
13th International Software & Internet

Quality Week

San Francisco, California
May 30-June 2, 2000

New Century
New Beginnings

Conference Proceedings

13th International Software & Internet

Quality Week

San Francisco, California
May 30-June 2, 2000

New Century
New Beginnings

Conference Proceedings

e
Your e-Business Partner

13th International Software / Internet Quality Week
(QW2000)

Conference Theme:
New Century, New Beginnings

San Francisco, California USA
30 May 2000 - 2 June 2000

TECHNICAL PROGRAM

QW | QW2000 | Mission | Board | Announce | Introduction |
Kudos

Download Ad | Download Brochure | Send Brochure
Outline | PROGRAM | Speakers | REGISTER | Sponsors |

Exhibitors
BOFSs | Hotel | Bay Area | Sponsorships | Awards | Ask The

Experts!

NOTE: The program selections, speaker biographies, and presentation abstracts may be incomplete in some instances; this material is being
updated constantly. All material presented is based on the best information available and may be subject to change. Updated 20 March 2000.

QUICK ACCESS TO THE FOUR DAY PROGRAM AT QW2000

Pre-Conference Tutorials Tuesday 30 May 2000

Conference Day 1 Wednesday 31 May 2000

Conference Day 2 Thursday 1 June 2000

Conference Day 3 Friday 2 June 2000

Post Conference Workshops Friday 2 June 2000

Vendor Demonstration Sessions
Wednesday 31 May 2000

Thursday 1 June 2000

The QW2000 program is linked to speaker biographies and presentation
abstracts.

Click on a Speaker or on a Title to read the Presentation Summary and Author
Biography.

Paper descriptions will appear in a separate popup window.

REGISTER FOR QW2000

[BACK TO TOP]

T Tuesday 30 May 2000
PRE-CONFERENCE TUTORIALS

T Tuesday 30 May 2000
PRE-CONFERENCE TUTORIALS

8:30
-

12:00

Tutorial A1

Johanna
Rothman
(Rothman
Consulting

Group)
[USA]

Life as a
New Test
Manager

Tutorial B1

Norman
Schneidewind

(Naval
Postgraduate
School) [USA]
A Roadmap

to Distributed
Client Server

Software
Reliability

Engineering

Tutorial C1

Michael Deck
(Cleanroom

Software
Engineering,
Inc.) [USA]

Requirements
Analysis

Using Formal
Methods

Tutorial D1

Bill Deibler
(SSQC)
[USA]

Making the
CMM Work:
Streamlining
the CMM for

Small
Projects and

Organizations

Tutorial E1

Ross
Collard

(Collard &
Company)

[USA]
Test

Planning

Tutorial F1

G. Bazzana & E.
Fagnoni

(ONION s.r.l.)
[Italy]

Testing
Web-based
Applications:

Techniques for
Conformance

Testing

Tutorial G1

Ed Kit
(Software

Development
Technologies)

Software
Testing in the
Real World

12:00
-

1:30
TUTORIAL DAY LUNCH AND NETWORKING

1:30
-

5:00

Tutorial A2

Mr. Robert
Binder
(RBSC

Corporation)
How to

Write A Test
Design
Pattern

Tutorial B2

John Musa
(Consultant)
Developing

More Reliable
Software

Faster and
Cheaper

Tutorial C2

Tom Gilb
(Results, Inc.)
Requirements
Engineering
for Software
Developers
and Testers

Tutorial D2

Rob Baarda &
Tim Koomen

(IQUIP
Informatica

BV)
Stepwise

Improvement
of the Testing
Process using

TPI(tm)

Tutorial E2

Linda
Rosenberg,

Ruth
Stapko, &

Albert Gallo
(NASA
GSFC)

Risk-Based
Object

Oriented
Testing

Tutorial F2

Adrian Cowderoy
(MMHQ)

Cool Q - Quality
Improvement for
Multi-Disciplinary
Tasks in Website

Development

Tutorial G2

Chris Loosley
& Eric Siegel

(Keynote
Systems)

Web
Application

Performance

5:00
-

6:00
Welcome Networking Reception

[BACK TO TOP]

