in the contract to validate the understanding of
requirements. In one contract, our organization created the prototype as a kind of
“electronic specification;” while for other contracts the supplier creates the prototype. In
one case we used evolutionary prototyping with evaluation at specific feature points as
the contracted developmental methodology.

This paper began with a discussion about the risk associated with subcontracting
software. We suggested three specific strategies for reducing risk. Our last “lesson
learned” is to recognize the value in performing the normal risk assessment for the
proposed project. Our usual approach for small project risk assessment is to provide a list
of common risks and ask the project manager to add domain specific risks to the list. For
the project manager about to take on a subcontract, we have added some common risks
for subcontracting. The tailored list looks like this:

Common Software Risks

• Feature creep
• Personnel shortfalls
• Unrealistic schedule and budgets
• Inadequate design (Developing the wrong user interface, wrong functions)
• Gold-plating requirements
• Continuing stream of requirements changes
• Contractor failure
• Silver Bullet Syndrome
• Real-time performance shortfalls
• Friction between developers and customers

Software Risks Associated with Subcontracting

• Misunderstanding due to communication in English
• Potential for loss of proprietary information
• Resentment from in-house staff
• Dependence on supplier and supplier’s tools
• Problems in knowledge transfer for domain knowledge
• Loss of project control due to coordination with support groups such as Legal, Purchasing and

Subcontract Support
• Contractor’s software culture may produce variation from the project’s standard methodology
• Coordination of Configuration Control (two CM Systems)
• Current SQA function inadequate for increases in SQA activity

Candidate risks are selected, prioritized, and evaluated to develop plans for risk
mitigation. A QA process review should be performed to verify compliance with the risk
procedure.

There are additional lessons cited in the previous sections of this paper. Their summary
follows:

1. Invest in pre-contract requirements understanding to avoid mid-contract conflict
2. Communication across the ocean requires time

16

3. Care must be taken in selecting the project for subcontracting
a. Morale of in-house employees may suffer
b. “Software sale” mentality – consider extra costs of outsourcing
c. Export restrictions may come into scope

4. Select a project manager with extensive SQA experience
5. Begin the subcontracting with an SQA function already installed up front

Getting Started – Where to Go from Here?

If outsourcing software is in your near future, what is the sequence of events or activities
that will get you started? Here’s our recommendation:

Step 1. Identify the support organizations, including Legal, Purchasing, and
(possibly) the group with contacts for potential suppliers.
Step 2. Document your Subcontracting Process.
Step 3. Identify the QA reviews required for this subcontracting process and add
these to your SQA Plan.
Step 4. Implement your Subcontracting Process and perform the QA reviews
required.
Step 5. Add or tailor additional processes as required, with the associated QA
reviews.
Step 6. Obtain training, coaching or mentoring from a peer with SSM experience,
from an SQA subject matter expert or from outside suppliers, if available.
Step 7. Apply the knowledge you have acquired from this paper as you traverse
your subcontracting journey.
Step 8. Document any opportunities for improvement as you proceed, and
implement those improvements before your next subcontracting project.
Step 9. Prepare to mentor or coach one of your peers as they initiate SSM.
Step 10. After a few iterations of this procedure, publish your insights for others.

Following Steps 1-8 through a series of subcontracts allows a project to start with a small
number of QA reviews and grow incrementally with each new contract. Using this
approach, a mature SSM process can be developed with maximum usability and
minimum investment of resources. Incrementally adding to list of QA reviews until you
have an adequate number is the best assurance of receiving quality in your subcontracted
project deliverables.

17

Appendix - Procedures

Review Project
Deliverables

QA Review(s)

New Features

Create Change
Request

Change Log

Project Contract

Subcontractor
Prepares Cost

Estimate

Approval
Request

SSM
Negotiate

Cost

Ammended
Contract

Success

 Subcontract Change Procedure

Project Plan

QA Findings Within
 Scope

To CA
Process

New Reqmt
Additional
Thinking

Project analysis
 of cost

Postpone Feature
Development

Non-Success

Contract
Management

Project
Management

Vendor

18

Contract

Findings DeviationsQuality
Assessment

PT&O
Procedure

Deliverables Schedules

Resolved at
Tech Level?

Define Corrective
Action

Supply Facts and
Data to Contract

Management

Complete
Corrective

Action

Report
Status

Notify
Supplier

Management

Issue
Resolved?

Notify
Legal

QA
Reviews

 Subcontract Corrective Action Procedure

Yes

Yes

No

No

Notify
Subcontract

Project
Manager

New
Requirement?

Negotiate
Price for new
requirement

Yes

No

Contract
Management

Project
Management

Vendor

19

Store Source
Code

Install
Executables

Subcontractor
Provides Training

Subcontract Delivery Procedure

Installation
GuideFile

Structure

Instructions

Contract
Source Code

Contract
Executables

Perform
Acceptance

Testing
Test Suite

Test Exceptions Subcontract
Corrections

Source
Corrections

Compiled
Corrections

System
Documentation

User’s Guide

Generate
Acceptance
Notification

To Project Closure
Procedure

Project
Management

Vendor

20

Subcontract Project Closure Procedure

Contract
Management

Closes
Contract

 Contract
Completion Report

Generate
Acceptance
Notification

Project
Generates

Final Report

Subcontractor
Closes

Contract

Subcontract
Final Report

Contract
Management

Project
Management

Vendor

System
Documentation

Completed

System
Acceptance

Testing Completed

Delivery
Procedure
Completed

Produce
Subcontractor

Evaluation

Add Lessons
Learned

QW2001 Paper 4A1

Mr. Henk Keesom , Dr. John
Musa

(Ortho-Clinical Diagnostics)

Using Test Data to Calculate
Software Reliability Growth

Key Points

Software Reliability Engineering●

CASRE - Computer Aided Software Reliability Engineering●

Use of Product Development Historical Data●

Presentation Abstract

This case study describes how one company used existing product development
test history to calculate the software reliability growth of three embedded real-time
software products. It includes techniques that were used and can be used by others
to do the same calculations with their existing product development test data. It
also discusses techniques to produce better data and thus better software reliability
information in the future.

The techniques described are useful to embedded product software developers and
their organizations as many have access to extensive product development test
performance data. They can use this data and these techniques to determine their
software reliability growth during testing and their product’s current software
reliability. In addition, suggestions are provided to provide better future tracking of
software reliability.

Ortho-Clinical Diagnostics develops and manufactures blood analyzers for
professional use in Clinical Chemistry Laboratories - containing custom developed
embedded real-time control system software. The three products used as examples
have been in field use and software upgraded with additional features and
functions for over ten years. Thus these products provide an extensive amount of
product development test history of software reliability.

The existing product development test history was used with CASRE (Computer
Aided Software Reliability Engineering). CASRE is a widely accepted tool used to
calculate and graph software reliability. CASRE is available on the CD-ROM that
is provided with the Handbook of Software Reliability Engineering, by Michael R.
Lyu.

The normalized MTTF from the three products that were used are presented and
show the software reliability growth over time - and that with new upgrades

(software versions) there were short term decreases (as one would expect with new
additional features) in the reliability.

Techniques for converting product development test history data from calendar
time to execution time are provided. This data was in calendar time but it required
conversion to an approximate execution time before CASRE would produce
meaningful results. Methods for handling data sets larger than CASRE can handle
are included. Steps are provided to take CASRE output and produce graphs not
included in CASRE.

Recommendations on how to enhance test data in the future to make calculations
of software reliability more predictive are described.

About the Author

Hendrik J. Keesom is a manager of Software Verification and Validation for
Ortho-Clinical Diagnostics in Rochester, NY. Keesom is a software verification
and validation engineer and software engineer with over 20 years of real-time
embedded software and hardware experience. Keesom is one of the co-editors of
the HL-7 Chapter on Clinical Laboratory Automation and the NCCLS standard:
Laboratory Automaton: Communications with Automated Clinical Laboratory
Systems, Instruments, Devices , and Information Systems.

John D. Musa is one of the creators of SRE, with more than 30 years varied and
extensive experience as a software development practitioner and manager.
Principal author of the highly-acclaimed pioneering book Software Reliability and
author of the practical Software Reliability Engineering, Musa has published more
than 100 papers on SRE. Elected IEEE Fellow in 1986 for many seminal
contributions, he was recognized in 1992 as the leading contributor to testing
technology. His leadership has been noted by every recent edition of Who’s Who
in America and American Men and Women of Science. Musa, widely recognized
as a leader in SRE practice, initiated and led the effort that convinced AT&T to
make SRE a “Best Current Practice.” Musa has helped a wide variety of companies
with a great diversity of software-based products deploy SRE. He is an
experienced international speaker and teacher (over 200 major presentations) A
founder of the IEEE Technical Committee on SRE, he is closely networked with
SRE leaders, providing a broad perspective.

1

127-Mar-01

Using Internal Product Development Test
Data to Calculate Software Reliability Growth

Henk Keesom, John D. Musa
Quality Week 2001

227-Mar-01

Introduction
• Ortho-Clinical Diagnostics develops and manufactures blood analyzers

for professional use in Clinical Chemistry Laboratories - containing
custom developed embedded real-time control system software.

• This case study demonstrates how Software Reliability Engineering
was applied in the bio-technology field and can be applied elsewhere
as well.

• We describe how existing product development test history was used
to calculate the software reliability growth of three embedded real-time
software products.

• This case study shows that existing product development test data can
be used now.

• It includes techniques that were used and can be used by others to do
the same calculations on their existing product development test data.

• It also discusses techniques to produce better data and thus better
software reliability information in the future.

2

327-Mar-01

Uses of the Project MTTF Histories
• The study of existing Project MTTF histories has helped determine

data collection improvements needed.
• The existing MTTF histories can also be used to guide testing by :

– Identifying reliability status early in test and allowing early action
to be taken.

– Helping to establish a release criteria (failure intensity objective).

427-Mar-01

SRE Background
• Software Reliability Engineering is a proven standard, widespread best

practice in industry.
• Software reliability uses many of the terms and methods used in

hardware reliability
• Through the use of software failure data and modeling tools, software

MTTF can be determined.
• Software reliability growth can be measured during a software project

and can be used to guide testing.
• Software reliability engineering techniques help projects find software

failures more quickly (and thus fixed earlier).

3

527-Mar-01

CASRE Background
• CASRE - Computer Aided Software Reliability Engineering
• This tool takes failure data (existing product dev. test history),

performs modeling to determine the MTTF growth over time.
• CASRE is a widely accepted tool used to calculate and graph software

reliability and is available on the CD-ROM with the Handbook of
Software Reliability Engineering, by Michael R. Lyu.

• Although there are a number of models that are included with CASRE,
only 2 are recommended by Musa in his book Software Reliability
Engineering:
– The Musa-Basic model models a system that has finite failures at

infinite time
– The Musa-Okumoto model models a system that has infinite

failures at infinite time.
– The two models are at the extremes (finite/infinite) and help bound

the model range.

627-Mar-01

Test Data Collection
• Software product development test data of software failures was

extracted.
• The relevant information included:

– Calendar Date/Time entered - execution time was not available
– Priority - High and medium only
– Status - exclude "No Change" (i.e. No Change implied that no

failure was found)
– Subsystem - Software only - other subsystems were tracked and

needed to be excluded.
• The data was filtered and sorted by Date and Time and reformatted for

the CASRE (Computer Aided Software Reliability Engineering) tool
as follows:
– Failure number
– "Execution" Hours since previous failure

4

727-Mar-01

Calendar Time to “Execution Time”
• Calendar Time was converted to “execution time” by removing idle

periods (nights and weekends).
• The hours since previous failure was calculated by subtracting the

current date/time from the previous data/time based on a 50 hour work
week.

• So, for example
– a failure recorded at 5 p.m. on Friday
– a failure at 8 am on Monday is considered only 1 hour apart
– (rather than calendar time of 53 hours (24+24+15))

• We also improved the precision of the data by re-computing the failure
intervals in hours to three significant figures.

• These two measures substantially improved the quality of the data and
the results we could draw from it.

827-Mar-01

MTTF Data Presentation
• Initially, both models were used, but after discussions it was decided to

only use the Musa-Okumoto model because the test data collected was
against development failures of software that was being upgraded - i.e.
it was a system that has infinite failures at infinity (because it is always
under change).

• The following is presented for product 3:
– Execution Time between Failures vs. Failures - the raw data used

as input to CASRE
– MTTF vs. Failures
– MTTF vs. Execution time

• This technique was used for all three products.

5

927-Mar-01

Execution Time Between Failures

1027-Mar-01

Software Reliability Growth (MTTF vs.
Failures)

Product 3 - Software Reliability Growth (MTTF vs. Failures)

Failures

M
T

T
F

 (
ex

ec
u

ti
o

n
 t

im
e)

Segment 1 Segment 2 Weighted Average

Sys Test
Sys Test

Sys Test

Sys Test

Sys Test

Sys Test

6

1127-Mar-01

Software Reliability Growth (MTTF vs.
Execution Time)

Product 3 - Software Reliability Growth (MTTF vs. Execution Time)

Execution Time

M
T

T
F

Sys Test

Sys Test

Sys Test

Sys Test

Sys Test

Sys Test

1227-Mar-01

MTTF Data Analysis
• The failure intervals experienced by OCD were compared with Musa's

experience on many other projects.
– Product 1 data is consistent with data from other projects,
– but the early data on product 2 and especially product 3 showed

many long failure intervals that are unusual.
– One possible explanation is that system test had not really started

when the early data was collected. If so, data prior to system test
should be removed from the analysis.

• We looked for ways to improve the existing data so that we could draw
the best information possible from it.

7

1327-Mar-01

MTTF Data Analysis-2
• The ideal is to record failures at the time they actually occurred in

execution time or natural units.
– The existing data is recorded in calendar time of the reporting of

the failure.
– The use of calendar time gives MTTF results that are a fairly

constant multiple of the true MTTF when taken over the entire test
period.

– However, it can distort short term (and hence early) results and add
considerable noise to them.

– Also, on most projects, the calendar time to execution time ratio is
typically large at start of test, decreasing by mid-test to a number
that approaches the ratio found at the end of test.

– Thus the use of calendar time yields overly optimistic estimates of
MTTF during early test.

1427-Mar-01

Data Analysis Observations
• Calendar time translates to approximate execution time by the 168

(7x24) hours in a week to 50 (5x10) in the work week ratio - over large
data.

• MTTF results for these products are a rough approximation .
• The CASRE Model is not able to converge at the early failures -

including start of System Testing.
• The CASRE Model does not converge in all situations
• The data set chosen for CASRE determines the reliability growth

curve.
• Product 3 Saw-tooth pattern correlates start of system test on versions

of Software.

8

1527-Mar-01

Future Data Collection and Analysis
• Develop the operational profile and use it to drive development -

Operational Profile and Load Testing are part of Software Reliability
Engineering.

• Use random sampling of test cases; avoid testing feature by feature.
• Start collecting data at the beginning of system test
• Record actual time of failure.
• Record to the nearest minute (vs. hour) or natural unit (of similar

granularity).
• Record product usage over time.
• Record the execution time.
• Use a weighted average scheme for more than 1000 data points to

workaround the limitation of CASRE.
• Use the Musa-Okumoto model for analysis

1627-Mar-01

CASRE - Procedure
• The following procedure is a slight modification of the standard

CASRE procedure described in Appendix F.3 of Software Reliability
Engineering.

• 1. Follow the standard CASRE procedure, Steps 1 and 2
• 2. For each data range you have selected:

– A. Click on Model, then Select data range. Set the parameters as
follows:

– (above shown for 2 ranges, analogous for more)

Lower range run Upper range run

First data point 1 N-999

Last data point 1000 N

Parameter estimation endpoint 1 NL + 1

9

1727-Mar-01

CASRE - Procedure - 2
– B. Click on Model, then select and run module. Double click on

Musa-Okumoto model, click on Run models.
– C. Click on Results and then Model results table.
– D. The next step predictions are the MTTF history. If a prediction

is missing, approximate it by dividing elapsed time by number of
failures. Caution: If first data point > 1, you must also add the
elapsed time from the previous data points.

• 3. Export the MTTFs from all ranges to a spreadsheet for further
analysis.

1827-Mar-01

CASRE - Procedure - 3
• 4. Using Excel set the data up as follows:

– Column A is the failure number
– Column B is the Hours since the last failure
– Column C is the Next Step Prediction for the first range
– Column D is the Next Step Prediction for the second range
– Column E is the weighted average per the above algorithm
– Column F is the model prediction - NOT USED.
– Column G is the cumulative execution hours
– Column H is the cumulative execution months

• Note: Columns A, B, C, D, F, G come directly from CASRE outputs.
Column E uses the above weighted algorithm with the addition that if
the model does not converge for a given data point that it uses the
previous converged value. Column H is the number of hours since
failure converted to months.

10

1927-Mar-01

CASRE Workarounds
• CASRE is a Windows V3.1 compatible program
• Under certain circumstances, you will receive a message "Program

Error - C RUNTIME ERROR" and have to restart CASRE.
– The cause appears to be trying to divide by zero. It occurs when

the first data point and parameter estimation endpoint are equal.
– Never record two failures occurring at exactly the same time.

• Another problem with CASRE occurs when it sees a blank line.
– Eliminate occurrences of 2 consecutive paragraph marks (carriage

returns).

QW2001 Paper 4A2

Mr. Erik Simmons
(Intel Corporation)

Product Triage: A "Medical" Approach To Predicting And
Monitoring Product

Key Points

The medical field of trauma care provides interesting and valuable metaphors for product
quality.

●

By adapting the tools and concepts used within trauma care to product quality rather than
patient outcome, a new and disciplined approach to predicting and monitoring product
quality emerges.

●

Presentation Abstract

The medical profession has long relied on triage to predict which patients require
enhanced care or monitoring based on presenting risk factors or indicators. By
comparing the field of trauma triage to software product development, several new
and useful insights can be gained into risk assessment and monitoring. In addition,
the methods and work done in developing the triage criteria used to classify and
assess patients can be translated to software engineering, providing a robust way to
establish, utilize, and maintain criteria for software. See the slides for more details.
The paper will follow the general order and content of the slides, but in more
detail.

About the Author

Erik Simmons has 15 years experience in multiple aspects of software and quality
engineering. Erik currently works as a Platform Quality Engineer within the
Corporate Quality Network at Intel Corporation. He leads the corporate Software
Engineering Process Team that is charged with improving software development
capabilities across Intel's product development groups, and is responsible for Intel's
product requirements engineering practices.

1

® Version1.0
7/00 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

Product Triage
A “Medical” Approach to Predicting and Monitoring

End-Product Quality

For information, contact:
Erik.Simmons@Intel.com

Erik Simmons, Intel Corporation

2® Version 1.1
3/01 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

Trauma Triage

Triage is the process of prioritizing responses to patients
based on the severity of the presenting symptoms.

In only a few seconds, an EMT on scene must decide whether
a trauma system activation should be called for an injured
patient.

This decision is based on experience and about two dozen
Triage Criteria – true/false conditions that are associated with
the need for trauma system activation.

Triage is the process of prioritizing responses to patients
based on the severity of the presenting symptoms.

In only a few seconds, an EMT on scene must decide whether
a trauma system activation should be called for an injured
patient.

This decision is based on experience and about two dozen
Triage Criteria – true/false conditions that are associated with
the need for trauma system activation.

2

3® Version 1.1
3/01 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

Truths about Prediction

• The value of the prediction increases with distance from
the event being predicted

BUT…

• The difficulty of making accurate predictions also
increases with distance from the event being predicted

• The value of the prediction increases with distance from
the event being predicted

BUT…

• The difficulty of making accurate predictions also
increases with distance from the event being predicted

There are two fundamental but conflicting truths about
predictions and estimates:

or ?

4® Version 1.1
3/01 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

Measures, Metrics, and Indicators

A measure establishes the “extent, dimensions, capacity, etc.
of anything, especially as determined by a standard”*

A metric is a typically a composite of two or more measures

An indicator is the result of a comparison of a measure or
metric with a baseline quantity or expected result

A measure establishes the “extent, dimensions, capacity, etc.
of anything, especially as determined by a standard”*

A metric is a typically a composite of two or more measures

An indicator is the result of a comparison of a measure or
metric with a baseline quantity or expected result

For Example
Measures: Number of software failures, time
Metric: Mean Time Between Failures (MTBF)
Indicator: MTBF < 200 hours

*Adapted from The Handbook of Software Quality Assurance, 3rd Ed., by Schulmeyer and
McManus, PTR 1998

3

5® Version 1.1
3/01 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

Measures, Metrics, and Indicators

There are two type of indicators: Sentinel and Rate-based

Sentinel indicators are triggered by any occurrence of
the condition

Rate-based indicators are triggered when a metric falls
above or below established limits

There are two type of indicators: Sentinel and Rate-based

Sentinel indicators are triggered by any occurrence of
the condition

Rate-based indicators are triggered when a metric falls
above or below established limits

Example:
Sentinel Indicator: Any patient death occurring outside of the
Intensive Care Unit
Rate-based Indicator: Average on-scene time of more than
10 minutes prior to patient transport

6® Version 1.1
3/01 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

Sensitivity and Specificity

The sensitivity of an indicator or test is how well it detects
the problem of interest – the percentage of all true cases
captured.

The specificity of an indicator or test is how well it
excludes test subjects without the problem of interest – the
percentage of all false cases rejected.

The sensitivity of an indicator or test is how well it detects
the problem of interest – the percentage of all true cases
captured.

The specificity of an indicator or test is how well it
excludes test subjects without the problem of interest – the
percentage of all false cases rejected.

A good indicator has high sensitivity and high specificity

4

7® Version 1.1
3/01 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

ROC Curves

Receiver Operating Characteristic (ROC) Curves were
created to plot signal-to-noise ratios in electronics, but they
have also been widely used in medicine to analyze
diagnostic tools.

ROC Curves used in trauma care usually contain Sensitivity
plotted against Specificity Loss (1-Specificity) for various
probabilities of a case being positive.

Receiver Operating Characteristic (ROC) Curves were
created to plot signal-to-noise ratios in electronics, but they
have also been widely used in medicine to analyze
diagnostic tools.

ROC Curves used in trauma care usually contain Sensitivity
plotted against Specificity Loss (1-Specificity) for various
probabilities of a case being positive.

A ROC Curve shows how Specificity Loss varies with Sensitivity.

8® Version 1.1
3/01 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

Sample ROC Curve Data

Probability
Cutoff for
Positive Cases

90%

75%

50%

25%

10%

Resulting
Sensitivity

15%

50%

75%

89%

93%

Resulting
Specificity Loss

5%

15%

25%

35%

95%

In this example, the “sweet spot” is at 25% probability of
occurrence, where sensitivity is 89% and specificity loss is 35%.

Increasing sensitivity to 93% increases specificity loss to 95%.

In this example, the “sweet spot” is at 25% probability of
occurrence, where sensitivity is 89% and specificity loss is 35%.

Increasing sensitivity to 93% increases specificity loss to 95%.

5

9® Version 1.1
3/01 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

Sample ROC Curves

Se
ns

iti
vi

ty
 (%

)

Specificity Loss (%)

0

50

100

100500

Good Indicator
Poor Indicator
No Discrimination

10® Version 1.1
3/01 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

Using ROC Curves

A good indicator comes close to the upper-left corner of the
plot. This means that a large gain in sensitivity is available
without much specificity loss.

A poor indicator lies closer to a 45-degree line in the plot,
indicating that sensitivity gain and specificity loss occur at
similar rates.

A good indicator comes close to the upper-left corner of the
plot. This means that a large gain in sensitivity is available
without much specificity loss.

A poor indicator lies closer to a 45-degree line in the plot,
indicating that sensitivity gain and specificity loss occur at
similar rates.

Where to set the probability cutoff depends on things like the
cost of false negatives and false positives.

For example, two HIV tests were developed:
•An inexpensive first pass with high sensitivity and poor
specificity

•An expensive follow-on with high sensitivity and high
specificity

Where to set the probability cutoff depends on things like the
cost of false negatives and false positives.

For example, two HIV tests were developed:
•An inexpensive first pass with high sensitivity and poor
specificity

•An expensive follow-on with high sensitivity and high
specificity

6

11® Version 1.1
3/01 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

Using ROC Curves

Se
ns

iti
vi

ty
 (%

)

0

50

100

500
Specificity Loss (%)

Q: What is the change in
specificity loss when
moving from a sensitivity
of 75% to 90% for this
indicator?

A: About 25%.

Q: What is the change in
specificity loss when
moving from a sensitivity
of 75% to 90% for this
indicator?

A: About 25%.

If we increase the sensitivity, what will the increase in false
positive cases (associated with greater specificity loss) cost
the system?

If we increase the sensitivity, what will the increase in false
positive cases (associated with greater specificity loss) cost
the system?

12® Version 1.1
3/01 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

Using ROC Curves

Like human diseases, most problems in product quality
affect only a small proportion of the base population.

An increase in sensitivity of a certain percent (say 15%) will
cause some additional specificity loss (say 25%).

Since the negative population is so much larger than the
positive population, an additional 20% false positives is a
large number compared to additional true positives, and
may burden the system heavily.

Like human diseases, most problems in product quality
affect only a small proportion of the base population.

An increase in sensitivity of a certain percent (say 15%) will
cause some additional specificity loss (say 25%).

Since the negative population is so much larger than the
positive population, an additional 20% false positives is a
large number compared to additional true positives, and
may burden the system heavily.

True
Population

N=1000,
100 Positive
900 Negative

75% Sensitive,
5% Spec. Loss

75 pos. cases,
45 false pos.

90% Sensitive (+15%),
30% Spec. Loss (+25%)

95 pos. cases (+15),
270 false pos. (+225)

15 more positive cases found, but at what price?

7

13® Version 1.1
3/01 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

Implications for Product Quality

•Are the indicators used to measure product health known to
be associated with customer and end-user quality?

•Which indicators are the best predictors? How do we know?

•Are the indicators evaluated for predictive validity on a
regular basis?

•How are new indicators located and deployed?

•Are there combinations of indicators that are more powerful
than individual ones?

•Does the experience of a Quality Assurance Engineer,
Project Manager, etc. contribute to (or even outweigh) the
power of indicators?

•Are the indicators used to measure product health known to
be associated with customer and end-user quality?

•Which indicators are the best predictors? How do we know?

•Are the indicators evaluated for predictive validity on a
regular basis?

•How are new indicators located and deployed?

•Are there combinations of indicators that are more powerful
than individual ones?

•Does the experience of a Quality Assurance Engineer,
Project Manager, etc. contribute to (or even outweigh) the
power of indicators?

A Few Tough Questions

14® Version 1.1
3/01 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

Implications for Product Quality

Imagine a world where:

•A model with high sensitivity and low specificity loss is used
early and often in the product lifecycle to predict the need for
enhanced quality monitoring, quality assurance, or project
management.

•The model is not only proven accurate, but is re-evaluated
periodically and adjusted for optimum performance.

•This performance adjustment is made based on a ROC
Curve or similar data-driven device so that the expected
effects of the adjustment are known before the fact.

•The quest for new indicators is ongoing, and indicators are
added based on known predictive validity.

•A model with high sensitivity and low specificity loss is used
early and often in the product lifecycle to predict the need for
enhanced quality monitoring, quality assurance, or project
management.

•The model is not only proven accurate, but is re-evaluated
periodically and adjusted for optimum performance.

•This performance adjustment is made based on a ROC
Curve or similar data-driven device so that the expected
effects of the adjustment are known before the fact.

•The quest for new indicators is ongoing, and indicators are
added based on known predictive validity.

8

15® Version 1.1
3/01 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

Product Triage Criteria

Trauma Triage Criteria are broken into 4 categories:
•Physiology – Vital signs & alertness problems
• Injury Anatomy – Burns, longbone fractures,
paralysis, and other types of dangerous & life-
threatening injury

• Injury Mechanism – Falls > 20 feet, vehicle rollover,
high-energy transfer, etc.

•Co-Morbid Factors – Pregnancy, age < 12 or > 60,
hostile environmental conditions, etc.

Trauma Triage Criteria are broken into 4 categories:
•Physiology – Vital signs & alertness problems
• Injury Anatomy – Burns, longbone fractures,
paralysis, and other types of dangerous & life-
threatening injury

• Injury Mechanism – Falls > 20 feet, vehicle rollover,
high-energy transfer, etc.

•Co-Morbid Factors – Pregnancy, age < 12 or > 60,
hostile environmental conditions, etc.

What are the parallel conditions in product development?

16® Version 1.1
3/01 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

Product Triage Criteria

•Product “Physiology”: Team size, product size, estimated
project length, total budget, budget expenditure rate, etc.

•“Injury” Anatomy: Schedule slippage, change in scope,
significant rework, project restart, missed milestone, loss of
sponsorship, excessive turnover, etc.

•“Injury” Mechanism: Market changes, unrealistic estimates,
inadequate requirements engineering, uncontrolled
baselines, & other poor engineering practices

•Co-Morbid Factors: Development in multiple locations or
cultures, complex products, inexperienced team, inadequate
stakeholder access, green business, multi-tasked resources,
etc.

•Product “Physiology”: Team size, product size, estimated
project length, total budget, budget expenditure rate, etc.

•“Injury” Anatomy: Schedule slippage, change in scope,
significant rework, project restart, missed milestone, loss of
sponsorship, excessive turnover, etc.

•“Injury” Mechanism: Market changes, unrealistic estimates,
inadequate requirements engineering, uncontrolled
baselines, & other poor engineering practices

•Co-Morbid Factors: Development in multiple locations or
cultures, complex products, inexperienced team, inadequate
stakeholder access, green business, multi-tasked resources,
etc.

Possible Parallels

9

17® Version 1.1
3/01 Copyright © 2000 Intel Corporation. No part of this presentation

may be copied without the written permission of Intel Corporation.

Creating a Model

1. Develop a list of candidate Product Triage Criteria.
2. Define precisely what is meant by ‘bad outcome’ –

cancelled project, late by x%, overbudget, etc.
3. Understand the costs involved (tests, false positives,

and false negatives) in order to make a good model.
4. Measure the ability of the candidate criteria to predict

products that are at risk of a ‘bad outcome’
5. Develop and tune a predictive model based on costs,

acceptable sensitivity, and acceptable specificity loss.
6. Pilot and deploy the model, adjusting as needed.
7. Maintain, re-evaluate, and tune the model over time

with new data.

1. Develop a list of candidate Product Triage Criteria.
2. Define precisely what is meant by ‘bad outcome’ –

cancelled project, late by x%, overbudget, etc.
3. Understand the costs involved (tests, false positives,

and false negatives) in order to make a good model.
4. Measure the ability of the candidate criteria to predict

products that are at risk of a ‘bad outcome’
5. Develop and tune a predictive model based on costs,

acceptable sensitivity, and acceptable specificity loss.
6. Pilot and deploy the model, adjusting as needed.
7. Maintain, re-evaluate, and tune the model over time

with new data.

Product Triage:

A “Medical” Approach to Predicting and Monitoring
End-Product Quality

Erik Simmons
Intel Corporation
JF1-46
2111 NE 25th Ave.
Hillsboro, OR 97214-5961
erik.simmons@intel.com

Version 1.0, 03/29/01

Prepared for Quality Week 2001

Key Words: Product Quality; Metrics; Leading Indicators; Risk

Author Biography
Erik Simmons has 15 years experience in multiple aspects of software and quality engineering.
Erik currently works as Platform Quality Engineer in the Platform Quality Methods group, part of the
Corporate Quality Network at Intel Corporation. He is responsible for Requirements Engineering
practices at Intel, and lends support to several other corporate software and product quality initiatives.
Erik is a member of the Pacific Northwest Software Quality Conference Board of Directors. He holds a
Masters degree in mathematical modeling and a Bachelors degree in applied mathematics from
Humboldt State University in California.

Abstract
The medical field of trauma care provides interesting and valuable metaphors for product quality. By
adapting some of the tools and concepts used within trauma care to product quality rather than patient
outcome, a new and disciplined approach to predicting and monitoring product quality emerges. As in
trauma care, the decision to render specialized care and interventions in product triage is governed by
the use of triage criteria. These criteria are binary conditions that are known through analysis and
studies to be correlated with poor outcomes and the need for enhanced care. Sensitivity and specificity
are defined and used to quantify the performance of indicators. Receiver Operating Characteristic (ROC)
Curves are introduced as a very good way to quantify the predictive power and cost of a system of
indicators. Parallels between trauma triage and product development are presented and explored. A
process for developing a set of product triage criteria is given.

mailto:erik.simmons@intel.com

Introduction
Motor vehicle crashes are the leading cause of death in the United States among children and
young adults 5 to 27 years of age, and crashes ended more than 41,000 lives overall in the US in
1999 [NHTSA99]. More than three million people were injured in collisions during that same
period. Aside from motor vehicles, thousands more people die each year from falls, burns,
intentional violence, and other sources of injury.

Trauma care began on the battlefield where severe injury is common, and rapid, effective
treatment is essential. The practices and techniques have been refined and extended over time,
and many states now have trauma systems established to deal with the challenges posed by
traumatic injuries.

Differentiated care for victims of serious injury within trauma systems has been demonstrated to
lead to improved outcomes and reduced mortality. Patients with minor injuries tend to do well
regardless of the level of treatment rendered, but severely injured patients require treatment in
specialized centers containing skilled specialists, enhanced equipment, and advanced techniques
to reduce the risk of death and long-term disability. Beyond improved outcomes, trauma centers
also shorten the recovery time of patients.

As part of systematized trauma care, Emergency Medical Technicians (EMTs) arriving on the
scene assess the condition of the victims using triage. Triage is the process of prioritizing
treatment to patients based on the severity of the presenting symptoms. EMTs use a set of triage
criteria to perform an assessment of observable or easily measurable risk factors known to be
associated with the need for treatment within a trauma center. Although this assessment must be
done very rapidly, the accuracy of the system is impressive. During a study performed in the state
of Oregon in 1995, 87% of the patients that needed trauma system care were correctly entered
into the system by EMTs using a combination of the triage criteria and their experience
[Simmons95].

New product development is commonly a risky endeavor, judging by the number of high-profile
failures that continue to occur – especially in the field of software engineering. Trauma triage
provides some interesting insights into how risk for failure might be measured early, quickly, and
accurately. Before these insights can be explored, a few concepts need to be defined and
discussed.

Measures, Metrics, and Indicators
Though they are sometimes used interchangeably, the terms measure, metric, and indicator are
all distinct. Good definitions are provided in sources like [Schulmeyer98]:

• A measure establishes the “extent, dimensions, capacity, etc. of anything, especially as
determined by a standard”

• A metric is a typically a composite of two or more measures
• An indicator is the result of a comparison of a measure or metric with a baseline quantity

or expected result

For example,

Measures: Number of software failures, time
Metric: Mean time between failures (MTBF)
Indicator: MTBF < 200 hours

Meaningful decisions are made from metrics through indicators. There are two major categories
of indicators: sentinel and rate based. Sentinel indicators are triggered by any occurrence of the
condition, while rate-based indicators are triggered when a metric falls outside of established
limits. For example, trauma hospitals often have indicators like the following:

• Sentinel indicator: Any death occurring outside the Intensive Care Unit (every one is
reviewed)

• Rate-based indicator: Average on-scene time of more than 10 minutes before
patient transport (procedures are reviewed when the rate is exceeded in any review
period)

Most indicators are not definitive in demonstrating a problem or condition, but instead define
levels of metrics that are associated with that problem or condition (that is, they indicate either
healthy or unhealthy conditions, but prove nothing). A “normal” temperature or blood pressure
reading indicates a healthy condition, while a high temperature or blood pressure reading is
associated with many different conditions, almost all unhealthy.

The level chosen for an indicator is sometimes set based on a goal or opinion rather than any
solid clinical evidence – a practice that can lead to serious problems. Indicators like those used in
trauma triage are proven associated with conditions requiring the capabilities of a trauma system
hospital. Many indicators have been created in the realm of software engineering, but only a few
good efforts to evaluate them have been made, most notably the COCOMO II model for creating
cost estimates [Boehm01]. The COCOMO II variables encompass risk reduction efforts and a
host of factors known to affect cost, and might serve as a point of departure for any efforts to
create a system as described in this paper. Other items from which to work include the published
risk taxonomies from various sources, and the program management work of the NASA Software
Engineering Laboratory (SEL).

Sensitivity and Specificity
The performance of an indicator can be objectively measured using sensitivity and specificity.
The sensitivity of an indicator or test is how well it detects the problem of interest – the
percentage of all true cases captured. The specificity of an indicator or test is how well it
excludes test subjects without the problem of interest – the percentage of all false cases rejected.

A perfect indicator would have 100% sensitivity and 100% specificity. However, in practice, such
indicators rarely if ever exist, and some specificity loss is accepted in order to achieve an
acceptable sensitivity. For example, in the previously cited study on trauma triage criteria
[Simmons95], the system performed at 87% sensitivity, and 83% specificity. The 17% specificity
loss represents patients entered into the trauma system unnecessarily (also called over triage).
These patients represent a significant cost to the system, as do the 13% of patients that were not
entered into the system but needed the care it provides (under triage). In this case, the price of
under triage can be human life, but tuning a system of indicators to improve sensitivity can have
serious side effects on the system, as demonstrated later.

Individual indicators are Boolean; that is, a condition is either present or absent or a rate is either
exceeded or not. This means that individual indicators have only a single sensitivity and a single
specificity (though there may be some diagnostic errors or similar factors at work). Using a
individual indicator, there are only two possible probabilities for a case being positive: zero or
one. In systems where many indicators are used together, such as the one used in trauma triage,
each indicator contributes to the sensitivity and specificity of the overall measurement. This
means that there are several possible probability levels for positive cases, each with a
corresponding sensitivity/specificity pair.

This is important because the various possible sensitivity/specificity pairs can be plotted together
in order to understand how the indicators work together as a system. This allows the optimal
probability for a case being positive, but more than that, it allows the system to be tuned based on
an understanding of what effect changing the probability threshold for positive cases will have.
This can be represented visually using Receiver Operating Characteristic (ROC) Curves.

ROC Curves
ROC Curves originated in electronics to plot the signal to noise ratio of receivers, but since an
indicator or indicator system seeks to separate signal (positive cases) from noise (negative
cases), they work well in this arena also [Hanley82]. A ROC Curve contains sensitivity plotted
against specificity loss (1-specificity) for all possible probabilities for positive cases within a given
indicator system. Simplified example ROC Curve data are shown in Table 1.

Table 1

Probability Cutoff for
Positive Cases

Resulting
Sensitivity

Resulting
Specificity

Loss
90% 15% 5%
75% 50% 15%
50% 75% 25%
25% 89% 35%
10% 93% 95%

In this data, the “sweet spot” is located at 25% probability of occurrence, which yields 89%
sensitivity with 35% specificity loss. Note that decreasing the threshold probability to 10% does
increase sensitivity to 93%, but at the cost of increasing specificity loss to 95%. This is akin to a
system that flags almost every case as positive, locating all but 7% of the positive cases but also
taking in all but 5% of the negative cases. In this example, there is a practical limit to what the
indicators can do without exorbitant cost to the system.

Figure 1 shows two ROC Curves. In this example, the curve represented by the upper solid line
represents a good indicator system like the one in Table 1, and the one represented by the
middle dashed line represents a poor indicator system. The diagonal line represents a system
with no discrimination power at all – that is, increases in sensitivity are matched with equal loss in

specificity
.

Figure 1

S
en

si
tiv

ity
 (

%
)

Specificity Loss (%)

0

50

100

100500

Good Indicator
Poor Indicator
No Discrimination

S
en

si
tiv

ity
 (

%
)

Specificity Loss (%)

0

50

100

100500

Good Indicator
Poor Indicator
No Discrimination

The closer that a ROC Curve gets to a diagonal line, the worse the corresponding indicator
system. The more the ROC Curve deviates from the diagonal towards the upper left corner of the
plot, the greater the sensitivity gain available for a small specificity loss.

Once the sensitivity/specificity data have been plotted, the question of what threshold probability
to use can be answered. The decision is usually made based on several factors, including the
cost of diagnostics associated with the indicators, the cost of false negatives, and the cost of false
positives. For example, consider a situation where there are two tests used as indicators of the
same condition. The first test is inexpensive, highly sensitive, but also has a high false positive
rate. The second test is expensive, highly sensitive, and highly specific to the condition. Under
these conditions, the first test might be used as an initial screen, followed by the more expensive
but more accurate test performed on just the positive population from the first test.

Tuning Indicator Systems and the Cost of Specificity Loss
Like human diseases, most problems with product quality affect only a small percentage of the
total population. While sensitivity is very important, specificity loss is often overlooked (at least at
first) when designing and tuning indicator systems. Suppose that increasing the sensitivity of an
indicator system by 15% from 75% to 90% (through adjusting the threshold probability of a
positive case) results in a specificity loss of 25% from 5% to 30%. This sounds OK on the
surface, but as Table 2 shows, the effects are startling when the true positive population makes
up only 10% of the total:

Table 2

Before: After:

True Population
N=1000

75% Sensitivity
5% Specificity loss

90% Sensitivity (+15%)
30% Specificity loss (+25%)

100 positive
900 negative

75 positive cases found
45 false positives

90 positive cases found (+15)
270 false positives (+225)

In this example, an additional 15 positive cases were located, but at the cost of 225 new false
positives! This would overwhelm a quality organization tasked with deeper diagnosis, monitoring,
or intervention. A better test or indicator system created to identify the true at-risk population must
be found.

Product Triage
Trauma triage is based on several categories of indicators. Though there are variations between
the indicator sets used in different trauma systems, the set used in Oregon is typical and is given
in Table 3.

Table 3

Group Criterion Description
1* Systolic blood pressure < 90 mm Hg
2* Respiratory rate < 10 or > 29 per minute

Physiology

3* Glasgow Coma Scale < 13
4* Penetrating wound mid-thigh to head
5* Burns to more than 15% of total body surface, or to face, feet, hands,

or genitalia (in conjunction with other injuries)
6* Amputation proximal wrist or ankle

Injury
Anatomy

7* Spinal cord injury or paralysis

8* Flail chest
9* Two or more obvious proximal long-bone fractures
10* Death of same car occupant
11* Ejection from an enclosed passenger space
12* Complex extrication lasting more than 20 minutes
13 Fall of 20 feet or more
14 Pedestrian hit at 20 mph or more or thrown at least 15 feet
15 Vehicle rollover
16 Motorcycle, ATV, or bicycle crash

Mechanism
of Injury

17 Significant impact or intrusion to passenger space
18 Age < 12 or > 60
19 Hostile environment (e.g., extreme heat or cold)
20 Medical illness (e.g., chronic lung diseases, heart failure)
21 Presence of intoxicants

Co-morbid
Factors

22 Pregnancy
* Mandatory system entry for these criteria; for all others system entry is at EMT discretion.

Notice that the triage criteria are broken into four categories: physiology, injury anatomy, injury
mechanism, and co-morbid conditions (complicating factors). What parallels can we find to these
criteria within product development?

Physiology
These criteria represent the patient’s physiology – the ‘vital signs’. The vital signs of a product
development effort might consist of items like:

• Development team size
• Product size
• Project length
• Total budget
• Budget expenditure rate

Injury Anatomy
These criteria describe the visible signs of the underlying injury. Visible signs of problems for
product development include:

• Schedule slips
• Scope changes
• Significant rework
• Project restart
• Missed milestones
• Loss of executive sponsorship
• Excessive turnover

Injury Mechanism
Certain mechanisms are known to be associated with a likelihood of severe injury. Some well-
known injury mechanisms for product development efforts are:

• Changing market conditions or stakeholder needs
• Inadequate requirements engineering
• Pressured or otherwise unrealistic estimates (or no estimates at all)
• Uncontrolled baselines
• Other inadequate software engineering processes or practices

Co-morbid Factors
While not injury causes or symptoms themselves, these factors can exacerbate or complicate
injuries. For product development efforts, such factors include:

• Development in multiple locations or cultures

• Highly complex products
• Inexperienced team
• Insufficient stakeholder access
• Multitasking resources on more than one project
• Lack of product domain experience

These categories represent new ways of thinking about product risk. In triage, the emphasis is on
early, predictive risk assessment. Using the results, product development efforts could be entered
into a kind of “trauma system” offering differentiated care as indicated by the project’s symptoms.

Imagine a world where:

• A model with excellent sensitivity and low specificity loss is used early and often in the
product lifecycle to predict the need for enhanced quality monitoring, quality assurance,
project management, or similar activity during development.

• The model is not only proven accurate, but is re-evaluated periodically and adjusted for
optimum performance.

• This performance adjustment is made based on a ROC Curve or similar data-driven
device so that the expected effects of the adjustment are known before the fact.

• The quest for new and improved indicators is ongoing, and indicators are added based
on known predictive validity.

While establishing such a vision will not be simple, the process to create the system is
straightforward:

1. Develop a list of candidate Product Triage Criteria.
2. Define precisely what is meant by ‘bad outcome’ – cancelled project, late by x%, over

budget, etc.
3. Understand the costs involved (tests, false positives, and false negatives) in order to

make a good model.
4. Measure the ability of the candidate criteria to predict products that are at risk (as defined

in step 2) and need enhanced monitoring, management, or other intervention1.
5. Develop and tune a predictive model based on costs, acceptable sensitivity, and

acceptable specificity loss.
6. Pilot and deploy the model, adjusting it with each experience.
7. Maintain, re-evaluate, and tune the model over time with new data.

References

NHTSA99 Traffic Safety Facts 1999, National Highway Traffic Safety Administration

DOT document HS 809 092
Simmons95 Simmons, Erik, et al, Paramedic Injury Severity Perception Can Aid Trauma

Triage, Annals of Emergency Medicine 26:4, October 1995
Hanley82 Hanley, J.A., and McNeil, B.J., The Meaning and Use of the Area Under a

Receiver Operating Characteristic (ROC) Curve , Radiology 1982; 143:29-
36

1 Logistic regression, classification and regression trees, and other statistical techniques can be
used for this step, depending on the nature of the indicator data.

QW2001 Paper 6A1

Mr. Steve Whitchurch
(Mentor Graphics Corp.)

Trials and Tribulations Of Testing a Java/C++ Hybrid
Application

Key Points

What are the issues testing a C++ / Jave Hybrid Application?●

Low tech methods to achieve a high quality product.●

Using Java to test a Java GUI.●

Presentation Abstract

My paper is about a project that was to build a viewer (Streamview) that would
take a GDSII (Graphical Design Data) Stream File as input, and display it using as
little system memory as possible, and as fast as possible. GDSII design files can be
Giga Bytes in size, and use a lot of system resources. The underlying code would
be written in C++, while the user interface would be written in Java. These two
layers would then communicate using the JNI. This combination of C++, Java, and
the complexities of an application like this, generated a whole lot of questions on
how to test such an application. This paper will talk about some of the issues, and
how as a team, we solved them. The paper addresses the following areas:
1. QA & Developemnt Roles.
2. C++/Java Testing Issues.
3. Test Automation Tools.
4. Project Documentation.
5. Problem Reporting within the Project.
6. Alpha/Beta Tetsing.
7. Conclusion/Future Work.

About the Author

Steve Whitchurch has been in the Software QA arena for 17 years. During that
time he has worked at Intel, Mentor Graphics, Summet Design, Tektronics, and is
currently the lead QA Engineer for a new product line in the Custom IC Devision
of Mentor Graphics. Steve has been involved in testing everything from Real Time
Operation System Software, Vidio Editing and Special Effect Software, to
Electronic Design Automation Software. Steve has also been active outside of the
work environment as a Speaker at PNSQC and STAR. Steve was also the creator
and publisher of the Software QA Magazine (now known as Software Testing &

Quality Engineering Magazine, published by SQE). Steve as writes for the
QQ/Testing Web Site, Sticky Minds.

Trials and Tribulations of
Testing a Java/C++ Hybrid

Application

By
Steve Whitchurch

Topics

• The StreamView Project
• Future Plans
• Current Status

In The Beginning

• Proof of Concept Project
• One Senior Development Engineer
• One Senior QA Engineer

QA’s Role

• Test Planning
• Unit Testing (C++ Code)
• Test Coverage
• Design Feedback
• No Java Yet

StreamView Team

• Three Development Engineers
• Two QA Engineers

➤One Full Time QA Engineer
➤Two Half Time QA Engineers

New QA Tasks

• Traditional QA Roles
• Testing Tasks bubbled up to GUI

Level
• Customer Designs as Test Cases

Project Release Roles

• QA Lead All Testing Tasks
• Development Engineers Helped Test
• Customer Support Helped Test

Testing Issues

• Test the C++ Code
• Java Testing
• Cross-Platform Issues
• Testing Tools

Testing C++ Code

• Unit Testing
• Testing Through the JNI
• Inspections

➤Engineering Documentation

JAVA Testing

• JAVA Look and Feel Design
Guidelines
➤Sun Microsystems / Addison Wesley

• GUI Bloopers
➤ Jeff Johnson / Morgan Kaufmann

• Inspections
➤Engineering Documentation

• Testing Task List

Test Automation

• JavaSTAR
➤Sun Microsystems

• XRunner
➤Mercury Interactive

• QA Partner
➤Segue

Cross-Platform Issues

• Need to Test on Three Platforms
➤Linux

– Kernel Versions
➤Solaris
➤HPUX

• GUI Look and Feel

Testing Task List

• Low-Tech way to Automate Manual
Testing

• Easy Transition to Automated Test
Cases

• Focused Inspection of Functionality

Problem Reporting

• Paper System
• Email
• Low-Tech System
• Works Very Well with Small Teams

Future Plans

• Test Automation
• More Inspections

➤Engineering Documentation
➤Code

• Continue to Involve Others
➤Team Testing
➤Customer Support
➤Field Engineering

Two Test Tool Designs

• Intrusive
➤Hooks in the Application

• Non-Intrusive
➤ Java Reflection

Test Automation

• Java Test Tool
➤Simple Test Language
➤Easy to Use
➤Team Usage
➤Record / Playback
➤Test Management
➤Log File

Test Tool Language

• Comments
• Loops
• Snooze
• Easy to Edit
• Supports Functionality

Current Status

• Prototype Test Tools
➤ Intrusive
➤Non-Intrusive

• Stress Testing Current Release
• Development Using Test Tool

Good Info Sources

• Java Look and Feel Design Guidelines
➤Sun Microsystems / Addison Wesley

• GUI Bloopers
➤ Jeff Johnson / Morgan Kaufmann

• Sun Java Site
➤www.javasoft.com

Trials and Tribulations of Testing a
Java/C++ Hybrid Application

by
Steve Whitchurch

Mentor Graphics, Inc.
Email: steve_whitchurch@mentorg.com

503-685-7945

Abstract
The project was to build a viewer (StreamView) that would take a GDSII (Graphical
Design Data) Stream File as input, and display it using as little system memory as
possible, and as fast as possible. GDSII design files can be Giga Bytes in size, and use a
lot of system resources. The underlying code would be written in C++, while the user
interface would be written in Java. These two layers would then communicate using the
JNI.
This combination of C++, Java, and the complexities of an application like this,
generated a whole lot of questions on how, to test such an application. This paper will
talk about some of the issues, and how as a team, we solved them.

About the Author
Steve Whitchurch has been in the Software QA arena for 17 years. During that time he
has worked at Intel, Mentor Graphics, Summit Design, Tektronics, and is currently the
lead QA Engineer for a new product line in the Custom IC Division of Mentor Graphics.
Steve has been involved in testing everything from Real Time Operating System
Software, Video Editing and Special Effects Software, to Electronic Design Automation
Software. Steve has also been active outside of the work environment as a Speaker at
PNSQC and STAR. Steve was the creator and publisher of the Software QA Magazine
(now known as Software Testing & Quality Engineering Magazine, published by SQE).
Steve was also involved in starting the Software Association of OregonÕs QA Special
Interest Group.

QA & Development Roles
As with any new product, StreamView started life as a proof of concept project. The team
consisted of two engineers. A very senior Development Engineer, and a senior QA
Engineer. For most proof of concept projects, itÕs very unusual for management to
assign a QA Engineer to a project while itÕs in the prototype phase.

While in the proof of concept/prototype phase, QAÕs role was to perform mostly unit
testing. These unit tests were written in C++, as the Java layer was not yet part of the
project.

As the project moved from a proof of concept project to a real product project, more
people were added to the team. The additions included a GUI Development Engineer, a
Middleware Development Engineer, and two part time QA Engineers.

As the project made this transition, most of the QA tasks bubbled up to the GUI layer, as
well they should have. With the Development Engineers now focusing on more of the
unit testing, QAÕs tasks needed to focus not only on the wellness of the application, but
on the way a user would use the application.

In the case of StreamView, the user test cases were a variety of differing GDSII Stream
Files (Customer Designs). These Stream Files would prove to be very valuable during the
testing phases of the project., Even with the transition of QA to a more traditional role,
there was still some unit testing being performed by QA. This testing was now assigned
to a new collage grad that, long term, would move from QA to Development. This was a
very good fit for Unit Testing, and the new Engineer.

At the start of the project, it made sense to have a QA Engineer take on the role of Unit
Tester. It gave QA the opportunity to learn the application, and to have input into the
design process. It also made sense to move the Unit Testing responsibility to a new
Development candidate later in the project. This was a win-win opportunity for the team
and for the new Development Engineer.

As the application moved closer to a release date, some of the Development Engineers
performed testing tasks. Roles were once again changed to fit the needs of the project.
Everyone on the project wore different hats at different times. Customer Support was also
asked to be involved in the testing cycles. Again, this was a win-win opportunity for the
core team and for Customer Support.

When assigning roles, donÕt just assign roles based on preconceptions such as "QA
Engineers only test applications at a high level", "Development Engineers donÕt test",
etc. Each member of the team can have a positive impact at all levels of the project. In
fact, a sign of a well functioning team, is where all team members participate at all levels
of the project. We all have something to bring to the table. We should not be pigeon -
holed just because of our title.

C++/Java Testing Issues
The testing issues surrounding this seemingly simple application (simple from a
functionality point of view) were huge. The following is a small sample of questions that
were asked by QA:

• Are there any tools on the market to test a JAVA GUI?
• Can we get at all the underlying C++ functionality from the GUI?
• What about testing the C++ code standalone?
• What about testing the JNI layer?
• What about testing the IPC layer?
• If we are using a Beta version of Java, will this have any impact on the testing tools

we use?
• What Java Standard should we follow?
• How do we verify the graphics on the JPannel?

• What about tool tips? How do we validate them?
• What about on-line documentation? How do we test it?
• What about cross -platform dependencies?
• Will the Java GUI really look/act the same on a PC as it does on a Unix box?

A lot of these questions are common questions that should be asked of any
project/product that needs to be tested. So from that point of view, this project was not all
that unusual. But whenever you add more than one programming language, or more than
one supported platform, or more than one whatever, the level of testing complexity
increases. It's just a fact of life. Let's take a look at a couple of these issues close up.

What about testing the C++ code standalone?
We determined early in the project that we would realize a big benefit by testing the
application from the C++ side. This would help us flush out problems like memory
usage, database issues, function call problems, etc. This assumption proved to be correct.
There were a lot of problems found just by writing test cases in C++ that would exercise
the C++ application code standalone. You may say that this is just Unit testing, but that is
not true. In many cases our C++ tests would call the C++ code just like the Java user
interface would. An example; we had one test that checked the drawing functions that
were written in C++. This test used the JNI to make these drawing calls, and then created
a JPanel to display the graphics. This test was very useful in finding C++ functions that
had problems or that were missing functionality. A simple unit test would just exercise
one function at a very low level. What we had here was a kind of test harness for the C++
layer of the application. You could also call this level of testing API testing.

What Java Standard should we follow?
We used the Sun Java Look and Feel standard. As long as we followed this standard, we
could, for the most part, be assured that the GUI would look and run the same on any
supported Java platforms. Following this standard was very useful when questions came
up about a look and feel of the GUI. I would recommend this standard to anyone building
an application GUI in Java. The book is Java Look And Feel Design Guidelines,
Addison-Wesley, ISBN 0-201-61585-1.

How do we verify the graphics on the JPannel?
This was a big issue for us because our application is very graphics intensive. ThereÕs
always the old bit map method. But bit maps have all kinds of problems with platform
environmental issues. We did not choose this method.

We decided on two methods of verifying the drawing on the JPannel canvas. The first
was an automated way of verifying what we thought should be on the drawing canvas.
Since there is a one-to-one correlation between what is in the graphics database and what
is drawn on the canvas, we were able to check the contents of the database to verify the
contents of the drawing. We did this by writing out the GDS data and doing a compare
with the original design file. If the compare was good, then the translated data in the
database was good. And most likely the graphics were good. If the compare failed, then

we took a closer look at the graphics on the drawing canvas. Most of the time we found a
drawing problem by using this method.

However, this was only part of the answer. As our second method, we also needed to
visually check the drawing canvas. There could always be a translation problem between
what was in the data base and what was drawn on the canvas. Both these methods proved
to work quite well.

Since GDSII Design data can have millions of shapes in one file, visual checking
methods could be a nightmare. To help automate this testing, we created small GDSII
design files that focused on one type of shape. For example paths, we created a couple of
small design files that had every type of path possible, based on the GDSII Standard.

With any application that does some type of drawing, there is going to be some amount
of manual inspection of the data. I donÕt think there is any way around it.

What about testing the IPC layer?
StreamView has the ability to interface to a IC design debugging tool called Calibre-
RVE. The way these two applications talk is through an IPC socket. Calibre-RVE reads
in a list of design errors, the user selects one of these errors, and then Calibre-RVE sends
a message to StreamView to display and highlight the error on the GDSII design.

We tested this mechanism two ways. The first was by just using Calibre-RVE to send
commands to StreamView.

The second was an internal tool that would just send Calibre-RVE commands to
StreamView. This tool proved to be very valuable in debugging problems found. Any
time you're testing communications between two applications, it's very helpful to have a
test fixture that can simulate the communications between the applications.

What about cross platform dependencies?
Even though Java is supposed to be platform independent, we did find a couple of
platform dependencies. For the most part the Java GUI worked out well. The biggest
problem we had was with system fonts. Java has what is called "font.properties files" that
define the fonts used for the platform the application is running on. This does not always
work.

The other problem that we saw was with the different windowing environments you can
have on one platform. For Example, OpenwWindows and CDE in the SUN environment.
Sometimes Java would act different on OpenWindows than on CDE.

For the most part I was very happy with the way Java worked. If you follow the
guidelines in the Look-And-Feel book, most of the time the Java application will perform
the same on all supported platforms.

A good resource for the known Java bug and general information on Java can be found at
www.javasoft.com. You can find lots of useful information on this web site that can help
you test or develop a Java application.

What about tool tips?
All Tool Tips and on line documentation were tested manually by inspection. The Tool
Tips were included as part of the Testing. This proved to be a good way of verifying the
Tool Tips and on-line documentation.

Test Automation Tools
One of the problems facing the QA team was test automation. The GUI was based on
Java, the underlying code was C++, and the two talk via the JNI. How do you automate
this mess? The first step was to find a commercial tool that would fill our needs.

As StreamViews GUI became more robust, we decided to test more of the application
from the GUI, the Java side. There would still be some Unit Testing performed, and those
tests would be written mostly in C++.

We looked at three tools, JavaStar by Sun Microsystems, QA Partner by Segue, and
XRunner by Mercury Interactive. We needed a tool that would work with the latest
version of Java, would run on two platforms (to include a 3rd platform in the future), and
would be able to effectively test a graphical application. The only tool that fit these
requirements was JavaStar by Sun Microsystems. This tool was written in Java, so it
would run on any Java supported platform, and it would support the latest version of
Java. It did everything we wanted, with one problem. Part way through the project, I
received an email from JavaStar Customer Support that said, Sun was dropping the
development and support for JavaStar. Not a good day. This basically left us with no
testing tool to automate the testing of our new application. The other two tools (QA
Partner / XRunner) either did not support Java, or supported an older version of Java, or
did not support the platform we were testing on. ThatÕs one of the problems you have
when your application is using cutting edge technology.

So now what? In comes the Testing Task List, a pure paper way to automate your testing,
and what I consider the most valuable tool any QA/Test Engineer can use. I know most
everyone thinks of test automation as a push-button set of tests that run on their own, but
that is not the only reason we automate. One of the biggest reasons is repeatable tests.
The Testing Task List will give you repeatable test cases. ItÕs also a very good source to
drive those push-button test cases when youÕre ready to automate.

Functionality Test Information Completed
View Panel View Panel Functions
 Pan Functions
 View-All

 Icon (Left Side Palette) View-All Click Icon
 Tool Tip Check Tool Tip
 F1 (Help) Function Help
 Help Key Help Key Help
 Key Board View-All from Key

Board

 Ctrl-F View-All using Ctrl-F
 Pan-Up
 Icon (Left Side Palette) Pan-Up Click Icon
 Tool Tip Check Tool Tip
 F1 (Help) Function Help
 Help Key Help Key Help
 Key Board Pan-Up from Key

Board

 Up Arrow (Arrow Key Pad) Pan-Up using Up-
Arrow key on arrow
key pad.

 Page Up Pan-Up using Page-
Up Key

As you can see from this example, the Testing Task List is very detailed, and simple to
execute. This tool can be given to any team member and you will get the very same level
of testing from everyone that uses it. It's a very effective and low-tech way to automate
testing tasks.

This is what we ended up using for our test automation for the first release of
StreamView. We found a lot of bugs using this method. It also provided us with
repeatable test cases that could be handed to anyone on the team to perform.

If you are not using something like the Testing Task List, to drive your push-button
automated tests, or to drive your manual testing, you are missing the boat as far as having
good, comprehensive test cases.

Project Documentation
All our project documentation was written in html. This allowed us to have a web based
version of all our project documents on line for anyone to read/review anytime.

This documentation consisted of the following:
1. Project Plan
2. Development Task List. This worked very well. At any time you could see the status of
the project. Again a very simple, low tech way to communicate the project status. This
task list also had the QA tasks listed.
3. Project Test Plan

4. Testing Task List
5. Problem List

All documents, with the exception of the Project Plan, were living documents. They
changed as the project evolved.

One of the things I did as Lead QA was add text links from the Development Task List to
the Testing Task List. This way all the QA tasks had examples of what was being tested
and how. Anyone reading the test Development Task List could click the QA task link,
taking them to the testing Task List for that functionality being tested.

Problem Reporting within the Project
Mentor Graphics has a commercial Problem Tracking System. We chose to not use it
early in the project. As a small team it made more sense to use an Email/Paper system
instead.

Our low-tech system consisted of email and a html document that was updated weekly, or
sometimes daily, depending on how frequently updates were needed. This system worked
very well for the team. Again, a very simple, low-tech solution to a problem.

The system worked like this: QA or Development would find a problem. That reporting
engineer would send out an email with info about the bug to a team mail group. The
engineer responsible for the code would then respond to the email. Once a week the Lead
QA Engineer would update the html document with that week's bugs. The responsible
engineer would then respond to the bug as fixed by changing a status field in the
document.

When the project hit itÕs first major milestone, Code Freeze, the team did switch over to
MentorÕs in house Problem Tracking System. By doing this we could officially track
bugs. This was important for project management to be effective.

Alpha/Beta Testing
The build person for the project was the lead QA Engineer. This was a carry over from
the early part of the project. This worked very well until we got closer to the release date,
then this duty was transferred to the group's build engineer. Just like the bug reporting
system, there comes a time when a project must conform to the companyÕs standards
and/or processes. The build person would build and distribute the Alpha/Beta builds.

The request for new Alpha/Beta releases always came from Marketing. The Marketing
group was the interface between Engineering and the Alpha/Beta customers.

Conclusion/Future Work
Something that can be learned from this project is, that you donÕt need an arsenal of
expensive tools to produce a high quality product. We used things like the Testing Task
List (a very valuable tool), a paper/email form of a problem tracking system, and good

communications among team members, all low-tech methods of software development
that proved to be very effective.

When putting together a project team, look for people that can work well together. This is
probably the most important and most forgotten aspect of project management. A well
oiled team with a good spec and the right skill levels can produce a high quality product.
The StreamView Team worked very well together.

If you are testing or developing an application in Java, there are all kinds of on-line and
book form resources available. There is also a local group called the Portland Java Users
Group www.solidware.com/pjug. And donÕt forget the Sun Java site www.javasoft.com.

One of the future issues that IÕm looking at, is test automation. There comes a time that
you just canÕt keep up with the testing task without test automation. One of the problems
that we have, and will face constantly as we are developing new applications using
cutting edge technology, is that commercial test tools will not be able to keep up. So
whatÕs the answer?

IÕm in the process of looking at two methods of writing a test driver using the Java
language. By using Java to drive the testing of a Java GUI, I have all the power of the
Java language to help with my testing effort.

Intrusive Test Tool
The first test-driver uses a custom script language that enables me to write repeatable test
cases. An example of this test scripting language:

// Sample Test Case
logfile testlogfile
load design.gds
push viewall
push panup -t
close
exit

This test script creates a test log file named “testlogfile, it then loads a GDSII design
called design.gds, it then clicks the View All icon on the StreamView View Panel, it then
get the Tool Tip for the Pan Up icon on the StreamView View Panel, it then closes the
design, and then exits the application. While this test is running, all the test results are
written to the test log file.

The Java code to do this is very simple. If you take advantage of the Java language all
you need is a hook in the application under test that gives you a handle to (in this case a
JButton) to ViewAll and PanUp. The test driver code would look something like this:

To push the ViewAll Icon:

getViewAll().doClick();

do.Click() is a JButton method that presses the JButton on the GUI. The result of the
button press is the call to the action listener associated with the JButton.

To get the Tool Tip for the Pan Up Icon:

logPrint.println(getPanUp().getToolTipText());

getToolTipText() returns the Tool Tip text for the associated JButton. In this example,
the result is sent to the test log file.

One other feature that I have added to my test-driver language is the concept of looping.
This allows me to write test scripts that can repeat a set of test commands n times. An
example of this looping feature is:

// Sample Test Case
logfile testlogfile
load design.gds
// Loop 4 times
loop 4
{
push viewall
push panup -t
}
close
exit

This will loop through the push viewall and push panup -t 4 times then close and exit the
StreamView.

I have also added C like comments to my test script language.

Non-Intrusive Test Tool
The second test-driver uses Java reflection to connect to the application under test. This
method requires no hooks into the application.

At this point I have this test tool working with one of the Java demo/example applications
that comes with the JDK (SimpleExample.java). The tool currently allows me to examine
and execute the application, as well as press buttons. This is all done without hooks into
the application.
The way the tool works, is by using Java Reflection to gain access to the main
constructor.
Once I have a handle to the main constructor, I can access methods, fields, contructors,
interface information, etc.

The information about the application can then be used to manipulate Java components.
This is a lot like what is happening in the first tool that I described. The two tools are
very similar in how they work once I have a handle to the objects that I want to test.

If this second non-intrusive method of testing Java continues to work out. I will add the
same test script language to help automate testing.

This is only a sample of what is possible using Java to test Java. My plans are to continue
to explore the possibilities. The prototypes of my test-drivers has shown a lot of promise.

I think with one of these new test-drivers, and a good test coverage tool. we are well on
our way to a good test automation solution for the StreamView project.

QW2001 Paper 6A2

Mr. Juris Borzovs & Mr. Martins
Gills

(Riga Information Technology Inst.)

Software Testing in Latvia: Lessons
Learned

Key Points

Academic research programmes on software testing have led Latvia's IT sector to large
scale awareness of testing and quality assurance resulting in adeqate standard
development and systematic QA practices at largest IT companies.

●

Special role in testing plays the independence of software test team - both inside the
project project and as an external assesor.

●

Experience of training for testers is shown, pointing to the requirements to select a good
team for testing.

●

Presentation Abstract

Software testing is an integral part of software development process and one of the
most efficient quality assurance methods. This presentation reflects the main issues
of testing in Latvia’s IT industry: a brief look at the history, an analysis of current
day problems and lessons learned, and the vision for the next decade. The
experience has been gained from three largest local software companies - DATI,
SWH Technology and IT Alise.In Latvia, there is a strong scientific background in
the field of software testing. Early research was related to automatic construction
of test cases - both theoretical and practical approach. Courses on software testing
are included into undergraduate computer curricula of Latvian Universities for
more than a decade. Recent and current research in testing is related to software
test tools, universal symbolic interpretation, software process improvement (testing
issues), practical manual methods of software testing [1-6].A software
development as an industry began to develop approximately a decade ago when in
1991 Latvian software designers won a bid for tenders to set up an information
system for the social insurance of artists in the German state of Bremen. The work
was done successfully, and this early achievement confirmed the fact that Latvian
specialists are entirely competitive in Western markets. From year to year, the
volume of information technology service exports to the West has grown, and in
1998 Latvia’s two largest software producers - DATI and SWH Technology -
exported products worth a total of Ls 5.3 million, and in 1999 - Ls 7 million.

Initial approach was more ad hoc based, and the importance of testing was
underestimated. Currently the picture has considerably changed - early starters are
now the largest and the most experienced companies with ISO 9001 certified
quality systems. The aim to raise the quality criteria was motivated by competition

in IT market and by lessons from projects with unstable success. A considerable
evolution of quality requirements both from the suppliers and acquirers is
observable. The way towards unified approach in the software engineering was
supported by individuals who worked on adoption of IEEE standards for use in a
company DATI. As a result, a number of company IT standards were developed,
covering fields of software quality assurance, testing, specification, planning and
documentation. In parallel a large portion of IT terminology was developed. Most
of current Latvian National IT standards were approved in 1996, adopting DATI
internal standards.For couple of years in Latvia, major companies large business
software development, especially documentation, base on IEEE J-STD-016-1995
standard. Along with that, during product development, largest companies follow a
well defined life cycle model with defined processes (adoption of ISO/IEC 12207).

While over the past years systematically working on testing issues, these
companies have learned a number of lessons. They are:
1) Testing in the company could be organized both by means of a separate testing
institution such as laboratory or department, or by creating a small test team within
each project.
2) Testing should not be regarded as just another project activity. Testers should
have a background equal to system analyst or designer, plus a specific knowledge
of a software testing. As a result a system with a qualification levels for testing
professionals has been developed. Within a SWEPE (Software Engineering
Professional Education) project, a knowledge area for testing professionals is
undergoing definition phase [7].
3) Many software acquirers are poorly informed about testing. To avoid the project
failures one should educate a customer about the testing and quality assurance.
4) Well defined test process is the only way to achieve quality with minimal time
and staff resources.
5) Although test automation has considerably increased over the past couple of
years there is no evidence that it can replace the manual testing activities. Tools for
testing can give a strong support, but the test planning and design are almost purely
creative activities that do not undergo the automation. Tasks like GUI, user manual
testing, help or localization testing almost purely rely on manual testing effort. Just
like there is no software that writes the code (semantically), there is not one for test
creation.
6) A number of measurements should be made to estimate the efficiency of testing
and to check the hypothesis. For example, there has no evidence been found of
Pareto principle (where 20 percent source code contains 80 percent of problems
[8]) in porting projects.
7) Along with the overall awareness of software testing, the unsatisfied demand for
testers is becoming higher than for any other IT profession;

According to various studies, there is a shortfall of between 130,000 and 500,000
software specialists in the world right now, and the deficit may increase to some 1
million people over the course of the next 5-10 years [9-11]. Latvia’s vision for the
next decade is closely related to rapid development of IT industry. Rough
estimation shows extreme potential of the three Baltic states to become a major

software development and maintenance region able to employ up to 120 thousands
IT engineers and to export software and maintenance services. Latvian IT
companies, as a result of exporting their services, will reach turnover of Ls 4
billion each year, while the three Baltic States in total can reach a level of Ls 12
billion. Analyzing the software engineering activities that can be performed
remotely from the acquirer, the main ones are: design, coding, testing,
maintenance, reengineering and porting. Taking into account the overall increase
of the awareness of the role of quality assurance and independent testing, the
software testing is the IT industry sector to experience a rapid development.

About the Author

Mr. Juris Borzovs was born in 1950 in Finland. He graduated from the University
of Latvia (UL), Riga, Latvia in 1973, received his candidate of science degree from
the Institute of Mathematics, Belorussian Academy of Sciences, Minsk, Belarus in
1989, Dr. and Dr. habil. degrees from the UL in 1992 and 1999, both in computer
science. He was with the UL in 1973-1992. Now he is a Director with Riga
Information Technology Institute (RITI) and half-time Docent with the UL and
with Riga Technical University. Since 1992 he was the Head of Software Testing
Lab within RITI dealing with testing for industrial software projects. Mr. Borzovs
is a Member, Strategic Group, Coordinating Council, National Programme
"Informatics"; Chairman, IT Terminology Subcommittee, Terminology
Committee, Latvian Academy of Science; Vice Chairman, IT Standardization
Technical Committee; Member, Legislation Drafting Task Forces, Ministries of
Transport, Culture, Welfare; Invited Expert, Government Task Force on Millenium
Problem; Member, Swedish-Latvian IT Council, The Baltic Sea IT Fund,
Swedfund; President, Latvian Information Technology and Telecommunication
Association (LITTA); Founder and First President, Latvia Chapter, Information
Systems Audit and Control Association (ISACA); Vice President, Latvia Chapter,
International Federation for Automated Control (IFAC); Member, IEEE Computer
Society and IEEE Standards Association. He has published over 60 scientific
papers. His interests include software quality, software testing, software
engineering, software copyright, and terminology.Participated with presentation in
ICSTEST conference in Bonn, April 5-7, 2000.

Mr. Martins Gills received his MSc cum laude in Computer Science in 1999 from
University of Latvia. For several years he has been working in the testing field.
Currently he is a test team leader in Riga Information Technology Institute (RITI).
One of the most challenging projects he managed was CANON printers software
driver GUI testing comprised 18 natural languages and performed distantly. During
last two years, he mostly participated in year 2000 testing projects. His main
testing interests are related to test method efficiency. Participated with presentation
in SQM and ICSTEST conferences in Bonn, April 5-7, 2000.

1

Software Testing in Latvia:
Lessons Learned

Juris Borzovs, Martins Gills
Riga Information Technology Institute

QW 2001 conference. San Francisco, 29 May - 1 June 2001

2J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Where are we?
Riga, Latvia

San Francisco,
California

2

3J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Testing in Latvia: major publications (1)
• J.M.Barzdins, J.J.Bicevskis, A.A.Kalnins. Construction of Complete

Sample Systems for Correctness Testing._ In: Mathematical
Foundations of Computer Science, Berlin: Springer, 1975, pp. 1-12.

• J.M.Barzdin, J.J.Bicevskis, A.A.Kalninsh. Automatic Construction
of Complete Sample Systems for Program Testing._ In: Proc. IFIP
Congress, 1977, North-Holland, 1977, pp. 57-62.

• A.Auzins, J.Barzdins, J.Bicevskis, K.Cerans, A.Kalnins. Automatic
Construction of the Test Sets: Theoretical Approach._ In:
J.Barzdins, D.Bjorner (eds.) Lecture Notes in Computer Science:
Baltic Computer Science, No. 502, Springer-Verlag, 1991._ pp.286-
359.

• J.Bicevskis, J.Borzovs, U.Straujums, A.Zarins, E.F.Miller,jr. SMOTL -
A System to Construct Samples for Data Processing Program
Debugging._ IEEE Transactions on Software Engineering, vol. SE-5,
No.1, 1979, pp. 60-66.

4J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Testing in Latvia: major publications (2)

• J.Borzovs, A.Kalnins, I.Medvedis. Automatic Construction of Test
Sets: Practical Approach ._ In: J.Barzdins, D.Bjorner (eds.)
Lecture Notes in Computer Science: Baltic Computer Science, No.
502, Springer-Verlag, 1991._ pp.360-432.

• Z.Bicevska, J.Bicevskis, J.Borzovs. Regression Testing of
Software System Specifications and Computer Programs._
Proceedings of the 8th Software Quality Week, San Francisco,
1995, paper 5-T-1 (9 p)

• J.Borzovs, M.Gills, A.Adamsone, S.Linde, J.Plume. Software
Testing in Latvia: Lessons Learned. 1st International Conference
on Software Testing ICSTEST - Conference Proceedings. Bonn,
April 5-7, 2000. Track A, Paper 2. p 15.

3

5J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

IT in Latvia: a snapshot (1)

1991 - First international development project by Latvian
software designers to set up an information system in
the German state of Bremen. The successful result
gave the basis for the local software industry.

1991 - First professional test group in SW company.

1993 - First independent testing project outside SW company.
Customer - telecommunication company Lattelekom.

1996 - First independent testing project outside Latvia.
Customer - Canon Systems Management Europe
(UK).

6J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

IT in Latvia: a snapshot (2)

1999 - First ISO 9001 certification of Software Testing
Laboratory in country. Widespread Y2K testing.

2000 - Latvia's two largest software producers - DATI and
SWH Technology - exported development services
worth a total of over 15 million USD.

2001 - Up to 100 local companies are engaged in SW
development. Three major of them, DATI, SWH
Technology and IT Alise, employ more than 650 IT
professionals.

- 5 computer manufacturers and 7 software companies
in Latvia are ISO 9001 certified.

4

7J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Local IT standards: the origin

1993-1995 Leading IT company group launched the initiative
to examine internationally used software
engineering standards.

• Search for internationally recognized standards
• Assessment of the experience from IT projects
• Development of guidelines, standards and templates

Goals:

Output:
• Annotated List of industry standards
• IT terminology in Latvian
• Company standards, guidelines; mostly based on IEEE
• Changes in SW development process management

8J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

National IT standards
Most of Latvian National IT standards were approved in
1996, adopting company internal standards based on IEEE
standard family.

Areas covered:

• Software QA, configuration management, reviews and audits
• Testing, verification and validation
• Software documentation
• SW requirements specification, Operational concept description
• Guidelines for Software design descriptions
• Project management plans
• User documentation

5

9J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

IT standards: industry practice

For several years in Latvia, large business software
development, especially documentation part, is based
on IEEE J-STD-016-1995 Software development:
Acquirer-supplier agreement standard.

Main features:

• All software development project activities specified
• Major document templates given
• Includes guidance for tailoring to a certain project
• Built-in quality assurance mechanism

10J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Who performs testing? (1)

Project A Testing
laboratory /
department

. . .

Project Z

Project B

Testing function
is provided by a
separate testing
laboratory

Advantages: Pool of professional testers and
QA people, experts in certain business
areas, methodological support.

Disadvantages: Testing mostly impossible at
unit or integration level.

6

11J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Who performs testing? (2)

. . .

Project A

Testing
group Project B

Testing
group

Project Z

Testing
group

Each project has a small
testing group

Advantages: Testing at all levels,
high knowledge about
software under test.

Disadvantages: Reduced
independence, may not be
testing professionals but
rather programmers,
designers or analysts.

12J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Testing inside a project

preliminary
planning high level test exec.low level

test exec.
detailed
planning

regression
tests

test
specification

acceptance
tests

preliminary
planning

detailed
planning

test
specification

test execution

analysis,
reporting

Analysis,
specification Design Coding System testing

Preparation for
acceptance

Starts early.
Relaxed documentation:
• internal plan
• list of tests/test cases
• execution results
• problem reports

7

13J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Independent testing

preliminary
planning high level test exec.low level

test exec.
detailed
planning

regression
tests

test
specification

acceptance
tests

Analysis,
specification Design Coding System testing

Preparation for
acceptance

preliminary
planning

detailed
planning

test
specification

test execution

analysis,
reporting

Relatively late activity.
Defined documentation:
• Plan
• Test description
• Execution results, log
• Problem reports
• Test Report

14J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Test levels and performers

Test level Structural
tests

Functional
tests

Performed by

Unit testing + developers
Integration
testing

+ + developers

System testing + developers,
independent testers

Qualification
testing

+ developers,
independent testers

Acceptance
testing

+ customer,
independent testers

8

15J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Collaboration among the developers

Tester

Programmer

System analyst
/ designer

Problem reports

Problem reports

Requirements

Code

Requirements

16J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

What developers do expect?

• Fast integration into project scope
• Recommendation for QA and testing, adopted to local needs
• Problem/bug reports with competent evaluation of the cause

and consequences
• Introduction of test automation

Not recommended:

Too high abstraction from technological issues of
programming, focusing only on pure functionality checking.

9

17J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Tasks for the project test team

• Definition of test process
• Ensuring the developer testing and QA activities
• Independent evaluation of the product
• Preparation for user acceptance

Body of knowledge for individuals

• Basic concepts and definitions of testing
• Analysis of test levels
• Test techniques
• Test automation
• Test related measures

18J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Background of people in the team

• Long IT and SE experience
• University graduates, fresh programmers
• Temporary worked in non IT sphere
• Non software development experience

There is no distinct type of person that has come to testing.

But there is an evidence that person has to practice testing
work for at least one year prior to definitively feel his/her true
capabilities in testing. This time period is critical

10

19J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Tasks of tester
 SW development

activity
 Tasks for tester

 System analysis,
specification of
requirements

 Verify whether requirement specification and
other documents are suitable for testing.
 Plan the testing: its tasks and schedules.

 Design Plan in detail the tests: type, coverage.
 Make test descriptions.

 Coding Refine plans and test descriptions.
 Execute tests.
 Make automation and regression tests.

 Testing Thoroughly implement the system, installation
and documentation testing.
 Do regression testing.

 Prior to delivery
(preparation for the
acceptance)

 Check-up the corrections.
 Run the regression tests.

20J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Qualification levels of the tester
Level Tasks Required skills

1 Execution of previously
specified tests and other
tasks that do not require
special knowledge or
training

Computer usage skills - advanced used
level and ability to understand specified
tests.

 2 Tasks of 1st level +
Test description
according to system
documentation.

 Skills of 1st level +
Ability to analyze system documentation
and to write a testing documentation.

 3 Tasks of 2nd level +
Test planning and
managing of test team

 Skills of 2nd level +
Ability to identify required tests, skills in
team and resource management.

 4 Tasks of 3rd level +
Training of other testers
and development of
testing methods

 Skills of 3rd level +
Tutor skills and expert knowledge in
testing theory

11

21J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Training concerns
When schedules are pressing, the priorities can be set of what

first and what later can be taught.

Groups:
• New testers
• Existing testers
• Programmers expand their qualification

Components:

Lectures, workshops, sample problems,
guideline documents, software for training,
final test.

22J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Software for training

Sample - specially adopted cargo delivery accounting system:
• Small fully functional application with built-in defects
• Development and user documentation available
• Source available, if necessary

Tasks for trainees:
• to plan tests and to specify good test cases,
• to write documentation,
• to work with problem database

Aim - to simulate real testing process, system testing level

12

23J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Who fits best for testing?

• Anybody can be trained fast for basic activities
• Good testers are those who know well at least one non-IT

area (finance, technical, social, etc.)
• Testing itself is an art, but only sometimes testers should be

artists

Tester’s main task is to have a different look at development
activities.

Testing professional is a software engineer specialized in testing.

24J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Bad experience

Personnel issues:
• Bad programmer as tester
• Testing as temporary punishment
• "Very independent" testing - too distant from SE issues
• Self-narrowing of the tasks to pure execution

Plans versus reality:
• Developers - expect too much
• Testers - promise too much

13

25J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Career perspectives

Tester forever? - how long can person be involved in testing.

Options:
• Reaching different professional levels
• Becoming a QA professional
• Switching to programming or system analysis

The evolution of the SE itself makes the exact career
perspectives open. One has to diversify the tasks for each
individual.

Testers are not grave and problem-fault-focused people.
They can and they are creative personalities!

26J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Customer: QA awareness problems

Incomplete knowledge about
quality related activities within the
software development life-cycle

• identification,
• documentation,
• tractability,
• verification, validation,
• reviews, audits,
• testing,
• problem resolution
• ...

Problem: customers refuse to pay for testing activities
(assuming that product will be perfect).

Commonly asked customer questions are: What is testing?
Why is it necessary for the particular project? Why does it
cost so much?, etc.

14

27J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Educating the customer

How does the developer benefit from a well informed
and competent customer?

Main results:

• Appropriate testing strategy for the project

• Better collaboration between acquirer and supplier on
reporting and solving the problems

• Customers as testers
• high business domain competence
• acceptance as the main feasible testing activity

28J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Baltic States - emerging IT power
The goal for the next 10-20 years

The three Baltic States - a "second
IBM" - a unified "concern" with
120,000 highly qualified specialists.

• Baltic States - exporter of
software services

• Design and maintenance of
information systems and
software products - a
"trademark" for the Baltic
States

15

29J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Testing - perfect remote activity

Benefit from the time zone difference. America -Europe

San Francisco

6 p.m. code developed
11 p.m. good sleep
8-9 a.m. test results received
6 p.m. new code developed

…

Riga

4 a.m. night
9 a.m. code testing starts
6-7 p.m. test results delivered
4 a.m. night

…
Test results - overnight!

30J.Borzovs and M.Gills, 2001 Software Testing in Latvia: Lessons Learned

Questions?

Riga Information Technology Institute
Kuldigas iela 45
Riga, LV-1083
Latvia

http://www.riti.lv
e-mail: Juris.Borzovs@dati.lv

Martins.Gills@dati.lv

Contact:

1

Software Testing in Latvia: Lessons Learned

Juris Borzovs, Martins Gills

Riga Information Technology Institute
Kuldigas iela 45
Riga, LV-1083

Latvia

phone: +371-7611522
fax: +371-7619573

{juris.borzovs; martins.gills}@dati.lv

Abstract

Software testing is an integral part of software development process and one of the most
efficient quality assurance methods. This paper reflects the main issues of testing in Latvia’s
IT industry: a brief look at the history, an analysis of current day problems and lessons
learned, and the vision for the next decade. The experience has been gained from the largest
local software companies.

Historically, there have been numerous research studies made on software testing, and this
tradition has been integrated into quality assurance and testing principles of the local IT
companies. There are two main options how to organize testing for numerous projects
within a large enterprise - either by organizing this activity within the project, or by
assigning this task to internally independent testing laboratory. Tester's qualification
concerns, training and staff selection issues are analyzed.

Latvia's IT industry commonly with neighbor Baltic countries has an orientation towards
countries with a high demand for IT solutions. Experience shows that large part of software
engineering tasks can be done remotely, and the testing is geographically well separable
from the rest of development.

Introduction

Geographically, Latvia is located in Europe, near the Baltic Sea, and it is often called as one
of the three Baltic States. This country has a strong scientific background in the field of
software testing [7]. Early research was related to automatic construction of test cases - both
theoretical and practical approach. Courses on software testing are included into
undergraduate computer curricula of Latvian universities for more than a decade. Recent
and current research in testing is related to software test tools, universal symbolic
interpretation, software process improvement (with a focus to testing issues), practical
manual methods of software testing [1-6, 8]. As the IT industry began to develop decade
ago, mainly from university staff, a number of lessons have been learned on how the testing

2

theory fits to praxis and what are the main concerns in assuring the quality within the
software development projects.

The software development as an industry began to develop approximately a decade ago
when in 1991 Latvian software designers won a bid for tenders to set up an information
system for the social insurance of artists in the German state of Bremen. The work was done
successfully, and this early achievement confirmed the fact that Latvian specialists are
entirely competitive in Western markets. From year to year, the volume of information
technology service exports to the West has grown.

Further milestones were the creation of the first independent test group that since has been
fulfilling the tasks of testing laboratory and methodology development center, the
independent testing for customers outside IT company and remotely for customers outside
Latvia. In recent years, the local IT industry has considerably focused on implementing
quality practices, especially ISO 9001 requirements.

Standards and quality practices

Initial approach for development groups was more ad hoc based, and the importance of
testing was underestimated. Currently the picture has considerably changed - early starters
are now the largest and the most experienced companies with ISO 9001 certified quality
systems. The aim to raise the quality criteria was motivated by competition in IT market and
by lessons from projects with unstable success. A considerable evolution of quality
requirements both from the suppliers and acquirers is observable.

The way towards unified approach in the software engineering was supported by individuals
who worked on adoption of IEEE standards for use in the largest IT company group. As a
result, a number of company IT standards were developed, covering fields of software
quality assurance, testing, specification, planning and documentation. Later, in 1996, most
of them were approved as Latvian National IT standards.

In parallel to adoption of IT standards, a large portion of IT terminology was developed.
Currently there are more than 4500 IT terms integrated into Latvian language [14].

For couple of years in Latvia, major companies base large business software development,
especially documentation, on IEEE J-STD-016-1995 standard. Also, during product
development, largest companies follow a well-defined life cycle model with defined
processes (adoption of ISO/IEC 12207).

Test organization within IT company

While over the past years systematically working on testing issues, Latvian IT companies
have learned a number of lessons. They are:

3

1) Testing in the company could be organized both by means of a separate testing institution
such as laboratory or department, or by creating a small test team within each project.

2) Testing should not be regarded as just another project activity. Testers should have a
background equal to system analyst or designer, plus a specific knowledge of a software
testing. As a result a system with qualification levels for testing professionals has been
developed. For company internal training the knowledge area is identified similar the
SWEBOK requirements [13]. Also, the development of Software Engineering Professional
Education project gave results of identifying a knowledge area for testing professionals [9].

3) A well-defined test process is the only way to achieve quality with minimal time and
staff resources.

4) Many software acquirers are poorly informed about testing. To avoid the project failures
one should educate the customer about the testing and quality assurance.

5) Although test automation has considerably increased over the past couple of years there
is no evidence that it can replace the manual testing activities. Tools for testing can give a
strong support, but the test planning and design are almost purely creative activities that do
not undergo the automation. Tasks like GUI, user manual testing, help or localization
testing almost purely rely on manual testing effort. Just like there is no software that writes
the code (semantically), there is not one for test creation.

6) Along with the overall awareness of software testing, the unsatisfied demand for testers
may become higher than for any other IT profession;

From the organizational point of view, testing laboratory existence is practiced only in the
largest local IT companies. The unique feature is the availability of resources for testing.
This organizational unit concentrates the testing professionals, also the experts in some
certain business area, and they are ready to provide the methodological support for projects.
Typically, when a request is received from a project that it will require the testing, a person
is assigned to evaluate the situation and to plan the further testing activities. In this case the
laboratory staff may plan the testing where active participants are also the developers, but
there will be a certain set of questions that will be evaluated independently.

Quite different is the case when projects themselves perform the testing tasks. According to
this scheme system analysts and programmers within project try to swap the roles for some
time to review and evaluate the achieved results. Here "the tester" is not a separate person,
but merely a temporary role. It may be difficult to achieve a real benefit when there is a
small team where everyone knows already everything about the problems, and there is a
lack of fresh look at the problem.

If testing is made inside the development project, may be with a help of testing laboratory,
the real gain is that internal testing begins early - one can start as early as first
requirements are defined. The specific feature of this testing is the reduction of
documentation requirements. Authors have found out that in some cases the strictly set

4

requirements for documentation can be relaxed. For example, test plan can be part of
internal project or quality plan, tests and test cases are not specified at the very detail, but
only the most important data are kept. The form - list of tests/test cases. Results are
registered in a simplified test log, but each problem is accordingly reported as a separate
record in problem tracking database. Typically, there is no final report produced, and upon
request the status reports can be prepared.

LQ
WH
UQ

D
O

LQ
G
H
S
H
Q
G
H
Q
W

SUHOLPLQDU\

SODQQLQJ
KLJK OHYHO WHVW H[HF�

ORZ OHZHO

WHVW H[HF�

GHWDLOHG

SODQQLQJ

UHJUHVVLRQ

WHVWV

WHVW

VSHFLILFDWLRQ

DFFHSWDQFH

WHVWV

SUHOLPLQDU\

SODQQLQJ

GHWDLOHG

SODQQLQJ

WHVW

VSHFLILFDWLRQ

WHVW H[HFXWLRQ

DQDO\VLV�

UHSRUWLQJ

$QDO\VLV�

VSHFLILFDWLRQ 'HVLJQ &RGLQJ 6\VWHP WHVWLQJ
3UHSDUDWLRQ IRU

DFFHSWDQFH

Figure 1. Internal and independent testing along with project development.

Independent testing is different with the state that it starts late, usually when the software
code is available, and there the time that initially was intended for testing is mainly devoted
for this independent checking and evaluation. Here, typically, the relations between the
testing laboratory and supplier of the software are more formalized, contract based.
Therefore documentation requirements are more strict and formal. The typical complete set
consists of: plan, test description, execution result log, problem reports and test report.

Test personnel role

Looking exactly at what types of testing are practiced at various test levels and who
performs this, one can see the dominance of independent testing for higher test levels (Table
1).

Tester's duty is to identify problems. The criteria can be based on one source of information
(e.g. some kind of software description), but it is better when there is a possibility to
compare various sources of it. For example, one can include into scope user's requirements,
obtain information from system analyst and see the programmer's interpretation of it in the
form of source code. Adding his/her own judgement, tester produces reports on quality of
the software. This basic collaboration mechanism is the one that dominates inside project
testing process.

5

Table 1. Tasks and test levels
Test level Structural tests Functional tests Performed by

Unit testing + developers
Integration testing + + developers
System testing + developers, independent

testers
Qualification testing + developers, independent

testers
Acceptance testing + customer, independent

testers

There are number of questions developers usually expect from testers to solve. They are:
- fast integration into project scope;
- recommendation for QA and testing, adopted to local needs;
- problem/bug reports with competent evaluation of the cause and consequences;
- introduction of test automation.
Project test team has to define test process, ensure quality assurance activities within
project, maximally independent approach and support to prepare system for user
acceptance. There is a certain optimal body of knowledge for a typical tester. The scope
should cover:
- basic concepts and definitions of testing,
- analysis of test levels,
- test techniques,
- test automation,
- test related measures.
Developers usually expect from testers expertise knowledge in all project technical
questions, and that requires latter to learn a lot of new facts and techniques.

For some the learning is an easy task and especially for those who have a diversified
background of knowledge. The unprofessional impression of testing may lead to an idea
that testing is just a play with software, and there is no need to know programming at all.
Closer examination may reveal that this activity is quite technically related, and there is no
place for technically unqualified. The truth is somewhere between. Looking at personnel
profile of a real testing laboratory one can see that part has a long IT and software
engineering experience, quite many are recent university graduates, some have temporary
worked in non IT sphere, and there are also colleagues who had not had any experience in
software development. Surprisingly, but the latter mentioned factor is not a minus. Plus is
when IT and non-IT experience is combined. Experience is very important. One can train to
certain methods quite quickly, and for easy tasks there one cannot observe any difference.
But analysis-consuming tasks reveal the worthiness of a broad knowledge and original
approach to problems.

6

Qualification issues of testers

Looking at development activities inside a project, it is important to identify the tasks for
the tester within each development stage (Table 2).

Table 2. Tasks of tester along with project phases.
 SW development activity Tasks for tester

 System analysis, specification of
requirements

 Verify whether requirement specification and other
documents are suitable for testing.
 Plan the testing: its tasks and schedules.

 Design Plan in detail the tests: type, coverage.
 Make test descriptions.

 Coding Refine plans and test descriptions.
 Execute tests.
 Make automation and regression tests.

 Testing Thoroughly implement the system, installation and
documentation testing.
 Do regression testing.

 Prior to delivery (preparation for
the acceptance)

 Check-up the corrections.
 Run the regression tests.

Description of these tasks may be more or less formalized. For example, company DATI
has developed a test process description. It covers various aspects of testing, presenting
procedures, guidelines, templates and examples.

Table 3. Qualification levels.
Level Tasks Required skills

1 Execution of previously
specified tests and other
tasks that do not require
special knowledge or
training

Computer usage skills - advanced used level and
ability to understand specified tests.

 2 Tasks of 1st level +
Test description according
to system documentation.

 Skills of 1st level +
Ability to analyze system documentation and to
write a testing documentation.

 3 Tasks of 2nd level +
Test planning and
managing of test team

 Skills of 2nd level +
Ability to identify required tests, skills in team
and resource management.

 4 Tasks of 3rd level +
Training of other testers
and development of testing
methods

 Skills of 3rd level +
Tutor skills and expert knowledge in testing
theory

For over a year one of Latvian IT companies is working on introduction of the qualification
level scheme among testers. There are four levels in total (Table 3), and additional "0" level
could correspond to an amateur tester - a person who is just trying play with the software.

7

Such identification could serve as motivator for developing the tester career, and at the same
time it could be a valuable means for locating the right people for various types of testing
projects.

Training

Although there are possibilities to attend a course on software testing in some of Latvian
universities that does not provide enough knowledge and skills to start practical activities.
Therefore companies practice internal training for people related to testing. For example,
RITI has developed curricula for three different audiences: new testers, existing testers and
programmers. Each group has a slightly different motivation, and, respectively, there is a
different composition of topics covered. There are predefined training programs ranging
from 10 till 26 hours. In calendar terms it may range from two days till couple of weeks.

The course for new testers mainly focuses on the testing basics, and it is being customized
to the initial knowledge level in testing and software engineering in general. The aim of
such course is not just to prepare a team that executes previously specified tests (level 1),
but also to train the candidates for qualification level 2. The training is composed of formal
lectures, workshops, tasks to solve problems, individual study of guideline documentation,
and at the very end of course there is a final test.

Practicing testers are interested to improve their knowledge, to learn some new common
principles and to gain the knowledge about other duties of testing professional. Typically,
these courses are held in a form of workshops where people both educate themselves and
fulfill the tasks of tutor.

Testing course for programmers is oriented to add the knowledge for efficient development
rather than for professional testing activities. These courses are accorded to the type of
projects the trainees are working in.

Taking into account that learning pure theory is not sufficient for training, a work with a
special software is included into course. It is devoted to develop and to check the testing
skills, but actually it is not a program that somehow specifically tests the person, it is a base
for sample testing. Everybody has the opportunity to go through all the main stages of
testing - planning, specifying tests/test cases, executing them, reporting problems,
summarizing the results. The current software is a small database application that fulfills
cargo delivery accounting functions. It has several complexity versions - covering only
some or a complete set of business functions, and with various types of bugs integrated.
Each student may have a specific task of what exactly has to be tested. According to this
task, the solutions are being sought. Both functional and structural methods may be applied,
but typically only the black-box approach is practiced. This training software proved to be
excellent for students to see what they really have learned.

Still looking at candidates for test team, one has to realize that the testing professional is a
software engineer specialized in testing. Anybody can be trained fast for some basic
activities. Having historically formed testing laboratory with a considerable proportions of

8

people that know well also some other area, not related to IT, authors have observed an
interesting correlation - the more diversified knowledge people have, the more successful is
the testing. At the same time our IT field is quite strict in terms of quality records and
application of some well-planned methods. Therefore although the testing itself may be
considered as art, the persons who participate should not be artists. It still is more advisable
to have the technically oriented people.

Alongside with the positive experience of forming a good test team, there are also lessons of
bad experience. A typical problem is that some managers want to move the low qualified
programmers to testing, thus thinking that they have found a perfect solution in terms of
resources. But the reality is that bad programmer is also a bad tester. This is both true for
voluntary solutions when some manager wants to give a temporary punishment for
inadequately worked person. Such approach does not give any good results. Only the
opposite. Projects may loose trust in testing personnel, and the widely unspoken idea that
testing is less prestigious activity than programming just strengthens.

Another fault is approaching the task very independently - in a way that lots of information
is being lost or ignored just because of unwillingness to become too familiar with the
system, its development issues and to compare the developer's point of view with the one of
customer. Also, there may be testers, especially starters who over a time have not broadened
their view on testing. They may expect that always there will be someone who will prepare
systematic test cases, and the solely task then would be to execute them or to hunt some
problem without a systematic ground beneath.
One of the main problems in developer-tester interaction may be the overestimation of
testing. Sometimes developers expect too much, and the cause sometimes is that testers
have promised too much. Some myths have to be cleared prior to real project.

Selecting the personnel for test team sometimes is tied with questions about the career
perspectives in this profession. Quite a lot of people are slightly afraid that they could be
destined to work in this field for all the duration of the project. There is a hidden stereotype
that finding bugs requires lower qualification that writing the code (and often with lots of
errors in it!). Actually, a qualified tester has both to be an expert in programming and in the
application area of the software, there has to be a lot of analysis knowledge applied, and
rarely one could say that this is easier than implementing the functionality. The obvious
career steps may be related to reaching different professional levels (Table 3).

Another important point - customers. IT companies have experienced a considerable
increase of quality awareness from customer side, but at the same time they may have a lack
of important software engineering concepts or misinterpretation of some quality principles.
Therefore for some time there are courses held both on software quality issues and for
general information about testing. The typical problem may be that there is a principal
understanding that testing is necessary, but one may fail to recognize the scale of necessary
time and resources, as well as related activities to make the testing become efficient.

9

Future vision

According to various studies, there is a shortfall of up to 500,000 software specialists in the
world right now, and the deficit may increase to some 1 million people over the course of
the next 5-10 years [10-12]. Latvia’s vision for this decade is closely related to rapid
development of IT industry. Rough estimation shows extreme potential of the three Baltic
states to become a major software development and maintenance region able to employ up
to 120 thousands IT engineers and to export software and maintenance services.

Analyzing the software engineering activities that can be performed remotely from the
acquirer, the main ones are: design, coding, testing, maintenance, reengineering and porting.
Special case of remote software development is due to time zone difference. For example,
time difference between America and Europe makes perfect solution for test result delivery
overnight thus giving the daily quality record for software under development. Taking into
account the overall increase of the awareness of the role of quality assurance and
independent testing, the software testing is the IT industry sector to experience a rapid
development.

References

1. J.M.Barzdins, J.J.Bicevskis, A.A.Kalnins. Construction of Complete Sample Systems
for Correctness Testing._ In: Mathematical Foundations of Computer Science, Berlin:
Springer, 1975, pp. 1-12.

2. J.M.Barzdin, J.J.Bicevskis, A.A.Kalninsh. Automatic Construction of Complete Sample
Systems for Program Testing._ In: Proc. IFIP Congress, 1977, North-Holland, 1977, pp.
57-62.

3. A.Auzins, J.Barzdins, J.Bicevskis, K.Cerans, A.Kalnins. Automatic Construction of the
Test Sets: Theoretical Approach._ In: ����������	
D.Bjorner (eds.) Lecture Notes in
Computer Science: Baltic Computer Science, No. 502, Springer-Verlag, 1991._ pp.286-
359.

4. J.Bicevskis, J.Borzovs, U.Straujums, A.Zarins, E.F.Miller,jr. SMOTL - A System to
Construct Samples for Data Processing Program Debugging._ IEEE Transactions on
Software Engineering, vol. SE-5, No.1, 1979, pp. 60-66.

5. J.Borzovs, A.Kalnins, I.Medvedis. Automatic Construction of Test Sets: Practical
Approach ._ In: J.Barzdins, D.Bjorner (eds.) Lecture Notes in Computer Science: Baltic
Computer Science, No. 502, Springer-Verlag, 1991._ pp.360-432.

6. Z.Bicevska, J.Bicevskis, J.Borzovs. Regression Testing of Software System
Specifications and Computer Programs._ Proceedings of the 8th Software Quality
Week, San Francisco, 1995, paper 5-T-1 (9 p).

7. J.Borzovs, M.Gills, A.Adamsone, S.Linde, J.Plume. Software Testing in Latvia:
Lessons Learned. 1st International Conference on Software Testing ICSTEST -
Conference Proceedings. Bonn, April 5-7, 2000. Track A, Paper 2. p 15.

8. J.Borzovs, M.Gills. Building-up a team for manual testing. To be published in
Conference Proceedings of 2nd International Conference on Software Testing ICSTEST
-. Bonn, April 4-6, 2001.

10

9. B.Apine, J.Borzovs, A.Jautrums, A.Joma, E.Kalnina, A.Klints, S.Linde, J.Plume,
U.Sukovskis, M.Vitins. The Future of IT Professional Education in Latvia._
Proceedings of Intern. Conf. IT Skills- & Vocational Certification, Tallinn, Estonia.
2000, pp 40-43.

10. W.Strigel. What's the Problem: Labor Shortage or Industry Practices?_ IEEE Software,
no. 3 (May/June) 1999, pp. 52-54.

11. C.Jones. The Euro, Y2K, and the US Software Labor Shortage._ IEEE Software, no. 3
(May/June) 1999, pp. 55-61.

12. S.Baghchi. India's Software Industry: The Peoples Dimension._ IEEE Software, no. 3
(May/June) 1999, pp. 62-65.

13. Guide to the Software Engineering Body of Knowledge. http://www.swebok.org
14. Terminology, Riga Information Technology Institute.

http://www.riti.lv/en/terminology.htm

QW2001 Paper 7A1

Dr. Holger Schlingloff & Dr. Jan
Bredereke

(Technologie-Zentrum Informatik)

Specification Based Testing Of the
UMTS Protocol Stack

Key Points

Development of flexible testing environment for UMTS protocol stack software●

Black-box testing of parallel real-time systems based on formal specifications●

Testing results prove increase in performance/cost ratio by automated test case generation●

Presentation Abstract

Our paper is organized as follows: first, we present a brief introduction to
specification based testing and to the UMTS protocol stack. Then, we give an
overview of the functionality and properties of the RLC layer, and its
implementation in SDL. The main part deals with out automated testing
environment: formal CSP specifications for the RLC; interfacing between SUT and
RT-TESTER, and testing of multiple instances in parallel and real-time. Finally,
we describe and interpret the testing results and summarize our work.

About the Author

Bernd-Holger Schlingloff currently is managing director of the Bremen Institute of
Safe Systems within the Center of Computing Technologies in Bremen University.
He received his PhD in 1990 from the Technical University of Munich. After that,
he spent a year at Carnegie Mellon University. He then became assistant professor
at the computer science department of the Technical University of Munich, and in
1996 transitioned to Bremen. His research interests include software quality
assurance, logic in computer science, and the application of formal methods to
industry projects. He has written several articles and surveys on temporal logic
model checking, and recently completed a book on partial state space analysis of
safety-critical systems.

Jan Bredereke received his PhD degree (Dr. rer. nat.) in computer science from the
University of Kaiserslautern, Germany, in 1997, and his Diploma in computer
science from the University of Hamburg, Germany, in 1992. From 1992-93, he
became a research assistant there, and from 1994-97, at the University of
Kaiserslautern, in the group of Reinhard Gotzhein. From 1997-98, he was a

post-doctoral fellow at McMaster University, Canada, in the Software Engineering
Research Group of David Parnas, and from 1998-99, he was a researcher at the
University of Oldenburg, Germany, in the semantics group of Ernst-Ruediger
Olderog. Since 1999, he works at the Bremen Institute of Safe Systems, Germany,
in a project with Siemens on UMTS. His current research interest is in the design
of telecommunication systems with formal methods.

���������
	�������
��������������� �����������! �#"$��%#�
&(' �)� *,+-�.���/�0�21������.��3

465-798�:<;>=?;6:@;6AB;C5D7E=F8�;6:
76=HGJI�KML N?;E:POMQ6R?LTSU7VNML KHW
8�:@;6X�;67ZY[7]_^_S`^baV^c;dKHefOg5hei;dOkj6\�^�;6X�\
lm7DS nH;6:o\JS`^ij2KHe�8�:@;6X�;67kprqs;6:
X.5D7]j

tvu]wVxvyVxvw6xvzg{}|E~]�h�J�>�D�?�@yVx

�0�D�E�����������>�B�6�����6���?�
�6�k�B�`�J�>�E�m�/�_��� �h¡£¢¤�r¥§¦D¦?�

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµv¶V· ª�ªvµc¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
±

À�ÁBÂsÃ$ÂÅÄÇÆ¤Ä�ÈHÉkÊoÉ ËÌÉ-ÂÎÍsÏ�Ð�Ñ�ÏJÂÒÐÔÓ�ÈHÉ-ÂsÃÕÈ

Ö × ;>Q6R?7]KgL KDNHjC^b:}5D7V\cei;6:PSU7V\�^«S`^baV^c;dØ�S`^bRDSU7�8�:@;6X�;679a?7HS nH;E:o\vS`^Ùj
Ö ÚHÛ \«Q]ST;67V^_S`\�^¤\>p Û9Ü :oKHeÙ;J\�\�K§:o\hpÌÝ?Þ�Ý�ßáàâa?:ãK95D7?7-aH5DL�:@;vnH;67?a6;B\
Ö äÔÜ-Ü LTSTQh5]^_S`KM7�KHe�e@K§:ÙX.5-LåX�;B^bRVK =H\#SU7�SU7E= aV\�^b:iSæ5?L�QJKM7V^c;bçE^¤\
Ö è ;6:iS égQh5]^_S`KM7 Ü :ãKbêc;>QB^¯\]ë ä SU:Ùì?a]\hprq�;E:ÙX.5-7 ä ;6:ãKD\ Ü 5VQh;/íbà ä�î Oâïbp�ð!I8ñOg5h^�;6L�LTS`^c;B\>p î�òMó p
OâST;6X.;67]\ èP× psYõômOkö ó 5ESUL÷p ���÷�>øù�B�E�9ú?�B�÷�>�>�Dø psÞõÞoÞ

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± ûâüâý£þ

Æ¯ÄÌÉkÁJÍÿË��gÉkÊãÍ0Ä

� �-�Ù�£�B�M�Pø �V���?���6� e@K§:Ì^c;B\�^_SU7VN�;6Xdì-;>=?=-;>=�:<;]5DL G£^_SUX�; QJKM7V^b:ãKML _KHe@^ÙØ056:@;Dë

Ö O§^v:ÙaEQJ^ba?:}5DL K§:�QJK =?;vG«ìE5]\«;>=
Ö O Ü ;>Q]S égQ]5h^_S`Kg7�ìH5h\«;>=

äÔÜ-Ü LTSTQh5]^_S¾Kg7�^¯K�^vR6; � ���-���
	?���?� � �-� �Ù�Ù�D� í ósò�� ï Ü :oK-^¯K QJKML�L¾5JjV;6:�KHes^bRE; �-���>�B�@�v�E�r�/���?���÷�
ú?�B�÷�>�B�-ødøù�-�-�÷�B�k�Ù���D���-�D�h�Ù�>ø íbl ß × O�ïJÞ

Ö OâST;6X.;67]\ ä qPpåOg5DL �BN§S`^¤^c;6:¤ë0QJK =?;d=-;JnH;6L K Ü X�;67V^
Ö × ;>Q6R?7]KgL KDN§ST;vG�� ;67V^b:
a-X Y[7]e@Kk:
X.5]^_SUA/í × �rS�ïbp�8�:@;6X�;E7§ëP^�;J\�^_SU7VN/\Ba Ü?Ü Kk:ã^

l ß × O�ëâ=kS`\�^v:}SUì?aV^c;>=�=-;vnH;EL K Ü X.;67]^�KHes\�^�5-76=k5E:<=D\>p�aV\«;6:�;��MaDS Ü X�;E76^�5D7E=�ìH5h\b;�_^�5h^«S`KM7V\]Þ
� KM7V\vS`\�^�;676QJj/Q6RE;>Q6A>\�Qh5-7-7VKD^.ìD;2ìH5h\«;h=�KM7 Ü 5E:o^«STQ6a?L¾56:0SUX Ü L`;EX�;67V^�5V^_STKM7��
��� �����! #"%$& #'�()"+*-,/.�'��)��01()���2()"3,!4657'�(�8��95:(�8�'�,;�<(�5>=� ?(�=@57'9AB()�!�<()"3,�4DC

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± ýåüâý£þ

ÐFEfÂG�åÊIHJ��ÑrÉkÊ<Í Ä À2ÑÌÈ?ÂÌÿLK!ÂrÈDÉkÊiÄNM

O Ü ;>Q]S égQ]5h^_S`Kg7�ìH5h\«;>= X.;J^bRVK =H\Vë
^b:@;h5h^Ô\cj6\�^�;6X a-7E=-;E:s^c;J\�^�í¤O�l × ïÔ5h\ �?���E�B�O�§�)P
e@K Q6aV\�KM7 Q �
� Q �B�¤�Ù�÷�«� KDes^bRE;!\cj6\�^�;6XCÞ

ä =EnD5-7]^_5hN?;B\]ë

Ö � KM7EQ>;67V^b:}5h^«S`KM7�KM7ùe¯a?76QJ^«S`KM7H5DLæS`^Ùj�5]\ Ü ;hQJ^¯\
Ö àDç§RDSUìDS`^_S`KM7�KHef5DXdìDS`NMaDS`^_ST;J\dSU7C^bRE;C:<;R� aDSU:<;EX.;67V^¯\
Ö î ;J^c;hQJ^_S`KM7CKHe0X!S`\JSU7]^�;6: Ü :<;J^_5h^«S¾KM76\>p�KgX!S`\�\vS`KM7V\!5D7E=�X!S`_\vSU7]N�Qh5]\«;J\
Ö qs;67E;6:@5]^_S`KM7�KHef5E:ÙìDS`^b:}56:oj9L`;67VND^bR2^�;J\�^0\«QE:}S Ü ^¯\
Ö ó ;Ea]\b5-ìHSULTS`^Ùj/5D7E=ZX.5ESU7V^�5HSU7D5Dì-SULæS`^Ùj

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± þåüâý£þ

K!ÂrÈDÉ?ÊÙÄGMTS;EUEÌÁJÍmÑN�WV

test driver / evaluator
(RT−Tester)

testing results

target
(*.exe or

embedded)

system
specification

(SDL)

development platform
(Telelogic Tau / Cmicro)

test cases
(*.tg)

requirements
specification

(CSP)

test case generator
(FDR)

X "%4Y8Z0@�#4[57���*�]J'�=�()*-^_'�()"+*-,Z57�!0�=� #�!�`(�8��a*9b!�957'9A+AN0@��b!��Ac*-�@^_�9,�(d()"3^_�[C

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± eåüâý£þ

fhgiKZÐkjdÁJÍsÉ-Íl��Ínm:SZÁo�WVÅÊoÉ-ÂG�gÉ ËÅÁJÂ

l ß × O9\�^_5D7E=?5E:<=�5]\�=-;vnH;EL K Ü ;>= ìBj Ú qlpDpFQBKM7]_Kk:ã^_SUa?XCë

qrqqrqqrqqrqqrqqrqqrqqrqqrqqrq

srssrssrssrssrssrssrssrssrssrs

trtrtrtrtrtrtrtrtrttrtrtrtrtrtrtrtrtrttrtrtrtrtrtrtrtrtrttrtrtrtrtrtrtrtrtrttrtrtrtrtrtrtrtrtrttrtrtrtrtrtrtrtrtrttrtrtrtrtrtrtrtrtrttrtrtrtrtrtrtrtrtrttrtrtrtrtrtrtrtrtrttrtrtrtrtrtrtrtrtrttrtrtrtrtrtrtrtrtrt
urururururururururuurururururururururuurururururururururuurururururururururuurururururururururuurururururururururuurururururururururuurururururururururuurururururururururuurururururururururuurururururururururu

PDCP

control

RRC

RLC

RLC
RLC

RLC
RLC

RLC

RLC RLC

Layer 3 boundary

Layer2/BMC

MAC

PHY

Transport channels

Layer1

Layer2/MAC

Layer2/PDCP

Layer3

co
nt

ro
l

co
nt

ro
l

co
nt

ro
l

co
nt

ro
l

Layer2/RLC

Logical channels

BMC

PDCP

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± våüâý£þ

fhgiKZÐkjdÁBÍ�É-Íl��ÍnmwS�Áo�WVÅÊoÉ-ÂG�gÉ ËÅÁJÂyxz��Í0ÄÌÉ�{}|

Ö 	k���k�B� ��~ Q �h�D�v�÷�B�E�å���_�?�B� � RE5E:@=EØ05E:<;!\b;6:õn-STQh;J\ Ü :oKDn-ST=-;>= ìBjC^bRE;#Q6RHS Ü G£\«;J^
Ö 	k���k�B��¥�~n�-�?�i�2�����?�������k�B� � Ü :ãKHn-ST=?;J\ Ü K§SU7V^£G£^¯KHG Ü K SU7]^�QBKM7-7E;>QJ^«S`KM7/QBKM76Qh; Ü ^

Ö ���o�-�÷�-øy�0�h�>�«��� � �-� �Ù�Ù�D�B����� ��� � Ü :ãKHn-ST=?;J\#a?7E56Q6AH7]K6Ø�L`;>=DN?;]=�^v:@5-7]\ceÙ;6:sKHes\«;E:õn-STQ>;ù=?5]^�5
a-7DS`^¯\>pr:<;h5-L�L K Qh5h^«S¾KM7CKHe Ü 5E:@5-X�;J^c;E:o\�\BaEQ6RC5h\�aV\«;6:sST=?;67]^«S`^ij�7-a?XdìD;E:Å5-76=2^b:}5D7V\ Ü Kk:ã^ e@Kk:
X.5]^vp
5D7E=�L K Qh5-LåX�;]5h\Ba?:<;EX�;67V^¯\�\BaEQ6R�5h\�^b:}5���Q.n6KgL�a-X�; 5D7E=_�MaE5-LTS`^ij2KDes\«;6:on-STQ>;CSU7E=§STQh5h^«S`KM7

Ö � �?�?���a	k���?� � �D�M�i�
�D�G� � 	 ��� � \«;JNMX.;67]^_5h^«S`KM7�5-76=Z:<;]5h\�\«;EXdì-L j�KHe0L KM7VN�=k5h^�5 Ü 56Q6AB;J^¤\�e¯:ãKMX
RHS`NMRE;6:0L¾5JjV;6:ã\�SU7]^¤K�ékçD;>=�Ø�ST=D^bR Ü :oKD^¤K QJKMLâ=?5]^�5/a?7DS`^¯\>pÌ:<;B\ Ü ;>QB^_S nH;6L jVÞ × RDS`\�SU7EQ6L�aE=-;B\�� KVØ
QJKM7V^b:ãKML÷p ;6:
:oK§:�=-;B^c;>QJ^«S`KM7kp�:@;J^b:}5D7V\BX!S`\�\JS`KM7§p = a Ü LTSTQh5h^�;/:<;6X�KHnD5DL÷p�5-76=/\vSUX!SUL¾5E:s^�5]\BA>\

Ö � �E�B�6�6��� �?�i� � �D���>�B�����B�k�>� � �
�§�i�§�>�D�B� � � � � � �N���
�D�?�k�B�>�]�G�F���D���Ù�÷�B�>�]� � �-� �Ù�Ù�D�W�>�m� ���
Ö 	k���k�B�s��~0�?�V�}���6�
�2���_�?�B� � Ü :oKDn-ST=-;J\d76;J^ÙØfKk:
A!\«;E:õn-STQ>;B\�\BaEQ6R�5]\�;J\�^�5-ì-LTS`\>R-X�;E76^���:@;6L`;h5]\«;#KDef5
QJKM7?7E;>QJ^_S`Kg7?p�RH5D7E=EG£KHnH;6:£p�ìH:oK§5V=?Qh5h\�^ÔKHe0X�;J_\b5hN?;B\.SU7�5dNk;JKDNM:}5 Ü RHSTQ]5DLå5E:<;]5-p�5-76=Z7]K-^_S égQ]5h^_S`Kg7
KHeÅSU7]e@K§:ÙX!5h^_S`Kg72^¯KC\ Ü ;>Q]S égQ�a]\«;E:o\]Þ ó 5V=§S`K ó ;J\�KMa?:@Q>; � KM7V^b:ãKML�í ósóB� ï 5h\�\JS`NM7]\hp�QJKM7]é NMa?:@;J\�5D7E=
:@;6L`;h5h\b;J\�Ø�SU:<;6L`;B\�\dìH5D7E=HØ�ST=D^bR�í£QJK =?;J\>pâe¯:@;�� aE;67EQ]Sæ;B\!;J^cQDÞ÷ï

Ö 	k���k�B���@��~ � Q�Q ���÷�B�?�i�÷�-�����_�?�B�@� � ;DÞ¾N�Þ � 5-L�L � KM7]^v:oKgL�í �D� ï�5D7E=�ßùKMìHSULTS`^ÙjZß25D7H5hNk;6X�;67V^#íbß9ß�ï

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± �åüâý£þ

K;V�Ây�O��� ��ÑåÓ�Â�Á9Í�ÏhfhgiKZÐ

� '��o���z�

Ö � Kk:
:@;>QJ^_S`Kg7 KHe �Ù�Ù�E�6�Jød�`���v���D�Z�B�
�Ù�E�<�
Ö ������øù�B�M�i�-�Ù���D� KHe�nD5E:}Sæ5-ì-L`;JG_L`;67VND^vR�=k5h^_5 Ü 5VQ6AB;B^¯\!:<;hQ>;]S nH;>=/e¤:oKMX ^bRE;2a Ü?Ü ;E:0L¾5vjV;E:ÅSU7]^¤K
ékçD;h=EG«L`;67VND^bR\p î l�\

Ö � �>�>���J�>ø��-� � KDe0:<;>Qh;]S nH;>=1p î l�\�56Q>QJKk:@=§SU7]N�^¯K�^bRE;d5h^¤^�5VQER6;>=�\b;�� aE;67EQ>;�7-a?XdìD;E:o\
Ö ð Ü ^_S`KM7H5DL �B� Q �?�B�0ø �>�o�?�6�?�`�vø Ü :<;vnH;E7]^«SU7]NFa-7H5DaV^bRVKk:iS��];>=Z5VQ>Qh;J\�\�^¤K�X.;J\�\b5]N?;d=k5h^�5

× R-:@;>;2X�K =?;J\�KDem=?5]^�5ù^v:@5-7]\�ei;6:¤ë

Ö ��B�H�-�!�s�÷���������9ød���?� í£;6:
:oK§:õG
e¯:@;>;d^b:}5D7V\BX!S`\�\vS`Kg7�NMaH56:}5D7V^c;h;>=kï
Ö �-�H�B�H�-�!�s�÷�o�R���o��ød���k� í¤SUXdX�;h=kSæ5]^c; � =-;6L`;B^_S`KM7�KHem;6:
:oKM7E;JKMaV\!5D7E=�=Ma Ü LTSTQh5]^c; Ü 5VQ6AB;J^¤\vï
Ö ú-�Ù�E�6� Q �]�
�>� � ød���k� í�a?76QERE5-7]N?;h=�=k5h^�5 ^b:}5D7V\cei;E:}ï

p KD_\vSUìHSULTS`^Ùj2KHes\«;JnH;6:@5-L óÅò�� SU7]\�^_5D7EQ>;J\!5h^0^vR6;.\b5-X�;!^_SUX.;��

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± �åüâý£þ

Æ¯Ã�EUmoÂsÃÕÂsÄÌÉ-ÑrÉ?Ê<Í0Ä ÊÙÄ Ð` ¡�

Ú qlpDp \�^�5-76=k56:@=�S`\�N§S nH;67/SU7�5 øù� Pg�Ù�-�
�#�9¢D¢õ�6�
ød�E���`�vø�� ë Ü L¾5ESU7Zà�7]NMLTS`\>R?p�5-7-7VKD^�5]^c;>=�é NMa?:@;J\>p
ìDS`^bX.5 Ü G£^�5-ì-LT;J\>p�\�^_5h^c;#^b:}5D7V\vS`^_S`KM7�=kSæ5]NM:}5DX�\>p�X.;J\�\b5]N?;!\«;��MaE;676Qh;ùQ6RH5E:o^¤\>påO îÔò =§Sæ5hNg:@5-X�\

1.
Null 2.

Ack.
Data Transfer

Ready

CRLC−CONFIG−Req RESET
RESET ACK

RESET ACK

CRLC−CONFIG−req

CRLC−CONFIG−Req

Received signal
Sent signal

3.
Reset.

Pending

RESET
RESET ACK

RESET ACK

RESET
RESET ACK

RESET

Crlc_amconfig.req(

no_pu:=0,

poll_triggers(TIMERBASED)

Set(NOW+period, timer_PERIOD)

status_triggers(TIMERBASED)

Set(NOW+rx_period, timer_RXPERIOD)

YES

YES

 logical_channel, poll_triggers, ...)

no_sdu:=0

Acknowledged_data_transfer_ready

NO

NO

vt_ms:=vt_s+tx_win,

vt_mr:=vr_r+tx_win

Nul

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± £åüâý£þ

¤�Í�Á]ÃÕÑ�mF��Ð�j Ð�EPÂG�åÊIHJ��ÑrÉ?Ê<Í0Ä�È

¥�¦�§ í � KMXdXùa-7DSTQh5V^_SU76NZOM;R� aE;67V^_Sæ5DLNpr:ãK Q>;J\�\b;J\vïJë

Ö ä ì]_^b:}5VQJ^�=-;J\bQ6:}S Ü ^_S`Kg7�KDe �
�o¨k�-���
�Bø �B�g�ã�
Ö à?\ Ü ;>Q]Sæ5-L�L j�=-;J\JS`NM76;h=�^¯K�=-;B\«Q6:iSUìD;ù^bRE;CìD;6RH5>n-S`Kga-:mKHe Q �]�
�6���÷�B� p �B�Dødøù�-�?�÷�B�-�Ù�÷�R� p �Bø©� �o�!�?���
�£�B�6�«ª_�i��øù� \cj6\�^�;6X�\

Ö ð Ü ;6:@5]^¯K§:o\ù:<;)�g;>QJ^«SU7]N�^bRE; �h�i�£�?�V�Ù�-�
� KHe0:@;��MaHSU:@;6X!;67]^c\>p
;DÞ¾N�Þ�p �B�o¨?�?�B�M�i���E� 5-76=¬Q �h�
�6���÷�B� QJKgX Ü KD\JS`^_S`KM7§p �o�?�D�÷�>� p ���Ù�B�
�-�Ù���D� 5D7E= �?�c�?�����

Ö � KMXdXùa-7DSTQh5h^«S`KM7�ìBj�íÙ\cjk7EQ6R?:oKM7VKMaV\vï �>P§�o�?�6�R���#�9¢Ì��>�B�M�ã� pÌ:<;]5DL G£^_SUX�;�X�K =?;6L�LTSU76N/Ø�S`^bR �i��ø �B�<�
Ö ó STQER25D7E=�Ø ;6L�L G¤;J\�^_5Dì?LTS`\BRE;h= ���k�B�6�õ� í<®@I�Kk5E:<;�Ý¯�°�±²¯pW®@I�Kk56:@;�Ý¯�± Û ²¯pW® ó KD\bQJK ;2Ý¯�¯�°²Ùï

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± ³åüâý£þ

´¶µÌÑmÃ·E¶mõÂ�¸
¹�ÂsÄsÿPÊÙÄGM ÃÕÑD�WVÅÊÙÄ�Â

��º#»o¼2½hyVx¿¾¤�H�>ÀExJw6~M�Á»>~2Â�¾
Âhw?ÃrÄ)À�ÃOÅoÆ?ÇÈ<É�Ê)ËzÌ
»«|�Ã2º�º6x�¼Í»oÎV��ºâ{�u�½h�h�Î2ºÏRÎ)Ð�ÐVxBx§{Ôu�½h�>�?Î2ºRÌVx�Ã
º?Ã2ÀExv��ÑoÂEx�Æ?Î2ºRÒRÓaÔ
Õ
»oÎ6��ºâ{�u�½h�>�ÎrºÏRÎrÐ�Ð6x>xk{�u�½h�>�?Î2ºRÌVx�ÃOÖ
Âhw?ÃrÄ)À�ÃOÅoÆ?Ç�×2ËzÌ�Ê)ËzÌ
»«|�Ã2º�º6x�¼Í»oÎrÐ�ÐVxhx§{��6x�Ã
º?Ã2ÀExv��ÑoÂExOÏJ�>w¼)Ò�ÓaÔ
Õ
»�ÎrÐ�ÐVx>x {��Vx�ÃaÖ
×2Ø�ÙrÒoÚ�ÛRÒ�ÚaÔ6Ü Ü7»oÎ6��º\ÝRÞOßRÅoÛRÒÇ�ÏR×ÈàÉ#á

âäã Ü}u�½]�>�Î2ºÏzÎrÐ�Ð]x>xOÝ�Þa×2Ø?Ù)ÒoÚ�ÛRÒoÚ�á
âäã Ü}u�½]�>�Î2ºRÌ6x�ÃOÝ�Þa×2Ø?ÙrÒ�Ú�ÛRÒoÚ�áRá

ßRÅ�ÛRÒÇoÏR×?ÈàÉÍÔ6Ü Ü7»�ÎV��ºåÝ�ÞOßRÅoÛRÒ?ÇoÏR×ÈàÉ�á)á
âäã Ü}uR½h�>�Î2ºzÌVx�ÃOÝ�Þ¬ÅoæRÅ�ÈàÌ@ÜçÕv�6x�Ã�Özá;è`×2Ø?Ù)ÒoÚ�ÛRÒoÚ�á
âäã Ü}uR½h�>�Î2º?ÏRÎrÐoÐVx>xOÝ�Þ¬ÅoæzÅ#ÈàÌ@ÜçÕz»oÎrÐ�Ð]x>x�Özá�è�×2Ø�ÙrÒoÚ�ÛRÒ�Ú�á

ÚRÅRÉ�é×2Æ?ÇRÙrÌ#È�Æ)Ë?ê?ÈdÔ6Ü#ëÁì@ë�í[îwÆ?Î2ºRÒ�Ó��ÍíåÝRÞ¬Ê�Å)Ë�ÙrÒ-èJÚRÅRÉ�é×2Æ?ÇRÙrÌ#È>ÆoË?êÈ�á
Ì�Ò?ÙrÌÇ�ÙrÊRÒzÏ¬Ô¬ÚRÅ�ÉRé×2Æ?Ç�Ù)Ì#È>ÆoË?êÈ â ënÆ?ÎrºRÒ�Ó·ë ã ×2Ø?ÙrÒ�Ú�ÛRÒoÚ

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± û�ïåüâý£þ

��Ð�jðK!ÂrÈHÉkÊÙÄGMLK!Í0Ínmlñaò¿ó#òZôUõ�öwôU÷

4hK SU7]^Ô=?;vnH;6L K Ü X�;67V^ � 7]K6Ø =§S`\�^b:iSUì-aV^c;h=FìBj è ;E:}S éâ;>=�O§j6\�^c;6X�\dY[7V^c;6:
7E5]^_S`KM7D5-LåqfXùì§I0p�8�:@;6X�;67 Þ

Ö IÅ5E:@=EØ05E:<;vG�SU7]G
^vR6;vG«L KkK Ü 5D7E=�QJKgX Ü KM7E;67V^ �-���H�B�¬�§�)P��Ù�b�h�ã�
Ö × ;J\�^¤\KHe �]�Á�?���i�
�]���Z�÷�B������� Ø�S`^vR \�^�;h5V=§SUL j�SU7EQ6:@;h5h\JSU7]N�QJKDnH;6:@5]N?;
Ö × ;J\�^«SU7]N�KHe0ìHKD^bR ¢o�-�?�6�i���D�?�6� 5-76= �?�h�}���£�B�E�«ª��Ù��øù� Ü :ãK Ü ;E:o^«ST;J\
Ö è 5E:}S`KMaV\�\ Ü ;>Q]S éâQh5h^«S`KM7�5-76=�n-S`\BaH5DLTS��]5h^«S¾KM7 Ü KD\�\JSUìHSULTST^_ST;>\

àDçD;hQ6a]^«S`KM72KHe�e}Kk:
X.5DL � OWp ^c;B\�^0\ Ü ;hQ]S égQh5]^_S`KM76\ Ü :oK Qh;>;>=D\!SU7C^iØfK�\�^�5]N?;J\]ë

Ö ä a]^¤KMX.5]^_STQd^b:}5D7V\ce@K§:ÙX.5]^_S`KM7�KHe � OWp SU7 Ü aV^�SU7V^¯K �â�
� Q �9��¢r���-ød�`�_�v�c�-�÷�!�]�i�-�
�C�i�
�6�E�v���Ù���D�6�
Ö ø �B�k�B�Ù�?�i���D� p �>P§�>�h�§�Ù���D� p øù�D�-���Ù�6�
����� 5-76= ��B�E�÷�D�?�i���D� KHes^�;J\�^0\«;R� aE;67EQ>;J\

í¤5DaV^¯KMX.5]^_STQh5?L�L j�5D7E=�SU7�:@;h5DL§^«SUX�;]ï

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± û£ûâüâý£þ

�CÍ0ÄGH:MÔËÅÁJÑrÉ?Ê<Í0Ä�ÈFÏJÍsÁÍK!ÂrÈHÉkÊÙÄGM(ÿËÅÁ>ÊÙÄGMù �ÂGú ÂûmõÍnEfÃÕÂsÄÌÉ

RRC RLC

MAC

PPP
stack

RRC RLC

MAC

RRC RLC

MAC

N
T

 r
ou

te
r

RT−Tester test engine

test management

Eth−LAN

host/light

host/tight

target

SDL runtime system
host platform

RTOS simulator
host platform

RTOS
layer 1 chipset

visualizationspecification

front ends

sub−system sub−system

Abstract Machine Layer

Communication Control Layer

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± ûiýåüâý£þ

 �ÂrÑ�m<ÊiÄNMýü ÊoÉ�V)Ñþg Í�úrÊÙÄGMiK.ÑrÁ2MPÂ É

§ 57*-.�Ac�9^å� 8åKD^vR \�^_5D7E=?5E:@=�5D7E=9SUX Ü L`;6X�;E7]^_5]^«S`KM7/\�^_SUL�L§\>a-ìcêc;>QJ^Ô^¯K�QJKM7V\vST=?;6:}5Dì?L¾;CQ6RH5D7VN?;��

Ö pâ5E:@5-X�;J^�;6:o\�KHes\«;6:on-STQ>; Ü :iSUX!S`^_S nH;J\
Ö î ;J^�5HSUL \�KHePSU7V^c;6:
7H5DL�=?5]^�5 \�^b:
a6QB^ba?:<;J\
Ö 8�;6RH5>n-S`KMa?:sKHes^bRE; Ü :oKD^¤K QJKML X.5VQ6RDSU7E;J\>prSU7 Ü 5E:o^«STQ6a?L¾56:Åe@Kk:s;6:Ù:ãKk: RH5D7E= LTSU7VN
Ö ß25VQERHSU7E;�:@; Ü :@;J\«;67V^�5]^_S`KM7�KHem=?5]^�5�5h^^vR6;ùSU7V^c;6:oeÙ56Q>;J\

¦ *@Aÿ=9()"+*-,Y� RHS`NgR-L j �g;bç?SUì?L`;!^c;B\�^_SU7VN9;E7hn-SU:ãKM7?X�;67V^

Ö � � �
�B�7¢o�E�>�©�k���-�?���i���D�E�#�����
�B�Ùø.�.��¢ �&�w	 \vS`NM7H5DL \!5D7E=�=?5]^�5ù_^b:
a6QJ^va-:@;J\#SU7]_^c;h56=�KHe0L KVØÒL`;JnH;6L
=?;J\«Q6:iS Ü ^«S`KM7V\>p

Ö ��§�Ù�Død�?�Ù�o���B�-�6�v�`�]�Ù�B�k�¤�Z���?�>�>� ì-;J^ÙØP;h;67ù^bRE;ùO î�ò =?;J\«Q6:iS Ü ^_S`KM7/KHes^vR6;ùSU7V^c;6:oeÙ56Q>;25D7E=�^vR6;
e@K§:ÙX!5DL � OWp�\ Ü ;>Q]S éâQh5h^«S¾KM7�KHes^bRE;ùSU7]^�;6:oeÙ5VQh;

Ö �/���k�D���]�Ù� �E�k�i���-� KHe�e}Kk:
X.5DL ìD;6RH5>n-S`KMa?:Å\ Ü ;>Q]S éâQh5h^«S`KM7V\dSU7]^¤KZL¾56:ãN?;6L j�SU7E=?; Ü ;67H=?;676^�e¤a-7EQJ^«S`KM7E5-L
:@;�� aDSU:@;6X�;67V^c\]Þ

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± ûiþåüâý£þ

S ËÌÉ-Í0Ã$ÑrÉ-ÂÌÿ ÊÙÄÌÉ-Â�ÁvÏJÑN�åÊÙÄGM ÍsÏ�Ð� �ÒÑÅÄsÿ ��Ð�j

generator
tool

interface
error report

stream converter
SDL to byte

compiler
C

executable
test cases

compiled CSP
to byte stream map

RT−Tester
runtime system

behaviour
error report

SDL
specification

UMTS
standard

CSP specification

mapping to SDL
annotated with parameter

compiler
SDL

C program

human
specifier

TZi:

human
specifier

Siemens:

target machine

CSP
compiler

executable
implementation

sockets

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± û�eåüâý£þ

S ÄÒÂWµrÑmÃ�EUmoÂÎÏJÍ�Á Ã$ÑrÉ!�WVÅÊÙÄGM ��Ð�jð�WV�ÑmÄfÄ�ÂûmõÈZü ÊoÉ�V Ð` ¡�)ÈkÊIMÔÄ�Ñ�moÈ

��Ð©j Ð� �
���	��
�����	
���� ����
������ ������� �"!#!$����%&��� ')(+*	���-,
�����.�������	
/��0�' �����.�1�2�&*	�3��� 4�	0�*�

'65��	�	��
�08790:' �;7 �����.� 7<
�=">
?)@BA;C&DEAGFIHKJ LNMPORQTSVU6MKWXMYL[Z�\]W_^ ` a

��� ����
������ ���1!
?)@BA;C&DEAGFIHKJ LNMPORQTSbOKW+MKcTFIJ-MPOKdea+f�DgDih jkA6l:fnmNonp6qq�r�Zns
?)@BA;C&DEAgFIHKJ LtMIOuQvSwU6MKWXMYLxZ�\]WyJQ FIHKz HRA;{�A|FIzT^8FId&O zyFIdIH

��0:' �����.�
?)@BA;C&DEAGFIHKJ LNMPORQTSbFI}u`~U"Z�\�l m�nCk{���HKdI��MuzRJ.O �XMYJ�zRd�Zns

� h��;{�h�?km�Wy^ ` am�;{�� {<ht�����;{�m;C6mk@
��� � � {�A�;{ � o	�~LGA�p�W_� Q � f��;{

m�;a � h��;{<h�?-m�
� h�� � �;h�D�W_J�Q LNM�� FIHKz FI`:�_d����;{�m;C6mk@y���&Zn���
�nm��R{<h�?-m�W_J�Q FIHKz M

� A)@<@�A.h�.W_J�Q LNM�� FIHKz FI`:�ydI� ��� {9m�{��
m�;a+�nm��T{<h�?km�
�nm��R{<h�?-m�W_J�Q FIHKz � {.@�f � {

W_^ ` a�W_^ ` a�m��{�� {�h��
W_J�Q FIHKz HRA�{�AeWyJQ FIHKz MY�
l m�nCk{��t���;{�m;C6mk@ �

m�;a+�nm��T{<h�?km�
� � C&�-AklPW_J�Q OiW H_MPO+M WXm�¡	��WyJQ FIHKzy���

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± û�våüâý£þ

�CÍ0Ã·EmÊ�m<ÊÙÄGMLK!ÑrÁ2MPÂ É ÑmÄsÿyK.ÂÌÈHÉ ÐJ�åÁ>ÊÁEÌÉ-È

Ö × R6;CX.5 Ü-Ü SU7]N�KHe � � � ��>�B�M�ã� ^¤K �J�â�
���]�i�
�����§� e@Kk:�^bRE;dSU7V^c;E:õe
5VQ>;256=?5 Ü ^�;6:PSU7 ^vR6;
¢�£¥¤-¦i§T¨�¦i§T© :Ùa?7]^«SUX�;d\cj6\�^c;EX(S`\ Ü :ãK = aEQ>;>=Z5DaV^¯KMX.5]^_STQh5-L÷L j�e¯:ãKMX ^bRE; � OWpZ\ Ü ;>QVS égQh5]^_S¾Kg7§Þ

Ö × R6; �&�w	C� Q �>�B���?�>�-�i���-� S`\�QJKgX Ü SUL`;h=�SU7]^¤K95 � ���E�����D�r��� Q �
�o�â�
�6ø prSU7EQ6L�aE=kSU7VN � L¾5D7VNMaE5]N?;
RE;h5V=?;6:�éåL`;J\�5-76=95 � ���6�R���D�r�����Ù�Bø Q ���-�
�ª�?�÷� e@K§:Ì^bRE; SU7 Ü aV^�5-76=/KMaV^ Ü a]^�KHefO îÔò \JS`NM7E5-L \
e¯:ãKMX(5D7E=/^¯K�^bRE;d;67]n-SU:oKg7-X�;E7]^Jp�:<;J\ Ü ;>QJ^«S nH;6L j6Þ

Ö × RHS`\�^c;EX Ü L¾5]^c;2S`\ÔéåL�L`;>= ìBj25-a]^¤KMX.5h^«STQh5DLUL j9SU7]\«;E:o^«SU7]N�QJK =?;!e}Kk:Ì^vR6;.^c;B\�^�SU7]^�;6:oeÙ5VQh;25V=k5 Ü ^c;6:¤Þ
Y[7 Ü 5E:ã^_STQ6a?L¾56:£p
Ö ^bRE; �&�w	C�v� �â�?�6� 5D7E=�=k5h^_5ù^Ùj Ü ;#=-;Jéå7DS`^_S`KM7V\#56:@; ød�-�
�o�k�o� Ø�S`^vR ^vR6;d5-7-7VKD^�5]^c;>= � � �
�o�-�E�-�k�B� Ü 56:}5DX�;B^c;6:ã\>p�5D7E=

Ö ^bRE; �J�â�Ù���£� Q �£�«�J�B�M�i�?�i�÷�-� S`\�=-;B^c;6:
X!SU7E;>=�e¤:oKMX ^bRE;!N?;67E;6:}5h^c;h= � L¾5-7]NMaH5hNk;�RE;h5V=?;6:�é L`;J\
5D7E=�QJK§:Ù:@;J\ Ü KM7E=kS�7]N � L¾5-7]NgaE5]N?;C=?5]^�5 ^ij Ü ;J\�5D7E= Ü 56:}5DX.;J^c;6:07H5DX.;J\

Ö × R6; �Ù�Bø Q ���?�Ù���E��� � �?�÷�«� 56:@;�QJKMX Ü SUL`;>=�SU7V^¯K�5-7 �>P§�>�h�§�Ù�?�?�÷����ø Q �÷�Bøù�B�g�Ù�-�Ù�÷�D� e}Kk:å^vR6;�^_56:ãN?;J^
X.56Q6RHSU7E;Ep�5-76=/^bRE; � � � � Q �>�B���k�B�-�Ù���D� S`\�QJKMX Ü SUL`;>=/e@K§:Ì^bRE; ¢e£«¤-¦i§R¨�¦K§v© �
�-�M�i��øù�!�£�D�]�Ù�Bø Þ

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± û��åüâý£þ

g Íÿ0ËUmoÑ�Á�Ð0ÉkÁ]Ë��gÉ ËÅÁJÂ)ÍsÏ�É9VsÂi¤�Í�Á]ÃÕÑ�mùÀCÂûV�ÑGúÌÊ<Í0ËÅÁ9Ð�EPÂG�åÊIHJ��ÑrÉ?Ê<Í0Ä

¬u '�^a��A+��� \«; Ü 56:}5h^«S`KM7�SU7V^¯K �
�«�h���h�Ù��øù�D�÷�6�:���B�k�B�Ù�?�i�E� 5D7E= �
�«�h�m���E�J�B�>�>�B�

wrong_reaction
no_reaction
stimulus_overrun

System Under Test
RLC

Rlc_ctrl
(controlled events)

Rlc_mon
(monitored events)

RANDOM_TESTGENERATOR(Rlc_mon)
(test stimulus generator)

RLC_OBSERVER
(test observer)

RT−Tester

TESTSPEC

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± û��åüâý£þ

¤�ÍsÁ]ÃÕÑûmF��Ð�j Ð�EfÂN�åÊ�H ��Ñ�ÉkÊ<Í0Ä)ÍsÏZ�O��� �CÍ0ÄfÄ�ÂN�gÉ?Ê<Í0Ä Æ¯ÄÅÊoÉkÊ<Ñûm<Ê ®�Ñ�ÉkÊ<Í0Ä

� OWp�QJK =?;.e@K§: Ü 5E:ã^0KHes^bRE; SU7DS`^_Sæ5DLTS«�]5h^_STKM7�KDef5 QJKM7?76;>QB^_S`KM79SU7�56Q6AH7]K6Ø�L`;>=DN?;>= X�K =-;Dë
Ý�Ý¬ÌB|ExOº�½?¼�¼9~b�Ãv�6x_ÎrÐ9�>|6x Ú?ê�Ï6Ü�ÅoÆ�á�x2ºh�D�_��ÑYî
Úê�ÏzÇrÅoÆ?ÇrÉoË?ê�ê9Üc��º6~b�Ã<º�»>x)Ç6�cy�á©Ô���ºE~b�?Ãv�Vx�Çvw?¼o»�Ç�ÃàÀ�Ç2ºo½?¼�¼M�£��º6~b�?Ãàº#»BxoÇV�_yÍÝ�Þ
Ü7»bw?¼R»oÇR»oÎrºRÐH��ÄÇvw]x�¯â�ãwBu�ÙJxJ�r½RÂå�.°k�£�>ºE~b�zÃ2º�»Jx�Ç6�cy&±vy)½oÀ�ÀRÑaÝ�Þ

Ú?ê�ÏRÇoÏR×)É�²#Èk³RÇ)ÅrÆ�Ü¯�àºE~«�Ã2º?»Bx�Ç]�_yg{}w¼z»rÇJ�ÎoÇvw>w»zá
âäã Ü âäã í·î�yH�àÐ�Ð-Ü Ú?¼R»oÇ2ÀÎrºâ{

ÕYë »bw¼z»oÇR»oÎ2ºzÐH��ÄÇvw]x�¯â�ãwBu?ÙBxv��½)Â ��°?�£��º6~b�Ã<º�»BxoÇV�«y ë Öá��
í;Ý�ÞOÚê�ÏzÇrÅoÆ?ÇrÉoËzêRê�Ü¤��ºE~«�Ã2º?»Bx�Ç]�_y�á)á

âäã Ü âäã í·îwÚ?¼R»oÇz»b�>w¼��_íåÝRÞw´?Ãvwoº?Ç]~<Â?Î2ºh�?Ã2ºVx�Î2½6~oÇ>x2ÓVx2º>�aÝRÞOÚê�ÏRÇrÅ�Æ?ÇrÉ)Ëê�ê�Ü¤��ºH~_�?Ã2º?»Bx�Ç]�_y#áoá
á
¥ *-^a^_��,9(� × RE;.KMì]\b;6:õnH;E:Ìe}Kk:Ì^vR6; ósò�� SU7V\�^_5D7EQ>;dØ�S`^vRù^bRE;27?a-XùìD;6:�µ	¶u·&¸v¹+¶uºI»_¼yµX½9\�^�5E:o^¤\�SU7
^bRE;!\�^_5h^�;1¾y¿8Ày¼XÁ8Âv¼PÃXÄv¿8¿Z5D7E=�Ø05HS`^¯\Ôe@K§:s5 QJKM7]é NMa?:}5h^_S`Kg7�:@;�� aE;J\�^�;vnH;E7]^>Þ�Y es^vR6;#;vnH;E7]^0K Q>QEa-:ã\>p
^bRE; SU7V\�^�5-76Qh;#NDK ;B\Ô^¤K�^bRE; 7E;bçE^Ô\�^�5]^c;DÞ ä L�L§KD^vR6;E:s;vnH;E7]^¤\Ô^¤K�^bRE;#Orl × 5E:@;dS`Ng7]K§:<;>=�Þ ä 7]j
\ Ü KM7]^_5D7E;JKMaV\�KMaV^ Ü a]^e¯:ãKMX ^bRE;dO�l × ØfKMa-L`=�ìD;ù5-72;6:
:ãKk:m5D7E=9S`\:�â5]NDN?;>=�Þ

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± û�£åüâý£þ

g ÑÅÄ�ÑBMPÂsÃÕÂsÄÌÉ ÍsÏÍK.ÂÌÈHÉ ÐFEfÂG�åÊIHJ��ÑrÉkÊ<Í ÄsÈ

Ö ¦ �9��'�57'�()"+*-,h*9]l()�!�<()"�,!4¡ #*-,� #��5>,���
Ö =kS W�;6:@;67V^#L¾5JjV;6:ã\ÔKDes^bRE;�l ß × O Ü :ãKD^¯K QBKML§\�^�56Q6A
Ö =?5]^�5ù^Ùj Ü ;#=?;véå7DS`^_S`Kg7]\>prQ6RH5D7?76;6L�=?;véå7DS`^_S`Kg7]\>p�5-76=ZìD;ERE5hn-S`KMa-:P=-;Jéå7DS`^_S`KM7V\
Ö ;h5VQ6R Ü :oK Ü ;6:ã^ij2KDes^bRE;ùO�l × SU7�5d\«; Ü 5E:@5]^c;2:@;��MaHSU:@;6X!;67]^¤\ X�K =Ma-L`;

Ö Å ^a��A+��^_�9,�()'�()"ÿ*@,Z*9]lb�'�57"ÿ*@=��©()���2()"3,!4¡�2(�5ç'�()�#4�"+�!�`b�"+' ¥�¦�§ �
Ö �B�Dø Q �÷�V�Ù�>� ���
�6�!�-�Dø \«;6L`;hQJ^_S`KM72KDes^c;J\�^Ô\�^_SUXùa-LTS
Ö :@5-76=DKMX Q6R]K STQ>;J\�Ø�S`^bR�=kS W�;E:<;67V^ Q �
���-���-�������Ù�U�«�
Ö ékçD;>=gp�;bç Ü LTSTQ]S`^bL j/\ Ü ;>Q]S éâ;>= �i�
�E�>� KHem;vnH;67V^¯\

Ö Æ '�^_"ÿA�Çå*9]l()�!�<(��o�Y�� #"%$& #'�()"ÿ*@,@��"3,1'å0@"357�! ()*95�Çå(�5ç�!�a�<(�5>=� ?(�=@57�
Ö \ Ü ;>QVS égQh5]^_S`Kâ7�X�K =Ma-L`;B\>p�\�^_SUXùa-L�aV\�Nk;676;E:@5]^¯Kk:ã\>p�^�;J\�^0\BaDS`^c;J\�;J^cQDÞM\«; Ü 56:}5h^�;>=
Ö 76;>;h=�e}Kk:ÅSU7V^c;6L�LTS`Nk;E7V^�QJKM7]é Nga-:}5h^«S`KM72e
5VQ]SULTS`^«ST;B\

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± û�³åüâý£þ

K.ÂÌÈHÉkÊÙÄGM �!ÂÌÈ ËUm�É-ÈÉÈ�¸åSFÃËÊÅÊIMÔËÅÊoÉkÊ<ÂrÈ ÊÙÄ)É9VsÂ Ð0É-ÑÅÄsÿfÑ�ÁBÿmÈ �Íl��ËfÃÕÂsÄÌÉ

implementation A implementation B

personal interpretation A personal interpretation B
natural language
specification

interoperability?

¬u '�^a��A+��� YU7 ^bRE;dSUX Ü L`;6X.;676^�5]^_S¾Kg7?pÌ5d\ Ü LTS`^ÔKHe óÅò�� O ä p�=?; Ü ;67E=§S[7VN9KM7ù^bRE;d=?;J\�^«SU7E5]^_S`KM7�KHef5
p î l Ø05h\!X.56=-;2íÙØ�RDSTQ6R/S`\�KMì]n-S`KMa]\dì-aV^�7]K-^\�^_5D7E=?5E:<=§S��h;>= ï � 5h\�5 QJKM7V\«;��Ma6;E76Q>;ù^vR6; óÅò�� Qh5D7
ìD;�a]\«;h=�KM7?L j Ø�S`^vR�ß äU� 5D7E=�a Ü?Ü ;6:0L¾5JjV;6:ã\ÔØ�RDSTQ6R�5V=?=�^vR6;!\v5DX�; Ü 5E:@5-X�;J^c;E:f5D7E=�Ø�RHSTQER�aV\«;
^bRE;!\b5-X�;dO ä pZ\ Ü LTS`^>Þ
Ì *Y �=@^_�9,�()'�()"+*-,Z*9]n(�8��!�r�
0-���)"«4[,Z0@�� #"ÿ�r"+*-,�� #'�,18��!A3�Z"3,å(�8��\"3,�()�#4[5ç'�()"ÿ*-,/�@8�'��)��Í

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± ýçïåüâý£þ

K!ÂrÈHÉkÊÙÄGM �!ÂrÈMËUm�É-È[ÈU¸\SFÃËÊmÊ�MÔËÅÊoÉkÊ<ÂrÈ ÊiÄ É�V�ÂÒÐ0É-ÑÅÄÅÿmÑ�ÁBÿfÈ �Íl��ËfÃÕÂsÄÌÉ x��Í0ÄÌÉ�{}|

Î � Q �£�>�B�`�J�`�k���?�-���Ù���D� KHes^vR6; Ü :ãK Ü ;6:o^«ST;J\�KHef5CO ä p SU7C^bRE;.\�^�5-76=k5E:<=

Ö 8�ahW�;E:PL`;67VND^vR]\>p[�Ma6;6aE;]SU7VN�=kS`\bQ]S Ü LTS�76;/í6ÏâY<Ï-ð�p�ÞgÞ�Þ?ï
Ö Ð aE;6aE;d=-;ELTS nH;6:õj�=-; Ü ;67E=-;E76Q>;>\ùìD;J^ÙØ ;>;67�=kS W�;6:@;67V^�O ä pâ\
Ö ß�SU7DSUXda-X`�?X.5Bç?S�XdakX =?;6L¾5vj6\!ì-;J^iØ ;>;E72=?;6LTS nH;6:oj�5-76=95>nD5HSUL¾5DìDSULTS¾^Ùj
Ö IÅ5-76=MLTSU7VN�KHes\JS`NM7E5-L \�^vRE5]^�Qh5-7-7VKD^.ìD;2:@;>Q>;]S nH;h=

î ;J\vS`NM7�=?;>Q]S`\vS`KM7V\�KM7 ^vR6;B\«;ùS`^c;6X�\dX!S`NMRV^Ô\b;J^�5 =-;JGÙe
5VQJ^¤K/\�^�5-76=k5E:<=�Þ
Ì *Y �=@^_�9,�()'�()"+*-,Z*9]n(�8��
'�^a.�"«4[=�"%()"3�!�� #'�,Z8���Aÿ�;()*¿'�0@'���(�()*;'9A«()�95�,�'�()�
"3^a�@Ac�9^_��,�()'�()"ÿ*-,���Í

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± ýcûâüâý£þ

K!ÂrÈHÉkÊÙÄGM �#ÂrÈ Ë¶m[É-ÈÒÑ:¸ �ÂBúÌÊ<ÑrÉ?Ê<Í0Ä�È ÊÙÄ É�V�Â À2Â�V�ÑNúÌÊãÍ0ËÅÁ

Ö àDç-5-X Ü L`;.e@K§:s5D7 �D�k�>P Q �>�V�Ù���;�}� Q �-�Ù���-�6� � �£�B�E�6�i���D� ë
Ö 5D7 ósò�� Ü :oK-^¯K QJKML�X!5VQ6RDSU76;�S`\�Q6:@;h5]^c;>= ìBjù^vR6;d;JnH;67]^�ºXÓyÔyºP¼yºPÕ+¶�Övµ&×v¼PÓ_» ØtÙ�ÓIÚRÛ8»I¸ Ü8Ý
e¯:ãKMX ^bRE;Ca Ü?Ü ;E:L¾5JjV;6:ã\

Ö ìD;>QJKgX�;J\�K Ü ;6:}5h^«S`KM7H5DLå5he@^c;E:P:@;>Q>;]S n-SU7VN�^bRE;!;JnH;67]^tÞß¹yºP¼y·&¸v¹X¸ Üu·P¼yµ	¶�½�e¤:oKMX ^bRE;
a-7E=-;E:ÙL j-SU7VN ß äU� L¾5JjV;6:

Ö SUXdX�;>=§Sæ5h^�;6L j�5>e@^�;6:s^bRH5h^Jpg^bRE;!^�;J\�^0\�^«SUXda-L�aV\�N?;67E;6:@5]^¯K§:0:@5-76=DKMXdL j�N?;67E;6:@5]^c;J\!5D7VKD^vR6;6:
í�7]Kg7]\«;E7]\vSTQ]5DLæïGÞß¹yºP¼y·&¸v¹X¸ Üu·P¼yµ	¶�½Z;vnH;E7]^

Ö ^bRE; ósò�� L¾5JjV;6:Ì_KMX�;J^«SUX�;J\>pÌì-aV^�7VKD^�5-L Ø 5Jj6\>p�:@;h56QJ^c;>= ìBjùNk;676;E:@5]^_SU7VNZ5 =?5]^�5 Ü 5VQEAB;J^vp�SõÞT;-Þ[p
Ø�S`^vR�51Þß¹yºP¼P½y¹X¸v¹8¼PÓ_» Ø�;vnH;67V^

Ö × R6;6:@;�Ø ;6:<;d5-L \�K ���M�Ù�B�
�E�V�Ù���D�E��� �V�}���>�B�Í�-��àâ�B�£�B�M� ���6�h�Ù�6�k�>�«� KHes^vR6; óÅò�� Ü :ãKD^¤K QJKML
X.56Q6RHSU7E;J\ � �k�B���-���§�B�2�v���Ù�-�-�Ù���D�6� SU7C\ Ü S`^c;!KDem;6:Ù:ãKk:P:<;>QBKHnH;6:oj9X�;>Q6RH5D7DS`\BX�\#5 Ü-Ü ;h56:@;>=

Ö ����¢o�!�
�6�Ù�-�Ù� ^¤K�5-7�SU7DS`^_Sæ5DLg\�^_5h^�;�Ø05]\.7VKD^�5-L Ø 5Jj6\�NMaH56:}5D7V^c;>;h=

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± ý£ýåüâý£þ

Ð�ËfÃ Ã$ÑrÁJÓ

Ö Ï6Kk:N�MaE5-LTS`^ij/5]\�\Ba?:@5-76Q>;Hpå\ Ü ;>Q]S égQ]5h^_S`Kg7�KHe �£�o¨k�D���£�Bøù�h� �<� \BRVKMa-L`= ì-;ùSU7�5#e}Kk:
X.5DL
�¯�-�-�Eø��?� ���D�?�E� � L¾5D7VNMaH5hN?;C5D7E= ���!�k� Q �B���k�B�g� e¤:oKgX)^vR6;CSUX Ü L`;EX�;67V^�5V^_S`KM7

Ö ��§�Ù�Død�?�i�÷�:���>�?�B�
�-�Ù���D���6�!���>P§�>�>� �i���-����¢��Ù�b�h�ã� e¯:ãKMXÒ^bRE;J\«;.\ Ü ;hQ]S égQh5]^_S`KM76\�Ø�S`^vR25 Ü?Ü :oK Ü :iSæ5h^�;
^c;B\�^_SU7VN/^¯KkKgL \�Qh5D7�:<;vnH;]5DL \>a-ìV^bL`;2í
KD^bRE;6:oØ�S`\«;�a?76=?;J^c;hQJ^�5-ì-LT;]ï�;6:
:oK§:o\

Ö ��§�Ù�Død�?�i���R�ñ�Á�?�d�>�D�-�k�>�V�Ù���D� ìD;B^iØ ;>;67C^bRE; �£�D�]�Ù�Bø �-���k�B���Ù�b�h� 5D7E=�^vR6; �£�o¨k�D���£�Bøù�h� �<�
� Q �>�B���?�>�-�i���-� 5DL�L K6Ø \dX.5Bç?SUX.5-L9�â;bç?SUìHSULTS`^Ùj�SU7 ^bRE;d=-;B\vS`NM7 Ü :ãK Q>;J_\

¨-©«ª¤¬
¯® ° ±
²c® ³
´Vµb¶V· ª_ªvµ�¸H¹h·vº6±£° »�©«¶]¼¾½
¿§½
± ý£þåüâý£þ

Speci�cation Based Testing of the

UMTS Protocol Stack

Jan Bredereke Bernd-Holger Schlinglo�

Universit�at Bremen, TZi � P.O. box 330 440 � D-28334 Bremen � Germany
fbrederek,hsg@tzi.de � www.tzi.de/f~brederek,~hsg

Abstract. We present a speci�cation based testing setup for the RLC layer of the UMTS pro-
tocol stack. Requirements are speci�ed in the formal language CSP. From this we automatically
generate real-time test scripts for the RLC, which is developed from SDL sources. Our testing
approach is highly adaptable to changes in the UMTS standard and implementation: we de-
veloped an interface code generator with automated consistency checks, and modularized the
requirements according to functional properties. We report on testing results and experiences
with this setup.

1 Introduction

Current methods for testing embedded real-time control software can be classi�ed as
structural or speci�cation based. Structural testing methods try to execute as many
di�erent parts of the program code as possible, where coverage is measured in terms of
statements, conditionals, branches, function calls, and so on. Speci�cation based meth-
ods treat the system under test as a black box and focus on testing the required
properties of the system.

We have applied the latter approach in the development of the Radio Link Control
(RLC) protocol layer of the Universal Mobile Telecommunication System (UMTS), a
new generation of high-speed, multi-media mobile phone systems. The work is part
of an ongoing cooperation between Siemens AG, Salzgitter, and Technologie-Zentrum
Informatik (TZi), Bremen, where Siemens develops the code for the RLC layer, and
TZi provides testing support.

In the case of UMTS, a standard is being de�ned by the 3GPP consortium (the
3rd Generation Partnership Project [1]). User equipment and base stations are to be
developed by di�erent companies and at di�erent sites. Moreover, even the development
of the software for di�erent layers of the protocol often is distributed between several
teams. For the correct functioning of the whole system, it is extremely important that
the standard is implemented by all participating developers in a consistent way. There-
fore, in order to ensure inter-operability between devices from di�erent providers, it
is mandatory to base test suites solely on the 3GPP standards (plus additional site-
speci�c requirements) rather than on individual program code from speci�c developers.
For such systems, speci�cation based testing is more appropriate than structural test-
ing.

Speci�cation based methods treat the system under test (SUT) as a black box and
focus on testing the required properties of the system. This has a number of signi�cant
advantages:

{ the testing process concentrates on the user requirements and functionality aspects
rather than on implementation details,

{ ambiguities of the informal requirements (here, the UMTS standard) are exhibited,
{ misinterpretations can be found, including errors arising from omissions and missing
cases,

{ a formal requirements speci�cation implicitly contains test scripts of arbitrary
length, the test coverage is limited only by the time available for a test run,

{ a change in the SUT does not a�ect the test suites, and a change to a requirement
a�ects one requirements module only.

In this project, without even running the tests, already in our �rst formalizations
we found a number of deviations between our interpretation of the standard and the
actual implementation. For example, frequently problems stem from cases which are
under-speci�ed in the standard (i.e., 3GPP did not state precisely what the required
reaction to certain sequences of inputs should be) and which are interpreted di�erently
by di�erent readers. An annotated list of such deviations is a valuable documentation
of design decisions arising from di�erent views onto the standard. A formal speci�ca-
tion can even be used as a reference which helps to achieve consistency and correct
interoperability between components developed at di�erent sites.

In conventional testing approaches, test cases are often formulated using a set of
test scripts. These are explicit sequences of test inputs and of expected system outputs,
describing in a step by step manner how the test should proceed. Speci�cation based
approaches do not need these long test scripts. Instead, the test scripts are implicitly
contained in much shorter formal speci�cations. Tools can expand their powerful choice
and concurrency operators automatically on the y to conventional test scripts. They
may run over long periods of time: hours, days, weeks and more - without the necessity
of manually writing test scripts of an according length. Test results are evaluated on
the y in real time during the run of the SUT.

With structural testing, all scripts have to be revised after each change in the SUT.
Therefore, the testing process is costly and time-consuming. In speci�cation based test-
ing, due to its black box nature, all test cases can be re-used even if the implementation
is changed. Thus errors can be corrected and regression tests can be done at virtually
no additional costs. Since in the distributed development of the UMTS protocol stack
inconsistencies are very likely, this feature is extremely important.

If some requirement is changed, with structural testing this usually means that
several steps of several test scripts have to be changed, such that many test scripts need
to be re-worked. In speci�cation based testing, all these points of change are folded
into the same few lines of the formal speci�cation of this requirement. The formal
speci�cation is modular, each module describing a di�erent aspect of the system's
behaviour. Only the module which describes the new requirement has to be updated.
For the UMTS protocol stack this is especially important since a number of items in
the interpretation of the 3GPP documents are expected to be subject to change at any
time.

Figure 1 describes our overall approach, where requirement speci�cations are for-
mulated in CSP (Communicating Sequential Processes) [2], and system speci�cations

2

test driver / evaluator
(RT−Tester)

testing results

target
(*.exe or

embedded)

system
specification

(SDL)

development platform
(Telelogic Tau / Cmicro)

test cases
(*.tg)

requirements
specification

(CSP)

test case generator
(FDR)

Fig. 1. Overall speci�cation based testing approach.

are formulated in SDL (Speci�cation and Description Language) [3]. From this, auto-
matic tools are used for the generation of code and for the generation of test cases, and
the system is tested automatically. This high degree of automation reduces the overall
development time, which is particularly important in the current UMTS race.

Our paper is organized as follows: in Section 2, we give an overview of the func-
tionality and properties of the RLC layer, and its implementation in SDL. Section 3 is
the main part and deals with our automated testing environment: formal CSP speci�-
cations and the testing tool RT-tester, interfacing between the SUT and the testing
tool, the formal CSP speci�cation of the RLC layer, and testing of multiple instances
in parallel and real-time. In Section 4, we describe and interpret the testing results,
and in Section 5 we summarize our work.

2 The RLC Layer of UMTS

UMTS is a new international wireless telecommunication standard developed by the
3GPP consortium [1]. The standard comprises a layered architecture, where each layer
relies on primitive services from the layer below and provides complex services to the
layer above. Conceptually, each layer in the user equipment communicates with the
same layer in the UMTS terrestrial radio access network.

{ Layer 1 is the physical layer of hardware services provided by the chip-set.
{ Layer 2 is the data link layer. It provides the concept of a point-to-point connection
to the network layer above.

{ Layer 3, the network layer, provides network services such as establishment / release
of a connection, hand-over, broadcast of messages to all users in a certain geograph-

3

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

PDCP

control

RRC

RLC

RLC
RLC

RLC
RLC

RLC

RLC RLC

Layer 3 boundary

Layer2/BMC

MAC

PHY

Transport channels

Layer1

Layer2/MAC

Layer2/PDCP

Layer3

co
nt

ro
l

co
nt

ro
l

co
nt

ro
l

co
nt

ro
l

Layer2/RLC

Logical channels

BMC

PDCP

Fig. 2. Overall architecture of the UMTS radio interface protocol stack.

ical area, and noti�cation of information to speci�c users. It includes the Radio
Resource Control (RRC), which assigns, con�gures and releases wireless bandwidth
(codes, frequencies etc.).

{ Above layer 3 there are application layers containing functionality such as Call
Control (CC) and Mobility Management (MM).

Layer 2 is split into several sub-layers: Medium Access Control (MAC), Radio Link
Control (RLC), Packet Data Convergence Protocol (PDCP), and Broadcast and Mul-
ticast Control (BMC). The MAC provides unacknowledged transfer of service data
units, reallocation of parameters such as user identity number and transport format.
It furthermore reports local measurements such as traÆc volume and quality of service
indication to the RRC. The main task of the RLC is segmentation and reassembly of
long data packets from higher layers into �xed width protocol data units, respectively.
This includes ow control, error detection, retransmission, duplicate removal, and simi-
lar tasks. An overview of this architecture is given in Figure 2, which is from the 3GPP
standard.

2.1 Overview of Functionality and Properties

The RLC layer of the UMTS protocol stack [4] provides three modes of data transfer:
acknowledged (error-free), unacknowledged (immediate), and transparent (unchanged)

4

mode. In acknowledged mode, the correct transmission of data is guaranteed to the
upper layer; if unrecoverable errors occur, a noti�cation is sent. In unacknowledged
mode, erroneous and duplicate packets are deleted, but there is no retransmission or
error correction: messages are delivered as soon as a complete set of packets is received.
In transparent mode, higher layer data is forwarded without adding any protocol in-
formation; thus no error correction or duplicate removal can be done.

In all of these modes, the variable-length data packets received from the upper layer
must be segmented into �xed-length RLC protocol data units (PDUs). Vice versa, for
delivery to the higher layer, received PDUs have to be reassembled according to the
attached sequence numbers. As additional services, the RLC o�ers a cipher mechanism
preventing unauthorized access to message data. Thus, to transmit data, the RLC reads
messages from the upper layer service access points (SAPs), performs segmentation and
concatenation with other packets as needed, optionally encrypts the data, adds header
information such as sequence numbers, and puts the packets into the transmission
bu�er. From there, the MAC assigns a channel for the packet and transmits it via
layer 1 and radio waves. On the opposite side, packets arriving from the MAC in
the receiver bu�er are investigated for retransmissions, stripped from the RLC header
information, decrypted if necessary and then reassembled according to the sequence
numbering, before they are made accessible to the upper layers via the corresponding
SAP.

A particular feature of the RLC is that there may be several instances coexisting
at the same time. This is necessary since the services to the upper layers provide a
variable number of connections, whereas the service of the lower layer provides a �xed
number of logical channels. For eÆciency reasons, however, the maximum number of
parallel instances is statically �xed in the system.

2.2 Implementation in SDL

The 3GPP standard is written in a mixture of formalisms. The main part is plain
English and annotated �gures. These are accompanied by tables describing bit-level
data formats, small state transition diagrams for the di�erent modes and control com-
mands, plus message sequence charts for the procedural communication between send-
ing and receiving RLC instances. Earlier versions of the standard were accompanied
by a detailed implementation suggestion described in the speci�cation and description
language SDL [3].

For example, in Figure 3 on the following page, we show the acknowledged mode
states, and in Figure 4 on page 7, we show part of the corresponding SDL diagrams for
the initialization of a connection in acknowledged mode (bold arrow in Figure 3).

The implementation is developed from these and similar sources with the help of
suitable tools. In particular, there are commercial tools which can execute an SDL
system in an emulated runtime environment, and which can compile a set of SDL
diagrams plus a set of data type descriptions written in ASN.1 or as C headers into
executable machine code for embedded targets.

5

1.
Null 2.

Ack.
Data Transfer

Ready

CRLC−CONFIG−Req RESET
RESET ACK

RESET ACK

CRLC−CONFIG−req

CRLC−CONFIG−Req

Received signal
Sent signal

3.
Reset.

Pending

RESET
RESET ACK

RESET ACK

RESET
RESET ACK

RESET

Fig. 3. RLC layer acknowledged mode states.

3 The Automated Testing Environment

In order to be able to �nd errors arising from misunderstandings or omission of cases,
it is important that the system tests are developed independently from the system
implementation. In the present project, we have formalized the requirements for the
RLC using the process algebraic language CSP. These formal speci�cations describe
the expected behaviour of the system under test (SUT) at its interfaces. From a CSP
test speci�cation of just a few pages, test scripts of arbitrary length are generated
automatically by the supporting tool RT-tester [5]. In this section, we describe the
general testing approach based on formal speci�cations, and give a detailed description
of our interface between the CSP testing system and the SDL target. Then, we report
on some speci�cs regarding the formal speci�cation of the RLC layer, and, in particular,
on testing multiple parallel instances of the RLC.

3.1 Formal CSP Speci�cations and RT-TESTER

CSP (Communicating Sequential Processes) [2] is a speci�cation language which allows
to give a description of a system on a high level of abstraction. The structure of the
requirements is reected by particular operators such as sequential or parallel composi-
tion, choice, iteration and hiding. Communication between the processes and with the
outside is by the exchange of events. In contrast to SDL, however, this communication
is synchronous (handshake); bu�ered communication has to be modelled explicitly. We
use a timed version of CSP, where it is possible to set timers which generate events
upon elapse. This way, it is possible to test real-time behaviour of applications, which
is especially important for embedded systems.

Example 1 on page 8 introduces to a few basic operators of CSP, in particular to
the event pre�x, the external choice, and one of the parallel composition operators.

From formal CSP test speci�cations, test cases can be generated and executed
on-the-y. Our tool RT-tester reads the CSP input and generates an internal repre-

6

Crlc_amconfig.req(

no_pu:=0,

poll_triggers(TIMERBASED)

Set(NOW+period, timer_PERIOD)

status_triggers(TIMERBASED)

Set(NOW+rx_period, timer_RXPERIOD)

YES

YES

 logical_channel, poll_triggers, ...)

no_sdu:=0

Acknowledged_data_transfer_ready

NO

NO

vt_ms:=vt_s+tx_win,

vt_mr:=vr_r+tx_win

Nul

Fig. 4. SDL diagram for the initialization of a connection in acknowledged mode (bold arrow in Figure 3).

sentation from it, which is a huge graph of all allowed state transitions of the target. In
a separate stage, this transition graph is used by RT-tester to generate test scripts,
which are executed on a separate testing machine automatically and in real time. They
may run over long periods of time: hours, days, weeks and more { without the necessity
of manually writing test scripts of an according length. The testing machine and the
SUT communicate via TCP/IP sockets, and test results are evaluated on the y in real
time during the run of the SUT, by using the compiled CSP description as a test oracle.
To ensure that the tests cover the whole bandwidth of all possible system situations,
a mathematically proven testing strategy is used. It guarantees that the testing cov-
erage increases steadily, approaching a full veri�cation of the speci�ed requirements.
Functional properties such as correct transmission and packet routing can be tested
together with real-time properties such as correct time slots and suÆcient performance
within the same test run.

7

Example 1 A vending machine speci�cation featuring a few basic CSP operators.

include "timers.csp"

pragma AM_INPUT

channel coin, buttonCoffee, buttonTea

nametype MonEv = { coin, buttonCoffee, buttonTea }

pragma AM_OUTPUT

channel coffee, tea

nametype CtrlEv = { coffee, tea }

OBSERVER = ((coin -> HAVE_COIN)

[] (buttonCoffee -> OBSERVER)

[] (buttonTea -> OBSERVER))

HAVE_COIN = ((coin -> HAVE_COIN))

[] (buttonTea -> AWAIT({tea}) ; OBSERVER)

[] (buttonCoffee -> AWAIT({coffee}); OBSERVER)

RANDOM_STIMULI = (|~| x: MonEv @ x -> PAUSE; RANDOM_STIMULI)

TEST_SPEC = RANDOM_STIMULI [| MonEv |] OBSERVER

A system described by the process OBSERVER accepts either of the three inputs listed (external choice \[]"). If
the input is a coin, then the system behaves like the process HAVE_COIN (event pre�x \->").
A system described by the process HAVE_COIN outputs the desired drink after the corresponding button

press. In this, the sub-process AWAIT waits for any of the outputs speci�ed (sequential process composition
\;"). The de�nition of this process is listed in Example 3 on page 15 below.
The process RANDOM_STIMULI non-deterministically selects one event from the set MonEv (replicated internal

choice \|~| x : S @ P(x)"), waits a short time, and starts all over (recursion).
The process TEST_SPEC describes the complete test suite: the process RANDOM_STIMULI provides all the test

inputs, which are also tracked by the process OBSERVER. The latter additionally tracks the test outputs. They
are combined by sharing (\P [| S |] Q") the input events in the set MonEv.

An example of a possible testing con�guration is shown in Figure 5 on the facing
page. In this setup, the testing machine is connected to three di�erent development
stages of the system under test: with an SDL runtime system, with a real-time operating
system simulator and with the embedded target. During our actual testing, similar
setups were used.

3.2 Interfacing SDL and CSP

A particular problem for the development of test suites for UMTS is that the standard
describing the requirements still is subject to considerable change. Even after the \De-
cember 1999" release, which was supposed to be stable, dozens of changes were made,
and more have to be expected. This concerns, for example, the parameters of the service
primitives and the details of the data structures, such as protocol data units. Even the
behaviour of the protocol machines is still expected to change, in particular for error
handling. Similarly, not all implementation decisions have been �nalized, some details
of the machine representation of data at the interfaces are not yet �xed. We therefore
designed the testing environment to be highly exible by

8

RRC RLC

MAC

PPP
stack

RRC RLC

MAC

RRC RLC

MAC

N
T

 r
ou

te
r

RT−Tester test engine

test management

Eth−LAN

host/light

host/tight

target

SDL runtime system
host platform

RTOS simulator
host platform

RTOS
layer 1 chipset

visualizationspecification

front ends

sub−system sub−system

Abstract Machine Layer

Communication Control Layer

Fig. 5. Con�guration for testing during development.

{ de�ning the interface in terms of SDL signals and data structures instead of low
level descriptions,

{ performing an automated consistency check between the SDL description of the
interface and the formal CSP speci�cation of the interface, and

{ modularizing the formal behaviour speci�cations into largely independent functional
requirements.

The interface of the RLC layer relevant for testing is speci�ed in SDL. Our auto-
mated approach makes it the only relevant interface. The SDL compiler generates a C
language representation of the interface, and the C compiler generates a machine lan-
guage representation of the interface, but both other representations are of no concern
to our tests. The goal of the tests is to ensure that we can combine the tested SDL
processes into a larger SDL system and achieve the desired behaviour. The actual rep-
resentation of the internal interfaces between the components is not part of the visible
behaviour of the combined system.

These internal interfaces have to be consistent only. On one hand, the SDL and C
compilers do this type check. On the other hand, RT-tester can check whether the
intended inter-process cooperation indeed occurs by performing (black box) integration
tests of several components.

The interface in terms of SDL signals needs to be mapped to an interface in terms
of RT-tester's native CSP channels. We need a translation between the two forms of

9

syntax. Due to its changing nature, we decided to automate the mapping by a generator
tool. This generator tool also ags any inconsistencies between the interfaces of the two
speci�cations. If the SDL speci�cation is changed, the generator tool simply needs to
be re-run. If it ags no error, the interface descriptions of the SDL speci�cation and of
the CSP speci�cation are guaranteed to be consistent, and the next test run can check
whether the behaviour is consistent, too. If the SDL interface has been changed in a
part that is relevant to the CSP tests, the mismatched items are logged and we can
directly investigate the problem. With the RLC protocol layer this feature is especially
important: this module uses large and complex data structures as signal parameters,
which are diÆcult to keep in sync manually. There are signals with more than one
kilobyte of heavily structured parameter data; comparing their de�nitions manually
would be extremely tedious and error-prone.

Figure 6 on the next page presents the concept of the automated interfacing. At
the top there is the informal UMTS standard. Both the implementation team and
the testing team interpret it and produce a formal speci�cation in SDL and CSP,
respectively. The names of the SDL signals and of the CSP channels must be the same
in both speci�cations and are mapped automatically.

Channels and signals also can have parameters, which have to be mapped, too. In the
simplest case, the �rst channel parameter is mapped onto the �rst signal parameter,
and so on. In practice, this most simple scheme is rarely used. The mapping of the
parameters usually requires user interaction, since CSP has a di�erent concept of data
structures than SDL, and since the UMTS standard provides data descriptions with
huge data spaces, for example for the protocol data units (PDUs). Therefore, the CSP
speci�cation makes sensible abstractions to the state space, and the testing environment
instantiates them with concrete values. Examples for sensible abstractions are blocks
of, e.g., 512 bytes of data that will be transmitted transparently. Testing only a few
representatives is suÆcient.

We thus annotate each parameter of each CSP channel with the corresponding pa-
rameter of the corresponding SDL signal, as demonstrated in Example 2 on page 12.
Particularly interesting is the \SKIP" annotation when we have data records as pa-
rameters that contain further sub-records. This is often the case for the protocol data
units of the RLC layer. There are SDL signals with hundreds of sub-record compo-
nents, of which most are entirely irrelevant to the protocol behaviour and thus to the
testing purposes. An entire tree of such components is skipped implicitly by naming
the top-most component only.

After the CSP interface has been annotated, \make" �les and the generator tool
can be invoked for the following steps (compare Figure 6 on the next page, again):

{ The CSP speci�cation is compiled as usual for the RT-tester runtime system.
{ The interface adapter in the RT-tester runtime system also needs a (compiled)
description of how the events on the CSP channels are mapped to byte strings. The
generator tool produces this description automatically from the CSP speci�cation.

{ The SDL speci�cation is compiled into a C language program, including C language
header �les that de�ne C language names for the signals, their parameters, and

10

generator
tool

interface
error report

stream converter
SDL to byte

compiler
C

executable
test cases

compiled CSP
to byte stream map

RT−Tester
runtime system

behaviour
error report

SDL
specification

UMTS
standard

CSP specification

mapping to SDL
annotated with parameter

compiler
SDL

C program

human
specifier

TZi:

human
specifier

Siemens:

target machine

CSP
compiler

executable
implementation

sockets

Fig. 6. Automated interfacing of SDL signals with CSP channels.

11

Example 2 An annotated CSP channel matching an SDL signal.

CSP SDL

nametype Rb identity = f0 .. maxRb countg
datatype Rlc data = dummy value

channel rlc tr data req :

pragma SDL MATCH PARAM 1!RB Id
Rb identity .

pragma SDL MATCH TRANSLATE dummy value 0x99 * 16
pragma SDL MATCH PARAM 1!RLC SDU Data SUBSET USED

Rlc data

pragma SDL MATCH SKIP 1!length DEFAULT VALUE 16

syntype RB Identity = integer
constants 0:MaxRb Count

endsyntype;
synonym RLC MAX SDU SIZE integer = 512;
newtype RLC SDU A

carray(RLC MAX SDU SIZE, octet)
endnewtype;
newtype RLC SDU struct

RB Id RB Identity;
RLC SDU Data RLC SDU A;
length integer;

endnewtype;
signal RLC TR DATA Req(RLC SDU);

The example de�nes a CSP channel named rlc tr data req which has two parameters. The corresponding
SDL signal RLC TR DATA Req has one parameter which is a record of three components. With respect to
mapping, each record component is treated like a separate parameter, in the order in which it is de�ned.
The �rst \pragma SDL MATCH" line maps the �rst CSP channel parameter to the �rst SDL record compo-

nent of the �rst (and only) SDL parameter, and it requires that the component is named \RB Id". The CSP
channel parameter is of type \Rb identity" (a set of numbers serving as radio bearer ids). The SDL record
component must have a type with the same set of values as \Rb identity", otherwise the generator tool will
ag an error.
The second CSP parameter is matched with the second SDL record component named \RLC SDU Data".

This is actually an array of up to 512 octets (which are transmitted transparently). We do not want to test
all possible values for this parameter, therefore we de�ne the corresponding CSP type to comprise only one
single value, called \dummy value". In order to suppress the type mismatch warning message, we append
\SUBSET USED" to the pragma line. Furthermore, we want to use a well-recognizable pattern of data in the
array. The \TRANSLATE" pragma line therefore speci�es that the CSP dummy value should be sent as an
array of sixteen hexadecimal bytes 99 to the SDL system under test. Similarly, only this pattern is recognized
as a valid parameter value when received from the SDL system, all other patterns will result in a runtime error
message in the test log.
Finally, the last \SKIP" line indicates that the third SDL record component \length" has no counterpart in

CSP, but that it always should be �lled with the value 16 (indicating the array length used).

the data types of the parameters, and a C language template �le is generated that
inputs and outputs SDL signals from and to the environment of the SDL system.

{ This template is �lled by the generator tool. The inserted code is part of the test
interface adapter. The tool
� takes the SDL speci�cation and analyzes the signal de�nitions and the data type
de�nitions in it,

� matches it with the annotated CSP channel parameters,
� takes the generated C language header �les and determines the corresponding C
language data types and parameter names, and

� takes the C language template �le and �lls it. The encoding of the parameters
into byte strings is the same as generated for the CSP side.

{ The �lled-out template and the other C �les are then compiled into an executable
implementation for the target machine.

12

The representation of the signals as byte strings is determined by the generator tool
for both the CSP and the SDL side. The representation is independent of any machine
architecture (as long as it provides strings of bytes). Each parameter is mapped to one
byte, in the order in which they appear in the parameter list. If a parameter can take
more values than a single byte can hold, it is mapped to more bytes. The byte order is
de�ned by the tool to be least-signi�cant-byte �rst.

The machine representations of data structures may be di�erent on the target ma-
chine and on the machine running RT-tester. These machine representations may
furthermore change during the project, e.g., due to changed choices of the hardware
platform or of the embedded operating system.

Our automated approach for mapping signals obsoletes the need for a manual de-
scription of the machine representations, and it does not demand any user interaction
after a change. Since we con�ne the target machine representation of the data entirely
to the target machine, it is suÆcient to rebuild the generated �les and recompile them.
The socket communication with RT-tester uses our own byte string format which is
independent of any machine representation.

3.3 Formal CSP Speci�cation of the RLC Protocol

We not only have to cope with changing requirements, but also with di�erent testing
scenarios. We accommodate for both by a modular structure of the formal behaviour
speci�cation.

In one scenario, we want to test an individual layer of the UMTS protocol stack. In
another scenario we want to test the integration of several layers. Furthermore, some of
the tests will be driven by external stimuli from the real world which are not under the
control of the testing system. We therefore have to specify the test stimulus generator
and the test observer as separate modules, to separate the speci�cations of the di�erent
layers, and to compose these modules in di�erent ways.

Furthermore, some crucial aspects of the SUT have to be tested more thoroughly
than others. We therefore encapsulate these aspects into sub-modules, compose suitably
tailored instances to complex test suites as needed, and run them using the RT-tester
tool. In all these cases, the actual test scripts are generated automatically on the y.

The vending machine toy example in Example 1 on page 8 above composes the com-
ponents already in the same way as the CSP speci�cations of the RLC layer (Figure 7):
a test stimulus generator, written in CSP, generates an input to the implementation
under test and waits some de�ned amount of time, then it loops and generates the
next input. Concurrently, a test observer process, also written in CSP, observes both
the input stimuli and the output reactions of the system under test. If the behaviour
of the system under test is incorrect, an error is agged. Example 3 on page 15 shows
the de�nition of the CSP process AWAIT from Example 1 which assures that one of the
speci�ed set of legal outputs occurs in due time.

We can see how the de�nition of the process AWAIT is separated into a di�erent
�le, and how it is integrated into the toy example by an include statement. We use a
similar process in our test suite speci�cations in the same way.

13

wrong_reaction
no_reaction
stimulus_overrun

System Under Test
RLC

Rlc_ctrl
(controlled events)

Rlc_mon
(monitored events)

RANDOM_TESTGENERATOR(Rlc_mon)
(test stimulus generator)

RLC_OBSERVER
(test observer)

RT−Tester

TESTSPEC

Fig. 7. The split between the stimulus generator and the test observer.

We separated the de�nitions of the di�erent layers of the UMTS protocol stack into
separate �les. Beyond this, we also separated the data type de�nitions, the channel
de�nitions, and the actual behaviour de�nitions. For several of these de�nitions, we
designed di�erent variants that can be composed in various ways.

For example, a test stimulus generator similar to the one in Example 1 generates test
stimuli completely randomly. Another variant performs random choices with di�erent
probabilities, such that \interesting" states are reached more often, and yet another
variant performs a �xed, explicitly speci�ed trace of events. The latter has no internal
choice operators at all, it just consists of a long sequence of event pre�x operators
(\->").

Example 4 on page 16 presents a CSP text fragment from our RLC layer speci�ca-
tion. It describes part of the initialization of a connection in acknowledged mode (bold
arrow in Figure 3 on page 6, SDL code in Figure 4 on page 7).

3.4 Testing Multiple RLC Instances in Parallel

The RLC layer comprises a number of protocol machine instances that run indepen-
dently. This is true at least at the black box behaviour level, even though the imple-
mentation in SDL has a di�erent, less decoupled structure. Therefore we specify and
perform the testing of the entire RLC layer by replicating the CSP process for a single
protocol instance, and by parameterizing it with the instance number. These processes
run concurrently in parallel, each generating test stimuli for one of the RLC instances,
and checking the reactions.

This testing setup is an example of a testing setup with several components tested at
once. It is also possible to combine di�erent kinds of components, for example RLC and
MAC instances. Such a testing setup can be built by combining the CSP processes for
the test observers into one test speci�cation, and by selecting a suitable test generator.

14

Example 3 The timer-related CSP processes for Example 1 on page 8.

pragma AM_SET_TIMER

channel setTimer : { 0, 1 }

pragma AM_ELAPSED_TIMER

channel elapsedTimer : { 0, 1 }

pragma AM_ERROR

channel wrong_reaction, stimulus_overrun

pragma AM_WARNING

channel no_reaction

PAUSE = setTimer!0 -> elapsedTimer.0 -> SKIP

AWAIT(ExpectedEvSet) =

(-- start timer and wait for things to come:

setTimer!1 ->

(-- Accept correct reaction:

([] x: ExpectedEvSet @ x -> SKIP)

[] -- Flag wrong reaction:

([] x: diff(CtrlEv, ExpectedEvSet) @

x -> wrong_reaction -> SKIP)

[] -- Flag overrun by next monitored event:

([] x: MonEv @ x -> stimulus_overrun -> SKIP)

[] -- Flag no reaction (timeout):

elapsedTimer.1 -> no_reaction -> SKIP))

The process PAUSE sets a timer and waits until it elapses. Then it terminates and thereby returns to its calling
process.
The process AWAIT assures that one of the speci�ed set of legal outputs occurs in due time. if not, it performs

one of the events wrong_reaction no_reaction, . . . which go into the test log. This process also terminates
and thereby returns to its calling process.

4 Testing Results

Our tests yielded two kinds of results: the one kind, discussed in Section 4.2 below, are
deviations in the behaviour of the SUT. The other kind was due to the speci�cation
based testing approach. In writing the formal requirements speci�cation and comparing
its interface to the implementation's interface, we found several ambiguities in the
UMTS standards document.

4.1 Ambiguities in the Standards Document

The ambiguities which we found can be subject to di�erent, equally legal, incompatible
interpretations. These places will need special care to avoid inter-operability problems
with software developed at other sites or by di�erent manufacturers. (Compare Figure 8
on page 17.)

For example, the RLC layer must accept several kinds of data as PDUs from the
underlying MAC layer and forward it through the appropriate service access points
(SAPs) of itself to its upper layers. Similarly, the RLC layer must forward data arriving
through its SAPs as service primitives down to the appropriate \logical channels"

15

Example 4 CSP speci�cation of the initialization of an RLC connection in acknowl-
edged mode.

-- The null state of the RLC (AM) entity:

RLC_AM_NULL(instance_id) = instate_rlc_am_null.instance_id ->

(-- Wait for crlc_config_req setup request and honour it:

crlc_config_req.rbSetup.1.instance_id?dummy ->

RLC_CONFIG_AM(instance_id,rlc_to_rrc)

[]

-- No data transfer is yet possible, since the instance does not

-- yet exist, thus no reaction is expected otherwise:

-- (A release request is discarded in this state, too.)

([] x : diff(Rlc_mon,

{| crlc_config_req.rbSetup.1.instance_id |}) @

x -> RLC_AM_NULL(instance_id))

[]

-- any spontaneous reaction produces a warning:

([] x : Rlc_ctrl @ x -> warn_spontaneous_event -> RLC_AM_NULL(instance_id))

)

-- The other states are omitted here:

RLC_CONFIG_AM(instance_id,rlc_dest) = ...

-- The main process:

RLC_AM_OBSERVER(instance_id) = RLC_AM_NULL(instance_id)

The observer for the RLC instance with the number instance_id starts in the state RLC_AM_NULL and waits
for a con�guration request event. If the event occurs, the instance goes to the next state. All other events to
the SUT are ignored. Any spontaneous output from the SUT would be an error and is agged.

of the underlying MAC layer. In both cases, the appropriate destination cannot be
determined from a service primitive or PDU and their parameters alone, as given in
the standard. Therefore the RLC SAP was split into two SAPs, distinguishing whether
an upward bound signal should go to the RRC layer or to a di�erent upper layer, and
another parameter was added to most service primitives and PDUs which identi�es the
destination inside one layer. These necessary extensions have the consequence that the
RLC layer can be used only with MAC and upper layers which add the same parameter
and which use the same SAP split.

Another much less obvious, but potentially even more serious example is that we
did not �nd any precise de�nition of the properties of a service access point (SAP), or
of the MAC layer's logical channel. In particular, there is no de�nition of

{ whether signals are forwarded instantaneously or whether they are bu�ered,
{ a queueing discipline (FIFO, . . .) in the case of bu�ering,
{ queue delivery dependences between di�erent SAPs (single queue/multiple
queues),

{ possible minimum/maximum delays between delivery and availability,
{ the possibility of data loss or alteration,
{ the handling of signals that cannot be received.

16

implementation A implementation B

personal interpretation A personal interpretation B
natural language
specification

interoperability?

Fig. 8. Potential interoperability problems through an incomplete speci�cation.

We can probably assume safely that neither SAPs nor logical channels lose or alter
signals. But the other �ve issues can have an impact on the behaviour of the system.
In particular, delays in the delivery of signals can result in race situations, or prevent
them.

The implementors had to make decisions on the above issues. Several of them were
made more or less implicitly by choosing SDL as the implementation language, since
the endpoint of an SDL signal route or channel has a precise, speci�c semantics. Further
decisions were made by choosing a particular structure of SDL processes inside a layer
(number of independent queues per layer, . . .).

Besides these ambiguities in the standard, we also found a few deviations in the
implementation's interface de�nition from the interface de�ned in the standard.

4.2 Testing of the SUT's Behaviour

There were several situations in which the SUT did not behave as expected. For exam-
ple, in a certain state the SUT reacts to a certain signal where no reaction was intended:
an RLC protocol machine is created by the event crlc_config_req.rbSetup from the
upper layers, and it becomes operational after receiving the event mac_status_ind

from the underlying MAC layer. Immediately after that, the random test stimulus gen-
erator sometimes generated another (nonsensical) mac_status_ind event, to which the
RLC layer sometimes, but not always, reacted strangely by generating a data packet,
i.e., with a mac_data_req event. Since no data transmission requests had been issued
yet, and thus no bu�ered data could possibly be pending, this is unexpected. With
structural testing, probably no explicit test script would have been written that checks
for a non-reaction in this state. The systematic random exploration of the state space
in our approach found this problem automatically.

Furthermore, the tests revealed interactions between di�erent instances of the RLC
protocol machines. The requirements allow di�erent instances of these machines which
behave completely independent. Each instance could be tested separately. But we also
performed a test where several protocol machines were tested at the same time, each
one against its own copy of the requirements speci�cation. It turned out that in such
a setup there was the possibility that the entire SUT could deadlock. The reason for

17

this e�ect was that the the di�erent instances of the RLC protocol machines are not
implemented entirely as separate copies. Rather, there is a centralized routing SDL
process which forwards data transmission requests to a set of SDL processes which
implement one RLC instance each. This routing process did not handle the following
case properly: if a signal arrived addressed to an RLC instance which does not currently
exist, the process could loop in�nitely during the instance look-up. It then ceased to
perform its routing job. Even though the implementation was built with sophisticated
error recovery mechanisms, this situation could not possibly have been foreseen in the
development.

Another interesting observation showed up only intermittently, after a certain his-
tory of input: even though the SUT always should have gone into the same state, it
did not. Besides the random test stimulus generation, we also used a generator which
performs a �xed, explicitly speci�ed trace of events, and which starts all over from the
beginning when the listed trace is through. A correct SUT should return to the initial
state at the end of the listed trace, and then it should go through the same states
again, delivering the same reactions. In fact, it turned out that in the second, fourth,
etc. rounds some data transmission requests rlc_tr_data_req from the upper layers
towards the MAC were lost, which were transmitted correctly by the RLC layer in the
�rst, third, etc. rounds. The morale is that a protocol machine instance implementa-
tion does not necessarily return to its initial state just because the instance is \freed".
Implementation optimizations can retain parts of the old state, and this can lead to
subtle misbehaviour. The on-the-y generation of the test scripts allowed us to run the
test suite for a long period of time, which was necessary to detect the above problem.

5 Summary

In this paper, we described a testing setup for the UMTS protocol stack. Speci�c
features of this setup are

{ test scripts are generated automatically from formal requirements speci�cations
which are developed independently of the implementation,

{ the interface between the system under test and the requirements speci�cation is
generated by an automated tool. The tool also performs consistency checks. This
allows last-minute changes in the data formats.

The paper describes ongoing work. In particular, we did not yet run the test cases
on the embedded target (prototype of UMTS user equipment). We expect to be able
to re-use all test speci�cations directly since they refer to external interfaces only.

References

1. 3rd Generation Partnership Project. http://www.3gpp.org.
2. A. W. Roscoe. \The Theory and Practice of Concurrency". Prentice-Hall (1997).
3. Jan Ellsberger, Dieter Hogrefe, and Amardeo Sarma. \SDL { Formal Object-oriented Language

for Communicating Systems". Prentice-Hall (1997).
4. 3rd Generation Partnership Project, 3GPP TS 25.322 V4.0.0. \RLC protocol speci�cation" (March 2001).
5. Veri�ed Systems International GmbH. http://www.veri�ed.de.

18

QW2001 Paper 7A2

Mr. Michael K. Jones, Assistant Professor
(Dromedary Peak Consulting/Western International University)

High Availability Testing

Key Points

High availability of computer systems is a necessity for more systems than ever.●

Testing of high availability systems must be defined in terms of software, system, and
process.

●

Test strategy derivation for high availability systems must be traceable to the logical
system architecture and the physical system architecture.

●

Presentation Abstract

High availability of computer systems, especially internet computer systems, is a
necessity in today’s world when the absence of a computer system and/or web site
will not only affect the immediate revenue stream, but will affect revenue to come
by decreasing the likelihood of future use of the system by those users who
encountered the absence of the system. Merely installing failover software and
hardware will not ensure that high availability will be maintained under load
conditions. High availability testing must be conducted wit h analysis and a
structured approach to provide an accountable confirmation of reliable high
availability functionality. This testing will return to the system owner not only a
metric of availability versus conditions for functionality, but a means to calc ulate
cost versus risk reduction for system reliability.

The paper will define availability and “high” availability. A testing typology will
be discussed in detail that explores availability in terms of software, system
(software and hardware), and process (software, hardware, and procedures). A
testing taxonomy will then be reviewed in terms of induced failure analysis by
means of increased load, singular system component termination, and multiple
system component failure.

Test strategy derivation will be discussed next showing traceability to the logical
system architecture and the physical system architecture, with special attention to
how to discern points of criticality for system availability. Test documentation will
then be reviewed with emphasis on particular points that must be documented in an
availability context. Finally regression testing of high availability will be evaluated
as to its value for maintenance of high availability after the initial deployment of
the system in both a periodic sense and in system updates.

About the Author

Mr. Jones has a Master of Science in Computer Information Science and a Master
of Business Administration. He has been through software engineering training at
Boeing, Texas Instruments, and McDonnell Douglas in the past. He has worked in
the software industry since 1976 and is currently the Chief Consultant at
Dromedary Peak Consulting, which provides analytical direction and operational
support for business. He is also an Assistant Professor in Information Technology
at Western International University. His courses include Advanced Software
Engineering, Advanced C Programming, Information Resource Management,
Internet Business Strategy, and Web Application Development. Some of his
published articles include: “Pragmatic Software Configuration Management in the
E-World”, “Pragmatic Software Testing in the E-World”, “Software Configuration
Management for the Web”, “Report from Captain QA from the Web”, and “Four
Conceptual Attributes for Successful Web Applications”.

1

1

HIGH AVAILABILITY TESTING

Michael (Mike) K. Jones
Chief Consultant

Dromedary Peak Consulting
And

Assistant Professor
Western International University

Phoenix, Arizona USA

2

Availability is a system attribute that
delineates the strength of the

delivered system to be present and
readily at hand for work.

High availability is the term used to
describe systems that maintain a

capability for use to a high degree.
This degree is usually expressed in

terms of “nines”.

2

3

The design principles of high availability are
centered on the concepts of:

• Reliability
• Failover
• Redundancy
• Replication

4

Critical path is the line through which
data must travel from sender to
receiver, or from one user to another.
The goal of high availability is to
have no single point of failure on this
line of transmission.

3

5

Reliability is the capability of
software or hardware to consistently
perform per requirements without
failures or anomalies occurring.
Every component utilized in a high
availability system must have
demonstrated proof of reliability.

6

Failover can be manual or automatic.
Automatic works and manual may work.

There are 2 types of automatic failover:
• Dedicated Backup
• Partnered

4

7

Redundancy is inherent in failover and
replication

More accurately focused on need for
redundant data channels and power
conveyances.

8

Replication emphasizes the availability of
data in multiple locations

Replication categories are:
• Copying of data at the file level
• Copying of data at the disk level
• Distribution of data at the transaction level
• Duplication of data at the server level

5

9

Availability typology:
• Software
• System (software and hardware)
• Process (software, hardware and

procedures)

10

For software – reliability

For system – redundancy and failover

For process - replication

6

11

Formal Testing Avenues:

• Increasing load tests
• Deliberate termination of a singular

component
• Deliberate termination of multiple

components

12

Increasing load testing is stress testing

Drive to breaking point is based on:
• Number of users
• Number of messages
• Size of messages
• Required processing for each message

7

13

Deliberate termination of a singular
component must address every critical path
item individually in a systematic effort.

Deliberate operational termination of multiple
components must be based on test strategy
due to number component permutations.

14

Test strategy derivation is based on analysis
of logical architecture traced to physical
architecture.

Points of criticality can be identified as a
result of this work.

8

15

Test planning is based on software, system,
and process and

Stress testing, single item failure, and multiple
item failure.

For each avenue, a test procedure should be
produced.

16

Availability testing is best performed on a
production system.

If performed in a scaled down test lab, scaling
can only be conducted down to where at
least one level of failover can occur.

9

17

Test Documentation:
• Test Plan (Resources and Schedule)
• Test Procedures (Based on avenues)
• Test Reports (Pay special attention to

environment and timing metrics)

18

Regression testing should be for both new
system baselines and periodic calendar
points.

Regression testing should also be conducted
for equipment replacement.

10

19

High availability visibility is growing.

High availability testing ensures high
availability.

20

For feedback and/or further communication,
please contact me at:

Michael K. Jones
Dromedary Peak Consulting
1451 East 8th St.
Mesa, AZ 85203 USA
Phone: 480-833-0927
Cell: 480-363-7527
Email: mjones@dromedarypeak.com

jonesaz@uswest.net

High Availability Testing
by
Michael (Mike) K. Jones
Chief Consultant
Dromedary Peak Consulting
Mesa, Arizona
and
Assistant Professor
Western International University
Phoenix, Arizona, USA

High availability of computer systems, especially internet computer systems, is a
necessity in today's world when the absence of a computer system and/or web site will
not only affect the immediate revenue stream, but will affect revenue to come by
decreasing the likelihood of future use of the system by those users who encountered
the absence of the system. Merely installing failover software and hardware will not
ensure that high availability will be maintained under load conditions. High availability
testing must be conducted with analysis and a structured approach to provide an
accountable confirmation of reliable high availability functionality. This testing will return
to the system owner not only a metric of availability versus conditions for functionality,
but also a means to calculate cost versus risk reduction for system reliability.

Availability is a system attribute that delineates the strength of the delivered system to
be present and readily at hand for work. Availability provides for uninterrupted access
to the system with no loss of connectivity, processing capability, or stored data.
Availability is designed in systems through comprehensive redundant
no-single-point-of-failure hardware and software.

High availability is the term used to describe systems that maintain a capability of
being ready for use to a high degree. This degree is based on a percentage of uptime
with uptime being defined individually for every system as the system in use or ready
for use by the operator. Or conversely, downtime can be defined as whenever a user
cannot get their work done due to the system not being available for requisite actions.
High availability is expressed in terms of the “nines”. 99.99% availability means that a
system will be constantly ready for use 99.99% of the time for a year which translates
to roughly only 52 minutes of downtime a year. As an added example, 99.999
availability translates to approximately 5 minutes of downtime a year.

The design principles of high availability are centered around the concepts of reliability,
failover, redundancy, and replication. As these concepts are employed to an
increasing extent in the architecture of a system, two other elements are always
directly increased. Those two items are the technical complexity of the system and the
cost not just of implementation, but maintenance as well. An important analysis that
must be performed when discussing high availability is the recognition of what the
critical path is in a system for data transmissions. The critical path is the line through
which data must travel from sender to receiver, or from one user to another. The goal
of high availability is to have no single point of failure on this line of transmission or
critical path.

Reliability is the capability of software or hardware to consistently perform per
requirements without failures or anomalies occurring. The use of reliability is the
foundation of designing high availability system. Every component, whether hardware
or software, must have demonstrated evidence of high reliability under a range of
extreme conditions. Items that do not have these records are always rejected
forthwith.

Failover can be executed manually, but the invariable result is inordinate downtime for
the system. Consequently, failover must be implemented to occur automatically.
Automatic failover can occur with two very different architecture models. In the first,
failover is instrumented automatically with dedicated backup servers for all critical path
servers. This mode is sometimes called asymmetric failover. In the second, failover
occurs between partnered servers backing each other up. There is some degradation
of performance when one server assumes the burden of its partner in addition to its
own task load, but the concept is viable. This second mode may be known as
symmetric failover.

Redundancy, although inherent in failover and replication design, is more accurately
focused on the need for redundant data channels and power conveyances. These
redundant data channels also are designed to handle addressing through careful
construction of routing tables that provide for alternative paths. Power conveyances
are straightforward in that alternate power sources are simply provided for all power
consumers.

Replication includes redundancy as a matter of course, but has its emphasis on the
availability of data in multiple locations. Replication can be implemented in a variety of
ways, but they may be organized into the categories of:

· Copying of data at the file level
· Copying data at the disk level
· Distribution of data at the transaction level
· Duplication of data at the server level

Replication for high availability systems must provide no lags in time to access nor
gaps in integrity for this data.

For availability test considerations, an availability typology can be structured in terms
of layers of software, system, and process. Software is simply software, system is
software couples with hardware, and process is software, hardware, and procedures
utilized together. By using this typology in a progressive manner, testing isolation
would be performed and confidence established, and then layered complexity
increased for further testing.

For software, reliability is the overriding principle. Software, in one form or another, is
responsible for over half of all system downtime. Software must be rigorously tested as
to functionality and lead prior to its selection for inclusion in a high availability system. If
software is developed in-house or evidence of validation is not available from suppliers
of software whether contractors or vendors, this software must undergo very tight

testing trials to establish adequate confidence for its use in a high availability system.

For the system layer, redundancy and failover in addition to reliability must be
implemented. As previously stated, the system layer consists of hardware and
software jointed together. Reliability must have again have proven evidence
established as a result of testing. The redundancy principle is utilized by the existence
of fallback systems for every critical path item. These fallback systems are,
furthermore, accessed through the institution of automatic failover mechanisms to one
or more failure levels.

For the process layer, replication as a design principle comes into play. Not only must
the reliability, redundancy, and failover principles be used as decision constraints, but
also now the transmission of current electronic data must be secured in alternate data
storage devices in parallel to the critical path data receptacles. This replication of data
in redundant and failover capable components can be conducted through processes
implemented by file system replication, data base replication, or service replication. It
is important to note that not only the application data stream must be preserved in
multiple stores, but the secondary and tertiary system data necessary for the
application management and utilization must be gathered as well.

Utilizing the three layers, formal testing of high availability must be conducted by three
avenues. These avenues are increasing load tests, deliberate operational termination
of a singular component, and deliberate operational termination of multiple
components. This taxonomy of testing allows for a logical structure for formulating
documented test procedures to cover system test condition.

Increasing load testing, or stress testing as it is sometimes called, provides a close
mimic of real world conditions in identifying vulnerable links in data processing. This
progressive march to some component in the system being driven to the breaking
point is based on increasing the number of users, the number of messages, the size
of messages, and required processing for each message. The location of the
component driven to failure may vary based on how the stress algorithm is structured.
When a component is driven to failure, it is important, through system monitoring time,
to record the time used to transfer operational presence to another component. The
stress testing procedure must be documented in a formal test procedure with a
deliverable test report for test results.

Deliberate operational termination of a singular component is reasonably
straightforward. Every component, including equipment, data cables, and power lines
that is necessary for critical path transmissions, must have deliberate failure
introduced through scripted termination. This testing must be conducted systematically
and address each critical path individually. As the failure of each item is brought about,
the overall system must be monitored to observe and record failover time and system
status.

Deliberate operational termination of multiple components is the most challenging
avenue to address in testing for high availability. Due to the permutations of
components found in highly complex system, it is doubtful that all permutations can be
tested for a time or money efficient manner. A test strategy based on architecture

analysis will be most useful in approaching this task. Some tactics used on other
systems have been to fail one of every type of component, to fail sequences of
components, and to fail components based on random selection. Failing all
components but the minimum, with variations on individual item selection, forces a
boundary valve availability test.

Test strategy derivation is a very important task in planning for the validation of high
availability for a system. By tracing the logical architecture through the physical system
architecture, points of criticality for failure can be easily discerned. These points of
criticality or possible single points of failure must be inspected with the design
concepts of reliability, failover, redundancy, and replication in mind. Any one item or
combination of items that are questionable as regards meeting these concepts must
be ranked high for testing. By reviewing the logical architecture, responsibility for
specific functions may be seen. After tracing the implementation of those functions in
the actual physical system, vulnerabilities as to failure will be tangible when the critical
path for data is traced through the system.

After the system has been reviewed and inspected with the design principles of high
availability in focus, in particular the logical and physical architectures, test planning
must be initiated. This test planning must schedule the resources for each type and
quantity of formal high availability testing to be performed based on the three layers of
the system: software, system, and process; and the three avenues: stress testing,
singular item failure, and multiple item failure. For each avenue, a separate test
procedure must be written based not only on the design analysis, but testing to the
availability system attribute requirement found in the Technical Requirements for
system. Another possible source that must be tested to, that should match the
availability requirement in the Technical Requirements Document, is the availability
requirement defined in the Service Level Agreement for the system, if one is in effect
at time of delivery.

Availability testing is best performed against a production system, but may be tested if
necessary in a configuration deployed in a Quality Assurance Test Lab. Scaling down
of the system may have to be instrumented, but for valid availability testing, the
system can only be scaled down to the point where at least one utilization of failover
for all critical path items can be attempted. One tactic may be to utilize one component
as a failover recipient for multiple functions either in a permanent configuration or in
configurations that are reconstructed for each type of failover testing performed.

Test documentation must be maintained for all testing. In addition to the test plan and
test procedures, test reports must be produced that communicate and describe the
test results. Particular attention must be paid to the environment definition for the test
being described as to the exact system configuration in place at that time. Time in as
accurate a metric as can be recorded is another point for availability testing when
failovers are introduced.

High availability testing is conducted as system attribute testing prior to deployment of
a developed system, but once deployed, a system with high availability must
continually undergo regression testing for high availability. This regression testing must
be conducted both in a periodic calendar sense, but also when modifications to

system baselines are introduced. It is also important to run high availability testing
whenever components are replaced in the system even when the part numbers are
identical, due to undocumented differences in manufacturing lots that might possibly
affect availability.
A dedication to regression testing for high availability will not only minimize the
unpleasant experience of system failure and not failover, but also create a high
probability that experience will not be undergone.

High availability visibility is definitely growing on the radar screens of senior
management of companies relying on their information technology systems for
revenue, which leaves out very few corporations today. By utilizing the testing layers
and test avenues found in the paper, a structured approach to high availability testing
can be initiated. High availability testing ensures high availability will be a continuous
reality for systems today.

As a further remark, no resources were found that dealt with structured high availability
testing. For high availability itself, the best reference found by this author is:

Marcus, Evan and Stern, Hal (2000). Blueprints for High Availability. New York:
 Wiley Computer Publishing.

QW2001 Paper 8A1

Mr. Vince Budrovich
(ParaSoft Corporation)

Increasing The Effectiveness Of Load Testing: Unit-Level
Load Testing

Key Points

Performing load testing early in the development cycle can significantly reduce
development costs and prevent great frustration.

●

Testing servlets as they are written is an effective way of uncovering scalability problems
early on.

●

Performing unit level load testing can uncover elusive errors that can get missed during
application level testing.

●

Presentation Abstract

Load testing is often delayed until a Web application is near the final stages of
development. This is a dangerous practice because the later a problem is found, the
more difficult and costly it is to fix. For example, imagine that you just learned that
one of your site’s servlets-- a servlet that you developed months ago and that many
other servlets depend upon-- cannot handle more than 10 users at once. Fixing the
problem now can be anywhere from difficult to disastrous. This problem may
signal a design or implementation problem (such as a poorly designed database or
poorly designed objects). If so, fixing this problem could involve modifying your
entire design or implementation strategy and redesigning and/or rewriting the
entire application.

If you had tested this servlet immediately after it was written, you could have
spotted this scalability problem immediately. As a result, you could have also
spotted and reworked design and implementation flaws before they became
widespread. Essentially, you could have prevented many problems that would be
difficult and costly to fix.

That’s why we believe you should start performing load testing at the unit level.
“Performing load testing at the unit level” means that each time you create or
modify a dynamic site component (such as a specific customization option, or a
“wish list” functionality), you should immediately test how well it performs with
different types and amounts of user traffic. By starting load testing at the beginning
of the development process, you can detect and fix problems before they become
widespread, at the stage where it is easiest to do so. Performing load testing from
the beginning of the development cycle is one way to improve load testing’s

effectiveness. You can make it even more effective by overcoming some of the
challenges that prevent traditional styles of load testing from adequately exposing
the scalability problems on a site:
* Determining all scalability-related program failures: Load testing should not just
measure load statistics like load rate, bandwidth, etc., but also report where user
traffic could cause problems such as bottlenecks, program failures, and
functionality problems.
* Creating a large number of different, realistic paths: Real users do not follow
fixed paths; there is always some degree of randomness inherent in their behavior.
Moreover, different types, amounts, and combinations of user paths through a
dynamic site can result in different problems. This means that in order to perform
thorough load testing, you need to create and execute countless numbers and
combinations of different, realistic user paths. Manually specifying an adequate
number and variety of different paths is not only tedious, but practically
impossible-- even if you have a tool that simplifies the script-writing process.
* Creating the pages to test: Before you can test a page, it must be on your sever.
You need to compile the program, perform all necessary initializations, transfer the
program to your site, click through the site to set the necessary state variables, then
manually add inputs to invoke the page. This can be time-consuming and tedious--
especially when you do it the amount of times required to invoke and test different
paths through the site.

After explaining these challenges, the speaker will discuss and demonstrate
methods of overcoming them while performing unit-level load testing. Then he
will explain how these same strategies can be applied to improve the effectiveness
of application-level (traditional) load testing. By the end of the session, attendees
will learn how load testing can be performed at the stage where it yields the best
results as well as how to perform load testing in the most effective manner
possible.

About the Author

As Instructional Systems Manager of ParaSoft, Vince Budrovich works closely
with ParaSoft developers and customers to overlook and assure product quality and
dependability. Budrovich has extensive experience working as a project manager,
organizing and developing performance support materials for software products,
and business systems analysis. Budrovich earned his Bachelor's Degrees in
Economics and Political Science from the University of California Santa Barbara
and his Master's Degree in Planning and Administration from San Francisco State
University.

1

1

ParaSoft
Increasing the
Effectiveness of
Load Testing:

Unit Level
Load Testing

Presenter: Vince Budrovich

2

Fantasy Land or Fantasy Land or
Tomorrow Land?Tomorrow Land?

• Good News: Your Website
development is done on-time and
on budget

• Bad News: Your Website is very
slow for most users and freezes at
peak hours

• Very Bad News: You don’t know
what is wrong

2

3

Fantasy Land Fantasy Land
or Tomorrow Land?or Tomorrow Land?

And More Bad News:

• You do not know precisely what to fix

• You do not know how much or if your
application needs to be re-written

• You are going to miss the deadline
and the budget target, but not know
by how much.

4

Fantasy Land or Fantasy Land or
Tomorrow Land?Tomorrow Land?

Did you perform
Unit Level
Load Testing
on every element
and sub-system in
your application?

3

5

Unit Level Load TestingUnit Level Load Testing
OverviewOverview

• Rationale: Why should you do it?
• Strategy for unit level load testing
• Web-box testing – Unit level load test for

servlets & components
• Testing the database & back end
• Testing the business logic
• Testing Web servers & load balancing
• Testing bandwidth & pipes
• Customer experience: That last mile

6

RationaleRationale

Load testing - Is it a QA issue?

Yes

No

Don’t know?

4

7

RationaleRationale

Load testing – Is it a QA issue?

• Load problems: the result of difficult
design and algorithmic flaws

• Fixes: require significant re-writes…
or much more

• The longer you wait, the more code
you’ll need to re-write

8

RationaleRationale
Load Testing – Is it a QA issue?
Example: Key servlet

– Many parts of the application work with it
– Servlet developed months ago
– Load problem: at 12+ users, it crashes
– Solutions:

• Rewrite the servlet and more…
• Rewrite all affected areas of the code,

database interactions, certain EJBs,
eliminate excess tags, etc.

5

9

Elements to Load TestElements to Load Test

• Each servlet and every other
individual component of code

• Database and legacy systems
• Business logic interactions
• Website internally, Web servers’

balance
• Connection to the Internet
• Your customer – That last mile

10

Typical NTypical N--tier Websitetier Website

Layers or sub-systems, from the bottom
to the top:

(A) Back end: including databases &
legacy systems

(B) Middleware: including servers with
business logic

(C) Presentation Web servers
(D) Pipes connecting to Internet
(E) User or customer – That last mile

6

11

Typical NTypical N--Tier Tier
WebsiteWebsite

12

StrategyStrategy

• Test each element or layer
• independently

• immediately

• Keep testing – regression tests

• Priority – not optional

• Clean development process –
emphasize problem prevention, not
crisis management

7

13

StrategyStrategy

• Expanded definition of unit level
load testing

• Test each servlet or unit of code

• Test each element & sub-system

• See if each element functions
adequately under load test –
independent of other components

14

Strategy Strategy

• Test the smallest building blocks using
Web-box testing

• Servlets or code components

• Test levels of your Website – testing
each element or sub-system

• Back end – database & legacy system
• Business logic
• Entire Website – balanced load among servers
• Pipe to the Internet – bandwidth & balance
• Customer experience

• Fix load test problems before going to
the next level

8

15

StrategyStrategy

Even if you do everything else…

• Do not forget “That last mile”

• Customer perception is key
• Design – output page effects

• Static analysis – enforce coding standards

• Do not delay load testing
• The cost of a delayed fix can mean a lot of

re-coding and extra work

16

WebWeb--box Testing:box Testing:
Servlets & ComponentsServlets & Components

Why begin with the Servlet?
• It is the smallest “granularity” of unit level

load testing
• Can be located on any Server in a

Website
• Can impact an element if not functioning

correctly
• Test it before testing the more complex

elements and layers
• Fix a problem first before moving on

9

17

WebWeb--box Testing:box Testing:
Servlets & ComponentsServlets & Components

• Set of techniques to deploy and
test programs and related output
pages

• Load test each servlet or
component individually before
applying elsewhere

18

WebWeb--box Testing: Stepsbox Testing: Steps
• Write the servlet
• Compile the servlet
• Transfer the executable servlet to the

designated servers
• Invoke the servlet to activate it
• Give the servlet the correct arguments

before it starts running, in order to look
at the page

• Execute it and see its output page

10

19

WebWeb--box Testing: Stepsbox Testing: Steps

• Test if the page created by the servlet
is correct

• Invoke it repeatedly to test the servlet
under load, i.e.: to perform unit level
load testing

• Use the test cases to “pound” on the
servlet to emulate actual load
conditions it will need to match

• For example, servlet page expected to
fully display xxx times per minute

20

WebWeb--box Testing: Stepsbox Testing: Steps

If it does not perform as required…

• Fix algorithm in that servlet right away
and test again

• Do it while it is fresh in your mind

• Test and fix before other servlets are
created and tied to this servlet

• Do regression tests of entire test suite

11

21

WebWeb--box Testing: Benefitsbox Testing: Benefits

• By testing every individual
servlet, any load performance
problem is quickly and simply
solved

• Potential complications and
problems are avoided

22

WebWeb--box Testingbox Testing
Up to this point…Up to this point…

• Performed unit level load testing on every
servlet

• Future load problems are not because of
the individual servlets

• Proceed through the entire Website, layer
by layer

- Test every element & every sub-system

- Load test each level of your Website application
- Eliminate potential load problem by testing it
- Proceed to the next layer

12

23

NN--Tier WebsiteTier Website
(A) Back End(A) Back End

• Individual servlets - located on any
server (at any level) in your Website

• Database & legacy system - located
in back end of your Website

24

Typical NTypical N--Tier Tier
WebsiteWebsite

13

25

Back EndBack End

Database interactions:

• Emulate requests which go to the
database

• “Pound” on the database to see if it
can process all the transactions

• Measure responses of database

26

Back EndBack End
Database Interactions:

• Create a set of “scripts” – SQL

• Scripts execute full transactions on
the back end

• Repeat test thousands of times to
emulate real conditions

• Measure the timing and see if it is
adequate

14

27

Back EndBack End

Legacy System Interactions:

• Test if legacy system performs
adequately under load test

• Use new upcoming techniques,
testing protocols - XML or EDI

28

Back End Back End
Up to this point… Up to this point…

• Tested both elements in back end
sub-system

• Databases

• Legacy systems

• Previously tested individual
servlets and code components

15

29

NN--tier tier WebsiteWebsite
(B) Business Logic(B) Business Logic

• Test the business logic - the
interactions between servlets and
the database or legacy system

• Located on middleware servers of
your Website

30

Typical NTypical N--Tier Tier
WebsiteWebsite

16

31

Business Logic Business Logic

• Typically written in Java or Perl

• Converts requests from customers into
requests for the database or servers

• Performs logic and does calculations as
specified

• How well does this software operate?
– Is it fast enough for your Website?

32

Business LogicBusiness Logic

• Testing two layers
• Database or legacy system

• Business logic of individual servlets

• Problems are caused by the
interactions between the two layers

• Test different business logic elements
and interactions among them

17

33

Business Logic Business Logic
Up to this point…Up to this point…

Already Tested:

• Individual servlets

• Databases and legacy
systems

• Business logic interactions

34

NN--tier Website tier Website
(C) Web Servers(C) Web Servers

• Load test the sub-system of the entire
Website: “Pound” on your Web servers

– independent of outside Internet
connection

• Located in front of your Website’s
presentation servers on your internal
network

– not going outside to the Internet

18

35

Typical NTypical N--Tier Tier
WebsiteWebsite

36

Web Servers: Load BalanceWeb Servers: Load Balance

• Try to “pound” your Website with
as much traffic as you can

• Do load tests that emulate your
users using realistic paths

• Repeatedly execute these
scenarios and load test your Web
servers

19

37

Web Servers: Load BalanceWeb Servers: Load Balance

The solution of load balancing among your
different Web Servers, independent of
the adequacy of the pipes coming into
your Website.

Load Balancer

Your
Servers
& Back
End

SimulatedWebTraffic Inputs

38

Web Servers: Load BalanceWeb Servers: Load Balance

Measure items such as the following:

• Load time of each page

• Number of pages loaded per second

• Simulation of x-thousand users,
based on expected load

• Utilize multiple machines to emulate a
large number of users

20

39

Web Servers: Load BalanceWeb Servers: Load Balance

If performance degradation is noted:

• Consider load balancing among Web
servers

• Incoming traffic
• Outgoing traffic

• Consider additional Web servers

40

Web Servers: Load BalanceWeb Servers: Load Balance
Up to this point…Up to this point…

• Elements already tested
• Individual servlets

• Database & legacy system

• Business logic interactions

• Internal Website sub-system tested

• What next could affect your load?

21

41

NN--tier Website tier Website
(D) Bandwidth & Pipes(D) Bandwidth & Pipes

• Test your connection to the
Internet: Bandwidth and Pipes

• Located on your outside
connection to the Internet

42

Typical NTypical N--Tier Tier
WebsiteWebsite

22

43

Bandwidth & PipesBandwidth & Pipes

• Execute the same load test
simulations you did from “inside
your application”

• Solve any performance
degradation caused by:

• Outside pipes
• Insufficient total bandwidth or
• Unbalanced load among the pipes

44

Bandwidth & PipesBandwidth & Pipes

The solution of load adjustments to the
quantity and configuration of pipes to
your Website.

Your Website

Load Balancing among Pipes
and/or Sufficient Bandwidth

 Pipes to & from
Your Website

Simulated Web Traffic Inputs

23

45

Bandwidth & PipesBandwidth & Pipes

Even if all previous load tests
were adequate…

Problems with this pipe could
cause your Website to perform
poorly under load

46

Bandwidth & Pipes Bandwidth & Pipes
Up to this point…Up to this point…

• Tested elements
• Individual servlets
• Database & legacy system
• Business logic interactions

• Tested internal Website sub-system
• Tested external pipe sub-system

24

47

NN--tier Website tier Website
(E) That Last Mile (E) That Last Mile

• Customer and user experience -
That last mile

• Located at the very top left - getting
feedback from all other elements
and sub-systems of your Website

48

Typical NTypical N--Tier Tier
WebsiteWebsite

25

49

That Last MileThat Last Mile

• Test Your Customers’ Experience
• Broad-based usability testing:

Test actual customer experiences
• Different origination points
• Different ISPs, platforms, connections,

neighborhood factors, etc

• Difficult to do usability testing
• High cost
• High inconvenience
• Typically not done

50

That Last MileThat Last Mile

What is your
customer’s
experience with
your Website?

Without usability
testing, how will
you find out?

26

51

That Last MileThat Last Mile

In addition to Usability Testing,
there are two techniques:

• Testing of output page effects

• Static analysis - coding
standards

52

That Last MileThat Last Mile

Output Page Effects:
• Sluggish download pages due to

• Too many banners
• Too many tags
• Too much unnecessary info

• Not load testing, but a problem of badly
designed Web pages

• Customer impact is the same:
• Slow page builds
• Perceived slow performance

27

53

That Last MileThat Last Mile

To solve output page effects, avoid the
following:

• Unnecessary items on Web pages

• Dynamic generation of static data

• Unnecessary white space

• Absolute links, when relative links
will work

• Unnecessary tags or empty tags

54

That Last MileThat Last Mile

• Static Analysis is used to prevent
design mistakes in the first place

• Coding standards example:
• Automatically flag unnecessary tags

(eg: empty tags) that were
inadvertently introduced into your
code

• Removing these tags will speed Web
page downloads

• Important in performance speed by
your user

28

55

That Last Mile That Last Mile
Up to this point…Up to this point…

• Tested every servlet and code
component

• Tested every element and sub-
system - (A) through (E)

• Analyzed customer experience
perceived problems

• Next: three step conclusion

56

1. Conclusion 1. Conclusion

Your Customer or User:
• Experiences your Website as a

single entity
• Does not care why your Website is

sluggish or not performing
acceptably

• Has other choices if your Website is
disappointing for any reason

29

57

2. Conclusion2. Conclusion

• Independently load test each element
and each sub-system

• Load test early and often

• Do not skip any levels

• Load testing begins with design and
ends with your entire application

• Use automatic techniques to help
whenever you can

58

3. Conclusion3. Conclusion

• Your Website is
only as fast as its
slowest element

• Unit level load test
every element

30

59

ReferencesReferences

• White Paper, “Improving the Quality
and Efficiency of Dynamic Web Site
Development and Testing,” by Adam
Kolawa, PhD.

• This and similar technical papers
available at: www.parasoft.com

60

Contact Info:

vince@parasoft.com

(626)256-3680 x1249

www.parasoft.com

Presenter: Vince Budrovich

31

61

ParaSoft

Increasing the
Effectiveness of
Load Testing:

Unit Level
Load Testing

Presenter: Vince Budrovich

 1

Increasing the Effectiveness of Load Testing:
Unit Level Load Testing

Introduction and Rationale

Load testing is usually considered a quality assurance (QA) issue. It is a form of testing
that is performed after the application or Web site is finished. But this approach often
leaves the discovery of major problems until the end of a project. This in-turn pushes up
development costs and delays the implementation of new functionality. One way to
avoid this is to load test from the beginning of development and continue throughout the
development process.

The main reason why it is so risky to delay load testing until the end of development is
that load problems are typically the result of “difficult-to-fix” design and algorithmic
flaws. Fixing these types of problems often requires significant rewriting, not just the
flawed portion of code, but all the affected areas of the code. The longer you wait before
you find and fix one of these flaws or bugs, the more code you will have to re-write.

For example, imagine that you have a servlet that was developed months ago and other
servlets depend on it. Then you just learned that one of your Web site’s servlets cannot
handle more than a dozen users at the same time. Fixing the problem or bug now can be
anywhere from difficult to disastrous. This problem may indicate a design or
implementation problem, such as a poorly designed database or poorly designed objects.
If so, fixing this problem could involve modifying your entire design or implementation
strategy and redesigning and/or rewriting the entire application

If you had load tested this servlet immediately after it was written, you could have
spotted this scalability problem earlier on. As a result, you could have also spotted and
reworked design and implementation flaws before they became widespread. Essentially,
you could have prevented many problems that became very difficult and costly to fix
later in the process.

For another example, say you have a routine that is pulling records from the database.
But instead of pulling the entire record, it is only pulling the record field by field, which
is slowing the response time of the site. If this problem is not discovered until QA
performs load testing, not only will you have to redesign the algorithm that pulls the
records from the database, you will then need to modify the processes that interact with
that algorithm. Making these modifications will take a significant amount of time and
effort.

These examples illustrate why you should start load testing at the unit level. “Load
testing at the unit level” means that each time you create or modify a dynamic site
component, such as a specific customization option or a “wish list” functionality, you
should immediately test how well it performs with different types and number of user

 2

traffic. This also means is that as each piece or layer of your entire Web site is
developed, you’ll immediately load test that element or layer. For example, as soon as
you develop a servlet, you’ll load test that individual servlet. You’ll want to keep
performing regression tests so you know that new additions and work-around fixes have
not inadvertently introduced any new bugs into your code.

In our analysis, we are taking a broad definition of unit testing. We are not only
suggesting that you should test each individual servlet and each major sub-system or
element in your Web site, but you should also load test it independently of all the other
elements. The reason for this is that if you notice poor or sluggish performance at the
customer end, you have no reliable way of isolating the exact cause of the problem. Also,
your procedure of finding and fixing the problem can be out of control and you will have
no way of predicting how long it will take to remove the problem.

One other common pitfall is that problems that load testing detects won’t be apparent
until the Web site is up and used. Load testing problems are not easily identifiable and
other problems are much more visible to developers. For example, if a bug causes the
Web site to crash, it obviously gets immediate attention. But if a bug causes the Web site
to be slow to your customers during normal load usage, it will not be noticed if you have
other “bigger problems.” Thus, it’s critical that you utilize a clean development process.
If your development process is not clean, you may be so busy going from crisis to crisis
to fix immediate bugs that you’ll never have time in the pressurized development process
to systematically proceed with load testing at all.

As stated, load problems can arise from a number of different elements or levels in the
development and the operation of your Web site. Detecting and preventing load
problems therefore requires taking a comprehensive point of view of your entire Web
application and conducting unit level load tests on each of these elements or sub-systems.
We’ll then proceed, step by step, through the process of looking at each element in order:

• Web-box testing – how to load test your servlets and components
• Test database and legacy system
• Test business logic interactions
• Looking at the total load on your Web servers
• Looking at the total load on your pipes or connection to the Internet
• Your Customer’s or User’s experience.

Following is Figure 1 (Typical N-Tier Web site), a simple graphical layout that shows
several levels, including elements or sub-systems. We will proceed through examples of
load testing from each of the following levels or sub-systems. The direction we will take
through Figure 1 starts with load testing an individual servlet, which can be located on
any server in your Web site. Then we’ll proceed to explain load testing from element to
element as we work our way up the page, through A, B, C, D, and E – ending at the top
left corner with your User.

A. At the bottom of Figure 1 is your Back End which includes your databases and legacy

systems.

 3

B. Your middleware is one layer up, which includes, for example, servers with the
business logic for one of your programs.

C. An additional layer up brings us to your presentation servers, which includes the

servers that display the pages your customer is viewing.

D. Above that level are your pipes, which comprises of the total bandwidth connecting

you to the Internet.

E. On the very top layer, (off to the left) is your User or Customer.

 4

Figure 1: Typical N-tier Web site

 5

Web-box Testing - Testing Servlets and Components

“Web-box testing” is a set of techniques that facilitate the unit testing process you
perform as you deploy and test servlets and components. We’ll walk through the steps,
starting with writing or creating your servlet and then proceeding through the steps to
conduct unit level load tests on your servlet.

There are several steps in this process. Greatly simplified, the process would include the
following steps:

• Write the servlet.

• Compile the servlet.

• Transfer the executable servlet to the right place on the designated servers.

• Invoke the servlet to activate it. [Note: It is not easy to activate the servlet
indpendently of everything else. Therefore, developers often will skip this
step and not activate the servlet until the rest of the system is built.
However, if they skip this step they are unable to individually load test this
servlet.]

• Once invoked, give the servlet the correct arguments before it starts
running to look at the page.

• Test to see if the servlet by itself is correct, then execute it and see its
output page.

• Test if the page created by the servlet is correct.

As you can see, this process is complicated and error prone. Developers, as they work on
the code, repeat it many times. Very often they try to automate it by building homemade
scripts. There are tools on the market [Ref 1] which can do the same for you. In
addition, the same tools can perform load testing at that level. They automate the whole
process of the Web-Box Testing.

If you do not have the tools, you will have to perform the following steps to complete the
Web-box testing process.

• If you can invoke it once and test that it’s correct, you will write scripts (or
test cases) to repeat that test and to invoke it repeatedly in order to test the
servlet or component under load.

 6

• You will pound on the servlet by doing unit level load testing (ie: by
calling up that servlet again and again to emulate actual load conditions
that it will need to match).

• For example, you may need to see it display x-thousand times per minute
in order to fulfill your expected Web site load requirements.

If the servlet does not perform as required, you will probably have to fix the algorithm in
that individual servlet. However, you only have to fix this individual servlet and not have
to re-do other parts of your application that the servlet will eventually interact with. This
is because you are load testing the servlet and fixing it before you create the other parts of
your application.

Fix code after it has been written. It will take less time to fix an problem early on rather
than two weeks and two dozen servlets later in the process. Repeat this process with each
servlet and component of code that you create. In addition, you’ll want to perform
regression tests. Regression testing is where you repeat the entire test suite to see if any
new problems emerge from code already written, tested, and corrected.

In short, by doing unit level load testing on this servlet, you can immediately and simply
solve load performance problems and avoid other problems later in the development
process. This is an added benefit given the compressed timeline demands typically
associated with most Web site development projects.

[For more information on automated techniques of unit level load testing for dynamic
Web sites, see Ref. 1]

Load Testing Database Interactions or Legacy Systems

We now know that the individual servlets that you’ve created have been successfully
load-tested on a unit level basis. Now we will describe the testing of other parts of the
Web site. We start at point [(A) in Figure 1].

For the purpose of this analysis, we’ll assume your Web site has a database and a legacy
system, and both are part of your back end. We’ll first look at your database.

To test the load effectively, you really need to “pound” on the database to see if it can
process all the transactions that your Web servers and the rest of your application
generate. How can you pound on it? You need to emulate the behavior of the Web
server in order to emulate the requests which are going to the database. Then you
measure the responses in order to be sure that this database is not going to cause a
bottleneck.

 7

Note: It is very important that this be done as part of the development process, not after
you’ve built the Web site. If you’ve already built the Web site, it will be too late and
extremely difficult for you to fix. This is because the problem may be so complex that it
may require you to redesign and rewrite the entire application.

How do you perform unit level load testing on this element?

• You create a set SQL scripts.
• These SQL scripts execute the full transactions on your back end.
• Measure the timing and see if it can be done.
• With the thousands and thousands of transactions, you see what happens.

For more information look in [Ref 2]

In addition to a database, we assume you have a legacy system and you need to find a
way to simulate it in order to perform unit level load testing on its interactions. You
should be able to use XML or EDI as testing protocols, which will help you load test the
behavior of your legacy system. These tools are in the process of coming on the market.

Load Testing Interactions with Business Logic

Now that you’ve tested the database as well as legacy system interactions in your back
end, you’ll want to go to the next layer up on the N-tier Web site [Figure 1] and examine
the business logic. [(B) In Figure 1]

The business logic is typically the piece of your Web site that is written in Java (or Perl).
This represents the correspondence between converting the requests from your users or
your customers into requests for the database or servers. It then performs the logic or
does calculations as specified. For our analysis, we will assume the business logic is
sitting on one of your middleware servers.

• How well does this software really operate?
• How does it respond to the requests?
• Is it fast enough for your Web site?

At this moment you have tested “two layers” – one layer is the database or legacy system
and the other layer is the individual servlets. So you know that individually, each of
those elements is performing in an acceptable manner. Therefore, if there is slow or
other unacceptable performance at this moment, you know that it’s caused by the
interaction between the servlets and the back end. You are actually testing these
interactions; for example, how the servlet business logic is talking to the database. Or, in
another example, you might be load testing the interactions between multiple business
logic elements.

 8

Testing Your Web Servers:
Independent of (outside) Internet Connection

Up to this point, you have created a set of scripts to test your servlets. These are in effect
a set of test suites. You have tested these single servlets and you know that the pages of
the servlets are sound under load conditions. You have also load-tested interactions with
the database and business logic. Next, you’ll move one layer up on the N-tier Web site
[Figure 1] and look at testing the sub-system of your entire Web site, independent of your
outside connection to the Internet. [(C) in Figure 1.] You are technically on your
internal network or LAN (Local Area Network), not going outside to the Internet.

In order to load-test this sub-system, simulate as much traffic as you can, as realistically
as you can. You really need “to pound” your Web site with this traffic. Above all,
you’re trying to see how your Web site is going to respond to this traffic. You can use
tools which will help you automate this process. [Ref 2]

Since you are inside your own location, you’re not going to see any outside network or
Internet bottlenecks. If you stay inside, you remove the issue of how much bandwidth is
coming into your Web site. Instead, you are testing how your Web site itself is in a
position to respond to all the requests that might come to it.

You’re now load testing the Web site itself – not the pipes coming into it. You are
testing the Web site’s ability to respond to this wide variety of tests. You should conduct
a set of load tests that emulate numerous individual users using realistic paths to use your
Web site. These paths are executed with multiple attempts and realistic scenarios.

It’s very important that testing be set-up at this level. If it works and you get the desired
performance while conducting these tests, you’ll be measuring items like:

• Load time of each page
• Number of pages you can load per second
• Simulate x-thousand users, based on realistic expectations for your Web site
• Utilize multiple machines which can emulate a large number of users

In short, you’ll just keep “pounding” these tests on your application. If performance
degradation is noted as a result of your load testing, then you need to consider load
balancing among your multiple Web servers or adding servers. As the following Figure
2 indicates, you may need to add servers or adjust the load among your Web site servers
in order to get the desired performance.

This balancing might be on the input for incoming traffic to your servers or the output for
outgoing traffic from your servers. Depending on the particulars of your load, you might
need to balance both the input and the output.

 9

Figure 2: Load Balancing Your Servers: shows the solution of load balancing among your
different Web Servers, independent of the adequacy of the pipes coming into your Web site.

Testing Your Pipes – Independent of your Servers

Once you have load tested this sub-system and made any necessary adjustments to ensure
that your Web site is responding properly, then you will move one layer up on the N-Tier
Web site [Figure 1] and test if your pipes coming in from the Internet are balanced or big
enough. [(D) In Figure 1.] After you have pounded your Web site internally and made
necessary adjustments to balance the load between your Web servers, you are ready for
this step.

You now need to thoroughly test your pipes, such as the bandwidth to the outside
Internet. You test this by running and executing the same simulations you just exercised
in the previous step from “inside your application.” But this time you are trying to see if
there is a performance degradation that is caused by insufficient bandwidth of the outside
pipes or if those outside pipes are configured incorrectly.

You now know that your Web servers are up to the task, since you have already adjusted
and balanced the load among them. Now, as Figure 3 illustrates, test the input pipes with
the same tests you performed when you were testing the servers.

Load Balancer

Your
Servers
& Back
End

Simulated Web Traffic Inputs

 10

Figure 3: Your Pipe(s) & Bandwidth: shows the load adjustments to the quantity and
configuration of different pipes to your application, after the application is load tested itself.

If there is significant performance degradation, then you know that you need to consider
adding bandwidth or balancing the load better among the several pipes. The load
problem here is not your Web site, the problem is the clogged pipe or pipes going into
your Web site. Again, the solution to this element is to add to your total incoming
bandwidth and/or to reconfigure your outside pipes.

Without making the necessary adjustments at this level, everything else could have tested
adequately, but your customer could still have a bad experience because of this
bottleneck in your connection to the Internet. Conversely, if you had not previously load
tested all your other elements and sub-systems, you could not be sure that the degradation
in performance was due to this particular sub-system.

Test from Customer Site: That Last Mile

Just as in the previous steps, by systematically conducting unit level load testing of each
element and making any required adjustments before going to the next element, you have
been able to quickly solve load degradation performance problems of your Web site. That
brings us to the next level up on the N-tier Web site [Figure 1], the top level which is
called the user or customer experience or “That Last Mile.”[(E) In Figure 1]

“That Last Mile” refers to the final element in connecting your Web application with
your customers. It is that final bit of phone wiring, the true processor with limited speed,
the neighborhood electrical power reliability factors, and all the other issues that
determine your customers’ actual experience. Your user or customer is at the very top
level of the chart in Figure 1 – at (E), off to the left.

To perform the tests of the actual customer experience, emulate the behaviors of your
actual customers in attempting to utilize your Web site from their homes and offices.

Your Web site

Load Balancing among Pipes
and/or Sufficient Bandwidth

 Pipes to & from
Your Web site

Simulated Web Traffic Inputs

 11

Test their actual experiences (or emulate their experiences) from several dozen different
origination points. This includes a variety of local conditions, different ISPs, different
browsers, different platforms, different phone/cable/data connections, etc. Does your
Web site do what it’s supposed to do? Is it fast enough?

Frankly, this level of usability testing is seldom done due to the high cost and
inconvenience. Of course, it should be done because it may reveal insights that may have
gone undetected on all your previous tests. If performed, you can get the real test of your
Web site’s actual performance.

But, if you’re not likely to directly test this element of your Web site due to the obvious
cost and inconvenience of such tests, what else can you do? What can you do to help
ensure your customers’ experience with your Web site, will be a positive experience?
Two additional techniques that can help you are the testing of output page effects and
coding standards enforcement.

Test Output Page(s) Effects

What is your customer really seeing when they download pages from your Web site?
Are they slow? Typically, they can be very slow because of your customers’ limited
bandwidth of the pipe or connection to the house or small business.

The slow download pages can be due to design problems. This problem could be
detected early in the development process with static analysis techniques by enforcing
coding standards. In this example, do your Web pages have too much “stuff”?

• Too many banners?
• Too many tags?
• Too much unnecessary “stuff” that is slowing down the page downloads?

In this final mile, is your site slow due to these download issues? The answers are related
to the original design of the pages. The key to solving download sluggishness is to send a
minimum amount of data, which is an issue of design, not an issue of load testing.

One of the particular things you want to pay attention to is that minimal download time is
critical in order to avoid slow Web page builds. The obvious way to reduce download
time is to reduce image size and page content, above all, by not including unnecessary
items on the page in the first place.

In addition, a few problems that you need to avoid which are not so obvious include the
following:

• Dynamic generation of static data: Many sites unnecessarily increase their pages’
download time by performing “dynamic” generation of static data. Any time
server-side technology is used to dynamically generate the same exact page, over
and over again, you should create a static version of the page and, if feasible,
build an infrastructure that updates the page frequently.

 12

• Unnecessary white space: White space is often used to increase code readability.
However, white space increases file size, and file size directly affects both file
download time and server load. Removing excess white space typically results in
a 10-50% percent reduction in file size, which results in a 10-50% reduction of
download time and server load.

• Absolute links: Using relative links (e.g., /press/index.htm) instead of absolute
links (e.g., http://www.parasoft.com/press/index.htm) reduces download time and
server load. Also, because relative links have fewer characters than absolute
links, using them also increases download speed because it reduces file size.

• Unnecessary tags: Browsers read and render every tag that they encounter, even
tags that do not contribute to page presentation or functionality, such as empty
tags. By eliminating the excess tags that are often added by code-generation tools
or sloppy coding practices, you can significantly reduce rendering time.

Static Analysis – Coding Standards

As previously mentioned, use static analysis to flag problems before they affect your
customer. Technically, you may not have a slow performing Web site, but these Web
page builds may have resulted in the perceived slowness of your Web site from your
customer or user.

Static analysis is the enforcement of effective coding standards throughout the
development process to significantly speed up your customers’ experience on your Web
site. Effective coding standards enforcement can prevent you from making these
mistakes in the first place.

In this case, you do not just load test this site, you should actually employ the rules
contained in an automatic coding standard rule enforcement mechanism. Coding
standards are language-specific “rules” that prevent errors or other practices by not
introducing mistakes into your code. For example, a coding standard could automatically
alert you to any unnecessary tags, such as empty tags, that were inadvertently introduced
into your code. If present in sufficient quantity, these empty tags could significantly slow
down your Web page downloads with your actual customer.

If you prevent some of these errors or mistakes, it will impact the performance of your
Web site as perceived by your customer, and you will decrease the chance of having your
Web site appear slow, even if it is not technically slow.

[For more information on automatic coding standards in your development process, see
the white paper, “Automatic Unit Testing for Java Developers,” by Dr. Adam Kolawa,
CEO, ParaSoft Corp.]

In our example, paying attention to your output pages effects and performing static
analysis by enforcing coding standards, would have led to correct design decisions early
in the development cycle. This could have prevented the perceived sluggishness of your

 13

Web site, even if you could not afford to perform usability testing from the customer
level. In the Last Mile, an ounce of prevention would have been worth far more than a
pound of cure.

Conclusion and References

Is the performance of your Web site meeting the expectations of your customers or users?
Your customers will experience your Web site as a single item, regardless of its many
complex levels. Are load problems in any level of your Web Site causing a negative
customer experience?

Since it is in your best interest to find any load problems with individual elements as soon
as possible in your development cycle, you should perform your load testing early and
often. Do not wait until your Web site is up and running before you load test. In addition,
whenever possible, you should utilize techniques that can perform the load testing
automatically.

If you do not conduct unit level load testing on each of the elements in your Web
application, how will you know what is the cause of the poor performance of your Web
site? In addition, how will you know precisely what elements to modify to fix the
problem?

The key to the successful load testing of your dynamic Web site is to verify that each
layer, element, and sub-system is responding adequately and fast enough so that you
know it is not the cause of a performance slowdown. After you test each element
independently, you should immediately fix any load related performance problems in that
element. You should be performing unit level load testing throughout your Web site
development process, not just load testing the complete application when it goes live. In
the same way that a chain is only as strong as its weakest link, under load conditions,
your Web site is only as fast and functional as its worst performing element.

References

For any white papers, additional information referenced in this paper, or techniques that
automatically perform specified tests, go to: www.parasoft.com

1. “Improving the Quality and Efficiency of Dynamic Web Site Development and
Testing”

2. “Preventing & Detecting Errors in N-Tier Dynamic Web Sites”

3. “Automatic Unit Testing for Java Developers”
4

 14

4. “Coding Standards in Java: Do We Need Them?”, Java Report, 3/2000, by Adam
Kolawa, PhD

5. “Testing Enterprise JavaBeans” , Intl Conference for Java Development, 3/2001, by
Adam Kolawa, PhD

6. “Automating the Development Process,” Software Development, 7/2000, Adam
Kolawa, PhD

List of Figures:

• Figure 1: Typical N-tier Web site
• Figure 2: Load Balancing Your Servers
• Figure 3: Your Pipe(s) & Bandwidth

Contact Information:

You can contact the author directly at:
Vince Budrovich, Instructional Systems Mgr.
vince@parasoft.com
(626)256-3680 x1249
ParaSoft Corporation
2031 S. Myrtle Avenue
Monrovia, CA 91016

QW2001 Paper 8A2

Mr. Scott Trappe
(Reasoning, Inc.)

Building Better Software Code: Finding Bugs You Never Knew
You Had

Key Points

Why current software quality control processes are inadequate and often miss fatal
defects

●

The pros and cons of different source code inspection methodologies●

Implementing automated software inspection as an outsourced service●

Presentation Abstract

One of the biggest challenges facing software developers is producing high quality,
defect-free code in ever-shrinking market windows. One aspect of this challenge is
ensuring that the software is property tested and inspected for defects. To date,
however, there have been a number of limitations to these software quality
processes: they often miss dangerous defects on infrequently executed paths--these
defects include null pointer dereferences, memory leaks, out-of-bounds array
accesses, and uninitialized variables. Such defects usually cause the application or
system to crash, or they cause data corruption. The cost of failure particularly for
embedded systems can be quite high since the software often controls
safety-critical equipment. Financial applications, particularly Internet applications,
have a similarly high reliability requirement. In addition, in Internet applications,
any defect that allows a user to crash the application or produce invalid data also
presents a security vulnerability.

Formal source code inspections have long been a recognized approach to finding
these kinds of defects, in addition to providing an overall quality assessment.
However, the resource requirement (in terms of training, time and cost) is usually
prohibitive. Tool vendors have attempted to address this issue with automation,
and today there are many source code inspection tools available. Most of these
tools focus on overall code quality and provide metrics for assessing quality.
However, their ability to identify true defects is limited, both in terms of the
number of false positives produced, and the complexity of defects that can be
detected.

Recently, a new approach to inspection has emerged, automated software
inspection services. These approaches use recently developed software analysis
technologies including value lattices, computation analysis graphs, and theorem
provers toinspect source code for specific classes of dangerous defects. These
approaches can eliminate most of the false positives that characterize

pattern-oriented methods, and can detect much more subtle defects than lint-like
tools whose context is limited to a single function.

In this session, we look at these different software inspection solutions and provide
scenarios for when each should be used, how they operate, and what results can be
expected. We also compare software inspection solutions with traditional testing,
and identify the strengths and costs associated with each.

About the Author

Scott Trappe is President and Chief Operating Officer for Reasoning Inc., which
provides the InstantQA automated software inspection service. With more than 20
years of experience developing and marketing software development tools and
services behind him, he has contributed numerous articles on the subject to
software development publications and hosted presentations at industry-related
events. Mr. Trappe joined Reasoning from Intrinsa, where he held a dual role of
Vice President of Engineering and Marketing. Intrinsa successfully developed and
marketed an automated source code inspection product similar to InstantQA.
Intrinsa was acquired by Microsoft in 1999. Prior to Intrinsa, Mr. Trappe held a
variety of marketing and engineering management positions with Netopia;
Operations Control Systems and Tektronix. He holds an MBA from the Haas
School of Business at the University of California, Berkeley and a BS in Computer
Science from the University of Arizona.

1

© 2001 REASONING CONFIDENTIAL

ReasoningReasoning
Building Better Software:
Cost-Effective Defect
Detection & Elimination

Building Better Software:
Cost-Effective Defect
Detection & Elimination

© 2001 REASONING, INC 2

Releasing Reliable Software on
Schedule is Almost Impossible

Increasing
complexity

(more features)

Shortening
product

lifecycles

Limited development
and QA resources

?

The ProblemThe Problem

2

© 2001 REASONING, INC 3

The Problem

Need to Find Bugs Sooner

Finding Bugs Late is Expensive
and Time-Consuming

% Defects
Created

% Defects
Found

Cost to
Repair
100 Bugs

$1,600,000

Code Test Production

100%

50%

0%

$800,000

$0

Source: Capers Jones

$2500

$100,000
$25,000

Int.

© 2001 REASONING, INC 4

Testing has Become the Bottleneck

Source: Capers Jones

“We spend more time on testing than we do
writing code. What kind of new techniques are
there in testing? Very, very little.”

Source: Bill Gates, Microsoft

“Bug fixing is at least 30% of development
effort and increases with software
complexity.”

The ProblemThe Problem

3

© 2001 REASONING, INC 5

The NeedThe Need

TestDesign Code

Software Development Lifecycle

Inspection

Looking at
the code

Testing

Running
the code

Int.

Inspection Finds Bugs Earlier

Source: Capers Jones

“Inspection is by far the most
effective way to remove bugs.”

© 2001 REASONING, INC 6

What Inspection Can FindWhat Inspection Can Find

With inspection, we can find defects that
hide on infrequently executed paths:
– Null pointer dereferences
– Bad array accesses
– Memory leaks
– Uninitialized variables

With inspection, we can check for
adherence to coding standards

4

© 2001 REASONING, INC 7

Depth of
Analysis

High

Ideal
Solution

Existing
Inspection

Tools

Low

Slow and
Limited

Fast and
Broad

Speed and
Scope of
Analysis

Manual
Inspections

The Need
A Practical Way to Inspect Software

© 2001 REASONING, INC 8

Existing Inspection ToolsExisting Inspection Tools

Focused on primarily on coding standards
enforcement
– Code Wizard
– PC Lint

Only identify possible symptoms of
software defects
– Large number of false positives

5

© 2001 REASONING, INC 9

Manual InspectionsManual Inspections

An effective but labor intensive way to
find problems:
– High resource cost (training, time and money)
– Lack of enforced standards
– Can create a defensive work environment
– Difficult to find developers willing to do it
– Time constraints with large programs

Not practical for today’s development organizations

© 2001 REASONING, INC 10

Reviews 100% of code
Finds crash-causing bugs
Works on incomplete code
Hardware independent
Collects quality metrics
No impact on in-house resources

InstantQAInstantQA

Like CAT Scan - finds problems without surgery

Automated Inspection Service that
Finds Bugs without Testing

6

© 2001 REASONING, INC 11

InstantQAInstantQA TechnologyTechnology

Source
Code

Defect
Report

= Reasoning Innovations

ArchitectureArchitecture

Language
Parser

Potential
Violations

Summarize
CAGs by

Function &
Level

Symbolic
Evaluation

Using Value
Lattices

Computation
Analysis Graph
(CAG) Builder

Detection
Rules

Potential
Defects

Manual
Defect
Review

Feasible
Path

Analysis

© 2001 REASONING, INC 12

0.00
0.20
0.40
0.60
0.80
1.00
1.20

Defects per
KLOC

Industry Comparison

Bottom Third
Middle Third
Top Third

InstantQA Quality MetricsInstantQA Quality Metrics

ABC
Company

Industry
Average

7

© 2001 REASONING, INC 13

InstantQA Quality MetricsInstantQA Quality Metrics

File Risk Assessment

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%
Pe

rc
en

ta
ge

Low Very HighMedium High

© 2001 REASONING, INC 14

InstantQA Quality MetricsInstantQA Quality Metrics

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Defects per
KLOC

File
13

7
File 37

File
14

File
18

6
File

79

File 172
File

52

File
20

7
File

21
File

98

File Name

 Very High Risk Files

8

© 2001 REASONING, INC 15

InstantQA Detailed Bug ReportInstantQA Detailed Bug Report
Detailed Defect Report
Defect Class Memory Leak Risk Moderate
Location /websrv_1.1/src/os/win32/readdir.c : 43
Description Pointers to blocks allocated bymalloc() on lines 34 and 27 are stored in local variables dp

and fspec. The memory blocks become inaccessible (still allocated, but unreachable) once
dp and fspec go out of scope after line 43.

Preconditions The expression (errno == ENOENT) on line 40 is false and ((handle =
findfirst(fspec, &(dp->fileinfo))) < 0) on line 39 is true

Impact Memory leaks cause performance degradation of the application, and/or the entire
system. Eventually, this may lead to a fatal out-of-memory condition.

Code Fragment
20 API_EXPORT(DIR *) opendir(const char *dir)
21 {
22 DIR *dp;
23 char *fspec;
24 int ix, handle;
26
27 fspec = malloc(strlen(dir) + 2 + 1);
28 strcpy(filespec, dir);
30 if ((ix = strlen(fspec) - 1) >= 0 && (fspec[ix] == '/)
31 fspec[ix] = '\0';
32 strcat(fspec, "/*");
33
34 dp = (DIR *)malloc(sizeof(DIR));
…
39 if ((handle = findfirst(fspec, &(dp->fileinfo))) < 0) {
40 if (errno == ENOENT)
41 dp->finished = 1;
42 else
43 return NULL;
44 }

© 2001 REASONING, INC 16

Reduced Time and Cost
Increased Reliability

Benefits ofBenefits of InstantQAInstantQA

Software Development Lifecycle

Design Code

Design Test

Before

After

SavingsAutomated
Inspections

Code

TestInt.

Int.

9

© 2001 REASONING, INC 17

Complements Design & Testing Tools

InstantQAInstantQA Completes the CycleCompletes the Cycle

Software Development Lifecycle

Rational
Rose
(Model)

Reasoning
Automated
Software
Inspection

-
The New

Approach

Mercury
XRunner
(Test)
Rational
Purify
(Debug)

Design TestCode Int.

© 2001 REASONING, INC 18

Questions?Questions?

QW2001 Paper 9A1

Dr. Harmen Sthamer & Mr. Joachim Wegener
(DaimlerChrysler AG)

Evolutionary Testing Of Embedded Systems

Key Points

Evolutionary Test automates entirely testing●

Test case design is difficult●

Powerful tool environment●

Presentation Abstract

More than 90 % of all produced electronic components are used in embedded
systems. Embedded systems have usually to fulfil functional as well as temporal
requirements. Most of the embedded systems applied in vehicles are subject to
temporal requirements. This is due to reasons of operational comfort (short
reaction times of the vehicle MMI to driver commands) and due to the
requirements of technical processes which are controlled within the vehicle.
Examples are engine control systems, body control systems like ABS and ESP, and
airbag control systems. Often these systems are also safety-relevant.

For embedded systems testing is the most important quality assurance measure. It
typically consumes 50 % of the overall development effort and budget. Essential to
a good test quality is the systematic design of test cases. Test case design defines
the kind and scope of the test. Test case design is difficult to automate. For
functional testing the generation of test cases is usually not possible since no
formal specifications are applied in industrial practice. Structural testing is also
difficult to automate due to the limits of symbolic executions. Furthermore, for
testing the temporal behavior no specialized methods and tools exist. Therefore in
most cases, test cases have to be defined manually.

A promising approach to automate test case design is the Evolutionary Test. It
could be applied to testing the temporal behavior of systems as well as to structural
testing. Evolutionary testing uses metaheuristic search techniques like evolutionary
algorithms and simulated annealing for the generation of test cases. The input
domain of the system under test represents the search space in which test data
fulfilling the test objectives under consideration are searched for. The Evolutionary
Test is generally applicable since it adapts itself to the system under test.

For testing temporal behavior of systems evolutionary testing searches for input
situation with the longest or shortest execution times. First of all random test data
are generated with which the system is to be executed. The execution times
measured for each test datum evaluate the suitability of the test (fitness evaluation).

Test data with long or short execution times are selected (depending on the search
for the worst case or best case execution time) and combined in order to obtain test
data with even longer or shorter execution times (recombination). Following
natural processes, random changes are carried out (mutation). By adding these
generated test data to the already existing data a new test run is started. The test is
terminated if an error in the temporal behavior is detected or a specified
termination criterion has been reached. If a violation of the system’s predetermined
temporal limits has been detected, the test was successful and the system needs to
be corrected (Wegener et al. 1997).

To automate structural testing each program structure represents a test objective for
which a test datum is searched for, e.g. to achieve full branch coverage a test
datum has to be found for each single branch. To guide the search to program areas
which have not been executed so far the fitness functions are based on the branch
predicates of the system under test (Jones et al. 1998). A test control manages all
the test objectives, starts an optimization for each objective, calculates the fitness
values for the generated test data on the basis of the executed program structures,
and defines an efficient schedule for the testing of all the objectives. Our test
environment supports among others statement testing, branch testing, condition
testing and path testing. Principally, the test is terminated when all the test
objectives have been considered during the test. The coverage reached and the
corresponding test data are presented to the tester.

Because of the complete automation of evolutionary tests the system can be tested
with a number of different input situation. Most often more than several thousand
test data sets are generated and executed within only a few minutes. Prerequisites
for the application of evolutionary tests are extremely few. Only an interface
specification of the system under test is needed in order to guarantee the generation
of valid input values.

The application of evolutionary tests in several case studies has proved successful
and first industrial applications within the field of engine electronics yielded very
good results. Effectiveness and efficiency of the test process can be clearly
improved by Evolutionary Tests. Evolutionary Tests thus contribute to quality
improvement and to the reduction of development costs. The application scope of
Evolutionary Tests goes further than the work described within this paper.
Additional application fields are for instance safety and robustness tests.

About the Author

Harmen Sthamer has a degree in Electronics and Communication from Polytechnic
of Hannover, Germany. He has a MSc in Electronic Production Engineering and a
Ph.D. in Software Technology from the University of Glamorgan, GB. Currently
he is working as a scientist in the Software-Technology Laboratory of
DaimlerChrysler, Research and Technology. He is currently working on systematic
and evolutionary software testing methods for the verification of software-based
systems. Harmen Sthamer is author or co-author of several papers and has
presented on national and international conferences, e.g. IEE Conferences on

Genetic Algorithms. He is a member of the Seminal Network, UK.

Joachim Wegener has a degree in Computer Science from Technical University
Berlin, Germany. He is manager of Adaptive Technologies in Software
Engineering at DaimlerChrysler, Research and Technology. He was involved in
the development of the classification-tree editor CTE and the test system TESSY.
He is currently working on the design of software development processes for
Mercedes-Benz as well as on systematic and evolutionary software testing methods
for the verification of embedded systems. He is a member of SAE International,
the Seminal Network and the German Computer Society Special Interest Group on
Testing, Analysis and Verification.

(c) Copyright 2001 Sthamer, Baresel and Wegener, DaimlerChrysler AG Page 1

14th International Internet & Software Quality Week 2001

Evolutionary Testing of Embedded Systems

Harmen Sthamer, André Baresel and Joachim Wegener
DaimlerChrysler AG, Research and Technology, Alt-Moabit 96a, D-10559 Berlin, Germany

Harmen.Sthamer@DaimlerChrysler.com
Andre.Baresel@DaimlerChrysler.com

Joachim.Wegener@DaimlerChrysler.com

Abstract
The development of embedded systems is an essential industrial activity. More than 90 % of all
produced electronic components are used in embedded systems. Testing of embedded systems
is considerably more complex than testing of conventional software systems. This is due on the
one hand to the technical features of embedded systems, and on the other hand to the special
requirements made on these kinds of systems: embedded systems usually have to fulfill
functional as well as temporal requirements. Very often embedded systems are safety-relevant.
In addition due to high costs resulting from errors occurring during the operation of embedded
systems, high quality requirements apply.
Dynamic testing is the most important method for testing such quality requirements. However,
test case design is difficult to automate, therefore, most test cases have to be defined manually.
A promising approach to automate test case design is the Evolutionary Test. It can be applied to
testing the temporal behavior of systems, to structural testing as well as to safety testing.
Effectiveness and efficiency of the test process can be clearly improved by Evolutionary Tests.
This has been successfully proved in several case studies. Evolutionary Tests thus contribute to
quality improvement as well as to the reduction of development costs.

0 Introduction
Testing is the most important quality assurance measure for embedded systems. It typically
consumes 50 % of the overall development effort and budget. Systematic test case design is
essential to a good test quality because it defines the type and scope of the test. For most test
objectives, test case design is difficult to automate:
• for functional testing the generation of test cases is usually impossible because no formal

specifications are applied in industrial practice,
• structural testing is also difficult to automate due to the limits of symbolic executions,
• for testing the temporal behavior of systems no specialized methods and tools exist, and also
• for testing safety constraints a generation of test cases is generally impossible.
Therefore, test cases have to be defined manually.
To increase the effectiveness and efficiency of the test and thus reduce the overall development
costs for embedded systems, we require a test that is systematic and extensively automatable.
While functional test case design can be automated to a large extent using new tools such as the
CTE XL [Lehmann and Wegener, 2000], evolutionary testing [Wegener and Grochtmann, 1998] is
a promising approach to entirely automate test case design for the aspects mentioned above.
The Evolutionary Test can be applied to testing the temporal behavior of systems, it can be used
to generate test cases for structural testing, and it enables the automation of safety testing. For

(c) Copyright 2001 Sthamer, Baresel and Wegener, DaimlerChrysler AG Page 2

evolutionary testing the test case design is transformed into an optimization problem that in turn
is solved with meta-heuristic search techniques, such as evolutionary algorithms and simulated
annealing. The input domain of the system under test represents the search space in which test
data fulfilling the test objectives under consideration is searched for. The Evolutionary Test is
applicable in general because it adapts itself to the system under test.
The first chapter introduces the basic principles of the Evolutionary Test. The second chapter
discusses the use of structural tests. The following two chapters illustrate the Evolutionary Test
of the temporal behavior and the test of safety properties. The paper concludes with a summary
of the most important results and an outlook on future work.

1 Evolutionary Testing
Evolutionary testing is characterized by the use of meta-heuristic search methods for test case
generation. To achieve this the considered test aim is transformed into an optimization problem.
The input domain of the test object forms the search space in which one searches for test data
that fulfils the respective test aim. Due to the non-linearity of software (if-statements, loops etc.)
the conversion of test problems to optimization tasks mostly results in complex, discontinuous,
and non-linear search spaces. Neighborhood search methods like hill climbing are not suitable in
such cases. Therefore, meta-heuristic search methods are employed, e.g. evolutionary
algorithms, simulated annealing, or tabu search. In our work, evolutionary algorithms are used to
generate test data because their robustness and suitability for the solution of different test tasks
has already been proven in previous work, e.g. [Jones et al., 1998] and [Wegener et al., 1999].

1.1 A Brief Introduction to Evolutionary Algorithms
Evolutionary algorithms represent a class of adaptive search techniques and procedures based
on the processes of natural genetics and Darwin’s theory of biological evolution. They are
characterized by an iterative procedure and work parallel on a number of potential solutions for a
population of individuals. Permissible solution values for the variables of the optimization
problem are encoded in each individual.
The fundamental concept of evolutionary algorithms is to evolve successive generations of
increasingly better combinations of those parameters that significantly affect the overall
performance of a design. Starting with a selection of good individuals, the evolutionary algorithm
tries to achieve the optimum solution by random exchange of information between increasingly
fit samples (recombination) and introduction of a probability of independent random change
(mutation). The adaptation of the evolutionary algorithm is achieved by selection and reinsertion
procedures based on fitness. Selection procedures control which individuals are selected for
reproduction, depending on the individuals’ fitness values. The reinsertion strategy determines
how many and which individuals are taken from the parent and the offspring population to form
the next generation.
The fitness value is a numerical value that expresses the performance of an individual with regard
to the current optimum, so that different individuals can be compared. The notion of fitness is
fundamental to the application of evolutionary algorithms; the degree of success in using them
may depend critically on the definition of a fitness that changes neither too rapidly nor too slowly
with the design parameters. The fitness function must guarantee that individuals can be
differentiated according to their suitability for solving the optimization problem.
Fig. 1 provides an overview of a typical procedure for evolutionary algorithms. First, a population
of guesses on the solution of a problem is initialized, usually at random. Each individual within
the population is evaluated by calculating its fitness. This will usually result in a spread of

(c) Copyright 2001 Sthamer, Baresel and Wegener, DaimlerChrysler AG Page 3

solutions ranging in fitness from very poor to good. The remainder of the algorithm is iterated
until the optimum is achieved, or another stopping condition is fulfilled. Pairs of individuals are
selected from the population according to the pre-defined selection strategy, and combined in
some way to produce a new guess analogously to biological reproduction.

Initialization

Evaluation

Selection

Recombination

Optimization
criteria met? Result

Mutation

Reinsertion

Evaluation

Figure 1: Evolutionary Algorithms

Combinations of algorithms are many and varied. Additionally, mutation is applied. The new
individuals are evaluated for their fitness, and survivors into the next generation are chosen from
parents and offspring, often according to fitness. It is important, however, to maintain diversity in
the population to prevent premature convergence to a sub-optimal solution.

1.2 Application to Software Testing
In order to automate software tests with the aid of evolutionary algorithms, the test aim must
itself be transformed into an optimization task. For this, a numeric representation of the test aim
is necessary, from which a suitable fitness function for the evaluation of the generated test data
can be derived. Depending on which test aim is pursued, different fitness functions emerge for
test data evaluation. If an appropriate fitness function can be defined, then the Evolutionary Test
proceeds as follows.
The initial population is usually generated at random. In principle, if test data has been obtained
by a previous systematic test, this could also be used as initial population [Wegener et al., 1996].
The Evolutionary Test could thus benefit from the tester's knowledge of the system under test.
Each individual of the population represents a test datum with which the test object is executed.
For each test datum the execution is monitored and the fitness value is determined for the
corresponding individual. Next, population members are selected with regard to their fitness and
subjected to combination and mutation processes to generate new offspring. It is important to
ensure that the test data generated is in the input domain of the test object. Offspring individuals
are then also evaluated by executing the corresponding test data. Combining offspring and
parent individuals, according to the survival procedures laid down, forms a new population. From
here on, this process repeats itself, starting with selection, until the test objective is fulfilled or
another given stopping condition is reached (compare Fig. 2).

(c) Copyright 2001 Sthamer, Baresel and Wegener, DaimlerChrysler AG Page 4

Survival

Mutation

Selection

Recombination

Fitness evaluation

Individuals

Test data

Monitoring
Data Fitness values

Test
execution

Initial population

Test results
Figure 2: Evolutionary Test

2 Test Case Generation for Structural Testing
Structural testing is widespread in industrial practice and stipulated in many software-
development standards. Common examples are statement, branch, and condition testing. The
aim of applying evolutionary testing to structural testing is the generation of a quantity of test
data, leading to the highest possible coverage of the selected structural test criterion.
Structural testing methods can be divided into four categories, depending on the control-flow
graph and the required purpose of the test:
• node-oriented methods,
• path-oriented methods,
• node-path-oriented methods, and
• node-node-oriented methods.
Node-oriented methods require the execution of specific nodes in the control-flow graph.
Statement testing and condition testing are the best known methods that fall into this category.
Path-oriented methods require the execution of certain paths in the control-flow graph, e.g. path
testing. Node-path-oriented methods require the achievement of a specific node and from this
node the execution of a specific path through the control-flow graph. The branch test is the
simplest example for node-path-oriented methods. LCSAJ (linear code sequence and jump) also
belongs to the group of node-path-oriented methods. Node-node-oriented methods require the
execution of several nodes of the control-flow graph in a pre-determined sequence without
specifying a concrete path. The data-flow oriented methods all-defs, all-defuse-chains, as well as
all-uses, fit into this category.
In order to apply evolutionary testing to the automation of structural testing, the test is split up
into partial aims. The identification of the partial aims is based on the control-flow graph of the
program under test. Each partial aim represents a program structure that needs to be executed
to achieve full coverage, e.g. a statement, a branch, or a condition with its logical values. For

(c) Copyright 2001 Sthamer, Baresel and Wegener, DaimlerChrysler AG Page 5

each partial aim an individual fitness function is formulated and a separate optimization is
performed to search for a test datum executing the partial aim. The set of test data found for the
partial aims then serves as the test data set for the coverage of the structure test criterion.

2.1 Fitness Functions
The fitness function definitions for the partial aims differ for the four categories of structural
testing methods.
For node-oriented methods, the fitness functions of the partial aims are made up of two
components: the distance and the approximation level. The distance specifies for a branching
node how far away an individual is from executing the branching conditions in the desired
manner (compare [Sthamer, 1996], [Jones et al., 1998], and [Tracey et al., 1998]). For example, if
a branching condition x==y needs to be evaluated as True, then the fitness function may be
defined as |x-y| (provided that the fitness values are minimized during the optimization) or as
hamming distance. The approximation level supplies a figure for an individual that gives the
number of branching nodes lying between the nodes covered by the individual and the target
node ([Wegener et al., 2001], and [Baresel, 2000]). For condition tests the fitness evaluation
needs to be slightly extended. The evaluation of the atomic predicates in the target nodes has to
be included. The evaluation of the atomic predicates takes place in the same way as for the
distance calculations in the branching conditions. For compound predicates the single distances
are added and normalized.
Establishing the fitness function for path-oriented testing methods is much simpler than for
node-oriented methods because the execution of a certain path through the control-flow graph
forms the partial aim for the Evolutionary Test. The program path covered by an individual is
compared with the program path specified as a partial aim. Thereby, the more nodes match, the
higher is the fitness an individual can obtain. The fitness evaluation is supplemented by the
calculation of the distances to the target path in the branching nodes in which the program path
covered by the individual deviates from the target path.
The partial aims for node-path-oriented structural criteria comprise two requirements that need
to be included in the evaluation of the generated individuals. The attainment of a specific node is
required on the one hand, and on the other hand a path that begins with this node has to be
covered. Accordingly, the fitness evaluation of the individuals has to represent both these
components. The fitness function can be based on the fitness functions for node-oriented and
path-oriented methods. Fitness calculations for individuals who do not reach the target node are
carried out in the same manner as for the node-oriented methods. For individuals who reach the
target node the mentioned fitness calculations for path-oriented methods are additionally applied
in order to guide the search into the direction of the desired path.
Fitness calculations for node-node-oriented methods also take place in two stages. After the
execution of the first target node, the second target node has to be covered, without a path
specified through the control-flow graph. The approximation of an individual to the first target
node can be evaluated in the same manner as for node-oriented methods. For all individuals
executing the first target node an approximation to the second node is added. This is also
calculated using the fitness function for node-oriented methods.
A detailed definition of the fitness functions can be found in [Wegener et al., 2001] and [Baresel,
2000].

(c) Copyright 2001 Sthamer, Baresel and Wegener, DaimlerChrysler AG Page 6

2.2 Test Results
The Evolutionary Test has already been applied in various tests of real-world examples for
automatic generation of test data with excellent results. For most test objects a complete
coverage was achieved. Table 1 shows a selection of examined test objects from different
application fields with their characteristics. One branch in the Netflow() function is infeasible.
This leads to the highest possible coverage of 99.3%. For all the functions mentioned
evolutionary testing performed notably better than random testing.

Test object Lines of
code

Number of
branches

Maximum
nesting

level

Branch
coverage
achieved

(%)
Atof() 69 57 8 100
Is_line_covered_by_rectangle() 94 24 2 100
Is_point_located_in_rectangle() 7 5 1 100
Search_field() 600 37 3 100
Netflow() 164 153 5 99,3
Complex_Flow() 46 41 4 100
Classify_Triangle() 38 38 7 100

Table 1: Complexity Measures and Branch Coverage Reached for Different Test Objects

3 Test Case Generation for Temporal Behavior Testing
Most embedded systems are subject to temporal requirements. This is due to reasons of
operational comfort, e.g. short reaction times of the system to user commands, or due to
requirements of technical processes that are controlled by the system. Therefore, embedded
systems have to be thoroughly tested not only with regard to their functional behavior, but also in
order to detect existing deficiencies in temporal behavior.
Existing test methods are unsuitable for the examination of temporal correctness. Even for an
experienced tester it is virtually impossible to find the most important input situations relevant
for a thorough examination of temporal behavior by analyzing and testing complex systems
manually. However, evolutionary testing has already proved to be a promising approach for
testing the temporal behavior of real-time and embedded systems ([Grochtmann and Wegener,
1998], [Mueller and Wegener, 1998], [Puschner and Nossal, 1998], [Wegener and Grochtmann,
1998] and [Gross et al., 2000]). When testing the temporal behavior of systems the objective is
to check whether input situations exist for which the system violates its specified timing
constraints. Usually, a violation occurs because outputs are produced too early or their
computation takes too long. The task of the tester and therefore of the Evolutionary Test is to
find input situations with especially long or short execution times in order to check whether a
temporal error can be produced.
When using evolutionary testing for determining the shortest and longest execution times of test
objects, the execution time is measured for every test datum. The fitness evaluation of the
generated individuals is based on the execution times measured for the corresponding test data.
If one searches for long execution times, individuals with long execution times obtain high fitness
values. Conversely, when searching for short execution times, individuals with short execution
times obtain high fitness values. Individuals with long or short execution times are selected
depending on the objective of the test and combined in order to obtain test data with even longer

(c) Copyright 2001 Sthamer, Baresel and Wegener, DaimlerChrysler AG Page 7

or shorter execution times. The test is terminated if an error in the temporal behavior is detected
or a specified termination criterion has been reached. If a violation of the system’s
predetermined temporal limits has been detected, the test was successful and the system has to
be corrected. Evolutionary testing enables a fully automated search for extreme execution times.
The test especially benefits from the fact that test evaluation concerning temporal behavior is
usually trivial. Contrary to logical behavior, the same timing constraints apply to large numbers of
input situations.

3.1 Test Results
Previous work has shown that evolutionary testing always achieved better results than random
testing (e.g. [Wegener et al., 1997] and [Wegener and Grochtmann, 1998]). The comparison with
static analyses has also confirmed that the extreme execution times determined by the
Evolutionary Test represent realistic estimations of the longest and shortest execution times
[Mueller and Wegener, 1998]. Compared to systematic developer tests, the Evolutionary Test has
also attained convincing results, as the following results illustrate. The results were achieved
during the first application of evolutionary testing for the testing phase of a new engine control
system for six- and eight-cylinder blocks.
The engine control system contains several tasks that have to fulfill timing constraints. Each task
is a test object and has been tested for its worst-case execution time by the developers using
systematic testing. The test cases for testing the temporal behavior, defined by the developers,
are based on the functional specification of the system as well as on the internal structures of
the tasks. For each task the developer tests achieved full branch coverage. Evolutionary testing
was used to verify these results. The tests were performed on the target processor later used in
the vehicles. The execution times have been determined using hardware timers of the target
environment.
The results for six of the tasks (M1 to M6) are shown in Figure 3. The figure shows the longest
execution times determined by the developers with systematic testing (DT) in comparison to the
results achieved by evolutionary testing (ET).

6 0
7 0
8 0
9 0

1 0 0
1 1 0
1 2 0

M 1 M 2 M 3 M 4 M 5 M 6

R T D T E T

66
,4 67
,2 69

,6 11
6,

0

10
8,

4

12
0,

8

11
0,

0

10
8,

4
11

2,
0

64
,0

68
,8

54
,0

45
,2

57
,8 59

,6 58
,4

58
,4

54
,0

Figure 3: Results for the Engine Control System Tasks

(c) Copyright 2001 Sthamer, Baresel and Wegener, DaimlerChrysler AG Page 8

Additionally, the results for random testing are shown (RT). The results of the developer tests are
set to be 100 %. The execution times achieved, measured in µs, are shown directly in the bars.
The size of the tasks varied from 39 LOC (lines of code) to 119 LOC, the number of input
parameters from 9 to 32.
Comparison of the results shows that evolutionary testing found the longest execution times for
all the given tasks among these three testing methods. The developer tests never reached the
longest execution time. In three cases the results of the developer tests are even worse than
those of the random test. For the other three tasks the results are better than those of the
random test. The latter only finds the longest execution time for task M6. The longest execution
time found by the random test in task M4 lies more than 35 % below the value determined by the
Evolutionary Test, and 30 % below that of the developer tests.
The excellent performance of the Evolutionary Test in comparison to the developer tests shows
the effectiveness of the Evolutionary Test, also in comparison to function-oriented and structure-
oriented testing methods. The results are especially astonishing, because evolutionary testing
treats the software as black boxes whereas the developers are familiar with function and
structure of their system. An explanation might be the use of system calls of which the effects on
the temporal behavior can only be rated with difficulty by the developers.

4 Test Case Generation for Safety Testing
Embedded systems are often also safety-relevant. Our work on the application of Evolutionary
Tests for testing safety properties of embedded systems is just beginning. It will follow the
example of [Tracey et al., 1998]. Within the context of safety analyses for embedded systems
(e.g. fault-tree analysis, and software-hazard analysis) indispensable safety requirements for the
system components are derived from such system behavior that has to be absolutely avoided. If
a violation of the specified safety requirements is possible the system is not safe. Consequently,
the aim of the test is to find input situations that lead to a violation of the safety requirements. If
such an input situation can be found the system is not safe and has to be corrected.
The fitness evaluation when applying the Evolutionary Test to safety tests is similar to the fitness
evaluation of structural testing. However, the fitness function is not based on the branch
predicates of the program, but on the pre- and post-conditions that have been specified for the
single components (e.g. [Tracey et al., 1998]). For example, if an output signal speed of a
component is not allowed to become negative, the fitness values of the individuals can be set
according to every produced output value for speed. Individuals who generate a small value for
speed obtain a higher fitness value than individuals producing high values for speed. If the
Evolutionary Test is able to find an individual who obtains a negative value for speed, it is proof of
a violation of the safety requirements.
In order to achieve a complete automation of the safety test, we are currently working on an
integration of the Evolutionary Test with Time Partition Testing [Lehmann, 2000] for the system
and integration test of embedded systems. Another aspect of our work is the integration with the
test environment MTest [Conrad et al., 1999] for the unit test of the software modules of control
systems.

5 Summary and Future Work
The thorough test of embedded systems includes a number of demanding testing tasks. These
are difficult to master on the basis of conventional function-oriented and structure-oriented
testing methods. Moreover, automation is also problematic. This includes the generation of test

(c) Copyright 2001 Sthamer, Baresel and Wegener, DaimlerChrysler AG Page 9

cases for the coverage of different structural testing criteria, the test of temporal behavior, and
the test of the compliance with the specified safety requirements for a safety-relevant system.
The Evolutionary Test is a promising approach to entirely automate complex testing tasks. It
enables the complete automation of test case design for structural testing, the testing of
temporal behavior with regard to its exceeding or falling below the specified timing constraints,
and the testing of safety properties. Evolutionary testing has already produced very good results
in all these three areas of application. Due to the complete automation of the Evolutionary Test
the system can be tested with a large number of different input situation, both for testing the
temporal behavior and for safety tests. In most cases, more than several thousand test data sets
are generated and executed within only a few minutes. If no violations of the specified
constraints can be found the confidence in the correct functioning of the system will be
increased to a large extent. The prerequisites for the application of Evolutionary Tests are
extremely few. Only an interface specification of the system under test is needed to guarantee
the generation of valid input values. For structural testing the source code of the test object is
also required.
The application of the Evolutionary Test has been successfully proved in several case studies.
First industrial applications within the field of engine electronics yielded very good results.
Effectiveness and efficiency of the test process can be clearly improved by Evolutionary Tests.
Evolutionary Tests thus contribute to quality improvement and to the reduction of development
costs. The application scope of Evolutionary Tests goes further than the work described within
this paper. Additional application fields are, for instance, functional [Jones et al., 1995] and
robustness tests [Schultz et al., 1993].
Current work on evolutionary structural tests concentrates on the assessment of the testability
of programs on the basis of statically determinable software metrics. By using appropriate
information it is possible to select the best suitable evolutionary algorithms for the test, and also
to start program transformations that improve the testability.
In future, it is also intended to examine more closely the combination of evolutionary testing with
static analyses for testing the temporal behavior. By combining both approaches, the area in
which one finds the extreme execution time of the system can be closely defined, e.g. static
analyses give an upper estimate for the maximum execution time and testing gives a lower
estimate for the maximum execution time. This means, developers of real-time systems would
gain an efficient tool to rate exactly the minimum and maximum execution times for their
systems.
In addition we are looking at investigating the application of evolutionary structural tests for
testing the temporal behavior of systems. The idea is to pre-determine program paths as test aim
for the evolutionary structural test which have been identified as worst-case execution time
paths by means of static analyses (e.g. [Mueller, 1997], [Puschner and Vrchoticky, 1997]). If a
test datum can be found that executes the path we can be sure that this is the longest execution
time possible to obtain. Due to pessimistic assumptions in static analyses the path will usually
not be executable. However, the pre-definition of these paths can lead to a very interesting
concentration on paths with long execution times.

(c) Copyright 2001 Sthamer, Baresel and Wegener, DaimlerChrysler AG Page 10

6 References

Baresel, A., Automatisierung von Strukturtests mit evolutionären Algorithmen (Automation of
Structural Testing using Evolutionary Algorithms), Diploma Thesis, Humboldt University, Berlin,
Germany, 2000.

Conrad, M., Dörr, H., Fey, I., Yap, A., Model-based Generation and Structured Representation of
Test Scenarios, Proceedings of the Workshop on Software-Embedded Systems Testing,
Gaithersburg, Maryland, USA, 1999.

Grochtmann, M.; Wegener, J., Evolutionary Testing of Temporal Correctness. Proceedings of the
2nd International Software Quality, Week Europe (QWE' 1998), Brussels, Belgium, November
1998.

Gross, H.-G., Jones, B. und Eyres, D., Structural performance measure of evolutionary testing
applied to worst-case timing of real-time systems, IEE Proc.-Softw., Vol. 147, No. 2, April 2000,
pp. 25 – 30.

Jones, B. F., Eyres, D. E. and Sthamer, H. - H., A Strategy for using Genetic Algorithms to
Automate Branch and Fault-based Testing, The Computer Journal, Vol. 41, No. 2, 1998.

Jones, B.F., Sthamer, H.- -H., Yang, X., Eyres, D.E., The Automatic Generation of Software Test
Data Sets using Adaptive Search Techniques. Proceedings of Software Quality Management ’95,
Seville, Spain, 1995, pp. 435 - - 444.

Lehmann, E., Time Partition Testing: A Method for Testing Dynamic Functional Behaviour,
Proceedings of TEST2000, London, Great Britain, May 2000.

Lehmann, E.; Wegener, J., Test Case Design by Means of the CTE XL, Proceedings of the 8th
European International Conference on Software Testing, Analysis & Review (EuroSTAR 2000),
Kopenhagen, Denmark, December 2000.

Mueller, F., Generalizing Timing Predictions to Set-Associative Caches, Proc. EuroMicro
Workshop on Real-Time Systems, pp . 64-71, Jun 1997.

Mueller, F.; Wegener, J., A Comparison of Static Analysis and Evolutionary Testing for the
Verification of Timing Constraints, Proceedings of the 4th IEEE Real-Time Technology and
Applications Symposium, Denver, USA, June 1998.

Puschner, P. and Nossal, R.: Testing the Results of Static Worst-Case Execution-Time Analysis,
Proc. 19th Real-Time Systems Symposium, pp. 134-143, 1998.

Puschner, P. and Vrchoticky, A., Problems in Static Worst-Case Execution Time Analysis,
Proceedingsof the 9th ITG/GI-Conference Measurement, Modeling and Evaluation of
Computational and Communication Systems, 1997, pp. 18-25.

Schultz, A. C., Grefenstette, J. J. and De Jong, K. A., Test and Evaluation by Genetic Algorithms,
IEEE Expert 8(5), 1993, pp. 9 – 14.

Sthamer, H.-H., The Automatic Generation of Software Test Data Using Genetic Algorithms, PhD
Thesis, University of Glamorgan, Pontyprid, Wales, Great Britain, 1996.

Tracey, N., Clark, J., Mander, K. and McDermid, J., An Automated Framework for Structural Test-
Data Generation. Proceedings of the 13th IEEE Conference on Automated Software Engineering,
Hawaii, USA 1998.

(c) Copyright 2001 Sthamer, Baresel and Wegener, DaimlerChrysler AG Page 11

Wegener, J., Grochtmann, M., Verifying Timing Constraints of Real-Time Systems by means of
Evolutionary Testing. Real-Time, Systems, vol. 15, no. 3, Kluwer Academic Publishers, 1998, pp.
275 - 298.

Wegener, J.; Baresel, A.; Sthamer, H., Evolutionary Test Environment for Automatic Structural
Testing, submitted to to the Special Issue of Information and Software Technology devoted to the
Application of Metaheuristic Algorithms to Problems in Software Engineering 2001.

Wegener, J.; Grochtmann, M.; Jones, B., Testing Temporal Correctness of Real-Time Systems by
Means of Genetic Algorithms, Proceedings of the 10th International Software Quality Week (QW
'97), San Francisco, USA, May 1997.

Wegener, J.; Pohlheim, H.; Sthamer, H., Testing the Temporal Behavior of Real-Time Tasks using
Extended Evolutionary Algorithms, Proceedings of the 7th European Conference on Software
Testing, Analysis and Review (EuroSTAR '1999), Barcelona, Spain, November 1999.

QW2001 Paper 9A2

Mr. Hung Q. Nguyen
(LogiGear Technology)

The Design and Implementation of a Flexible, Reusable and
Maintainable Automation Framework

Key Points

How to design a reusable test automation framework●

How to prepare for the development of an automation project●

Developmemt mistakes to avoid●

Presentation Abstract

This presentation discusses a case study of how to create an automation framework
designed to be a product-independent automated testing solution.
"Product-independent" means that the automation solution can be easily adapted to
do various tasks and accommodate changes to the application under test (AUT)
without having to redo the framework. It tells the story of how one of the test
automation teams at LogiGear went about the process of requirements analysis,
research, designing, prototyping and implementation. This session offers a results
analysis as a measurement of success. This is an experience-based technical study
that can help you prepare for your next automation endeavor.

About the Author

Hung Q. Nguyen is president and CEO of LogiGear Corporation, a Silicon Valley
software testing company whose mission is to help software development
>organizations deliver the highest quality products possible while juggling
>limited resources and schedule constraints. LogiGear offers many value-added
services including >application testing, automated testing and web
load/performance testing for e-business and >consumer applications. Nguyen’s
company produces and markets TRACKGEAR™, a web-based defect >tracking
system. LogiGear also specializes in Web application, hand-held communication
device and consumer electronic product testing, and offers the software
development community a >comprehensive “Practical Software Testing Training
Series. ” In the past two decades, Nguyen has held leadership roles in business
development, engineering, quality assurance, testing, product development, and
information technology. Nguyen is the author of Testing Applications on ! the Web
(Wiley) and co-author of the best-selling book, Testing Computer Software
(Wiley). He also develops and teaches software testing courses for UC Berkeley
and UC Santa Cruz Extension, and for LogiGear. He holds a Bachelor of Science
in Quality Assurance from Cogswell Polytechnical College, and is an
ASQ-Certified Quality Engineer and active senior.

1

© 2001 LogiGear Corporation. All Rights Reserved.

 The Design and Implementation
of a Flexible, Reusable, and
Maintainable Automation
Framework

Hung Q. Nguyen
LogiGear® Corporation

© 2001 LogiGear Corporation. All Rights Reserved.

Objectives

• Prepare you to build a successful and
reusable automation architecture

• Share the keyword approach to creating an
automation framework

• Share lessons learned in implementing a
flexible architecture

2

© 2001 LogiGear Corporation. All Rights Reserved.

Background: The Evolution

• The early days
• Developing an automation framework
• The table-driven approach
• The keyword-driven approach

© 2001 LogiGear Corporation. All Rights Reserved.

The Early Days

• Collect acceptance/regression test cases to
be automated

• Record and script test cases
• Improve reusability

– Parameterize hard-coded values
– Separate data from code by moving variables to

INCLUDE files
– Create utility functions to be shared

• Train test specialists to run scripts

3

© 2001 LogiGear Corporation. All Rights Reserved.

• Work with test specialists to understand
their testing needs

• Go beyond acceptance/regression tests--
Analyzing user-scenario test cases

• Recognize the difference between task-
driven and object-driven test cases

The Next Wave:
Creating a Framework

© 2001 LogiGear Corporation. All Rights Reserved.

• Object-Driven
– Click User Name text box
– Enter your_ID
– Click Password text box
– Enter your_password
– Click Login button

• Task-Driven
– Log in using

• User Name = your_ID
• Password = your_password

Object-Driven vs. Task-Driven

4

© 2001 LogiGear Corporation. All Rights Reserved.

• Pre-separating data and code
– Start by defining functions to be written
– Variablize data and keep variables in INCLUDE files

• Pair up a test specialist and an automation
engineer to improve communication and to
ensure that the framework design and
implementation meet the test objectives

• Train test specialists to run test scripts

The Next Wave:
Creating a Framework

© 2001 LogiGear Corporation. All Rights Reserved.

• Take advantage of tester’s familiarity with test case
creation using tables and matrices

• Accommodate localization projects
• Recognize the importance of patterns in test cases
• Enable testers to catalog test cases with Excel

spreadsheets
• Enable testers to specify expected results in

spreadsheets

The Table-Driven Approach

5

© 2001 LogiGear Corporation. All Rights Reserved.

A Table-Driven Example

© 2001 LogiGear Corporation. All Rights Reserved.

A Table-Driven Example

• for (i=1; i<= iLastDataSet;
i++)
– Open the dialog box.

– Use the data in DataSet[i] (The
first set is 1 and the last set is
12) to set the values of Match
Case, Match Whole Word and
Find What controls.

– Click Find Next.

– Verify the results.

PROPERTY
CONTROL 1 2 3 4 5 6 7 8 9 10 11 12

Match case O
F

F

O
F

F

O
N

O
N

O
F

F

O
F

F

O
N

O
N

O
F

F

O
F

F

O
N

O
N

Match whole O
F

F

O
N

O
F

F

O
N

O
F

F

O
N

O
F

F

O
N

O
F

F

O
N

O
F

F

O
N

Find What "U
P

P
E

R
C

A
S

E
"

"U
P

P
E

R
C

A
S

E
"

"U
P

P
E

R
C

A
S

E
"

"U
P

P
E

R
C

A
S

E
"

"lo
w

er
ca

se
"

"lo
w

er
ca

se
"

"lo
w

er
ca

se
"

"lo
w

er
ca

se
"

"M
ix

ed
C

as
e"

"M
ix

ed
C

as
e"

"M
ix

ed
C

as
e"

"M
ix

ed
C

as
e"

6

© 2001 LogiGear Corporation. All Rights Reserved.

• Business issues
• People and process issues
• Technology issues

The Need for Improvement

© 2001 LogiGear Corporation. All Rights Reserved.

• Need to expand our service offerings and
share success through our test automation
expertise

• Need to have a methodology for quick
deployment of test automation

• Need to build a transferable architecture
• Need a better approach to test automation

job costing

The Business Issues

7

© 2001 LogiGear Corporation. All Rights Reserved.

• Need to deliver an automation program that is
practical, explainable, and trainable

• Need to be more cost effective through
reusability across projects

• Need to make technology a viable business
solution

• Need a tangible approach to deciding between
manual testing and automated testing

The Business Issues

© 2001 LogiGear Corporation. All Rights Reserved.

• Need to standardize test methodology--
Enabling testers and automation engineers
to collaborate

• Enable testers to better specify their needs
and automation engineers to better serve
those needs

• Need to integrate test automation as part of
the process of software testing

The People and Process Issues

8

© 2001 LogiGear Corporation. All Rights Reserved.

• Need testers to focus on test case design,
and automation engineers to focus on
driver script writing

• Make data more visible and understandable
from the human perspective

• Need to incorporate test case design
techniques with Excel, which test
specialists are already familiar

The People and Process Issues

© 2001 LogiGear Corporation. All Rights Reserved.

• Need to build an architecture that’s tool
independent as well as application independent

• Need to improve the ability to share code across
projects and tools

• Need to separate control of task variables, input
variables, and code

• Need to integrate action keyword into the
existing data-driven model

The Technology Issues

9

© 2001 LogiGear Corporation. All Rights Reserved.

• Want to focus the development and
maintenance of test scripts on the
navigation of the application under test

• Need to take advantage of Excel features to
automate test case and test data creation

• Need to incorporate test case design
techniques using Excel, any database,
XML, or other viable data service solutions

The Technology Issues

© 2001 LogiGear Corporation. All Rights Reserved.

 Integrated Testing Solutions =

 [Test Specialist’s Domain Expertise] +
 [Manual Testing] +
 [Automated Testing: Reusable Framework & Application Specific Scripts]

The Integrated Solution

10

© 2001 LogiGear Corporation. All Rights Reserved.

• Research possible solutions and evaluate options
• Develop requirements
• Develop the architecture
• Build the framework
• Test the framework
• Develop documentation
• Deploy the framework on a real project
• Measure performance and refine the design

The Development Process

© 2001 LogiGear Corporation. All Rights Reserved.

• Learn from past experience
• Discuss possibilities with software developers
• Talk to friends
• Read books

– Recommend “Software Test Automation” by Graham and
Fewster, 1999, Addison-Wesley

• Use the Internet
– Recommend www.QACity.com, the Automated Testing page

Research Possible Solutions

11

© 2001 LogiGear Corporation. All Rights Reserved.

• Clearly state the business, people/process, and
technology objectives

• Set expectations through well defined deliverables
(e.g., requirement and design documents, code
modules, whitepapers, training materials, etc.)

• Clearly define ways to measure success (e.g.,
quality of the design and code, budget, schedule,
customer approval upon deployment, etc.)

The Requirements

© 2001 LogiGear Corporation. All Rights Reserved.

 Application Independent
 Tool/Application Dependent

Keyword Architecture

Test Designer Test Interpreter Test Driver

Data Services Business Logic Dispatching Services

Driver Scripts

Test Execution Services

The Architecture

Application
Under Test
(AUT)

12

© 2001 LogiGear Corporation. All Rights Reserved.

The Architecture
Keyword Architecture

Test Designer Test Interpreter Test Driver

 FileName Main()
 GetTaskName
 GetTaskRows RunTestCase
 GetTaskParameters
 etc.

Driver Scripts

 testcase Login(parameters)
 etc.

Database

XML

© 2001 LogiGear Corporation. All Rights Reserved.

The Architecture

driverscripts.t

interpreter.inc

testdriver.t

13

© 2001 LogiGear Corporation. All Rights Reserved.

The Architecture:
The Test Designer

MyWorksheet.xls = MyTestplan.xls

Sheet1 = TestSuite1

Sheet2 = TestSuite2

C1 C2 C3 C4
R1 Test Case 1
R2 Test Case 2

© 2001 LogiGear Corporation. All Rights Reserved.

The Architecture:
The Test Designer

Test Plan

Test Suite

14

© 2001 LogiGear Corporation. All Rights Reserved.

The Architecture: The Report

Test suite

Test section

Test case

Test line &
equivalent
spreadsheet
row number

© 2001 LogiGear Corporation. All Rights Reserved.

• Prototype the components
• Implement the Test Designer
• Implement the Test Interpreter
• Implement AUT specific Test Drivers
• Add the reporting function to the Test

Interpreter
• Test, fix bugs, and write documentation

Building the Framework

15

© 2001 LogiGear Corporation. All Rights Reserved.

• Clear requirements help focus the team on the important
issues.

• Leaving “Fill in the blank” sections in requirements is
manageable.

• Spending time on designing and prototyping helps flush
out design issues; making it more scaleable, and helping
write more maintainable code.

• If the project is overly complex and the schedule is
aggressive, you may need to scale back. Don’t forget to
communicate changes in your plan.

Lessons Learned

© 2001 LogiGear Corporation. All Rights Reserved.

• The necessary information is available! We need a way
to find and analyze relevant information more quickly
and effectively.

• Thoroughly research your options. Choose your designs
wisely by taking business issues, people and process
issues, and technology issues into consideration.

• Keep in mind that your solution might be used by one
group, and maintained by another group.

Lessons Learned

16

© 2001 LogiGear Corporation. All Rights Reserved.

• Your effort is a serious development project. Treat it as
such: The key to success is good planning, scheduling
and budgeting.

• Get feedback! How else can you learn?
• It won’t be perfect! It’s acceptable to learn from

mistakes and refine the design as you go. Iteration and
hard work make perfection.

• The keyword approach works!

Lessons Learned

© 2001 LogiGear Corporation. All Rights Reserved.

 Special thanks to Hans Buwalda for sharing his
experience and vision on the action-word approach to
creating test automation framework.

Acknowledgment

17

© 2001 LogiGear Corporation. All Rights Reserved.

About Hung Q. Nguyen

 Hung Q. Nguyen is Founder, President and CEO of LogiGear Corporation, a Silicon
Valley software testing company whose mission is to help software development
organizations deliver the highest quality products possible while juggling limited
resources and schedule constraints. LogiGear offers many value-added services including
application testing, automated testing and web load/performance testing for e-business
and consumer applications. Nguyen’s company produces and markets TRACKGEAR™,
a web-based defect tracking system. LogiGear also specializes in Web application, hand-
held communication device and consumer electronic product testing, and offers the
software development community a comprehensive “Practical Software Testing Training
Series.” In the past two decades, Nguyen has held leadership roles in business
development, engineering, quality assurance, testing, product development, and
information technology. Nguyen is the author of Testing Applications on the Web (Wiley)
and co-author of the best-selling book, Testing Computer Software (Wiley). He also
develops and teaches software testing courses for UC Berkeley and UC Santa Cruz
Extension, and for LogiGear. He holds a Bachelor of Science in Quality Assurance from
Cogswell Polytechnical College, and is an ASQ-Certified Quality Engineer and active
senior member of American Society for Quality.

© 2001 LogiGear Corporation. All Rights Reserved.

About LogiGear® Corporation

 LogiGear® Corporation is a full service software quality-
engineering firm that provides testing expertise and resources to
software development organizations. Some of our value-added
services include application testing, automated testing, and web
load/performance testing for e-business and consumer applications.
LogiGear specializes in Web application, hand-held
communication device, and consumer electronic product testing.
LogiGear also produces and markets TRACKGEAR™, a Web-
based defect-tracking solution, and offers QA Training through the
Practical Software Testing Training Series.

 www.logigear.com

QW2001 Paper 2W1

Mr. Adrian Cowderoy
(ProfessionalSpirit Ltd)

Quality in a Dotcom Startup -- Fact or Fiction?

Key Points

Fighting the problems of speed, innocence and changes in objectives.●

Enhancing existing methods with ideas from elsewhere.●

Integrating quality and brand.●

Presentation Abstract

This is the story of a crusade to build quality management into a start-up Internet
company, from the beginning. It is a story of campaigns interrupted by deadlines,
of specification techniques ruined by evolving markets, and testing interrupted by
frequently changing business objectives.

It is also a story of people. Of the conflicting ideologies of engineering, creativity,
community and business. And of the software engineers who received rude
awakenings from each attempt to stabilise the development processes.

We came to recognise that the bigger the challenges facing quality engineers, the
more ingenious we have to be to achieve our objectives.

It is not formal techniques that matter most during the early months of startup, but
a number of practical guidelines. For instance:
1. Repeatedly emphasise that “quality comes first, and features come last”.
2. Define your brand values, and expand them into quantifiable quality measures.
3. Provide broadband internal communication on all kinds of information with the
business and technology. Keep it to summary form or presentations.
4. Use checklists and conceptual models that help everyone see the big picture.
5. Use corporate quality procedures ONLY for critical areas like version control
and planning.
6. Encourage each designer and developer to use the quality tools and techniques
they know, and can apply quickly.
Especially, employ only experience people, or outsource to mature companies.
(Talented people pick up the seedlings of ideas and turn them into a reality that is
greater than we dared hope.)

The results are a steady introduction of quality practices, first by individuals and
then by others copying them. Processes start to stabilise. We have even found that

our contractors are changing their practices to catch up with our requirements.

About the Author

Adrian Cowderoy is Managing Director of the Multimedia House of Quality
Limited, a company which he established to promote quality-improvement
methods for the production of websites and multimedia.

Mr Cowderoy was the General chair of ESCOM-SCOPE-99 and
ESCOM-ENCRESS-98 conferences, and was Program chair for ESCOM 96 and
97 (The European Software Control and Metrics conference promotes leading-edge
developments in industry and research, worldwide û see www.escom.co.uk). He is
the METRICS-ESCOM Coordinator for IEEE METRICS 2001 and was on the
Program committee of Metrics 98 and 99, European Quality Week 99 and
COCOMO/SCM 96-99. In 1998 he was acting Conference Chair of the Electronics
and Visual Arts conference in Gifu, Japan. He is a registered expert to the
European Commission DGXIII.

He has provided consultancy and industrial training courses on quality
management, risk management, and cost estimation to the aerospace and medical
industries in the UK, Germany and Italy since 1995. He also lectures at Middlesex
University (www.mdx.ac.uk) on e-commerce project management and managing
Internet start-up's, and at City University, London (www.city.ac.uk), on project
management for systems development.

Mr Cowderoy was project manager and technical director of MultiSpace, a
14-month million-dollar initiative sponsored by the European Commission in
which 12 European organizations explored the potential to apply
quality-improvement methods to multimedia and website development projects.
(See www.mmhq.co.uk/multispace and www.cordis.lu/esprit.)

He was a Research fellow at City University from 1990-1998, and a Research
Associate at Imperial College from 1986-1989. He was also a quality consultant
and software developer at International Computers Limited, UK, from 1980-1985,
where he worked on operating and networking systems for mainframes and
distributed systems.

His academic qualifications include an MSc in Management Science from Imperial
College, University of London in 1986, and is a member of the Association of
MBA's. He received a BSc in Physics with Engineering from Queen Mary College,
University of London, in 1979.

Mr. Cowderoy has published and presented extensively on multimedia quality and
software cost estimation. He was joint editor of Project Control for 2000 and
Beyond (Elsevier, 1998), Project Control for Software Quality (Elsevier, 1999),
and Project Control: The Human Factor (Elsevier, 2000).

Page 1
© Copyright 2001 by ProfessionalSpirit Ltd, UK

Page 1 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

TXDOLW\�LQ�D�GRWFRP�VWDUWXS

��IDFW�RU�ILFWLRQ"

$GULDQ�&RZGHUR\

3URIHVVLRQDO6SLULW�/WG��8.�

Page 2 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

7KHVH DUH WKH RSLQLRQV RI WKH DXWKRU�

7KH\ GR QRW QHFHVVDULO\ UHSUHVHQW RIILFLDO SROLF\ RI

3URIHVVLRQDO6SLULW /LPLWHG� QRU GR WKH\ QHFHVVDULO\

GHVFULEH VLWXDWLRQV ZKLFK PD\ RU PD\ QRW KDYH RFFXUUHG

ZLWKLQ WKDW FRPSDQ\�

Page 2
© Copyright 2001 by ProfessionalSpirit Ltd, UK

Page 3 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

FRPLQJ����

��UHDOLWLHV

��FKDOOHQJH

���JXLGHOLQHV

��FRQFOXVLRQV

Page 4 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

)RXQGHG�LQ�-DQXDU\�����

ZLWK�SULYDWH�LQYHVWPHQW�

0HJD�H[FKDQJH�DQG�SRUWDO�

8VHV�G\QDPLF�SHUVRQDOLVHG�ZHEVLWH

ZLWK�UHDO�WLPH�GHOLYHU\�

6RIWZDUH�GHYHORSPHQW�ZLWK�H[WHQVLYH

TXDOLW\�PDQDJHPHQW

DQG�VL]LQJ�H[SHULHQFH�

&RPPHUFLDO��DFFRXQWLQJ��ZHE�GHVLJQ�

PDUFRPPV�

RXU�UHDOLW\

WKH�FRPSDQ\

WKH�EXVLQHVV

WKH�WHFKQRORJ\

WKH�SHRSOH

Page 3
© Copyright 2001 by ProfessionalSpirit Ltd, UK

Page 5 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

FROG�UHDOLW\

7RR�PDQ\�GRWFRPV�KDYH�IDLOHG�

%LJ�FRUSRUDWLRQV�DUH�WDNLQJ�WKH�PDUNHW�

6L]H�DQG�FRPSOH[LW\�LV�LQFUHDVLQJ�

GRWFRP�LV�D�EDG�ZRUG 6WDII�DUH�GLIILFXOW�WR�ILQG�

4XDOLW\�UHTXLUHPHQWV�KDYH�LQFUHDVHG�

)XQGV�DUH�WLJKW��DQG�HUUDWLF�

Page 6 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

PDUNHW�UHDOLW\

,QWHUQHW�OLIHF\FOH�LV�����PRQWKV�
� 8VHU UHTXLUHPHQWV FKDQJHV�

� 1HZ FRPSHWLWLRQ DSSHDUV�

� 1HZ WHFKQRORJLHV DUH LQWURGXFHG�

�)DVKLRQV FKDQJH �HYHU\ � PRQWKV��

1HZ�EXVLQHVV�SODQ�HYHU\�����PRQWKV�

WKH�GHPDQGV�«

«�DUH�LPSRVVLEOH 3URGXFW�GHYHORSPHQW�LV�ORQJHU�

���PRQWKV�IRU�VSHFLILFDWLRQ�

����PRQWKV�IRU�VRIWZDUH�GHYHORSPHQW�

���PRQWKV�IRU�PDUNHW�ODXQFK

7KH�SUHVVXUH�IRU�FKDQJHV�LV�WUHPHQGRXV

�����DQG�TXDOLW\�LV�DW�ULVN�

Page 4
© Copyright 2001 by ProfessionalSpirit Ltd, UK

Page 7 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

LGHRORJLFDO�UHDOLW\

4XDOLW\�PDQDJHPHQW�QHHGV

GHWDLO�DQG�ULJRU�

«�DUH�GLIIHUHQW

HQJLQHHUV�«�

&UHDWLYHV��FRPPXQLW\�EXLOGHUV�

���FRPPHUFLDO�VWUDWHJLVWV��DQG

���PDUNHW�PDNHUV

DOO�UHTXLUH�VLPSOH�PHVVDJHV

���DQG�EURDG�GLVFUHWLRQ�

Page 8 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

H[SHUWLVH�UHDOLW\

(YHU\RQH�FODLPV�WR�EH�DQ�´H[SHUWµ
� DW XVHU SURILOLQJ

� DW XVDELOLW\ GHVLJQ

� DW PDUNHWLQJ VWUDWHJ\

� DW LGHQWLI\LQJ PDUNHW RSSRUWXQLWLHV

� DW VHWWLQJ UHOHDVH SULRULWLHV�

WRR�PDQ\�FKHIV &RQIOLFW�

'DQJHU�RI�PDNLQJ�WKH�ZURQJ�FKRLFH�

Page 5
© Copyright 2001 by ProfessionalSpirit Ltd, UK

Page 9 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

SURJUHVV

��UHDOLWLHV

��FKDOOHQJH

���JXLGHOLQHV

��FRQFOXVLRQ

QH[W

Page 10 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

WHQ�JXLGHOLQHV

:H�QHHG�JXLGHOLQHV��QRW�ODZV�

,Q�D�\HDU·V�WLPH�

WKH�,QWHUQHW�PDUNHW�ZLOO�EH�GLIIHUHQW�

*XLGHOLQHV�FKDQJH�

SULQFLSOH

VFRSH /HIW�KDQG�����ILQJHUV�IRU�XQGHUVWDQGLQJ�

5LJKW�KDQG�����ILQJHU�IRU�SURFHVV�

Page 6
© Copyright 2001 by ProfessionalSpirit Ltd, UK

Page 11 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

XVHU�DZDUHQHVV��OHIW�KDQG��WKXPE�

'LIIHUHQW�XVHUV�KDYH�YDVWO\�GLIIHUHQW�QHHGV�
� 8VDELOLW\ GHVLJQ EHFRPHV FULWLFDO�

� 0DUNHWLQJ VWUDWHJLHV EHFRPH FRPSOH[�

$OO�HPSOR\HHV�QHHG�WR�NQRZ�WKH�XVHUV�

XVHU�SURILOLQJ ,GHQWLI\�����W\SHV�RI�XVHU�

'HILQH�WKHLU�FKDUDFWHULVWLFV�XVLQJ�D�FKHFNOLVW�

2XU�FKHFNOLVW�FRYHUV����LVVXHV��LQFOXGLQJ

ZHE�DQG�FRPSXWHU�XVDJH�

XVHU�EDFNJURXQG��OLWHUDF\��DWWLWXGHV��HWF��

UHODWLRQVKLS�WR�WKH�EXVLQHVV�

Page 12 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

PDUNHW�PHVVDJH��OHIW�KDQG��IRUHILQJHU�

7HFKQRORJ\�FDQ�EH�UHSOLFDWHG�

%UDQG�FDQ�QRW�

EUDQG�GULYHQ�JRDOV 'HILQH�\RXU�EUDQG�YDOXHV

DQG�FRUSRUDWH�VW\OH�

3URYLGH�TXDQWLWDWLYH�PHDVXUHV

WR�FUHDWH�WKH�EUDQG�FRQWUDFW�

VRIWZDUH�TXDOLW\�PHDVXUHV

VHUYLFH�OHYHO�DJUHHPHQWV�IRU�VWDII

FRQWHQW�TXDOLW\�PHDVXUHV

V\VWHP�SHUIRUPDQFH�PHDVXUHV

Page 7
© Copyright 2001 by ProfessionalSpirit Ltd, UK

Page 13 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

FRPSHWLWLYHQHVV��OHIW�KDQG��PLGGOH�ILQJHU�

&RPSHWLWLRQ�RQ�WKH�,QWHUQHW�LV�ILHUFH�

0DUNHW�G\QDPLFV�FDQ�EH�GLIILFXOW�WR�OHDUQ

IRU�QRQ�PDUNHWLQJ�VWDII�

GLIIHUHQWLDWLQJ�IHDWXUHV 0DLQWDLQ�D�OLVW�RI�GLIIHUHQWLDWLQJ�IHDWXUHV

WKDW�GHPRQVWUDWH�FRPSHWLWLYH�DGYDQWDJHV�

&KHFN�VRIWZDUH�IXQFWLRQDO�VSHFV�

������EXVLQHVV�SURFHVV��HWF�DOO�VDWLVI\�WKHP�

8SGDWH�WKH�OLVW�HYHU\���PRQWKV�

Page 14 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

EXVLQHVV�UHDOLWLHV��OHIW�KDQG��IRXUWK�ILQJHU�

'RWFRPV�FRPH��'RWFRPV�JR

����«�WKH�IDLOXUH�ZRUU\�WKH�VWDII�

%XVLQHVV�PRGHOV�FKDQJH�GUDPDWLFDOO\

RYHU����PRQWK�SHULRGV

«�FDXVLQJ�PDMRU�FKDQJHV�LQ�GLUHFWLRQ�

EH�PLQGIXO�RI�WKH�SDVW (QFRXUDJH�VWDII�WR�UHDG�ZLGHO\�

2SHQO\�GLVFXVV�IHDVLELOLW\�RI�QHZ�LGHDV�

%HZDUH�RI�VXGGHQ�IDVKLRQ�FKDQJHV

LQ�EXVLQHVV�PRGHOV�

Page 8
© Copyright 2001 by ProfessionalSpirit Ltd, UK

Page 15 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

WHFKQRORJ\�DZDUHQHVV��OHIW�KDQG��VPDOO�ILQJHU�

:HE�VRIWZDUH�TXDOLW\�LV�YHU\�GHPDQGLQJ�

0DLQWDLQLQJ�ZHEVLWHV�LV�KDUG�ZRUN�

7KH�QHZ�WHFKQRORJLHV�ORRN�H[FLWLQJ

«�EXW�WKH\�FDQ�EULQJ�ELJ�SUREOHPV�

EXLOG�QHZ�H[SHULHQFHV 8VH�ZRUNVKRSV�WR�H[SORUH�ZKDW�LV�SRVVLEOH�

7ULDO�WKH�ODWHVW�WHFKQRORJ\�LQ�SURWRW\SHV�

(YDOXDWH�FRVW��WLPH�DQG�ULVN�

Page 16 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

LJQRUDQFH��ULJKW�KDQG��WKXPE�

/DFN�RI�DZDUHQHVV�RI�ZKDW·V�KDSSHQLQJ

LV�D�NLOOHU�

1RERG\�KDV�WLPH�WR�UHDG�HYHU\�GRFXPHQW�

(YHU\RQH�KDV�DUHDV�RI�ZHDNQHVVHV�

��SDJH�VXPPDULHV $VVXPH�QRWKLQJ�LV�NQRZQ�

'HVFULEH�RQO\�PDMRU�SRLQWV�

��SDJHV�OLPLW�

+HOS�SHRSOH�ZULWH�WKHLU�ILUVW�VXPPDU\�

Page 9
© Copyright 2001 by ProfessionalSpirit Ltd, UK

Page 17 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

VWDIILQJ��ULJKW�KDQG��IRUHILQJHU�

6WDII�IRFXV�RQ�WKHLU�VSHFLDOWLHV�

:KHQ�LQ�D�KXUU\�

LPSRUWDQW�WKLQJV�JHW�PLVVHG�

WKH�ELJ�SLFWXUH 8VH�FKHFNOLVWV�WR�FRYHU�EUHDGWK�

8VH�OHDGLQJ�HGJH�ERRNV�DQG�ZHEVLWHV�

,QYROYH�HYHU\RQH�LQ�EURDG�GLVFXVVLRQV�

Page 18 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

ULVN��ULJKW�KDQG��PLGGOH�ILQJHU�

$Q\WKLQJ�WKDW�FDQ�JR�ZURQJ��ZLOO�

$V�WKH�HQWHUSULVH�DGYDQFHV�\RX�HQFRXQWHU

PDQ\�QHZ�FRPPHUFLDO�RSSRUWXQLWLHV�

(DFK�KDV�LWV�RZQ�QHZ�ULVNV�

RSSRUWXQLW\

PDQDJHPHQW

8VH�ULVN�PDQDJHPHQW�WHFKQLTXHV�

0DLQWDLQ�D�ORJ�RI�SRWHQWLDO�RSSRUWXQLWLHV�

DQG�WKH�ULVNV�WKDW�FRPH�IURP�WKHP�

,GHQWLI\�WKH�ELJJHVW�ULVNV�

3ODQ�VWUDWHJLHV�IRU�KDQGOLQJ�WKHP�

0RQLWRU�SURJUHVV�

Page 10
© Copyright 2001 by ProfessionalSpirit Ltd, UK

Page 19 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

XUJHQF\��ULJKW�KDQG��IRXUWK�ILQJHU�

7KHUH�LV�QR�WLPH�WR�OHDUQ�WHFKQRORJLHV

DQG�QR�WLPH�WR�JDLQ�H[SHULHQFH�

H[SHULHQFH�UXOHV�RN 5HFUXLW�H[SHULHQFHG�SHRSOH�IRU�NH\�UROHV

��IRU�����PRUH�PRQH\

\RX�JDLQ������PRUH�HIIHFW

)LQG�TXDOLW\�FRQWURO�DQG�TXDOLW\�DVVXUDQFH

PHWKRGV�\RXU�WHDP�NQRZV�

DQG�UHLQIRUFH�ZLWK�MXVW�HQRXJK�ULJRXU�

Page 20 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

SURFHVV��ULJKW�KDQG��OLWWOH�ILQJHU�

4XDOLW\�DVVXUDQFH�PDQDJHUV�ZDQW�LW�DOO�
� FRUSRUDWH SURFHGXUH PDQXDOV�

,62 ����� H[WHQVLYH PHDVXUHPHQW�

SURFHVV PDWXULW\� DQG PRUH�

%XW�WKH�EXVLQHVV�QHHGV�IOH[LELOLW\�

GRQ·W�ZDON
EHIRUH
\RX�FDQ�UXQ

'HILQH�FRUSRUDWH�TXDOLW\�SURFHGXUHV

21/<�IRU�FULWLFDO�DUHDV�OLNH�YHUVLRQ

FRQWURO�DQG�SODQQLQJ�

��´.HHS�,W�6LPSOH��6WXSLGµ

Page 11
© Copyright 2001 by ProfessionalSpirit Ltd, UK

Page 21 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

���JXLGHOLQHV

8VHU�SURILOLQJ

'LIIHUHQWLDWLQJ�IHDWXUHV

%UDQG�GULYHQ�JRDOV

%H�PLQGIXO�RI�WKH�SDVW

%XLOG�QHZ�H[SHULHQFHV

7KH�ELJ�SLFWXUH

2SSRUWXQLW\�PDQDJHPHQW

��SDJH�VXPPDULHV

([SHULHQFH�UXOHV�RN

'RQ·W�ZDON�EHIRUH�\RX�FDQ�UXQ

ULJKW�KDQG
IRU�SURFHVV

OHIW�KDQG
IRU�XQGHUVWDQGLQJ

Page 22 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

DQG�ILQDOO\

��UHDOLWLHV

��FKDOOHQJH

���JXLGHOLQHV

��FRQFOXVLRQVQH[W

Page 12
© Copyright 2001 by ProfessionalSpirit Ltd, UK

Page 23 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

FRQFOXVLRQ����

6WDUW�ZLWK�WKH�TXDOLW\�PHWKRGV�WKDW�VXLW�WKH

OHDGLQJ�VWDII�DQG�FRQWUDFWRUV�

7KHQ�EXLOG�RQ�WKLV�

VWDUW�QRZ

Page 24 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

FRQFOXVLRQ����

.HHS�FRXQWLQJ�ILQJHUV�

WKH�ELJJHVW�HQHP\�RI�OXFN�«

«�LV�LJQRUDQFH

Page 13
© Copyright 2001 by ProfessionalSpirit Ltd, UK

Page 25 of 25

© Copyright 2001 by ProfessionalSpirit Ltd, UK

FRQWDFW�GHWDLOV

3URIHVVLRQDO6SLULW�/LPLWHG
KWWS���ZZZ�SURIHVVLRQDOVSLULW�FRP�

HPDLO LQTXLULHV#SURIHVVLRQDOVSLULW�FRP

$GULDQ�&RZGHUR\
DGULDQ�FRZGHUR\#PPKT�FR�XN

�� :LOORZ 7UHH *ODGH� &DOFRW�

5HDGLQJ 5*�� �$=� 8.

SKRQH ��� ���8.� ��� ��� ����

ID[��� ���8.� ��� ��� ����

FRPSDQ\

DXWKRU

QW2001 Paper 2W2

Mr. Todd Hsueh
(IBM)

Innovative Web Test Process & Control Tool

Key Points

Web Test Lessons Learned●

Development-to-Testing Trilogy●

Process Control for Quality with Speed●

Presentation Abstract

The "Innovative Web Test Process & Control" is a three-fold process evolved through our
Web development and testing projects in the Centers for IBM e-business Innovation : : Los
Angeles. This process control mechanism is currently supported by a Lotus Notes "Web
Test and Incident Tracking" Database and has been submitted to the IBM Intellectual
Property Review Board for invention patent and/or disclosure. The three sub processes are:

Unit/Integration Test (UIT) Checklist Review/Approval,●

Code Release Authorization Using Pre-test, and●

Incident Tracking.●

By enforcing the "UIT Checklist" process, the Creative Team (Art Director, Content
Strategist, Information Designer) and the Development Team (Solution Designer,
HTML/JAVA/JSP Programmers) verify their work products against requirements and
design and ensure that Unit/Integration Test is properly done before System Test starts.

By enforcing the "Code Release Authorization Using Pre-test" process, the Development
Team and the Test Team coordinate and synchronize their work. The new code release is
delivered to the System Test environment when the Test Team is ready to receive it. The
"Pre-test" ensures that the new code release is properly built with quality and truly ready
for System Test.

By "Incident Tracking", all project staff has a common repository for all issues, issue
status, assignments, and resolution. An issue can range from a proposal planning action
item to a System Testing problem. By different groupings (Lotus Notes database views),
various statistics and management status reports are instantly available.

About the Author

Todd Hsueh is a Senior Information Technology (IT) Specialist in IBM Global Services
organization with 23 years of data processing experience. Since 1978, Todd has worked for
various companies as a programmer, Lead System Analyst, and Project Manager. His
industry experience includes manufacturing, health, DP consulting, finance, insurance,
travel, media and auto business. Todd is specialized in quality assurance and managing
testing process of all types of applications ranging from mainframe, client/server, to Web
applications. On most projects in the last ten years, Todd worked as the Testing Lead or
QA Manager and has completed all projects successfully. Todd has designed and
developed several Lotus Notes/Domino applications that facilitate quality assurance
process and configuration management. Todd is currently the Testing Manager for the
Centers for IBM e-business Innovation : : LOS ANGELES (Center).

(c) Copyright 2001 IBM All Rights Reserved 1

Innovative Web Test Process
and

Control Tool

QW2001, May 2001
San Francisco

By Todd Hsueh, IBM

© Copyright 2001 IBM All Rights Reserved 2

Web Testing Lessons Learned

“Web changes everything ?
Web changed nothing.”

“Now do you understand the
importance of User Testing ?!”

(c) Copyright 2001 IBM All Rights Reserved 2

Web Application Quality Assurance Strategy

Test Planning Information

Technical Information

System Level Test

Macro
Design
Review

Micro
Design
Review

Static Test
(Code
Inspection)

Unit/Integration
Test

System Test
(Navigation/Functional/Non-Func. Test)

Performance Test

Stress/Load Test

Usability Test

Security Test

User
Acceptance
Test

Post
Implementation
Support
Performance
Monitoring &
Enhancement

Design Phase Build & Test Phase Production

Establish Test Strateg y

© Copyright 2001 IBM All Rights Reserved 4

Close HUMAN Interaction

• Co/Close Location of Customer, Solution Lead,
Developers, Testers

• Continuously manage expectations, no surprise
• Vendor relation

(c) Copyright 2001 IBM All Rights Reserved 3

© Copyright 2001 IBM All Rights Reserved 5

Frequent Status Checks

• Timely Information Exchange, every 4 hours !
• Share technical/testing experience
• Problem Severity & Resolution Priority setting

© Copyright 2001 IBM All Rights Reserved 6

Central Repository

• Bug/fix experience sharing
cross projects

• Progress Status Report &
Statistics

(c) Copyright 2001 IBM All Rights Reserved 4

© Copyright 2001 IBM All Rights Reserved 7

Review /Walkthrough – Early QA
• Functional Requirements
• Non-functional

Requirements
• Coding Standards
• Functional Templates
• Application Flow
• Use Cases
• DB Schema
• …

• Keeping all objects &
documentation in sync

• Keeping all up-to-date
• Matching application

behavior with business
rules

© Copyright 2001 IBM All Rights Reserved 8

Know your client’s client

• Know their business interests
• Know their habit
• Know their environment (OS,

Browser)
• Manage UAT expectations

(c) Copyright 2001 IBM All Rights Reserved 5

© Copyright 2001 IBM All Rights Reserved 9

How did a perfectly tested application
fail ?

The “Impossible Best Situation”:

Development Environment = Test Environment =
User Acceptance Environment = Production Environment

Keep them isolated !
Identify the difference and warn people !

© Copyright 2001 IBM All Rights Reserved 10

Test Scenario Maintenance

• Allow time to enhance Test Scripts
• Well-written scripts make testing efficient

(c) Copyright 2001 IBM All Rights Reserved 6

© Copyright 2001 IBM All Rights Reserved 11

Load/Stress Test

• Designed for performance ?
• Schedule Load Test as soon as

application is stable

© Copyright 2001 IBM All Rights Reserved 12

“Testing is hard! “

• Circulate everyone in the organization
through testing at least once !

• Now you know ….

(c) Copyright 2001 IBM All Rights Reserved 7

© Copyright 2001 IBM All Rights Reserved 13

Plan / Organize Testing Efforts

Tester3Tester 3 –
201 - 300

Tester 3 –
Scenario 1 -
5

IE 5 / Win
NT

.. No needTester 2 –
101 - 200

Tester 2 –
Scenario 6-
10

IE 4 / Win
95

Tester 4Tester 1 –
1-100

Tester 1 -
Scenario 1-
5

Netscape 4 /
Win 95

Non-func.
Scenarios

Nav.
Scenarios

B.C.
Scenarios

OS/Browser

© Copyright 2001 IBM All Rights Reserved 14

Minimize “idle” time

• Developers, Be REAL !
• Use QA, Pre-view, Checklist, Code Release

Authorization process controls

(c) Copyright 2001 IBM All Rights Reserved 8

© Copyright 2001 IBM All Rights Reserved 15

Object Management
Tool & Discipline

• Art
• Content
• Code

UIT Checklist Review/Approval Process Flow

1. Lead
Developer
initiates UIT
Checklist for a
component of a
project.

2. Lead
Developer
notifies the
Creative Team
for art/content
items review &
sign-off.

3. Art Director
reviews work
products specified in
the UIT Checklist.

4. Content Strategist
reviews work
products specified in
the UIT Checklist.

5. Information
Designer reviews
work products
specified in the UIT.
Checklist

7. Creative Team signs
off UIT Checklist.

6. Lead Developer oversees Unit/Integration
Test and schedules review sessions with Art
Director, Content Strategist, and Information
Designer. All use Incident Tracking to log UIT
problems and review issues.

8. Lead Developer
signs off UIT Checklist
& notifies Test Lead.

9. Test Lead reviews
UIT Checklist.

10. Test Lead approves
UIT Checklist.

11. Test Lead rejects UIT Checklist.

Development

(c) Copyright 2001 IBM All Rights Reserved 9

Code Release Authorization & Pre-test Process Flow

1. Lead Developer
initiates Code Release
Authorization for a new
code release/build .

2. Lead Developer
informs Test Lead of
the new code release.

3. Test Lead verifies
UIT Checklists for all
components in the new
code release.

4. Test Lead informs
the Lead Developer
when to deliver the new
code.

5. Lead Developer &
Test Lead perform code
build in the System Test
environment while
validating the Build
Procedure.

6. Test Team performs
“Pre-test” in the System
Test environment.

7. Test Team passes
the new code and starts
formal System Test.

8. Test Team logs
problems detected
during “Pre-test” and
rejects the new code
release

Development - Test

Incident Tracking Process Flow

1. Project personnel
reports an issue or Tester
reports a testing problem
using an Incident Report
(IR) in Notes.

Based on project and/or
problem area, appropriate
coordinators get notified.

IR Status = ‘Open’

2. Project coordinator or Lead Developer reviews and assign the
issue to appropriate personnel for research & resolution

IR Status = ‘Assigned’

3. Assignee investigates the
issue and documents the
research results in the Incident
Report.

(Assignee may assign the
issue back to the reporting
person for additional
information).

4. Assignee resolves the issue or fixes
the problem, documents the resolution
in the Incident Report

Based on the project and/or problem
area, appropriate coordinators get
notified.

IR Status = ‘QA’

5. When the resolution is ready or the new code containing the fix is ready for retest,
Project coordinator or Lead Tester notifies the issue reporter or the Tester who reported
the problem.

IR Status = ‘Retest’

6. Issue reporter confirms the issue resolution or Tester checks the problem fix.

7. Issue reporter or Tester disposes the issue after
confirmation.

IR Status = ‘Closed’, ‘Withdrawn’, or ‘Pending’

8. Issue reporter or Tester re-opens the Incident
Report.

IR Status = ‘Reopen’

IR

(c) Copyright 2001 IBM All Rights Reserved 10

© Copyright 2001 IBM All Rights Reserved 19

“Web Test & Incident Tracking”
Tool Demo

• Lotus Notes Application
• Registered in the IBM WPTS and Intellectual

Properties DBs

© Copyright 2001 IBM All Rights Reserved 20

Thank you for your attention.
Have a Great Conference.

© Copyright 2001 IBM All Rights Reserved

QW2001 San Francisco, May 2001

Presentation (2W2):

“Innovative Web Test Process & Control Tool”

by Todd Hsueh, IBM

Web Application Development & Testing Process Control

© Copyright 2001 IBM All Rights Reserved Page 2 of 8 03/20/2001

Web Application Development & Testing Process Control

Overview

Disclosed are a three-fold process and a Lotus Notes workflow control tool that ensures
quality and efficiency in Web application development and testing projects.

The three-fold process is used by the Centers for IBM e-business Innovation : : LOS
ANGELES and the workflow control mechanism is built into the Lotus Notes "Web Test
and Incident Tracking" Database application.

The Challenge

Web application development and testing demand quality and speed to the market. It
normally requires heavy coordination of creative artwork and technical work, and
management of dynamic and static contents. Additionally, multiple work groups with
cultural, work habit, and platform diversities present even more challenges to the final
quality assurance (QA) group or sometimes, the Test Team who performs the final
System Test to examine the functions and behavior of the Web application.

The Solution and Advantage

The answer to the above challenge is summarized in this disclosure as a three-fold
process coupled with a Lotus Notes workflow control tool. The three sub processes are:

• Unit/Integration Test (UIT) Checklist Review/Approval,
• Code Release Authorization Using Pre-test, and
• Incident Tracking.

During Web application “Build” phase, the creative developers and technical developers,
without much QA or tester involvement, normally perform Creative Design Review and
Code Review. By enforcing the "UIT Checklist" process, QA group or testers get involved
early to ensure that the creative developers (Art Director, Content Strategist, Information
Designer) and the technical developers (Solution Designer, HTML/JAVA/JSP
Programmers) do verify their work products against requirements and design and ensure
that Unit/Integration Test is properly done before System Test starts. The workflow of
notification, review, and sign-off are automated via Lotus Notes document form and email.

By enforcing the "Code Release Authorization Using Pre-test" process, the Development
Team and the Test Team coordinate and synchronize their work. The new code release
is delivered to the System Test environment when the Test Team is ready to receive it.
Object version control and Code Build Procedures are validated with the code delivery (to
the System Test environment). The "Pre-test" ensures that the new code release is
properly built with quality and truly ready for System Test quickly without wasting time.
The workflow of code release notification, review, and authorization are automated via
Lotus Notes document form and email.

Web Application Development & Testing Process Control

© Copyright 2001 IBM All Rights Reserved Page 3 of 8 03/20/2001

By "Incident Tracking", all project staff has a common repository and audit trail for all
issues, issue status, assignments, and resolution. An issue can range from a proposal
planning action item to a System Test problem. The workflow of issue notification, review,
assignment, resolution, re-test, and disposition are automated via Lotus Notes document
form and email. By different groupings (Lotus Notes database views), various statistics
and management status reports are instantly available.

When combined, these processes synergize and ensure Web application’s quality and
delivery speed.

The details of each process is described below:

Process 1 - UIT Checklist Review/Approval

A Web application can be looked at as a collection of major components or Units. The
"UIT Checklist" ensures that quality is built into the lower level components. Four key
roles are involved in the "UIT Checklist" process. These are creative developers including
Art Director, Content Strategist, and Information Designer and the lead technical
developer such as Solution Lead or Development Team Lead. Every role has certain
responsibilities and a portion of the checklist items to complete. In addition to having the
code unit tested, by involving the Creative Team, the art/creative side of the work product
is also quality assured before the code enters System Test. After verification/review is
complete, each role endorses the approval of quality by a simple click of a button, which
registers an electronic signature with a date-time stamp on the "UIT Checklist" in the
Lotus Notes “Web Test & Incident Tracking” Database.

The Development Team Lead normally initiates the process by creating a new "UIT
Checklist" by clicking an action button, which brings up a Checklist template in Lotus
Notes document format. The Development Team Lead fills out the Project Name,
Unit/Component Name, Code Release Number, etc. By clicking the "Notify Creative
Team" button, a Lotus Notes e-mail is sent to the three key creative developers. This
prompts the review and sign-off from the creative side. After validating the unit/integration
test results, the Development Team Lead normally signs off last. At that time, the Test
Team (Test Lead for the project) gets notified via automated Lotus Notes e-mail and the
Test Team can perform quality check one final time. The Test Team may accept a “UIT
Checklist” if every thing is in order. The UIT Checklist may also be rejected by the Test
Lead if the subject component does not pass the unit test or the documentation is
incomplete. All problems detected during Unit/Integration Test are tracked via the
"Incident Tracking" function in the Lotus Notes “Web Test & Incident Tracking” database.

Process 2 - Code Release Authorization Using Pre-test

When all (or most of the) components of an application passed the "UIT Checklist"
process, the Development Team Lead performs a new code build and initiates the "Code
Release Authorization" process by clicking an action button that brings up a "Code

Web Application Development & Testing Process Control

© Copyright 2001 IBM All Rights Reserved Page 4 of 8 03/20/2001

Release Authorization" form in Lotus Notes. The Development Team Lead fills out
detailed information about the new code release and notifies the Test Lead via e-mail by
clicking an action button. The Test Lead, upon receiving the notification, will check the
completeness of the new code release by verifying the "UIT Checklists" and the "Code
Release Authorization" form, and reply to the Development Team Lead when the Test
Team is ready to receive the new code release in the System Test environment. When
the time comes for the new code delivery, the Development Team Lead and the Test
Lead will perform a new "build" in the System Test environment following the "Build
Procedure". This way, the new code is properly migrated into the System Test
environment and the "Build Procedure" is also validated.

After the new code is implemented in the System Test environment, the Test Team will
perform a "Pre-test" using a pre-selected subset of test scenarios. This "Pre-test" certifies
the readiness of the new code for the formal System Test. If the new code passes the
"Pre-test", System Test will start. Otherwise, the new code release will be rejected and
the "Pre-test" problems are tracked via the "Incident Tracking" function in the Lotus Notes
“Web Test & Incident Tracking” database. Again, the new code release acceptance and
rejection processes are also handled by action buttons and automated Lotus Notes e-
mails.

Besides code release technical information, also included in the "Code Release
Authorization" are Functions included/excluded, Problem Fixed, and Platform/Browser
Versions applicable to the new code. This information enables the Test Team to better
plan for the System Test. The "Pre-test" prevents false start of System Test and major
time loss.

Process 3 - Incident Tracking

For best project practice, any issue that requires action and resolution needs to be
tracked. Incident tracking function facilitates the logging, assignment, resolution, and
verification of all kinds of issues. An issue can be reported by anyone associated with a
project. By properly setting up the database, the appropriate project staff can be notified
when a new issue is reported. Then the issue can be assigned to other personnel to
research and/or resolve. When the issue is resolved, the assignee can inform the
assigner and the original reporter. When the resolution is verified, the issue can be
closed. All these interactions and notifications are automated via action buttons and
automated Lotus Notes e-mail.

By Lotus Notes "View" structure, multiple projects can share the same database. Various
project staff with different focus can create instant up-to-date management reports and
project statistics easily. For testing efforts, the problem assignments/resolution cycle is
shortened using the "Incident Tracking". Additionally, technical experience in terms of
problem resolutions can be shared by all developers cross projects through this central
repository.

The following flow charts illustrate the three processes described in this disclosure.

Web Application Development & Testing Process Control

© Copyright 2001 IBM All Rights Reserved Page 5 of 8 03/20/2001

UIT Checklist Review/Approval Process Flow

1. Lead
Developer
initiates UIT
Checklist for a
component of a
project.

2. Lead
Developer
notifies the
Creative Team
for art/content
items review &
sign-off.

3. Art Director
reviews work
products specified in
the UIT Checklist.

4. Content Strategist
reviews work
products specified in
the UIT Checklist.

5. Information
Designer reviews
work products
specified in the UIT.
Checklist

7. Creative Team signs
off UIT Checklist.

6. Lead Developer oversees Unit/Integration
Test and schedules review sessions with Art
Director, Content Strategist, and Information
Designer. All use Incident Tracking to log UIT
problems and review issues.

8. Lead Developer
signs off UIT Checklist
& notifies Test Lead.

9. Test Lead reviews
UIT Checklist.

10. Test Lead approves
UIT Checklist.

11. Test Lead rejects UIT Checklist.

Web Application Development & Testing Process Control

© Copyright 2001 IBM All Rights Reserved Page 6 of 8 03/20/2001

Code Release Authorization & Pre-test Process Flow

1. Lead Developer
initiates Code Release
Authorization for a new
code release/build.

2. Lead Developer
informs Test Lead of
the new code release.

3. Test Lead verifies
UIT Checklists for all
components in the new
code release.

4. Test Lead informs
the Lead Developer
when to deliver the new
code.

5. Lead Developer &
Test Lead perform code
build in the System Test
environment while
validating the Build
Procedure.

6. Test Team performs
“Pre-test” in the System
Test environment.

7. Test Team passes
the new code and starts
formal System Test.

8. Test Team logs
problems detected
during “Pre-test” and
rejects the new code
release

Web Application Development & Testing Process Control

© Copyright 2001 IBM All Rights Reserved Page 7 of 8 03/20/2001

Incident Tracking Process Flow

1. Project personnel
reports an issue or Tester
reports a testing problem
using an Incident Report
(IR) in Notes.

Based on project and/or
problem area, appropriate
coordinators get notified.

IR Status = ‘Open’

2. Project coordinator or Lead Developer reviews and assign the
issue to appropriate personnel for research & resolution

IR Status = ‘Assigned’

3. Assignee investigates the
issue and documents the
research results in the Incident
Report.

(Assignee may assign the
issue back to the reporting
person for additional
information).

4. Assignee resolves the issue or fixes
the problem, documents the resolution
in the Incident Report

Based on the project and/or problem
area, appropriate coordinators get
notified.

IR Status = ‘QA’

5. When the resolution is ready or the new code containing the fix is ready for retest,
Project coordinator or Lead Tester notifies the issue reporter or the Tester who reported
the problem.

IR Status = ‘Retest’

6. Issue reporter confirms the issue resolution or Tester checks the problem fix.

7. Issue reporter or Tester disposes the issue after
confirmation.

IR Status = ‘Closed’, ‘Withdrawn’, or ‘Pending’

8. Issue reporter or Tester re-opens the Incident
Report.

IR Status = ‘Reopen’

Web Application Development & Testing Process Control

© Copyright 2001 IBM All Rights Reserved Page 8 of 8 03/20/2001

Web Application Quality Assurance Strategy

Test Planning Information (Test Plans, Test Cases, Test Scenarios)

Technical Information

Macro
Design
Review

Micro
Design
Review

Static Test
(Code
Inspection)

Unit/Integration
Test

System Test
(Navigation/Functional/Non-Func. Test)

Performance Test

Stress/Load Test

Usability Test

Security Test

User
Acceptance
Test

Post
Implementation
Support
Performance
Monitoring &
Enhancement

Design Phase Build & Test Phase Production

Establish
Test Strategy

QW2001 Paper 3W1

Ms. Nancy Landau
(Alltel Technology Services)

Performance Testing Applications In Internet Time

Key Points

Standardizing test processes●

Profiling applications and user workflows●

Working with diverse development teams●

Presentation Abstract

How can a test team simplify the transition from performance testing two-tier
client/server applications to testing complex, multi-tier web applications combined
with an exponential growth in testing needs? In this presentation, Nancy Landau
presents case studies that address changes made in performance testing methods to
handle compressed delivery schedules, new architectures and technologies, and
changing customer expectations. The experiences focus on performance testing,
but the strategies apply to all test efforts.

About the Author

Nancy Landau has 15 years of experience in quality assurance and financial
services. She has been involved in design, development, deployment, test, and
support of large-scale client/server solutions for the mortgage banking industry.
She is the lead client/server performance test analyst for the Residential Lending
Division of ALLTEL, a Fortune 500 company.

Performance Testing Applications
in Internet Time

Nancy Landau

Objectives
• Review performance testing basics
• Describe fundamentals
• Explain success factors
• Review examples

Audience: Web developer, performance
engineer, stress test / QA project manager

Audience: Web developer, performance
engineer, stress test / QA project manager

Terms & Concepts
• Application Under Test (AUT): The software application(s) being tested.
• System Under Test (SUT): The hardware & operating environment(s) being tested.
• Virtual User: Software process that simulates real user interactions with the AUT.
• Process/Workflow: A user function within the AUT.
• Scenario: A set of workflows defined for a set of virtual users to execute.
• Transaction: A subsection of the measured workflow; more granular

user events for which response time will be measured.
• Bottleneck: A load point at which the SUT/AUT suffers significant

degradation.
• Breakpoint: A load point at which the SUT/AUT suffers

degradation to the point of malfunction.
• Scalability: The relative ability or inability of the AUT/SUT

to produce consistent measurements regardless of size
of workload.

Why Performance Test?

• Internet applications
bring performance
issues direct to your
users

• Slow response times
and errors have a
direct cost

Test Development

• Automated testing IS software development
• Lifecycle mirrors product development
• Use iterative test development
• Emphasize planning stages
• Plan for reuse

Plan - System Usage

• Get system usage information
– Identify workflows
– Define typical user profiles
– Define transactions and expected results

• Examine typical and peak workloads
• Define access methods - connection speeds, etc.
• Trace use cases to components and hardware

Case Study #1
• Web application for data analysis reports
• Outsourced development
• Big difference in estimated capacity
• Different model workflows

– Report sizes
– User actions
– Cached data

• Lesson: understand usage patterns

Plan - AUT Architecture

• Perform architectural walkthroughs
• Understand security methods
• Review 3rd party components
• Understand queues
• Identify caching models
• Examine session management
• Verify tool compatibility with AUT

Case Study #2

• Web-based customer service application
• 3rd party component for host connectivity

– Bottlenecked only on multi-processor servers
– Vendor provided recompiled component

• Delphi controls, 3270 Active-X
• GUI test tool supported both Delphi and 3270
• BUT not together!
• Lessons: know your components and your tools!

Plan - SUT Architecture

• Review physical infrastructure
• Examine firewalls
• Review connectivity
• Identify load balancing
• Review encryption

Plan - Test Data

• Define representative set of data
• Define appropriate volume of stored data
• Develop test database
• Plan backup and restoration
• Establish data verification points

Plan - Test Environment

• Obtain dedicated environment
• Typify production

– Hardware
– Networks
– Databases

• Perform manual dry run tests
– Identify concurrency risks
– Confirm application behavior

Case Study #3

• Web-based ad-hoc reporting tool
• Development environment limited
• Preliminary test in near-production environment

exhibited concurrency issue with just one user
• Lesson: use near-production environment

Plan - Test Metrics

• Response times
• Session abandonment
• Server utilization
• Network load

Correlate test metrics to production monitoring

Plan - Toolkit

• Automated test tools
– virtual users
– GUI users

• Monitoring methods
– Server performance
– Network load
– Client / virtual user driver

• Logs and log parsers
• Synchronize the measurements!

Create Virtual Users

• Record user actions
• Define wait / think times
• Add transactions
• Add verification checks
• Parameterize data

Create Scenarios

• Establish mix of virtual users
• Ensure a varied, representative workflow
• Establish monitoring points

Perform Dry Runs

• “Test the test”
• Use full logging
• Identify unexpected conditions
• Review instrumentation and monitors
• Validate parameterized data
• Revise test scripts

Case Study #4

• Web-based customer service application
• Web server interpreted response from application

server as success
• Application server returned errors in the response
• Examined return data to identify “true” success
• Lesson: HTTP 200 is not always success!

Validate responses against expected results

Perform Tests

• Reduce logging to production levels
• Ramp-up virtual users
• LAN versus WAN tests
• Identify and troubleshoot bottlenecks
• Track all changes

Analyze Results

• User response times
– Averages
– 75th percentile or higher

• Memory utilization
• CPU utilization
• Server configuration
• Database and SQL tuning
• Code tuning

Report the Results

• Report components
– Executive summary
– Report body
– Appendices

• Identify the audience
• Mirror the test plan
• Acknowledge contributions

Rinse and Repeat

• Emphasize reuse
• Develop plan templates
• Create report templates
• Develop application matrix
• Develop reusable test components
• Define standard measurements
• Define and share toolkit

Conclusion

• Automated testing is development
• Planning is essential
• Plan for reuse
• Profile the users
• Learn the technologies
• Understand the infrastructure

Questions?

Thank You!

Nancy Landau
Nancy.Landau@ALLTEL.com

QW2001 Paper 3W2

Mr. Steve Splaine
(Splaine & Associates)

Modeling The Real World For Load Testing Web Sites

Key Points

Concurrent users - why do they make a difference●

Can you/should you play with "Think Times"?●

The effect of cookies, SSL and client-side connections on load generators●

Presentation Abstract

Requesting your Web site's home page 100 times per minute is not going to give
you a very accurate idea of how your Web site is actually going to perform in the
real world. Explore the variables that you should consider when designing a Web
load or stress test, including user activities, security, user access speeds, and
geographic locations.

About the Author

Steve Splaine is a chartered software engineer with over 20 years experience in
developing software systems: Web/Internet, Client/Server, Mainframe, and PCs.
He is an experienced project manager, tester, developer, and presenter, who has
consulted with over 100 companies in North America and Europe. In addition,
Steven is the lead author of the recently published software-testing book "The Web
Testing Handbook".