13th Annual International Software/Internet Quality Week 2000 (QW2000) -- Conference Program

http://www.soft.com/QualWeek/QW2K/qw2k.program.html (2 of 13) [5/5/2000 11:35:08 AM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/Papers/F1.html
http://www.soft.com/QualWeek/QW2K/Papers/F1.html
http://www.soft.com/QualWeek/QW2K/Papers/F1.html
http://www.soft.com/QualWeek/QW2K/Papers/F1.html
http://www.soft.com/QualWeek/QW2K/Papers/F1.html
http://www.soft.com/QualWeek/QW2K/Papers/F1.html
http://www.soft.com/QualWeek/QW2K/Papers/F1.html
http://www.soft.com/QualWeek/QW2K/Papers/F1.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage

8:30
-

12:00

Tutorial A1

Johanna
Rothman
(Rothman
Consulting

Group)
[USA]

Life as a
New Test
Manager

Tutorial B1

Norman
Schneidewind

(Naval
Postgraduate

School)
[USA]

A Roadmap to
Distributed

Client Server
Software
Reliability

Engineering

Tutorial C1

Michael
Deck

(Cleanroom
Software

Engineering,
Inc.) [USA]

Requirements
Analysis

Using Formal
Methods

Tutorial D1

Bill Deibler
(SSQC)
[USA]

Making the
CMM Work:
Streamlining
the CMM for

Small
Projects and

Organizations

Tutorial E1

Ross
Collard

(Collard &
Company)

[USA]
Test

Planning

Tutorial F1

G. Bazzana
& E.

Fagnoni
(ONION

s.r.l.) [Italy]
Testing

Web-based
Applications:
Techniques

for
Conformance

Testing

Tutorial G1

Ed Kit
(Software

Development
Technologies)

Software
Testing in the

Real World

12:00
-

1:30
TUTORIAL DAY LUNCH AND NETWORKING

1:30
-

5:00

Tutorial A2

Mr. Robert
Binder
(RBSC

Corporation)
How to

Write A Test
Design
Pattern

Tutorial B2

John Musa
(Consultant)
Developing

More Reliable
Software

Faster and
Cheaper

Tutorial C2

Tom Gilb
(Results,

Inc.)
Requirements
Engineering
for Software
Developers
and Testers

Tutorial D2

Rob Baarda
& Tim

Koomen
(IQUIP

Informatica
BV)

Stepwise
Improvement
of the Testing

Process
using TPI(tm)

Tutorial E2

Linda
Rosenberg,

Ruth
Stapko, &

Albert Gallo
(NASA
GSFC)

Risk-Based
Object

Oriented
Testing

Tutorial F2

Adrian
Cowderoy
(MMHQ)
Cool Q -
Quality

Improvement
for Multi

Disciplinary
Tasks in
Website

Development

Tutorial G2

Chris Loosley
& Eric Siegel

(Keynote
Systems)

Web
Application

Performance

5:00
-

6:00
Welcome Networking Reception

[BACK TO TOP]

Wednesday 31 May 2000
CONFERENCE DAY #1

QW2000 Exhibition: 10:00 AM to 6:00 PM

1
PLENARY SESSION

Plenary Session Introduction:
Edward Miller

(Software Research, Inc.)

Wednesday 31 May 2000
CONFERENCE DAY #1

QW2000 Exhibition: 10:00 AM to 6:00 PM

1
8:30

-
10:00

PLENARY SESSION

Plenary Session Introduction:
Edward Miller

(Software Research, Inc.)
Keynote 1P1:

Stu Feldman
(IBM)

Internet and E-Commerce: Issues and Answers

Keynote 1P2:
Bill Gilmore

(Intel Corporation)
The Intel Software Corporate Quality Network

10:00
-

10:30
REFRESHMENTS IN EXHIBIT HALL

2

10:30
-

12:00

Vendor
Technical

Track

Technology
Track

OO
Automation

Applications
Track

Conformance
&

Internationalization

Internet
Track

E-Commerce
Experience

Management
Track

Managing
Testing

QuickStart
Track

Session 2V1

Ms. Melissa
Borza

(Computer
Associates)
Enterprise

Change and
Configuration
Management

Paper 2T1

Michael
Silverstein

(SilverMark,
Inc.)