1

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 1

Modeling theModeling the
Real World forReal World for
Load TestingLoad Testing

Web SitesWeb Sites
Presented byPresented by
Steve SplaineSteve Splaine

Steve@Splaine.netSteve@Splaine.net

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 2

Presentation Overview
Presentation Overview
Measuring the Load
User Profiles

User Activities
Think Time
Site Abandonment
Sire Arrival Rates
Usage Patterns
Client Connections, Threads and Buffers
Client Preferences
Client Internet Access Speeds
ISP Tiers
Background Noise
User Geographic Locations
Getting the Right Mix

Example Test Results
Margin of Error
Presentation Wrap Up

2

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 3

Measuring the Load

•Hits per day
•Page views per day
•Unique visitors per day

•Transactions per second
•MB per second
•# of concurrent users
•# of session initiations per hour

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 4

User Profiles
In order to better simulate the real world,
not only should the load be estimated, but
also the user profiles of the users that
make up the load.

3

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 5

User Activities
Some transactions occur more frequently than
others and should therefore make up a larger
proportion of the test data/scripts used for
performance testing.

Browsing

Buying

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 6

Think Times
The time it takes a client (or virtual client) to
respond to a Web site has a significant impact
on the number of clients a Web site can
support.

4

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 7

Site Abandonment
The time it takes a Web site to respond to a
client has a significant impact on whether the
client will request a subsequent page.

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 8

Site Arrival Rates
In the real world, visitors typically arrive at a
Web site in a random distribution, not in an
orderly fashion.

5

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 9

Usage Patterns
Unlike typical mainframe or client/server
applications, Web sites often experience
huge swings in usage.

(1000’s)

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 10

Client Network Connection Options

Buffer size

Threads

HTTP “Keep alive”

Web
server

6

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 11

Client Preferences

Cookies on/off?

JavaScript/
VBScript on/off?

Language selection

Graphics on/off?

Encryption settings

Cache sizes

<ALT>

Java/ActiveX
on/off?

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 12

Client Internet Access Speeds
Sample transmission methods:

• Dial up
• Land line/Cellular/Satellite
• Analog/Digital
• 14.4Kbps, 28.8Kbps, 33.3Kbps, 56.6Kbps

• ISDN, ADSL
• 1 Line/2 Lines
• 128Kbps to 1.5Mbps (T1)

• LAN/Cable modem
• Dedicated/Shared
• 1.5Mbps (T1) to 45Mbps (T3) +

• Frame relay
• 56Kbps to 45Mbps (T3) +

• Optical
• 52Mbps (OC1) to 34 Gbps (OC768) +

7

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 13

ISP Tiers
The number of hops (or Tiers) a packet of
data has to make before reaching the Internet
Backbone will affect a client’s response time.

Tier 1 ISP

Tier 2 ISP

Tier 3 ISPTier 1 ISP

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 14

Background Noise

Web
server

What additional activities need to be considered
to accurately reflect the performance
degradation caused by network and application
“background noise”?

8

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 15

User Geographic Locations
Response times vary around the
country and around the world.

B&D

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 16

Getting the Right Mix

“Keep alive”

The parameters that can be taken into
account, the more accurate the model
of the real world.

9

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 17

Example Response Distribution Graph

Pe
rc

en
ta

ge

Response time

Maximum acceptable
response time

Fastest
measured
response
time

Requests failing
required service
level

Note: Load remains constant

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 18

Example Response Time Graph

R
es

po
ns

e
tim

e

Load

Maximum acceptable response time

The “Knee”
(system is now under stress)

Linear-ish
degradation

Ex
po

ne
nt

ia
l-i

sh
de

gr
ad

at
io

n

“Single-shot”

Maximum useable capacity

“Gridlock”

10

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 19

Margin of Error

R
es

po
ns

e
tim

e

Load

Maximum acceptable
response time

Upper bound
Lower bound

Margin
of error

Margin of error

Quality Week 2001 2001 © Splaine & Associates, All Rights Reserved Slide 20

Presentation Wrap Up
•Estimate load size

•Design user profiles

•Generate test data to
support user profiles

•Run 3 sets of tests
• Best guess
• Pessimistic scenario
• Optimistic scenario

QW2001 Paper 4W1

Mr. Nikhil Nilakantan, Mr. Ibrahim K.
El-Far

(Florida Tech)

Why Is API Testing Different

Key Points

Understand the challenges of API testing●

Study realistic usage scenarios●

Build API test automation●

Presentation Abstract

This presentation describes the challenges unique to the testing of Application
Programming Interfaces (APIs). We isolate and explain three problems/difficulties
commonly encountered while testing APIs.

These problems are:
1)Parameter Selection
2)Parameter Combination
3)Call Sequencing

We then provide solutions to these challenges and through examples show how to
build effective API test automation.

About the Author

Nikhil Nilakantan is a graduate of Florida Tech where he received his B.S. in
Computer Science. He was a researcher at the Center for Software Engineering
Research at Florida Tech for 3 years. In the past he has worked at Microsoft
Corporation as a test engineer. He also occasionaly teaches classes on software
testing methodology. His fields of interest/research are software reliability,
model-based testing, intelligent test automation and improving test management
processes. He is currently a Quality Assurance Engineer with Hewlett Packard
Corporation in Cupertino, CA.

Ibrahim K. El-Far is a doctoral student in computer science under James A.
Whittaker at the Florida Institute of Technology, Melbourne, Florida. He has been
working with model-based testing techniques for over four years at the Center for
Software Engineering Research at FIT. His interests are in investigating new
software models, test automation and tools, adequacy criteria, and software testing
education. In 2000, El-Far received an IBM CAS Fellowship supporting his

research in software testing.

1

Why is API Testing
Different?

Nikhil Nilakantan
Hewlett Packard Corp.

(nikhil_nilakantan@hp.com)

Ibrahim K. El-Far
Florida Institute of Technology

(ielfar@acm.org)

May 30th, 2001

Agenda

❚ Introduction
❚ APIs Are Different
❚ APIs Are Complex
❚ Testing APIs
❚ Three Nuts to Crack
❚ Additional Issues

❚ Exploring an API
❚ Testing an API
❚ Automation
❚ Automation Demo
❚ Future Work & Conclusion
❚ Q & A

2

May 30th, 2001

Introduction

❚ Many styles of testing

❚ Many types of applications

❚ APIs constitute a large part of these applications

❚ No Silver Bullets

May 30th, 2001

APIs Are Different

❚ Generally misunderstood

❚ Different for many reasons:
❙ Invisible to the human user
❙ Require a knowledge of inner workings
❙ Require considerable programming skills
❙ Tend to be high in complexity

3

May 30th, 2001

APIs Are Complex

❚ The Word Object 9.0 Model contains:
❙ Around 200 classes
❙ Over 200 enumerated types
❙ Most classes have at least 10 methods

❚ The Word 9.0 Document Class contains:
❙ 125 fields, 3 events & 63 methods
Not counting the parameters or events for each method we have
125 X 63 = 7875 combinations
❙ Many parameters are complex types or class objects

May 30th, 2001

Testing APIs

❚ Testing involves designing of sequences to satisfy test
objectives
❙ Requires isolation of specific parameters
❙ Requires a mechanism to evaluate return values

How would you
test a call with
31 parameters?

Function CreateLetterContent (DateFormat As String, IncludeHeaderFooter As Boolean,
PageDesign As String, LetterStyle As WdLetterStyle, Letterhead As Boolean, LetterheadLocation As
WdLetterheadLocation, LetterheadSize As Single, RecipientName As String, RecipientAddress As
String, Salutation As String, SalutationType As WdSalutationType, RecipientReference As String,
MailingInstructions As String, AttentionLine As String, Subject As String, CCList As String,
ReturnAddress As String, SenderName As String, Closing As String, SenderCompany As String,
SenderJobTitle As String, SenderInitials As String, EnclosureNumber As Long, [InfoBlock],
[RecipientCode], [RecipientGender], [ReturnAddressShortForm], [SenderCity], [SenderCode],
[SenderGender], [SenderReference]) As LetterContent

4

May 30th, 2001

Three Nuts to Crack

❚ Parameter selection
❙ Selecting “interesting” values
❙ Exercising boundary conditions

❚ Parameter combination
❙ Exercising stored data & computation
❙ Separately legal values maybe illegal when used together

❚ Call sequencing
❙ Almost impossible to test all combinations

May 30th, 2001

Additional Issues

❚ Inadequate domain knowledge

❚ Poor documentation

❚ Unavailability of source code

❚ Time constraints

5

May 30th, 2001

Exploring an API

❚ Things to do BEFORE you begin testing:
❙ Review documentation
❙ Map the interface
❙ Review source code
❙ Isolate (and deliver) the following artifacts:

❘ Common calls, parameters
❘ Valid/Invalid parameters & return values
❘ Realistic usage scenarios
❘ Utilized resources

May 30th, 2001

Testing The API

❚ When is automation desirable?
❙ Do you have enough information about the system under test?
❙ How much effort is required to write the automation?
❙ How expensive is the automation to maintain?
❙ How effective is the automation going to be?

❚ Kinds of automation
❙ Capture-Replay automation
❙ Monkeys
❙ Intelligent test automation

6

May 30th, 2001

Building Automation

Good automation should be:
❚ Modular

❚ Flexible (easy to change)

❚ Scalable (easy to extend)

❚ Understandable

May 30th, 2001

Automation Too Expensive?

If automation is too expensive – Go back to basics!
❚ Assess risky API calls, parameters & values

❚ Perform boundary analysis on parameters, values

❚ Stress boundary conditions

❚ Use combination tests

7

May 30th, 2001

Automation Demo

May 30th, 2001

Conclusions

❚ APIs are different

❚ APIs are complex

❚ API testing is NOT an easy problem

❚ Work on API testing is in its fledgling stages

8

May 30th, 2001

Future Work

❚ Defining API test adequacy criteria

❚ Using model-based approach(es) to resolve:
❙ Parameter selection problem
❙ Parameter combination problem

❚ Automated API exploration tools

❚ Comparing effectiveness of testing methodologies with
respect to APIs

May 30th, 2001

Questions?
Comments?

Suggestions?

Nikhil Nilakantan
nikhil_nilakantan@hp.com

Ibrahim K. El-Far
ielfar@acm.org

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 1

Why is API Testing Different?

Nikhil Nilakantan , Hewlett Packard
Ibrahim K. El-Far, Florida Institute of Technology

Abstract
A large majority of the software tested today is in the form of application programmable
interfaces or APIs. APIs are clearly distinct in many aspects from other software
interfaces. Thus, the software engineering community is presented with some unique
testing problems. Some of these problems are a natural outcome of the characteristics of
APIs. For example, APIs cannot be visually explored like graphical user interfaces, and
they do not necessarily leave a persistent effect on the operating environment such as file
system interfaces. APIs are also generally more complex and, for the most part, rich in
functionality. Some issues that testers need to deal with everyday like poor
documentation and inadequate personnel skill manifest themselves severely with APIs.
We concentrate on problems that are challenging to solve even in the most ideal of
situations. This paper isolates and addresses three such challenges: parameter selection,
parameter combination, and call sequencing. Some heuristic versatile approaches are
suggested as basic steps that are helpful in meeting these challenges. Recommendations
on how to build API test automation and a presentation of the issues surrounding
automation conclude this paper.

Keywords
Programmable interfaces, API testing, call sequencing, test automation

1. Introduction

1.1 Two Lessons in Testing
There is an unmistakable rise in the demand for quality in today’s software industry.
Government agencies and corporate customers are keen on demanding high quality
especially when such factors as safety, security, or performance are critical to success.
The quality requirement is not restricted to this variety of customers anymore. The last
few years have witnessed the popularization of the Internet and the exposure of the world
of software to the masses. Traditional as well as up-and-coming vendors are competing
for shares of this new market, and public satisfaction with their software is key to their
prosperity. E-commerce constitutes an outstanding example of this.

 Nikhil Nilakantan is a software quality engineer at Hewlett Packard, Cupertino, California, USA
(nikhil_nilakantan@hp.com); Ibrahim K. El-Far is a doctoral student in computer science at the Florida
Institute of Technology, Melbourne, Florida, USA (ielfar@acm.org).

This paper is copyright © 2001 Nikhil Nilakantan and Ibrahim K. El-Far. All rights reserved.

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 2

Nowadays, little distinguishes one product from another that is developed for the same
purpose and market. The feature demand and supply are typically the same. The cost-to-
consumer and time-to-market constraints influence all competitors alike. One of the very
few things that set a vendor apart is the quality of their product, and, in this paper, we are
interested in only two aspects. These are how well a product conforms to its
specifications and how well it meets the expectations of its customers. In order to gain
confidence in these facets of software quality, present-day industry is inclined to rely on
testing.

Software engineering has an abundance of testing styles. Over the past two or so decades,
a proliferation of paradigms, techniques, and case studies have appeared in the relevant
literature. Many statements can be made about that body of knowledge, but two basic
lessons come up repeatedly.

There are no silver bullets in software testing. This has been suggested and proven by
computing theory a few decades ago. It is impossible for testing to reveal all faults in an
application [3]. No style of testing can be said to be unconditionally superior over
another. No style is guaranteed to exercise an application under test in every way possible
since that, too, is unachievable [7]. However, we can say that different styles exercise
software in (sometimes radically) different ways. Consequently, following different lines
of attack on the software can build confidence in the quality assurance process and the
quality of the released product that is proportional to how well the latter withstands
attacks.

How well different styles do depends on that application type and properties and on test
objectives. This is less articulated in the literature. Each application presents challenges
unique to its genre, properties, operating environment, or project conditions. Imagine the
disparity in testing graphical user interfaces and file systems; in testing applications
implemented in C++ and those implemented in Java; in testing in the Windows and
UNIX operating environments; and in testing a well-specified system and a similar
system with little supporting documentation. Therefore, there is a need for studies on
what collections of testing techniques are useful for particular situations, software genres,
and objectives.

1.2 Testing Programmable Interfaces
Application programmable interfaces or APIs are the constituents of most large
applications and some major operating systems such as Microsoft Windows. APIs drive
everything from graph drawing packages, to speech engines, to web-based airline
reservation systems, to computer security components. Many applications can also be
viewed and treated as APIs from a testing perspective. Compilers are a good example,
where program statements can be regarded as API calls. Despite their apparent
significance, little work has been done to isolate and study the problems surrounding the
test of APIs.

The abundance of programmable interfaces seems to be sufficient justification to warrant
such a study. However, what makes APIs a different class of systems from a testing

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 3

perspective? Are there any problems that surface only when working with APIs? Are
there problems that manifest themselves more severely when working with these
interfaces? Unfortunately, APIs are often looked upon in the same light as other common
software interfaces [14] such as graphical user interfaces or GUIs. This is perhaps caused
by a lack of understanding or awareness of their distinctive attributes.

Programmable interfaces are invisible to the human user. Even though API calls may
result in humanly visible output, they cannot be directly made by humans, and their
return values are certainly not immediately observable. This renders caused-effect
analysis and the like very hard to perform. Most importantly, this makes the utilization of
exploratory techniques [6] cumbersome without the aid of custom-built tools.

Testing APIs requires a thorough knowledge of its inner workings. API calls often
interact with the operating environment both affecting it and being influenced by it; for
instance the operating system or OS kernel and memory handling modules. API calls
often cause a cascade of other calls in the same API, calls to other software, and calls to
the OS. Developing an understanding of the inner workings serves to describe and detect
the state of the operating environment when a routine is called and in diagnosing failures
caused by call sequences.

Testing APIs requires considerable programming skills. API tests are generally in the
form of sequences of calls, namely, programs. Even when tools are available to automate
some code generation, each tester must possess expertise in the programming language(s)
that are targeted by the API. In addition, when the source code is available for review and
scrutiny, the tester is at a substantial disadvantage without knowledge of the
programming language(s) and tool(s) with which the API is implemented.

Programmable interfaces, in general, are functionally rich and complex in nature,
supplying its users with many routines, types, classes, and constants. The complexity
alone makes testing them a thorny task, which can never be fully appreciated without an
example or going through the testing experience.

Take for example the Microsoft Word object model [9]. This API has a little fewer than
200 classes and well over 200 enumerated types. Few of the classes have less than 10
members to consider. Many of these classes are much more complicated than that. For
example, the Document class has 125 fields, 3 events, and 63 methods. Members of a
class are often classes in the same model, adding the complexity of the member to that of
the object. The rather simple-looking Column class has 5 methods and 15 fields 7 of
which are instantiations of non-trivial classes.

As to the complexity of individual calls, the story gets grimmer. Consider the function
CreateLetterContent of the Document class (next page), which has 31 parameters. Eight
of these parameters are of the notoriously treacherous Variant type. Sixteen are String,
one is Long (signed 32-bit integer), one is Boolean, and one is Single. Finally, three are
of different enumerated types that can take three to four values each.

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 4

Function CreateLetterContent (DateFormat As String, IncludeHeaderFooter
As Boolean, PageDesign As String, LetterStyle As WdLetterStyle,
Letterhead As Boolean, LetterheadLocation As WdLetterheadLocation,
LetterheadSize As Single, RecipientName As String, RecipientAddress As
String, Salutation As String, SalutationType As WdSalutationType,
RecipientReference As String, MailingInstructions As String,
AttentionLine As String, Subject As String, CCList As String,
ReturnAddress As String, SenderName As String, Closing As String,
SenderCompany As String, SenderJobTitle As String, SenderInitials As
String, EnclosureNumber As Long, [InfoBlock], [RecipientCode],
[RecipientGender], [ReturnAddressShortForm], [SenderCity], [SenderCode],
[SenderGender], [SenderReference]) As LetterContent

Figure 1: The CreateLetterContent function

At this point, some questions pose themselves. Designing tests is essentially designing
sequences of API calls that have a potential of satisfying the test objectives. This in turn
boils down to designing each call with specific parameters and to building a mechanism
for handling and evaluating return values. This translates in the case of
CreateLetterContent to making thirty-one decisions: which value should a parameter
take? In some cases, the number of choices is small such as in Boolean and enumerated
types, but even those can be rough to handle; WdTextureIndex and WdTableFormat
enumerated types have dozens of values each. What about integers, floats, and strings?
What about variants, which can take any user-defined type? What about parameters that
are complicated objects? How should those be populated?

The values of all the parameters need to be determined in order to have a syntactically
valid call. What values make sense together? What recipe of parameters will make the
call exercise the API’s functionality in a desired manner? What combination will cause a
failure, a bad return value, or an anomaly in the operating environment?

Suppose those questions are addressed in the design of individual calls. Now consider the
sequence of calls, and the same questions will repeat themselves. With the number of
calls in the order of thousands in the Word object model, the number of possible
sequences, even with reasonable limits on sequence length, is unmanageable. Which
sequences are the best candidates for selection?

Those are fundamental questions of testing in general. They are particularly hard to
answer, as the magnitude of the corresponding problems is extraordinary in the case of
APIs. In this work, we concentrate on three of the problems that we just pointed out:

� Parameter selection – choosing values of individual parameters
� Parameter combination – picking out interesting parameter combinations for

calls with multiple parameters
� Call sequencing – deciding the order in which to make the calls to force the API

to exhibit its functionality

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 5

1.3 Outside the Boundaries of Technology
There are many difficulties that can arise from project settings, personnel skills, and that
are not necessarily related to the nature of APIs or the technologies employed in testing
them. Here are some issues that may impede productivity and progress.

� Inadequate domain knowledge – Testers may not be well trained in using the API.
Considering the difficulty in exploring these interfaces, they would have to spend
some substantial time to learn about the API. This problem can be partially solved
with involving the testers from day one starting with design and throughout the
process.

� Poor documentation – Without the proper documentation that clarifies the
purpose of calls, their parameter types and legal values, their return values, the
calls it makes to other functions, and usage scenarios, designing tests can be a
nightmare.

� Unavailability of source code – This may hinder efforts to diagnose anomalous
behavior. In addition, understanding how certain functions are implemented may
reveal some vulnerability that can be exploited during test.

� Time constraints – Thorough testing of APIs is time consuming and requires a
learning overhead and resources to develop tools and design tests. Keeping up
with deadlines and ship dates may become a nightmare.

1.4 About this Work
This work amounts to a small but first step toward studying API testing concerns. We
give a general discussion of problems and remedies, but by no means have we started out
with the intention of a comprehensive study. Our recommendations are based on our
experience in testing some programmable interfaces. However, the data we have
collected over a few months is limited and inconclusive, and the door is wide open for
improvement.

In the remainder of this paper, we explore in more detail the three problems defined in
section 1.2. In the following section, several suggestions that require little tool support
are presented and discussed. A complete section is dedicated to automation: when it
makes sense, what kinds of automation there are, and how to build one. Alternative styles
that do not require automation are proposed in addition to automation or a cheap effective
alternative.

2. Nuts That Are Hard to Crack
The first step to effectively test any interface is to identify and study its points of entry. In
the case of GUIs, these are such items as menus, button, check boxes, and combo lists.
For APIs, the points of entry are the provided routines and their input parameters.
Subsequently, a chief task is to analyze the points of entry as well as significant output
items. In particular, we look at the valid and invalid values of the parameters and return
values. At this point, it is desirable to also perform boundary analysis [11] on all the
variables in concern. A third step is to understand the purpose of the routines, the
contexts they are expected to be used in, and the situations for which no behavior is
known a priori. Once all this information is gathered, understood, and preferably

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 6

documented, parameter selections and combinations need to be designed, and different
call sequences need to be explored.

2.1 Input/Parameter Selection
Selecting “interesting” values for input parameters tends to be a little more difficult for
APIs than other interfaces since call arguments often constitute complex data structures.
Therefore, not only are testers required to understand the calls, but also all the constants
and data types used by the interface. A good example taken from [12] is presented in
figure 2.

In figure 2, the call GetCommState has two input parameters. The first is
straightforward to examine. The second is a pointer to a C structure with 28 fields.
Selecting values for the two parameters is essentially choosing 29 actual values, and that
is not simple. In order for the values to be valid test cases, the choices must vary with the
context in which the call is made. For each of the variables, boundary, critical, and other
risky values must be identified.

There is more to selection than that. Frequently, a value gains significance based on its
internal usage as opposed to what is superficially visible. In such situations, category
partitioning from a purely black box perspective becomes troublesome. Ideally, API
testers should have access to source code, allowing for better analysis of problematic
input values than is achievable by reading documentation and functional specifications.

2.2 Parameter Combinations
The number of possible combinations of parameters for each call is typically large. Even
if only the boundary values have been selected, the number of combinations, while
relatively diminished, may still be prohibitively large. In the case of the problem in figure
2, even with only two values selected for each parameter, there would be hundreds of
millions of applicable combinations.

Parameter combinations are extremely important for exercising stored data and
computation. In API calls, two independently valid values might cause a fault when used
together. Therefore, a routine called with two parameters requires selection of values for
one based on the value chosen for the other. Often the response of a routine to certain
data combinations is incorrectly programmed due to the underlying complex logic.

Parameter combination is further complicated by the function overloading capabilities of
many modern programming languages. It is important to isolate the differences between
such functions and take into account that their use is context driven.

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 7

2.3 Call Sequencing
When combinations of possible arguments to each individual call are unmanageable, the
number of possible call sequences is infinite. Parameter selection and combination issues
further complicate the problem call-sequencing problem. Faults caused by improper call
sequences tend to give rise to some of the most dangerous problems in software. Most
security vulnerabilities are caused by the execution of some such seemingly improbable
sequences. An example of such a fault is taken from [2] and illustrated in the following
table.

Time Code Snippet Exploit
1 if (access (“filename”, W_OK)!=0) exit (-1)
2 rm filename
3 ln –s/etc/passwd filename
4 if ((fd=open(“filename”, O_WRONLY))-1) exit(-1)
5 write(fd,”junk\n”,5);

Table 1: Code snippet

typedef struct _DCB {
DWORD DCBlength; /* sizeof(DCB) */
DWORD BaudRate; /* Baudrate at which running */
DWORD fBinary: 1; /* Binary Mode (skip EOF check) */
DWORD fParity: 1; /* Enable parity checking */
DWORD fOutxCtsFlow:1; /* CTS handshaking on output */
DWORD fOutxDsrFlow:1; /* DSR handshaking on output */
DWORD fDtrControl:2; /* DTR Flow control */
DWORD fDsrSensitivity:1; /* DSR Sensitivity */
DWORD fTXContinueOnXoff: 1; /* Continue TX when Xoff sent */
DWORD fOutX: 1; /* Enable output X-ON/X-OFF */
DWORD fInX: 1; /* Enable input X-ON/X-OFF */
DWORD fErrorChar: 1; /* Enable Err Replacement */
DWORD fNull: 1; /* Enable Null stripping */
DWORD fRtsControl:2; /* Rts Flow control */
DWORD fAbortOnError:1; /* Abort all reads and writes on Error */
DWORD fDummy2:17; /* Reserved */
WORD wReserved; /* Not currently used */
WORD XonLim; /* Transmit X-ON threshold */
WORD XoffLim; /* Transmit X-OFF threshold */
BYTE ByteSize; /* Number of bits/byte, 4-8 */
BYTE Parity; /* 0-4=None,Odd,Even,Mark,Space */
BYTE StopBits; /* 0,1,2 = 1, 1.5, 2 */
char XonChar; /* Tx and Rx X-ON character */
char XoffChar; /* Tx and Rx X-OFF character */
char ErrorChar; /* Error replacement char */
char EofChar; /* End of Input character */
char EvtChar; /* Received Event character */
WORD wReserved1; /* Fill for now. */

} DCB, *LPDCB;1

Function Prototype:
WINBASEAPI BOOL WINAPI GetCommState(HANDLE hFile, LPDCB lpDCB);

Figure 2: A problem in parameter combination

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 8

Table 1 shows how the code snippet can cause a race condition, leaving it wide open for
an exploit. It is important to realize that neither the access() nor the open() calls would
independently cause a fault but used together can bring out a rather nasty security
vulnerability.

3. Possible Solutions
The underlying thought to approaching and meeting each of the challenges can be
expressed in the following points:

� Review and scrutinize the available documentation looking for the following:
9 List of calls, parameters and return values (DELIVERABLE)
9 List of valid/invalid parameters (DELIVERABLE)
9 Example usage (DELIVERABLE)
9 List realistic and common usage scenarios (DELIVERABLE)

� Map the interface (Partition/Categorize functionality) – Note: These criteria are
subjective
9 Related objects
9 Related calls
9 Data types
9 Draw a map of the application interface (DELIVERABLE) – This is

visually helpful
9 Pinpoint resources such as OS (DELIVERABLE)

� Review source code (if available)
9 Internal data structures
9 Shared data
9 Pointers
9 Binding (e.g. whether a DLL is statically or dynamically linked)

� Design and develop test automation if feasible

3.1 Reviewing Documentation
Reviewing accompanying documentation for the API being tested is an extremely useful
exercise. Documentation is the only artifact of the software design process that truly
reflects the original intent of the designer and is therefore, invaluable to the tester.

According to Whittaker [13], good documentation should reflect the following aspects of
the design phase:

� All the tasks that the user wants to perform are represented in either transactions
or sequences

� All input sequences that represent important input conditions and combinations
are specified

� All the inputs to the software are fully specified, including the interface
definitions that define how the inputs will be received. Thus, all hardware and
device interfaces are specified as well as any graphical user interfaces for human
users

� All the outputs that the software must generate are fully specified, including
formats of reports

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 9

� All requirements that are subject to change are clearly marked

Unfortunately, API documentation, just like for other software, tends to be incomplete.
Despite the lack of comprehensive documentation, it is still possible to extract important
information from what little is provided. In particular, Whittaker’s abstraction methods
suggested for the “discovery phase” in [13] can be applied in gathering essential facts
from the documentation:

� Highlight important terms. A good practice is to insert identifiers so that it is easy
to refer back to important parts of the requirements

� Isolate transactions to find inputs
� Identify users
� Formulate an input list
� Analyze inputs through sequence analysis. In particular analyze each input or

class of inputs to determine the conditions under which it generates results.
� Based on the last action, synthesize an output list

Figure 3, from [10], describes the LoadLibrary function call that is a part of the Microsoft
Windows operating system kernel (kernel32.dll). While the document is not complete
based on the requirements above, it does offer valuable information about how the
LoadLibrary call works. The first artifact of value is the function definition along with
inputs, return parameters and data types. The remarks section contains information on the
purpose of the function and a list of functions that are commonly used with it
(GetProcAddress, FindResource, LoadResource, and CreateProcess). Useful information
such as the instability of the function if called from DllMain is included. Based on this
data it is possible to create at least a preliminary list of transactions, inputs, users,
sequences and outputs. As more information is gathered about other DLL calls in the
kernel, the lists can be cross-referenced to draw and a more accurate picture of the API.

3.2 Mapping the Interface
Humans think visually. Mapping the programmatic interface into a diagram can be very
helpful. The diagram not only helps the tester understand the various interactions with the
interface but doubles as a quick reference later. A supplementary document to the
interface diagram is the list of all the calls for a particular interface. Looking at this
diagram along with the calls can be a very powerful tool to understand application
behavior in detail.

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 10

This function maps the specified .DLL file into the address space of the calling process.

HINSTANCE LoadLibrary(LPCTSTR lpLibFileName);

Parameters

lpLibFileName
Pointer to a null-terminated string that names the .DLL file. The name specified is the filename
of the module and is not related to the name stored in the library module itself, as specified by
the LIBRARY keyword in the module-definition (.DEF) file.
If the string specifies a path but the file does not exist in the specified directory, the function fails. When
specifying a path, be sure to use backslashes (\), not forward slashes (/).
If the string does not specify a path, the function uses a standard search strategy to find the file. See the
Remarks for more information.

Return Values

A handle to the module indicates success. NULL indicates failure. To get extended error information, call
GetLastError.

Remarks

LoadLibrary can be used to map a DLL module and return a handle that can be used in GetProcAddress to get
the address of a DLL function. LoadLibrary can also be used to map other executable modules. For example, the
function can specify an .exe file to get a handle that can be used in FindResource or LoadResource. Do not
use LoadLibrary to run a .exe file, use the CreateProcess function.
If the module is a DLL not already mapped for the calling process, the system calls the DLL’s DllMain function
with the DLL_PROCESS_ATTACH value. In Windows CE, a DLL is loaded once, but then it is mapped into each
processes address space when a process implicitly or explicitly loads the library with the LoadLibrary function.
When Windows CE loads a DLL, all path information is ignored when determining if the DLL is already loaded.
This means that a DLL with the same name but a different path can only be loaded once. In addition, a module
ending with the extension ".CPL" is treated as if the extension if ".DLL".
It is not safe to call LoadLibrary from DllMain.
Module handles are not global or inheritable. A call to LoadLibrary by one process does not produce a handle
that another process can use—for example, in calling GetProcAddress. The other process must make its own
call to LoadLibrary for the module before calling GetProcAddress.
Two different modules cannot have the same filename, given that the extensions are different. These effectively
have the same “module” name. For example, if LoadLibrary is made on “Sample.cpl”, the operating system will
not load Sample.cpl, but instead will again load Sample.dll. A similar limitation exists for modules with the same
name but residing in different directories. For example, if LoadLibrary is called on “\\Windows\Sample.dll”, and
then LoadLibrary is called on “\\MyDir\Sample.dll”, “\\Windows\Sample.dll” will simply be reloaded.
If no filename extension is specified in the lpLibFileName parameter, the default library extension .DLL is
appended. However, the filename string can include a trailing point character (.) to indicate that the module
name has no extension.

Figure 3: Documentation for the Windows Kernel LoadLibrary call

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 11

3.3 Reviewing Source Code
Reviewing source code is very valuable to a tester, especially when there is limited
documentation available. Code listings give detailed information at a far greater depth
than high-level documentation. However, the draw back is that this requires studying
hundreds if not thousands of lines of code.

Referring again to the code listing in figure 2, we see that it gives a great deal of
information that it’s specification may not have shown. For example, it is unlikely that
the high-level documentation for the function call GetCommState stated that the DCB
structure is made up of 28 parameters. The code points out that the DCB structure can be
referred to in multiple ways (DCB, *LPDCB). Looking at variable names helps relate
high-level information (like the purpose of the GetCommState call) to lower-level
structural and data type specific information. This is a good point to make a list of the
data types used. This information is valuable when deciding on specific test cases later.
Knowing the limits of specific data types helps choose parameter values that are likely to
break software functionality through buffer overruns.

3.4 Isolating Common Calls & Parameters
Isolating common calls and their parameters is essential to testing programmable
interfaces. Not knowing which calls are used more than others in an API is equivalent to
not being aware of the commonly used user controls in a graphical interface.

For any software it is more important that the most commonly used functionality work
better than features that are not used as often. Pareto’s principle [5] (also called the 80/20
rule) suggests that 80 percent of users use 20 percent of a system. From a practical
perspective, it makes more sense to concentrate on testing the most commonly used 20
percent of an application.

While it is not always straightforward to isolate the most often used calls without
conducting usage studies, it is simple to prepare a short list of possible candidates based
on the function of the software under test. For example, if the application being tested is
an email API (such as the Microsoft Outlook object model), it is fair to assume that
certain calls such as the compose command will be used more often than others.

Figure 4, from [8], contains a code listing that shows the use of the Microsoft Office 9.0
object library through Visual Basic to compose and then send an email message.
Studying the code we can see that some of the commonly used calls for the Outlook mail
object are CreateItem(), Subject(), Body() and Send(). These calls are very likely to be
used on a regular basis for email messages.

Also, some commonly used parameters are: an email string for the Recipients() method,
the heading for the Subject() method, and the message string for the Body() method. In
this way, it is possible to make educated guesses and pinpoint commonly used functions
in an API.

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 12

Sub NewMailMessage()
Dim ol As New Outlook.Application
Dim ns As Outlook.NameSpace
Dim newMail As Outlook.MailItem

'Return a reference to the MAPI layer.
Set ns = ol.GetNamespace("MAPI")

'Create a new mail message item.
Set newMail = ol.CreateItem(olMailItem)
With newMail

'Add the subject of the mail message.
.Subject = "Training Information for October 1997"
'Create some body text.
.Body = "Here is the training information you requested:" & vbCrLf

'Add a recipient and test to make sure that the
'address is valid using the Resolve method.
With .Recipients.Add("mindym@imginc.com")

.Type = olTo
If Not .Resolve Then

MsgBox "Unable to resolve address.", vbInformation
Exit Sub

End If
End With

'Attach a file as a link with an icon.
With .Attachments.Add _

("\\Training\training.xls", olByReference)
.DisplayName = "Training info"

End With

'Send the mail message.
.Send

End With

'Release memory.
Set ol = Nothing
Set ns = Nothing
Set newMail = Nothing

End Sub

Figure 4: Creating and Sending an MS Outlook email Message [8]

Source code analysis makes internal data structures transparent. These data structures are
normally invisible from a black box perspective due to use of information hiding and
other object oriented programming techniques.

3.5 Isolating Valid/Invalid Parameter and Return Values
After making a list of commonly used calls, parameters, and return values, determine
possible valid and invalid inputs. These values are a little more difficult to determine than
most other interfaces because they often involve complex data structures. However,
using a combination of information from the design specification and source code
analysis performed before, it is possible to isolate a set of valid and invalid call
parameters and return values. Any one of many published methods can be used to
partition the inputs.

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 13

A list of valid parameters is required to verify that the interface actually performs the
tasks that it was designed for. While there is no method that ensures this behavior will be
tested completely, using inputs that return quantifiable and verifiable results is the next
best thing. Equivalence classes further increase the chances that behavior for a large set
of input parameters will be tested and verified. Conversely, a list of invalid parameters is
required to confirm that these inputs are not accepted by the application interface. This
list can also be used to test for data type limits and boundaries.

3.6 Isolating Realistic Usage Scenarios
Testing of realistic scenarios is necessary to force interaction between individual features
(or function calls). Usage of software in the real world exercises multiple features at the
same time. For example, if a user were creating a Microsoft Word document, it is more
than likely that he or she would simultaneously be using the basic text-editing feature, the
formatting feature, the spelling and grammar checker, and the print preview features.
Additionally, the user might have tables, charts and pictures embedded in the document.
Combinations of these different features represent realistic usage scenarios. In the
programmable interface world, usage scenarios exist in the form of multiple function
calls in different sequences, or similar sequences that use different parameter values.

Usage scenarios can be determined in many ways. If the initial design method used was
similar to the Rational 4+1 model, the usage scenarios would already be available as a
formal requirements analysis and design document. If a UML based model of the design
was created using visual tools such as Rational Rose, it becomes simpler to refer to the
use case and the sequence execution diagrams to make a detailed list of usage scenarios.

Usage scenarios can be developed by studying the problem domain of the software under
test. Understanding what tasks the software was built to perform is a good way to derive
use cases. For example, if the software under test is a ftp program, an obvious usage
scenario would be transferring a file from a server to a local machine. High-level usage
scenarios can be refined into many lower-level scenarios. The previous scenario could be
repeated with different file formats (binary, ASCII etc.)

3.7 Pinpointing Used Resources
Another important, if somewhat difficult aspect of testing programmable interfaces, is
pinpointing used resources. All software applications rely on the operating system for
resources such as memory allocation, disk space, networking etc. The availability of
these resources is integral to the proper working of a software application.
Most applications inherently trust the operating system to deliver any resources that they
need. However, non-availability of these resources is often the cause of software failure.
Most testers are unaware of interactions between the software under test and the
operating system. Those aware of these interactions, find it very difficult to test them due
to their being invisible except to the best system programmers. It is important to isolate
and differentiate between the various system resources provided to the application
interface under test and understand how each resource affects the software.

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 14

Tools are now being developed that will soon make it possible to test system resources
and simulate resource depletion or failure in a controlled manner. Tools such as Hostile
Environment Application Tester (H.E.A.T) developed at the Center for Software
Engineering Research (CSER) at Florida Tech allow the testing of applications on the
system interface level. H.E.A.T is capable of intercepting system resources like memory
allocation (LocalAlloc, malloc, GlobalAlloc), networking , disk space, COM interfaces to
name just a few.

3.8 The Exploratory Stage
Sections 3.1 through 3.8 make up the exploratory stage of the API testing process. The
procedures mentioned in this stage are general guidelines to follow while constructing
test cases. Ideally, following stages 3.1 through 3.8 will bring to light a lot of information
on the application under test. However, testers may selectively choose only those stages
relevant to the project at hand.

4. What About Automation?
In addition to reaping valuable information on possible ways to exercise an API’s
boundaries and test its functionality, applying the techniques described in the previous
section will typically reveal a fair amount of failures. Artifacts produced by the
exploratory stage can be mapped into the test matrix for the API. After designing test
cases according to these guidelines to satisfy particular objectives, automating the testing
effort needs to be considered as means of boosting productivity.

4.1 When Does Automation Make Sense?
It is not clear whether automating a test suite is always a good idea, and, between
advocate and opponent views, there is no clear answer. Whether automation is feasible
and beneficial depends entirely on the project at hand. However, there are general rules of
thumb that can be used to make such a decision.

� Is there enough information about the system?

There can be no warrant for automation that finds little or no bugs. However, in order
for an automation to find bugs, it is essential that enough information about the
system under test be available to recognize a failure when one occurs. While it may
be relatively easy for automation to discover system crashes with little or no
information, it is hard to recognize subtler behavioral faults without knowing the
expected response before hand.

Further, it is necessary to gauge whether automation of your test suite is realistically
possible. For example, will the automation be able to properly synchronize calls if the
system under test is a real time API?

� How much effort is involved and is it worthwhile?
Writing test automation takes time and effort, but is all the trouble worthwhile? The
sources invested in automation efforts can alternately be employed in running several
more manual tests. While the tests that need to be run repeatedly such as smoke tests

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 15

(also called Build Verification Tests or BVTs) have a legitimate case for automation,
the case for other test scenarios is not as clear-cut.

Another matter of concern is whether the test automation will keep finding new bugs
each time it is run, or whether it will encounter what Beizer calls the pesticide
paradox [1]. The pesticide paradox can be avoided by developing intelligent test
automation that can vary test sequences based on a behavior model of some kind.
However, designing and developing this kind of automation requires extra thought
and planning.

� How expensive is it to maintain your automation?
The cost of maintaining hard coded test automation scripts can be prohibitive. Most
test automation requires some sort of maintenance every now and then. If the
application under test changes (due to altered requirements or for any other reason) it
is necessary to reflect the changes in the automation to retain its effectiveness. For
example, if a routine is originally developed to accept three parameters and is later
changed to only accept two parameters, the automated tests will crash unless they are
changed accordingly. This change will become especially expensive if the original
author of the test script is no longer around. The new tester would have to dig through
and understand the test code before the change could be made. Think of the untold
man-hours that could have been spent running manual tests instead.

� How effective and efficient is the automation?
Unfortunately, this question cannot be accurately answered ahead of making the
decision to automate. There are almost no studies that address the issues of whether a
technique finds bugs and whether it is efficient in doing so. The only way to get an
accurate answer is to know about all the bugs before hand – making testing a moot
point! Realistically, the results are obtained at the end of the projects and should be
used in some manner to estimate whether automation will meet your bug count /
quality expectations in the future.

4.2 Kinds of Automation
Test automation is of many different kinds. Technically, if a test case or scenario is run
through a script or program it is an automated test – even if the test by itself is completely
useless. Test automation can range from extremely dumb to extremely intelligent. The
level of intelligence your automation has is entirely up to the tester. Here is a list of
common kinds of test automation.

� Capture-Replay Automation

This is the most common and basic kind of test automation possible. Capture-Replay
automation involves creating a test script that mimics a test sequence defined by the
tester. This can be achieved by either manually writing a test script, or having one
generated by the use of a Capture-Replay tool (such as the record feature in Rational
Visual Test). This kind of automation is repetitive, especially prone to the pesticide
paradox and is usually hard to maintain.

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 16

� Monkeys
Monkey testing involves writing “dumb” automation that randomly applies inputs to
the application under test. The Monkey itself has no understanding of the inputs nor
does it apply them in a specific order. For example, a monkey testing a GUI would be
able to recognize controls on the screen such as buttons, combo boxes and edit boxes.
It would then exercise these controls in a random manner not knowing if a specific
input is even applicable at any given time. While Monkey testing is popular in some
circles, it is very repetitive, hard to steer (random) and tends to find only the “low
hanging fruit.” Monkey automation tends to be more forgiving to changes in the test
application as it is unaware of input context.

� Intelligent Test Automation
A model of some kind always drives intelligent test automation. The model used
could be formal (finite state machine, Markov chain, grammar), or informally based
on certain characteristics of the system under test. Formal models such as state
machines can be extremely powerful as a large body of literature in computer science
and mathematics supports them. The drawback of such models however, is the need
for a great deal of thought and planning to construct them. Formal models are
difficult to build without details on how the target system is supposed to work.

Little work has been done on using formal model-based testing methods for large
APIs (an example of this work can be found in [4]). However, it is possible to build a
general model based on certain aspects of the system in a less formal manner. For
example, a model can be a composition of the most common scenarios used in an
API. This would be simple to develop, as the information is already present in the
artifacts from the exploratory stage.

Intelligent automation tends to be a lot more flexible to change than normal
automation, as the model is independent of the automation code. In addition, it is
possible to run multiple test sequences and generate many different test cases without
changing the automation code.

4.3 Building Automation
It is important to put a lot of thought into the design of test automation before it is
developed. While it is not possible to entirely solve the problems with test automation
mentioned above, it is important to minimize them through a little planning. Here are
some characteristics of well-designed automation.

� Modular

A modular design keeps the automation friendly to change. Moreover, modularity
helps increase understandability of the test suite, which is valuable to future owners
of the test scripts.

� Flexible (easy to change)
A test script must be flexible enough to support change in the system under test. This
change must be possible with minimal effort. Modularity in design works towards the
separation of higher-level actions, and test sequences from lower level system inputs.

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 17

For example, a high-level action defined as, “start chat session with <server name>”
does not have to be changed even if the underlying call to the chat application
changes. The change can simply be made at another layer in the automation that
defines the atomic call to the chat program itself.

� Scalable (easy to extend)
Good automation design always considers the possibility of extending the
functionality of the test automation to test other areas of the application. Scalability is
also increased with modularity.

� Understandable
It is integral that the automation be designed and developed to be understandable.
Automation can be made more understandable in two ways – documentation and
modularity. Detailed documentation of test scripts seldom exists due to time
constraints and test schedules. However, separation of different aspects of the
automation into distinct easily understandable entities is very useful towards
alleviating this problem.

5. Conclusions
API testing is not an easy problem to solve and this paper missed many important issues.
Questions need to be answered on test adequacy criteria (when to stop testing). Current
model-based testing approaches do not solve the parameter selection/combination issues
(even if they do solve the sequencing problem to an extent). Automated methods need to
be developed to explore APIs under test. One approach could be the gathering of
information through parsing of documentation. Some tools are already available that
gather call information from objects (the object browser in Microsoft Visual Basic for
example) but are extremely limited. The various testing methods need comparison for
their effectiveness with respect to APIs.

Work on testing of Application Programming Interfaces is still in its fledgling stages. It is
only recently that the testing community has begun to acknowledge the difference in
challenges between testing APIs and other types of software. This paper has been an
attempt to isolate and address three of these fundamental differences.

Acknowledgements
This work was partially supported by Microsoft, Inc. James A. Whittaker and Nadim
Rabbani contributed some useful suggestions.

References
[1] Beizer, Boris. Software Testing Techniques. Second edition, International

Thompson Publishers: 1990.
[2] Bowen, Thomas F. and Segal, Mark E. Remediation of application specific security

vulnerabilities at runtime. IEEE Software, 17(5): 62, September/October 2000.
[3] Dijkstra, E.W. Structural programming. In Software Engineering Techniques, pages

84-88. Buxton and Randell, 1969.
[4] Jorgensen, Alan, and Whittaker, James A. An API testing method. In the

Proceedings of the Software Testing Analysis & Review Conference (STAREAST
2000), May 2000.

Presented at the 14th International Internet and Software Quality Week (QW2001), San Francisco,
California, USA on May 30, 2001.

N. Nilakantan & I.K. El-Far: Why is API Testing Different? 18

[5] Juran, J.M, Gryna, F.M. Jr. and Bingham, F.M. Quality Control Handbook. Third
edition, McGraw Hill, New York, 1979.

[6] Kaner, Cem, Falk, Jack, Nguyen, Hung Quoc. Testing Computer Software. Second
edition, Wiley: April 1999.

[7] Kaner, Cem. The impossibility of complete testing. Software QA, vol. 4, 1997.
Obtainable from http://www.kaner.com/imposs.htm, March 2001.

[8] Martin, Mindy. Automating Microsoft Outlook 98. MSDN Online.
http://msdn.microsoft.com/library/techart/msdn_movs105.htm, March 2001.

[9] Microsoft, Inc. Microsoft Developer Network (MSDN) Online. URL:
http://www.msdn.microsoft.com/, March 2001.

[10] Microsoft, Inc. MSDN Online. LoadLibrary
http://msdn.microsoft.com/library/psdk/winbase/dll_1o8p.htm, March 2001.

[11] Richardson, D.J., and Clarke, L.A. Partition analysis: a method combining testing
and verification. IEEE Transactions on Software Engineering, 11(12): 1477-1490,
December 1985.

[12] Whittaker, James and Atkin, Steve. Software engineering is not enough. In review,
IEEE Software, 2001.

[13] Whittaker, James. Introduction to Software Engineering, p28-32. SES Press 2000.
[14] Whittaker, James. Software’s invisible users. To appear in IEEE Software, 2001.

QW2001 Paper 4W2

Mr. Phil Hollows
(RadView Software)

Best Practices in Web Performance Testing

Key Points

Benefits of Component Testing before QA●

How to Manage Scalability and Verification Resources●

Reduce cost and speed the process with lifecycle verification●

Presentation Abstract

For a business based on the Web, there is no substitute for the "e-assurance," or
confidence in their Web site's performance and scalability achieved through a rapid
developing, testing and deploying cycle. It must discover and resolve any problems
or issues as early as possible and at each point in the development cycle to stay
competitive. Its testing solutions must, therefore, be not only available to the
development workgroup as a whole throughout the lifecycle but also be reliable
enough to accurately and efficiently prepare for the 85 million users expected to be
buying online in 2003 (according to Jupiter Communications). Having a
combination of Internet speed, or "e-acceleration," and "e-assurance," or
confidence in Web performance is fundamental. The best solutions to expedite
e-business success combine comprehensive verification of the performance,
scalability and integrity of their Web systems into a single, standard process that
the entire team can access.

About the Author

Phil Hollows joined RadView in October 1999, bringing with him over 12 years of
experience in software engineering and management consulting. Phil previously
worked as the Technical Director for Kronos, Incorporated, where he was
responsible for technical strategy and implementation for the Timekeeper Systems
Division. Prior to that, Phil was the Managing Consultant in New York for the
executive information system consultancy Metapraxis, Inc. Phil had previously
worked for Metapraxis in the UK as both a developer and consultant, moving to
the US in 1993. Phil holds an MA in Physics from The Queen's College, Oxford,
England, and a Certified Diploma in Accounting and Finance from the UK's
ACCA.

11

Best Practices in Web
Performance Testing

Best Practices in Web
Performance Testing

Phil Hollows
VP Technology, RadView Software

Phil Hollows
VP Technology, RadView Software

2 / 2

Background: Internet GrowthBackground: Internet Growth

95
131

172

223

282

350

0

50

100

150

200

250

300

350

1998 2000 20021999 2001 2003
Numbers
in Millions

Worldwide Wired Internet Users
1998-2003

Internet Growth & Acceptance

• E-business has become a widely
accepted and maturing business
model; a standard practice for
transacting daily business

• Global wired Internet users will
climb to 130 Million in 1999

• The number of Global Internet
users is expected to Reach 350
Million by 2003

• The number of worldwide wired
Internet Users in 2003 will still
only represent about 5.7% of the
world’s total population

• Performance testing is not
optional any more!

Source: eStats, 1999

22

3 / 3

Best Practices OverviewBest Practices Overview
#1 – Start Now!

#2 – Test Realistically

#3 – Test Early, Test Often

#4 – Increase Collaborative Testing

#5– Beware the Capture / Playback Trap

#6– Maximize your RoI

#7– Understand the Production Environment

#8– Be Ready for Wireless and Broadband

4 / 4

Start Now!Start Now!
• Competitors are one click away

– You must be sure your site is fast enough
– You must ensure that it is working correctly

• Starting small is better than not at all
– Buy a smaller license and rent peak load testing

• Address software development practices
– Performance and scalability testing will likely emphasize

software engineering shortcomings
– Take a big picture approach to quality
– Building automated tests is a great way to find bugs

• Reap the rewards
– Build better, faster applications more reliably
– Reduce the risks of high profile failure

• Competitors are one click away
– You must be sure your site is fast enough
– You must ensure that it is working correctly

• Starting small is better than not at all
– Buy a smaller license and rent peak load testing

• Address software development practices
– Performance and scalability testing will likely emphasize

software engineering shortcomings
– Take a big picture approach to quality
– Building automated tests is a great way to find bugs

• Reap the rewards
– Build better, faster applications more reliably
– Reduce the risks of high profile failure

33

5 / 5

• Emulate different user actions in a single test
– Connection speed
– Path through the site
– Browser

• Use available history to model agendas

• Exceed best practices
– No downloads longer than eight seconds
– Test at three to four times historic peak loads
– Verify application integrity as well as performance
– Don’t extrapolate!

• Define your key goals

• Build tests that can discover the causes of failure
– Track system and server metrics
– Compare your results to previous sessions

Test RealisticallyTest Realistically

6 / 6

Test Early, Test OftenTest Early, Test Often
• The earlier a problem is found the faster and cheaper it is

to address…
– …yet many leave scalability testing to the end

• Embed scalability testing in development
– Scalability test components prior to integration
– Increase confidence early in the cycle
– Improve cross-functional collaboration
– Employ a single project-wide test solution

• Test well
– Consider functional testing as a single user scalability test
– Always verify correctness under load
– Design tests to be robust to GUI and language changes

• Final load testing should be a true assurance exercise

• The earlier a problem is found the faster and cheaper it is
to address…
– …yet many leave scalability testing to the end

• Embed scalability testing in development
– Scalability test components prior to integration
– Increase confidence early in the cycle
– Improve cross-functional collaboration
– Employ a single project-wide test solution

• Test well
– Consider functional testing as a single user scalability test
– Always verify correctness under load
– Design tests to be robust to GUI and language changes

• Final load testing should be a true assurance exercise

44

7 / 7

Beware the Capture/Playback TrapBeware the Capture/Playback Trap
• Capture/playback commonly used far too late in

development/testing cycle -- Capture/playback can be
used effectively:
– Excellent during usability testing
– Quick and dirty, or one-time use scenarios
– To ‘seed’ the creation of higher-level scripts

• Design higher-level, modular scripts for reusability

• Input data should not be hardcoded in scripts (read data
from file, database, or spreadsheet instead)

• Expected results should also be kept in files readable by
automated verification processes

Greg Arsenault – Vice President of Technology, AnyDay.com

8 / 8

Increase Collaborative TestingIncrease Collaborative Testing
• Place performance at the heart of your project

– Simply providing functionality is no loner enough
– Ensure performance release criteria are defined
– Treat functional testing as a single user scalability test
– Share your successes inside and outside the group

• Use life cycle testing approaches
– Ship better components to testers
– Reduce costs and cycle times
– Improve communications and cooperation

• Solutions will make it easier to enable early and
responsive testing

• Place performance at the heart of your project
– Simply providing functionality is no loner enough
– Ensure performance release criteria are defined
– Treat functional testing as a single user scalability test
– Share your successes inside and outside the group

• Use life cycle testing approaches
– Ship better components to testers
– Reduce costs and cycle times
– Improve communications and cooperation

• Solutions will make it easier to enable early and
responsive testing

55

9 / 9

Maximize your RoIMaximize your RoI
• Industry ASP for 600 users is $49,000 (Newport Group)

• Share automation resources efficiently
– Don’t limit testing capabilities to the QA function
– Increase return by encouraging life cycle usage
– Deploy a solution that is economic across multiple users

• Cost of ownership is not just the software license
– Efficient solutions reduce hardware needed to simulate users
– Reduces TCO by lowering overall infrastructure investment

• Embed automation into the software process
– Make performance a requirement, not an afterthought
– Reduce regression risks
– Discover more defects earlier in the production cycle

• Industry ASP for 600 users is $49,000 (Newport Group)

• Share automation resources efficiently
– Don’t limit testing capabilities to the QA function
– Increase return by encouraging life cycle usage
– Deploy a solution that is economic across multiple users

• Cost of ownership is not just the software license
– Efficient solutions reduce hardware needed to simulate users
– Reduces TCO by lowering overall infrastructure investment

• Embed automation into the software process
– Make performance a requirement, not an afterthought
– Reduce regression risks
– Discover more defects earlier in the production cycle

10 / 10

Understand the Production
Environment
Understand the Production
Environment

• Baseline your system for consistent metrics
– Monitor your system after deployment
– Validate your models against actual usage
– Understand other applications already deployed
– Be aware of other planned deployments

• Extend testing to post-deployment environments
– Use vendor or xSP services for peak load testing

• Soak test your applications prior to deployment
– Your application will be up continuously
– Verify system longevity and durability

• Establish a plan for how to handle excessive load
– When capacity is exceeded, how will it be handled?

• Baseline your system for consistent metrics
– Monitor your system after deployment
– Validate your models against actual usage
– Understand other applications already deployed
– Be aware of other planned deployments

• Extend testing to post-deployment environments
– Use vendor or xSP services for peak load testing

• Soak test your applications prior to deployment
– Your application will be up continuously
– Verify system longevity and durability

• Establish a plan for how to handle excessive load
– When capacity is exceeded, how will it be handled?

66

11 / 11

New Technologies: The Internet and
Wireless
New Technologies: The Internet and
Wireless

• The Population of Internet Users will significantly expand
with the growth of the wireless Internet.

• Gartner Group predicts that the mobile phone will be the
most common Internet access device in the world with the
total number of installed mobile phones exceeding one billion
some time after 2003.

• IDC forecasts that the number of wireless device users with
access to inbound and outbound information services and
Internet messaging will increase a whopping 728% from 7.4
million in 1999 to 61.5 million by 2003 in the United States
alone.

• In fact, some industry forecasters believe that application
development initiatives for wireless applications will
overshadow classic PC-browser-based application
development initiatives within the next 3 to 4 years.

• The Population of Internet Users will significantly expand
with the growth of the wireless Internet.

• Gartner Group predicts that the mobile phone will be the
most common Internet access device in the world with the
total number of installed mobile phones exceeding one billion
some time after 2003.

• IDC forecasts that the number of wireless device users with
access to inbound and outbound information services and
Internet messaging will increase a whopping 728% from 7.4
million in 1999 to 61.5 million by 2003 in the United States
alone.

• In fact, some industry forecasters believe that application
development initiatives for wireless applications will
overshadow classic PC-browser-based application
development initiatives within the next 3 to 4 years.

12 / 12

The Performance Affect of Wireless
and Broadband
The Performance Affect of Wireless
and Broadband

• Wireless usage will outpace fixed access

• What’s the impact on an application?
– More users connecting more often
– Different traffic and resource consumption
– 2.5G and 3G high speed networks coming
– Significant usability challenges

• Broadband: letting multimedia loose
– From flash banners to streaming video
– Increases competition for computing and network resources

• Affects all aspects of application quality
– Greater demands on applications already deployed
– Testing for performance gets harder
– What are your users expectations with multimedia?

• Wireless usage will outpace fixed access

• What’s the impact on an application?
– More users connecting more often
– Different traffic and resource consumption
– 2.5G and 3G high speed networks coming
– Significant usability challenges

• Broadband: letting multimedia loose
– From flash banners to streaming video
– Increases competition for computing and network resources

• Affects all aspects of application quality
– Greater demands on applications already deployed
– Testing for performance gets harder
– What are your users expectations with multimedia?

QW2001 Paper 6W1

Mr. Mark Johnson
(Cadence Design Systems)

How Are You Going To Test All Those Configurations?

Key Points

Testing configurations is hard, especially in the web-world●

You can get your configuration testing under control●

It is possible to cover many configurations with limited resources and time●

Presentation Abstract

With all the combinations of products and environments (OSes, web browsers,
etc.) configuration testing is even more important in the web-world. This paper
presents how, when faced with added complexity from the web, we improved our
configuration testing coverage with limited resources and time.

About the Author

Mark Johnson has over 25 years experience in software and hardware development
and test. He has had many roles over those years and has come to realize he is most
interested in helping individuals and teams be more productive and effective in
their work.

1

How Are You Going to Test
All Those Configurations?

Mark Johnson
Cadence Design Systems

4/5/2001 Copyright 2001, Mark Johnson 2

Agenda

❚ Background
❚ The Problem
❚ Source to CD Everyday
❚ Clean OSes by Imaging
❚ Planning and Managing Configurations
❚ Putting it All Together

2

4/5/2001 Copyright 2001, Mark Johnson 3

Ancient History

❙ The early days at OrCAD
❙ EDA software for the Windows PC market
❙ Small set of products, loose interfaces
❙ Products released separate from each other

4/5/2001 Copyright 2001, Mark Johnson 4

The Old Testing Environment

❚ Nightly build of checked-in source
❚ Copy to server for test group use
❚ Testers assigned OS to use for release cycle
❚ Installation and Configuration test at the end

Build
Server

Testing
Server

Win NT

Win 98

3

4/5/2001 Copyright 2001, Mark Johnson 5

The World Starts to Change

❚ Add products needing tighter integration
❙ Database and Internet access
❙ Fast experiment/simulate cycle

Part DB

Internet

Interactive Design
Editing and
Simulation

4/5/2001 Copyright 2001, Mark Johnson 6

Our Testing Strategy

❚ Some testing on each configuration is good
❚ Don’t need to do full testing on each

configuration
❚ We are looking for installation/licensing

problems with different configurations

4

4/5/2001 Copyright 2001, Mark Johnson 7

Testing the Way a Customer
Sees the Software

❚ Combine product releases onto one CD
❙ With tighter interfaces, product changes need to be

synchronized

❚ Decide to move to testing in a customer install
environment
❙ Find installation and configuration problems earlier
❙ Testing needs matching versions of applications

4/5/2001 Copyright 2001, Mark Johnson 8

Source to CD Everyday

❚ Nightly product build produces executable files
from latest checked in source

❚ Nightly installation build produces installable
CD image

Build
Servers

Installation
Build Server

Portland

Irvine

San Jose

Physical CD

CD Image

5

4/5/2001 Copyright 2001, Mark Johnson 9

Knowing Where You are
Starting From

❚ Concern about installing day after day to
same system
❙ registry entries accumulate
❙ files that creep on or get lost

❚ Do periodic clean system setup
❙ Reformat system, reinstall OS
❙ Takes 6-8 hours
❙ Only do every month or two

4/5/2001 Copyright 2001, Mark Johnson 10

Clean OSes by Imaging

❚ Makes copy of hard drive at the track/sector
level

❚ Fast restore puts you back to state when
image was made

FAT32
Win 98

NTFS
Win NT

Reformat &
Load Win NT

Win 98
Image

Win NT
Image

C:

C:

C:

Restore
Image

Create
Image

Create
Image

6

4/5/2001 Copyright 2001, Mark Johnson 11

Problems with Imaging

❚ Hardware dependent (drivers) so aren’t able
to share

❚ Windows NT and 2000
❙ Administrative rights, adding users to a system
❙ Need a network admin to get system on network

❚ Cadence network: something happens
periodically to cause images to stop
connecting

4/5/2001 Copyright 2001, Mark Johnson 12

More Changes

❚ Going to small teams
❙ 1 or 2 testers per small team
❙ 6-12 week release cycles

❚ Going to web updates
❙ Test with previous web updates
❙ Test with web updates to related products
❙ Test with different web browsers

7

4/5/2001 Copyright 2001, Mark Johnson 13

Getting to the Configurations

❚ Get 2/3 of the way through testing with only
1/3 of the configurations covered

❚ Habit - tend to do most comfortable thing
❚ Knowing what to change today
❚ Tracking configurations used so far

4/5/2001 Copyright 2001, Mark Johnson 14

Planning and Managing the
Configurations

❚ Make it part of test planning
❚ Identify the variables that are important to

you
❚ Select the combinations you want to test
❚ Assign the configurations to testers
❚ Track progress testing the configurations

8

4/5/2001 Copyright 2001, Mark Johnson 15

Table of Configurations
 CD Testing Configurations

Locking Server/Client OS Browser Products to Install

CFG NIC Hasp Rain
bow

Inst Svr Cl Oth 95 98 NT 2
K

Net
sc

IE Cap eCap De
mo

Cap+
AP

CIS PS
AD

PSP PSA
DB

Opt Lay
EE

Lay
+

Lay

1 x x x x x
2 x x x x
3 x x x x x x
4 x x x x x x x
5 x x x x x x
6 x x x x x x x
7 x x x x x x
8 x x x x x x x x
9 x x x x x x
10 x x x x x
11 x x x x
12 x x x x x x x
13 x x x x x x x x

14 x x x x x
15 x x x x x
16 x x x x x
17 x x x x x x x x
18 x x x x x x x
19 x x x x
20 x x x x x x x

4/5/2001 Copyright 2001, Mark Johnson 16

Configurations are not that Easy

❚ Restoring basic clean OS is easy
❚ Adding other things adds time
❚ Installing latest CD is easy
❚ Adding various web updates adds time
❚ Reality was 2 configuration changes per

week

9

4/5/2001 Copyright 2001, Mark Johnson 17

Results

❚ This has worked well for us
❙ Finding installation and configuration problems

early
❙ Few installation or configuration problems are

escaping

❚ 7 web updates and 3 CD releases over 1-1/2
year, while coordinating with 5 web updates
to closely integrated products

4/5/2001 Copyright 2001, Mark Johnson 18

The Future

❚ We are now moving to web-enabled
applications

❚ User’s system (client)
❙ OSes
❙ Web browsers
❙ Add-on items like Java environment
❙ Downloaded 3rd party plugins

❚ Create a set of standard client images

10

4/5/2001 Copyright 2001, Mark Johnson 19

The Future

❚ Need to try multiple server configurations
❚ Create a set of baseline server images

❙ Limited hardware availability, longer setup time
❙ Clean OS images starting point for configurations
❙ Add web server and database software, make

image of each
❙ May add standard test data sets and make more

images

❚ With images, can switch configurations
easily

4/5/2001 Copyright 2001, Mark Johnson 20

Recommendations

❚ Plan and manage the configurations you
need to test

❚ Establish a way to have clean testing
environments

❚ Get to a customer-installable environment,
available every day

Page 1 of 8 Copyright 2001, Mark Johnson

How Are You Going to Test All Those Configurations?
Mark Johnson

Cadence Design Systems
Portland Oregon

503.968.4801
mark.johnson@cadence.com

Abstract
Whether you are testing a traditional application such as a word processor, or you are
testing web-based software, the prospect of all the possible configurations that could be
tested is a nightmare. We ran head-on into this issue when we started producing web
installable updates to our products on an every-other-month basis. We had way too many
combinations of OSes, browsers, licensing methods, product combinations, and other
factors to try in the time available.

This paper describes techniques that we evolved which help us expand the set of
configurations we test and increase our confidence that our products will function
correctly on them.

• First, we refined our software development process to the state we call ‘source to CD
everyday.’ This means that each night not only do we build the current development
products, but we also produce an installable CD image.

• Second, the test group adopted a process involving a disk drive imaging product and
the establishment of a set of known clean baseline systems. These baseline systems
cover the different configurations of OSes, browsers, etc. we want to test. The drive
imaging software allows each test engineer to quickly restore a test system to a
known clean state to begin the next testing session.

• Third, we created a table of the configuration options we consider when testing. We
use this table to assign unique testing configurations to each test engineer each time
they restore a clean system. This allows us to maximize the number of configurations
we test during any particular testing cycle, by guiding the test engineers to a wider set
of configurations than they might choose on their own.

The combination of these techniques has allowed our project teams to increase coverage
from 3 or 4 basic configurations to as many as 20 important combinations of
configuration variables during a 2-month development cycle, with only 1 or 2 test
engineers. We feel that this has been one of the key success factors for our product team
to be able to provide frequent web installable updates.

The Problem
The OrCAD family of products is targeted at the Windows PC market. While the
hardware has become fairly standardized, there can be a fair number of supported
software configurations to test. Our primary concern with different software
configurations has been installation and setup. We have not found that many problems
with our products behaving differently on different software configurations. Our products

Page 2 of 8 Copyright 2001, Mark Johnson

run on most recent Windows operating systems (OSes) and use a web browser to access
the Internet, so we can have combinations of the following:

• Operating Systems
• Windows 98
• Windows NT 4.0 with service packs 4 or 6a
• Windows 2000
• Windows ME

• Web browsers
• Netscape 4.x to 6.x
• Internet Explorer 4.x to 5.x

In addition we can have multiple product combinations and licensing methods, depending
on the installation options our customers choose.

On top of this, we were making changes in our software development process that would
increase the possible configurations while at the same time reducing the testing resources
and testing timeline. Traditionally our product development team had all worked together
on the next big release, typically with a 6 to 9 month release cycle. We wanted to sub-
divide into smaller teams that would work in parallel, each small team completing work
on a specific feature area of the product in 6 to12 weeks. The work of each of these small
teams is released on our website as a download that updates our existing product. The net
result was that each small team would typically have 1 or occasionally 2 testing
engineers, and they would need to cover the OSes, web browsers, various mixes of
products, and now product updates, all in a shorter period of time.

Even with the old process of 6 to 9 month release cycles and 6 to 8 testers, doing a full
testing pass on multiple configurations was out of the question for us. The approach we
had adopted was to assign one or more testers to each major configuration. They would
use their assigned configuration to do their normal testing work for the release. When we
went to small teams, the 1 or 2 testers on a small team now had to cover the
configurations themselves.

Fortunately over the period of time leading up to going to small teams, we had been
evolving several processes that improved our ability to cope with this situation.

Source to CD Everyday
Our product development team had a tradition of doing a nightly build of the current
baseline software. This let the developers know that the checked-in code would compile
and link. Once or twice a week the test group would run a ‘smoke’ test on the build
results. If the test passed the build would be copied onto a testing file server. Testers did
their day-to-day testing using the software copy on the file server.

We did a limited amount of installation and configuration testing at the very end of a
release, when the ‘golden’ CDs with the final software were available. This seemed
sufficient because we only had 3 or 4 products, and we released them one at a time on
separate CDs. Since all software development was done at one site and the group was
small, any problems we ran into with installation and configuration testing could be fixed
by talking to the right people and generating a new set of golden CDs.

Page 3 of 8 Copyright 2001, Mark Johnson

Then we added two products that changed our integration needs. First, we purchased a
small company located 500 miles from our office. Their product is an add-in to ours that
allows the user to access information from databases and the Internet using database
support software and a web browser. Then we merged with MicroSim, a company of
equal size to OrCAD, located 1000 miles way. Their flagship product was the PSpice
simulator. The typical user of PSpice is doing frequent cycles of experimentation during
design, so there needed to be very tight integration between our design entry product and
the PSpice simulator. With these changes we decided that all products should be released
at the same time on the same CD.

The tight product integration made us realize we wanted to make a fundamental change
to the way we set up our testing environment. As integration was developed between the
products, we needed versions of each product in which changes were synchronized, so
that we could test the integration features. With the tighter product integration, we
decided that we wanted to begin doing our testing using configurations that would match
a customer’s installation.

To support this, we set up the process we call ‘source to CD everyday.’ We took the
automated processes we had for creating the product CDs, and set them up to run after
the nightly build. In this way, each morning we had an installable CD image we could use
to load the current baseline software for testing. Getting to a CD image every morning
was not as easy as it may sound, since we were now dealing with software development
at 3 sites, one of which had a slow connection to the rest of the company. To
accommodate the site with a slow connection, we ended up picking up their files as best
we could each night, and using a previous copy if we couldn’t get the latest files. This
requires that the bill of materials (list of files and installation locations they are copied to)
be maintained as development progresses. While this sometimes causes problems
immediately after file organization changes are made, the benefit is that these problems
are uncovered while the changes are still fresh in the developer’s mind.

Because licensing and installing our software takes only 5 to 20 minutes, depending on
the configuration chosen, testers are able to uninstall and reinstall our products pretty
much every day prior to beginning that day’s testing. This greatly helps us find problems
with missing files, interface incompatibilities, etc. the day after they occur.

When we decided to go to small teams working in parallel, we were concerned about how
to continue this ‘source to CD everyday’ process. The first thing that had to happen to
support multiple small teams working in parallel on the same product was to set up
separate branches for each small team’s work. Our configuration management team
supports this by establishing the new branches when they are needed, and starting up a
separate nightly build process for each branch. Since the work of the small teams would
be released as a web update, each small team would need its own web update building
process. One of our developers took the tools our installation team used to create web
updates and created a template web update and instructions for starting a new one. With
this template, a newly formed small team spends about 4 hours during project startup
putting their build process together. They then have an automated nightly build process
that generates a web update and places it on an internal website to download for testing.

Page 4 of 8 Copyright 2001, Mark Johnson

So now we have a ‘source to web update everyday’ process running for each small team.
This allows the tester for that small team to do an uninstall and reinstall each morning, so
that they are testing the latest version of their team’s software.

Clean OSes by Drive Imaging
Once we had started on the source to CD everyday process, we realized that we needed to
have clean systems to support installation and configuration testing. Our definition of a
‘clean’ system is one which has not had our software installed on it. We had been
depending on the uninstall process for our products to clean off any files, directories,
registry entries, etc. We knew that the uninstall process was not perfect at cleaning
everything up. The best way to ensure that we were not overlooking anything would be to
start a testing session with a PC that had freshly formatted hard drives and a newly
installed OS. This is what we call a ‘clean OS’ system. We would do this periodically,
but it would typically take 4 to 8 hours for the tester to complete, so we were reluctant to
spend the time more than once every few months.

In looking for a solution, we talked to our IT department. They use a utility program for
setting up new PCs with our standard software configuration. Basically, it is a
backup/restore utility that makes a copy (called image file) of the physical layout of the
hard drive and allows you to restore the entire hard drive later. When IT gets a new set of
PCs, they format and install the OS and other applications on one of the new PCs. Then
they use the utility to make an image of the hard drive on that PC. For the rest of the PCs,
they simply restore that image and the hard drive of each PC is an exact match of the first
PC.

In testing, we realized that this utility might provide an easy way for us to rapidly restore
a testing PC to a known state. It only takes about 5 minutes to restore an image file.
When a tester receives a new PC they format and partition the hard drives, and load one
of the OSes they want to test with, such as Windows 98. They make an image of this
‘clean OS’ and save it. To create another OS configuration for the same PC, they
reformat the hard drives and install another OS, such as Windows NT. In this way, a
tester can have as many different clean OS configurations as they desire. A nice feature
of drive imaging is that it works at the physical level, so you don’t have to worry about
the current contents of the hard disk or its file system format. For example, if you are
changing from Windows 98 where the hard drives are formatted FAT32, to Windows NT
where the hard drives are formatted NTFS, you simply restore the Windows NT image
and the file system is changes along with the disk contents. In this way the tester can
simply load the image for the OS they want to use next and they are ready to finish
setting up the configuration.

This process works well for providing a known clean starting point for testing and for
easily switching from one OS configuration to another. Because the testing group has a
mix of different PCs that have been acquired over time, we are not able to make one set
of images that all testers will use. This is due to the different drivers and hardware
specific configuration information needed for the different PC types. So it takes a tester
about 4 hours to set up each new image when they get a new PC. Fortunately, once the
images are set up, they require little day-to-day maintenance. Since OrCAD has been

Page 5 of 8 Copyright 2001, Mark Johnson

acquired by Cadence, we have run into a problem with how Cadence administers its
networks. Something happens on an every couple of months basis that makes stored
Windows NT and Windows 2000 images stop logging into the network. When this
happens, we have to have a system administrator delete and re-add the system on the
network, and then have to make a new image. This takes about one-half hour, but it can
take a day or two to get the administrator’s help.

With the use of clean OS images, we have been able to find a number of installation and
configuration problems with our products that we otherwise might have missed. These
are typically wrong versions of files, missing files, or missing or wrong registry entries.
And even if you need to work around the problem today by manually copying a file or
editing the registry, the next time you restore a clean OS image, you can determine if the
problem has been corrected.

Planning and Managing Configurations
We now had an installation CD image every day from the latest software build, and a
way for testers to easily set up a clean OS environment. However, we found that we
weren’t getting the coverage of different product installation and licensing configurations
we wanted. It seems to be human nature that testers fall into routines with preferred
configurations they use for testing. We also found that after a week or two of testing, it
was difficult for a tester to provide a record of the exact details of each configuration they
had used. So it was hard to know exactly which configurations had been covered and
which remained to be tested.

To overcome this, we have added detailed configuration plans to the test plans we write.
We put together a table with columns listing the different configuration variables to track.
In the rows, we select specific combinations to try and assign a tester to each
configuration number. The table also gives us a shorthand way to record configurations in
our testing note. See Table 1 for an example set of our testing configurations from a past
CD release. The testers on the small teams use the same type of a configuration table.

We choose combinations of configuration variables by trying to cover most pair-wise
combinations. However, we skip some pairings to reduce the total number of
configurations. We do this by dropping configurations that would repeat the use of
configuration variables our customers are less likely to use. For example, the majority of
our customers are now on Windows NT and starting to move to Windows 2000. So we
drop some combinations that would use Windows 95 and select Windows NT instead.
For the small team projects which are released as web updates, our concern is more with
configurations having earlier web updates installed and using different web browsers,
because these factors can directly affect the success of web update installation.

We have found that because of the number of variables involved in the typical
configuration, it can take several hours to fully set up a configuration that uses less
common options. Because of this, we have scaled back from testing a new configuration
every day to testing two or three configurations per week per tester. On a small team with
a single tester, we have found that 10 to 12 configurations can be covered during the
testing part of an 8-week project.

Page 6 of 8 Copyright 2001, Mark Johnson

Table 1: Example configurations table for testing a CD Release

 CD Testing Configurations
Locking Server/Client OS Browser Products to Install

CFG NIC Hasp Rain
bow

Inst Svr Cl Oth 95 98 NT 2
K

Net
sc

IE Cap eCap De
mo

Cap+
AP

CIS PS
AD

PSP PSA
DB

Opt Lay
EE

Lay
+

Lay

1 x x x x x
2 x x x x
3 x x x x x x
4 x x x x x x x
5 x x x x x x
6 x x x x x x x
7 x x x x x x
8 x x x x x x x x
9 x x x x x x

10 x x x x x

11 x x x x
12 x x x x x x x
13 x x x x x x x x

14 x x x x x
15 x x x x x
16 x x x x x
17 x x x x x x x x
18 x x x x x x x
19 x x x x
20 x x x x x x x

CFG – Configuration to test using all the options specified in that row.
Locking – What method is used to license the installed software.
Server/Client – Install the software in a stand-alone (no 'x' in the column) or in a client/server combination.
OS – Which OS to use.
Browser – Which Internet browser to use.
Products to Install – Install this combination of our products and updates.

Results
We have found the idea of providing some test coverage on a larger number of
configurations, rather than more test coverage on a single or fewer configurations to be
effective. Over the year and a half we have been doing small team projects and handling
configuration testing in this manner, we have shipped 7 web updates and 3 CD releases.
We have coordinated our testing with 5 web updates for the two products that closely
integrate with our product. We have a high level of confidence that our product will
install and perform properly in the wide range of environments we support.

During this period, we have found many installation and configuration related issues
during our internal testing. These are typically missing files, wrong versions of files
(something has been updated but not made it into the installation process), or
occasionally conflicts between installations of two different products.

I am aware of only two configuration-related problems that have escaped from our
testing. One was due to a last minute change made to fix a problem. It required adding a

Page 7 of 8 Copyright 2001, Mark Johnson

file to the set that made up a web update. This change happened after the majority of
configurations had been tested, so we missed an installation ordering dependency. We
were able to address this by listing the installation order on the web site containing the
web update download files. The other problem was a configuration management issue
where files added to one web update did not get checked in correctly and were left out of
the subsequent web update. Since our web updates are cumulative, as part of the testing
for each web update we verify that the functionality added in any previous web updates is
present. These two web updates happened almost simultaneously and we didn’t verify the
second web update had all the correct contents until it had been released. These files were
quickly added to the second web update and it was re-released on the website for
downloading.

The Future
The product we have worked on for the past several years is being transferred to another
group for maintenance. We have begun developing web-based applications that integrate
multiple products into flows and provide more generalized access to databases and the
Internet. These applications are typical web style client/server applications. We are
expecting to use these same processes once we get farther into development of these
products.

Tracking the configurations we need to test will be very important, as the products will
need to run with multiple web browsers, multiple OSes, now including UNIX and Linux,
multiple web servers, and multiple database products.

Drive imaging will continue to be important for establishing baseline testing
environments. For the client side, we will need to have configurations with various web
browsers, Java environments, downloaded plug-ins, etc. On the server side, drive imaging
will help in establishing the baseline testing configurations. For example, a server can be
set up with Windows NT and an image made. This image can then be used as the starting
point for creating more images that have specific web server and database combinations.
This way when the tester wants to try a different server configuration, reloading will only
take a few minutes.

We are still working to get the installation process defined for these new products. Once
we have the installations created, we will want to get to the same point of having a
complete installation built each night.

Recommendations

The process we developed is made up of a few basic steps that seem like good software
development and testing practices:

• Plan the configurations you need to test, track your progress, and adjust your plans as
needed.

• Establish a fast and efficient way to set up clean testing environments.
• Create a system that gives nightly builds of your software under development, with

the results coming out in a form that allows you to install it as a customer would.

Page 8 of 8 Copyright 2001, Mark Johnson

We would recommend this process of testing across as many user configurations as you
can for anyone dealing with software installed in the end user’s environment. This applies
to products and web updates as we have been developing, as well as web-based
applications we are now working on. We believe that it does not add appreciable
overhead to your testing. We also feel that it will help you find more configuration-
related problems and find them earlier in your testing cycle, resulting in happier
customers and possibly shorter release cycles.

QW2001
Paper 6W2

Mr. Rakesh Agarwal,
Mr. Santanu Banerjee
& Mr. Bhaskar Gosh

(Infosys Technologies
Ltd)

Estimating Internet
Based Projects: A

Case Study

Key Points

Estimation of Internet projects using Use case point approach●

How to estimate use case points based on technical and non technical factors●

Evolving the weights for all these factors and deriving an estimate based on these●

Presentation Abstract

Software organizations are in need of methods to understand, structure, and
improve the way estimation is done for internet-based applications. The effort of
estimation required in developing good quality Web-sites/application is a difficult
task. Accurate estimates play an important role in the success of web projects.
Estimating for an Internet based project is difficult to define as there is no single
model for effort estimation with the number of focus areas that drives the project.
As there is no established method of estimation it is difficult to arrive at the total
effort and hence the staffing and schedule is also not derived correctly.

In this paper we will take a real case study of an Internet project that we have
executed for our client. The methods have been used in our project and found to be
close to the actual effort details after execution using the User Use Case Point
(UUCP) approach. The UUCP is a modification of the Function Points method of
estimation. This should be considered as a means of arriving at a ballpark estimate
of the effort involved in developing the system. The steps are explained below:

1. Weighting Actors: The process starts by considering the actors in the system.
For each actor, determine whether it is simple, average or complex. A simple actor
represents another system with a defined Application Programming Interface
(API). An average actor is either another system that interacts through a protocol
such as TCP/IP, or it is a person interacting through a text-based interface. A
complex actor is a person interacting through a graphical user interface.
2. Weighting Use Cases: A similar process is followed for use cases. Used use
cases or extending use cases do not need to be considered. For each use case
determine whether it is simple, average, or complex. The basis of this decision is
the number of transactions in a use case, including secondary scenarios. For this

purpose, a transaction is defined to be an atomic set of activities, which is either
performed entirely or not at all. A simple use case has 3 or fewer transactions, an
average use case has 4 to 7 transactions, and a complex use case has more than 7
transactions.
3. Weighting Technical Factors: Start by calculating the technical complexity of
the project. This is called the technical complexity factor (TCF). To calculate the
TCF, go through the following table and rate each factor from 0 to 5. A rating of 0
means the factor is irrelevant for this project, 5 means it is essential. Now, for each
factor multiply its rating by its weight from the table. Finally add together all these
numbers to get the total T factors. The equation for arriving at the estimate is:

TFactor =(Tlevel) * (Weighting Factor)
TCF = 0.6 + (0.01 * TFactor)
The above method has been tested on some of the projects executed by us and we
have found that the variance between the actual effort and the estimated effort is
close to 15%. The paper will elaborate the details of this methodology.

About the Author

Santanu Banerjee is a project leaders at Infosys Technologies Limited, India. He
has been working on various web projects and currently involved in the design and
development of a complete investment portal.

Rakesh Agarwal is working with Infosys Technologies Limited, India, in the
Education and Research Department for the past 3 years. He has published more
than 60 papers in leading conferences and Journals.

Bhaskar Ghosh is working as Associate Vice President in Infosys Technologies
Limited, India for the past 4 years. He has lead many projects in his carrier and
Heads one of the Development Centers of Infosys.

1

Estimating Internet based projects – A
Case Study

Banerjee.S, Agarwal.R and Ghosh.B
Infosys Technolgies Ltd
India

Infosys Technologies LimitedQW2001 2

Agenda

Introduction
Background study
About the approach
Conclusion

2

Infosys Technologies LimitedQW2001 3

Introduction

Estimating for a internet based project is difficult to
define a single model for effort estimation
Number of focus areas that drive the project
No established method of estimation it is difficult to
arrive at the total effort
We will discuss on an approach which we have
adopted for number of our projects and have found
that the estimated effort is close to actual effort.

Infosys Technologies LimitedQW2001 4

Use case Point Approach

The Use Case Point Approach, from Rational
Software, is a modification of the Function Points
method of estimation
This can be used to arrive at ballpark estimates of
web based projects .

3

Infosys Technologies LimitedQW2001 5

How to use Use Case Point Approach

Determine the actors of the system and find the
weights of these actors .
Determine the use cases and find the weights of
these use cases – these give the type of interaction
between the actors .
The use cases can be classified and weighted based
on its description and the number of analysis classes
they correspond to.

Infosys Technologies LimitedQW2001 6

Use case Point Approach

The technical complexity of the project is determined
and technical complexity factor is computed by
TFactor = ∑(Tlevel) * (Weighting Factor)
TCF = 0.6 + (0.01 * TFactor)

TCF stands for the technical complexity factor .

4

Infosys Technologies LimitedQW2001 7

Use case Point Approach

Environmental factors are also considered for
computing the total use case points.
For details of EF and TCF calculation refer the paper.

Infosys Technologies LimitedQW2001 8

Use case Point Approach

The Total Use case Points =
UCP = UUCP * TCF* EF
UUCP stands for the user use case points .

5

Infosys Technologies LimitedQW2001 9

Guideline for estimating projects using this
approach

UCP method suggests usage of 20 person-hours per
UCP for a project estimate.
Our experience says that for an UCP we can use 18-
22 person hours for project estimate depending upon
the experience of the resources
For other details , please refer the detailed contents
of the paper .

Infosys Technologies LimitedQW2001 10

Conclusion

Estimation of Internet projects is a challenge
Using Use Case Point can be one of the approaches
to arrive at the estimates, and we have found the
estimates derived by this approach is close to the
actual.
The approach needs to be tested across different
types of projects and the values can be further
refined based on the experiences.

6

Thanks

 1

Estimating Internet based Projects: A Case Study
Santanu Banerjee, Rakesh Agarwal and Bhaskar Ghosh

Infosys Technologies Ltd., Near Planetarium, N.H.5,
Bhubaneswar - 751013, India

Email: {santanub}{rakesh_a}@infy.com

Abstract
Software estimating for Internet based projects is an important concern for software
managers and other software professionals. The model in this research suggests that an
organization’s use of an estimate influences its estimating practices that influence both
the basis of the estimating process and the accuracy of the estimate. The model also
suggests that the estimating basis directly influences the accuracy of the estimate. In this
paper we will take a real case study of an Internet project, which we have executed, for
one of our clients

Keywords: Web-based projects, Estimation, Use case

1. Introduction

Software organizations are in the need of the methods to understand, structure and
improve of the way estimation is done for Internet based applications. The estimation of
the effort required to develop a good quality website/web based application is a difficult
task. Accurate estimates play an important role in success of these projects. Estimating
for an Internet based project is difficult, to define as there is no single model for effort
estimation, there are number of focus areas that drive the project. As there is no
established method of estimation it is difficult to arrive at the total effort and hence the
staffing and schedule is also not derived correctly.

Lack of proper estimation models lead to effort overruns and wrong price estimates.
Statistics shows that 54% of the known Internet based projects have completed after
schedule with more expenditure than estimated.

In this paper we will take a real case study of an Internet project, which we have
executed, for one of our clients. In this project we have used UserUse Case Point
Approach (UUCP) for estimation and have found that the actual effort is close to the
estimates. The outline of the method is described in this paper.

2. User Use Case Point Approach

The Use Case Points Approach, was put forward by Rational Software, and is a
modification of the Function Points method of estimation widely used in the software
industry. The User Use Case is similar to the Use Cases with the special emphasis on the
user events of the system under consideration. This method can be considered as a means
of arriving at a ballpark estimate of the effort involved in developing the system.

In this approach first the actors of the system are identified, the actors are the entities
which can identify themselves in the system. The weights of these actors are determined

 2

depending on the type of the actors. Then the user use cases are then determined, the user
use cases are shows the event of interaction of the actors focussed mainly on user events
for example user entering the employee details which initiates the search. These use cases
are then weighted with factors depending on the type of the use cases.

Depending on these factors, the Use Case Points are arrived at. The technical complexity
and the environmental factors of the project are factored as TCF and EF. The project
estimate can be arrived from these Use Case Points.

3. Weighting Actors

The process starts by considering the actors in the system. For each actor, determine
whether it is simple, average or complex. A simple actor represents another system with a
defined Application Programming Interface (API). An average actor is either another
system that interacts through a protocol such as TCP/IP, or it is a person interacting
through a text-based interface. A complex actor is a person interacting through a
graphical user interface.

Count how many of each kind of actors are present in the system. Multiply by weighting
factor. Add these products together to get a total.

Actor Type Description Factor
Simple Program interface 5
Average Interactive, or protocol driven interface 10
Complex Graphical interface 15

4. Weighting Use Cases

A similar process is followed for use cases. Used use cases or extending use cases do not
need to be considered. For each use case determine whether it is simple, average, or
complex. The basis of this decision is the number of transactions in a use case, including
secondary scenarios. For this purpose, a transaction is defined to be an atomic set of
activities, which is either performed entirely or not at all. A simple use case has 3 or
fewer transactions, an average use case has 4 to 7 transactions, and a complex use case
has more than 7 transactions.

If analysis classes have been defined for the system and it has also been identified as to
which ones are used to implement a particular use case, use this information in place of
transactions to determine the use case complexity.

4.1 By Use Case description
Use Case Type Description Factor

Simple 3 or fewer transactions 5

Average 4-7 transactions 10

Complex >7 transactions 15

 3

4.2 By Analysis Classes
Use Case Type Description Factor

Simple Fewer than 5 analysis classes 5

Average 5-10 analysis classes 10

Complex More than 10 analysis classes 15

Count how many of each kind of use case are present. Then multiply each type by the
weighting factor specified in the given table. Add these products to get a total.

Add the total for actors to the total for use cases to get the unadjusted use case points.
This raw number will be adjusted to reflect the project’s complexity and experience of
the people on the project.

5. Weighting Technical Factors

Start by calculating the technical complexity of the project. This is called the technical
complexity factor (TCF). To calculate the TCF, go through the following table and rate
each factor from 0 to 5. A rating of 0 means the factor is irrelevant for this project, 5
means it is essential. Now, for each factor multiply its rating by its weight from the table.
Finally add together all these numbers to get the total T factors.

TFactor = ∑∑∑∑(Tlevel) * (Weighting Factor)
TCF = 0.6 + (0.01 * TFactor)

5.1 Technical Factors for System and Weights
Factor Factor Description Weight

T1 Distributed system 2

T2 Response or throughput performance objectives 1

T3 End-user efficiency (online) 1

T4 Complex internal processing 1

T5 Code must be reusable 1

T6 Easy to install 0.5

T7 Easy to use 0.5

T8 Portable 2

T9 Easy to change 1

T10 Concurrent 1

T11 Includes special security features 1

T12 Provides direct access for third parties 1

T13 Special user training facilities required 1

 4

Consider the experience level of the people on the project. This is called the environment
factor (EF). To calculate EF, go through the table below and rate each factor from 0 to 5.
For factors F1-F4, 0 means no experience in the subject, 5 means expert, 3 means
average. For F5, 0 means no motivation on the project, 5 means high motivation, 3 means
average. For F6, 0 means extremely unstable requirements, 5 means unchanging
requirements, 3 means average. For F7, 0 means no part-time technical staff, 5 means all
part-time staff, 3 means average. For F8, 0 means easy –to-use programming language, 5
means very difficult programming language, 3 means average.

For each factor, multiply it’s rating by its weight from the table given below. Finally, add
all the numbers together to get the total E Factors.

EFactor = å(Flevel) * (Weighting Factor)
 EF = 1.4 + (-0.03 * EFactor)

5.2 Environmental Factors for Team and Weights
Factor Factor Description Weight

F1 Familiar with internet process 1.5

F2 Application experience 0.5

F3 Object –oriented experience 1

F4 Lead analyst capability 0.5

F5 Motivation 1

F6 Stable requirements 2

F7 Part-time workers -1

F8 Difficult programming language -1

6. Use Case Points

Finally calculate use case points (UCP)

UCP = Unadjusted UCP * TCF* EF

7. Project Estimate

We have found that 20 person-hours per UCP is a good estimate for a project. But a close
examination of the data suggests a refinement can be done based on our experiences. To
obtain the project estimate count how many factor of F1-F6 are below 3 and how many
factors in F7-F8 are above 3. If the total is 2 or less, then use 20 person-hours per UCP. If
the total is 3 or 4, then use 28 person-hours per UCP. If the total is 5 or more, try to make
changes to the project so the numbers can be adjusted. We have experienced that
otherwise the risk of failure is quite high.

By following this we have found that the estimates are very close to the actuals. The % of
deviation between estimates and actual effort is less than 20%.

 5

8. Conclusion

Estimation of Internet projects is a challenge as of now as there is no single estimation
model in which we can fit things, this leads to cost and schedule overruns. Using Use
Case Point can be one of the approaches to arrive at the estimates, and we have found the
estimates derived by this approach is close to the actuals. The approach needs to be tested
across different types of projects and the values can be further refined based on the
experiences.

9. References

[1] Boehm, B.W., Software Engineering Economics. Prentice-Hall: Englewood Cliffs,

NJ, 1981.
[2] Cowderoy, A.J.C. and J.O Jenkins, ‘Cost estimation by analogy as a good

management practice’, in Proc. Software Engineering 88, ed. Pyle, I.C., Liverpool:
IEE/BCS, pp80-84, 1988

[3] DeMarco, T., Controlling Software Projects. Management, measurement and
estimation. Yourdon Press: NY, 1982.

[4] Fenton, N.E., 'Software Metrics: a rigorous approach'. Chapman & Hall, 1991.
[5] Fenton, N.E. and S. Pfleeger, 'Software Metrics: a rigorous and practical approach'.

Thomson Computer Press, 1997.
[6] Heemstra, F.J., ‘Software cost estimation’, Information & Softw. Technol., 34(10),

pp627-639, 1992.
[7] Hughes, R.T., ‘Expert judgement as an estimating method’, Information & Softw.

Technol., 38(2), pp67-75, 1996.
[8] Jack R. and M. Mannion, 'Improving the software cost estimation process', Software

Quality Management, 1995 1 pp245-56.
[9] Jalote Pankaj, ‘CMM in practice: processes foe executing software projects at

Infosys’ Addison-Wesley 1999
[10] Kemerer, C.F., ‘An empirical validation of software cost estimation models’,

CACM, 36(2), 1993.
[11] Kitchenham, B.A., 'Empirical studies of assumptions that underlie software cost

estimation'. Information and Softw. Technol., 34(4), 211-18, 1992.
[12] Londeix, B., Cost Estimation for Software Development. Addison-Wesley:

Workingham, 1987.
[13] Londeix, B., 'Aspects of estimation practice in software development', in Proc.

Software Engineering 88, ed. Pyle, I.C., Liverpool: IEE/BCS, pp 75-79, 1988
[14] Low, G.C and D.R. Jeffery, ‘Function points in the estimation and evaluation of the

software process’, IEEE Trans. on Softw. Eng., 16(1), 64-71, 1990.
[15] Low, G.C. and D.R. Jeffery, 'Calibrating estimation tools for software development',

Softw. Eng. J., 5(4), pp215-221, 1990.
[16] McDermid, J.A., Software Engineer's Reference Book, Butterworth-Heinemann:

Oxford, UK, 1991.
[17] Pengelly, A., 'Performance of effort estimating techniques in current development

environments', Softw. Eng. J.l, September 1995, pp162-169
[18] Putnam, L.H., 'A general empirical solution to the macro software sizing and

estimating problem'. IEEE Trans. on Softw. Eng., 4(4), 345-61, 1978.

 6

[19] Roetzheim W.H. and Beasley R.A., ’Software project cost & schedule estimating:
best practices’, Prentice Hall, Inc, 1998.

[20] Shepperd, M.J., Foundations of Software Measurement. Prentice Hall: Hemel
Hempstead, UK, 1995.

[21] Shepperd, M.J., C. Schofield and B.A. Kitchenham. 'Effort estimation using
analogy', in Proc. 18th Intl. Conf. on Softw. Eng. Berlin: IEEE Computer Press,
1996.

[22] Symons, C.R., Software Sizing and Estimating. Mk II FPA, John Wiley: Chichester,
1991.

[23] Vigder, M.R. and A.W. Kark, 'Software Cost Estimation and Control, February
1994, Report available from the link.

[24] Walston, C.E. and C.P. Felix, 'A method of programming measurement and
estimation', IBM Syst. J., 16(1), 54-73, 1977.

QW2001 Paper 7W1

Mr. Bhushan Gupta, Mr. Steve Rhodes
(Hewlett-Packard Co.)

Adopting A Lifecycle For Developing Web
Based Applications

Key Points

Web Development●

Lifecycle●

Process Improvement●

Presentation Abstract

Web-based applications pose unique challenges to developers: “first to market”,
“marketing the right product or service”, and “making the product sticky”. To
“make the product sticky”, that is, to keep customers inside your application and
keep them coming back, it is important that the product delivers high value, all the
time, with acceptable quality. Under the constraints of scope, schedule, and
resources, quality is often sacrificed. A product must have an optimal mix of value,
stickiness, and quality to survive in the web marketplace.

Web development is in its infancy. Often developers are faced with difficult
choices between languages, tools, and hardware. Most web development tools are
in their Beta phase and have no user support. Development complexity increases in
the open source environment where the ownership of the tools is not clearly
defined. Adequate testing of a web application for usability and scalability further
insures product “stickiness” and thus is very critical.

Our products and services are at increasing risk in the Internet age:
* We have new markets with inexperienced providers and customers.
* Our customers are moving targets.
* Accelerated time-to-market stresses our seasoned product generation processes.
* The competition forces us to pull up release schedules by weeks or months.
* Customer tolerance for defects has dropped precipitously. Customers can and
will go elsewhere if we fail to meet their expectations.

We need new processes that are "light," nimble, and flexible to the competing
pressures of resources, time, and delivered features.

In an effort to choose a suitable lifecycle for its Web-based development,
Hewlett-Packard evaluated widely used software lifecycles. Iterative lifecycles
seem well suited to Internet speed as they allow constant user feedback and
repetitive quality assessment. In particular, development teams across

Hewlett-Packard and Agilent have switched to an Evolutionary lifecycle (EVO) for
its strengths in user feedback, risk analysis and mitigation, and product
releasability to meet “first to market" challenges. Results range from "schedule
visibility" to "3X productivity" and "best in class." Although, EVO requires more
attention to process than other lifecycles, it provides an early focus on every aspect
of product development and delivery.

Of the various iterative lifecycles, EVO is best suited to managing all the risks
cited above - simultaneously. It does so through a discipline of continuous process
improvement, at short regular cycles. Plan, do, check, act . . . repeat! The target
customer moves, we move; our customer learns, we learn. We can deliver features
and quality at the scheduled release date, or prior to that date should circumstances
demand it. Process maturity continues to advance cycle by cycle; but with EVO the
cycles are weeks vs. months, and we mature those processes that net the biggest
return first. EVO adjusts the clockspeed of our product lifecycle to the clockspeed
of the marketplace, allowing us to avoid the Darwinian fate of organisms and
organizations that can't keep up.

Our experience shows that EVO requires an early and adequate emphasis on the
entire project planning as compared to other software lifecycles. The user feedback
in individual EVO cycles clearly distinguishes EVO from other lifecycles. A work
product must meet minimum quality requirements for an adequate user feedback.
To meet this requirement, the development team must put in place the build, test,
release and customer support processes as early as possible. While it sounds like
additional work early in the development phase, it provides an opportunity for
changes and improvements as the project scope grows. We have also noted that a
well orchestrated decision making process is essential to maintain focus on the
customer value proposition.

About the Author

Bhushan Gupta has been a Software Quality Engineer with the Vancouver Printer
Division of Hewlett-Packard Company since June 1997. Recently he has moved to
Commercial Publishing Division as a software development engineer and is
pursuing software process architecture activities.

Bhushan Gupta was a faculty member in the Software Engineering Department of
the Oregon Institute of Technology from 1985 to 1995. He has a MS degree in
Computer Science from New Mexico Institute of Mining and Technology,
Socorro, New Mexico and is a member of American Society for Quality.

Steve Rhodes is an internal consultant for Hewlett-Packard Company, developing
and delivering key process technologies into HP's R&D organization. His primary
areas of delivery are product lifecycle, software architecture, and configuration
management. He has been with Hewlett-Packard for 20 years, as developer,
manager, architect, and consultant. Steve has an MS of Computer Science from the
University of California, San Diego, and BS in Mathematics from Northwestern
University of Louisiana.

1

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 1

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Bhushan Gupta and Steve Rhodes
Hewlett-Packard Company

14th International Conference on Internet & Software Quality
Quality Week 2001
29 May – 1 June 2001

San Francisco, California

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 2

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Agenda

n Challenges of Web Development

n Software Development Lifecycles

n Strengths/Weaknesses of EVO

n EVO Case Studies

n Setting the Stage for EVO

n Monitoring the Lifecycle Progress

n Conclusion

2

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 3

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Challenges of Web Development

n Product
l Changing value proposition

l Vague customer requirements

l Adequate quality

l Scalability

n Process

l Unproven, immature, and evolving technologies

l Change management especially towards release

n People

l Constant learning of evolving technologies

l No in-depth understanding of a technology due to changes

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 4

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Overcoming Challenges

Utilize a software lifecycle that provides:
n On-going visibility to scope, schedule, resources, and quality
n Constant focus on customer value

l Early and effective feedback from customers
l Incorporating customer feedback

n Immediate course correction when necessary
n Adequate management of tools and technology
n Effective collaboration between partners

3

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 5

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Waterfall vs. EVO

Develop
Design

Hi-Level
Reqmnts

Hi-Level
Structure

Cycles 1, 2, 3, …n

Reqmnts

Integrate
& Test

Product
Concept

Waterfall

EVO

Product
Concept

Integrate
& TestUser

Integrate
& Test

Develop

Plan
(Re-plan)

 Detailed
Requirements Design

 &
 Validate

Deliver

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 6

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

“Flavors” of Iterative / Evolutionary Lifecycles

1. Manage and reduce project risk,
plus …

2. Manage and reduce program
 integration risk, plus …
3. Better fit user needs and market

requirements, plus …
4. Respond to emerging and

changing markets.

 – Staged Delivery

 – EVO Prototyping

 – EVO (Evolutionary Delivery)

 – eXtreme

4

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 7

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Iterative/Evolutionary Lifecycles

Requi
reme
nts

Des
ign

Code
Test

Show

and Fix

Requi
reme
nts

Des
ign

Code
Test

and Fix

Show
Requi
reme
nts

Des
ign

Code
Test

and Fix

Show
Requi
reme
nts

Des
ign

Code
Test

Show

and Fix

Requi
reme
nts

Des
ign

Code
Test

and Fix

Show
Requi
reme
nts

Des
ign

Code
Test

and Fix

Show

Staged
Delivery

Evolutionary
Delivery
(EVO)

Evolutionary
Prototyping

eXtreme
Programming

Requir
ements

Spec Design Code
Test
and
Fix

Design Code
Test
and
Fix

Show

Spec
Design Code

Test
and
Fix

Show

Spec
Requir
ements

Spec Design Code
Test
and
Fix

Design Code
Test
and
Fix

Show

Spec
Design CodeDesign Code

Test
and
Fix

Show

Spec

Show

Spec

Requir
ements

Spec Design Code
Test
and
Fix

Design Code
Test
and
Fix

Show

Spec
Design Code

Test
and
Fix

Show

Spec
Requir
ements

Spec Design Code
Test
and
Fix

Design Code
Test
and
Fix

Show

Spec
Design CodeDesign Code

Test
and
Fix

Show

Spec

Show

Spec

Require-

ments
Spec Design Code

Test
and
Fix

Design Code
Test
and
Fix

Design Code
Test
and
Fix

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 8

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Criteria for Choosing the Appropriate Lifecycle

n How well do my customer(s) and I understand requirements at the
beginning of the project? Are significant changes likely as we progress?

n How much quality and reliability do I need?

n How well do I understand the system architecture? Am I likely to make
major architectural changes midway through the project?

n Am I constrained by a predefined schedule?

n Do I need to provide my customers or management with visible progress
throughout the project?

n How significant will the integration effort likely be?

 “Iterative” and “Evolutionary” Lifecycles meet these criteria.

5

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 9

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Strengths of the EVO Lifecycle

n Product
ã Better fit to user needs and market requirements.
ã Ability to respond to market changes during development
ã Consistent high-quality user feedback (managed vs. ad hoc)
ã Increased opportunity to hit market windows.
ã Accelerated sales cycle with early customer exposure.

n Processes/People
ã Increased product team productivity and motivation.
ã Better partitioning of work
ã Increased management visibility of project progress.

EVO REDUCES YOUR RISK

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 10

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Weaknesses of EVO

n EVO appears to be much harder:
l New paradigm for thinking about project

structure
l Perception of more work!

n Customers are changing:
l Implicit EVO of "next bench" no longer applicable, as

SW developers are no longer primary users of their products.
l Customers more demanding
 . . . and as a result:
l Greater customer commitment and involvement

n If your infrastructure has problems, EVO will make them even “louder”:
l Configuration management
l Build process
l Regression/release testing

6

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 11

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Overcoming Weaknesses of EVO

n Schedule high risk activities first:
l Resolve issues early and eliminate unknowns
l Demonstrate feasibility up front

n Improve planning and scheduling skills through earlier insight; accelerate
team learning.

n Avoid large-scale integration late in the project by small, frequent
integration throughout.

n Make SW/FW development effort visible by delivering early, tangible
results.

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 12

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

EVO Case Studies

 Product Type Staffing Cycle Data Results

SW 4 engineers, 1 PM 39 cycles
 @ 1-2 weeks

3x productivity

SW/HW 25 engineers, 3 PMs 12 cycles
 @ 2 weeks

early revenue

SW 8 engineers, 1 PM 6 cycles
 @ 3-4 weeks

best in class awards

SW ~12 engineers, 2 PMs 5 cycles
 @ 8 weeks

early market visibility,
partner division
feedback

7

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 13

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Example: The MaxiPull Project

. . . Evolutionary Prototyping

BackHand Platform Provider/Partner

Show
Requir
ements

Spec Design Code
Test
and
Fix

Design Code
Test
and
Fix

Requir
ements

Spec Design Code
Test
and
Fix

Design Code
Test
and
Fix

Show Design Code
Test
and
Fix

Design Code
Test
and
Fix

Requir
ements Spec Design Code

Test
and
Fix

Requir
ements Spec Design Code

Test
and
Fix

Spec Design Code
Test
and
Fix

Spec Design Code
Test
and
Fix

Spec Design Code
Test
and
Fix

Spec Design Code
Test
and
Fix

DEF’s MaxiPull Development Teams

. . . Hybrid: Evolutionary Prototyping -and- Waterfall

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 14

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Example: The MaxiPull Project

l DEF did not know how to acquire immediate, early feedback as soon as

product was workable.

l DEF did not know to plan for making major changes based on that feedback.

l DEF found it difficult to set customer expectations to include experimentation.

l DEF and BackHand had different expectations for a demo-quality prototype.

l BackHand failed to understand DEF’s requirements - reliability, availability,

future enhancements

l Result: DEF never really did Launch and Learn

8

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 15

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Example EVO Cycle: XYZ Project

Monday

Tuesday

Wednesday

Thursday

Friday

- Evaluate feedback from version N-1
Decide activities for N
Design version N

-
-

- Decide refactoring needs
Refactor/develop code

- Refactor/Develop code

- Complete code, build and release

- Plan, Refactor, Develop Code N+1

Development Team Partners

 Functionality Testing N-1

-
Usability Testing

Functionality Testing N-1

Functionality Testing N-1

Functionality Testing N-1

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 16

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Getting Ready for EVO

n Customer value proposition
l Project Mission, Vision,
l Use Cases
l Major Risks

n Identifying genuine customer(s)
l Business goals support value proposition
l Early adopters of technological breakthroughs
l Proponent of product workflow changes
l Willingness to use imperfect product
l Enthusiastic about providing frequent and quality feedback
l Comfortable with limited product support

9

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 17

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Getting Ready for EVO

Establishing Software Processes
n Customer feedback management
n Change management

l Crisis management
l Mediated change

n Development tools and environment selection
l Tools/technology upgrade process
l Identification of common tools between development teams

n Management of common components
l Build and release of common code
l Defect dependency management

Identifying EVO schedule
n Cycle time and number of EVO cycles
n Major milestones and EVO cycle alignment
n Cycle tasks and dependencies
n Scheduling cycle activities

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 18

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

XYZ EVO Cycle #2 Theme: Infrastructure
Start Date: 10/30/00 End Date: 11/07/00

Deliverables Risks Dependencies

Create Site Map
Define Interfaces
Refine EVO Plan
Validate Arch.

Site Map None Use Cases

OPS
Create
Development
Environment

Development plan None None

HFE Customer
Selection Selection Criteria None Use Cases

OPS – Operations HFE – Human Factors Engineering

Dev.

Group Activity

10

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 19

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Evaluating EVO – Is it working for me?

Monitoring Progress
n Ready to start next cycle on time
n No waiting between cycle N and N+1
n Planned progress towards value proposition
n Each cycle adds value to the customer
n Minimal turmoil (unplanned activities)
n The EVO rhythm is felt

Identifying and Implementing Continuous Process Improvement
n Questionable Customer Behavioral Patterns
n Does not understand the application
n Requires more than anticipated support
n Does not see the value in the product any more

Bhushan Gupta and Steve Rhodes
© Copyright 2001 Hewlett-Packard Company

Slide 20

EVO for the Web
Adopting a Lifecycle for
Developing Web Based

Applications

Conclusion

n Challenges of Web development

n Software Development Lifecycles

n Strengths/Weaknesses of EVO

n EVO Case Studies

n Setting the Stage for EVO

n Monitoring the Lifecycle Progress

n Conclusion

© Copyright 2001 Hewlett-Packard Company
1

Adopting a Lifecycle for Developing Web Based Applications
Bhushan B. Gupta and Steve Rhodes

Hewlett-Packard Company

Abstract

Our products and services are at increasing risk in the Internet age. We have new markets with
inexperienced providers and customers, our customers are moving targets, the competition
forces us to pull up release schedules by weeks or months, and customer tolerance for defects
has dropped precipitously. We need new processes that are "light," nimble, and flexible to the
competing pressures of resources, time, and delivered features.

Of the various iterative lifecycles, Evolutionary 1 lifecycle (EVO) is best suited to managing all the
risks cited above – simultaneously. It does so through a discipline of continuous process
improvement, at short regular cycles. Plan, do, check, act . . . repeat! Process maturity continues
to advance cycle by cycle; and we mature those processes that net the biggest return first. EVO
adjusts the clockspeed of our product lifecycle to the clockspeed of the marketplace, allowing us
to avoid the Darwinian fate of organizations that can't keep up. Development teams across
Hewlett-Packard and Agilent have switched to an Evolutionary lifecycle (EVO) for its strengths in
user feedback, risk analysis and mitigation, and product releasability to meet “first to market"
challenges. Results range from "schedule visibility" to "3X productivity" and "best in class."
Although, EVO requires more attention to process than other lifecycles, it provides an early focus
on every aspect of product development and delivery.

Challenges of Web Development

The three main aspects of software development -- namely, product, process and people --
have all been challenged in the Internet era.

More often than not we guess what product our customers want, and we try to deliver it quickly
to become first to market. Even if we clearly understand what our customers want at the on set of
a project, the customer expectations change constantly and our understanding becomes
obsolete. Web-based software products get instant market exposure and inadequate product
quality results into loosing customer loyalty. And if we have a killer application on the web, we
are instantaneously faced with the problem of scalability.

Accelerated time-to-market stresses our seasoned product generation processes. The
development environments are new and supported by unproven tools2. In the open source
environment, most tools are in their Beta release with no or minimal support. New technologies
emerge everyday making most recent technologies obsolete. This results in unmanageable
turmoil for the development environment, especially if the product is componentized and
developed by a number of teams.

The third and most important variable, people, are the victims of the new emerging technologies.
The software developers have to learn new technology on a regular basis. With a constant
change in the technology, developers rarely master existing technology and move to an unknown
technology.

It is normally possible to adjust the people and process variables to get desired product quality.
But in a scenario where nothing is well defined, we must adjust all variables to meet our
customers’ expectations. This makes a compelling argument for changing our development
processes to match the product and people. Specifically, we should utilize a software lifecycle
that provides:

• On-going visibility to scope, schedule, resources, and quality
• Constant focus on customer value

© Copyright 2001 Hewlett-Packard Company
2

• Early and effective feedback from customers
• Incorporating customer feedback
• Immediate course correction when necessary
• Adequate management of tools and technology
• Effective collaboration between partners

Software Development Lifecycles

Anyone in the software business for very long realizes we are awash with process models. One
of our beleaguered HP Project Managers calls it “the death of a thousand lifecycles.” They are
depicted in books and papers … that often have other books and papers piled on top of them!
Steve McConnell3 in his book Rapid Development does a nice taxonomy of lifecycles, including
Pure Waterfall, Modified Waterfall, Code-and-Fix, Spiral, Staged Delivery, Design-to-Schedule,
Design-to-Tools, Commercial Off-the-Shelf Software, and . . . Evolutionary Delivery.

Fig.1 Evolutionary (EVO) Lifecycle

The most striking way to describe Evolutionary Delivery is to compare it with the Pure Waterfall.
To be fair, even the Waterfall has cycles. A lifecycle, by definition, is an explicit repeatable
process. Where other lifecycles distinguish themselves from the Waterfall is in what author
Charles Fine calls “clockspeed.”4 In the halcyon days of “build it and they will come,” product
lifecycles could run from months to years in length. You might not be sure if you really were
cycling through the Waterfall again, because you weren’t with the company during the last cycle.
Those who were had moved on or retired.

Stating the obvious, EVO is a software development method that replaces traditional “waterfall”
development with small, incremental product releases or builds, frequent delivery of the product
to users for feedback, and dynamic planning that can be modified in response to this feedback.
As originally presented by Tom Gilb5, the method had the following key attributes:

• Multi-objective driven
• Early, frequent iteration
• Complete analysis, design/refactoring, build and test in each step
• User orientation
• System approach, not merely an algorithm
• Open-ended basic systems architecture
• Result orientation, not SW development process centric

Hi-Level
Reqmnts

Hi-Level
Structure

Product
Concept

Integrate
& TestUser

Integrate
& Test

Develop

Plan
(Re-plan)

 Detailed
Requirements Design

 &
 Validate

Deliver

© Copyright 2001 Hewlett-Packard Company
3

Using EVO, a product development team divides the project into small chunks. Ideally, each
chunk is less than 5% of the overall effort. The chunks are then ordered so the most useful and
easiest features are implemented first and so that some useful subset of the overall product can
be delivered every one to four weeks. Within each EVO cycle, the software is designed, coded,
tested and then delivered to users. The users give feedback on the product and the team
responds, often by changing the product, plans, or process. These cycles continue until the
product is shipped.

EVO is thus characterized by early and frequent iteration, starting with an initial implementation,
followed by frequent cycles that are short in time and small in content. Drawing on ongoing user
feedback, plan, design, code and test are completed for each cycle, and each release or build
meets a minimum quality standard. This cycle offers opportunities to optimize results by
modifying plan, product or process each cycle. The basic product concept or value proposition,
however, does not change. (In Hewlett-Packard, we relax some of Gilb’s instructions regarding
EVO. In particular, it isn’t absolutely necessary to deliver the product to real customers with
customer-ready documentation, training, support, etc., to benefit from EVO.)

This begs the question: “When is EVO – Tom Gilb’s EVO – appropriate?” As we will describe in a
moment, switching from a traditional lifecycle, like the Waterfall, to an iterative lifecycle, like EVO,
is not free. It requires a redistribution of effort, focus, and resources. It requires cultural change
for developers and managers. And change is hard. Perhaps the most compelling reasons to
shift from Waterfall to Iterative are:

• Manage and reduce project risk.
• Manage and reduce program integration risk.
• Better fit user needs and market requirements.
• Respond to emerging and changing markets.

There are several iterative lifecycles to choose from: Staged Delivery, Tom Gilb’s EVO,
Evolutionary Prototyping, and of more recent invention, the eXtreme programming6 model. The
additional effort and discipline required for each addresses one or more of the aforementioned
benefits.

• Staged Delivery meets the objectives of managing project risk and managing program
integration risk through early indicators of progress vs. plan, frequent iteration cycles to
reduce the “big bang” effect, and flexibility to meet fixed ship dates by postponing cycles till
future releases.

• EVO is optimized to insure the end product matches user needs and market requirements, by
making course corrections as developers and users better understand each other. The EVO
lifecycle is user-centric, with continual user feedback throughout, managed high-quality user
elicitation, and incremental tuning of the product.

• EVO prototyping (sometimes called “Adaptive Delivery”), is similar to Gilb’s EVO, but spends
less time up front in requirements and architecture, and more time with multiple prototypes to
test and evolve product concept. EVO prototyping responds well to emerging and changing
markets, whereas Gilb’s EVO is designed to enhance and track understanding of customers
in a more stable marketplace.

• eXtreme programming, explained by Kent Beck in his 1999 book, was conceived and
developed to address the specific needs of software development conducted by small teams
in the face of vague and changing requirements. While described as a “lightweight
methodology,” it prescribes three of the tenets of EVO: constant integration, constant
customer feedback, and frequent re-planning.

© Copyright 2001 Hewlett-Packard Company
4

Microsoft's Synch-and-Stabilize

What of the most successful software company in the world? Do they use an iterative lifecycle? In
their book, Microsoft Secrets7, Michael A. Cusumano and Richard W. Selby, label Microsoft's
project development style "synch-and-stabilize." Microsoft TechNet refers to their process model
as "MSF," for Microsoft Solutions Framework.8 With it, Microsoft has truly been able to make
large teams work like small teams.9 The overall strategy is to quickly introduce products that are
“good enough” to gain market position, then to enhance and expand them into product families
with multiple versions and upgrades. To get that speed and that scale, teams follow a strategy of
“do everything in parallel with frequent synchronization.” Cusumano and Selby summarize the
key principles of that strategy in their 1997 article, “How Microsoft Build Software”10:

• Work in parallel teams but “synch up” and debug daily.
• Always have a product you can ship, with versions for every major platform and market.
• Speak a “common language” on a single development site.
• Continuously test the product as you build it.
• Use metric data to determine milestone completion and product release.

Any of the iterative lifecycles we’ve described matches those principles. But what Microsoft does
is a compromise between Waterfall and Iterative: each product release is chunked into 3 or 4
milestone subprojects, each with about a 3rd or 4th of the features or components of that release.
During the development phase, each subproject goes through a full cycle – design, code, test,
stabilize – for its cluster of components, before moving on to the next milestone. All code for a
subproject is synched with a daily build. At each major milestone, code from parallel subprojects
is synched and stabilized.

Alan MacCormack, Harvard Business School, writes about Microsoft’s development of its IE3
browser in “How Internet Companies Build Software11.” He notes that IE3 development was
iterative, but that product design remained flexible, in response to user feedback, and that the
EVO model “mirrors the way IE3 was built.” But Synch-and-Stabilize does differ from evolutionary
lifecycles in several ways: Its cycles are long -- approximately 3 months -- in contrast to EVO’s 2-
to-3 weeks. Also, Microsoft projects include a portion of the schedule as buffer time, from 20% in
application projects to 50% in systems or totally new projects. Gilb’s EVO uses a fixed cycle
time, with no optional slack before beginning the next cycle. (Some EVO teams do plan a
periodic “catch-up” or “clean-up” cycle, say every 4th cycle.) Whether we equate Synch-and-
Stabilize to EVO or not, Microsoft achieved many of the advertised benefits.

Choosing the Appropriate Lifecycle

Steve McConnell, in his book Rapid Development 12, differentiates lifecycles. Each has at least
one characteristic that makes it a better choice, under certain project conditions. If you are
shopping for a lifecycle, key questions you should ask include:

• How much do you understand the customer’s requirements? In many cases, our customers
can’t really articulate what they want. Or, their needs change mid-way through the project. Or,
we misunderstood what they wanted, or we chose the wrong customer to target, or … using a
lifecycle that incorporates customer feedback can be really helpful in these situations.

• How much quality does your product need? Most products are not used in life-threatening
situations, so a “reasonable” quality level is appropriate. But, if you’re working on the flight
control software for the space shuttle or a defibrillation machine or something else that could
actually kill someone with a software defect, you need an extremely high-reliability lifecycle.

• How much architectural flexibility do you need/want? Your choice of lifecycle may make it
easier/harder to change the architecture, but we think that programming paradigm has a
much bigger impact.

© Copyright 2001 Hewlett-Packard Company
5

• Can you successfully use this lifecycle? Evolutionary development on a two-week cycle is
extremely stressful if you don’t have robust project management in place. There are some
lifecycles where you can be marginally successful without, for instance, rigorous scheduling
techniques. There are others where you will be a visible, miserable failure unless you have
good scheduling practices. Make sure you choose a lifecycle you can use.

Strengths of the EVO Lifecycle

One way to evaluate whether EVO is appropriate for web development, is to compare its
advertised benefits against the web development challenges we described earlier:

• Product – changing value proposition

EVO: Better fit to user needs and market requirements.
EVO: Ability to respond to market changes during development.
EVO: Consistent high-quality user feedback (managed vs. ad hoc)
EVO: Increased opportunity to hit market windows.
EVO: Accelerated sales cycle with early customer exposure.

• Processes/People – broad responsibilities

Short frequent EVO cycles have distinct advantages for internal process and people
considerations. First, continuous process improvement becomes a more realistic possibility
with one to four week cycles. Second, the opportunity to show their work to customers and
hear customer response tends to increase the motivation of software developers and
consequently encourage a more customer-focused orientation. In traditional software projects
the customer response payoff may only come every few years and may be so filtered by
marketing and management, it is meaningless. Finally, the cooperation and flexibility of each
developer required by EVO results in greater teamwork. Since scheduling and dependency
analysis are more rigorous, there is less time, less "dead time," spent waiting on another
person to complete his/her work.

EVO: Increased product team productivity and motivation.
-- Focus maintained on product vision / value proposition.
-- Engineers see the results of their hard work much earlier.
-- Less turmoil and fire fighting just before MR
-- Stimulates engineering creativity

EVO: Better partitioning of work
-- Developers focus on providing a solution
-- Users better able to describe needs

EVO: Increased management visibility of project progress.

Each of the challenges we just addressed introduces the element of risk into a software project.
From a business perspective, the biggest benefit of EVO is significant reduction in risk. This risk
might be associated with any of the many ways a software project can go awry, including
schedule, unusable products, wrong feature sets, or quality. By breaking the project into smaller,
more manageable pieces and by increasing the visibility of the management team into the
project, these risks can be addressed and managed.

Some examples of HP projects that used EVO to mitigate their risk:

• The product team had been unable to make truly easy-to-use software in two prior attempts.
By using EVO, they were able to get very rapid feedback from the users on the usability of
the software that was under development.

• The division had a new idea for testing digital integrated circuits by treating them as analog
devices (making them much simpler to test from a programming standpoint). However, the

© Copyright 2001 Hewlett-Packard Company
6

target audience for the product, manufacturing managers, are fairly skeptical of new
technology. By using EVO, the product team was able to demonstrate the value of the new
testing technique in actual production lines.

• A platform team knew they would need to demonstrate actual progress to upper management
and to get early enthusiastic support of at least one product team using their platform. EVO
gave them both of these. In addition, they were able to assess system performance (a critical
attribute of the new platform) very early on.

In some respects, you can think of EVO as a “miner’s canary” for a project.

Overcoming Weaknesses of the EVO Lifecycle

While the benefits can be substantial, implementation of evolutionary development holds
significant challenges. It requires a fundamental shift in the way one thinks about managing
projects and definitely requires more management effort than traditional software development
methods.

The challenges in using EVO successfully are mostly, but not exclusively, human resource
issues. These include the shift in thinking about a new project structure paradigm and perceptions
that EVO requires:

• More planning
• More tasks to track
• More decisions to make
• More cross-functional buy-in and coordination
• More difficulty coordinating software/firmware development with hardware
• Customers are changing

o Implicit EVO of "next bench" no longer applicable, as SW developers are no longer
primary users of their products.

o Customers more demanding … and as a result:
o Greater customer commitment and involvement

Another “weakness” of EVO is a direct result of its most important strength: customer
intimacy in the development process. The weakness: Customers are changing. They are no
longer the poor cousins who trust that we know what’s best for them. The "next bench"
syndrome is no longer valid as, more often, we developers are no longer the primary users of
our own products. Not only that, but once we give users an ear, they become even more
vociferous. They demand more input, more involvement in product definition and design
phases which have traditionally been the undisturbed sanctum of the engineer. And as a
result, our project involves greater customer involvement. The flip side for the customer is
that we give them a voice, but expect them to work with us. It requires greater customer
commitment to the development process. Where once they needed only muster the energy
to grouse about what was released, now they are expected to repeatedly install, use and
critique what comes out every few days.

• If your infrastructure has problems, EVO will make them even “louder.”
Another weakness of EVO, compared to lifecycles with longer or more flexible release cycles,
is its huge demands upon the build and test infrastructure. If your infrastructure has
problems, EVO will put a search light on them. Practices and tools that appear to work fine
with a Waterfall become capacity limited with EVO, practices and tools like:

o Configuration Management
o Build Process

© Copyright 2001 Hewlett-Packard Company
7

o Regression Testing
o Release Testing

These perceived weaknesses of EVO are often valid; but they allude to very advantageous cost-
benefit tradeoffs. For example, since many software developers are no longer primary users of
their products, they must understand the primary users’ needs, skill level and motivation. Forging
an atmosphere of customer intimacy with developers will ultimately yield a product customers
really want.

Some helpful ways to mitigate the weaknesses of the EVO lifecycle:

• Schedule high risk activities first:
o Resolve issues early and eliminate unknowns
o Demonstrate feasibility up front

• Improve planning and scheduling skills through earlier insight; accelerate team learning.
• Avoid large-scale integration late in the project by small, frequent integration throughout.
• Make SW/FW development effort visible by delivering early, tangible results.

EVO Case Studies

Despite the objections and the transition pains, EVO works. It is working at Hewlett Packard
Company. Beginning in ‘96, HP’s process architecture group championed EVO inside HP; it has
launched EVO lifecycles with dozens of teams inside the company. Table 1 shows 5 sample
projects from among 28 we have profiled. They succeeded because those teams stuck to the
discipline of EVO, and because they reaped the benefits of EVO, early:

• Increased developer productivity
• Early release and revenue
• Awards for best-in-class by the user community
• Partner feedback
• Catching issues early

Product Type Staffing Cycle Data Results
Software 4 Engineers, 1 Project Manager 39 Cycles @

1-2 weeks
3x Productivity

Software/
Hardware

25 Engineers, 3 Project
Managers

12 Cycles @
2 Weeks

Early Revenue

Software 8 Engineers, 1 Project Manager 6 Cycles @
3-4 weeks

Best in Class Award

Software 12 Engineers, 2 Project
Managers

5 Cycles @
8 Weeks

Early Market Visibility
Partner Feedback

Table 1. HP Projects that Used EVO

Following are details from three Hewlett-Packard divisions from 3 entirely different businesses.
While all division and product names used here are fictitious, the case descriptions are real.

Jaguar Project

The first project to use EVO at ABC Division was Jaguar. It consumed four software developers
for a year and a half, eventually shipping over 120,000 lines of C and C++ code. Over 30 versions
were produced during the eleven-month implementation phase in one- and two-week delivery
cycles. Jaguar's reasons for using EVO were: (1) reduce the number of late changes to the user
interface, and (2) reduce the amount of defects found during system testing.

© Copyright 2001 Hewlett-Packard Company
8

Jaguar adapted Gilb’s EVO methods, with one exception: user surrogates. ABC Division
produces testers that are used in manufacturing environments. If the tester goes down, the
manufacturer cannot ship their product. Beta sites, even when customers agree to them, are
carefully isolated from any "real work," so Beta software is rarely, if ever, exercised. Fortunately,
the Jaguar project had access to a group of "user surrogates": application engineers in marketing
and test engineers in ABC Division’s manufacturing department. The use of surrogates did not
appear to have any negative impact.

Jaguar abandoned EVO about 2/3 of the way through the project as the final deadline loomed
and additional work was acquired. The rigorous testing and defect repair of earlier EVO cycles
was discontinued. The cost of this decision was quality! Developers began adding code at a rate
double that of previous months. With all efforts focused on finishing, over half of the critical and
serious defects were introduced in this last 1/3 of the project. Abandon EVO at your peril.

We discovered that EVO is rarely all-or-nothing, success-or-failure. Even though EVO was not
used to complete Jaguar, the product was successful. The team attributed key results to EVO:
First, it contributed to better teamwork with the users and more time to think of alternative
solutions. Second, ABC Division still had significantly better critical/serious defect levels during
system testing than with other non-EVO projects. Third, the team was surprised to see a marked
increase in productivity (measured in KNCSS per engineer-month). The project manager
attributes this higher productivity primarily to increased focus.

DEF Division

The DEF Division creates publishing e-services. Before launching its new MaxiPull project,
DEF’s management attempted to find an industry-tested product lifecycle by profiling major
software business segments and picking a match. The profile covered the variance among users,
accessibility of users, the “sizzle” they expected from products, staff turnover, and expectations
for reliability. DEF found that, as an Internet service developer, they themselves cut across those
business profiles:

• E-commerce development is technologically most similar to financial application
development:
o Requires development of large new systems – lots of documentation and design – and

minimized risk
o Fast development of add-on releases – lots of prototyping, and constant interaction with

the customer
• E-commerce customer expectations are most similar to those of mass-market customers

o Sacrifice reliability for time-to-market
o Add reliability back into release N+1
o Heterogeneous customer base (the 80/20 rule)
o Maximize sizzle

• Techniques from financial apps often do not work well in the mass-market world, and vice
versa.

Given this conundrum, DEF deferred to its e-Business platform provider/partner. BackHand
designed an e-Business construction process of 12-18 months, involving the following steps:

1. Write down an idea
2. Build a "paper-thin" prototype
3. Use the paper-thin prototype to make the idea concrete in peoples' minds
4. Refine the idea and get funding for an industrial-strength prototype
5. Build an industrial-strength prototype: v1.0
6. Launch the prototype service and refine the business idea based on experience with real

users, making constant changes to the idea/code base (resulting in iterative improvement of
the idea and iterative destruction of the code base)

© Copyright 2001 Hewlett-Packard Company
9

7. Step back from the prototype and figure out what abstractions would make the code base
smaller, cleaner, and more maintainable

8. Build v2.0
9. Re-launch the service with expanded marketing budget

DEF identified the following lifecycle requirements for its portion of the project:

• Must support early feedback
• Encourages re-planning to optimize business opportunity
• Supports rapid development practices:

o Minimizes chaos by making some activities very easy and reliable
o Maximizes staff flexibility with regularized processes

DEF chose Evolutionary Prototyping from among the iterative lifecycle alternatives. The MaxiPull
project started at Step 1 around January 1999. The HP team built a paper-thin prototype by April
1999. BackHand started work on the industrial-strength prototype in June. And the prototype
service was launched in August. A tremendous number of business idea changes were pushed
into the code base from that August debut through December 1999.

Conclusions, after the 1st year of MaxiPull:

The Evolutionary Prototyping lifecycle is appropriate for this business. But the devil is in the
details:
• DEF did not know how to acquire immediate, early feedback as soon as the product was

workable. DEF did not have the skills to do adequate requirement analysis. (This is a skill
taught in the financial world, where the customer requirements are numerous and often
conflicting and not well thought out, but not taught much in some of the other software fields.)

• DEF did not know to plan for making major changes based on that feedback.
• DEF found it difficult to set customer expectations to include experimentation.
• DEF and BackHand had different expectations for a demo-quality prototype.
• BackHand failed to understand HP’s requirements - reliability, availability, future

enhancements
• Result: DEF never really managed to Launch and Learn. DEF did launch x.0, launch x.1,

launch x.2, learn from x.0, launch x.3; learnings were delayed till launch+2. (DEF did learn,
but it was unnecessarily painful and continues to be so.)

XYZ

XYZ is a work in progress to develop a Web-based application. It started with a firm decision by
8 engineers and a project manager to use EVO. The first major challenge for XYZ was to build
the infrastructure. Once the infrastructure was in place, the XYZ team scheduled one-week EVO
cycles. Very early in the product development, the team was capable of weekly and nightly
builds. XYZ has actively pursued user feedback. The early cycles included the customer
evaluation of loosely defined product features. A set of working features has undergone the
usability testing and the product is further evolving. Frequent refactoring -- cleaning up and
restructuring code internals after external behavior has been implemented --has become a team
ritual.

XYZ has now been joined by two other teams, PQR and ABC, building applications using XYZ
code base. The PQR team also uses EVO and has synchronized its activities with the XYZ team.
The two teams, XYZ and PQR, have successfully set up joint build processes and common tools
and build environment. Communication and coordination of joint activities has been a challenge
but the two work products have become a powerful application. The ABC product has become
an integrated part of XYZ.

© Copyright 2001 Hewlett-Packard Company
10

Day XYZ Team Partners
Monday Decide activities for N*

Decide refactoring needs for N
Functionality Testing N-1

Tuesday Refactor/develop code for N Functionality Testing N-1

Wednesday Refactor/develop code for N Functionality Testing N-1
Usability Testing 1…N-1

Thursday Build/Release N Functionality Testing N-1
Usability Testing 1…N-1

Friday Evaluate feedback from N-1 (next cycle) Functionality Testing N-1 (just
completed)

Table 2. Typical XYZ Weekly EVO Activities
* N represents the current cycle.

Setting the Stage for EVO

EVO mandates a close coordination between different facets of a project namely, development,
quality assurance, human factors engineering, and marketing. It is essential that everyone
involved with the project understands the EVO lifecycle especially, his or her role, and is
committed to support the effort. Having real-customer feedback starting from the beginning of the
project is a must, and marketing should be prepared to manage the customer relationship
throughout the life span of a project.

At Hewlett-Packard we achieve this commitment by educating project personnel on EVO.
Normally, project personnel go through a three-day workshop on EVO. The XYZ project team
attended a condensed version of EVO presented by one of the authors (Steve Rhodes). This
motivated the entire group to use EVO. More importantly, the group had an opportunity to decide
upon important process parameters such as EVO cycle length, planning cycles, and change
management process. Following are some of the project artifacts that should be in place by the
end of EVO planning cycles.

Customer Value Proposition
The project must have a compelling customer value proposition. Since, product functionality is
driven by the customer feedback, a development team may be constantly working with ever
changing customer requirements. The project plan must include a well-defined mission, vision,
and objectives.

Customer Selection Process
Customer feedback must we honest and genuine to be meaningful. A customer must be an early
adopter of technology, supporter of workflow changes, willing to use an imperfect product, use
constructive criticism, and be comfortable with limited product support.

Customer Feedback Management Process
To keep customers interested in the project we must treat their feedback with sensitivity. The
process must cover feedback solicitation, evaluation, and incorporation of customer suggestions
into product requirements. If customer suggestions are not incorporated into the project, the
customer should get a meaningful explanation.

Change Management Process
In EVO, the requirements are not frozen as in the Waterfall lifecycle. The team will be faced with
the major and minor changes in the product value proposition. It is therefore necessary to
develop a well defined change management process to avoid delays in making critical decisions.

© Copyright 2001 Hewlett-Packard Company
11

Build and Deployment Process
At the end of each EVO cycle, a working set of product functionality is normally delivered to the
customer. Consequently, the build and deployment process should be well defined and efficient.
In the Internet age where new build tools often emerge, the process should be flexible enough to
take advantage of new tools with the least possible turmoil.

Minimal functionality Set
Development should begin with the identification of a minimal set of product functionality
preferably, e.g. in the form of use cases. These use cases must be validated by a group of
potential customers. In addition to clarifying customer requirements, validation also helps identify
possible customers during the EVO development.

Monitoring the Lifecycle Progress

Each cycle has scheduled activities based upon the targeted product functionality to be delivered
to the user. These cross-functional activities are specific to project management, refactoring,
development, testing, and deployment. Any deviation in the schedule indicates problems in EVO
planning.

Planned activities completed significantly early in the cycle
This indicates that the cycle length is longer than optimal and should be adjusted. Adding more
functionality in the middle of a cycle would cause a high level of turmoil.

Planned activities not completed in the cycle
Indicates that the planned functionality is more than optimal. The functionality in each cycle must
be adjusted so that it can be completed during the cycle length. It is not always necessary to
deliver new functionality in each cycle.

Customer does not have meaningful feedback
Indicates that the functionality delivered to the user does not have adequate business impact.
Evaluate or reschedule the planned functionality for each EVO. Make sure that the functionality
is delivered in the order of importance to the user. Another possible reason may be that the
customer does not feel that his/her feedback is incorporated in the product. Managing customer
relationship is an important aspect of EVO. To summarize, if the team is waiting for the next
cycle to start or rushing the current cycle to finish and the customer is not participating
enthusiastically, EVO is not making adequate progress.

Identifying and implementing continuous process improvements

This section is related to the previous section on “Monitoring the Lifecycle Progress” and
discusses some of the activities that facilitate continuous improvements in EVO. Customer
feedback is the major differentiator between EVO and the other iterative lifecycles and can
provide a strong basis for continuos process improvement. The following customer behaviors
illustrate opportunities to improve the EVO process.

Customer did not fully understand the usage of the application
The customer may not have received adequate education on the application. He/she may not
have realized how to incorporate the proposed application into their workflow. Re-educating the
customer and evaluating their actual participation should be very effective.

Customer requires more than anticipated support
Indicates that application has either too many defects to be functional or is too complex to use. If
the application is defective, management must focus on quality aspects including managing
customer requirements. If the application is too complex to use, it is time to focus on usability.

Customer is unenthusiastic in providing feedback

© Copyright 2001 Hewlett-Packard Company
12

The customer may not find the newly added functionality useful or may sense that his/her
feedback is not being incorporated in the application. The customer management team must
assure that decisions related to customer feedback are communicated to him/her in a timely
manner. The team must also diligently evaluate the priority of functionality for immediate and
future cycles.

Customer no longer sees the value in the application
This could be a serious issue. It may require switching to an alternate customer. Be prepared to
re-validate the customer value proposition and overall business plans.

Conclusion

This paper has covered:
• Challenges of Web development
• Software Development Lifecycles
• Strengths/Weaknesses of EVO
• EVO Case Studies
• Setting the Stage for EVO
• Monitoring Progress

To quote Alan MacCormack13, professor of technology at Harvard Business School:

“The benefits of an evolutionary approach to software development have been
evangelized in the software-engineering literature for many years. However, the precise
form of an evolutionary model and the empirical validation of its supposed advantages
have eluded researchers. The model has now been proved successful in the Internet-
software industry.”

References:

1 Alan MacCormack, "Product-Development Practices That Work: How Internet Companies Build
software," MIT Sloan Management Review, Winter 2001
2 Jessica Burdman, Collaborative Web Development, Addison Wesley, ISBN 0-201-43331-1
3 Steve McConnell, Rapid Development: Taming Wild Software Schedules, Microsoft Press,
1996, ISBN 1-556-15900-5
4 Charles Fine, Clockspeed: Winning Industry Control in the Age of Temporary Advantage,
Perseus Books Group, 1998, ISBN 0-738-20001-8
5 Tom Gilb, Principles of Software Engineering Management, Addison-Wesley, 1988
6 Kent Beck, Extreme Programming Explained: Embrace Change, Addison Wesley, 1999, ISBN
0-201-61641-6
7 Michael A. Cusumano and Richard W. Selby, Microsoft Secrets – How the World's Most
Powerful Software Company Creates Technology, Shapes Markets, and Manages People, 1995,
The Free Press, ISBN 0-02-874048-3
8 "MS Solutions Framework: Process Model for Application Development," Microsoft's TechNet
website, http://www.microsoft.com/technet/Analpln/process.asp
9 Michael A. Cusumano, “How Microsoft makes large teams work like small teams,” Sloan
Management Review; Cambridge; Fall 1997
10 Michael A. Cusumano and Richard W. Selby, “How Microsoft Builds Software,”
Communications of the ACM, June 1997, Vol. 40, No. 6
11 Alan MacCormack, “How Internet Companies Build Software,” MIT Sloan Management Review,
Winter 2001
12 Steve McConnell, Rapid Development: Taming Wild Software Schedules, Microsoft Press,
1996, ISBN 1-556-15900-5
13 Alan MacCormack, “How Internet Companies Build Software,” MIT Sloan Management Review,
Winter 2001

QW2001 Paper 7W2

Mr. Eric Patel
(Nokia Home Communications)

Rapid SQA: Web Testing At The Speed Of The Internet

Key Points

The quality attributes that are important in web testing●

RapidSQA philosophy, goals, and program elements●

Defect management, metrics, and release criteria for web testing●

Presentation Abstract

The demand for high quality websites in business, especially for e-commerce, has
led to the reengineering of traditional testing practices in order to keep up with this
e-business pace. Business pressures have mandated the QA organization to test
more software, in more complex environments, in abbreviated (and often
unrealistic) timeframes, while maintaining high quality. This iterative, rapid
release schedule has called for an optimized, rapid testing strategy. Rapid Software
Quality Assurance (RapidSQA) is a modified testing methodology containing best
practices for optimizing Web testing.

About the Author

Eric Patel is QA & Test Manager at Nokia where he leads a team that tests digital
communications solutions for the home. He has 10 years of experience in software
testing, test management, and software quality assurance. In addition to QW2001,
Eric has presented for the Software Quality Group of New England and will also
be presenting at BOSCON, PSQT/PSTT East, SWaNH SWEQSIG, NESQAF,
STAR East, and TCS this year.

He is a member of ASQ, IIST, and NESQAF. Eric is an ASQ Certified Quality
Manager (CQM) and ASQ Certified Software Quality Engineer (CSQE), and will
teach the CSQE Test Prep Class for the ASQ Boston Section. This year he will
participate in the Software Test Managers Roundtable (STMR), a periodic
gathering of senior practitioners in the QA industry. Eric is also a reviewer for
Software Quality Professional and The Journal of Software Testing Professionals.
He holds a Bachelor of Science degree in Electrical Engineering from the
University of Vermont.

1

1 Copyright 2000-2001, Eric Patel. All rights reserved.

RapidRapidSQA
Web Testing at the Speed of the Internet

Eric Patel, CQM, CSQE
QA & Test Manager

Nokia Home Communications
eric.patel@nokia.com

http://www.nokia.com/home

2 Copyright 2000-2001, Eric Patel. All rights reserved.

Agenda

• Challenges of Web
Testing

• Web of Quality
• RapidSQA

•Philosophy
•Goals
•Program
•Test Sequence

• Defect Management
• Metrics
• Example Release

Criteria
• Summary

2

3 Copyright 2000-2001, Eric Patel. All rights reserved.

Challenges of Web Testing

Challenge(s)

Effect(s)

• Muti-tier architecture
• Numerous end user
 variables

• Multiple failure points
• Difficult to pinpoint
 source of errors

• Time-to-market
pressures

• Date driven releases

• Shorter testing cycles
• Frequent website

updates
E-commerce functionality
mandates high reliability

• Emphasis on security
• 3rd party cooperation

No user documentation
for website

Usability becomes a vital
issue

Users with low (failure)
risk tolerance

Higher quality
expectations

4 Copyright 2000-2001, Eric Patel. All rights reserved.

Web of Quality

• Usability: ease of use, navigation, clarity
• Performance: efficiency of response times
• Credibility: reliability + scalability + accuracy
• Functionality: fitness for intended purpose
• Recoverability: failure switchover
• Security: protection from unintended use
• Compatibility: operating system and browser

3

5 Copyright 2000-2001, Eric Patel. All rights reserved.

RapidSQA Philosophy

• Quality is defined by the customer, not the
specification

• Paradigm shift from traditional lifecycles
• Proactive, effective, and efficient testing
• “Start early, test often, end never”
• Cross-functional, multi-department, team effort
• ‘Power of duplication’ testing strategy
• Continuing education and training

6 Copyright 2000-2001, Eric Patel. All rights reserved.

RapidSQA

• Goals
• Deliver customer-defined quality in rapid, sequential

releases
• Maximize testing efficiency through concurrently

running programs
• Eliminate test and project blockers
• Produce documentation as needed
• Hold the gains

• Program
• Testing foundation
• Risk-based testing
• “24/7 testing”
• Critical Issue Resolution Team (CIRT)
• Tools
• Acceptance test program

4

7 Copyright 2000-2001, Eric Patel. All rights reserved.

Recruitment Program
• Ongoing recruitment

• It takes time to find good people
• Qualifications

• Formal education
• Hands-on SQA and/or Web testing experience
• Excellent communication and interpersonal skills

• Additional beneficial technical skills
• Programming background
• Test automation experience

• Ongoing training and education
• Classes, seminars
• Certification
• Self-study
• Conferences, meetings

8 Copyright 2000-2001, Eric Patel. All rights reserved.

Working Environment
• Work hours

• Quantity vs. quality
• Avoid burnout and turnover

• Management and HR issues
• Job descriptions
• Performance management system
• Flex time, paid time off
• Reward and recognition system
• Employee retention

• Cross-functional team synergy
• Integrated team of developers, designers, and QA
• Project manager
• Rapid and empowered decision making
• Frequent written and face-to-face communications
• Release Committee

5

9 Copyright 2000-2001, Eric Patel. All rights reserved.

Testing Environment

• Three (3) separate environments
• Development (staging)
• QA (test)
• Production (live)

• QA (test) environment equivalent to production
(live) environment

• Web server
• Application server
• Database server
• Restricted access

• Test Lab
• Test every supported configuration
• Run automated test scripts
• Accommodate usability (user) testing

10 Copyright 2000-2001, Eric Patel. All rights reserved.

Risk-Based Testing
• Customer risk tolerance

• What is the level of risk that the customer will knowingly
accept?

• Early Adopters => high tolerance for risk
• Early Majority => low tolerance for risk

• Prioritized testing approach
• Identify business-critical functionality
• Test the highest risk areas => lowest risk areas
• Conduct a periodic risk assessment

• Configuration testing
• Identify supported platforms and browsers
• Create a testing matrix
• Prioritize the various combinations

• Use risk factors to create a risk profile
• Rollback strategy for risk mitigation

6

11 Copyright 2000-2001, Eric Patel. All rights reserved.

Example Risk Profile

Coding Problem Defect Customer
Tool Quality LOC (est.) History Usage Occurrence Feedback Released

High Risk:

Quiz 0 44,400 8 3 3 2 pre-1.0
Student/Grader Management 0 15,900 10 2 2 2 pre-1.0
Image DB 0 4,000 4 1 1 3 pre-1.0
Student Presentations 0 2,200 2 1 2 3 pre-1.0
Bulletins 1 24,800 8 4 1 2 pre-1.0
Homepage Design 1 17,800 3 2 1 2 pre-1.0
Path (including audio, video) 1 15,000 7 4 2 2 pre-1.0

12 Copyright 2000-2001, Eric Patel. All rights reserved.

Example Testing Matrix
Platforms

Clients & Browsers

Windows
NT Server
4.0

SPARC
Solaris
2.7

Redhat
Linux
6.1

HP/UX
10.20

IBM
AIX
4.2

Microsoft

Windows 95 (OSR 2.5)
Navigator 3.04
Communicator 4.72
IE 4.0
IE 5

Windows98 (Second Edition)
Navigator 3.04
Communicator 4.72
IE 4.0
IE 5

Windows NT Wkst. (w/SP5)
Navigator 3.04
Communicator 4.72
IE 4.0
IE 5

Macintosh
Navigator 3.04
Communicator 4.72
IE 4.5
IE 5.0

UNIX/LINUX
Navigator 3.04
Communicator 4.72

7

13 Copyright 2000-2001, Eric Patel. All rights reserved.

“24/7 Testing”

• Ongoing, multi-level test program
• Quality Engineering (QE) vs. Quality Assurance (QA)
• Review functional & design specifications
• Train developers in unit and integration testing

• Test on QA (test) and production (live) servers
• Test as thoroughly as possible on the QA (test)

servers prior to release
• Continue testing on production (live) servers after

release

• Outsourcing
• Employ the testing services of a third party
• Allows for additional concurrent coverage

14 Copyright 2000-2001, Eric Patel. All rights reserved.

Test Automation Program

• Performance and functional test tools
• Jump-start the automation effort

• Hire employees with test automation experience
• Send employees to training classes
• Hire consultants or contractors to write the scripts

• Automate tests from software components
that don’t frequently change

• Smoke
• Functional
• Performance/Load/Stress
• Regression

• Use cases will help you mimic the user’s
experience

8

15 Copyright 2000-2001, Eric Patel. All rights reserved.

Acceptance Test Program

• Acceptance Test Team (ATT)
• Employees
• Third-party participants (e.g., vendors, partners)
• Customers and end users

• Power of duplication
• Not just the SQA organization performing testing
• Coordinated and concurrent effort

• Increased coverage for compatibility testing
• Usability (user) testing

• Test prototypes and user interface (UI) mockups
• Beta testing

• Transform beta testers into "release testers" and
keep on testing

16 Copyright 2000-2001, Eric Patel. All rights reserved.

RapidSQA Test Sequence

Smoke test

Functional testing

Performance testing
(automated)

End-to-end testing

Regression testing

Ad hoc testing

Beta release
decision

Obtain build Beta

9

17 Copyright 2000-2001, Eric Patel. All rights reserved.

Defect Management

• Documented defect management process
• Definitions of defect and enhancement priorities
• Workflow

• Web-based defect tracking system
• Remote access
• 24/7 access

• Fast resolution of critical bugs
• CIRT

• Bug review (triage) meetings
• Cross-functional sit-down meetings
• Daily stand-up meetings

• User feedback button on web page
• Issue submittal form for defects or enhancements

18 Copyright 2000-2001, Eric Patel. All rights reserved.

Metrics
• Defect List

Yesterday's ------------- T o d a y ------------ Today's
Priority Total Found Checked In Fixed Total
Critical
High
Medium
Low
Total

Today's Total = (Yesterday's Total) + (Found) – (Fixed)

• Quality Condition (QUALCON) Rating
Critical Find/Fix Tester Customer Reported

Rating Defects Ratio Feedback Critical Issues DRE
5 none < 1 A none > 80%
4 < 3 < 1 B 1 > 80%
3 < 5 > 1 C 2 > 70%
2 < 10 > 2 D < 3 > 60%
1 > 10 > 2 F > 3 > 50%

10

19 Copyright 2000-2001, Eric Patel. All rights reserved.

Example Release Criteria

• All functional requirements have been satisfied
• All reported Critical Priority defects have been closed
• Reported High Priority defects have been deemed

acceptable by the Release Committee or have been
addressed as a workaround

• Results of performance testing are equal to or better
than the current version

• High risk code has been reviewed
• All graphs show positive trends for X consecutive

days (minimum) leading up to the release date
• Sign off has been granted by the Release Committee

20 Copyright 2000-2001, Eric Patel. All rights reserved.

Summary

• ‘Rapid SQA’ should not result in ‘diminished
quality’

• Web testing demands smart testing
(effectiveness and efficiency)

• Communicate tradeoffs with cost, time and quality
• Balance ad hoc and disciplined testing practices
• Collaborate closely with developers and

designers
• Objective release criteria and informed decision

making
• Don’t forget the interpersonal stuff
• Keep learning

QW2001 Paper 8W1

Dr. James Helm
(Univ. of Houston Clear Lake)

Web-Based Application Quality Assurance Testing

Key Points

Website Application Testing●

Quality Assurance●

Web Testing●

Presentation Abstract

Web-Based application quality assurance testing can be defined as a planned and
systematic pattern of actions necessary to instill confidence that the website client
and server products conform to an established set of measurements. Web-based
testing is a repetitive process of identifying defects, where a defect is any variance
between actual and expected results. A flaw in either the client or server
application software can cause a defect. The website is essentially client/server
applications - with web servers and browser clients. Web testing must be given to
interactions between browser pages, TCP/IP communications, Internet
connections, firewalls, applications that run in web pages (such as applets,
Javascript, plug-in applications), and applications that run on the server side (such
as CGI scripts, database interfaces, logging applications, dynamic page generators,
asp, etc.). In addition there are a wide variety of servers and browsers, various
versions of each, with differences between them, variations in connection speeds,
rapidly changing technologies, and multiple standards and protocols.

Web site testing will become a major ongoing quality assurance function where
web-testing tools will ensure a repetitive and repeatable testing process. This paper
looked at six web-based testing tools. The tools were evaluated based on:
timelines, structural quality, content accuracy and consistency, response time and
latency, and performance. Timeline evaluate how often and rapidly a website has
changed since the last upgrade. Structural quality measures how well all parts of
the website link together. The links and images inside and outside the site must
exist and be on line. Content of the critical pages must match what the uses require
to be displayed. Key phrase must continue to exist in dynamically changeable
pages and critical pages must maintain the same quality from version to version.
Accuracy and consistency means that web pages downloaded from one time to the
next are still accurate and consist with previous versions. Response time and

latency measures the website server response to a browser request within a
tolerable performance parameter. It should also test pages of the site that are so
slow that a user will discontinue using the site. Performance measures the cycle of
browser to web, web to website, website back to web, web back to browser. It also
measures the web load based on usage, number of users, and critical times. The six
web-based testing tools used to evaluated these quality assurance criteria were:
Rational Siteload, Doctor HTML, Dr. Watson, NetMechanic HTML ToolBox,
Web Performance Trainer 2.0, and WebART .

About the Author

James C. Helm received the BS in Mathematics and Physics from Missouri Valley
College, the MS in Mathematics from the University of Missouri at Rolla, and the
Ph.D. degree in Industrial Engineering, Operations Research from Texas A&M
University. He is presently the Chair of Systems Engineering and associate
Professor of Software Engineering in the School of Natural and Applied Sciences
at the University of Houston Clear Lake. He has had thirty years of industrial
experience as: Senior Principal Engineer with the Boeing Co. at NASA/JSC Sunny
Carter Test Facility supporting the International Space Station; a Senior Computer
Scientist with SAIC; Principal investigator of Ada Research and Development
(R&D) with Ford Aerospace and Communications; HAL/S Project and Contract
Manager for HAL/S Compiler for the Space Shuttle at Intermetrics; and with IBM
FSD supported NASA on GEMINI and APOLLO missions. He was an instructor
in Mathematics at the University of Missouri Rolla, and has taught Industrial
Engineering and Computer Science courses at Texas A&M, was an adjunct faculty
at UHCL for twenty-five years. His areas of interest are Systems & Software
Engineering, operations research, computer science, and simulation and modeling.

1

May 31, 2001 Web-Based Quality Assurance Testing 1

Web-Based Application Quality
Assurance Testing

James C. Helm
Assistant Professor, Systems Engineering
School of Natural and Applied Sciences

University of Houston Clear Lake
helm@cl.uh.edu http://nas.cl.uh.edu/helm

Commercial Quality 8W1

May 31, 2001 Web-Based Quality Assurance Testing 2

Presentation Overview

• Introduction
• Testing Tools
• Rational SiteCheck
• Summary
• Reference

2

May 31, 2001 Web-Based Quality Assurance Testing 3

Introduction

• Web-Based application quality assurance testing can be
defined as a:

– planned and systematic pattern of actions necessary to:
• instill confidence that the website client and server

products conform to an established set of
measurements.

• Web-Based testing is a:
– repetitive process of identifying defects

• a defect is any variance between actual and expected
results

May 31, 2001 Web-Based Quality Assurance Testing 4

This paper looked at six web-based testing tools.

The tools were evaluated based on:

1. Timelines
2. Structural quality
3. Content
4. Accuracy and Consistency
5. Response Time and Latency
6. Performance

3

May 31, 2001 Web-Based Quality Assurance Testing 5

Quality Assurance Testing Criteria

1. Timeline evaluate how often and rapidly a website has changed
since the last upgrade.

2. Structural quality measures how well all parts of the website link
together. The links and images inside and outside the site must exist
and be on line.

3. Content of the critical pages must match what the uses require to be
displayed. Key phrase must continue to exist in dynamically
changeable pages and critical pages must maintain the same quality
from version to version.

May 31, 2001 Web-Based Quality Assurance Testing 6

Quality Assurance Testing Criteria
(cont)

4. Accuracy and consistency means that web pages downloaded from
one time to the next are still accurate and consist with previous
versions.

5. Response time and latency measures the website server response to
a browser request within a tolerable performance parameter. It
should also test pages of the site that are so slow that a user will
discontinue using the site.

6. Performance measures the cycle of browser to web, web to website,
website back to web, web back to browser. It also measures the
web load based on usage, number of users, and critical times.

4

May 31, 2001 Web-Based Quality Assurance Testing 7

The Six Web-Based Testing Tools Were:

1. Rational SiteCheck
2. Doctor HTML
3. Dr. Watson
4. NetMechanic HTML ToolBox
5. Web Performance Trainer 2.0
6. WebART

May 31, 2001 Web-Based Quality Assurance Testing 8

Rational Suite Enterprise
• Rational Test is an integrated product under Rational Suite Enterprise for the

automated testing of enterprise-level client/server applications.
• Rational Test combines client/server testing, management tools, and a formal

methodology for automated testing of cross-Windows client/server
applications.

• Rational Test is comprised of the following component products:
– Rational Robot (test recording tool),
– Rational ClearQuest / TT Edition (defect tracking),
– Rational SiteCheck (web site management),
– Rational SiteLoad (web site load analysis),
– TestManager WebEntry (web-based defect entry tool)
– TestManager (test planning, management, and analysis tool).

5

May 31, 2001 Web-Based Quality Assurance Testing 9

Rational SiteCheck

• Used to administer any Intranet or World
Wide Web site.

• Perform Quality Assurance on:
– folders and files
– check links
– monitor sites for changes and updates
– examine the site for defects
– and more

May 31, 2001 Web-Based Quality Assurance Testing 10

Preparing for the Quality Assurance Test

6

May 31, 2001 Web-Based Quality Assurance Testing 11

Page View selected form View

May 31, 2001 Web-Based Quality Assurance Testing 12

Site Property Feature

7

May 31, 2001 Web-Based Quality Assurance Testing 13

Generate Site HTML Report form Tools

May 31, 2001 Web-Based Quality Assurance Testing 14

Summary

• The goal is to prevent defects and Provide Quality
Assurance

• Web-based testing is now a major ongoing quality
assurance function where web-testing tools will:
– Ensure a repetitive and repeatable testing process
– Sustain Quality for Web Servers and Browser Clients

8

May 31, 2001 Web-Based Quality Assurance Testing 15

Reference
• H. Berlack 1992. Software Configuration Management. New York, NY: John

Wiley & Sons, Inc.
• J. Buckley 1993. Implementing Configuration Management, Hardware, Software and

Firmware. Los Alamitos, CA: IEEE Computer Science Press.

• G.G. Schulmeyer and J.I. McManus1992. Handbook of Software Quality Assurance.
New York, NY: Van Nostrand Reinhold.

• David Whitgift 1991. Methods and Tools for Software Configuration Management. New

York, NY: John Wiley & Sons, Inc.

• http://watson.addy.com
• http://www.cigital.com/marick/
• http://www.methods-tools.com/tools/frames_testing.html
• http://www.netmechanic.com
• http://www.rational.com
• http://www.softwareqatest.com/qatweb1.html

1

Web-Based Application Quality Assurance Testing

James C. Helm
Assistant Professor, Systems Engineering
School of Natural and Applied Sciences

2700 Bay Area Boulevard
Houston, Texas 77058-1098

VPN 281-283-3875 FAX 281-283-3828
helm@cl.uh.edu http://nas.cl.uh.edu/helm

Abstract

Web-Based application quality assurance testing can be defined as a planned and
systematic pattern of actions necessary to instill confidence that the website client and
server products conform to an established set of measurements. Web-Based testing is a
repetitive process of identifying defects, where a defect is any variance between actual
and expected results. A flaw in either the client or server application software can cause
a defect. The website is essentially a client/server application - with web servers and
browser clients. Web-Based testing will become a major ongoing quality assurance
function where web-testing tools will ensure a repetitive and repeatable testing process.
This paper looked at six web-based testing tools. The tools were evaluated based on:
timelines, structural quality, content, accuracy and consistency, response time and
latency, and performance. The six web-based testing tools used to evaluated these
quality assurance criteria were: Rational SiteCheck, Doctor HTML, Dr. Watson,
NetMechanic HTML ToolBox, Web Performance Trainer 2.0, and WebART.

Introduction
Web-Based application quality assurance testing can be defined as a planned and
systematic pattern of actions necessary to instill confidence that the website client and
server products conform to an established set of measurements. Web-Based testing is a
repetitive process of identifying defects, where a defect is any variance between actual
and expected results. A flaw in either the client or server application software can cause
a defect. The website is essentially a client/server application - with web servers and
browser clients. Web testing must be preformed for interactions between browser pages,
TCP/IP communications, Internet connections, firewalls, applications that run in web
pages (such as applets, Javascript, plug-in applications), and applications that run on the
server side (such as CGI scripts, database interfaces, logging applications, dynamic page
generators, asp, etc.). In addition there are a wide variety of servers and browsers,
various versions of each, with differences between them, variations in connection speeds,
rapidly changing technologies, and multiple standards and protocols.

Web-Based testing will become a major ongoing quality assurance function where web-
testing tools will ensure a repetitive and repeatable testing process. This paper looked at
six web-based testing tools. The tools were evaluated based on: timelines, structural
quality, content, accuracy and consistency, response time and latency, and performance.

2

Timeline evaluate how often and rapidly a website has changed since the last upgrade.
Structural quality measures how well all parts of the website link together. The links and
images inside and outside the site must exist and be on line. Content of the critical pages
must match what the uses require to be displayed. Key phrase must continue to exist in
dynamically changeable pages and critical pages must maintain the same quality from
version to version. Accuracy and consistency means that web pages downloaded from
one time to the next are still accurate and consist with previous versions. Response time
and latency measures the website server response to a browser request within a tolerable
performance parameter. It should also test pages of the site that are so slow that a user
will discontinue using the site. Performance measures the cycle of browser to web, web
to website, website back to web, web back to browser. It also measures the web load
based on usage, number of users, and critical times.

The six web-based testing tools used to evaluated these quality assurance criteria were:
Rational SiteCheck, Doctor HTML, Dr. Watson, NetMechanic HTML ToolBox, Web
Performance Trainer 2.0, and WebART.

1. Rational SiteCheck
Rational Test is an integrated product under Rational Suite Enterprise for the automated
testing of enterprise-level client/server applications. Rational Test combines client/server
testing, management tools, and a formal methodology for automated testing of cross-
Windows client/server applications. Rational Test is comprised of the following
component products: Rational Robot (test recording tool), Rational ClearQuest / TT
Edition (defect tracking), Rational SiteCheck (web site management), Rational SiteLoad
(web site load analysis), TestManager WebEntry (web-based defect entry tool), and
TestManager (test planning, management, and analysis tool).

Rational SiteCheck can be used to administer any Intranet or World Wide Web site.
Using Rational SiteCheck, the user can manage the folders and files, check links, monitor
sites for changes and updates, and examine the site for defects. In addition, the following
can be performed using Rational SiteCheck:

• Visualize the structure of Web site through PageView with an effective graphical
display, and centering of pages, it not only displays the structure of the Web site, but
can also display the relationship between each page and the rest of the site.

• It Identifies and analyzes web pages with active content (forms, Java, JavaScript,
ActiveX, and Visual Basic Script) through Active Scan View.

• It filters information using the List View, so that specific file types and defects can be
viewed, including broken links.

• It can be used to examine and edit the source code of any web page, with color-coded
text, through Source View.

• Another feature called Site Monitor enables monitoring of web sites.

3

• It can manage or analyze a sub site of the main site using the Site Root settings.

• Rational SiteCheck can update and repair files using the integrated editor or configure
HTML editors to perform modifications to HTML files.

• It helps reorganize or maintain files on the web site at the click of a mouse. When the
file is moved, renamed, or deleted, LinkWizard automatically repairs broken links.

• Performs comprehensive testing of secure web sites. Rational SiteCheck provides
Secure Socket Layer (SSL) support, proxy server configuration, and support for
multiple password realms.

Testing Process And Results Using Rational SiteCheck
Preparing For Testing - This step involves providing the URL of the web application to
be tested. The URL can be specified in different domains as indicated in the sample
shown below

Testing Process By Rational SiteCheck - Once the URL of the site is specified,
Rational SiteCheck loads the site and performs thorough checks using various features.
The various testing features and their results are as follows:

PageView Feature - This feature gives the visualization of the structure of Web site with
an effective graphical display, and centering of pages, it not only displays the structure of
the Web site, but can also display the relationship between each page and the rest of the
site. It takes the default as the main page and lists all the input links to this site and all
the out going links from this site to the external links. Sample view of the PageView
Feature when applied to the users web application

4

ActiveScan View Feature - A page with active content is any page that contains a form,
an ActiveX control, a Java applet, JavaScript, or VB script. ActiveScan View is used to
follow links on the Web site that is only available through user input. In ActiveScan
view, the selected page appears on the bottom of the screen as it would in a browser. Data
can be entered (provided the Web page accepts data entry) and the entries will be
registered in the ActiveScan Entries section in the top portion of ActiveScan View, once
the form is submitted. This procedure verifies that there are valid links from the active
content page. Although ActiveScan View resembles Browser View, links cannot be
followed; the user must switch to Browser View.

Site Properties Feature - The Site Properties View displays valuable statistics pertaining
to the test Web site. This information is placed into three categories. General Site
Information gives information such as the site root, the total number of levels that were
read by Rational SiteCheck, and the total number of files located on the Web site. The
Site Totals section records the totals for HTML pages, GIF files, External Links, etc. The
third section provides statistics on what is contained in the HTML Pages. Totals are
provided on the number of HTML pages containing Java Applets, JavaScript, ActiveX
Controls, VB Scripts, Frames, and Forms.
The Sample view of this Feature on the test Web Site is as follows:

http://dcm.cl.uh.edu/student/index.html - Site Properties

Scan Start Time: November 20, 2000 8:43 PM

ServerType: Microsoft-IIS/5.0

General Site Information

Scan Status: Scan Complete
Total Number of Files: 7
Number of Levels Read on Site: 3
Total Site Size: 0.27 KB

5

Total Scan Time: 00:00:01

Site Totals

Total Number of HTML Pages: 5

Total Number of GIF Files: 0

Total Number of JPEG Files: 1

Total Number of Links Not Found: 1

Total Number of Failed Assertions: 0

Total Number of Mailto Links: 1

Total Number of External Links: 6

HTML Page Information

Total Number of Pages with Java Applets: 0

Total Number of Pages with JavaScript 0

Total Number of Pages with ActiveX Controls: 0

Total Number of Pages with VB Script 0

Total Number of Pages with Frames: 1

Total Number of Pages with Forms: 0

Total Number of Pages with Active Content: 0

ListView Feature - This view allows the user to see a list of files located on the current
site. By default, a List View includes the following information about the file:

Heading Description
Path The complete path from the root of the site.
Filename The name of the file excluding the path.
HTTP Code Used only for Internet sites. When a request is made to a server, a

Return code is sent back to the browser.
Title The title of an HTML document.
Author The author of an HTML document.
Size The size of the file, in bytes.
Total Size The size of the file including the size of other files (such as frames

or image files) contained within it.
Created The date the file was created.
Last Modified The date the file was last modified.
Inbound Links The number of links pointing to the file.
Outbound Links The number of files that the selected file points to.
External Links The number of links to files located outside the current Web site.
Virus Used only on sites opened through the local file system. Gives the

name of the virus.

6

The download speeds columns indicate the estimated time a file takes to download over
different connections. This is an especially useful feature when used on a graphic-
intensive site.

• In List View, the information can be displayed on all files found when Rational
SiteCheck scans a Web site, or the information can be displayed on certain types
of files. For example, the user can display pages with broken links or pages with
JavaScript.

• In this view various different results can be obtained depending on the assertion
that the user specifies.

• For Example: Using the Defects Option of the ListView Feature the use can print
information regarding pages that have broken links or gather information
regarding the pages that have slow loading time.

The following is a sample view of the Defect option that gives the information of the
pages in the test site that has links, which are broken:

The following is a sample view of the Defect Option, which gives information about all
the slowly downloading pages:

7

Generate Report Feature - This feature generates a comprehensive report of testing the
test web site. The sample figure shows all the options for which the Rational SiteCheck
can generate reports for:

Here is the sample of the “Executive Summary Report” That Rational SiteCheck
produced for this test site:

Executive Summary

for http://dcm.cl.uh.edu/shahn

Executive Summary Problem Reports Site Properties

8

This report highlights key problem areas on http://dcm.cl.uh.edu/shahn as detected by
Rational SiteCheck.

Scan Details Analysis completed on Friday, November 24, 2000 5:12 PM using
Rational SiteCheck.

Broken Links 1 (6.67%) of the 15 links on this site are broken.

Pages with Broken
Links

1 (9.09%) of the 11 pages on this site have links that are broken.

Slow Pages 5 (45.45%) of the 11 pages on the site have download times exceeding
50s at 28.8 modem speeds.

Permanently Moved
Pages

0 (0.00%) of the 15 links are permanently moved. Links to each
permanently moved page should be updated to reflect its new location.

Failed Assertions 0 (0%) of the 0 Assertions on this site failed.
0 (0%) of the 0 Global Assertions on this site failed.
0 pages on the site failed Global Assertions.

The above is the HTML summary report that is generated for the test web site. The
executive summary report has various links, which give information about the test site
like:

• Scan Details – This link gives the various statistics of the given test site
• Broken Links – This link gives the details of pages that are broken
• Pages With Broken Links – This link gives the pages that contain the broken links

2. Doctor HTML
Doctor HTML is an online web page checker by Imagiware. It checks spelling, forms,

table structure, form structure, tag usage and validates links. The primary focus of this
tool is to provide a clear, easy-to-use Web Interface for report configuration that is
relevant for improving your Web page. The user can get Informative, nicely formatted
report with hyperlinks to additional information. The Dr. HTML has ability to test Web
pages that are password-protected. The user can take single page analysis or whole site
analysis.

• Single page analysis
In single page analysis, to test the URL, the user can enter the URL of the tested Web site
in the text window, then select the testing format. By default, Doctor HTML performs
all available tests on the page and displays a report containing only the errors that were
found. If the user wants to see everything tested (not just the errors), then select the
"Long" format. The user can also check the button "Select from list below" and then just
select the available tests. For example, the user can check the home page of School of
Nature and Applied sciences of UHCL:

9

As can be seen from above, the single page analysis can take the following nine report
options:
• Check spelling errors in the document (provide suggestions for potentially

misspelled words) - This testing removes HTML directives and accented text before
running the document through a spelling checker, eliminating most of the false
alarms.

• Analyze the images (size, number of colors, etc.) - It loads all of the images in a
document, provides the bandwidth consumed by each image, roughly displays
download times over a 14.4kbps modem (now the most common speed for dial-up
access users. Excessive load times for individual images are highlighted in different
shades of red), reports the dimensions of the images in pixels and the number of
colors in the image which has a direct bearing on how much bandwidth the image
consumes.

• Test the document structure and flag invalid HTML - This feature tests the overall
document structure except tables, which are dealt with separately. The test looks for
unclosed HTML codes, which may cause problems on some browsers. When used in
conjunction with "Show command hierarchy", this report can be helpful in hunting
down extra or missing HTML tags.

• Examine image syntax (flag missing, but recommended elements) - This test deals
with one of the most common mistakes in HTML coding: overlooked image
command tags. Specifically, it checks each image command for HEIGHT, WIDTH
and ALT tags, and reports if they are absent. These tags are important for quick
image loading and page formatting, as well as providing information for browsers
lacking images.

• Examine table structure - This feature tests the table structure on the page. It
specifically looks for unclosed <TR>, <TH> and <TD> tags inside a properly defined
table (i.e., one which has both an open and close <table> tag). It also reports on
<TR>, <TH> and <TD> tags that appear outside of any properly defined table, since
these may cause formatting errors on some browsers.

10

• Verify that all hyperlinks are valid - It looks for dead hyperlinks on your pages and
reports whether the URL is still present or the server returns an error. To make this
feature work with a typical number of links on a page (about 30), the timeout for each
link test is 10 seconds. This may cause some slow links to timeout, and the user will
have to check them manually. The report also informs the user how large the
destination URL is, so that they can check unusually small returns for short messages
such as "This page has moved!"

• Examine form structure - For those sites that employ forms, this tool can be handy
for checking input types and variable names. Currently, Doctor HTML only looks at
<INPUT> commands, and does not currently test <SELECT> or <TEXTAREA>
command.

• Show the command hierarchy - This task presents the HTML commands that are
found in the document, with regular text removed. The source is indented to reflect
inclusion in containers, which is helpful in hunting down extra commands in the
code. This option is most useful when combined with one or more of the above
structure tests. The outline is displayed in a scrolling <textarea>. If your browser is
Javascript-enabled, then clicking on the button labeled "Show Printable Version" will
display the outline in a separate window, which can then be printed for easy
reference.

• Shows the page being tested - If your browser supports Javascript, selecting this
option will cause the creation of a window containing your Web page. This allows the
user to view both their Web page and the Doctor HTML report at the same time.

Site analysis
The Site Doctor is a program that is used to diagnose your entire web site or a subset of
pages at once. It simply provide a top level URL to receive a site map showing page
connectivity and individual Doctor HTML reports for each page. The site doctor program
consists of two components: sitemap and sitedoc.
• sitemap program produces a map of all the web pages connected to a top level URL

down to a given depth. The user selects which pages to diagnose based on the output
of sitemap.

• sitedoc program produces reports on the desired documents.

Comments
The user can sign up for five free single site analyses or make a whole site analysis of a
subset of pages. It is a powerful web-hosting tool. A Site Analysis will descend through
the user's Web site looking for pages to test. It will then produce a summary report on all
of the problems found, as well as full Doctor HTML reports for each page. The user may
purchase access to the program through RxHTMLpro or license the program to run on
their local Intranet.

11

3. Dr Watson
Description:

• Dr. Watson is a free service to analyze a web page on the Internet.
• Dr. Watson understands the latest HTML 3.2 standards, as well as Netscape and

Microsoft extensions up through version 4.x.
• It also checks out many other aspects of the site, including link validity, download

speed, search engine compatibility, and link popularity.
• It guesses on how long it takes your page to download at various connection

speeds.
• In addition to spell checking the page, Dr. Watson also generate some simple

word-count statistics, like average word length.
• Finally, Watson can query the AltaVista database to see how many other pages

have links to the specified page.
• Dr. Watson is not available for purchase.
• I have used version 4.0 of the tool to test my site.
• For each option, click on the -? - next to it for an explanation of that option.
• For some options, there are additional details available. Click on the after the

option to see the details.

Testing Website Using Dr. Watson
To analyze a single page from the website, in the text window, enter the URL of the Web
page. Then select the tests to be performed. A description of the available tests and
options is provided:

12

• Analyze HTML Syntax – These option checks the HTML syntax using the
options that have been selected for “Browser Extensions Allowed” and “HTML
Analysis Depth”.

• Browser Extensions Allowed – Netscape and Microsoft have both made
“extensions” to standard HTML. This option lets the user choose which, if either,
of the sets of extensions will be considered legal.

• HTML Analysis Depth – The level of HTML compliance strictness and whether
or not style warnings will be included can be decided.

• Verify Regular Links – This option verifies that all the links are working. It only
checks that if on clicking on a particular link a person gets somewhere and not
that the final destination is correct.

• Verify Image Links – This option verifies that links to images are working. It
only verifies that the link will load something, it cannot verify that the URL
points to the correct image or even an image at all.

• Generate Word Counts – This option gives the number or words, average word
length and number of unique words on the page after taking out all HTML tags.

• Compute Estimated Download Speeds – This option estimates how long the
page takes to load into a browser at various connection speeds.

• Check Search engine Compatibility – This option checks to see how well the
page will cooperate with search engine and indexing robots by analyzing the
META tags.

• Check Site Link Popularity – this option queries the AltaVista search engine to
see how many other pages have links to this page.

13

URL (http:// is optional)

Analyze HTML syntax

Verify regular links

Verify image links

Generate word counts

Spell-check non-HTML text

Compute estimated download speeds

Check search engine compatibility

Check site link popularity

Proceed with diagnosis

Browser extensions allowed

None

Netscape 4.x

Microsoft IE 4.x
HTML Analysis depth

Level of HTML standards enforcement

Lax

Normal

Strict

Include style warnings

4. NetMechanic HTML ToolBox
Description: NetMechanic HTML ToolBox scans web pages and interrogates the
structural quality, content accuracy and consistency of the page. It repairs common
HTML errors like finds broken links, gives help with HTML tags, check load time,
schedule automatic tests and is easy to use. HTML Toolbox comes with these state-of-
the-art tools:

o Link Check
o HTML Check and Repair
o Browser Compatibility
o Load Time Check
o Spell Check
o It tests sites of up to 400 pages.

• Identifies and fixes the majority of common HTML errors. - HTML Toolbox will
spot common HTML code errors, automatically fix the code, and generate a repaired
file for the user to upload. It doesn't fix every problem, but it will still identify those
problems that it can't fix.

• Automatic testing. - Schedule weekly, biweekly or monthly tests of the site. It will
notify the user by email when the results are ready.

• Testing on demand. - Log into the user account and test the site at any time.

• Configurable. - Tell the user what tests they want to run. Tailor our tools to the user
preferences.

14

To Test Website Using NetMechanic HTML ToolBox

• Enter URL of the WebPages and then enter email address.

• The user has option of selecting one page or 20 pages

• Results are sent by email but if the user wants an instant result and the WebPages is
not too long, then the user doesn’t need to enter email address and the results are
shown within a minute.

• It is displayed as follows:

• Check user links, HTML, page load time, spelling, and more!

URL: http://

Email:

Pages: 1 Page 20 Pages

Free Monthly Tune Up

Free Monthly Site Tips Newsletter

Customize Your Test
Go!

By default all five tests are carried out, but there is an option to customize the tests as
shown below:

(1) Enter Your URL: http://

(2) Enter Your Email Address:

(3) What tools would you like to use?

Link Check

HTML Check & Repair

Browser Compatibility

Load Time Check

Spell Check

(4) How many pages should we test? One Page 20 Pages

(5) Get our free monthly newsletter? Yes!

Thus, NetMechanic HTML ToolBox is good tool to check a website and make the
content free of errors like broken links, syntax errors and it also measures the load time of
the WebPages. When testing is finished, a detailed summary report is sent via email or
instantly within minute. Herewith, I have attached summary report of the website I tested.

15

5. Web Performance Trainer 2.0
Web Performance Trainer 2.0 simulates multiple users hitting a web site to find
performance bottlenecks, increase performance, or do capacity planning. Web
Performance Trainer 2 is a solution to the problem of finding out how many users a web-
based application can handle. It's designed to be up and running in a few minutes, so it is
possible to get an accurate picture of the web sites scalability in under an hour. Once the
user has the basic information they need, they can re-run the tests while tuning out the
back-end or swapping out equipment until the optimal combination is found.

Because Web Performance Trainer is based on recording browser/server interaction
rather than emulating a browser, it is extremely accurate. By using recording, the user can
see exactly what is happening between the browser and server, and pinpoint bottlenecks
using the analysis tools.

Testing Methodologies
To get Web Performance Trainer 2 free, register on their web site. Once that is done, the
user will receive an email with the location and instructions for downloading the installer.
To download the installer, chose the right file for the operating system, and click on it to
download.

• Pick a Test Machine - The test machine should be at least a 200MHz system with 64
megabytes of free memory. The test machine should be comparable to the server. In
order to run Web Performance Trainer the user needs to have a high-speed network
connection between the web server they are testing and the machine where Web
Performance Trainer is installed.

• Run the Installer - For Windows, double-click on the install program to execute it,
and follow the program's instructions. For Solaris, after downloading, open a shell
and cd to the directory where the installer was downloaded. At the prompt type: sh
./wpt2_0.bin.

• Install The License - The license file is named "License.class" and is sent as an
email attachment. Save it to disk in the directory
<INSTALL_DIR>/com/webperfcenter, where <INSTALL_DIR> is the directory
where the user installed the Web Performance Trainer.

• Test The Installation - running Web Performance Trainer can test the installation.

• Configure the Browser - Configure the browser to use Web Performance Trainer as
a proxy server. Netscape and Internet Explorer, as well as other browsers, support the
use of proxy servers. Web Performance Trainer sits between the browser and the web
server, recording all communication between the browser and the web server. For
Internet Explorer, Bring up the Internet Options Dialog by choosing the Tools Menu,
and then Internet Options. Click on the LAN Settings button to view the screen
below. In the Proxy Server section select "Use a proxy server". Type in "127.0.0.1"
for the Address, and 8081 as the port. Configure the HTTP connection for the

16

browser for a proxy using the "Advanced" tab of the same Options Dialog. Make sure
that the "Use HTTP 1.1 through proxy connections" option is unchecked.

• Testing the Proxy Configuration - To test the proxy configuration of the browser,
start Web Performance Trainer and try to use the browser as normal. The best web
server to use in the test is the web server on the local LAN that the user is planning to
test. Try to browse the web site normally and try to view any of the web pages. If the
web page does not appear as normal, try setting the browser back to its normal
configuration and verify that the web page is currently accessible.

• Record Business Cases - The next step is to think about how users interact with the
web site, and divide up the interactions into business or use cases. Typical business
cases include such things as:
• Signing up for membership
• Searching for a product
• Purchasing a product
• Visiting the product support page

Select Record->New Business Case and a dialog will ask to name the business case.
Click OK. The business case will appear in the list of business cases that appear
throughout the program. Select the business case by clicking on it, and either select
Record->Start or click the start button to start recording. Now start the browser if it
isn't started already, and view the web page(s) that comprise the business case. This
can be any combination of online forms, JavaScript, or applets. As the user records,
the tables below will fill up with the HTTP commands that were sent to the server:
The HTTP commands will be parsed into Web Pages and URLs. If the browser
works, but the web pages are being displayed slowly, be sure it isn't the web site or
the network that is causing the slowdown, finished, click on the Stop button to stop
recording.

• Browse Web Pages - Once there are web pages recorded the user can browse through
them, examining the low-level headers that were sent between the browser and web
server. There are three main tables in the Recording Tab. The first table lists all of the
business cases. Clicking on the name of a business case, displays the contents of that
business case in the Web Page Table that is in the middle. Clicking on a row in the
Web Page Table displays the contents of that web page in the URL Table. This
approach lets Web Performance Trainer support the most complex web pages, which
may contain links to other web servers on a variety of ports.

• Preparing the Test Machine - Running a performance test is a CPU and memory
intensive operation. In order to get the most out of the test machine, and insure the
most accurate statistics make sure there are no background processes running on the
test computer. While the performance test runs. Web Performance Trainer 2.0 will
monitor the CPU usage and make sure the machine is not overloaded. When the CPU
Usage/Load Average gets too high Web Performance Trainer will stop adding new
virtual users. Note that if the machine's CPU load is too high at the beginning of the

17

test, no users will be added at all. At this time check your machine's CPU load
average. To check the load average on Windows NT, bring up the Task Manager by
hitting control-alt-delete and clicking on the Task Manager button. The CPU Usage is
displayed on the bottom of the dialog as a percentage. Normal usage when the
computer is idle should be under 5%. Check the list of applications to see if any of
them or than the Task Manager or Explorer are taking up CPU time.

• Configuring The Performance Test - Start with a low number of users initially and
then increment the number of users every minute. All this can be specified on the
Playback tab. Duration's can be in units of hours, minutes, or days. The duration of
the test should change depending on the testing goals. To get just an idea of the speed
of certain operations on the site, useful performance information can be gained for
tests that are a few minutes long. We can then tweak parameters in scripts or machine
configuration and see if it has an affect on performance.

• Running the Performance Test - Once the performance test is configured clicking
on the Start button can start it. The test can be ended at any time by clicking on the
Stop button.

• View Statistics - The statistics view gives numerical information that allows the user
to determine in a bottleneck has occurred. The same information can be viewed in
graphical form in the Graph Tab. The statistics view shows data values for high and
low level objects, either for an entire business case, or for an individual image or
back-end script. The statistics view consists of a test results browser, on top, and a
test detail table below.

• View Graphs - To view graphs of the performance statistics click on the Graph tab.
The graph tab helps to create and keep multiple graphs consisting of any of the
statistics available during a performance test.

6. WebART
WebART is a test-automation tool developed by Online Computer Library Center OCLC
for testing World Wide Web, Internet, and intranet applications and content. It provides a
direct, cost-effective solution for creating, executing, and evaluating automated tests that
verify an application and web site.

WebART is a comprehensive solution to web-testing needs, addressing all major aspects
of validating your applications, including:

• Link Validation
• Load and Performance Testing
• Script Capture/Replay
• Automated comparator with extensible masking
• Full-featured Scripting Language

18

Testing Methodologies
WebART is available free from their website. To download the installer, click on it.

• Installation - To install on Win95 & Windows NT start the Installation Program. The
WinZip Self-Extractor window displays. Click on the Setup Button to unzip the files
and launch the WebART setup program. Install to the displayed directory. Then
choose a Browser.

• Link Checking with SmARTMonkey - In the At initial URL field, enter the URL of
the page at which the user wants to start. Select the Only check documents on this
server checkbox. Select the Only check documents to a depth of radio and enters 99
in the input box. Clear the remaining input boxes. Click the Start button. The
SmARTMonkey process begins checking for bad links at the specified starting point.
An ongoing progress report is displayed in the bottom frame.

• Creating Test Scripts - Test scripts are a sequence of automated user interactions
that are used to execute test cases for functional and regressions testing and produce
load for load and performance testing. Test scripts can be created in the following
ways:

1. Creating Test Scripts Using SmARTMonkey - In the At initial URL field, enter
the URL of the page to start. Select the Only check documents on this server
checkbox. Select the Only check documents to a depth of radio and enter 99 in the
input box. Enter the name of the script to be created in the Create text box (10 or
fewer alphanumeric characters). Check the Script check box. Clear the remaining
input boxes. Click the Start button. The SmARTMonkey process begins checking
for bad links at the specified starting point and creating a script to visit each page.
An ongoing progress report is displayed in the bottom frame.

2. Creating Scripts Using Capture - In the Script field, enter the name of the script
to be created. In the Title field, reenter or modify the script title. For Protocol,
select HTML. In Initial URL, enter the URL of the page to start capturing. For
Options, select no session. Clear the browser's cache in order to ensure that all
images will be captured in the baseline. Click the Capture button to start the
capture session. The browser loads the page specified in Initial URL, and the
Capture control window appears with the Stop, Pause, and Comment controls.
Browse on the website so that script is generated. When done, click the Stop
button in the Capture Control Window

• Executing Scripts - Verify that the Project, Target, and Interface settings are correct.
In the Script field, enter the name of the script to execute. Click the Execute button.
The user simulator process starts up in a separate window and executes the script.

• Load Test - Verify that the Project, Target, and Interface settings are correct. In the
Script field, enter the name of the script to execute. In the Number of Users field,
specify the initial number of users to start with. Enter the maximum number of new

19

connections, in connections per minute, in the Connect Rate field. Click the Start
button. The load test execution process starts up in a separate window and begins the
test. To stop the load test, in the Command area of the Load Test Control Window,
enter stop to shut down the test gracefully, allowing each user to receive responses for
in-progress requests or enter stop to shut down the test immediately. Dismiss the
Load Test Control Window.

Summary
Six web-based testing tools were used to evaluate the quality assurance criteria based on:
timelines, structural quality, content accuracy and consistency, response time and latency,
and performance. The tool were: Rational SiteCheck, Doctor HTML, Dr. Watson,
NetMechanic HTML ToolBox, Web Performance Trainer 2.0, and WebART. Rational
SiteCheck is a primer quality assurance set of tool that provides all of the QA criteria.
This set of tools is not inexpensive, but worth the investment for e-commerce. The other
tools have similar capabilities and feature but lack the extensive background of the
Rational software unified development process. For the beginning web developer and the
student not familiar with QA techniques the free tools should be used to insure the quality
of their sites. With these tools anyone developing or managing a website even a novas to
the software development process has the capability to perform QA on their site.

References
H. Berlack 1992. Software Configuration Management. New York, NY: John Wiley &
Sons, Inc.

J. Buckley 1993. Implementing Configuration Management, Hardware, Software and
Firmware. Los Alamitos, CA: IEEE Computer Science Press.

G.G. Schulmeyer and J.I. McManus1992. Handbook of Software Quality Assurance. New
York, NY: Van Nostrand Reinhold.

David Whitgift 1991. Methods and Tools for Software Configuration Management. New
York, NY: John Wiley & Sons, Inc.

http://watson.addy.com
http://www.cigital.com/marick/
http://www.methods-tools.com/tools/frames_testing.html
http://www.netmechanic.com
http://www.oclc.org/webart/
http://www.rational.com
http://www.softwareqatest.com/qatweb1.html

QW2001 Paper 8W2

Mr. Kim Davis, Mr. Robert Sabourin
(My Virtual Model Inc.)

Exploring, Discovering and Exterminating Bug Clusters In
Web Applications

Key Points

Areas of uncertainties define bugs clusters having natural affinities of causes●

Bug Clusters are easier to locate and manage than individual bugs●

Root-cause analysis & risk-based bug clusters fixes help to converge faster on e-com
sites

●

Presentation Abstract

E-commerce development demands fast, incrementally useful, results. We propose
to simplify the bug flow process by going after bug clusters, instead of individual
bugs which are usually hiding one another. These clusters come from areas of
uncertainties associated with missing, incomplete or rapidly changing requirements
or specifications. The clusters are composed of the bugs that have natural affinities
of causes.

We first identify these clusters, and track them. We help perform fast probabilistic
root-cause analysis on clusters to assist in determining probable causes. We finally
prioritize the clusters extermination and iterate throughout the project.

This method aims to achieve faster convergence in short timeframes. Real
examples applying to e-commerce applications will be used.

About the Author

Robert Sabourin (rsabourin@amibug.com) is an author, lecturer, and president of
AmiBug.Com, a firm specializing in software management consulting, teaching,
and professional development. Robert is the author of the popular children's book I
am a Bug (ISBN 0-9685774-0-7) which explains what SQA folks really do at
work.

Kim Davis graduated in Physics in 1990, and in Computer Science & Psychology
in 1994. As a Research Agent he investigated ways of speeding up the Internet by
simulating network-optimisation learning algorithms. In 1997 Kim co-founded a
web site design company called Inter@ction Technologies to help companies
develop database-driven web sites. As Technical Lead, Director of Integration and
Director of Operations of the My Virtual Model Team, Kim has helped develop the
technology behind the e-commerce web sites of My Virtual Model inc. The

Service he manages, called SET (Software Engineering Team), offers ways to the
whole company to improve people / projects / product / processes effectiveness in
terms and productivity and quality.

1

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 1

Exploring, Discovering and Exterminating
Bug Clusters in Web Applications

Kim Davis, MyVirtualModel, Inc.
kim@myvirtualmodel.com
www.myvirtualmodel.com

Robert Sabourin, AmiBug.Com, Inc.
rsabourin@amibug.com

www.amibug.com

Quality Week - 2001
San Francisco

AmiBug.Com, Inc.

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 2

Overview

• Method Motivation & Project Presentation
• Risks: Business, Technical
• Potential Areas of Instability & Test objectives
• Exploratory Testing & Mapping
• From Mapped Areas of Instability to Bug Clusters
• Finding, Prioritizing and Exterminating Clusters
• Conclusion
• Future work
• Web References

2

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 3

Motivation

• 80/20 Rule: Can we save lot’s of time and effort
by focusing on larger structures of bugs, i.e. Bug
Clusters?

• Apply successive approximations
• Identify the cluster – without finding all of its

individual bugs!
• Identify, Prioritize and Exterminate at the

Bug Clusters Level
• Fix bugs that you did not find!

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 4

My Virtual Model Community

• My Virtual Model Concept & Community
• 3D, Web and Fashion Industries Collide
• Visualization
• Personalization – Virtual Identity
• Network of Interoperating Web Sites –

Mobility
• Affiliate Services & E-Commerce

3

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 5

My Virtual Model Community

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 6

Business Risks

• Fixed timeframe projects tied to industry dates for seasonal
collections of garments

• Community is large and demanding in terms of
consistency, performance, reliability

• It has to work and it has to be on time
• Functionality always tied to market “$$” related revenues

e.g. a new type of model can be introduced to target a new
market (for example Tall Men)

• New business model is evolving as project continues!
• Organizational change
• Requirement turbulence

4

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 7

Example Project

• Constraint from moment clothing in-hand to
release - max 8-12 weeks

• Community per client includes 100s of thousands
of users - target large retail clients - we will get
many many hits fast

• No forgiveness in retail fashion business - (nor
Web business)!

• Trading down functionality to hit a release target
is problematic

• Business requirement - release date moved up!

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 8

Technical Risks
• Technology change Management

– Fast technology churn
– Use technologies in production environments with

limited knowledge of baseline
– Limited time for evaluation, training

• Staff change
– Programmer not familiar with entire code base - could

miss something
– Programmers not familiar with “live” production

parameters - even if the developer knows how to make
it work on his own machine (NT vs UNIX)

• Requirement turbulence

5

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 9

Example Technical Risks

• Many parallel activities not easy to synchronize
• New application server framework, business logic

layer
– From JServ to JRUN

• New presentation layer
– to JSP model

• Some reused code at risk because running in a
new context

• Changed requirements on technologies used

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 10

Testing Objectives & Risk
Project Name:

Author: KD
Revision: 3/30/01

ID Summary Note Proposed
Owner

Develop-
ment
Lead

Product
Manage-

ment

Testing
Lead Average Business Technical

Proj-HLTO-
01 Functionality

Suitability, Accuracy,
Interoperability, Compliance,
Security

Product
Management 30 20 25 24

Loss of confidence -
High Maintenance &
patches

High Maintenance

Proj-HLTO-
02 Reliability Maturity, Fault Tolerance,

Recoverability
Product

Management 20 30 30 27 Loss of confidence -
High Maintenance

High Maintenance

Proj-HLTO-
03 Efficiency System behaviour over time,

Resources Usage
Development
Management 20 25 15 22 Loss of confidence -

High Maintenance
High Maintenance

Proj-HLTO-
04 Usability Understandability,

Learnability, Operability
Product

Management 10 15 20 14 Loss of user interest -
Loss of customers

Proj-HLTO-
05 Maintainability Analysability, Changeability,

Stability, Testability
Development
Management 10 5 5 7 Maintenance Difficulty

Proj-HLTO-
06 Portability

Adaptability, Installability,
Conformance,
Replaceability

Development
Management 10 5 5 7 Difficulty to get clients

on different platform

Lack of interoperability

Total 100 100 100

Consequences of Failure
(Point Form List)

Relative Importance
Suggested % of Total

Testing Effort

6

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 11

Potential Areas of Instability

• Functions particularly related to new
technologies

• New stuff or changed stuff (Turbulence
Index)

• Functionalities added after design due to
business change

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 12

Exploratory Testing Approach

• “In operational terms, exploratory testing is an interactive
process of concurrent product exploration, test design and
test execution.”

- James Bach

• Test lead triage testing in chunks building up a “map”
• Assignment based on looking for areas of potential

instability
– Looking for clusters - observe aggregate results from

all testers

7

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 13

Exploratory Testing

Kick Off

Prepare

Run

Complete

Review

Follow Up

- Test Lead assigns chunk to tester
- Based on suspected areas of risk
- Based on where holes exist in map
- Clarify goals, forms, deliverables

- Tester prepares for assignment
- Reviews status of system
- Ensure software and tools at hand
- Identifies Oracles, Gets comfortable

- Test for one chunk (90-120 min)
- Explore, identify new areas
- Identify discrepancies, bugs
- Does system behave consistently?

- Tester collects notes
- Ensure forms are completed
- Note possible new testing directions
- Is bug data reasonably complete?

- Tester and Test Lead
- Reviews all deliverables
- Any changes to form required?
- Discuss any points of interest

- Test lead adds information to map
- (Data repository & file system)
- Correlate all information
- Identify clusters candidates with Dev

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 14

Finding a Cluster from Bugs Identified

• How should you/could you or do you identify a
cluster?

• Correlation between bugs identified to get an
understanding of whether they can be grouped

• Mapped Areas of Instability define clusters
composed of the bugs that have natural affinities
of causes
– Requirement or Technology Turbulence
– Copy-paste and reuse of code without checking

8

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 15

Clusters of Bugs

• What makes a Bug Cluster?
• Example Metrics Definitions

– Functionality - several bugs related to same
functionality are discovered

– Reliability - different functions fail in similar way
– Efficiency - several operations are similarly using

resources inefficiently
– Time - several content sources are out of sync

• Could indicate a process-related problem

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 16

Cause of Clusters

• Test team works with developers to find common
root defects behind bug cluster
Ex:

Faulty_module.class

Send
Model

Change
Prefs Delete Access Modify Create

Explored and Mapped

9

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 17

Prioritize Based on Business Impact

• Instead of prioritizing on a bug by bug basis, we
work on a cluster (on a higher level)

• Less red tape
• Nice for speed!
• Can

– Fix cluster
– Do not fix cluster
– Treat bugs individually
– Detailed analytic testing

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 18

Practical Results

• Extermination techniques, developers and testers
working together (fast)

• Try to identify probable root causes of sets of
seemingly related bugs – Use empirical knowledge
– Testers and developers worked well together
– Improved developer awareness of tester role
– Buy-in to approach

• Analysis based on root cause identified an
additional 30%, so for every 10 bugs identified 13
were fixed

• Continue using technique!

10

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 19

Exploratory testing
Building a Map

Business
Decision Making

Bugs Similarities
Root Cause Analysis

Model

Risks, Areas of Instability, Test Objectives

Find Bugs
Understand Application Identify Clusters Prioritize Cluster

Fix cluster/
Do not fix cluster/

Treat bugs individually/
Detailed analytic testing

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 20

Conclusion

• Relevant in our context
• Shortening bug management overhead
• In less time we were able to deal with more

bugs
• Flexible Method – Hybrid
• Buy in at all levels!
• In a turbulent environment, this will likely

be a good approach on future projects

11

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 21

Future Work ...

• As method is applied to more projects we will
better document and generalize it

• Exploratory Testing can be replaced by more
analytical approaches as feeding method

• So far - developers, testers and management all
like method - and the results

• Cluster Testing Method’s Effectiveness &
Efficiency – Using it to its fullest potential –
Limits of applicability

• Will evolve based on REAL WORLD needs

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 22

Web Reference Slide
• www.satisfice.com

– James Bach web site, exploratory and risk based
testing

• www.testing.com
– Brian Marick web site, articles about exploratory

testing
• www.amibug.com

– Robert Sabourin Web site, various presentations
• www.mvm.com

– My Virtual Model Web site
• www.stickyminds.com

– Much relevant content

© Kim Davis, Robert Sabourin, 2001 Page 1/10

Exploring, discovering and exterminating Bug
Clusters in Web Applications

Kim Davis, SET SQA Director, My Virtual Model inc.

Kim@myvirtualmodel.com
www.myvirtualmodel.com

Robert Sabourin, President, AmiBug.com

Rsabourin@amibug.com
www.amibug.com

Abstract

In e-Commerce applications, time attrition, fleeting turbulent requirements and lack of
documentation make testing an exercise in managing people who are entangled in
constraints. Our experience shows that a good risk-based bug flow process is essential.
However, tracking myriads of little web site bugs in a fast-paced environment is difficult
in practice. The good intentions of web integrators, scripters and web managers often
disappear, in the name of competition, in front of customers demands of an ever-faster
site development.

Fortunately there may be a way of dealing with this difficulty without sacrificing features
or quality in such an environment: why not stop tracking the myriad little web sites bugs
– and start going after the bug clusters!

Bugs are social animals, they tend to associate by affinity of causes. They may come
from a variety of causes. Major causes are usually related to requirements, be them
incomplete, misunderstood, unclear etc., and turbulence, i.e. the effect of change of a
project variable in a short timeframe.

This results in the e-Commerce application having areas of uncertainties, which may
require large amounts of rework. These areas of uncertainties define clusters composed of
the bugs that have natural affinities of causes.

So instead of tracking hundreds on individual bugs in an extremely short timeframe,
which is not efficient, we instead focus on finding the important areas of uncertainties,
which are easier to locate and track than individual bugs. We then perform fast
probabilistic root-cause analysis on them to determine probable causes pairing developers
and testers to identify and correct the defects causing them.

© Kim Davis, Robert Sabourin, 2001 Page 2/10

Motivation

80/20 Rule

We assume that generally the 80/20 rule can be applied to our testing activities. It is
generally assumed that 80% of the important bugs are identified with 20% of the testing
effort. It is unfortunate that we can not figure out in advance which 20% of the testing
effort will find these important bugs. Can we save time and effort by focusing on larger
structures of bugs, i.e. Bug Clusters?

One thing we know for sure is that we are severely restricted in the amount of time
available for testing. So we want to focus our testing efforts on finding as many
important bugs as possible in a short time, and present to management the state of the
system under test so that informed business decisions can be made.

Apply successive approximations

Optimization techniques involve finding the best solution, or fit, to a problem by running
a series of experiments, varying certain parameters each trial and then judging whether
the results are optimal, or closer to optimal, based on our previous results and
experiences. Purely statistical models are sometimes used in software testing (such as
clean room based testing) to confirm that sufficient test cases have been run to prove or
disprove a reliability hypothesis.

Bugs are caused by defects. Defects are introduced into a system by people using
processes or tools. Defects may be introduced at any time of the development process,
requirement, analysis, design, development, integration, deployment etc. The bugs found
during testing are a very important input to the detection of defects in the system under
test.

In the context of projects at MyVirtualModel, Inc. we know that we will fix the bugs
deemed important from a business and technical point of view. Indeed the priority of
bugs, indicating if and when it must be fixed, is a business decision.

If we find some bugs we may suspect that there is some a relationship between them.
This can be considered a weak relationship which, as a result of more testing, and further
bug identification, can be made successively stronger.

We use an iterative approach when testing the system. Each iteration is based on
exploring the application to further enhance our knowledge of the software and validate
any hypothesis about functional areas of the application exhibiting instability.

© Kim Davis, Robert Sabourin, 2001 Page 3/10

Identify the cluster

Ideally we would like to confidently identify a bug cluster without having to finding all
of its individual constituent bugs! This would save us a lot of time and effort. But how
can bug clusters be identified?

Bugs are social animals, they tend to associate by affinity of causes. Our practical
experience tells us that after a project, when reviewing data about bugs identified and
associated defects corrected, there is generally a series of bugs related to the same root
cause. If we had only found one bug of a certain “family” or cluster, then we could have
fixed the lot of them without even being aware of their existence! As Brian Marick
defines in "Evaluation Test Suites", Conference Proceedings, Quality Week 2000, (with
James Bach and Cem Kaner) a perfectly effective test suite is one that reveals at least one
failure for every fault in the program.

Prioritize and Exterminate Bug Clusters

Once suspected bug clusters are identified we can prioritize them relative to other bug
clusters in the system. We can make a cluster based decision which will apply to bugs
which have not yet been identified.

Fix bugs that you did not find!

By fixing the fault in the cluster of bugs we correct failures which may have existed but
were not identified and recorded.

My Virtual Model Community

My Virtual Model concept and community

My Virtual Model has created a network hosting a virtual community. Members of the
community create electronic replicas of themselves, called Virtual Models. Shoppers can
experiment with fashion, dressing their Virtual Models with virtual garments without the
intimidation of store dressing rooms.

Users log on to the site to begin building their model. By answering specific questions,
users can create a virtual replica of themselves with exact measurements, skin and hair
color. Users can then try on various looks using their model in a virtual dressing room.
Shoppers can choose to accept advice from a "Fashion Advisor" on the basis of their
body type, coloring, and fashion goals.

© Kim Davis, Robert Sabourin, 2001 Page 4/10

Over 1.5 million models have already been created at MyVirtualModel.com affiliated
sites.

Forrester Research described My Virtual Model™ as "the most viable alternative" among
tools which support online apparel sales.

3D, Web and Fashion industries collide

Requirements for all My Virtual Model development efforts include 3D animation, the
latest is Web GUI and interactive technologies. My Virtual Model clientele are members
of the Fashion industry which operates under very tight seasonal delivery pressures. You
cannot delay the spring fashion season due to a software bug! All projects have fixed
timeframes.

Visualization

My Virtual Model provides the ability to mix and match garments and colors that are not only
photo-realistic but are also right-sized to eliminate concerns of true fit or appropriate sizing. It
includes :
• Photo realistic images of garments
• Close-up views of garments (Zoom in)
• Multiple views of garments (360 degrees rotation)
• Try-on of the garment on body with real measurements

Personalization – Virtual Identity

Virtual Models are personalized for each member of the community. All characteristics
of a model can be adjusted as the end-user sees fit. If a new characteristic is modeled,
then special consideration must be made for previously existing models to operate with
the new characteristics. Backward compatibility is critical.

Users build what is called a Virtual Identity. The first layer is a physical representation in
the form of the 3D Virtual Model, which is tied to the garment try-on service and the e-
apparel market. Other layers tied to other services, for example financial, may be added
later so that the model will resemble more closely the user in order to better serve it.

E-Commerce

My Virtual Model technologies are an integral part of the e-Commerce offering from
client vendors. We must be able to provide specifics regarding the style, color, size and
all other characteristics of garments purchased via B2B interchange of order information.
Encrypted XML is used extensively to interchange the required information. My Virtual

© Kim Davis, Robert Sabourin, 2001 Page 5/10

Model must be non-intrusive to the client e-Commerce site and must be able to interact
with all clients solutions.

Network of interoperating web sites – Mobility

My Virtual Model is implemented as a series of independent web servers. For each client
there exists at least one of each of the following:

• Client e-Commerce
• Fashion Server Site
• Model Server Site
• Various Data Servers

A three tier architecture is used, using the familiar Web Server / Application Server /
Data Server layering.

Virtual Models are mobile. Users can access their models on any of the affiliate sites,
can travel from site to site, and can send their Virtual Model by e-mail. Mobility pumps
the heart of the My Virtual Model Network.

Business risks

Business risks must be reviewed on a frequent basis to ensure that testing priorities are
aligned with the corporate realities. We may have to react to a competitive threat or new
short time frame opportunity.

Generally business risks are driven by:

• Fixed timeframe projects tied to industry dates for seasonal collections of garments
• Large and demanding User community (consistency, performance, reliability)
• Functionality always tied to market “$$” related revenues e.g. a new type of model

can be introduced to target a new market (for example tall men)
• New business model is evolving (including revenue) as project continues!
• Organizational change
• Requirement turbulence

Typical Project Example

The typical project encountered has a tight time frame. From the moment clothing is in
hand (hundreds of garments), to commercial deployment, takes a maximum of 12 weeks
elapsed. Often projects require less than 8 weeks to complete.

© Kim Davis, Robert Sabourin, 2001 Page 6/10

The user community per customer includes 100s of thousands of users, all clients are
large retailers, thus generating many hits fast!

The retail business is similar to the Web business in that customers offer no forgiveness!
If the software or site is not operational they will move elsewhere.

It is very problematic to remove, or trading down, functionality in order to hit a release
target. In fact quite the opposite happens and due to compelling business requirements
the release date is often moved up!

Technical Risks

The projects involve considerable technical risks. Technologies used are continuously
changing and evolving. The company addresses a segment of the market which
continuously demands the latest and greatest web widgets!

So our projects experience fast technology churn. The technologies being used in
production releases are new to the company, marketing team, developers, testers and
system integrators. Developers and testers are learning about the limitations of the
solutions on the fly and often have to adapt architectures in mid project.

Technologies are often used in a production environments with limited knowledge. We
have limited time for training and for evaluation of the technologies.

Staff turnover can have a devastating effect on such projects. New programmers are not
familiar with the existing code base and can accidentally miss something when adding a
new feature or adapting to a new embedded technology.

Developers are often not familiar with the "live" production parameters. Often the
customer has not decided whether parts of the server component will work on NT or
Unix based computers.

Whenever requirements change there is a risk of changing development priorities which
in turn will impact the code base. How do we elegantly drop what we are doing while
not accidentally breaking something!

Changes in mid-project included:
• A new application server framework, at the business logic layer, moving to an

Apache server with JServ to one with JRUN.
• A new JSP driven presentation layer.

Important technical risks were also introduced due to the reuse of existing code in a new
context.

© Kim Davis, Robert Sabourin, 2001 Page 7/10

Testing Objectives & Risk

Summarizing the specific technical and business risks associated with a project lead to
the identification of primary testing objectives. We were able to prioritize these based on
our knowledge of the areas of highest risk. Testing effort was spread across testing
assignments proportional to the associated risk.

We considered the potential areas of instability to be:

• Functions particularly related to new technologies
• New stuff or changed stuff
• New functions added due to business

Exploratory Testing Approach

An exploratory testing technique was used to help find bugs, and identify problem areas
of the application. To quote James Bach, “In operational terms, exploratory testing is an
interactive process of concurrent product exploration, test design and test execution.”

Exploratory testing is a systematic approach. It allows for the concurrent design and
execution of tests. As the application is explored a detailed record is kept of the areas
explored. Information is captured on standardized templates. Information gathered
includes:

What was tested?
How was testing done?
What was discovered about the application?
What bugs were identified?
What oracles were used in an attempt to validate results?
What new discoveries may be of interest to future exploratory testers!?

A senior test lead is responsible for triaging test assignments to various members of the
testing team.

The test lead uses knowledge gathered in testing combined with the risk assessment and
the potential areas of instability to define the next series of test assignments.

The test lead is operating at the testing mission control. Different testers act as emissaries
exploring along the directions indicated by the test lead. The test lead collects all results
and saves them in a repository (file system) as a map which is being built up as the
application is further explored.

Testing assignments include specific objectives. Testers must use their own judgement in
following them. If a tester uncovers an area of instability on the route he may explore it
or document it for future exploration. The decision has to be made on the spot.

© Kim Davis, Robert Sabourin, 2001 Page 8/10

Bug Cluster Identification

Mapped areas of instability define clusters composed of the bugs that have natural
affinities of causes. As the test lead collects results from each "chunk" of exploration, two
important assessments are done with his peer in development.

1- All new bugs are reviewed to determine if they are indicative of a pattern, are they

due to similar or potentially related faults? Is there a correlation between them?
2- Are newly identified bugs potentially related to previously discovered bugs? Is a

pattern emerging?

When a suspected cluster is identified the testing team works closely with the
development team to find the probable root cause of the problem.

Clusters can be observed in a variety of ways. Here are four examples of “distance
metrics” in bug space:

Functionality: several bugs related to same functionality are discovered
Reliability: different functions fail in similar way
Efficiency: several operations are inefficiently using system resources in a similar

manner
Time: several content sources are out of sync

Prioritize based on business impact

Once a bug cluster is identified it must be prioritized. Just like you would prioritize an
individual bug, a cluster of bugs must be prioritized. We assigned clusters one of four
priorities:

P1 - Fix immediately, next build
P2 - Fix before commercial release
P3 - Fix in some future commercial release
P4 - Do not fix

Certainly the decision to correct the defect had a lot to do with the severity and business
importance of the associated cluster. If for example a memory leak is discovered on a
server application which causes an occasional failure which results in a very short term
delay in service, but without any loss of data, then it may be prudent not to correct it. If
however the same memory leak is aggravated by increased concurrent use of the site then
it may critical to fix it before going live.

By working on bugs in a collection we can make decisions more efficiently.

© Kim Davis, Robert Sabourin, 2001 Page 9/10

Practical results

The techniques developed lead to health communication and team work between
developers and testers. Developers and testers enjoyed working together to try and
identify probable root causes of sets of seemingly related bugs.

Developers were much more aware of the role of testing in the process. This is especially
beneficial as one of the teams goals is also to improve the Personal Software Process
(PSP) of individual team members. Empirical knowledge about the processes and people
in place can help since weaker points are sometimes inferred from past projects.

Management and team members all bought-in to approach. Combining exploratory
testing with detective work makes sense especially when time is tight and we are always
working with incomplete data. People were in sync.

We found that we were able to identify an additional 30% more software problems with
this approach. More specifically we measured for every 10 bugs reported the correction
of 13 defects in the code base. It is impossible to say however whether the correction of
all of these defects would have been necessary.

The method is flexible and can use several alternatives as feeding mechanism to the Bug
Cluster Identification phase. The one we chose was Exploratory Testing but more
detailed and analytical methods may be used. This will be explored in future work.

Our three projects were released on time with minimal field reported defects. All critical
problems were corrected during the final integration phase and hundreds of thousands of
users are live using this software as we write this article.

We plan to continue using this technique, improving our understanding of the model and
generalizing it as we continue. The effectiveness and efficiency, as well as the limits of
the method will be further explored as well. This model is used in a commercial and very
turbulent e-Commerce environment. It will evolve. All indications are positive and it is
presently being used in several projects under development.

Some Web References

www.satisfice.com

James Bach's web site, exploratory and risk based testing

www.testing.com

Brian Marick's web site, articles about exploratory testing

© Kim Davis, Robert Sabourin, 2001 Page 10/10

www.amibug.com

Robert Sabourin's web site, various presentations

www.mvm.com - www.myvirtualmodel.com

My Virtual Model community Web site

www.stickyminds.com

Much relevant content.

QW2001 Paper 9W1

Ms. Patricia D. Humphrey
(Neoforma.com)

Quality Assurance and the Internet Site - How To
Effectively Hit a Moving Target

Key Points

Rapid Development and Quality Assurance●

Rapid Testing and Delivery of a Quality Product●

Quality Assurance and it's Ally, Change Control●

Presentation Abstract

Quality Assurance, Internet Site Development and On-time delivery into
production can be a moving target that is difficult for even the accomplished
development team to hit. The major contributor to the strain and hysteria of
Internet development is primarily due to the shortened and demanding shelf live
that is a mandatory requirement for many funded companies and their participation
in the Internet market. Development groups are constantly pressured to deliver
more functionality in less time. The rapid development and shortened shelf live is
further impacted by the fluctuation of personnel required to accomplish the
delivery of the companies complex Internet market needs, therefore propelling the
products quality into a significantly condensed or fictional state. Survival of the
rapid Internet development cycle can be easily accomplished, therefore producing
an effective QA and test process that enables adequate assurances relating to the
quality of the products delivered into production.

About the Author

Summary

Over 15 Years of Experience as:

E-Commerce and B2B Quality Assurance Project Manager Director of Quality
Assurance Development Project Manager

California State University of Dominguez Hills Computer Science/Mathematics

Current Experience

March 2000 to Present Position: Director of Quality Assurance and Project
Manager for eCommerce and B2B Sites Microsoft Corporation and Neoforma.com

Currently I am the Directory of Quality Assurance and Project Manager for the
B2B site called Neoforma.com. Neoforma.com, in conjunction with The Microsoft
Consulting Division transports me to the San Jose area from Los Angeles, (daily)
to control and project manage the quality assurance department relating to the
development of the Neoforma.com web development and product delivery
schedules.

In addition, my job tasks include the incorporation and management of Microsoft’s
proposed data scalability and architecture for various clients. I am responsible for
orchestrating tests and drive test teams to verify that the data architecture would
scale-out in order to support the client’s scalability issues and requirements.
Cashing sub-systems were verified so as to validate performance and reduction of
redundant pages. In addition, security programming guidelines for all application
tiers, with a special focus on authentication, storage and transmittal of sensitive
information and state management was validated.

Applicable tests were established for many web reporting and analysis
sub-projects. These sub-projects were invaluable for laying a comprehensive
foundation for the generation of pre-defined and interactive reporting vehicles for
the Microsoft clients. These reports included Web Activity (IIS logs), transaction
activity and user registration (track as many as 8,000,000 users per minute).

In many cases, it was evident that change and release management procedures
were weak, or in many instances, non-existent. One of my major responsibilities
was to work with the client’s development, test and operations team assisting them
with the execution of:

A successful rollout of the software to production
To design and implement efficient procedures (configuration management) for the
distribution and installation of changes to the production systems
To ensure that the e-commerce software being changed was traceable, secure and
that only correct authorized and tested versions were installed
To communicate and manage expectations of the Client during the planning and
rollout of new releases
To agree on the exact content and rollout plan for the release – through Change
Management
To ensure that master copies of all software were secured in the Definitive
Software Library (DSL) and updated when needed
To establish procedures that would guarantee minimal disruption of the production
site Implement roll back planning

During the implementation and test phase of the project, it became obvious that
inadequate test methodologies and procedures were being practiced at the
e-commerce and b2b sites. It was then my responsibility to perform an audit of the
current Quality Assurance Department. My audit would include current practices
and procedures along with the identification of system and application
development currently being implemented for the site. I was then responsible for
the generation of documented recommendations for the Quality Assurance

Department and overall project infrastructure.

September 1998 to Present Position: Project Manager Viacom Entertainment, Inc.

Famous Music Publishing

Responsible for the management of the business and requirement analysis for a
document management system that will be implemented by the fall of 2000. I
currently manage the business analysis team that is developing the requirements
and functional specification documents required for a proposed document
management system that will be purchased and installed at Famous Music
Publishing Company and Paramount Studios. The project involves the
management of personnel who were responsible for defining the requirements for
this system with respect to business objectives, application and information
objectives and the technology that is currently available on the market to meet the
requirements defined. The management of this project has involved numerous
meetings that correlate the technology information with the current end-user needs
within Famous Music, Paramount Studios and Viacom.

UPN (United Paramount Network)

UPN contacted me regarding the need for a project manager to assist in the
requirement and functional specification analysis of a new accounting and
financial system. Their current system runs under a DOS based system, which is no
longer supported by the vendor. I was responsible for managing the personnel that
has been used to evaluate the current workflow of the accounting department along
with the marketing departments and human resources. Part of the analysis of the
current processes also included new system workflows that show how the new
system will need to support unique and proprietary procedures within the
entertainment industry. The teams were responsible for end-user analysis, business
objectives, application and information objectives and technology analysis. Once
the requirements and functional specifications have been defined, than an RFP can
be sent out to various software vendors so as to solicit bids for the system
purchase.

Paramount Studios

As a consultant, I was responsible for auditing Paramount Studios Y2K test
activity. This entailed managing various development groups and the Y2K test
activity that took place until after the millennium change. Activities included
review of production products for the TV Systems Group, Studio Group, Home
Video Group, Financial Group, and Human Resources. Projects ranged from
stand-alone system to mainframe applications. I was responsible for verifying that
test plans and test cases were appropriate for the products targeted for Y2K test
activity along with managing the audit team that reviewed all test results. Verified
that test systems were configured to best simulate production systems. Test results
were reviewed, documented, evaluated for retest and then archived.

1

Quality Assurance and the Internet Site Quality Assurance and the Internet Site --
How to Effectively Hit a Moving TargetHow to Effectively Hit a Moving Target

Patricia D. HumphreyPatricia D. Humphrey
Neoforma.comNeoforma.com
March 30, 2001March 30, 2001

Quality Assurance and the Internet Site Quality Assurance and the Internet Site --
How to Effectively Hit a Moving TargetHow to Effectively Hit a Moving Target

�� Topics that will be discussed:Topics that will be discussed:
–– Differences between Testing the Internet Site and Differences between Testing the Internet Site and

the Conventional Applicationthe Conventional Application
–– Unique Techniques for Management and Staffing Unique Techniques for Management and Staffing

the Internet Site’s QA Departmentthe Internet Site’s QA Department
–– Control and Configuration Management Control and Configuration Management -- The The

Hidden Ally for Web Site Development and Quality Hidden Ally for Web Site Development and Quality
AssuranceAssurance

–– The Power of BuyThe Power of Buy--InIn

2

Understanding the Differences between Testing the Understanding the Differences between Testing the
Internet Site and the Conventional ApplicationInternet Site and the Conventional Application

�� Internet Site Development is much Different Internet Site Development is much Different
than Conventional Application Developmentthan Conventional Application Development

�� Not All Web Systems are the Same Not All Web Systems are the Same -- Types of Types of
Web Systems and Various ConfigurationsWeb Systems and Various Configurations

�� Testing DifferencesTesting Differences
�� Internet Requirements and Configuration Internet Requirements and Configuration

ManagementManagement

Unique Techniques for Management and Unique Techniques for Management and
Staffing the Internet Site’s QA DepartmentStaffing the Internet Site’s QA Department

�� Manage the QA Test Activity for a Shorter Shelf LifeManage the QA Test Activity for a Shorter Shelf Life
–– Drive RequirementsDrive Requirements

�� Identify Key Individuals Who Know the ProductIdentify Key Individuals Who Know the Product
�� Participate in Interview of Key IndividualsParticipate in Interview of Key Individuals
�� Establish Preliminary RequirementsEstablish Preliminary Requirements
�� Preliminary Test CasesPreliminary Test Cases
�� Review MeetingsReview Meetings
�� Establish Change ControlEstablish Change Control
�� Drill Down for Physical and Logical CharacteristicsDrill Down for Physical and Logical Characteristics
�� Check physical/logical designs into change controlCheck physical/logical designs into change control
�� Create separate, nonCreate separate, non--functionality requirements documents for system functionality requirements documents for system

interfaces (internal and external), backinterfaces (internal and external), back--end processing and hardware end processing and hardware
dependenciesdependencies

3

Unique Techniques for Management and Unique Techniques for Management and
Staffing the Internet Site’s QA DepartmentStaffing the Internet Site’s QA Department

�� Manage the QA Test Activity for a Shorter Shelf Life (continued)Manage the QA Test Activity for a Shorter Shelf Life (continued)
–– Establish Test Strategy, Not Test Plan that Contains:Establish Test Strategy, Not Test Plan that Contains:

�� IntroductionIntroduction
�� Purpose of Test Strategy and the Intended Audience Purpose of Test Strategy and the Intended Audience
�� Identification of proposed software and hardware to be used Identification of proposed software and hardware to be used
�� Objective of Testing EffortObjective of Testing Effort
�� Web Product OverviewWeb Product Overview
�� Related DocumentsRelated Documents
�� Overall Project Organization and Personnel/Contact Information Overall Project Organization and Personnel/Contact Information
�� Dependencies, Deliverables and Risks Dependencies, Deliverables and Risks
�� Testing Priorities and FocusTesting Priorities and Focus
�� Test Scope and Limitation Test Scope and Limitation
�� Test ApproachTest Approach

Unique Techniques for Management and Unique Techniques for Management and
Staffing the Internet Site’s QA DepartmentStaffing the Internet Site’s QA Department

�� Manage the QA Test Activity for a Shorter Shelf Life (continued)Manage the QA Test Activity for a Shorter Shelf Life (continued)
–– Establish Test Strategy, Not Test Plan that Contains (continued)Establish Test Strategy, Not Test Plan that Contains (continued)::

�� Test EnvironmentTest Environment
�� Test Data Setup Requirements Test Data Setup Requirements
�� Database Setup RequirementsDatabase Setup Requirements
�� Defect TrackingDefect Tracking
�� Test Automation ToolsTest Automation Tools
�� Test Script/Test Code Maintenance Process and Version controlTest Script/Test Code Maintenance Process and Version control
�� Regression TestsRegression Tests
�� Open IssuesOpen Issues
�� Test SchedulesTest Schedules
�� Appendix/Glossary of TermsAppendix/Glossary of Terms

4

Unique Techniques for Management and Unique Techniques for Management and
Staffing the Internet Site’s QA DepartmentStaffing the Internet Site’s QA Department

�� Understand and Diversify the Quality Assurance TeamUnderstand and Diversify the Quality Assurance Team
–– Understand the Skill Set in the QA TeamUnderstand the Skill Set in the QA Team
–– Hire a Mix of Individuals that can Perform Various TasksHire a Mix of Individuals that can Perform Various Tasks

�� DBA Test EngineerDBA Test Engineer
�� QA DeveloperQA Developer
�� Senior Test EngineersSenior Test Engineers

–– Communication with QA Team is EssentialCommunication with QA Team is Essential
–– Establish Establish ObtainableObtainable Test Schedules and PrioritiesTest Schedules and Priorities

�� Allow for slippage and development overlapsAllow for slippage and development overlaps
�� Develop test plans, test cases and scripts in parallel to requirDevelop test plans, test cases and scripts in parallel to requirement ement

activitiesactivities

Control and Configuration Management Control and Configuration Management -- The Hidden The Hidden
Ally for Web Site Development and Quality AssuranceAlly for Web Site Development and Quality Assurance

�� Establish Rapid Development Process for Control and AccountabiliEstablish Rapid Development Process for Control and Accountability During ty During
DevelopmentDevelopment

�� Understand the Importance of Understand the Importance of DailyDaily Building and Regression Testing the Building and Regression Testing the
Internet SiteInternet Site

�� Control, Control and More ControlControl, Control and More Control
–– Establishing a Configuration Management DepartmentEstablishing a Configuration Management Department
–– Checking Code In and Out of CM LibrariesChecking Code In and Out of CM Libraries
–– Establish Change Control Team MembersEstablish Change Control Team Members
–– Frequent Meetings Regarding Releases to QA, Staging and ProductiFrequent Meetings Regarding Releases to QA, Staging and Productionon
–– Daily Builds with Regression Test ActivitiesDaily Builds with Regression Test Activities
–– Published Meeting Minutes in Order to Communicate Configuration Published Meeting Minutes in Order to Communicate Configuration Board Board

MeetingsMeetings
–– Using Defect Tracking Systems to Monitor Critical Issues ReporteUsing Defect Tracking Systems to Monitor Critical Issues Reported Dailyd Daily
–– Using Tracking Systems to Monitor Requested Changes to RequiremeUsing Tracking Systems to Monitor Requested Changes to Requirements nts

and Functionalityand Functionality

5

The Power of BuyThe Power of Buy--InIn

�� Establishing Empowerment for the Internet Site QA Establishing Empowerment for the Internet Site QA
DepartmentDepartment

�� Communicate the Importance of Specialized QA Communicate the Importance of Specialized QA
Activities for Web Application DevelopmentActivities for Web Application Development

�� Adapt Antiquated and Conventional QA Adapt Antiquated and Conventional QA
Methodologies Used on NonMethodologies Used on Non--Web Applications for Web Applications for
Rapid Development and ShortRapid Development and Short--Shelf Life ProjectsShelf Life Projects

 1

Quality Assurance and the Internet Site – How to Effectively Hit a
Moving Target

Patricia D. Humphrey
Neoforma.com
March 30, 2001

Introduction

Quality Assurance, Internet Site Development and On-time delivery into
production can be a moving target that is difficult for even the
accomplished development team to hit. The major contributor to the strain
and hysteria of Internet development is primarily due to the shortened and
demanding shelf live that is a mandatory requirement for many funded
companies and their participation in the Internet market. Development
groups are constantly pressured to deliver more functionality in less time.
The rapid development and shortened shelf live is further impacted by the
fluctuation of personnel required to accomplish the delivery of the
companies complex Internet market needs, therefore propelling the
products quality into a significantly condensed or fictional state. Survival
of the rapid Internet development cycle can be easily accomplished,
therefore producing an effective QA and test process that enables
adequate assurances relating to the quality of the products delivered into
production.

Key factors include a clear understanding relating to the differences
between conventional application development and the Internet
development activity. The QA department needs to be savvy when
adequately staffing the QA department. Rapid development and testing
methodologies need to be implemented so as to avoid bureaucratic and
time-consuming procedures. QA needs to identify and work with their
hidden alliance with Configuration Management since control of daily
changes is inevitable and effective and use of Configuration Management
procedures can be a powerful tool for product quality.

Understanding the Differences between Testing the Internet Site and the
Conventional Application

Internet site development is much different than conventional application
development. Internet sites are typically targeted for a specific market
with many evolving and moving components. Many times the complexity
of the site’s development is taken over by the daily pressures to get the
site to production faster than the competition. The decisions to move the
site through at lightning speeds can leave the QA department with many
unresolved and unplanned issues. It’s important that the QA department

 2

understands these differences in order to generate a process that will fulfill
the web system life cycle.

Web Systems

Web systems can be huge, with millions of pages, many interconnections,
and incredibly high hit rates. Users can be connected to the network via a
thin client or a fat client. A firewall determines the kind of access,
encryption and security levels. Web servers provide much of the
application code and can have accelerators for caching dynamic pages in
order to improve user access time. The network can be specialized into an
Intranet, Extranet or virtual private network (VPN). An Intranet is an
internal network behind a firewall that allows only users within the
company to access it. An Extant allows outside partners to have access to
the Intranet. A VPN is a secure and encrypted connection between two
points across the Internet. It acts as an Intranet or Extranet except it uses
the public Internet as the networking connection rather than a company’s
own wiring. This enables, for instance, a company’s branch offices to be
inexpensively connected via the Internet.

Attached to the network can be other types of networks such as storage
area networks (SANs) and portals. SANs are networks that pool resources
for centralized data storage. They may include multiple servers working
against a centralized data store built with redundant hardware such as
RAID (high-volume storage) devices. Portals (such as Yahoo!, AOL) are
full-service hubs of e-commerce, mail, online communities, customized
news, search engines and directories, all suited to the particular needs of
an audience. Portals are evolving into corporate enterprise portals. Such
portals, for instance, enhance corporate decision-making by integrating
the company’s applications, thereby removing barriers that exist between
business units.

Other resources that can make up web systems are: Data Base
Management Systems; workflow applications used for optimizing business
processes, such as Enterprise Resource Planning tools (e.g., SAP,
PeopleSoft, Baan); database applications such as OnLine Analytical
Processing systems, which allow users to perform multidimensional
analysis on data via their browsers; document management tools for
providing access into shared libraries of documents; imaging systems for
optical character recognition of documents; data warehouses containing
terabytes of data; multimedia databases for holding archives of music,
speech, videos; mainframes which contain approximately 70 percent of
legacy data for large companies; data-marts, which are data warehouses
with their own unique interpretation of business data to suit certain
functional needs of a business unit; and, non-PC devices, such as pagers,

 3

personal digital assistants, WebTV, and smart phones.

Web systems are made up of various combinations of the resources. Each
of the resources imply code that can be dynamically added, changed,
deleted, accessed, manipulated, along with their relationships and
hyperlinks. QA will need to verify the changes that goes into the web
system.

Types of Web Systems

It is difficult to classify the types of web systems being built today as there
is no universal blueprint for such systems, the design is still an immature
art and the systems themselves are evolving fast. In a broad sense, a
web system which is visible via its web site, either acts as a provider of
information or is an application. But the applications can be of different
types. A web system can be categorized as having the properties of one
or more of the following classes:

Informational: information sites with read-only usage, commonly
called “brochureware” e.g., information presented on a site that
gives details about a company and its products. First-generation
web systems are this type and are static.

Delivery system: download content to user or resource e.g.,
download upgrades or plugins

Customized access: access is via a customized interface or
based on user’s preferences e.g., my customized view of my
Internet Service Provider’s home page, or favorite portal

User-provided information: user provides content by filling in a
form e.g., subscription to a magazine or registering for a company’s
seminar

Interactive: Two-way interaction between sites, users and
resources e.g., business-to-business

File sharing: remote users collaborate on common files e.g., users
coordinate schedules

Transaction-oriented: user buys something e.g., buys books or
travel tickets

Service provider: rentable applications; user rents an application
on a per user, per month basis e.g., virus scan program

 4

Database access: user makes queries into a database e.g.,
supplier looks up catalog of parts

Document access: libraries of online documents are available
e.g., view corporate standards

Workflow-oriented: a process has to be followed e.g., order entry
automation

Automatic content generator: robots or agents automatically
generate content e.g., “bots” scour the Web to bring back specific
information such as best price on products.

Given these classes, it becomes obvious that changes to the web system can
be essentially created by anyone or any other resource. Complexity of the
systems quality continues when companies partner with others in order to
provide a stronger development process.

Enterprise Challenges for Web Systems

QA is not a problem for small, static web systems managed by a few
developers. It is a problem for medium and large, enterprise systems that
involve many developers creating many changes that will have a high hit rate
involving high-volume database accesses and updates every minute. For
instance, the one company may experience system loads and usage that
acquire as much as 20 million hits per day where as many other companies
can have millions of pages that are hosted by thousands of Intranet sites and
more than 1,000 web servers.

Developing and maintaining such large systems with large volumes of
development changes offers many challenges to companies and most
importantly, their QA departments. These challenges span technical, people,
process, and political issues.

Variant Explosion

Web systems imply a variant explosion problem. Consider that web systems
are either created from scratch, are redesigned or merged web systems, or
are web-enabled legacy applications (1). In many cases, companies must live
with all these systems in parallel. Thus, a company could easily have a
nightmarish number of versions of their latest baseline and a variation of
users/customers that have specific web requests and/or information direction.
The development process for web systems can become more complex when
reconciliation of the Development, QA, Staging and Production servers have
failed conventional Configuration Management procedures, therefore leaving
numerous variations of critical components that are needed for the customer

 5

iterations. Therefore, adding the method of the web sites original creation,
and the four development/QA variations, the beginning total is 5.

Complexity continues since each variant must work with at least two different
browsers, including the latest three versions of those browsers—and may
need to support five different languages for international use. Hence, we have
(1 * 5) + (2 * 3 * 5) = 35 potential variants that must be tested for corporate
quality. Most companies have different teams working on separate variants
without much communication, reuse or change propagation across common
code. With the variants, come all the complexity of parallel development
support for simultaneous changes and concurrent baselines, along with
significant change propagation to selected variants, thereby demanding
change set support, more sophisticated change tracking along with help-desk
support and much better release planning and change scheduling. The
ramifications for the Quality Assurance Department are dramatic.

The changes and pressures for web systems becomes even more complex
when you introduce the Marketing and Product groups who drive this process.
Marketing and Product groups are out to boost productivity and raise ROI
everywhere they can. Yet technology evolves at such warp-speed today that,
in spite of developer’s best intentions and technological prowess, there are
times when new products fall short of their marketing claims. Or worse, their
expectations. The IT department is now confronted with how to control
marketing’s mandatory and sudden changes. Developing techniques on
controlling this change gives the IT and Marketing Group an advantage since
they can clearly predict the impact that the changes will make.

Testing Differences

Web development is a relatively new industry. Many QA engineers and IT
managers employed by Internet Departments or Companies are accustomed
to the development of system delivery and integration relating to mainframe
and client server applications. Many of their techniques promote time
consuming, and bureaucratic testing strategies that are cast for client server
applications, with longer shelf lives and not for the swift Internet highway.
The rigid and formal procedures learned in precedent projects will not
accommodate the immediate and high-speed testing solutions that are
mandatory for web development. Today’s web systems not only have unique
configurations, custom applications and hyper links, they have introduced
testable components that are non-existent in mainframe and client server
applications such as:

o Web Reporting
o Scalability Forecasting
o Web Browsers
o Internet, Intranet and Extranet Applications

 6

o Firewalls
o Variations in Network Traffic
o Application and Database Servers
o Variety of Operating Systems

Web system Quality Assurance Departments are obligated to understand the
importance and unseen alliance with change control and release
management. Web Quality Assurance Departments need to provide
communication, direction and procedures for controlling thousands of
alternations that becomes an essential function for web development. They
are required to test for these changes, keep the test process on course during
rapid development and keep the project accountable during development
without delaying the development or delivery cycle.

Product Requirements and Configuration Management

The web enables the paradigm of new features and change at the speed of
thought. The mindset is typically: I have an idea or see a problem and can, or
need, to implement or fix it immediately because it could reduce our
competitive edge or is globally visible, therefore a liability. Further
communications leads all parties to believe that ignoring immediate
implementation could cause corporate embarrassment or even worse,
litigation. Development, Quality Assurance and Operation teams are
pressured and led to falsely believe that there may be no time to follow
through a normal requirement, development and change life cycle (such as
with documented requirements, change requests, Change Control Board
meetings, change authorization, development, testing and re-release).
Because the change can be done so easily, process is often bypassed. All
the benefits of clearly defined requirements and change tracking are lost.
Repeatability of any problems in QA now becomes a difficult benefit to
achieve. Risks continue since the security of a controlled rollback of a site, if
the change fails, is no longer a viable option and will be devastating for many
companies. Understanding that web site accountability is a necessity may be
to far gone to recapture.

One of the considerable differences with project requirements, configuration
management and projects from the past is that many of the senior projects
had requirement and design documents along with configuration
management procedures. These systems were able to significantly control
changes and demonstrate accountability. Unfortunately, extended time and
bureaucratic procedures were offset in exchange for longer shelf lives and
accountability. Web systems have not been successful at implementing a
balance with a rapid development process that would allow for full
requirement documentation and change control of their web sites. This
becomes a further liability when the development and technical teams who
understand the process move on and this knowledge goes with them. Their

 7

sites are then propelled into hysteria and confusion as changes to the site are
further delayed.

Unique Techniques for Management and Staffing the Internet Site’s QA
Department

Managing and staffing the Internet Site can be challenging and frustrating for not
only the QA manager but for the entire project team. Since the Internet Site
moves at warp speed, the QA test efforts are more prone to budget and time cuts
than during Conventional Application Development. It is important and essential
that the QA manager understands rapid testing techniques and methods on how
to identify the key personnel that he/she needs to hire in order to assure that a
quality product is released to a competitive and accountable market.

Manage the QA test activity for a shorter shelf life

A system professional that has managed the development of various
software applications understands the value of clearly defined and
documented requirements. The difficulty with rapid development is that
requirements are to often rushed through and exchanged for hallway
conversations and email transmissions that are targeted for a select few.
This type of requirement documentation makes it difficult to understand
the web development activity since other key individuals are not party to
understandings and issues that are communicated to a select few. The
project does not have a tangible understanding and the required detail of
the web product and the full content of the web system. This process is
further compacted with the promotion and enthusiasm of the marketing
and product groups that tend to complicate the process with an immediate
need to get the site to production as soon as possible.

The project and the QA department are further impacted since QA will
have extreme difficulty developing in depth test cases that test the
characteristics and logical expectations of the web system.

In order to obtain requirements, QA should drive the project to deliver the
requirements. Working with the marketing and product groups will assure
that the projects expectations are met and that QA has testable
components that can developed by the development group. When
assisting with the development of the requirements, QA should verify that
the requirement process, at a minimum, contains the following:

1. Identify the key marketing and product individuals who collectively

understand the direction of the site and who have the credibility to
define the site that the team is building.

 8

2. Interview the key individuals in order to create a set of preliminary
requirements.

3. Once the preliminary requirements are established, develop a simple

interactive User Interface Prototype.

4. Immediately begin the development of preliminary test cases from the
requirements and the prototype.

5. Begin design and test case review meetings with the key marketing

individuals in order to identify areas of ambiguous understandings and
to solicit their feedback. Continue revising the documented
requirements, the simple prototype, and the test cases until all teams
agree on the baseline requirements. Remember… try and keep it
simple. Many projects are difficult to complete if the ‘big picture’ is so
large that pushing the site to production takes such an excessive
amount of time that the organization’s profitability is severely
compromised.

6. Insist on putting the requirements, prototypes and test cases under

change control. This needs to be set as a top priority since controlling
changes in web development projects is difficult to manage as the
project begins to move forward.

7. Drill down the design of the prototypes in order to define the physical

and logical characteristics of the web site. Physical and Logical
Design requirements are usually of a technical nature so involvement
from development and business analysts is required. Conduct
technical design review meeting in-order to further define the systems
functionality. Modify test cases in so as to include the detailed system
nature and definitions.

8. Check the physical and logical design requirements into change

control. Require an approved change control process that is agreed by
all team leads. The approved change control process should contain a
provision that changes will not be made without approval. Set change
meetings that will be called when changes to the requirements are
necessary.

9. Create separate, non-functionality requirements documents for system

interfaces (internal and external), back-end processing and hardware
dependencies. Check into change control and generate test cases for
the additional requirements.

 9

If the generation of requirements is not possible or not available, QA
should keep an archive of ALL documents that relate to the project.
These documents should include emails, memos, high level requirements,
prototypes, screen shots, development defect logs, and meeting minutes.
If these documents are organized and frequently updated within the
archive, QA may be able to expedite the test case process by capturing
information from the documents.

Once a baseline for the web requirements has been established and
checked into change control, QA should then generate a high-level test
strategy. The test strategy is different from the test plan since it identifies
QA’s testing vision for the project. The test strategy should contain the
following:

1. Introduction

(Provide Organizational information)

2. Purpose of Test Strategy and the intended audience
(Describe what the document is trying to establish, proposed readers, marketing,
development, management and QA)

3. Identification of proposed software and hardware to be used

(Software, operating system, database and hardware)

4. Objective of Testing Effort
(Current methodology)

5. Web Product Overview

(Describe the product under development)

6. Related Documents
(List Requirements, design documents, test plans such as functional, integration and
acceptance test plans)

7. Overall Project Organization and Personnel/Contact Information

(List key team members and QA personnel)

8. Dependencies, Deliverables and Risks
(List all QA deliverables and dependencies along with possible risks)

9. Testing Priorities and Focus

(Describe how tests will be prioritized and where tests will have heaviest focus)

10. Test Scope and Limitation
(List the possible risks, test case generation/maintenance, white box test activity,
report generation and the sharing of information)

11. Test Approach

 10

(Describe the testing approach, how QA will assist at stabilization of code, regression
tests, etc.)

12. Test Environment

(Describe and list hardware, operating systems, other required software, data base,
relationship to development, staging and production environment, configuration
management, build process and delivery to QA)

13. Test Data Setup Requirements
 (Describe how test data setup will be defined in test cases)

14. Database Setup Requirements
 (Describe database setup requirements)

15. Defect Tracking

(Describe how defects will be tracked, system to be used, reports generated and
frequency)

16. Test Automation Tools
 (Describe automation tools to be used, maintenance process, etc.)

17. Test Script/Test Code Maintenance Process and Version Control

(Describe how test scripts will be archived, method of change and version control,
etc.)

18. Regression Tests

(Describe regression test strategy, frequency of regression test execution, regression
test pass/fail acceptance criteria)

19. Open Issues
 (List any open issues not addressed in test strategy)

20. Test Schedule
 (Define test schedule)

21. Appendix
 (Glossary of Terms, acronyms, etc.)

Understand and Diversify the Quality Assurance Team

Its important that the individual managing the QA team understands the skill
set of each of its participants. Many times, QA personnel are hired as entry-
level Information Technology personnel. There is nothing wrong with hiring
entry level test engineers yet in rapid development environments, they may
quickly become lost in the hurried pace of the project’s expansion and may
have difficulty providing useful contributions due to lack of experience. Their
lack of experience can be costly to the organization, not only in
miscommunication but also in lost test execution and unreported system

 11

failures. Therefore, the QA team should be diversified with a variety of
technical skills.

Skill sets in the QA team needs to be as broad as the requirement and
development activity. Rapid development activities necessitate the QA team
to be astute, therefore requiring knowledge in areas of requirement analysis
and development.

In addition to traditional QA procedures (test plans, test case, test scripts and
test execution) web development QA departments need a mix of individuals
that can perform requirement analysis, unit and white box test activities,
database and hardware configurations along with technical document
preparation. This diversity allows the QA department to keep pace with the
development process and helps eliminate any dependencies on other groups
within the organization. When staffing the QA department, the manager
should diversify with the following QA personnel.

DBA Test Engineer – DBA(s) in a QA environment are skillful at working with
the marketing and product groups in order to drill down the needed
requirement specifications for the QA department. Their participation in this
area assists with the much-needed test plans and test cases that will be
utilized by the QA test engineers. Having the QA DBA generate the high-
level test plans and cases before development starts, avoids the project from
defining ambiguous system functionality that may be inappropriately
developed and changed at a later date in the project.

QA Developer – Stabilizing the project’s components at the earliest stage is
essential for rapid development and web systems. Testing the components
at their infant state provides a swift method for stabilization. QA should
employ developers who will work in the shadows of the development group.
The QA developer will assist development with unit and white box test
activities. This type of test activity assures that components are sound and
stable as they are integrated with other project components. Identifying
issues and defects at the development level significantly reduces the
development effort as the system begins configuration with other segments
within the project.

Senior Test Engineers – The QA Department should employ senior test
engineers with extensive web system test experience. These individuals are
accustomed to web system methodology and have experience with the
pressures of rapid system development.

 12

Communication with QA Team is Essential

Meeting with your QA teams on a regular basis assures that critical issues are
reported at an early state. On many occasions, communications relating to
early issue detection and possible problems are assumed within QA and
rarely re-directed to the appropriate managers until the issue has escalated to
a critical level. Frequent communications and project status reporting assists
all participants of the project to immediately redirect the issue before it
becomes a showstopper. Many times, QA engineers will make assumptions
that others have identified and communicated problems when in fact they
have not. QA personnel should generate a ‘brief’ daily status of the
project/component that they are testing. These daily reports should be rolled
up to a weekly report that can be reviewed by the QA manager.

Establish Obtainable Test Schedules and Priorities

It’s always fascinating when project and development managers forecast QA
schedules and time estimates, especially when QA was not consulted.
Project schedules will display test time expectations that are, in most cases,
ambitious and unrealistic. Therefore, its the responsibility of the QA
department to immediately review the project schedules in order to rapidly
communicate with the other project leads that the allocated test schedules are
or are not obtainable. If the revisions in the test schedules are not
communicated, then they are usually permanent and difficult to change. This
problem becomes further impacted when development schedules begin to
slip and QA test timetables are further compressed.

Since schedule slips inevitably require overlaps in QA’s time slots, the QA
manager will need to carefully forecast and factor the time needed for:

 Test Plan and Test Case Generation
 Test Execution (White/Black Box, Integration, Interface, System, etc.)
 Marketing/Product Acceptance Test Activity
 Customer Service Test and Training

Control and Configuration Management – The Hidden Ally for Web Site
Development and Quality Assurance

A lost concept during the rapid development process of many Internet
Sites, is the omitted technique of establishing control and accountability
during development. Even some of the largest, most successful
companies have Intranets and External Internet sites that are, for all
intents and purposes, out of control. Propelled by competitive and
customer pressures, many Web Development companies may have
unintentionally rushed to build their Internet site without fully documenting

 13

or controlling their build process, therefore loosing sight of how it actually
works.

These Internet sites then expand as new features are required, and over
time, become mazes of directories, applications, and scripts that the site
may or may not still use. The Internet site becomes cluttered with the
debris of past system iterations. The team that built it may move on, and
no one really knows how the entire site works.

Since many sites are considered to be a full-featured Web application, it
commands that its employees keep a pace of change that increases
exponentially. Many sites, along with their QA department do not realize
that a hidden ally is simply controlling and implementing a Configuration
Management procedures that specializes in keeping the build process in
order and recoverable. This configuration management implementation is
a critical supporter for the QA department. Proper configuration
management assures that accountability regarding the sites design and
development teams are consistent with the constant need to integrate to
the site scores of technology changes that incorporates hundreds of new
releases each year, with proper change control or system documentation.

The Importance of Building and Regression Testing the Internet Site
Daily

Many Internet sites do not understand the value of building their site on a
daily basis and performing regression test activities. The daily build and
regression test activity rapidly provides stability for the individual
components as they come together in integration. In the daily build and
regression test, the web site is built every day. The software is then put
through two types of regression tests; one to test overall functionality and
the other to verify that all closed defects have not been re-opened. These
tests should be automated and are relatively simple to execute in order to
see how stable the site is. The daily build and regression test significantly
reduces the likelihood of one of the greatest risks that a web project faces:
the risk that when the different components combine or integrate the code
that they have been developing separately, the code doesn’t work well
together. This practice also addresses the risk of low quality. By at least
minimally testing the full scope of the web site every day, quality problems
are reduced from taking control of the project. The project team brings the
site to a known good state and then keeps it there. The site is simply not
allowed to deteriorate to the point where time-consuming quality problems
can occur.

Performing daily builds also makes it easier to monitor a site’s progress.
When the project team builds the system every day, the status of both
complete and incomplete features is visible; both technical and non-

 14

technical parties can simply exercise the site to get a sense of how close it
is to completion. In addition, the marketing and product groups can see
progress without waiting until completion to identify key issues.

The daily build and regression test practice is especially important on
large and complex sites since the risk of unsuccessful interface integration
is so significant.

Control, Control and More Control

It’s important that web development projects maintain control over the
project. This control can be easily accomplished with standard
configuration management procedures. These procedure include basics
such as:

1. Establishing a Configuration Management Department
2. Checking Code in and out of CM Libraries
3. Establish Change Control Team Members
4. Frequent Meetings Regarding Releases to QA, Staging and Production
5. Daily Builds with Regression Test Activities
6. Published Meeting Minutes in Order to Communicate Configuration

Board Meetings
7. Using Defect Tracking System to Monitor Critical Issues Reported

Daily
8. Using Tracking System to Monitor Requested Changes to

Requirements and Functionality

The Power of Buy-In –

Without Buy-In from the other team members, QA and the web project will be
powerless. Confusion, breakage, instability and dissatisfaction will surely prevail
if the minority groups are allowed to circumvent project understandings and goals
relating to the delivery of a quality project. Convincing arguments from upper
management and QA need to demonstrate the importance of specialized QA
activities for web application development. Antiquated and conventional quality
assurance methodologies used on non-web applications need to be adapted for
rapid development and short-shelf life projects. Buy-in and acceptance of new
QA techniques and processes that allow for rapid test activity need to be
communicated to all parties of the web development process and quality
assurances to succeed. Exclusion of Buy-in and changes in QA test practices
will have extreme difficulty demonstrating to the designated user that the web site
released to production is stable and reliable.

 15

Reference:

Lyon, David. Practical CM Best Configuration Management Practices. MA: Butterworth-
Heinemann, 1999

McConnel, Steve. Rapid Development. Redmond, Washington: Microsoft Press

Carroll, Paul B. Creating New Software Was Agonizing Task for Mitch Kapor Firm. The
Wall Street Journal, May 11, 1990

Gibbs, W. Wayt. Software’s Chronic Crisis, Scientific American. September 1994, 86-95

Jones, Capers. Assessment and Control of SoftwareRisks. Englewood Cliffs, N.J.:
Yourdon Press, 1994

McConnel, Steve. Code Complete. Redmond, Washington: Microsoft Press, 1993.

The Patricia Seybold Group, Managing the Mutable Web Site: Orderly Web Site
Progression, © 1999

Forrester Research, Business Trade & Technology Strategic Report, Resizing On-Line
Business Trade, November 1, 1998

Humphrey, Patricia. Testing and Controlling Changes to Web Development, © 1999,
Englewood Cliffs, N.J.: Yourdon Press, 1999, (submitted for publication)

International Data Corporation, 1999.

Murugasen, S., Deshpande, Y.: Proceedings of ICSE99 Workshop on Web Engineering.
International Conference on Software Engineering, Los Angeles, USA (May 1999)

Merrill Lynch Co., 1999.

Bloomberg News: Net Shares Battered Amid Signals That Web’s Expansion Is Slowing.
Wall Street Journal (June 15, 1999)

Dart, S: The Dawn of Document Management. Application Development Trends (Aug.
1997)

Hutcheson, M.: The NT Application That Wouldn’t Die (NASDAQ.COM). Enterprise
Development. 1,1 (Dec. 1998)

Sliwa, C: Maverick Intranets: A Challenge for IT. Computerworld (March 15, 1999)

Dart, S.: To Change Or Not To Change. Application Development Trends (June 1997)

Gellerson, H. Gaedke, M.: Object-oriented Web Application Development. IEEE Internet
Computing (Jan/Feb 1999) 60-68

Lockwood, L.: Taming Web Development. Software Development Magazine (April 1999)

 16

Iyengar et al.: Techniques for Designing High-Performance Web Sites. IBM Research
(March 1999) 17pp

Powell, T.: Web Site Engineering. Prentice Hall, NJ, (1998)

Dart, S.: The Agony and Ecstasy of CM. A half-day tutorial given at 8th International
Workshop on Software CM, Brussels Belgium (July 20-21 1998)

Dart, S.: Not All Tools are Created Equal. Application Development Trends (Oct. 1996)

Dart, S.: Content Change Management: Problems for Web Systems (Aug. 1999)

Siegel, D: Secrets of Successful Web Sites : Project Management on the World Wide
Web. Haydn Books, Indianapolis, Ind. (1997)

QW2001 Standby Paper 9W2

Mr. Alexey Kerov
(Amphora Quality Technologies)

Iterative Approach as Basis For Effective Testing

Key Points

Iterative Approach to the development of software as an alternative to the method of “waterfall”●

Iterative Approach advantages and disadvantages from the testing point of view●

Ways of optimal use of Iterative Approach to testing●

Testing Outsourcing●

Presentation Abstract

The advance of Internet economy requires employment of more economical and at the
same time more effective software quality assurance methods. Typical WEB application,
portal, e-shop require 100% reliability of server functioning 24 hours 7 days a week and
the developer is obliged to react immediately to market demand, to modernize site at a high
pace, risking to disturb the application functioning, to introduce a new security hole or to
make the performance unacceptable for the end user.

The iterative approach to the software development and in particular to testing gives the
opportunity to reduce the risk of arising such problems. In terms of time shortage and lack
of human resources iterative approach allows dividing of whole process to several parallel
tasks, to manage the development effectively and accurately, to detect program defects and
design failures on time as a result increasing the product quality and reducing production
costs.

At the present time many companies are just starting the trial use of iterative
methodologies that is why it is very important to realize the fact that besides advantages
such an approach has also a series of problems that have to be studied necessarily. In
general the questions of qualitative personnel management and of development process
control have a decisive role in the implementation and employment of the described
approach. The question of particular interest is interoperability between an organization
which uses the iterative approach and a subcontractor that means companies performing
outsourcing, for example in the field of testing. There is no doubt that the experience of
Amphora Quality Technologies in the area of implementation and employment of iterative
testing will be very useful for all the companies which are engaged in optimization of
functioning of its testing and quality assurance departments.

About the Author

Alexey Kerov is a Marketing director of Amphora Quality Technologies, the very first
Russian private company that has become leading Russian SQA services provider since
last year. Within 10 years he made career from a finance programmer to Top Management
positions at line of the leading Russian Software Development Companies. On the one
hand, Alexey has profound IT experience and is well conversant with the problems of this
branch. On the other hand, in order to provide professional solutions to business tasks, he
received a good education on management and led the promotion of the services of the
first-string Russian development companies in international market.

Few years ago Alexey faced the problem of quality and felt an interest in tasks of
organizing of the software engineering process and Quality Assurance methods. Although
he was working intensely at marketing, Alexey managed to become familiar with several
cutting-edge QA methodologies and tools and started his work on problems of QA
industry. He has a number of publications devoted to software development process.
Perceptions of necessity of profound approach to testing and quality assurance led him to
the joining the AQT Company.

Alexey’s high weight among software development community has allowed him to make
AQT known as a reliable partner not only in Russia but also in the USA, UK and Europe.

1

Iterative Approach as Basis for Iterative Approach as Basis for
Effective TestingEffective Testing

AlexeyAlexey KerovKerov
Marketing DirectorMarketing Director

2 Quality Week 2001 © Amphora Quality Technologies

Why Speak About Iterations?Why Speak About Iterations?

Waterfall process does not meet Waterfall process does not meet
“The Internet time” needs“The Internet time” needs
We are constantly searching for We are constantly searching for
new progressive technique of new progressive technique of
software development and testingsoftware development and testing
Understanding Software Lifecycle Understanding Software Lifecycle ––
key point to successkey point to success
All the modern Software All the modern Software
engineering processes have engineering processes have
“cycles” as their basis“cycles” as their basis

2

3 Quality Week 2001 © Amphora Quality Technologies

Software Lifecycles and ModelsSoftware Lifecycles and Models

SEI/CMMSEI/CMM
ISO 9000ISO 9000
TQMTQM
BOOTSTRAPBOOTSTRAP
TickITTickIT
SPIDERSPIDER
SPICESPICE
Rational Unified ProcessRational Unified Process
Many more Many more –– name yourself…name yourself…

NENNEN
TIMTIM
TMMTMM
TSMTSM
IEEEIEEE
AQAPAQAP
TOMTOM
ESPITIESPITI
PSPPSP

RequirementsRequirements

CodeCode

DesignDesign

AnalysisAnalysis

TestTest

The names of actual companies and products mentioned herein
may be the trademarks of their respective owners.

4 Quality Week 2001 © Amphora Quality Technologies

We Need More Common We Need More Common
KnowledgeKnowledge

Understanding of “hidden” process Understanding of “hidden” process
Finding most common set of software lifecycle Finding most common set of software lifecycle
phasesphases
In fact all processes have “cycle” or “spiral” In fact all processes have “cycle” or “spiral”
naturenature

GalaxyGalaxy AtomAtom

3

5 Quality Week 2001 © Amphora Quality Technologies

The Wheel of Software ProcessThe Wheel of Software Process

Time way

PeoplePeople

RequirementsRequirements

Knowledge & ProcessKnowledge & Process

Material resourcesMaterial resources

ReadyReady
SoftwareSoftwareR

eq
ui
re
m
en
ts

Test

Deploym
ent

Modeling

Design
Implementation

6 Quality Week 2001 © Amphora Quality Technologies

ContradictionContradiction

Formal methods good for long term developmentFormal methods good for long term development
The Internet Time projects mostly use informal The Internet Time projects mostly use informal
methodsmethods
We need time optimized and quickly adopted We need time optimized and quickly adopted
techniquetechnique

Formal Informal??

4

7 Quality Week 2001 © Amphora Quality Technologies

How To Solve This Problem?How To Solve This Problem?

Achieve equal understanding of development life Achieve equal understanding of development life
cycle among all involved personscycle among all involved persons
Identify most time consuming phasesIdentify most time consuming phases
Outline ways of life cycle optimizationOutline ways of life cycle optimization
Design accurate assess criteriaDesign accurate assess criteria

8 Quality Week 2001 © Amphora Quality Technologies

Ways Of OptimizationWays Of Optimization

Requirements managementRequirements management
Risk based managementRisk based management
Universal language Universal language –– UMLUML
Best practices dissemination Best practices dissemination
Use or study as less as one formal Use or study as less as one formal
methodology or standard methodology or standard
Constant improvement of processConstant improvement of process

Risks

Performance

Ap
pl

ic
a t

io
n

of
 te

ch
n i

qu
e s

Ap
pl

ic
a t

io
n

of
 te

ch
n i

qu
e s

5

9 Quality Week 2001 © Amphora Quality Technologies

Iterative Iterative ApproachApproach to Software to Software
DevelopmentDevelopment

Early beginning of Test processEarly beginning of Test process
Reduction of development risksReduction of development risks
Lower pressure on QA departmentsLower pressure on QA departments
Effective requirements managementEffective requirements management

An “iteration” is a sequence of activities with an established
plan and evaluation criteria, resulting in an executable release

Iteration cycle

Analysis & Design Implementation TestRequirements

10 Quality Week 2001 © Amphora Quality Technologies

Classical Iterative Testing Classical Iterative Testing
Approach RisksApproach Risks

A lot of iterations may lead to management problemA lot of iterations may lead to management problem
Long testing phase in each iteration slows down Long testing phase in each iteration slows down
development cycledevelopment cycle
Reduced quality of tests due to short time of Reduced quality of tests due to short time of
iterationsiterations

Test

Implementation

Analysis & Design

Requirements

time

6

11 Quality Week 2001 © Amphora Quality Technologies

Iteration Specific OptimizationIteration Specific Optimization

Advanced test planningAdvanced test planning
Advance beginning of iterationsAdvance beginning of iterations
Test phases synchronizationTest phases synchronization

Flexible managementFlexible management
AllAll--knowing test managerknowing test manager
Mix testers with developersMix testers with developers
Test outsourcingTest outsourcing

Optimized automationOptimized automation
Test execution automationTest execution automation
Requirements tracking systemRequirements tracking system
SelfSelf--testing procedurestesting procedures

12 Quality Week 2001 © Amphora Quality Technologies

Advance Beginning of IterationsAdvance Beginning of Iterations
Next iteration starts before finishing of all testsNext iteration starts before finishing of all tests
Testing in next iteration starts after completion of all Testing in next iteration starts after completion of all
tests in previous iterationtests in previous iteration
Two releases can be made in parallelTwo releases can be made in parallel
Testers not under severe pressureTesters not under severe pressure
Significantly reduced time to marketSignificantly reduced time to market

time

Iteration N+1
Iteration N

Test

Implementation

Analysis & Design

Requirements

Test

Implementation

Analysis & Design

Requirements

7

13 Quality Week 2001 © Amphora Quality Technologies

Challenges of “Advance beginning of Challenges of “Advance beginning of
Iterations” ApproachIterations” Approach

Insufficient resources can slow down processInsufficient resources can slow down process
Having more than 2 concurrent iterations is hard Having more than 2 concurrent iterations is hard
to manageto manage
Doubling of resources gives less than 70% Doubling of resources gives less than 70%
increase in performanceincrease in performance
Change of requirements can possibly bring to Change of requirements can possibly bring to
naught the effect of concurrently executed worksnaught the effect of concurrently executed works
OldOld--fashioned automation systems do not fashioned automation systems do not
support “overlapped” approachsupport “overlapped” approach

14 Quality Week 2001 © Amphora Quality Technologies

InternetInternet--Speed ProjectSpeed Project

Informal processInformal process
Mixed process phasesMixed process phases
Weak quality managementWeak quality management
High time pressureHigh time pressure
Absence of RequirementsAbsence of Requirements

time

Requirements
Analysis,

Implementation,
Test

8

15 Quality Week 2001 © Amphora Quality Technologies

Internet Time ManagementInternet Time Management

Test manager should be aware of all developmentTest manager should be aware of all development
Mix testers with Web designers and codersMix testers with Web designers and coders
SubSub--contract and outsource effectivelycontract and outsource effectively
Make “Good enough” softwareMake “Good enough” software
Preserve “dynamic balance” of the production systemPreserve “dynamic balance” of the production system

Test

Implementation

Analysis & Design

Requirements

time

16 Quality Week 2001 © Amphora Quality Technologies

SQA Consulting & Outsourcing SQA Consulting & Outsourcing
Address Proposed ApproachAddress Proposed Approach

SQA ConsultingSQA Consulting
Independent risk assessmentIndependent risk assessment
Third party analysis of software development Third party analysis of software development
process in your organizationprocess in your organization
SQA Consultants use modern and improved SQA Consultants use modern and improved
software engineering methodologiessoftware engineering methodologies

Test outsourcingTest outsourcing
New look at your softwareNew look at your software
Extensive experience of testersExtensive experience of testers
Modern tools of test automationModern tools of test automation
Flexible schedule and scalable resourcesFlexible schedule and scalable resources

9

17 Quality Week 2001 © Amphora Quality Technologies

Amphora Quality TechnologiesAmphora Quality Technologies

AdvantagesAdvantages
CuttingCutting--edge methodologies and toolsedge methodologies and tools
Fundamental background, Extensive experienceFundamental background, Extensive experience
Flexible schedule, Scalable resourcesFlexible schedule, Scalable resources
Challenging application testingChallenging application testing
Customized solutionsCustomized solutions

LaboratoriesLaboratories
Internet applications labInternet applications lab
Functionality labFunctionality lab
Performance labPerformance lab
Research departmentResearch department

18 Quality Week 2001 © Amphora Quality Technologies

AQT Expertise in OutsourcingAQT Expertise in Outsourcing
Web site content and Load testingWeb site content and Load testing
NN--tier clienttier client--server solutions, Middleware serversserver solutions, Middleware servers
Biometric scanners and security softwareBiometric scanners and security software
Front end C++ compiler compliance to standardFront end C++ compiler compliance to standard
And many others…And many others…

"We devoted a great deal of attention to the problem of
product quality in respect of Informix Gateway to the Future,
but we decided to entrust final testing to the professionals at
Amphora Quality Technologies – they performed some
serious work and gave a new impetus to this migration
technology.“ declared Valerii Dutchak, manager of the
professional services division, Informix Russia.

10

19 Quality Week 2001 © Amphora Quality Technologies

Let’s Meet Again!Let’s Meet Again!

We would be glad to see you at our booth We would be glad to see you at our booth
or Contact us:or Contact us:

Russian FederationRussian Federation
Address: Office 701, 17, Presnensky val, Moscow,
123557, Russia
Phone: +7 (095) 737-0225, +7 (095) 784-7496
Fax: +7 (095) 737-0224

E-Mail: aqt@in-amphora.com

WWW: www.in-amphora.com/aqt

Amphora Quality Technologies 2001 1

Iterative Approach as Basis for Effective Testing

Alexey Kerov
Marketing Director

Amphora Quality Technologies

Abstract
The advance of Internet economy requires employment of more economical and at the same time
more effective software quality assurance methods. Typical WEB application, portal, e-shop
require 100% reliability of server functioning 24 hours 7 days a week and the developer is
obliged to react immediately to market demand, to modernize site at a high pace, risking to
disturb the application functioning, to introduce a new security hole or to make the performance
unacceptable for the end user.

The iterative approach to the software development and in particular to testing gives the
opportunity to reduce the risk of arising such problems. In terms of time shortage and lack of
human resources iterative approach allows dividing of whole process to several parallel tasks, to
manage the development effectively and accurately, to detect program defects and design
failures on time as a result increasing the product quality and reducing production costs.

At the present time many companies are just starting the trial use of iterative methodologies that
is why it is very important to realize the fact that besides advantages such an approach has also a
series of problems that have to be studied necessarily. In general the questions of qualitative
personnel management and of development process control have a decisive role in the
implementation and employment of the described approach. The question of particular interest is
interoperability between an organization which uses the iterative approach and a subcontractor
that means companies performing outsourcing, for example in the field of testing.

Software lifecycle
The present report is devoted to Iterative Testing Optimization. But preparatory to considering
the given subject it is necessary to give definition for the iterative testing and iteration in general.
Why is it necessary to speak namely about iterative testing?

Considering growth of software industry during the last decade we can state with confidence that
it was in the name of Internet. Namely Internet technologies had a great deal to do with
development processes and, in particular, with quality assurance and software testing. A classic
approach to software development, so-called "waterfall" method is well known from manuals. In
brief its essence is in consideration of software development process as a linear sequence of
actions from intention to develop a program to testing and implementation of a new program
product. This concept of development process has been formed rather long ago, probably at the
age of first lamp computing systems. But with the advent of the Internet economy age we begin
to feel that this approach is defective and incomplete. There is a gap between theory of software
development and practice of development of Internet systems and software in general. Most
likely at fault is development time shortage, radical complication of software systems,
availability of component, object programming, creation of multilevel architecture of software
complexes.

Amphora Quality Technologies 2001 2

Software processes
As a result we see a sharp rise of interest to problems of software development methodologies
and, in particular, to quality assurance as one of the most important features of a program
product. It looks like each developed country of the world has its own institute for software
engineering and software quality assurance. The last decade was the most fruitful in creation of
different software technologies and standards. International quality standards of series ISO 9000,
15504, developed by Software Engineering Institute – CMM, PSP are among the most well-
known. But these recognized methods are not the only available. In actual practice of present
time in spite of availability of international standards and authorities in the field of software
quality there appears a lot of new technologies, processes, ways of assessment and software
quality assurance. Many large companies and state organizations in spite of availability of
standards take the road of development of their own technologies adapted to local conditions.
The companies engaged in software testing and quality assurance also do not stand aside and not
always are guided by standards creating again their own software technologies. By now there are
known at least twenty such processes which came in "great life" from organizations, where they
have been developed and got their own famous names and abbreviations. It looks like the given
process is connected with both difficulty of the problem to be solved and absence to a great
extent of fundamental knowledge of software engineering nature. As a result in real life we can
use only adapted technologies, so called tailor-made quality, which as a rule reflects only
subjective opinion about quality assurance process of one specialist or a group of specialists. In
their turn available standards as a rule provide only a possibility to carry out standardized
assessment of quality assurance system, process maturity level, but to a lesser extent they
describe its essence, which to all appearances forms the basis for creation of few tens of software
technologies and quality assurance processes.

Turning back to necessity of fundamental knowledge I would like to mention one feature typical
for many technologies. This is availability of both evident and hidden cyclicity in software
development process. Since revealing the most common features of processes permits us to get
the most complete and authentic knowledge, as well as to reveal the laws of outgrowth, it is
appropriate to consider this fact in more detail. As we can see software development process
consists of several stages or phases familiar for us from the "waterfall" process, namely, business
modeling, requirements specification, requirements analysis and system architecture design,
development and coding, testing and implementation. Different terminology and graphical
presentation of the development process are used in different technologies, which for some
specialists makes understanding easy, but for other specialists difficult. In our opinion it is
important to reveal the essence of these processes, which reduces to the fact that software
development should not be considered as a linear process consisting of 3 or 10 stages. In fact it is
of cyclic nature. Our experience in different software projects tells the same.

Nature of cycles
In the course of work we practically always should turn back to earlier stages of the process. It is
generally known that testing is a cyclic process. Error searching – coding – debugging and so on
till reaching the required product quality level. If there appear serious and conceptual errors, it is
necessary to enlarge the given cycle and to turn back to stages of design and development, and in
the worst case to revision of task. So it is apparent that several cycles of iterations are necessary
to produce a ready software version. They can be both complete iterations including all the
considered development stages, and local iterations, for instance: testing – error correction. In
the limiting case even work of a programmer can be considered as an iterative process because
on receiving a requirement description he, as a rule, does not write the whole program for its

Amphora Quality Technologies 2001 3

further testing. He moves forward gradually, i.e. develops a code fragment, carries out its testing
and debugging, then increases functionality, again carries out its testing and repeats this several
times and only then passes the code for external testing.

It is evident that this way of work is in full correspondence with the ideas of dialectical
materialism indicating progressive and spiral development of nature. The given law is universal
in nature: from development of the Galaxy to atom structure. It is not surprising, that software
development process obeys the same principles, but at different organizational level. The given
statement permits us in a new fashion to look at organizational problems of software companies
and software quality assurance. What's more the developed in time cyclic process can be
considered as harmonic oscillations. So in case of sufficiently formal description of software
development process by means of a number of harmonic functions it will be possible to use all
the accumulated body of mathematics for more detail analysis of software development process,
search for optimum management.

Development process as open system
So an understanding of cyclic nature of software development process provides a fundamental
basis for the further studies in optimization of functioning of software companies. Now let's
consider a software development cycle in general and identify external factors influencing the
process of software development. It is worth noting that due to difficulty of the problem
considered, there is a good reason to consider software development process as a dynamically
stable open system using the corresponding methods of system analysis. As discussed above the
general cycle consists of the phases familiar to us from the "waterfall" method. Among the
external factors defining functioning of development process special attention should be paid to
the following: availability and accessibility of material and human resources as the main
resources of a software project; knowledge, experience and techniques accumulated and used in
the given organization. Customer requirements for development of a certain software are applied
to the system input. At the system output we obtain a new software, gained experience and
knowledge. Amount and structure of personnel also can be changed in the course of
development. Systematization of acquired knowledge expressed in form of the best practices to
be used in realization of the following software projects is of special importance.

Formal vs. Informal methods
From history of science and technology it is well known that knowledge development was the
most stimulated when physical or mathematical model describing some process came into
conflict with practical experience. The efforts to solve the problem resulted in creation of new
hypotheses, theories, discoveries enriching our knowledge of nature and ourselves. At present
similar situation is in the field of software development. The technologies created many years
ago, for instance the "waterfall" method, that looked stable and reliable before, now begin to
loose their stand. Technologies which were the best solution 20 years ago now are no good at all.
Modern Internet projects can serve as an example. Extremely short time for development of
program products dictates priorities in the development process. Old techniques can't any more
answer the challenges of time. In practice they are simply ignored. Formalism is replaced by
absolutely informal relations, experiments in development process. Success of one or another
software project as never before depends on personal qualities of managers and programmers.
Management risks became higher. It looks like crisis of management is one of causes of present
recession in high-tech industry. So it is high time to consider intently the problems appeared. At
the very first sight it is evident that now shortage of time is the main problem for specialists
engaged in software development. That is why optimization of development process should be
directed to its modernization aimed at minimization of development cycle time.

Amphora Quality Technologies 2001 4

Approach to problem solving
What steps are to be made in this way? In our opinion first of all it is necessary to make sure that
the company staff has a clear and well-defined understanding of problems, goals and tasks to be
solved. Until this problem is not solved, all further actions will either not bring the expected
result at all, or will be a cause of one more disappointment. Namely at this stage an
understanding of fundamental cyclicity and iterative character of processes can be of
immeasurable service.

When the first goal is accomplished, you can go to consideration and description (!) of the
process accepted in your organization. The given stage will make your mutual understanding
even deeper and will permit you to reveal the most difficult stages of work requiring maximum
time and other resources. Then you can start developing methods and approaches to solution of
the available problems. These can be both fundamental studies and "trying on” the best practices
or taking advice of a consulting company.

Finally, when determining ways of your development process modernization don't fail to bear in
mind assessment of the results obtained. It is necessary to clearly determine the goals and criteria
of success. Only in this case your material, moral and physical efforts will be not for nothing.

Ways of lifecycle optimization
In practice even without complicated mathematical and statistical methods for analysis of work
of organizations there are a lot of well known approaches to improvement of development
process that in most cases are simply ignored consciously or unconsciously.

No matter how short are time limits of your project, time for assessment of risks is always
available. This probably is one of the most efficient methods to obtain the best product quality
with minimum resources, first of all time resources. As a result software quality will be not
absolute, but "rather good". Just this quality in most cases is expected by the Customer.
Moreover, in most cases assessment of risks makes it possible to do work within time and budget
limits. This concerns both the development process as a whole, and testing process in particular.
May be this is especially true for testing because of lack of time for testing in "short-term"
projects, and extremely high responsibility of testers.

Requirements management is no less important method supplementing risks management. What
information can be in practice a basis for conclusion about risk of one or another way? Only
documented and clearly stated requirements to the system. They can be in any form, but
electronic document is preferable. A number of software systems have been developed for this
purpose. Important conditions for requirements are clear interpretation, completeness and
consistency. In real life it is difficult to satisfy all the above conditions. But the more accurate is
system description, the higher are chances for success! It is not recommended to go deep in
details missing some important requirement of a higher level. In description of requirements it is
also recommended to apply risks assessment.

There is no question that the language is the basis for mutual understanding of people. Even
using the same terminology specialists can imply different meanings in it. This is connected with
large amount of methodologies with different meanings of the same words. As a result it looks
like the members of one team speak different languages. Coming to common point of view and
working out any solution turns into long and painful process. So it is not worth to ignore training
of all team members in any one software technology. As a rule such technologies have a glossary
whose terminology is equally understandable to all team members. In addition to terminology
the important element of communication consists in exchange of imagery and graphical

Amphora Quality Technologies 2001 5

information such as charts, diagrams. Adopt one of graphical notations and use it. In our opinion
the most promising now is the Unified Modeling Language. Our experience indicates that
observing so evident rules saves you a lot of time and efforts.

System growth is the guarantee of its long and successful functioning. Termination of growth
means unavoidable death of the system. You should find possibilities and resources for growth
of your development process. If there is no sufficiently experienced person in the team, who can
analyze the current status, errors, successful solutions for introduction of this knowledge at the
further stages of work, take advice of consultants, carry out seminars, training. Collect the best
practices and inform of them all the interested team members. A tester or a programmer working
under pressure of time has no possibilities for investigations, so inform him of a new method of
memory overflow errors by e-mail, or organize a short lecture.

Iterative approach
Let's consider one of special techniques intended for iterative testing optimization. It looks like
namely iterative approach will permit us to eliminate the conflict appeared in software
development and provide maximum possible use of formal technologies in modern software
projects. Let me give a definition of the term “iteration” to clarify its backbone and create a good
background to understanding how iterations can be optimized. Webster’s desk dictionary of the
English language provides the following definition of the word “iteration”: «a procedure in
which repetition of a sequence of operations yields results successively closer to a desired
result».

When the iterative approach is applied to software engineering a team of developers is supposed
to perform a sequence of iterations when developing software. Each iteration, in this case, is
viewed as a compact complete cycle of software development containing stages of Modeling,
Requirements Specification, Analysis, Design, Coding and Testing. At the early stages of a
project most of the time of a cycle is spent on Modeling, Analysis and Design, later on Coding
and finally on Testing.

It should be noted that the iterative approach implies creating of testing scenarios at the early
stages of system development on the basis of existing Technical Requirements or Use Cases.
Now the first prototype of future program developed within one of the first iterations involving
coding appears together with the first tests that helps to find conceptual defects at early stages.
Subsequently, further evolution of the tests goes simultaneously with the development of whole
system. Every new iteration implies regression testing and also design of tests for newly created
or modified functionality. The iterative approach is exceptionally good for the quality of a
released product because it allows you to control the quality of the product and its development
process itself from the very beginning till its commercial release is delivered to the customer.

Such an approach is employed in modern methodologies of software engineering such as
Rational Unified Process, Microsoft Solution Frame and many others.

This is the way we will understand the meaning of the term “iteration” to avoid any ambiguity.
And now let’s see what drawbacks we may face when using classical iterative approach.

Iterative approach risks
The iterative approach provides really fruitful results when iterations are short and rather
numerous. Short duration of iterations allows team to control project execution more frequently
and make amends more operatively. As we can judge from our own experience and appraisals of
many independent experts you should estimate 5-6 iterations as a minimum to achieve more or

Amphora Quality Technologies 2001 6

less significant effect and it may take you more than 10 iterations to enjoy all the advantages of
the iterative approach. And only in this case required efficiency of change management can be
achieved.

But in fact, in real life it’s not that easy. An increased amount of iterations requires sound
management that may cause a problem itself because of the personnel inexperience or lack of
automation tools. Moreover, you will face some additional difficulties when considering the
organization of testing in detail.

When the iterative approach is applied to software development the team is supposed to execute
a sequence of iterations. Each iteration implies Quality Assurance activities including Testing.

As a rule, testing begins since the very start of iteration and lasts till the iteration is complete.
The testing goes simultaneously with analysis, design and development of the system. Most of
the time of this process is spent on planning, development of the test strategy and method of
testing, design and implementation of the testing scenarios. Execution of the tests itself and
analysis of their results usually take place at the final stage of an iteration falling behind the other
works. If you still have time on schedule, you can eliminate all the bugs and defects of design
and architecture within the current iteration delaying its completion, but if you don’t, you have to
postpone it for the next one.

On the one hand this approach pays its way because it allows developers to conduct the
processes of development and quality assurance simultaneously providing quality control for
each release of the product apiece and also allows you to discover some amount of bugs and
eliminate them within the current iteration before the coding is complete. On the other hand
efficient full-range testing as an inevitable part of the sequence of iterations may cause
considerable delays of product releases. This problem becomes extremely important when a
project has a very tight schedule of releases and lacks resources.

The point is that you can’t finish the iteration till the full-range testing of the current release is
complete; hence you are unable to start the next iteration. Of course it may look reasonable that
the development shouldn’t be continued till you are absolutely sure that the achieved results fully
meet your requirements. However as our practice shows this approach works well in some ideal
conditions, which in majority of real projects cannot be provided.

We always find ourselves under an extreme pressure of time and other recourses shortage so we
either have to delay the deadline of release, or reduce the full-range testing and its quality, or
leave some bugs unfixed and so on. In any case you see project risks increase, software quality
downgrade, time shortage and problems mounting. It looks like there’s no way out.

However it’s not true. The truth is that the classical iterative approach of software engineering
needs to and can be successfully upgraded. It is necessary to extract testing from the general
sequence of iterations and organize it in a special way. Testing is a very serious and complicated
procedure. It’s as difficult as it is in the software development itself to forecast at the beginning
what difficulties you may face and how much time it’ll take you to discover and locate all
possible bugs. That’s why we should eliminate any correlation between the deadline of the full-
range testing of the current release and further continuation of works on the project as a whole.

What steps should be taken to achieve this goal?

Amphora Quality Technologies 2001 7

Iterations optimizing
Evidently there are several ways or directions to optimize iterative approach to software
development and testing in particular. It makes sense to divide them into groups according to
their type:

• Better planning of work
• Use of optimized techniques and technologies
• Flexible management

What is the Better planning of work? It is worth noting here that we should thoroughly
determine and extract all the processes of software development that can go concurrently to
reach our target of efficient optimization of work on the project. This is the first step to
efficiency and it is interesting for us in the first place in the view of possibility to conduct testing
procedures simultaneously with analysis, design, coding and other aspects of the work. All these
phases should be coordinated in time to avoid both dead time and overwork. It should be noted
that iterative methodologies of software engineering have been accentuating the necessity of
concurrent execution of works within one iteration for a long time.

According to the methodologies the QA group is supposed to work simultaneously with the
groups of analysis, design and development and other subdivisions. It allows you to divide the
whole process into several concurrent processes without leaving all the QA procedures for the
stage directly preceding the product release. In theory due to this approach the full-range testing
is to fall behind insignificantly as compared to the other works within the iteration without
creating any problems. Unfortunately, the theory is too far from the reality.

The point is that concurrent execution of works within one iteration itself can really be very
helpful because it allows you to optimize the work on the project and provides you with the
possibility of more efficient use of personnel, funds and time. But anyway we consider this
approach as a preliminary condition to the next level of optimization - the advance beginning of
iterations, which will be described later on.

The Flexible Management is close the Better planning of work, but in the given case it is
considered not for planning of phases and deadlines of work, but for information exchange
between participants of the project. As is known in intensive projects the requirements
management is poor, if available. Even when available, the reading of designing documents can
take a lot of time. From this point of view it is useful to provide managers of testers and directly
testers with information in advance. The best way to do this consists in temporary work of the
testers in direct contact with the programmers, for instance, in the same room. For managers it is
sufficient to take part in all conferences of programmers, which allows them to know "how the
project is getting on". The given approach will permit you at sufficiently informal level to fill a
gap in communications and to partially compensate the lack of formal specifications. However
this approach should not be considered as the only way of information exchange. Otherwise
there is a risk to loose control over the situation, because knowledge and ideas of testers about a
program can be erroneous and not coinciding with the opinion of programmers and designers.

Testing outsourcing is a good way to speed up execution of work with proper quality level, but
the problem of communications and mutual understanding is brought again to the fore. To solve
this problem the managers should work with due efficiency and accuracy.

And finally the last group is the use of the optimized testing techniques and technologies. It is
not a secret that various programs and packages for testing automation available in the market
are not always used in work. Nevertheless, the use of special packages can provide a
considerable gain in time even without complex automation. Let's say the use of the system for

Amphora Quality Technologies 2001 8

requirements management support in addition to systematization of requirements storage
introduces a certain discipline in work allowing us to self-organize the process. Special attention
should be paid to automatic testing packages that allows you to reduce time for regression testing
by a factor of few tens and hundreds. Execution of load tests without them can be insoluble
problem in principle. It is not worth neglecting introduction of self-diagnosis facilities in
software systems. As regards to time resources self-diagnosis is much cheaper than the
following manual revealing of errors.

Advance beginning of iterations
As it was mentioned above the method of advance beginning of iterations follows just after
selection of concurrent processes and phases. We think that this technique is the most efficient
way to use formal methods in execution of modern Internet projects under hard pressure of time.

What is the advance beginning of iterations? Let’s consider this taking as an example the process
of quality assurance of a software system in the course of its development.

Planning, design and implementation of tests are executed in the usual way simultaneously with
the other works within iteration. Then the proper testing process begins and first of all we are
supposed to conduct top-priority investigations that most sufficiently reduce the risks and control
over the essential functionality and characteristics of the system. We don’t conduct the full range
of tests but only marginal ones that should be enough for completion of the iteration. When the
analysis of the testing results is complete and we either decide to make amends or postpone
them, this iteration is actually over and the next one begins. Using the proper set of test-cases
will allow us to find the most critical defects first and we expect to discover about 80% /eighty
percent/of all the errors during the first 20% of the testing time. It is obvious that in some cases
defect detection rates in the process of testing may differ, but anyway, our suggestion is a good
precondition for the advance beginning of the new iteration and it may promise a good benefit in
the future from concurrent execution of work.

 So the analysts, designers and developers start the next stage without wasting a minute on
waiting for the full-range testing results, not applying pressure to a QA department The selected
part of QA department staff continues the full-range testing of the current release at the same
time. The defects discovered are sent to the development department without a delay and
depending on their priority and complexity they can either be eliminated within the new iteration
or cause creation of a new build of the preceding release. It’s vital here that the full-range testing
of the preceding release be over before the preliminary testing of the new release is complete,
otherwise we will be unable to start its full-range testing on time.

So it looks like both iterations cross in time. While the full-range testing of the previous release
continues the bigger part of the testing team is working on preliminary testing of the next release.

As our experience reveals this approach to testing considerably increases efficiency of labor and
lowers risks as compared to the traditional iterative schemes. We can draw an analogy between
our approach and the algorithms of command execution in the modern processors when they
start parallel execution of the next commands in the sequence while the previous ones are still
being executed.

Many of software companies have intuitively been using this approach or its analogs for quite a
long time enjoying its efficiency. However, even most advanced object-oriented methodologies
of software engineering don’t have any recommendations on implementation of this approach. In
fact, today you can’t find any serious research works on the concurrent executions of iterations.
But we do believe that this approach will be developing.

Amphora Quality Technologies 2001 9

Now let’s discuss the requirements and limitations that should be taken into consideration for
efficient functioning of the testing optimization model we offer.

Advance beginning of iterations challenges
There’s nothing absolutely perfect in the world, and, of course, the model for iterative testing
optimizing we offer has its own advantages and limitations. These are conditions and limitations
connected with concurrent execution of work in several iterations.

Firstly, this approach requires the use of additional personnel and equipment when working
under pressure of time shortage. Time saving is the main goal of our optimization. However
when you experience shortage of resources but time is not the most critical problem, for instance
in an exactly planned project, our approach will be not only useless but may even create some
difficulties.

Secondly, when you have enough resources at your disposal you should avoid using extreme
forms of our approach. Even if you have a well-balanced team of professionals you will hardly
be able to speed up the process for more than 50% by adding one concurrent testing iteration. It
happens because the more concurrent iterations you have the more dependent they come on each
other and also because you have to deal with a more complicated management and increased
data exchange rates that, in its turn, causes additional operational and time expenses. Adding one
more concurrent testing iteration is even less efficient. As our practice reveals, you can enjoy all
the advantages of our approach having not more than 2 concurrent testing iterations at a time.
The third iteration would make the control over change management extremely complicated and
would slowdown the whole work. However this situation may be changed once automated
systems of control are employed.

Thirdly, in some rare cases, the system requirements significantly changed within one of the
development iterations may partly bring to naught the effect of concurrently executed works. On
the one hand works on analysis, design or the requirements management performed within the
new iteration may make obsolete a series of tests being concurrently executed. On the contrary
defects detected in the process of concurrent testing may influence the requirements within the
new iteration. It should be taken into consideration that all the key managers of the project
including the managers of concurrent iterative testing should participate in the process of the
project requirements management.

As it follows from what I’ve just said, the approach of advance beginning of the new iteration in
the worst case may not only fail to boost the work but even somewhat slows it down!

What should be taken into account in the first place when planning the optimization to avoid it?
There is a straight correlation between the efficiency of the optimization, sound management and
quality of information exchange between the concurrent iterations.

Those companies that wish to use this new approach may face some difficulties because old-
fashioned automation systems of development process are inflexible and do not support the new
approaches for the latter are still under development and not formalized yet. Conservatism of top
managers may also be a deterrent factor. In real life small teams using simple tools without
inflexible management system to be upgraded can be in better situation. They can implement our
approach painlessly, fast and cheap providing themselves with more mobility for the future.

Amphora Quality Technologies 2001 10

Internet Time challenges
Practically all types of problems and their solutions discussed before can be applied to modern
Internet projects. The whole complex of conflicts in development process of Internet projects
served as a catalyst to search for new approaches to development management and organization.
Now we are equipped with new knowledge and iterative approach. Let's consider once more how
many Internet projects looks from this point of view.

Informal management process plays first fiddle in an Internet project. The situation depends on
charisma of a project leader, «genius» of programmers and their capability to work 24 hours a
day. Formal methods hardly can be used in such projects. There is such a shortage of time in the
project that the first version with minimum functionality and content is immediately available for
the users. The testing is often limited by sanity check or postponed to the moment, when the
users have problems, for instance, with long time of site response or safety. Since requirements
are not kept at all, or kept in greatly reduced and general form, it is very difficult to carry out
functional testing. From the point of view of iterative approach in a typical Internet project there
are no clearly selected iterations, they are mixed and exist only in heads of managers in the best
case. Hence it follows that results of work are unpredictable and risks are high as it was
mentioned before. How to struggle against this and what can be recommended to managers and
workers of such projects?

And solutions…
It is worth noting that in our opinion the optimized iterative approach suits in the best way to
execution of Internet projects. The point is that iterative nature of the process is recognized by
the managers long ago, and they use it not by intention but subconsciously, intuitively. The same
is true for the advance beginning of iterations. The given ways of optimization will help to
introduce the required part of formalism in development process making it realized and
controlled. So risks of unsuccessful project execution will be brought to minimum.

There is no doubt that revision of project management activity can take more than one day or
even a month, but it is important to move gradually forward to the target. So first of all you
should focus on the following ideas.

First of all, I want to wish managers to gain an understanding of development process, to try to
select stages, even if very short, and then to "superimpose" iterative approach to software
development. When this goal is reached, you can go to the use of all the suggested above
optimization techniques of iterative development and testing. Special attention, evidently, should
be paid to risks management, because for Internet projects there is no alternative to development
of «rather good» software, so it is recommended to avoid maximalism in making decisions.

Anyway no matter whether you are an experienced company or just an Internet start-up, if you
have a real need for testing optimization it makes sense to do it together with professionals.
That’s why I’d like to dedicate the rest of my report to outsourcing of quality assurance and
testing as one of the best solutions to the problems I’ve just been speaking above.

SQA Outsourcing
It should be noted that top managers share cautious attitude to the testing outsourcing. Despite
the fact that in the classical textbooks independent testing is recognized as the best solution to
assure a better quality of the product, project administrators often don’t make use of it. They
worry that the testing company’s quality standards are low, its specialists are not aware of all the
peculiarities of the product being developed and the internal technology of the developing

Amphora Quality Technologies 2001 11

company, difficulties in communication between the specialists of both companies, and finally
additional expenses low efficiency.

Anyway testing centers are spawning all over the world. The rationale? The factors I have just
been talking about should be enough for a company to never use any external testing services.
But as our practice reveals they are not.

I can provide you with some factors leading independent QA companies to success. The key
motivation of project administrators to retain an independent tester’s services is their wish to get
some additional guarantee of their project successful completion. No matter how good their own
testers might be they as a rule have one-side opinion on the system being developed and work
under pressure of time and their supervisors and as a result they are unable to adequately
estimate the situation. Testing outsourcing is like audit in accounting. It provides you with the
comfortable feeling that everything is under control.

However in addition to subjective factors there exist objective factors for using testing
outsourcing, namely, qualification of personnel engaged in complex of testing works. In most
cases professional level, experience and erudition of the specialists of an independent company
is higher than in your organization simply because they are permanently dealing with testing of a
wide range of software and have techniques for localization of larger amount of errors in
software. It is unlikely that testers of your company are as much motivated. Alternative view of
independent testers will help you to see what was hidden from you before. I am more than sure
that they will offer you an interesting set of tests and software analysis methods that would
hardly ever occur to you. Combination of internal testing with testing outsourcing provides you
not only with excellent results but also with valuable experience. Namely high qualification of
the specialists of a SQA company will permit you to reduce time for the next iteration of
software development.

References
Spitsnadel V.N.(2000) Fundamentals of system analysis. «VOENMEH» University, St.
Petersburg, Russia

Spitsnadel V.N. (2000) Quality assurance systems. «VOENMEH» University, St. Petersburg,
Russia

Lipaev V.V. (1999) System design of complex software facilities for information systems.
Institute of system programming of RAS. Moscow, Russia.

Prangishvili I.V., Abramova N.A., Spiridonova V.F., Kovriga S.V., Razbegin V.P. (1999) Search
for approaches to solution of problems. Institute of management problems of RAS. Moscow,
Russia.

Quality Week Europe 2000 Conference Materials (2000) Brussels, Belgium.

Euro Software Testing Analysis & Review 2000 Conference Materials (2000) Copenhagen,
Denmark.

QW2001 Paper 2M1

Mr. Scott Jefferies
(Technology Builders, Inc.)

A Requirements-Based Approach To Delivering
E-Business And Enterprise Applications

Key Points

Minimize application failure and revenue loss and maintain loyal customers●

Shorten development timeframe, decrease costs and improve application quality●

Integrated requirements-based approach that enables project teams to optimize initiatives●

Presentation Abstract

This presentation will demonstrate to attendees how a requirements-based
approach to delivering E-business and enterprise applications will minimize
application failure, avoid revenue loss and maintain loyal customers. And with a
proven process in place, organizations can make an even bigger impact on the
development cycle, shortening the development timeframe, decreasing costs and
significantly improving application quality.

This presentation describes an integrated requirements-based approach that enables
project teams to:
* Gather and define requirements
* Analyze the requirements to eliminate ambiguities, conflicts and other errors
* Manage requirements and their evolution throughout the development cycle
* Define test completion criteria
* Design and build test cases based upon requirements
* Review test cases with stakeholders
* Execute tests and verify results
* Verify test coverage
* Track defects and
* Manage the test repository

Attendees will gain an understanding of How To:
* Fully document requirements to know exactly what the end users need
* Resolve ambiguities, conflicts and other errors so to ensure the right
requirements are met
* Define the test completion criteria to guarantee that the application is ready for
release
* Design, build and execute the minimum number of test cases required to fully
test the application

* Track defects to determine where and why errors occurred, allowing to reduce
the probability of future errors
* Manage test libraries to provide a set of reliable, repeatable tests

About the Author

Scott Jefferies is a TBI Technology Engineering Manager with over 25 years’
experience in providing business and information management solutions to Fortune
1000 companies. Scott is experienced in the installation and implementation of
automated software quality (ASQ) tools on a variety of platforms.

Since joining TBI, Scott has been responsible for implementation of both
requirements management and automated testing tools, with a focus on the
integration of those tools. Scott was also a key player in establishing TBI’s
requirements-based approach to delivering e-business and enterprise applications,
which includes requirements management, test case design, test and defect
management, and automated testing.

1

A Requirements-Based Approach to
Delivering E-business and Enterprise

Applications

Scott Jefferies
Technology Engineering Manager

Starbase Corporation

Scott Jefferies
Technology Engineering Manager

Starbase Corporation

2

AgendaAgenda

Gathering and defining requirements

Performing ambiguity reviews

Managing requirements

Designing test cases

Defining test completion criteria

Other steps in the process

Gathering and defining requirements Gathering and defining requirements

Performing ambiguity reviewsPerforming ambiguity reviews

Managing requirementsManaging requirements

Designing test casesDesigning test cases

Defining test completion criteriaDefining test completion criteria

Other steps in the processOther steps in the process

2

3

Gathering and Defining RequirementsGathering and Defining Requirements

Who should be involved:

Business analysts

Users

Other project stakeholders

WhoWho should be involved:should be involved:

Business analystsBusiness analysts

UsersUsers

Other project stakeholdersOther project stakeholders

4

Gathering and Defining RequirementsGathering and Defining Requirements

How to gather requirements:

User interviews

Brainstorming

Facilitated sessions

Project specification

HowHow to gather requirements:to gather requirements:

User interviewsUser interviews

BrainstormingBrainstorming

Facilitated sessions Facilitated sessions

Project specificationProject specification

3

5

Gathering and Defining RequirementsGathering and Defining Requirements

What to gather:

The requirement itself

“the system shall…”

Attributes

Priority, need, precedence, relationships with
other requirements

Supporting information

Graphics, object models, regulations

WhatWhat to gather:to gather:

The requirement itself The requirement itself

“the system shall…”

AttributesAttributes

Priority, need, precedence, relationships with
other requirements

Supporting informationSupporting information

Graphics, object models, regulations

6

Performing Ambiguity ReviewsPerforming Ambiguity Reviews

Who should be involved:

Newest member of the team

Business analysts

Users

Other project stakeholders

WhoWho should be involved:should be involved:

Newest member of the teamNewest member of the team

Business analystsBusiness analysts

UsersUsers

Other project stakeholdersOther project stakeholders

4

7

Performing Ambiguity ReviewsPerforming Ambiguity Reviews

Why we should perform ambiguity
reviews:

Eliminate ambiguities

Identify conflicts and logic errors

Reorganize requirements for clarity

WhyWhy we should perform ambiguity we should perform ambiguity
reviews:reviews:

Eliminate ambiguitiesEliminate ambiguities

Identify conflicts and logic errorsIdentify conflicts and logic errors

Reorganize requirements for clarityReorganize requirements for clarity

8

Performing Ambiguity ReviewsPerforming Ambiguity Reviews

What we are looking for and how to find
them:

Traceability and inconsistency errors
Requirement traces to nothing (orphans)

Use Traceability Matrix to identify

Terms used inconsistently

WhatWhat we are looking for and we are looking for and howhow to find to find
them:them:

Traceability and inconsistency errorsTraceability and inconsistency errors
Requirement traces to nothing (orphans)

Use Traceability Matrix to identify

Terms used inconsistently

5

9

Performing Ambiguity ReviewsPerforming Ambiguity Reviews

What we are looking for and how to find
them:

Imprecise terminology
Acronyms, company- or industry-specific
jargon, non-explicit terms (“quickly,”
“user-friendly”)

Use outside resource to help identify

Create project glossary to explain terms used

WhatWhat we are looking for and we are looking for and howhow to find to find
them:them:

Imprecise terminologyImprecise terminology
Acronyms, company- or industry-specific
jargon, non-explicit terms (“quickly,”
“user-friendly”)

Use outside resource to help identify

Create project glossary to explain terms used

10

Imprecise Terminology ExerciseImprecise Terminology Exercise

How many examples of imprecise
terminology can you find in the following:

The ATM shall respond quickly and in a
user-friendly manner to any user action,
and print a TR when the transaction is
completed.

How many examples of imprecise How many examples of imprecise
terminology can you find in the following:terminology can you find in the following:

The ATM shall respond quickly and in a The ATM shall respond quickly and in a
useruser--friendly manner to any user action, friendly manner to any user action,
and print a TR when the transaction is and print a TR when the transaction is
completed.completed.

6

11

Imprecise Terminology ExerciseImprecise Terminology Exercise

How many examples of imprecise
terminology can you find in the following:

The ATM shall respond quickly and in a
user-friendly manner to any user action,
and print a TR when the transaction is
completed.

How many examples of imprecise How many examples of imprecise
terminology can you find in the following:terminology can you find in the following:

The The ATMATM shall respond shall respond quicklyquickly and in a and in a
useruser--friendlyfriendly mannermanner to any user to any user actionaction, ,
and print a and print a TRTR when the when the transactiontransaction is is
completed.completed.

12

Performing Ambiguity ReviewsPerforming Ambiguity Reviews

What we are looking for and how to find
them:

Ambiguities
“If the table is next to the chair, then move it.”

Look for exceptions, use outside resource

Logical errors
“If A and B then C” … “If A and B then Not C”

Use cause-effect graphs, rearrange requirements

WhatWhat we are looking for andwe are looking for and howhow to find to find
them:them:

AmbiguitiesAmbiguities
“If the table is next to the chair, then move it.”

Look for exceptions, use outside resource

Logical errorsLogical errors
“If A and B then C” … “If A and B then Not C”

Use cause-effect graphs, rearrange requirements

7

13

Performing Ambiguity ReviewsPerforming Ambiguity Reviews

What we are looking for and how to find
them:

Undocumented assumptions
“The system shall perform the calculation in
the usual way.”

In-depth interview by business analyst

Make inferences

WhatWhat we are looking for and we are looking for and howhow to find to find
them:them:

Undocumented assumptionsUndocumented assumptions
“The system shall perform the calculation in
the usual way.”

In-depth interview by business analyst

Make inferences

14

Performing Ambiguity ReviewsPerforming Ambiguity Reviews

How the requirements are improved:

Become testable
Deterministic, unambiguous, complete,
non-redundant, traceable, explicit and
feasible

Become easier for developers to work
with

Become easier to manage

HowHow the requirements are improved:the requirements are improved:

Become testableBecome testable
Deterministic, unambiguous, complete,
non-redundant, traceable, explicit and
feasible

Become easier for developers to work Become easier for developers to work
withwith

Become easier to manageBecome easier to manage

8

15

Transportation Device ExampleTransportation Device Example

Transport one person at a time

Over hard flat surfaces

At speeds not to exceed 20 miles per hour

For distances up to 2 miles

Using only person power for locomotion

Personal comfort is not important

Transport one person at a timeTransport one person at a time

Over hard flat surfacesOver hard flat surfaces

At speeds not to exceed 20 miles per hourAt speeds not to exceed 20 miles per hour

For distances up to 2 milesFor distances up to 2 miles

Using only person power for locomotionUsing only person power for locomotion

Personal comfort is not importantPersonal comfort is not important

??????

16

Managing RequirementsManaging Requirements

What is involved:

Manage changes (errors, new
requirements and user requests)

Reduces scope creep due to unnecessary
changes

Establish priorities
Focuses development on core set of
requirements

WhatWhat is involved:is involved:

Manage changes (errors, new Manage changes (errors, new
requirements and user requests)requirements and user requests)

Reduces scope creep due to unnecessary
changes

Establish prioritiesEstablish priorities
Focuses development on core set of
requirements

9

17

Managing RequirementsManaging Requirements

What is involved:

Assign responsibilities
Assists in communicating changes

Document rationale
Allows project team to understand why
certain decisions were made or changes not
made

WhatWhat is involved:is involved:

Assign responsibilitiesAssign responsibilities
Assists in communicating changes

Document rationaleDocument rationale
Allows project team to understand why
certain decisions were made or changes not
made

18

Managing RequirementsManaging Requirements

What is involved:

Trace requirement relationships
Allows impact analysis for more informed
decisions

Communicate changes
Allows entire project team to understand
current project status and scope

WhatWhat is involved:is involved:

Trace requirement relationshipsTrace requirement relationships
Allows impact analysis for more informed
decisions

Communicate changesCommunicate changes
Allows entire project team to understand
current project status and scope

10

19

Managing RequirementsManaging Requirements

What is involved:

Establish baselines
Tracks scope creep and changes for
management

Track requirement histories
Ensures audit trail

What What is involved:is involved:

Establish baselinesEstablish baselines
Tracks scope creep and changes for
management

Track requirement histories Track requirement histories
Ensures audit trail

20

Designing Test CasesDesigning Test Cases

What factors should be considered:

Test cases should be based on
requirements

Test data should be designed to provide
maximum coverage with minimum
number of tests

WhatWhat factors should be considered:factors should be considered:

Test cases should be based on Test cases should be based on
requirementsrequirements

Test data should be designed to provide Test data should be designed to provide
maximum coverage with minimum maximum coverage with minimum
number of testsnumber of tests

11

21

Designing Test CasesDesigning Test Cases

What factors should be considered:

Use cause-effect graphing to
clarify requirement relationships
and testing needs

Group test cases into test sets for
ease of execution/organization

WhatWhat factors should be considered:factors should be considered:

Use causeUse cause--effect graphing to effect graphing to
clarify requirement relationships clarify requirement relationships
and testing needsand testing needs

Group test cases into test sets for Group test cases into test sets for
ease of execution/organizationease of execution/organization

22

Cause-Effect Graph ExampleCause-Effect Graph Example

Criteria
If the person is under 18 and plays tennis, then
send them a tennis club brochure.
If the person is 18 or older, or has a motorcycle
license, then send them a motorcycle club
brochure.
If the person was sent both brochures, then put
them on the “A” mailing list.

CriteriaCriteria
If the person is under 18 and plays tennis, then If the person is under 18 and plays tennis, then
send them a tennis club brochure.send them a tennis club brochure.
If the person is 18 or older, or has a motorcycle If the person is 18 or older, or has a motorcycle
license, then send them a motorcycle club license, then send them a motorcycle club
brochure.brochure.
If the person was sent both brochures, then put If the person was sent both brochures, then put
them on the “A” mailing list.them on the “A” mailing list.

You must be 18 or older to have a motorcycle license.You must be 18 or older to have a motorcycle license.
[Has License (T) requires 18 Or Older (T)][Has License (T) requires 18 Or Older (T)]

An
d

Or

An
d

Under 18

Plays Tennis

18 Or Older

Has License

Send Tennis
Brochure

Send Motorcycle
Brochure

Place on “A”
Mailing List

E

R

12

23

Designing Test CasesDesigning Test Cases

How testers are currently designing
tests:

“Gut feel”

Live data

Brute force combinations

HowHow testers are currently designing testers are currently designing
tests:tests:

“Gut feel”“Gut feel”

Live dataLive data

Brute force combinationsBrute force combinations

24

Designing Test CasesDesigning Test Cases

Why current methods fall short:

Too many tests, too little time

Varying skill levels and experience

Not enough coverage (functional
or code) to ensure system integrity

WhyWhy current methods fall short:current methods fall short:

Too many tests, too little timeToo many tests, too little time

Varying skill levels and experienceVarying skill levels and experience

Not enough coverage (functional Not enough coverage (functional
or code) to ensure system integrityor code) to ensure system integrity

13

25

Designing Test CasesDesigning Test Cases

The solution:

Use scientific methods to produce the
minimum number of test cases that
will validate all of the functional
requirements

Result: 100% functionality coverage
and 85%-90% code coverage on the
first pass

The solution:The solution:

Use scientific methods to produce the Use scientific methods to produce the
minimumminimum number of test cases that number of test cases that
will validate all of the functional will validate all of the functional
requirementsrequirements

Result: 100% functionality coverage Result: 100% functionality coverage
and 85%and 85%--90% code coverage on the 90% code coverage on the
first passfirst pass

26

Reviewing Test CasesReviewing Test Cases

Who should be involved:

Spec writer

User/domain experts

Developers

Why this is important:

Minimizes misunderstandings

WhoWho should be involved:should be involved:

Spec writerSpec writer

User/domain expertsUser/domain experts

DevelopersDevelopers

WhyWhy this is important:this is important:

Minimizes misunderstandingsMinimizes misunderstandings

14

27

Defining Test Completion CriteriaDefining Test Completion Criteria

Why this is important:

Sets policy for when software will be
considered for release

What should be specified:

Which tests must have been performed

Which tests must have passed

How many iterations of the testing cycle need
to be clean

WhyWhy this is important:this is important:

Sets policy for when software will be Sets policy for when software will be
considered for releaseconsidered for release

WhatWhat should be specified:should be specified:

Which tests must have been performedWhich tests must have been performed

Which tests must have passedWhich tests must have passed

How many iterations of the testing cycle need How many iterations of the testing cycle need
to be cleanto be clean

28

Other Steps in the ProcessOther Steps in the Process

Build tests

Execute tests and verify results

Verify test and functional coverage

Track defects

Manage repositories

Build testsBuild tests

Execute tests and verify resultsExecute tests and verify results

Verify test and functional coverageVerify test and functional coverage

Track defectsTrack defects

Manage repositoriesManage repositories

15

29

SummarySummary

Gather and define requirements
Analyze them to eliminate ambiguities,
conflicts and other errors
Manage requirements and their evolution
throughout the development cycle
Design and build test cases based upon the
requirements
Review test cases with spec writer,
user/domain experts, developers

Gather and define requirementsGather and define requirements

Analyze them to eliminate ambiguities, Analyze them to eliminate ambiguities,
conflicts and other errorsconflicts and other errors

Manage requirements and their evolution Manage requirements and their evolution
throughout the development cyclethroughout the development cycle

Design and build test cases based upon the Design and build test cases based upon the
requirementsrequirements

Review test cases with spec writer, Review test cases with spec writer,
user/domain experts, developersuser/domain experts, developers

30

SummarySummary

Define test completion criteria

Execute tests and verify results

Verify test coverage

Track defects

Manage the requirements, test, code
and defect repositories

Define test completion criteriaDefine test completion criteria

Execute tests and verify resultsExecute tests and verify results

Verify test coverage Verify test coverage

Track defectsTrack defects

Manage the requirements, test, code Manage the requirements, test, code
and defect repositoriesand defect repositories

16

Questions?Questions?

QW2001 Paper 2M2

Mr. Robert Benjamin, Ms.
Ruth Pennoyer & Ms.

Karen Law
(Spherion Corporation)

Pre-Defining Success:
Incorporating e-Metrics

Into Business And
Technical Requirements
For Web And e-Business

Solutions

Key Points

Requirements Management●

eBusiness●

Risk Managemnet●

Presentation Abstract

For over twenty years, quality management professionals have been saying that
understanding of requirements, and effective, end-to-end management of those
requirements, are the most critical determinants of success or failure in information
systems. Several widely-quoted studies, including, but not only, the Standish
Group's CHAOS Report, back this view. Drilling down further, many believe that a
significant number of projects fail, over 16% in some studies, when the
requirements process fails to include measurable improvements in business value
as the key determinants of success. In other words, projects that come in on time,
under budget, and with little or no serious defects can still fail if they do not return
any real business value on their investment.

Although business requirements have crept into the consciousness of business
sponsors and developers alike over the past decade, the explosion of Web-enabled
and eBusiness applications seems to have halted, maybe even reversed this trend.
Quality management professionals, supported by credible industry observers,
report a decline in understanding of, or concern for the importance of end-to-end
quality management among their customers, especially those under intense
pressure to deliver solutions against unrealistic deadlines. Moreover, stories about
"dot.com" failures abound, with many calling those failures preordained due to
faulty business models with no realistic business metrics. They fail because they
start out as bad ideas.

Ensuring that Web-enabled and eBusiness applications start out as GOOD ideas
demands new metrics for success, based on an understanding of what makes these
applications either successes or failures, and the inclusion of these metrics into
business requirements. Incorporating e-Metrics into the requirements for a Web or
eBusiness system can enable project teams to produce more effective design,
development, test and deployment plans that are based on requirements and
business risk.

This presentation will describe how e-Metrics are incorporated into the elicitation
and validation of Web and eBusiness system requirements.

About the Author

Robert Benjamin, Author
Mr. Benjamin is a Certified Quality Analyst (through the Quality Assurance
Institute) with over three decades experience in Information Technology
consulting, sales, and marketing, the last twelve specializing in Software Quality
Management. He has designed new process lifecycles based on the Software
Capability Maturity Model for three major IT development organizations,
co-founded the New York City Software Process Improvement Network,
supported major software process improvement initiatives, and facilitated business
and technology strategy planning projects. He has also led testing and development
teams in successful project recovery efforts. He is currently a regional Software
Quality Management Practice Director for Spherion Technology Architects,
Spherion Corporation.

Ruth Pennoyer, Co-Author
Ms. Pennoyer is a Certified Quality Analyst (through the Quality Assurance
Institute), and a Certified Software Quality Engineer (through the American
Society for Quality). She has over twenty-eight years experience in Information
Systems and is a principal author of Spherion Technology Architects' requirements
and risk-based testing process. She has experience in quality assurance, quality
process assessment, project and testing management, corporate management,
methodology development, and training. Areas of special expertise include risk
management, quality program implementation, organization assessment and
planning, and management staff development. She is currently Managing
Consultant for Spherion’s Software Quality Management Practice in New Jersey
and Project Manager for a major Software Quality Assurance project for the New
York City Government.

Karen Law, Co-Author
Ms. Law is a Certified Quality Analyst and Certified Software Test Engineer
(through the Quality Assurance Institute), and a Certified Software Quality
Engineer (through the American Society for Quality). She is a principal contributor
to Spherion Technology Architects’ training courses in Software Quality
Management for Web and eBusiness systems. Ms. Law has led recent strategic
quality management projects for Internet software companies, managed a Web
application test laboratory, including support and testing of its production site,

evaluation of automated test tools, and development of a software testing
methodology and Software Quality Assurance process. She is currently Deputy
Project Manager for a major Software Quality Assurance project for the New York
City Government.

1

Transforming the way people
work with technology.

Transforming the way people
work with technology.

Pre-Defining Success:

Incorporating e-Metrics into Business
and Technical Requirements for Web

and e-Business Solutions

2

What we will cover…

– When failure looks like success
– eBusiness and the changing meaning of

Metrics
– Traditional metrics meet emerging Metrics
– Customer satisfaction eMetrics
– Internal business improvement eMetrics
– Incorporating eMetrics into Requirements

practices
– Simple tools

When Failure Looks Like
Success…

– The phenomenon of the long-fuse failure
– The problem with “Great Ideas”
– Where do they fail
– IT Metrics and Great Ideas

3

The Phenomenon of the Long-Fuse
Failure…

– A GREAT IDEA!
– On time
– Within budget
– Meeting customer requirements
– Zero defects, but…

– NO BUSINESS IMPROVEMENT!!!

The Problem with Great Ideas…

Most aren’t.

4

Where They Fail…

– Not tied to any business strategies
– Not tied to the right business strategies
– Not measurable against actual business

improvements
– Tied to faulty business cases
– Take resources away from REALLY great

ideas

IT Metrics and “Great Ideas”

– IT Metrics validate – or invalidate – Great
Ideas

– Provide the foundation for a valid business case
– Are inherently measurable

5

eBusiness and the Changing
Meaning of Metrics…

– eBusiness models and IT Metrics
– What still applies, what doesn’t

eBusiness Models and IT Metrics
…

– eBusiness models are redefining both the
meaning and the uses of traditional metrics

– eMetrics come from a variety of sources
– Financial models
– Non-financial models
– Commonly accepted performance models

6

What Still Applies, What
Doesn’t…

– Traditional metrics for IT projects are still valid
for eBusiness projects.

– eBusiness projects also need eBusiness
metrics.

– Many emerging eBusiness metrics may also
apply to NON-eBusiness projects

– Metrics – Traditional or Emerging – are the
highest level of Information Technology
requirements we can define

Traditional Metrics Meet
Emerging Metrics…

– Traditional metrics
– Project metrics
– Financial metrics
– NON-financial metrics

– Emerging metrics
– Commonly-accepted performance models
– Business modeling methods
– Drivers of change

7

Traditional Metrics…

– Project Metrics…
– Time
– Size
– Cost
– Effort
– Defects found and fixed

Traditional Metrics…

– Financial Metrics: liquidity, leverage,
operating and performance ratios:

– Current ratio (current assets/current liabilities)
– Debt ratio (total liabilities/total assets)
– Average Inventory Turnover (cost of goods sold

annually/average annual inventory)
– Average collection period ratio
– Return on Sales (net profit after taxes/net sales)
– Quarter-to-quarter sales growth

8

Traditional Metrics…

– Non-Financial Metrics:
– Employee turnover
– Account turnover
– Trends in market share
– Trends in customer retention

Emerging Metrics…

– Commonly-accepted performance models
– Balanced Scorecard

– Financial perspective, plus:
– Customer perspective
– Internal Business perspective
– Innovation and Learning perspective

– Baldrige Performance Award
– Business modeling methods
– Drivers of change

– Business drivers
– Technology drivers

9

Customer Perspective Metrics …

– Things that indicate how well we meet
customer needs

– Customer loyalty and retention
– Drivers of overall customer satisfaction and

value
– Customer/Consumer Satisfaction
– Partnering Index

What They Tell Us…

– Customer behavior indicates customer
satisfaction

– eBusiness functionality can track customer
behavior data and organize it into customer
satisfaction metrics

10

Examples…

– Visitor-to-customer conversion percentages
– Abandonment rates for shopping carts
– Completion rates for checkouts
– Conversions of wish list items to shopping

cart items
– Positive and negative email
– Trends in new accounts per month
– Trends in cancelled accounts per month
– Trends in median customer revenue per

month

Internal Business Perspective
Metrics…

– Measures of process efficiency,
effectiveness, and adaptability

– Measures of asset utilization
– Based on operations data

11

What They Tell Us…

– How well we use our assets
– What we should be benchmarking against

external norms

NOT whom we should
punish!

Examples…

– Late or incorrect orders
– Reworked products
– Submitted orders
– Approved orders
– Planned throughputs
– Actual throughputs
– Equipment utilization

12

Innovation and Learning
Perspective Metrics…

– Measures of activities, investments, and
results related to the organization’s people
and infrastructure, such as

– Investment in and effectiveness of R&D
– Investment in and effectiveness of training
– Investment in and effectiveness of

compensation

What They Tell Us…

– How well we are positioning for the future

13

Examples…

– Patents awarded
– Employee professional certifications earned
– Organizational awards and certifications
– New products and services launched
– New product and service lead times
– Employee suggestions

Baldrige Performance Award
Criteria…

– Leadership
– Human resources focus
– Strategic planning
– Process management
– Customer and market focus
– Business results
– Information and analysis

14

Baldrige Performance Award
Criteria - Example…

– Strategic planning
– “…customer-driven quality is a strategic view of

quality. The focus is on the drivers of customer
satisfaction, customer retention, new markets,
and market share — key factors in
competitiveness, profitability, and business
success…”

– Implied metrics:
– Customers retained vs. customers lost
– Growth in new customers in new market segments
– Industry estimates of market share

Baldrige Award Criteria…

– Leadership
– Strategic Planning
– Customer and Market Focus
– Information and Analysis
– Human Resource Development and

Management
– Process Management
– Business Results

15

Business Modeling - Five Forces
Model…

– Supplier metrics
– Buyer metrics
– Barriers to new entrants
– Substitution metrics
– Competitive rivalry metrics

(They can really gang up on
you)

Business Modeling - SWOT
Analysis…

– Strengths
– Weaknesses
– Opportunities
– Threats

16

Drivers of Change…

– Examples of business drivers
– Trends toward part-time workforce
– Trends in public policy on privacy

– Examples of technology drivers
– Limits to Moore’s Law with current technology
– Trends in energy and environment costs

Metrics Specific To eBusiness
Models…

– First-generation eMetrics focus on ACTIVITY
– Number of hits
– Length of stay
– Source of referral
– Return ratio

– Second-generation eMetrics focus on
RESULTS

– Trend in average customer revenue
– Trend in completed transactions
– Trend in repeat sales, PLUS
– All other traditional metrics adaptable to

eBusiness

17

Measurable Business
Improvements…

– Every metric identifies an improvable
business attribute

– Every improvable business attribute
represents a potential project goal or
objective

– Each project goal or objective is a top-level
requirement

Incorporating eMetrics Into
Requirements Practices…

– Commonly-accepted templates can help
– Example: Volere Requirements Specifications

Template, available from the Atlantic Systems
Guild at
http://www.atlsysguild.com/Site/Robs/Template.html

– Begin with a Statement of Principal Drivers or
Business Purposes, stated in terms of
business metrics.

18

Example 1…

– We need to reduce the cost of sales ratio
for products that generate repeat sales.

– To achieve this, we must use web technology
to have customers initiate, process,
complete, and track orders without the
intervention of a salesperson. Further, we
must enable customers to create their own
reorder process and manage it online.

Example 2…

– We can increase revenue per customer by
promoting addition of complementary
products as part of on-line sales.

– To achieve this, we must use web and data
base technologies to cross-link
complementary products, track customer
purchasing patterns and provide incentives
for adding complementary products to each
sale.

19

Prioritizing Business Improvement
Goals…

– Key questions
– What are my critical business and technology

drivers?
– What business improvement goals best address

my critical business drivers?
– What is the true cost to achieve them?
– When and how can I achieve them?
– How do I need to manage the risks?

Simple Tools…

– Net present value analysis
– Pareto analysis
– Force Field Analysis
– Root-Cause analysis

Repeat: SIMPLE tools…

20

Questions…

QW2001 Paper 3M1

Mr. Timothy Kelliher, Dr. Daniel
Blezek, Mr. William Lorensen & Dr.

James Miller
(GE Research & Development)

Six-Sigma Meets Extreme
Programming: Changing the Way

We Work

Key Points

Six Sigma Applied To Software●

Extreme Programming in Practice●

Changing Group Behavior●

Presentation Abstract

Introduction

For the past 5 years GE has been following and enhancing the Six Sigma quality
model. During this same period Extreme Programming has emerged as an
alternative to the traditional software development process. In the past year the
authors have been following a process which merges elements from each of these
disciplines. This paper gives the background and describes their current approach.

Six Sigma Basics

Behavior is a function of values. We measure what we value. Therefore it follows
that to change behavior we have to change what we measure. This simple truth is
the core of the Six Sigma quality program at GE We must adapt our measurement
systems to look at true life cycle costs and reward behavior that improves on these
costs. Basic Six Sigma focuses on improving existing processes and understanding
the key control factors for these processes. Within GE this has been stretched far
beyond manufacturing to include processes throughout the company including
sales, services, and engineering. In this basic approach GE has followed the Mikel
Harry’s Six Sigma Breakthrough Cookbook [Harry 94]. This approach breaks
down any quality problem into four steps: Measure, Analyze, Improve, and
Control. In the measure phase the practitioner characterizes the process in terms of
Critical To Quality, CTQ, characteristics. These are the elements that the customer
considers as the key factors for process success. Specific, measurable targets are
established for these CTQs both for mean performance and statistical variation. In
the analyze phase the CTQs are broken down to understand the factors that
influence their performance. These are divided into two group, key control
parameters and noise parameters. In the improve phase measures of the key control
parameters are further collected and studied to learn how their performance can be

tuned to optimize the effected CTQ’s performance. In the final phase, control, a
method is developed to ensure that the CTQ performance will remain at its
improved value. This reliance on gathering data from actual measures is another of
the fundamental aspects of the Six Sigma approach. Instead of relying on intuition
to guide changes Six Sigma demands that data be used to make decisions.

Extreme Programming

Extreme Programming, XP, is a emerging approach to software development that
focuses attention on the granularity of work elements from concept to
implementation, the testing of the work products, the reduction of ‘overhead’
activities and the involvement of the customer in the development process. XP is
successful because it emphasizes customer satisfaction and promotes teamwork.
The most surprising aspect of XP is its simple rules and practices. They seem
awkward and perhaps even naive at first, but soon become a welcome change to
developers who adopt the XP model. Many customers enjoy being partners in the
software process and developers actively contribute regardless of experience level.
The rules and practices must support each other. Together they work to form a
development methodology. Unproductive activities have been trimmed to reduce
costs and frustration. This approach to refining the development process is in
keeping with the Six Sigma tenet of behavior being driven be values and
measurements. In general people value their time and as such are unwilling to
spend time on ‘unproductive’ activities. Thus all activities that are elements of XP
need to be transparently productive or they will soon fall into disuse. XP, as
defined by Kent Beck[Beck 2000], has a number of elements.

Six Sigma Applied to Software Development

Green Belt Projects

At GE every person in the company was challenged to understand and apply Six
Sigma methods to their job. To back up this challenge every GE employee has
been trained in Six Sigma tools and practices. Every professional within the
company is expected to demonstrate use of the tools to perform their job. The
demonstration takes the form of green belt projects. For people just undergoing
training these are generally small projects that look to make demonstrable
improvements to quality in some aspect of their work and to demonstrate
proficiency with elements of the Six Sigma approach. The projects are selected by
the trainee and mentored by a more experienced Six Sigma leader. In software
groups the training projects have generally focused on some measurable aspect of
the coding or testing process. Topics such as regression test coverage, memory
usage, and code style are all projects that have been done for training. The general
experience with these projects has been that they do a reasonable job of defining
CTQ’s, e.g. all files shall have a mean of 80% of their lines of code exercised by
regression tests with a standard deviation of no more than 5%. The analysis and
improve phases uniformly yield an improvement in CTQ performance, generally as
the result of personal effort on the part of the trainee, e.g. they implemented a
sufficient number of tests to drive the coverage up. The control phase is then where

problems arise. In this phase, the trainee reports on a plan to monitor CTQ
performance on a periodic basis. Having gotten their training completed the
trainees then go back to working exactly as they have in the past. The problem is in
the control step. The quality gain, once achieved, was a lone effort and remains
that way in the control stage. Thus the rest of the team ends up with little concern
for the gain and eventually it is forgotten.

Changing the Way We Work

As the same a group of workers that has gone through or is going through green
belt training began to adopt elements of extreme programming an interesting
phenomenon occurred. The group has a five year history of developing an open
source package so they had been early adopters of elements of the approach. The
idea of collective code ownership, refactoring, simple design, and coding standards
were all part of the group ethic to a greater or lesser degree. One of the new
elements of extreme programming that the group decided to experiment with as it
was embarking on Six Sigma was a modified form of pair programming. This has
made all the difference in the impact made by Six Sigma.

In the local version of pair programming the concept is extended to be paired, or
trippled, work. Not only is time programming spent together but other work time is
also spent together. This includes time spent on green belt projects. The time being
jointly directed as in pair programming. This means that each member of the work
group ends up having to buy into the value of the green belt project before it
begins. Given this expanded ownership of note just the code output but also of the
quality outputs the control phase got a renewed emphasis. With additional owners
comes additional pressure to achieve a suitable performance on the CTQ. After the
first round of projects the CTQ performance had risen noticeably and any
backsliding was more rapidly noticed. The group then moved to the next element
of extreme programming, continuous integration. Measuring the quality results
entailed running a test of sorts for each aspect of quality that was being checked.
Running these tests by hand became cumbersome so the group developed a nightly
test harness that runs each of the quality tests and collects all of the data to present
a single comprehensive view of measured quality. It was a small move from this
point to start a continuous test process that runs a slimmed down set of the quality
tests whenever code is checked into the source code repository.

The continuous measure of quality then is the final blending of extreme
programming with Six Sigma. Behavior and measurement are well aligned. System
performance against external, customer defined CTQs, expressed through
regression tests, and internal, team defined CTQs, expressed through quality tests
are available on a continuous basis. The teams are not able to move forward unless
the results of their work is a clean dashboard as measured by both continuous and
nightly dashboards. Extreme Six Sigma has become the way we work.

About the Author

Timothy P. Kelliher is a Computer Scientist at GE's Corporate Research and

Development Center in Schenectady, NY. He has over 15 years experience in
systems and software engineering. At the center he has worked on Software
Engineering CASE tools, Human Computer Interaction, and Software Quality
systems. He is a Six Sigma Master Black Belt and spends much of his time
instructing and mentoring the GE software development community. He is
co-author of “Engineering Complex Systems with Models and Objects” published
by McGraw-Hill, 1997.

Daniel Blezek is a Computer Scientist in the Visualization and Computer Vision
Program at GE's Corporate Research and Development center. He holds a Ph.D.
from the Mayo Graduate School in Biomedical Engineering. His research interests
include medical image segmentation, advanced rendering algorithms, and practical
software quality techniques.

William Lorensen is a Graphics Engineer at GE's Corporate Research and
Development Center in Schenectady, NY. He has over 30 years of experience in
computer graphics and software engineering. William is currently working on
algorithms for 3D medical graphics and scientific visualization. William is the
author or co-author of over 60 technical articles on topics ranging from finite
element pre and postprocessing, 3D medical imaging, computer animation and
object-oriented design. He is a co-author of "Object-Oriented Modeling and
Design" published by Prentice Hall, 1991. He is also co-author with Will
Schroeder and Ken Martin of the book "The Visualization Toolkit: An
Object-Oriented Approach to 3D Graphics" published by Prentice Hall in
November 1997. Mr. Lorensen holds twenty seven US Patents on medical and
visualization algorithms.

James Miller is a Computer Scientist at GE's Corporate Research and Development
Center in Schenectady, NY. He joined GE after receiving his PhD from Rensselaer
Polytechnic Institute in 1997. His thesis topic was in Computer Vision. At GE
James has become a primary contributor to vtk software algorithm development
and testing. For the past year, he has been the project leader on a research project
for Lockheed Martin involving the inspection of large airframes using laser
ultrasonic techniques.

Timothy P. Kelliher

Six Sigma Meets Extreme Programming 1

Six Sigma Meets Extreme Six Sigma Meets Extreme
ProgrammingProgramming

Timothy P. Kelliher
General Electric
Corporate Research and Development
kelliher@crd.ge.com

OutlineOutline

Introduction
– Six Sigma at GE
– Design for Six Sigma
– Extreme Programming

Similarity
Differences
Results In Practice

Timothy P. Kelliher

Six Sigma Meets Extreme Programming 2

Six Sigma Six Sigma -- Cutting to the CoreCutting to the Core

B = f (V)

Behavior is a function of Values

The complex of beliefs, ideals, or standards, which
characterizes a person or group of people.

The way in which a person or group of people responds.
Behavior

Values

. . . What are the “common beliefs” which characterizes our
organization ?

Y = f (X)

Y Effect

Dependent Symptom

Output Monitor

X1…XN Cause

Independent Problem

Input-Process Control

Identifying and fixing root causes
will help us obtain the desired output

Changing Focus from Output to ProcessChanging Focus from Output to Process

Timothy P. Kelliher

Six Sigma Meets Extreme Programming 3

Most CTQ’s are customer-driven; but risk, economics,
and regulation may drive others

Most CTQ’s are customer-driven; but risk, economics,
and regulation may drive others

CriticalCritical--ToTo--Quality (CTQ) CharacteristicsQuality (CTQ) Characteristics

Customer states as critical to quality through a survey,
Quality Function Deployment result, or by question /
inspection

High combined risk priority factor, as from a Failure Modes
and Effects Analysis (FMEA)

Sufficient economic benefit from defect reduction

Regulatory or safety-related requirement

The Breakthrough CookbookThe Breakthrough Cookbook
Step Description Focus Tool
Measure
1 Select CTQ characteristic Y Customer, QFD
2 Define performance standards Y Customer, blueprints
3 Validate measurement system Y Gauge study
4 Establish product capability Y Capability indices

Analyze
5 Define performance objective Y Team
6 Identify variation sources X Multi-Vari

Improve
7 Screen potential causes X DOE-Fraction
8 Discover variable relationships X DOE-Full
9 Establish operating tolerances X DFM

Control
10 Validate measurement system X Gauge study
11 Determine process capability X Capability studies
12 Implement process control system X SPC

Timothy P. Kelliher

Six Sigma Meets Extreme Programming 4

Reactive Design
Quality Transition to ... Predictive Design

Quality

FROM TO

“Test in” Quality

Evolving Requirements QFD, CTQ Flowdown

Modeling/Simulation with
Design/Process Capability Flowup

Statistical Quality Prediction

“Design in” Quality

Build & Test

Measurement

Design rework/tweaking Control Critical Design Parameters

Intuitive Scheduling Repeatable Predictive Process

Random Improvements Data Driven Decisions

Design for Six Sigma: The GoalsDesign for Six Sigma: The Goals

Design for Six SigmaDesign for Six Sigma

Transfer functions are a key element of DFSSTransfer functions are a key element of DFSS

Activities Methods &Tools
Identify • Translate customer Q’s to system CTQ’s.

• Perform CTQ flow-down/allocation.
• Verify measurement systems.
• Create/validate system transfer functions.

QFD.
Z.st & DPMO.
Gage R&R.
DoE & physical models, simulations.

Design • Formulate system design.
• Roll-up system capability.
• Compare capability flow-down & flow-up.
• Identify gaps & trade-off lower level
requirements to hit top-level targets.

Scorecards.
Sensitivity analysis.
Monte Carlo simulation.
Process capability models database.

Optimize • Find the critical few X’s.
• Assign robust targets & tolerances.
• Generate manufacturing & purchase
specifications.

S-hat & Y-hat DoE’s.
Inner/outer array DoE’s.
Multi-response optimization.
Reliability analysis.

Validate • Confirm predictions in pilot builds.
• Mistake-proof the process.
• Develop production control plan.
• Document the design effort and results.

DoE’s & hypothesis tests.
Models, scorecards and process
characterization database.

Timothy P. Kelliher

Six Sigma Meets Extreme Programming 5

Extreme ProgrammingExtreme Programming
• Planning Game
• Functional testing
• Unit testing
• Refactoring
• Simple Design
• Collective Code Ownership
• Coding Standards
• Continuous Integration
• On-site Customer
• Forty Hour Week- Go home at 5.
• Pair Programming

SimilaritySimilarity

Customer Focus
Test and Simulation
Continuous Reexamination of
Knowledge
Incremental Knowledge Growth
Simple Design

Timothy P. Kelliher

Six Sigma Meets Extreme Programming 6

DifferencesDifferences

Technical / Psychological Split
– Pair Programming
– 40 hour week
– Code Ownership

Project Management
Knowledge Framework
– Simulation
– Evolving Core

1

2

5

10

20

50

100

design unit test,
integration operation

requirements code
debug

acceptance initial
test

Detection Phase

$1 detect & Correct

$100 detect & Correct

C
os

t t
o

R
ew

or
k

0

10

20

30

40

50

requirements
and

functional
analysis

design construction and
system

development test

acceptance
testing and
operation

Development Phase

%
 F

au
lts

Fault Creation
Fault Detection

Huge Financial and Opportunity CostHuge Financial and Opportunity Cost

Impact of Defects

Timothy P. Kelliher

Six Sigma Meets Extreme Programming 7

Green Belts: Common ResultsGreen Belts: Common Results

Individual Effort
Focus on Getting “Green Belt” stamp
Temporary Gain
Little long term impact

A Different OutcomeA Different Outcome

Collective Project Ownership
– less willing to do poor work as a team

Concentrated Effort of Many Projects
Framework for Incremental Addition
Quality as “The Way We Work”

Timothy P. Kelliher

Six Sigma Meets Extreme Programming 8

Lessons (re)LearnedLessons (re)Learned

Break Down the Task into Small Bites
Focus on Value Added
Peer Pressure
Automation
Quality at a Glance
– Frost

Measurement Drives Behavior

Six Sigma Meets Extreme Programming
Changing the Way We Work

Timothy P. Kelliher
518-387-6691, fax 518-387-6981, kelliher@crd.ge.com

Daniel J. Blezek
518-387-5481, fax 518-387-6981, blezek@crd.ge.com

William E. Lorensen
518-387-6744, fax: 518-387-6981, lorensen@crd.ge.com

James V. Miller
518-387-4005, fax: 518-387-6981, millerjv@crd.ge.com

GE Corporate R&D
KW-C211A
1 Research Circle
Niskayuna, NY 12309

Six Sigma Meets Extreme Programming Kelliher/Blezek/Lorensen/Miller

 2

Introduction

For the past 5 years GE has been following and enhancing the Six Sigma quality model.
During this same period Extreme Programming has emerged as an alternative to the traditional
software development process. Although they are described in very different terms and come
from different communities these two disciplines share some common threads. In this past
year the authors have been following a process which draws on these common threads to
create a blended process which draws on the strengths of each discipline and fit the needs of
their development environment. In some cases the choices of how the development process
would evolve were deliberate, in other cases chaotic forces were employed. This paper gives
the background of six sigma and extreme programming, shows where they are similar, and
where they differ. It then puts these thoughts into the context of day to day practice and
describes their current implementation and how it has changed the way we work.

Six Sigma Basics

Behavior is a function of values. We measure what we value. Therefore it follows that to
change behavior we have to change what we measure. This simple truth is the core of the Six
Sigma quality program at GE. We must adapt our measurement systems to look at true life
cycle costs and reward behavior that improves on these costs. This means understanding the
true cost of quality. That means we must understand the impacts of decisions and process from
product conception through design through development straight through to product end of
life. Separate but similar disciplines have been developed to tackle each of these areas. At the
product conception end Design for Six Sigma Innovation is used. For product design Design
for Six Sigma Product is the applicable approach, a sub discipline with this area is Design for
Six Sigma Software. On the manufacturing end, the basic Six Sigma concepts as practiced in
other companies are directly applicable.

Basic Six Sigma focuses on improving existing processes and understanding the key
control factors for these processes. Within GE this has been stretched far beyond
manufacturing to include processes throughout the company including sales, services, and
engineering. In this basic approach GE has followed Mikel Harry’s Six Sigma Breakthrough
Cookbook [Harry 94]. This approach breaks down any quality problem into four steps:
Measure, Analyze, Improve, and Control. In the measure phase the practitioner characterizes
the process in terms of Critical to Quality, CTQ, characteristics. These are the elements that
the customer considers as the key factors for process success. Specific, measurable targets are
established for these CTQs both for mean performance and statistical variation. In the analyze
phase the CTQs are broken down to understand the factors that influence their performance.
These factors are divided into two groups, key control parameters and noise parameters. In the
improve phase measures of the key control parameters are further collected and studied to
learn how their performance can be tuned to optimize the effected CTQ’s performance. In the
final phase, control, a method is developed to maintain the key control parameters at their
tuned settings. Often statistical process control is used at this stage to track and maintain focus
on the key control parameters. This ensures that CTQ performance will remain at its improved
value.

This reliance on gathering data from actual measures is another of the fundamental
aspects of the Six Sigma approach. Instead of relying on intuition to guide changes, Six Sigma
demands that data be used to make decisions.

Practitioners of Six Sigma understand that there are limits to how far the Breakthrough
Cookbook can go toward improving quality. There is only a finite amount of improvement that
can be made to an existing process before it reaches its quality entitlement. To improve quality

Six Sigma Meets Extreme Programming Kelliher/Blezek/Lorensen/Miller

 3

beyond this point requires redesigning or changing the process so that a leap in quality can be
had. This is where Designing for Six Sigma comes in.
Design for Six Sigma, DFSS, begins at the same place as basic six sigma, understanding the
customer’s CTQs. Once these are established, however, the two approaches diverge. Six
sigma moves from this point to analyze the existing solution. In the DFSS case that solution
does not yet exist. Each of the discipline areas for DFSS - Innovation, Product, Software,
Commercial Quality – takes the same basic approach to developing an understanding of the
CTQ’s and evolving design within the context of the discipline. In place of analyzing a
solution as in basic Six Sigma, models and simulations of the to be built product or process
are constructed and used. These simulations range from simple monte carlo simulations to
complex simulations of basic physics depending on the depth of understanding necessary to
make informed design decisions.

In software modeling UML is the most prevalent modeling language. These models are
employed to understand the basic structures of the solution and to transform the CTQs into a
solution approach in a way that the customer can see and react to. Simulations in the software
realm are most often used to understand and predict performance or human factors issues. In
other disciplines MCAD or ECAD models are used to evaluate performance, Thermo and
hydro dynamic performance is simulated to yield insight into the design parameters.

DFSS uses these simulations and models to predict the values of the CTQs early in the
design cycle and to understand the factors that influence the CTQs. The goal of this work is to
change from a reactive quality stance to a design quality stance. Throughout the design
lifecycle attention to the CTQ’s is not allowed to vary. The acceptable values are established
up front with the customer, They are entered into a quality tracking scorecard along with the
established design goals. As design begins to evolve the best estimates for the result values are
filled I the scorecard and compared against the design goals. Adjustments to the design are
made such that a suitable level of quality is achieved. The more information that is gathered
from simulation and models the better the estimates of end product quality. As the product
comes into being the estimates from the scorecard are replaced with actual values measured
directly from the product. These are again compared to the design goals and the estimates.
Differences are noted and corrective action taken where necessary. Where the results are
different from that which was predicted we learn where to invest in improved models for the
next generation.

Extreme Programming

Extreme Programming, XP, is a emerging approach to software development that focuses
attention on the granularity of work elements from concept to implementation, the testing of
the work products, the reduction of ‘overhead’ activities and the involvement of the customer
in the development process. XP is successful because it emphasizes customer satisfaction and
promotes teamwork. The most surprising aspect of XP is its simple rules and practices. They
seem awkward and perhaps even naive at first, but soon become a welcome change to
developers who adopt the XP model. Many customers enjoy being partners in the software
process and developers actively contribute regardless of experience level. The rules and
practices must support each other. Together they work to form a development methodology.
Unproductive activities have been trimmed to reduce costs and frustration. This approach to
refining the development process is in keeping with the Six Sigma tenet of behavior being
driven be values and measurements. In general people value their time and as such are
unwilling to spend time on ‘unproductive’ activities. Thus all activities that are elements of
XP need to be transparently productive or they will soon fall into disuse.

XP, as defined by Kent Beck[Beck 2000], has a number of elements.

• Planning Game- Stories, lightweight use cases, are the starting point for beginning
production coding.

Six Sigma Meets Extreme Programming Kelliher/Blezek/Lorensen/Miller

 4

• Functional testing- You can't continue development until the functional test scores
are acceptable to the customer.

• Unit testing- You can't release until the unit tests are 100%. The unit tests enable
refactoring, they drive the simple design

• Refactoring- You can't just leave duplicate or uncommunicative code around. The
long term value is that reusable components emerge from this process, further
speeding development.

• Simple Design- The right design for the system at any moment is the design that runs
all the tests, says everything worth saying (only once), and contains the fewest
possible classes and methods.

• Collective Code Ownership- If you run across some code that could be improved,
you have to stop and improve it.

• Coding Standards- Everyone chooses class names and variable names in the same
style. They format code in exactly the same way.

• Continuous Integration- Code additions and changes are integrated with the baseline
after a few hours, a day at most.

• On-site Customer- Instead, you are in hourly contact with a customer who can resolve
ambiguities, set priorities, set scope, and provide test scenarios.

• Forty Hour Week- Go home at 5. Have a nice weekend. Once or twice a year, you
can work overtime for a week, but the need for a second week of overtime in a row is
a clear signal that something else is wrong with the project.

• Pair Programming- This is the master feedback loop that ensures that all the other
feedback loops stay in place. The pairs shift around a lot (two, three, four times a
day), so any important information is soon known by everyone on the team.

Six Sigma related to Extreme Programming

From these brief descriptions it is apparent that both six sigma and XP place a great deal
of emphasis on getting to know the customer and understanding the customers definition of
quality. While this is certainly not a novel idea, the degree to which each of these approaches
focus on the customer sets them apart from some other software quality models such as CMM.
Not that the CMM ignores the customer but it stresses other, internal, aspects of the process.

The stated approach of the two disciplines is different, yet both are geared toward
developing an early understanding of performance against customer CTQs and maintaining
that understanding throughout the development process. The two methods differ in how they
ask for practitioners to express their growing knowledge of the system. In DFSS the
knowledge is expressed as model and simulations, in XP the knowledge is embedded in a
growing framework of the solution. While outwardly these may seem at odds with each other,
the intent in both cases is the same: capture the knowledge in a way that it can be viewed and
reviewed by all of the stakeholders. Each approach puts faith in the power of exposing ideas to
inspection and analysis.

Part of the apparent difference in the approaches can be bridged by reflection on testing,
simulation, and modeling. When considered in the abstract a simulation is really just a test of
the design and the source code in nothing more than a complete model of the solution. As the
distinction between these areas is blurred, we think of all activities that evaluate our work
products as a form of testing. Thus simulation are one form of test. Design reviews are another
form of test. Compiling the code is still another test. Traditional regression tests are also still
used. Extreme DFSS Programming holds that all of these tests should be reevaluated
continuously throughout the design process. The feedback gained from knowing immediately
that something has changed in the result set is empowering.

An area in which there is a large departure between XP and six sigma is the softer side of
development. In the technical aspects of project development there is significant overlap of
ideas between the two approaches. In the psychological aspects, however, six sigma and DFSS
are essentially silent. Beyond recognizing the need for close customer interactions to define

Six Sigma Meets Extreme Programming Kelliher/Blezek/Lorensen/Miller

 5

CTQs, six sigma treats design and implementation as a purely technical task. XP goes beyond
the mere technical to consider the psychology of design and how that psychology plays out in
group interactions. This psychological side turns out to be at least fifty percent of the
challenge to building a lasting improvement. It is a necessary, but not sufficient, condition to
provide the technical support tools and guidance for quality improvement. Without addressing
the human motivational side of improvement, however, the technical effort is a waste.

Changing The Way We Work

Prior to GE’s thrust into six sigma our group’s development process was not something
we paid much attention to. The practices we followed were typical to a homegrown software
effort. We had a core software product, which had been reengineered from its predecessor
product, when that had grown too large and its technical foundation had become out of date.
The new core product was initially developed as a demonstration of how this kind of software
should operate, to serve as an example for a textbook on the subject. From there it had grown
to displace the previous generation product. As versions of the textbook were produced the
accompanying software also went through versions. The examples in the textbook served as
the test cases for the software. These test cases would be run when we were preparing a new
release. The result was that the quality of our product went up and down based on how long
since the previous release. The problem with this approach was that we actually were making
continuous releases to our internal customer in between the major external releases, thus their
quality suffered.

Green Belt Projects
At GE every person in the company was challenged to understand and apply Six Sigma

methods to their job. To back up this challenge every GE employee has been trained in Six
Sigma tools and practices. Every professional within the company is expected to demonstrate
use of the tools to perform their job. The demonstration takes the form of green belt projects.
For people just undergoing training these are generally small projects that look to make
demonstrable improvements to quality in some aspect of their work and to demonstrate
proficiency with elements of the Six Sigma approach. The projects are selected by the trainee
and mentored by a more experienced Six Sigma leader.
Six sigma takes a statistical look at understanding where a product or process fails to meet its
CTQs. Failure is characterized as a number of defects per million opportunities for making the
defect. Since six sigma is a data intensive discipline most people looking for training projects
first considered where they could find some data, preferably continuous data that is easily
produced in large quantities and easy to see the influence of changing parameters in the defect
rate. The sort of process data that you might find in a manufacturing line that produces
thousands or millions of parts per day is ideally suited. This quest left software groups at a
disadvantage. The software “manufacturing” line produces single products over the course of
months. Software process data comes about slowly and often is not highly repeatable from one
application to the next.
To counter this the training projects for software have generally focused on some measurable
aspect of the coding or testing process for which a tool exists for collecting data. Topics such
as regression test coverage, memory usage, and code style are all projects that have been done
for training. These were picked because they had some ability to cast the data as looking for a
small number of defects within a large number of opportunities for making the defect.
The general experience with these projects has been that they do a reasonable job of defining
CTQ’s, e.g. all files within an application source code shall have a mean of 80% of their lines
of code exercised by regression tests with a standard deviation of no more than 5%. The
analysis and improve phases uniformly yield an improvement in CTQ performance, generally
as the result of personal effort on the part of the trainee, e.g. they implemented a sufficient
number of tests to drive the coverage up. The control phase is then where problems arise. In
this phase, the trainee reports on a plan to monitor CTQ performance on a periodic basis.
Having gotten their training completed the trainees then go back to working exactly as they

Six Sigma Meets Extreme Programming Kelliher/Blezek/Lorensen/Miller

 6

have in the past. The CTQ, which was often somewhat artificial is no longer being measured
and as a result no longer valued. The problem is in the control step and in the initial definition
of CTQ. The quality gain, once achieved, was a lone effort and remains that way in the control
stage. Thus the rest of the team ends up with little concern for the gain and eventually it is
forgotten.

Extreme Six Sigma Programming
Once a green belt project is successfully completed, and reported out to senior

management, a trainee is noted as ‘green belt trained.’ Completion of a second project,
presumably a little more ambitious in scope than the initial training project, leads to the
designation of an individual as ‘green belt certified.’ At the research and development center
becoming green belt certified is a condition of employment.

Many groups, and most software groups, that have gone through six sigma training end up
in a similar state. The training does some good; people make small adjustments to their work
habits; a few new skills are added to employee’s toolkits; old habits are dress up in new
vernacular; work goes on. In the case of our group, however, we took the second round of six
sigma projects as a chance to change. The result is our blended “Extreme Six Sigma
Programming” method of work.

At the same time as the second round of green belt projects started several members of
the group began working more closely than they had in the past. This close work resulted
partially from the desire to commiserate over having to do more green belt projects and
partially from a desire to see a lasting improvement from the projects. The results from the
first round, although temporary, had been enough to inspire some of the group to see that there
was room for improving the way we worked and the quality of our output. From the short
lived gains we understood that the overall quality of our software was better when we took the
time and effort to check performance against the CTQs from many of the training projects.
The challenge for the second round became how to put a control mechanism in place that
could survive beyond the completion of the project with limited resources.

From the teams that were working closely came a secondary motivational force, if the
team was going to be spending time working on something it became very important that the
work would result in value. Thus the team became a quality self-enforcing unit. These forces,
which were somewhat chaotic, coupled with members of the team reading and learning about
XP resulted in a drive to build an extreme testing environment. XP also validated what they
were experiencing – pair programming leads to better productivity.