Automating
Testing of

Object-Oriented
Components

Using Intelligent
Test Artifacts

Paper 2A1

James Andrews
(The Open Group)

Automated
Conformance Testing

for IT & T Product
Certification

Paper 2W1

Ted Fuller
(Agency.com)
Notes From
The Front

Lines: How to
Test Anything

and Everything
on a Web Site

Paper 2M1

Joel Fleiss
(VeriTest)

The ABCs of
Managing a

Software
Testing Project

Session 2Q

James Bach
(Satisfice, Inc.)
The Heuristic
Approach to

Testing

13th Annual International Software/Internet Quality Week 2000 (QW2000) -- Conference Program

http://www.soft.com/QualWeek/QW2K/qw2k.program.html (3 of 13) [5/5/2000 11:48:40 AM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.board.html#miller
http://www.soft.com/QualWeek/QW2K/Papers/1P1.html
http://www.soft.com/QualWeek/QW2K/Papers/1P1.html

8:30
-

10:00

Keynote 1P1:
Stu Feldman

(IBM)
Internet and E-Commerce: Issues and Answers

Keynote 1P2:
Bill Gilmore

(Intel Corporation)
The Intel Software Corporate Quality Network

10:00
-

10:30
REFRESHMENTS IN EXHIBIT HALL

2

10:30
-

12:00

Vendor
Technical

Track

Technology
Track

OO
Automation

Applications
Track

Conformance
&

Internationalization

Internet
Track

E-Commerce
Experience

Management

Track

Managing
Testing

QuickStart
Track

Session 2V1

Ms. Melissa
Borza

(Computer
Associates)

Enterprise
Change and

Configuration
Management

Paper 2T1

Michael
Silverstein

(SilverMark,
Inc.)

Automating
Testing of

Object-Oriented
Components

Using
Intelligent Test

Artifacts

Paper 2A1

James Andrews
(The Open Group)

Automated
Conformance

Testing for IT & T
Product

Certification

Paper 2W1

Ted Fuller
(Agency.com)

Notes From
The Front

Lines: How to
Test Anything
and Everything
on a Web Site

Paper 2M1

Joel Fleiss
(VeriTest)

The ABCs of
Managing a

Software
Testing Project

Session 2Q

James Bach
(Satisfice, Inc.)
The Heuristic
Approach to

Testing

Session 2V2

Mr. Mark
VanName
(ZD Labs)

Benchmarking
the Future

Paper 2T2

James Elder &
Ricard

Roma-i-Dalfo
(Microsoft)

Object Based
Machine

Automation
(OSIRIS
Project)

Paper 2A2

Juichi Takahashi
(Florida Institute of

Technology)
Is Special Software
Testing Necessary
Before Releasing
Products to an

International
Market?

Paper 2W2

Steven Porter
(API /

Independent)
From Web Site
to Web App:

Ensuring
Quality in a

Complex
Environment

Paper 2M2

Johanna
Rothman
(Rothman
Consulting

Group)
The Influential
Test Manager

12:00
-

1:30

CONFERENCE LUNCH AND NETWORKING IN
EXHIBIT HALL

3

1:30
-

3:00

Vendor
Technical

Track

Technology
Track

Hi-Tech
Testing

Applications
Track

Using Technology

Internet
Track

WebSite
Performance I

Management

Track

Process
Feedback

QuickStart
Track

Session 3V1

Mr. Michael
R. Perdue
(Software

Development
Technologies)

Automating
Test Design

and Inspection

Paper 3T1

Robert T.
Bauer &

Russell F.
Ingram

(Levetate
Design

Systems)
Building a

Parallel Test
Environment

Paper 3A1

David W. Carman
(Telcordia

Technologies)
Measuring Test

Effectiveness: The
Use and Misuse of

Test Coverage

Paper 3W1

Alberto
Savoia

(Velogic Inc.)
The Science of
Website Load

Testing

Paper 3M1

Phil Lones
(Lucent

Technologies)
A Practical
Approach to

Testing
Software in an
Evolutionary

Delivery
Environment

Session 3Q

Robert V.
Binder
(RBSC

Corporation)
Best Practices

for
Object-Oriented

Systems

Session 3V2

Mr. Christian
Hote

(PolySpace)
Runtime Error

Detection

Paper 3T2

Robert Oshana
(ObjectSpace,

Inc.)
Performance

Engineering of
an Embedded

System
Application

Paper 3A2

Linda Hayes
(WorkSoft)

Table Driven
Testing: Making

Automation
Accessible

Paper 3W2

B. M. Subraya
& S. V.

Subrahmanya
(Infosys)

Performance
Testing: A
Methodical

Approach to
E-Commerce
Applications

Paper 3M2

Cem Kaner
(Attorney At

Law)
Yes, But What

Are We
Measuring?