The result of the second round project was an automated “extreme” framework for
running the various tests and tools that had been built for individual green belt projects. The
lessons learned from the failed control efforts guided the team to create a process for
compiling the results into a dashboard that makes the results plainly visible. This framework is
set up to run the tests overnight and to have the html dashboard ready in the morning for any
of the developers or customers to view. Thus, in keeping with XP, our customers could now
observe the state of the groups quality at any time. They could also view the quality trends
over the course of a project.

Lessons Learned
From the building of the framework we learned a few lessons. There are several key

elements to the success of our quality efforts. Take away any one of them and the overall
result will be diminished significantly. Automation of the process is one of the keys to its
success. Without the automation we would have to rely upon individual developers to run the
tests. While this could work for a small set of tests over a small period of time the lessons of
the first round of green belt projects showed it wasn’t going to be sustained without the
automation. Consolidation of the results into a single dashboard is another key. The
consolidation is really just a second call for automation. Even when the tests are run and
results produced automatically, without the consolidation people do not make the time to
search out the results routinely and adjust as necessary to maintain the quality. Careful
attention needs to be given to the consolidation. Even today, with the system having been in

Six Sigma Meets Extreme Programming Kelliher/Blezek/Lorensen/Miller

 7

place for two years, those quality items that are most prominent on the quality dashboard get
the most attention. Those which appear as more of a footnote are often neglected. This
behavior relates back to the basic six sigma principle; we value what we measure. In this case
we value more that for which we highlight the measurement.

Third, and perhaps the most important lesson, is team buy-in and ownership. Not
everybody has to 100% on board but there have to be some of the alpha-developers for whom
this becomes a way of working. From their influence comes the change in the way the rest of
the group behaves.

Conclusions

As a group of workers that has gone through green belt training began to adopt elements of
extreme programming an interesting phenomenon occurred. The group has a five year history
of developing an open source package so they had been early adopters of elements of the
approach. The idea of collective code ownership, refactoring, simple design, and coding
standards were all part of the group ethic to a greater or lesser degree. One of the new
elements of extreme programming that the group decided to experiment with as it was
embarking on Six Sigma was a modified form of pair programming. This has made all the
difference in the impact made by Six Sigma.
In the local version of pair programming the concept is extended to be paired, or trippled,
work. Not only is time programming spent together but other work time is also spent together.
This includes time spent on green belt projects. The time being jointly directed as in pair
programming. This means that each member of the work group ends up having to buy into the
value of the green belt project before it begins. Given this expanded ownership of not just the
code output but also of the quality outputs the control phase got a renewed emphasis. With
additional owners comes additional pressure to achieve a suitable performance on the CTQ.
After the first round of projects the CTQ performance had risen noticeably and any
backsliding was more rapidly noticed. The group then moved to the next element of extreme
programming, continuous integration. Measuring the quality results entailed running a test of
sorts for each aspect of quality that was being checked. Running these tests by hand became
cumbersome so the group developed a nightly test harness that runs each of the quality tests
and collects all of the data to present a single comprehensive view of measured quality. It was
a small move from this point to start a continuous test process that runs a slimmed down set of
the quality tests whenever code is checked into the source code repository.
The continuous measure of quality then is the final blending of extreme programming with Six
Sigma. Behavior and measurement are well aligned. System performance against external,
customer defined CTQs, expressed through regression tests, and internal, team defined CTQs,
expressed through quality tests are available on a continuous basis. The teams are not able to
move forward unless the results of their work is a clean dashboard as measured by both
continuous and nightly dashboards. Extreme Six Sigma has become the way we work.

Reflections
We did not set out to change the way we worked. In fact we were pretty happy with the state
of our developments. Our group was seen as one of the exemplar groups for software
development within our larger organization. Why then did we change? Once we were forced
to do some self-examination it became clear how much better things could be. We learned
from the green belt projects and came to see the worth of six sigma, even if it was, and is, a
top down initiative. At the same time we did not take the whole package. Parts of six sigma
and DFSS are still not a part of our daily routine. The parts we have taken, however, are now
deeply ingrained in our process.
XP had an advantage to adoption. It did not come with a top down mandate. It did agree with
some of our intuition and some of what we were being told to do. XP’s testing fit well with the
testing we had arrived at through six sigma. Other parts of XP, likewise, fit with our needs. As
with six sigma, we have not taken the whole XP package, instead picking the elements that
work for us. As we learn perhaps we will understand the benefit to some of the elements we

Six Sigma Meets Extreme Programming Kelliher/Blezek/Lorensen/Miller

 8

have not yet chosen to try. We can say, however, that as a result of our experiences we have
changed the way we work and none of us will go back to a less results conscious mode of
work even as we enter new project areas.

[Harry 1994] Harry, Mikel J.,The Vision of Six Sigma:Tools and Methods for Breakthrough,
Sigma Publishing Company, 1994.

[Beck 2000] Beck, Kent, Extreme programming explained: embrace change, Addison-
Wesley, 2000

Author Biographies

Timothy P. Kelliher is a Computer Scientist at GE's Corporate Research and Development
Center in Schenectady, NY. He has over 15 years experience in systems and software
engineering. At the center he has worked on Software Engineering CASE tools, Human
Computer Interaction, and Software Quality systems. He is a Six Sigma Master Black Belt and
spends much of his time instructing and mentoring the GE software development community.
He is co-author of “Engineering Complex Systems with Models and Objects” published by
McGraw-Hill, 1997.

Blezek is a Computer Scientist in the Visualization and Computer Vision Program at GE's
Corporate Research and Development center. He holds a Ph.D. from the Mayo Graduate
School in Biomedical Engineering. His research interests include medical image segmentation,
advanced rendering algorithms, and practical software quality techniques

William Lorensen is a Graphics Engineer at GE's Corporate Research and Development
Center in Schenectady, NY. He has over 30 years of experience in computer graphics and
software engineering. William is currently working on algorithms for 3D medical graphics and
scientific visualization. William is the author or co-author of over 60 technical articles on
topics ranging from finite element pre and postprocessing, 3D medical imaging, computer
animation and object-oriented design. He is a co-author of "Object-Oriented Modeling and
Design" published by Prentice Hall, 1991. He is also a co-author of "The Visualization
Toolkit: An Object-Oriented Approach to 3D Graphics" published by Prentice Hall in
November 1997. Mr. Lorensen holds twenty seven US Patents on medical and visualization
algorithms.

James Miller is a Computer Scientist at GE's Corporate Research and Development Center in
Schenectady, NY. He joined GE after receiving his PhD from Rensselaer Polytechnic Institute
in 1997. His thesis topic was in Computer Vision. At GE James has become a primary
contributor to vtk software algorithm development and testing. For the past year, he has been
the project leader on a research project for Lockheed Martin involving the inspection of large
airframes using laser ultrasonic techniques.

QW2001 Paper 3M2

Ms. Elli Georgiadou (Middlesex University)
&

Ms. Naomi Barbor (University of North London)

Investigating The Applicability Of The Taguchi Method To
Software Development

Key Points

Quality Engineering and Experimental Methods●

Taguchi made simple through novel vizualisations●

Applicability of Taguchi Method to Software Development●

Presentation Abstract

The purpose of this paper is to investigate the possibility of applying the Taguchi
Method to software production. It is well recognized that we need to ensure the
quality of the end product early in the software life cycle. Attempts to introduce
quality at the later stages increase cost. Dr. Taguchi’s philosophy is now well
practiced in the manufacturing industry. In Japan the Taguchi Method is called
‘hinshitsu kougaku’. It literally means ‘quality engineering’. The method has
ensured the significant reduction of manufacturing costs together with increased
product quality. In this paper we present a suite of visual representations of the
major components of the Taguchi method. These visualisations aid the
understanding of both the Taguchi’s philosophy and the techniques. The
investigation concludes with a set of guidelines for improving software quality
through statistical analysis methods, which are practiced in the Taguchi Method.

About the Author

Elli Georgiadou is a Principal Lecturer in Software Engineering at Middlesex
University, London. Her teaching includes Software Metrics, Methodologies,
CASE and Project Management. She is engaged in research in Software
Measurement for Product and Process Improvement, Methodologies,
Metamodelling and Software Quality Management. She has extensive experience
in academia and industry and has been active in organising conferences and
workshops under the auspices of the British Computer Society and the ACM
British Chapter.

1

Investigating the Applicability
of the Taguchi Method to
Software Development

NAOMI BARBOR1 and ELLI GEORGIADOU2

n.barbor@unl.ac.uk, e.georgiadou@mdx.ac.uk

1School of Informatics and Multimedia Technology, University of North
London, 2-16 Eden Grove, London N7 8EA, UK

2School of Computing Science, Middlesex University
Trent Perk Campus, Bramley Rd, London N14 4YZ, UK

Agenda

• The need to ensure quality
• Quality and Experiments in Software Engineering
• The Taguchi Method
• Software Development and Taguchi
• Guidelines for Applying the Taguchi Method in

Software Development
• Conclusions & Future Research
• Acknowledgements
• Q& A + Contact Details

2

The need to ensure quality

• Safety / Reliability ?
• High Performance ?
• Cost-effectiveness ?
• User satisfaction ?

Software Quality is….

• Fenton (Fenton et al, 1995) states that
software quality is “The totality of
features and characteristics of the
software product that bear on its ability
to satisfy stated or implied needs ”.

3

Software Quality is….

• ‘ISO9126-Software Product Evaluation: Quality
Characteristics and Guidance for their Use’ is the
first international standard to attempt to define a
framework for evaluating software quality (Azuma,
1993).

Software Quality is….

• Reliability : The software should maintain its level of
performance under stated conditions for a stated period of
time6

• Efficiency: The software should provide a solution to the
problem in an efficient (time, accuracy) manner.

• Usability: The software should be easy to use.
• Maintainability: The software should be easily

maintained after its shipping.
• Portability: The software should have the capability to be

transferred from one environment to another.

4

Quality and Experiments in Software
Engineering

• Traditional sciences have always recognised and used
formal, controlled experiments for testing hypotheses.

• However, in software engineering very few controlled
experiments have been carried out (Law et al., 1992; Basili
et al., 1984; Card et al., 1987; QUANTUM, 1992;
Georgiadou et al., 1993; Georgiadou et al., 1994; Shepperd
et al., 1997; Georgiadou et al., 1999 & 2001) to examine
specific aspects of quality such as complexity.
understandablity and maintainability.

Laboratory Experiments
(from Galliers)

• - are designed to be precise
• - provide clear distinction between variables
• - use quantitative analytical techniques
• - support a view for generalisation
• Strengths:

– keep control of a few variables which may be
studied intensively later

• Weaknesses:
– they are often very simplified;
– what about real life?

5

Four problem areas

• Schack (Schack, 1987) identified four problem areas
facing formal experimentation in Software Engineering
namely:
– (1) the prohibitive costs,
– (2) the difficulties in controlling differences in developers' and

users' ability,
– (3) the effects of development methods and tools used in part of

the development process on other parts, and

– (4) the evolutionary nature of software development environments.

The Taguchi Method

Dr. Genichi Taguchi is director of the Japanese Academy
of Quality. He is credited with having started the
Robust Design movement in Japan more than 30 years
ago. Dr. Taguchi’s philosophy began taking shape in
the early 1950s when he was recruited to help correct
postwar Japan’s crippled telephone system. Finding
deficiencies in traditional trial-and-error approaches to
identifying design problems, he eventually developed
his own complete, integrated methodology for
designing experiments (American Supplier Institute,
1999).

6

A new view of Quality

– “If quality is high, our society will get benefit from the
product. If the quality is low, our society’s current
standard will decrease to cope with those bad products.
That is, the smaller the loss, the higher the desirability”
(Baba, 1999). The term ‘social loss’ implies:

– .losses due to poor and varied performance of a
product;

– .failure to meet the customer’s requirements of fitness
for use or for prompt delivery;

– .harmful side-effects caused by the product.

Visualization of the
Taguchi’s Philosophy

 Society
 (b)

 Society
 (a)

Q

Q

Q

Q

Q

Q

Q

7

Taguchi’s philosophy -2

Product
PQ = α2 -β2

Society before
SQ = α1 - β1

Society after
SQ’ = (α1+α2)+(-β1-β2)

Robust Design

• Robust Design is an important methodology for
improving product manufacturability and life
span, and for increasing the stability of the
manufacturing process. In Taguchi’s philosophy,
the use of experimental design is critical. This
experimental design aims to minimize the
variability of a product so that the quality of a
product does not vary unpredictably

8

Loss Function

• In the Taguchi Method it is believed that the
variability of a product quality results in
financial loss. To assess the amount of loss
in Taguchi’s quality definition, the Loss
Function was suggested.

Visual representation of
the relationship of product quality and

loss function

 Q

 Company

9

Loss Function-2

Customer’s Point of View Developer’s Point of View

 Loss L Loss L
Target quality Target quality

Price Extra
Paid Development
extra Cost

qulity quality

Social Loss

 Target quality
Loss L

 quality

Manufacturing Process
[adapted from website-2]

 Variability

 Market

Pl
an

ni
ng

System Design

Elemental technology1
Elemental technology2
Elemental technology3

.

.

.

.

.

Product Design

 Feedback

pr
ot

ot
yp

e

te
st

re
vi

ew

Pr
od

uc
t

10

Diagrammatic representation
of Target Quality Value

 Engineering engineering engineering shipping

 a1 a2 a3 a4 a’4

Off-line Process Control
[adapted from website-2]

Technology Engineering

Technology Investigation
elemental technology 1
elemental technology 2
elemental technology 3

.

.

Variability Investigation
variability assessment 1
variability assessment 2
variability assessment 3

.

.

Product Design
Combination of technology

Assessment for between cost and product quality

Planning

11

Product Quality
Cultural, Legal Shape of the Problem

 a f

 b Q e

 c d

(1)Insensitive to variability (2)High variability
 High quality Low quality

 A C

 B D

Noise Factors and their
Effect on Quality

a

a’
b

12

Software Development and
Taguchi

• We need to conduct experiments before
actually producing code since Taguchi’s
experimental design and experiments are set
before production. However, in software
development it is not realistic to do this.
Therefore for each project the guidance of
coding process may be suggested such as
“ The target number of lines of code per
module is less than 150”.

Significant features/parameters

• According to Adrian Burr (Burr et al.,
1996) the number of lines of code per
module, target complexity, McCabe’s
cyclomatic complexity and the number of
parameters are considered to have
significance for software quality. These
factors can be used in designing
experiments.

13

Design parameters in the software
development environment

• Machine, Operating System and Languages
• The efficiency of a software product such as

execution time has high priority as a
software quality factor. To maximize the
performance of a product, the choice of
machines, operating systems and
programming language has to be included
in the list of parameters.

Human Factors

• We must mention an additional design parameter
which the Taguchi Method does not mention
explicitly in the Robust Design. That is,
performance variability in a human being such as
his/her experience and communication skills
needed in a software development team. The
developers’ performance has an effect on
producing quality software products in a similar
way to the effect of machines etc.

14

Orthogonal arrays

• It is important to choose the design parameters
which are independent of each other.

• Orthogonal arrays are used to record information
about the design of the experiment. The advantage
of using an orthogonal array is that the effect of
several parameters can be determined whilst also
minimizing the number of experiments.

Selection of Parameters and
their settings

• The following list contains some of the widely-
used orthogonal arrays which use two and three
level design parameters. L18 is most commonly
used in the Taguchi Method.

• L4: Accommodates three two-level design variables
• L8: Accommodates seven two-level design variables
• L9: Accommodates four three-level design variables
• L12: Accommodates eleven two-level design variables
• L18: Accommodates one two-level and seven three-level

design variables

15

An illustrative example

 Design Parameters Settings Comment

 A Lines of code per
module (50, 150, unspecified)

This setting is based on suggestions by
Adrian Burr who and information found in
Beizer (Beizer, 1990) and Georgiadou
(Georgiadou, 1993).

 B
 Nesting Level

according to the
design

 (3, 5, 7)

 Cantata indicates McCabe’s complexity 1 to
10 is ‘pass’ and greater than this results in
‘fail’. At the design stage the flow diagram
or Pseudo Code can be used to indicate the
nesting level before coding.

 C

 Number of
statements per

module

 (30, 40, 50)

 It is difficult to control this parameter but it
is not impossible. As is commonly known,
the larger the number of statements in a
module the harder it is to achieve 100% test
coverage because of the cost involved.

16

Matrix Experiment

Control
Orthogonal

Array

Noise Orthogonal Array

Quality Characteristics
measured using
measurement or metrics

Mean Std

Quality characteristics and the
S/N Ratio

• The traditional Experimental Design uses S/N
Ratio to observe the variance of data. The Taguchi
Method aims to analyse S/N Ratio, and to use it to
reduce variability of the final product. An example
is shown to demonstrate variability of possible
design parameters’ in a software product followed
by suggested quality characteristics in three
categories using three equations.

17

Static Analysis, Metrics and
Taguchi

• Eight GNU applications were downloaded from
the internet (GNU, 1984) and analysed. Cantata
(IPL, 1994) instrumented these files, calculated a
number of metrics and produced files which gave
the static analysis of each module in each
application. These data was used to apply the Loss
Function in order to see the variability of the listed
measurements for the modules (Barbor, 1999).

Variability
S TATE M E N TS

-4

-3

-2

-1

0

1 2 3 4 5 6 7 8 9 10 11 12

The numbers labeled for each dot in the graph are:
1: Expression Statements
2: For Loop Statements
3: While Loop Statements
4: Do Loop Statements
5: If Statements
6: Switch Statements
7: Return Statements
8: GOTO Statements
9: Break Statements
10: Continue Statements
11: Null Statements
12: INT Statements

18

Guidelines for Applying the Taguchi Method
in Software Development

P 3 C h o o s e c o n t r o l l a b l e i n t e r n a l
a t t r i b u t e s a n d th e i r s e t t i n g s

P 6 I m p l e m e n t a t i o n

. . .

. . .

. . .

I m p l e m e n t a t i o n w i t h
s e t t i n g F

P 8 C o n s t r u c t M a t r i x O r th o g o n a l
A r r a y a n d c a l c u l a t e t h e S / N R a t i o

P 5 A p p l y e a c h a t t r i b u t e s e t t i n g
f o r im p l e m e n t a t i o n

P 4 I d e n t i f y n o i s e f a c t o r s a n d
th e i r s e t t i n g s

P 1 I d e n t i f y m a i n f u n c t i o n s

P 2 D e t e r m in e q u a l i t y
c h a r a c t e r i s t i c s a n d h o w t o
m e a s u r e t h e m

R e q u i r e m e n t s S p e c i f i c a t i o n d o c u m e n t

S o f t w a r e Q u a l i t y F a c t o r s a n d M e t r i c s

L i s t o f i n t e r n a l a t t r i b u t e f o u n d in t h e
s o f t w a r e p r o c e s s , p r o d u c t s a n d
e n v i r o n m e n t (r e s o u r c e s)

I m p l e m e n t a t i o n w i t h
s e t t i n g E

I m p l e m e n t a t i o n w i th
s e t t i n g C

I m p l e m e n t a t i o n w i t h
s e t t i n g C

I m p l e m e n t a t i o n w i t h
s e t t i n g B

I m p l e m e n t a t i o n w i th
s e t t i n g A

L i s t o f i n t e r n a l a t t r i b u t e s f o u n d i n
s o f t w a r e d e v e l o p m e n t e n v i r o n m e n t

C o d e

M a t r i x O r th o g o n a l a r r a y
S / N R a t i o

P 9 D e t e r m in e t h e o p t im a l d e s i g n
p a r a m e t e r s e t t i n g

O p t im a l D e s i g n p a r a m e t e r s e t t i n g

P r o c e s s e s (P i) P r o d u c t s

P 7 T e s t i n g , M a in t e n a n c e a n d u s e
o f M e t r i c s

T e s t D a t a
M e t r i c s D a ta

Difficulties

• The difference between mass-production and the
production of a unique piece of software, the importance of
customer evaluation, and unavoidable changes of
requirements at any stage of software life cycle make it
difficult to apply the Taguchi Method as it stands to
software development. However, the authors believe that
the underlying concept of Robust Design for product
quality and minimization of production cost can be applied
in software development since it enhances the probability
of controlling software production towards high quality
software.

19

More difficulties

• Difficulties are also experienced in carrying out
the experiment since certain information that is
needed when applying the Taguchi Method is
often difficult and sometimes impossible to obtain.
This includes in-house information such as time
and cost of product development, the company’s
policy or guidelines for producing the code (if
these exist), the environment such as the machine
used or experience of the programmers.

Conclusions -1

• The purpose of this paper was to investigate the possibility
of adapting the Taguchi Method for Software Quality
Improvements.

• A number of suggestions are made to adapt the Taguchi
Method from ensuring quality in manufactured products to
the development of quality software.

• Adjustments are necessary because of the fundamental
differences between tangible manufactured products and
software artifacts.

20

Conclusions -2

• Taguchi’s philosophy “The better the quality, the less the
production cost” in the manufacturing industry is equally
valid in the software industry because quality software
must also have a good design to enable a software
company to minimise the cost of repetitive development
processes (redesigning, re-coding and re-testing) and the
severity of testing.

Problems

• It is not straightforward to conduct the Robust Design in
software development mainly because software products
are intangible. A problem specific to design and execute
experiments was that there were vast numbers of design
factors for which it was not possible to obtain values such
as cost and time spent, the methodology used, the
experience of the developers, types of machines, the office
environments, and whether the programmers have
developed a similar type of product before or not.

21

Software Metrics & Taguchi

• The use of metrics is particularly useful in software
development if what needs to be done is clearly identified
and when and how statistical analysis activities should be
carried out in the software development procedure is
established. The authors believe that product variability
can be measured, monitored and controlled with a high
degree of confidence if the Taguchi Method is applied to
software production.

Further work

• Further work will initially concentrate on using the
proposed guidelines for carrying out a number of
experiments in order to validate the adapted model.
Secondly, we will work on identifying a correct and
unambiguous set of controllable design parameters which
have significance for software quality employing empirical
data and its analysis under a systematic measuring
operation.

• Industrial/Academic Funding required

22

Acknowledgements

• The authors would like to thank Adrian Burr for
the origin of the idea and his practical help.
Sincere thanks are also due to Aasma Saadia for
her incisive and useful comments, corrections and
suggestions for the completion of this paper.
Finally many thanks to IPL for providing the
Cantata tool free of charge.

How you can contact us

• Naomi Barbor
• School of Informatics and

Multimedia Technology,
University of North London,

• 2-16 Eden Grove,
• London N7 8EA, UK

• Tel: +44 207 607 2789
• Fax: +44 207 753 7009
• email: n.barbor@unl.ac.uk

• Elli Georgiadou
• School of Computing Science,

Middlesex University
Trent Perk Campus,

• Bramley Rd,
• London N14 4YZ, UK

• Tel: +44 208 411 4331
• Fax: +44 208 411 5924
• email: e.georgiadou@mdx. Ac.uk

 1

Investigating the applicability of the Taguchi Method
to Software Development

NAOMI BARBOR and ELLI GEORGIADOU

School of Informatics and Multimedia Technology, University of North London, 2-16
Eden Grove, London N7 8EA

Tel: +44 171 753 3142 Fax: +44 171 753 7009

email: barborn@unl.ac.uk / e.georgiadou@unl.ac.uk

The purpose of this paper is to investigate the possibility of applying the Taguchi Method to software

production. It is well recognized that we need to ensure the quality of the end product early in the

software life cycle. Attempts to introduce quality at the later stages increase cost. Dr. Taguchi’s

philosophy is now well practiced in the manufacturing industry. In Japan the Taguchi Method is called

‘hinshitsu kougaku’. It literally means ‘quality engineering’. The method has ensured the significant

reduction of manufacturing costs together with increased product quality. In this paper we present a

suite of visual representations of the major components of the Taguchi method. These visualisations aid

the understanding of both the Taguchi’s philosophy and the techniques. The investigation concludes

with a set of guidelines for improving software quality through statistical analysis methods, which are

practiced in the Taguchi Method.

 2

Investigating the applicability of the Taguchi Method
to Software Development

The purpose of this paper is to investigate the possibility of applying the Taguchi Method to software

production. It is well recognized that we need to ensure the quality of the end product early in the

software life cycle. Attempts to introduce quality at the later stages increase cost. Dr. Taguchi’s

philosophy is now well practiced in the manufacturing industry. In Japan the Taguchi Method is called

‘hinshitsu kougaku’. It literally means ‘quality engineering’. The method has ensured the significant

reduction of manufacturing costs together with increased product quality. In this paper we present a

suite of visual representations of the major components of the Taguchi method. These visualisations aid

the understanding of both the Taguchi’s philosophy and the techniques. The investigation concludes

with a set of guidelines for improving software quality through statistical analysis methods, which are

practiced in the Taguchi Method.

 3

1. Introduction

In modern life, a computer has become one of the essential appliances like a

telephone or a television. The advantages of using computers such as accuracy and

time efficiency are now well recognized, and so is the demand for software which has

high performance and achieves user satisfaction. Here the word ‘satisfaction’ might

be affirmation that money was well spent at the consumer side and ‘profit’ will be the

term for it for software developers. Statistical Process Control (SPC) has been well

practiced in the manufacturing industry. In the Japanese industry SPC has been

widely applied resulting in the success of manufacturing technological products. The

big names such as Sony, Sharp or Pioneer have gained good reputation for their

products from customers all over the world. It is true that the economic crisis in 1998

has brought the Japanese industry financial decline. The Japanese Yen has become

cheep in the financial market and manufacturing products costs more than before

because mainly the industry and fundamentally the social life itself depend on import

materials from all over the world. If products become more expensive, the only way

to maintain possible markets might be to produce higher quality products using cheap

materials which may have high variability. For this reason Japanese companies make

use of Statistics to control the quality of products.

 In the software industry, the Deming or Shewhart’s quality improvement cycles or

the W model have led to a systematic software process which increases the quality of

the end product. However, traditionally the quality of software depended on whether

it was produced by highly knowledgeable, skilled programmers or not. In such cases,

there will normally be variability in the end products. Here, the adoption of SPC is a

new weapon for ensuring the quality of software. It is desirable to reduce product

variability early in the software lifecycle, and to minimise the cost of production.

 4

Dr. Genichi Taguchi’s Experimental Design incorporates the collection of statistics as

a fundamental activity in the manufacturing process. To conduct these experiments, it

is necessary to fully understand the software development procedures, where all the

design parameters required in the operation of the Taguchi Method originate from,

and the measurements proposed to measure those design attributes and variables.

Even though the Taguchi Method has been popular throughout the world, there are

criticisms. Greenfield (Greenfield, 1995), a statistician, warns that the adoption of the

Taguchi Method itself does not ensure successful Quality Improvements. He argues

that the followers of the method are in danger of only fulfilling the procedure of the

experiments without fully understanding or investigating the vast number of response

variables to a product quality.

The choice of the required design parameters and their correct leveling is the key of

the Taguchi Method. Even if the improved design suggests the improvement of

product quality, the setting of these quality factors may be wrong unless the designers

fully understand what they are doing.

 There are difficulties to adopting the method into software production because of the

difference in the nature of the software artifacts. For example the manufacturing

industry tries to maximise the profit by selling more while minimizing the production

cost. On the other hand, a software company might have two situations. One is

producing one product and selling a lot so that profit from warranty increases such as

in computer game production. The other is when a single customer wants a specific

single product which is unique to the customer’s need, and often the required system

is something new. In the worst case if that single software product does not meet the

customer’s requirements, the loss is unrecoverable. At least the cost of overtime until

the final product is satisfactory to the customer will bring the company financial loss.

 5

Furthermore there are differences in the nature of materials for use. In manufacturing

physical sciences are the key to analyzing the product performance. The quality of the

product is good if all the input energy, such as gas, electricity or fuel, is converted to

the product function consistently under a wide range of environments. However in the

software industry, materials equate to logic, and during the integration process, there

has not been a formal method for ensuring that the product is bug free.

2. Experiments in Software Engineering

The final goal of Software Quality Assurance is producing 100% bug free software.

However, it is commonly recognised that so far it has been impossible to produce bug

free software. According to Beizer (Beizer, 1990), it is impossible to test software

thoroughly. In addition, there might be the possibility of invisible bugs in software.

Therefore it seems practical that instead of trying to test software as much as possible

we tackle those parts of the software which are more likely to contain bugs. The next

question is which parts of a system we should look into. Through experience they

would be the parts which handle more variables, have more function and

communicate with the other modules more. So if we can identify those parts and

concentrate on making them bug-free, it can be said that we increase the overall

quality of the software.

Fenton (Fenton et al, 1995) suggests that software quality is “The totality of features

and characteristics of software product that bear on its ability to satisfy stated or

implied needs ”.

ISO9126-Software product evaluation : quality characteristics and guidance for their

use is the first international standard to attempt to define a framework for evaluating

software quality (Azuma, 1993).

 6

The standard specifies six characteristics for evaluating software quality:

Functionality: The software should meet all the user’s requirements

Reliability: The software should maintain its level of performance

under stated condition for a stated period of time.

Efficiency: The software should provide a solution to the problem in an

efficient (time, accuracy) manner.

Usability: The software should be easy to use.

Maintainability: The software should be easily maintained after its shipping.

Portability: The software should have the capability to be transferred

from one environment to another.

2.1 Formal Experiments in Software Engineering

Traditional sciences have always recognised and used formal, controlled experiments

for testing hypotheses. However, only a few controlled experiments have been carried

out in Software Engineering (Law et al., 1992; Basil et al., 1984; Card et al., 1987;

QUANTUM, 1992; Georgiadou et al., 1993; Georgiadou et al., 1994; Shepperd et al.,

1997; Georgiadou et al., 1999) examining specific aspects of the software product or

process.

Hetzel (Hetzel, 1993) warns that “ …a few experiments have produced important

results, their overall legacy and influence on software practice has been limited. One

reason is inherent with the experimental approach. No one is willing to fund multiple

repeated development of complex systems just so that method and individual

differences can be systematically controlled and analysed. Consequently most

experimental results have been obtained on very small problems in artificial

 7

environments and practitioners and managers are properly unconvinced that the

results will scale up and apply to ‘real’ world work ”.

 Schack (Schach, 1987) identified four problem areas facing formal experimentation

in Software Engineering namely the prohibitive costs, the difficulties in controlling

differences in developers' and users' ability, the effects of development methods and

tools used in part of the development process on other parts, and the evolutionary

nature of software development environments.

Planning, designing and executing an experiment within an academic environment

avoids the problem of cost due to the availability of physical and human resources.

Additionally, the ability, prior knowledge and skill of the experimental subjects can

be controlled. Galliers (Galliers, 1992) summarises the key features, strengths and

weaknesses of the laboratory experiment as shown in table 1.

Table 1. Laboratory Experiments
Research
Approach

Key Features Strengths Weaknesses

laboratory
experiments
�

- designed to be precise
- provide clear distinction

between variables
- use quantitative analytical

techniques
- support a view for

generalisation

keep control of
a few variables
which may be
studied
intensively later

very simplified;
what about real
life?

 For the evaluation of the Graphical Query Language GOQL (Keramopoulos, 1997)

the formal laboratory based controlled experiment was selected because it was

possible to resource the activity in terms of available laboratories, experimental

subjects and time for designing and executing the experiment.

The authors believe that product variability can be measured, monitored and

controlled with a high degree of confidence if the Taguchi Method is applied to

software production.

 8

2.1 Importance of Software Measurement
Fenton and Pfleeger (Fenton et al., 1997) provide the following definition of

measurement:

 “Measurement is the process by which numbers or symbols are assigned to attributes

of entities in the real world in such a way as to characterise them according to clearly

defined rules. The numeral assignment is called the measure.”

The theory provides the rigorous framework for determining when a proposed

measure characterises an attribute and provides rules for determining what statistical

analysis are relevant and meaningful.

To understand the definition of measurement in the software context, we need to

identify the relevant entities and the attributes of those that we are interested in

characterising numerically.

2. 2 Internal attributes and external attributes

According to Fenton (Fenton, 1994) internal attributes are the key to improving

software quality and can be measured in terms of the code. Software engineering

methods provide rules, tools and heuristics for producing software products. They

show how to provide structure in both development process and the products

themselves such as documents and code which have properties (internal attributes).

These properties are modularity, re-use, coupling, cohesiveness, redundancy, D-

structuredness and hierarchy. They assure reliability, maintainability and usability for

users and also assure productivity and cost-effectiveness for managers.

Brooks (Brooks, 1995) states that a good top-down design avoiding bugs can be

achieved in the four ways listed below.

1. The clarity of structure and presentation of a design make it easier to understand

 9

the precise statement of requirements and functions of the modules.

2. The partitioning and independence of modules helps to avoid system bugs.

3. The suppression of detail makes flows in the structure more apparent.

4. Testing can be easier because the proper level of detail will be shown at each

step.

Why might we be especially interested in measurements for early life-cycle products?

Because we would like to predict attributes of the eventual implemented system such

as cost, effort, size, complexity and quality. Complexity means the totality of all

internal attributes and we aim to control it in software products.

We are interested in both internal and external attributes because for example

reliability of a program is dependent not just on the program itself, but on the

compiler, machine and user. And productivity is dependent on people and

management of a project.

It is often necessary to use surrogate measures for complex external attributes (Fenton

et al., 1996; Kitchenham, 1996). For example time taken to carry out specified

maintenance tasks might be used to provide an indication of the maintainability of

software (Georgiadou et al., 1994).

2.3 Software Quality Assurance (SQA) Metrics

The use of software quality metrics within an organisation or project is expected to

have a beneficial effect by making software quality more visible. Data collection

methods and the idea of validation of metrics are employed. A software quality survey

gives some information as to the state of practice with software quality assurance

metrics. Metrics gives some help to the inaccurate area of software estimation. All

metrics are not an SQA measure, however they deserve some special notice for

overall software success.

 10

There are a number of examples given of various practical implementations of SQA

metrics. For example, Hitachi’s quality measurement was described by Tajima

(Tajima et al., 1981). Tajima described ‘quality’ improvements at Hitachi in terms of

spoilage, being the time to fix post-release defects.

What choice of a set of data is an important and difficult task. As Fenton (Fenton et

al., 1997) and Shepperd (Shepperd, 1995) emphasizes that it is meaningless to collect

figures without purpose We are thus interested in the question which property

(attribute) of software has significance to the quality of the end product. Realistically

to achieve this aim, it would be necessary to collect data empirically. However it is

useful to develop the skill to examine the data and understand the program’s

constructs and complexity. That will help the programming capability of a

programmer.

3. The Taguchi Method

3.1 Japanese quality control

According to Logothetis (Logothetis, 1989), the Japanese approach for quality control

was founded by W. A. Shewhart who is the founder of modern quality control. His

philosophy is based on the motto "the better the quality, the lower the cost".

Logothetis also comments that Kaoru Ishikawa is the father of ‘Total Quality Control’

and received the ‘Deming Prize’ for the philosophy of:

1. Statistics becoming a common language which can be used at all levels in the

organization and provide the information to anticipate, identify and correct

mistakes.

2. The purpose is to reduce wasteful variability in the system by ‘doing it right the

 11

first time’.

Hagime Karatsu (Logothetis, 1989) explains the manufacturing process as follows;

“If it is aimed to produce quality products, there will be great financial benefits.

Withdrawal and return of products are reduced. Higher productivity will be achieved

because it will be less frequent to stop machines for replacing materials. That means it

is possible to reduce the operation rate. As the manufacturing system itself improves

in quality, the cost will be minimized. That will give rise to the company’s reputation

and will increase its sales.”

Dr. W. E. Deming was Chairman and President of Nashua Corporation and he is

regarded as the founder of the third wave of the Industrial Revolution. He claimed

that if a company tries to obtain shorter term profit, it would lead to business failure.

Deming suggested ceasing dependence on inspection in order to achieve quality, and

eliminating the need for mass inspection by building quality into the product in the

first place. This emphasizes the importance of the stage of design of a product, which

is common from Deming to Taguchi.

3.2 Taguchi’s philosophy

Dr. Genichi Taguchi is director of the Japanese Academy of Quality. He is credited

for starting the Robust Design movement in Japan more than 30 years ago. Dr.

Taguchi’s philosophy began taking shape in the early 1950s when he was recruited to

help correct postwar Japan’s crippled telephone system. Finding deficiencies in

traditional trial-and-error approaches to identifying design problems, he eventually

developed his own complete, integrated methodology for designing experiments

(American Supplier Institute, 1999)

 12

3.3 Definition of Quality

“If quality is high, our society will get benefit from the product. If the quality is low,

our society’s current standard will decrease to cope with those bad products. That is

‘the smaller the loss, the higher the desirability” (Baba, 1999). The term ‘social loss’

implies:

1. losses due to poor and varied performance of a product;

2. failure to meet the customer’s requirements of fitness for use or for prompt

delivery;

3. harmful side-effects caused by the product.

3.4 Visualization of the Taguchi’s philosophy

In this investigation we propose the visualization described in Fig 1 and 2 of

Taguchi’s philosophy.

Fig. 1. Diagramatic represention of Taguchi’s Philosophy - 1

Here the ideal society shape is represented by a perfect circle. In the Taguchi method,

the variability of product quality Q causes social loss. Society (b) cannot remain the

shape of the circle. This affects not only the customer, but also the companies which

supplied these products. The loss should be minimised. Thus low loss is emphasised

to mean high quality in society.

 Society
(b)

 Society
 (a)

Q

Q

Q

Q

Q

Q

Q

 13

Fig 2 demonstrates the effect of product quality on society. We represent Taguchi’s

social philosophy by using plus and minus symbols. Quality includes the idea of the

loss caused to society as a result of poor quality. “Quality-loss’’ of a product has an

effect on anything which involves and reduces the quality at the other end. This is

equivalent to the Physics principle of energy consumption where energy moves from

higher to lower levels.

Fig. 2. Taguchi’s Philosophy - 2

The current value (SQ) in society is altered by the value (α for positive and/or β for

negative) of the product (PQ) after its shipping as shown in formula (1). The

assumptions are made that society already contains loss (SQ=α1-β) and Product is not

perfect (PQ=α2-β2).

∑∑∑ +=)PQ()SQ()'SQ(ueproductvalorevaluesocietybefervalueSocietyaft (1)

3.5 Robust Design and Loss Function

Robust Design is an important methodology for improving product manufacturability

and life span, and for increasing the stability of the manufacturing process. In

Taguchi’s philosophy, the use of experimental design is critical. This experimental

design aims to minimize the variability of a product so that the quality of a product

should not vary unpredictably. In other words, the Robust Design is used to ensure the

Product
PQ = α2 -β2

Society before
SQ = α1 - β1

Society after
SQ’ = (α1+α2)+(-β1-β2)

 14

performance of a product is steady. The use of experimental design in off-line quality

improvement requests active use of scientific method and statistics. Since its

introduction in 1980, Taguchi’s approach to quality engineering and robust design has

received much attention from designers, manufacturers, statisticians and quality

professionals.

The central aim is minimizing the variability of a product. The quality of product

should not be variable unpredictably. It is important to ensure the performance of a

product is steady.

In the Taguchi Method it is believed that the variability of a product quality results in

financial loss. To assess the amount of loss in Taguchi’s quality definition, the Loss

function was suggested.

The Loss Function is the function which describes financial loss both the part of the

company and of the customer. When a product does not satisfy a customer, he may

think that he wasted money or it was too expensive. When a company developed the

product which requires any redesign or reproduction after its shipping, costs will

exceed the estimation. Loss to a company can be categorized in these two ways.

Direct loss: warranty, increased service cost, dissatisfied customers.

Indirect loss: market share loss, need to increase efforts to overcome lack of

competitiveness.

 15

Customer’s Point of View Developer’s Point of View

 Loss L Loss L
 Target quality Target quality

Price Extra
Paid Development
extra Cost

 qulity quality

3. 5.1 Product Quality and Company Losses

We propose to illustrate the relationship of product quality and loss function visually

is shown in Fig. 3.

 Fig. 3. Product Quality and Company Losses

The product quality ideally a complete hexagon shape brings both direct and indirect

loss to the company. The curving line represents direct loss and

the dotted line represent indirect loss.

These relationships can be represented in Fig.4 (Yano, 1995).

Fig. 4. Loss Function-1

Social Loss

 Target quality
Loss L

 quality

 Q

 Company

 16

The parabola in Fig. 4 shows the Loss Function (Yano, 1995). This graph shows that

the further the variability of the product is shifted from the target quality value, the

larger financial loss. The value of quality must be continuous.

3.6 On-line Process Control in Manufacturing

The manufacturing process shown in Fig. 5 represents the uncovering of

problems/defects by testing a number of quality factors, and by subsequently trying to

modify the product.

Fig. 5. Manufacturing Process [adapted from website-2]

The problems of this procedure are:

1. The development period tends to exceed its estimated length because even a

single modification often leads previously acceptable quality factors to become

worse and requires them to be further modified.

2. Problems occur because of the limitation of the testing process. It is uncertain that

product quality is consistent under conditions which were not included in the

testing before shipping. Therefore those products which did not provide expected

functions expected will be rejected and the manufacturer has to compensate these

problems. That leads to the further extension of the development process.

 Variability

 Market

Pl
an

ni
ng

System Design

Elemental technology1
Elemental technology2
Elemental technology3

.

.

.

.

.

Product Design

 Feedback
pr

ot
ot

yp
e

te
st

re
vi

ew

Pr
od

uc
t

 17

Overall, the extended development process means the extension of development costs

and also a reduction in profit for the company because a longer development

procedure will shorten the product’s life span in the market in the fast development of

modern technology.

In this investigation we propose to represent the Target Quality Value by a rectangle

(shown in dotted lines in Fig. 6.).

Fig. 6. Diagrammatic representation of Target Quality Value

In the traditional method of production, attempts to innovate the product quality on-

line tends to cause additional variability in the product and it is difficult to shape the

product quality to match the desired quality. Thus a1 , a2 and a3 are engineered to

reduce variability but it is difficult to achieve the target quality value in the shape of

the required rectangle. Therefore, shipping the product will be made leaving

uncertainty in the variability of the product after exceeding overtime and development

cost. At shipping point, the product may appear to be satisfactory on the basis of tests

performed. However, there is a possibility that a danger of unknown variability in the

product might exist. This is shown as a’4 in the diagram.

 E n g in e e r in g e n g in e e r in g e n g in e e r in g s h ip p in g

 a 1 a 2 a 3 a 4 a ’4

 e n g in

 18

3.7 The new method for reducing development cost in
manufacturing

To minimise the cost of development caused by variability of products, a new type of

developing process was suggested by Taguchi. It emphasises the importance of testing

and quality assurance in the early product life cycle, that is detailed assessment for the

development of elemental technology. Fig. 7 depicts the Off-line Process Control.

Fig. 7. Off-line Process Control [adapted from website-2]

3.8 The advantages of the new procedure

The characteristics of this procedure are:

Before planning, not only the feasibility of functionality required are investigated but

also insensitivity to large variations (Noise) in the input condition is investigated. This

is called Robust Design.

The advantages of adopting the Taguchi Method in the manufacturing process can be

summarised as follows: “If Robust Design of elemental technology is well

established, then developing products requires simply combining these elemental

technologies and assessing required quality. Therefore there is no need to have a

review group for feed back as in the traditional procedure and it is possible to reduce

the number of product developing processes. Thus minimisation of cost is assured.”

Technology Engineering

Technology Investigation
elemental technology 1
elemental technology 2
elemental technology 3

.

.

Variability Investigation
variability assessmant 1
variability assessment 2
variability assessment 3

.

.

Product Design
Combination of technology

Assessment for between cost and product quality

Planning

 19

Furthermore, only when it is found that Robust Design does not solve the variability

of a product, replacement of material (more expensive one) or the introduction of

additional backup circuits considered. Thus minimisation of cost-up is assured.

3. 9 Product Quality

In addition to the visualization of Taguchi’s Social Philosophy, we propose to

describe product quality as a shape.

 Fig. 8. Cultural Legal Shape of the Problem

The smooth line used to construct the first hexagon given above represents complete

achievement of the specification of the product which requires six performance

criteria a, b, c, d, e and f. The inner hexagon drawn using a dotted line shows the

lower limits of acceptable performance which were specified in the requirement.

In the real world the performance of a product will vary. Products can be divided into

two categories, such as products which are insensitive to variability in other words

those which have high quality as defined in the Taguchi Method (category 1 above),

and products which have high variability therefore have low quality (category 2)

respectively. In this diagram, product B has higher quality than the almost perfect

 a f

 b Q e

 c d

(1)Insensitive to variability (2)High variability
 High quality Low quality

 A C

 B D

 20

product C, because it satisfies the lower limit of acceptable performance for all the

performance criteria whereas product C does not. Therefore the quality is

A B C D≥ ≥ ≥ .

3. 10 S/N Ratio

The S/N ratio (Signal-to-Noise ratio) is a measure of how sensitive a system is to

noise, or variance. An insensitive (robust) system will have a high S/N ratio. Finding

a correct objective function in an engineering design is very important. Failure to do

so can lead to considerable inefficiencies in experimentation and even to wrong

conclusions about the optimum levels.

There are common types of static problems. Three equations (2, 3 and 4) for

calculating S/N Ratio are shown for type 1, 2 and 3 where η is S/N Ratio, δ is

variance , µ is mean and y is quality factor value calculated in experiments.

1) Smaller-the-better type problem

The most desired value for a response or performance index of a product or process is

zero. Such problems include minimization of surface defect count in manufacturing

computer wafers, minimization of the pollution from a power plant and minimization

of leakage current in integrated circuits.

2) Nominal-the-better type problem

In these types of problems, such as achieving target thickness in polysilicon

deposition, the quality characteristics are continuous and non-negative and their target

value is nonzero and finite. For these problems, when the mean becomes zero, the

()2...............log10 2

2

δ

µ
η =

 21

variance also becomes zero.

3) Larger-the-better type problem

 The quality characteristic is continuous and non-negative, and it is desirable that the

value is as large as possible. Examples of such problems are the mechanical strength

of a wire per unit cross-section area, the miles driven per gallon of fuel for an

automatic vehicle carrying a certain amount of load. Maximization of a larger-the-

better S/N ratio type of problem can easily be converted to maximization of a smaller-

the-better type problem by considering the reciprocal of the quality characteristics.

3. 11 Noise Factors and their effect on Quality

There are aspects of product quality which can be determined at the design stage.

Those factors whose quality a designer has some control over quality which should be

identified and their variability should be decreased by reducing the noise.

We propose a pictorial representation of the three possible scenarios as shown in

Fig. 9 where a: factors over which a designer has some control, a’: factors whose

variability can be reduced and b: factors over which a designer does not have control

()3.............1log10
2

−= ∑ yn

η

()4............11log
2

−= ∑ yn

η

 22

 Fig. 9. Noise Factors and their effects on Quality

An example of a factor belonging to the a or a’ is the geometric dimension of a part.

Examples of factors belonging to b include environmental variables, product

deterioration or manufacturing imperfection.

3. 15 Noises inside and outside a product

In Fig. 9 the inner circle represents the sources of noise (design, process and product),

and the outer circle represents the target quality value. The freehand circle represents

the sources of noise factors. If the noise is controllable a designer tries to reduce the

product’s variation by reducing the sensitivity of the product to the source of variation

rather than by controlling these sources.

Here, the noises inside and outside a product are described in Fig. 10 where a:

material itself has noise, b: noise in manufacture, c; bought-in components noise,

d: noise in use and e: undetected noise during production.

 Fig. 10 Inside and Outside Noise

a b c d e

a

a’
b

 23

At the design stage these possible noises in the product, the process (including the

noises in the process environment) and the various environments where the product is

going to be used have to be minimized. The minimized variability in the product is

shown as e.

4.4.4.4. Software Development and Taguchi

4.1 Objectives for quality software products

In this stage the software developer defines the robust design problem by clearly

stating their objectives for the software product or the process improvement, and

specifies the product/process response characteristics that reflect these objectives. The

list of control parameters and noise variables are to be made. A brainstorming session

by the programmers is useful for formulating the problem. The Ishikawa (cause and

effect) or fishbone diagram for initiating a project may be used.

We must choose the correct objectives which are measurable. The simplest

measurement which is suggested to indicate a product’s quality is the number of bugs

found during formal inspections which are conducted during the software life cycle

under the specified methodology a company adopts.

The count of integration test failures can be summed up under a clearly defined

testing procedure of a company’s choice and be used as a quality factor. Designers

then set the target (the actual incident count of integration testing failure) which can

only be possible if the project under the adaptation of the Taguchi Method is one of

several sister projects so that the empirical data is available. The final product’s

execution time also falls into this category.

If the project requires a totally new system development method for a company,

measurements such as McCabe’s Cyclomatic Complexity, Myers’ Essential

 24

Complexity or D-structuredness could be used to evaluate the software quality.

4.2 Controllable Design Parameters

Controllable design parameters can be found in the software development process,

software products and the software development environment.

4.2.1 Design parameters of software development process

There are choices of the methodology as a design parameter such as V, W and X

models, Spiral Model or the Deming or Shewhart Quality Improvement Cycle.

When a specific type of the methodology is chosen as one of the design parameters, it

will be challenging to adopt a new methodology which requires formal training

session to provide the developers characteristic procedures to be taken in software

development.

4.2.2 Design Parameters of the software product

We need to conduct the experiment before actually producing code. However, in

software development it is not realistic to do this. Therefore for each project the

guidance of coding process may be suggested such as “ The target number of lines of

code per module is less than 150”. This might distress the concerned programmers

and decrease their performance but the violations caused in the development

environment will be considered as a noise factor in the design. The number of settings

per design parameter is determined according to the empirical data based on which

designers can construct settings.

According to Adrian Burr (Burr et al., 1996) the number of lines of code per module,

target complexity, McCabe’s cyclomatic complexity and the number of parameters

 25

are considered to have significance for software quality. These factors can be used in

designing experiments.

4.2.3 Design parameters in the software development environment

1) Machine , Operating System and Languages

The efficiency of a software product such as execution time has high priority as a

software quality factor. To maximize the performance of a product, the choice of

machines, operating systems and programming language has to be included in the list

of parameters.

2) Human Factors

We must mention an additional design parameter which the Taguchi Method does not

mention explicitly in the Robust Design. That is, performance variability in a human

being such as his/her experience and communication skills needed in a software

development team. The developers’ performance has an effect on producing quality

software products in a similar way to the effect of machines on the manufacturing of

products. It is important to maximize and properly maintain programmers’

performance. The possible control factors will be conducting educational sessions

within and outside a company where software developers are encouraged to learn the

new techniques of their interest or polish their skills. Recreational events may help

developers to get to know each other better and this will be reflected in better

communication and teamwork in an office. At the extreme, the design of the office

environment itself is investigated. For example changing the type of chairs in current

use to the ones designed to ease backpain caused by sitting all day will be welcomed

by the developers. The temperature and humidity in the workplace also can affect the

developers’ performance. As mentioned before in the Taguchi Method these human

 26

factors are not included in the product quality improvement procedure. Therefore the

suggestions made here must be investigated in the software industry.

4.3 Noise Factors

Taguchi considers the effect of factors which are uncontrollable or are too expensive

to control. For example, developers’ experience can be controlled to a certain extent

by the numbers of years in the profession, and by looking at the past projects

involved. However no individual is identical. His/her capability may different from

that of others' of similar experience. The health of the developers at the time of the

investigation may affect on their performance at work.

The specification of machine, the difficulty of the system, inevitable human error and

the size of the final system can also be Noise Factors.

It is desirable to develop a system that is insensitive to the noise factors by choosing

the set of design parameters which are less affected by the variability of these factors.

4.4 Design of Experiments

4.4.1 Selection of Parameters and their settings

It is important to choose the design parameters which do not have reciprocal action

among them. Orthogonal arrays are used to design the experiment. The advantage of

using an orthogonal array is that the effect of several parameters can be determined

along with minimizing the number of experiments. For example, the following list

contains some of the widely-used orthogonal arrays which use two and three level

design parameters. L18 is most commonly used in the Taguchi Method.

L4: Accommodates three two-level design variables

L8: Accommodates seven two-level design variables

 27

L9: Accommodates four three-level design variables

L12: Accommodates eleven two-level design variables

L18: Accommodates one two-level and seven three-level design variables

4.4.2 An illustrative example

In the design shown in Table 2, it is considered that two levels of the design variables

per design parameter is not sufficient to predict the optimum setting of the design

parameters which has significance for software product quality improvement. It is

assumed that the setting of the design parameter A (number of lines of code per

module) in three level is necessary because the domain of this problem design

parameter varies from a few number of lines of code per module to several hundreds

of lines of code per module.

Table 2. Design Parameters and settings of Design Variables

Design Parameters Settings Comment

A Lines of code per
module (50, 150, unspecified)

This setting were based on suggestions by
Adrian Burr who and information found in
Beizer (Beizer, 1990) and Georgiadou
(Georgiadou, 1993).

B
Nesting Level

according to the
design

(3, 5, 7)

Cantata indicates McCabe’s complexity 1 to
10 is ‘pass’ and greater than this results in
‘fail’. At the design stage the flow diagram
or Pseudo Code can be used to indicate the
nesting level before coding.

C

Number of
statements per

module

(30, 40, 50)

It is difficult to control this parameter but it
is not impossible. As is commonly known,
the larger the number of statements in a
module the harder it is to achieve 100% test
coverage because of the cost involved.

4.4.3 Control Orthogonal Array

The choice of an array is entirely dependent on the choice of the design parameters

and variables which the designers have determined from the analysis of the empirical

data available or the predictions coming from their experience. Table 3 shows the

example of an orthogonal array for controllable design parameters. The settings given

 28

in Table 2 are used to demonstrate the table.

The settings in Column C were left empty because orthogonality is preserved despite

the empty columns.

Table 3. Control Orthogonal Array - L 9

No. of
Experiment

(project in this case)

A

Lines of code

(50,150,free)

B

Nesting level

(3, 5, 7)

C

D

No. of statements

(30, 50, 70)
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 2
6 2 3 1 1
7 3 1 1 2
8 3 2 2 3
9 3 3 3 1

4.4.4 Noise Orthogonal Arrays

Two or three value settings are used for the identified noise factors that are important

to produce a quality system and an orthogonal array is employed. Some noises

originate in human factors in software development. An example is shown in Table 4.

It is assumed that three 'noises' are identified and that each has two level settings so

that an L4 orthogonal array was employed.

Table 4. Noise Orthogonal Array –L4
No. of

Experiment

Team

communicati

on level

(a, b)

Hardware

speed

(c, d)

Working space

per person

(e, f)

1 a c e
2 a d f
3 b c f
4 b d d

4.4.5 Matrix Experiment

An orthogonal array of control parameters is crossed by an orthogonal array of noise

factors. The response for each combination of control and noise matrix experiments,

mean and standard deviation are computed (Resit et al, 1995).

 29

The purpose of this Matrix Experiment (Fig.11) in software development is to

determine the optimal settings of controllable design parameters, which can be

selected from internal attributes of software development, under a variety of work

environments.

Fig. 11 Matrix Experiment

4.4.6 Quality characteristics and the S/N Ratio

The traditional Experimental Design uses S/N Ratio to observe the variance of data.

The Taguchi Method aims to analyse S/N Ratio, and to uses it to reduce variability.

An example is shown to demonstrate variability of possible design parameters’ in

software product followed by suggested quality characteristics in three categories with

equations.

Eight GNU applications were downloaded from the internet (GNU, 1984) and

analysed. Cantata (IPL, 1994) instrumented these files, calculated a number of metrics

and produced CTL files which gave the static analysis of each modules in each

application. These data were used to apply the Loss Function in order to see the

variability of the listed measurements for the modules (Barbor, 1999).

The variability of listed measurements (S/N ratio) is calculated in two different ways.

One is the S/N ratio of each application and the other is overall the variability of the

obtained measurement derived by gathering all the modules in those eight

applications. The results are plotted in a graph showing the degree of each variability.

Control
Orthogonal

Array

Noise Orthogonal Array

Quality Characteristics
measured using
measurement or metrics

Mean Std

 30

Because the modules are different in size, an attempt is made to calculate the S/N

ratio only from those which have more than 20 lines of code (Barbor, 1999). The

overall characteristics of the degree of variability in each measurement are found to

be unaffected. One example with explanatory notes is shown in Fig. 12.

STATEMENTS

-4
-3
-2
-1
0

1 2 3 4 5 6 7 8 9 10 11 12

Fig.12. Variability

The numbers labeled for each dot in the graph are:
1: Expression Statements
2: For Loop Statements
3: While Loop Statements
4: Do Loop Statements
5: If Statements
6: Switch Statements
7: Return Statements
8: GOTO Statements
9: Break Statements
10: Continue Statements
11: Null Statements
12: INT Statements

This graph shows that as a whole the number of the four distinct statements (while, if,

switch and return) per module has small variability. In other words, it indicates that

regardless of the functionality of an application each module can be sufficiently

constructed with similar number of these four statements or there is certain tendency

of coding techniques or preference to those four statements among the developers of

GNU. Furthermore, this result indicates that those four types of statements (3, 5, 6 and

7) are likely to be less sensitive to any variations of other possible design parameters

of the eight applications.

 31

The quality characteristics which fall into the following three categories are

determined and the S/N Ratio is calculated by using the appropriate equation.

a) Smaller_ the_ better:

Number of testing failure at integration stage

Time spent to produce the application

System’s execution time

Number of redesign

b) Nominal_the_better:

Decision coverage at integration stage.

Various academic software metrics values

c) Larger_the_better:

Test coverage

Number of test ‘passes’

4.5 A framework for applying the Taguchi Method in software
Development

()2..........log10 2

2

δ

µ
η =

()3..............1log10
2

−= ∑ yn

η

()4.............11log
2

−= ∑ yn

η

 32

4.5.1 Processes and Products

In commercial environments, a considerable number of empirical data from previous

projects have to be analysed with chosen design parameters and noise factors until all

the combinations of design parameter settings are found for appropriate orthogonal

arrays since it is not practical to conduct experiments with different design parameters

settings for every future software projects. Once the data is collected to simulate the

experiment, the S/N ratio is calculated and optimal design parameter settings are

suggested.

In an academic environment, applications are developed with instructions for chosen

internal attributes as controllable design parameters and their settings then quality

characteristics are measured and the responses will be compared to determine the

optimal design parameter settings.

The data obtained from both commercial and academic environments will be

investigated and possible optimal design parameters settings will be proposed for

larger scale software development.

As a result of the investigation presented in this paper, we propose a set of guidelines

for adapting the Taguchi Method to software development. Fig.13 provides a

schematic representation showing the sequence of the processes and the associated

products at each phase.

 33

Fig. 13 Application of the Taguchi Method in Software Development

4.5.2 Difficulties

The difference between mass-production and the production of a unique piece of

software, the importance of customer evaluation, and unavoidable changes of

requirements at any stages of software life cycle make it difficult to apply the Taguchi

P3 Choose controllable internal
attributes and their settings

P6 Implementation

. . .

. . .

. . .

Implementation with
setting F

P8 Construct Matrix Orthogonal
Array and calculate the S/N Ratio

P5 Apply each attribute setting
for implementation

P4 Identify noise factors and
their settings

P1 Identify main functions

P2 Determine quality
characteristics and how to
measure them

Requirements Specification document

Software Quality Factors and Metrics

List of internal attribute found in the
software process, products and
environment (resources)

Implementation with
setting E

Implementation with
setting C

Implementation with
setting C

Implementation with
setting B

Implementation with
setting A

List of internal attributes found in
software development environment

Code

Matrix Orthogonal array
S/N Ratio

P9 Determine the optimal design
parameter setting

Optimal Design parameter setting

Processes (Pi) Products

P7 Testing, Maintenance and use
of Metrics

Test Data
Metrics Data

 34

Method to software development. However, the authors believe that the concept of the

Robust Design for product quality and minimization of production cost can be applied

in software development since it enhances the probability of controlling the software

production towards high quality software.

Difficulties are also experienced in carrying out the experiment since certain

information that is needed when applying the Taguchi Method is often difficult and

sometimes impossible to obtain. This includes in-house information such as time and

cost of product development, the company’s policy or guidelines for producing the

code (if these exist), the environment such as the machine used or experience of the

programmers.

So far, we have indications that the Taguchi Method can be applied to the pre-

implementation stages of the software development Lifecycle (P1, 2, 3 and 4 in Fig

13).

5. Conclusions

The purpose of this paper was to investigate the possibility of adapting the Taguchi

Method for Software Quality Improvements. A number of suggestions are made to

adapt the Taguchi Method from ensuring quality in manufactured products to the

development of quality software. Adjustments are necessary because of the

fundamental differences between tangible manufactured products and software

artifacts.

Taguchi’s philosophy “ The better the quality, the less the production cost” is true in

the software industry because quality software must have good design as its own

property enabling a software company to minimise the cost of repetitive development

processes (redesigning, re-coding and re-testing) and the severity of testing. However

it is not straightforward to conduct the Robust Design in software developments

 35

mainly because software products are intangible. A problem specific to this study was

that there were vast numbers of design factors for which it was not possible to obtain

values such as cost and time spent, the methodology used, the experience of the

developers, types of machines, the office environments, and whether the programmers

have developed a similar type of product before or not. The use of metrics is

particularly useful in software development. It will be easier to conduct statistical

analysis activities if what needs to be done is clearly identified and when and how

these activities should be carried out in the software development procedure is

established. A correct and unambiguous set of controllable design parameters which

have significance for software quality must be identified. This is only possible after

the empirical data is collected and analysed under a systematic measuring operation.

Further work will concentrate on using the proposed guidelines for carrying out a

number of experiments in order to validate the adapted model.

6. Acknowledgements

The authors would like to thank Adrian Burr for the origin of the idea and his

practical help. Sincere thanks are also due to Aasma Saadia for her incisive and useful

comments, corrections and suggestions for the completion of this paper. Finally many

thanks to IPL for providing the Cantata tool free of charge.

References

Akao, Y., ‘Quality Function Development: Integrating Customer Requirements
Into Product Design’, Productivity Press, 1990.
American Supplier Institute, ‘Taguchi Methods and Robust Design’,
www.amsup.com

Azuma, M., ‘ Information Technology-Software Product Evaluation-Indicators and
Metrics’, ISO/JTCI/SC7/WG6Project7, working draft, 1993.

 * Baba, I., ‘Prospect of the Off Line Quality Control’, www.cnde.iastate.edu.jp

 36

Barbor., N, ‘Software Quality Improvement – Study of the adaptation of the
Taguchi Method in software development-’,university of North London,
1998.

Basili, V.R. and Weiss, D. M., ‘A Methodology for Collecting Valid software
Engineering Data. In Journal of the IEEE Transactions on Software
Engineering, Vol.SE-13, No.6, pp.728-738, July 1984.

Beizer, B., ‘Software Testing Techniques’, 2nd edn, Van Nostrand Reinhold, 1990.
Brooks, F. P., ‘The Mythical Man-Month: Essays on software engineering, 2nd

edn’, Addison-Wesley, 1995.
Burr, A. and Owen, M., ‘Statistical Methods for Software Quality’, International

Thomson Publishing Inc., 1996.
Card, D.N., McGarry, F.M. and Page, G.T., ‘Evaluating software Engineering

Technologies, In Journal of the IEEE Transactions on Software
Engineering, Vol. SE-13 No.7, pp.845-851, July 1987.

 *Committee of the Taguchi Method, ‘Beginner’s Taguchi Method’,www. T3.rim.jp
DeMarco, T., ‘Structured Analysis and System Specification’, Yourdon Press,

1978.
Fenton, N., Pfleeger, S.L. and Glass, R.L., ‘Science and substance: A challenge to

software engineers’, IEEE Software, 1994.
Fenton, N.E, Iizuka, Y. and Whitty, R.W. (eds), ‘Software Quality Assurance and

Measurement’: A Worldwide Perspective, International Thomson
Computer Press, 1995.

Fenton, N.E. and Pfleeger, S.L., ‘Rigorous & Practical Approach’, PWS
Publishing Company, 1997.

Galliers, R., ‘Information Systems Research: Issues, Methods and Practical
Guidelines’, Blackwell, 1992.

Georgiadou, E., Karakitsos, G., Sadler, C. and Stasinopoulos, M., ‘An
experimental examination of the role of re-engineering in the management
of software quality’, Software Quality Management Vol. 2, Computational
Mechanics Publications, 1993.

Georgiadou, E., Karakitsos, G., Sadler, C., Stasinopoulos, M. and Jones, R.,
‘Program maintainability is a function of structuredness’, Software Quality
Management Computational Mechanics Publications, 1994.

Georgiadou, E., Karakitsos, G. and Sadler, C, ‘Improving the program quality by
using the re-engineering factor metric rho’, International Conference of the
Israel Society for Quality, Nov 1994.

Georgiadou, E., Karakitsos, G. and Sadler, C., ‘A method to evaluate the
programmer response to equivalent programs’, 1st International
Conference on Software Engineering in Higher Education, editor King, G.,
Brebbia, C.A. and Ross, M. and Staples, G., Mar 1994

Georgiadou, E., Milankovic-Atkinson, M. and Suleiman, Z., ‘A Formal
Experiment to Evaluate the Significance of Object-Oriented Complexity
Metrics’, Proceedings of INPIRE'99, Crete, Greece, Sep1999, The British
Computer Society.

Greenfield, T., ‘Taguchi Policy: A ridiculous and dangerous fashion’, article in
RSS NEWS, 1995.

Hetzel, W. C., ‘Making Software Measurement Work: Building an Effective
Software Measurement Program’, QED, Wellesley, Mass, 1993.

IPL, ‘Cantata-Version 3.0’, Information Processing Limited, 1994.
Jones, C., ‘Applied Software Measurement’, McGraw-Hill, 1991.

 37

Keramopoulos E., Pouyioutas P. & Sadler C. 'GOQL, a graphical query language
for Object-oriented Database Systems', Third Basque International
Workshop on Information Technology, pp.35-45, Biarritz, France, Jul.
1997.

Kitchenham, B, ‘ Software Metrics: Measurement for Software Process
Improvement’, NCC Blackwell Ltd., 1996.

Law, D. and Naeem, T., ‘ DESMET: Determining and Evaluation methodology for
Software Methods and Tools’, In Proceedings of the BCS Conference on
CASE-Current Practice, Future Prospects, Cambridge, England, March
1992.

Logothetis, N. and Wynn, H. P., ‘Quality Through Design: Experimental Design,
‘Off-line Quality Control and Taguchi’s Contributions’, Oxford Science
Publications, 1989.

QUANTUM, ‘A measurement-based framework for the assurance of software
quality’, DTI, 1992.

Resit, U and Edwin, B.D, ‘Design for Cost and Quality: The Robust Design
Approach’, www.dfca.larc.nasa.gov

Schach, S.R., ‘Methodology characteristic Frameworks and Software Specification
and Design: A Critique of “ Methodman 2”, In Proceedings of the Forth
International Work shop on Software Specification and Design, IEEE,
pp.196-200, 1987.

Schulmeyer, G.G. and McMarius, J.I., ‘ Handbook of Software Quality assurance’,
Van Nostorand Reinhold, 1992.

Shepperd, M.J. and Cartwright, M., ‘An Empirical Investigation of an Object-
Oriented Software System’, Bournmouth University, October 1997.

Shepperd, M.J., ‘Foundations of Software Measurement’, Prentice Hall
International Limited, 1995.

Stephan, H. K., ‘Metrics and Models in Software Quality Engineering’, Addison-
Wesley Publishing Company, 1995

 *Taguchi, G., ‘Quality Engineering Series 3-SN ratio for assessment of Quality’,
Japanese Standards Association, 1993.

 *Taguchi G., ‘Quality Engineering Series 5-Examples of the Taguchi Method-
Japan’, Japanese Standards Association, 1996.

 *Taguchi G., ‘Quality Engineering Series 7-Examples of the Taguchi Method-
Measurements’, Japanese Standards Association, 1992.

 *Taguchi G., ‘Quality Engineering Series 6-Examples of the Taguchi Method-US
and Europe’, Japanese Standards Association, 1993.

Tajima, D. Matsubara, T., ‘The computer software industry in Japan’, IEEE
Computer, 1981.

Yano, H., ‘Taguchi Method for beginners’, 1995.
Yourdon, E. and Constantine, L. L., ‘Structured Design’, Prentice Hall, 1979.

* References proceeded by an asterisk were written in Japanese. The given titles
are free translation by the authors.

QW2001 Paper 4M1

Mr. David Fern
(Micros Systems Inc.)

How Testers Can And Should Drive Development Cycles

Key Points

Test/QA should drive the development cycles.●

Build every week as if you are building a release candidate and grade it accordingly.●

Establish a weekly bug triage process to direct the engineering focus.●

Presentation Abstract

Having finished our last project, which ended as a fire drill as usual, the managers
of the development and test concluded that we weren't ever going to go through
that again. All agreed the test team had been riding the development cycle bus long
enough.

Our new paradigm has test driving the development cycle bus instead of
engineering. Our first task was to organize and sell the idea to product and project
management and a skeptical engineering team. Everyone including engineering,
management, and especially test are now fully on board and wouldn't want it any
other way. The following paragraphs outline our plan currently in use.

* Establish daily events/goals that will allow you to meet weekly build objectives.
During the early phase of the software development cycle, engineering builds the
software every week. Closer to the Beta release, the software can and is often built
semiweekly. Each weekly build is treated as a release candidate in the sense that
the state of the software is always known. If the software has to ship, it is known
which areas have been tested and which modules are or are not ready to ship. Both
engineering and test are assigned daily deliverables for which they are accountable
to deliver to each other. Commitment of delivery by each team allows the build to
occur successfully, and improves the state of the software weekly.
* The bug triage process is a weekly meeting where the lead engineer and lead
tester agree on the bugs that will be fixed in the upcoming week's build cycle. This
is the chance for the lead tester and lead engineer to reach a consensus and address
the most severe bugs. In most cases, addressing the most severe bugs enables
testing to continue. This also increases test's ability to improve the depth of its
reporting on the state of the software each week. Triage also provides a time for
discussion and risk analysis between the test and engineering teams.
* Grading the software is a two-tiered approach. Grades consist of weekly build

cycle grades and module grades. The grades are calculated by using the bug
repository counts and a scale everyone is familiar with: A to F, just like school.
Grades are distributed to each team member and posted where all can see.
* The test team grades the weekly cycle build. Most bugs are found during the
sanity testing of the weekly build. If an engineer introduces showstoppers in the
build which prevent testing, the build receives a letter grade of F. If an engineer
breaks the weekly build, it receives the same grade and the engineer who breaks
the build has to buy the entire team bagels.
* The software is also segmented into modules. Test also grades each module of
the software weekly. Some module's grades will remain static while test
recommends engineering to focus on more severe modules. The ultimate goal is to
have all modules at a letter grade agreed upon in the test plan. The module grades
are calculated using the same counts and scale as the weekly builds.
* This type of grading system goes beyond the use of metrics, in that everyone on
the team knows the status of the overall software as well as the individual modules.
All are striving for an A and each team member can see the progress and the
readiness of the software.
* Finally, once the process is in place, it is easy to accelerate or decelerate the
entire process as needed. The hardest part is starting, which includes getting
organized, developing the grading criteria, the tools to perform the bug tracking,
and of course, selling the idea to management and engineers. In the end, we all
win. We are ready for show time and can produce a gold CD with a few finishing
touches-just like we've done numerous times before in our weekly dress rehearsals.

About the Author

David Fern has a background in Foodservice Management that spans more than
two decades. During the past four years he has been involved in all aspects of Food
Service Point Of Sale application and devices, specializing in the development of
Large Restaurant and Hotel computer systems. Currently he is a Test Specialist in
Research and Development at Micros Systems, Inc. in Columbia, Maryland.
MICROS is the premier developer of software for the hospitality industry
worldwide.

Prior to his current professional endeavors, David was a Manager for the
University of Maryland's Dining and Retail Services responsible for the campus
Point of Sale Operations on the campus of over 60,000 students.

David recently had an article entitled "Testing Point of Sale Software" published in
the November 2000 Quality Techniques Newsletter. David is a graduate of the
University of Maryland College Park, Maryland with a Masters Degree in
Industrial Technology and a Bachelors Degree in Business Management.

1

How Testers Can and Should
Drive The Development

Cycles

.

How Test Can Drive The
Development Cycles

• Establish Daily Events / Goals to meet weekly
Build Objectives

• Make Bug Triage a Weekly Process
• Grade The Software as if it was the Release

Candidate
• Let Everyone on the Team Know the Status

of the entire Project at all Times
• Manage The Project with Flexibility

2

.

When Should Test Take
Over?

Code Complete

What is Code Complete?
• All functionality in the Test Plan has been

completed and Engineering has completed all
unit testing and we are at a state of Bug Fixes
only.

• An initial installation program has been
developed which includes any database
conversion tools.

.

What Planning is Required?

• Test Plan Outline
• Weekly Schedule of Events and Build

Objectives
• Hot List
• Task List
• Grade Sheets
• Turkey Report
• Document Storage Locations

3

.

Weekly Schedule of Events
and Build Objectives

Purpose: To establish a routine of objectives
and deliverables for each individual on the
project.

• Daily Briefings
• Weekly Schedule

.

The Weekly Schedule

Monday - Testing bug fixes is completed
Hot List is updated
Final list of bugs

Tuesday - All code must be checked in
by 12:00

Test provides grades for the past
weeks build

The Hot List is updated and posted

4

.

The Weekly Schedule
(continued)

Wednesday- Weekly Build available by 8:00
Sanity testing completed by 12:00
Testing bug fixes begins

Thursday - Hot List updated
Triage

Friday - No Events - Enjoy the Day!

.

Make Bug Triage a Weekly
Process

Purpose: To establish communication between QA
and Engineering in the following areas:

• Previous weeks build
• Determine which defects will be fixed in

the next build
• Discuss upcoming weeks testing plan
• Discussion of upcoming possible risks
• General information exchange

5

.

The Hot List
Purpose: List of defects that QA views as the

most important and would like to have
addressed in the next build.

What is a Hot List defect?
• A defect the prevents QA from moving forward

on planned testing
• A listing of the most critical defects in

the Software

.

The Task List

Purpose: Important issues affecting the
project that are not covered in the Hot List.

Why use it?
• Accountability
• Organization
• Tool to help everyone know the

issues affecting the project.

6

.

Grade software as if it were
the Release Candidate

• Tangible results oriented to an A
• Engineers rewarded for their work
• Grades used to determine readiness of

the software
• Talk About the grades
• Negotiate the grades
• Set milestones for a common goal

.

Developing A Grading Criteria

Grade the software with a two-tiered
approach.

• Build Grades - Reflect the build as an overall
picture of the state of the software.

• Module Grades - Reflect the status of each
individual module in the project

7

.

The Weekly Build Cycle
Grades

Purpose: To establish the readiness of the
build for release.

How is it determined?

F - Installation is unsuccessful
The application will not start
Modules contain showstopper

.

The Weekly Build Cycle
Grades (continued)

D - Installation has moderate to serious
usability issues.

Modules contain excessive severity high
bug counts.

C - Infrastructure and core modules have
moderate high and excessive severity
medium bug counts.

Non-core modules contain moderate severity
high and excessive severity medium bug
counts.

8

.

The Weekly Build Cycle
Grades (continued)

B - Infrastructure and core modules contain
moderate severity medium bug counts.

Non-core modules contain moderate
severity medium bug counts.

A - The aggregate bug count for all modules
is low and severity low.

Minimum criteria for Beta is a B
Minimum criteria for General Release is an A.

.

The Weekly Module Grades

Purpose: To establish the readiness of each
module in the project.

Who are they determined?
• Bug counts
• Test Lead evaluation

9

.

Important Concepts to
Remember

Let Everyone Know The Status At All Times

Manage Project with flexibility
• Accelerate or decelerate as needed
• Modify the process for each project
• Don’t start grading or driving to soon

.

Overcoming Barriers with
Engineering and Management

Engineers
• Sometimes distressed over the first grades

that are low

Management - Benefits
• People counting on others to deliver on time
• Helps to facilitate teamwork
• Triage initiates communication between

QA and Engineering
• Everyone knows the project's status

10

.

Why Should Test Drive the
Development Cycles?

Benefits to Q/A Test
• Test Planning and scheduling can become

easier
• QA will become involved in the entire

development process

Challenge:
The entire development team is working

toward one common goal of releasing defect
free software.

.

Thank you!

Questions

Please feel free to contact me if you would like
further information on any of the topics discussed.

dfern@micros.com

���������	��
�������������	����������������
�����
���������	��
�������������	����������������
�����

Having finished our last project, which ended as a fire drill as usual, the
managers of development and test concluded that we didn’t ever want to
go through that again. All agreed the test team had been riding the
development cycle bus long enough.
Our new paradigm has test-driving the development cycle bus instead of
engineering. The process of change is very difficult in any company; the
changes that we have undergone have totally re-engineered our Research
and Development department. It took courage for the test team to go
from passively waiting for whatever bug the engineers decided to fix (or
what piece of code they decided to complete) to the active role as
facilitator of the entire process. The engineering team has been helped by
having test push for dates and specific bug fixes in weekly meetings. In
these weekly meetings each person knows that if they do not do their part
as promised other people will not be able to deliver either. The process on
the whole has brought the entire development team together working
toward one common goal “To Release Quality Software”.
The test teams first task was to organize and sell the idea to product and
project management and a skeptical engineering team. We all looked
back at our past release record and knew that we wanted change for the
better. All knew this new process would involve a lot of effort to get
started but it was better than doing things the way we always had in the
past.
Everyone including engineering, management, and especially test are
now fully on board and wouldn't want it any other way. Our innovative
formula for success is broken down into the following sections:

��Establish Daily Events/Goals to Meet Weekly Build Objectives

��Make Bug Triage a Weekly Process

��Grade the Software With a Two-Tiered Approach

��Grade the Weekly Cycle Build

��Grade Each Module of the Software Weekly

��Let Everyone On the Team Know the Status of the Entire Project

��Manage The Project With Flexibility

In the sections that follow I have laid out the road map for how test can
drive the development cycles.
�������	�
��	�����	������

�����������

���������	��
�������������	����������������
�����
"�����������������#��$��	%
"����������
�������#��$��	%

Test should be involved in the project from its inception. During the
initial stages, tasks such as planning, scheduling and creating test cases
should be developed. Once engineering has declared that the software is
“Code Complete,” test should move from the position of observer to
being the driving force behind the project completion.

The exact definition of “Code Complete” must be defined in the Test
Plan. Our definition of “Code Complete” is when engineering hands
over the software and determines that all agreed upon functionality has
been coded, unit tested, and an initial installation program including any
database conversion tools are available. This means that we have reached
a milestone and the project is in the “Bug Fix Only” mode.

If test starts driving the development cycles to early or to late the grading
and scheduling becomes less effective. Early in the development process,
grades of an F will be meaningless, as the software is not completed.
Starting late in the development process by introducing a grading
procedure will only disrupt the project flow by appearing to be a new
process that seems not to be needed because the project appears to be
progressing. The scheduling of weekly and daily events implemented too
early in the development cycles will create many cancelled or postponed
meetings as the development is sometimes difficult to predict. While
starting these schedules too late appears to the team as a reorganization or
interruption in their schedule.
�������	�
��	�����	������
�����!�����

���������	��
�������������	����������������
�����
"����������������&�'��	�%
"�������������
���&�'��	�%

As in any testing the most important and useful tool for planning is the
Test Plan Outline. In the Test Plan Outline you must include information
about each of the tools discussed in this paper in order to make and use
them most effectively.

Sections that need addressing are:

��Scheduling of Daily Events/Goals

��Task List

��Triage

��Hotlist

��Grading Methods and Manners

��Weekly Cycle Grading

��Weekly Module Grading

��The Turkey Report

��Documentation Storage Sites

��Exit criteria

Much of this information is already included in most thorough test plans
though you will see in the sections that follow key points and concepts
that will be required in order for the entire process to function as
intended.

One final comment on planning, if you can properly plan all parts of the
process with the assistance and input of both engineering and test from
the start you will be well on your way to success.
�������	�
��	�����	������

�����(�����

���������	��
�������������	����������������
�����
���+����������������,-��������.����"��#���/����$+0�������
*���+�����������
*�����,-��������
.����"��#���
/����$+0��������

During the early phase of the software development cycle, engineering
builds the software every week. Closer to the Beta release, the software
can and is often built semiweekly or even more frequently. Each weekly
build is treated as a release candidate in the sense that the state of the
software is always known. If the software has to ship, it is known which
areas have been tested and which modules are or are not ready to ship.
Both engineering and test are assigned daily deliverables for which each
is accountable to deliver to the other. Commitment of delivery by each
team as well as each individual allows the build to occur successfully,
and improves the state of the software weekly.

All members on the project from test, engineering, project management
and documentation attend a daily morning briefing. The test or
engineering manager direct the meeting, relaying pertinent information
such as the condition of the build and most importantly ask engineering if
bug fixes promised will make the build deadline. We then go around the
room and each person tells what they will be doing for the day. This
allows everyone to know what the other is doing. Telling the group
individual objectives is a type of reinforcement because the commitment
seems to be more effective for follow through and delivery. The
additional by-products of the meetings are that it often uncovers
important pieces of information and many times matches people up to
solve problems together. The meeting is generally held in a small room
with only a few chairs so that the attendees will not prolong the meeting
but, get to the point.

Each individual owns weekly build objectives, always conscious that
others are relying on them to follow through and deliver what they have
promised. By starting these cycles you are practicing to make the Gold
CD weekly.
�������	�
��	�����	������
�����)�����

���������	��
�������������	����������������
�����
���+����������������,-��������.����"��#���/����$+0�������
Our Daily Events schedule for one project looks like this:

Monday
��All code must be checked in by 12:00 noon.

��Test provides grades for the past weeks build.

��The Hot List is updated and posted.

Tuesday
��The Build is available by 9:00 a.m.

��Sanity testing is completed by 12:00 noon.

��Retesting bug fixes begins.

Wednesday
��Triage at 10:00 a.m.

��The Hot List is updated.

Thursday
��There are no daily events scheduled.

Friday
��The final list of bugs is updated.

��The retesting of bug fixes is completed.

��The Hot List is updated.

The list above is only the weekly schedule for one project. When you are
juggling multiple projects dates become important for the individual
team members as well as the configuration management people whose
task it becomes to build the actual software for multiple projects
throughout the week.
�������	�
��	�����	������

����� �����

���������	��
�������������	����������������
�����
.�#��/����	�������"��#����	�����
.�#��/���
�	�������"��#���
�	�����

The bug triage process is a weekly meeting where the lead engineer and
lead tester agree on the bugs that will be fixed in the upcoming week’s
build cycle. This is the chance for the lead tester and lead engineer to
reach a consensus and address the most severe bugs. In most cases,
addressing the most severe bugs enables testing to continue. This also
increases test’s ability to improve the depth of its reporting on the state of
the software each week. Triage also provides a time for discussion and
risk analysis between the test and engineering teams.

The test lead will generally start the meeting with comments or questions
about the weekly build, the testing effort or technical questions that the
engineer is best suited to answer. Test produces a Hot List, which
includes the top bugs as designated by the test team. This list is set up in
a spreadsheet and includes the following information:

��The title of the bug in the bug repository

��A bug repository tracking number

��The module where the bug resides

��The status of the bug (bug verified, fixed etc.)

��What build the bug is promised to be fixed in

��Who owns the bug (engineering or test)

Engineering and test then decide which bugs will be worked on during
the week. In addition it is verified that the past week’s commitments have
been met. A very important item to note is that engineering should not be
using their precious time fixing bugs not on the list without the approval
of test. If test can anticipate what will be in the build they are ahead of the
planning game. Additionally if an engineer has extra time they should fix
bugs that are in the best interest of the test team.

The expected outcome of the meeting is that test and engineering have
addressed the highest priority bugs and decided which ones will be in the
next build. This is executed by assigning a specific engineer the
responsibility to fix the bug. If an engineer sees their name beside a bug it
places necessary pressure to fix it in the allotted time.
�������	�
��	�����	������
�����1�����

���������	��
�������������	����������������
�����
�������#�2���
It is imperative that the list be maintained since many decisions are based
on this list. Once the meeting has adjourned test will update the bug
repository and begin to build their test suite. The test lead maintains the
list, which is always kept on a shared drive so that everyone has access to
the information at all times.

The idea here is to weekly prioritize the bugs into a Hot List and have
weekly fix commitments that everyone agrees to.

�������#�2��� The Task List is a document that has become an integral part of the triage
process. This list contains the information about issues in the project that
are not represented by an entry in the bug-tracking repository. During the
initial project planning all situations and issues cannot be addressed and
some are not even predicted. In our organization there is the possibility of
features or parts of the project being added or deleted during the
development cycles. We have developed the Task List for this type of
item.

Items that we have included on our Task List are:

��Test planning - who, when, where, and items such as equipment

aaaaaaaaaaaaaaaaathat we need to find to complete the testing

��Documentation changes, questions and revisions

��Special questions that may arise (e.g., network configurations)

��Various other questions or concerns

��Beta specific questions or tasks

In the Task List we include information such as the task name, a brief
description of who is responsible for the action, the expected completion
date the actual completion date and, if the expected completion date has
passed, what action is being done to complete the task.

It is quite possible to use that bug-repository as a place to store items
from the task list, but from our experience taking this type of list to
Triage weekly with a commitment from an individual and the expected
date move the process along more quickly and you have a list of due
dates on tasks at your finger tips.
�������	�
��	�����	������

�����3�����

���������	��
�������������	����������������
�����
������	#���&���	�
������	#���
&���	�

What the heck is a Turkey Report? This is actually just a “Report Card”
or general update on the project addressing the state of the software,
revised schedules, issues affecting the project or any other possible
roadblock.

Once we get into the project the big guys upstairs need an update every
so often to ensure that we are making progress. The dates to produce
these reports should be included in the test plan.

Why “Turkey Report” you might ask? The Development Manager would
ask us, How's your module coming? Is it done like a turkey? Since then
the name has stuck and we have a Turkey Report.

-	�������
������	��"������
���5���	��
6��	�����

Grading the software is a two-tiered approach. Grades consist of weekly
build cycle grades and module grades. The grades are calculated by using
the bug repository counts and a scale everyone is familiar with: A to F,
just like school. Grades are distributed to each team member and posted
where all can see.

This type of grading system goes beyond metrics in that you are not just
given a number. The team sees and discusses the posted grades and the
team as a whole sets milestones for a common goal.
�������	�
��	�����	������
�����4�����

���������	��
�������������	����������������
�����
-	�������"��#���
�����/����
-	�������
"��#���
�����
/����

The test team grades the weekly cycle build. Most bugs are found during
the sanity testing of the weekly build. If an engineer introduces
showstoppers in the build, which prevent testing, the build receives a
letter grade of F. If an engineer breaks the weekly build, it receives the
same grade and the engineer who breaks the build has to buy the entire
team bagels.

The weekly cycle build report is a way to look at software as a whole and
how it has changed over the past week. This report is set up as a
spreadsheet and compiled by the test lead through the bug repository and
has the following information:

��Cycle Build Number

��Release Date

��Overall Grade

��Bugs submitted during the past week broken down by severity

��Current open bug counts broken down by severity

��Total bugs on the project opened and closed

��Number of bugs closed during the past week

In the establishment of grading criteria it becomes important to consider
key elements and divide the entire project into modules. The key element
that we use is the ability of the software to be successfully installed. We
break up the project into modules. These modules are then grouped into
Infrastructure, Core and Non-Core. The infrastructure is composed of
those modules that directly relate to the overall functioning of the
software. The core modules are those that are important in the
functionality of the software and finally the Non-Core modules are those
that are nice to have but are not essential. By categorizing the modules
the build grading becomes much easier.
�������	�
��	�����	������

�����7�����

���������	��
�������������	����������������
�����
-	�������"��#���
�����/����
The criteria used in the weekly build grading is based on the following
information:

F
��The install was unsuccessful.

��The application would not start.

��The infrastructure modules contain showstopper bugs.

��The core modules contain showstopper bugs.

��The non-core modules contain showstoppers.

D
��The install has moderate to serious usability issues.

��The infrastructure modules contain excessive severity high bug

aaaacounts.

��The core modules contain excessive severity high bug counts.

��The aggregate of non-core modules contain excessive severity

aaaahigh bug counts.

C
��The infrastructure modules contain moderate severity high and

aaaaexcessive severity medium bug counts.

��The core modules contain moderate severity high and excessive

aaaaseverity medium bug counts.

��The Aggregate of non-core modules contain moderate severity

aaaahigh and excessive severity medium bug counts.

B
��The Infrastructure modules contain moderate severity medium

aaaabug counts.

��The core modules contain moderate severity medium bug counts.

��The aggregate of non-core modules contain moderate severity

aaaamedium bug counts.

A
��The aggregate of bug counts for the entire system is low and the

aaaaseverity is low.
�������	�
��	�����	������
������8�����

���������	��
�������������	����������������
�����
-	���*����.������������������	��"��#��
The criteria that we use for a Beta is an overall grade of a B. An A is
awarded after a Beta installation and no further bugs are uncovered. The
criteria used for General Release is an overall grade of an A.

The test lead is again responsible for calculating and maintaining the
build grades which are also kept on a shared drive. This ensures everyone
has access to the information anytime.

The point is that everyone knows the overall state of the software at any
given time.

-	���*����
.������������
������	��
"��#��

The software is also segmented into modules. Test also grades each
module of the software weekly. Some module’s grades will remain static
while test recommends engineering to focus on more severe modules.
The ultimate goal is to have all modules at a letter grade agreed upon in
the test plan. The module grades are calculated using the same counts and
scale as the weekly builds.

The module grades are a way to look at software by module and to lend
additional insight in to the weekly build grade. Everyone focuses on how
individual modules have fluctuated over the past week. An important
item to note is that it is imperative to have modules set up in the bug
repository correctly. Too few or too many modules will skew the module
reporting. The size of the module and quantity of bugs are considered
when evaluating the modules and assigning grades.

This report is created in a spreadsheet and compiled by the test lead
utilizing the bug repository database with the following information:

��The Module Name

��The Number of bugs by module broken down by severity

��The Number of total bugs by module

��A weighted average

��Total Score

��Grade

��Comments
�������	�
��	�����	������

������������

���������	��
�������������	����������������
�����
-	���*����.������������������	��"��#��
The weighted average—we have four levels of severity for bugs and
assign scores in the following way:

��Showstopper = 5

��High = 4

��Medium = 3

��Low = 2

We multiply the number of bugs in each module by their respective
weight and then add each to get the Weighted Total. This can be easily set
up as a formula in the spread sheet.

The Total Software Score is calculated by an average of each module.

The Grade is calculated using the following values:

F = 0 - 30 = Fail

The bug count contains showstopper bugs; the software is in an unstable
condition.

D = 31 - 50 = Below Average

The bug count for module contains excessive severity high bug count; the
software needs work.

C = 51 - 70 = Average

The bug count for module contains moderate severity high; the software
needs improvement.

B = 71 - 90 = Good

The bug count for module is low and severity is medium; the software
may be released.

A = 91 - 100 = Excellent

The bug count for module is low and severity low, “Zero Defect.” The
software is ready for General Release.
�������	�
��	�����	������
������!�����

���������	��
�������������	����������������
�����
2���*��	�����$�����������9����������������������*���	���	�0���
The test lead is also responsible for maintaining the module grades,
which are also kept on a shared drive so that everyone has access to the
information at anytime. The key point is everyone knows the state of
each module at any given time.

2���*��	�����
$�����������
9��������
��������������
*���	���	�0���

This type of grading system goes beyond the use of metrics; everyone on
the team knows the state of the overall software as well as the individual
modules. All on the project are striving for an A and each team member
can see the progress as well as the readiness of the software.

This reinforces the fact that we are all working toward the same goal and
allows each person to have the same data on the project. Perceptions may
be different but, the grades should align most differences. Slips and
broken builds can never be totally eliminated but, if we all agree where
we are, it becomes much easier to determine success and reach the next
milestone and the ultimate goal of releasing quality software.

.����������
�	�0����"����
���:�+�����

Finally, once the process is in place, it is easy to accelerate or decelerate
the cycles as needed. At the beginning of many projects we will not start
the module grades until we have built the software for a few weeks. This
is due to the fact that unit testing has not been completed and the grades
would not reflect the true state of the software. As we get closer to the
Beta release we may build three or four times a week depending on the
necessary iterations and if any last minute fixes are required.

 This formula needs to be adapted for each organization and even each
project. In the planning stages each project’s weekly cycles, release
grades and even module names must be evaluated and agreed upon by
everyone on the project. We can’t give you exact module or cycle grade
sheets because even in our organization some test leads have adjusted the
sheets to more efficiently fit their project.

The test manager can not just copy grade sheets and sit back. Each
project will be different and require collecting different information. The
test manager should continually tweak the process and adjust it as
needed. It’s hard work but, effort well worthwhile when you see the
outcome of using this process.
�������	�
��	�����	������

������(�����

���������	��
�������������	����������������
�����
$��	�������/�		��	�������*������	�������.���������
$��	�������
/�		��	�������
*������	�������
.���������

Even if you successfully have all parts of the plan in place you will need
to have everyone on board including the engineers, management and
especially test. The most important group to have committed to the
process is test because driving the cycles requires more work, effort and
responsibility in maintaining and keeping the project on track, though the
rewards and total positive effect on the testing process can be great.

Management needs to buy in to give test the ability and authority to
impact the project by directing engineering actions and focus. It must be
understood that test needs to be involved from the start of the project to
be most effective and cannot come in at the end and work around what
has been developed. Additionally, by giving test more responsibility you
have another set of eyes that are continually evaluating the project and a
process that will force the engineers and test to work together towards a
common goal each depending on the other to succeed.

Finally, engineering needs to buy in, but these guys may be the hardest to
get on board. They may feel as if they have lost some power and will
have their work graded weekly. The engineers must understand that they
still have as much input as ever and have test as a partner to plan help in
the planning for the project. The efforts of engineering will be well
rewarded as the grades improve during the development cycles.
Everyone needs to understand that in the beginning they may receive Fs
for many weeks. The days of the engineer sitting down and fixing many
small defects for the sake of saying “I fixed 30 defects today,” all of
which actually have little effect on moving the project forward, are long
gone.
�������	�
��	�����	������
������)�����

���������	��
�������������	����������������
�����
"���������;���������	��������������������
�����%
"���������;���
������	��������
������������

�����%

We are not saying that the test should take over in a coup, which would
only exacerbate the rocky relationship between engineering and test. As
with any change it takes time and buy in. However, there are tremendous
benefits and someone has to drive the bus so why not test? Some of the
benefits to the test team are having modules fixed in an order that allows
the test schedule to be adhered to, which allows testing to be performed
more efficiently. Finally, test is always pressed for time toward the end of
a project, but if they start controlling the software’s destiny from the
beginning the end is not so painful.

The hardest part is starting, this includes getting organized, developing
the grading criteria, the tools to perform the bug tracking, and of course,
selling the idea to management and engineers. In the end, we all win. We
are ready for show time and can produce a gold CD with a few finishing
touches-just like we’ve done numerous times before in our weekly dress
rehearsals.
�������	�
��	�����	������

������ �����

QW2001 Paper 4M2

Dr. Cem Kaner
(Florida Institute of Technology)

Managing The Proportion Of Testers To Developers

Key Points

Magic ratios, like 1 tester per programmer, don't reflect project context●

The ratio should reflect the actual division of labor between testers and others●

Low ratios of testers to other developers may be better than higher ratios●

Presentation Abstract

This talk summarizes ideas surfaced in a working meeting of the Software Test
Managers Roundtable. We asked how to decide, for a given project, what is the
best ratio of testers to other developers.

That ratio is sometimes 1-to-1, and 1-to-1 can foster close relationships in paired
tester-to-programmer teams. But many of us at the meeting reported that our most
successful projects had a much lower proportion of testers and that some of our
least successful projects had much higher proportions of testers.

We start by asking what it means to say there is a 1-to-1 ratio. It turns out that
different people have entirely different ways of calculating this. Many of the
comparisons that we've seen are between apples and alligators.

From there, we look at some of the workload factors that favor high numbers or
low numbers of testers. For example, a product that has lots of bugs needs lots of
testers. A project team that invests heavily in early analysis and design will
probably need less tail-end testing. As a different class of example, a project that
relies heavily on external configurations and components that are outside of the
control of the local project team will need extensive testing. Project-specific
factors will drive you toward different ratios, and toward different ratios at
different times in the project.

The associated paper lists and explains a wide range of factors and suggests some
collaborative methods that you might use to staff appropriately for your particular
situation.

About the Author

Cem Kaner is Professor of Computer Sciences at the Florida Institute of
Technology.

Prior to joining Florida Tech, Kaner worked in Silicon Valley for 17 years, doing
and managing programming, user interface design, testing, and user
documentation. He is the senior author (with Jack Falk and Hung Quoc Nguyen) of
TESTING COMPUTER SOFTWARE (2nd Edition) and (with David Pels) of
BAD SOFTWARE: WHAT TO DO WHEN SOFTWARE FAILS.

Through his consulting firm, KANER.COM, he teaches courses on black box
software testing and consults to software publishers on software testing,
documentation, and development management.

Kaner is also the co-founder and co-host of the Los Altos Workshop on Software
Testing, the Software Test Managers' RoundTable, the Workshop on Heuristic &
Exploratory Techniques, and the Florida Workshops on Model-Based Testing.

Kaner is also attorney whose practice is focused on the law of software quality. He
is active (as an advocate for customers, authors, and small development shops) in
several legislative drafting efforts involving software licensing, software quality
regulation, and electronic commerce.

Kaner holds a B.A. in Arts & Sciences (Math, Philosophy), a Ph.D. in
Experimental Psychology (Human Perception & Performance: Psychophysics),
and a J.D. (law degree). He is Certified in Quality Engineering by the American
Society for Quality.

Managing the Proportion of Managing the Proportion of
Testers to Other DevelopersTesters to Other Developers

Cem Kaner, J.D., Ph.D.
Florida Institute of Technology

Elisabeth Hendrickson
Quality Tree Software, Inc.

Jennifer Brock
Ajilon Software Quality Partners

2Kaner, Hendrickson, Smith-Brock Ratios of Testers to Others

AcknowledgementsAcknowledgements

This presentation is partially based on a meeting of the
Software Test Managers Roundtable (STMR 3) in
Fall 2001. The meeting participants were:
Sue Bartlett Laura Anneker
Fran McKain Elisabeth Hendrickson
Bret Pettichord Chris DeNardis
George Hamblen Jim Williams
Brian Lawrence Cem Kaner
Jennifer Smith-Brock Kathy Iberle
Hung Quoc Nguyen and Neal Reizer.

3Kaner, Hendrickson, Smith-Brock Ratios of Testers to Others

A PuzzleA Puzzle

At STMR, we asked what were the managers’ largest and
smallest ratios of testers to other developers, and how
these ratios felt:

– There were very small ratios (1-to-7 and less) and very
large ratios (5-to-1).

– Some of each worked and some of each failed.

– Many of us remembered successful projects with ratios
lower than 1-to-1 more favorably than successful
projects with larger ratios.

Why is there such a range of successful ratios, and why
would test managers be happy with relatively low ratios?

4Kaner, Hendrickson, Smith-Brock Ratios of Testers to Others

These Ratios are IncommensurableThese Ratios are Incommensurable

Staff Counted as
4 programmers programmers

1 development manager programmer

1 test lead Tester

1 black box tester Tester

2 test automation engineers Testers

1 buildmeister Tester

1-to-1 ratio? But if there is a new build, how many black
box testers are available to test it?

5Kaner, Hendrickson, Smith-Brock Ratios of Testers to Others

What IS this Ratio?What IS this Ratio?

Staff Counted as
1 programmer programmer

1 toolsmith programmer

1 buildmeister programmer

1 development lead programmer

1 development manager programmer

1 test lead Tester

4 black box testers Testers

1-to-1 ratio? How many programmers are available to fix
five testers’ bug reports?

6Kaner, Hendrickson, Smith-Brock Ratios of Testers to Others

What IS this Ratio?What IS this Ratio?

How to count technicians and consultants? Is the ratio of testers
to programmers 10-to-5, 10-to-20, 1-to-20, or something else?

Staff Counted as
5 programmers programmers

5 on-site consultants (doing
programming)

???

1 project team (10 people) under
contract to deliver components.

???

1 full-time, on-staff test
engineer

tester

3 technicians ???

3 temporary technicians (work
for a contracting agency)

???

3 testers who work offsite in an
independent test lab

???

7Kaner, Hendrickson, Smith-Brock Ratios of Testers to Others

Incommensurable RatiosIncommensurable Ratios

• Who to count?
– Experienced people count the same as juniors?
– Consultants, techs, contractors count the same as full-

time employees?
– Managers?

• What do the counted people do?
– When programmers do testing, inspections or reviews,

are they testing? (Do we count them as testers?) Even
if they are testing their own code?

– If testers help with debugging, are they programmers?
• When to start counting?
• Compare headcount or budgets?

8Kaner, Hendrickson, Smith-Brock Ratios of Testers to Others

Small Ratios can be BetterSmall Ratios can be Better
• Code coming into testing is clean, designed for testability,

and has good debug support.
• Prevention is emphasized, and a person who makes a bug

is expected to fix it.
• Bug churn rate is low.
• Staff turnover in testing and programming groups is low.
• Company hires skilled, experienced testers not "bodies."
• Shared agreement on the role of the test group.
• Trust and respect between programmers and testers.
• The groups help each other become more productive (e.g,

helping them build tools).
• Extensive unit test library that programmers run when they

update the product. (Read about Extreme Programming.)

9Kaner, Hendrickson, Smith-Brock Ratios of Testers to Others

Small Ratios can be WorseSmall Ratios can be Worse

• Time to market seen as more important than finding / fixing defects.
• Dominant market position allows seller to ship defects and charge

extra for maintenance and support.
• Testers perceived as not contributing because they don’t write

code.
• Testers perceived as too expensive, testing is easy anyway.
• Testers perceived as incompetent, counterproductive twits.
• Test manager perceived as a whiner who uses his staff ineffectively.
• Test group's work perceived as poor, overemphasizing unimportant

issues, or as politically motivated overemphasizing process.
• Toxic relation between testers and programmers, resulting in bug

churn, excessive turnover.
• Product is so complex that it is too expensive to train new testers.

10Kaner, Hendrickson, Smith-Brock Ratios of Testers to Others

Large Ratios can be BetterLarge Ratios can be Better

• Product might be knitted together from many externally
written components or it might be an upgrade of an existing
product.

• Extensive configuration testing needed.
• Extensive documentation and repetitive labor needed

because of high litigation risk (e.g. safety-critical).
• Extensive documentation needed for software sold in its

entirety to a customer who assumes responsibility for future
maintenance, support and enhancement.

• Market is picky about fit and finish.
• Load testing is needed.
• Testers serve multiple roles, such as domain expert, build

support, archivist, network administrator, debugging, spec
writer, code reviewer, benchmark competing products, etc.

11Kaner, Hendrickson, Smith-Brock Ratios of Testers to Others

Large Ratios can be WorseLarge Ratios can be Worse

• Testers don't understand domain or combinatorial testing, try
too many redundant tests.

• Large numbers of low-skill testers.
• Manual execution of large sets of fully scripted test cases.
• High test group turnover, constantly in training mode.
• Testers have inadequate tools, space, and equipment.
• Inefficient testing because the project doesn't use basic control

procedures such as smoke tests or configuration management.
• Software was not designed for testability.
• Excessive time spent collecting / gossiping about non-

productive “metrics.”
• Programmers send excessively buggy code into testing.
• Programmers don’t test their own code, relying on testers

instead. The more testers, the less these programmers do.

12Kaner, Hendrickson, Smith-Brock Ratios of Testers to Others

Ratios Should Emerge from ProjectRatios Should Emerge from Project

• Test groups play different roles in different
companies.

• Testing projects vary widely in the amount of new
code needed compared to the amount of testing
needed.

• Programs vary widely in their complexity and
bugginess.

• Markets vary in their error-tolerance.
• Projects differ widely in their documentation

requirements.
To justify your staff size, work from your staff’s tasks.
Beware of overstaffing, it can do more harm than good.

MANAGING THE PROPORTION OF
TESTERS TO (OTHER)1 DEVELOPERS

Cem Kaner, J.D., Ph.D.
Florida Institute of Technology

Elisabeth Hendrickson
Quality Tree Software, Inc.

Jennifer Brock
Ajilon Software Quality Partners

ABSTRACT

One of the common test management questions is what is the right ratio of testers to other
developers. A credible benchmark number offers convenience and bargaining power to
the test manager working with an executive who has uninformed ideas about testing or
whose objective is to spend the minimum necessary to conform to an industry standard.

We focused on staffing ratios and related issues for two days at the Fall 2000 meeting of
the Software Test Managers Roundtable (STMR 3).2 This paper is a report of our results.
We assert the following:

• One of the common answers is 1-to-1 (1 tester per programmer) or that 1-to-1 is
the common ratio in leading edge companies3 and is therefore desirable. Our
experience has been that (to the extent that we can speak meaningfully about
ratios at all) 1-to-1 has sometimes been a good ratio and sometimes a poor one.

1 In most companies, testers work in the product development organization and they are part of the
technological team that develops software products. Testers are developers. The ratios that we are
interested are the ratio of testers to the other developers on the project.
2 Software Test Managers Roundtable (STMR) meets twice yearly to discuss test management problems. A
typical meeting has 15 experienced test managers, a facilitator and a recorder. There is no charge to attend
the meetings, but attendance must be kept small to make the meetings manageable. If you are an
experienced test manager and want to join in these discussions, please contact Cem Kaner,
kaner@kaner.com. The meeting that is the basis for the present paper was STMR3, in San Jose, CA.
Participants included Sue Bartlett, Laura Anneker, Fran McKain, Elisabeth Hendrickson, Bret Pettichord,
Chris DeNardis, George Hamblen, Jim Williams, Brian Lawrence, Cem Kaner, Jennifer Smith-Brock,
Kathy Iberle, Hung Quoc Nguyen, and Neal Reizer.
3 We thank Ross Collard (1999) for providing us with a summary of his interviews of senior testing staff at
18 companies that he classed as "leading-edge," such as BMC Software, Cisco, Global Village, Lucent,
Microsoft. Six companies reported ratios of 1-to-1 or more, and the median ratio was 1-to-2.

• Ratios are calculated so differently from project to project that they probably
incomparable.

• Project-specific factors will drive you toward different ratios, and toward different
ratios at different times in the project. Such factors include (for example) the
incoming reliability of the product, the extent to which the project involves new
code that was written in-house, the extent to which the code was subjected to
early analysis and review, the breadth of configurations that must be tested, the
testability of the software, the availability of tools, the experience of the testers
and other developers, corporate quality standards, and the allocation of work to
testers and other developers.

• More is not necessarily better. A high ratio of testers to programmers may reflect
a serious misallocation of resources and may do more harm than good.

• Across companies, testers do a wide variety of tasks. The more tasks that testers
do, the more tester-time is needed to get the job done. We list and categorize
many of the tasks that testers perform.

• The set of tasks undertaken by a test group should be determined by the group's
mission. We examine a few different possible missions to illustrate this point.

PROBLEMS WITH RATIOS
What do we mean when we refer to a 1-to-1 ratio of testers to other developers? Across
groups, these ratios can have wildly different meanings.

Consider the following stories:

Jane manages a project with the following personnel:

Staff Counted as
4 programmers programmers

1 development manager programmer

1 test lead Tester

1 black box tester Tester

2 test automation engineers Testers

1 buildmeister Tester

According to the numbers, there’s a 1-to-1 ratio between programmers and testers.
However, when a new build comes into the test group, only one person is available to test
it full time—the black box tester. Because of the apparent 1-to-1 ratio, management is
puzzled by how long it takes the test group to do even simple tasks, like accept or reject a
build. Jane is hard-pressed to explain the bottleneck to management—they keep coming
back to the 1-to-1 ratio and insisting that means there are enough testers. The testers must
be goofing off.

Now consider Carl’s dilemma. His staff looks like this:

Staff Counted as
1 programmer programmer

1 toolsmith programmer

1 buildmeister programmer

1 development lead programmer

1 development manager programmer

1 test lead Tester

4 black box testers Testers

According to these numbers, there are 5 programmers and 5 testers, a comfortable 1-to-1
ratio. The testers report dozens of bugs per week. However, because they have no access
to the source code (they test at the black box level), they cannot isolate the bugs they
report. It takes the programmers significant time to understand and fix each reported
issue. Carl is hard-pressed to explain why the testers can find bugs faster than his staff
can fix them. Are his programmers lazy?

Sandy's department provides even more counting challenges:

Staff Counted as
5 programmers programmer

5 on-site consultants (doing
programming)

???

1 project team (10 people of
various specializations) who are
under contract with Sandy's
company to write and deliver a
series of components to be used
in Sandra's product.

???

1 full-time, on-staff test
engineer

tester

3 technicians (they work for
Sandry's company, are
supervised by the engineer, but
have limited discretion and
experience)

???

3 temporary technicians (they
work for a contracting agency,
not Sandy's company, they
report to the test engineer, but
are not counted in the
company's headcount)

???

3 testers who work offsite in an
independent test lab

???

Should we count consultants as programmers? What about programmers who work for
other companies and are simply selling code to Sandy's company? Should we count
technicians as testers? What about technicians or other testers who work for other
companies and provide testing services under contract? We don't know the "right" answer
to these questions. We do know that different companies answer them differently and so
they would calculate different ratios (ranging from 1-to-10 through 10-to-1) for the same
situation.

Here are even more of the classification ambiguities in determining the ratio of testers to
programmers:

• Are test managers testers? Are project managers developers? What about test
leads and project leads? If a test lead sometimes runs test cases, should we count
her as a tester for the hours that she is hunting for bugs? What about the hours she
spends reviewing the test plans of the other testers?

• When programmers do code reviews, they find defects. Should we count them as
testers? Imagine a six-month project that has one officially designated tester and
ten officially designated programmers. In the first four months, the programmers
spend 60% of their time critically analyzing requirements, specifications, and
code, doing various types of walkthroughs and inspections. They find lots of
problems. (In the other 40% of their time, they write code.) The tester also spends
60% of her time reading and participating in the meetings. Her other 40% is spent
on the test plan. For these four months, should we count the ratio of testers to
programmers as 1-to-10 or as 7-to-4? (After all, didn't the programmers spend 6
person-months doing bug hunting and only 4 person-months writing code?)

• If the testers write diagnostic code or tools that will make the programmers' lives
easier as well as their own, are they working as testers or programmers?

• Imagine a six-month project that starts with four months of coding by ten
programmers. During this part of the project, there are no testers. In the last two
months, there are ten testers. Should we count this as 10-to-10 ratio or 60-to-20?
(After all, there were 60 programmer-months on the project and only 20 tester-
months.)

• Suppose that your company spends $1,000,000 licensing software components.
These components required 36 programmer-months (and an unknown number of
tester-months) to develop. Your company uses one programmer for 6 months to
write an application that is primarily based on these components. It assigns one
tester for 6 months. Is the ratio of testers to programmers 1-to-1 or 1-to-7 or
something in between?

• How should we count technical writers, tech support staff, human factors analysts,
systems analysts, system architects, executives, secretaries, testing interns,
programming interns, marketeers, consultants to the programmers, consultants to
the testers, and beta testers?

• If the programmers dump one of their incompetents into the testing group and one
of the testers has to work half-time to babysit him, did the ratio of testers to
programmers just go up or down? In general, if one group is consistently more (or
less) productive than industry norm should we count them as if there were more
(fewer) of them?

The answers to these questions might seem to be obvious to you, but whatever your
answers are, someone respectable in a respectable company would answer them quite
differently. At STMR 3, we marveled at the variety of ways that we counted tester-units
for comparison with programmer-units. Because of the undefined counting rules, when
two companies (or different groups in the same company) report their tester-to-
programmer ratios, we can't tell from the ratios whether a reported ratio of 1 (tester) to 3
(programmers) involves more or less actual quality control than a ratio of 3 (testers) to 1
(programmer).

To put this more pointedly, when you hear someone claim in a conference talk that their
ratio of testers to programmers is 1-to-1, you will probably have no idea what that means.
Oh, you might have an idea, but it will be based on your assumptions and not their

situation. Whatever your impression of the staffing and work-sharing arrangements at
that company is, it will probably be wrong.

WHAT FACTORS SUPPORT DIFFERENT RATIOS?
Most of the participants at STMR 3 (including us) had worked on projects with high
ratios of testers to programmers, as many as 5 testers per programmer. Most of us had
also worked on projects involving very low ratios, as few as 0-to-7 and 1-to-8. Some of
the projects with high ratios had been successful, some not. Some of the projects with
low ratios had been successful, some not. This corresponds with what we've been told by
other managers, outside of STMR.

Why are some projects successful with very few testers while others need so many more?

Low Ratios of Testers to Programmers
Most testers have seen or worked in a test group that was flooded with work and pushed
up against tight deadlines. These groups typically staff projects with relatively few testers
per programmer. The work is high stress and the overall product quality will probably be
low.

However, some projects are correctly staffed with low ratios of testers to programmers.
In our experience, these projects generally involved programmers (and managers) who
had high quality standards and who didn't rely on the test group to get the product right.

Projects with low ratios of testers to programmers might occur:

• routinely, in a company with a healthy culture whose projects normally succeed

• routinely, under challenging circumstances

• on a project-by-project basis based on special circumstances of that project

Healthy Culture
Healthy cultures that have successful projects with relatively few testers often have
characteristics like these:

• The test group has low noise-to-work ratios. "Noise" includes wasted time arising
out of organizational chaos or an oppressive work environment.

• Staff turnover in the testing and programming groups is probably low. It takes
time for testers to become efficient with a product--time, for example, to gain
expertise and to build trust with the programmers.

• The company focuses on hiring skilled, experienced testers rather than "bodies."

• There is a shared agreement on the role of the test group, and little need for
ongoing reevaluation or justification of the role.

• There is trust and respect between programmers and testers, and members of
either group will help the other become more productive (for example, by
helping them build tools).

• Quality is seen as everyone's business. The company emphasizes individual
accountability. The person who makes a bug is expected to fix it and to learn
something from the experience. There is a low churn rate for bugs--they don't
ping-pong between programmers and testers ("Can't reproduce this bug", "I can",
"It's not a bug anyway", "Marketing says it is", etc.)

• The code coming into testing is clean, designed for testability, and has good
debug support.

• There may be an extensive unit test library that the programmers rerun whenever
they update the product with their changes. The result is that the code they give
to testers has fewer regression errors and needs less regression testing (Beck,
2000)

• In general, there is an emphasis on prevention of defects and/or on early
discovery of them in technical reviews (such as inspections).

• In general, there is an emphasis on reuse of reusable test materials and on
intelligent use of test tools

• The expectation is that reproducible coding errors will be fixed. Testers spend
relatively little time justifying their test cases or doing extensive troubleshooting
and market research just to convince the programmers that an error is worth
fixing.

• The culture is more solution-oriented than blame-oriented.

Challenging Circumstances
Some companies need much more testing than they conduct, but they might not do it
because:

• The product might be so complex that it is extremely expensive to train new
testers. New testers won't understand how to test the product, and they'll waste too
much programmer time on unimportant bugs and misunderstandings.

• They may have decided that time to market is more important than finding and
fixing defects.

• They are in a dominant market position in their niche and their customers will pay
extra for maintenance and support. There is thus (until competitors appear)
relatively little incentive to the company to find and fix defects before release.

• They believe that it's right and natural for people in high tech to work 80+ hour
weeks for 6+ months. In their view, adding staff will reduce the free overtime
without increasing total productivity.

• The testing group may be perceived as not contributing because they aren't
writing code.

• Other members of the project team might believe that testing is easy. ("What's so
tough about testing? Just run the program! I can find bugs just by installing it! In
fact, we should just bring in a bunch of Kelly temps to do this.")

• Testers might be perceived as too expensive.

• Testers might be perceived as incompetent, counterproductive twits.

• The test manager might be perceived as a whiner who should use his staff more
effectively.

• The test group's work might be perceived as poor, with an overemphasis on
unimportant issues ("corner cases") and the superficial aspects of the product.

• The testing group may have little credibility. They are seen as politically
motivated and being preoccupied with irrelevant tests (e.g. some extreme corner-
case tests). Therefore they are not sufficiently funded.

• The relation between testers and programmers may be toxic, resulting in
excessive turnover in the testing group.

Some companies will never develop respect for their testing staff, and will never staff the
test groups appropriately, no matter how good the testers or test managers. But in many
other companies, testing groups build their own reputations over time. Some testing
groups work too hard to increase their power and control in a company and not hard
enough to improve their credibility and their technical contribution. Down that road, we
think, tight staffing, high turnover, and layoffs are inevitable.

Project Factors
To some degree independently of the corporate culture, some projects are likely to
succeed with few testers because of factors specific to those projects. For example:

• The product might involve low risk. No one expects it to work well and failures
won't harm anyone.

• There might be little time-to-market pressure.

• The product might come to the test team with few defects (perhaps because this
particular project team paid a lot of attention to the design, did paired
programming or did a lot of inspections, etc.)

• The code might be particularly easy to test or relevant test tools that the testers are
familiar with might be readily available.

• There might be no need to certify this product, no need for extensive
documentation of the tests or (except for bug reports) the test results, and no
requirement for detailed evaluations of the final quality of this product.

• The testers might simply not have much work to do on this project because it is
easy, reliable, intuitive, testable, etc.

High Ratios of Testers to Programmers
We've met testers who respond enthusiastically when they hear of a group that has a very
high ratio of testers to programmers. The impression that they have expressed to us is that

such a high ratio must indicate a corporate commitment to quality, and a healthier
lifestyle (less stress, less grinding overtime) for the testers.

In many cases, though, a high number of testers results from (and contributes to)
dysfunction in the product development effort.

One of us worked on a project that had roughly three times as many testers as
programmers by the end of the project. The programmers were under intense time
pressure—and they couldn’t help but notice the large pool of people next door just
waiting to catch their mistakes. The result? The bug introduction rate skyrocketed. One
programmer commented about a particularly buggy area of the program under test, “Oh,
yeah. I knew there would be bugs there—I just didn’t have time to look for them
myself.”

Programmers find the vast majority of defects in their own code before they turn it over
for testing. When a programmer finds a bug in her own code, she can usually isolate it
quickly. She doesn't have to spend much time documenting the bug, replicating the bug,
tracking it, or arguing that it should be fixed. When programmers skimp on testing,
testers must spend much more time per bug to find, isolate, report, track, and advocate
the fix. And then the programmer wastes time translating a black box test result back to
code.

We suggest that there is a significant waste of project resources whenever an error is
found by a black box tester that could have been easily found by the programmer using
traditional glass box unit testing techniques. Some of these errors will inevitably creep
through to testing, but we think staffing and lifecycle models that encourage over-
reliance on black box testers are pathological.

Having an army of testers can encourage a spiraling drop in productivity and quality. (We
talk more about this in Hendrickson, 2001, and Kaner, Falk & Nguyen, 1993, Chapter
15).

The best solution for severely buggy code is not to add testers. The best solution might be
to freeze (or even reduce) the size of the testing group while adding programmers. The
programmers should fix and test code, not add even more buggy features.

Healthy Cultures
Some companies need more testers because of the market they are in or the technology
they use. The examples below might describe the culture of the company or the
circumstances of a particular project. Examples:

• Much more formal planning, documentation, and archiving of all artifacts of the
testing effort is needed when developing safety-critical software. Heavy
documentation might be required for other software because of regulatory agency
interest or high litigation risk.

• Extensive documentation may also be needed for software that will be sold in its
entirety to a customer, with the expectation that the customer will assume
responsibility for future maintenance, support and enhancement.

• Some markets are particularly picky about fit and finish errors or are more likely
to expect / demand technical support for problems that customers in other markets
might seem small or easy to solve. If you are selling into that market, you'll
probably do much more user interface testing and much more scenario testing.

• Extensive configuration testing is needed for software that must work on many
platforms or support many different technologies or types of software or
peripherals.

• Load testing is needed for software that is subject to bursts of peak usage.

• Some companies hire domain experts into testing or train several testers into
domain expertise. These testers become knowledgeable advocates for customer
satisfaction improvements and are particularly important in projects whose
designs emerge over time.

• Some testing groups have a broad charter. Along with testing, they provide
several other development services such as debugging, specification writing,
benchmarking competing products, participation in code reviews, and so on. The
broader the charter, the more people are needed to do the work.

• If the company relies on outsourced testing (this is sometimes a requirement of
the customer's), there is substantial communication cost. The external testers need
time to understand the product, the market, and the risks. They also need
significant support (people to answer questions and documentation) from in-house
testing staff.

• Software that involves a large number of components can be very complex and
requires more testing than a simpler architecture.

• The development project might involve relatively little fresh code, but a large end
product. The product might be knitted together from many externally written
components or it might be an upgrade of an existing product. The testers will still
have to do system testing (the less you trust the external code or the modification
process, the more testing is needed). When the external components come from
many sources, the test group may have to research, design and execute many
different usage scenario tests in order to see how well the components work
together to meet actual customer needs.

Challenging Circumstances
Some companies or projects back themselves into excessive testing staff sizes. For
example:

• Some test groups don't understand domain testing or combinatorial testing, so
they try to test too many values of too many variables in too many combinations.

• Some test groups rely on large numbers of low-skill testers. Manual execution of
large sets of fully scripted test cases can be extremely labor-intensive, mind-
numbing for testers and test case maintainers, and not very effective as a method
of finding defects.

• Test groups that suffer high turnover are constantly in training mode. The staff
may never get fully proficient with base technologies, available tools, or the
software under test. Tasks that would be easy for a locally experienced tester
might take a newcomer tremendously longer to understand and do.

• Testers may be given inadequate tools. Most testers need at least two computers,
access to a configuration or replication lab, a decent bug tracking system, and
various test automation tools. To the extent that the software under test runs on
platforms for which there are few test tools, the testers have less opportunity to
become efficient.

• Testing can be inefficient because the team doesn't use basic control procedures
such as smoke tests and configuration management software.

• Software that was not designed for testability will be more difficult and thus more
time consuming to test.

• Some corporate metrics projects waste time on the data collection, the data
fudging (see Kaner, 2001; Hoffman, 2000), and the gossiping about the dummies
in head office who rely on these stupid metrics. We are not suggesting that
metrics efforts are necessarily worthless. We are saying that we have seen several
such worthless efforts, and they create a lot of distraction.

• Programmers might focus entirely on implementing features. In some companies,
testers write installers, do builds, write all the documentation, etc. This is not
necessarily a bad thing. Instead it reflects a division of labor that might be wise
under the circumstances but that must be factored into the budgets and staffing of
both groups.

• Programming teams might send excessively buggy code into testing, perhaps
because they are untrained in base technologies, or new to the project, or managed
to implement features as quickly as possible, leaving the testing to testers. The
worst case of this reflects a conscious decision that they don't have to test the code
because they can count on the testers to find everything. Add more testers and the
programmers do even less checking of their work. This can become a vicious
spiral of increasing testing costs paired with declining quality (Hendrickson,
2001).

One-to-One Ratios of Testers to Programmers
Sometimes groups that describe their work in terms of one-to-one ratios really mean that
they use paired teams of programmers and testers. For a given type of feature, a specific
tester and a specific programmer work together, perhaps for several years. There are
many advantages to this approach, but of course it can be problematic if the pair doesn't
get along or if the pair develops too idiosyncratic a model of what things are acceptable
to customers or reasonable to report and fix.

Final Notes on Ratio Factors
In analyzing the factors that support your company's reliance of a given balance of
staffing between testers and other developers, you might find it useful to think in terms of
categories of factors and to analyze the different category issues one at a time.

Rothman (2000) organized her paper in terms of 3 factors:

• Product—some are harder products to test than others.

• Project and its process—some projects employ better processes than others

• People and their skills—some developers and testers are more capable than others

We've found it useful to think in terms of these factors:

• Product under test

• Market expectations

• Project details (e.g. what resources are available when)

• Process (principles and procedures intended to govern the running of the project)

• Methodology (principles and procedures intended to govern the detailed
implementation of the product or the development of product artifacts)

• Test infrastructure

• People

• Partnerships between testers and other stakeholders

• Allocation of labor (responsibility for different tasks) between testers and
programmers

We don't think this is the ultimate list. You might do well to generate your own. Our
point is that if you are trying to understand your staffing situation, it can help to start by
listing several different dimensions to consider. Considering them each in turn, alone or
preferably in a brainstorming session with a small group, can lead to a broad and useful
set of issues to consider.

ALLOCATION OF LABOR
The most important driver of the ratio of testers to programmers should be the allocation
of labor between the groups. If testers take on tasks that go beyond the minimum
essentials of black box testing, it will take more time or more testers to finish testing the
software.

Before attempting to estimate how many testers you need to perform the job, you need a
clear idea of what those testers are going to do. At a bare minimum, the testers will
probably:

• Design tests

• Execute tests

• Report bugs
They will probably also spend time interpreting results, isolating bugs, regressing fixes,
and performing other similar tasks.

In some organizations, the testers have a much broader range of responsibilities. For
example, testers may also:

• Write requirements

• Participate in inspections and walkthroughs

• Compile the software

• Write installers

• Evaluate the reliability of components that the company is thinking of using in its
software

• Provide technical support

• Provide risk assessments

• Collect and report statistical data (software metrics) about the project

• Build and maintain internal test-related tools such as the bug tracking system

• Configure and maintain programming-related tools, such as the source control
system

• Archive the software

• Benchmark competing products

• Evaluate the significance of various hardware/software configurations in the
marketplace (to inform their choices of configuration tests)

• Conduct usability tests

• Lead or audit efforts to comply with regulatory or industry standards (such as
those published by SEI, ISO, IEEE, FDA, etc.)

We do not espouse a preferred division of labor in this paper. Different groups have
different charters. Any of the tasks above might be appropriately assigned to a test group.
There is nothing wrong with that, as long as the group is appropriately staffed for its
tasks.

To determine how many testers you need for your tasks, start by listing the tasks that they
will do and estimate, task by task, how much work is involved. (If you're not sure how to
do this, Kaner, 1996, describes a task-by-task estimation approach.) The total number of
staffed tester-hours should be based on this estimate. The ratio of this staff to the
programming staff size will emerge as a result, not as a driver of proper staffing.

CLOSING COMMENTS
Ratios out of context are meaningless. Attempting to use industry figures for ratios is at
best meaningless and more likely dangerous.

Testers often ask about industry standard ratios in order to use these numbers to justify a
staff increase. To justify an increase in staff, we suggest that you argue from your tasks
and your backlog of work, not for a given ratio.

Even if you have a backlog, adding testers won't necessarily help clear it. Many problems
that drive down a test group's productivity cannot be solved by adding testers. For
example, poor source control, blocking bugs, missing features, and designs that are
inconsistent and undocumented are not going to be solved by doing more testing.

References
Beck, Kent (2000), Extreme Programming, Addison Wesley.

Collard, Ross (1999), "Testing & QA Staffing Levels: Internal IS Organizations", Collard
& Company.

Hendrickson, Elisabeth (2001), "Better Testing--Worse Quality?", Proceedings of the
International Conference on Software Management, San Diego, CA.
<http://www.qualitytree.com/feature/btwq.pdf>

Hoffman, Doug (2000) "The Darker Side of Metrics", Proceedings of the 18th Pacific
Northwest Software Quality Conference, Portland, OR.

Kaner, Cem (1996) "Negotiating Testing Resources: A Collaborative Approach",
Proceedings of the Software Quality Week conference, San Francisco, CA.

Kaner, Cem (2001) "Measurement Issues & Software Testing", QUEST Conference
Proceedings, Orlando, FL.

Kaner, Cem, Jack Falk, & Hung Quoc Nguyen (1993; republished 1999) Testing
Computer Software, John Wiley & Sons.

Rothman, Johanna (2000), "It Depends: Deciding on the Correct Ratio of Developers to
Testers," <http://www.testing.com/test-patterns/index.html>.

QW2001 Paper 6M1

Mr. Geert Pinxten
(I2B)

The Extended Product Quality Model: Dynamic Focussing
On Those Quality

Key Points

Radical Innovation●

Incremental Innovation●

The Product Life Cycle●

The Product Quality Model●

The Extended Product Quality model●

Presentation Abstract

Software development today is characterised by a lot of innovation: business
innovates, technology innovates. As innovation, by its definition always concerns
novelty, inexperience and immaturity, assuring quality has never been so difficult.
This presentation will present a framework based on the Product Quality Model of
J. Rothmann [1] that could be applied by those that need to insure the quality of all
these new technology software products and e-commerce solutions. This
framework will bring quality assurance in ICT to a new level of professionalism
and will also solve the problem of speed, time-to-market or product dynamics. The
solution will put a dynamic focus on those quality attributes that really matter.

About the Author

Geert Pinxten is Managing Partner of I2B. He is in consulting business since 1995.
His experiences are mainly located in 2 areas: ERP (SAP) and structured testing.
As a certified SAP technical consultant Geert Pinxten was involved in the
implementation of SAP systems in several large organisations.

As a Test Consultant for a Belgian consultancy company, Geert Pinxten has been
involved in several types of activities. He has been performing Test Assessments in
large organisations active in the world of telecommunication, micro-electronics
and business software development. During these audits he refined the auditing
method used. Geert Pinxten was involved in setting up test organisations and was
as a project leader responsible for numerous test projects.

As a Development Co-ordinator Geert Pinxten was responsible for the continuous
improvement of the test expert knowledge at his previous employer. These

activities ranged from developing new test training packages till the improvement
of the test method and its implementation. Geert Pinxten holds a degree of
Industrial Engineer, with a specialisation in Electronics and Information
Technology.

The Extended Product Quality ModelThe Extended Product Quality Model
Geert PinxtenGeert Pinxten

Copyright © 2001, All rights reserved by I2B 11

Idea to Business

Consultancy for those who change the world
http://www.i2b.be

2I B

2I BIdea to Business

Consultancy for those who change the world
http://www.i2b.be

Update of this presentation exclusively available for
the Quality Week audience on:

http://www.i2b.be/main/ipresentations

No PhonesNo Phones
ThanksThanks

Login :
Password :

The Extended Product Quality ModelThe Extended Product Quality Model
Geert PinxtenGeert Pinxten

Copyright © 2001, All rights reserved by I2B 22

Copyright © 2001, All rights reserved by I2B EPQM – Geert Pinxten – 3

IDEA TO BUSINESS

Idea to Business (I2B)

I2B cvba
Kruishoutemsesteenweg 77
B-9750 Zingem
Belgium
Tel.: +32 (9) 384.86.27
Fax: +32 (9) 384.30.46
E-mail: info@i2b.be
http://www.i2b.be

Innovation Management Services

Innovation
Innovation

Exam
ples

Exam
ples

PQ
M

PQ
M

EPQMEPQM
The Extended Product Quality ModelThe Extended Product Quality Model

EPQ
M

EPQ
M

Geert PinxtenGeert Pinxten
Managing PartnerManaging Partner

Copyright © 2001, All rights reserved by I2B EPQM – Geert Pinxten – 4

The Product Quality ModelThe Product Quality Model

�� A measure for product qualityA measure for product quality
�� The Product Life Cycle (PLC)The Product Life Cycle (PLC)
�� The Product Quality Model (PQM)The Product Quality Model (PQM)

Innovation
Innovation
Innovation

Exam
ples

Exam
ples

Exam
ples

PQ
M

PQ
M

EPQ
M

EPQ
M

EPQ
M

The Extended Product Quality ModelThe Extended Product Quality Model
Geert PinxtenGeert Pinxten

Copyright © 2001, All rights reserved by I2B 33

EPQMExamples I2B

Goto Start

Back

Goto End Copyright © 2001, All rights reserved by I2B

Innovation

EPQM – Geert Pinxten – 5

PQM

GradyGrady

A measure for product qualityA measure for product quality

3 common goals for software product development3 common goals for software product development
•• Minimize time to marketMinimize time to market
•• Maximize customer satisfaction (Functionality)Maximize customer satisfaction (Functionality)
•• Minimize defectsMinimize defects

WeinbergWeinberg

Product quality is value to the customerProduct quality is value to the customer

EPQMExamples I2B

Goto Start

Back

Goto End Copyright © 2001, All rights reserved by I2B

Innovation

EPQM – Geert Pinxten – 6

PQMThe Product Life Cycle The Product Life Cycle (1/3)(1/3)

IntroIntro
GrowthGrowth DeclineDecline

Time

Volume

MaturityMaturity

The Extended Product Quality ModelThe Extended Product Quality Model
Geert PinxtenGeert Pinxten

Copyright © 2001, All rights reserved by I2B 44

EPQMExamples I2B

Goto Start

Back

Goto End Copyright © 2001, All rights reserved by I2B

Innovation

EPQM – Geert Pinxten – 7

PQMThe Product Life Cycle The Product Life Cycle (2/3)(2/3)

EarlyEarly
AdoptersAdopters

EarlyEarly
MajorityMajority

LateLate
MajorityMajorityInnovatorsInnovators LaggardsLaggards

EPQMExamples I2B

Goto Start

Back

Goto End Copyright © 2001, All rights reserved by I2B

Innovation

EPQM – Geert Pinxten – 8

PQMThe Product Life Cycle The Product Life Cycle (3/3)(3/3)

The quality definition is affected by the The quality definition is affected by the
position of the product in its life cycleposition of the product in its life cycle

Time

Volume

EarlyEarly
Adop.Adop.

EarlyEarly
Maj.Maj.

LateLate
Maj.Maj.InnoInno Lag.Lag.

The Extended Product Quality ModelThe Extended Product Quality Model
Geert PinxtenGeert Pinxten

Copyright © 2001, All rights reserved by I2B 55

EPQMExamples I2B

Goto Start

Back

Goto End Copyright © 2001, All rights reserved by I2B

Innovation

EPQM – Geert Pinxten – 9

PQMThe Product Quality ModelThe Product Quality Model

MediumMedium

LowLow

HighHigh

InnovatorsInnovators

HighHighHighHighHighHighLowLow
MinimizeMinimize
DefectsDefects

MediumMediumMediumMediumLowLowMediumMediumFunctioFunctio--
nalitynality

LowLowLowLowMediumMediumHighHighTime to Time to
marketmarket

LaggardsLaggardsLate Late
MajorityMajority

EarlyEarly
MajorityMajority

EarlyEarly
AdoptersAdopters

Product Product
Live/ Live/

Market Market
PressurePressure

J. Rothmann

Copyright © 2001, All rights reserved by I2B EPQM – Geert Pinxten – 10

InnovationInnovation
�� What is InnovationWhat is Innovation
�� Radical InnovationRadical Innovation
�� Incremental Innovation Incremental Innovation

Innovation
Innovation

Exam
ples

Exam
ples

Exam
ples

PQ
M

PQ
M

PQ
M

EPQ
M

EPQ
M

EPQ
M

The Extended Product Quality ModelThe Extended Product Quality Model
Geert PinxtenGeert Pinxten

Copyright © 2001, All rights reserved by I2B 66

EPQMExamples I2B

Goto Start

Back

Goto End Copyright © 2001, All rights reserved by I2B

Innovation

EPQM – Geert Pinxten – 11

PQMWhat is innovationWhat is innovation

time

Pe
rf

or
m

an
ce

Built to last

Built to
change

World population
CPU power

Gene coding
Data Storage

Capital flows

Bandwidth

•• 55 years sustained ‘peace’55 years sustained ‘peace’
•• Development of computer scienceDevelopment of computer science

EPQMExamples I2B

Goto Start

Back

Goto End Copyright © 2001, All rights reserved by I2B

Innovation

EPQM – Geert Pinxten – 12

PQMRadical InnovationRadical Innovation

time

Pr
od

uc
t p

er
fo

rm
an

ce

time

Volume

The Extended Product Quality ModelThe Extended Product Quality Model
Geert PinxtenGeert Pinxten

Copyright © 2001, All rights reserved by I2B 77

EPQMExamples I2B

Goto Start

Back

Goto End Copyright © 2001, All rights reserved by I2B

Innovation

EPQM – Geert Pinxten – 13

PQMIncremental InnovationIncremental Innovation

time

Pr
od

uc
t p

er
fo

rm
an

ce

time

Volume

Copyright © 2001, All rights reserved by I2B EPQM – Geert Pinxten – 14

Products and the PLCProducts and the PLC
�� Personal Digital AssistantPersonal Digital Assistant
�� Mobile phonesMobile phones

Innovation
Innovation
Innovation

Exam
ples

Exam
ples

PQ
M

PQ
M

PQ
M

EPQ
M

EPQ
M

EPQ
M

The Extended Product Quality ModelThe Extended Product Quality Model
Geert PinxtenGeert Pinxten

Copyright © 2001, All rights reserved by I2B 88

EPQMExamples I2B

Goto Start

Back

Goto End Copyright © 2001, All rights reserved by I2B

Innovation

EPQM – Geert Pinxten – 15

PQMPersonal Digital Assistant (PDA)Personal Digital Assistant (PDA)

Time

$

NowNow

•• Early AdoptersEarly Adopters
•• Time to Market: HighTime to Market: High
•• Features: MediumFeatures: Medium
•• Low defects: LowLow defects: Low

•• CharacteristicsCharacteristics
•• CopyCopy
•• No innovationNo innovation

EPQMExamples I2B

Goto Start

Back

Goto End Copyright © 2001, All rights reserved by I2B

Innovation

EPQM – Geert Pinxten – 16

PQMMobile phonesMobile phones

1. Main product characteristics slightly improving 1. Main product characteristics slightly improving

2. More important change in product characteristics 2. More important change in product characteristics

WeightWeight
DisplayDisplay

SizeSize

WAPWAP
GPRSGPRS

II--MODEMODE

time

$

time

$

The Extended Product Quality ModelThe Extended Product Quality Model
Geert PinxtenGeert Pinxten

Copyright © 2001, All rights reserved by I2B 99

Copyright © 2001, All rights reserved by I2B EPQM – Geert Pinxten – 17

The Extended Product The Extended Product
Quality ModelQuality Model

Innovation
Innovation
Innovation

Exam
ples

Exam
ples

Exam
ples

PQ
M

PQ
M

PQ
M

EPQ
M

EPQ
M

�� The Innovation PortfolioThe Innovation Portfolio
�� The Extended Product Quality ModelThe Extended Product Quality Model

EPQMExamples I2B

Goto Start

Back

Goto End Copyright © 2001, All rights reserved by I2B

Innovation

EPQM – Geert Pinxten – 18

PQMThe Innovation PortfolioThe Innovation Portfolio

DerivativeDerivative
ProjectsProjects

PlatformPlatform
ProjectsProjects

Breakthrough Breakthrough
ProjectsProjects

Degree of process changeDegree of process change
New core New core
processprocess

Minor Minor
ProcessProcess
ChangeChange

D
eg

re
e

of
 p

ro
du

ct
 c

ha
ng

e
D

eg
re

e
of

 p
ro

du
ct

 c
ha

ng
e

Minor ProductMinor Product
ChangeChange

New coreNew core
productproduct

The Extended Product Quality ModelThe Extended Product Quality Model
Geert PinxtenGeert Pinxten

Copyright © 2001, All rights reserved by I2B 1010

EPQMExamples I2B

Goto Start

Back

Goto End Copyright © 2001, All rights reserved by I2B

Innovation

EPQM – Geert Pinxten – 19

PQMThe Extended Product Quality ModelThe Extended Product Quality Model

DerivativeDerivative
Level of Level of
InnovationInnovation PlatformPlatform

MediumMedium

LowLow

HighHigh

InnovatorsInnovators

HighHighHighHighHighHighLowLow
LowLow
DefectsDefects

MediumMediumMediumMediumLowLowMediumMediumFunctioFunctio--
nalitynality

LowLowLowLowMediumMediumHighHighTime to Time to
marketmarket

LaggardsLaggardsLate Late
MajorityMajority

EarlyEarly
MajorityMajority

EarlyEarly
AdoptersAdopters

Product Product
Live/ Live/

Market Market
PressurePressure

BreakthroughBreakthrough

2I B

Idea to Business

Consultancy for those who change the world

Thank you!

The Extended Product Quality ModelThe Extended Product Quality Model
Geert PinxtenGeert Pinxten

Copyright © 2001, All rights reserved by I2B 1111

EPQMExamples I2B

Goto Start

Back

Goto End Copyright © 2001, All rights reserved by I2B

Innovation

EPQM – Geert Pinxten – 21

PQMOur CompanyOur Company
I2B (Idea to Business) is a new Belgian consultancy company founded in 2000 by six people of
which five are experienced consultants. Their consolidated know-how and skills have resulted in a
complete portfolio of competences required to run projects concerning ICT, E-Commerce or
Innovation (new business development).

Together they result in Innovation Management Services, offered to two types of clients: Large
Enterprises and Small & Medium Sized Enterprises (SME’s). For the latter, I2B developed a
special delivery model allowing SME’s to receive expert knowledge to which normally only big
organisations have access to.

The Mission of I2B is:The Mission of I2B is:

“To assure that companies can innovate and realise sustainable business
from their ideas”

EPQMExamples I2B

Goto Start

Back

Goto End Copyright © 2001, All rights reserved by I2B

Innovation

EPQM – Geert Pinxten – 22

PQMOur CredoOur Credo

CREDOCREDO

We believe that our first responsibility lies with the clients who use our services. In meeting their
needs our services must be of high quality and must be a reference for our clients. We cannot
indulge in pressure, quantity or quick profit. We must do what we promise. We may only promise
what we can do.

We are responsible towards our co-workers, the men and women who work with us. Every co-
worker must be respected as an individual and must be rewarded adequatly and fairly. We must
support our co-workers through a competent management, an adequate working environment and
proper working conditions. Our co-workers must have the means to provide and receive feedback
that allows them to learn continuously. We must support our co-workers in their family
responsibilities. Our actions must be just and ethical.

We are responsible to the community in which we live. We must be good citizens, support good
works and bear our fair share of taxes. We must encourage civic improvements and use our
expertise to create these improvements. We must respect and protect the environment and the
natural sources.

Our final responsibility is towards our stockholders. Our business must make a sound profit. We
must innovate and continuously improve our methods and techniques. We must develop new
services and implement them effectively and efficiently. We must create reserves to provide for
adverse times. When we work according to these principles, our stockholders should realise a fair
return.

The Extended Product Quality ModelThe Extended Product Quality Model
Geert PinxtenGeert Pinxten

Copyright © 2001, All rights reserved by I2B 1212

EPQMExamples I2B

Goto Start

Back

Goto End Copyright © 2001, All rights reserved by I2B

Innovation

EPQM – Geert Pinxten – 23

PQMCopyright & LiabilityCopyright & Liability
Copyright
The materials in this presentation are Copyright © 2000 I2B. All rights reserved. You are hereby
authorized to view, copy, print and distribute these materials or parts of it subject to the following
conditions:

• The materials may be used for internal informational purposes only.
• Any copy of these materials or any portion thereof must include the above copyright notice.
• I2B may revoke or modify any of the foregoing rights at any time.

Please note that any product, process or technology described in these materials may be the subject of other
intellectual property rights reserved by I2B and are not licensed hereunder.

Liabilities
The information contained in this presentation is for general guidance on matters of interest only. The
application and impact of laws can vary widely based on the specific facts involved. Given the changing
nature of laws, rules and regulations, and the inherent hazards of electronic communication, there may be
delays, omissions or inaccuracies in information contained in this presentation. Accordingly, The information
in this presentation is provided with the understanding that the authors and publishers are not herein engaged
in professional advice and services. As such, it should not be used as a substitute for consultation with
professional advisers. Before making any decision or taking any action, you should consult a I2B
professional.

2I B

Idea to Business

Consultancy for those who change the world

QW2001 Paper 6M2

Ms. Johanna Rothman
(The Rothman Consulting Group)

Using Requirements To Create Release Criteria

Key Points

What release criteria are●

How to use release criteria during the project, not just at the end●

How to define release criteria●

Working with the project manager, to make sure the release criteria are used●

Presentation Abstract

“We can’t stop to define what we’re going to do-we’re working on Internet Time”.
You’ve heard that before. The push to move to the Internet or to continue your
Internet business can feel overwhelming, especially when senior management is
already demanding to make money with the product. Your project manager wants
to know if the product is ready and when it will be released. You’d like to know
what the heck you’re supposed to do, to know that you’ve done the necessary
testing. If your organization is struggling and does not want to review all of the
requirements in detail to get a project moving, you can create product release
criteria to capture the critical requirements in a way that makes sense.

About the Author

Johanna Rothman observes and consults on managing high technology product
development. She works with her clients to find the leverage points that will
increase their effectiveness as organizations and as managers, helping them ship
the right product at the right time, and recruit and retain the best people.

Johanna publishes "Reflections", an acclaimed quarterly newsletter about
managing product development. Johanna's handbook, "Hiring Technical People: A
Guide to Hiring the Right People for the Job," has proved a boon to perplexed
managers, as have her articles in Software Development, Cutter IT, IEEE
Computer, Software Testing and Quality Engineering, and IEEE Software.

Johanna is the founder and principal of Rothman Consulting Group, Inc., and is a
member of the clinical faculty of The Gordon Institute at Tufts University, a
practical management degree program for engineers.

Using Requirements to Create Release Criteria

© 2001 Johanna Rothman www.jrothman.com 1
781-641-4046 jr@jrothman.com

Using Requirements to Create
Release Criteria

Johanna Rothman

Rothman Consulting Group, Inc.

www.jrothman.com

jr@jrothman.com

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 2

How Do You Know When the
Software Is Ready to Release?

• “Is the software ready yet?” • What does “done” mean?

Using Requirements to Create Release Criteria

© 2001 Johanna Rothman www.jrothman.com 2
781-641-4046 jr@jrothman.com

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 3

Problems When You Don’t Use
Release Criteria

• You’re responsible for deciding if the software is ready to release

• You know when you’re supposed to release, you don’t know how
good the software has to be

• You can’t easily explain why you’re not done testing, you just
know you’re not done yet

• You are told to stop testing, the product is being released

• Release decisions are made by gut feel

• A variety of people can veto the release decision

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 4

Develop Release Criteria

• What’s critically important to this project
– What’s special about this release, for the company, for the customers

– What does success mean?

• Quantify how to recognize success

• Get agreement from project team and senior management that
you’ll use release criteria to decide if the product is ready to
release

Using Requirements to Create Release Criteria

© 2001 Johanna Rothman www.jrothman.com 3
781-641-4046 jr@jrothman.com

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 5

What Does Success Mean for This
Project?

• What problem (or problems) is this project trying to solve?

• What are the project’s requirements?
– What are you being paid to deliver?

– How good does it have to be?

– When do the customers and the company want it?

– What are the other constraints?

• What are the product’s requirements?

• Then, plan and execute the testing portion of the project

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 6

About Success

• Success is what the customers will be able to do with the project
when you’re done with it

• Success has nothing to do with defects per se

Using Requirements to Create Release Criteria

© 2001 Johanna Rothman www.jrothman.com 4
781-641-4046 jr@jrothman.com

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 7

Use Context Free Questions to
Define Success

• What does success look like?

• Why are these results desirable?

• What is the solution worth to you?

• What problems does this system solve?

• What problems could this system create?

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 8

When You Ask Context Free Questions

• Ask why without asking WHY
– Why might put people on the defensive

• Use How with care to avoid design decisions

• Have a conversation, not an interrogation

Using Requirements to Create Release Criteria

© 2001 Johanna Rothman www.jrothman.com 5
781-641-4046 jr@jrothman.com

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 9

What’s Important for This Project?

• Define quality
– “Quality is value to someone” -- Weinberg

– Each someone wants something different

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 10

Software Project Quality Perspectives

• Every project has requirements and
constraints

• What do your customers care about
the most?

– Time to market

– Feature set

– Defect levels

• Internal Perspectives or Constraints:
Your customers don’t care about these.
You do.

– Cost to market

– People and their capabilities

– Work environment

Ti
m

e
to

m
ar

ke
t

Feature set

Defect levels

C
os

t t
o

m
ar

ke
t

Staff capabilities

Work environment

Using Requirements to Create Release Criteria

© 2001 Johanna Rothman www.jrothman.com 6
781-641-4046 jr@jrothman.com

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 11

Different Projects Have Different
Customer Pressures for Quality

Technology
 Enthusiasts

Bowling
Alley

Early Market

Mainstream
 Market

The
Chasm

Tornado

Main Street

End of Life

Visionaries

Pragmatists

Conservatives

Skeptics

Introduction Early Adopters Mainstream Late Majority Skeptics
1. Time to Market 1. Time to Market 1. Low Defects 1. Low Defects 1. Low Defects
2. Feature Set 2. Feature Set 2. Time to Market 2. Feature Set 2. Feature Set
3. Low Defects 3. Low Defects 3. Feature Set 3. Time to Market 3. Time to Market

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 12

Rita’s Story

• Originally just the date was the release criterion

• During one project, the product transitioned to the mainstream
– Release was not well-received by customers

Using Requirements to Create Release Criteria

© 2001 Johanna Rothman www.jrothman.com 7
781-641-4046 jr@jrothman.com

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 13

Updated Criteria for the Next Release

• Rita drafted new criteria, a balanced perspective on what was
good enough to release
– All code must compile and build for all platforms.

– Zero high priority bugs.

– For all open bugs, documentation in release notes with workarounds.

– All planned QA tests run, at least 98 percent pass.

– Number of open defects decreasing for last six weeks.

– Feature x unit tested by developers, system tested by QA, verified with
customers A, B before release.

– All open defects evaluated by cross-functional team.

– Ready to release by June 1.

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 14

Gain Consensus on Criteria

• PM explained about other pressures and two favorite customers

• Rita and the PM presented these criteria to the project team:
– All code must compile and build for all platforms.

– Zero high priority bugs.

– For all open bugs, documentation in release notes with workarounds.

– All planned QA tests run, at least 90 percent pass.

– Number of open defects decreasing for last three weeks.

– Feature x unit tested by developers, system tested by QA, verified with
customers A, B before release.

– Ready to release by June 1.

Using Requirements to Create Release Criteria

© 2001 Johanna Rothman www.jrothman.com 8
781-641-4046 jr@jrothman.com

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 15

About Release Criteria

• Objective and measurable (SMART)
– Specific, Measurable, Attainable, Relevant, Trackable

• Agreed to by entire project team and understood by senior
management

• Reasonable
– Release criteria are not the place for stretch goals

• If you have resistance to release criteria, discover why
– Assumptions about how projects work

– Fear of being measured

– ….

• Help you resolve those assumptions and fears before you release

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 16

Other Ways to Gain Consensus on
Release Criteria

• Drafting something in advance helps with the discussion

• Develop release criteria at a project team meeting

• Develop release criteria with the PM and then discuss with the
project team

• Don’t leave senior management out of the picture altogether

Using Requirements to Create Release Criteria

© 2001 Johanna Rothman www.jrothman.com 9
781-641-4046 jr@jrothman.com

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 17

Working with Senior Management

• Verify that senior management agrees with the release criteria

• Verify that senior management will use the criteria to make the
release decision
– Explain that vetos or early release decisions are inappropriate

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 18

Release Criteria can Illuminate
Testing and Product Goals

• Must we meet this requirement by the requested release date?

• What is the effect on our customers if we do not meet this
requirement by the release date?

Using Requirements to Create Release Criteria

© 2001 Johanna Rothman www.jrothman.com 10
781-641-4046 jr@jrothman.com

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 19

Using Release Criteria

• Evaluate the state of the project’s “done-ness” throughout the
entire project

• Early warning sign that you’re not going to make it

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 20

Release Criteria Are Not Partially Met

• Each criterion is either met or is not met

• I don’t do happy faces or happy colors or happy anything
– Don’t confuse release criteria with a testing or project dashboard

• The project team evaluates each criterion, asking, have we met
this criterion yet?

Using Requirements to Create Release Criteria

© 2001 Johanna Rothman www.jrothman.com 11
781-641-4046 jr@jrothman.com

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 21

When You Don’t Meet the Release
Criteria

• Be honest

• Make a conscious decision to release or not

• Make a conscious decision to change the criteria or not

• Decide what to do for the next time

© 2001 Johanna Rothman www.jrothman.com jr@jrothman.com 22

Summary

• Say “Release it” with pride
– You’ve met your commitment to your company and to your customers

• Plan your testing well, to take advantage of every minute available

• Use consensus so release criteria are not abandoned under
pressure

• Let the PM take it from there

QW2001 Paper 7M1

Mr. Michael Ensminger
(PAR3 Communications)

Walk & Stagger Through Review Process

Key Points

Peer Reviews●

Design Reviews●

Process Improvement●

Presentation Abstract

The use of peer reviews, walkthroughs and inspections as a cost-effective method
for achieving higher quality software is well documented. These techniques are not
regularly used in many organizations, especially those that say they are operating
on “Internet time”. At two Internet startups, I have used a modified, 2-phase
walkthrough process to successfully deliver high quality software. The process
proved successful, especially with teams without review experience. Contrary to
what others in the organization were proposing, the teams using the process were
able to deliver more quickly even with the increased “up front” work than other
teams in the same organization.

The modified walkthrough process begins with the “Walk Through” (two words to
distinguish it from the traditional use of the word walkthrough). During the walk
through, the item being reviewed is examined in the order of machine execution or
user experience in the “normal” course of operation. This first phase ensures that
the item meets its stated goals. Once the “normal” course of action is completed, it
is time to throw obstacles in the course of execution so that the team must stagger
through what they just verified was correct. The stagger through phase examines
error cases and “what if” scenarios. The division of labor - first focusing and
algorithmic correctness and then looking at error handling and other situations -
allows the team to stay focused, review each item with more or less the same
thoroughness and does not waste team time fully inspecting an item which does not
meet the basic goals. The paper details the team composition, process and
scheduling details that a team lead must consider when implementing this
approach.

A case study is presented for a project from Partes Corporation involving an
Internet based data store and desktop machine analysis. The team, on the whole,
was inexperienced in producing production quality code. The walk / stagger
through process extended the design phase to probably twice the length that other

teams would declare design complete. However, the coding and testing phases
progressed much faster than expected more than offsetting the time spent in design.

About the Author

Michael Ensminger is Director of Quality Assurance at PAR3 Communications
based in Seattle, WA. Prior experience (both management and practitioner of test
and development teams) includes Internet, shrink-wrap and niche retail banking
software. He holds a M.S. in Computer Science from University of Texas at
Dallas.

1

Walk and Stagger Through
Review Process

Michael Ensminger
mensming@ieee.org

PAR3 Communications

© Copyright 2001 Michael Ensminger. All Rights Reserved.

Traditional Review
Methodologies

• Desk Check
• Walkthrough
• Informal Review
• Formal Review
• Fagan Style Inspections

2

© Copyright 2001 Michael Ensminger. All Rights Reserved.

Challenges to Introducing
Reviews to an Inexperienced

Team
• Background knowledge of the team
• What are the responsibilities of the

individual team members?
• When is the review done?
• What was the quality level of the review?

© Copyright 2001 Michael Ensminger. All Rights Reserved.

Walk Through Defined

The systematic review of a use case, design,
code, etc. as the final system will execute it
with a focus on the "normal" -- that is, non-
error -- processing.

3

© Copyright 2001 Michael Ensminger. All Rights Reserved.

Stagger Through Defined

The systematic review of a use case, design,
code, etc. as the final system will execute it
with a focus on the "non-normal" -- that is
error and uncommon execution paths --
processing.

© Copyright 2001 Michael Ensminger. All Rights Reserved.

Walk Through Process

1. Determine Focus and Scope
2. Select Review Team
3. Pre-Read
4. Review Meeting
5. Record Issues
6. Make Changes
7. Follow-up Before Stagger Through

4

© Copyright 2001 Michael Ensminger. All Rights Reserved.

Stagger Through Process

1. Prepare for Stagger Through Meeting
2. Review Meeting
3. Record Issues
4. Determine Next Steps
5. Make Changes

© Copyright 2001 Michael Ensminger. All Rights Reserved.

Case Study: Partes Corporation

• The Product
• The Team
• The Initial Schedule
• The Review Process
• Schedule Impact

5

© Copyright 2001 Michael Ensminger. All Rights Reserved.

Questions?

• Contact Information:
Email: mensming@ieee.org

 Page 1 of 10

Walk and Stagger Through Review Process
Michael Ensminger

PAR3 Communications
(Email: mensming@ieee.org)

Abstract
 Presents a two-phase review methodology. The first phase, the walk through, concentrates
on the logical correctness of the functionality covered in the review item. The second phase, the
stagger through, concentrates on error handling and unexpected flows through the review item.
The method is particularly suited to teams without a lot of development experience. A case study
from an internet company is described at the end of the paper.

Introduction
 The use of peer reviews, walkthroughs and inspections as a cost-effective method of
achieving higher quality software is well documented. [MYER79, BOEH87] These techniques are
not widely used in many organizations, especially those who say they are operating in "internet
time". I have used a modified, two-phase walkthrough process at two different internet startups.
This process has allowed the team to achieve high-quality deliverables in "internet time" while
other teams in the same environment were struggling with quality and schedule pressure.
 The traditional definitions of walkthroughs and inspections are presented here for reference:

• Walkthrough – Loosely defined term where two or more team members review an item for
the purpose of finding issues and improve the quality. (As opposed to trying to solve a
known issue.) Usually, the author of the item leads the group through it in a lecture format.
[MCCO96, FREE90]

• Inspections – Formal method of reviewing initially developed at IBM by Michael Fagan. In
an inspection, each team member has a formal role such as moderator, scribe, etc. Usually,
the focus of the inspection is narrowly focused to only one or two aspects. [FREE90]

The advantages and disadvantages of these methods have been studied thoroughly.
 A small team may find it difficult to follow the rigor that an inspection requires. The
leniency provided by the walkthrough may not provide the expected results. The following method
works well with small teams, especially those with less professional experience. Non-development
personnel may also fully participate in the process.

Walk Through and Stagger Through
In this paper, I present a two-phase review process. Phase 1 is labeled the walk through --

but differs from the traditional use of the term. Phase 2 is the stagger through -- to indicate that
obstacles will be placed in the way and the team must stagger around them.

 Page 2 of 10

Phase 1: The Walk Through
The first phase, the walk through, is the systematic review of a use case, design, code, etc.

as the final system will execute it with a focus on the "normal" -- that is, non-error -- processing.
The walk through can be applied to any software artifact. The key is focusing on tracing through
the artifact in the same order as will occur in the final system. Also, "normal" processing may
include (and probably should) some common error cases. For example, a file not found error
during a file open command is fairly common. How the system handles this condition should be
examined in the walk through phase.

Overall the walk through process is as follows:
1. Select the focus of the walk and stagger through and determine the scope.
2. Determine the review team and any special assignments.
3. Pre-read.
4. During the actual walk through, trace through the logical flow of the artifact concentrating

on normal processing.
5. Record any issues in the item(s) being reviewed. Note items that may be issues in items not

covered in the current scope.
6. Give the team time to make corrections based on the discovered issues.
7. Follow-up before the stagger through.

Determine Focus and Scope
 The focus and the scope of the walk and stagger through depend on many factors including
time available for review, review item availability, item risk, etc. For a pilot program, a small
items which can be covered in an hour or less should be selected. In no case, should an item be
selected that cannot be covered in less than two hours.
 For a small project, it is possible to follow the system from startup until termination. For
most projects, this is unreasonable. Picking a unit whose invocation is well defined is a good
starting point. This could be a feature, subfeature, method, routine, etc. When dividing up items
for review, keep an eye out for items that do not lend themselves to this kind of examination. This
may be the first sign of an issue for the item.
 Multi-threading presents its own share of problems. Initially, examine thread execution in
isolation. Then, expand the scope to include thread cooperation, concurrency issues, possible race
conditions, other timing problems, etc.

Review Team and Special Assignments
 The author of the item under review is one of the main participants. They will respond to
many questions like "what will happen when..." or "where did this data come from?" Note that the
role of the author differs from the traditional role of the author in a walkthrough. Instead of
presenting the item in lecture style, the author is responding to questions from the team. When
possible, the authors of items that will interact with the item under review will also be present.
They should be especially aware of interface / integration issues as well as how errors will
propagate through the system. A moderator should direct the session. The moderator will play the
role of the users, the operating system, the data, etc. If the item under review contains a technology
that is new or something that has been problematic in the past, one of the attendees should focus on
that area. Quality assurance and test personnel can "virtually" execute the suite of test cases in this

 Page 3 of 10

environment. Operations personnel can determine the environmental needs of the system.
Marketing can get a feel for various aspects of the final product and use that to craft their message.
Junior personnel will gain knowledge of the system and the issues that must be addressed in a
professional level deliverable. Management may also benefit by understanding the complexity that
underlies seemingly simple functionality.

Pre-Read
 Everyone's time will be better spent when all have done their homework. The pre-read is
essential to the success of the walk through and stagger through. All participants should "actively"
read the review material. By "actively", I mean reading with pen in hand and noting issues,
questions and "gotcha" situations. The moderator should decide on the "flow" of the walk through,
determining the starting point, order to take branches, which items to treat as black boxes, which
items to descend into detail, etc. Other members of the team must achieve a general understanding
of the item and drilling deeper based on their role.
 It may be beneficial to submit issues and questions in advance. Especially if there is a large
number, it will be time better spent for all to resolve these issues beforehand. Usually, the author
and the moderator can determine whether revision should occur before continuing with the process.

Review Meeting
 Once at the review meeting, the moderator instructs the author where in the material to
being - usually at some point that results from an operating system event or user action. The author
then leads the group through the logical flow from that point. All participants should be insuring
the logical correctness and making notes
of what could go bad when not taking the
non-error path. Whenever a piece of data
is accessed, it should be clear where the
data comes from. When the author has a
choice to branch through the code, the
moderator will decide which direction the
review should follow.
 When another function / method /
unit is called or referenced, the moderator
must decide whether to treat it as a black
box or to drilldown into the details. This
decision should not be treated lightly.
Drilldown will require time and effort.
The team will need to know whether to
prepare for drilling down into material that
may not be apparent as the subject of the
review. Treating the item as a black box
may result in issues not being discovered.
My rules of thumb are:

Coverage Criteria

There are varying levels of coverage. Which is used
depends on the risk level and the time available.
- Statement coverage - each item is reviewed at least once
- Branch coverage - For each possible branch, traverse each

path
- Predicate coverage - Consider all possible combinations of

true / false values in a logical function.
- Handling loops - Try to skip the loop, execute once, twice,

a typical number and the maximum number of times.
Stricter levels of coverage are available. See the

references below for more information. [BEIZ90, BEIZ95,
KANE99]

Coverage and Various Design Artifacts

Applying the above criteria is easily applied during
design and code reviews. It is more difficult for other software
development artifacts. For those documents written in a
natural language, the criteria can be used as guidelines when
the following are encountered:

• The words 'and' and 'or' are encountered in the
document

• Statement containing the word 'if' or 'while'
• Statement contain the words 'for each' or 'every'
• Any item that contains an alternate way to accomplish

an action

 Page 4 of 10

• If the item is in the scope of the review and has not been reviewed before, drilldown.
• If the item is out of the scope of the review and has been reviewed in a prior review, treat it

as a black box. If it appears that the current input types were not covered in the previous
review, a mini-review to drilldown in this area will need to be scheduled.

• If the item is out of the scope of the review and has not been reviewed, treat it as a black
box. Pay close attention to the interfaces. Note the inputs and outputs that the current
review item expects. During the review of this item, pull out the notes from the current
review to insure that the item behaves as expected.

 Many times it will be necessary to review an item several times. This is due to the fact that
we are taking one logical path through the item. We will need to retrace our steps to take other
logical branches through the item. Use general coverage criteria (see sidebar above) to decide
which branch to take, focusing on the "normal" path.

Other activities may also be taking place during the review meeting. A traceability analysis
is readily undertaken when one team member is marking which upstream item is covered during
the current review item. Technical writing staff may be reviewing their documentation covering
the material in the review, making notes as to items not covered or misrepresented. The creation of
test cases, online help, error documentation, etc. is aided by identifying key areas brought to the
surface early in the development cycle during the review. Just as important as what is reviewed is
what isn’t. If a portion of the review item is never “executed” this may indicate unnecessary
functionality, “dead” code, or an error (the item really should have been covered…).

All participants should question the assumptions of the item currently being "executed" in
the review. They should actively participate by asking questions that were developed during the
pre-read or have just occurred to them. When appropriate, any issues should be raised. However,
this is not the time to raise the "gotcha" issues -- save these for the stagger through.

Record Issues / Make Changes
A successful walk through will identify numerous issues. There should be a recorder in the

review meeting. In some peer review methodologies, it is suggested that there be a scribe to record
the issues who is not actively reviewing the material. While this allows all actively reviewing team
members to concentrate on the material being reviewed (and not busy recording the issues), I
believe that something is lost. Writing down the issue helps to solidify it in the mind of the writer.
If the issue is unclear, the recorder can raise it at that time. If the recorder is an impartial scribe,
they may miss the nuances of the issue. Therefore, I believe the author of the item should be
responsible for recording the issues with the review item. The author’s notes should be readily
visible to the entire team. All other team members should take copious notes to keep everyone
honest and to resolve ambiguities later on. Each team member will also use these notes during the
stagger through meeting.

After the meeting, everyone who had issues identified in their work should start working on
corrections before the stagger through meeting. This "updated" work will be used as the basis of
the stagger through. This allows the changes to be reviewed by the team and see what implications
arise from the changes made. Even those who did not have items identified in their deliverables
may need to make updates. The review should be personally successful to them if issues identified
in the review item shed light on potential issues in their own work.

Sufficient time should be given to make the necessary changes. However, too much time
between the walk through and the stagger through meetings reduce the effectiveness of the process.

 Page 5 of 10

Therefore, the schedule should be aggressive to get the changes in. If the changes are so extensive
that they cannot be made in a day or two, it may indicate that a new walk through is needed before
the stagger through.

Follow-up before the Stagger Through
Preparation for the stagger through is similar to the preparation for the walk through review

meeting. However, since the scope and the team are already selected, the preparation concentrates
on the pre-read. Before the revised documents are available, the team members should review their
notes and the original documents to identify items they want to clarify in the stagger through. Once
the revised documents are available, the updated items should be pre-read again, focusing on the
changes.

Since the focus of the stagger through are error and non-normal paths through the review
item, the team members should allow their more sinister side to show. At this point, team members
should identify those circumstances where the review item may break. [SHUL00] These "gotchas"
will flesh out the stagger through.

Phase 2: The Stagger Through
The second phase, the stagger through, is the systematic review of a use case, design, code,

etc. as the final system will execute it with a focus on the "non-normal" -- that is error and
uncommon execution paths -- processing. The stagger through process is very similar to the
process used in the walk through -- only the focus has shifted. In general, the following occurs.

1. Prepare for the Stagger Through (pre-read, review changes, create "gotchas")
2. Stagger through review meeting
3. Record issues
4. Determine next steps
5. Make changes, etc.

Preparation for the Stagger Through
After the walk through, the team begins to prepare for the stagger through as detailed in the

section "Follow-up before the Stagger Through". There may be some additional preparation
beyond the pre-read. During the walk through it may have become apparent that the review team
did not have all of the knowledge necessary to perform an adequate review. In this case, the
moderator may wish to expand the team. The new member(s) will need to come up to speed on the
review items and what occurred in the walk through.

During the walk through, questions may be raised about items peripheral to the review that
cannot be answered within the team. All effort should be made to find these answers before the
review meeting. This will allow the team to have all of the knowledge needed to make the review
effective. It also lets each team member know their input is important and will be followed up on.

Finally, the moderator should follow up with each team member and see if anyone has any
suggestions on how to improve the next phase. Many times, it will be a suggestion not to spend as
much time in one section. It is a judgment call whether to heed this suggestion. As always, the
moderator must determine whether the change will allow the team to effectively find additional

 Page 6 of 10

issues. The moderator should follow up on all suggestions and publicize any changes before the
stagger through review meeting.

Stagger Through Review Meeting
The stagger through meeting follows the logical control flow through the review item as

was done during the walk through. Normal processing which has not changed since the walk
through can be covered quickly. It should not be skipped entirely since team members may have
discovered new issues with understanding they gained during and after the walk through review
meeting. Normal processing that has changed since the walk through session should be reviewed
more thoroughly.

The effectiveness of the stagger through lies in the change of focus. Hopefully, the entire
team is satisfied that the item under review "works". (If this is not the case, perhaps the walk
through or the changes requested were not detailed enough. The moderator must take care of this
situation, perhaps be convening a new walk through before the stagger through may continue.) The
team now shifts to trying to "break" this review item that they are convinced "works" by
concentrating on the non-normal control flow through the review item. Each team member has
prepared a list of "gotchas" to spring on the review item at the appropriate time.

The first few errors will usually take longer to work through than subsequent ones. During
the first few errors, the team will be examining the error handling philosophy and how well it deals
with fatal, severe, routine and trivial errors. Care should be taken to examine error propagation and
following the error to the response to the user. Once the team is satisfied with the general error
handling philosophy, the team can determine whether the error will be handled (by the generic error
mechanism or by some special case logic) and whether this behavior is appropriate. So what kind
of errors should be examined? Here are a few:

Data
- Nonsensical user inputs
- Corrupt input files
- Database or file system errors
- Boundary cases
- Duplicated data (in unique situations)

Runtime Issues
- Failed system function calls
- Out of memory
- Out of disk space
- Multi-threading issues - lock and race conditions
- Recursion issues
- Services not available

Security
- User or system has inadequate permissions
- System under attack

 Page 7 of 10

Date Related
(Many business systems perform special processing based on the time of the year)
- First day of the year
- Last day of the year
- Last day of a leap year
- Leap day
- First day of the month
- Last day of the month
- First day of the quarter
- Last day of the quarter
- Transition to daylight savings time
- Transition to standard time

Interface Related
- Interface not available
- Interface returns an error
- Interface fails to return or timeouts

Infrastructure Related
- Network down
- Site down or unreachable
- Firewall / Proxy server issues
- Device offline or unreachable
- Normal maintenance activities

These are just a few of the types of errors that can be examined during a stagger through that are
often missed during other types of reviews.

Record Issues
The record issues step is identical to the same step in the walk through process. If the walk

through / stagger through is to be considered a formal review, a report to management will need to
be created.

Determine Next Steps
The moderator and the team must decide what the next steps should be for the review items.

If the stagger through identifies substantial issues that must be addressed, a new walk through /
stagger through process will need to be scheduled. If the issues identified are more local in scope,
another stagger through review meeting may be scheduled. If all of the issues are determined to be
minor, another review session is probably not necessary. It is recommended that at least one team
member read through the revised review item to make sure that all of the issues are adequately
addressed.

 Page 8 of 10

Make Changes
The output of the stagger through will be a list of issues that need to be resolved. The

author of the review item will need to address these issues in his deliverable. Even more so than
the walk through, team members should have a list of items that need to be addressed in their own,
yet-to-be-reviewed deliverables. Especially early in the development phase when many items have
not been reviewed, stagger throughs will identify deficiencies in error handling and propagation.
Consistency issues in how these items are dealt with will need to be addressed.

Case Study: Partes Corporate
The most successful implementation I have seen of this process was several years ago at

Partes Corporation. Partes Corporation (since acquired by EDGAR Online) created software to
enable the retrieval and analysis of SEC filing data in many different formats. I was recruited into
the company as manager of quality. Besides the CTO and myself, most of the development team
members had less than a year of professional development experience. The product was an internet
enabled add-in to Excel to allow users to retrieve parsed SEC data from the Partes web accessible
datastore and perform various analyses on the downloaded data.

A spiral development lifecycle was used with at least three iterations planned. The first
iteration was to enable the selection and downloading of files into an Excel workbook. The
subsequent iterations would add basic time series analysis functionality followed by more complex
analysis. For the first cycle, the development plan called for about a third of the time spent in
design, third in implementation and a third in testing. All of the staff had the theoretical knowledge
to perform these tasks but perhaps not the practical experience to pull it off. We decided to reduce
the risk by using the walk through / stagger through process on all design artifacts. The plan was to
walk through the design in the same order as execution. For the first iteration, we decided on
following logical flow through the application: Launch the Excel add-in, select a company,
download some filings, save the Excel workbook and the load a saved analysis.

The first session involved explaining the process and starting with the initialization of the
add-in. This particular session did not last long as the team had left out the mundane details of
initialization. The existing design jumped right into the details of the functionality. The team’s
expectation of what was needed was reset and they were given a couple of days to make
corrections. Once we got past the initialization review (which we would return to time and time
again each time a data element was first referenced) the fun began.

In the session where we were tracing the flow of selecting a company we decided to
drilldown to every element. This required many developers to be ready to have their items
reviewed. The process of loading the company search dialog and constructing the request to the
datastore took two sessions. Many interface issues were discovered along with some missing
functionality. All in all, the walk through portion of selecting a company took nearly eight times
longer than we expected. The team felt a large sense of accomplishment after completing the walk
through and had a much better idea of what was required for professional application. After
making the necessary corrections identified in the walk through, we were ready to start the stagger
through.

Soon after introducing the first "non-normal" processing condition, it was apparent to all
that a large portion of the design was missing. What error handling that was designed did not take
into account the need to propagate the error up the calling chain (and eventually to the user

 Page 9 of 10

interface). There was also no clear agreement among the team which errors were fatal and which
were recoverable. The team requested a week to rework the error handling strategy for the product
and integrate it into the design. When the reviews reconvened, the increase in the quality of the
design was immediately evident. What had not been taken into account was the shear number of
things that could go wrong in the application. All developers were seen immediately expanding
their design to take into account new classes of errors that were exposed in the review meeting.

This process continued through the logical flow. We would often revisit reviewed items as
questions arose. Sometimes these would result in revisions to the previously reviewed items. This
was especially true of the initialization routine. The design process ended up taking nearly twice as
long as we expected. The schedule had been adjusted using the same proportions mentioned above.
We extended coding and testing by about twice as long. To our surprise, coding went incredibly
fast. This was due primarily to the fact that most on the incongruities that would become apparent
in coding has already been discussed and resolved during the review meeting. Testing went
smoothly. There were few integration issues. Most of the changes introduced during testing were
related to usability or special circumstances arising from the SEC data. In subsequent projects with
this team, we did not drilldown to the same level of detail. This was due to the increase in
experience. We did get burned a few times and wished we had gone into more detail.

Conclusion
 The walk through / stagger through review methodology can be effectively used to verify
the correctness and completeness of a development artifact. It is especially useful for teams with
little development experience, experience in a technology or experience working together. The
segregation between algorithmic correctness and error handling allows the team to focus on one at
the exclusion of the other. This results in a more thorough review then trying to concentrate on
both at the same time. Traditional review techniques can be supplemented with this approach
based on team experience and risk analysis.

References

BEIZ90 Beizer, Boris. Software Testing Techniques, 2nd Edition. New York: Van Nostrand

Reihnold, 1990.

BEIZ95 Beizer, Boris. Black-Box Testing, New York: John Wiley & Sons, Inc., 1995.

BOEH87 Boehm, Barry. “Industrial Software Metrics Top 10 List.” IEEE Software. (v4, n9,

September 1987), pp. 84-85.

FREE90 Freedman, Daniel P., and Weinberg, Gerald M. Handbook of Walkthroughs,

Inspections, and Technical Reviews. New York: Dorset House Publishing Co. Inc.,
1990.

KANE99 Kaner, Cem, Falk, Jack, and Nguyen, Hung Quoc. Testing Computer Software, 2nd

Edition. New York: Jogn Wiley & Sons, Inc. 1999.

 Page 10 of 10

MCCO96 McConnell, Steve. Rapid Development. Redmond, WA: Microsoft Press, 1996.

MYER79 Myers, Glenford J. The Art of Software Testing. New York: John Wiley & Sons,

1979.

SHUL00 Shull, Forrest, Rus, Ioana, and Basili, Victor. “How Perspective Based Reading Can

Improve Requirements Inspections.” IEEE Computer. (v33, n7, July 2000), pp. 73-
79.

About the Author
Michael Ensminger is Director of Quality Assurance at PAR3 Communications based in

Seattle, WA. Prior experience (both management and practitioner of test and development teams)
includes Internet, shrink-wrap and niche retail banking software. He holds a M.S. in Computer
Science from University of Texas at Dallas.

© Copyright 2001 Michael Ensminger. All Rights Reserved.

QW2001
Paper 7M2

Prof. Warren
Harrison, Dr. David
Raffo & Dr. John

Settle
(Portland State

University)

Process
Improvement As A
Capital Investment

Key Points

Economics of Process Improvement●

Making the Business Case●

Return on Investment●

Presentation Abstract

Firms invest in process improvements in order to benefit from increased
productivity sometime in the future. However, there are a large number of alternate
investment opportunities, while at the same time, the available budget is often
constrained. To make things even more complicated, each alternative may result in
different cost savings or income over different periods of time with different levels
of risk. Thus, we're faced with the question: "in which opportunity should we
invest?" We present a well-accepted method of budgeting for capital expenditures
from the financial community, and apply it to software process improvements.

About the Author

Warren Harrison is Professor of Computer Science at Portland State University.
His research interests include both software engineering and internet technologies.
Professor Harrison's software engineering research includes return on investment
for process improvements, software quality assurance, software measurement, and
empirical studies of software engineering. He is an active member of the software
engineering research community, serving as Editor-in-Chief of the Software
Quality Journal and co-EIC with Vic Basili and Lionel Briand of Empirical
Software Engineering, as well as being involved with the organizing committees of
numerous international conferences and workshops each year. His PhD is from
Oregon State University.

Dr. Raffo completed his Ph.D. at Carnegie Mellon University in 1995. His research
involves developing a theoretical framework and associated quantitative

techniques to predict the impact of potential process changes on cost, project
schedule, and software quality. These concepts and theories have been field tested
at leading software development organizations.

John W. Settle has a B.A. from Pomona College and a B.S., M.B.A. and Ph.D.
from University of Washington. He is also a Chartered Financial Analyst (CFA).
Dr. Settle teaches corporate finance, investments and portfolio management. He
has done research in the areas of mergers and valuation issues. His current research
interests are in investor psychology, market returns, and applied corporate financial
concepts.

1

Copyright (c) 2000-2001 Warren Harrison 1

Process Improvement as a
Capital Investment

Process Improvement as a
Capital Investment

Warren Harrison
David Raffo
John Settle

Portland State University

Quality Week 2001
May 29-June 1, 2001

Copyright (c) 2000-2001 Warren Harrison 2

Process ImprovementProcess Improvement

➨ Productivity Gains
➨ Reduced Rework
➨ Constrained Resources

➨ Limited pool of resources for process improvement
➨ Can’t afford to do everything
➨ Compare options and make decisions to get the

“biggest bang for the buck”
➨ “Invest Wisely

2

Copyright (c) 2000-2001 Warren Harrison 3

The Value
of an Investment

The Value
of an Investment

➨ Returns - how much do you get back?
➨ Increased productivity, reduced Rework

➨ Timing - when do you get it back?
➨ During development? At release? During production?

➨ Risk - how likely is it that you really will get
it back?
➨ Uncertain benefits. Lack of data.

➨ Use discounted cash flow techniques to
normalize timing and risk

Copyright (c) 2000-2001 Warren Harrison 4

Discounted Cash Flow
Techniques

Discounted Cash Flow
Techniques

➨ A design inspection procedure will save 500
hours in rework effort 12 months in the future

➨ How many of “today’s hours” are those 500
hours one year in the future worth if our
discount factor is 1% per month?

444=
+

=
+

= 12n 0.01)(1
500

k)(1
returnPV

3

Copyright (c) 2000-2001 Warren Harrison 5

What Do We
Really Know?
What Do We

Really Know?
➨ Can’t know for certain that a formal

inspection will find 70% of the defects or
rework cost will be 25 hours per defect

➨ The present value analysis would change
greatly if post-release defects really only
cost 2X instead of 100X to fix …

➨ The returns from process improvements are
risky

Copyright (c) 2000-2001 Warren Harrison 6

Financial Risk and
Process Improvement

Financial Risk and
Process Improvement

➨ Financial Risk - volatility of the return - how
much is the return likely to vary from your
prediction?

➨ If the outcome of a process improvement is
uncertain, it is less desirable than a process
improvement where the outcome is known

➨ Herbsleb observed productivity gains from
9% to 67% with a median of 35%.

4

Copyright (c) 2000-2001 Warren Harrison 7

Including Risk in the
Discount Rate

Including Risk in the
Discount Rate

➨ Effective Discount Rate:

k = rf + φ

➨rf - risk free rate
➨φ - risk premium

➨ The risk premium adjusts the required return
for the volatility of expected returns

Copyright (c) 2000-2001 Warren Harrison 8

Reuse and Financial RiskReuse and Financial Risk

Components
Reused

Probability Return in
Two Years

0 5% 0
10 10% $25,000
20 70% $50,000
30 10% $75,000
40 5% $100,000

Expected
Return

$19,462 (σσσσ)
0.39 (cv)

$50,000

5

Copyright (c) 2000-2001 Warren Harrison 9

Financial Risk of an
Alternative - CASE Tools

Financial Risk of an
Alternative - CASE Tools

Utilization Probability Return in
One Year

None at All 10% 0
Modest 15% $25,000

Moderate 50% $50,000
Heavy 15% $75,000

Exclusive 10% $100,000
Expected
Return

$26,352 (σσσσ)
0.52 (cv)

$50,000

Copyright (c) 2000-2001 Warren Harrison 10

Relative Risk Between
Options

Relative Risk Between
Options

➨ The relative risk between two alternative
projects can be approximated by the ratio
of the coefficients of variation:

➨Riskreuse = 0.39
➨Riskcase = 0.52

➨λreuse = Riskreuse / Riskcase = 75%

6

Copyright (c) 2000-2001 Warren Harrison 11

Why is One Option Riskier
than Another?

Why is One Option Riskier
than Another?

➨ Financial Risk is the property of the outcome
differing from what you expected

➨ A given process improvement may be more
risky just because it is

➨ … but it may just be because we don’t have
very much information to go on … additional
information may lead to less financial risk

Copyright (c) 2000-2001 Warren Harrison 12

Reference
Risk Premiums

Reference
Risk Premiums

➨ Organizations may differ in how much
return they want for a given amount of risk

➨ Establish a baseline project that reflects the
price of risk for your organization - provides
a “reference risk premium” for a given
amount of risk - adjust for other projects

➨ Relative Risks are expressed as a
percentage of the reference risk premium

7

Copyright (c) 2000-2001 Warren Harrison 13

Deriving a Discount RateDeriving a Discount Rate

➨ The relative risk between a proposed
project and the baseline project is
determined and a specific risk premium
established:

➨φoption = λoption * φbaseline

Copyright (c) 2000-2001 Warren Harrison 14

Computing Project Value
Given a Baseline Project

Computing Project Value
Given a Baseline Project

➨ Let the CASE Tool initiative represent the
reference risk premium, and set it’s premium
at 20%

➨ Compute the value of the reuse initiative

PVreuse = 50,000/(1+rf+φreuse*λreuse)
= 50,000/(1+0.05+0.20*0.75)2

= $34,722

8

Copyright (c) 2000-2001 Warren Harrison 15

Important CapabilitiesImportant Capabilities

➨ In Order to do Risk-Adjusted Discounting
you need to be able to:
➨predict the expected returns
➨predict the timing of the expected returns
➨assess the variability involved in the

expected returns
➨establish a reference risk premium

Copyright (c) 2000-2001 Warren Harrison 16

Using NPV
in Valuing Information

Using NPV
in Valuing Information

➨ Some process improvements are inherently
risky

➨ Some process improvements appear risky
because we don’t have any data

➨ We can use the change in Net Present Value
between a project with and without data to
assign value to the data

9

Copyright (c) 2000-2001 Warren Harrison 17

Future
Work

Future
Work

➨ the Value of Mitigating Financial Risk with
Better Information

➨ The “cost of capital” for software process
improvements

➨ The utility of “resources” - how to trade-off
hours against releasing on time or safe
operation

Copyright 2001 by Warren Harrison, David Raffo and John Settle All Rights Reserved

Process Improvement as a Capital Investment: Risks
and Deferred Paybacks

Warren Harrison*

David Raffo†

John Settle‡

Portland State University

Abstract

Firms invest in process improvements in order to benefit from decreased
costs and/or increased productivity sometime in the future. However, there
are a large number of alternate improvements available, each of which
may yield different levels of cost savings. To make things even more
complicated, different alternatives may result in different savings over
different periods of time with different levels of risk. Thus, we're faced
with the question: "in which opportunity should we invest?" We present a
well-accepted method of budgeting for capital expenditures from the
financial community, and apply it to software process improvements.

Introduction

The motivation for process improvements is typically reduced cost and/or increased
productivity. For instance, early prevention of defects reduces the cost of rework later in
the lifecycle and the practice of reuse improves productivity [Basili,1994; Dion,1993;
Lipke,1992; McGarry,1993; Wohlwend,1993]. Of course, both the costs and returns of
any particular process improvement can vary greatly. The costs of software process
improvement have been reported to range between $490 and $8,862 per engineer, per
year, with productivity gains ranging from 9% to 67% [Herbsleb,1994; Jones,1996]. The
assumption is that the returns will outweigh the costs of implementing the process
improvement.

Many different process improvements have been proposed. However, many organizations
can only afford (or only choose) to implement one or two options at a time. Therefore, it
is important to be able to evaluate and compare different alternatives. The analysis and
comparison of projects is known as Capital Budgeting. Most contemporary Capital
Budgeting techniques utilize the concept of the “Time Value of Money”. This has been
addressed in various aspects of software engineering in the past, such as quality assurance
[Slaughter 98] and software maintenance [Vienneau 95]. Perhaps the most common
technique is referred to as Present Value (PV). Briefly, the idea of Present Value
analysis involves “discounting” a future cash flow at some discount rate, resulting in the
expected value of in today’s dollars.

* Department of Computer Science, Portland State University, Portland, OR 97207-0751
† School of Business, Portland State University, Portland, OR 97207-0751
‡ School of Business, Portland State University, Portland, OR 97207-0751

Copyright 2001 by Warren Harrison, David Raffo and John Settle All Rights Reserved

Assessing Value Using Discounted Cash Flow

To illustrate, assume a hypothetical reuse initiative from which we expect to receive
$50,000 in benefits due to increased productivity two years later when the reusable
components are actually utilized. Applying a 10% discount rate to the benefits expected
to accrue two years in the future, we obtain the following present value (PV):

PV = PV2,10%(50,000)
= $41,322

This represents the current value of introducing reuse given $50,000 in increased
productivity two years in the future (this is somewhat unrealistic since the yield from
reuse would ostensibly accrue over many years).

Adjusting the value of the effort by the amount of time necessary to start seeing a return
from our investment is useful. If we wish to compare the reuse initiative with another
opportunity with a different pattern of returns, this gives us a means by which we can
compare the two. For instance, instead of a reuse initiative, we might choose to acquire a
CASE tool that yields $50,000 in increased productivity after only a year:

PV = PV1,10%(50,000)
= $45,455

Thus, the present value of the CASE tool adoption is $45,455 as compared to a present
value of $41,322 for the reuse initiative. Given these hypothetical figures, the CASE tool
would be the preferred investment of the two.

Financial Risk and Discounting

Addressing the issue of future returns is only a part of discounting returns. The cost of
capital reflected in the discount rate also typically incorporates the impact of “risk” on the
value of a specific investment. For instance, in the earlier example, if the CASE tool
investment only had a 50% chance of yielding $100,000 in increased productivity, but the
reuse option was a sure thing we would expect the analysis to be different. This is
because the discount rate should actually reflect the return expected from an investment
of a particular risk. This way, the discount rate that would be used in the analysis of a
very risky investment will typically be much higher than a “sure thing”.

Discount rates are comprised of a base, “risk-free” rate which reflects the value of money
to be received in the future with certainty, and a “risk premium” reflecting the uncertainty
of the future pay-off. The more variable the return, the more risky the investment, the
higher the risk premium and thus, the greater the discount rate.

In the case of software process improvement, the risk derives from the fact that the
benefits of process improvement are not a “sure thing”. The improvements may not be

Copyright 2001 by Warren Harrison, David Raffo and John Settle All Rights Reserved

well-accepted by the developers, or if accepted, they may not be implemented correctly.
Even if well-accepted and implemented appropriately, the project may not respond to a
given process improvement due to a lack of opportunity. For instance, there may be few
latent requirement errors to find, so a requirements review process itself may yield little
improvement over not reviewing the requirements at all.

Risk means not only the risk of not having a positive return, but also the uncertainty in
terms of how much of a return we will get. Herbsleb [Herbsleb,1994] observed
productivity gains from software process improvement ranging from 9% to 67% with a
median gain of 35%. Clearly, this is riskier than some other investment that yields a
future return with certainty. Risk is addressed within Present Value Analysis, by using a
discount rate k, which is related to the uncertainty of the project:

k = rf + φ

that is, the risk-free rate of return rf (say the rate of return on Treasury Bills, currently
about 5%), plus a risk premium φ, which is a function of the variability of the return.

Naturally, an important issue is how one measures the “variability of the return”. In order
to do this, we have to recognize that it is possible for different scenarios to occur in the
future which impact the return of the process improvement. Also, we assume that we can,
with some degree of accuracy, predict the likelihood of these scenarios occurring.

Given the hypothetical reuse initiative we have (somehow) determined that each instance
of reuse is worth $2,500 (annualized) in increased productivity. We believe that there is:

• a 5% chance that none of the components will be reused,
• a 10% chance that 10 of the components will be reused,
• a 70% chance that 20 of the components will be reused,
• a 10% chance that 30 of the components will be reused and
• a 5% chance that 40 of the components will be reused.

based on data from other organizations. This is summarized as follows:

Components
Reused

Probability Return

0 5% 0
10 10% 25,000
20 70% 50,000
30 10% 75,000
40 5% 100,000

Table 1

The “expected return” is computed as the sum of each potential return multiplied by the
probability of its occurrence. Thus, the expected return for this scenario is $50,000, with
a standard deviation of $19,462. The coefficient of variation (standard deviation divided

Copyright 2001 by Warren Harrison, David Raffo and John Settle All Rights Reserved

by the expected value), 0.39, can be viewed as a measure of the volatility of the return.
This information can be considered a relative measure of the risk, Riskreuse that would
yield a risk-based discount rate kreuse.

On the other hand, consider adopting a CASE tool. Assuming that the return from the
tool is a function of its adoption by the developers, we might hypothesize the following
cases, annualized returns, and probabilities of their occurrence:

Utilization Probability Return
None at All 10% 0
Modest 15% 25,000
Moderate 50% 50,000
Heavy 15% 75,000
Exclusive 10% 100,000

Table 2

The “expected return” is still $50,000, however the uncertainty of the outcome has been
increased, with the new standard deviation being $26,352, for a coefficient of variation of
0.52, which implies this is a much riskier project.

Thus:

Riskreuse = 0.39
Riskcase = 0.52

and

λreuse. = Riskreuse / Riskcase = 75%

The parameter λreuse implies that the reuse initiative is approximately 75% as risky as the
CASE tool purchase. Consequently, the risk premium for the reuse initiative’s discount
rate should be 75% of the risk premium for the CASE tool purchase’s discount rate.

Given a risk-free rate of 5%, a 20% risk premium for the CASE Tool purchase and a one
year payoff for both, the PV of the two proposed process improvements can give us some
direction in selecting between the two. Because the reuse initiative is 75% as risky as the
CASE Tool purchase a 15% risk premium will be assigned. With these assumptions, we
compute the following PV:

PVreuse = 50,000 / [1+ 0.05 + 0.15] 1
= $41,666

and

PVcase = 50,000 / [1+ 0.05 + 0.20] 1
= $40,000

Copyright 2001 by Warren Harrison, David Raffo and John Settle All Rights Reserved

Using these assumptions, the reuse initiative would be the preferred option.

A serious issue is the base “risk premium” that we glibly “assumed” was 20% for the
reference project. If we are simply interested in ranking options with similar return
patterns, the specific base risk premium is of less importance. However, if the timing of
the returns vary, or if we’re trying to establish if the process improvement actually
sustains the cost of capital to the organization, this must be established with more care.

Necessary Capabilities

In order to use a contemporary Capital Budgeting approach to compare process
improvement opportunities, four capabilities must be present:

1. the ability to predict the expected return of the process improvement,
2. the ability to predict the timing of the expected returns,
3. the ability to quantitatively assess the “risk” involved in the process improvement

returns,
4. the ability to establish a reference risk premium (or, equivalently, a reference cost of

capital) for the firm's "typical" or reference project.

While more exhaustive treatments of each of these are beyond the scope of this paper, we
will briefly address these capabilities here.

Predicting Returns and Timing

Predicting the returns and their timing can be more difficult than predicting the costs.
Nevertheless, there is no dearth of attempts at assessing the benefits of various software
process improvements. For instance, in [McGibbon, 1996], the benefits of inspections (as
well as the benefits of a variety of other process improvements) are modeled as a function
of rework costs RC:

RC = R • Σ diti

where dI is the number of defects detected in phase i, tI is the amount of time in hours to
detect and fix an error in phase i. And R is the average hourly rate to find and fix an error.

The key is either good historical data within your organization, or access to “industry
standards” (which won’t quite fit). For instance, O’Neill [1995] observes that inspections
will detect 10-20 errors per thousand lines of code. Thus, with our 100,000 line project,
we can expect 1,000-2,000 errors to be found. What would the cost of these errors be if
they were either (a) found later or (b) not found until after the product was released. This
is particularly frustrating because little industry data exists as to the actual costs of
correcting defects later in the lifecycle, and organizations seldom tend to keep track of
such data.

Copyright 2001 by Warren Harrison, David Raffo and John Settle All Rights Reserved

It is also not always clear what the timing of the returns would be – for instance, should
the benefit of finding an error early through inspections accrue when the error is found?
When the product is undergoing testing (which is when the error might otherwise be
found and corrected)? When the product is released? When the rework would actually
occur? As our earlier examples have shown, deferring the returns can have a big impact
on the perceived value of the process improvement when making investment decisions.

Assessing Risk

Anyone who has ever spent time looking at past process data understands that real
outcomes seldom fit the nice, mathematical prediction models developed by researchers.
However, these models often provide a good basis for an expected outcome, with
potential outcomes being clustered around that point. A good source of data on past
experiences can go a long way towards understanding what the clustering looks like. Is it
a peaked, low-risk distribution like the reuse initiative data showed earlier, or a flat, high-
risk distribution like the CASE Tool purchase?

Lacking quantitative, organization-specific historical data, other sources of information
can be tapped to assess risk. For instance, consultants, small, ad hoc experiments, expert
judgement, etc.

The Reference Risk Premium

It is presumed in this treatment that the firm is already using capital budgeting
techniques, and has a basic understanding of what its reference cost of capital is.
Determination of a firm cost of capital, although a critical step in deciding on investments
and deserving of attention in software development contexts, is beyond the scope of this
paper.

The Role of Metrics Repositories in Establishing Costs, Returns and Risk

From this brief discussion, it is clear that the capabilities needed for capital budgeting of
software process improvements are highly dependent on data. It is interesting to note that
the decreased risk due to good historical data from a metrics repository can actually be
used to quantify the value of a metrics initiative within an organization.

Summary

In this paper, we have briefly described the application of traditional, time and risk based
capital budgeting techniques to software process improvements. As we saw, these
techniques can be valuable in choosing among alternatives. The major constraint to
applying these techniques is access to the capabilities we discussed. These are all highly
dependent on historical data describing past experiences within the organization.

Copyright 2001 by Warren Harrison, David Raffo and John Settle All Rights Reserved

References

• [Curtis,1995] Curtis, W., “Building a Cost-Benefit Case for Software Process
Improvement,” Notes from Tutorial given at the Seventh Software Engineering
Process Group Conference, Boston, MA, May 1995.

• [Dion,1993] Dion, R., “Process Improvement and the Corporate Balance Sheet,”
IEEE Software, July 1993, pp. 28-35.

• [McGibbon, 1996] Thomas McGibbon, “A Business Case for Software Process
Improvement”, Data Analysis Center for Software State-of-the-Art Report, prepared
for Rome Laboratory, September 30, 1996

• (WWW URL: http://www.dacs.dtic.mil/techs/roi.soar/soar.html).
• [Hayes,1995] Hayes, W., Zubrow, D., “Moving On Up: Data and Experience Doing

CMM-Based Software Process Improvement,” Presentation at the Seventh Software
Engineering Process Group Conference, Boston, MA, May 23, 1995.

• [Herbsleb,1994] Herbsleb, J., Zubrow, D., Siegel, J., Rozum, J., Carleton, A.,
“Software Process Improvement:State of the Payoff,” American Programmer, Vol. 7
no. 9, September 1994, pp. 2-12.

• [Jones,1996] Jones, C., “The Pragmatics of Software Process Improvements,”
Software Process Newsletter of the Software Engineering Technical Council
Newsletter, No. 5, Winter 1996, pp. 1-4.

• [Lipke,1992] Lipke, W., Butler, K., “Software Process Improvement: A Success
Story,” CrossTalk, Number 38, November 1992, pp. 29-31, 39.

• [O'Neill,1989] O'Neill, Don. Software Inspections Course and Lab. Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1989.

• [O'Neill,1996] O'Neill, Don. "National Software Quality Experiment: Results 1992-
1996." Proceedings of the Eighth Annual Software Technology Conference. Salt
Lake City, UT, April 21-26, 1996. Hill Air Force Base, UT: Software Technology
Support Center, 1996.

• [Slaughter,1998]. S. Slaughter, D. Harter and M. Krishnan, “Evaluating the Cost of
Software Quality”, Communications of the ACM, August 1998, pp 67-73.

• [Vienneau,1995]. R. Vienneau, “The Present Value of Software Maintenance”,
Journal of Parametrics, April 1995, pp. 18-36

http://www.dacs.dtic.mil/techs/roi.soar/soar.html)

QW2001 Paper 8M1

Ms. Sandy Sweeney
(Compuware Corporation)

Risky Business -- Adding Risk Assessment To The Test
Planning Process

Key Points

Move away from the 'we did the best we could' dysfunctional model of testing●

When picking and choosing the tests you can pull off in the allotted time - how can you
know you are picking the right ones?

●

Getting everyone - not just the test group - to understand and be involved in making these
tradeoffs

●

Presentation Abstract

Testing is clearly a tool for risk management. The ability to use the results of test
execution as a measure of the (relative) quality of an application under test is
obvious. However, the typical metrics and measures are implemented during the
Test Execution phase and look at the application as a whole. In the real world,
however, it is clear that not all parts of an application are equally important, or
equally buggy and that Test Managers are often frustrated by time and resource
constraints that put them at a disadvantage in completing their assessment of
product quality.

About the Author

Ms. Sweeney has been a Software Engineering Professional since 1976. She has
been involved all aspects of systems engineering and software development,
including management. She has functioned as Programmer, Analyst, Designer,
Tester, Quality Assurance Engineer, and Project Manager for a wide range of
companies in the Manufacturing, Financial, Health/Medical, Transportation,
Retail/Wholesale and Telecommunications industries. She has extensive
experience in Software Engineering methods and practices and has been involved
in software development on a wide range of hardware and software platforms.

1

Risky Business
Adding Risk Assessment to the Test Planning
Process

A presentation for Quality Week 2001
San Francisco, CA
May 31, 2001

Sandy Sweeney, Compuware
QAArchitect, Testing Senior Specialist
sandy_sweeney@compuware.com

Copyright Compuware 2001 All Rights Reserved 2

What is Risk?

Something bad
that might
happen

Something that
would have a
bad effect if it
did happen

Probability Consequences

Risk Exposure = Probability * Consequences

2

Copyright Compuware 2001 All Rights Reserved 3

Testing as Risk Management

Typically Manage to Schedule Risks
– Determine Scenarios
– Assess and Rank Risks
– Risk of not implementing

Generally don’t Manage to Quality
Risk
– Risk of implementing

Quality Risk = Risk Exposure of Implementing

Copyright Compuware 2001 All Rights Reserved 4

Measurements in Testing

Coverage (Code/Test)
– Tries to assess probability
Defects
–Tries to assess consequences
The hole --
–How to measure the exposure of

undiscovered defects

3

Copyright Compuware 2001 All Rights Reserved 5

Filling the hole

Risk Assessment in the Test
Planning Process
–Determine areas of greatest risk

before any testing starts
–Build a Risk Profile
–Use the Risk Profile as a

Topographical Map

Copyright Compuware 2001 All Rights Reserved 6

Non-Risk Assessed Testing

Function A
Function B
Function C
Function D
Function E
Function F
Function G

Environments/Data

All Possible Tests

4

Copyright Compuware 2001 All Rights Reserved 7

Risk Based Testing

Bu
sin

es
s I

m
pa

ct

Technical Impact

High

High

Low

Low

Rigorous Testing

Moderate Testing
Minimal Testing

Copyright Compuware 2001 All Rights Reserved 8

Risk Assessment in Test
Planning

Need a process that is quick and
easy
Matrix/Table based
Estimation and assignment of
number is ‘relative’ not ‘absolute’
Working for order of magnitude –
not pinpoint precision
Profile will emerge through
collaboration and communication

5

Copyright Compuware 2001 All Rights Reserved 9

Risk Profile

Risk Factors
–Predictors of Risk

Risk Weights
–Balances the Risk Predictors

based on experience

Copyright Compuware 2001 All Rights Reserved 10

Determining Risk Factors

Mix Probability and Risk
Consider all groups
–Users
–Developers
–Testing
Ask other groups for suggested
factors

6

Copyright Compuware 2001 All Rights Reserved 11

Examples of Risk Factors
‘Age’ of the element
Complexity of the element
Cross-element integrations
Ties to Business Goals
Number of Users
Prior History of Defects
History of Element in Production
Maturity of the Process
Politics of the Organization
Experience with the Technology

Copyright Compuware 2001 All Rights Reserved 12

Risk Weights

Not all factors predict risk
equally
When first assigned just take a
stab
–don’t expect perfection the first

pass

7

Copyright Compuware 2001 All Rights Reserved 13

Rank each Factor for each
Element

This is collaboration, investigation
and negotiation
‘Blank Sheet’ can be a problem
Focus attention on one or two areas
Use what you did as an example
It does get easier over time – on the
first pass just give it your best shot

Copyright Compuware 2001 All Rights Reserved 14

Do the Math

Score = Weighted Sum
– Sum all (Factor Rank * Factor Weight)

Index = Weighted Average
– Score / Average of Weights

An ‘automated’ solution can make
the math much easier

8

Copyright Compuware 2001 All Rights Reserved 15

Check your work

Check the assumptions of your
model
–Look at 2-3 elements for ‘gut feel’

Have someone else look at 2-3
other ones
–Build buy-in to the answers

Copyright Compuware 2001 All Rights Reserved 16

Typical Problems with Model

Risk Weights can skew the
results
–Double check the assumptions on

it’s predictive ability
Not everything is critical
–Too many of the same values in a

column make the ranking
meaningless

9

Copyright Compuware 2001 All Rights Reserved 17

Use the Model for Test
Planning

Items with high risk index should be tested as
early as possible
Items with high risk index should have the most
test cases
Negotiate to get high risk index items developed
and delivered to test as early as possible
Develop more stringent entry and exit criteria for
high risk items
Don’t totally ignore medium and low risk items –
test according to risk

Copyright Compuware 2001 All Rights Reserved 18

Profile helps re-plan for
change

Low risk items may be able to
be sacrificed when there is
schedule slip
Have a clear road-map agreed to
across the board
Re-sizing is risk-based

10

Copyright Compuware 2001 All Rights Reserved 19

Profile is a Key Test Asset

Provides a History of the
planning
Re-useable on the next project

Questions?

Sandy Sweeney, Compuware
QAArchitect, Testing Senior Specialist
sandy_sweeney@compuware.com

Copyright Compuware Corporation, 2001 1

Risky Business

Adding Risk Assessment to the Test Planning Process

A presentation for Quality Week 2001
San Francisco, CA
May 31, 2001

Sandy Sweeney, Compuware
QAArchitect, Testing Senior Specialist
sandy_sweeney@compuware.com

Testing is clearly a tool for risk management. The ability to use the results of test
execution as a measure of the (relative) quality of an application under test is
obvious. However, the typical metrics and measures implemented during the Test
Execution phase cannot provide a complete risk profile – due to some problems with
the metrics as well as the tendency to look at the application as a whole. In the real
world, however, it is clear that not all parts of an application are equally important or
equally buggy and that Test Managers are often frustrated by time and resource
constraints that put them at a disadvantage in completing their assessment of
product quality.

This paper outlines a practical technique that has been used on numerous projects
to insert a secondary risk assessment technique into the Test Planning process.

Copyright Compuware Corporation, 2001 2

What is Risk?

A Risk is typically thought of as ‘something bad that might happen’ or ‘something that
would have a bad effect if it did happen’. These common sense thoughts of risk cover
the two aspects of Risk Exposure – the probability that something will happen and the
impact (consequences/cost/size) of the resulting problem.

Risk Management in software projects revolves around managing the many “What will
we do if …?” situations that might occur throughout the project in an attempt to keep the
project on schedule. What will we do if the hardware does not come in on time? What
will we do if we can’t get enough experienced programmers?

The first step of managing these risk scenarios is to assess them and understand which
of the many possible scenarios warrant further attention. Assessment involves the
assignment of a Risk Exposure value to the scenario. Risk Exposure is the product of
the probability that the scenario will happen and the cost (consequences/size) of it
happening. By multiplying probability and cost we get the ‘probable-cost’ of the
problem. With this ‘probable cost’ we can build the appropriate plan of attack for each
scenario based on how much it might be worth to prevent the problem:

(1) The scenario can be ignored because it has a real low probable-cost

These are the ‘So what?’ scenarios. These are either very low probability events
or situations that can be dealt with cheaply and easily when they occur. For these
scenarios, the cost of developing a special plan to prevent or deal with them
generally is more than the risk exposure of the situation itself.

(2) A risk mitigation plan can be developed to reduce the exposure and/or implement
an alternative ‘Plan B’ if it occurs

Because Risk Exposure is made up of equal parts probability and consequences,
a risk mitigation plan may put steps in place to reduce either the probability or the
consequences of the scenario.

(3) An alternate approach can be developed to avoid a significant challenge

Some scenarios are so probable or have such serious consequences that the
best approach is to avoid the situation if at all possible. These are the probable
disaster scenarios. By understanding these critical risk exposures early in a
project, alternate methods can be explored that are less risky.

Unfortunately, Risk Management processes can be time-consuming and difficult. The
calculation of probabilities and consequences is not trivial. Also, if the Project Manager
is doing risk identification, prioritization and planning as parts of the project initiation the
typical risks addressed are schedule risks – not quality risks.

Copyright Compuware Corporation, 2001 3

Testing as a Risk Management Strategy

With the Project Manager’s focus on managing risks to the schedule (the risk exposure
of not implementing on time), there is often little focus on Quality Risk. Quality Risk is
the risk exposure of an organization when deploying an application – the probable cost
of extra work, re-work, poor reputation, etc. Very often, Test Execution is the key (or
sole) element of Quality Risk Management.

The link between Test Execution and Quality Risk is clear. Defects in production are a
large component of the quality risk exposure. Every test that identifies and allows us to
correct a defect before deploying the application reduces the risk exposure of that
defect to zero because its probability is now zero. It also reduces the total risk exposure
of the application by the cost value of that defect.

The problems with Defect and Coverage Metrics

The information used to understand quality risk in an application is typically related to
Test/Code Coverage (Test Coverage, Test Activity and Success Status) and Known
Defects (Error Discovery, Open Defects). These Test Execution measures are trying to
cover both of the components – probability and cost – of risk. Code and test coverage
metrics are the probability component. A higher coverage percentage should lower the
probability that there is an undiscovered defect. Defect Management metrics are cost
based in that they help understand the cost component of going into production with
identified defects.

These metrics are often tracked and reported as trends. By looking at these trends the
Test Manager is expected to assist in making the decision of ‘are we ready to ship?’.
The testing textbooks tell us that as Coverage measures trend up (we are defining more
tests, executing more tests and more tests are passing) and Defect measures trend
down (we are discovering fewer errors and the discovered defects are being closed)
there is higher quality in the software.

Used together these metrics try to give management some idea of the relative quality
risk of the product. But these measures do not provide a complete picture of
deployment risk because there is limited ability to predict the risk exposure of the
defects that have not been found – either in probability or cost. One major
undiscovered defect in an uncovered area could be more costly than all the defects
uncovered by all of your testing.

Copyright Compuware Corporation, 2001 4

Increasing predictability with Risk Assessment in Test Planning

As mentioned earlier, Risk Management starts with Risk Assessment – identifying risk
scenarios and assigning probability and consequences to each scenario. The critical
scenario related to Quality Risk is Defects. Quality Risk Assessment takes the form of
trying to calculate the probability and the cost of defects in the application. While an
overall risk of defects in an application may be valuable, what is truly indispensable in
Test Planning is to understand the ‘risk topography’ of the application.

Not all parts of an application are equally important and not all parts of an application
are equally buggy. In order to do effective Quality Risk Management we need a
mechanism to quickly point us to the most important parts of the application – where
defects are more probable and where defects would be most damaging.

This mechanism is a risk profile – a topographical map – of the application. This risk
profile will allow us to view the application in terms of the relative risks. Each part of the
application will have a risk area that is similar to the risk classes discussed above
(ignore, prepare, special avoidance plan). With this information, the team’s testing
efforts can be focused on building and executing the set of tests with the highest
probability of finding the most costly defects in this application – those focused on the
part of the application with the greatest risk exposure.

Even using the same number of tests cases as we would have had in a random testing
scheme, we can use the risk profile to decrease the risk exposure of the application.
High Risk areas can be bombarded with very rigorous testing, medium level risk areas
can be supported with moderate testing and the lowest level risk areas can be simply
spot-checked with minimal testing.

Also, as a by-product of dividing the application into smaller risk assessed segments,
this risk profile gives the Test Manager the ability to structure quality gates that monitor
the quality of the most risky areas long before they are delivered into the System Test
environment.

A technique for Assessing Relative Risks

The remainder of this paper describes a process and a tool to develop risk profiles of an
application.

Even in a simple field, risk assessment can be difficult. Assignment of values to
probability and consequences can be time-consuming and error-prone. The
development of mitigation schemes can be a nightmare of mathematics and meetings.
Understanding this problem, and knowing that this process must be repeated many
times over the course of a project, the Test Risk Assessment process was designed to
be as quick and flexible as possible.

Copyright Compuware Corporation, 2001 5

There are three important mind-set assumptions in using this process. First, everything
in this process is based on ‘relative’ values. There is no attempt to get ‘absolute’
values. Take a stab, put something down and do not spend time agonizing over
decisions. Second, this is a collaborative process that is as much about communication
and discovery as it is about building a profile. Third, the profile will evolve and emerge
through the process and it is expected to change as we get more information – or the
situation changes.

The risk assessment process is embedded in a spreadsheet or matrix mechanism. A
paper version of this matrix is attached as the final page of this paper as a visual tool to
assist you in understanding the process. This process can be done with this paper
version but Compuware has had a lot of success with implementing this concept in
Excel to handle the mechanics and recalculation as things change.

The process is built on the concepts of Risk Factors and Risk Weights.

Risk Factors are a set of criteria that are considered predictors of the probability that
errors exist in the function or application. These factors span the entire software
development lifecycle: from definition of requirements by the user group, through
development practices and testing practices and even taking into account prior testing
and production history. Each of the Risk Factors must have a rating scale. The rating
scale indicates how the criterion should be scored. Some of the criteria attempt to rate
the probability of failure and others attempt to assess the impact of a failure were it to
occur.

Risk Weights are a mechanism that lets us balance these Risk Factors between the
probability and the consequences of failure and across multiple organizations that
contribute to the production of the software. These weighting factors are used in risk
ranking formulas to help understand the overall probability that an error exists. This
weighting technique allows us to take into account that some Risk Factors have a
higher impact on the overall probability ranking than others will.

The Risk Factors are combined by a Rating Formula that adds the Factors using the
Weights as a multiplier for the Factor.

Determine the Elements

The first step in building a risk profile mechanism is to agree what elements you are
building a profile table for.

This process and tool can be implemented at any level in the software project – the
elements being profiled could be applications – to help decide which of many competing
projects should get the most test resources. It could be the sub-systems or
requirements embedded in the application – to decide which parts of the application to
test heaviest. The elements could even be individual programs/classes/panels – to help
set the level of development testing required of the element.

Copyright Compuware Corporation, 2001 6

The ‘elements’ that make up the rows should be determined in an inventory process.
To help with this inventory process, there can be levels of decomposition. For example,
if the elements are the integrations of the application, a major category might be
Integration with Application X with sub-categories that describe the transactions that
occur through that integration.

This decomposition can add organization and clarity but the Risk Profile is built for the
lowest level in this decomposition.

Determine the appropriate Risk Factors

The next step is to agree what factors contribute to software risk for these elements in
your organization. This will vary from organization to organization but there are two
guidelines in determining the factors:

1. The factors that contribute to a risk profile should be a mixture of factors related
to the probability that a defect would exist in the element and factors related to
the consequences of a defect if it were to exist in the element

2. The factors should represent each group involved with the software. The factors

should build on what each group knows contributes to risk – this should consider
how the user community would define risk, how the development group
understands it, what testing can add, etc.

Some typical factors to consider:

• The ‘age’ of the element (considers probability, is based in development)
• The complexity of the element (probability, development)
• The number of cross-element integrations (probability, users and development)
• The importance of the element to business goals (consequences, users)
• The importance of the element to key users (consequences, users)
• The prior history of defects in the elements – the more buggy the more testing

needed until the bug history goes down (probability, test)
• The history of problems with the element in production (probability, test and

users)
• The number of people that use this element (consequences, users)
• The experience of the development staff with the technology in this element

(probability, development)
• The maturity of the process being used to develop the software (probability,

development)
• The ‘politics’ of delivering to a specific group (consequences, management)

Copyright Compuware Corporation, 2001 7

Each factor chosen should be defined in a way that will allow ranking this factor from 1
to 5 – with 5 indicating a high risk and 1 indicating a low risk. This understanding of
clear criteria for the assignment of values should be documented. For example:

MARKETING RELATED

Message / Story.

• This column should contain a rating that indicates the amount of participation this product has in
the Marketing Message or Story.

• Valid Range is 1-5 (5 designating major involvement in the overall message or story or
involvement in a major message or story)

Competitive Environment.

• This column should contain a rating that indicates the degree or strength of competition for this
product.

• Valid Range is 1-5 (5 designating a highly competitive product field)

Determine the relative participation (risk weight) of each Factor

Not all factors that contribute to risk are equally good at predicting defects. Some
factors (experience with the technology) might be stronger predictors than others (prior
testing history) in some projects and weaker in others. Consider, for example, how
these two factors would be considered in a new development versus a maintenance
project. Additionally, there are factor contribution differences that vary from organization
to organization.

With this in mind, the next step is to assign a weighting factor to each risk factor. The
weighting factor should be in the range of 0-2 with 0 meaning it is not expected to be a
predictor and 2 meaning it is a very strong predictor.

At this point in the process, this weighting should be a first guess attempt. We will revisit
these weighting factors later as we validate the calculated results.

Weight each Factor for each Element

At this point in the process we have a template for calculating the risk profile. Up until
now, this has been a private document being built by the test team. At this point we
begin filling it in through conversations and meetings with all of the interested groups.

This is the collaboration, investigation and negotiation portion of the process. A big,
empty matrix/table of factors and elements can be intimidating. If this were sent around
via e-mail with the subject ‘fill in your risks’ you would probably get nothing back (except
some flaming responses).

Copyright Compuware Corporation, 2001 8

This process is helped greatly by a one-on-one or two-on-two discussion. It is helpful to
focus the discussion of people who are unfamiliar with this process to the risk areas
they understand:

• Point users to items related to requirements, the user community and the market
for the application

• Point development at the technology related aspects.

It also helps the discussion along greatly if the test organization has completed their
rankings and can discuss how they determined the values as an illustration of the
expectations.

This is probably the most time-consuming and difficult part of the process. It is truly an
education process. Each time you go through this process it gets easier and people are
more comfortable distinguishing between risk rankings. It also gets easier as people
become comfortable that this is not an empty exercise but that the information supports
a valuable planning tool.

Do the math

This is where the implementation of this process in a spreadsheet tool will pay off.
Scores and indices in this table are based on the Risk Factors and Risk Weights.

The ‘Scores’ columns are the results of this weighted addition of individual factors. That
is, each factor is multiplied by the weight of the column and the resulting products are
summed to get a weighted product. This is the ‘raw score’ that is this element’s risk
profile.

These raw scores are then assigned a relative ranking of 1-5 as a quick ‘Index’. This
Index or category assignment is done by calculating the weighted average of the raw
score. That is, the combined total is divided by the combined weight values assigned in
the weighting area for the score. For example, if there were three rating values with
relative weights of 1, 2 and 1.5, the total score would be divided by 4.5 (1+2+1.5).

This index is similar in concept to the ignore, prepare, special avoidance plan
assessment mentioned at the start of this paper. The highest risk profile items are our
‘disaster’ scenarios – these are the ones that need the most attention and which could
really benefit from some special planning. The lowest risk profile items are our ignore
scenarios.

Validate the calculated results

At this point it is prudent to check the assumptions of your risk profile model and see
that your results don’t deviate significantly from your expectations. This is especially
true if this the first or second time you are using this model.

Copyright Compuware Corporation, 2001 9

The best way to check the model is to pick 2 or 3 elements that you are really familiar
with and decide if you agree with the score and index values. It is also useful to have a
couple of people from different groups do this sanity check exercise. Not only does this
outside involvement double check the work but it increases the communication and
ownership of the results.

Typical problems when the score and index do not match your expectations:

• One or more of the risk weights has skewed the results – some factors are being
made too important or not important enough.

• There is not enough distribution of factor rankings. Not every item should be a
ranking 1 or a ranking 5 – there is generally a normal distribution to these things
and if you see too many of the same ranking down a column this indicates that
there needs to be more work on considering if these are really the right rankings.

Use it in the overall planning process

We have now reached the point where all of the grunt work has been done and we can
get real value out of this tool. The Index values provide the Risk Profile of the
application that provides a topographical map for the testing effort:

• The items with the highest risk index value should be tested as early as possible.
• The items with the highest risk index value should have the most test cases

developed and executed.
• Negotiate with development to get high risk index items developed and delivered

to testing first.
• Develop more stringent entry and exit criteria for system testing of the highest

index elements.

Additionally, this completed risk profile can help you size the overall testing effort. There
is a relationship between the index value and the number of test cases. The higher the
index value, the more test cases you should have for the element. The more test cases
that you need to develop and execute, the more time you will need.

At the very least this risk profile will help communicate why some projects take longer to
test than others:

• If time and resource constraints cannot be adjusted to cover all of the testing
needed – at least it can be focused on the highest risk areas.

• By involving people all across the organization and educating them in the risks,
there is more across-the-board support of the answer of ‘how much testing do we
need?’

• Occasionally, this discussion can help development re-focus their efforts to
reduce the risk profile of an area or drop requirements.

Copyright Compuware Corporation, 2001 10

Use it as things change

As the landscape of the project changes – perhaps because development has slipped
or new functionality has been added – this tool continues to provide value in the re-
planning process. The majority of the work to build the tool was completed during Test
Planning. As changes occur it typically requires only minor adjustments of rankings or
weights to understand how a development change has affected the risk profile of the
application.

The impact of a schedule slip in development while holding to the initial release
schedule can be quantified. If notified that you have 2 less weeks to test, you can
quickly understand and communicate where testing will suffer and what the possible
additional risk exposure is.

If the schedule slip means that testing of low risk areas will be sacrificed this may be
acceptable. However, when schedule slips start cutting into medium and high risk areas
this can be clearly communicated to management. Now the risk of not implementing can
be balanced against some real understanding of the risk of implementing.

As with the initial schedule and sizing discussions the process will be risk based and no
longer solely owned by the testing organization. The User community and the
developers were involved in the process that set the relative risks. With this assessment
done and documented there is less of a tendency to ‘hope for the best’ or downplay
potential risks.

Keep the matrix as a history

The completed Risk Profile is a history of your planning. It provides justification of the
decisions that guided your testing.

Additionally, it will be useful the next time you have to test this application – most of the
work will be done and Risk Assessment for the new project can be one of adjustment
and refinement.

C
op

yr
ig

ht
 C

om
pu

w
ar

e
C

or
po

ra
tio

n,
 2

00
1

11

R
is

k
Fa

ct
or

s
U

se
r F

ac
to

rs

D
ev

el
op

m
en

t F
ac

to
rs

Te

st
 F

ac
to

rs

R
is

k
W

ei
gh

t

Sc
or

e
 W

ei
gh

te
d

Pr
od

uc
t

of
 a

ll
Fa

ct
or

s

In
de

x

 W
ei

gh
te

d
Av

er
ag

e
of

 S
co

re

El

em
en

ts

R
is

k
Fa

ct
or

 R
an

ki
ng

 fo
r E

le
m

en
t

R
is

k
Pr

of
ile

QW2001 Paper 8M2

Mr. Kamesh Pemmaraju
(Cigital, Inc.)

Software Risk Management

Key Points

Companies can prevent disatrous software risk by planning ahead.●

How does software risks impact business goals and what is the cost?●

How should software risks be prioritized and managed?●

Presentation Abstract

It is hard to imagine a company today who doesn't use a piece of software in
day-to-day operations. But what happens if that piece of software that is found in a
car's braking system fails due to a faulty line of code? What happens if a line of
code is faulty in an oil refinery and production is delayed a day? Software risks can
harm a company's reputation and revenue. Today's business leaders need to realize
the full effect software risks can have and how they can be prevented.

About the Author

Mr. Pemmaraju has over twelve years of hands-on experience in all aspects of
software development: design, development, and testing of mission/business
critical software. He currently works with Cigital (formerly known as Reliable
Software Technologies), the leading authority and industry visionary on Software
Risk Management (SRM).

Copyright Cigital 2001 1

Software Risk Management

Kamesh Pemmaraju
Director of Technology
kamesh@cigital.com
Cigital,Inc
http://www.cigital.com

2

OutlineOutline

• Intro to Software Risk Management
• Cigital Advantage (SM): An Overview of Cigital’s

Software Risk Management (SRM) Methodology
– Identify
– Synthesize
– Strategize
– Design for SRM
– Measure and Monitor

• Summary

Copyright Cigital 2001 2

3

Software Risk ManagementSoftware Risk Management

• What is Risk?
– The possibility of Loss or Injury
[Source: Merriam Webster’s Collegiate Dictionary, 10th ed.]

• Two types of risk
– Pure Risks: Risks that can only result in a loss

• Example: Airplane or a Car crash

– Speculative risks: Risks that can result in Profit or
loss

• Example: buying stocks or gambling in a casino
• Example: Software Projects!!!

4

Software risk managementSoftware risk management

• Software risk management has traditionally focused
on project risks:
– Future happenings that can affect the project
– Major sources of problems in the project
– Technical or managerial factors that threaten the success of

the project
• Of course this depends on the definition of “success”

– Software publishers (they take speculative risks) typically
define success as finishing the project at the lowest possible
cost and the fastest possible time, while maximizing
profitability.

Copyright Cigital 2001 3

5

What about Quality? Software
publisher’s view
What about Quality? Software
publisher’s view

Quality

Pr
of
its

minimum quality, potential problems still in product, Maximum Profits, ship it!

Microsoft reportedly shipped Windows 2000 with 65,000 remaining bugs!

Improved quality, 30% cut in profitability due to
increased costs for improving quality?

6

But software users suffer!But software users suffer!

• Software failures are pure risks to the users. These
failures sometimes affect the community, the
economy, and the environment:
– Business/economic losses

• Loss of Revenue
• Liability
• Brand Damage

• Windows 95 crashes
– so what, this happens all the time? But consider this: it is

estimated to cost the US industry $11.25B/year!!

– Community/environment losses
• Aircraft crashes
• Medical device pumps 100 Amps through your brain
• Nuclear power plant blows up

Copyright Cigital 2001 4

7

Publishers suffer indirectly!Publishers suffer indirectly!

• When users suffer, software publishers suffer,
too!
– Liability costs
– Brand damage
– Recall costs
– Rework and maintenance costs

• These costs are enormous, sometimes greater
than the project cost itself!

8

Software-induced business
losses last year
Software-induced business
losses last year
• $500B was lost by businesses last year due to

software-induced business risks:
– Loss of Revenue: Hershey lost $150M last

Halloween season due to a software glitch in their
SAP system

– Brand Damage: Online Music retailer CDUniverse’s
reputation was damaged due to a security flaw—a
hacker stole 300,000 credit card numbers from their
web-site

– Liability: Pharmaceutical distributor sued SAP for
$500M for allegedly bringing their business to a
virtual standstill

Copyright Cigital 2001 5

9

Meanwhile publisher challenges
continue..
Meanwhile publisher challenges
continue..
• Highly compressed development schedules
• Fiercely competitive markets
• Tight budgets
• Lack of experienced professionals
• Employee turnover
• Constantly changing requirements

ALL OF THESE PROJECT REALITIES INCREASE
RISKS OF POOR QUALITY SOFTWARE.

10

Business risk exposure due to
software
Business risk exposure due to
software
• So what business risks am I exposed to due to poor

software behavior? This leads to more questions:
– What are the most important software risks and how do these

software risks impact critical business drivers?
– How big are these software risks?
– What are their technical and business consequences?
– How much will these software risks cost if they materialize?
– How should these software risks be prioritized and managed?
– What should be done to mitigate these software risks and how

much will it cost?

• A structured, iterative, full life-cycle Software Risk
Management Methodology focused on business goals is
required to answer these questions.

Copyright Cigital 2001 6

11

12

Identify Identify

• Identify software-induced business risks
associated with building and deploying products
that include essential software
– Meetings with key stakeholders to elicit business

context/goals, people, product, and process.
• Use of Risk Questionnaire

– Review key technical product specifications—
architecture, design, implementation, tests, code

– Develop a preliminary set of risks

Copyright Cigital 2001 7

13

Synthesize Synthesize

• Synthesize data gathered from stakeholder
meetings and technical/project documents
– Identify and prioritize key business goals and the

consequences and costs of not meeting them.
– Identify critical software risks and determine the

likelihood of their impact on the the business goals
– Identify preliminary mitigation methods

14

Business goals, consequences, and costsBusiness goals, consequences, and costs

Business goals Business Consequence Potential cost

Availability:
Software failures cause the
termination of the operation system
on the server leading to the shut
down and non-availability of the
server.

Server Availability is a crucial
concern, impacting the service level
agreements the server companies
have with their customers who
operate in 24/7/365 mission-critical
business environments. If there are
service-level agreements, the server
company will share some of its
customer losses.

The potential costs to the server
company customers can vary
from $100K to $1 million per
hour of downtime depending on
the application. Scaled to 1000
systems in the market place, this
cost can potentially be $1
billion.

Time-To-Market:
The server system does not meet
acceptance criteria when the
servers are ready to be shipped.

The server company will lose the
crucial first-to-market advantage.

Depending on the revenue goals,
the server company can lose
millions of dollars/day if it
misses the time-to-market
window and delays server
shipments.

Reliability:
The server software fails to
perform critical operational
functions correctly.

Reliability is a key requirement,
which leads to better Total Cost of
Ownership (TCO) and reduced costs
for maintainability and serviceability.

Support and maintenance costs
reduce the overall value of the
server software.

Copyright Cigital 2001 8

15

Risk severity classificationRisk severity classification

CONSEQUENCE OF
NOT MEETING

BUSINESS GOALS

COST OF THE RISK
MATERIALIZING

MITIGATION
RECOMMENDATIONS

Catastrophic The cost to the business of this
risk materializing is enormous.

Risk reduction and implementation
of mitigation strategies is
mandatory.

Critical This risk is tolerable only if the
cost of implementing the
mitigation strategies is
disproportionate to the cost of the
risk itself.

Risk reduction and implementation
of mitigation strategies is highly
recommended.

Important These risks are tolerable only if
the mitigation would exceed the
improvement gained.

Risk reduction and implementation
of mitigation strategies is
recommended.

Non-Critical These risks are cosmetic or
inconsequential to overall
operation of the system.

Risk reduction and implementation
of mitigation strategies is not
recommended.

16

Mapping of Software risks and
business goals
Mapping of Software risks and
business goals

Software Risks

Business
Goals

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Performance
(Catastrophic) H H H L M L L

Reliability
(Catastrophic) H H H H H H H M L

Availability
(Critical) H H H H H H H M

Likelihood: H: High, M: Medium, L: Low

Copyright Cigital 2001 9

17

StrategizeStrategize

• Strategize a complete project plan for
managing software-induced business risks
consisting of:
– Identify the mitigation methods for software risks
– Create a comprehensive implementation action plan

to mitigate risks
– Identify the expertise/roles/responsibilities to carry

out the mitigation plans
– Create a schedule (dates/milestones) for

implementing the mitigation plan

18

Mitigation strategyMitigation strategy

Software Risks

Mitigation Methods

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Method #1 M M M

Method #2 M M M M M M R H

Method #3 M M M M M H R H

Method #4 M M M R H H

Method #5 R R R R

Method #6 R R M H

M: Mandatory, H: Highly recommended, R: Recommended

Copyright Cigital 2001 10

19

Design for SRM and Monitoring
and Measurement
Design for SRM and Monitoring
and Measurement
• Design for SRM is an on-going activity which

focuses on architecting-in mechanisms to
prevent/reduce the identified risks

• Monitor and measure risks is an ongoing
activity to measure progress of mitigation
against identified risks and to identify new
risks.

20

SummarySummary

• Companies can prevent disastrous software risk by
planning ahead and focusing on the business impact of
software development and deployment.

• Companies should consider creating an independent
software risk management function to
– Determine software risks impacting business goals and the

business consequences and costs of those software risks.
– Prioritize and manage software risks throughout the life-cycle

of a project.
– Provide ROI justification for the mitigation methods employed

for preventing/removing software risks.

© Copyright 2001, Cigital, Inc

SOFTWARE RISK MANAGEMENT
Kamesh Pemmaraju, kamesh@cigital.com

Cigital, Inc (http://www.cigital.com)

As software technologies continue to evolve in functionality and complexity, we are
experiencing the rapid expansion of software into all areas of our business and private lives.
Today, software is found in cars, traffic lights, household appliances, communications
equipment, transportation systems, hospitals, airplanes, medical devices, next-generation
payment cards, business supply chains, and enterprise management systems, to name but a few
places. Software has truly become ubiquitous and essential. It is hard to imagine a company
today that does not use a piece of software in its day-to-day operations. But what happens if a
piece of software in a car's braking system fails due to a faulty line of code? What happens if a
faulty line of code in an oil refinery delays production? Software risks can harm a company's
reputation and revenue. Today's business leaders need to realize the full effects of software risks
and how these risks can be prevented.

The consequences of essential software failure can be dramatic. At the extreme, the failure of
essential software in a safety-critical system can result in loss of life. From a business
perspective, the financial consequences of essential software failure can also be severe:

• The Standish Group estimates that software problems cost U.S. businesses $85 billion in
lost productivity in 1998.

• Hershey lost $150M in revenue during Q3 1999 when an enterprise software glitch
prevented Halloween candy from being shipped.

• eBay’s 22-hour system outage in June 1999 resulted in a revenue loss of $4M and a loss
of consumer confidence that lead to a market capitalization drop of $5.7B for the online
auction giant.

• The SEC has fielded over 20,000 investor complaints related to software problems in
online trading.

• The parent company of bankrupt pharmaceutical distributor FoxMeyer is suing SAP for
$500M over enterprise software that allegedly snarled operations.

Brand awareness and confidence are all too easily eroded, and often software problems are to
blame:

• H&R Block suffered significant brand damage and credibility loss when a software glitch
allowed online clients to view other clients’ tax returns.

• CDUniverse’s reputation was compromised when its software was exploited by a hacker
who stole 300,000 credit card numbers and published the information online, complete
with names and addresses.

As companies try to come to grips with such severe consequences, they are faced with equally
daunting challenges to “do it right” from a software development perspective, even though not
doing it right may risk the entire business. Companies face typical challenges such as highly
compressed development lifecycles, fiercely competitive markets, tight budgets, lack of
experienced software professionals, employee turnover, and constantly changing requirements,
among others.

mailto:kamesh@cigital.com
http://www.cigital.com/

Software Risk Management Cigital, Inc

© Copyright 2001, Cigital, Inc Page 2

Most business people understand how to manage these types of challenges: business executives
do it every day when they make calculated decisions. Software Risk Management (SRM)
provides information that allows business executives to improve their decision making through
understanding the risks that software brings to their businesses. By grasping the business
proposition – the technology that is being built and the role that it plays in the business model –
managers can mitigate the risks associated with building and deploying software-based systems.
These issues can be framed in terms of potential payoff and required investment, and sound
decisions can thus be made using a marriage of business goals and technology realities.

THE CIGITAL ADVANTAGESM : A SOFTWARE RISK MANAGEMENT
METHODOLOGY

While companies may understand the critical business drivers of their software products and the
development challenges of the real world, they do not necessarily understand how software risks
can impact those business drivers.

Fortunately, given the right data about software behavior and a methodology to identify and
understand risks associated with that behavior, companies can control software-induced business
risks and their corresponding business consequences.

The key questions that need to be addressed in order to understand the risks that software brings
to a company’s business operations include:

• What are the most important software risks and how do these software risks impact
critical business drivers?

• How big are these software risks?
• What are their technical and business consequences?
• How much will these software risks cost if they materialize?
• How should these software risks be prioritized and managed?
• What should be done to mitigate these software risks and how much will it cost?

Both business risks and technology risks must be identified, ranked in order of severity and
potential impact, and addressed in rank order by well-conceived mitigation techniques. Any sort
of severity ranking is clearly a context-sensitive and time-dependent perspective that depends
directly on the changing business needs and goals of the system at hand. Starting the process
early is important: the earlier in the development process that risks are taken into account, the
more efficiently mitigation planning and resource allocation can proceed. Thus, what is required
is a clearly defined, well-structured, iterative and full lifecycle Software Risk Management
process/methodology that provides clear ROI justification and minimizes the financial impact of
negative business consequences. The Cigital Advantage is one such Software Risk Management
methodology that takes all these factors into account.

Software risk management (SRM) techniques can be applied throughout the software
development lifecycle to manage the software-based risks in systems. In so doing, these
techniques protect the overall business goals for the product. Using an appropriate SRM
approach reduces the likelihood of software failure, thereby increasing lifecycle productivity
while still meeting time-to-market demands.

Software Risk Management Cigital, Inc

© Copyright 2001, Cigital, Inc Page 3

The Cigital Advantage SRM approach includes a series of six inter-related steps that can be used
to help understand and mitigate key software risks:

1. Identify software-induced business risks associated with building and deploying
software products

2. Synthesize data gathered from structured questionnaire sessions with key
stakeholders of the product and business.

3. Create a SRM Strategy drawing on expertise at various technology and business
levels to determine critical tradeoffs that exist between technology-driven approaches
and a company’s business objectives for the software product.

4. Design for Software Risk Management, resulting in a software system that is
designed right from the start to be reliable in real-world conditions, safe in operation,
and free from security vulnerabilities.

5. Measure and Monitor progress against software-induced business risks, providing
insight into testing and validation of the delivery and deployment of the software and
ensuring that business risks are understood and managed.

6. Certify that the software meets an acceptable SRM standard.

Figure 1: The Cigital Advantage Methodology

Keep in mind that these steps are not carried out as a one-time activity. Rather, the entire process
is iterative and risks are regularly reviewed and the SRM strategy updated according to changing
business and technology drivers.

Software Risk Management Cigital, Inc

© Copyright 2001, Cigital, Inc Page 4

APPLYING THE CIGITAL ADVANTAGE

IDENTIFY RISKS

Identifying software-induced business risks is an essential first step to the SRM solution. A
Risks Questionnaire (RQ) plays a central role in eliciting discussion of risks during a series of
stakeholder meetings. Using the RQ as a guide, discussions are conducted with the stakeholders
about their market, business, product, process, and project. The RQ provides a framework for
the meetings, making the risk identification process more systematic and repeatable. Though
risks will be identified and worked into the overall risk management strategy throughout the
duration of the project, the initial set of risks is created through application of the RQ.

The series of risk questionnaire meetings includes following stakeholders:

• Upper management (LOB or c-level representatives): This group will provide the best
data about the business proposition of the product initiatives. A central tenet of the risk
management solution is using information about the business proposition to guide the
SRM process. This group is able to change budgets and schedules according to business
needs. In business parlance, this group has profit/loss (P/L) responsibility and acts to
maximize shareholder value.

• Project Management: This group is constrained by budget and schedule. For them,
progress is usually measured in terms of time to market and cost of delivery. Though
project managers may understand the business proposition, they are not often in a direct
position to implement critical tradeoffs.

• Architects: This group of technical experts helps design the product according to
technical requirements. Business priorities can be misunderstood or misinterpreted by
architects. Likewise, risk management specialties such as security and testability are
areas where architects require help. Though they wield much power in the technical
realm, they may not interact with the business side of the house.

• System Engineers/Analysts: This group develops system requirements and serves as the
interface between the end users and the project team.

• Developers: In-the-trenches-technologists, this group is charged with creating the product
designed by the architects.

• Testers: Also in the trenches, this group is charged with analyzing and testing the product
throughout its lifecycle.

An example set of questions to ask a marketing executive would be:

• Is the target market well-defined?
• Is there a fixed time-window for product delivery?
• What market category will the product address (e.g., custom, shrink wrap, vertical)?
• Has customer dissatisfaction been an issue with this or other related products?
• Are customers involved during the development process?

Following this step, a detailed review of all project-related business/technical documentation is
carried out to create a comprehensive list of software-induced business risks.

Software Risk Management Cigital, Inc

© Copyright 2001, Cigital, Inc Page 5

SYNTHESIS

Synthesis will help in understanding and prioritizing both the critical business goals for the
software product and the software risks impacting those business goals. Preliminary cost-justified
and ROI-justified mitigation strategies are also developed during this step.

Some examples of typical business goals are availability, time-to-market, reliability, flexibility,
and cost. Since the software risks in the product can potentially impact one or many business
goals, it is important to develop an understanding of the business costs of these software risks.
The key question from a business perspective is: how much will software-induced business risks
cost if they materialize?

It helps to create a table that summarizes, in priority order, the top business goals, the
consequences of not meeting these business goals, and the potential costs to the company if these
goals are not met. The following table shows an example of such a table for high-availability
server software:

Business Goals Business Consequence Potential Cost
Availability:
Software failures cause the
termination of the operation system
on the server leading to the shut
down and non-availability of the
server.

Server availability is a crucial
concern, impacting the service
level agreements the server
companies have with their
customers, who operate in
24/7/365 mission-critical
business environments. If there
are service-level agreements, the
server company will share some
of its customers’ losses.

The potential costs to the
server company customers
can vary from $100K to $1
million per hour of
downtime, depending
upon the application.
Scaled to 1,000 systems in
the market place, this cost
can potentially be $1
billion.

Time-To-Market:
The server system does not meet
acceptance criteria when the servers
are ready to be shipped.

The server company will lose the
crucial first-to-market advantage.

The server company
stands to lose millions of
dollars per day if it misses
the time-to-market
window and delays server
shipments, impacting the
revenue goal for this
server family.

Reliability:
The server software fails to perform
critical operational functions
correctly.

Reliability is a key requirement
that leads to better Total Cost of
Ownership (TCO) and reduced
costs for maintainability and
serviceability.

Support and maintenance
costs reduce the overall
value of the server family.

Table 1: Business Goals, Consequences and Costs

As preliminary mitigation plans are developed, several tradeoffs must be considered. For
example, some mitigation activities may add cost to the budget or lengthen the schedule. The
cost of the mitigation activity must be weighed against the importance and cost of the risk it

Software Risk Management Cigital, Inc

© Copyright 2001, Cigital, Inc Page 6

mitigates. Some risks are so catastrophic that the mitigation methods for addressing them are
mandatory, while others are not. The following table presents the categories that can be used to
classify identified risks. Such classification helps justify the cost of implementing the mitigation
plan and helps prioritize the recommended mitigation activities.

Consequences of Not
Meeting Business Goals

Cost Involved if the Risk
Materializes

Mitigation Recommendations

Catastrophic The cost to the business of this risk
materializing is enormous.

Risk reduction and implementation of
mitigation strategies is mandatory.

Critical This risk is tolerable only if the cost
of implementing the mitigation
strategies is disproportionate to the
cost of the risk itself.

Risk reduction and implementation of
mitigation strategies is highly
recommended.

Important These risks are tolerable only if the
mitigation would exceed the
improvement gained.

Risk reduction and implementation of
mitigation strategies are
recommended.

Non-Critical These risks are cosmetic or
inconsequential to the overall
operation of the system.

Risk reduction and implementation of
mitigation strategies are not
recommended.

Table 2: Risk Severity Calculation

The next step is to create a mapping between the software risks and the business goals. An
example of such a mapping between software risks and business goals is shown in the following
table:

 Software Risks

Business
Goals So

ft
w

ar
e

R
is

k
#1

So
ft

w
ar

e
R

is
k

#2

So
ft

w
ar

e
R

is
k

#3

So
ft

w
ar

e
R

is
k

#4

So
ft

w
ar

e
R

is
k

#5

So
ft

w
ar

e
R

is
k

#6

So
ft

w
ar

e
R

is
k

#7

So
ft

w
ar

e
R

is
k

#8

So
ft

w
ar

e
R

is
k

#9

So
ft

w
ar

e
R

is
k

#1
0

Performance
(Catastrophic)

H H H L M L L

Reliability
(Catastrophic)

H H H H H H H M L

Availability
(Critical)

H H H H H H H M

Maintenance
(Critical)

L L M L M H

Usability
(Important)

L H H H M H M H

Portability
(Important)

 H L L M H

Table 3: Mapping of Software Risks to Business Goals

Software Risk Management Cigital, Inc

© Copyright 2001, Cigital, Inc Page 7

This table shows the likelihood of each software risk contributing to not meeting the business
goal. The likelihood levels are: H = High, M = Medium, and L = Low. The severity of not
meeting the business goal is indicated in parenthesis.

SOFTWARE RISK MANAGEMENT STRATEGY

This step involves the creation of a comprehensive Software Risk Management (SRM) strategy
consisting of a set of recommended mitigation methods. The mitigation methods are selected
based on their effectiveness in mitigating the identified risks. Table 4 is an example of the risk
areas covered by the different methods as they are applied in the recommended SRM Strategy.
The matrix further shows method recommendations in terms of which risks they mitigate and the
relative ranking of how important and effective they are for the particular risk. The relative
ranking of the methods is presented in terms of Mandatory (M), Highly Recommended (H), and
Recommended (R) attributes. Empty squares in the matrix indicate where application of a given
method for a given risk area is Not Recommended. For all the method recommendations, the
rankings were used to develop the overall SRM plan by providing guidance on the depth to
which each of the methods should be applied. It is worth noting that each individual method will
lose effectiveness and risk coverage if applied without following the integrated SRM strategy and
plan, as recommended.

 Software Risks

Mitigation Methods

So
ft

w
ar

e
R

is
k

#1

So
ft

w
ar

e
R

is
k

#2

So
ft

w
ar

e
R

is
k

#3

So
ft

w
ar

e
R

is
k

#4

So
ft

w
ar

e
R

is
k

#5

So
ft

w
ar

e
R

is
k

#6

So
ft

w
ar

e
R

is
k

#7

So
ft

w
ar

e
R

is
k

#8

So
ft

w
ar

e
R

is
k

#9

So
ft

w
ar

e
R

is
k

#1
0

Method #1 M M M
Method #2 M M M M M M R H
Method #3 M M M M M H R H
Method #4 M M M R H H
Method #5 R R R R
Method #6 R R M H

Table 4 Mitigation strategy

DESIGN FOR SOFTWARE RISK MANAGEMENT

Design for SRM means designing the software from the ground-up in order to ensure that risk
mitigation methods developed during the first three steps of the methodology can be applied
easily and quickly. Some mitigation methods may include testing for quality and security.
Software must therefore be designed to be testable and secure. The SRM Solution pays close
attention to design and architecture.

Software cannot be rushed to market and later made reliable or secure. Rather, it must be
carefully designed to be reliable and secure. And there is no such thing as perfection. Reliability
and security always involve tradeoffs and must be weighed against business requirements and

Software Risk Management Cigital, Inc

© Copyright 2001, Cigital, Inc Page 8

objectives. The architecture phase of software development is where much of the risk
management activity takes place.

Risk analysis of the resulting software architecture must also take place on a technical level.
Once a design has been created and formalized with an eye toward business risks, that design
must be carefully assessed for emergent properties such as reliability, safety and security.
Analysis of technical software risk is much more efficient when conducted early, rather than
later, in the software lifecycle. Software Risk Management is not a task to be done once and
forgotten; it is, rather, a process.

MEASURING AND MONITORING PROGRESS AGAINST RISKS

Even the world’s best design can be poorly implemented. The SRM Solution places a critical
emphasis on probing and measuring the actual software product throughout its development.
Unfortunately, merely following processes like those utilized in support of the Capability
Maturing Model or ISO 9000 cannot, alone, deliver software that works. Good process can be
helpful, but in the end, it’s the product – not the process – that must run on a machine.
Measuring the product throughout development yields important data on software behavior, even
before the software is put into use.

SUMMARY

Essential software systems are becoming more and more common and are beginning to affect
deeply both our core businesses and our daily lives. Software failure in essential software
systems is unacceptable: serious implications that result from such failure include loss of life and
extreme business exposure. Thus, the risks that essential software systems bring to bear must be
carefully managed.

By using SRM methodologies such as The Cigital Advantage, companies can prevent disastrous
software risk by planning ahead and focusing on the business impact of software development
and deployment. Companies should consider creating an independent software risk management
function and deploying SRM methodologies to:

• Determine software risks impacting business goals and understand the consequences and
costs of those software risks.

• Prioritize and manage software risks throughout the life cycle of a project.
• Provide ROI justification for the mitigation methods employed for preventing/removing

software risks.

Good Software Risk Management practices engendered by the use of structured SRM
methodologies like The Cigital Advantage and implemented by expert software engineers can
help minimize software-induced business risk.

Mr. Pemmaraju has over fifteen years of hands-on experience in all aspects of software development:
design, development, and testing of mission/business critical software. He currently works with Cigital
(formerly known as Reliable Software Technologies), the leading authority and industry visionary on
Software Risk Management (SRM). You can contact him at pemmaraju@cigital.com.

QW2001 Paper 9M1

Mr. Michael J. Hillelsohn
(Software Performance Systems)

Organizational Performance Engineering: Quality
Assurance For The 21st Century

Key Points

Multi-disciplinary, pro-active Organizational Performance Engineering is the future of
quality

●

Effective Quality Assurance facilitates the next step in a process instead of waiting to
correct

●

Fresh approaches to quality assurance are needed to apply sound software engineering
principles

●

Presentation Abstract

In too many organizations, quality assurance is relegated to verification and
validation activities and is separate from training and software process
improvement organizational elements. Proactive quality assurance is actually a
multi-disciplinary set of activities that combine these three organizational elements
into organizational performance engineering. The approach being advocated uses
techniques from quality assurance and control, training, program management,
business process reengineering, and software process improvement disciplines to
analyze the organization’s practices and behaviors and initiate in-process
interventions. The philosophy of organizational performance engineering is based
on the notion that people really do like to do things correctly and really hate to go
back and rework what they have already completed. It is a pro-active approach that
emphasizes preventing problems and defects from occurring.

About the Author

Michael J. Hillelsohn is a Director, Product Assurance at Software Performance
Systems (SPS) in Arlington, VA. SPS builds secure e-commerce, case
management, and network solutions for government and industry clients. Mr.
Hillelsohn is a certified quality professional with more than thirty years of
experience doing development, management and performance improvement in
software and systems development environments. His multi-disciplinary approach
combines quality systems and training expertise to improve the performance of
organizations and individuals. Mr. Hillelsohn’s process-oriented, performance
engineering methods facilitate adoption of external frameworks (CMM, ISO,
Baldrige) to improve the quality of organizational products and services.

1

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Organizational Performance
Engineering:

Quality Assurance for the 21st
Century

Michael J. Hillelsohn
SOFTWARE PERFORMANCE SYSTEMS

2011 Crystal Drive Suite 710
Arlington, VA 22202

(703) 797-7707 mhillelsohn@goSPS.com

Quality Week 2001

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Objectives
• Expand your definition of quality assurance to

include all sorts of interventions that improve
the quality of the products and services that
your organization delivers.

• Design an engineering approach to determining
how you are going to be most effective in your
organization.

• Think about an implementation strategy for pro-
actively impacting the performance of people
and processes in your organization.

2

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Quality Assurance Definitions
• (1) A planned and systematic pattern of all

actions necessary to provide adequate
confidence that an item or (software work)
product conforms to established technical
requirements. (2) A set of activities designed
to evaluate the process by which (software
work) products are developed or
manufactured. IEEE Std 610.12-1990

() SW CMM

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Quality Assurance Definitions
• All the planned and systematic activities

implemented within the quality system
(organizational procedures, processes, and
resources needed to implement quality management)
and demonstrated as needed to provide
adequate confidence that an entity will fulfill
requirements for quality.

ANSI/ISO/ASQC A8402-1994

3

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Quality Assurance Definitions

• The set of support activities (including
facilitation, training, measurement, and
analysis) needed to provide adequate
confidence that processes are established
and continuously improved in order to
produce products that meet specifications
and are fit for use. Quality Assurance Institute's CQA Study

Guide Version 2

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Where We Would Like To Be
• PERFORMANCE - The activities

performed by individuals, groups, and
organizations to produce the things they
deliver to customers.

• ENGINEERING - The application of a
systematic, disciplined, quantifiable
approach to structures, machines, products,
systems or processes.

IEEE Std 610.12-1990

Michael

4

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Underlying Principles
People prefer to do a good job

rather than a poor job
&

People hate to go back and correct
things that they have already

completed

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Planning Activities
• Define quality policy and goals
• Participate in preparing management and

development plans
• Support life cycle tailoring
• Write Quality Assurance Plan/Quality Plan
• Personnel and task management
• Tracking and oversight of resources, schedule,

activities, products

5

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Policies, Standards, Guidelines
• Write and maintain quality policies
• Research current standards & methods
• Adapt standards/methods to project

/organization
• Write implementation guidelines
• Facilitate definition of work instructions
• Train/consult users on implementation
• Tailor standards… as required

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Compliance Verification

• Documents
– Review standard with developer
– Conduct in-process reviews
– Participate in inspections
– Final compliance check
– Sign off on deliverable/product
– Compile metrics

6

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Compliance Verification
• Design Diagrams/Code

– Publish standards that affect design/code
– Conduct training on walkthroughs/ inspections/

peer reviews
– Coordinate & attend reviews
– Compile results of reviews
– Follow up on action items
– Verify & validate test activities
– Review test results

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Process Improvement
• Analyze “as-is” environment
• Conduct “how to define a process” training
• Facilitate analysis of process improvements
• Define processes
• Plan implementation of improvements
• Audit the process(es)

7

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Consult & Train
• Determine & anticipate life-cycle training

requirements
• Design event driven learning (EDL) sessions
• Provide “just-in-time” EDL
• Maintain training records
• Exercise a consulting role on the project team

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Process Teams
• Identify issues to be addressed (data-driven)
• Help form the team
• Train/facilitate/coach the team
• Support analysis of issue
• Facilitate definition of solutions
• Provide methodology for implementation pilot
• Generate standards/guidelines for

implementation planning

8

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Conduct Assessments
• Train organization on expectations
• Review compliance/non-compliance criteria
• Establish the baseline culture
• Determine compliance with internal & external

standards
– Perform gap analysis
– Suggest method to reach compliance
– Facilitate development & implementation of action plan

• Perform in process audits

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Reporting

• Track progress against goals
• Define relevant metrics
• Gather metrics from other disciplines
• Analyze data
• Report results
• Recommend action(s)
• Conduct special studies

9

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

A Functional Organization
Senior Executive

Performance
Engineering

Product Assurance System Services
•Quality Assurance/Systems
•Process Improvement
•Requirements Analysis
•Verification & Validation
•Configuration Management

•Training
•Internal (non-HR)
•External

•Technical Publications
•Customer Service(s)

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

An Example - PE
•Brief/Tailor RM Process &
Standards
•How to Facilitate Reqs
Gathering
•How to Write Reqs
•Coordinate/Facilitate
Walkthrough
•Gather Data

•Review SRS Standard

• Quality Assurance Review

Plan Requirements Capture

Capture&Identify Requirements

Document Requirements

Conduct Walkthroughs

Customer Requirements Review

Write Requirements Spec

10

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Successful Performance
Engineering Is...

• Inter-disciplinary
• Insidious
• Flexible
• Cooperative
• Versatile
• Pervasive
• Systematic

• Based on facts
• Team oriented
• Communication
• Practical
• Focused on internal &

external customers
• Supported by senior

management

© 2001 Michael J. Hillelsohn SOFTWARE PERFORMANCE SYSTEMS

Summary
• Proactive quality assurance entails a multi-

disciplinary set of activities
• Performance Engineering is assessing and

enhancing the performance of individuals’,
groups’ and the organization’s products and
services

• Success means making the developers’ job
more effective and efficient

• Result = achieving quality goals!

QW2001 Paper 9M2

Mr. Brian Lawrence
(Coyote Valley Software)

Choosing Potential Improvements -- Comparing Appoaches

Key Points

What are the advantages and disadvantages of different improvement approaches●

How to analyze the your situation to help choose what you’re going to do●

Examples of how others have made improvement strategy choices●

Presentation Abstract

You know that what you’re doing right now won’t keep working at some point in
the future, so you want to try something different. But what should you do? Should
you follow reference models such as the CMM or ISO-9000? Or just choose
something that sounds good and hope for the best? Maybe your CEO’s
pick-of-the-day?

There are many possible things you can do to improve your software design
process: Inspection, Configuration Management, Testing, Modeling Requirements
and Designs, QA, Retrospectives, Project and Risk Management, as well as others.
How do you choose which to do? People will tell you the advantages of their
favorite approach, and encourage you to head off in that direction. Is that what you
should do? All of the choices have potential benefits, and what their purveyors
frequently forget to mention is that they all have risks too. Some might not
work-they definitely cost time and money-and you might not need some of them.

For example, you can assess your organization against a reference model such as
the CMM. But is that the right model for your business needs? When the CMM
was originally designed, its designers relied on some big assumptions about the
nature of the software businesses that would use it. Those assumptions may not be
true for you. And organizational assessment can be expensive.

In this presentation, I will compare improvement approaches using these criteria:
“routineness,” complexity, constituency, difficulty, and level of effort. I will
explain what I mean by each of the criteria, and then offer my evaluation of each of
the approaches I’ve examined. You will have the chance to see how different
approaches match up. By examining the relative value of possible approaches and
the risks and benefits, you can have a better basis for choosing among them. I will
offer you my take on how these different ideas might work out, and where I’ve
seen them both succeed and fail.

Choosing the next improvement effort can be a dicey decision. I don’t believe
there is any one right way, or one right answer. The proper choice depends on your
circumstances and potential capabilities at the moment when you want to attempt
the improvement effort. You can better inform your decision by using an
evaluation such as this. I recommend that you take my comparison as a starting
point, and conduct your own comparison based on what you know of your own
organization. That way you can improve the chances that what the improvement
effort you set out to do does indeed succeed.

About the Author

Brian has presented at many conferences on a variety of subjects over the years. He
has served as a program chair for the SEPG’97 Conference and the 1998
International Conference on Requirements Engineering. Brian teaches and
facilitates requirements analysis, peer reviews, project planning, risk management,
life cycles, and design specification techniques. Brian serves on the editorial board
of IEEE Software and as the editor of Software Testing and Quality Engineering
magazine.

1

Comparing Improvement Approaches • X5 1

Comparing Improvement
Approaches

Brian Lawrence
Coyote Valley Software

brian@coyotevalley.com
www.coyotevalley.com

(408) 578-9661

Winter 2001

© 2001 by Brian Lawrence. All Rights Reserved.

Comparing Improvement Approaches • X5 2

The Pretext

• You are already doing some things to
produce your software:
– Such as coding!
– Possibly other things

• You would like to do better:
– perhaps fewer defects
– perhaps more predictable, quicker delivery

Some choices for improvement may work better
than others, depending on your circumstances.
Some choices for improvement may work better
than others, depending on your circumstances.

2

Comparing Improvement Approaches • X5 3

Two Quotes

“Things are the way they are because they got
that way.”

- Kenneth Boulding

“Things are the way they are because they got
that way.”

- Kenneth Boulding

“We have met the enemy, and he is us!”
- Walt Kelly (from Pogo)

“We have met the enemy, and he is us!”
- Walt Kelly (from Pogo)

Comparing Improvement Approaches • X5 4

Why compare improvement
approaches?

• Many (most?) improvement efforts fail
because:
– We choose the wrong thing to target
– We don’t lay the groundwork properly
– We don’t commit the proper resources to do the

job well
– We don’t get the right people to participate
– and...

Improvement is really hard!Improvement is really hard!

3

Comparing Improvement Approaches • X5 5

Criteria

• “Routineness”
– Not “we routinely do this.”
– From organizational theory, a routine task has little variation

between work put in and results coming out. (known and
predictable)

• Constituency - Who participates?

• Complexity - How intricate?

• Difficulty - How hard?

• Size of Effort - How big?

Comparing Improvement Approaches • X5 6

A Caveat!

The following table contains values I put in
based on my experience, reviewed and adjusted
by some of my colleagues.
Your experience is different, so you might put in
different values. Feel free to do so.

The following table contains values I put in
based on my experience, reviewed and adjusted
by some of my colleagues.
Your experience is different, so you might put in
different values. Feel free to do so.

4

Comparing Improvement Approaches • X5 7

Activity Comparison
Activity Routine? Constituency Complexity Difficulty Effort Size

Project Charters Yes Senior Staff Simple Medium Small

Life Cycles Yes Senior Staff
Can be
simple Medium Small

Inspection Yes and no
Team
members Simple Hard

20-30% of
team effort

Requirements modeling and
management

Never Wide Cross-
functional

Complex Very Hard 10-70% of
total effort

Architecture and design modeling Never Designers Complex Hard
10-20% of
designer’s

Project management Maybe
Manager &
Team

Very complex Hard
All of
manager’s

Risk management No Senior staff &
managers

Simple Medium Medium

Configuration management Yes Dev & Testers Medium Not hard Small

Testing No Testers & Dev Complex Medium All of testing

QA Yes QA Staff Simple Can be Hard Small

Organizational appraisal (ISO and CMM) Yes Very broad Complex
Hard to get
right Large

Retrospectives Yes Team Simple Can be tricky Small

Comparing Improvement Approaches • X5 8

Retrospectives

• Advantages
– Best place to start!
– Counters the effects of rumor due to leveling, sharpening, &

assimilation
– Not very expensive

• Risks
– Damaging if done badly
– Can be damaging if recommendations are ignored

– Someone may have already poisoned the well
– Tempting not to use a trained facilitator

AKA Post-Mortems

5

Comparing Improvement Approaches • X5 9

Project Chartering

• Advantages
– Omission is a major source of project failure
– Routine with a knowledgeable facilitator.
– Not expensive

• Risks
– Establishes accountability
– Not seen as needed

– Can be misinterpreted as casting project in concrete
– Not many people know how

AKA ?

Comparing Improvement Approaches • X5 10

Testing
• Advantages

– Mainstream approach
– Lots of good knowledge around
– Very understandable

• Risks
– Can be very expensive
– Hard to find qualified staff

– Can encourage developers to abandon their responsibility
– Prone to overlooking entire classes of defects, especially

requirements and design defects
– Frequently underestimate level of effort, especially for

automation
– Vulnerable to late changes

AKA QA - Not!

6

Comparing Improvement Approaches • X5 11

Inspection

• Advantages
– Single most effective quality technique
– Despite considerable investment, has immense ROI
– Fosters professionalism in the ranks

• Risks
– Scary - impossible to hide anything
– Hard to get right

– Produces information which can easily be misinterpreted
– Must have ironclad management support

Comparing Improvement Approaches • X5 12

Requirements Modeling and
Managing

• Advantages
– Greatest source of potential value
– Can optimize the level of conflict
– Vastly lowers risk and increases predictability
– Foundation of most other quality strategies

• Risks
– Strongly establishes accountability

– Easy to underestimate level of effort
– Frequently misunderstood
– Non-routine, broad constituency, very complex, and difficult
– Some don’t think they need or can get better requirements

7

Comparing Improvement Approaches • X5 13

Project Management

• Advantages
– Vastly improves chances project will succeed
– Much is known about it

• Risks
– Hard job
– Well-known subject with lots of misconceptions

– Hard to find qualified staff
– Easy to set off without it, creating a barrier to installing it later

Comparing Improvement Approaches • X5 14

Risk Management

• Advantages
– Vastly improves chances project will succeed
– Can be simple and effective
– Matches reality

• Risks
– Some are “risk-averse” and don’t even want to talk about it

– Prone to lapse into incongruent interactions (blaming,
placating)

– Relatively new to software
– Dependent on Project Management & other things

8

Comparing Improvement Approaches • X5 15

Some Observations
• If you don’t know how what is came to be, setting a

course may be difficult and unpredictable.

– Understand the development context

– Understand the business context

• Consider choosing improvements based not just on
potential value, but also on your chances of
succeeding.

• Remember that all change is hard.

Comparing Improvement Approaches • X5 16

Further Reading
Walt Kelly, The Best of Pogo, Simon & Schuster, 1982
Jerry Weinberg, Quality Software Management, a 4 volume trilogy, Dorset

House, 1989-95.
Jim Highsmith, Adaptive Software Development, Dorset House, 1999
Malcolm Gladwell, The Tipping Point , Little Brown, 2000.
Norm Kerth, “The Ritual of Retrospectives,” Software Testing & Quality

Engineering , September 2000, Vol. 2, No. 5
Bob King, “When Assessments are Relative,” STQE, January 2001, Vol. 3,

No. 1.
III, “Immunizing Against Predictable Project Failure,” STQE, January 2001,

Vol. 3, No. 1.
Brian Lawrence & Payson Hall, “The Problem of Project Management,”

Cutter IT Journal, Vol 12, No. 5, May 1999.

QW2001 QuickStart 2Q

Mr. Kent Beck
(Author)

Extreme Programming Explained

Key Points

Programmers need their own tests to maintain speed and flexibility.●

These tests may improve quality enough that QA is no longer needed as a Great Wall to
protect the customers against the depredations of the Mongrel Programmer Hordes.

●

QA can then take the initiative in enhancing communication between business and
development

●

Presentation Abstract

Extreme Programming (XP) violates the prevailing Taylorist assumptions of
conventional software engineering. Who was Fred Taylor and why would he make
such a crummy software engineering manager? What is an alternative?

About the Author

Kent Beck is the godfather of XP. He also pioneered CRC cards, the HotDraw
drawing editor framework, the xUnit testing framework and (with Erich Gamma)
its open source Java variant JUnit, the rediscovery of test-first programming, and
patterns for software development. He leaves on 20 rural southern Oregon acres
with his wife, five children, two dogs, and a variable number of domestic fowl.

1

Frederick Winslow Taylor

• “In the past man was first. In the
future the system must be first.”

2

Taylorism

• Time studies
• Separate planning
• Instruction cards
• Selection of workmen
• Task assignment
• Quality control
• Differential rate

New Paradigm

Making things

Conversation

3

Shape of the Solution
Waterfall XP

Time

Scope

Planning
Game Small

Releases

Tests Refactoring

Pair
Programming

Simple
Design

Metaphor

Collective
OwnershipContinuous

Integration

Open
Workspace

40 Hour
Week

Practices

Coding
Standards

On-site
Customer

Daily
Schema
Migration

4

Learning To Steer

URLs

• www.junit.org
• www.xprogramming.com
• www.extremeprogramming.org
• www.cs.utah.edu/~lwilliam

QW2001 QuickStart 3Q

Mr. Tom Gilb
(Result Planning Limited)

Planguage: A Defined Language for Clearer Requirements and
Design

Key Points

A new requirements-and-design specification language●

Focus on stakeholder-driven value and quality●

Control over cost and time●

Presentation Abstract

A formal planning language suitable for all aspects of software engineering
planning, requirements, design, project planning, risk analysis, organizational
improvement, quality control; has been specified. Planguage is unique. There is no
other remotely similar alternative. One distinguishing characteristic is that all
qualitative stakeholder values are expressed quantitatively. It is defined in free
texts on a website, It has been used in practice for years in many multinational
corporations. It resembles a programming language in character, but it is a higher
level of specification which is particularly good at specifying the very things which
programming languages are poor at specifying: quality, costs, risks, and system
level relationships. Planguage is a solid and precise foundation for deriving tests
from requirements and design. From this talk you will get an overview and s
amples of Planguage, which you can follow up from free website materials.

About the Author

Tom Gilb was born in Pasadena in 1940, emigrated to London 1956, and to
Norway 1958, where he joined IBM for 5 years, and where he resides when not
travelling.

He has mainly worked within the software engineering community, but since 1983
with Corporate Top Management problems, and 1988 with large scale systems
engineering. He is an independent teacher, consultant and writer. He has published
eight books, including the early coining of the term "Software Metrics" (1976)
which is the basis for SEI CMM Level 4. He wrote "Principles of Software
Engineering Management" (1988, now in 13th printing, with 3 chapters on
Evolutionary delivery methods), and "Software Inspection" (1993). Both titles are
really systems engineering books in software disguise. His pro bono systems
engineering activities include several weeks a year for US DoD and Norwegian
DoD, and environmental (EPA) and Third-World Aid charities or organizations.

His clients include Hewlett Packard, Boeing, Microsoft, Ericsson, Alcatel, Nortel,

Oracle, Sun, British Aerospace, UK Civil Aviation Authority, Litton PRC,
Siemens, Medtronic and many others.

1

Gilb@acm.org 1

Planguage:
A defined Language

 for Clearer
Requirements and Design"

Quality Week, San Francisco
Quickstart

Wednesday 30th May 2001, PM
Tom Gilb

URL www.result-planning.com

Planguage: a defined language for clearer requirements.

• a new requirements-and-design specification language
• focus on stakeholder-driven value and quality

• control over cost and time
Version: 2.0 April 15 2001

Gilb@acm.org 2

Summaries
Tom Gilb
 is best summarized at www.result-planning.com. He has published 8
books, including Principles of Software Engineering Management. His new book,
defining 'Planguage' is forthcoming in 2001, and is free on his web site.

“Planguage’ is
A formal planning language suitable for all aspects of software engineering
planning, requirements, design, project planning, risk analysis,
organizational improvement, quality control; has been specified.
Planguage is unique.
There is no other remotely similar alternative.
One distinguishing characteristic is that all qualitative stakeholder values are expressed
quantitatively.
It is defined in free textbooks on a web site,
It has been used in practice for years in many multinational corporations.
It resembles a programming language in character,

but it is a higher level of specification
which is particularly good at specifying the very things which programming

languages are poor at specifying:
quality, costs, risks, and system level relationships.

Planguage is a solid and precise foundation for deriving tests from requirements and design.
 From this talk you will get an overview and samples of Planguage,

 which you can follow up from free web site materials.

2

Gilb@acm.org 3

The Planguage
Cycle• Define

Requirements

• Design to
meet
requirements

• Quality
Control of
design/plans

• Build the
design

Plan

Do

Study

Act

Gilb@acm.org 4

‘Planguage’ Summary
• Meta-Process
• Generic
• Tailorable
• Cornerstones

– clear requirements
– multiple qualities & costs
– quantified design accounting
– Specification Quality

Control/Inspection
– Evolutionary project management

• Open-ended

!

!!!!
#######

3

Gilb@acm.org 5

Planguage
Structure

Language

Process

Defined Terms
Symbols
Icons

Conventions
Generics, Formats

Conditions

Processes

Rules

Policies

Entry
Exit
Levels

Forms, PC Tools

Gilb@acm.org 6

Quality Defined for Comp. Eng. book
• Quality (noun) Concept *125

• A quality is a stakeholder-valued attribute of a system.

• If no stakeholder is interested in the attribute, then we would not be
interested in classifying it as a 'quality'.

• All systems have a large number of quality attributes in practice. That is,
they have a large number of 'dimensions of goodness' or 'valued
characteristics' which are the concern of some stakeholders.

• It is fundamental to systems engineering, and management, that we
identify our critical stakeholders, and their critical needs, in terms of
requirement levels of selected attributes. In short we must understand our
stakeholder's quality requirements.

• The concept of a 'quality' is also needed in order to distinguish these
characteristics from other central system engineering system descriptors;
such as functions, costs, designs, constraints and all other concepts.

4

Gilb@acm.org 7

Quality is distinguished by us, from these others,
 in one or more of the following ways:

(from Concept *125 CE Glossary version Jan 26 2001 TG
• it is valued to some degree by some stakeholders in the system
• it is variable (along a definable scale of measure)
• it is capable of being specified quantitatively
• it can be measured in practice
• more of it is generally valued by stakeholders, especially if the increase is free

or lower cost than the value of the increase.
• it can never be perfect, in the real world
• it is independent of the particular means (designs) for reaching a particular

level
• it can be a complex notion, consisting of many elementary quality concepts.
• it can be traded off to some degree, given limited resources for producing

qualities, for other quality levels which are valued more by a defined
stakeholder.

• as quality levels increase towards perfection, the resources (a 'cost' concept)
needed to support those levels tend towards infinity.

• there are some levels of a particular quality which may be outside the state of
the art, at a defined time and circumstance.

Gilb@acm.org 8

System dimensions
• Resources ‘Qualities’

Reporting
Function

Database
updatedness

Report

Updatedness

Capital
Resources

System Availability

Usability

5

Gilb@acm.org 9

Planguage Process Overview
• Software Engineering Tools

– Requirements Engineering:
• A defined planning language, quantified quality

– Design:
• quantitative impact estimation of design on requirements

– Specification Quality Control (Inspection)
• quantified approach to engineering documentation

– Evolutionary Project Management:
• frequent feedback and learning-based management
• A ‘revolution’ in testing approach:

– Continuous system integration

Gilb@acm.org 10

Planguage Components

Specific
Planning
Language

Specific Product
Specifications

Specific Project
Work Process

Specific
Process

Language

PLANGUAGE

GENERIC
WORK

PROCESS
DESCRIPTIONS

(INCLUDING
RULES)

RS, DS, IE,
EVO & SQC

Specific
Project Work

Process
Descriptions

(including Rules)

Product
Language

Project Input
Specifications

Generic
 Process
Description
Language

(Specific)
Project Language

I

II

III

Planguage
as presented
in this course

Project
Specific
Version

Project
Process

Generic
Specificatio
n

Language

Version March 8 2001
LB/TG for CE

6

Gilb@acm.org 11

Standards: Purposes
• Train newcomers
• Capture wisdom and experience for all
• Lay basis for systematic process improvement
• Lay basis for stable systems: predictable output

– Less unnecessary individual variation
– Basis for statistical process control (SPC, CMM5)

• Presentation to clients (how professional we are)
– A differential to client’s own practices, so they want to use us

• To capture general customer needs and specific customer needs in a
systematic way

• A basis for auditing processes (do we really follow our best practices?)
• A basis for Inspection (Spec QC)

– -measurement of specification quality versus standards
– Decision to exit and enter engineering processes based on objective

economics
– Inspection is a major teaching and motivation device for good practices

Gilb@acm.org 12

Standards Types
• Models: best practice examples realistic
• Templates: predefined structure or lists
• Forms: information collection procedure
• Rules: required specification method, content, format
• Process Descriptions: how should we do our work?

– Entry Conditions: when are we ready or not ready to work?
– Procedure description: what sequence and activity to do work?
– Exit Conditions: when are we finished? Objective numeric conditions.

• Checklists: help to interpret rules and find defects during
inspections.

• Rates: recommended speeds of working for optimum human
performance (example: speed of checking pages/hour)

• Defined terms: Glossary for precise communication
• Courseware: slides exercises etc.

7

Gilb@acm.org 13

Quality Control Types
• Individual Examination: Check your own work (for example against rules)
• Peer Reviews

– Buddy Checking (a friend checks your work)
– Inspections: have we followed our standards? (Current focus)

• Sampling to measure
• 100% to clean up

– Content Reviews: is the work good enough?
• Customer Reviews

– Do they understand the work?
– Do they like the work
– Do they formally approve the work

• Testing
– Detail to be supplied, not my concern now TG

• Field
– Initial field trials
– Longer term field experience and feedback

Gilb@acm.org 14

(Initial) Requirements Specification,
(Initial) Design Specification and

(Initial) Evolutionary Step Plan

Project Results
Documentation

Process.RS
Process.FR
Process.QR
Process.QQ
Process.CR
Process.DS
Process.IE
Process.SM
Process.DC
& Others

Standards:
Rules.GR, Rules.RS
Rules.FR, Rules.QR
Rules.QQ, Rules.CR
Rules.DS, Rules.IE

Rules.EVO
and any relevant

Process Descriptions

Evolutionary Project Management

Result
Cycle

Feedback
Results

Plan
Do

Study
Act

(Revised) Requirements Specification,
(Revised) Design Specification and
(Revised) Evolutionary Step Plan

© Gilb@acm.org

Evo CE Processes and
Standards. <-LB

8

Gilb@acm.org 15

Requirements
Specification

Design Specification and
Evolutionary Step Plan

Specifying
Requirements

Specifying &
Evaluating Designs

List of Stakeholders and, Statement of
Requirements or (Existing)
Requirements Specification

Process.RS
Process.FR
Process.QR
Process.QQ
Process.CR

Process.DS
Process.IE

Standards:
Rules. GR, Rules.RS
Rules.FR, Rules.QR
Rules.QQ, Rules.CR

and relevant
Process Descriptions

Standards:
Rules.GR, Rules.DS, Rules.IE

and relevant
Process Descriptions

Changes to
Requirements
(Feedback)

Changes to Requirements
(Feedback)

© Gilb@acm.org

(Existing) Design Specification
and (Existing)

 Evolutionary Step Plan

Requirements and Design Process Standards
<-LB

Gilb@acm.org 16

Stakeholder
Requirements

Requirements tie Stakeholder values to development/maintenance work
processes

Customer
Requirements

Service Design

Training Design

Distribution Design

Sales Design

Marketing Design

Manufacturing
Design

Product Design

 Product
Architecture

Project
Management

Quality
Assurance

Continuous
Improvement

Customers
/The Market

Technology

StakeholdersQA Disciplines/Processes

9

Gilb@acm.org 17

– 4.14 Stakeholder

– An interested party having a right, share or
claim in the system or in its possession of
qualities that meet their needs.
ß ISO/IEC 152881, TC /SC /WG ,
Secretariat

Gilb@acm.org 18

Stakeholder: (Planguage
Glossary)

• People, group, or any object
– which has some direct or indirect ‘interest’ in

the outcome of a defined process or product.
– We would also select stakeholders as ones we

have some interest in listening to.
– Stakeholders have requirements which are

critical or profit-impacting for your project

10

Gilb@acm.org 19

For example they might have an
interest in

• 1. Setting the objectives for a process.
• 2. Evaluating the quality of the product
• 3. Using the product or system, even

indirectly
• 4. Avoiding problems for themselves as a

result of our product or system.
• 5. Being compatible with another machine

or software component.

Gilb@acm.org 20

The Planguage parameter term
‘Stakeholder’

• can be used to specify one or more stakeholders
explicitly.
– Stakeholder = {End User, Help Desk, Installer}

• We can attach stakeholder information to any
elementary specification,
– Plan [Stakeholder = Novice User] 10 minutes

• or to a set of specifications,
– Scale [Installers] time for successful installation
– Must 20 minutes, Plan 10 minutes, Wish 5 minutes.

• as appropriate.

11

Gilb@acm.org 21

Stakeholder Types:
Example from real customer requirements

definition about 1996, USA

– Government FCC
– Telecompany Corporate
– DEVELOPER
– MANUFACTURER

• See detail next slide of probable values/requirements
– OPERATOR (like AT&T)
– DISTRIBUTION
– LEASING/PURCHASE
– PHONE USER:
– System Owner (in office)
– MAINTENANCE: Employees of system owner
– Responsible Site Administrators
– Responsible Installers
– Repair Centers

Gilb@acm.org 22

Manfacturing Stakeholder (detail)
 Example from real customer requirements definition about 1996,

USA
– MANUFACTURER: some potential requirements areas

• Lynch-Town or elsewhere?

• Like to manufacture in this country, avoid tolls taxes

• Need to invest in capital equipment

• Just in time purchasing and manufacturing

• Re-use of existing components

• Ease of manufacture of components

– Ease of setup

– Training

– Small runs

• Ease of Assembly

• Ease of tailoring to special orders

• Ease of testing products (in direction of minimization of need)

12

Gilb@acm.org 23

 (2001) Real Example Stakeholder spec
BT OPP Integration:

Summary :The XXX-999. would integrate both ‘Push Server’ and ‘Push Client’ roles of the BT Object Push Profile.
Type: Architectural Constraint.(requirement)

Source: 3.4.3 Integration of BT OPP… in BT Application Requirements Study Version 0.1 March 9 2001

Stakeholders: “ who we are writing this particular requirement for”
 Phonebook, Scheduler, Testers, <Product Architect>, Product Planner, Software Engineers, User
Interface Designer, Bluetooth Team Leader, Our Co. Bluetooth engineers, Bluetooth Developers from
other Our Co. product departments which we interface with, the supplier of the software {Texas
Instruments, Condat.

Description:
Comply:

A defined [XXX-999. software]
Acts in accordance with to the <specification> defined in the

Defined subject [for both Push Server and Push Client roles of the BT Object Push Profile (OPP).] ,
in the following defined way: .
 for [[BT, XXX-999.]:

Official certification is actually and correctly granted; before
{developer or supplier or any real integrator, whoever it really is doing the integration}
has completed their task correctly.
This includes correct proven interface to any other related modules specified in the Specification.

• Impacts Section. For BTT OP Integration
– Impact A:

• Impact Assertion: <100% of <Interoperability> objective with other BT devices that support OPP on time is estimated to be the result>.
<Information about measurement, basis for estimate should also be given>.

• Interoperability: Defined As: Certified that this device can exchange information with any other Bluetooth device.
• Assumption: there are some quality requirements for BT certification regarding probability of connection and transmission etc. we

do not remember what they.<-TG
• Risks:

– 1. We do not ‘understand’ (do dot have information in hand here) fully the BT Certification requirements, so we risk that our design will fail certification. <-TG
• Sources:

– Specifications of the Bluetooth System volume 1 version 1.1, Promoters Members of the Bluetooth SIG, Inc. (“Bluetooth SIG”), February 2001
» Precise reference <to be supplied by Andrea>

– Specifications of the Bluetooth System volume 2, version 1.1, Promoters Members of the Bluetooth SIG, Inc. (“Bluetooth SIG”), February 2001
» Precise reference <to be supplied by Andrea>

Gilb@acm.org 24

What’s New in Planguage ?
• Total quantification of all quality requirements

– ‘Scale: relative eng. Hours to port to new env. ‘
• Quantified estimates of design impacts

– Design-x --> 30% Plan [30,000 h MTBF]
• Quantified Spec Quality Control (Inspection)

– Exit OK: Max. 0.2 Major defects/page remain.
• Multiple-dimension quantified project

management
– All qualities and costs impact per 2% cycle

13

Gilb@acm.org 25

Contents: ‘Competitive Engineering’
(the Planguage handbook)

• Defined systems engineering language:
“Planguage”
– covers: requirements, design, spec QC, project

management
– Specification Rules defined for QC purposes
– Engineering processes defined (with Entry , Exit)
– 100 Principles defined
– 425+ integrated concepts defined
– User-tailorable, continuous improvement
– free handbook on web, no strings attached.

• Get manuscripts, papers, cases and slides free on www.result-
planning.com

Gilb@acm.org 26

Principles: Design engineering
process.

• 0. THE PRINCIPLE OF 'IDEAS ARE
ONLY AS GOOD AS THE

REQUIREMENTS SATISFIED'.

•Design ideas cannot be
judged or validated except
with respect to all quality

and cost requirements they
must satisfy.

14

Gilb@acm.org 27

1.THE PRINCIPLE OF
'REALITY BEATS

THEORY'.

•Design ideas are only as
good as their actual

implementation, not their
intent.

Gilb@acm.org 28

 MUST PLAN
PAST RECORD

< << >> >

Some Planguage Graphical Icons

“Costs”
Fuels to build or operate

Function or
Mission

“Qualities”
Goodness variables

Sub-
Function

AVAILABILITY

defined in terms of
three others

RELIABLE
MAINTAIN

INTEGRITY

Fighter

0
PLAN MUST

PAST
RECORD

MUST
PLAN

INVESTMENT-$

15

Gilb@acm.org 29

Part 1. Requirements Engineering
• Requirements as ‘End states’ not means.
• All variable quality ideas quantified
• Advanced specification of quality levels, “when” ,

‘where” and “ifs” for a requirement.
• Absolute testability of all requirements
• Configuration management is built in
• “Uncertainty” and “risk” is explicitly specified
• Intimately tied to “design”, QC, project control
• ‘Learning feedback’ from delivery cycles

Gilb@acm.org 30

Blank Requirement Template. V=012603

Requirement Tag:
Ambition:
Type: Requirement
Stakeholders: { }
Version:
Owner:
Scale:
Meter []
====Benchmarks ============= the Past
Past [] <--
Record [] <--
Trend [] <-
===== Targets ============= the future value and needs
Wish [] <-
Must [] <--
Plan [] <--
Stretch [] <-

16

Gilb@acm.org 31

Electronic Requirements template with hints:
V=012503

<name tag of the objective>
Ambition: <give overall real ambition level in 5-20 words>
Type: <quality|objective|constraint>
Stakeholder: { , , } “who can influence your profit, success or failure?”
Scale: <a defined units of measure, with [parameters] if you like>
Meter [<for what test level?>]
====Benchmarks ============= the Past
Past [] <estimate of past> <--<source>
Record [<where>, <when record set> <estimate of record level>] <-- <source

of record data>
Trend [<future date>, <where?>] <prediction of level> <- <source of

prediction>
===== Targets ============= the future value and needs
Wish [] <- <source of wish>
Must [] <-- <source>
Plan […] <target level> <-- Source
Stretch [] <motivating ambition level> <- <source of level>

Gilb@acm.org 32

Other useful Parameters
see CE book index and Glossary for detail. V 14April01

• Assumptions:
• Authority:
• Source:
• Risks:
• Dependencies:
• Impacts:
• Impacted By:
• Resources:
• Priority:
• Responsible:
• Test Plan:
• Test Cases:
• Sponsor:
• Initiator:

17

Gilb@acm.org 33

Integratability (Real Example)

• Gist: (Ca.): better ease of integration than most
competitors

• Stakeholder: {Independent Software Vendors,
Systems Integrators, Ourselves, …}

• Scale: time it takes a defined number of people to
<integrate>

• Must [Independent Software Vendor, Highest
Complexity Task, 1 person …] <24 hours> ?? Guess

• Plan [Independent Software Vendor, Highest
Complexity Task, 1 person …] 1 hour

Gilb@acm.org 34

TEST-EFFECTIVENESS
Ambition: enhance greatly portion of defined defect types are

we finding using our test processes?
SCALE: % of DEFINED DEFECTS identified by DEFINED TEST

PROCESSES within DEFINED EFFORT using DEFINED
TOOLS

METER: <sampling of test efforts by QA>
PAST [LOGICAL BUGS, BRANCH COVERAGE TESTING, 80%

level coverage, SRA Tools] 50% + or - 30%?? <- Tom Gilb wild
illustrative guess to provoke better information.

PLAN [ANY DESIGN DEFECT, {SQC and Our Tests}, 1 work
hour per 100 LOC, NO SPECIAL TOOLS] 30% ?? <- swag tg

DEFECTS:DEFINED: any difference from formal requirements.
DESIGN DEFECT: DEFINED : any difference from specified design.

An example of definition:
“Parameter Types : definitions”

18

Gilb@acm.org 35

An example of definition:
Test Effectiveness Measures

TEST-EFFECTIVENESS
Ambition: enhance greatly portion of defined defect types are

we finding using our test processes?
SCALE: % of DEFINED DEFECTS identified by DEFINED TEST

PROCESSES within DEFINED EFFORT using DEFINED
TOOLS

METER: <sampling of test efforts by QA>
PAST [LOGICAL BUGS, BRANCH COVERAGE TESTING, 80%

level coverage, SRA Tools] 50% + or - 30%?? <- Tom Gilb wild
illustrative guess to provoke better information.

PLAN [ANY DESIGN DEFECT, {SQC and Our Tests}, 1 work
hour per 100 LOC, NO SPECIAL TOOLS] 30% ?? <- swag tg

DEFECTS:DEFINED: any difference from formal requirements.
DESIGN DEFECT: DEFINED : any difference from specified design.

Gilb@acm.org

Requirements Analysis (real) Example:
An aircraft company bid for $60 million CAD/CAM Bd.of Dir.

OBJECTIVES
PLANS

DESIGNS

FUNDING

RESPONSIBILITY METHOD

organize

clarify
Ambition level

A special effort is underway to improve the timeliness of Engineering Drawings. An additional special effort is needed to significantly
improve drawing quality .
This Co.. establishes a Natural Work Group on Engineering Quality (EQNWG) to lead Engineering to a breakthrough level of quality
for the future. To be competitive, Our Co.. must greatly improve productivity. Engineering should make major contributions to the
improvement. The simplest is to reduce drawing errors which result in the AIR (After Initial Release) change traffic that slows down
the efficiency of the manufacturing and procurement process. Bigger challenges are to help make CAD/CAM a universal way of doing
business at Co.., effective use of group classification technology, and teamwork with Manufacturing and suppliers to develop and
implement truly innovative design concepts that lead to quality products at lower cost. The EQNWG is expected to develop "end state"
concepts and implementation plans for changes of organization, operation, procedures, standards and design concepts to guide our
future growth. The target of the EQNWG is breakthrough in performance not just "work harder". The group will phase their
conceptualizing and recommendations to be effective in the long term and to influence the large number of drawings now being
produced by TRANSPORT CARRIER and Model -11 design teams

Quality Objectives. “ENDS-- how well we do what we do’”
Q-LT-EFFECT: "to be effective in the long term "
Q-PERFORM: "The target of the EQNWG is

breakthrough in performance.
Q-DRAW-PLAN: "Significantly Improve
Drawing Quality "
Q-PROD: "Productivity."
Q-QUALITY: "quality products"
Q-TIME: "Timeliness"

Functional Areas “WHAT
we do”
F1: Engineering Drawings
F2: "TRANSPORT
CARRIER .. design team"
F3: "Model -11 design
team"

Requirements
Classification

 Functional

Classification

Quality

Requirement

Classification

19

Gilb@acm.org 37

Al Says ….

“Perfection of means

And confusion of ends

Seem to characterize our age..”

Albert Einstein, found on the www 2000

Http://albert.bu.edu BostonUniversity

Gilb@acm.org 38

Scale-of-Measure Concepts

¥CUSTOMER-APPROVAL-RATING: "Annual Survey result”
¥Ambition: be almost as good as state of the art in customer happiness.

SCALE

SCALE: Percentage 'YES' answers on average of all questions.
METER: The Annual Gallup Survey for our market niche.

“Benchmarks” PAST
[2000, USA]

40%

PAST[2000, USA] 40%, [1999, Europe] 55.5%<-Euro Gallup

RECORD
[2000, NY]

66%

RECORD[2000, New York] 66%, [1994, Oslo] 70%

TREND
[2002,

Our
Product]
35%

TREND [2002, Our Product] 35% <-Tom’s Guess

“Targets”

WISH [2010, GB] 99%<-Chairman

WISH [Long term future] 99% <-Board Policy.

PLAN [2003,
75%]

 PLAN[2002,Worldwide] 52%, [2003] 75%, [2004] 95% <- Five year plan 5.4.

MUST [End 2002]
50%<- Contract

MUST[End 2002, USA] 50% <- Corp. Marketing Plan page 6.

Fail OK Success

20

Gilb@acm.org 39

Target Levels:
Requirements

The function being
described

Past Record Trend

Past
1994

Past
1995,
UK

Past
1996,
USA

MustPlan Wish Ideal

SuccessFailure

Plan
Ver. 1.0

Plan
2.0,

Europe

Plan
3.0

USA

Gilb@acm.org 40

Quantifying Usability (C&C System, Erieye
QUALITY

USABILITY WORK-
CAPACITY

ADAPT-
ABILITY

AVAIL-
ABILITY

INTUITIVENESS INTELLIGIBILITY

INTUITIVE
Ambition: Prob. oper. will do OK.
SCALE: Prob. intuitive do OK
METER: <100 observations.>
PAST [GRAPES] 80% <-LN
RECORD [MAC] 9%?<-TG
MUST [TRAINED , RARE] 50-90%
PLAN [TASKS] 99% <-LN

INTELLIGIBILITY
Ambition: op. ability to understand.
SCALE:% OK interpretations .
METER: 10 ops., 100 infos, 15 mins.
P:PAST[20 ops., 300 info, 30 min.]99%
RECORD [P] 99.0%
MUST[DELIVERY[1]]99.0%<-MAB

[ACCEPTANCE] 99.5%
PLAN [M1] 99.9% <-LN

AND MORE!

TRAINED: DEFINED:C&Ctl. operator, approved course, 200 hours duration.
RARE: DEFINED: types of tasks performed less than once a week per op.
TASKS: DEFINED: onboard operator distinct tasks carried out.
ACCEPTANCE: DEFINED: formal acceptance testing via customer contract.
DELIVERY: DEFINED: Evolutionary delivery cycle, integrated and useful.

21

Gilb@acm.org 41

Uncertainty Notation
• There is a wide variety of notation to

express uncertainty, risk of deviation,
fuzzy thought etc.
– [Qualifiers] can reduce uncertainty by limiting

the conditions for which a specification is
valid

– Past [USA] <50%> < fuzzy brackets>
– Past [USA] 50% ±20%

– Past [USA] 50% to 60%
– Past [USA] 50%? “Or ??”
– Plan [USA, IF Copyright Valid] 50%

Gilb@acm.org 42

Assumptions
• Assumptions are any condition for other

specifications to be valid.
• A1: Assumption: the weather is suitable.
• Must [Suitable Weather] 55%.
• Plan [2001, If Suitable Weather OR

Indoors]1.
• S22: State: Off.
• Stage1: Basis: Unit Tests AND QC Exited.

22

Gilb@acm.org 43

‘Resources’: system inputs

The function which
consumes the resources

in order to get
the

qualities

Gilb@acm.org 44

Example: Budget Specification

System

-|-|-|- % of total project money allocation
MONEY-BUDGET

[FINAL-DEADLINE] 100%
[2% of project value]
uses 2% of cost

ENGINEERING-HOURS
-|-|-|- % of total engineer hours allocated

[Early Pilot trials]
10%

[Domestic deliveries to contracts]
 10%

[Domestic wholsalers from next year]
20%

[European Contracts]
 30%

[Euro wholsalers]
30%

Multiple resource budgets together with
multiple quality requirements
 and global constraints.
They can all be specified,
designed and evaluated simultaneously!

Resource
constraint

Quality
constraint

ok ok
ok

no
no

no

23

Gilb@acm.org 45

Some global Constraint Concepts

A function which
has

<-- resources and
qualities -->

NO
!

NO
!

OK
!

OK
!

Resources Qualities

C
o
n
s
t
r
a
i
n
t

C
o
n
s
t
r
a
i
n
t

Gilb@acm.org 46

A global Constraint restricts the designer;
then the other requirements need to be

considered

Constraint A

Constraint B

Constraint CSpecific Quality Requirement

24

Gilb@acm.org 47

Resource Constraints (Real examples) 1
Installation $ Cost:

SCALE: Total Installation Cost of all involved parties.
Total Installation Cost: DEFINED:
{education of customer people, involvement of customer people during

installation, during planning, TeleCo, Loss of Service in a PBX, Special
Tools for Strange Cabling, any other thing even if not on this list!}

MUST [per installation, USA, Release [1]] $ <??> Maximum twice DECT
Installation costs.

PLAN [per installation, USA, Release [1]] $ similar (within 20%) to DECT
Installation costs.

Per User Price:
Note: this is a price-border constraint, the actual price targets may vary from

time to time and market to market.
SCALE:$ per user price to customer for total Base Station {CE and RH}.
PLAN [30 to 250 users system, USA, Release [1]] $700 <--RSW 2
PLAN [more than 250 users OR larger building OR tougher than normal radio ,

USA, Release [1]] >$700 <--RSW 2.

Gilb@acm.org 48

Resource Constraints
(Real examples) 2

• Installation Time:
– Ambition: must not be more than of an unlicensed system. <--RSW 3
– SCALE: Work Hours:
– PLAN
– SCALE: Calendar Days.
– PLAN
– NOTE: a detailed table of these timings was included on MRS 4.5.3

• Subscriber Cost:
– Note: this is a cost-border constraint, the actual cost targets may vary

from time to time and market to market.
– SCALE: $ cost for a [defined # of users] system per subscriber, including

TK and SW licenses cost to TeleCo.
– MUST [100 users, USA, Release [1]] $400 <--RSW 2, page 2 Cost

Assumptions.

25

Gilb@acm.org 49

Legal Constraints (Real examples)

• E911 [USA]:
– Any user must be able to get emergency by dialing 911<--MRS 4.6.1 and laws.
– [NOT USA] the corresponding emergency number must be able to be used.
– ßMarketing and sales and distribution

• Sales-Process: <--RSW 2
– Ambition: different from XXX 88XX
– We can sell to a distribution channel (internal or external), who sells to customer
– (OR) We can sell to an operator (sale or leasing who sells to distribution channel.

• Sales-Category:
– the product will be sold as a Wireless PBX/Key system. <--RSW 2

• Replacement:
– the product will be offered as a replacement for a Fixed or Cordless Private System. <--RSW 2

• Coexist:
– if not Replacement, the system will be offered as a wireless office system that will coexist with

an existing PBX <--RSW 2

Gilb@acm.org 50

“Political” Constraints (Real
examples)

• Operator-Acceptance: The product must be
accepted by the operator.

• Buyer-loves-it: the office or company which buys it,
must "love" it.

• TeleCo Documentation: we will map this
documentation onto existing company documentation
categories as far as possible ß TW.

26

Gilb@acm.org 51

Rules
Frameworks

Gilb@acm.org 52

Rules Section
• Purpose of rules:

– To formally define the best practices for specification
– To be a vehicle for teaching to newcomers
– To be used in inspections to determine ‘defect’
– To enable systematic measurement of specification quality
– To enable measurement of process change or improvement
– To enable measurement of processes (like ‘design’)
– To enable economic evaluation of engineering activity

• Does it pay off
• Is it getting more or less efficient
• Are the changes working or not?
• To give individual engineer some consciousness of their economics of work

process
– Not to constrain creativity in doing even better things!

• But maybe these ideas should be captured somewhere in standards (models,
rules, checklists, templates, forms) so others can benefit from them!

27

Gilb@acm.org 53

Policy for Rules
• POLICY:

• Version 4 April 2001, Origin Date: April 2 2001 Tampere.
• Owner IW
• Identification: Company XX.Policy.Rules

– Rules should be brief.
– Rules should be significant (engineering important)
– Rules should be very well written for intelligibility
– Rules should be supported by a variety of devices:

models, checklists, templates, forms (and not try to do
everything

– Rules should serve the larger long term stakeholder
value and economic interests (we should invest in
things which have a good return on that investment).

Gilb@acm.org 54

How to get Rules Accepted?
• They are official Company XX standards of best practice
• They are acknowledged to not be perfect
• Anybody can argue for improvement to the process owner
• They are taught at induction training
• They are justified by the formal ‘justification’
• People learn from inspections that their peers respect

these rules
• A formal numeric Exit (also Entry) condition is set for

release (OK) of any ones specifications, for example
“Maximum One Major Defect/Logical Page remaining.” This
sends a clear daily message about taking rules seriously.

28

Gilb@acm.org 55

Rules for Rules
• Version: 2 April 2001, Owner: IW, ID: Rules: RFR
• 1. No rules set for Inspection shall ever exceed 1 physical page

– Justification: force us to keep them brief, significant, useful
• 2. Rules should be justified. Why are they good?
• 3. Rule examples should be given (one liners).
• 4. Some information about rules needs to be kept in the Rules Master File,

some is used selectively in different connections (a Rules List, Teaching Aids,
Meetings to discuss rules changes etc.)

• 5. Information in Master File should include:
– Filename, owner, Version, Date, Rule identification, Rule name, Rule specification,

rule justification, rule examples (good and bad), rule severity classification, rule
change proposals, cross reference to checklist questions supporting the rules,
references to literature describing the ideas of the rules, data about rule violations
(frequency of defects as collected by inspection data), rule source, rule authority….
Any information pertaining to the rules in addition to this.

• 6. Information for Teaching should include
– Rules Specification, Rule justification, Examples

• 7. Information for Inspection should include:
– Rule Identification, Rule Name, Rule specification, Examples

Gilb@acm.org 56

Rules
TEMPLATES

29

Gilb@acm.org 57

Rule Template
• Rule set Identification: <file name, intranet location>
• Rules owner: <email>
• Scope:
• Version:
• Originated: <date>
• Updated: <date>
• Rule Prefix: Company XX.Rules.<name of these rules>

– <rule number>, <Rule Name>: <Rule Specification>
– <Rule Example>

• Interpretation note.
• Reference to Checklist Questions:

Gilb@acm.org 58

Rules: Owner Set Template (the Rules database)
Version 10 April 2001

• Filename
• Owner
• Version
• Date
• Rule identification
• Rule name
• Rule specification
• Keywords:
• Links:
• Rule justification (Rationale, Why this rule?)
• Rule examples (good and bad)
• Rule severity classification
• Rule change proposals
• Cross reference to checklist questions supporting the rules
• References to literature describing the ideas of the rules
• Data about rule violations (frequency of defects as collected by inspection data)
• Rule source
• Rule authority
• Any information pertaining to the rules in addition to this.

30

Gilb@acm.org 59

EXAMPLES
OF USE OF

RULES

Gilb@acm.org 60

Rules: Owner Set Example
 Version 2 April 2001

• Filename <where you store this rules detail in intranet>
• Owner: IW
• Version: 0.1
• Date: 2 April 2001
• Rule identification : Company XX.Rules.Data Sheet.1
• Rule name, User View
• Rule specification:

– The Data Sheet is limited to describing things the User can see and test.
• Rule justification : Because the Use has no way of verifying the other types of data, so they will just confuse the User.
• Rule examples (good and bad),

– Examples: Types to include: Functional Description, Signal Description, Electrical Characteristics,
Address Map Description, Register Description, Connection of Production Test Signals.

• NOT to include: Implementation Details like Internal Structure and Signals, Detailed Production Test information.
• Rule severity classification: Major
• Rule change proposals: -
• Cross reference to checklist questions supporting the rules: -
• References to literature describing the ideas of the rules: Courseware LED24 Data Sheet, …...
• Data about rule violations (frequency of defects as collected by inspection data): none 2001 yet
• Rule source: Quality Manager [IW]
• Rule authority: Quality Manager.
• Any information pertaining to the rules in addition to this.

31

Gilb@acm.org 61

Requirements Rules
(an example of a powerful rule)

Source Priority Management manuscript page 8, ideals are on page 6 of Priority
management

1. Quantify all things (qualities and costs) that vary (‘increased’,
‘better’)
Rationale: to give engineering clarity as basis for control of the

specification.

Example: Scale: Mean Time to Learn, Plan [Teenage User] 30 minutes

Version: March 20 2001, 11:40

References: Priority Management Chapter Part 1 page 68, Competitive
Engineering (Chapter on Quantifying Quality), Principles of Software
Management. (especially Templates, Chapter 19)

Gilb@acm.org 62

Reference copy Generic Rules
(THESE ALSO APPLY TO REQUIREMENTS)

• General Rules
Version June 22nd 2000 (apply to any plan) Owner: <process responsible>

• G1: Reference Name:
– Unique reference tag Capitalized for each elementary ‘specification.

• G2: Clarity
– Specs should be clear enough to measure or test, and clear to the intended readership.
– Readership: shall be defined for each document.

• G3: Unambiguous
– Specifications should be immediately unambiguous, as intended by the spec author, to the intended readership.

• G4: Source references
– Each individual specification shall explicitly and in detail give the source (person or paragraph) of the spec.
– Rationale: {quality control, priority, acceptance, consensus}

• G5: Rationale (justification, impact)
– Each spec of set of specs shall have a statement which directly explains what we are expecting as a result of doing it.

• G6: Single Instance
– Specification shall have only one valid ’master’ instance, to which all other uses will refer.
– Rationale: avoid confusion and multiple variations, automatic update, recognizability.

• G7: Fuzzy indication
– When we are conscious that a term or terms need further clarification or definition we will explicitly inform the reader,

usually using fuzzy brackets.
• G8: Assumptions:

– All underlying assumptions shall be brought out and explicitly stated.
– Rationale: risk analysis and testing of the truth of such assumptions.

• G9: Use The Planning Language
– The FM Version of The Planning Language (Planguage) will be the guide to style, consistency and definition of terms.
– Interim guide is Gilb’s: Competitive Engineering, at www.result-planning.com.

32

Gilb@acm.org 63

Example of Functional Specification
DATAB:
Gist: Deep Database Diagnostics.
Type: Functional Requirement.
Version: 25 Feb 2001: 15:43
Owner: Stakeholder : Quality Assurance Division
Linked To: ACC.D.MOP
Sub-functions: none
Specification:
Deep database diagnostics. <Various levels of checking> Not including <on mission>.

Assumptions: A0: it is cheaper to automate this function than to do analysis manually, and it is faster and more
reliable.

A1: the sub-system will be able to run in the background and monitor database quality.
A2: it will be able to be run user-parameter driven to sample particular classes of database records, data elements and

relationships.
A3: it can be used integrated with the automatic recovery system.

Risks: Failure to update this function in parallel with the database structure.
Impacts: {System Recovery, Bug Maintenance, Database Integrity}
Priority:
 This function must be available to some degree in first customer use releases. It will also be used in pre-

release systems testing to some undefined degree.
Dependencies: the database system itself must be defined and operational.
Test:
 This function shall be used in system testing and an early version of it can and should be made available in

parallel with the development of the database itself. The function shall be tested by insertion of artificial
database defects, and shall discover 100% of these.

Costs:
 the cost of developing and maintaining this function is assumed to be between 10% and 50% of the cost of

building and maintaining the database software in total.
Implementor: The Database Team
Function Intranet Location: ACC. Software.DB-Diagnosis

Gilb@acm.org 64

Part 2. Design Management
{Means, Strategies, Tactics, Techniques}

• Based on:
– satisfaction of all quality requirements, resource and other

constraints.
• Integrated with

– the Evolutionary project management cycles, learning and adjust
estimates.

• Tables relate
– all designs to all requirements

• Tables and quantification
– enable QC

• Design assertions
– based on evidence, sources

33

Gilb@acm.org 65

“Specific”: Specification Rules
• Rule set Identification: Data Sheet <intranet tbd>
• Rules owner: IW@Chip Company.com
• Version: 2 April 2001
• Scope: Data Sheets, Engineering Inspections, Engineers who write Data Sheets.
• Rule Prefix: Chip Company.Rules.Data Sheet.<#>
• 1. User View : the Data Sheet is limited to describing things the User (Glossary) can see and test.

– Examples: Types to include: Functional Description, Signal Description, Electrical Characteristics, Address Map Description, Register
Description, Connection of Production Test Signals.

• NOT to include: Implementation Details like Internal Structure and Signals, Detailed Production Test information.
– Severity: Major. More Detail: <????, models, templates, courseware>

• 2. Value Added : every statement should have some clear value added for the User.
– Examples: a necessary fact, not presented otherwise at all. An example to help Users understand better. A view showing relationships;

graphical diagrams to aid visualization of timing and operation.
• NOT VALUE ADDED: <obvious> things, <redundant> things.

– Severity: minor. More Detail: <????>
• 3. Cost Effective : Everything specified should be implementable in a Cost Effective (see Glossary!) manner. Severity:

Major.
• 4. Stakeholder Loyalty : The Data Sheets will be Correct and Complete interpretations of requirements all classes of

Customer-level Stakeholders. No essential-to-customer aspect shall be forgotten or corrupted. The Readership shall
be able to understand exactly which of their previously specified requirements are implemented by our direct cross-
reference to their requirements.

– Example: Source: Customer Requirements Version 2-April-2001 page 16 5.1.6 Timing.
• 5. Standards Extent : all telecommunications and industry standards used, will be referenced precisely, and a precise

list of the elements of those standards which we propose to apply, and a precise list of those standards elements
which we propose to NOT apply will be specified. The designer, the rationale and the sources shall be given.

– Example: IEEE Std 498, Apply Pgf 1, 2, 23, NOT pgf 3, 5, 50. <-Engineer Tomberg
• Rationale: we must apply some of these requirements because our customer demands it. <- Requirements 3.4.5

Gilb@acm.org 66

Blank “Design specification” template. Version March 23
2001

 Strategy Tag (official name):
• Version:
• Owner:
• Gist:
• Type: <strategy & design>
• Stakeholders:
• Specification (definition):
• Real Expected Impact:
• Primary objective,
• Other objectives,
• Costs}
• ± Uncertainty of Impact Estimate: ±___%
• Impact % on Specific Goal
• Primary objective: ___%
• Other objectives: ____ % on Objective _____
• Costs:
• Evidence:
• Source (of evidence):
• Credibility 0.0 low to 1.0 high
• Risks:
• Assumptions:
• References:
• Competitive Efforts:
• Market Targets:
• Alternative Strategies:
• Web Location of master specification:

34

Gilb@acm.org 67

Specification Rules for ‘Designs’
Version 22 June 2000/April 15 2001TG, owner <process responsible>
Design/Strategies/Initiatives: Defined As: means to impact the Objectives.

S1 (Use General Rules) - next slide
General Rules, Version June 22th 2000 (apply to any plan) Owner: <?>

S2: Template: Use the suggested template. ”Design Specification Template”(previous slide) .
S3.: Model: see best practice model for other insights: “#2 Initiative June 22”
S4: Spec: The specification must be detailed enough and clear enough to understand the

impacts of the design in terms of value delivered and costs.
S5. Real Impacts: The impacts are initially estimated on the scale of measure defined for a

particular objective. So you need to specify the expected change from a defined baseline for
the implementation of the design.

S6: (% Impacts) Impacts can also be expressed in terms of % progress on the real scale from
the current level (0%, usually a Benchmark such as Past level), to the target level (usually a
Plan level, 100% if on time).

S7 (Costs). All relevant cost aspects should be estimated as well as possible.
S8 (Risks) All potential risks which can negatively influence the estimated impact need to be

stated. This is to permit pro-active planning to contain those risks.
S9 (Assumptions). Any assumptions which the ‘impact, and timing-of-impact’ rests on, need to

be specified; again to that we can actively make sure these assumptions hold.
S10 (Credibility): the credibility of estimates basis shall be made on scale of 0.0 (none) to 1.0

(Perfect). (scale is in Gilb Competitive Engineering)

Gilb@acm.org 68

Company Glossary:
 what and why?

• Initial Purpose: to give a standard for exact
interpretation of terms used in standards,
especially Rules.

• Terms which do not have obvious correct and
complete interpretations.

• Terms which we expect to reuse several times,
need to be defined once very well to avoid
repetition and multiple updates

• Defined terms are Capitalized as a simple signal to
the reader that there is a formal definition they
should be aware of and use.

35

Gilb@acm.org 69

Glossary Entry Template:
Version 1.0 April2001

• <term main reference name>
• Definition: <write an unambiguous clear definition here.>
• ------------ useful extra specifications, these are an option, until rules demand them-----

• Owner: <which person or function can update this glossary?>
• Links: <hyperlinks, web links TO RELATED TERMS>
• Index: <terms to index>
• Synonyms: <list exact equivalent terms>
• Antonyms:<list opposite meaning terms>
• Related Terms: <list closely related terms>
• Non-English Terms:
• Concept Number (*nnn):
• Graphical Icon:
• Version number:
• Date of last update:
• Source: <where could we look up more extended information about the term?)
• Authority: <what expert or authority is there for this term, like IEEE standard>
• Standard: <reference to specific standards like ISI, IEE, IEEE etc.>

Gilb@acm.org 70

GLOSSARY Rules (MASTER)
Version July 9 2000 ßTG (A specific set of Rules for the Glossary) Note April 2001 these are dated in relation to the real

CE manuscript.
BASIS: the Rules for Editing and writing the entire Book manuscript “Generic CE Rules MASTER” apply to the Glossary.
GC1. Terms are numbered to identify concepts independently of language used to identify them.
GC2. The number is preceded by * sign and may have descriptive words after a dot. e.g. *001.aim.
GC3. The *-numbers will all be found in the index.
This ‘*999’ device is intended to help with consistency of using and understanding this method, in spite of translations,

and special adaptations.
GC4. All definitions will be proceeded by the main term in bold type as well as its asterisk number in bold type. These are

the Planguage symbols for a master definition of a term. This will be on a separate line, the definition (in regular type)
immediately below. This definition should use the format:

Defined: <then the words defining the concept in regular typeface>.
GC5. All terms which are defined in this Glossary, formally with an asterisk number, may be written with Capital Letters,

anywhere in the book text, to emphasize that they have a formal definition elsewhere. Note these rules are designed to
work with both regular and italic text.

GC6. The definition itself will be in regular type, on lines below the bold term tag, preceded by the keyword “Defined:”.
Except emphasized words which can be in italics, and optional bold type or Capitalized words (those which are
defined in this text). See GC9.

GC7. Commentary, which is not part of the essential definition, will be written in italic type. The main body of this
commentary will start on a separate paragraph, indented.

 At least one full line of space will be given between the term-definition and the commentary.
GC8. Emphasis, in a normal type sentence will be by means of italics.
GC9. An alternative way of pointing out that a term is defined in Planguage is to note the number in parenthesis

immediately after the term. E.g. “procedure (*115)”.
GC10. All formal Planguage ‘Parameters’ (examples {Scale, Defined, After}) will always have the first letter of all words in

the term Capitalized. They may also, for emphasis, CAPITALIZE the ENTIRE TERM.
GC11. Synonyms, abbreviations and the like will be indexed using the format:
*number.<term> (<type of term>). The index shall apply to the *number, and may also be done for the term.
GC12: Grammar class: whenever a term can have more than one grammar class, the one defined shall be stated explicitly:

Example: Delivery (noun) *xxx

Glossary Rules for
Competitive Engineering book manuscript

36

Gilb@acm.org 71

Examples of Terms defined in
a real company situation in

connection with Rules
definitions

April 2001
City between 2 lakes

Gilb@acm.org 72

Generic Rules: Engineer sub-set:
THIS IS A SAMPLE OF THE RULES THAT NEEDED DEFINED

TERMS THAT FOLLOW

• Rule set Identification: Specifications <intranet tbd>
• Rules owner: IW
• Version: 4th April 2001
• Scope: All technical written specification.
• Rule Prefix: S-CO.Rules.Generic.<#>
• 1. Clear: All specifications must be clear enough to test; to formulate a

specific test for proving correct delivery. It is about ‘precision’.
– Interpretation note: the investment in clarity must have a clear and probable ‘payback’ in

terms of value for stakeholders, or economic and time saving in the long term. In other
words do not overdo this unnecessarily.

• 2. Unambiguous: All specification must be Unambiguous to the Intended
Readership. There is one and only one valid interpretation the ‘correct’ one as
intended by the engineer. It is about ‘confusion’.

– Test [for Ambiguity] : if two or more people of the Intended Readership were to write their interpretations independently of each other, the
interpretations should be essentially identical in engineering substance and result (properties of quality, cost, function). Alternatively the author can
judge any one interpretation written or oral (for example at an Inspection meeting) as correct according to their intent.

– BACKGROUND COMMENT: THESE WERE APPROVED BY VOTE 100% BY CLASS
PARTICIPANTS

37

Gilb@acm.org 73

The consequence of a few rules...
• Use the page Datasheet Circuit:LED 24 page 8/20 version 7.9.2000 version 1.1.
• Using 10 minutes

– Mark on the sheet all potential violations (issues -> defects) of the Unambiguous/Clear rules ,
classify as probably (M) ajor or (m)inor

– 10 ¤¤¤ cash tax free to finder of most Majors!
– Reports Majors:10, 20, 15, 20, 12, 13, 12, 7, 4, 7, 12, 11, 11, 16, 7, 14, 6, 12, 8, 11, 19, 7, 8, 3
– Estimate the number of Majors on the entire page,
– Highest score 20
– Team score probably about ~ 2(3?) (for small teams of 2 -5 people) x 20 =40 for 22 people I alter the

estimate to 3x 20 =60±15, also we used only 15 minutes, Optimum effectiveness (maximum find)
needs about 1 hour: so add at least 50% 60 +50% ~= 90.

– Now this kind of SQC (Spec Quality Control) is 30% to 90% effective , the highest % take 5 to 8 years
of culture improvement. The lower number is more realistic and conservative. 33.3% 3x 90= 270
Majors ±100

– And this is only for TWO RULES: if 20 rules maybe we have 1800 Majors/page??
– If we fixed all 90 we found, we woud still have 180 (not found yet) +18 not fixed correctly = ~200

Majors per page.
– If about 1/3 of these caused delay or fault (~67) and the delay was about 10 hours then this page, after

correcting would delay you project by 10 x 67 = 670 engineering hours,
– We have a 20 page data sheet so the total project delay projected is about 20 x 670 hours =
– ~ 14,000 (@ 2,000 hours year) 7 work years lost as a result of this sloppy work.
– EXPERIENCE: at GE, IBM, Ericsson we have proven this calculation works
– ASSUMPTION: these are really Majors: the defects can really cause delay!

• In this case we suspect the documentation is ignored (with good reason!).
– CASE STUDY: RON RADICE (IBM) PAPER FOR LUIS IN THE CD
– TECHNICAL NOTE: BELLCORE (HON PENCE 93) 42% BUGS DUE SPECS DEFECT, TRW (78) 62%

BUG IN MILITARY SPACE SOFTWARE DUE TO SPECIFICATION DEFECTS GIVEN TO CODERS.!

Gilb@acm.org 74

Company Glossary (real example)
“ User, Cost-effective, Intended Readership”

• User:
– Defined As: Any person at the customer (not Synopsys) end who will use the data sheet for

any purpose whatsoever.
– Known set of Users [Data Sheet] includes:

• HW Engineers, SW Engineers, System Engineers, Engineering Management.

• Cost Effective:
– A cost-effective design is one where the value to customer versus the costs of

implementation, and production are:
– A. acceptable to the Customer
– B. Competitive with regard to our competition
– C. The lowest cost design alternative we can offer, with satisfaction of any other related

objectives and constraints, such as performance, reliability etc.
– Reference to further information:

• <specify how to calculate value and costs in practice!!!! TG>, Template for evaluation of any design
strategy.

• See Gilb: Principles of Software Engineering Management Chapter 11 Solution Evaluation,
– Version April 4 2001

• Intended Readership:
– The total set of all potential readers of the specification which we would want to understand

the specification correctly. This set should be listed and agreed for each type of document
and available either in the document heading or in an intranet location specified.

38

Gilb@acm.org 75

Glossary examples:
continued (Unambiguous..)

• Unambiguous:
– A specification has one one possible interpretation by the

Intended Readership: the exact one intended by the
document author.

– Test [Ambiguity] : if two or more people of the Intended
Readership were to write their interpretations independently
of each other, the interpretations should be essentially
identical in engineering substance and result (properties of
quality, cost, function). Alternatively the author can judge
any one interpretation written or oral (for example at an
Inspection meeting) as correct according to their intent.

Gilb@acm.org 76

Glossary Example Continued :
“Correct Complete, Customer-Level Stakeholders”

• Correct:
– Defined As: A specification is correct if it is in perfect agreement with correct and

official Sources.
– Example: a design specification is correct when it is addressing the official cross-

reference-by-the-design requirements as well as it claims to do (Impact analysis:
values and costs). A formal technical requirement specification is correct when it is
completely consistent with the customer wishes; and would be acknowledged by the
same customer to be a correct interpretation of their initial requirements or wishes.

• Complete:
– Defined As: A specification is complete when it addresses and interprets all aspects

of the sources it claims it is using (by direct source reference to them). Not only
when it addresses the referenced source specifications; but it must laso satify the
condition that it completely addresses the source specifications which is logically
should be using as engineering process inputs, according to either formal process
definitions (Rules in particular) or common sense and real life observation.

– Examples:
• If a specification document is found to be missing any one specification it

should have, according to the Rules for that type of document or specification,
then that missing specification in the engineering work product is a defect.

• If the Rule is ‘All Quality Requirement from the customer must be expressed
quantitatively” and the work Product specification is still”Bad Data Robust’
then the specification is Not complete.

39

Gilb@acm.org 77

Glossary Examples Continued:
“Customer-level Stakeholders”.

• Customer-level Stakeholders.
– Definition: Project or product stakeholders with

critical or profitable requirements, and which are at
the level of customer, user, rather than Synopsys
internal/ our suppliers.

– Example [Customer-Level] {Customer Designers,
Customer Managers, Manufacturers, ??}

Gilb@acm.org 78

Glossary examples for ‘bad’ stuff :)
• Error:

– act committed by a human which is wrong by some defined standard of action (a rule or
process for example)

• Defect:
– a written specification which is wrong according to some defined standard (a rule).

• Major:
– a defect severity classification which implies potentially non-trivial costs downstream as a

result of this defect type. Avg. Major cost ~10 engineering hours, if ‘triggered (~25%to 35%
probability)

• minor:
– a defect severity classification meaning not major.

• Issue:
– a specification identified as potentially being a defect, but we are not yet certain.

• Fault:
– A potential malfunction in a system or product.

• Bug:
– Informal synonym for ‘fault’. It is also used to describe occurrence of a ‘malfunction’.

• Malfunction:
– A real system (even a prototype) fails to act according to some definition of how it should

act (example requirements or design or both)

40

Gilb@acm.org

Impact Estimation Principle: Multiple Purposes

 Attribute Tag

Zero
Ref-
erence
Point

100%
PLAN
or
MUST

IDEA-1 IDEA-2 Risk
Sum
(10.)

SUM
(9.)

Safety
Factor 2
Deviation

(11.)

 RELIABILITY 300 Hrs 3,000 h 50%±0 20%±80 ±80 70% -130%

 USABILITY 20 min. 10 min. 10%±40 60%±90 ±130 70% -130%

 Sum Qualities (12.->) 60 80

 CAPITAL 0 1 mill. 50%±20 10%±20 ±40 60% -10%

 MAINTENANCE 1
mill/year

100,000
per yr.

0±20 100%±80 ±100 100% -50%

 Sum Costs (13.->) 50 110

Quality/cost ratio (14.->) 1.2
(60/50)

0.73
(80/110)

ARGUE
for or against
alternatives

FIND WEAKNESS
 in useful quality
or excessive costs

CUT FAT
by understanding
value to cost ratio

SEE RISK
by documenting

uncertainty

DESTROY
false beliefs
with facts

PRESENT
facts & basis

COMPARE
alternatives

EVALUATE
all critical
attributesPRIORITIZE

by overall objective
value to cost

SEQUENCE

by risk or value

Gilb@acm.org 80

Impact Estimation:
 Basic Concepts

Source: Lindsey Brodie, Editor of Competitive Engineering May 2000

Incremental
Scale Impact Objective

Scale

Absolute
Values

Percentage
Values 0% Percentage Impact (%) 100%

Scale ImpactBaseline Target

41

Gilb@acm.org

“Impact Estimation” concepts: full table

AVAILABILITY

PORTABILITY

USABILITY

“ 3 mins.->1”
BUDGET

EMPLOYEES
"0->32 people"

A1 B4 CD DX Sum
0% 100% 50% -5% 145%
1 1 1 1 4%

60±20
%

"99.9%->99.98%"

"0->1 million" 100

Benefit/Cost->
0
0.6

99

10%
30%

5.0

41 200 400%
? - 110?

9±5

"80%->95%"

"PAST->PLAN"

Strategies->
Objectives

Tags of proposed TOTAL SET of strategies (defined
elsewhere)

for meeting the quality objectives, within resource constraints.All in %!

Gilb@acm.org

“Impact Estimation” concepts: detail

AVAILABILITY

PORTABILITY

USABILITY

BUDGET

EMPLOYEES
"0->32 people"

A1 B4 CD DX Sum

0% 100% 50% -5% 145%

1 1 1 1 4%
60
±20

"99.9%->99.98%"

"0->1 million" 100

Benefit/Cost->
0

0.6

99

10%
30%
5.0

41 200 400%

? n.a. 110?

Quality and
 Benefit
Objectives

Rough sum of effects
of all strategies on a

single attribute's
planned

level.

Clearly not
good enough
design yet

Safety
margin
4XResource

Budget
tags

Sum Benefits / Sum resources
= rough relative goodness
of a strategy with respect to
all objectives.

Tags of proposed TOTAL SET of
strategies (defined elsewhere)

for meeting the quality
objectives, within resource constraints.

9±5 Explicit uncertainty estimate

"3 mins.->1"

"80%->95%"

"PAST->PLAN"

Strategies->
Objectives

USABILITY:A1

Design method A1 in all competitive products and in
our lab prototypes shows user learning time to be
under two minutes. <- Lab Report U-92

Objective
 statement, example

Evidence

A1: Graphical interfaces using minimal
language, no codes, maximum
pictures, maximum user tailoring,
maximum learning about particular
users.

Strategy Definition Example

Estimation language:
0% = no effect with respect to PAST level.
100% = expected to meet PLAN level.
negative effect= makes things worse than PAST level.
? = no basis for an estimate.
n.a. = not applicable.

42

Gilb@acm.org 83

Credibility Rating Scale
Credibility Rating Meaning

0.0 Wild guess, no credibility
0.1 We know it has been done somewhere
0.2 We have one measurement somewhere
0.3 There are several measurements in the estimated range
0.4 The measurements are relevant to our case
0.5 The method of measurement is considered reliable
0.6 We have used the method in-house
0.7 We have reliable measurements in-house
0.8 Reliable in-house measurements correlate to independent

 external measurements
0.9 We have used the idea on this project and measured it
1.0 Perfect credibility, we have rock solid, contract-

guaranteed, long-term, credible experience
with this idea on this project and, the results
are unlikely to disappear

Gilb@acm.org 84

Quality
Requirements
 (defined
 quantitatively)

design ideas
(specified in detail

elsewhere)

Impact Table 3D Display:
How good are design ideas compared to your objectives?

Doc. Process
Training
ProjectSurvey
Show-&-Tell
Tracking System0

50

100

150
good stuff indicator

43

Gilb@acm.org 85

RELIABILITY

CUSTOMER JOY

USABILITY

CALL SETUP

VOICE
MOBILITY

US$
WORK HOURS

DISK SPACE

HULA MUSIC

BB

CC

DD

10%
1%2%

25%

50%

33%

5%
0%

0%

10%
1%

50%

20%

5%

33%

5%

0%17%

10%
5%13%

0%

25%

67%

40%

0%

33%

30%
25%

13%

0%

100%

3%

5%29%

33%

0%

20%

40%

60%

80%

100%

Skyscraper Impact Estimation Format

Gilb@acm.org 86

Impact Estimation Example
 Design
Ideasè

Objectives

IDEA-1
Impact

Estimates

è.#*

IDEA-2
Impact

Estimates
è.#*

Sum (3)
Percentag
e

Impact

=.+.%.#

Sum (4)
Percentage
Uncertaint

y

=.+.%.±

Safety
Factor

 ±.*.2
Deviation(5)

1650hr
±0 (1)

840hr
±240

+.-|-|-.#
RELIABILITY

300 -> 3000 hours
MTBF

+.%.#
61%±0

(2)
31%±9% 92% ±9% -108%

1min.
±4

6 min.
±9

Incr. Scale impact: +.-|-
|-.#

USABILITY
20 -> 10 minutes

Incremental % est.:

+.%.#

10%±40% 60%±90% 70% ±130% -130%

Sum Qualities (6)
 =.Oè*.% 71% 91%

500K
±200K

100K
±200K

+èO-|-|-#
+.èO.-|-|-.#.±

CAPITAL

0 -> 1 million US$ 50%±20 10%±20 60% ±40% -10%

0 K$/Y
±180K

1 M$/Y
±720K

MAINTENANCE
1.1M -> 100K/year US$

+.èO.#.% & ± 0%± 18% 100%±72
%

100% ±90% -50%

Sum Costs (7)
 =.èO*.% 50% 110%

Quality-To-Cost Ratio
(8) Oè* /
èO*

1.42
(71/50)

0.83
 (91/110)

Idea-1 =
71%
better

44

Gilb@acm.org 87

An Impact Estimation for ‘Learning’
TASK-HELP: Gist: the set of ideas below.

ONLINE-SUPPORT: Gist: provide an optional alternative user interface, with the user-
task information for defined task(s) embedded into it.
ONLINE-HELP: Gist: integrate the user-task information for defined task(s) into the
user interface as a ‘Help’ facility.
PICTURE-HANDBOOK: Gist: produce a radically changed handbook that uses

pictures and concrete examples to instruct, without the need for any other text.
ACCESS-INDEX: Gist: detailed keyword indexes will be made, using experience of at
least ten real users learning to carry out the defined task(s). What do they want to look
things up under?

Ill. 8.1.1 More-detailed design specification

‘Task Help’ Design
Ideas->

Objective

ON-LINE
SUPPORT

ON-LINE
HELP

PICTURE
HANDBOO

K

ON-LINE
HELP +
ACCESS
INDEX

LEARNING
Past[60min]-
>Plan[10min]

Scale Impact 5 min. 10 min. 30 min. 8 min.

Scale Uncertainty ±3min. ±5 min. ±10min. ±5 min.

Percentage Impact 110% 100% 67% (2/3) 104%

Percentage Uncertainty ±6% ±10% ±20%? ±10%

Evidence Project
Ajax, 1996

Other
Systems

Guess Other
Systems
 + Guess

Source Ajax report,
p.6

World
Report p.17

John B. World Report
p.17 + John

B.

Credibility 0.7 0.8 0.2 0.6

Development Cost 120K 25K 10K 26K

Quality- To- Cost Ratio 110/120 =

0.92

100/25 =

4.0

67/10 =

6.7

104/26 =

4.0

Notes:
Time Period is two
years.

Longer
time-scale

to
develop

Gilb@acm.org 88

Impact Estimation Purposes (lots of purposes!)
1. Evaluating a single design idea. How good is the idea for us?
2. Comparing two or more design ideas to find a winner, or set of winners. Use IE, if you want to set up an argument against a prevailing
popular, but weak design idea!
3. Gaining an architectural overview of the impact of all the design ideas on all the objectives. Are there any negative side effects ?
4. Obtaining systems engineering views of particular components, or particular quality aspects.
Are we going to achieve the reliability levels ?
5. Analyzing risk ; evaluating the designs with regard to negative uncertainty and minimum credibility.
6. Planning evolutionary project steps with regard to value and cost.
7. Monitoring for project management accounting purposes, the progress of single evolutionary delivery steps, and the progress to date compared
against the requirement specifications or management objectives.
8. Predicting future costs, project time-scales and quality levels.
9. Understanding organizational responsibility in terms of attributes and costs by organizational function (Steve Poppe's application).

 In 1992, Mr. Steve Poppe pioneered this use at executive level while at British Telecom North America.
10. Achieving rigorous quality control of a design, before approval.
11. Presenting ideas to committees, management boards, senior managers, review boards, and customers for approval.
12. Identifying which parts of the design are the weakest link (risk analysis). If there are no obvious alternative design ideas, they should be tried
out earliest, in case they do not work well (risk management). This impacts scheduling.
13. Enabling configuration management of design, design changes, and change consequences.
14. Permitting delegation of decision-making to teams. Teams can achieve better internal progress control using IE, than they can from
repeatedly making progress reports to others, and acting on other’s feedback. (See point 11. IE can be used to report progress to management, as
opposed to seeking permission.)
15. Presenting overviews of very large, complex projects and systems by using hierarchical IE tables. Aim for a one page top-level IE view for
senior management.
16. Enabling cross-organizational co-operation by presenting overviews of how the design ideas of different projects contribute towards corporate
objectives . Any common and conflicting design ideas can be identified. This is important from a customer viewpoint ; different projects might
well be delivering to the same customer interface.
17. Controlling the design process. You can see what you need, and see if your idea has it by using the IE Table. For example, which design idea
contributes best to achieving usability? Which one costs too much?
18. Strengthening design. You can see where your design ideas are failing to impact sufficiently on the qualities; and this can provoke thought to
discover new design ideas or modify existing ones.
19. Helping informal reasoning and discussion of ideas by providing a framework model of how the design is connected to the objectives in our
minds.
20. Strengthening the specified objectives. Sometimes you can identify a design idea that has a great deal of popular support, but doesn’t appear
to impact your objectives. You should investigate the likely impacts of the design idea with a view to identifying additional stakeholder objectives,
which may be the underlying reason for the popular support. You might also identify additional types of stakeholders.

45

Gilb@acm.org 89

IE Cell
Depth

Credibility level
0.6

Source of evidence
“Project Post Mortem”

Evidence for estimates.
“Project X and Y results”

 Plus & minus estimate.
 ±20%

 % way to target estimate.
50%

 Real SCALE estimate.
600Hours

Gilb@acm.org 90

Impact Estimation Policy
Impact Estimation Policy

1. All designs or strategies which can have significant (5% or more) impact on any
one critical quality or cost requirement of a project or product, must be included
in an Impact Estimation table.

2. The design ideas must be detailed and clear enough to clearly support the
estimates made, irrespective of who would make or evaluate the estimates.

3. An Impact Estimation table, with all related design and requirements
specifications, shall be quality controlled with respect to all relevant Rules, and the
Major defect level will be low enough to Exit, and the estimated Major defect level
will in any case be stated on the cover page.

4. Significant proposed changes to the design or architecture shall be accompanied
by an impact estimation showing the net impact of the change. The quality of
specification and QC shall be as in the policy above.

46

Gilb@acm.org 91

US Army IE Table Persinscom
STRATEGIES è

OBJECTIVES

Technolog

y

Investment

Business

Practice

s

People Empow

-erment

Principles
of IMA
Management

Business

Process

Re-

engineering

SUM

Customer Service

?è0 Violation of agreement

50% 10% 5% 5% 5% 60% 185%

Availability

90% è 99.5% Up time

50% 5% 5-10% 0 0 200% 265%

Usability

200 è 60 Requests by

Users

50% 5-10% 5-10% 50% 0 10% 130%

Responsiveness

70% è ECP’s on time

50% 10% 90% 25% 5% 50% 180%

Productivity

3:1 Return on Investment

45% 60% 10% 35% 100% 53% 303%

Morale

72 è 60 per mo. Sick

Leave

50% 5% 75% 45% 15% 61% 251%

Data Integrity

88% è 97% Data Error %

42% 10% 25% 5% 70% 25% 177%

Technology Adaptability

75% Adapt Technology

5% 30% 5% 60% 0 60% 160%

Requirement Adaptability

? è 2.6% Adapt to Change

80% 20% 60% 75% 20% 5% 260%

Resource Adaptability

2.1M è ? Resource

Change

10% 80% 5% 50% 50% 75% 270%

Cost Reduction

FADS è 30% Total

Funding

50% 40% 10% 40% 50% 50% 240%

SUM IMPACT FOR
EACH SOLUTION

482% 280% 305% 390% 315% 649%

Money % of total budget 15% 4% 3% 4% 6% 4%

Time % total work

months/year

15% 15% 20% 10% 20% 18%

SUM RESOURCES 30 19 23 14 26 22
BENEFIT/RESOURCES

RATIO
16:1 14:7 13:3 27:9 12:1 29:5

Gilb@acm.org 92

Sample Objective/Strategy
Persinscom

Customer Service:
Ambition: Improve customer perception of quality of service
provided.
Scale: Violations of Customer Agreement per Month.
Meter: Log of Violations.
Past [1991] Unknown Number çState of PERSCOM
Management Review
Record [NARDAC] 0 ? ç NARDAC Reports 1991
Must : <better than Past, Unknown number> çCG
Plan [1991, PERSINCOM] 0 “Go for the Record” ç Group
SWAG

Technology Investment:
Exploit investment in high return technology. Impacts:
productivity, customer service and conserves resources.

47

Gilb@acm.org 93

Design Comparison.
Can you compare apples and oranges?

Current

Price .35

Vitamins
Poison
Sprays
Domestic
Produce

Current
Price
Wastage
 %

gQuality to
Cost

Vitamins
30%

Vitamins
 80%

Vitamins
 65%

Vitamins
 57%

Poison
Sprays 60%

Poison

Sprays 25%
Poison
Sprays 85%

Poison
Sprays 40%

Domestic
Produce 95%

Domestic
Produce 44%

Domestic

Produce 15%
Domestic
Produce 60%

Current
Price .55

Current
Price .67

Current

Price .22
Wastage

10%
Wastage

20%
Wastage

40%
Wastage

60%

g
Quality to
cost ratio 4.0 g

Quality
to cost ratio

1.99
g

Quality
to cost ratio

1.54 g

Quality
to cost ratio

1.92Ratio

Apple Pear Strawberry Carrot
Requirements

Design ideas

Gilb@acm.org 94

Design feedback adjustment integrated into the
delivery cycle

x

Requirements
(best current draft)

Design/Architecture
(best current draft)

Next Step Selection
(best current value/$)

x
Reqts.
Design
Do Step

Study
Measure it

x
Reqts.
Design
Do Step

Study
Measure it

x
Reqts.
Design
Do Step

Study
Measure it

Step 1 of 50 StepN of 50 Last Step

48

Gilb@acm.org 95

Part 3. Specification QC
• Based on Objective ‘rules’ of specification
• Focus on ‘Major’ downstream costs reduction
• An engineering process measuring method
• Basis for continuous improvement of engineering

process (95% defect avoidance)
• Proven to reduce project time 50% (rework)
• Proven in Aircraft Engineering, Telecoms
• Superior to ‘checking’, ‘reviews’, ‘approvals’,

‘meetings’

Gilb@acm.org 96

A systems level Specification QC process based
on Statistical Process Control methods

(Deming)
• Focus on

– Measurement, by sampling,
of a specification’s
conformance to ‘best
practice’ standards (rules
and exit levels)

– Not about ‘bug removal’

– Predictor of bugs in test and
in field

49

Gilb@acm.org 97

Defects in a Statement
The objective is to get higher adaptability using product X

RULES FOR QUALITY OBJECTIVES: Tag: RULES.QOBJ
QOBJ.1. They should be unambiguously clear to the intended reader.
QOBJ.2. They shall specify a SCALE of measure to define the concept.
QOBJ.3. They shall break down complex concepts into a set of measurable concepts.
QOBJ.4. To define 'relative' terms like 'higher' they shall specify at least two points of reference
on the defined SCALE.
QOBJ.5. They shall specify exactly when a quality level is to be available.
QOBJ.6. They shall not mix design ideas in the specification of objectives.
QOBJ.7. The process input (like contract, standard, marketing plan) of the requirement shall
be given.
QOBJ.8. Fuzzy unclear concepts shall be marked with <angle brackets> for improvement.

ambiguous,
unclear (1), (8)
no <fuz>

no SCALE (2)

complex concept not
broken down (3)

no 2 points
of reference
to define
‘higher’(4)

no statement of
exactly when
the objective is
to be met (5)

a design idea is
mixed into the
objective.(6)

source not given (7)

Gilb@acm.org 98

‘Editing’ to follow the rules
(this might not be a ‘good’ plan but it contains no

‘defects’

• Adaptability:
– Maintainability:

• SCALE: Clock time to fix a bug and validate fix.
• PAST [Product X, last year] 5 hours <- Internal stats.
• PLAN [Product Y, At Launch] 10 minutes <- Mkt. Dir.

–Portability: <- Marketing Plan Dec 7th. M.P.
• SCALE: Conversion cost for [defined ports].
• PAST [Prod. X, Any UNIX, 1996] 100 hours/1000 Lines
• PLAN [Prod. Y, Any UNIX, 2001] 20 hours/1000 Lines

50

Gilb@acm.org 99

10 Top Advanced SQC/Inspection
Principles

• Pr1. Prevention is more effective than Cure
• Pr2. Avoidance is more efficient than removal
• Pr3. Feedback teaches effectively
• Pr4. Measurement gives facts to control the process
• Pr5. Priority to the Profitable
• Pr6. Forget perfection, you can’t afford it!
• Pr7. Teach fishing, rather than ‘give fish’
• Pr8. Framework for Freedom beats bureaucracy
• Pr9. Reality rules
• Pr10. Facts beat intuition

Gilb@acm.org 100

Advanced SQC/Inspection
Objectives

• Central Objectives
– 1. Engineering Process Control
– 2. Measuring Specification Quality
– 3. Reduce Project Time & Cost

• Secondary Objectives
– 4. Identify and Remove Major Defects
– 5. Reduce Service/Maintenance Costs

• NOT Objectives
– Approve document ‘content’
– Remove minor defects
– ‘Improve’ Quality

51

Gilb@acm.org 101

Main ‘Specs QC’/Inspection Objectives
1. Time-to-Delivery
2. Measurement

•document quality
•doc. process quality
•QC value/cost

3. Release “downstream”
4. Identify defects
5. Fix defects

avoid new defect injection
6. Improve process

product producers
QC process itself

7. On-the-job training

8. Motivation
9. Help Engineer
10. Effectiveness (Quality)
11. Efficiency (Productivity)
12. Train QC team
leader
13. Certify the team leader
14. Motivate Managers
15. Reduce Maintenance
Costs
16. Relieve Project Leader.
17.many others

Gilb@acm.org 102

Difference to ‘Conventional’ Inspections

• Conventional Inspection
(IBM, Fagan, 1973)

– No sampling
– Inflexible bureaucracy
– Focus on ‘Cleanup’
– Focus on ‘software code’
– Poorly documented

process
– “My Way”<--MEF/IBM
– Do the defined process!
– ‘Interpret’ the document

• ‘Advanced’ Spec QC
(Gilb & Graham, Software

Inspections)
– Sampling to measure

specs (much cheaper!)
– ‘Intelligent Inspections’
– Focus on Time & Control
– Systems, upstream focus
– Richly documented (Book)
– ‘Our Way’ & ‘Your Way’
– Do what pays off, only
– Check against Rules,

Sources

52

Gilb@acm.org 103

Inspections and Reviews

• Inspections
– Judgement based on

conformance to standards
– Well written, clear,

complete, trustworthy
– Can be carried out by any

of ‘intended readership’
– Should be done to

guarantee decision-
makers a good basis for a
decision.

• (Go No-Go) Reviews
– Judgement based on

goodness in real world
– Content, not format;
– Value, not clarity
– Approval by authorized

‘managers’
– Should not be Entered if

document not Exited from
Inspections

Inspection:
Does the Spec
Meet standards?

Work
Product

Exited
Document

Review:
Go No-Go?

Gilb@acm.org 104

Paradigms
• P1. Engineering process control
• P2. Cleanup is ineffective
• P3. Teamwork beats ego
• P4. Data beats guessing
• P5. Real Time Control
• P6. Author Responsibility
• P7. Checker Consultants
• P8. Author is Client
• P9. Optimize Checking speed
• P10. Quantified Gatekeepers
• P11. Rules Rule Objectively
• P12. Structure satisfies objectives
• P13. What works is right

53

Gilb@acm.org 105
 Version 0.1

 The Inspection Process for Spec Quality Control

Planning and Entry

Kickoff

Checking

Product Meeting, “Logging”

Edit Checking (followup)

Editing

Exit Process

Gather sources, rules, checklists. Check conditions for
success OK. Assign checkers roles & rates to check

(option) Train checkers, teach project
documentation, agree team goals & strategies

Individuals check to find Major defects
(Rule violations with consequences)

Team evaluates checking data.
(option) Logs Major defects.

(option) Double checks for 15% more

Author edits product using defect log
Sends Change request to others

Evaluates severity and consequences

Team leader checks and
approves editing process

Leader checks relevant exit conditions,
especially remaining Major

defects/page in product document.
OK?, exit

product document
with known Major

defect level

Process Brainstorm Meeting
(option)Team evaluates sample of Majors

brainstorming root cause and cure
for 30 minutes for 10 Majors

If Not OK, then
work to remove

failed exit
conditions.

Gilb@acm.org 106

Gary's Personal Learning (to follow process) Curve
(Douglas Aircraft, 1988, private report)

4
Cognizant Engineer Gary
was “document author”

at points 1 to 5
Experience as Checker

•0
1 2 3 5

80

40
23
8

•

•
••

Issues
Identified

•

54

Gilb@acm.org 107

All vital documentation
• Can be measured for

adherence to standards
• engineering process can

be indirectly measured
• powerful training device
• gives objective release

(exit) and accept (entry)
criteria for engineering
process

Gilb@acm.org 108

Fault Density versus Checking Rate: Raytheon
95<-- TR 017 1995 at SEI website SEI.cmu.edu

Why do you think they avoid using the optimum rate?
Hint: “Our process mandates 100% Inspections coverage”

KDSI/Hour

<-“Statistically
preferred levels”

Action items

per KDSI 100 to 250

DSI/hour

55

Gilb@acm.org 109

Achieving Project Predictability:
Raytheon 95

140%

100%

1988 19941990

Cost At Completion / Budget %

Gilb@acm.org 110

Cost of Quality over Time: Raytheon 95

The individual
learning curve ??

Cost of Rework
(non-conformance)

Cost of
Conformance

End 1988 End 1994

45%

56

Gilb@acm.org 111

A Sampling Case Study

• 1986 Northern Europe
– Air traffic control trainer system for export
– 80,000 pages contracted pseudocode before code
– 40,000 pages already written
– Project seriously late already (customer informed)
– About 7 management signatures approving the 40,000

pages (pseudocode for coders)
– SQC of a sample of three pages

• chosen by random numbers
• declared to be representative
• 19 Major defects found in half day QC/Inspection by

the 7 managers
• director checks the defect log and confirms

Gilb@acm.org 112

Part 4. Evolutionary Project
Management

• Proven industrially by IBM FSD, HP, JPL, Microsoft
• DoD moving towards it (Mil Std 498, Jt Std 016, IEEE stds)
• Based on feedback to requirements and design
• Based on 2% to 10% of normal delivery cycles
• Project Progress = delivered user results
• Almost no literature or teaching, ‘unknown’ (Peter J Morris)

– “The Management of Projects” (Telford, 1994 London)
• Major culture and project management ‘shift’
• Design to cost, design to schedule
• Risk control, on time, under budget
• User-participative all the way
• See Alan MacCormack: How Internet Companies Build Software,

Winter 2001, MIT Sloan Management Review, p75 on.

57

Gilb@acm.org 113

The OMAR Project (UK) Value
Early

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Project Month

Project CPM Cumulative Delivered Functionality
Project CPM Benefit / Cost
OMAR Cumulative Delivered Functionality
OMAR Cumulative Benefit / Cost

Case study by

stuart.woodward@natural
-metrics.freeserve.co.uk

“Evolutionar
y Project
Management
”, IEEE
Computer,
Oct 1999,
P.49-57

Gilb@acm.org 114

Evo Cycles
Slide 68Evolutionary Project Management Cycle

PLANPLAN
Set Improvement Targets

Find Design ideas/Strategies

Evaluate Ideas

Make Calendar-time plan

Make or buy the Evo step

System test the step internally

Do Step with User

Study ResultsStudy Results

Strategic Objectives,Strategic Objectives,
Architecture Architecture andand

 Plans Plans

"Head"

"Body”
 or

“micro-project”

A Step

DoDo

StudyStudy

ActAct

Project
 Architecture

and
Management

Level

Evo allows “Continuous
Project Improvement”,
while DPP (Defect
Prevention Process),

 used by Raytheon,
focuses on organizational
learning, improving many
people, teams, projects
later;
(maybe not this project)

58

Gilb@acm.org 115

Evolutionary Results Delivery
Method Project Planning Policy

• PP1.(Budget) No project cycle shall exceed 2% of
total budget before delivering measurable results
to a real environment.

• PP2. (Deadline) No project cycle will exceed 2% of
total project time (one week for a year's projects)
before it demonstrates practical measurable
improvement, of the kind targeted.

• PP3.(Priority) Project cycles which deliver the
most planned results to customers, for the
resources they claim, shall be delivered first, to
the customer.

Gilb@acm.org 116

The Step Definition: Template
• Step Name: <a tag> [more detail like <which product>, <which area of

application>]
– Stakeholder: <who are you going to give value to??>
– Implementor: <who is in charge of implementing this step>
– Step Content:

• <step tag> Gist <step gist>
– Tasks

» <list of step tasks>

– Step Value:
• <numeric or rough estimate of value to stakeholder in terms of formal objectives planned

level and scales>,
• at least value on scale 0 (none) to 9 (highest)

– Step Cost:
• <Estimates of time and other costs (engineering hours) which are budgetted or

constrainde by the Evo 2% policy>
• At least cost on scale 0 (dirt cheap) to 9 (high and unpredictable)

– Step Constraints:
• < any legal, political, economic, security constraints imposed on implements>

– Step Dependencies:
• <anything which must be in place, finished, working properly, for us to be able to start

this evostep or to complete it> <--<who says this is true?>

59

Gilb@acm.org 117

The Step Definition: (people): Scribe Guide Tom
• Step Name: Tutorial [Product 999, Basic]

– Stakeholder: Marketing, XX (<agreed, Next Friday>)
– Implementor: <XX>
– Step Content:

• HCTD :<Hard Copy Text document> <-- Can do 1 week MMM
– Basic minimal functions.

» Step by Step Instructions, in English
» Focus on sales aspects, not how to do it (not yet, in this step)
» Go to specific web sites
» Pinpoint some characteristics of what we see on the terminal
» Compared with what we see on a PC or other terminal
» what instructions should be on the terminal to begin
» Intended audience: Marketing Guy
» Questionnaire for Stakeholder
» Process for Testing with stakeholder (example observation, times)

– No illustrations, just text.

– Step Value: (to TTT, Saleability) : <some possibility of value>,
• Stakeholder Developers: value of feedback on a tutorial.

– Step Cost: 10 hours per page, < 10 hours <--MMM
– Step Constraints: must be deliverable within 1 calendar week.

• At Least 3 hours of TTT’s time for input and trial feedback
– Step Dependencies:

• <feature list of WWW and 77777 WWW Browser> <--MMM

Gilb@acm.org 118

Step Impact Estimation and Accounting

• An IE table for project management planning or
feedback. It specifies the projected or actual impact of
any set of design ideas done at a particular
implementation cycle.

C y c l e 1
I 1 [C A]
I 4

C y c l e 2
I 1 [N Y] &
I 4 [C A]

C y c l e 3
I 1 [D C] & I5 C y c l e 4

I 3 [A Z]

C y c l e S u m C y c l e S u mC y c l e S u m C y c l e S u m

G O A L - Q

G O A L - I

C O ST - C

B e n e / Co s t

3 0 % 3 0 %

0 % 0 %

 2 % 2 %

3 0 / 2 3 0 / 2

4 0 % 7 0 %

6 0 % 6 0 %

5 % 7 %

1 0 0 /
5

1 3 0 /
7

1 0 % 8 0 %

2 5 % 8 5 %

4 % 1 1 %

3 5 / 4 1 6 5 /
1 1

3 0 % 1 1 0 %

2 5 % 1 1 0 %

3 9 % 5 0 %

6 5 /
3 9

2 2 0 /
5 0

60

Gilb@acm.org 119

Simple Evo Model
Project Management

System Architecture

Requirements

Design

Build

Internal Test

Deliver to ‘User’
Study Result versus Plan

•Head

•Body

Gilb@acm.org 120

Basic Principles of Results Delivery
• RD1. Any Project can be managed better using process control.