3:00
-

3:30
REFRESHMENTS IN EXHIBIT HALL

4

3:30

Vendor
Technical

Track

Technology
Track

Test
Automation

Applications
Track

Production
Modes

Internet
Track

WebSite
Performance

II

Management

Track

Intellectual
Property

QuickStart
Track

-
5:00

Session 4V1

Mr. Steve
Nemzer

(VeriTest)
Zero Defect or
Simship? The
Global Testing

Challenge

Paper 4T1

Rainer Stetter
(Software

Factory GmbH
)

Software
Quality for
Embedded
Systems

Paper 4A1

William E.
Lorensen &
James Miller

(GE Corporate
Research &

Development)
Visualization

Toolkit Extreme
Testing: A
Production

Release Every Day

Paper 4W1

Pat Garverick
(Landmark
Systems

Corporation)
Testing the

Performance
Impact of a
Web-based
Application

Panel 4P

Doug Whitney
& Pete

Nordquist
(Intel

Corporation,
Home

Products
Group)

Protecting
Intellectual

Property in an
Open Source

World

PANEL
SESSION

Session 4Q

Tom Gilb
(Result

Planning
Limited)
Pitiful and
Powerful

Measures of
Software
Metrics

Session 4V2

Mr. John
Bowman

(Compuware
Corporation)
Test Process

and Test
Automation -
The Pathway
To Success

Paper 4T2

Mark
Blackburn &

Joseph
Fontaine
(Software

Productivity
Consortium)
Application of

the Test
Automation

Framework for
Model Analysis

and Test
Generation

Paper 4A2

Kevin
VanFlandern

(Microsoft, Inc.)
Benchmarking
Large Windows

Based Applications

Paper 4W2

Steven Rabin
(Interworld

Corp.)
eCommerce
Performance
Management
Lifecycle --

Benchmarking,
Methodology
and Criteria

5:00
-

6:00

EXPO RECEPTION
Drinks and hors d'oeuvres are served in the Expo Hall.

7:15

 QW2000 SPECIAL EVENT: Baseball at the New Pac Bell
Park

SF Giants vs. Philadelphia Phillies
Ticket Preference Procedure

[BACK TO TOP]

Thursday 1 June 2000
CONFERENCE DAY #2

QW2000 Exhibition: 10:00 AM to 6:00 PM
5 PLENARY SESSION

Session 4V2

Mr. John
Bowman

(Compuware
Corporation)
Test Process

and Test
Automation -
The Pathway
To Success

Paper 4T2

Mark Blackburn
& Joseph
Fontaine
(Software

Productivity
Consortium)

Application of
the Test

Automation
Framework for
Model Analysis

and Test
Generation

Paper 4A2

Kevin VanFlandern
(Microsoft, Inc.)

Benchmarking Large
Windows Based

Applications

Paper 4W2

Steven Rabin
(Interworld

Corp.)
eCommerce
Performance
Management
Lifecycle --

Benchmarking,
Methodology
and Criteria

5:00
-

6:00

EXPO RECEPTION
Drinks and hors d'oeuvres are served in the Expo Hall.

7:15

 QW2000 SPECIAL EVENT: Baseball at the New Pac
Bell Park

SF Giants vs. Philadelphia Phillies
Ticket Preference Procedure

[BACK TO TOP]

Thursday 1 June 2000
CONFERENCE DAY #2

QW2000 Exhibition: 10:00 AM to 6:00 PM
PLENARY SESSION

Plenary Session Introduction:
Edward Miller

(Software Research, Inc.)