• RD2. Any change can be delivered as a series of smaller changes.

• RD3. No person knows all the results of a design in advance.

• RD4. No person can know what all the goals should be, in advance.

• RD5. You must be prepared to compromise intelligently with reality.

• RD6. Early delivery means early payback.

• RD7. The customer is always right, even when they change their goals.

• RD8. There is no real end to a project, if we have competition.

• RD9. You cannot foresee every change, but you can foresee change

itself.

• RD10. Useful results are your only justification for existence.

61

Gilb@acm.org 121

Evo Cousins: Process Control

Evo DPP Defect
Prevention
 CMM 5

Inspection
(Doc. Qual. Ctl.)

CMM 3

SPC
Statistical
Process
Control

Project
oriented

Organization
orientation

Document, and
work process

General, but
manufacturing
bias

Meet project
goals or
change them

Improve
general org.
ability work

Approve work,
clean work,
analyze tasks

Improve
work
processes

Project
Manager

Quality
Director

Inspection
process owner

Quality
Control

Gilb@acm.org 122

“Evo” model

System
Requirements

System
Design Evo Step 1

Evo Step 2

Evo Step n

Evo Step
1. Requirements
2. Step Design
3. Assemble
4. Deliver Step
5. Study Step

62

Gilb@acm.org 123

Dynamic
Priority

Product

Step 1

Step 1

Step 2

Step 2

St.3

Must

Must Plan

Plan

‘Performance’ now has priority
because it is not at ‘survival’ level yet

‘Reliability’ now has priority
because it has not reached

‘satisfaction’ level yet.

Gilb@acm.org 124

Step Impact Estimation and Accounting

• An IE table for project management planning or
feedback. It specifies the projected or actual impact of
any set of design ideas done at a particular
implementation cycle.

C y c l e 1
I 1 [C A]
I 4

C y c l e 2
I 1 [N Y] &
I 4 [C A]

C y c l e 3
I 1 [D C] & I5 C y c l e 4

I 3 [A Z]

C y c l e S u m C y c l e S u mC y c l e S u m C y c l e S u m

G O A L - Q

G O A L - I

C O ST - C

B e n e / Co s t

3 0 % 3 0 %

0 % 0 %

 2 % 2 %

3 0 / 2 3 0 / 2

4 0 % 7 0 %

6 0 % 6 0 %

5 % 7 %

1 0 0 /
5

1 3 0 /
7

1 0 % 8 0 %

2 5 % 8 5 %

4 % 1 1 %

3 5 / 4 1 6 5 /
1 1

3 0 % 1 1 0 %

2 5 % 1 1 0 %

3 9 % 5 0 %

6 5 /
3 9

2 2 0 /
5 0

63

Gilb@acm.org 125

Impact Table for Step Management
Step
#1 A:
{Design
-X,
Functio
n-Y}

Actual Differe-
nce.
 - is bad
+ is
good

Total Step #2
B:
{Design
Z,
Design
F}

Actual Differe-
nce

Total Step #3
Next
step
plan

Reliabil
ity
99%-
99.9%

50%
±50%

40% -10% 40% 100%
±20%

80% -20% 120% 0%

Perform
ance
11sec.-
1 sec.

80%
±40%

40% -40 40 30%
±50%

30% 0 70% 30%

30 min.
-30 sec.

10%
±20%

12% +2% 12% 20%
±15%

5% -15% 17% 83%

Capital
Cost
 1 mill.

20%
±1%

10% +10% 10% 5%
±2%

10% -5% 20% 5%

Enginee
-ring
Hours
10,000

2%
±1%

4% -2% 4% 10%
±2.5%

3% +7% 7% 5%

Calend-
ar Time

1 week 2 weeks -1week 2 weeks 1 week 0.5
weeks

+0.5 wk 2.5
weeks

1 week

Usability

Gilb@acm.org 126

Usability Example Graphically

Usability: -|-|-|- minutes for User to do TaskProduct

Record 10
secsTrend 20

minutes
Past 30
minutes

Wish 5 minutes <- Chairman

Plan [1st rel.] 50% of 10 minutes Plan [within 2 yrs.
1st rel.] 30% of 10
minutesMust 10 mins.

64

Gilb@acm.org 127

Usability Evo Delivery

Usability: -|-|-|- minutes for User to do TaskProduct

Record 10
secsTrend 20

minutes
Past 30
minutes

Wish 5 minutes <- Chairman

Plan [1st rel.] 50% of 10 minutes Plan [within 2 yrs.
1st rel.] 30% of 10
minutesMust 10 mins.

Step 1 Step 2 Step3 Step 4

Gilb@acm.org 128

Backroom Frontroom

B

C

E

A

F

G

D

H

t1 t2

B

C

E

A

F
G

D

H

t2

t1

t3

t3

65

Gilb@acm.org 129

Step Comparison Table

Step Candidate A:
{Design-X, Function-Y}

Step Candidate B:
{Design Z, Design F}

Reliability 99%-99.9% 50% 100%
Performance 11sec.-1
sec.

80% 30%

Usability 30 min.-30
sec.

-10% 20%

Capital Cost 1 mill. 20% 5%
Engineering Hours
10,000

2% 10%

Performance/Capital
Cost Ratio

80/20= 4.0 30/5= 6.0

Quality/Cost Ratio 120/22=5.46 150/15=10.00

Gilb@acm.org 130

Bill on Milestone Approach

•“the milestone
approach is a major

practice for us”
• Bill Gates in CUSUMANO95 , 18

• “Microsoft Secrets”

66

Gilb@acm.org 131

Mills on Project Control
• “Software Engineering began to emerge in FSD (IBM Federal Systems Division,

from 1996 a part of Lockheed Martin) some ten years ago [about 1970] in a
continuing evolution that is still underway.

– Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software.

– Today [1980] , management has learned to expect on-time, within budget,
deliveries of high-quality software.

• A Navy helicopter ship system, called LAMPS, provides a recent example.
– LAMPS software was a four-year project of over 200 person-years of effort,
– developing over three million, and integrating over seven million words of program

and data for eight different processors distributed between a helicopter and a ship,
– in 45 incremental deliveries.
– Every one of those deliveries was on time and under budget.

• A more extended example can be found in the NASA space program,
– where in the past ten years, FSD has managed some 7,000 person-years of software

development, developing and integrating over a hundred million bytes of program
and data for ground and space processors in over a dozen projects.

– There were few late or overrun deliveries in that decade,
and none at all in the past four years.” Harlan Mills [IBM80, page
415].

Gilb@acm.org 132

An example of a typical one-week Evo cycle at the
HP Manufacturing Test Division during a project.

[MAY96]
Wednesday Development Team Users

Monday � System Test and Release
Version N

� Decide What to Do for Version
N+1

� Design Version N+1
Tuesday � Develop Code � Use Version N and Give

Feedback
Wednesday � Develop Code

� Meet with users to Discuss
Action Taken Regarding
Feedback From Version Nû1

� Meet with developers to Discuss
Action Taken Regarding
Feedback From Version Nû1

Thursday � Complete Code
Friday � Test and Build Version N+1

� Analyze Feedback From Version
N and Decide What to Do Next

67

Gilb@acm.org 133

Step Risk Analysis
(range of experiences)

Step Candidate A:
{Design-X, Function-Y}

Step Candidate B:
{Design Z, Design F}

Reliability 99%-
99.9%

50%±50% 100%±20%

Performance 11sec.-
1 sec.

80%±40% 30%±50%

Usability 30 min.-
30 sec.

-10%±20% 20%±15%

Capital Cost 1
mill.

20%±1% 5%±2%

Engineering Hours
10,000

2%±1% 10%±2.5%

Worst Case B/C
ratio
(1 to 3)

 (0+40-10)/(21+3) = 1.25 (80-20+5)/(7+12.5) = 3.33

Best Case B/C
ratio

(100+120+10)/(19+1) = 11.5 (120+80+35)/(3+7.5)= 22.38

Gilb@acm.org 134

Step Choice with ‘Credibility’
 (of evidence)

Step Candidate A:
{Design-X, Function-Y}

Step Candidate B:
{Design Z, Design F}

Reliability 99%-99.9% 50%±50% 100%±20%
Performance 11sec.-1
sec.

80%±40% 30%±50%

Usability 30 min.-30
sec.

-10%±20% 20%±15%

Capital Cost 1 mill. 20%±1% 5%±2%
Engineering Hours
10,000

2%±1% 10%±2.5%

Worst Case B/C ratio (0+40-10)/(21+3)
=1.25

 (80-20+5)/(7+12.5)
=3.33

æWorst WorstA case
considering estimate
credibility factor

0.8 x 1.25= 1.00 0.2 x 3.33= 0.67

A
Credibility=0.8

(High)

B
Credibility=0.2

(Low)

68

Gilb@acm.org 135

References, detailed papers, slides, manuscripts

Tom Gilb
 Iver Holtersvei 2 N-1410 Kolbotn, Norway.

 Home +47 66801697

 Gilb@acm.org
 www.Result-Planning.com

 is my homepage, for my slides and book manuscripts

“Competitive
Engineering”

The new
Planguage book

Addison Wesley
Longman, 2001

QW2001 QuickStart 6Q

Ms. Jeanette Folkes
(Modem Media)

WebTesting 101

Key Points

How to build a quality assurance department, from people to process●

How to test web applications●

Tips & tricks to speed up the testing and test planning process●

Presentation Abstract

The recent proliferation of interactive web site development in virtually every
industry has created challenges for Quality Assurance Test departments. These
challenges demand innovative solutions. This presentation will focus on those
challenges and hopefully offer some insight for those new to web testing.

This presentation will discuss the challenges of web testing from a management
and a production standpoint. Ms. Jeanette Folkes has been involved with testing for
8 years and her last 3 positions have been to build and establish a Quality
Assurance presence for interactive agencies.

Ms. Folkes will outline solutions for developing a company wide test
methodology, recruiting and training a skilled test team, and scheduling adequate
time for testing. She will discuss which areas have been the most and the least
receptive to integrating quality assurance.

In addition, she will address the challenges of testing Interactive web sites from a
production standpoint. She will offer solutions for rapid test planning and test case
execution, and will explore the limitations of automated testing in an interactive
environment. This presentation will also offer suggestions on how and when to
build your automated test scripts, using WinRunner for examples.

About the Author

Jeanette Folkes - Jeanette is the Director of Quality Assurance at Modem Media.
Her experience has stemmed from supporting and managing a helpdesk, writing
documentation, providing user training and managing a training group. She has
studied to become a webmaster, has worked as a tester for 4 years and has been
responsible for building and managing QA departments for the last four years. Her
recent accomplishments have been to define and establish the Quality Assurance

departments at Cushman & Wakefield for Citibank, at Grey Advertising for Grey
Direct, at Ogilvy & Mather for Ogilvy Interactive and currently at Modem Media.
Jeanette is married and lives in New York.

1

© 2001 MODEM MEDIA. Confidential and Proprietary

Web Testing 101

Jeanette Folkes - Director, Quality Assurance

DATE: May 31, 2001

LOCATION: San Francisco

PRESENTED TO: Quality Week 2001

© 2001 MODEM MEDIA. Confidential and Proprietary

… from people to process...

I. How to build a QA department

II. How to test web applications

III. Tips to speed up the process

2

© 2001 MODEM MEDIA. Confidential and Proprietary

Background

4© 2001 MODEM MEDIA. Confidential and Proprietary

Locations Worldwide
Norwalk
New York
San Francisco
Toronto
Sao Paulo
London
Munich
Hong Kong

3

5© 2001 MODEM MEDIA. Confidential and Proprietary

Client List
3 Com

Allianz Versicherung

Amazon.co.uk

America's Baby

Asia Printing

AT&T

Avon

Braun

Cathay Pacific

Christies

Citibank

Coca Cola Japan

Coke/Diet Coke

Commercial General
Union

CP Hotels (Fairmont)

CSFBdirect

DaimlerChrysler

Debis

Delta Air Lines

Deutsche Bank

Dyson Home Appliances

E*TRADE

E-Bookers

Edgewood Creek

eHarlequin

Elida Faberge Ltd.

EPSCO

Europaeische
Reiseversicherung

FT (Financial Times)

GE

General Motors

Gessy Lever

Globo.com

GM

Harper Collins

Hong Kong Jockey Club

HSBC

IBM

Infinite Supply

Intel

J&J (Vistakon)

JCPenney

John Hancock

6© 2001 MODEM MEDIA. Confidential and Proprietary

Client List
Kodak

Koito Manufacturing

Kraft

Leirum

Lloyds

Meio e Mensagem

Mercedes-Benz

Michelin

New Tokyo Dental

Nihon Shiatsu

Nippon Koei Consulting

Oracle

Philips

Renaissance Asset
Management

Scotia Bank

Siemens

Sony Entertainment

Starwood

SUNDAY

Swell.com

Swire Properties

Thomas Cook

Tokyo Nissan

Tokyo Sports and
Recreation

Tokyo Welfare

UBS Warburg

Unilever

Valvoline

Vodafone

Websense

Weight Watchers

Wendy’s

X-Stream

4

7© 2001 MODEM MEDIA. Confidential and Proprietary

Jeanette Folkes
Modem Media

Director, Quality Assurance
OgilvyInteractive

QA Manager
Grey Direct

QA Manager
Cushman & Wakefield /
Citibank

QA Manager for Java
application

Wall Street Access
Training Manager
Director of Office Automation
WebMaster

WSP&R
Trainer

Transammonia
Help Desk Analyst

The NPD Group
QA Tester for proprietary client
server application
Project Manager

© 2001 MODEM MEDIA. Confidential and Proprietary

I. How to build a QA department

5

9© 2001 MODEM MEDIA. Confidential and Proprietary

Considerations
Quality Assurance growth
Methodology
Team
Lab
General process
Documents
Integration

10© 2001 MODEM MEDIA. Confidential and Proprietary

Quality Assurance Growth
Centralized in Norwalk
Decentralized in Jan 2000
NYO staff September 2000
Automated tools purchased September 2000
QA lab established October 2000
QA Methodology adopted February 2001
Dedicated NY testing staff ???

6

11© 2001 MODEM MEDIA. Confidential and Proprietary

QA Methodology
What is Quality?

It is the word used to describe how well a product or
service satisfies the customer's needs, wants and
expectations.

• Test plans, outlines of the areas to be tested, are written.
• Test cases, documentation of the actual steps, are written.
• Automated testing is used to improve testing.
• Exceptions are logged in an exception tracking database.
• Reports are generated.

What are you responsible for?
Copy
Images
Links

12© 2001 MODEM MEDIA. Confidential and Proprietary

QA Team
QA Director hired 9/00
QA Manager
Senior Tester
Tester
Junior Tester
Consultants on an as needed basis

… resource sharing
… cross-training

7

13© 2001 MODEM MEDIA. Confidential and Proprietary

Skill Sets - Director / Manager
Establish QA Methodology
Build department
Ensure TQM best practices
Budgets
Client interaction

Day-to-day issues

14© 2001 MODEM MEDIA. Confidential and Proprietary

Skill Sets - Senior Tester
Responsible for all automated
testing
At least 4 years testing
At least 2 years testplanning
Familiarity with HTML, plug-ins,
software
Basic programming

8

15© 2001 MODEM MEDIA. Confidential and Proprietary

Skill Sets - Tester
Responsible for all testplanning
At least 2 years testing
Familiarity with basic HTML
Good software background
Flexible hours

16© 2001 MODEM MEDIA. Confidential and Proprietary

Skill Sets - Jr. Tester
Responsible for all manual testing
Entry level position
Familiarity with basic HTML
Own web site
College editor
Has own computer
Good software background
PROOF their resume
Flexible hours (evenings and weekends)

9

17© 2001 MODEM MEDIA. Confidential and Proprietary

Interview Questions
What is HTML?
What is a URL?
What is / how do you clear cache?
What is a firewall?
What is an ethernet connection?
Name 3 different browsers.
Name 4 ISP's.
What are 5 means of connectivity?
What is a cookie?
What is stress testing?
What are the latest browser
versions?

What is performance testing?
What is a history file?
What is cache?
What is a hyperlink?
What is Java?
What is streaming media?
What is a search engine?
Name 4 search engines?
Example of a plug-in?
What is load balancing?

How do you view Java console
What is black box testing?

18© 2001 MODEM MEDIA. Confidential and Proprietary

Sample test page

Can you spot
the errors?

10

19© 2001 MODEM MEDIA. Confidential and Proprietary

Sample test page

Can you spot
the errors?

20© 2001 MODEM MEDIA. Confidential and Proprietary

Team hours
10:00am - 10:00pm, Monday - Saturday
Consultants on an as needed basis

Staggered shifts
Monday - Friday

— 10:00 - 6:00
— 12:00 - 8:00
— 2:00 - 10:00 (Jr.)

Tuesday - Saturday
— 10:00 - 6:00 (Jr. / Tester)

11

21© 2001 MODEM MEDIA. Confidential and Proprietary

Quality Assurance Institute certification
Certified Quality Analyst (CQA)
Certified Software Test Engineer (CSTE)

Research
How do I ….. ?

Training
General QA
Product specific

Industry Group Affiliations

Continuing Education

22© 2001 MODEM MEDIA. Confidential and Proprietary

Testing lab
Who is your audience?

Browser
Operating system
Screen resolution
Screen colors
Plug-ins
Type of computer
Connection

… Stat Market

… Live Stats

12

23© 2001 MODEM MEDIA. Confidential and Proprietary

MSIE 5.x

Netscape 4.x

MSIE 4.x

MSIE 5.x (AOL)

MSIE 2.x

Netscape 6.x

MSIE 4.x (AOL)

Opera 5.x

MSIE 3.x

Netscape 3.x

MSIE 3.x (AOL)

Opera 4.x

%age 71.99% 11.68% 8.05% 6.02% 0.72% 0.41% 0.40% 0.26% 0.25% 0.15% 0.05% 0.01%

MSIE 5.x Netscape
4.x MSIE 4.x MSIE 5.x

(AOL) MSIE 2.x Netscape
6.x

MSIE 4.x
(AOL) Opera 5.x MSIE 3.x Netscape

3.x
MSIE 3.x

(AOL) Opera 4.x

Browser Statistics

Source: StatMarket, 2001

24© 2001 MODEM MEDIA. Confidential and Proprietary

MSIE 5.0

MSIE 5.01

MSIE 5.0 (AOL)

MSIE 5.5 (AOL)

Netscape 4.75

Netscape 4.73

Netscape 4.61

Netscape 4.72

MSIE 4.0

MSIE 4.01 (AOL)

Netscape 4.6

Netscape 4.74

Netscape 4.04

Netscape 4.05

Netscape 4.03

Netscape 3.0

MSIE 3.0

Netscape 4.71

Netscape 4.01

Netscape 3.04

MSIE 3.02 (AOL)

%age 32.85 12.07 3.68% 1.95% 1.27% 1.09% 0.80% 0.71% 0.47% 0.40% 0.36% 0.31% 0.29% 0.26% 0.08% 0.07% 0.07% 0.04% 0.03% 0.02% 0.01%

MSIE
5.0

MSIE
5.01

MSIE
5.0

(AOL)

MSIE
5.5

(AOL)

Netsc
ape
4.75

Netsc
ape
4.73

Netsc
ape
4.61

Netsc
ape
4.72

MSIE
4.0

MSIE
4.01

(AOL)

Netsc
ape
4.6

Netsc
ape
4.74

Netsc
ape
4.04

Netsc
ape
4.05

Netsc
ape
4.03

Netsc
ape
3.0

MSIE
3.0

Netsc
ape
4.71

Netsc
ape
4.01

Netsc
ape
3.04

MSIE
3.02

(AOL)

Browser Statistics

Source: StatMarket, 2001

13

25© 2001 MODEM MEDIA. Confidential and Proprietary

Windows 98

Windows 95

Windows NT

Windows 2000

Macintosh

WebTV

Linux

Other

Sun SunOS

Windows 3.X

Hewlett Packard HP-UX

IBM OS/2

DEC OSF-1

Windows CE

IBM AIX

FreeBSD

%age 70.85% 12.58% 6.70% 5.44% 2.83% 0.90% 0.25% 0.15% 0.13% 0.12% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

Windo
ws 98

Windo
ws 95

Windo
ws NT

Windo
ws

2000

Macint
osh

WebT
V Linux Other Sun

SunOS
Windo
ws 3.X

Hewlett
Packar
d HP-

IBM
OS/2

DEC
OSF-1

Windo
ws CE

IBM
AIX

FreeB
SD

Operating System Statistics

Source: StatMarket, 2001

26© 2001 MODEM MEDIA. Confidential and Proprietary

Screen Resolution

Source: StatMarket, 2001

1152*864

1280*1024

1024*768

800*600

640*480

%age 2.31% 2.57% 30.79% 53.74% 7.05%

1152*864 1280*1024 1024*768 800*600 640*480

… maximize and
restore your window

14

27© 2001 MODEM MEDIA. Confidential and Proprietary

Connection Speed
Dial up - 56k
T1
Web TV
DSL
Cable

… especially important for audio or video

28© 2001 MODEM MEDIA. Confidential and Proprietary

Hardware
PC vs. Mac
Memory
Processor
Dual boot
Imaging
Who has access to lab

… No tweaking!!!!

15

29© 2001 MODEM MEDIA. Confidential and Proprietary

Software
One version of IE
Every version of Netscape

install in separate directories
maintain consistent naming convention

Defect tracking
Adobe Acrobat
Link checker

… No tweaking!!!!

30© 2001 MODEM MEDIA. Confidential and Proprietary

General Process
Test plans are written *
Test cases are written *
Automated testing is used to improve testing *
Automated testing is used to improve turnaround *
Exceptions are logged in an exception tracking
database
Reports are generated

* optional / workaround

16

31© 2001 MODEM MEDIA. Confidential and Proprietary

Documents
QA Checklist
Test plan
Test cases
Exception reporting
QA authorization report / Release report

Project information -- MS Word

32© 2001 MODEM MEDIA. Confidential and Proprietary

QA Checklist
Browsers / OS’s
Required plug-ins and versions
Alt tags
Print testing
Links - pop-ups, new windows
Forms - validation
Resolution
Load testing
Connection speed
Any other relevant information

… date and time stamped

17

33© 2001 MODEM MEDIA. Confidential and Proprietary

Test Plan
General overview of what’s being tested
Lists all test cases created

Should have a one-to-one relationship to requirements
document

Cannot be done until documentation is received
High level template

34© 2001 MODEM MEDIA. Confidential and Proprietary

Test Cases
Documentation of the actual steps

Click the home button
Verify you reach the home page

Literal
Non-technical user
Cannot be done until documentation is received

WinRunner automated tests
#this will check the top nav
set_window ("Asia and the Middle East", 3);
web_image_click("Home", 48, 12);
set_window ("Oceania Air Lines - Welcome to Oceania", 4);
set_window ("Browser Main Window", 0);
toolbar_button_press("MainToolBar", "Back");

… test case matrix

18

35© 2001 MODEM MEDIA. Confidential and Proprietary

Exception Reporting
MS Access database

URL
Problem Type
Reproducible
Browser / OS
Tester
Test date
Assignee

- TRACKWeb

- Test Track

- Track Gear

- Track Wise

- Lotus Notes

- Zero Defect

36© 2001 MODEM MEDIA. Confidential and Proprietary

QA Authorization Report
Exceptions by type, quantity
Sign off from QA and authorizing person

Signatures, signatures,
signatures, signatures,
signatures, signatures

19

37© 2001 MODEM MEDIA. Confidential and Proprietary

Integration
Include QA in all schedules and estimates
Initial QA performed on Asset Inventory
Test plans are written
Test cases are generated
Testing begins
Exceptions logged
QA authorization report

… QA Demo Day

38© 2001 MODEM MEDIA. Confidential and Proprietary

QA Demo Day
1/2 day -- full day
Conference room
Balloons, streamers, decorations, food
Handouts

Test cases
Test plans
Exception reports
Personalized items

— “We ♥♥♥♥ Quality Assurance”

“So you wanna be a tester”
Demonstrations

… It’s coming!

20

39© 2001 MODEM MEDIA. Confidential and Proprietary

Real World Challenges
QA needs money and an enforcer

Staff
Equipment
Working with developers
Getting management buy-in
CYA

40© 2001 MODEM MEDIA. Confidential and Proprietary

Staff
Keeping them motivated

Growth
Ownership

Showing appreciation
Comp time
Flexible hours

Remaining flexible

21

41© 2001 MODEM MEDIA. Confidential and Proprietary

Equipment
QA Lab
Each tester has 2 computers
Dial up connection

42© 2001 MODEM MEDIA. Confidential and Proprietary

Working With Developers
Avoiding us vs. them
Be very specific

22

43© 2001 MODEM MEDIA. Confidential and Proprietary

Getting Management Buy-in
More than $
Constant reporting

Let them know before the client does

44© 2001 MODEM MEDIA. Confidential and Proprietary

CYA
Adobe Acrobat
MS Word
Export all exceptions

QA Notes
Producer Pam James Billing Code OCAL.0245

Account Manager Sarah Correro Job Desc. ~3 HTML pages

Estimated Days / Hours 0 / 3 Actual Days / Hours 0 / 2.5

Client Oceania Air Lines URL http://159.125.14.25/oceania/dev/

1/21/00 11:30am jcf – Met with production team. This will be a small 3 page project to highlight Oceania’s new in-seat entertainment.
This job was estimated at 3 hours and is scheduled to start QA 1/25 and is due to be delivered 1/27.

1/23/00 bl – Wrote initial test plan (K:\Oceania\Testplans\ocal0245.doc)

1/24 5:30pm bl – Received QA checklist

1/25 jcf – Met with Pam. She says assets have been delayed 2 days. New QA date is 1/27 and new delivery date is 1/29.

1/27 1:45 vl – Tested 3 pages, no defects to report.

23

© 2001 MODEM MEDIA. Confidential and Proprietary

How to test web applications

46© 2001 MODEM MEDIA. Confidential and Proprietary

What are you testing
Copy - proofreader
Links - link checker
Load time

24

47© 2001 MODEM MEDIA. Confidential and Proprietary

Estimating the testing process
What are you testing

30 minutes for initial check
— proofread
— link check
— gui check
— automated script

2 minutes per browser /OS

W2K
W98
W95

IE 4
IE 5.0
IE 5.5
N 4.7

52 minutes per page

(12 browser/OS - 1) * 2 minutes per page = 22 minutes
22 minutes + 30 minutes for initial check = 52 minutes

48© 2001 MODEM MEDIA. Confidential and Proprietary

Finding adequate time for Test Planning
Planning with incomplete or no specifications
Finding time for regression testing
Finding time for Automated testing

Production-related challenges

25

49© 2001 MODEM MEDIA. Confidential and Proprietary

Functional Design Document
What is this project supposed to do

Sitemap
What pages are in the site

Copy deck
What is the site supposed to say

iBoards
What elements should be on the page

Documentation required for
Test Planning

50© 2001 MODEM MEDIA. Confidential and Proprietary

QA Checklist
Sitemap Tools

Astra Site Manager
Linkbot

Test Planning with no
Documentation

26

51© 2001 MODEM MEDIA. Confidential and Proprietary

Finding Time
An automated regression test regime

Linkbot
Adobe Acrobat
SilkTest / WinRunner

Regression Testing

52© 2001 MODEM MEDIA. Confidential and Proprietary

Requires additional time for planning
Requires code to be frozen or complete
Does not work with certain interactive media

Automated Testing

27

53© 2001 MODEM MEDIA. Confidential and Proprietary

Color palette

This is the title color. Please use the title
color for highlight also.

This is a good color for the top row of charts

Please use only these colors for text

© 2001 MODEM MEDIA. Confidential and Proprietary

Tips to speed up the process

28

55© 2001 MODEM MEDIA. Confidential and Proprietary

Automated Testing
How to plan your tests

Link check
— needs to be run once

Gui check
— needs to be run in all required browsers/OS’s

Use test scripts as your test cases
Use results files for pass/fail

56© 2001 MODEM MEDIA. Confidential and Proprietary

QA Lab
Consistency

All paths should be identical
Need dial-in access

— to start scripts
— to check scripts

29

57© 2001 MODEM MEDIA. Confidential and Proprietary

Netscape
Crashes often

Dial into your computer
Do not create profiles

58© 2001 MODEM MEDIA. Confidential and Proprietary

WinRunner Notes
If an object appears on the border of the screen,
WinRunner will not see it

30

59© 2001 MODEM MEDIA. Confidential and Proprietary

WinRunner Notes
If WinRunner gives you a General Error, try
renaming the object

60© 2001 MODEM MEDIA. Confidential and Proprietary

WinRunner Notes
Report the browser in your script

win_get_info("Browser Main Window","owner",value);
report_msg (value);

31

61© 2001 MODEM MEDIA. Confidential and Proprietary

WinRunner Notes
Use the automated script to check alt tags

set_window ("Asia and the Middle East", 3);

web_obj_get_info ("Travel", "ALT", value);
if (value == "Travel") ;
else report_msg("Travel alt tag failed");

62© 2001 MODEM MEDIA. Confidential and Proprietary

WinRunner Notes
Create checkpoints for IE and Netscape

#these are the gui checks
set_window ("Asia and the Middle East", 3);
win_get_info("Browser Main Window","owner",value);
Returns "iexplorer.exe" or "netscape.exe"

if (value == "IEXPLORE.EXE")
#checkpoint for Explorer
win_check_gui("Asia and the Middle East", "list7.ckl", "gui11", 1);

else if (value == "iexplore.exe")
#checkpoint for Explorer
win_check_gui("Asia and the Middle East", "list7.ckl", "gui11", 1);

else if (value == "NETSCAPE.EXE")
#checkpoint for Netscape
win_check_gui("Asia and the Middle East", "list2.ckl", "gui2", 1);

else if (value == "netscape.exe")
#checkpoint for Netscape
win_check_gui("Asia and the Middle East", "list2.ckl", "gui2", 1);

else if (value == "Netscape.exe")
#checkpoint for Netscape
win_check_gui("Asia and the Middle East", "list2.ckl", "gui2", 1);

else
report_msg("Browser not found");

32

63© 2001 MODEM MEDIA. Confidential and Proprietary

WinRunner Notes
Always use full paths
win_max ("Browser Main Window");
call_close "K:\\Quality Assurance\\Oceania\\asia_gui_check" ();
call_close "K:\\Quality Assurance\\Oceania\\english_intl_gui_check" ();

call_close "portuguese_gui_check" ();
call_close "german_gui_check" ();
call_close "italian_gui_check" ();

64© 2001 MODEM MEDIA. Confidential and Proprietary

WinRunner Notes
Setting your browser

#this will delete Netscape from the registry and set Netscape 4.75 as the default browser
report_msg ("Starting N4.75 tests.");
del_reg_key(HKEY_LOCAL_MACHINE,"Software\Microsoft\Windows\CurrentVersion\App Paths\Netscape.exe");
create_reg_key(HKEY_LOCAL_MACHINE,"Software\Microsoft\Windows\CurrentVersion\App
Paths\Netscape.exe","","C:\Program Files\Netscape\Communicator 4_75\Program\Netscape.exe");
wait(5);
web_browser_invoke (NETSCAPE,"");
wait(5);

33

65© 2001 MODEM MEDIA. Confidential and Proprietary

Summary
Define Methodology
Hire staff
Integration

… from people to process

66© 2001 MODEM MEDIA. Confidential and Proprietary

Questions?

QW2001 QuickStart 4Q

Mr. Greg Clower
(SDT Corporation)

Establishing a Wireless Telecommunication Test
Automation System

Presentation Abstract

Building an environment to successfully test intelligent network peripherals
presents an array of complex problems to resolve. The target environment
integrates various SS7 protocols, a proprietary protocol, and voice recognition
subsystem -- and requires a controlled and synchronized test environment. Learn
how a test automation approach allows the software engineer control over the
peripheral interfaces and provides for the testing of the entire call flow sequence,
its initiation and consequential message traffic. Discover how this approach
provides for function testing as well as scalability for automated performance, load
and stress testing.

About the Author

Greg Clower is Lead Automation Engineer for Software Development
Technologies and has over 15 years of experience in software quality and test.
Before joining SDT, Greg was a Sr. Design Engineer at Lucent Technologies in
charge of Telecommunications protocol integration test tools.

Greg has a B.A. degree from Indiana University and has taken core courses in
Math, Computer Science and Unix Programming at San Jose State University and
University of California, Santa Cruz.

Establishing a
Telecommunication Test

Automation System

Greg Clower
www.sdtcorp.com sdt@sdtcorp.com

© 2001 Software Development Technologies Slide 2

Agenda

• Test Environment
• Define Requirements
• Problem Analysis
• Solution
• Conclusions

© 2001 Software Development Technologies Slide 3

Test Environment

VPP TCP/IP

VPP TCP/IP

IVR

GateWay

DBHLR/AuC

ISDN - PRI GSM / TCAP

Test Box

VPP
TCP/IP

ISDN - PRI

Voice

• Interactive Voice Response Application – (IVR)
• Home Location Register/Authentication Center - (HLR/AuC)
• Very Proprietary Protocol over TCP/IP – (VPP)

© 2001 Software Development Technologies Slide 4

Agenda

• Test Environment
• Define Requirements
• Problem Analysis
• Solution
• Conclusions

© 2001 Software Development Technologies Slide 5

Define Requirements (1 of 2)

• Protocol Support
• IVR Application Stimulation
• Separate Test Design and Test Automation
• Troubleshooting Capability

© 2001 Software Development Technologies Slide 6

Define Requirements (2 of 2)

• Absolute Interface Control
• Integrated Test Solution
• Cost Effective Test Solution
• Extensible Environment
• Maintainability

© 2001 Software Development Technologies Slide 7

Protocol Support

• ISDN - PRI for Call Control
• GSM / TCAP
• VPP - TCP/IP

© 2001 Software Development Technologies Slide 8

IVR Application Stimulation

• IVR Applications Respond to Voice
• Play Voice on Voice Channel
• Vocabulary

– Phrases
– Numbers

• Number Representation
– 2 hundred 37
– 2-3-7
– 2-37

© 2001 Software Development Technologies Slide 9

Separate Test Design and Automation

• Maintenance Issue
• Role Based Test Development Methodology
• Testing Using Action Words

© 2001 Software Development Technologies Slide 10

What is an Action Word ?

• Description of the test steps to be performed
– Definition

• Login
• Dial in

– Parameters
• User ID Password
• Telephone Number

• Enables linkage between Test Design and Test Case
Processor

• Action Word Implementation Function
– Implemented by Automation Engineer
– Manipulates application to achieve intended function

© 2001 Software Development Technologies Slide 11

Test Automation – Specialized Roles (1 of 2)

• Application Domain Expert
• Test Manager

– Plans Project
– Determines Test Effectiveness

• Test Architect
– Creates Testing Framework

• Test Designer
– Partitions System Under Test
– Specifies Action Words
– Designs Test Cases
– Ensures Good Test Coverage

© 2001 Software Development Technologies Slide 12

Test Automation – Specialized Roles (2 of 2)

• Test Automation Engineer
– Designs Automation Software
– Builds Infrastructure
– Builds Action Word Implementation Functions
– Integrates Automation Software

• Test Executor
– Prepares Test Run
– Runs Tests
– Analyzes Results

Partition Software Under Test

*Designs Test Cases

*Design Automation Software

* Key Inspection Spots

Roles-Based Key Activity Overview

Create Testing Framework
Plan Project

Build Infrastructure

Determine Test Effectiveness

Run Tests

Analyze Results

Prepare Test Run
Integrate Automation Software

Test Designer
Automation Engr.
Executor

Roles:
Architect
Manager

© 1999 – 2001 Software Development Technologies Rev 2001-1 Slide 13

Specifies Action Words

Ensures good test coverage Build Action Word Functions

© 2001 Software Development Technologies Slide 14

Separate Test Design and Automation
Benefits

• Parallel Work Paths
• Enhanced Productivity
• Enhanced Efficiency
• Decreased Time to Market

© 2001 Software Development Technologies Slide 15

Troubleshooting Capability

• Gather Run-time Test Data
• Examine input Interface
• Examine output Interface
• Choose Right level of detail for Interface
• Results

© 2001 Software Development Technologies Slide 16

Absolute Interface Control

• The Message Flow
• The Interfaces

© 2001 Software Development Technologies Slide 17

The Message Flow Diagram

MS MSC VLR HLR Gateway DB IVR

© 2001 Software Development Technologies Slide 18

The Interfaces

IVR

GateWay

DBHLR/AuC

VPP TCP/IP

ISDN - PRI
GSM
TCAP

Test Box

VPP TCP/IP

VPP
TCP/IP

ISDN - PRI

Voice

© 2001 Software Development Technologies Slide 19

Integrated Test Solution

• Automatic Test Control
• Highly controlled Interfaces
• Synchronized message flow
• Test Box Internals
• Reports

© 2001 Software Development Technologies Slide 20

Integrated Test Solution

IVR

GateWay

DBHLR/AuC

ISDN - PRI
GSM
TCAP

VPP TCP/IP
VPP

TCP/IP
ISDN - PRI

Test Box

VPP TCP/IP

Voice

© 2001 Software Development Technologies Slide 21

Cost Effective Test Solution

• Existing Tools
– Protocol Testers
– Bulk Call Generators

• Buy/Build
– Generally buy is preferred

© 2001 Software Development Technologies Slide 22

Extensible Environment

• Call Control
– ISUP

• TCAP Applications
– IS-41
– INAP
– SMS
– ???

© 2001 Software Development Technologies Slide 23

Agenda

• Test Environment
• Define Requirements
• Problem Analysis
• Solution
• Conclusions

© 2001 Software Development Technologies Slide 24

Problem Analysis

• What Tools are on the Market?
– Automatic Test Control
– Call Control

• Bulk Call Generators
– Protocol Generation

• Protocol Testers
• Do they do what we need to do?

© 2001 Software Development Technologies Slide 25

Input Calls

IVR

GateWay

DBHLR/AuC

VPP TCP/IP

ISDN - PRI
GSM
TCAP

Test Box

VPP TCP/IP

VPP
TCP/IP

ISDN - PRI

Voice

© 2001 Software Development Technologies Slide 26

Bulk Call Generators

• Difficult to integrate with Testware and other
equipment

• No VPP TCP/IP connection
• Testers want to test not specialize in the tool
• The tool gets in the way
• Expensive – Very Expensive
• Moderately Difficult to use
• Do call control not protocol testing
• System response validation – not easy

© 2001 Software Development Technologies Slide 27

Protocol Output and Response

IVR

GateWay

DBHLR/AuC

VPP TCP/IP

ISDN - PRI
GSM
TCAP

Test Box

VPP TCP/IP

VPP
TCP/IP

ISDN - PRI

Voice

© 2001 Software Development Technologies Slide 28

Protocol Testers

• Difficult to integrate with Testware and other
equipment

• Proprietary Hardware solution
• Testers want to test not specialize in the tool
• The tool gets in the way
• Very Expensive
• Often Very Difficult to Learn to Use
• Do Not easily allow the use use of bad input

© 2001 Software Development Technologies Slide 29

Problem Analysis Conclusions (1 of 2)

• Existing Tools are Expensive – Very Expensive
• Existing Tools are Difficult - Very Difficult to use
• Don’t do what you Need

– Call Control
– VPP
– Protocol Support
– Voice

© 2001 Software Development Technologies Slide 30

Problem Analysis Conclusions (2 of 2)

• Tools are Difficult to integrate
• Tools controlling different test interfaces are difficult to

Synchronize in Automatic Test Control Context
• Build your own

© 2001 Software Development Technologies Slide 31

Agenda

• Test Environment
• Define Requirements
• Problem Analysis
• Solution
• Conclusions

© 2001 Software Development Technologies Slide 32

Protocols / Voice

• Off-the-Shelf CO quality Hardware with Protocol
based API Support
– ISDN - PRI/Voice
– SS7 Protocol Stack

• MTP
• SCCP
• TCAP
• ISUP

• TCAP State Machine
• GSM
• VPP - TCP/IP

case action
 “ dial in”: ...
 “check call attempt”: ...
 “send call attempt ack”:
..
 “hang up”: …
end

Functional
(Designer)

Technical
(Automator)

Test Cases
(Action Words in a spreadsheet or db)

automation system
(test tool)

Separate Test Design and Automation

 A B C
. . .
dial in 4085551212
check call attempt Gateway 2971911
send call attempt ack 21 24
hang up
. . .

© 2001 Software Development Technologies Slide 33

cluster
sheet
version
date
author

TELCOM1
Dial-up and Hang up
2.2
2/12/00
DJ

testcase TELCOM1
Expected Result: Prompts Played

Number

dial in 4085551212

target calling party

check call attempt Gateway 2971911

Send call attempt ack 21 24

prompt ID prompt ID

hang up

© 2001 Software Development Technologies Slide 34

Action Word Test Case Spreadsheet

© 2001 Software Development Technologies Slide 35

Test Automation Control

• Test Engine
– Heart of the Automated Test Process
– Interprets Action Word Spread Sheets

• Sequential Action Word Execution
• Invokes Action Word Function

– Built in Action Words
– GUI Message Center
– API support

• Action Word Registration
• State Control
• Reporting/Report Generation
• Test Flow
• Checking

– Reporting Capability

© 2001 Software Development Technologies Slide 36

Troubleshooting Capability

• Engine Run-time Logs
• High level Test Results Report
• Function Trace Log
• Debug Log
• Engine Error Log

© 2001 Software Development Technologies Slide 37

Run Time Log
0 20010322 152827 [ENGINEVERSION] 5.00

1 20010322 152827 [CLUSTERNAME] Example cluster

2 20010322 152827 [CLUSTERVERSION] 1.2

3 20010322 152827 [CLUSTERDATE] June 28, 2000

4 20010322 152827 [CLUSTERAUTHOR] CMG Engine Team

6 20010322 152827 [SCENARIO] Try some basic report functionality

• 20010322 152827 [ACTIONWORD] print some numbers 1 2
3

9 20010322 152828 [COMMENT] 1

9 20010322 152828 [COMMENT] 2

9 20010322 152828 [COMMENT] 3

12 20010322 152828 [ACTIONWORD] perform a check correct wrong

12 20010322 152829 [CHECK] expected message correct wrong
[CHK_FAILED] [VERTICAL]

15 20010322 152829 [ACTIONWORD] print an error Just an error message

15 20010322 152830 [ERROR] [ERR_ERROR] Just an error message

18 20010322 152830 [SCENARIO] Try report functionality combined with argument commands

© 2001 Software Development Technologies Slide 38

Run Time Log (cont)

21 20010322 152830 [ACTIONWORD] print some numbers 200 208
-2.3

21 20010322 152831 [COMMENT] 200

21 20010322 152831 [COMMENT] 208

21 20010322 152831 [COMMENT] -2.3

22 20010322 152831 [ACTIONWORD] print some numbers 50 6.28e-
005 25

22 20010322 152832 [COMMENT] 50

22 20010322 152832 [COMMENT] 6.28e-005

22 20010322 152832 [COMMENT] 25

25 20010322 152832 [COMMENT] Cluster variable "Beta" with value "25" exported to keep file.

25 20010322 152832 [COMMENT] Cluster variable "Alpha" with value "200" exported to keep file.

28 20010322 152832 [ACTIONWORD] perform a check correct correct

28 20010322 152833 [CHECK] expected message correct correct
[CHK_PASSED] [VERTICAL]

© 2001 Software Development Technologies Slide 39

==
SDT TestFrame-Test Execution Report

Licensed to : Greg Clower
Company : SDT
Serial number : 500-000057-1-01

Engine version : 5.00
Cluster name : Example cluster
Cluster version : 1.2
Cluster date : June 28, 2000
==

Test Results Report

© 2001 Software Development Technologies Slide 40

Test Results Report (cont)

31 : perform a check &NotEmpty
Check of expected message
Expected : &NotEmpty
Recorded :
Result : failed

32 : perform a check &NotEmptySome text

Check of expected message
Expected : &NotEmpty
Recorded : Some text
Result : passed

© 2001 Software Development Technologies Slide 41

Test Results Report (cont)

===
Number of test lines : 25

Succeeded test lines : 64%

Number of errors

Error : 4
Errors were at lines : 15, 37, 65.8, 66.8

Number of checks : 10
Passed checks : 5 50%
Failed checks : 5 50%
Fails were at lines : 12, 30, 31, 65.11, 66.11

Start time : Fri Mar 23 16:09:45 2001
Stop time : Fri Mar 23 16:10:07 2001
Time used : 00:00:22
===

© 2001 Software Development Technologies Slide 42

Debug Log Philosophy

• Document Function Entry
• Document Argument Values at Entry Time
• Delimit Argument Values with []
• Make use of Default case in Switch Stmt
• When something goes wrong

– Document everything

© 2001 Software Development Technologies Slide 43

 The Debug Log

E:\SDTEngine5\ReviewPro\Navigation\WinRunner\Debug\Greg_Clower.log :
Date Stamp : Tue Aug 29 15:00:13 2000

tf_OS_Setup : *************** Start Up *************** :
tf_OS_Setup : rOSFlag : Windows
tf_OS_Setup : Running Mode is : [debug]
tf_OS_Setup : TestDirector Test Name : [null]
tf_OS_Setup : TfIni Path : E:\SDTEngine5\ReviewPro\Execution

\engine5.ini]
tf_OS_Setup : Analysis Path : [E:\SDTEngine5\SDTEngine\Analysis]
tf_OS_Setup : Execution Path : [E:\SDTEngine5\SDTEngine\Execution]
tf_OS_Setup : Navigation Path : [E:\SDTEngine5\SDTEngine\Navigation]
tf_OS_Setup : ProjectAnalysis Path : [E:\SDTEngine5\ReviewPro\Analysis]
tf_OS_Setup : ProjectExecution Path : [E:\SDTEngine5\ReviewPro\Execution]
tf_OS_Setup : ProjectNavigation Path : [E:\SDTEngine5\ReviewPro\Navigation]
tf_OS_Setup : GuiPath Path : [E:\SDTEngine5\SDTEngine\Navigation\

WinRunner\GUIs\]
tf_OS_Setup : ProjectGuiPath Path : [E:\SDTEngine5\ReviewPro\Navigation\

WinRunner\GUIs\]
tf_OS_Setup : EnginePath Path : [E:\SDTEngine5\SDTEngine\Navigation\

WinRunner\]
tf_OS_Setup : BinPath Path : [E:\SDTEngine5\SDTEngine\Execution\

bin\]
tf_OS_Setup : LowLevelPath Path : [E:\SDTEngine5\SDTEngine\Navigation\

WinRunner\LowLevels\]

© 2001 Software Development Technologies Slide 44

 The Debug Log (cont)
tf_OS_Call : OS function [Reload] : [reload (E:\SDTEngine5\SDTEngine\Navigation\

WinRunner\LowLevels\Declaration.low)]

tf_OS_Call : OS function [Reload] : [reload (E:\SDTEngine5\SDTEngine\Navigation\

WinRunner\LowLevels\GridHandling.low)]

tf_OS_Call : OS function [Reload] : [reload (E:\SDTEngine5\SDTEngine\Navigation\

WinRunner\LowLevels\ObjHandling.low)]

tf_OS_Call : OS function [Reload] : [reload (E:\SDTEngine5\SDTEngine\Navigation\

WinRunner\LowLevels\Standard.low)]

tf_OS_Call : OS function [Reload] : [reload (E:\SDTEngine5\SDTEngine\Navigation\

WinRunner\LowLevels\StringHandling.low)]

tf_OS_Call : OS function [Reload] : [reload (E:\SDTEngine5\SDTEngine\Navigation\

WinRunner\LowLevels\WebObjHandling.low)]

tf_OS_Call : OS function [Reload] : [reload (E:\SDTEngine5\SDTEngine\Navigation\

WinRunner\LowLevels\WinHandling.low)]

tf_OS_Call : OS function [Reload] : [reload (E:\SDTEngine5\SDTEngine\Navigation\

WinRunner\HighLevels\Global.lib)]

© 2001 Software Development Technologies Slide 45

 The Debug Log (cont)

engine5 : ************ New Action Word ************** :

engine5 : Starting new action word : Tue Aug 29 15:00:20 2000

engine5 : New action word name is : Reviewpro Webshare Login

engine5 : ** :

engine5 : Argument 2 description is : [User Name]

engine5 : Argument 2 value is : [iris rose]

engine5 : Argument 3 description is : [Password]

engine5 : Argument 3 value is : [CBK2468]

engine5 : Argument 4 description is : [Push Button]

engine5 : Argument 4 value is : [Login]

engine5 : :

© 2001 Software Development Technologies Slide 46

The Debug Log (cont)

tf_CriticalChecks : Window argument received : [Webshare Login]

tf_ExpGuiWin : Input Parameters : [Webshare Login||]

tf_ExpGuiWin : Assigning rSeconds : [300]

tf_ExpGuiWin : Window exists : Webshare Login

tf_ExpGuiWin : Window activated : Webshare Login

tf_GetBitmap : Input Parameters : [Webshare Login|E:\SDTEngine5\

ReviewPro\Analysis\Bitmaps\

ReviewPro|Webshare Login]

tf_CriticalChecks : rWindow <= 0 : [14]

tf_CalculateGrid : Input Parameters : []

tf_CheckParms : Input Parameters : [2|4|0|0]

tf_SetRoutine : Input Parameters : [2|4]

tf_SetRoutine : FieldType[2] : [edit]

tf_SetRoutine : FieldObject[2] : [User Name]

tf_SetRoutine : ParameterValue[2] : [iris rose]

tf_SetEdit : Input Parameters : [User Name|iris rose]

© 2001 Software Development Technologies Slide 47

Maintainability

• Highly Modular Architecture
• Layers of abstraction pushing details down
• Code Fragmentation & Isolation
• Minimize Change Propagation

– Fix once, in one place
– Fix available to all

© 2001 Software Development Technologies Slide 48

Test Case 1

Functions Occurrances Present Maintenance Cost After Function Maintenance Cost Savings

TestCaseStartUp 1 $16.67 $16.67 $0.00
TestCaseLogin 1 $16.67 $16.67 $0.00
WriteStepResults 19 $316.67 $16.67 $300.00
SetObjectData 23 $383.33 $16.67 $366.67
TestCaseShutDown 1 $16.67 $16.67 $0.00

$750.00 $83.33 $666.67

© 2001 Software Development Technologies Slide 49

Test Case 1 (cont)

Functions Occurrances LOC Reduction Gross Code Reduction Starting LOC Ending LOC % Reduction

699 358 48.78%
TestCaseStartUp 1 11
TestCaseLogin 1 7
WriteStepResults 19 266
SetObjectData 23 46
TestCaseShutDown 1 11

341

© 2001 Software Development Technologies Slide 50

Test Case 2

Functions Occurrances Present Maintenance Cost After Function Maintenance Cost Savings

TestCaseStartUp 1 $16.67 $0.00 $16.67
TestCaseLogin 1 $16.67 $0.00 $16.67
WriteStepResults 20 $333.33 $0.00 $333.33
SetObjectData 43 $716.67 $0.00 $716.67
PressBrowserOKButton 10 $166.67 $0.00 $166.67
TestCaseShutDown 1 $16.67 $0.00 $16.67

$1,266.67 $0.00 $1,266.67

© 2001 Software Development Technologies Slide 51

Test Case 2 (cont)

Functions Occurrances LOC Reduction Gross Code Reduction Starting LOC Ending LOC % Reduction

1392 627 54.96%
TestCaseStartUp 1 11
TestCaseLogin 1 7
WriteStepResults 20 280
SetObjectData 43 86
PressBrowserOKButton 10 370
TestCaseShutDown 1 11

765

© 2001 Software Development Technologies Slide 52

Test Case 3

Functions Occurrances Present Maintenance Cost After Function Maintenance Cost Savings

TestCaseStartUp 1 $16.67 $0.00 $16.67
TestCaseLogin 1 $16.67 $0.00 $16.67
WriteStepResults 29 $483.33 $0.00 $483.33
SetObjectData 45 $750.00 $0.00 $750.00
PressBrowserOKButton 5 $83.33 $0.00 $83.33
TestCaseShutDown 1 $16.67 $0.00 $16.67

$1,366.67 $0.00 $1,366.67

© 2001 Software Development Technologies Slide 53

Test Case 3 (cont)

Functions Occurrances LOC Reduction Gross Code Reduction Starting LOC Ending LOC % Reduction

1546 836 45.92%
TestCaseStartUp 1 11
TestCaseLogin 1 7
WriteStepResults 29 406
SetObjectData 45 90
PressBrowserOKButton 5 185
TestCaseShutDown 1 11

710

© 2001 Software Development Technologies Slide 54

The Bottom Line

Present Maintenance Cost After Function Maintenance Cost Savings
Cost for above 3 Cases $3,383.33 $83.33 $3,300.00
Average per file $1,127.78 $1,100.00

Total Cost $16,916.67 $83.33 $16,833.33

Hours 169.17 0.83 99.51%
Days 21.15 0.10 99.51%
Weeks 4.23 0.03 99.38%
Months 1.06

© 2001 Software Development Technologies Slide 55

The Bottom Line (cont)

Gross Code Reduction Starting LOC Ending LOC % Reduction
1816 3637 1821 49.93%

© 2001 Software Development Technologies Slide 56

Voice

Building the Test Box

ISDN - PRI

GSM
TCAP

IVR

GateWay

DBHLR/AuC

Test
Engine

Action
Word

 Function
Library Voice

Files

Action
Word

Test Cases
TCAP
SCCP
MTP

GSM
TCAP

SM

ISDN
PRI

VoiceReports

NT Test Box

VPP
TCP/IP

VPP TCP/IP

VPP TCP/IP

© 2001 Software Development Technologies Slide 57

Agenda

• Test Environment
• Define Requirements
• Problem Analysis
• Solution
• Conclusions

© 2001 Software Development Technologies Slide 58

Telecommunication
Unified TestPro Solution

VPP - TCP/IP

SS7
 Protocol

Stack

ISDN
PRI

Voice

Voice
Files

 Unified TestPro Engine

 Action Word Test Cases

TCP/IP

Unified
TestPro
Telecom

IVR HLR/AuC
SS7/GSMISDN PRI

 Action Words

Off-
the-

Shelf

Custom

Legend:

© 2001 Software Development Technologies Slide 59

Project Benefits

• Cost effective
• Software solution
• Off-the-shelf hardware
• Separation of Test Design and Execution

– Enhanced Test Productivity
– Schedule Reduction

• Absolute Interface Control
• Integrated Test solution
• Extensible

© 2001 Software Development Technologies Slide 60

Summary

• This model works when you:
– Do up-front Automation Architecture Design
– Have correct Test Automation Control Technology
– Treat Tool Development as an Engineering Project

• Architected
• Scheduled

– Get the right level of Senior management support
– Get the programming resources made available at

the right time

© 2001 Software Development Technologies Slide 61

Acronyms

• ISUP ISDN User Part
• MTP Message Transfer Part
• SCCP Signaling Connection and Control Part
• TCAP Transaction Capabilities Application Part
• GSM Global System for Mobile Communications
• INAP Intelligent Network Application Part
• SMS Short Message Service
• IS-41 Interim Specification 41 (aka ANSI-41)
• HLR Home Location Register
• VLR Visitor Location Register
• AuC Authentication Center
• IVR Interactive Voice Response
• ASN1 Abstract Syntax Notation 1

© 2001 Software Development Technologies Slide 62

References

• Buwalda, Hans, Testing with Action Words, STAR May 1998
• Heine, Gunnar, GSM Networks: Protocols, Terminology, and

Implementation, Artech House, IBSN 0-89006-471-7
• Kit, Edward, Software Testing in the Real World, Addison Wesley

Longman, 1996
• Kit, Edward, Integrated, Effective Test Design and Automation,

Software Development Magazine, February 1999
• Rose, Marshall T. , The Open Book A Practical Perspective on OSI,

Prentice Hall, IBSN 0-13-643016-3
• SDT – Test Design and Automation: see Unified TestPro at

http://www.sdtcorp.com/unifiedtestpro.pdf
• Steedman, Douglas, Abstract Syntax Notation One (ASN1): The

Tutorial & Reference, Technology Appraisals, IBSN 1 871802 06 7

© 2001 Software Development Technologies Slide 63

The End

QW2001 QuickStart 7Q

Mr. James Bach
(Satisfice Inc)

High Accountability Exploratory Testing

Key Points

How to have an orderly and defensible test process without pre-scripted test cases.●

How a session protocol can create the basis for a measurable process.●

Using metrics to track exploratory testing.●

How to explain a test strategy, after the fact.●

Presentation Abstract

Exploratory testing means concurrent test design and test execution. Instead of
writing tests down in advance, you make them up as you go. It’s an ad hoc process.
Experience shows that testers who use this approach find a lot of bugs quickly.

A problem with exploratory testing is that it’s normally not as reviewable and,
therefore, not as accountable as pre-planned testing. In this talk we will examine a
way to get the benefits of exploratory testing while also providing high
accountability for the test process. It’s called session-based test management.
Basically, testing activity is focused and packaged into time boxes called sessions.
The sessions have a charter, reviewable output, and each session is debriefed by a
test lead. Although what happens in each session is not determined in advance, we
are able to record and measure testing productivity and test coverage in retrospect.
We will talk about these metrics in some detail.

In our experience, we’ve found that the key to this approach is the debriefing,
which is a coaching opportunity for the test lead while providing and opportunity
for the tester practice explaining his test strategies.

About the Author

James Bach (http://www.satisfice.com) is founder and principal consultant of
Satisfice, Inc. James cut his teeth as a programmer, tester, and SQA manager in
Silicon Valley and the world of market-driven software development. He has
worked at Apple, Borland, a couple of startups, and a couple of consulting
companies.

Through his models of Good Enough quality, exploratory testing, and heuristic test

design, he focuses on helping individual software testers cope with the pressures of
life in the trenches and answer the questions "What am I doing here? What should
I do now?"

1

High Accountability
Exploratory Testing

James Bach
Satisfice, Inc.

james@satisfice.com
http://www.satisfice.com

Exploratory testing relies on tester intuition. It
is unscripted and improvisational.

How do I, as test manager, understand
what’s happening, so I can direct the work
and defend it to my clients?

2

SKILL
there’s no shortcut

No one can read your mind.

You must gain the skill to explain your testing…
so that you can be accountable for it.

That requires a lot of practice.
In our experience: several months of daily practice.

This is a black box…
Just like your mind.

Introducing the Test Session

1) Charter
2) Time Box
3) Reviewable Result
4) Debriefing vs.

3

Charter:
A clear mission for the session

• A charter may suggest what should be tested, how it
should be tested, and what problems to look for.

• A charter is not meant to be a detailed plan.
• General charters may be necessary at first:

– “Analyze the Insert Picture function”
• Specific charters provide better focus, but take more

effort to design:
– “Test clip art insertion. Focus on stress and flow

techniques, and make sure to insert into a variety of
documents. We’re concerned about resource leaks or
anything else that might degrade performance over time.”

Time Box:
Focused test effort of fixed duration

– Brief enough for accurate reporting.
– Brief enough to allow flexible scheduling.
– Brief enough to allow course correction.
– Long enough to get solid testing done.
– Long enough for efficient debriefings.
– Beware of overly precise timing.

Short: 60 minutes (+-15)
Normal: 90 minutes (+-15)

Long: 120 minutes (+-15)

4

Debriefing:
Measurement begins with observation

• The manager reviews session sheet to assure that
he understands it and that it follows the protocol.

• The tester answers any questions.
• Session metrics are checked.
• Charter may be adjusted.
• Session may be extended.
• New sessions may be chartered.
• Coaching happens.

Reviewable Result:
A scannable session sheet

• Charter
– #AREAS

• Start Time
• Tester Name(s)
• Breakdown

– #DURATION
– #TEST DESIGN AND EXECUTION
– #BUG INVESTIGATION AND REPORTING
– #SESSION SETUP
– #CHARTER/OPPORTUNITY

• Data Files

• Test Notes
• Bugs

– #BUG

• Issues
– #ISSUE

CHARTER

Analyze MapMaker’s View menu functionality and
report on areas of potential risk.

#AREAS
OS | Windows 2000
Menu | View
Strategy | Function Testing
Strategy | Functional Analysis

START

5/30/00 03:20 pm

TESTER

Jonathan Bach

TASK BREAKDOWN

#DURATION
short

#TEST DESIGN AND EXECUTION
65

#BUG INVESTIGATION AND REPORTING
25

#SESSION SETUP
20

5

The Breakdown Metrics
Testing is like looking for worms

Test Design and Execution

Bug Investigation and Reporting

Session Setup

Reporting the TBS Breakdown
A guess is okay, but follow the protocol

• Test, Bug, and Setup are orthogonal categories.
• Estimate the percentage of charter work that fell into

each category.
• Nearest 5% or 10% is good enough.
• If activities are done simultaneously, report the

highest precedence activity.
• Precedence goes in order: T, B, then S.
• All we really want is to track interruptions to testing.
• Don’t include Opportunity Testing in the estimate.

6

Activity Hierarchy
All test work fits here, somewhere

all work

non-
session

session

opportunity on charter

test bug setup

inferred

Non-Session
61%

Test
28%

Bug
4%

Opportunity
1%

Setup
6%

Work Breakdown:
Diagnosing the productivity

• Do these proportions make sense?
• How do they change over time?
• Is the reporting protocol being

followed?

0.0

50.0

100.0

150.0

200.0

250.0

300.0

5/26 6/9 6/23 7/7 7/21 8/4 8/18

7

Coverage:
Specifying coverage areas

• These are text labels listed in the Charter section
of the session sheet. (e.g. “insert picture”)

• Coverage areas can include anything
– areas of the product
– test configuration
– test strategies
– system configuration parameters

• Use the debriefings to check the validity of the
specified coverage areas.

Coverage:
Are we testing the right stuff?

• Is it a lop-sided set of
coverage areas?

• Is it distorted reporting?

Distribution of On Charter Testing
Across Areas

0

20

40

60

80

100

120

• Is this a risk-based test
strategy?

8

Using the Data
to Estimate a Test Cycle

1. How many perfect sessions (100% on-charter
testing) does it take to do a cycle? (let’s say 40)

2. How many sessions can the team (of 4 testers) do
per day? (let’s say 3 per day, per tester = 12)

3. How productive are the sessions? (let’s say 66% is
on-charter test design and execution)

4. Estimate: 40 / (12 * .66) = 5 days
5. We base the estimate on the data we’ve collected.

When any conditions or assumptions behind this
estimate change, we will update the estimate.

Challenges of High Accountability
Exploratory Testing

• Architecting the system of charters (test planning)
• Making time for debriefings
• Getting the metrics right
• Creating good test notes
• Keeping the technique from dominating the testing
• Maintaining commitment to the approach

For example session sheets and metrics see
http://www.satisfice.com/sbtm

QW2001 QuickStart 8Q

Mr. Robert A. Sabourin
(AmiBug.Com)

The Effective SQA Manager: Getting Things Done

Key Points

SQA Management●

Effective Process●

Process Improvement●

Presentation Abstract

This interactive tutorial walks you through several "down to earth" practical
aspects of running an SQA team.

The tutorial is presented in parable form. In this tutorial the audience will
experience the real life problems encountered by a NOGO.COMs neophyte SQA
Manager "Fred". "Fred" must turn around an enthusiastic but severely under
staffed and under budget team of SQA professionals working in a chaotic
development environment into a productive effective team! "Fred" is under the gun
- he has to get things done!

About the Author

Robert Sabourin has been involved in all aspects of development, testing and
management of software engineering projects. Robert graduated from McGill
University in 1982. Since writing his first program in 1972, Robert has become an
accomplished software engineering management expert. He is presently the
President of AmiBug.Com, Inc.; a Montreal-based international firm specializing
in software engineering and and software quality assurance training, management
consulting and professional development. AmiBug helps companies set up
software engineering and quality assurance teams and process through a
combination of training and management consulting. Robert was the Director of
Research and Development at Purkinje Inc where he was charged with developing
world class critical medical software used by clinicians at the point of care.
Previously, Robert managed Software Development at Alis Technologies for over
ten years. He has built several successful software development teams and
champions the implementation of "light effective process" to achieve excellence in
delivering on-time, on-quality, on-budget commercial software solutions.

Robert has championed many complex international multilingual software

development and globalization efforts involving several intricate business
partnerships and relationships including international government (Czech, Egypt,
France, Morocco, Algeria...) and commercial entities (Microsoft, IBM, AT&T, HP,
Thompson CSF, Olivetti...). Systems included concurrent coordinated multilingual
multiplatform product releases.

Robert's pioneering work with Infolytica Corporation led to the development of the
first commercially available platform independent graphics standard GKS and
several toolkits which allowed for cross platform development and porting of
complex CAD, Graphics, Analysis and Non-Destructive Simulation systems.

Robert is a frequent guest lecturer at McGill University where he relates theoretical
aspects of Software Engineering to real world examples with practical hands-on
demonstrations.

In 1999, Robert completed a short book illustrated by his daughter Catherine
entitled"I Am a Bug" (ISBN 0-9685774-0-7).

Robert has received professional recognition for many accomplishments over the
years. At TEPR 2000 - award for best electronic patient record product to EHS
using the Purkinje CNC component. Byte Middle-East's 1992 Product of the Year
for the AVT-710 product family achieving a ZERO FIELD REPORTED software
defect rate with over 15,000 units installed. (Project involved over 27-man month's
effort!); Quebec Order of Engineers' recognition for creating and managing the
Alis R&D Policy Guide - Development Framework and process.

1

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 1

AmiBug.Com, Inc.

Becoming an Effective
SQA Manager

Robert Sabourin
President

AmiBug.Com, Inc.
Montreal, Canada

rsabourin@amibug.com

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 2

AmiBug.Com, Inc.

Becoming an Effective
SQA Manager

• It’s all about people! (and the occasional
bug too)

2

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 3

AmiBug.Com, Inc.

Becoming an Effective
SQA Manager

• Overview
– Introductions
– Fundamental Question in Software

Engineering!
– Summary of key points from the “Parable of

the Effective SQA Manager”

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 4

AmiBug.Com, Inc.

Becoming an Effective
SQA Manager

• Robert Sabourin ,
Software Evangelist

• President
• AmiBug.Com Inc.
• Montreal, Quebec,

Canada
• rsabourin@amibug.com

3

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 5

AmiBug.Com, Inc.

• Software Development & SQA Consulting
• Services

– Training, Coaching and Professional
Development

– Light Effective Process
– Team Building and Organization
– We help people to get things done!

AmiBug.Com, Inc.

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 6

AmiBug.Com, Inc.

I am a Bug

Robert & Catherine Sabourin

ISBN: 0-9685774-0-7

www.amazon.com

In the style of a children's book.
Explains elements of software
development process in a fun easy
to read format.

4

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 7

AmiBug.Com, Inc.

Fundamental Question

• How do you know when you are finished?

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 8

AmiBug.Com, Inc.

Definition of a Bug

• To make our job more fun, whenever we
have a concern with software, we call it a
“bug”.

5

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 9

AmiBug.Com, Inc.

• Story about Fred
• Fred will have a simple adventure
• Learn many things

Fred and NoGo.com

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 10

AmiBug.Com, Inc.

• Composite of many I have worked with
• Worked as a guru in software testing

– Worked for a well organized company
– Isolated from the big picture
– Worked well with

developers

Fred

6

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 11

AmiBug.Com, Inc.

• But his company for some reason just didn’t
slice it
– Ran out of funds
– Could not sustain the pressure
– Even with great testers like Fred

Fred

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 12

AmiBug.Com, Inc.

• Head hunters found Fred a new job in no
time flat
– Fred was hired as an SQA director at

NoGo.Com
– Fred was brought in to make things happen and

get things done

Fred’s New Job

7

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 13

AmiBug.Com, Inc.

• Does he breathe?
• Does he get along with developers?
• Can he find serious, damaging and

dangerous bugs?
• Available Now?

NoGo.Com Evaluation
Criteria

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 14

AmiBug.Com, Inc.

• Fred needed help
– Politics
– Developers vs SQA
– Prod Man vs Developers
– Prod Man vs SQA
– Test bottlenecks projects

NoGo.Com
Chaos

8

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 15

AmiBug.Com, Inc.

• Fred is squeezed!
– Scapegoat
– Responsible
– Must get things done
– Needs Wisdom
– Needs Sage Council
– Needs a Mentor

NoGo.Com
Blame

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 16

AmiBug.Com, Inc.

The E-SQA Manager

• Warm and welcoming
• Available
• Door is open
• People around office look busy
• Seems to have time

9

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 17

AmiBug.Com, Inc.

Welcome to Q - II

• E-SQA Manager said something that caught
Fred off guard

• He said “Welcome to Quadrant II”
• And he shook my hand …
• what is going on?

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 18

AmiBug.Com, Inc.

Q - II

• E-SQA Manager explained Q - II
• Steve Covey “7 Habits of Highly Effective

People”
• A new paradigm of time management

10

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 19

AmiBug.Com, Inc.

Quadrants

• What we do with our time?
• How do we use our time

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 20

AmiBug.Com, Inc.

• Urgency
– Things that require and demand our attention

now
• Importance

– Things that have significance, meaning and
value

Quadrants

11

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 21

AmiBug.Com, Inc.

Time Management
Matrix

Urgent
Important

Not Urgent
Important

Urgent
Not Important

Not Urgent
Not Important

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 22

AmiBug.Com, Inc.

Four Quadrants

• QI
– Urgent / Important
– The pressing issue of the day that if it is not

dealt with all other things become irrelevant!

12

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 23

AmiBug.Com, Inc.

Four Quadrants

• QII
– Not Urgent / Important
– Long term issues which have significance and

which improve things
– Not pressing

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 24

AmiBug.Com, Inc.

Four Quadrants

• QIII
– Urgent / Not Important
– Those unimportant activities which take your

immediate attentions
– Time stealers
– Some phone calls or unimportant interruptions

13

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 25

AmiBug.Com, Inc.

Four Quadrants

• QIV
– Not Urgent / Not Important
– Some wasteful mindless activities
– Watching a mindless TV show
– Reading a romance novel
– Some unreasonably popular web sites

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 26

AmiBug.Com, Inc.

What about Vacations?

• Should be in QII
• Not QIV

14

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 27

AmiBug.Com, Inc.

What about learning and
teaching?

• Should be in QII

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 28

AmiBug.Com, Inc.

QII

• This is where you have to be in order to
make a significant impact of your
environment

• To make things better and have a lasting
influence

• To be effective
• To really get things done!

15

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 29

AmiBug.Com, Inc.

QII

• By seeing the E-SQA manager to learn
about how to become a more effective SQA
manager Fred is essentially in QII

• This is not an urgent activity but obviously
important

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 30

AmiBug.Com, Inc.

QII

• You can force yourself into QII by doing
activities such as
– Retreats
– Writing a diary
– Taking time to get advice from other
– Sharpen the saw

16

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 31

AmiBug.Com, Inc.

Inverted pyramid

• The effective SQA manager facilitates
– Makes it possible for the team to succeed
– Makes it possible for individuals to succeed

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 32

AmiBug.Com, Inc.

The 4 Ps

• E-SQA Manager explains that to get things
done you and all of your team must
understand the 4 Ps
– Purpose
– People
– Practical Process

17

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 33

AmiBug.Com, Inc.

Purpose

• The E-SQA Manager explains
• “At our organization we have a special

focus on helping increase the value of our
organization, we look at things from a
business prospective always keeping in
mind the key stakeholders, our customers,
employees and shareholders”

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 34

AmiBug.Com, Inc.

Purpose

• “The role of SQA in our organization is to
provide objective input to facilitate business
decisions (wise smart and good decisions)”

• “SQA keeps internal stakeholders aware of
all the issues that relate to shipping a
product”

• Some friends of mine in Washington State
have a similar purpose for the testing role!

18

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 35

AmiBug.Com, Inc.

Purpose

• To be an effective SQA manager you must
be an “on purpose” SQA manager
– On Time
– On Quality
– On Budget
– Are meaningless unless you are On Purpose

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 36

AmiBug.Com, Inc.

Purpose of SQA Team

• The E-SQA Manager on Service Model
– We have a service model for SQA generalized

to Software Engineering
• Metrics collection tracking as a service
• Analysis as a service
• Configuration management and construction as a

service
• Integration and System testing services
• Formal inspection services

19

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 37

AmiBug.Com, Inc.

Purpose of SQA Team

• On the E-SQA Service Model
– We like to ensure that the customers of our

service are Raving Fans!
– A Raving Fan customer is a customer who is

not just satisfied, but is so excited that they are
like a walking, talking sales promotions
department!

– If you really want a booming business you need
raving fans!

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 38

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• Three Secrets to Raving Fan SQA
– DECIDE WHAT YOU WANT
– DISCOVER WHAT THE CUSTOMER

WANTS
– DELIVER PLUS ONE PERCENT

20

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 39

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• DECIDE WHAT YOU WANT
– Create a clear vision of what you want the SQA

department to be like at some time in the ideal
future

– The vision should be of the internal customer
using the services offered by the team

– Have a good idea of what is excellence!

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 40

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• DISCOVER WHAT THE CUSTOMER
WANTS
– Identify who in the organization are your

customers
• Not just the leads and managers but all those

touched by your service

21

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 41

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• DISCOVER WHAT THE CUSTOMER
WANTS
– On an individual basis find out what they

expect from your team, what type of products,
services, information, data etc. (be polite and
try to get specific not vague input)

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 42

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• DISCOVER WHAT THE CUSTOMER
WANTS

– Developers want clear bug descriptions which help them
find and correct the associated defects

– Management wants the status of the product in terms of
what works, what does not work, how close is the product
to something which can he shipped!

– Help Desk support people want good descriptions of a
work around for all of the bugs we decide to leave in the
product so that they can help end users

22

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 43

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• DISCOVER WHAT THE CUSTOMER
WANTS
– As required adapt your vision to mesh with that

of the internal customers
• If there are wide gaps and gaping holes consider

redirecting the customer to some other department
or organization (do not try to be all things for all
people)

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 44

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• DISCOVER WHAT THE CUSTOMER
WANTS

• Sales may expect SQA to provide platform
recommendations

– In this case, you should redirect the customer to Product
Management and make sure that it is clear that you do not
provide that service

23

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 45

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• DISCOVER WHAT THE CUSTOMER
WANTS

• End-user support may expect SQA to provide a
work around for bugs left in the product

– If this is a service you intend to offer make sure it is part
of your teams work on any project and take care to
document in a clear straight forward manner any work
around

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 46

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• DISCOVER WHAT THE CUSTOMER
WANTS

• End-user support may expect SQA to provide a
work around for bugs left in the product

– Do we provide this in a language our end users should
understand or in a language our customer service
representatives understand!

24

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 47

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• DELIVER THE VISION PLUS ONE
PERCENT
– With a vision in hand establish a strategy which

will allow you to deliver

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 48

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• DELIVER THE VISION PLUS ONE
PERCENT
– Baby steps are the order of the day!

• We do not jump from the current state to the ideal
vision in one step

25

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 49

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• DELIVER THE VISION PLUS ONE
PERCENT

• On each project implement some process change
which brings you closer to the ideal

– Consistency, consistency, consistency
– Consistency creates credibility!

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 50

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• DELIVER THE VISION PLUS ONE
PERCENT

– Inconsistency can destroy a lot of built up good will and
productivity

» Bug reports descriptions varying depending on who
wrote the report can make the whole team look
incompetent even if it is only due to the fact that one
junior tester was taking a great initiative to help out in
an area he was not familiar with

26

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 51

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• DELIVER THE VISION PLUS ONE
PERCENT

– The way you treat one project should be the same way you
treat all projects!

» Do not try to add all sorts of new process steps or
deliverables until you can consistently deliver what is
presently required

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 52

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• DELIVER THE VISION PLUS ONE
PERCENT

» Example BABY STEPS
» Bug Graph - update it once a week, consistently,

accurate, punctual, available
» Bug Graph - update daily ONLY after weekly is

working perfectly
» Bug Graph - on demand in real time ONLY after

daily is working perfectly

27

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 53

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• DELIVER THE VISION PLUS ONE
PERCENT

• Meet first and then exceed customers expectation
– If the customer expects a great test plan outline with

coverage of all features, ensure this is consistently met
before adding requirement tracing or usage scenarios

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 54

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• DELIVER THE VISION PLUS ONE
PERCENT
– Figure out how to measure whether you are

generating Raving Fan Internal Customers
• Do they come back for more help, advise, guidance
• Do they use the deliverables
• Are they excited?
• Are they having fun?

28

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 55

AmiBug.Com, Inc.

Getting to Raving Fan
Service

• Of course getting to Raving Fan Service is
not a one man job

• The leader has to have the vision but the
vision must be consistent with the purpose

• And then you have to get the people
involved!

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 56

AmiBug.Com, Inc.

People

• The second P is “People”
• It is all about people!

29

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 57

AmiBug.Com, Inc.

People

• It’s all about people! (and the occasional
bug too)

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 58

AmiBug.Com, Inc.

People

• E-SQA Manager:
• It certainly makes a big difference if people are in

SQA because they want to be in SQA rather than
otherwise

• With a smaller team of people who liked to work in
SQA you can be more productive that with a larger
team including staff who did not want to work in
SQA

30

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 59

AmiBug.Com, Inc.

People

– If you want to get “Raving Fan Customers” for
SQA you will need to have “Gung Ho” staff to
deliver the service!

– You should read “Gung Ho!” also by Ken
Blanchard and Sheldon Bowles which talks
about how to increase Productivity, Profits and
Prosperity by having a “Gung Ho!” team!

– People who are excited about going to work
and being productive!

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 60

AmiBug.Com, Inc.

People

• The basics about “Gung Ho” staff
– Worthwhile work

• Important
• Leading to shared goals
• Value driven

31

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 61

AmiBug.Com, Inc.

People

• The basics about “Gung Ho” staff
– In control of achieving the goals

• Well marked territory
• Listen to and respect
• Able but challenged

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 62

AmiBug.Com, Inc.

People

• The basics about “Gung Ho” staff
– Cheering others on

• Feedback timely and true
• Keep score and cheer progress
• Enthusiasm

32

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 63

AmiBug.Com, Inc.

People

• E-SQA Manager
• When I was starting out in SQA management I

believed that “Happy people are productive”
• I used to take the gang out for a beer or to the ball

game
• We partied and had a great team spirit

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 64

AmiBug.Com, Inc.

People

• E-SQA Manager
• But it didn’t make things work better at the office
• In fact in some ways it was worse because people

were more focused on the social extra curricular
activities than on the job at hand!

• Something was missing

33

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 65

AmiBug.Com, Inc.

People

• E-SQA Manager
• Then I learned that the more appropriate model was

that “Productive people are happy”
• If people have a clear important role, are allowed to

succeed, and are given solid timely feedback
• So now I focus my management efforts on my

people and ensuring that they are and want to be
productive!

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 66

AmiBug.Com, Inc.

People

• E-SQA Manager

• We still have parties to celebrate important
achievements and project milestones and even
sometimes to highlight individual success, but we
are celebrating the productivity of people not
celebrating to make people productive!

34

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 67

AmiBug.Com, Inc.

People

• E-SQA Manager
– Feedback is the “Breakfast of Champions”
– Remember feedback is about the behavior not

the person
• Next time we can do better by trying this instead of

that

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 68

AmiBug.Com, Inc.

People

• E-SQA Manager offered some tips about
managing people

• Different Strokes for different folks at different
times!

• Adapt leadership style to the situation
• Choose leadership styles deliberately!

35

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 69

AmiBug.Com, Inc.

People

• 4 Basic Situational Leadership Styles
• Directing
• Coaching
• Supporting
• Delegating

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 70

AmiBug.Com, Inc.

People

• Directing Leadership
• Tell people specifically what to do
• Provide constant feedback, praising and redirection
• Used when someone is new to a task and uncertain

as to how to successfully achieve the task
• Used sometimes in an emergency situation

36

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 71

AmiBug.Com, Inc.

People

• Coaching Leadership
• Provide guidance and advice on how to achieve goals

based on input from staff
• Does not need close direction but needs to learn how

to achieve success
• Used when someone has a proven track record but is

new to this specific task
• Team member is mature enough to ask for assistance

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 72

AmiBug.Com, Inc.

People

• Supporting Leadership
• Staff participate in decision making with leader
• Staff works with leader to establish goals and

milestones
• Person can work quite autonomously but needs

leaders help
• Team member is mature

37

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 73

AmiBug.Com, Inc.

People

• Delegating Leadership
• Staff is given broad goal and parameters and then

takes full ownership of task
• Constant feedback is not required and the need for it

is driven by team member mostly to confirm that big
picture business drivers have not changed

• Team member is capable of successfully achieving
assignment

• Team member is autonomous

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 74

AmiBug.Com, Inc.

People

• SQA Bill Of Rights
– Right to know the business context for assigned

activities. Staff must be able to answer the
question: “What is the business reason for
doing this assigned activity?”

– Right to know what it means to finish assigned
activity

38

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 75

AmiBug.Com, Inc.

People

• SQA Bill Of Rights
– Right to know what software being tested is

supposed to do and if assumptions are to be
made the right to double check with product or
development management before testing
activity starts

– Right to get software which the development
team honestly believes works

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 76

AmiBug.Com, Inc.

People

• SQA Bill Of Rights
– Right to have fun at work
– Right to learn new work methods, techniques

and technologies
– Right to try out innovations which may fail

39

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 77

AmiBug.Com, Inc.

People

• SQA Bill Of Rights
– Right to speak directly with developer

responsible for code being tested
– Right to report a bug discovered even if it may

already be in the bug list (never loose a bug)
– Right to know how much effort to spread

across a testing assignment

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 78

AmiBug.Com, Inc.

People Earn Respect

• You must earn respect
• From peers
• From customers
• From stakeholders

40

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 79

AmiBug.Com, Inc.

People Human Side

• The human side of the equation is the most
unpredictable
– There is always something you do not know
– Problems at home
– Peer personality conflicts
– Poor self-esteem of team members
– Be sensitive, clear, firm and honest

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 80

AmiBug.Com, Inc.

Practical Process

• Baby Step Innovation
– On each project implement two innovations

• Technical or technology innovation
• Process or management innovation

41

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 81

AmiBug.Com, Inc.

Practical Process

• Baby Step Innovation
– Ensure that all projects operate within a couple

of innovations from each other
– Every project is a pilot project for some

innovation
– Pull innovation if it does not look promising

after being given a fair chance

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 82

AmiBug.Com, Inc.

Practical Process

• Have effective meetings
– As few people as possible
– Efficient use of time
– Separate project meetings from team meetings
– Team meetings invited guests, info from exec

42

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 83

AmiBug.Com, Inc.

Practical Process

• Be punctual at all times
– An SQA Manager must set an example
– Be on time in all matters at all times
– If you expect your people to deliver on time

you must deliver on time
– Make sure administrative issues, pay issues and

all people issues are dealt on time

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 84

AmiBug.Com, Inc.

Practical Process

• It is really quite simple

– All you have to do is always MAKE AND
KEEP COMMITMENTS!

43

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 85

AmiBug.Com, Inc.

Practical Process

• Off Site SQA Team Retreats
– Focus on what can be changed
– Look at past recent experience
– All team members come prepared
– Capture results and recommendations

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 86

AmiBug.Com, Inc.

Practical Process

• Project Post Mortem Review
– Key team members bring lists

• 5 excellent things to be encouraged in future
projects

• 5 things that could have been done better and should
be improved in future projects

• A couple of specific recommendations or personal
comments

44

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 87

AmiBug.Com, Inc.

Practical Process

• Project Budgets
– Need to know how many resources to commit

to project
– Effort based and spread across project in

rational way
– Reviewed and revised frequently with project

stake holders

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 88

AmiBug.Com, Inc.

Practical Process

• Staffing
– Have access to contract resources to increase

capacity for short bursts during crunch periods
– Good test scripts and plans help
– Have permanent staff coach contract staff for

leverage

45

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 89

AmiBug.Com, Inc.

About Bugs

Bugs are not Good or Bad

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 90

AmiBug.Com, Inc.

About Bugs

Some bugs are important
and have a high priority!

46

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 91

AmiBug.Com, Inc.

About Bugs

Some bugs are dangerous
and have a high severity!

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 92

AmiBug.Com, Inc.

About Bugs

• Setting the priority and severity of a bug is a
business decision

• Changing business conditions impact the
priority and severity of a bug!
– Always review previous decisions in light of

changing business context
– Ensure staff assigning priority and severity are

aware of all relevant business drivers

47

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 93

AmiBug.Com, Inc.

Bug Quadrants

Urgent
Severe

Urgent
Not Severe

Not Urgent
Severe

Not Urgent
Not Severe

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 94

AmiBug.Com, Inc.

Business Decisions

• SQA:
– Objective input

• Development:
– Technical implementation

• Product Management:
– Customer driven requirements

48

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 95

AmiBug.Com, Inc.

Quadrant Changing

• Same technical bug can be in a different
quadrant depending on the business context

• Monitor business drivers!
• Focus find and fix quadrant -1- bugs high

priority/high severity

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 96

AmiBug.Com, Inc.

Finished?

• How do you know you are finished?

49

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 97

AmiBug.Com, Inc.

You know you are
finished when …

• … the only bugs left are the ones that
Product Management and Development
agree are acceptable (based on objective
SQA input) ...

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 98

AmiBug.Com, Inc.

You know you are
finished when …

• … the only bugs left are the ones that
Product Management and Development
agree are acceptable (based on objective
SQA input) …

At least for now!

50

Friday, March 30, 2001 © Robert Sabourin, 2000 Slide 99

AmiBug.Com, Inc.

Thank You

• Questions?

QW2001 Special Panel Session 9Q

Dr. John D. Musa - Panel Chair
(Consultant)

How Will The Internet Affect Software Quality Practice? (Panel
Discussion)

Presentation Abstract

The Internet is having dramatic effects in all areas of software development. This
panel will focus on how the Internet will affect the practice of software quality.
The panelists were selected to represent different backgrounds. They will outline
some of their visions on the problems that will challenge us and offer some
possible solutions to those problems. The panel will invite the audience to enrich
the session by contributing their questions, comments, and views, to which the
panelists will respond as appropriate.

About the Panel Moderator

John D. Musa is one of the creators of software reliability engineering , with more
than 30 years varied and extensive experience as a software development
practitioner and manager. Principal author of the highly-acclaimed pioneering
book Software Reliability and author of the practical Software Reliability
Engineering, Musa has published more than 100 papers on SRE. Elected IEEE
Fellow in 1986 for many seminal contributions, he was recognized in 1992 as the
leading contributor to testing technology. His leadership has been noted by every
recent edition of Who’s Who in America and American Men and Women of
Science. Musa, widely recognized as a leader in SRE practice, initiated and led the
effort that convinced AT&T to make SRE a “Best Current Practice.” Musa has
helped a wide variety of companies with a great diversity of software-based
products deploy SRE. He is an experienced international speaker and teacher (over
200 major presentations) A founder of the IEEE Technical Committee on SRE, he
is closely networked with SRE leaders, providing a broad perspective.

Panel Members

James Bach heads up Satisfice, a software testing consulting firm with a world
class test lab located in rural Northern Virginia. James has extensive experience in
a variety of testing situations, including for Silicon Valley startups, and larger
organizations such as Microsoft, Borland, and Apple Computers.

Dr. Edward Miller is President of Software Research, Inc., San Francisco,
California, where he has been involved with software test tools development and
software engineering quality questions. Dr. Miller has worked in the software
quality management field for 25 years in a variety of capacities, and has been
involved in the development of families of automated software and analysis

support tools. He was chairman of the 1985 1st International Conference on
Computer Workstations, and has participated in IEEE conference organizing
activities for many years. He is the author of Software Testing and Validation
Techniques, an IEEE Computer Society Press tutorial text. Dr. Miller received his
Ph.D. (Electrical Engineering) degree from the University of Maryland, an M.S.
(Applied Mathematics) degree from the University of Colorado, and a BSEE from
Iowa State University.

Johanna Rothman observes and consults on managing high technology product
development. She works with her clients to find the leverage points that will
increase their effectiveness as organizations and as managers, helping them ship
the right product at the right time, and recruit and retain the best people. Johanna
publishes "Reflections", an acclaimed quarterly newsletter about managing product
development. Johanna's handbook, "Hiring Technical People: A Guide to Hiring
the Right People for the Job," has proved a boon to perplexed managers, as have
her articles in Software Development, Cutter IT, IEEE Computer, Software Testing
and Quality Engineering, and IEEE Software. Johanna is the founder and principal
of Rothman Consulting Group, Inc., and is a member of the clinical faculty of The
Gordon Institute at Tufts University, a practical management degree program for
engineers.

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

How Will the Internet Affect
Software Quality Practice?

Copyright John D. Musa 2001
1

How Will the Internet Affect
Software Quality Practice?

John D. Musa
j.musa@ieee.org

2

Classes of Internet Users

• Innovators: Risk-taking style leaders who will filter out
products that early adopters will look at

• Early Adopters: Progressive solid-citizen leaders who
will take some risks with products demonstrated
promising

• Early Majority: Followers who will use a product all
their cohorts are using

• Late Majority: Reluctant followers who will use a
product when alternatives are clearly undesirable

• Laggards: Resistors who will use a product only
when alternatives are no longer available

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

How Will the Internet Affect
Software Quality Practice?

Copyright John D. Musa 2001
2

3

Time Profile of Internet Users

Laggards

Late
Majority

Early Majority

Early Adopters
Innovators

2001 2020201520102005

4

Relative Quality Expectations of
Internet Users

Much
Later

Much LowerMuch
Higher

Laggards

LaterLowerHigherLate
Majority

SameCompetitiveCompetitiveEarly
Majority

EarlierHigherLowerEarly
Adopters

FirstSub. HigherSub. LowerInnovators

Time to
Market

Cost Rel/AvailUser Class

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

How Will the Internet Affect
Software Quality Practice?

Copyright John D. Musa 2001
3

5

Strategies for Developing
Competitive Internet Software

• Extremely unlikely you can build a software
development organization that is markedly more
efficient or cheap than others

• You are most likely to win by using user-oriented,
quantitative quality practices such as software
reliability engineering:
– Estimate relative use of different functions with

operational profile and use to focus resources
[1,2,3]

– Formulate precise quantitative user goals for
reliability/availability, delivery date, cost [1,2,3]

– Engineer development strategies to meet “just
right” goals based on quantitative project
experience [1]

6

Evolution of Internet Software
Development Strategies

• 2001 -2005: Speed time to market by:
– developing most highly used features first
– using the most time-effective development

strategies
– continually measuring reliability to determine if

release date is tolerable

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

How Will the Internet Affect
Software Quality Practice?

Copyright John D. Musa 2001
4

7

Evolution of Internet Software
Development Strategies

• After 2005 (as Internet and its users mature):
Improve reliability/availability and cost by:
– focusing greatest effort on most highly used

features
– using development strategies with greatest

reliability improvement per unit cost
– continually measuring reliability to determine it is

met before release

8

To Explore Further
1. More Reliable Software Faster and Cheaper,

two day course, described on internet at
http://members.aol.com/JohnDMusa/FLweb.html

2. Software Reliability Engineering website:
http://members.aol.com/JohnDMusa/

Overview, briefing for managers, bibliography of
articles by software reliability engineering users,
course information, useful references, Question
of the Month.

3. Musa, J. D., Software Reliability Engineering:
More Reliable Software, Faster Development
and Testing, ISBN 0-07-913271-5, McGraw-Hill,
1998. Detailed, extensive treatment of practice.

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

How Will the Internet Affect
Software Quality Practice?

Copyright John D. Musa 2001
5

9

To Explore Further

4. Musa, Iannino, Okumoto; Software Reliability:
Measurement, Prediction, Application, ISBN 0-07-
044093-X, McGraw-Hill, 1987. Practice plus
extensive theoretical background.

5. Musa, J.D., More Reliable Software Faster and
Cheaper. Overview of software reliability
engineering, suitable for managers and anyone
wanting a fast and broad but not detailed
understanding of the topic. May be downloaded
from:
 http://members.aol.com/JohnDMusa/ARTweb.html

How Will The Internet Affect Software Quality Practices?

© 2001 Johanna Rothman www.jrothman.com 1
781-641-4046 jr@jrothman.com

1

How Will The Internet Affect
Software Quality Practices?

Johanna Rothman
Rothman Consulting Group, Inc.

781-641-4046
jr@jrothman.com

www.jrothman.com

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 2

Two Ways to Look at the Context

It’s Different
• Everything has to be done faster
• Managing content is as critical as

managing source code
• We’re not all in one place or one

time

It’s Not Different
• We’ve always had to be fast
• We’ve know how to manage source

code, how different could content
be?

• We’ve done geographically
distributed projects before

How Will The Internet Affect Software Quality Practices?

© 2001 Johanna Rothman www.jrothman.com 2
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 3

However

• The context is our set of weaknesses (as an industry)
• The Internet is different, not because it’s innately different, but

because the way we work stresses us at our most vulnerable
points

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 4

Possible Trends

• Iterative and incremental development leads to incremental and
iterative testing

• Quality is not just about defects
• Opportunities

– Learn about different kinds of testing and ways to test
– Effect change in product development
– Project Management techniques are even more important than before
– Working with people is more important

QW2001 Workshop W1

Dr. Cem Kaner
(Florida Institute of Technology)

Developing The Right Test Documentation

Key Points

The best approach to project documentation depends on the project context, and not
necessarily on published standards.

●

There are useful questions for learning your project's requirements for test
documentation.

●

Context-free questions and lists can guide you in developing good tests and test strategies
when you don't have time to develop a full set of documentation.

●

Presentation Abstract

The best approach to test documentation depends on the project context. For
example, a paper-intensive test documentation strategy like IEEE 829 is useful for
some projects but can get in the way of development of a high-volume automated
testing strategy. In the course of writing the third edition of Testing Computer
Software, we are looking at test planning/documentation from a different
viewpoint. It seems to us that: * The set of documentation is a deliverable, that can
be significantly expensive and that can have a significant impact on the project or
the company. * To decide what documentation is appropriate, we should do a
requirements analysis, asking

who are the favored, disfavored, and ignored users/recipients of this
documentation and why

●

what they need or want, and why●

what it costs to fully or partially satisfy these requirements●

We also consider the content of the test plan. We think that we have some
guidance to offer in terms of evaluating the coverage of the test documentation
(how well different aspects of the product are covered and how well different risks
are covered).

The associated paper will present some specific test documentation techniques that
we use (various types of charts), that we have taught before.

This presentation pulls together work from other talks and from the Los Altos
Workshops on Software Testing. There is a lot of material. It can easily fill a day's

tutorial and it can be scaled back to a shorter session (45-90 minutes) that is
supported by a long paper.

About the Author

Cem Kaner is Professor of Computer Sciences at the Florida Institute of
Technology.

Prior to joining Florida Tech, Kaner worked in Silicon Valley for 17 years, doing
and managing programming, user interface design, testing, and user
documentation. He is the senior author (with Jack Falk and Hung Quoc Nguyen) of
TESTING COMPUTER SOFTWARE (2nd Edition) and (with David Pels) of
BAD SOFTWARE: WHAT TO DO WHEN SOFTWARE FAILS.

Through his consulting firm, KANER.COM, he teaches courses on black box
software testing and consults to software publishers on software testing,
documentation, and development management.

Kaner is also the co-founder and co-host of the Los Altos Workshop on Software
Testing, the Software Test Managers' RoundTable, the Workshop on Heuristic &
Exploratory Techniques, and the Florida Workshops on Model-Based Testing.

Kaner is also attorney whose practice is focused on the law of software quality. He
is active (as an advocate for customers, authors, and small development shops) in
several legislative drafting efforts involving software licensing, software quality
regulation, and electronic commerce.

Kaner holds a B.A. in Arts & Sciences (Math, Philosophy), a Ph.D. in
Experimental Psychology (Human Perception & Performance: Psychophysics),
and a J.D. (law degree). He is Certified in Quality Engineering by the American
Society for Quality.

1

Developing the Right Test
Documentation

Cem Kaner, J.D., Ph.D.
Department of Computer Sciences

Florida Institute of Technology

James Bach
Satisfice, Inc.

May, 2001
Software Quality Week

2Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Acknowledgments

• These notes outline the test planning chapter in prep for Testing Computer
Software, 3rd Ed., by Cem Kaner, James Bach, Hung Quoc Nguyen, Jack Falk,
Brian Lawrence & Bob Johnson. They incorporate and adapt materials by these
authors.

• Many of the ideas in these notes were reviewed and refined at the Third Los
Altos Workshop on Software Testing (LAWST), February 7-8, 1998, and at the
Eleventh LAWST, October 28-29, 2000.

– The participants at LAWST 3 were: Chris Agruss, James Bach, Karla Fisher,
David Gelperin, Kenneth Groder, Elisabeth Hendrickson, Doug Hoffman, III
(recorder), Bob Johnson, Cem Kaner (host), Brian Lawrence (facilitator), Brian
Marick, Thanga Meenakshi, Noel Nyman, Jeffery E. Payne, Bret Pettichord,
Johanna Rothman, Jane Stepak, Melora Svoboda, Jeremy White, and Rodney
Wilson.

– The participants at LAWST 11 were: Chris Agruss, James Bach, Hans Buwalda,
Marge Farrell. Sam Guckenheimer, Elisabeth Hendrickson, Doug Hoffman, III
(recorder), Bob Johnson, Karen Johnson, Cem Kaner (host), Brian Lawrence
(facilitator), Alan Myrvold, Hung Quoc Nguyen, Noel Nyman, Neal Reizer, Amit
Singh, and Melora Svoboda.

2

3Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Abstract
This workshop has grown out of our dissatisfaction with paper-intensive approaches that attempt to
provide a seemingly reproducible, somewhat mechanical process for planning and managing testing
and test documentation. Over the past 17 years, we have criticized IEEE standard 829 (on software
test documentation) and related approaches as being often inappropriate.

Colleagues have asked what we would put in IEEE 829’s place. To date, our responses have been
piecemeal. This seminar’s notes are a draft of our attempt to write a more comprehensive response.

– They start from the premise that the best approach to test documentation depends on the project context.
For example, creating detailed test documentation can be useful for some projects but can get in the way
of the development of a high-volume automated testing strategy. What are the relevant differences
between these projects? Before adopting an implementation guideline (like IEEE 829), we should analyze
our requirements. There is no point spending a fortune on creating a deliverable (here, the test
documentation set) that will not be used or that will interfere with the efficient running of the project.
Instead, we should build a documentation set that will actually satisfy the real needs of the project.

– The notes also reflect our view that testing is an exercise in critical thinking and careful questioning. A
test case is a question that you ask of the program (Are you broken in this way?). The point of a test case
is to reduce uncertainty associated with the product. (A test is good if it will reduce uncertainty, whether
it finds a bug or not.) A test plan is a structure for asking questions of the project and the product. These
notes suggest strategies for asking better questions, and they provide useful clusters of questions.

– The notes also provide samples of some common test planning documents, such as tables and matrices.
These will probably be among the building blocks of any testing program that you set up.

4Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Overview

• Problems with the (allegedly) standard approach
• Defining your documentation requirements
• A model for testing and test documentation
• Test documentation elements

3

5Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Problems with the (allegedly) standard approach

• IEEE Standard 829 for Software Test Documentation
– Test plan
– Test-design specification
– Test-case specification

• Test-case specification identifier
• Test items
• Input specifications
• Output specifications
• Environmental needs
• Special procedural requirements
• Intercase dependencies

– Test-procedure specification
– Test-item transmittal report
– Test-log

We often see
one or more
pages per
test case.

6Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Problems with the (allegedly) standard approach

• What is the documentation cost per test case?
• What is the maintenance cost of the documentation, per

test case?
• If software design changes create documentation

maintenance costs, how much inertia do we build into
our system? How much does extensive test
documentation add to the cost of late improvement of
the software? How much should we add?

• What inertia is created in favor of invariant regression
testing?

• Is this incompatible with exploratory testing? Do we
always want to discourage exploration?

4

7Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Problems with the (allegedly) standard approach

• What is the impact on high-volume test automation?
• How often do project teams start to follow 829 but then

give it up mid-project? What does this do to the net
quality of the test documentation and test planning
effort?

• WHAT REQUIREMENTS DOES A STANDARD LIKE
THIS FULFILL?

• WHICH STAKEHOLDERS GAIN A NET BENEFIT
FROM IEEE STANDARD DOCUMENTATION?

• WHAT BENEFITS DO THEY GAIN, AND WHY ARE
THOSE BENEFITS IMPORTANT TO THEM?

8Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Problems with the (allegedly) standard approach

It is essential to understand your
requirements for test documentation.

Unless following a “standard” helps you
meet your requirements, it is empty at best,
anti-productive at worst.

5

9Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Defining documentation requirements

• Stakeholders, interests, actions, objects
• Asking questions
• Context-free questions
• Context-free questions specific to test planning
• Evaluating a plan

10Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Discovering Requirements

• Requirements
– Anything that drives or constrains design

• Stakeholders
– Favored, disfavored, and neutral stakeholders

• Stakeholders’ interests
– Favored, disfavored, and neutral interests

• Actions
– Actions support or interfere with interests

• Objects

6

11Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Questioning

• Requirements analysis requires information gathering
– Read books on consulting
– Gause & Weinberg, Exploring Requirements is an

essential source on context-free questioning
• There are many types of questions:

– Open vs. closed
– Hypothetical vs. behavioral
– Opinion vs. factual
– Historical vs. predictive
– Context-dependent and context-free

12Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

The classic context-free questions

• The traditional newspaper reporters’ questions are:
– Who
– What
– When
– Where
– How
– Why

• For example, Who will use this feature? What does this user want to do
with it? Who else will use it? Why? Who will choose not to use it? What
do they lose? What else does this user want to do in conjunction with
this feature? Who is not allowed to use this product or feature, why, and
what security is in place to prevent them?

• We use these in conjunction with questions that come out of the testing
model (see below). The model gives us a starting place. We expand it
by asking each of these questions as a follow-up to the initial question.

7

13Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Context-Free Questions: Defining the Problem

Based on: The CIA’s Phoenix Checklists (Thinkertoys, p. 140) and Bach’s
Evaluation Strategies (Rapid Testing Course notes)

– Why is it necessary to solve the problem?
– What benefits will you receive by solving the problem?
– What is the unknown?
– What is it that you don’t yet understand?
– What is the information that you have?
– What is the source of this problem? (Specs? Field experience? An individual

stakeholder’s preference?)
– Who are the stakeholders?
– How does it relate to which stakeholders?
– What isn’t the problem?
– Is the information sufficient? Or is it insufficient? Or redundant? Or

contradictory?
– Should you draw a diagram of the problem? A figure?

14Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Context-Free Questions: Defining the Problem

– Where are the boundaries of the problem?
– What product elements does it apply to?
– How does this problem relate to the quality criteria?
– Can you separate the various parts of the problem? Can you write them down?

What are the relationships of the parts of the problem?
– What are the constants (things that can’t be changed) of the problem?
– What are your critical assumptions about this problem?
– Have you seen this problem before?
– Have you seen this problem in a slightly different form?
– Do you know a related problem?
– Try to think of a familiar problem having the same or a similar unknown.
– Suppose you find a problem related to yours that has already been solved. Can

you use it? Can you use its method?
– Can you restate your problem? How many different ways can you restate it?

More general? More specific? Can the rules be changed?
– What are the best, worst, and most probable cases you can imagine?

8

15Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Context-Free Questions

Context-free process questions
– Who is the client?
– What is a successful solution worth to this client?
– What is the real (underlying) reason for wanting to solve this

problem?
– Who can help solve the problem?
– How much time is available to solve the problem?

Context-free product questions
– What problems could this product create?
– What kind of precision is required / desired for this product?

Metaquestions (when interviewing someone for info)
– Am I asking too many questions?
– Do my questions seem relevant?
– Are you the right person to answer these questions?
– Is there anyone else who can provide additional information?
– Is there anything else I should be asking?
– Is there anything you want to ask me?
– May I return to you with more questions later?

A sample of
additional
questions
based on
Gause &
Weinberg’s
Exploring
Requirements
p. 59-64

16Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

What is your group’s mission?

• Find important problems
• Assess quality
• Certify to standard
• Fulfill process mandates
• Satisfy stakeholders
• Assure accountability

• Advise about QA
• Advise about testing
• Advise about quality
• Maximize efficiency
• Minimize time
• Minimize cost

The quality of testing depends on which of these
possible missions matter and how they relate.

Many debates about the goodness of testing
are really debates over missions and givens.

9

17Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Test Docs Requirements Questions

• Is test documentation a product or tool?
• Is software quality driven by legal issues or by market forces?

• How quickly is the design changing?

• How quickly does the specification change to reflect design
change?

• Is testing approach oriented toward proving conformance to
specs or nonconformance with customer expectations?

• Does your testing style rely more on already-defined tests or
on exploration?

• Should test docs focus on what to test (objectives) or on how
to test for it (procedures)?

• Should the docs ever control the testing project?

18Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Test Docs Requirements Questions

• If the docs control parts of the testing project, should that control
come early or late in the project?

• Who are the primary readers of these test documents and how
important are they?

• How much traceability do you need? What docs are you tracing
back to and who controls them?

• To what extent should test docs support tracking and reporting of
project status and testing progress?

• How well should docs support delegation of work to new testers?

• What are your assumptions about the skills and knowledge of new
testers?

• Is test doc set a process model, a product model, or a defect
finder?

10

19Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Test Docs Requirements Questions

• A test suite should provide prevention, detection, and prediction.
Which is the most important for this project?

• How maintainable are the test docs (and their test cases)? And,
how well do they ensure that test changes will follow code
changes?

• Will the test docs help us identify (and revise/restructure in face
of) a permanent shift in the risk profile of the program?

• Are (should) docs (be) automatically created as a byproduct of the
test automation code?

20Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Ultimately, write a mission statement

• Try to describe your core documentation requirements
in one sentence that doesn’t have more than three
components.

• Examples:
– The test documentation set will primarily support our

efforts to find bugs in this version, to delegate work,
and to track status.

– The test documentation set will support ongoing
product and test maintenance over at least 10 years, will
provide training material for new group members, and
will create archives suitable for regulatory or litigation
use.

11

21Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

A Model of Software Testing

Project
Environment

RisksProduct
Elements

Test
Docs

Test
Results

Quality
Criteria

Test
Techniques

22Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Project Environment Factors:

• Stakeholders
• Processes
• Staff
• Schedules
• Equipment
• Tools & Test Materials
• Information
• Items Under Test
• Logistics
• Budget
• Deliverables

These aspects of the
environment constrain and
enable the testing project

12

23Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Project Factors

• Stakeholders:
– Anyone who is a client of the main project
– Anyone who is a client of the testing project

• Includes customers (purchasers), end users, tech support,
programmers, project mgr, doc group, etc.

• Processes:
– The tasks and events that comprise the main project

• How the overall project is run
– The tasks and events that comprise the test project

• How the testing project is run
• Staff:

– Everyone who helps develop the product
• Sources of information and assistance

– Everyone who will perform or support testing
• Special talents or experiences of team members
• Size of the group
• Extent to which they are focused or are multi-tasking
• Organization: collaboration & coordination of the staff
• Is there an independent test lab?

24Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Project Factors
• Schedules: The sequence, duration and synchronization of events

– When will testing start and how long is it expected to take?
– When will specific product elements be available to test?
– When will devices or tools be available to support testing?

• Equipment: Hardware required for testing
– What devices do we need to test the product with? Do we have them?

• Tools & Test Materials: Software required or desired for testing.
– Automation: Are such tools available? Do we want to use them? Do we have

them? Do we understand them?
– Probes or diagnostics to help observe the product under test?
– Matrices, checklists, other testing documentation?

• Information: (As needed for testing) about the project or product.
– Specifications, requirements documents, other reference materials to help us

determine pass/fail or to credibly challenge odd behaviour.
• What is the availability of these documents?
• What is the volatility of these documents?

13

25Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Project Factors

• Items Under Test: Anything that will be tested
– For each product element:

• Is it available (or when will it be)?
• Is it volatile (and what is the change process)?
• Is it testable?

• Logistics: Facilities and support needed for organizing and
conducting the testing

– Do we have the supplies / physical space, power, light / security systems (if
needed) / procedures for getting more?

• Budget: Money and other resources for testing
– Can we afford the staff, space, training, tools, supplies, etc.?

• Deliverables: The observable products of the test project
– Such as bug reports, summary reports, test documentation, master disk.

• What are you supposed to create and can you do it?
– Will we archive the items under test and other products of testing?

26Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

An experience or solution provided to a customer.

Product Elements: A product is…

Everything that comes in the box, plus the box!

Functions and data, executed on a platform,
that serve a purpose for a user.

1 A software product is much more than code.
2 It involves a purpose, platform, and user.
3 It consists of many interdependent elements.

14

27Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Product Elements:

• Structures: Everything that comprises the physical product
– Code: the code structures that comprise the product, from executables to

individual routines
– Interfaces: points of connection and communication between subsystems
– Hardware: hardware components integral to the product
– Non-executable files: any files other than programs, such as text files,

sample data, help files, etc.
– Alternate Media: anything beyond software and hardware, such as paper

documents, web links and content, packaging, license agreements, etc.

28Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Product Elements:

• Functions: Everything that the product does.
– User Interface: functions that mediate the exchange of data with the user
– System Interface: functions that exchange data with something other than

the user, such as with other programs, hard disk, network, printer, etc.
– Application: functions that define or distinguish the product or fulfill core

requirements
– Error Handling: functions that detect and recover from errors, including

error messages
– Testability: functions provided to help test the product, such as

diagnostics, log files, asserts, test menus, etc.
• Temporal relationships: How the program functions over time

– Sequential operation: state-to-state transitions
– Data: changes in variables over time
– System interactions: such as synchronization or ordering of events in

distributed systems

15

29Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Product Elements:

• Data: Everything that the product processes
– Input: data that is processed by the product
– Output: data that results from processing by the product
– Preset: data supplied as part of the product or otherwise built into it, such

as prefab databases, default values, etc.
– Persistent: data stored internally and expected to persist over multiple

operations. This includes modes or states of the product, such as options
settings, view modes, contents of documents, etc.

– Temporal: data based on time, such as date stamps or number of events
recorded in a unit of time

30Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Product Elements:

• Platform: Everything on which the product depends
– External Hardware: components and configurations that are not part of the

shipping product, but are required (or optional) in order for the product to
work. Includes CPU’s, memory, keyboards, peripheral boards, etc.

– External Software: software components and configurations that are not a
part of the shipping product, but are required (or optional) in order for the
product to work. Includes operating systems, concurrently executing
applications, drivers, fonts, etc.

• Operations: How the product will be used
– Usage Profile: the pattern of usage, over time, including patterns of data

that the product will typically process in the field. This varies by user and
type of user.

– Environment: the physical environment in which the product will be
operated, including such elements as light, noise, and distractions.

16

31Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Product Elements: Coverage

• There are as many kinds of coverage as there are ways to
model the product.
– Structural
– Functional
– Temporal
– Data
– Platform
– Operations

Product coverage is the proportion of the
product that has been tested.

See Software Negligence
& Testing Coverage at
www.kaner.com for 101
examples of coverage
“measures.”

32Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Quality Criteria
• Capability
• Reliability
• Usability
• Performance
• Installability
• Compatibility
• Supportability
• Testability
• Maintainability
• Portability
• Localizability
• Efficiency

Quality is value to some
person
-- Jerry Weinberg

17

33Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Risk

Hazard:
A dangerous condition (something that could trigger an
accident)

Risk:
Possibility of suffering loss or harm.

Accident:
A hazard is encountered, resulting in loss or harm.

• Useful material available free at http://seir.sei.cmu.edu
• http://www.coyotevalley.com (Brian Lawrence)
• Good paper by Stale Amland, Risk Based Testing and Metrics,

16th International Conference on Testing Computer Software, 1999.

34Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Risk

• Project risk management involves
– Identification of the different risks to the project (issues

that might cause the project to fail or to fall behind
schedule or to cost too much or to dissatisfy customers
or other stakeholders)

– Analysis of the potential costs associated with each risk
– Development of plans and actions to reduce the

likelihood of the risk or the magnitude of the harm
– Continuous assessment or monitoring of the risks (or

the actions taken to manage them)

18

35Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Risk-Based Testing

• Two key dimensions:
– Find errors (risk-based approach to technical tasks of

testing)

– Manage the process of finding errors (risk-based test
management)

• Our focus today is on methods for finding errors efficiently.

36Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Risks: Where to look for errors

• Qualities: Failure to conform to a quality criterion (risk
of unreliability, risk of unmaintainability, etc.)

• New things: newer features may fail.
• New technology: new concepts lead to new mistakes.
• Learning Curve: mistakes due to ignorance.
• Changed things: changes may break old code.
• Late change: rushed decisions, rushed or demoralized

staff lead to mistakes.
• Rushed work: some tasks or projects are chronically

underfunded and all aspects of work quality suffer.

19

37Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Risks: Where to look for errors

• Tired programmers: long overtime over several weeks
or months yields inefficiencies and errors

• Other staff issues: alcoholic, mother died, two
programmers who won’t talk to each other (neither will
their code)…

• Just slipping it in: pet feature not on plan may interact
badly with other code.

• N.I.H.: external components can cause problems.
• N.I.B.: (not in budget) Unbudgeted tasks may be done

shoddily.

38Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Risks: Where to look for errors

• Ambiguity: ambiguous descriptions (in specs or other
docs) can lead to incorrect or conflicting
implementations.

• Conflicting requirements: ambiguity often hides
conflict, result is loss of value for some person.

• Unknown requirements: requirements surface
throughout development. Failure to meet a legitimate
requirement is a failure of quality for that stakeholder.

• Evolving requirements: people realize what they want
as the product develops. Adhering to a start-of-the-
project requirements list may meet contract but fail
product. (check out http//www.agilealliance.org/)

20

39Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Risks: Where to look for errors

• Complexity: complex code may be buggy.
• Bugginess: features with many known bugs may also

have many unknown bugs.
• Dependencies: failures may trigger other failures.
• Untestability: risk of slow, inefficient testing.
• Little unit testing: programmers find and fix most of their

own bugs. Shortcutting here is a risk.
• Little system testing so far: untested software may fail.
• Previous reliance on narrow testing strategies: (e.g.

regression, function tests), can yield a backlog of errors
surviving across versions.

40Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Risks: Where to look for errors

• Weak testing tools: if tools don’t exist to help identify /
isolate a class of error (e.g. wild pointers), the error is more
likely to survive to testing and beyond.

• Unfixability: risk of not being able to fix a bug.
• Language-typical errors: such as wild pointers in C. See

– Bruce Webster, Pitfalls of Object-Oriented Development

– Michael Daconta et al. Java Pitfalls

21

41Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Risks: Where to look for errors

• Criticality: severity of failure of very important features.
• Popularity: likelihood or consequence if much used

features fail.
• Market: severity of failure of key differentiating features.
• Bad publicity: a bug may appear in PC Week.
• Liability: being sued.

42Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Bug Patterns as a Source of Risk

• Testing Computer Software lays out a set of 480 common defects. You can
use these or develop your own list.

– Find a defect in the list
– Ask whether the software under test could have this defect
– If it is theoretically possible that the program could have

the defect, ask how you could find the bug if it was there.
– Ask how plausible it is that this bug could be in the

program and how serious the failure would be if it was
there.

– If appropriate, design a test or series of tests for bugs of
this type.

22

43Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Build Your Own Model of Bug PatternsBuild Your Own Model of Bug Patterns

Too many people start and end with the TCS bug list. It is outdated. It
was outdated the day it was published. And it doesn’t cover the issues
in your system. Building a bug list is an ongoing process that
constantly pays for itself. Here’s an example from Hung Nguyen:

– This problem came up in a client/server system. The system sends the
client a list of names, to allow verification that a name the client enters
is not new.

– Client 1 and 2 both want to enter a name and client 1 and 2 both use
the same new name. Both instances of the name are new relative to
their local compare list and therefore, they are accepted, and we now
have two instances of the same name.

– As we see these, we develop a library of issues. The discovery method
is exploratory, requires sophistication with the underlying technology.

– Capture winning themes for testing in charts or in scripts-on-their-way
to being automated.

44Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Risk-Driven Testing Cycle

Analyze
Potential

Risks

Perform
Appropriate

Tests

Report &
Resolve

ProblemsAnalyze
Actual
Risks

pre-shippost-ship

Improve
Risk Analysis

Process

23

45Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Test Techniques

A test technique
is a recipe

for performing
these tasks that

will reveal something
worth reporting

• Analyze the situation.
• Model the test space.
• Select what to cover.
• Determine test oracles.
• Configure the test system.
• Operate the test system.
• Observe the test system.
• Evaluate the test results.

46Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

General Test Techniques

• Function
• Regression
• Domain driven
• Stress driven
• Specification driven
• Risk driven
• Scenario / use case / transaction flow
• User testing
• Exploratory
• Random / statistical

24

47Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Function Testing
• Tag line

– “Black box unit testing.”
• Fundamental question or goal

– Test each function thoroughly, one at a time.
• Paradigmatic case(s)

– Spreadsheet, test each item in isolation.
– Database, test each report in isolation

• Strengths
– Thorough analysis of each item tested

• Blind spots
– Misses interactions, misses exploration of the benefits

offered by the program.

48Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Regression Testing
• Tag line

– “Repeat testing after changes.”
• Fundamental question or goal

– Manage the risks that (a) a bug fix didn’t fix the bug or (b)
the fix (or other change) had a side effect.

• Paradigmatic case(s)
– Bug regression (Show that a bug was not fixed)
– Old fix regression (Show that an old bug fix was broken)
– General functional regression (Show that a change caused a

working area to break.)
– Automated GUI regression suites

• Strengths
– Reassuring, confidence building, regulator-friendly

25

49Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Regression Testing
• Blind spots / weaknesses

– Anything not covered in the regression series.
– Repeating the same tests means not looking for the bugs that

can be found by other tests.
– Pesticide paradox
– Low yield from automated regression tests
– Maintenance of this standard list can be costly and

distracting from the search for defects.

50Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Automating Regression Testing

• This is the most commonly discussed automation
approach:
– create a test case
– run it and inspect the output
– if the program fails, report a bug and try again later
– if the program passes the test, save the resulting outputs
– in future tests, run the program and compare the output

to the saved results. Report an exception whenever the
current output and the saved output don’t match.

26

51Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Potential Regression Advantages

• Dominant paradigm for automated testing.
• Straightforward
• Same approach for all tests
• Relatively fast implementation
• Variations may be easy
• Repeatable tests

52Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

GUI Regression: Interesting Papers

• Chris Agruss, Automating Software Installation Testing
• James Bach, Test Automation Snake Oil
• Hans Buwalda, Testing Using Action Words
• Hans Buwalda, Automated testing with Action Words:

Abandoning Record & Playback
• Elisabeth Hendrickson, The Difference between Test

Automation Failure and Success
• Cem Kaner, Avoiding Shelfware: A Manager’s View of

Automated GUI Testing
• John Kent, Advanced Automated Testing Architectures
• Bret Pettichord, Success with Test Automation
• Bret Pettichord, Seven Steps to Test Automation Success
• Keith Zambelich, Totally Data-Driven Automated Testing

27

53Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Domain Testing

• Tag lines
– “Try ranges and options.”
– “Subdivide the world into classes.”

• Fundamental question or goal
– A stratified sampling strategy.
– Think of this as a sampling strategy. It provides you

with a rationale for selecting a few test cases from a
huge population. Divide large space of possible tests
into subsets. Pick best representatives from each set.

• Paradigmatic case(s)
– Equivalence analysis of a simple numeric field
– Printer compatibility testing

54Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Domain Testing
• In classical domain testing

– Two values (single points or n-tuples) are equivalent if
the program would take the same path in response to
each.

• The classical domain strategies all assume
– that the predicate interpretations are simple, linear

inequalities.
– the input space is continuous and
– coincidental correctness is disallowed.

• It is possible to move away from these assumptions, but
the cost can be high, and the emphasis on paths is
troublesome because of the high number of possible
paths through the program.

• Clarke, Hassell, & Richardson, p. 388

28

55Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Equivalence and Risk

Our working definition of equivalence:
Two test cases are equivalent if you expect the same
result from each.

This is fundamentally subjective. It depends on what you expect. And
what you expect depends on what errors you can anticipate:

Two test cases can only be equivalent by reference to a
specifiable risk.

Two different testers will have different theories about how programs
can fail, and therefore they will come up with different classes.
A boundary case in this system is a “best representative.”

A best representative of an equivalence class is a test
that is at least as likely to expose a fault as every other
member of the class.

56Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Domain Testing

• Strengths
– Find highest probability errors with a relatively small

set of tests.
– Intuitively clear approach, generalizes well

• Blind spots
– Errors that are not at boundaries or in obvious special

cases.
– Also, the actual domains are often unknowable.

29

57Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Domain Testing: Interesting Papers

• Thomas Ostrand & Mark Balcer, The Category-partition Method
For Specifying And Generating Functional Tests,
Communications of the ACM, Vol. 31, No. 6, 1988.

• Debra Richardson, et al., A Close Look at Domain Testing, IEEE
Transactions On Software Engineering, Vol. SE-8, NO. 4, July
1982

• Michael Deck and James Whittaker, Lessons learned from
fifteen years of cleanroom testing. STAR '97 Proceedings
(in this paper, the authors adopt boundary testing as an adjunct
to random sampling.)

• Richard Hamlet & Ross Taylor, Partition Testing Does Not
Inspire Confidence, Proceedings of the Second Workshop on
Software Testing, Verification, and Analysis, IEEE Computer
Society Press, 206-215, July 1988

58Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Stress Testing

• Tag line
– “Overwhelm the product.”

• Fundamental question or goal
– Learn about the capabilities and weaknesses of the product by driving

it through failure and beyond. What does failure at extremes tell us
about changes needed in the program’s handling of normal cases?

• Paradigmatic case(s)
– Buffer overflow bugs
– High volumes of data, device connections, long transaction chains
– Low memory conditions, device failures, viruses, other crises.

• Strengths
– Expose weaknesses that will arise in the field.
– Expose security risks.

• Blind spots
– Weaknesses that are not made more visible by stress.

30

59Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Stress Testing: Interesting Papers

• Astroman66, Finding and Exploiting Bugs 2600
• Bruce Schneier, Crypto-Gram, May 15, 2000
• James A. Whittaker and Alan Jorgensen, Why Software

Fails
• Whittaker & Jorgenson, How to Break Software.

60Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Specification-Driven Testing

• Tag line:
– “Verify every claim.”

• Fundamental question or goal
– Check the product’s conformance with every statement

in every spec, requirements document, etc.
• Paradigmatic case(s)

– Traceability matrix, tracks test cases associated with
each specification item.

– User documentation testing

31

61Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Specification-Driven Testing

• Strengths
– Critical defense against warranty claims, fraud charges, loss

of credibility with customers.
– Effective for managing scope / expectations of regulatory-

driven testing
– Reduces support costs / customer complaints by ensuring

that no false or misleading representations are made to
customers.

• Blind spots
– Any issues not in the specs or treated badly in the specs

/documentation.

62Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Scenario Testing
Tag lines
– “Do something useful and interesting”
– “Do one thing after another.”

Fundamental question or goal
– Challenging cases that reflect real use.

Paradigmatic case(s)
– Appraise product against business rules, customer data,

competitors’ output
– Life history testing (Hans Buwalda’s “soap opera testing.”)
– Use cases are a simpler form, often derived from product

capabilities and user model rather than from naturalistic
observation of systems of this kind.

32

63Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Scenario Testing
• The ideal scenario has several characteristics:

– It is realistic (e.g. it comes from actual customer or competitor
situations).

– There is no ambiguity about whether a test passed or failed.
– The test is complex, that is, it uses several features and

functions.
– There is a stakeholder who will make a fuss if the program

doesn’t pass this scenario.
• Strengths

– Complex, realistic events. Can handle (help with) situations
that are too complex to model.

– Exposes failures that occur (develop) over time
• Blind spots

– Single function failures can make this test inefficient.
– Must think carefully to achieve good coverage.

64Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Scenario Testing: Interesting Papers

• Hans Buwalda on Soap Operas (in the conference
proceedings of STAR East 2000)

• Kaner, A pattern for scenario testing, at
www.testing.com

• Lots of literature on use cases

33

65Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Risk-Based Testing
• Tag line

– “Find big bugs first.”
• Fundamental question or goal

– Define and refine tests in terms of the kind of problem (or risk)
that you are trying to manage

– OR prioritize the testing effort in terms of the relative risk of
different areas or issues we could test for.

• Paradigmatic case(s)
– Failure Mode and Effects Analysis (FMEA)
– Equivalence class analysis, reformulated.
– Test in order of frequency of use (Musa).
– Stress tests, error handling tests, security tests, tests looking for

predicted or feared errors, sample from predicted-bugs list.

66Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Risk-Based Testing

• Strengths
– Optimal prioritization (assuming we correctly identify and

prioritize the risks)
– High power tests

• Blind spots
– Risks that were not identified or that are surprisingly more

likely.
– Some “risk-driven” testers seem to operate too subjectively.

How will I know what level of coverage that I’ve reached?
How do I know that I haven’t missed something critical?

34

67Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Evaluating Risk
• Several approaches that call themselves “risk-based

testing” ask which tests we should run and which we
should skip if we run out of time.

• We think this is only half of the risk story. The other half is
focuses on test design.
– It seems to us that a key purpose of testing is to find

defects. So, a key strategy for testing should be defect-
based. Every test should be questioned:
• How will this test find a defect?
• What kind of defect do you have in mind?
• What power does this test have against that kind of

defect? Is there a more powerful test? A more powerful
suite of tests?

68Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Evaluating Risk
• Many of us who think about testing in terms of risk,

analogize testing of software to the testing of
theories:
– Karl Popper, in his famous essay Conjectures and

Refutations, lays out the proposition that a scientific
theory gains credibility by being subjected to (and
passing) harsh tests that are intended to refute the
theory.

– We can gain confidence in a program by testing it
harshly (if it passes the tests). Subjecting it to easy
tests doesn’t tell us much about what will happen to
the program in the field.

35

69Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Risk-Based Testing: Interesting Papers

• Stale Amland, Risk Based Testing
• James Bach, Reframing Requirements Analysis
• James Bach, Risk and Requirements- Based Testing
• James Bach, James Bach on Risk-Based Testing
• Stale Amland & Hans Schaefer, Risk based testing, a

response
• Carl Popper, Conjectures & Refutations

70Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

User Testing
• Tag line

– Strive for realism
– Let’s try this with real humans (for a change).

• Fundamental question or goal
– Identify failures that will arise in the hands of a person,

i.e. breakdowns in the overall human/machine/software
system.

• Paradigmatic case(s)
– Beta testing
– In-house experiments using a stratified sample of target

market
– Usability testing

36

71Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

User Testing
•Strengths
– Design issues are more credibly exposed.
– Can demonstrate that some aspects of product are incomprehensible or

lead to high error rates in use.
– In-house tests can be monitored with flight recorders (capture/replay,

video), debuggers, other tools.
– In-house tests can focus on areas / tasks that you think are (or should be)

controversial.
•Blind spots
– Coverage is not assured (serious misses from beta test, other user tests)
– Test cases can be poorly designed, trivial, unlikely to detect subtle

errors.
– Beta testing is not free, beta testers are not skilled, the technical results

are mixed. Distinguish marketing betas from technical betas.

72Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Exploratory Testing

Simultaneously:
• Learn about the product
• Learn about the market
• Learn about the ways the product could fail
• Learn about the weaknesses of the product
• Learn about how to test the product
• Test the product
• Report the problems
• Advocate for repairs

• Develop new tests based on what you
have learned so far.

37

73Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Exploratory Testing
• Tag line

– “Simultaneous learning, planning, and testing.”
• Fundamental question or goal

– Software comes to tester under-documented and/or late.
Tester must simultaneously learn about the product and
about the test cases / strategies that will reveal the product
and its defects.

• Paradigmatic case(s)
– Skilled exploratory testing of the full product
– Rapid testing
– Emergency testing (including thrown-over-the-wall test-it-

today testing.)
– Third party components.
– Troubleshooting / follow-up testing of defects.

74Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Exploratory Testing
• Strengths

– Customer-focused, risk-focused
– Takes advantage of each tester’s strengths
– Responsive to changing circumstances
– Well managed, it avoids duplicative analysis and testing
– High bug find rates

• Blind spots
– The less we know, the more we risk missing.
– Limited by each tester’s weaknesses (can mitigate this with

careful management)
– This is skilled work, juniors aren’t very good at it.

38

75Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Paired Exploratory Testing--Acknowledgment

The following, paired testing, slides developed out of several projects.
We particularly acknowledge the help and data from participants in the First and
Second Workshops on Heuristic and Exploratory Techniques (Front Royal, VA,
November 2000 and March 2001, hosted by James Bach and facilitated by Cem
Kaner), those being Jon Bach, Stephen Bell, Rex Black, Robyn Brilliant, Scott
Chase, Sam Guckenheimer, Elisabeth Hendrickson, Alan A. Jorgensen, Brian
Lawrence, Brian Marick, Mike Marduke, Brian McGrath, Erik Petersen, Brett
Pettichord, Shari Lawrence Pfleeger, Becky Winant, and Ron Wilson.
Additionally, we thank Noel Nyman and Ross Collard for insights and James
Whittaker for co-hosting one of the two paired testing trials at Florida Tech.
A testing pattern on paired testing was drafted by Brian Marick, based on
discussions at the Workshop on Patterns of Software Testing (POST 1) in
Boston, January 2001 (hosted primarily by Sam Guckenheimer / Rational and
Brian Marick, facilitated by Marick). The latest draft is at "Pair Testing" pattern)
(<http://www.testing.com/test-patterns/patterns/pair-testing.pdf>).

76Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Paired Exploratory Testing

• Based on our (and others’) observations of effective
testing workgroups at several companies. We noticed
several instances of high productivity, high creativity
work that involved testers grouping together to analyze
a product or to scheme through a test or to run a series
of tests. We also saw/used it as an effective training
technique.

• In 2000, we started trying this out, at WHET, at
Satisfice, and at one of Satisfice’s clients. The results
were spectacular. We obtained impressive results in
quick runs at Florida Tech as well, and have since
received good reports from several other testers.

39

77Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Paired Programming

• Developed independently of paired testing, but many of
the same problems and benefits apply.

• The eXtreme Programming community has a great deal
of experience with paired work, much more than we do,
offers many lessons:
– Kent Beck, Extreme Programming Explained
– Ron Jeffries, Ann Anderson & Chet Hendrickson,

Extreme Programming Installed
• Laurie Williams of NCSU does research in pair

programming. For her publications, see
<http://collaboration.csc.ncsu.edu/laurie/>

78Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

What is Paired Testing
• Two testers and (typically) one machine.
• Typically (as in XP)

– Pairs work together voluntarily. One person might pair
with several others during a day.

– A given testing task is the responsibility of one person,
who recruits one or more partners (one at a time) to
help out.

• We’ve seen stable pairs who’ve worked together for
years.

• One tester strokes the keys (but the keyboard may pass
back and forth in a session) while the other suggests
ideas or tests, pays attention and takes notes, listens,
asks questions, grabs reference material, etc.

40

79Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

A Paired Testing Session

• Start with a charter
– Testers might operate from a detailed project outline,

pick a task that will take a day or less
– Might (instead or also) create a flipchart page that

outlines this session’s work or the work for the next
few sessions.

• An exploratory testing session lasts about 60-90
minutes.

– The charter for a session might include what to test,
what tools to use, what testing tactics to use, what risks
are involved, what bugs to look for, what documents to
examine, what outputs are desired, etc.

80Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Benefits of Paired Testing

• Pair testing is different from many other kinds of pair
work because testing is an *idea generation activity*
rather than a plan implementation activity. Testing is a
heuristic search of an open-ended and multi-
dimensional space.

• Pairing has the effect of forcing each tester to explain
ideas and react to ideas. When one tester must phrase
his thoughts to another tester, that simple process of
phrasing seems to bring the ideas into better focus and
naturally triggers more ideas.

• If faithfully performed, we believe this will result in more
and better ideas that inform the tests.

41

81Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Benefits of Paired Testing

• Generate more ideas
– Naturally encourages creativity
– More information and insight available to apply to

analysis of a design or to any aspect of the testing
problem

– Supports the ability of one tester to stay focused and
keep testing. This has a major impact on creativity.

• More fun

82Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Benefits of Paired Testing
• Helps the tester stay on task. Especially helps the tester

pursue a streak of insight (an exploratory vector).
– A flash of insight need not be interrupted by breaks for note-

taking, bug reporting, and follow-up replicating. The non-
keyboard tester can:

• Keep key notes while the other follows the train of
thought

• Try to replicate something on a second machine
• Grab a manual, other documentation, a tool, make a

phone call, grab a programmer--get support material that
the other tester needs.

• Record interesting candidates for digression
• Also, the fact that two are working together limits the

willingness of others to interrupt them, especially with
administrivia.

42

83Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Benefits of Paired Testing

• Better Bug Reporting
– Better reproducibility
– Everything reported is reviewed by a second person.
– Sanity/reasonability check for every design issue

• (example from Kaner/Black on Star Office
tests)

• Great training
– Good training for novices
– Keep learning by testing with others
– Useful for experienced testers when they are in a new

domain

84Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Benefits of Paired Testing

• Additional technical benefits
– Concurrency testing is facilitated by pairs working

with two (or more) machines.
– Manual load testing is easier with several people.
– When there is a difficult technical issue with part of

the project, bring in a more knowledgeable person as
a pair

43

85Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Risks and Suggestions
• Paired testing is not a vehicle for fobbing off errand-

running on a junior tester. The pairs are partners, the
junior tester is often the one at the keyboard, and she is
always allowed to try out her own ideas.

• Accountability must belong to one person. Beck and
Jeffries, et al. discuss this in useful detail. One member of
the pair owns the responsibility for getting the task done.

• Some people are introverts. They need time to work alone
and recharge themselves for group interaction.

• Some people have strong opinions and don’t work well
with others. Coaching may be essential.

86Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Risks and Suggestions

• Have a coach available.
– Generally helpful for training in paired testing and in

the conduct of any type of testing
– When there are strong personalities at work, a coach

can help them understand their shared and separate
responsibilities and how to work effectively together.

44

87Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Exploratory Testing: Interesting Papers

• Chris Agruss & Bob Johnson, Ad Hoc Software Testing
Exploring the Controversy of Unstructured Testing

• Whittaker & Jorgenson, How to Break Software

88Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Random / Statistical Testing

• Tag line
– “High-volume testing with new cases all the time.”

• Fundamental question or goal
– Have the computer create, execute, and evaluate huge

numbers of tests.
• The individual tests are not all that powerful, nor all

that compelling.
• The power of the approach lies in the large number of

tests.
• These broaden the sample, and they may test the

program over a long period of time, giving us insight
into longer term issues.

45

89Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Random / Statistical Testing

• Paradigmatic case(s)
– Some of us are still wrapping our heads around the

richness of work in this field. This is a tentative
classification

• NON-STOCHASTIC RANDOM TESTS
• STATISTICAL RELIABILITY ESTIMATION
• STOCHASTIC TESTS (NO MODEL)
• STOCHASTIC TESTS USING ON A MODEL OF THE

SOFTWARE UNDER TEST
• STOCHASTIC TESTS USING OTHER ATTRIBUTES

OF SOFTWARE UNDER TEST

90Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Random / Statistical Testing: Non-Stochastic

• Fundamental question or goal
– The computer runs a large set of essentially independent

tests. The focus is on the results of each test. Tests are often
designed to minimize sequential interaction among tests.

• Paradigmatic case(s)
– Function equivalence testing: Compare two functions (e.g.

math functions), using the second as an oracle for the first.
Attempt to demonstrate that they are not equivalent, i.e. that
the achieve different results from the same set of inputs.

– Other test using fully deterministic oracles (see discussion of
oracles, below)

– Other tests using heuristic oracles (see discussion of oracles,
below)

46

91Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Statistical Reliability Estimation

• Fundamental question or goal
– Use random testing (possibly stochastic, possibly

oracle-based) to estimate the stability or reliability of
the software. Testing is being used primarily to qualify
the software, rather than to find defects.

• Paradigmatic case(s)
– Clean-room based approaches

92Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

The Need for Stochastic Testing: An Example

Idle

Connected

On Hold

Ringing Caller
hung up

You
hung up

47

93Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Stochastic Tests--No Model: “Dumb Monkeys”

• Fundamental question or goal
– High volume testing, involving a long sequence of

tests.
– A typical objective is to evaluate program performance

over time.
– The distinguishing characteristic of this approach is that

the testing software does not have a detailed model of
the software under test.

– The testing software might be able to detect failures
based on crash, performance lags, diagnostics, or
improper interaction with other, better understood parts
of the system, but it cannot detect a failure simply
based on the question, “Is the program doing what it is
supposed to or not?”

94Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Stochastic Tests-- No Model: “Dumb Monkeys”)

• Paradigmatic case(s)
– Executive monkeys: Know nothing about the system. Push

buttons randomly until the system crashes.
– Clever monkeys: More careful rules of conduct, more

knowledge about the system or the environment. See Freddy.
– O/S compatibility testing: No model of the software under test,

but diagnostics might be available based on the environment
(the NT example)

– Early qualification testing
– Life testing
– Load testing

• Notes
– Can be done at the API or command line, just as well as via UI

48

95Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Stochastic, assert or diagnostics-based random tests

• Fundamental question or goal
– High volume random testing using random sequence of

fresh or pre-defined tests that may or may not self-
check for pass/fail. The primary method for detecting
pass/fail uses assertions (diagnostics built into the
program) or other (e.g. system) diagnostics.

• Paradigmatic case(s)
– Telephone example (asserts)
– Embedded software example (diagnostics)

96Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Random Testing: Stochastic, Regression-Based

• Fundamental question or goal
– High volume random testing using random sequence of

pre-defined tests that can self-check for pass/fail.
• Paradigmatic case(s)

– Life testing
– Search for specific types of long-sequence defects.

49

97Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Random Testing: Stochastic, Regression-Based

• Notes
– Create a series of regression tests. Design them so that they

don’t reinitialize the system or force it to a standard starting
state that would erase history. The tests are designed so that
the automation can identify failures. Run the tests in random
order over a long sequence.

– This is a low-mental-overhead alternative to model-based
testing. You get pass/fail info for every test, but without
having to achieve the same depth of understanding of the
software. Of course, you probably have worse coverage, less
awareness of your actual coverage, and less opportunity to
stumble over bugs.

– Unless this is very carefully managed, there is a serious risk
of non-reproduceability of failures.

98Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Random Testing: Sandboxing the Regression Tests

• In a random sequence of standalone tests, we might want to
qualify each test, T1, T2, etc, as able to run on its own. Then,
when we test a sequence of these tests, we know that errors
are due to interactions among them rather than merely to
cumulative effects of repetition of a single test.

• Therefore, for each Ti, we run the test on its own many times
in one long series, randomly switching as many other
environmental or systematic variables during this random
sequence as our tools allow.

• We call this the “sandbox” series—Ti is forced to play in its
own sandbox until it “proves” that it can behave properly on
its own. (This is an 80/20 rule operation. We do want to avoid
creating a big random test series that crashes only because
one test doesn’t like being run or that fails after a few runs
under low memory. We want to weed out these simple
causes of failure. But we don’t want to spend a fortune trying
to control this risk.)

50

99Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Random Testing: Sandboxing the Regression Tests

Suppose that you create a random sequence of
standalone tests (that were not sandbox-tested), and
these tests generate a hard-to-reproduce failure.
You can run a sandbox on each of the tests in the
series, to determine whether the failure is merely due to
repeated use of one of them.

100Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Random Testing: Model-based Stochastic Tests

• Fundamental Question or Goal
– Build a state model of the software. (The analysis will reveal

several defects in itself.) Generate random events / inputs to
the program. The program responds by moving to a new
state. Test whether the program has reached the expected
state.

• Paradigmatic case(s)
– I haven’t done this kind of work. Here’s what I understand:

• Works poorly for a complex product like Word
• Likely to work well for embedded software and simple

menus (think of the brakes of your car or walking a control
panel on a printer)

• In general, well suited to a limited-functionality client that will
not be powered down or rebooted very often.

• Maintenance is a critical issue because design changes add
or subtract nodes, forcing a regeneration of the model.

51

101Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Random Testing: Model-based Stochastic Tests

Alan Jorgensen, Software Design Based on Operational Modes, Ph.D.
thesis, Florida Institute of Technology:

The applicability of state machine modeling to mechanical computation dates
back to the work of Mealy [Mealy, 1955] and Moore [Moore, 1956] and
persists to modern software analysis techniques [Mills, et al., 1990, Rumbaugh,
et al., 1999]. Introducing state design into software development process began
in earnest in the late 1980’s with the advent of the cleanroom software
engineering methodology [Mills, et al., 1987] and the introduction of the State
Transition Diagram by Yourdon [Yourdon, 1989].
A deterministic finite automata (DFA) is a state machine that may be used to
model many characteristics of a software program. Mathematically, a DFA is
the quintuple, M = (Q, Σ, δ, q0, F) where M is the machine, Q is a finite set of
states, Σ is a finite set of inputs commonly called the “alphabet,” δ is the
transition function that maps Q x Σ to Q,, q0 is one particular element of Q
identified as the initial or stating state, and F ⊆ Q is the set of final or
terminating states [Sudkamp, 1988]. The DFA can be viewed as a directed
graph where the nodes are the states and the labeled edges are the transitions
corresponding to inputs.

102Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Random Testing: Model-based Stochastic Tests

Alan Jorgensen, Software Design Based on Operational Modes, Ph.D.
thesis, Florida Institute of Technology:

When taking this state model view of software, a different definition of
software failure suggests itself: “The machine makes a transition to an
unspecified state.” From this definition of software failure a software defect
may be defined as: “Code, that for some input, causes an unspecified state
transition or fails to reach a required state.”

. . .
Recent developments in software system testing exercise state transitions and
detect invalid states. This work, [Whittaker, 1997b], developed the concept of
an “operational mode” that functionally decomposes (abstracts) states.
Operational modes provide a mechanism to encapsulate and describe state
complexity. By expressing states as the cross product of operational modes
and eliminating impossible states, the number of distinct states can be reduced,
alleviating the state explosion problem.
Operational modes are not a new feature of software but rather a different way
to view the decomposition of states. All software has operational modes but
the implementation of these modes has historically been left to chance. When
used for testing, operational modes have been extracted by reverse engineering.

52

103Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Random Testing: Thoughts Toward an Architecture

• We have a population of tests, which may have been
sandboxed and which may carry self-check info. A test
series involves a sample of these tests.

• We have a population of diagnostics, probably too many
to run every time we run a test. In a given test series,
we will run a subset of these.

• We have a population of possible configurations, some
of which can be set by the software. In a given test
series, we initialize by setting the system to a known
configuration. We may reset the system to new
configurations during the series (e.g. every 5th test).

104Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Random Testing: Thoughts Toward an Architecture

• We have an execution tool that takes as input
– a list of tests (or an algorithm for creating a list),
– a list of diagnostics (initial diagnostics at start of

testing, diagnostics at start of each test, diagnostics on
detected error, and diagnostics at end of session),

– an initial configuration and
– a list of configuration changes on specified events.

• The tool runs the tests in random order and outputs
results
– to a standard-format log file that defines its own

structure so that
– multiple different analysis tools can interpret the same

data.

53

105Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Random / Statistical Testing
• Strengths

– Regression doesn’t depend on same old test every time.
– Partial oracles can find errors in young code quickly and

cheaply.
– Less likely to miss internal optimizations that are invisible

from outside.
– Can detect failures arising out of long, complex chains that

would be hard to create as planned tests.
• Blind spots

– Need to be able to distinguish pass from failure. Too many
people think “Not crash = not fail.”

– Executive expectations must be carefully managed.
– These methods will often cover many types of risks, but will

obscure the need for other tests less amenable to automation.

106Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Random / Statistical Testing

• Blind spots
– Testers might spend much more time analyzing the

code and too little time analyzing the customer and her
uses of the software.

– Potential to create an inappropriate prestige hierarchy,
devaluating the skills of subject matter experts who
understand the product and its defects much better than
the automators.

54

107Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Random Testing: Interesting Papers

• Larry Apfelbaum, Model-Based Testing, Proceedings of
Software Quality Week 1997 (not included in the course
notes)

• Michael Deck and James Whittaker, Lessons learned from
fifteen years of cleanroom testing. STAR '97 Proceedings

• Doug Hoffman, Mutating Automated Tests
• Alan Jorgensen, An API Testing Method
• Noel Nyman, GUI Application Testing with Dumb Monkeys.
• Harry Robinson, Finite State Model-Based Testing on a

Shoestring.
• Harry Robinson, Graph Theory Techniques in Model-Based

Testing.

108Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Test Strategy

• “How we plan to cover the product so as to develop an
adequate assessment of quality.”

• A good test strategy is:

– Diversified
– Specific
– Practical
– Defensible

55

109Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Test Strategy

• Makes use of test techniques.
• May be expressed by test procedures and cases.
• Not to be confused with test logistics, which involve the details

of bringing resources to bear on the test strategy at the right
time and place.

• You don’t have to know the entire strategy in advance. The
strategy can change as you learn more about the product and
its problems.

110Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Test Cases/Procedures

• Test cases and procedures should manifest the test
strategy.

• If your strategy is to “execute the test suite I got from Joe
Third-Party”, how does that answer the prime strategic
questions:
– How will you cover the product and assess

quality?
– How is that practical and justified with

respect to the specifics of this project and
product?

• If you don’t know, then your real strategy is that you’re
trusting things to work out.

56

111Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Diverse Half-Measures

• There is no single technique that finds all bugs.
• We can’t do any technique perfectly.
• We can’t do all conceivable techniques.

Use “diverse half-measures”-- lots of different
points of view, approaches, techniques, even
if no one strategy is performed completely.

112Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Test Documentation Elements

• Lists
• Outlines
• Tables
• Matrices

57

113Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Basic Test Documentation Components

Lists:
– Such as lists of fields, error messages, DLLs

Outlines: An outline organizes information into a hierarchy of
lists and sublists
– Such as the testing objectives list later in the course notes

Tables: A table organizes information in two dimensions
showing relationships between variables.
– Such as boundary tables, decision tables, combination test

tables
Matrices: A matrix is a special type of table used for data
collection.
– Such as the numeric input field matrix, configuration

matrices

114Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Traceability Matrix

XXTest 6

XXTest 5

XXTest 4

XXXTest 3

XXTest 2

XXXTest 1

Var 5Var 4Var 3Var 2Var 1

58

115Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Traceability Matrix
• The columns involve different test items. A test item

might be a function, a variable, an assertion in a
specification or requirements document, a device that
must be tested, any item that must be shown to have
been tested.

• The rows are test cases.
• The cells show which test case tests which items.
• If a feature changes, you can quickly see which tests

must be reanalyzed, probably rewritten.
• In general, you can trace back from a given item of

interest to the tests that cover it.
• This doesn’t specify the tests, it merely maps their

coverage.

116Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Myers’ Boundary Table

Variable Valid Case
Equivalence
Classes

Invalid Case
Equivalence
Classes

Boundaries
and Special
Cases

Notes

First
number

-99 to 99 > 99
< -99
non-number
expressions

99, 100
-99, -100
/
:
0
null entry

Second
number

same as first same as first same

Sum -198 to 198 Are there other
sources of data for
this variable? Ways
to feed it bad data?

59

117Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Revised Boundary Analysis Table

Note that we’ve dropped the issue of “valid” and “invalid.” This lets
us generalize to partitioning strategies that don’t have the concept
of “valid” -- for example, printer equivalence classes.

V a r ia b le E q u iv a le n c e
C la s s

A lte r n a te
E q u iv a le n c e
C la s s

B o u n d a r ie s
a n d S p e c ia l
C a s e s

N o te s

F ir s t
n u m b e r

-9 9 to 9 9

d ig its

> 9 9
< -9 9
n o n -d ig i ts

e x p re s s io n s

9 9 , 1 0 0
-9 9 , -1 0 0
/, 0 , 9 , :
le a d in g s p a c e s
o r 0 s
n u ll e n tr y

S e c o n d
n u m b e r

s a m e a s f irs t s a m e a s f i rs t s a m e

S u m -1 9 8 to 1 9 8
-1 2 7 to 1 2 7

? ? ?
-1 9 8 to – 1 2 8
1 2 8 to 1 9 8

? ? ?
1 2 7 , 1 2 8 , -1 2 7 ,
-1 2 8

A re th e re o th e r
s o u rc e s o f d a ta fo r
th is v a r ia b le ? W a y s
to fe e d it b a d d a ta ?

118Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Equivalence Classes: A Broad Concept
The notion of equivalence class is much broader than numeric
ranges. Here are some examples:

– Membership in a common group
• such as employees vs. non-employees. (Note that not all

classes have shared boundaries.)
– Equivalent hardware

• such as compatible modems
– Equivalent event times

• such as before-timeout and after
– Equivalent output events

• perhaps any report will do to answer a simple the
question: Will the program print reports?

– Equivalent operating environments
• such as French & English versions of Windows 3.1

60

119Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Variables Well Suited to Equivalence Class Analysis

ranges of numbers
character codes
how many times something is
done

(e.g. shareware limit on number of
uses of a product)
(e.g. how many times you can do

it before you run out of memory)
how many names in a mailing
list, records in a database,
variables in a spreadsheet,
bookmarks, abbreviations
size of the sum of variables, or of
some other computed value
(think binary and think digits)

size of a number that you enter
(number of digits) or size of a
character string
size of a concatenated string
size of a path specification
size of a file name
size (in characters) of a
document
size of a file (note special values
such as exactly 64K, exactly 512
bytes, etc.)
size of the document on the page
(compared to page margins)
(across different page margins,
page sizes)

Many types of variables, including input, output, internal, hardware
and system software configurations, and equipment states can be
subject to equivalence class analysis. Here are some examples:

120Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Variables Well Suited to Equivalence Class Analysis

size of a document on a page, in terms
of the memory requirements for the
page. This might just be in terms of
resolution x page size, but it may be
more complex if we have compression.
equivalent output events (such as
printing documents)
amount of available memory (> 128
meg, > 640K, etc.)
visual resolution, size of screen, number
of colors
operating system version
variations within a group of “compatible”
printers, sound cards, modems, etc.
equivalent event times (when something
happens)
timing: how long between event A and
event B (and in which order--races)

• length of time after a timeout (from
JUST before to way after) -- what
events are important?

• speed of data entry (time between
keystrokes, menus, etc.)

• speed of input--handling of concurrent
events

• number of devices connected / active
• system resources consumed / available

(also, handles, stack space, etc.)
• date and time
• transitions between algorithms

(optimizations) (different ways to
compute a function)

• most recent event, first event
• input or output intensity (voltage)
• speed / extent of voltage transition (e.g.

from very soft to very loud sound)

61

121Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Using Test Matrices for Routine Issues

• After testing a simple numeric input field a few times, you may
prefer a test matrix to present the same tests more concisely.

• Use a test matrix to show/track a series of test cases that are
fundamentally similar.

– For example, for most input fields, you’ll do a series of the
same tests, checking how the field handles boundaries,
unexpected characters, function keys, etc.

– As another example, for most files, you’ll run essentially the
same tests on file handling.

• The matrix is a concise way of showing the repeating tests.
– Put the objects that you’re testing on the rows.
– Show the tests on the columns.
– Check off the tests that you actually completed in the cells.

122Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Reusable Test Matrix
Numeric Input Field

No
th

ing

LB
 of

 va
lue

UB
 of

 va
lue

LB
 of

 va
lue

 - 1

UB
 of

 va
lue

 +
1

0 Ne
ga

tiv
e

LB
 nu

mb
er

 of
 di

git
s

or
 ch

ar
s

UB
 nu

mb
er

 of
 di

git
s

or
 ch

ar
s

Em
pt

y f
iel

d (
cle

ar

th
e d

efa
ult

 va
lue

)

Ou
tsi

de
 of

 U
B

nu
mb

er
 of

 di
git

s o
r

ch
ar

s

No
n-

dig
its

62

123Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Examples of integer-input tests

• Nothing
• Valid value
• At LB of value
• At UB of value
• At LB of value - 1
• At UB of value + 1
• Outside of LB of value
• Outside of UB of value
• 0
• Negative
• At LB number of digits or chars
• At UB number of digits or chars
• Empty field (clear the default

value)

• Outside of UB number of digits or
chars

• Non-digits
• Wrong data type (e.g. decimal

into integer)
• Expressions
• Space
• Non-printing char (e.g., Ctrl+char)
• DOS filename reserved chars

(e.g., "\ * . :")
• Upper ASCII (128-254)
• Upper case chars
• Lower case chars
• Modifiers (e.g., Ctrl, Alt, Shift-Ctrl,

etc.)
• Function key (F2, F3, F4, etc.)

124Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Error Handling when Writing a File

• full local disk
• almost full local disk
• write protected local disk
• damaged (I/O error) local disk
• unformatted local disk
• remove local disk from drive after

opening file
• timeout waiting for local disk to

come back online
• keyboard and mouse I/O during

save to local disk
• other interrupt during save to local

drive
• power out during save to local

drive

• full network disk
• almost full network disk
• write protected network disk
• damaged (I/O error) network disk
• remove network disk after

opening file
• timeout waiting for network disk
• keyboard / mouse I/O during save

to network disk
• other interrupt during save to

network drive
• local power out during save to

network
• network power during save to

network

63

125Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Routine Case Matrices

– You can often re-use a matrix like this across products and
projects.

– You can create matrices like this for a wide range of problems.
Whenever you can specify multiple tests to be done on one
class of object, and you expect to test several such objects, you
can put the multiple tests on the matrix.

– Mark a cell green if you ran the test and the program passed it.
Mark the cell red if the program failed.

– Write the bug number of the bug report for this bug.
– Write (in the cell) the automation number or identifier or file

name if the test case has been automated.

126Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Routine Case Matrices

• Problems?
– What if your thinking gets out of date? (What if this

program poses new issues, not covered by the
standard tests?)

– Do you need to execute every test every time? (or
ever?)

– What if the automation ID number changes? -- We
still have a maintenance problem but it is not as
obscure.

64

127Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Complex Data Relationships

128Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Tabular Format for Data Relationships

RelationshipRelated
variable

PrintDisplayEntry
source

Field

65

129Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Tabular Format for Data Relationships

Once you identify two variables that are related, test
them together using boundary values of each or pairs
of values that will trigger some other boundary.
--
– This is not the most powerful process for looking at

relationships. An approach like Cause-Effect Graphing is
more powerful, if you have or can build a complete
specification.

– I started using this chart as an exploratory tool for
simplifying my look at relationships in overwhelmingly
complex programs. (There doesn’t have to be a lot of
complexity to be “overwhelming.”)

130Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Tabular Format for Data Relationships

•THE TABLE’S FIELDS
Field: Create a row for each field (Consultant, End Date, and Start

Date are examples of fields.)
Entry Source: What dialog boxes can you use to enter data into this field? Can

you import data into this field? Can data be calculated into this field? List
every way to fill the field -- every screen, etc.

Display: List every dialog box, error message window, etc., that can display the
value of this field. When you re-enter a value into this field, will the new entry
show up in each screen that displays the field? (Not always -- sometimes the
program makes local copies of variables and fails to update them.)

Print: List all the reports that print the value of this field (and any other functions
that print the value).

Related to: List every variable that is related to this variable. (What if you enter
a legal value into this variable, then change the value of a constraining
variable to something that is incompatible with this variable’s value?)

Relationship: Identify the relationship to the related variable.

66

131Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Tabular Format for Data Relationships

Many relationships among data:
– Independence

• Varying one has no effect on the value or permissible values of
the other.

– Causal determination
• By changing the value of one, we determine the value of the

other.
• For example, in MS Word, the extent of shading of an area

depends on the object selected. The shading differs depending on
Table vs. Paragraph.

– Constrained to a range
• For example, the width of a line has to be less than the width of

the page.
• In a date field, the permissible dates are determined by the month

(and the year, if February).
– Selection of rules

• Example, hyphenation rules depend on the language you choose.

132Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Tabular Format for Data Relationships

Many relationships among data:
– Logical selection from a list

• processes the value you entered and then figures out what
value to use for the next variable. Example: timeouts in phone
dialing:
– 0 on complete call 555-1212 but 95551212?
– 10 on ambiguous completion, 955-5121
– 30 seconds incomplete 555-121

– Logical selection of a list:
• For example, in printer setup, choose:

– OfficeJet, get Graphics Quality, Paper Type, and Color Options
– LaserJet 4, get Economode, Resolution, and Half-toning.

Look at Marick (Craft of Software Testing) for discussion of catalogs
of tests for data relationships.

67

133Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Data Relationship Table

• Looking at the Word options, you see the real value of
the data relationships table. Many of these options have
a lot of repercussions.

• You might analyze all of the details of all of the
relationships later, but for now, it is challenging just to
find out what all the relationships ARE.

• The table guides exploration and will surface a lot of
bugs.

• -------------------------------------
• PROBLEM
• Works great for this release. Next release, what is your

support for more exploration?

134Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Testing Variables in Combination

Interesting papers.
– Cohen, Dalal, Parelius, Patton,“The Combinatorial Design Approach to Automatic

Test Generation”,IEEE Software, Sept. 96
http://computer.org:80/software/so1996/s5toc.htm

– Cohen, Dalal, Fredman, Patton, “The AETG System: An Approach to Testing
Based on Combinatorial Design”, IEEE Trans on SW Eng. Vol 23#7, July 97
http://computer.org:80/tse/ts1997/e7toc.htm

– OnLine requires IEEE membership for free access. See
http://www.computer.org/epub/

– Several other papers on AETG are available at
https://aetgweb.tipandring.com/AboutAETGweb.html

– Also interesting:
http://www.stsc.hill.af.mil/CrossTalk/1997/oct/planning.html

68

135Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Combination Chart

Value 65Value 64Value 63Value 62Value 61Test 6

Value 55Value 54Value 53Value 52Value 51Test 5

Value 45Value 44Value 43Value 42Value 41Test 4

Value 35Value 34Value 33Value 32Value 31Test 3

Value 25Value 24Value 23Value 22Value 21Test 2

Value 15Value 14Value 13Value 12Value 11Test 1

Var 5Var 4Var 3Var 2Var 1

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 136

69

137Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Combinations Exercise / Illustration

• Here is a simple Find dialog. It takes three inputs:
– Find what: a text string
– Match case: yes or no
– Direction: up or down

• Simplify this by considering only three values for the text string,
“lowercase” and “Mixed Cases” and “CAPITALS”.

• (Note: To do a better job, we’d also choose input documents that
would yield a “find” and a “don’t find” for each case. The input
document would be another variable or, really, the intended result
(Find / Don’t) would be the variable. We’ll think about that again after
the exercise.)

138Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Combinations Exercise

1 How many combinations of these three variables are
possible?

2 List ALL the combinations of these three variables.
3 Now create combination tests that cover all possible

pairs of values, but don’t try to cover all possible
triplets. List one such set.

4 How many test cases are in this set?

70

139Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Charts: References

You can find plenty of example charts in Bill Perry’s books,
such as Effective Methods for Software Testing (2nd Ed.,
Wiley). Several of these will probably be useful, though
(Iike the charts in these notes) you’ll have to adapt them to
your circumstances.

140Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Evaluating Your Plan: Context Free Questions

Based on: The CIA’s Phoenix Checklists (Thinkertoys, p. 140) and
Bach’s Evaluation Strategies (Rapid Testing Course notes)
– Can you solve the whole problem? Part of the problem?
– What would you like the resolution to be? Can you picture it?
– How much of the unknown can you determine?
– What reference data are you using (if any)?
– What product output will you evaluate?
– How will you do the evaluation?
– Can you derive something useful from the information you have?
– Have you used all the information?
– Have you taken into account all essential notions in the problem?
– Can you separate the steps in the problem-solving process? Can you

determine the correctness of each step?
– What creative thinking techniques can you use to generate ideas? How

many different techniques?
– Can you see the result? How many different kinds of results can you see?
– How many different ways have you tried to solve the problem?

71

141Context-driven test planning Copyright © 2000 Cem Kaner and James Bach. All rights reserved.

Evaluating Your Plan: Context Free Questions

– What have others done?
– Can you intuit the solution? Can you check the results?
– What should be done?
– How should it be done?
– Where should it be done?
– When should it be done?
– Who should do it?
– What do you need to do at this time?
– Who will be responsible for what?
– Can you use this problem to solve some other problem?
– What is the unique set of qualities that makes this problem what it is and

none other?
– What milestones can best mark your progress?
– How will you know when you are successful?
– How conclusive and specific is your answer?

QW2001 Workshop W2

Mr. John Paul
(Minjoh Technology Solutions)

Automating Software Testing: A Life-Cycle Methodology

Key Points

Best practices for test automation●

A Case Study will be presented that covers how the ATLM was implemented on one
particular project. This case study will address each phases of the Automated Testing
Life-cycle. Students can bring their own project specific problems, which can be
addressed during the tutorial.

●

Acquiring management support●

Test tool evaluation and selection●

The automated testing introduction process●

Various tools used during the various life-cycle phases●

Automated and manual test planning and preparation●

Test procedure development guidelines●

Automation reuse analysis and reuse library●

Presentation Abstract

Automating Software Testing: A Life-Cycle Methodology
This tutorial outlines the Automated Test Life-cycle Methodology, a structured
process for designing, developing, executing and managing testing that parallels
the System Development Life-cycle. It is based on the book titled "Automated
Software Testing" co-authored by the instructor and published by AWL, ISBN
0-201-43287-0. Automated Testing Life-Cycle Methodology

How test teams introduce an automated software test tool on a new project is
nearly as important as the selection of the most appropriate test tool for the project.
A tool is only as good as the process being used to implement the tool. Over the
last several years test teams have largely implemented automated testing tools on
projects, without having a process or strategy in place describing in detail the steps
involved in using the test tool productively. This approach commonly results in the
development of test scripts that are not reusable, meaning that the test script serves
a single test string but cannot be applied to a subsequent release of the software
application. In the case of incremental software builds and as a result of software
changes, these test scripts need to be recreated repeatedly and must be adjusted
multiple times to accommodate minor software changes. This approach increases
the testing effort and brings subsequent schedule increases and cost overruns.

The fallout from a bad experience with a test tool on a project can have a ripple
effect throughout an organization. The experience may tarnish the reputation of the
test group. Confidence in the tool by product and project managers may have been
shaken to the point where the test team may have difficulty obtaining approval for
use of a test tool on future efforts. Likewise, when budget pressures materialize,
planned expenditures for test tool licenses and related tool support may be
scratched.

By developing and following a strategy for rolling out and implement an
automated test tool as part of the Automated Testing Life-cycle methodology, the
test team can avoid having to make major unplanned adjustments throughout the
test process. The tutorial "Automated Software Testing" addresses these various
issues and their solutions. The ATLM describes how and where "Automated
Software Testing" fits into the system development life-cycle.

About the Author

Founder and President of Minjoh Technology Solutions,Inc
(www.minjohtech.com), a company dedicated to providing quality Information
Technology Solutions to government and commercial agencies. He has a BS
degree in Computer Science and 12 years of professional software development
experience. His experience extends through all phases of software development life
cycle. He has been a speaker/presenter at various professional seminars and
conferences.

He is also a co-author of the best-selling book "Automated Software Testing",
published by Addison-Wesley Pub Co; ISBN: 0201432870, July 1999. The book
has been getting excellent reviews throughout the testing community (see also
www.amazon.com). The book has now been translated into German and is
available in German. The book is currently being translated into Japanese and
should be available in Japanese middle of 2001. For other details about the book
see website at www.autotestco.com.

1

Copyright - Automated Software Testing

Automated Testing Life-cycle Methodology

Copyright - Automated Software Testing

by

John Paul

President

Minjoh Technology Solutions, Inc.

http://www.minjohtech.com
Email: johnpaul@minjohtech.com

2

Copyright - Automated Software Testing

Welcome!

Some Housekeeping:

2:00 pm – 3:15 First Half Tutorial
3:15 pm – 03:30 pm Break
3:30 pm – 5:00 pm Second Half Tutorial

If you have a cell phone or beeper,
please turn it off / on vibrate

Copyright - Automated Software Testing

Goal for this tutorial:

Apply information to your situation
How can we achieve this goal?
• Active Participation
• Ask yourself how each idea applies to your

situation/your organization
• Prepare to disagree
• Develop follow-up items

Relax and enjoy yourself!

3

Copyright - Automated Software Testing

Book: Automated Software Testing

http://www.autotestco.com

Book give
away at
the end of
class….

Copyright - Automated Software Testing

Quick Audience Survey:

What are you trying to get out of
this tutorial?

What is your goal?

Explain in 30 seconds or less..

4

Copyright - Automated Software Testing

Quick Audience Survey:

Show of Hands:
•Use of Automated Tools? Y/N
•Mercury, Segue, Rational,
RSW, Compuware, other?
•Environment – Windows,
Unix, Mainframe, other?
•Test Experience – in years?

Copyright - Automated Software Testing

Overview

of

ATLM

Automated Testing
Lifecycle

Methodology

(ATLM)

Tool

Evaluation/

Introduction

Test Design
(Orthogonal Array

Testing)

AGENDAAGENDAAGENDA

AGENDA

5

Copyright - Automated Software Testing

NASA Gives Up Search for Lost Mars Lander

Copyright - Automated Software Testing

Message:

6

Copyright - Automated Software Testing

Relationship
of ATLM (1-6)

to System
Development

Cycle (A-F)

1. Decision to
Automate

2.
 T

es
t T

oo
l

Ac
qu

is
iti

on

3. Automated Testing
Introduction Process

4. Test Planning,
Design & Development

5. Execution and
M

anagem
nt of tests

6. Test program review
and assessment

B
. B

us
in

es
s

A
na

ly
si

s
an

d
R

eq
ui

re
m

en
ts

 P
ha

se

A. System life-cycle Process
Evaluation and Improvement

C. Small Tool Pilot/Protype D. System Design and
Development Phases

E. Integration and
Test Phase

F. Program Review
and Assessment

Automated Testing Life-cycle Methodology (ATLM)

Copyright - Automated Software Testing

ATLM and Software Development

1. Decision to Automate

2. Test Tool Acquisition

3. Automated Testing Introduction
Process

4. Test Planning Design &
Development

5. Execution and Management of
Test

6. Process Evolution and
Improvement

A. System Life-cycle Process
Evaluation and Improvement
B. Business Analysis and
Requirements Phase

C. Small Tool Pilot/Prototype

D. System Design and
Development Phases

E. Integration and Test Phase

F. Program Review and
Assessment

7

Copyright - Automated Software Testing

Automated Testing spans the entire Lifecycle:

Development Tools

Components

Visual Modeling

Automated Software Testing

Requirements Management &
Process Automation

Software Configuration Management
Defect Tracking

Documentation – Help

Copyright - Automated Software Testing

Relationship
of ATLM (1-6)

to System
Development

Cycle (A-F)

1. Decision to
Automate

B
. B

us
in

es
s

A
na

ly
si

s
an

d
R

eq
ui

re
m

en
ts

 P
ha

se

A. System life-cycle Process
Evaluation and Improvement

C. Small Tool Pilot/Prototype D. System Design and
Development Phases

E. Integration and
Test Phase

F. Program Review
and Assessment

Automated Testing Life-cycle Methodology (ATLM)

8

Copyright - Automated Software Testing

Exercise: Decision to Automate (Part I)

What expectations do you
have for automated testing?

What expectations does your
management have?

Discuss!

Copyright - Automated Software Testing

Decision to Automate – Common Misconceptions

• Overcoming False Expectations for
Automated Test

— Automatic Test Plan Generation
— Test Tool Fits All
— Immediate Test Effort reduction
— Immediate Schedule Reduction
— 100% Test Coverage

Development Life-cycle is in:
System Life-cycle Process Evaluation and Improvement

9

Copyright - Automated Software Testing

Decision to Automate – Common Misconceptions

• Overcoming False Expectations for
Automated Test (continued)

— Universal Application of
Test Automation

Development Life-cycle is in:
System Life-cycle Process Evaluation and Improvement

Copyright - Automated Software Testing

Decision to Automate – Part II: Real Benefits

• Outline Benefits of Automated test

>Production of a reliable System
>Improvement of the Quality of the Test Effort
>Reduction of Test Effort and Minimization
of Schedule

10

Copyright - Automated Software Testing

Decision to Automate – Part II: Real Benefits

• Outline Benefits of Automated test

— Production of a reliable System
—Improved requirements definition
—Improved performance testing
—Improved memory leak detection
—Quality Measures and Test Optimization

Copyright - Automated Software Testing

Decision to Automate – Part II: Real Benefits

• Outline Benefits of Automated test

— Production of a reliable System (cont)
—Improved partnership with development team
—Improved system development life-cycle

11

Copyright - Automated Software Testing

Decision to Automate – Part II: Real Benefits

• Outline Benefits of Automated test

— Improvement of the Quality of the Test Effort
—Improved Build Verification Testing (Smoke Test)
—Improved Regression Testing
—Improved Multi-platform Compatibility Testing
—Improved Software Compatibility Testing
—Improved Execution of Mundane Tests

Copyright - Automated Software Testing

Decision to Automate – Part II: Real Benefits

• Outline Benefits of Automated test

— Improvement of the Quality of the Test Effort (cont)
—Improved Focus on Advanced Test Issues
—Execution of Tests that Manual Testing can’t accomplish
—Ability to reproduce software defects
—Enhancement of business expertise
—After-hours standalone testing

12

Copyright - Automated Software Testing

Decision to Automate – Part II: Real Benefits
• Outline Benefits of Automated test

Reduction of the Test Effort and Minimization
of Schedule

—Test Plan Development - Test Effort Increase
—Test Procedure Development - Test Effort Decrease
—Test Execution - Test Effort/Schedule Decrease
—Test Results Analysis - Test Effort/Schedule Decrease
—Error Status/Correction Monitoring - Test
Effort/Schedule Decrease
—Report Creation - Test Effort/Schedule
Decrease

Copyright - Automated Software Testing

Decision to Automate (pg 52)

• Case Study - Value of Test Automation Measurement

Preparation V Execution D N Expenditure E for n aut. tests:
Test manual auto manual auto 1 5 10 20
Test 1 16 56 24 1 1.74 143% 45% 26% 15%
Test 2 10 14 2 0.1 2.11 118% 73% 50% 32%
Test 3 10 16 4.5 0.2 1.40 112% 52% 33% 20%
Test 4 20 28 1.5 0.2 6.15 131% 105% 86% 64%
Test 5 10 15 1 0.1 5.56 137% 103% 80% 57%
Test 6 10 15 1.5 0.1 3.57 131% 89% 64% 43%
Test 7 10 11.5 0.75 0.1 2.31 108% 87% 71% 54%
Test 8 10 11.5 0.5 0.1 3.75 110% 96% 83% 68%
Test 9 10 14 3 0.1 1.38 108% 58% 38% 23%
Test 10 10 10.6 0.5 0.1 1.50 102% 89% 77% 63%
Total 116 191.6 39.25 2.1 2.03 125% 65% 42% 26%

Result:
The measurements undertaken within these
experiments show that a break-even point can already be
attained by the 2nd regression test cycle (Ntotal =2.03).

13

Copyright - Automated Software Testing

Decision to Automate (pg 52)

•Value of Test Automation (after the fact)

Value of automated testing also has to be measured
based on
- Bugs found
- Bugs not found – because the testers were too busy
automating

Copyright - Automated Software Testing

Decision to Automate (cont’d)

• Outline Benefits of Automated testOutline Benefits of Automated testOutline Benefits of Automated test
——— Production of a reliable SystemProduction of a reliable SystemProduction of a reliable System
——— Improvement of the quality of effortImprovement of the quality of effortImprovement of the quality of effort
——— Reduction of Test Effort and Minimization of ScheduleReduction of Test Effort and Minimization of ScheduleReduction of Test Effort and Minimization of Schedule

• Acquiring Management Support

14

Copyright - Automated Software Testing

Decision to Automate (cont’d)

Acquiring Management Support

•Test Tool Proposal
•Estimate the improvement
opportunities
•Approach for selecting the correct tool
•Tool cost range
•Additional time to introduce tool
•Tool expertise
•Tool training cost
•Tool evaluation domain
•Tool rollout process

Copyright - Automated Software Testing

Case Study: Decision to Automate/Tool Acquisition

Customer DemoCustomer DemoCustomer Demo

✦✦PrototypePrototype
✦✦ Collect Lessons LearnedCollect Lessons Learned

Document
Benefits of

current
Testing
Process

Document
Benefits of

current
Testing
Process

Cost/Benefits
Analysis

Cost/Benefits
Analysis

Document
Improvement
Opportunities

Document
Improvement
Opportunities

Tool
Research/
Evaluation

Tool
Research/
Evaluation

Training/
Mentoring
Training/

Mentoring

15

Copyright - Automated Software Testing

Relationship
of ATLM (1-6)

to System
Development

Cycle (A-F)

1. Decision to
Automate

2.
 T

es
t T

oo
l

Ac
qu

is
iti

on

B
. B

us
in

es
s

A
na

ly
si

s
an

d
R

eq
ui

re
m

en
ts

 P
ha

se

A. System life-cycle Process
Evaluation and Improvement

C. Small Tool Pilot/Protype D. System Design and
Development Phases

E. Integration and
Test Phase

F. Program Review
and Assessment

Automated Testing Life-cycle Methodology (ATLM)

Copyright - Automated Software Testing

Exercise – Brainstorming (2 – 3 min)

Select a project on which you are
currently working, or with which
you might be working on in the
future.
List the most important factors to

be considered when choosing a
tool

16

Copyright - Automated Software Testing

Case Study: Decision to Automate/Tool Acquisition

Customer DemoCustomer DemoCustomer Demo

✦✦PrototypePrototype
✦✦ Collect Lessons LearnedCollect Lessons Learned

Document
Benefits of

current
Testing
Process

Document
Benefits of

current
Testing
Process

Cost/Benefits
Analysis

Cost/Benefits
Analysis

Document
Improvement
Opportunities

Document
Improvement
Opportunities

Tool
Research/
Evaluation

Tool
Research/
Evaluation

Training/
Mentoring
Training/

Mentoring

Copyright - Automated Software Testing

Test Tool Acquisition

• Review System Engineering Environment
• Review Tools Available on the market
• Tool Research and Evaluation

— Reviewing the Test Life-Cycle Tools

• Tool Purchase

Development Life-cycle is in:
Business Analysis and Requirements Phase

17

Copyright - Automated Software Testing

Test Tool Acquisition

• Review System Engineering Environment
• Gather Third-Party Input from Management,
Staff, End-Users

•Choose Tool Criteria Reflecting the System
Engineering Environment

•Define Level of Software Quality

•Review Help Desk Problem Reports

Development Life-cycle is in:
Business Analysis and Requirements Phase

Copyright - Automated Software Testing

Test Tool Acquisition

• Review System Engineering Environment
(cont)

•Budget Constraints
•Types of Tests
•Long-Term Investment Considerations
•Test Tool Process
•Avoid Shortcuts

Development Life-cycle is in:
Business Analysis and Requirements Phase

18

Copyright - Automated Software Testing

Test Tool Evaluation - Case Study

High-level Test Tool Selection Objectives:

– Vendor has sufficient market share to ensure vendors
potential to stay in business

– Supports Web (and possibly VC++, VB) applications

– Provides automated test execution and results logging
as well as reporting.

– Is compatible with Windows 2000, DHTML, HTML,
Javascript, XML, and Java Applets

– Supports all testing phases and testing in the web
environment (and desktop app written in VC++ ,VB):

Copyright - Automated Software Testing

Test Tool Evaluation (cont):

Detailed test feature and capability
assessment

• Test Development Capability (Capture/Playback)

• Test Execution Capability

• Test Tool Integration Capability

• Test Reporting Capability

• Load/Stress Test Capability

• Cost Model

19

Copyright - Automated Software Testing

Test Tool Evaluation – A Case Study

– Tool xyz worked fine on one project with html, java, etc.

– New company, new project: dhtml – we actually discovered a
bug with the tool –still waiting on the patch…. – had asked for
prototype over and over……

– If buying multiple tools, make sure they install correctly and
work together correctly

– Example: Micron computer needed BIOS upgrade – ReqPro
didn’t work

Very important: Evaluate toolVery important: Evaluate toolVery important: Evaluate tool

in your environmentin your environmentin your environment

Copyright - Automated Software Testing

Test Development Capability (Capture/Playback)

Test Development Capability (Capture/Playback)
Weight Rank (1 – 5)

Criteria/Feature Rational Segue Mercu
ry

RSW

Test Language features

Low Tool Learning Curve 7 2 3 2 5

Supports Windows 2000 10 5 5 5 5

Support for HTML, Dynamic HTML and Java
Script

10 5 5 5 5

Supports Java Applets 10 5 5 5 5

Supports our report writer (selection not
finalized….)

10

Test Editor/Debugger Feature 8 5 5 5 0

Ease of Maintenance of Testbed 8 5 5 5 5

Support for Custom VC++ GUI Objects and
embedded Stingray grids

10 0 0 5 0

Test Language DB Support

Support ANSI SQL execution 7 5 5 5 0

Score 279 286 329 225

20

Copyright - Automated Software Testing

Test Execution Capability
Weight
(1 – 10)

Rank (1 – 5)

Criteria/Feature Rational Segue Mercur
y

RSW

Test Control features

Centralized execution and control 10 4 4 4 4

Standalone Test Execution Automation 10 4 4 4 4

Distributed Test Execution

Distributed Test Control, Synchronization,
Execution

10 4 4 4 4

Support Synchronization of Multi Test Threads 10 4 4 4 4

Headless Backend Server Testing 10 4 4 4 4

Multi-Platform Testing Support 10 4 4 4 4

Test Suite Recovery Logic

AUT State Management 10 4 4 4 4

Unexpected Error recovery 10 4 4 4 4

Test Management

Allows for tracking of manual and automated
test cases

8 1 1 4 0

Score 328 328 352 320

Copyright - Automated Software Testing

Test Tool Integration Capability
Weight
(1 – 10)

Rank (1 – 5)

Criteria/Feature Rational Segue Mercur
y

RSW

Interface with Rational Rose 5 4 0 4 0

Interface with Test Management Tool 5 4 4 4 0

Interface with Requirements Management Tool 5 4 0 4 0

Interface to defect tracking tool 5 4 4 4 0

Interface to configuration management tool 5 4 0 4 0

Score 100 40 100 0

21

Copyright - Automated Software Testing

Test Reporting Capability
Weight
(1 – 10)

Rank (1 – 5)

Criteria/Feature Rational Segue Mercu
ry

RSW

Summary Level Reporting

Error Filtering / Review Features 8 4 4 4 4

Metrics collections and presentations 8 4 4 5 4

Test Report Presentation

Generate Graphs and Reports
from Test Results

8 4 4 4 4

Reports Exportable to S/Excel 8 4 4 4 4

Score 128 128 136 128

Copyright - Automated Software Testing

Load, Stress and Performance Capability
Weight
(1 – 10)

Rank (1 – 5)

Criteria/Feature Rational Segue Mercu
ry

RSW

Load and Stress Test Features

Is tool non-intrusive 10 5 5 5 5

Support Microsoft Scripting (i.e. proxy java
applets)

10 5 5 5 5

Support headless virtual user testing feature 8 5 5 5 5

Requires low overhead for VU 8 1 5 5 4

Scales to 500-1000 virtual users 5 3 5 5 4

Simulated IP Addresses for virtual Users 8 5 5 5 5

Centralized Load Test controller 8 5 5 5 5

Reused Scripts from Functional Test Suite 8 5 5 5 5

22

Copyright - Automated Software Testing

Load, Stress and Performance Capability (cont)
Weight
(1 – 10)

Rank (1
– 5)

5 4 4

Criteria/Feature Rational Segue Mercu
ry

RSW

Support for VC++ /embedded Stingray grids 10 0 0 0 0

Supports SSL recording 8 5 5 5 5

Support for Windows 2000 10 5 5 5 5

Performance Monitor Test Features

Monitors different tiers (i.e. monitors web
server, db server and app server separate)

8 5 5 5 5

Allows for monitoring of deployed
application

8 0 5 5 4

Consulting Requirements

Tech Support 8 4 1 4 4

No consulting needed 8 1 1 1 5

Score 533 592 589 650

Copyright - Automated Software Testing

Cost Model

Tool Suite
includes

of
lic
en
ses

Ration
al
List
Price

Segue
List
Price

RSW
List
Price

Mercu
ry
List
Price

Cost for
additional
tools

Test Management 5 yes no no yes N/A (see
RM)

Requirements
Management (RM)

4 yes no no no RP
$14,000

D (3)
$29,500Defect Tracking 4 yes no no yes (5) VI $

SF
$13,500

CQ
$14,500

Configuration
Management

4 yes no no no

Memory Leak
Detection

1 yes no no no BC ~$818

Capture/Playback 5 yes 3
licenses

1
license

yes

Load/Stress
Testing
100 VU

1 yes 250VU yes yes

Maintenance (1
year)

Robot
support

yes yes yes

4 days on-site
consulting

no yes no no

80,811.
90

65,000 25,864.
65

67,019
.00

23

Copyright - Automated Software Testing

Key: A WellKey: A Well--Designed ArchitectureDesigned Architecture

Development Tools

Components

Visual Modeling

✦✦ Support for Support for
ActiveX, Java, ActiveX, Java,
CorbaCorba

✦✦ Support for Support for
UMLUML

✦✦ Rational RoseRational Rose

Use
cases

Design Build Assemble
Round-Trip Engineering

TestTest

Copyright - Automated Software Testing

Key: Controlled Iterative Development Process

Development Tools

Components

Visual Modeling

Requirements Management &
Process Automation

✦✦ RequisiteProRequisitePro
Or DOORS Or DOORS
✦✦ Organizes, Organizes,

tracks & controls tracks & controls
requirementsrequirements

✦✦ Reduces cost Reduces cost
and riskand risk

24

Copyright - Automated Software Testing

Key: Automated Testing

Development Tools

Components

Visual Modeling

Automated Software Testing

Execution

Management

Development

✦✦ RobotRobot
✦✦ Client/server & Client/server &

web functional web functional
testingtesting

✦✦ Leading ActiveX Leading ActiveX
testingtesting

Requirements Management &
Process Automation

••WinrunnerWinrunner
✦✦ VC++, VC++,

embedded embedded
Stingray gridsStingray grids

Copyright - Automated Software Testing

Integrated Suite of Tools - Enterprise wide

Development Tools

Components

Visual Modeling

Automated Software Testing

Requirements Management &
Process Automation

Software Configuration Management
Defect Tracking

✦✦ DT DT -- Visual Visual
Intercept Intercept
(integrates with (integrates with
VS) VS) –– by Elsinoreby Elsinore

✦✦ CM CM -- Visual Visual
Source Safe Source Safe
(integrates with (integrates with
VS)VS)

25

Copyright - Automated Software Testing

Load Testing Tools

•Conduct Load Testing using Load
Testing Tool

•Example: Performance
Studio/Loadrunner

•Reuse Scripts developed using
Capture Playback tool - not VU users

•Other example: MS WAS free load
testing tool

Copyright - Automated Software Testing

Relationship
of ATLM (1-6)

to System
Development

Cycle (A-F)

1. Decision to
Automate

2.
 T

es
t T

oo
l

Ac
qu

is
iti

on

3. Automated Testing
Introduction Process

B
. B

us
in

es
s

A
na

ly
si

s
an

d
R

eq
ui

re
m

en
ts

 P
ha

se

A. System life-cycle Process
Evaluation and Improvement

C. Small Tool Pilot/Protype D. System Design and
Development Phases

E. Integration and
Test Phase

F. Program Review
and Assessment

Automated Testing Life-cycle Methodology (ATLM)

26

Copyright - Automated Software Testing

Case Study: Decision to Automate/Tool Acquisition

Customer DemoCustomer DemoCustomer Demo

✦✦PrototypePrototype
✦✦ Collect Lessons LearnedCollect Lessons Learned

Document
Benefits of

current
Testing
Process

Document
Benefits of

current
Testing
Process

Cost/Benefits
Analysis

Cost/Benefits
Analysis

Document
Improvement
Opportunities

Document
Improvement
Opportunities

Tool
Research/
Evaluation

Tool
Research/
Evaluation

Training/
Mentoring
Training/

Mentoring

Copyright - Automated Software Testing

Automated Testing Introduction Process

• Test Process Analysis (pg 110)
— Process Overview
— Goals and Objectives of Testing
— Test Strategies

• Test Tool ConsiderationTest Tool ConsiderationTest Tool Consideration
——— Test tool compatibility checkTest tool compatibility checkTest tool compatibility check
——— Review of Training requirementsReview of Training requirementsReview of Training requirements

••• Test Team Recruiting and ManagementTest Team Recruiting and ManagementTest Team Recruiting and Management

Development Life-cycle is in:
Small Tool Pilot/Prototype

27

Copyright - Automated Software Testing

Testing Process Analysis

Does process meet these defined prerequisites?
� Clear Goals
� Objectives
� Methodology
� Strategy
� Is the testing process communicated and visible?
� Resource Commitment from Management

 Qualified Skillful People
 Training $$
 Time

� User Involvement

Copyright - Automated Software Testing

•In 1997 American companies spent
$250 to $300 BILLION for software
projects
•$100 BILLION spent for canceled
projects
•$45 BILLION spent on projects
which significantly exceeded time
and budget estimates
(Standish Group)

Project Failure Rates

28

Copyright - Automated Software Testing

•Incomplete requirements and
specifications
•Changing requirements and
specifications
•Lack of efficient testing
(Standish Group and other studies)

Lack of QA Process

Top Reasons For Failure

Copyright - Automated Software Testing

Relative Cost To Fix An Error
Research by IBM, et. al.

Phase In Which Found Cost Ratio
Requirements 1
Design 3-6
Coding 10
Development Testing 15-40
Acceptance Testing 30-70
Operation 40-1000

29

Copyright - Automated Software Testing

Conventional Testing Process:

Frozen
spec DesignDesign BuildBuild Test & FixTest & Fix

Copyright - Automated Software Testing

ATLM - Testing Throughout the Lifecycle

Iterative
refinement
with user

Iterative Refinement Process

Design
/Build

1

Design
/Build

1

Design
/Build

2

Design
/Build

2

Design
/Build

3

Design
/Build

3

Design
/Build

4

Design
/Build

4

Iterative Development

Require
ments

Correct
architecture?

TestTest TestTest TestTest TestTest

Test
every
iteration

Software Configuration Management

Verify
Test-
ability

Verify
Test-
ability

30

Copyright - Automated Software Testing

•System Testing needs to begin very early
as requirements are being tested

•Criteria for quality requirements

•Correctness, Completeness, Consistency,
Testability

Automated Testing Introduction

Copyright - Automated Software Testing

Requirements Management Tools Requirements Management Tools –– Case StudyCase Study

Testers created....

•~ 5000 Test Procedure Steps

31

Copyright - Automated Software Testing

Requirements Management Tools (cont)Requirements Management Tools (cont)

•~ 500 Testable Requirements
•~ 5000 Test Procedure Steps
•Imagine, creating a traceability
matrix manually!

Copyright - Automated Software Testing

Requirements Management Tools (cont)Requirements Management Tools (cont)

Imagine…

•Monitoring Progress of Test
Procedure Execution (5000 Test
Procedure Steps)

•Use RM tool

32

Copyright - Automated Software Testing

Requirements Management (RM) ToolsRequirements Management (RM) Tools

Tool not only used for RM but for TM
•Test Procedures located in one central
repository

•Multiple Testers can be assigned a section of
functionality of system to write test procedures

•Multiple Testers can access a tool
simultaneously without affecting anyone else
(allows for locking)

•History of updates is maintained in RM tool
(who, what, when)

Copyright - Automated Software Testing

Automated Testing Introduction Process

• Test Process AnalysisTest Process AnalysisTest Process Analysis
——— Process OverviewProcess OverviewProcess Overview
——— Goals and Objectives of TestingGoals and Objectives of TestingGoals and Objectives of Testing
——— Test StrategiesTest StrategiesTest Strategies

• Test Tool Consideration
— Test tool compatibility check
— Review of Training requirements

• Test Team Recruiting and ManagementTest Team Recruiting and ManagementTest Team Recruiting and Management

33

Copyright - Automated Software Testing

Automated Testing Introduction Process

• Test Process AnalysisTest Process AnalysisTest Process Analysis
——— Process OverviewProcess OverviewProcess Overview
——— Goals and Objectives of TestingGoals and Objectives of TestingGoals and Objectives of Testing
——— Test StrategiesTest StrategiesTest Strategies

••• Test Tool ConsiderationTest Tool ConsiderationTest Tool Consideration
——— Test tool compatibility checkTest tool compatibility checkTest tool compatibility check
——— Review of Training requirementsReview of Training requirementsReview of Training requirements

• Test Team Recruiting and Management

Copyright - Automated Software Testing

Exercise

In your opinion what
makes a good tester?

List 2 – 3 points

34

Copyright - Automated Software Testing

Automated Testing Introduction Process

• Test Process AnalysisTest Process AnalysisTest Process Analysis
——— Process OverviewProcess OverviewProcess Overview
——— Goals and Objectives of TestingGoals and Objectives of TestingGoals and Objectives of Testing
——— Test StrategiesTest StrategiesTest Strategies

••• Test Tool ConsiderationTest Tool ConsiderationTest Tool Consideration
——— Test tool compatibility checkTest tool compatibility checkTest tool compatibility check
——— Review of Training requirementsReview of Training requirementsReview of Training requirements

• Test Team Recruiting and Management

Copyright - Automated Software Testing

Relationship
of ATLM (1-6)

to System
Development

Cycle (A-F)

1. Decision to
Automate

2.
 T

es
t T

oo
l

Ac
qu

is
iti

on

3. Automated Testing
Introduction Process

4. Test Planning,
Design & Development

B
. B

us
in

es
s

A
na

ly
si

s
an

d
R

eq
ui

re
m

en
ts

 P
ha

se

A. System life-cycle Process
Evaluation and Improvement

C. Small Tool Pilot/Protype D. System Design and
Development Phases

E. Integration and
Test Phase

F. Program Review
and Assessment

Automated Testing Life-cycle Methodology (ATLM)

35

Copyright - Automated Software Testing

Exercise - Brainstorming

What information should
be in a test plan?

Copyright - Automated Software Testing

Test Planning Design & Development

• Test plan documentation (pg 219) - CD
— Test Program Scope
— Test Requirement Management
— Test Environment

• Test requirements AnalysisTest requirements AnalysisTest requirements Analysis
——— DevelopmentDevelopmentDevelopment---Level Test AnalysisLevel Test AnalysisLevel Test Analysis
——— SystemSystemSystem---Level Test AnalysisLevel Test AnalysisLevel Test Analysis

36

Copyright - Automated Software Testing

Test Planning Design & Development

• Test plan documentation
•Everything discussed so far needs
to be in the test plan
•Goals, Objectives, Strategies, Roles
and Responsibilities, Test
Environment
•Take a look at test plan sample
Caveat: It’s not always feasible to come
up with an extensive test plan

Copyright - Automated Software Testing

Test Planning Design & Development

• Test plan documentationTest plan documentationTest plan documentation
——— Test Program ScopeTest Program ScopeTest Program Scope
——— Test Requirement ManagementTest Requirement ManagementTest Requirement Management
——— Test EnvironmentTest EnvironmentTest Environment

• Test requirements Analysis
— Development-Level Test Analysis
— System-Level Test Analysis

37

Copyright - Automated Software Testing

Test Planning Design & Development (cont’d)

•Test Program Design
— Review Test program design modules

— White-Box Techniques (Development-Level Tests)
— Black-Box Techniques (System-Level Tests)
— Test Design Documentation

— Test procedure definition
— Automated vs Manual Test Analysis
— Automated Test design standards

Copyright - Automated Software Testing

Test Planning Design & Development (cont’d)

•Test Program Design
— Review Test program design modules

— White-Box Techniques (Development-Level Tests)
— Black-Box Techniques (System-Level Tests)
— Test Design Documentation

— Test procedure definition
— Automated vs Manual Test Analysis
— Automated Test design standards

38

Copyright - Automated Software Testing

Functional Testing
•Main concepts

– Based on requirements
– Based on use cases
– Discussed later…..

•Black-Box Techniques (System-Level Tests)

Copyright - Automated Software Testing

Boundary Value Testing
• Main concepts

– Errors congregate at the boundaries
between valid and invalid input

– Tests using boundary values are highly
effective

– Tests of both valid and invalid input are
needed

– Closely related to equivalence
partitioning

•Black-Box Techniques (System-Level Tests)

39

Copyright - Automated Software Testing

Equivalence
•Values that are on the same side of a
boundary are members of the same
equivalence class

• If 99 is valid and 100 is not valid, 101
will also be invalid, as will 102, 103,…

•No point to testing many members of
the same equivalence class

•Black-Box Techniques (System-Level Tests)

Copyright - Automated Software Testing

Risk analysis
•Not in itself a testing technique, but a
way to prioritize techniques and test
cases

•Black-Box Techniques (System-Level Tests)

Risk Prioritization
• 20% of test cases will uncover 80% of the

problems

40

Copyright - Automated Software Testing

Exploratory Testing
•Useful for testing with limited (or no)
specification

•Allows the tester to write
specifications and get developers or
marketers to confirm or deny

•Black-Box Techniques (System-Level Tests)

Copyright - Automated Software Testing

•Exhaustive testing becomes almost
impossible, always very expensive

•Derive Test Cases using specific test
coverage techniques
for example:
–Orthogonal Array Testing (OATS)

Case Study: Test Planning and Design

41

Copyright - Automated Software Testing

Case Study: Orthogonal Arrays

•Derived from IE manufacturing
techniques

•For experimentation it allows the effects
of several parameters to be determined
efficiently1

•For testing it allows test parameter
values to be determined efficiently &
uniformly

•Is an important technique in Robust
Design1

1 Quality Engineering using Robust Design by M.S. Phadke

Copyright - Automated Software Testing

OATS Test Technique
•Purpose is to assist in the selection of
appropriate combinations of factors to
provide maximum coverage from a test
procedure with a minimum of number of
cases

•OATs selects test cases so as to maximize
the interactions between independent
measures (all pairwise combinations)

Case Study: Orthogonal Arrays (cont)

42

Copyright - Automated Software Testing

OATS Array Interpretation
•System parameters are array columns

– Parameter values must be mapped to array
number values

•Tester can chose valid values for
unassigned levels in effort to minimize test
– redundant test cases are eliminated
– add cases based on known risk areas

•Each remaining row in the orthogonal array
specifies one specific test case

Case Study: Orthogonal Arrays (cont)

Copyright - Automated Software Testing

Array Determination
•Max # of values or
states for all
parameters

•Number of
parameters or
factors

Case Study: Orthogonal Arrays (cont)

43

Copyright - Automated Software Testing

An Example Array

•Consider an example in which there are
three factors and each factor has three
levels.

•Testing all possible combinations of the
three factors would require 27 test
cases.

•But, testing pair-wise combinations will
result in only 9 cases required to test the
interactions of the independent factors

Copyright - Automated Software Testing

An Example Array

2339
3238
1137
3326
1225
2124
1313
2212
3111
CBA

44

Copyright - Automated Software Testing

Copyright - Automated Software Testing

45

Copyright - Automated Software Testing

Copyright - Automated Software Testing

Test Planning Design & Development (cont’d)

•Test Program Design
— Review Test program design modules

— White-Box Techniques (Development-Level Tests)
— Black-Box Techniques (System-Level Tests)
— Test Design Documentation

— Test procedure definition
— Automated vs Manual Test Analysis
— Automated Test design standards

46

Copyright - Automated Software Testing

•Evaluate what to automate (pg. 262)

– Not everything can be/should be
automated

– Automated Tool Expertise is required

Case Study: Test Planning and Design

Copyright - Automated Software Testing

Test Planning Design & Development (cont’d)

•Test Program Design
— Review Test program design modules

— White-Box Techniques (Development-Level Tests)
— Black-Box Techniques (System-Level Tests)
— Test Design Documentation

— Test procedure definition
— Automated vs Manual Test Analysis
— Automated Test design standards

47

Copyright - Automated Software Testing

Test Procedure Definition

TEST NAME: Installation Routine Testing

Date Executed: Tester's Initials:
Automated/Manual:

Test Procedure Writer: ED
Test Objective: Test the Installation Routine for ND and New Database Technology
Pre-Conditions/Assumptions:

Repeat tests using following setup:

Copyright - Automated Software Testing

Test Procedure Definition

Setu
p

OS Printers
HP 3si,
HP4, HP5,
HP8100

Antivirus
Software

Configuration

•

Win 95 all Clean Machine ND prior ND install

w/o prior ND

NDEE prior NDEE inst

w/o prior NDEE

MSOffice + ND prior ND install

w/o prior ND

NDEE prior NDEE inst

w/o prior NDEE

•

Win98 2nd Edition all McAfee Clean Machine ND prior ND install

w/o prior ND

NDEE prior NDEE inst

w/o prior NDEE

MSOffice + ND prior ND install

w/o prior ND

NDEE prior NDEE inst

w/o prior NDEE

•

NT SP4 all McAfee Clean Machine ND prior ND install

w/o prior ND

48

Copyright - Automated Software Testing

Test Planning Design & Development (cont’d)

•Test Program Design
— Review Test program design modules

— White-Box Techniques (Development-Level Tests)
— Black-Box Techniques (System-Level Tests)
— Test Design Documentation

— Test procedure definition
— Automated vs Manual Test Analysis
— Automated Test design standards

Copyright - Automated Software Testing

49

Copyright - Automated Software Testing

Copyright - Automated Software Testing

Capture/Playback records hard-coded values

•…….
•Window SetContext, "Name=frmMDI", ""
•
• Window SetContext, "Name=frmWsTemplate", ""
• GenericObject Click, "Name=Spread", "Coords=213,138"
•
• Window SetContext, "Name=frmMDI", ""
• GenericObject Click, "Class=MDIClient;ClassIndex=1", "Coords=194,474"
•
• Window SetContext, "Name=frmWsTemplate", ""
• GenericObject DblClick, "Name=Spread", "Coords=212,64"
• InputKeys "8000000"
• GenericObject Click, "Name=Spread", "Coords=297,58"

•End Sub

50

Copyright - Automated Software Testing

Capture/Playback records hard-coded values

•REPLACE HARD CODED VALUES
WITH VARIABLES

•READ DATA FROM FILE

•PUT EXPECTED RESULTS INTO
FILE

•PUT OPERANDS INTO FILE

Copyright - Automated Software Testing

•Goals of test procedure development is
for scripts to be reusable, portable,
maintainable.

–Modularity

–Data outside of test procedure
(manual and automated)

–Not written on detailed level

Case Study: Test Planning and Design

51

Copyright - Automated Software Testing

Test Planning Design & Development (cont’d)

•Test Development
— Set up Test Environment
— Automation Framework Reuse Analysis
— Test Procedure Development/Execution Schedule
— Calibration of the test tool
— Compatibility and work around solutions
—Test Procedure inspections and Peer reviews

— Test Procedure Configuration management

— Reusable Test procedures

Copyright - Automated Software Testing

Process Evolution and Improvement

• Post Release - Test Process Improvement
– Documenting Lessons learned
– What worked and what did not ?
– How would you do things differently ?
– Reviewing standards for future projects

Development life-cycle is in:
Test Program Review and Assessment

52

Copyright - Automated Software Testing

ATLM
ATLM will help sort out tool issues

•What tools are available

•How to convince management to buy the tool

•How to evaluate tools

•How to incorporate tools into project and how to
manage automated testing process

•Automated Test Design, Development, Execution

•Lessons Learned

details described in book “Automated Software Testing”

Copyright - Automated Software Testing

•Automated Testing needs to be parallel to
system development

•Evaluate Testing Tools based on your
environment and circumstances

•Training, training, training

•Manage expectations

ATLM - Summary:

•see www.stqemagazine.com
(Sep/Oct ‘99) article on
“Automated Testing Lessons
Learned”

53

Copyright - Automated Software Testing

Remember:

If you want a high quality
software system, you must
ensure each of its parts is of high
quality

Watts Humphrey

Copyright - Automated Software Testing

•Discovery lands at the end of mission STS-60

54

Copyright - Automated Software Testing

Automated Testing Life-cycle Methodology

Copyright - Automated Software Testing

Book: Automated Software Testing

http://www.autotestco.com

Lucky
Winner
Is…..

QW2001 Workshop W3

Mr. Robert A. Sabourin
(AmiBug.Com)

Bug Priority And Severity

Key Points

Bugs●

SQA Management●

SQA Process●

Presentation Abstract

In this interactive half day tutorial the concepts of defect priority and severity are
explored.

The fundamental question in software engineering "How do you know when you
are finished?" is examined.

The journey begins on a freezing cold Canadian Winter day on an elevator ride
during which Robert Sabourin accidentally overheads some strangers discussing
problems with the most important software project taking place in the company!
The class invited to help Robert in his job and to effectively define and identify
characteristics of the problem, most importantly the priority and severity of the
issue!

The concept of the four-quadrants of priority and severity are taught and the class
is clearly shown how business factors influence the quadrant of a bug! The class
includes a review of some actual defect arrival graphs from recent commercial
product development efforts and provides an answer to the fundamental question
of software engineering. Practical aspects of bug tracking, defect logging and bug
review meetings are included.

About the Author

Robert Sabourin has been involved in all aspects of development, testing and
management of software engineering projects. Robert graduated from McGill
University in 1982. Since writing his first program in 1972, Robert has become an
accomplished software engineering management expert. He is presently the
President of AmiBug.Com, Inc.; a Montreal-based international firm specializing
in software engineering and and software quality assurance training, management
consulting and professional development. AmiBug helps companies set up
software engineering and quality assurance teams and process through a
combination of training and management consulting. Robert was the Director of
Research and Development at Purkinje Inc where he was charged with developing

world class critical medical software used by clinicians at the point of care.
Previously, Robert managed Software Development at Alis Technologies for over
ten years. He has built several successful software development teams and
champions the implementation of "light effective process" to achieve excellence in
delivering on-time, on-quality, on-budget commercial software solutions.

Robert has championed many complex international multilingual software
development and globalization efforts involving several intricate business
partnerships and relationships including international government (Czech, Egypt,
France, Morocco, Algeria...) and commercial entities (Microsoft, IBM, AT&T, HP,
Thompson CSF, Olivetti...). Systems included concurrent coordinated multilingual
multiplatform product releases.

Robert's pioneering work with Infolytica Corporation led to the development of the
first commercially available platform independent graphics standard GKS and
several toolkits which allowed for cross platform development and porting of
complex CAD, Graphics, Analysis and Non-Destructive Simulation systems.

Robert is a frequent guest lecturer at McGill University where he relates theoretical
aspects of Software Engineering to real world examples with practical hands-on
demonstrations.

In 1999, Robert completed a short book illustrated by his daughter Catherine
entitled"I Am a Bug" (ISBN 0-9685774-0-7).

Robert has received professional recognition for many accomplishments over the
years. At TEPR 2000 - award for best electronic patient record product to EHS
using the Purkinje CNC component. Byte Middle-East's 1992 Product of the Year
for the AVT-710 product family achieving a ZERO FIELD REPORTED software
defect rate with over 15,000 units installed. (Project involved over 27-man month's
effort!); Quebec Order of Engineers' recognition for creating and managing the
Alis R&D Policy Guide - Development Framework and process.

1

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 1

Bug Priority and Severity

Robert Sabourin
President

AmiBug.Com, Inc.
Montreal, Canada

rsabourin@amibug.com
www.amibug.com

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 2

Bug Priority and Severity

Elevator Parable

2

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 3

Bug Priority and
Severity

• Overview
– Introductions
– Elevator Parable
– Quadrants of priority and severity
– Example definitions
– Defect arrival curves and metrics
– Practical aspects Track/Log/Review
– Bug Reporting
– Fundamental question of software engineering

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 4

Bug Priority and Severity

• Robert Sabourin ,
Software Evangelist

• President
• AmiBug.Com Inc.
• Montreal, Quebec,

Canada
• rsabourin@amibug.com

3

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 5

• Software Development & SQA Consulting
• Services

– Training, Coaching and Professional
Development

– Light Effective Process
– Team Building and Organization
– We help people to get things done!

AmiBug.Com, Inc.

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 6

I am a Bug

Robert & Catherine Sabourin

ISBN: 0-9685774-0-7

www.amazon.com
www.fatbrain.com

In the style of a children's book.
Explains elements of software
development process in a fun easy
to read format.

4

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 7

Fundamental Question

• How do you know when you are finished?

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 8

Crosby on Quality

• “Quality is defined as conformance to
requirements”

• “Quality is not a measure of GOODNESS”
– Phil B. Crosby, Quality is Free

5

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 9

Dr. Edwards Deming

• “Management of quality needs quality
management”

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 10

Deming Quality approach
(PDCA)

• Plan, Do Check, and Act:
Plan what you want to implement.
Do the pilot implementation.
Check the results of the pilot.
Act on the results by tweaking the process before
the next project.

6

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 11

Edsger W. Dijkstra

• “Program testing can be used to show the
presence of bugs, but never to show their
absence”

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 12

Definition of a Bug

• To make our job more fun, whenever we
have a concern with software, we call it a
“bug”.

7

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 13

Bug Priority and
Severity

• It’s all about people! (and the occasional
bug too)

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 14

Purpose

• What is the purpose of testing?

8

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 15

Purpose

• Common definition of the purpose of
testing:
– Our purpose is to find bugs before our

customers do!

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 16

Purpose

• Broader definition:
– The role of testing is to provide objective input

to facilitate business decisions (wise smart and
good decisions)

– keeps internal stakeholders aware of all the
issues/concerns that relate to shipping a product

9

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 17

Microsoft® SDD Team
Model

• Testing Role defined simply and clearly in
the sense of SQA not corporate QA
– Ensure all concerns are KNOWN to team
– Develop testing strategy and plans
– FACILITATE BUSINESS DECISIONS
– PROVIDE OBJECTIVE INFORMATION

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 18

A note about parables

• Teaching
• Learning
• Retaining
• Applying knowledge
• Share experiences

10

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 19

The Elevator Parable

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 20

The Elevator Parable
Weather in Montreal

M o n th
A v e r a g e

h ig h A v e r a g e lo w
W a r m e s t

e v e r C o ld e s t e v e r
A v e r a g e

d e w p o in t
A v e r a g e

p r e c ip ita t io n
J A N . 2 1 7 5 2 -3 1 7 2 .8
F E B . 2 4 1 0 5 9 -2 2 9 2 .6

M A R C H 3 5 2 1 7 0 -1 7 1 8 2 .8
A P R IL 5 1 3 5 8 4 9 3 1 2 .9
M A Y 6 5 4 7 9 0 2 5 4 3 2 .7
J U N E 7 3 5 6 9 1 3 6 5 3 3 .3
J U L Y 7 9 6 1 9 3 4 3 5 9 3 .4
A U G . 7 6 5 9 9 5 3 9 5 8 3 .6
S E P . 6 6 5 0 9 0 2 8 5 0 3 .3
O C T . 5 4 3 9 7 9 1 9 3 8 3
N O V . 4 1 2 9 6 8 3 2 8 3 .5
D E C . 2 7 1 3 5 9 -2 6 1 4 3 .4

M o n tre a l , C a n a d a

L a t itu d e : 4 5 d e g re e s , 2 8 m in u te s n o rth
L o n g itu d e : 7 3 d e g re e s , 4 5 m in u te s e a s t

11

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 21

The Elevator Parable
Montreal Temperature

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 22

The Elevator Parable

• CNC
– highest priority project, new business and

technical model
• Profile

– critical last minute feature requested by
customer for CNC

• GPF
– windows general protection fault, crash

12

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 23

Bug Priority

• How important is it?
– Urgent
– Not Urgent

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 24

The Elevator Parable

• Define Priority Scheme
– P1

• ____________________
– P2

• ____________________
– P3

• ____________________

13

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 25

The Elevator Parable

• Priority Scheme
– P1

• Fix it now
– P2

• Fix it later
– P3

• Do not fix it

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 26

Crayons

• Fun to draw pictures

14

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 27

The Elevator Parable

Priority Tally of Count

P1 - Fix it now

P2 - Fix it later

P3 - Don't fix it

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 28

The Elevator Parable

15

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 29

The Elevator Parable

•News from The Boss
•Listen to The Boss

•“CNC customer timetable has changed”
•“We can wait for product delivery”

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 30

The Elevator Parable

Priority Tally of Count

P1 - Fix it now

P2 - Fix it later

P3 - Don't fix it

16

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 31

The Elevator Parable

•News from The V.P. Finance
•Listen to The Shareholders

•“Capitalize CNC for January”
•“Value of work in capital when finished”
•“Policy”

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 32

The Elevator Parable

Priority Tally of Count

P1 - Fix it now

P2 - Fix it later

P3 - Don't fix it

17

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 33

Bug Severity

• How much damage it causes
– severe
– not severe

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 34

The Elevator Parable

• Define Severity Scheme
– S1

• ____________________
– S2

• ____________________
– S3

• ____________________

18

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 35

The Elevator Parable

• Severity Scheme
– S1

• Unusable no straight
forward work around

– S2
• Work around possible

– S3
• Cosmetic

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 36

The Elevator Parable

Severity Tally of Count

S1 - Show Stopper

S2 - Work around

S3 - Cosmetic

19

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 37

The Elevator Parable

•News from User Education
•News from Product Management
•Listen to The Users

•“End Users cannot tolerate GPFs”
•“End Users are Doctors”

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 38

The Elevator Parable

Severity Tally of Count

S1 - Show Stopper

S2 - Work around

S3 - Cosmetic

20

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 39

The Elevator Parable

•News from The Development Lead
•Listen to The Folks who write the code

•“Profiler is for expert sys admin”
•“Profiler is a prototype”
•“Profiler will not be used by docs”
•“Profiler is an editor for INI files”

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 40

The Elevator Parable

Severity Tally of Count

S1 - Show Stopper

S2 - Work around

S3 - Cosmetic

21

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 41

The Elevator Parable

•News from The Developer
•The Guru

•“Profiler prototype was demoed”
•“To real sys admin folks”
•“They really loved it”
•“Crashed during demo”
•“Work in process”
•“Things are super!”

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 42

The Elevator Parable

Priority Tally of Count

P1 - Fix it now

P2 - Fix it later

P3 - Don't fix it

22

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 43

The Elevator Parable

Severity Tally of Count

S1 - Show Stopper

S2 - Work around

S3 - Cosmetic

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 44

The Elevator Parable
Moral

Bugs are not Good or Bad

23

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 45

The Elevator Parable
Moral

Some bugs are important
and have a high priority!

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 46

The Elevator Parable
Moral

Some bugs are dangerous
and have a high severity!

24

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 47

The Elevator Parable
Moral

• Setting the priority and severity of a bug is a
business decision

• Changing business conditions impact the
priority and severity of a bug!
– Always review previous decisions in light of

changing business context
– ensure staff assigning priority and severity are

aware of all relevant business drivers

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 48

The Elevator Parable
Moral

• And remember … don’t loose any sleep
over rumors you overhear in elevators!

25

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 49

Bug Quadrants

Urgent
Severe

Urgent
Not Severe

Not Urgent
Severe

Not Urgent
Not Severe

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 50

Business Decisions

• SQA:
– objective input

• Development:
– technical implementation

• Product Management:
– customer driven requirements

26

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 51

Quadrant Changing

• Same technical bug can be in a different
quadrant depending on the business context

• Monitor business drivers!
• Focus find and fix quadrant -1- bugs high

priority/high severity

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 52

Priority and Severity
Examples

• Note
– some of the examples may apply to only one or

few development teams within larger
organization

– often schemes are project based and are not
used consistently company wide

– some schemes presented may be out of use at
the time of publication

27

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 53

Priority and Severity
Examples

• Purkinje, Inc.
• Priority

– P1 Fix in current release
– P2 Fix in current release if possible
– P3 Fix in subsequent release
– P4 Do not fix
– P5 Feature request

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 54

Priority and Severity
Examples

• Purkinje, Inc.
• Severity

– S1 System Crasher - Data Destroyer
– S2 Major Problem
– S3 Minor Problem
– S4 Trivial

28

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 55

Priority and Severity
Examples

• Software System Testing and Quality
Assurance, Boris Beizer

• Severity
– 10 levels
– MILD , MODERATE, ANNOYING, DISTURBING, SERIOUS, VERY-

SERIOUS, EXTREME, INTOLERABLE, CATASTROPHIC,
INFECTIOUS

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 56

Priority and Severity
Examples

• Measures for Excellence, Putman & Mayers
• Severity:

– CRITICAL prevents further execution
– SERIOUS subsequent answers grossly wrong
– MODERATE behavior partially correct
– COSMETIC tolerable

29

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 57

Priority and Severity
Examples

• Practical Software Metrics for Project
Management and Process Improvement,
Robert Grady

• Severity:
– CRITICAL
– SERIOUS
– MEDIUM
– LOW

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 58

Priority and Severity
Examples

• Testing Computer Software, Kaner, Falk
and Nguyen

• Priority example:
– 1 Fix immediately
– 2 Fix as soon as possible
– 3 Must fix before next milestone
– 4 Must fix before final
– 5 Fix if possible
– 6 Optional - use your own judgement

30

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 59

Priority and Severity
Examples

• Testing Computer Software, Kaner, Falk
and Nguyen

• Severity example:
– 1 Minor
– 2 Serious
– 3 Fatal

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 60

Priority and Severity
Examples

• Microsoft Secrets, Cusumano, Selby
• Typical Severity Scheme:

– S1 bug causes product to halt (“crash”) or be inoperable
– S2 bug causes a feature to be inoperable and an

alternative (“work-around”) solution is not possible
– S3 bug causes a feature to be inoperable and a work-

around solution is possible
– S4 bug is cosmetic or minor

31

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 61

Priority and Severity
Examples

• Net BSD
– Severity

• critical
• serious
• non-critical

– Priority
• high
• medium
• low

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 62

Priority and Severity
Examples

• Managing the Software Process, Humphrey
• Quote (page 312)

“… Since software defects are a major concern in both
testing and operation, it is natural to use them as one key
process measurement. Software defects (and the bugs that
identify them) can be categorized as follows:

• - severity Measures the actual or anticipated impact of a
defect on the user’s operational environment. Typically
such measures are valuable in establishing service
priorities. …”

32

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 63

Priority and Severity
Examples

• Software Project Survival Guide,
McConnell
– Defect Count Example

• critical defects
• serious defects
• cosmetic defects
• etc

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 64

Priority and Severity
Examples

• Dynamics of Software Development,
McCarthy
– Triage ruthlessly

• “The severity of the bug. A pertinent question to
ask, especially in the end-game, is whether you
would recall the product if this bug were discovered
after the product is shipped. Is it a showstopper?”

33

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 65

Priority and Severity
Examples

• Software Inspection, Gilb, Graham
– Definition of Severity

• “The classification of an issue based on the
estimated future cost to find and fix a defect at a
later stage, if not fixed at this stage. The alternatives
are minor (about the same), major (substantially
greater), critical (product or project threatening
later).”

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 66

CNC 2.10 Final

0

50

100

150

200

250

01
/1

1/
98

01
/1

8/
98

01
/2

5/
98

02
/0

1/
98

02
/0

8/
98

02
/1

5/
98

02
/2

2/
98

03
/0

1/
98

03
/0

8/
98

03
/1

5/
98

03
/2

2/
98

03
/2

9/
98

04
/0

5/
98

04
/1

2/
98

04
/1

9/
98

04
/2

6/
98

05
/0

3/
98

05
/1

0/
98

05
/1

7/
98

05
/2

4/
98

05
/3

1/
98

06
/0

7/
98

06
/1

4/
98

06
/2

1/
98

06
/2

8/
98

07
/0

5/
98

07
/1

2/
98

07
/1

9/
98

07
/2

6/
98

08
/0

2/
98

08
/0

9/
98

08
/1

6/
98

08
/2

3/
98

08
/3

0/
98

09
/0

6/
98

09
/1

3/
98

09
/2

0/
98

09
/2

7/
98

10
/0

4/
98

10
/1

1/
98

10
/1

8/
98

10
/2

5/
98

11
/0

1/
98

11
/0

8/
98

11
/1

5/
98

11
/2

2/
98

11
/2

9/
98

12
/0

6/
98

12
/1

3/
98

01
/1

4/
99

01
/1

8/
99

01
/2

5/
99

02
/0

1/
99

02
/0

8/
99

Open P1 & P2 Bugs Bugs Pending validation (Corrigé)

34

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 67

CNC 2.20 Final
Defect Status

0

27

71

42

57

71

106

81

68 72
78

89 90 90

78 75

62

48 46

00 0

14

42
48

10

33

60

88

28

42

59

99

52 56 54

36

20

1 00 0
5

20
28

77

0

12
5

32
39

54

16
10

28 25 21
11

65

00

50

100

150

200

250

06
/0

2/
99

13
/0

2/
99

20
/0

2/
99

27
/0

2/
99

06
/0

3/
99

13
/0

3/
99

20
/0

3/
99

27
/0

3/
99

03
/0

4/
99

10
/0

4/
99

17
/0

4/
99

24
/0

4/
99

01
/0

5/
99

08
/0

5/
99

15
/0

5/
99

22
/0

5/
99

29
/0

5/
99

05
/0

6/
99

12
/0

6/
99

19
/0

6/
99

26
/0

6/
99

03
/0

7/
99

10
/0

7/
99

17
/0

7/
99

24
/0

7/
99

31
/0

7/
99

Open P1 & P2 Bugs Bugs Pending validation (Corrigé) New

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 68

CNC 2.3 In Progress

Defect Status

0

124
135 131

119
129

141

162

126 124

137

0

27
19 18

48 47

24

10

43
54

65

0
10 6

11
6 4

27

9
16 15

5
0

50

100

150

200

250

07
/0

4/
99

07
/1

1/
99

07
/1

8/
99

07
/2

5/
99

08
/0

1/
99

08
/0

8/
99

08
/1

5/
99

08
/2

2/
99

08
/2

9/
99

09
/0

5/
99

09
/1

2/
99

09
/1

9/
99

09
/2

6/
99

10
/0

3/
99

10
/1

0/
99

10
/1

7/
99

10
/2

4/
99

10
/3

1/
99

11
/0

7/
99

Open P1 & P2 Bugs Bugs Pending validation (Corrigé) New

35

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 69

CCM 1.36 Final
Defect Status

426

342
331

273

177

152

93

59 60

33 33
16 9 1 0

91 96
104 110 109 116

128

152

113 117

25
5 6 5 37 11 16

5 9 13
2 1

103

20
4 0

20
1

10
0

50

100

150

200

250

300

350

400

450

500

20
/0

2/
99

27
/0

2/
99

06
/0

3/
99

13
/0

3/
99

20
/0

3/
99

27
/0

3/
99

03
/0

4/
99

10
/0

4/
99

17
/0

4/
99

24
/0

4/
99

01
/0

5/
99

08
/0

5/
99

15
/0

5/
99

22
/0

5/
99

29
/0

5/
99

05
/0

6/
99

12
/0

6/
99

19
/0

6/
99

26
/0

6/
99

03
/0

7/
99

10
/0

7/
99

17
/0

7/
99

24
/0

7/
99

31
/0

7/
99

Open P1 & P2 Bugs Bugs Pending validation (Corrigé) New

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 70

CCM 1.37 Final
Defect Status

0

9

2 1 1 1 00

25

30

21

5 5

00

5

14

3

17

5

00

10

20

30

40

50

07
/1

8/
99

07
/2

5/
99

08
/0

1/
99

08
/0

8/
99

08
/1

5/
99

08
/2

2/
99

08
/2

9/
99

09
/0

5/
99

09
/1

2/
99

09
/1

9/
99

Open P1 & P2 Bugs Bugs Pending validation (Corrigé) New

36

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 71

DCI 2.0 Tail End
Defect Status

0

31
19

43 38

72
83

95

134
123

217
202

308

271

303

380

232
247

220

169

199

105

59 57 61
74

38
25

0 2 1
17

6
22

6

46

2
15

25 31 31
49

87
99 92 85

117 121

81

145
154 154

165

83

52 46

134 128 132
122 122

134 134

100
115

145

177

214

0

50

100

150

200

250

300

350

400

450

06
/0

3/
99

13
/0

3/
99

20
/0

3/
99

27
/0

3/
99

03
/0

4/
99

10
/0

4/
99

17
/0

4/
99

24
/0

4/
99

01
/0

5/
99

08
/0

5/
99

15
/0

5/
99

22
/0

5/
99

29
/0

5/
99

05
/0

6/
99

12
/0

6/
99

19
/0

6/
99

26
/0

6/
99

03
/0

7/
99

10
/0

7/
99

17
/0

7/
99

24
/0

7/
99

31
/0

7/
99

07
/0

8/
99

14
/0

8/
99

21
/0

8/
99

28
/0

8/
99

04
/0

9/
99

11
/0

9/
99

18
/0

9/
99

25
/0

9/
99

Open P1 & P2 Bugs Bugs Pending validation (Corrigé) P3 Defects

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 72

CNC 2.1 Project Data

37

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 73

CNC 2.1 Project Data

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 74

SQA Effort
Distributions

38

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 75

SQA Effort
Distributions

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 76

Practical Aspects

• Tracking
– Publicize data in graphical or tabular form as

much as possible, practical and politically
acceptable

– doors, coffee machines, near the laser printer,
near the photocopier

– update status regularly (at least in sync with
builds to SQA)

39

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 77

Practical Aspects

• Tracking
– Ensure there is a way for the project test lead to

confirm a bug and validate the description as
being clear and complete before allowing others
to see it (keep it private until it has been
reviewed by the lead or a reasonably senior
peer)

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 78

Practical Aspects

• Tracking
– make bug list available to anyone who may

have an interest in the project (READ ONLY)
– provide training seminars about how to read a

bug list without any panic
• if it is in the list then we know about it and therefore

we can make a rational decision about what to do
about it

40

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 79

Practical Aspects

• Tracking
– recommend email notifications in form of

executive summary periodically or whenever a
major change takes place

– if someone outside your development
organization reports a bug it is good politics to
let them know the bug number assigned to it so
they can track it by polling the bug list!

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 80

Practical Aspects

• Logging
– best practice is to have a company or project

standard form to complete
– many examples in industry and samples

provided in all commercial bug tracking
software

– train staff in bug logging
– keep personal testing notes for later reference

and reminders

41

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 81

Practical Aspects

• Logging
– how to repeat bug
– classification of bug
– element of test plan
– version, configuration, build number
– attachments, screen shots, files
– severity (priority is decided later at bug review

meeting)

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 82

Practical Aspects

• Logging
– keep in mind when logging the bug that you

may be called on short notice into a very
intense meeting in progress to explain or
demonstrate the problem

– be prepared
– review entry with at least one person preferably

a test lead or senior peer

42

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 83

Practical Aspects

• Bug Review Meeting
– bug review meetings are among the most

important activities in a software development
project

– decisions are made as to what the priorities are
for all bugs in the system

– when business conditions have changed a
review of all lower priority bugs is needed to
reclassify as required

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 84

Practical Aspects

• Bug Review Meeting
– all attendees should have access to the bug list

before the meeting and have sufficient lead
time to know what priorities they would assign
to the bugs

– assume approximately 2 hours are required per
person reviewing about a weeks worth of NEW
UNCLASSIFIED BUGS

43

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 85

Practical Aspects

• Bug Review Meeting
– if more than 2 hours review time is needed then

increase the frequency of your bug review
meetings

– as few people as possible should be attending
the bug review meeting

• development lead
• product manager
• sqa lead

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 86

Practical Aspects

• Bug Review Meeting
– other staff should be available on demand to

help clarify technical or business issues related
to the bug

– run bug review meeting objectively
• avoid finger pointing
• avoid assigning blame
• be objective and unemotional

44

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 87

Practical Aspects

• Bug Review Meeting
– agree on an order to review the bugs

• for low volume the easiest is sequentially
• logical order could be by function and then from

most dangerous to least dangerous severity
• order should be rational

– moderator should be diplomatic
– training in how to run a meeting

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 88

Practical Aspects

• Bug Review Meeting
– can be run similar to a defect logging meeting

of a formal inspection (Gilb style) but with
more discussion encouraged to come to a
business decision especially on gray subjective
areas about what product users would could or
should do!

45

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 89

Practical Aspects

• Bug Review Meeting
– all stakeholders should be notified of decisions

made in Bug Review Meetings
• developers
• testers
• technical writers

– ensure a process exists to notify staff that they
have work to do related to fixing a problem.

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 90

Practical Aspects

• Bug Review Meeting
– although email and electronic notification is

very popular I recommend communicating in
person (or by phone or by some form of
electronic conferencing)

46

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 91

Bug Tracking Systems

• Never loose a bug
– a bug tracking system is a database in which all

bugs discovered or reported about an
application are collected

– typically a “test lead” is responsible for
managing the “bug list” for an application

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 92

Bug Tracking Systems

• Never loose a bug
– a bug tracking system is a database in which all

bugs discovered or reported about an
application are collected

– typically a “test lead” is responsible for
managing the “bug list” for an application

47

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 93

Bug Reports

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 94

Bug Reporting

• The “bug” flow is something like this
– bug is discovered in testing or reported from the field
– a bug report form is completed
– the bug report form is reviewed
– the bug report is added to the bug list
– a decision is made, at a bug review meeting, about whether the bug

should be fixed
– if the bug is fixed then the software is re-tested to reconfirm that

the bug has indeed been fixed
– if the bug is not fixed (on purpose!) then a description of the work

around is published or made available to help desk staff

48

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 95

Bug Reporting

• Potential Audience of Bug Report
– other testers
– test leads
– developers
– development leads
– product managers
– customer support team members
– technical writers

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 96

Bug Reporting

• Most important reason to report the bug
– provide input to decision makers regarding status of product
– decision to ship is based on status of open bugs
– a ship decision is among the most important in the entire software

development process
– if a decision is made to fix the bug the description had better help

the developer get the job done!
– it is critical to have high quality bug report information!

49

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 97

Bug Reporting

• Effective bug reports
– explain how to reproduce the problem
– describe the problem in a reasonable number of

steps
– minimize the amount of additional questions

raised on reading it!

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 98

Bug Reporting

• Effective bug reports
– description should be:

• complete
• clear
• objective
• not confrontational

50

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 99

Some Typical Bug
Report Fields

• Bug Number
– a unique number assigned to the bug
– bug numbers should never be reused
– it is a good idea to have unique numbers across

all products in an organization to avoid any
future possible accidental confusion

– usually generated automatically

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 100

Some Typical Bug
Report Fields

• Application
– Name of the application the bug is about
– especially useful if you have a series of

applications or applets!

51

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 101

Some Typical Bug
Report Fields

• Version and Build Number
– which build of which product
– which version
– sometimes this value is found in help about box
– if no build number is available use a date time

stamp of build or equivalent

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 102

Some Typical Bug
Report Fields

• Problem Type
– describes the Type of problem found
– hardware, software, documentation, help
– depends on application environment
– may include suggested enhancement or

questions if not really a problem but a concern
raised during testing!

52

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 103

Some Typical Bug
Report Fields

• Proposed Severity
– how serious is the problem
– this is usually entered based on the policy of the

project and could change based on business
context

– Usually numeric scheme S1 … Sn where S1 is
most severe

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 104

Some Typical Bug
Report Fields

• Attachments
– list of additional attachments
– files
– screen captures
– database
– additional information to help facilitate

decision making regarding keep or fix

53

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 105

Some Typical Bug
Report Fields

• Problem Summary
– short clear description of the problem
– usually used in executive summary of bug

status
– “program crashes when saving using an

invalid file name” for example

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 106

Some Typical Bug
Report Fields

• Can Problem be reproduced
– Yes, No or Sometimes
– especially useful for the case of field reported

problems
– generally testing team should have a “yes”

here!

54

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 107

Some Typical Bug
Report Fields

• Problem Description and Steps to
Reproduce It
– detail description of the problem
– clear step by step description of how to repeat it
– how to get to appropriate system state to

reproduce the problem

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 108

Some Typical Bug
Report Fields

• Suggested Fix
– sometimes you may be able to propose a fix!
– It may be ignored - but if it makes sense and

you are qualified do not hesitate!

55

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 109

Some Typical Bug
Report Fields

• Reported By
– your name
– your department or other identification

• Dates
– date found
– date reported

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 110

Some Typical Bug
Report Fields

• Platform
– operating system
– client, server descriptions
– versions of environment software
– browser
– windows version

56

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 111

Some Typical Bug
Report Fields

• Functional Area
– part of application
– useful for extracting data, all bug reports related

to this Functional Area

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 112

Some Typical Bug
Report Fields

• Comments or Notes
– anyone working on the bug or reviewing it can

add comments
– helps keep up with added information without

revising descriptions as bug is worked on!

57

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 113

Some Typical Bug
Report Fields

• Status
– has the bug been reviewed
– is it Open
– is it Closed
– is it Pending Review
– … whatever works in your company

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 114

Some Typical Bug
Report Fields

• Priority
– how urgent is this bug
– when (if ever) will it be fixed
– result of bug review meeting

58

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 115

Bug Descriptions

• Simple
– do not use complex grammar structures or

ambiguous wordings to describe the bug
– use short clear phases
– point form lists are great

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 116

Bug Descriptions

• Rational
– the bug description should make sense to all

readers
– if you find a bizarre set of keystrokes which

reproduce the problem in a consistent way
“great” … but please indicate that that is only
one of several ways ...

59

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 117

Bug Descriptions

• Unemotional
– do not get too passionate in the description
– be clear and business like in tone

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 118

Bug Descriptions

• Objective
– no finger pointing
– your job is to give objective input to help

people make business decisions

60

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 119

Bug Descriptions

• Review
– have a peer or lead review every description to

ensure it is clear and objective
– be prepared to defend the description

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 120

Bug Descriptions

• Consequences
– what are the possible consequences of this bug

to the system user?
– Are there more important consequences?

61

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 121

Bug Advocacy

• Work by Cem Kaner
– “ … a bug report is a tool that you use to sell

the programmer on the idea of spending her
time and energy to fix a bug …”

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 122

Bug Advocacy

• Bug report should
– sell the need to fix the bug
– motivate the bug fixer
– motivate the business decision
– overcome objections

62

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 123

Bug Advocacy

• “The best tester is the one who gets the
most bugs fixed!”
– Cem Kaner

• Bug Advocacy Workshop
• Software Quality Week - May 2000

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 124

Example Bug Flow

Never Loose a Bug!

63

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 125

Finished?

• How do you know you are finished?

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 126

You know you are
finished when …

• … the only bugs left are the ones that
Product Management and Development
agree are acceptable (based on objective
SQA input) ...

64

AmiBug.Com, Inc.
© Robert Sabourin, 2001Monday, April 16,

2001
Slide 127

You know you are
finished when …

• … the only bugs left are the ones that
Product Management and Development
agree are acceptable (based on objective
SQA input) …

At least for now!

QW2001 Workshop W4

Ms. Johanna Rothman & Ms. Elizabeth Hendrickson
(The Rothman Consulting Group)

Grace Under Pressure: Handling Sticky Situations in Testing

Key Points

How to make sure they heard what you said and not what they wanted you to say.●

How to handle difficult situations and obstinate people.●

What to do when you don't feel like anyone is listening.●

How to say "no" and make it stick.●

Presentation Abstract

In this workshop Elisabeth Hendrickson and Johanna Rothman examine a series of
difficult interactions between testers, test leads, developers, and managers,
demonstrating proven techniques for presenting bad news, saying "no," and
influencing others' behavior when you have no authority over them.

About the Author

Johanna Rothman observes and consults on managing high technology product
development. She works with her clients to find the leverage points that will
increase their effectiveness as organizations and as managers, helping them ship
the right product at the right time, and recruit and retain the best people.

Johanna publishes "Reflections", an acclaimed quarterly newsletter about
managing product development. Johanna's handbook, "Hiring Technical People: A
Guide to Hiring the Right People for the Job," has proved a boon to perplexed
managers, as have her articles in Software Development, Cutter IT, IEEE
Computer, Software Testing and Quality Engineering, and IEEE Software.

Johanna is the founder and principal of Rothman Consulting Group, Inc., and is a
member of the clinical faculty of The Gordon Institute at Tufts University, a
practical management degree program for engineers.

Elisabeth Hendrickson is the Director of Quality Engineering at Aveo Inc., an

Application Service Provider. Aveo Inc. offers Attune, a pre-emptive technical
support service whose mission is to help companies communicate the right
information to the right customer at the right time. Prior to joining Aveo, Elisabeth
was the founder of Quality Tree Consulting, a software quality assurance
consulting firm. As a consultant, Elisabeth provided services to Application
Service Providers as well as more traditional independent software vendors.

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 1
www.qualitytree.com, www.jrothman.com

Copyright 2001, Elisabeth Hendrickson and Johanna Rothman

Grace Under Pressure:
Handling Sticky
Situations in Testing

Elisabeth Hendrickson

Quality Tree Software, Inc.

925-426-9726

esh@qualitytree.com

www.qualitytree.com

Johanna Rothman

Rothman Consulting Group, Inc.

781-641-4046

jr@jrothman.com

www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 2

What’s the Problem?

• Testing is full of pressure situations

• We’re people, so we constantly find sticky situations

If you can keep your head while others are losing theirs…. -- Rudyard Kipling

• Easier said than done

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 2
www.qualitytree.com, www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 3

People Under a Little Pressure May

• Focus

– Ignore anything unrelated to the current problem

– Become “intense”

• Feel challenged and exhilarated

• Work hard

• Push others

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 4

People Under a LOT of Pressure May

• Play CYA games

• Play politics

• Yell

• Blame

• Yield

• Snap

• Ignore requests

• Curl up under their desks

• Demonstrate bizarre, uncharacteristic behavior

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 3
www.qualitytree.com, www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 5

When Sticky Situations Explode

• No one gets anything productive done: they’re too busy dealing
with the situation to deal with the work.

• The result can damage more than one project: it can permanently
damage the team and ultimately the company.

• As a manager, your job is to handle the situation to make the
outcome as good as possible and minimize the damage—in a way
that works for you.

• We’re going to discuss a specific problem-solving technique

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 6

Situation 1: Ready to Ship?

 You’re the test manager on a project that has been having serious
problems since it was first delivered. Your group has found
several serious bugs and documented them. So far, the bug
review committee has decided to defer all of them. One of your
testers just found a really awful bug that results in data
corruption. The executives still expect the software to ship
Monday. Now what?

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 4
www.qualitytree.com, www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 7

These Responses are NOT Helpful

• Placate the decision makers:
– You say to yourself: “They’re not going to fix anything anyway. So we’ll

ship bad software. Oh well.”

– Note: Do this enough and you won’t have enough Tums.

• Blame others:
– To your manager: “HOW CAN YOU POSSIBLY CONSIDER

SHIPPING THIS PIECE OF !@#$%!!!!?!?!?!?!?”

– To the developers: “If you weren’t such bad programmers, this wouldn’t
be a problem!”

– To the executives: “YOU’RE JUST A BUNCH OF QUALITY
NEANDERTHALS!”

– Note: Blaming is best done with a pointed finger and a loud voice

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 8

Activity

• Get into groups of three

– Each person take a role: test manager, executive, observer

– Try the ready-to-ship scenario

– Try making the interaction as painful, nasty, vicious as
possible

• Debrief

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 5
www.qualitytree.com, www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 9

Recognizing Congruence and
Incongruence

• Self: We consider our own needs and capabilities

• Other: We consider needs and capabilities of other people

• Context: The reality of the situation

Self Other

Context

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 10

What Every Child Knows

• School teaches us what to do if we are on fire:
– Stop

– Drop

– Roll

• Apply this to work. When the situation is on fire:
– Center: Stop and think. Assess your own state of mind and reactions

– Enter: Enter into the other’s context

– Turn: Turn the situation back into a healthy situation (Roll out the flames)
and solve the real problems causing the fires

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 6
www.qualitytree.com, www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 11

Center

• Close your door (if you have one)
• Breathe
• Mentally drop out while the conversation continues around you
• Take a walk
• Get coffee/water/soda
• Excuse yourself to go to the restroom
• Find an empty conference room or office and hide
• Say what you want to say to an empty office, car, room.
• If all else fails, pretend to pass out and collect your thoughts

while they call 911

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 12

Center, Part 2: Assess Yourself

• What are you feeling right now? Fear? Anger? Resentment?
Secret satisfaction and the desire to say “I told you so?”

• Are you thinking in terms of fault, culprits, accountability?

• Are you trying to figure out how you’ll keep executives from
pointing fingers at your group?

• Are you feeling overwhelmed by it all and want to ignore it until
it goes away?

• Are you exhibiting any physical signs of stress (nausea, tensed
muscles, clenched teeth)?

• You’re human, expect human reactions. Learn from them.

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 7
www.qualitytree.com, www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 13

Your Physical and Mental Responses
Are Helpful Clues

• Recognize how your body reflects your state of mind.

• Notice any discrepancies between your physical and mental
states.

• Whether your responses are mean spirited or well intentioned,
they are your responses. Honor them.

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 14

Enter and Reframe Your Thoughts
and Feelings

• Everyone involved is doing what they believe to be best

• Everyone, including us, has a right to an opinion

• We can express what we want to say in a way that makes it more
likely to be heard

• We are not powerless nor are we all-powerful

• We are not totally ignorant nor are we omniscient

• We, along with everyone else on the project, are human and we
all deserve to be treated with dignity and respect

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 8
www.qualitytree.com, www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 15

Relax

• Recognize tension as “fight or flight” instinct

• Breathe deep

• Clear your mind

• Count to 10, 50, 100, or 1000 as needed

• Find all the tensed muscles and methodically relax each one

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 16

Enter, continued:
Assess the Situation

• Is it as bad as it seems?

• What’s the best possible outcome?

• What’s the worst possible outcome?

• What options are available?

• Who is really responsible for the decisions in this case?

• What information do I need?

• What information do I have that others need?

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 9
www.qualitytree.com, www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 17

Turn Possibilities

• Speak your mind, honestly, but calmly and without accusation,
blame, or capitulation

• Acknowledge if you don’t have any answers

• Speak for yourself; let others speak for themselves

• Own your opinions: “I think…”, “I believe…”

• Watch your tone of voice and body language

• Watch the other person to see how they’re responding to you

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 18

Situation 2: You’re a Target

Your manager has hauled you into her office and is berating you
for allowing bad software to ship. She’s not letting you get a
word in edgewise; she just seems to want you there as a human
target. What to do?

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 10
www.qualitytree.com, www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 19

Center Yourself

• Excusing yourself may be awkward.

• Try to stop the conversation:
– Hold up your hand

– Stand up if sitting; sit down if standing

– Interrupt

• If that fails, stop paying attention:
– Ignore her; focus elsewhere

• If all else fails, leave the room. You do not need to stay there to
be abused.

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 20

Enter

• What’s the real problem?

• What are your manager’s real concerns?

• Is your manager taking everything into account: her, you, and the
context?

• What’s affecting your manager’s behavior? Perhaps she’s just
been a target for her manager.

• If you were to do everything over again from the beginning, what
might you do differently?

• If you had more control in the situation, what might you change?

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 11
www.qualitytree.com, www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 21

Turn

• Re-engage in the conversation with your boss in a way that allows
you to speak as well.

• Acknowledge her concerns and tell her what you think you heard
her say.

• If you have any ideas about how to address her concerns in the
future—whether things you control or things she
controls—present them now.

• Help her understand that treating you badly is not OK with you.

• If you cannot get her to treat you with respect, walk away.

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 22

A Note on Bad Managers

• If your manager treats you as a target on a regular basis, you have
an additional problem: her behavior. How you react to her
behavior is completely up to you.
– You can choose to address your concerns with upper management or HR

– You can cope with the nastiness

– You can leave.

• You own your destiny.
Your manager does not.

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 12
www.qualitytree.com, www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 23

Activity

• Get into groups of three
– Each person take a role: manager, target, observer
– Try the you’re a target scenario

• Special instructions:
– If you are the manager, remember that your goal is to take out all your

frustrations, anger, etc. on the poor hapless target. This is your opportunity to
pretend to be a total jerk. Resist your natural tendency to be nice, to respond
positively, to mellow out.

– If you are the target, your goal is to center, enter, and turn the manager in a more
positive direction. The manager will resist you. Don’t give up too easily. And in
the end, remember that the other person playing the manager is just playing a part.

– If you are the observer, watch what happens. Do not participate, but be ready to
debrief the manager and target.

– Switch roles.

• Debrief

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 24

Situation 3: No Information

You are supposed to meet with the project team to decide what
to do about the release, but you can’t get any information out of
the tester working on the project. The tester reports to you.
He’s been filing bug reports, but not as many as you expected to
see. So far, he’s managed to avoid giving you any results from
the planned test cases. You’re beginning to worry that he’s not
actually doing what he was supposed to do. You’ve called him
into your office to understand where he is in his testing. How do
you get the information you need?

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 13
www.qualitytree.com, www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 25

Center, Enter, Turn

• Before you begin speaking, stop and assess your state of mind.

• Pose the problems to him as they affect you:
– I don’t think I have enough information about the state of the software to

make a good decision.

– I am concerned about the lack of documented test results.

• Give him a chance to center before responding.

• Find a way to get what you need. Consider all your options.

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 26

Activity

• Get into groups of three
– Each person take a role: test manager, tester, observer

– Try the no information scenario

• Debrief

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 14
www.qualitytree.com, www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 27

Situation 4: Resisting Change

You are the Quality Engineering manager. The Development
manager is your peer. You’ve noticed some patterns in the
sources of bugs and have been trying to introduce processes to
prevent these common bugs. The Development manager is
resisting, “No, we don’t need to change anything in development.
I need you to have a positive attitude toward my development
group. And you also need to find the bugs faster.”

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 28

Anatomy of an Interaction

IntakeMeaning

Significance Response

Me

Intake Meaning

SignificanceResponse

You

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 15
www.qualitytree.com, www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 29

What You Say v. What They Hear

• The other person may interpret what you said as:

– What they wanted to hear

– What they expected to hear

– Only the parts that don’t get filtered out (“selective hearing”)

– What they last heard in a similar situation

– What they’re most afraid you’ll say

• Be aware of mismatches between what you thought you said and
what they appear to be reacting to.

• You might have the same inaccurate interpretations of what the
other person is saying.

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 30

Activity

• Get into groups of three
– Each person take a role: quality engineering manager, development

manager, observer

– Try the resisting change scenario

• Debrief

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 16
www.qualitytree.com, www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 31

Other Situations

• Making a ship/no ship decision with unclear release criteria

• Getting real, useful feedback on test plans when no one has time
to give it to you (“Whatever you think is probably fine. Just go
with it.”)

• Dealing with an irate tester whose bugs have all been deferred

• Others?

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 32

Activity

• Get into groups of three
– Choose a situation you’re having trouble with that you want to practice

– Try one with your group

• Debrief

Grace Under Pressure: Handling Sticky Situations in Testing

© 2001 Elisabeth Hendrickson and Johanna Rothman 17
www.qualitytree.com, www.jrothman.com

© 2001 Elisabeth Hendrickson and Johanna Rothman www.qualitytree.com www.jrothman.com 33

References

• Congruent Leadership Change Shop Readings (see
http://www.geraldmweinberg.com)
– Weinberg, Gerald, “Congruence in Software Management”

– Weinberg, Gerald, McLendon, Jean, Weinberg, Daniela, “Notes on
Congruence”

• Fisher, Roger, et al, Getting to Yes: Negotiating Agreement Without
Giving in, Penguin USA, 1991

QW2001 Standby Paper SB Technology

Mr. Michael K. Jones, Assistant Professor
(Dromedary Peak Consulting/Western International University)

Test Strategy Derivation

Key Points

Test strategy derivation is a necessity to efficiently and effectively test.●

The sources and foundations of a test strategy include more than requirements.●

Critical dependencies and their leverage points must be focused on.●

Presentation Abstract

Test strategy derivation must always be performed but literature on the subject is
minimal at best, other than a traditional discussion of the merits of top-down
versus bottom- up with regards to integration. In the increasing complex systems
found in today’s businesses, both off- line and on the web, an efficient and
effective test strategy must be a goal that is reached for a system to be
comprehensively and accurately tested. Simply “banging on the box” or “flailing at
the machine” will not do the job.

This paper will define what a test strategy is and what it must cover. It will review
the necessary sources and foundations for a test strategy, i.e. system requirement
specifications and system architecture documents, and discuss how the test strategy
can possibly be obtained in tandem with them. The paper will cover the critical
dependencies of a test strategy and explore the leverage points that may be found
among them. In particular the integration strategy and build documentation will be
analyzed for their relationship to a successful test strategy. Test documentation will
be then be reviewed to show where and how this information is best noted and
preserved.

About the Author

Mr. Jones has a Master of Science in Computer Information Science and a Master
of Business Administration. He has been through software engineering training at
Boeing, Texas Instruments, and McDonnell Douglas in the past. He has worked in
the software industry since 1976 and is currently the Chief Consultant at
Dromedary Peak Consulting, which provides analytical direction and operational
support for business. He is also an Assistant Professor in Information Technology
at Western International University. His courses include Advanced Software
Engineering, Advanced C Programming, Information Resource Management,
Internet Business Strategy, and Web Application Development. Some of his
published articles include: “Pragmatic Software Configuration Management in the

E-World”, “Pragmatic Software Testing in the E-World”, “Software Configuration
Management for the Web”, “Report from Captain QA from the Web”, and “Four
Conceptual Attributes for Successful Web Applications”.

1

Test Strategy Derivation
Michael K. Jones
Chief Consultant

Dromedary Peak Consulting
Mesa, Arizona USA

And
Assistant Professor

Western International University
Phoenix, Arizona USA

Test strategy derivation is necessary
if computer systems are to be
comprehensively and accurately
tested.

2

What is a test strategy?

Beizer (1995) – focus on bug removal
Koomen and Pol (1999) – same
Pol and Van Veenendaal – same

Hetzel (1988) – test process techniques
and infrastructure
Perry (1995) – reflection of SDLC
Dustin, Rashka, Paul (1999) – automation
Beizer (1990) – white box testing option

All of these authors miss the total picture of
what testing is supposed to accomplish and
consequently what a test strategy should be.

3

A test strategy should:

1) Maximize defect identification through
increased isolation

2) Validate requirement delivery with
tangible proofs

Due to the additional tasks of effective
process and cost efficiency, a test strategy
should also:

3) Provide effectiveness in testing an
unknown against a known by
instrumenting incremental block testing.

4) Improve cost efficiency by decreasing test
jigs to the minimum number.

4

A test strategy must not only cover the “what”
of testing, but also the “how”.

Sources for the derivation of the test strategy:

Not Just
Source code
User’s Guide

5

But also

• Technical Requirements Document
• Service Level Agreements
• System Architecture Document
• Design Documents
• Program or Project Plan Document
• Integration Strategy Document
• System Build Document

Technical Requirements Document –
Each and every requirement must be
addressed individually. Not only
correct responses to correct inputs
must be measured, but correct
responses to incorrect inputs must be
dealt with.

6

Service Level Agreements (SLA’s) – May
impose additional requirements. Should
always be checked due to contractual
liability.

System Architecture Document – Reveals the
true structure and modularity of system.
Linkages and interdependencies will be
clarified, and consequently leverage points,
too

7

Design Documents – Describe the algorithms
and mechanics of each component. May be
embedded in code, but can still be utilized.

Program or Project Plan – May have an
impact if viewing by clients is called out
prior to release, or if incremental release of
functionality is stated.

8

Integration Strategy Document – Should help
the testing sequence. However, integration
was affected by needs of developers. With
that said, don’t lose sight that this is
evidence of successful integration.

Build Document – Is the recommended
integration construction sequence. May be
modified due to testing extingencies, but
feedback should be given to build engineer.

9

Test strategy should be documented in the
System Test Plan. Test strategy Information
captured should include:

Missions or goals
Coverage
Sources
Sequence of testing
resources

In conclusion, a well prepared test strategy
will provide competent testing, and deliver
a successful system to the users.

10

For feedback and/or further communication,
please contact me at:

Michael K. Jones
Dromedary Peak Consulting
1451 East 8th St.
Mesa, AZ 85203 USA
Phone: 480-833-0927
Cell: 480-363-7527
Email: mjones@dromedarypeak.com

jonesaz@uswest.net

Test Strategy Derivation
By
Michael K. Jones
Chief Consultant
Dromedary Peak Consulting
Mesa, Arizona USA
And
Assistant Professor
Western International University
Phoenix, Arizona USA

Test strategy derivation must always be performed if testing is to be accomplished in a
time and cost conscious manner. In the highly complex systems found in use today in
information technology departments and web applications, a competent and pragmatic
method must be employed to derive an efficient and effective test strategy. This
strategy is always necessary if computer systems are to be comprehensively and
accurately tested. Simply “banging on the box” or “flailing at the machine” will not do
the job.

What is a test strategy? A literature search on the subject reveals that authors provide
a wide range of opinions on this subject. Boris Beizer (1995) states that a test strategy
should be focused on bug removal (page 8). Tim Koomen and Martin Pol (1999) state
in a similar fashion, “the aim of the test strategy is finding the most important defects
as early and as cheaply as possible” (page 83). In a work with another author, Martin
Pol with Erik Van Veenendaal (1998), states in a similar vein, “the strategy should aim
at optimizing the total amount of undetected defects” (page 56).

However, Bill Hetzel (1988) utilizes the term test strategies to describe test process
techniques and infrastructure such as specification and design validation, structured
module testing, top-down testing, test case library, test planning and reporting, and
test facility and support (pages 242-243). In contrast to those two schools of thought,
William Perry (1995) finds test strategy to be a reflection of whatever software
development life cycle is used on a project (page 23). In yet another varying opinion,
Elfriede Dustin, Jeff Rashka, and John Paul (1999) see automation as meeting for a
test strategy (page 9). And finally, referring to Boris Beizer, in an earlier book (1990),
he used test strategy as a white box testing option, i.e. path coverage (page 74).

All of these authors miss the total picture of what testing is supposed to accomplish
and consequently what a test strategy should be. Testing should not be focused on
identifying defects in the system, but should also provide corroboration that current
requirement fulfillment has occurred. As a result, a testing strategy should:
1) Maximize defect identification through increased isolation.
2) Validate requirement delivery with tangible proofs.

However, testing strategy has other tasks due to the additional masters of effective
process and cost efficiency. A test strategy should also:
3) Provide effectiveness in testing an unknown against a known, to promote
confidence enlargement and risk reduction, by instrumenting incremental block testing
with foundation and layers there upon.
4) Improve cost efficiency by decreasing the number of required test jigs to the
minimum number needed to perform the total testing of the system.

All of these missions of a test strategy directly bear on what a test strategy must cover.
A test strategy has to address not only the what, but the how of testing.

The strategy utilized for testing should be designed to measure requirements
fulfillment, design integrity, and incorrect responses. The strategy has to do all of this
in a systematic fashion by building confidence through always testing incremental
functionality against validated and previously integrated functionality. By focusing this
process on a sequence based on an analysis of the system architecture, minimal
stubs and drivers, test jigs and tools, will have to be built, and needless costs will
consequently be avoided.

The necessary sources for the derivation of the test strategy are not just the code of
the delivered system and the user's guide, but all the documentation used to
document the design and construction of the system. This documentation may be
comprised of:
1) Technical Requirements Document
2) Service Level Agreements
3) System Architecture Document
4) Design Documents
5) Program or Project Plan Document
6) Integration Strategy Document
7) System Built Document

The Technical Requirements Document is the starting point for defining a test strategy.
This document also goes under the names of System Requirements Specification,
Software Requirements Specification, Functional Specification, or Software
Requirement Document among others. All of the requirements found in this document
must be addressed individually at separate points in the test strategy. Not only must
correct responses for correct inputs in the implementation of the requirements be
planned for, but also correct responses to incorrect inputs must be seen to as well.
That is, the strategy must deal with boundary value analysis and error handling
capability.

Service Level Agreements (SLA's) are another document that must be considered in
laying out the test strategy. These SLA's, if in effect when the system is deployed, may
impart additional requirements for functionality, performance, security, availability, and
other system attributes if their content was not stated in the Technical Requirements
Document. It is always best to include the SLA's in the analysis for the test strategy
and to make sure that their subject matter has been reviewed.

The System Architecture Document must always be included as a source in preparing
the test strategy for the system. This document, by delineating and describing the
logical and physical architectures of the system will reveal the true structure and
modularity of the system. Linkages, and interdependencies, as especially clarified
through the review of data flow diagrams, may be used to construct the sequence of
testing steps to be performed, and leverage points as a consequence. These leverage
points are points that shape decisions that result in a tighter sequence of testing with
less steps and more confidence in their foundations.

Design Documents are the documents that describe the algorithms and mechanics
found in each component of the system. This documentation, in some cases, may be
embedded in the code itself, but can be utilized all the same. The information,
whatever the source, will affect the sequence of data processing as to the return of
correct results. The consideration of design documentation can result in fewer steps
for testing when their absence in prior integration may result in the need for more test
jigs, and the strategy sequence avoids that need.

The programmer project plan also has an impact on the system test strategy and its
derivation if the project plan calls out the viewing by clients of functionality prior to
release, or incremental release of functionality to the client or users. If this viewing or
incremental release is called out, the functionality should always be reviewed against
the architecture of the system to gain understanding of dependencies and leverage
points. In some cases, this viewing and consequent effect on test strategy may be
able to be avoided if the viewing is not contractual and better options for the client or
users can be demonstrated.

The Integration Strategy Document should help determine the testing sequence and
test strategy. However, it is important to remember that the integration was affected by
the needs of the developers and may have been tempered by the actual logistics of
code availability due to schedule delays. With that said, a successful integration is
prima facia evidence of a successful integration test of components, minimal as that
may be.

The Build Document, in a similar sense, and as the recommended integration
construction sequence for the system, provides a path for testing. This sequence may
be modified for the test strategy, if a review of the architecture shows efficiencies to be
gained through restructuring. Such restructuring, if found, should be fed back to the
build engineer so that the System Build Document may be revised.

Documentation of the test strategy should be captured in the System Test Plan. In the
System Test Plan, information should be recorded that carefully lists the goals or
missions of the test strategy, the coverage, the sources, the sequence of testing as to
the use of which test procedures at what point in the testing, and the resources
necessary for implementation. The test procedures themselves should be reserved for
the documentation concerning the specific activities they will accomplish. Any system
testing direction should be referred to in the System Test Plan.

In conclusion, the derivation of the test strategy is an activity that must always be well
thought out if all the viability of the system is to be reality without the expense of undue

time or money. By consideration of all of the missions of testing, and devoting
adequate and effective test strategy will result. In the end, a well-prepared test strategy
will provide competent testing, and always deliver a successful system to the users.

References

Beizer, Boris (1990). Software Testing Techniques. Long, England: Thomson
 Press.

Beizer, Boris (1995). Black-Box Testing – Techniques for Functional Testing of
 Software and System. New York: John Wiley and Sons.

Dustin, Elfriede; Rashka, Jeff; Paul, John (1999). Automated Software Testing –
 Introduction, Management, and Performance. Reading, Massachusetts:
 Addison-Wesley.

Hetzel, Bill (1988). The Complete Guide to Software Testing, (Second Edition).
 New York: John Wiley and Sons.

Koomen, Tim; Pol, Martin (1999). Test Process Improvement – A Practical Step-
 By-Step Guide to Structured Testing. Harlow, England: Addison-Wesley.

Perry, William (1995). Effective Methods for Software Testing. New York: John
 Wiley and Sons.

Pol, Marin; Van Veenendaal, Erik (1998). Structured Testing of Information
 Systems. Deventer, Netherlands: Kluwer.

QW2001 Standby Paper SB Management

Ms. Johanna Rothman
(The Rothman Consulting Group)

Successful Test Management: 10 Lessons Learned

Key Points

Two main jobs of management●

Gain insight into how people respond to different management styles and missions●

Ideas for creating an effective work environment●

Ideas for rewarding and retaining staff●

Presentation Abstract

Many engineering managers came to management through the technical ranks.
Although they may have had plenty of engineering training and mentoring, they
frequently have to learn management skills the hard way, through trial and error.
This talk describes some technical management tips and tricks learned through trial
and error, focused on test managers and their particular issues.

About the Author

Johanna Rothman observes and consults on managing high technology product
development. She works with her clients to find the leverage points that will
increase their effectiveness as organizations and as managers, helping them ship
the right product at the right time, and recruit and retain the best people.

Johanna publishes "Reflections", an acclaimed quarterly newsletter about
managing product development. Johanna's handbook, "Hiring Technical People: A
Guide to Hiring the Right People for the Job," has proved a boon to perplexed
managers, as have her articles in Software Development, Cutter IT, IEEE
Computer, Software Testing and Quality Engineering, and IEEE Software.

Johanna is the founder and principal of Rothman Consulting Group, Inc., and is a
member of the clinical faculty of The Gordon Institute at Tufts University, a
practical management degree program for engineers.

Successful Test Management: Ten Lessons Learned

© 2001 Johanna Rothman www.jrothman.com 1
781-641-4046 jr@jrothman.com

1

Successful Test Management:
Ten Lessons Learned

Johanna Rothman

Rothman Consulting Group, Inc.

781-641-4046

jr@jrothman.com

www.jrothman.com

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 2

The Test Manager’s Lament

• Started as an individual contributor

• No training

• “The people stuff is hard to do”
– “the Management stuff isn’t easy either”

Successful Test Management: Ten Lessons Learned

© 2001 Johanna Rothman www.jrothman.com 2
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 3

Managers Have Two Primary Roles

• Get the best work out of your people

• Create an environment that enables people to work

• Develop a strategy for how you’re going to do this

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 4

1. Know What They’re Paying You to
Do

• What’s your mission—the reason they hired you? Mine generally
is:

Assess the state of the product under development at any time and
report on that state

• Other missions could be:

Find the Big Bad Bugs before our customers do
Create warm fuzzy feelings about our software

Test this beast until they pry it from my unwilling fingers

Successful Test Management: Ten Lessons Learned

© 2001 Johanna Rothman www.jrothman.com 3
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 5

2. Hire the Best People for the Job

• A manager’s greatest point of leverage is in hiring appropriate
staff

• “Best” is not necessarily synonymous with “Similar”

• Develop a hiring strategy

• Learn to interview successfully, so you can hire people who can
do the job well (stars)

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 6

3. Uninterrupted Weekly Time With
Each Person

• You need to know what your organization or project is doing

• You need to know what the people are doing, so you can create
performance reviews

Successful Test Management: Ten Lessons Learned

© 2001 Johanna Rothman www.jrothman.com 4
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 7

One-on-Ones

• With everyone, at a regular uninterrupted time

• We talk about
– Their accomplishments

– Their issues

– If they need my help

– Anything else they need to discuss

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 8

But, I Don’t Have Time to Meet With
Everyone…

• You already are

• If you plan time, you can reduce the number of unplanned
interruptions

• How will you give timely feedback on performance?

Successful Test Management: Ten Lessons Learned

© 2001 Johanna Rothman www.jrothman.com 5
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 9

4. Assume the Person Knows How to
Do Their Job

• You used to know how to do the job
– Do you really still know how?

• You hired the people because you thought they could do the
work. Let them...
– Give them assignments

– Ask if they need help

– Don’t interfere

! Sneak up behind them and ask “How’s it going?

! Micromanagement

! Inflicting advice

• Choose a metric to know when you are stuck
– This works for you too!

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 10

Successful (and Helpful) Managers

• Assign the work
– Do they understand the work to do?

– Do they have the tools required?

• Decide when to check in

• Supply help when requested, and not before

Successful Test Management: Ten Lessons Learned

© 2001 Johanna Rothman www.jrothman.com 6
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 11

5. Treat People the Way They Want
to Be Treated

• Everyone likes different projects
– Specific tasks vs. general information

– New complex problems vs. immediate success

• Everyone is motivated by different things
– Money is not the only reward

– Private thank-you’s

– Public recognition

– M&Ms

– Movie tickets

– Team party

– Ask the group

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 12

6. Emphasize Results, Not Time

• Hours working do not positively correlate with productivity

• Permit (Force?) people to only work 40 hours per week
– When they work longer, they do non-work things

– Productivity goes down

– If you keep people working only 40 hours per week, they work on work
things

Successful Test Management: Ten Lessons Learned

© 2001 Johanna Rothman www.jrothman.com 7
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 13

Managing in a High-Interruption
Environment

• “You can’t get anything done here between 9am and 5pm”

• Can you cancel meetings?

• Can you or your staff reorganize the work?

• Observe results and obstacles to results
– Easier to give accurate performance evaluations

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 14

Reward Results

• Plan for a 40-hour week, and reward the work done in that time

Successful Test Management: Ten Lessons Learned

© 2001 Johanna Rothman www.jrothman.com 8
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 15

7. Admit Your Mistakes

• Mistakes are embarrassing

• If you admit mistakes, people respect you more

• Don’t deny or ignore mistakes

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 16

8. Commit to Projects After Asking
Your Staff

• “Can we have this next month?”

• Even if you’ve already considered the request, the answer is “No”
– In the moment, you might confuse this request with another request

– There may be other implications you haven’t considered, since it’s no
longer the same time you first considered this request.

Successful Test Management: Ten Lessons Learned

© 2001 Johanna Rothman www.jrothman.com 9
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 17

Don’t Train Your Management to Ask
You for an Answer

• Your staff will know that you think:
– I want to know what it will really take you to do this work

– I’m not afraid to tell my management what it will take

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 18

9. Plan Training Time in the
Workweek

• Engineering is constantly changing

• People generally like getting training

• Many inexpensive ways
– Brown bag lunches

– Periodic talks from other groups

– Present projects across the company

– In-house tool “user group” meeting

– Outside experts

! Professional consultants or speakers

! Knowledgeable friend or colleague

Successful Test Management: Ten Lessons Learned

© 2001 Johanna Rothman www.jrothman.com 10
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 19

10. Plan the Testing

• Plan what you (your test group) can do
– If you want to do more, plan how

• Develop test strategies for each product

• Develop release criteria for each project

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 20

What Your Group Can Do

• What capabilities does your group have?

• What capabilities do you want to have in the group?

Successful Test Management: Ten Lessons Learned

© 2001 Johanna Rothman www.jrothman.com 11
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 21

Test Strategies

• Not every product is tested the same way

• As the manager, you get to choose how to test

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 22

Release Criteria

• Focus on what’s critically important to this project

• Measurable ways to assess product ship decisions

• Assess risk of shipping
– You aren’t a gatekeeper

– You don’t have to stop shipment

Successful Test Management: Ten Lessons Learned

© 2001 Johanna Rothman www.jrothman.com 12
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com jr@jrothman.com 23

Testers Can Make Great Managers

• Manage your management career the way you plan and develop
tests
– Develop a strategy

– Identify how to manage your staff

– Observe your own work

– Make corrections and continue

• You don’t have to be perfect

• Do enough right to help people do their best work in an
environment they can work in

QW2001 Standby Paper SB Applications

Dr. John D. Musa
(Consultant)

More Reliable Software Faster And Cheaper -- An Overview

Key Points

SRE process overview●

Developing operational profiles to describe how customers will use your product●

Using operational profiles to increase development efficiency●

Determining the reliability / availability your customers need for your product●

Preparing for test, executing test, and guiding test●

Presentation Abstract

Software reliability engineering (SRE) can help those who are stressed out by
competitive pressures to produce more reliable software faster and cheaper. It is a
standard, proven, widespread best practice with substantial benefits that has been
used successfully by organizations such as Alcatel, AT&T, Bellcore, CNES
(France), ENEA (Italy), Ericsson Telecom, France Telecom, Hewlett Packard,
Hitachi, IBM, Lockheed-Martin, Lucent Technologies, Microsoft, MITRE,
Motorola, NASA’s Jet Propuls ion Laboratory and Space Shuttle Project, Nortel,
Raytheon, Saab Military Aircraft, Tandem Computers, US Air Force, and US
Marine Corps.

About the Author

John D. Musa is one of the creators of SRE, with more than 30 years varied and
extensive experience as a software development practitioner and manager.
Principal author of the highly-acclaimed pioneering book Software Reliability and
author of the practical Software Reliability Engineering, Musa has published more
than 100 papers on SRE. Elected IEEE Fellow in 1986 for many seminal
contributions, he was recognized in 1992 as the leading contributor to testing
technology. His leadership has been noted by every recent edition of Who’s Who
in America and American Men and Women of Science. Musa, widely recognized
as a leader in SRE practice, initiated and led the effort that convinced AT&T to
make SRE a “Best Current Practice.” Musa has helped a wide variety of companies
with a great diversity of software-based products deploy SRE. He is an
experienced international speaker and teacher (over 200 major presentations) A
founder of the IEEE Technical Committee on SRE, he is closely networked with
SRE leaders, providing a broad perspective.

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
20011

More Reliable Software
Faster and Cheaper – An Overview

John D. Musa
j.musa@ieee.org

SREV9C Copyright John D. Musa 20012

Outline

1. Why software reliability engineering (SRE)?
2. SRE process (with illustration)

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
20012

SREV9C Copyright John D. Musa 20013

Why Software Reliability
Engineering (SRE)?

*1. SRE can help solve the most important software
development problem, making you and your
organization more competitive in delivering more
reliable software faster and cheaper.

*2. SRE is a proven, standard, widespread best
practice.

3. SRE has additional advantages.
*4. SRE is widely applicable.
5. SRE cost is low (0.1 to 3 percent of project cost).
6. SRE schedule impact is minor.
7. SRE can be deployed in stages to minimize

impact on your organization.

Introduction - Why SRE?

SREV9C Copyright John D. Musa 20014

Reliability and Availability
Definitions

1. Reliability: the probability that a system or a
capability of a system will function without failure
for a specified period in natural or time units in a
specified environment

2. Natural unit: unit other than time related to amount
of processing performed by software-based
product, such as runs, pages of output,
transactions, telephone calls, jobs, semiconductor
wafers, queries, or API calls

3. Failure intensity (FI): failures per natural or time
unit, an alternative way of expressing reliability

4. Availability: the average (over time) probability
that a system or a capability of a system is
functional in a specified environment

Introduction - Why SRE?

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
20013

SREV9C Copyright John D. Musa 20015

More Reliable Software
Faster and Cheaper

1. Customers want (in order):
A. Reliability and/or availability
B. Faster delivery
C. Lower cost

2. Success in meeting demands affects market
share, profitability

3. Demands conflict, causing risk and overwhelming
pressure

4. The practice of SRE resolves conflicting demands
efficiently by quantitatively guiding development
and test of software-based systems

Introduction - Why SRE? - Problem

SREV9C Copyright John D. Musa 20016

How Does SRE Work?

Introduction - Why SRE? - Problem

1. Increase effective resources
A. Quantitatively characterize

expected use
B. Focus resources on most

used and most critical
functions

C. Maximize test effectiveness
by making test highly
representative of field

Increase in
Effective

Resources

Original
Resources

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
20014

SREV9C Copyright John D. Musa 20017

How Does SRE Work?

Introduction - Why SRE? - Problem

2. Apply resources to
maximize customer
value

A. Set quantitative
objectives for major
quality
characteristics
(reliability and/or
availability, delivery
time, price)

Rel / Avail

Time Price

SREV9C Copyright John D. Musa 20018

How Does SRE Work?

Introduction - Why SRE? - Problem

B. Engineer strategies to
meet objectives

C.Track reliability in system
test against objective as
one of the release criteriaAdded Customer

Value - Focus

Added Customer
Value -

Matching Needs

Original Customer
Value

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
20015

SREV9C Copyright John D. Musa 20019

SRE - A Proven, Standard,
Widespread Best Practice

Introduction - Why SRE? - Proven, Standard, Widespread Best Practice

1. Proven practice
A. Example: AT&T International Definity PBX

[5, pp 167-8]
a. Reduced customer-reported problems

by factor of 10
b. Reduced system test interval by factor

of 2
c. Reduced total development time by

30%
d. No serious service outages in 2 years

of deployment

SREV9C Copyright John D. Musa 200110

SRE - A Proven, Standard,
Widespread Best Practice

Introduction - Why SRE? - Proven, Standard, Widespread Best Practice

B. AT&T Best Current Practice since 5/91
(based on widespread practice,
documented strong benefit/cost ratio,
probing review) [5, pp 219-254]

2. Standard practice
A. McGraw-Hill handbook [5]
B. AIAA standard since 1993
C. IEEE standards under development

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
20016

SREV9C Copyright John D. Musa 200111

SRE - A Proven, Standard,
Widespread Best Practice

Introduction - Why SRE? - Proven, Standard, Widespread Best Practice

3. Widespread practice
A. Users include Alcatel, AT&T, Bellcore, CNES

(France), ENEA (Italy), Ericsson Telecom,
Hewlett Packard, Hitachi, IBM, NASA’s Jet
Propulsion Laboratory, Lockheed-Martin,
Lucent Technologies, Microsoft, Mitre, Nortel,
Saab Military Aircraft, Tandem Computers, the
US Air Force, and the US Marine Corps.

B. Over 50 published articles by users of software
reliability engineering as of 1997, growing
rapidly ([2], pp. 371 - 374)

SREV9C Copyright John D. Musa 200112

SRE Is Widely Applicable

Introduction - Why SRE? - Widely Applicable

1. Technically speaking, you can apply SRE to any
software-based product, beginning at start of any
release cycle.

2. Economically speaking, the complete SRE process
may be impractical for small components (involving
perhaps less than 2 staff months of effort), unless
used in a large number of products. It may still be
worthwhile to implement it in abbreviated form.

3. Independent of development technology and
platform

4. SRE requires no changes in architecture, design, or
code - but it may suggest changes that would be
beneficial.

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
20017

SREV9C Copyright John D. Musa 200113

Activities of SRE Process and Relation
to Software Development Process

SRE Process

Design and
Implementation

Requirements
and Architecture Test

5. Execute Test4. Prepare for Test

6. Guide Test

1. List Associated
Systems

2. Develop Operational
Profiles

3. Engineer “Just Right”
Reliability

SREV9C Copyright John D. Musa 200114

Illustration - FONE FOLLOWER (FF)
- Product Description

1. Subscriber calls FF, enters planned phone
numbers (forwardees) to which calls are to be
forwarded vs time.

2. FF forwards incoming calls (voice or fax) from
network to subscriber as per program.
Incomplete voice calls go to pager (if subscriber
has one) and then voice mail.

SRE Process

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
20018

SREV9C Copyright John D. Musa 200115

Activities of SRE Process and Relation
to Software Development Process

List Associated Systems

Design and
Implementation

Requirements
and Architecture Test

5. Execute Test4. Prepare for Test

6. Guide Test

1. List Associated
Systems

2. Develop Operational
Profiles

3. Engineer “Just Right”
Reliability

SREV9C Copyright John D. Musa 200116

List Associated Systems of Product

List Associated Systems

1. Base product
2. Major variations of base product (for

substantially different environments, platforms,
or configurations)

3. Frequently used supersystems of base product
or variations

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
20019

SREV9C Copyright John D. Musa 200117

Activities of SRE Process and Relation
to Software Development Process

Design and
Implementation

Requirements
and Architecture Test

Develop Operational Profiles

5. Execute Test4. Prepare for Test

6. Guide Test

1. List Associated
Systems

2. Develop Operational
Profiles

3. Engineer “Just Right”
Reliability

SREV9C Copyright John D. Musa 200118

Operation

Operation: major system logical task of short
duration, which returns control to system when
complete, and whose processing is substantially
different from other operations
Illustrations - FF:

 Process fax call, Phone number entry,
Audit section of phone number database

Develop Operational Profiles - Concepts

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
200110

SREV9C Copyright John D. Musa 200119

Operational Profile

Operational profile (OP): complete set of operations
with probabilities of occurrence
Illustration - FF:

Develop Operational Profiles - Concepts

Operation
Occur.
Prob.

Process voice call, no pager, ans. 0.21
Process voice call, pager, ans. 0.19
Process fax call 0.17
Process voice call, pager, ans. on page 0.13

•
•
•

1

SREV9C Copyright John D. Musa 200120

Develop Operational Profiles - Step
by Step

For base product and each variation:
*1. Determine operational profile
*2. For any software you are developing, apply

operational profile to increase development
efficiency

Operational profiles of supersystems are same as those
of their base product or variations.

Develop Operational Profiles - Step by Step

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
200111

SREV9C Copyright John D. Musa 200121

Determine Operational Profile

1. Identify initiators of operations
2. Create operations list
3. Review operations list
4. Determine occurrence rates
5. Determine occurrence probabilities

Steps 1,2,3 are mostly the same across base
product and variations. New release often
requires only slight change from previous
release, all steps.

Develop Operational Profiles - Step by Step - Determine Operational Profile

SREV9C Copyright John D. Musa 200122

Apply Operational Profile to
Increase Development Efficiency
Employ operational profile and criticality

information to:
1. Review functionality to be implemented

(Reduced Operation Software or ROS)
2. Suggest operations where looking for

opportunities for reuse will be most cost-
effective

3. Plan a more competitive release strategy
(operational development)

Develop Operational Profiles - Step by Step - Apply Operational Profile

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
200112

SREV9C Copyright John D. Musa 200123

Operational Development -
Illustration

Proportion of operations developed

Proportion of use represented

Develop Operational Profiles - Step by Step - Apply Operational Profile

Release 1

Release 2

Release 3

SREV9C Copyright John D. Musa 200124

Apply Operational Profile to
Increase Development Efficiency

4. Allocate resources for requirements, design,
code reviews among operations to cut
schedules and costs

5. Allocate system engineering, architectural
design, development, and code resources
among operations to cut schedules and costs
(test resources will be allocated among
operations in Prepare for Test, Execute Test
modules)

6. Allocate development, code, and test
resources among modules to cut schedules
and costs ([2], pp. 118 - 119)

Develop Operational Profiles - Step by Step - Apply Operational Profile

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
200113

SREV9C Copyright John D. Musa 200125

Activities of SRE Process and Relation
to Software Development Process

Engineer “Just Right” Reliability

Design and
Implementation

Requirements
and Architecture Test

5. Execute Test4. Prepare for Test

6. Guide Test

1. List Associated
Systems

2. Develop Operational
Profiles

3. Engineer “Just Right”
Reliability

SREV9C Copyright John D. Musa 200126

Failure and Fault

Engineer “Just Right” Reliability - Concepts

Failure Fault

Departure of system
behavior in execution
from user needs

Defect in system
implementation that
causes the failure when
executed

User-oriented Developer-oriented

Failure Fault

Departure of system
behavior in execution
from user needs

Defect in system
implementation that
causes the failure when
executed

User-oriented Developer-oriented

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
200114

SREV9C Copyright John D. Musa 200127

Engineer “Just Right” Reliability -
Step by Step

1. Define failure consistently over life of product
release and clarify with examples

2. Choose common reference measure for all failure
intensities

3. Set system FIO for each associated system
4. For any software you develop:

A. Find developed software FIO
B. Choose software reliability strategies to

meet developed software FIO and schedule
objectives with lowest development cost

Engineer “Just Right” Reliability - Step by Step

SREV9C Copyright John D. Musa 200128

Activities of SRE Process and Relation
to Software Development Process

Prepare for Test

5. Execute Test4. Prepare for Test

6. Guide Test

1. List Associated
Systems

2. Develop Operational
Profiles

3. Engineer “Just Right”
Reliability

Design and
Implementation

Requirements
and Architecture Test

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
200115

SREV9C Copyright John D. Musa 200129

Prepare for Test - Step by Step

1. Specify test cases
A. Allocate test cases to be developed to

operations based on operational profile
Illustration - FF:

Allocate 17% of test cases to Process fax
call operation

B. Detail test cases within operation by selecting
from possible choices with equal probability
Illustration - FF:

Forwardee = Local calling area
2. Specify test procedure, based on the test

operational profile

Prepare for Test - Step by Step

SREV9C Copyright John D. Musa 200130

Activities of SRE Process and Relation
to Software Development Process

Execute Test

5. Execute Test4. Prepare for Test

6. Guide Test

1. List Associated
Systems

2. Develop Operational
Profiles

3. Engineer “Just Right”
Reliability

Design and
Implementation

Requirements
and Architecture Test

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
200116

SREV9C Copyright John D. Musa 200131

Execute Test - Step by Step

1.Determine and allocate test time among
associated systems and types of test (feature,
load, regression)

*2. Invoke test in accordance with operational
profile

3. Identify system failures and when they occurred
- use data in Guide Test

Execute Test - Step by Step

SREV9C Copyright John D. Musa 200132

Invoke Test

Execute Test - Step by Step - Invoke Test

F

Track reliability growth
F = Feature test
R = Regression test

Certify reliability

RR
Supersystem

Base Product
Load
Test

Variations

Supersystem
R R

Load
TestF

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
200117

SREV9C Copyright John D. Musa 200133

Activities of SRE Process and Relation
to Software Development Process

Guide Test

Design and
Implementation

Requirements
and Architecture Test

5. Execute Test4. Prepare for Test

6. Guide Test

1. List Associated
Systems

2. Develop Operational
Profiles

3. Engineer “Just Right”
Reliability

SREV9C Copyright John D. Musa 200134

Guide Test - Step by Step

Process system failure data gathered in test to:
*1. Certify reliability of assurable acquired

components, supersystems, base product and
variations that customers will acceptance test

*2. Track reliability growth of developed base
product and variations

3. Guide product release

Guide Test - Step by Step

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
200118

SREV9C Copyright John D. Musa 200135

Certify Reliability - Demonstration
Chart

Guide Test - Step by Step - Certify Reliability

12

0 10862 4

16
14

0
2
4
6
8

10

Normalized units

Failure
number

Continue

Accept

Reject

Fail.
No.

Mcalls
at

Failure
Normalized

Units

1
2
3

0.00375
0.00625
0.025

0.75
1.25

5

Failure intensity objective:
200 failures / Mcalls

SREV9C Copyright John D. Musa 200136

Track Reliability Growth

1. Execute CASRE software reliability estimation
program to obtain FI / FIO ratio

2. Plot FI / FIO ratio against time
*3. Interpret plot

Guide Test - Step by Step - Track Reliability Growth

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
200119

SREV9C Copyright John D. Musa 200137
Guide Test - Step by Step - Track Reliability Growth

Interpret Plot : Illustration - FF

FI/FIO

Mcalls

0
2
4
6
8

10
12
14
16
18

0 0.1 0.2 0.3 0.4 0.5

Conventional test

Operational-profile-driven test

SREV9C Copyright John D. Musa 200138
Guide Test - Step by Step - Track Reliability Growth

Interpret Plot : Illustration - FF

0
2
4
6
8

10
12
14
16
18

0 0.1 0.2 0.3 0.4 0.5

FI/FIO

Mcalls

Solutions:
1. Defer features
2. Rebalance major

quality characteristics
3. Increase work hours

Scheduled
test

completion

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
200120

SREV9C Copyright John D. Musa 200139
Guide Test - Step by Step - Track Reliability Growth

Interpret Plot : Illustration - FF

0
2
4
6
8

10
12
14
16
18

0 0.1 0.2 0.3 0.4 0.5

FI/FIO

Mcalls

Investigate
significant

upward
trends

Possible causes:
1. Poor change control
2. Poor control of test

execution, resulting
in test selection
probabilities varying
in time

SREV9C Copyright John D. Musa 200140
Guide Test - Step by Step - Track Reliability Growth

Mcalls

Interpret Plot : Illustration - FF

0
2
4
6
8

10
12
14
16
18

0 0.1 0.2 0.3 0.4 0.5

FI/FIO

Terminate
test

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
200121

SREV9C Copyright John D. Musa 200141

SRE and You

1. SRE gives you a powerful way to engineer
software-based products so you can be
confident in the availability and reliability of the
software-based product you deliver as you
deliver it in minimum time with maximum
efficiency.

2. SRE is a vital skill for being competitive.

Conclusion - SRE and You

SREV9C Copyright John D. Musa 200142

To Explore Further

1. Software Reliability Engineering website:
overview, briefing for managers, bibliography of
articles by software reliability engineering users,
course information, useful references, Question
of the Month:
 http://members.aol.com/JohnDMusa/

2. Musa, J. D., Software Reliability Engineering:
More Reliable Software, Faster Development and
Testing, ISBN 0-07-913271-5, McGraw-Hill,
1998.

Conclusion - Explore

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
200122

SREV9C Copyright John D. Musa 200143

To Explore Further

3. Musa, Iannino, Okumoto; Software Reliability:
Measurement, Prediction, Application, ISBN 0-07-
044093-X, McGraw-Hill, 1987.

4. Musa, J.D., “More Reliable Software Faster and
Cheaper,” overview of software reliability
engineering, suitable for managers and anyone
wanting a fast and broad but not detailed
understanding of the topic. May be downloaded
from:
 http://members.aol.com/JohnDMusa/

Conclusion - Explore

SREV9C Copyright John D. Musa 200144

To Explore Further

5. Lyu, M. (Editor), Handbook of Software
Reliability Engineering , ISBN 0-07-039400-8,
McGraw-Hill, 1996 (includes CD/ROM of
CASRE program).

6. IEEE Computer Society Technical Committee
on Software Reliability Engineering (publishes
newsletter, sponsors ISSRE annual international
conference): membership application at
http://www.tcse.org

Conclusion - Explore

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

More Reliable Software Faster and
Cheaper

Copyright John D. Musa
200123

SREV9C Copyright John D. Musa 200145

To Explore Further

7. Electronic mailing list: send email to:
sw-rel@computer.org

A. Subscribe: put ONLY “subscribe” in body of
message

B. Post (you must first subscribe): put text to
be posted in body

Conclusion - Explore

QW2001 Standby Paper SB Internet

Dr. Kobad Bugwadia & Mr. Kris Mohan
(Intel Corporation)

Quality Issues, Requirements & Challenges for
Multimedia Streaming on the Internet

Key Points

Multimedia Streaming - User Expectations & Requirements●

Streaming Quality Benchmarks●

New Challenges/approaches for improving Streaming Quality●

Presentation Abstract

The total number of broadband subscribers is expected to grow to 28 million US
homes by 2004, according to a new Gartner Dataquest study (Nov. 2000).
However the study also found that the quality of the content available via
broadband will eventually determine its long-term success.

Thus, the value of broadband will not be in the access itself, which will be
commoditized over time, but in the delivery of multimedia, voice and other useful
and timesaving applications and services that these connections enable. The study
concluded that among the most compelling broadband applications will be
TV-based Quality streaming video and audio services.

About the Author

Kobad A. Bugwadia has M.S. and Ph.D. degrees in Electrical Engineering from
Rutgers University, NJ. He is currently employed at Intel Corporation where his
focus is on Internet Technology - Quality & Reliability. He received the IEEE Best
Paper Award for his paper published in the 1996 IEEE Transactions on Consumer
Electronics and has currently two outstanding U.S. and International Patents. He is
a member of the IEEE and the Tau Beta Phi Honor Society.

Kris Mohan is Corporate Manager for Internet Technology Reliability at Intel. He
has over 20 years of industry experience in the areas of networking and
semiconductor technology. He is also an adjunct professor of Networking at Univ.
of Santa Clara and San Jose State Univ. where he teaches graduate level courses in
advance computer networking. He has published several papers and chaired several
industry conferences.

1

Quality Issues, Requirements &
Challenges for Multimedia Streaming on

the Internet

Kobad Bugwadia & Kris Mohan
Intel Corporation

Streaming Technology – A Compelling
Application for Broadband Internet !

• Total number of Broadband subscribers is expected to grow to 28
million US homes by 2004 (Gartner Dataquest study – Nov. 2000)

• However Quality/ Delivery of applications & services available via
Broadband will eventually determine its long-term success

• Much of the Bandwidth/Broadband growth will be driven by TV-
based Quality Streaming audio/video services

• Higher Bandwidth improves user experience, increasing its
need/use

2

Streaming Technique & Overview

• Streaming refers to the continuous transmission of digital
audio or video over the internet

• A small portion (a few seconds) of the file gets downloaded
at the client side to a buffer before playback

• While this portion is decompressed and begins playing
subsequent portions of the multimedia file are downloaded

• At no point in time is the complete multimedia file available
to the client

Streaming Media Software

• Streaming Media Capture & Encoding Software
– Enables transform of audio/visual media into files appropriate for

streaming
– Real Producer G2, Windows Media Encoder/ On-Demand

Producer, QuickTime Pro

• Streaming Media Server Software
– Large file sizes requiring real-time transmissions (Media Servers)
– Real Networks, Microsoft, and Apple provide on-demand and live

streaming Server Software

• Streaming Media Player Software
– Real Player, Windows Media Player, QuickTime Player

3

Expectations and Requirements
(Consumer Space)

Requirements:
• Ability for user to upload and stream home movies/videos to

friends and family

Expectations:
• Simplicity
• Ease of use (Nice and easy to follow GUI)
• Technical details transparent to the user
• Low to No cost to user (already free services available)

Expectations and Requirements
(Business/Enterprise Space)

Requirements:
• To provide an added advantage for increasing sales/value of

e-businesses -- used for product demonstrations & presentations

Expectations:
• Higher quality of video and audio
• Easy integration within a clients existing web-site / applications
• More control features/options/choices
• Scalability as the number of users increases
• Robust & Secure service

4

Streaming Quality Measurement/Benchmark

• A Brand new Rating System introduced by Keynote
Systems and supported by group of streaming industry
leaders (Oct. 2000)

• Measures/ quantifies streaming quality and performance as
experienced by end-users – Improving Quality through
Measurement !

• Comprises of the :
* Streaming Scale
* Streaming Index

Streaming Quality Scale

• Assesses quality of audio and video streams on the internet

• A scale from one to ten with 10 representing DVD Quality (as
seen on TV)

• DVD Quality – 720 x 480 frame size at 29.97 fps

• Logically combines the quality factors affecting streaming in
different variations and degrees

• Current highest possible score about 6.0 – ideal delivery of a 300
kbps video stream at 20 fps

5

Streaming Quality Score

• Numerical score on the Streaming Scale of 1 to 10

• Score incorporates playback quality of both audio & video portion
of the stream and is weighted based on the type of encoding used
on the original content

• Logically combines the relevant encoding and delivery factors that
affect stream quality

• Includes : connect time, redirect time, initial buffer time, video
frame rate, late, lost and dropped packets and BW utilization

Keynote Streaming Metrics

Streaming Quality

Startup Quality Audio Quality Video Quality

Video
Encoding

Audio
Encoding

Audio
Rendering

Video
Rendering

6

Streaming Quality Measurement Metrics

• The “Encoding” metric measures the quality of the original,
compressed stream before transmission
– What you have created e.g. a postage stamp size video at 5 fps
– Encoding is prior to Server

• The “Rendering” metric measures the degradation due to
transmission
– What you actually receive/see
– Rendering is Server + Network + Client

• Startup time includes network connection, redirection, and initial
buffering

Present Streaming Media Quality
(Streaming Quality vs. Available Bandwidth)

Barely Acceptable (28k & 56k modem users – 83% US home internet *)
• Approx 160 x 120 resolution
• 5 to 8 fps

Generally Considered Acceptable (56k & Broadband)
• 160 x 120 or 320 x 240 resolution (VHS Quality)
• 8 to 13 fps

High Quality (Broadband users Only – 12% of US home internet connections *)
• 100 kbps or greater
• 320 x 240 or 720 x 480 resolution (DVD Quality)
• 15 to 20 fps

Streaming Quality Goal (Full Broadcast DVD Quality)
• 720 x 480 resolution (DVD Quality)
• 29.97 fps (Full Broadcast Quality)

7

Factors Affecting Streaming Quality/ User
Experience

• CODEC Strategies/ Converting Content into Streaming Media
– Compressing a file/multimedia content
– Makes audio/video files smaller
– Decompressed in real time during play-back
– Most Commonly used : H.263 and MPEG-4
– Exploit both Spatial and Temporal redundancies – DCT, MC Prediction

• Transmission Strategies
– Serving & Delivering the Media
– Multimedia Protocols - RTSP/RTP/UDP
– Distributed Networking – Content Distribution Network

Transmission of Streaming Media

HTTP

IP

RTP/RTCP

UDP

TCP

RTSPTypical

for

Streaming

Media

Typical

for

Web Pages

8

Transmission of Streaming Media

• Just as HTTP transports HTML – RTSP is generally used to
transport multimedia data

• It is architecturally located above RTP & RTCP

• RTSP accomplishes data transfer using RTP

• RTP itself can use Transmission Control Protocol (TCP) or User
Datagram Protocol (UDP)
– UDP is lossy, but continues in case of lost packets
– TCP does not allow lost packets, slower to start and more likely to rebuffer

Streaming-Media Delivery Process

Media Server:Web Server:
Web Page (HTML)

Images

Redirector File

(*.asx, *.wax, *.ram)

Internet User

Media File

(*.asf, *.wma, *.rm)

9

Serving and Delivering the Media

• The delivery process involves 2 servers
– One servers the HTML pages (Web Server) – via HTTP
– Another serves the streaming media (Media Server) – via RTSP/RTP/UDP

• Client sends request for streaming media to HTML server

• Web server redirects request to media server via redirector or
pointer file – placed in the same folder as HTML page

• Media server streams the media files to client

Current State of Streaming Technology

• Processor & BW Performance continue to grow - - - -
• However, 28.8/56 Kbps modems makes up 83% of all home

internet connections (Dec. 2000) *
• BW cost & limited availability to home require technology

solution & optimization
• Currently due to BW limitations, industry avoids using a very high

encoding quality to prevent resulting in poor rendering quality
• Improvements in quality, ease-of-use, and accessibility must

continue if streaming consumption is to become as commonplace
as broadcast or cable television

* Nielsen//NetRatings

10

Limitations/Causes for Degradation in
Streaming Quality

• Lossy Compression/Encoding

• Overloaded Servers

• Problems in Internet Caching & in transmission to last mile

• Problems within the last mile

• Decoder Software inefficiencies

• End user Computer too slow to decode properly

Challenges for Achieving High Quality
Streaming

• Intelligent Multimedia Content Delivery
– Speed Content Delivery

• Intelligent Content Management
– Ease Content Management

• High Performance Compression Algorithms

• Achieve Optimal Cooperation between Client and Server – best
possible performance given the network BW at a given time

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

Bug Detection Tools Bug Detection Tools
for Productivityfor Productivity

Based on Abstract InterpretationBased on Abstract Interpretation

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

SW Development ProcessSW Development Process

Second Improvements Second Improvements
(80’s(80’s--90’s)90’s)

-- Methods (UML, SDL, etc…)Methods (UML, SDL, etc…)
-- Auto Code generationAuto Code generation

Specification

Design

Coding Unit Test

Integration
Test

Validation

First Improvements First Improvements
(70’s(70’s--80’s)80’s)

-- Unit TestingUnit Testing
-- Test CoverageTest Coverage
-- InstrumentationInstrumentation

Next Improvements will Come From the Next Improvements will Come From the
Testing/Validation PhasesTesting/Validation Phases

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

Unit-level
Testing

Error Detection and Error Detection and
Correction CostsCorrection Costs

Integration
Testing10 hours / error

Validation
100 hours / error

Source Code
Development

Errors
found

1 hour / error

1-10 errors / 1000 lines

Maintenance
xxxx hours / error

Bug Detection Techniques Must be Bug Detection Techniques Must be
Improved:Improved:
-- to Reduce Time Spent in Debuggingto Reduce Time Spent in Debugging
-- to Improve Functional Testing Reliabilityto Improve Functional Testing Reliability

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

What is a RunWhat is a Run--Time Error?Time Error?

They are well defined software errors that cause non They are well defined software errors that cause non
determinisms, incorrect results or processor haltdeterminisms, incorrect results or processor halt

✦✦ DeDe--Referencing through Null, OutReferencing through Null, Out--ofof--Bound PointersBound Pointers

✦✦ OutOut--ofof--Bounds Array AccessBounds Array Access

✦✦ Read Access to NonRead Access to Non--Initialized DataInitialized Data

✦✦ Access Conflict on Shared Data (MultiAccess Conflict on Shared Data (Multi--Tasks Applications)Tasks Applications)

✦✦ Invalid Arithmetic Operations:Invalid Arithmetic Operations:
Division by Zero, Square Root of a Negative NumberDivision by Zero, Square Root of a Negative Number

✦✦ Illegal Type ConversionIllegal Type Conversion

✦✦ Overflow / Underflow on Integers and Floating Point NumbersOverflow / Underflow on Integers and Floating Point Numbers
✦✦ Unreachable (dead) CodeUnreachable (dead) Code

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

Costs AnalysisCosts Analysis
what it costs to find errorswhat it costs to find errors

RunRun--time Errorstime Errors are costly to identify are costly to identify
but are easy to fix when locatedbut are easy to fix when located

✦✦ RunRun--time Errorstime Errors are costly to identify and located:are costly to identify and located:
✦✦ hard to detecthard to detect (ex: non(ex: non--initialized variable)initialized variable)

✦✦ hard to reproducehard to reproduce (ex: dynamic task interaction)(ex: dynamic task interaction)

✦✦ hard to trace hard to trace (ex: processor halt)(ex: processor halt)

About 10 hours per error (up to 100+ hours) spent About 10 hours per error (up to 100+ hours) spent
under debugger to track the origin of an errorunder debugger to track the origin of an error

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

Costs AnalysisCosts Analysis
what it costs what it costs notnot finding an errorfinding an error

The later an error is discovered, the more it costs to fix.The later an error is discovered, the more it costs to fix.

✦✦ Error found in ValidationError found in Validation

✦✦ Development team not availableDevelopment team not available

Consequences: Deployment is delayed, budget is over Consequences: Deployment is delayed, budget is over

✦✦ Error found after DeploymentError found after Deployment

✦✦ Products do not perform as expected Products do not perform as expected (loss of service)(loss of service)

✦✦ Products need to be recalled Products need to be recalled (loss of mission)(loss of mission)

✦✦ Products cause damageProducts cause damage

Consequences: Impacts on corporate image and business as a wholeConsequences: Impacts on corporate image and business as a whole

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

Existing TechniquesExisting Techniques
LimitsLimitsTechniquesTechniques

-- Instrumented CodeInstrumented Code
-- PostPost--mortem Analysis Toolsmortem Analysis Tools

-- WeakWeak support for errors detectionsupport for errors detection

-- SimulationSimulation
-- Dynamic TestingDynamic Testing

Very expensiveVery expensive
-- Tests cases to writeTests cases to write
-- Require embedded environment modelsRequire embedded environment models
-- Intrusive: source code modificationIntrusive: source code modification
-- Not exhaustive:Not exhaustive: Doesn’t catch all errorsDoesn’t catch all errors

Formal MethodsFormal Methods

Syntactical AnalyzersSyntactical Analyzers

Quality MetricsQuality Metrics
Coding Rules VerificationCoding Rules Verification

-- Test CoverageTest Coverage

-- Very Very IntrusiveIntrusive, not applicable to , not applicable to
existing projectsexisting projects

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

PolySpacePolySpace VerifierVerifier

✦✦ Static, Non IntrusiveStatic, Non Intrusive: Only the source code : Only the source code
✦✦ No Execution of Your ApplicationNo Execution of Your Application
✦✦ No Change to Your Development ProcessNo Change to Your Development Process

✦✦ ExhaustiveExhaustive: Identifies and checks all potential : Identifies and checks all potential
sources of runsources of run--time errorstime errors

✦✦ AutomaticAutomatic: Gives the exact location where run: Gives the exact location where run--time time
errors will occur errors will occur

✦✦ No Test Cases to Write No Test Cases to Write
✦✦ Only CPU Time, No ManpowerOnly CPU Time, No Manpower

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

PolySpacePolySpace SolutionSolution

PolySpacePolySpace
ViewerViewer

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

PolySpacePolySpace ResultsResults

RTERTE ViewView

Source CodeSource Code ViewView

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

Access Conflicts to Access Conflicts to
Shared DataShared Data

Global DataGlobal Data
DictionaryDictionary

–– Data descriptionData description
–– TypeType
–– Usage Pattern (shared, modified constant, read but not written)Usage Pattern (shared, modified constant, read but not written)
–– Read and Write Accesses by Tasks and FunctionsRead and Write Accesses by Tasks and Functions
–– Protection Mechanisms Protection Mechanisms

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

Benefits:Benefits:
–– Understand how the Understand how the

global data are usedglobal data are used
–– See possible access conflictsSee possible access conflicts
–– Design a solution easilyDesign a solution easily

One Printable Concurrent One Printable Concurrent
Access Graph per shared dataAccess Graph per shared data

Access Conflicts to Access Conflicts to
Shared DataShared Data

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

DynamicDynamic Navigation Navigation through through the the
Application Call Application Call Tree:Tree:

-- Called Calling FunctionsCalled Calling Functions

-- PropagationPropagation to to thethe Source CodeSource Code

-- EasyEasy check of check of the the Call Call ArchitectureArchitecture

Call TreeCall Tree

Exportable Local/Global Exportable Local/Global

CallCall TreeTree

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

POLYSPACE VIEWER

Control and Data Flow
Analysis

Task Entry Task Entry
PointsPoints

POLYSPACE VERIFIER

MethodologyMethodology

Source Code Checking
Compiler Front End

Application’s
Compilable Code

Software Safety
Analysis

Precision Precision
LevelLevel List of run-time errors

Global Data Dictionary
Shared Data

Call Tree

Standard Deviations
Ansi C, Ada

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

x xx

x

x

xy

x

x

x

x

x

x

x x

x

x

x

x

x

x

x

x

x

x

Abstract InterpretationAbstract Interpretation

x
x

x
xx

x x

x x
x

xx
x

xx

x
x

x
x

x
x x

x x

x
x

x
x

x

x

x
x

xx

Expression: Expression: a = x /(xa = x /(x--y);y); (condition: x (condition: x ≠≠ y)y)

Low precisionLow precision algorithms return a algorithms return a Potential ErrorPotential Error

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

Expression: Expression: a = x /(xa = x /(x--y);y); (condition: x (condition: x ≠≠ y)y)

High precisionHigh precision algorithms return algorithms return Always CorrectAlways Correct

x xx

x

x

xy

x

x

x

x

x

x

x x

x

x

x

x

x

x

x

x

x

xx
x

x
xx

x x

x x
x

xx
x

xx

x
x

x
x

x
x x

x x

x
x

x
x

x

x

x
x

xx

Abstract InterpretationAbstract Interpretation

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

MethodologyMethodology

✦✦ Clean your source code Clean your source code beforebefore testing !testing !

✦✦ Module Level:Module Level:
–– Find Find redred and and graygray errors quickly.errors quickly.
–– No need for test cases or execution.No need for test cases or execution.
–– Find the errors in a single runFind the errors in a single run

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

MethodologyMethodology

✦✦Clean the source code Clean the source code beforebefore testing !testing !
✦✦ Integration/Validation Level:Integration/Validation Level:

–– Find the Find the red red andand graygray errors quicklyerrors quickly

–– Depending on criticality, check some Depending on criticality, check some warningswarnings using :using :
•• Code review (focused on relevant operations only)Code review (focused on relevant operations only)
•• TestingTesting

–– 90 % to 99 % of the code is proven (90 % to 99 % of the code is proven (greengreen, , redred, , graygray))

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

Unit-level
Testing

Integration
Testing

Validation

Source Code
Development

Errors
found

A few minutes /
error

1-10 errors / 1000 lines

Maintenance
Po

ly
Sp

ac
e

Ve
rif

ie
r

10 hours / error

1 hour / error

100 hours / error

1 hour / error

xxxx hours / error

1 hour / error

WithWith PolySpacePolySpace Verifier:Verifier:

-- Early & Easy Error Detection Early & Easy Error Detection

-- Cost Is <1 Hour / ErrorCost Is <1 Hour / Error

-- Without Test CasesWithout Test Cases

Productivity GainsProductivity Gains

PolySpace Verifier - Technical Presentation
© PolySpace Technologies Feb.3rd 2001 : All Rights reserved

QW 2001-San Francisco

BenefitsBenefits

✦✦ Fast, Early & Effortless Fast, Early & Effortless IdentificationIdentification of runof run--time errors time errors
–– Without Test CasesWithout Test Cases
–– Without Execution of ApplicationsWithout Execution of Applications
–– Without Modification to Your Development ProcessWithout Modification to Your Development Process
–– Without Instrumentation of CodeWithout Instrumentation of Code

✦✦ Reduce bug detection costs by a factor of 10!Reduce bug detection costs by a factor of 10!

WhenWhen PolySpacePolySpace finds an error you save 10 hours. finds an error you save 10 hours.
WithoutWithout PolySpacePolySpace it will cost this amount.it will cost this amount.

All the tools you need
for rock-solid code

Capture/Playback

Test Management

Test Data Generation

Static Analysis

Metrics

Path & Branch Coverage

Call-Pair Coverage

Web Applications

Capture/Playback

Test Management

Test Data Generation

Static Analysis

Metrics

Path & Branch Coverage

Call-Pair Coverage

Web Applications

TestWorksTestWorksTest ToolsTest Tools Your
Process

Your
Process

Software Research has created a
suite of fully integrated and
automated testing tools to help you
ensure the quality of your software
products. TestWorks offers an end-
to-end solution that covers all
aspects of your process life cycle:
test design and development, test
data generation, test execution and
evaluation, reporting and test
management, code comprehension,
coverage analysis, metrics and
maintenance. Perfect Tools for the
Quality Architect.

TestWorks improves the quality of
your products, whether in an
embedded or distributed client/server
system, in GUI desktop or web
applications. Its open architecture
empowers your work across
the major UNIX and all Windows
platforms and OSs, in C, C++,
Java, Ada, and Fortran.

You need to deliver high-quality
software on time, under budget?

We have TestWorks! Call the
company that created the field .

Software Research
1 (800) 942-SOFT
email: info@soft.com http://www.soft.com

● Testing

● Tuning

● Loading

● Content Validation

Quality Testing of WebSitesQuality Testing of WebSites

●● RRecordingecording

●● PlaybacPlaybackk

●● SScript Creationcript Creation

●● Content Content VValidationalidation

●● PPerformance erformance TTuninguning

●● LLoad oad TTestingestingee
YYourour e-Businesse-Business Partner Partner

Make Your WebSite 100% reliable
 – automatically
Make Your WebSite 100% reliable
 – automatically

www.e-valid.comwww.e-valid.com

Quality Testing of WebSitesQuality Testing of WebSites

Standard Monitoring: eValid monitoring, based on the eValid test engine, runs standard tests
on your site. eValid's 24x7 website performance monitoring provides for email and/or
pager/beeper alert service, plus customer access on our WebSite to historic testing and
monitoring data. Be the first to know whenever your site is misbehaving.
Custom Monitoring: Use eValid test services to contract us to run tests you have recorded and
proved out yourself using the standard eValid test engine. Custom eValid test executions run on
standard intervals, in varying time zones, and are all 24x7. Make sure your own tests run
successfully all the time.
WebSite Testing, Qualification, Verification, Loading: eValid consulting services include
WebSite testing, test suite development, WebSite qualification, e-commerce verification, and
WebSite loading and capacity checking exercises. All work is based on application of the eValid
test engine plus other non-released WebSite analysis facilities.
WebSite Quality Consulting & Seminars: eValid website quality experts can work along side
your web developers to make sure your site meets the highest reliability, quality, performance,
and capacity standards. eValid seminars and workshops are aimed at bring your own team up to
speed.

eValid -- Your E-Business Partner

eValid -- offering products and custom services -- is your one stop solution provider for WebSite quality.
eValid is your true e-business partner.

eValid, Inc.
901 Minnesota Street

San Francisco, CA 94107 USA

Phone [+1] 415.550.3020
FAX [+1] 415.550.3030
evalid@soft.com.

OCLC is a nonprofit, membership, library computer service and research

 organization dedicated to the public purposes of furthering access to the

 world's information and reducing information costs. OCLC software products

 and systems link more than 40,000 libraries in over 75 countries around the

 globe via the Internet and the World-Wide-Web.

 OCLC pioneered test automation for online systems over 20 years ago and

 depends on automation as a strategic advantage in the control of costs and

 quality. OCLC's test automation tool for World-Wide-Web, WebART(tm), was

 introduced in the early 1990's when OCLC began deploying systems on the

web.

 Today, WEBART(tm)is a nuts-and-bolts test-automation tool that

 provides inexpensive solutions for creating, executing, and evaluating

 automated tests for World Wide Web, internet, and e-commerce applications.

 It's capabilities include automated link verification, load testing,

 functional testing, and regression testing. Evaluation copies are

available from the WebART web site at http://www.oclc.org/webart/.

PolySpace Technologies provides the industry's first software testing products that
automatically detect 100% of run-time errors in embedded applications. PolySpace's
next-generation software tools have been designed to efficiently find and identify errors,
enabling software developers to drastically reduce time-to-market of software
applications and save significant time, money and software testing resources. By
applying "abstract interpretation" techniques, PolySpace has developed extremely
efficient and easy to use software error detection products that offers
 three major benefits:

 Exhaustively: 100% run-time errors detection at compilation time.
 Productivity: No test cases to write; no debugging time.
 Ease of use: No code instrumentation; no change to development process.

 For more information visit www.polyspace.com.

Princeton Softech

Address: 111 Campus Drive, Princeton, NJ 08540
Phone: 800.457.7060
Fax: 609.627.7799
Email: info@princetonsoftech.com
Website: princetonsoftech.com

Product/ Services Description

Princeton Softech’s Relational Tools™ for DB2 and Servers help companies streamline
application testing and increase productivity. Move, edit and compare referentially intact
subsets of related data with 100% accuracy to improve application quality. Princeton
Softech’s Archive for DB2™ streamlines application databases to improve performance,
availability and reduce costs.

QualityLogic Inc.

5401 Tech Circle

Moorpark, CA 93021

Phone: 800-436-6292 ext. 122

Fax: 805-531-9045

Email: info@qualitylogic.com

WWW: http://www.qualitylogic.com

QualityLogic is a full-service software Quality Assurance company with a

comprehensive menu of offerings to engage with your company at any organizational

level. We provide enterprise-wide consulting and quality management; we can establish

a QA department or process within your company; and we can provide product-specific

testing and QA services. We are flexible in our approach to your quality issues - we

design a customized solution for each client’s situation. QualityLogic can help you move

from reacting to product defects to proactively preventing defects by design. Our

services improve the efficiency and effectiveness of quality processes and the execution

of quality activities. QualityLogic can reduce the opportunity costs associated with

managing product quality. From product test to quality process design, we make quality

happen.

Reasoning’s InstantQA is an automated software inspection service that combines the use
of proprietary technology and hands-on software quality experts to help you get your
software out on time, on budget, and without fatal defects. InstantQA locates five classes
of crash-causing and data-corrupting defects in C and C++ code before code integration.

The InstantQA process comprises four steps, performed at Reasoning's secure inspection
centers, within a five-day period. First, Reasoning conducts a thorough inventory of the
code submitted, including all program and include files, to ensure full coverage. Then,
our technology automatically analyzes the source code for defects representing situations
that could cause a program to fail, produce incorrect or unexpected results or makes the
program difficult to maintain. Next, our software quality experts manually assess the
defects and remove any false positives. Finally, you receive a comprehensive report with
executive and inventory summaries, metrics to assist you in benchmarking and improving
your software quality, and detailed information on the location and specific problem that
could be caused by each defect.

By finding defects at the source code level, InstantQA complements traditional testing
technologies and practices by ensuring that code sent for testing is of the highest possible
quality.

Sesame Technology presents ExtraView, a highly scalable wireless and Web-based problem

tracking system used to route and resolve problem reports, defects, and product change requests.

Used by customer support, quality assurance, field service, and engineering groups, ExtraView

may be easily customized to individual workflow and quality processes. Geographically

dispersed teams and management may access all ExtraView features such as auto-assignment of

problems, dynamic email notification, and powerful query and reporting capabilities.

ExtraView Remote is a wireless service automation solution that provides up-to-the-second

access to ExtraView's centralized trouble ticket database. Sesame Technology is proud to be a

sponsor of the 14th Annual Software Quality Week.

Software Development Technologies

125 South Market, Suite 700 San Jose, CA 95113 sdt@sdtcorp.com
Ph 408-297-1911 Fx 408-297-1993 www.sdtcorp.com

GLOBAL PRESENCE. Our mission at SDT is to assist organizations throughout the world with
improving their software quality through Software Test Automation Products: UTP, an integrated
test design and automation solution and ReviewPro for automated Technical Reviews and
Inspections; Training and Consulting: software testing, software test automation, test planning
and design; and Software Testing Outsourcing Services.

TEST DESIGN AND AUTOMATION SOLUTION. Unified TestProTM (UTP) is a 3rd generation test
automation solution to help your team create more cost-effective and maintainable test suites
using fewer technical testers.

REVIEW AND INSPECTION SOLUTION. SDT offers a fully integrated, automated solution to
Technical Reviews and Inspections. The SDT Technical Review and Inspection Process –
TRIPTM - provides the educational and consulting services needed to develop or improve your
inspection process, while ReviewPro, SDT’s web-based application, automates data and metrics
collection and reporting, allowing easy communication and collaboration across business units
and geographies.

TECHNOLOGY ASSESSMENTS. SDT scrutinizes your organization’s current development and
test practices vis-à-vis industry-acknowledged best practices. SDT recommends a step-by-step
plan to most effectively address the goals and actions for optimal improvement.

TEST CURRICULUM LICENSING. SDT is continually evolving its comprehensive public and on-
site training courses in the areas of Software Testing, Unit Testing, Testing for Managers, Testing
Tools and Technical Review and Inspection.

OUTSOURCING TEST SERVICES. SDT provides a complete software test solution, from test
design through implementation, both manual and automated, and will manage and run your test
service and train your staff, if desired, in SDT’s state-of-the-practice test techniques.

Sesame Technology presents ExtraView, a highly scalable wireless and Web-based problem

tracking system used to route and resolve problem reports, defects, and product change requests.

Used by customer support, quality assurance, field service, and engineering groups, ExtraView

may be easily customized to individual workflow and quality processes. Geographically

dispersed teams and management may access all ExtraView features such as auto-assignment of

problems, dynamic email notification, and powerful query and reporting capabilities.

ExtraView Remote is a wireless service automation solution that provides up-to-the-second

access to ExtraView's centralized trouble ticket database. Sesame Technology is proud to be a

sponsor of the 14th Annual Software Quality Week.

Software Research, Inc.'s TestWorks, an integrated suite of software test tools, is the broadest test tool suite available. TestWorks
tools help automate and streamline the software development and testing process with product lines that work independently or as
an integrated toolsuite. TestWorks is the only tool suite that offers Regression Testing, Test Suite Management, and Test Coverage
support for Web and Windows and UNIX Platforms.

http://www.soft.com/TestWorks

Software Research, Inc., 901 Minnesota Street, San Francisco CA 94107 USA
PHONE: [+1] (415) 550-3020 FAX: [+1] (415) 550-3030

Comments & Suggestions: suggest@soft.com
© Copyright 2001 by Software Research, Inc.

TestWorks Products

Windows/Coverage:

 TCAT/Java
 DEMO
 EVAL

 TCAT/C-C++
 DEMO
 EVAL

Windows/Regression:

 CAPBAK/MSW
 SMARTS

UNIX Evals:

 SPARC/Solaris
 x86/Solaris
 RS6000/AIX
 HP9000 HPUX
 DEC-Alpha
 SGI/Irix
 SCO ODT5

TestWorks
For Windows

TestWorks for Windows, an integrated suite of automated testing tools, is
the broadest suite of tools available to test applications running under
MS/Windows (Win3.1), MS/Windows NT or MS/Windows '95/'98 (Win32).

Testworks for Windows has two main bundles of tools:

TestWorks/Regression
CAPBAK/MSW
SMARTS/MSW

TestWorks/Coverage
TCAT C/C++
TCAT for Java/Windows

TestWorks
For UNIX

TestWorks for UNIX is designed to work independently or as an integrated
tool suite to provide an efficient, automated testing environment for most
UNIX-based platforms.

TestWorks for UNIX consists of three product lines:

TestWorks/Regression
CAPBAK
SMARTS
EXDIFF

TestWorks/Coverage
TCAT C/C++
TCAT for Java/UNIX
TCAT/S-TCAT Ada/f77

TestWorks/Advisor
METRIC
TDGEN
STATIC

Downloading
Products DOWNLOAD PRODUCTS Download Datasheets

License Key Request QuickStart Manuals

User Manuals

We offer the most
complete set

of software and
services for the

application life cycle.

www.compuware.com

Planning Designing Developing Integrating Testing Implementing Managing Staffing

RATIONAL SOFTWARE

Rational Software, the e-development company, helps organizations develop
and deploy software for the Internet through a combination of tools,
services and software engineering best practices. Rational's e-development
solution helps organizations overcome the e-software paradox by accelerating
time to market while improving quality. In 1999, International Data
Corporation recognized Rational as the leader in multiple segments of the
software development life cycle management market.
www.rational.com

Rational Software
18880 Homestead Road
Cupertino, CA 95014
Web: www.rational.com

ZD LABS

ZD Labs (www.zdlabs.com) leads the industry in Internet and technology
testing. Building on Ziff-Davis Publishing's history of leadership in
product reviews and benchmark development, ZD Labs brings independent
testing, research, development, and analysis directly to publications, Web
sites, vendors, and large IT organizations everywhere.
www.zdlabs.com

Vanteon e-Quality Solutions

Vanteon e-Quality and Test solutions are as creative as the software you write, as innovative as the web site
your business depends on.

For more than fifteen years, Vanteon has developed and refined the industry’s most effective QA and
testing methodologies, processes, documentation and tools to meet the business, market and quality
requirements of our clients. As business and technology platforms constantly change, Vanteon
continuously evolves its methodologies to keep pace with the rapid deployment of new web technologies,
and hardware and software designs. At Vanteon, we not only implement QA and testing best practices for
our internal product development, we create them for our clients as well.

Through its diverse experience, Vanteon has built a repository of knowledge accessible to companies
looking for customized Quality Assurance and Testing solutions. Vanteon specializes in QA process
consulting, test planning, test documentation development and test execution, including strategies and
scripts for Automated Desktop (capture/playback) and Automated Web Testing (functional, load, stress,
performance, benchmark). Compatibility testing is performed in our Configuration Test Labs. Vanteon
solutions span eBusiness, wireless peripherals, desktop/consumer, networking, client/server, embedded and
print/imaging. Our professionals are experts in a range of technologies, including Windows, Mac, UNIX,
LINUX, Windows CE, VxWorks, QNX and PSOS.

Vanteon is the premier national provider of comprehensive engineering solutions that generate revenue for
clients ranging from the Fortune 500 to hot.com start-ups. In our seven centers of engineering excellence,
Vanteon has assembled one of the industry’s most proficient integrated teams of engineering and
consulting professionals in e-business, quality assurance, commercial software development, and hardware
and embedded systems. For more information, call 1.800.266.5046 or visit www.vanteon.com.

Ziff Davis Labs (www.zdlabs.com) is the independent, for-hire testing service of Ziff Davis
Publishing. At our facilities in Silicon Valley and North Carolina's Research Triangle area, we
perform two distinct but related kinds of work:

• providing top-quality independent, for-hire testing of Internet and technology products,
and

• developing and distributing for Ziff Davis Publishing its industry-standard benchmark
software

We provide the trusted, independent testing services you need to move at top speed in the
Internet economy. Whether you want us to test your Web site, your desktop or server system, or
any other Internet or technology product, we have the expertise, experience, and equipment to do
the job.

We live and work at the heart of the Internet economy, testing for companies large and small,
established and up-and-coming. We’ll put your product--and, if you wish, your competitor's--
through its paces. Our experts will give you an objective assessment and warn you about any
bugs or potential problems. We'll examine your product from a fresh perspective, go as deeply
into the details of its operation as necessary, and put our findings in a meaningful, action-oriented
context.

If you’d like to keep our findings to yourself, we’ll provide strict confidentiality. If you want to
publicize the results, our marketing team can help you leverage our testing and analysis efforts to
your best competitive advantage. When your customers see that Ziff Davis Labs has tested your
Internet or technology product, they will know they can trust the results.

COMPUWARE CORPORATION

With trailing 12-month revenues of more than $2 billion, Compuware is a
world leader in the practical implementation of enterprise and e-commerce
solutions. Compuware productivity solutions help 14,000 of the world's
largest corporations more efficiently maintain and enhance their most
critical business applications. Providing immediate and measurable return on
information technology investments, Compuware products and services improve
quality, lower costs and increase the speed at which systems can be
developed, implemented and supported. Compuware employs more than 15,000
information technology professionals worldwide. For more information about
Compuware, please contact the corporate offices at (800)521-9353. You may
also visit Compuware on the World Wide Web at www.compuware.com.

COMPUWARE CORPORATION
31440 Northwestern Hwy
Farmington Hills, MI 48334

Vanteon QA Solutions
QA with a high IQ.

QA and Test solutions as creative as the software you write,
and as innovative as the web site your business depends on.

Discover the significant advantages of
partnering with Vanteon, who has the
depth of experience, resources and
collaborative spirit to work closely with you
to create innovative and highly effective QA
and Test solutions.

For more information about Vanteon,
please visit BOOTH #413.
www.vanteon.com
equality@vanteon.com
800.266.5046

QA/Test Services
• QA Consulting
• Web Performance Testing
• System (Black Box) Testing
• Unit (White Box) Testing
• OS/Browser/Platform

Compatibility Testing
• Automation
• Wireless/Handheld Testing
• Web Rapid Quality Evaluation

For
• eBusiness
• Wireless / Handheld
• Desktop/Consumer
• Networking
• Client/Server
• Embedded
• Print/Imaging

Technologies
• Windows
• Mac
• UNIX
• LINUX
• Windows CE
• VxWorks
• QNX
• PSOS

Software Business is The Magazine for Software Executives!
Every issue of Software Business Magazine includes the
following editorial features: . CEO Strategies . Electronic
Distribution . ASP Reports . Financial Reports . Business
Automation . Software Replication . Product Development .
Packaging/Fulfillment . Support/Customer Service . International
Opportunities . And More...!

Amphora Quality Technologies (AQT) is a Software Testing and Quality Assurance services
company. AQT helps IT companies and corporations worldwide to design competitive products
of high quality and reliability.

Amphora Quality Technologies was founded by a group of experienced professionals and
managers seasoned within the software industry. Extensive work experience in top-level
positions with major Russian software manufacturers provided AQT’s top managers with wide-
ranging expertise in and knowledge of Software Quality Assurance, as well as in modeling,
design and development of major information systems.

Structurally, AQT consists of four divisions:

• Web Lab – a laboratory specializing in quality of Web Site and Internet applications;
• Functionality Lab – a laboratory for software functionality testing, software test results

and source code analysis center;
• Performance Lab – a laboratory for the analysis of software performance characteristics

and reliability;
• Research department – the company research center;

Amphora Quality Technologies a subsidiary company of Amphora LLC (Northern California,
USA) is based in Moscow, Russia, and has offices in the USA.

About Atesto Technologies

Atesto is creating a new global standard for web testing. Atesto’s suite of fully automated,

online test services enable e-businesses to reduce costs, achieve faster time-to-market,

and ensure quality in end user experience. With its web-based set of solutions, Atesto

meets the testing and monitoring needs in the entire application lifecycle. Atesto works

with leading companies in the area of web infrastructure services, system integrators,

consulting firms, solution partners and technology providers to create a consolidated base

of services for web-enabled businesses.

Currently, Atesto offers Atesto Load Test, Atesto Response Watch and Atesto Functional

Test services via the company web site. Applications that live on the web should be

tested on the web. For more information visit www.atesto.com or call 1-866-300-TEST.

NTS-XXCAL

NTS-XXCAL is the oldest and largest testing laboratory of it's kind,
having tested Software & Hardware since 1982, Environmental testing
since 1961. Lab locations are in Los Angeles, London and Japan.
NTS IS AN "NRTL" CERTIFIED (NATIONALLY RECOGNIZED TEST LAB) - A US
GOVERNMENT RECOGNIZED LAB. NTS-XXCAL tests Software, Hardware &
Peripherals. Decrease your time-to-market! We help you validate the
integrity of your product by covering your target market thus leaving
your valuable development resources free to work on your new products.
This makes our testing service extremely cost effective!
www.ntsxxcal.com

Butler Technology Solutions

 As a division of Butler International, a recognized leader in the technology
and technical services industry, Butler Technology Solutions offers a
complete and broad range of information technology expertise, technology
staffing, project management, and technology solutions that are delivered
through Quality Assurance, Customer Relationship Management, Business
Intelligence and Enterprise Applications practices. These practices are
supported by our staff augmentation and project management capabilities.
Unlike our competition we were the first technology services firm to achieve
ISO 9000 certification, conduct annual employee and customer satisfaction
surveys and report the results to the public. Butler Technology Solutions has
offices in New York City, Washington, DC., Raleigh, Atlanta, Chicago and
Milpitas. To learn more about Butler Technology Solutions, please visit
www.butler.com.

Compuware quality assurance solutions automate the multiple, complex steps of thorough

application testing and provide comprehensive, repeatable and predictable results in less time.

With Compuware tools, you can test every step in the application process for mainframe,

distributed and web platforms. From defining requirements, creating test scripts, executing

 functional, web, regression, integration and performance tests and managing defect resolution,

Compuware products and services improve application quality and performance.

For example: QARun gives programmers the automation capabilities they need to create and

execute test scripts, verify testsand analyze test results. QALoad performs repeatable load testing

and helps determine the ultimate performance and potential limits of your system. Reconcile,

Compuware's new requirements management tool, provides a method to synchronize planning,

development and testing activities, giving you the ability to accurately assess the project's status.

QADirector, a powerful, extensible test management solution for full lifecycle testing of

 distributed large-scale applications, supports a framework for managing the entire testing

process-from design to execution to analysis. Compuware NuMega products help quickly detect,

diagnose and repair errors; analyze performance bottlenecks; and locate untested code in

applications built in C++, Java, Visual Basic, Active Server Pages, or HTML. DBPartner enables

 developers to optimize database performance by capturing, tuning, and debugging SQL

statements and PL/SQL calls. Developers can also utilize TestPartner for unit testing and sharing

test scripts with testing teams. For organizations that lack the time, infrastructure or resources to

perform web site and application testing, Point Forward offers a remote web testing and

monitoring solution that gives you confidence in the reliability, integrity, scalability and

performance of your web site.

 For more information, visit us on the web at www.compuware.com.

eTesting Labs Inc. (www.etestinglabs.com), a Ziff Davis Media company, leads

the industry in Internet and technology testing. In June 2000, ZD Labs changed

its name to eTesting Labs to better reflect the breadth of its testing services.

Building on Ziff Davis Media's history of leadership in product reviews and

benchmark development, eTesting Labs brings independent testing, research,

development, and analysis directly to publications, Web sites, vendors, and IT

organizations everywhere.

About eValid -- The Internet Quality Authority

eValid enhances your e-business success by assuring that your WebSite is trouble-free, reliable, speedy, and available 24x7. In a
Web-paced world your WebSite is your key asset. eValid checks, protects and insures.

eValid -- Your E-Business Partner

eValid -- offering products and custom services -- is your one stop solution provider for WebSite quality. eValid is your true e-
business partner. For more information, visit us on the web at http://www.e-valid.com.

eValid, Inc.
901 Minnesota Street

San Francisco, CA 94107 USA

Phone [+1] 415.550.3020
FAX [+1] 415.550.3030

info@soft.com.

eValid TM -- The Internet Quality Authority TM

Client-Side Browser-Based WebSite Quality Checking,
Testing, Validation, Tuning, Loading, 24x7 Monitoring

Training, Consulting, Seminars
© Copyright 2001 by eValid, Inc.

eValid Products

eValid's Test Enabled Web BrowserTM is a test engine that
provides you with browser based 100% client side quality
checking, dynamic testing, content validation, page
performance tuning, and webserver loading and capacity
analysis.

This new cutting-edge technology, is 100% client side based,
and is completely object-oriented. eValid offers a unified
approach to WebSite testing that is unique in its simplicity,
power, efficiency, effectiveness, and superior ease of use.

By focusing entirely on the users' view of WebSite quality,
eValid results are accurate, complete, repeatable, and highly
effective -- all as experienced by your users. The eValid test
engine is available in several product configurations.

Testing: eValid test scripts can exercise the key parts
of your site, confirm links, check content, and simulate
users' activities. Make sure your customers get the right
message! More...

Validation: eValid can confirm selected content,
validate document properties, images and applets. Have
confidence that you are delivering correct information!
More...

Tuning: eValid timing capabilities let you identify slow-
loading pages so you can "tune up" your site for optimum
performance. Keep customers from clicking away! More...

Loading: eValid load testing scenarios can simulate
100's or 1000's of users. Can your WebSite handle the
traffic when a serious crunch comes? More...

eValid Services

eValid website quality services are all based on the eValid test
engine, and are are supported through training, consulting,
and technical seminars.

Standard Monitoring: eValid monitoring, based on
the eValid test engine, runs standard tests on your site.
eValid's 24x7 website performance monitoring provides for
email and/or pager/beeper alert service, plus customer
access on our WebSite to historic testing and monitoring
data. Be the first to know whenever your site is
misbehaving. More...

Custom Monitoring: Use eValid test services to
contract us to run tests you have recorded and proved out
yourself using the standard eValid test engine. Custom
eValid test executions run on standard intervals, in
varying time zones, and are all 24x7. Make sure your own
tests run successfully all the time. More...

WebSite Testing, Qualification, Verification,
Loading: eValid consulting services include WebSite
testing, test suite development, WebSite qualification, e-
commerce verification, and WebSite loading and capacity
checking exercises. All work is based on application of the
eValid test engine plus other non-released WebSite
analysis facilities. More...

WebSite Quality Consulting & Seminars: eValid
website quality experts can work along side your web
developers to make sure your site meets the highest
reliability, quality, performance, and capacity standards.
eValid seminars and workshops are aimed at bringing your
own team up to speed. More...

IEEE Computer Society
Booth # 305

The IEEE Computer Society strives to be the leading provider of technical
information and services to the world’s computing professionals. The IEEE
Computer Society offers its nearly 100,000 members a comprehensive program
of publications, meetings, and technical and educational activities,
fostering an active exchange of information, ideas, and innovation. No
other professional or commercial organization comes close to matching the
Computer Society in terms of the quality, quantity, or diversity of its
publications. Headquartered in Washington, DC, the society serves its
members from offices in Los Alamitos, CA, Tokyo, and Brussels. The society
is the largest technical society within the Institute of Electrical and
Electronics Engineers (IEEE). See our CS Store at http://computer.org.

**
Marian Anderson
Advertising Coordinator
IEEE Computer Society
10662 Los Vaqueros Circle
Los Alamitos, California 90720-1314
USA
phone: 714-821-8380
fax: 714-821-4010

Company Name: LogiGear Corporation

Description:

LogiGear Corporation is a full-service software-testing firm that provides testing

expertise and resources to software development organizations. LogiGear offers

several value-added services including outsourced application testing, e-mobile testing,

web load/performance testing, localization testing, and automated software testing for

B2B, B2C, as well as for corporate internal applications.

Founded in 1994, LogiGear has built a reputation on partnering with software

development organizations to help make the most of outsourcing and staff training

solutions. Specializing in testing of e-applications including e-commerce sites, portals,

database-access applications and web sites, LogiGear also has extensive testing

expertise in e-mobile products such as wireless communication products and hand-held

devices, as well as traditional end-user applications such as productivity and

edutainment software titles. In addition to our outsourced testing services, LogiGear

trains software-testing professionals through the offering of its Practical Software

Testing Training Series. LogiGear brings its series to organizations through its OnSite

Training Program, or offers them publicly in its California locations.

To complement our services and training program, we have a dedicated development

team to research, design, and produce support tools and utilities to help improve testing

efficiency. The first product created with this in mind is TRACKGEAR™, a Web-based

defect tracking solution. Built for the Web from the ground up, TRACKGEAR is

designed for everyone on your company’s product development team. Project

management, marketing, support, QA, testers, and developers will come to rely on

TRACKGEAR as their primary communication tool. Technical groups will appreciate

the power of TRACKGEAR while non-technical staff will enjoy its ease of use.

LogiGear is a privately funded corporation headquartered in Foster City, California.

www.logigear.com

McCabe & Associates, is leading provider of products and services that help IT

organizations build better software, from strategic back office applications to

cutting edge web technologies. The McCabe IQ products provide development

organizations with effective tools for managing change, version control, quality

analysis, comprehension, testing, and reengineering of business critical software

applications. McCabe IQ take advantage of McCabe & Associates’ innovative

methodologies, visualization techniques, and metrics to help analyze, test, and

reengineer software in a variety of languages on a wide array of platforms.

McCabe IQ enables organizations to manage software changes, their effects on

the testing and quality of applications, increase test effectiveness, and expedite

and automate the testing process to promote and assure the delivery of high

quality software systems.

Microsoft's vision is to empower people through great software - any

time, any place and on any device. As the worldwide leader in software

for personal and business computing, Microsoft strives to produce

innovative products and services that meet our customers' evolving

needs.

With more than 20 years of momentum behind us, a growing international

presence, and one of the most talented workforces on the planet,

Microsoft's position in the software industry has never been better.

Opportunities for bright, talented individuals are abundant and

promising.

As a tester at Microsoft you have your hands in every aspect of product

development and the product life cycle from design to shipping. If you

want to have an impact, if you care about easy-to-install, easy-to-use

products, then testing is where you want to be. If you know you could

make our products better and want to save millions of customers

worldwide from the bug you just found, testing at Microsoft is the

career for you.

When you get large-scale engineering projects, testing is a big part of

what goes on. We have as many people who test our products inside

Microsoft as we do people who build the products. We sometimes joke that

we only have the people there to build the products so they can create

the bugs so the testers have something to do. It's really just a big

testing organization with those other guys tacked on.

Company Name: Software SETT Corporation
Description:

Since 1987, Software SETT Corporation has provided software quality
assurance services throughout the US and abroad. Our responsive team
of highly trained professionals includes SQA Engineers, Sr. SQA
Engineers, Project Managers and Consultants. Software SETT also
offers SQA and Project Management courses for on-site or classroom
environments tailored to fit the needs, budgets and schedules of its
clients.

We have an excellent reputation and take pride in repeat business
and/or referrals. Our clients include startups as well as Fortune
500 firms. Our expertise includes but is not limited to projects
in the following areas:

. Web-based applications and E-commerce
. Embedded Systems and Wireless Device
. Medical Device and Quality Process Audits
. Client/Server applications and Data Warehouse
. Telecommunications and DSL Technology
. Graphics, Multimedia, and Training Tools

In Fall 2000, Software SETT Corporation began hosting kSETT™, an
integrated test management tool. This tool ensures that test efforts
can start quickly and efficiently by offering a variety of relevant
functionality and content. This cost effective and time saving tool
is just another example of Software SETT’s dedication to SQA
preparedness.

We can be your QA outsourcing solution, perform on a
project-by-project basis or provide you temporary staffing solutions
to bridge your own SQA department needs. For more information about
our services, please contact us at (408) 395-9376 or visit our
website at www.softsett.com.

We would welcome the opportunity to be of assistance to you!

Software SETT Corporation
 233 Oak Meadow Drive
 Los Gatos, CA 95032
 Phone: (408) 395-9376
 Fax: (408) 354-6477
 Email: INFO@softsett.com
 Web site: www.softsett.com

Software Quality Engineering (SQE)assists software professionals and organizations throughout

the world with improving their software testing and quality engineering practices. The company's

hands-on experience and training expertise help companies -- large and small -- to improve

testing practices, gain measurable control over software projects, and ultimately deliver better

software.

Founded in 1986, SQE has grown to become one of the world's largest suppliers of testing and

quality assurance training -- offering a comprehensive array of testing seminars as well as a

number of development seminars. SQE's seminars cover software testing topics in the areas of

software development, test management, Web development, Web testing, project management,

test management and other key areas important to building and delivering quality software.

SQE organizes several international conferences, including STAREAST and STARWEST

(Software Testing Analysis & Review), Software Test Automation, SM (Software Management),

and ASM (Applications of Software Measurement). In addition to these resources, SQE

publishes Software Testing & Quality Engineering magazine, a commercial publication focused

on the needs of the testing and quality assurance industry, STQe-Letter - bring software testing

and quality engineering info to your in-box, and StickyMinds.com - online resource for software

testers, developers, managers, and quality engineers.

Founded in 1996, TeamShare, Inc. delivers Web-based collaborative software

solutions. The company's product suite, powered by the TeamTrack workflow engine,

enhances process management, speeds resolution, and encourages collaboration

within and across enterprises. tTrack is the company’s defect and development

management solution. tSupport, the company's support center solution, incorporates

customer participation. Together, the tightly integrated TeamTrack suite provides

enterprise business process management and enables collaborative product

development with business customers and partners. The products are highly

configurable; their web architecture makes them simple to implement and maintain, and

keeps ownership costs low.

TeamShare’s customers & partners include Dell, Hewlett-Packard, Excite@Home,

KPMG CitiGroup, 3-Com, and ADP. TeamShare has been named to Computerworld's

'Top 100 Emerging Companies' and the 'SoftLetter 100' lists. For more information,

contact TeamShare, Inc. by phone at 888-TEAMSHARE (832-6742), via e-mail at

inquiries@teamshare.com, or on the Web at http://www.teamshare.com.

TechExcel

DevTrack
The Integrated Web and Client/Server Solution for Defect and Project Tracking

DevTrack is the premiere defect- and project-tracking tool for software development
teams, helping to ensure that development projects finish on time and on budget.
DevTrack comprehensively tracks and manages all defects, change/feature requests, and
all other development issues. DevTrack also provides powerful workflow and process
automation features, robust searching and reporting, and comprehensive point-and-click
customization. Intuitive and powerful, DevTrack provides a scalable out-of-the-box
solution, at a great value.

DevTrack Features Include:
• Comprehensive tracking and management of all defects, feature/change requests, and

other development issues, with the industry’s most intuitive and powerful interface.

• DevTrack Web provides nearly 100 percent of DevTrack’s powerful features, with an

extremely intuitive LAN-like interface.

• Definable workflow and skills-based routing allow the defect-resolution process to be

fully defined and controlled, ensuring high-quality products.

• Automatic e-mail notification for any QA or development team member when

selected events occur, based on definable criteria.

• Extensive customization includes user-defined field labels, field types, drop-down

menu options, master/detail relationships, and custom reports.

• The industry's best integration with Microsoft’s Visual SourceSafe version control

software.

• Full ODBC-compliance ensures easy scalability from one to many thousands of users.

TesCom is the world's leading software testing company offering performance,

quality assurance, usability and e-business testing for systems and

software. As a provider of professional services for software quality

assurance, TesCom has established a position at the forefront of E-Commerce

application testing, working with its clients to provide unique,

cost-effective testing solutions in a customized and real-world fashion.

Since 1990, TesCom has provided a comprehensive set of testing services for

its many clients around the world. TesCom has a global presence with offices

in the USA, UK, Israel, France, Germany, Greece, Singapore and Australia.

With over 700 testing specialists operating worldwide, TesCom has developed

methodologies to provide first class solutions to companies committed to

producing high quality systems within tight budgets and delivery deadlines.

TesCom has extensive testing experience across all platforms, applications,

networks and operating systems. The notion of risk mitigation is a key

objective in all TesCom's testing engagements, since TesCom recognizes that

proactive, thorough and well-planned testing can prevent highly visible

system failures. For more information, please visit www.tescom-intl.com

<http://www.tescom-intl.com> or via phone at +1.678.250.1100 (US).

TestQuest, Inc.
18976 Lake Drive East
Chanhassen, MN 55317
Phone: 800.756.1877
Fax: 952.936.2187
info@testquest.com <mailto:info@testquest.com>
www.testquest.com <http://www.testquest.com>

TestQuestTM Pro is the only non-intrusive automated test solution that
provides comprehensive support for a wide range of electronic devices
including embedded systems, computer systems, handheld devices, cell
phones and Interactive TV set-top boxes. Simulating the presence of a
"virtual" user, TestQuest Pro executes pre-defined streams of actions,
and compares the output to valid states to determine whether the test
was successful. A scripting facility provides a foundation for
consistent, reliable and repeatable testing. The benefits of using
TestQuest Pro include:

* Reduced test cycle time: Complete test cycles faster - customers
report up to 90% time savings compared to manual methods. TestQuest Pro
can run tests 24 hours a day, 7 days a week, dramatically expanding the
time available for testing. This means dramatic savings in the time it
takes to get products tested and into the market.

* Reduced test cost: Customers report rapid ROI and dramatic cost
savings by eliminating the need to dedicate staff to testing or
outsource testing to 3rd parties.

* Improved product quality: Build sophisticated test scripts that
thoroughly exercise your products and reliably uncover defects. With
TestQuest, repeating an advanced regression test is as easy as running a
script.

VANTEON

140 Tobey Village Office Park
Pittsford, NY 14534

Phone: 800-266-5046
 617-332-0202

Email: equality@vanteon.com
Web: www.vanteon.com

 Fax: 617-332-1121

Vanteon Quality Assurance & Test Services

Vanteon’s Quality Assurance & Test Services are as creative as the software you write, and as
innovative as the web site your business depends on.

For more than fifteen years, Vanteon has developed and refined the industry’s most effective QA
and testing methodologies, processes, documentation and tools to meet the business, market
and quality requirements of our clients. As business and technology platforms constantly change,
Vanteon continuously evolves its methodologies to keep pace with the rapid deployment of new
web technologies, and hardware and software designs. At Vanteon, we not only implement QA
and testing best practices for our internal product development, we create them for our clients as
well.

Through its diverse experience, Vanteon has built a repository of knowledge accessible to
companies looking for customized Quality Assurance and Testing solutions. Vanteon specializes
in QA process consulting, test planning, test documentation development and test execution,
including strategies and scripts for Automated Desktop (capture/playback) and Automated Web
Testing (functional, load, stress, performance, benchmark). Compatibility testing is performed in
our Configuration Test Labs. Vanteon solutions span eBusiness, wireless/handheld,
desktop/consumer, networking, client/server, embedded and print/imaging.

Vanteon is the premier national provider of comprehensive engineering solutions that generate
revenue for clients ranging from the Fortune 500 to hot.com start-ups. In our seven centers of
engineering excellence, Vanteon has assembled one of the industry’s most proficient integrated
teams of engineering and consulting professionals in eBusiness, Wireless, quality assurance,
commercial software development, and hardware and embedded systems. For more information,
call 1.800.266.5046 or visit www.vanteon.com.

VeriTest is the premium provider of testing services that enable technology companies to
release proven enterprise-scale applications on a worldwide basis. With datacenter-
equipped labs in North America and Europe, VeriTest delivers test consulting, test plan
development, and test execution services through cost-effective, global processes.

Our experience, partnerships, technology and scalable resources take the uncertainty out of
product quality. Since 1987, VeriTest’s career test engineers and project managers have
executed complex test missions under the most demanding schedules. Resources include
large-scale test teams, sites on three continents, and technology alliances with industry
leaders such as Microsoft, Compaq, Unisys and Rational.

With VeriTest services from Lionbridge, customers now have a single global partner for
outsourcing specialized technical services associated with global product releases,
including software localization, quality assurance testing, and application certification.

VeriTest services:

eTesting: VeriTest has the infrastructure to tackle the tough web and enterprise application
scalability projects.

Globalization Testing and Release Engineering: VeriTest can ensure that your localized
products are ready for global deployment.

System Testing : VeriTest provides complete integration, functionality, compatibility and
migration testing of IT products.

Certification Testing: Leading technology companies such as Microsoft, Novell, and IBM
have entrusted VeriTest with the design and implementation of standards-based testing.

	Quality Week 2001
	Conference Program
	Pre-conference Tutorials
	Conference Day #1
	Conference Day #2
	Conference Day #3
	Post-Conference Workshops
	Standby Presentations

	Tutorials
	A1 & A2: Gilb
	B1: Simmons
	C1: Schneidewind
	D1 & D2: Bazzana
	E1: Sabourin
	F1: Collard
	G1: Drake
	B2: Deibler
	C2: Musa
	E2: Miller
	F2: Kaner
	G2: Kit

	Conference
	Keynotes
	1P1: Kit
	Abstract/Bio
	Slides

	1P2: Buwalda
	Abstract/Bio
	Slides

	5P1: Rosenberg
	Abstract/Bio
	Paper

	5P2: Vrsalovic
	Abstract/Bio

	10P1: Crispin
	Abstract/Bio
	Slides
	Paper

	10P2: Lilly
	Abstract/Bio
	Paper

	10P3: Drake
	Abstract/Bio
	Slides

	QuickStart
	2Q: Bech
	Abstract/Bio
	Slides

	3Q: Gilb
	Abstract/Bio
	Slides

	4Q: Clower
	Abstract/Bio
	Slides

	6Q: Folkes
	Abstract/Bio
	Slides

	7Q: Bach
	Abstract/Bio
	Slides

	8Q: Sabourin
	Abstract/Bio
	Slides

	Technology
	2T1: Mayer & Thomas
	Abstract/Bio
	Slides Part 1
	Slides Part 2

	2T2: Eickelmann
	Abstract/Bio
	Slides
	Paper

	3T1: Madan
	Abstract/Bio
	Slides
	Paper

	3T2: Blackburn
	Abstract/Bio
	Slides
	Paper

	4T1: Harrison
	Abstract/Bio
	Slides
	Paper

	4T2: Nageswaran
	Abstract/Bio
	Slides
	Paper

	6T1: Stetter
	Abstract/Bio
	Slides
	Paper

	6T2: Stobie
	Abstract/Bio
	Slides
	Paper

	7T1: Cohen
	Abstract/Bio
	Slides

	7T2: Lyndsay
	Abstract/Bio
	Slides

	8T1: Brisk
	Abstract/Bio
	Slides

	8T2: Simmons
	Abstract/Bio
	Slides
	Paper

	9T1: Berger
	Abstract/Bio
	Slides
	Paper

	9T2: Kelliher
	Abstract/Bio
	Slides
	Paper

	Applications
	2A1: Tierney
	Abstract/Bio
	Slides

	2A2: Olsen
	Abstract/Bio
	Slides
	Paper

	3A1: Dalebout
	Abstract/Bio
	Slides
	Paper

	3A2: Records
	Abstract/Bio
	Slides
	Paper

	4A1: Keesom
	Abstract/Bio
	Slides

	4A2: Simmons
	Abstract/Bio
	Slides
	Paper

	6A1: Whitchurch
	Abstract/Bio
	Slides
	Paper

	6A2: Borzovs
	Abstract/Bio
	Slides
	Paper

	7A1: Schlingloff
	Abstract/Bio
	Slides
	Paper

	7A2: Jones
	Abstract/Bio
	Slides
	Paper

	8A1: Budrovich
	Abstract/Bio
	Slides
	Paper

	8A2: Trappe
	Abstract/Bio
	Slides

	9A1: Sthamer
	Abstract/Bio
	Paper

	9A2: Nguyen
	Abstract/Bio
	Slides

	Internet
	2W1: Cowderoy
	Abstract/Bio
	Slides

	2W2: Hsueh
	Abstract/Bio
	Slides
	Paper

	3W1: Landau
	Abstract/Bio
	Slides

	3W2: Splaine
	Abstract/Bio
	Slides

	4W1: Nilakantan
	Abstract/Bio
	Slides
	Paper

	4W2: Hollows
	Abstract/Bio
	Slides

	6W1: Johnson
	Abstract/Bio
	Slides
	Paper

	6W2: Agarwal
	Abstract/Bio
	Slides
	Paper

	7W1: Gupta
	Abstract/Bio
	Slides
	Paper

	7W2: Patel
	Abstract/Bio
	Slides

	8W1: Helm
	Abstract/Bio
	Slides
	Paper

	8W2: Davis
	Abstract/Bio
	Slides
	Paper

	9W1: Humphrey
	Abstract/Bio
	Slides
	Paper

	9W2: Kerov
	Abstract/Bio
	Slides
	Paper

	Management
	2M1: Jefferies
	Abstract/Bio
	Slides

	2M2: Benjamin
	Abstract/Bio
	Slides

	3M1: Kelliher
	Abstract/Bio
	Slides
	Paper

	3M2: Georgiadou
	Abstract/Bio
	Slides
	Paper

	4M1: Fern
	Abstract/Bio
	Slides
	Paper

	4M2: Kaner
	Abstract/Bio
	Slides
	Paper

	6M1: Pinxten
	Abstract/Bio
	Slides

	6M2: Rothman
	Abstract/Bio
	Slides

	7M1: Ensminger
	Abstract/Bio
	Slides
	Paper

	7M2: Harrison
	Abstract/Bio
	Slides
	Paper

	8M1: Sweeney
	Abstract/Bio
	Slides
	Paper

	8M2: Pemmaraju
	Abstract/Bio
	Slides
	Paper

	9M1: Hillelsohn
	Abstract/Bio
	Slides

	9M2: Lawrence
	Abstract/Bio
	Slides

	Panels
	4P: Lawrence
	Abstract/Bio

	8P: Borelli
	Abstract/Bio

	9Q: Musa
	Abstract/Bio
	Slides
	Rothman's slides

	Vendor Technical
	2V1: Nemzer
	Abstract/Bio
	Slides

	2V2: Charette
	Abstract/Bio
	Slides
	Paper

	3V1: Hote
	Abstract/Bio
	Slides

	3V2: Fouts
	Abstract/Bio
	Slides
	Paper

	4V1: Keller
	Abstract/Bio
	Slides

	4V2: Smith
	Abstract/Bio

	6V1: MacKinnon
	Abstract/Bio
	Slides

	6V2: Markosian
	Abstract/Bio
	Slides

	7V1: Banister
	Abstract/Bio

	7V2: Miller
	Abstract/Bio
	Slides

	8V1: Smith
	Abstract/Bio
	Slides

	8V2: Siegel
	Abstract/Bio
	Slides

	Standby
	SB1: Jones
	Abstract/Bio
	Slides
	Paper

	SB2: Musa
	Abstract/Bio
	Slides

	SB3: Bugwadia
	Abstract/Bio
	Slides

	SB4: Rothman
	Abstract/Bio
	Slides

	Workshops
	W1: Kaner
	Abstract/Bio
	Slides

	W2: Paul
	Abstract/Bio
	Slides

	W3: Sabourin
	Abstract/Bio
	Slides

	W4: Rothman
	Abstract/Bio
	Slides

	Sponsors
	Compuware
	eTesting Labs Inc.
	eValid
	ExtraView
	Software Research, Inc.
	Vanteon
	VeriTest
	Media
	Application Development Trends
	C/C++ Users Journal
	Dr. Dobb's Journal
	SD Times
	Software Business
	Windows Developer's Journal

	Expo
	Amphora Quality Technologies
	Atesto Technologies, Inc.
	Butler Technology Solutions
	Compuware
	eTesting Labs
	eValid, Inc.
	IEEE
	LogiGear Corporation
	McCabe & Associates
	Microsoft Corporation
	OCLC
	Polyspace Technologies
	Princeton Softech
	QualityLogic, Inc.
	Reasoning Systems
	Sesame Technology
	Software Development Technologies
	Software Research, Inc.
	Software SETT Corporation
	STQE
	TeamShare
	TechExcel, Inc.
	Tescom (Formerly AZOR)
	TestQuest
	Vanteon
	VeriTest