13th Annual International Software/Internet Quality Week 2000 (QW2000) -- Conference Program

http://www.soft.com/QualWeek/QW2K/qw2k.program.html (6 of 13) [5/5/2000 11:46:22 AM]

http://www.soft.com/QualWeek/QW2K/Papers/4S.html
http://www.soft.com/QualWeek/QW2K/Papers/4S.html
http://www.sfgiants.com/
http://www.phillies.com/
http://www.soft.com/QualWeek/QW2K/qw2k.tickets.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.board.html#miller

5
8:30

-
10:00

Keynote 5P1:
Leon J. Osterweil

(Unviersity of Massachusetts)
Determining the Quality of Electronic Commerce Processes (5P1)

Keynote 5P2:
Mr. Rainer Pirker

(IBM / Austria)
The Need for Quality -- e-business Performance Testing (5P2)

10:00
-

10:30
REFRESHMENTS IN EXHIBIT HALL

6

10:30
-

12:00

Vendor
Technical

Track

Technology
Track

Advanced
Techniques I

Applications
Track

Software
Components

Internet
Track

Internet
Time

Management
Track

Practical Testing

QuickStart
Track

Session 6V1

Mr. Ted
Burnett

(Watchfire)
Why Web QA
Is Essential in
all Phases of

the
Development

Process

Paper 6T1

Alan Myrvold
(Entrust

Technologies
Limited)

Feeling Tcl-ish?
Applying Tcl to

Real Test Tasks

Paper 6A1

Jean Hartmann &
Claudio Imoberdorf
(Siemens Corporate

Research)
Functional Testing

of Distributed,
Component-Based

Software

Paper 6W1

Anand
Sundaram

(RSW
Software, Inc.)

Managing
E-Business
Quality in

Internet Time

Paper 6M1

Lisa Crispin
(TRIP.com)

Guerilla Tool
Selection

Session 6Q

Tobias G.
Mayer

(eValid, Inc.)
WebSite
Testing

Session 6V2

Michael
Aivazis

(ParaSoft
Corporation)
Methods for

Effective Unit
Testing

Paper 6T2

Elisabeth
Hendrickson
(Aveo Inc.)

Quality in an
ASP

Environment

Paper 6A2

Jerry Gao, Kamal
Gupta & Shalini

Gupta
(San Jose State

University)
Design for

Testability of
Software

Components

Paper 6W2

Lisa Crispin
(TRIP.com)

Stranger in a
Strange Land

-- Bringing
Quality

Assurance to
a Web Startup

Paper 6M2

Brian Lawrence &
Johanna Rothman

(Coyote Valley
Software /
Rothman

Consulting, Inc.)
Testing in the Dark

12:00
- 1:30

CONFERENCE LUNCH AND NETWORKING IN
EXHIBIT HALL

13th Annual International Software/Internet Quality Week 2000 (QW2000) -- Conference Program

http://www.soft.com/QualWeek/QW2K/qw2k.program.html (7 of 13) [5/5/2000 11:46:22 AM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/Papers/6Q.html
http://www.soft.com/QualWeek/QW2K/Papers/6Q.html
http://www.soft.com/QualWeek/QW2K/Papers/6Q.html
http://www.soft.com/QualWeek/QW2K/Papers/6Q.html

7

1:30
-

3:00

Vendor
Technical

Track

Technology
Track

Java

Applications
Track

COTS

Internet
Track

WebSite
Quality

Management
Track

Defect Tracking

QuickStart
Track

Session 7V1

Ms. Greta
Cohen and

Mr. Jim Baack
(Superior IS)
Outsourced

Testing for the
Web

Paper 7T1

Andreas Spillner
& Ulrich

Breymann
(Hochschule

Bremen)
Semantic

Differences
Between C++

and Java:
Consequences
for the Review

and Test
Process

Paper 7A1

Yingxu Wang
(Centre for Software

Engineering)
A Practical New

Approach to COTS
Testing

Paper 7W1

Jeanette
Folkes & Bert

Lamar
(Ogilvy

Interactive)
The

Challenges of
Web Testing

Paper 7M1

Patrick Copeland
(Microsoft)

Redesigning a
Testing

Organization for
Delivery to the

Web

Session 7Q

Brian Marick,
James Bach
& Cem Kaner

[USA]
Evaluating
Test Suites

Session 7V2

Mr. Bruce
Katz

(Rational)
Test Early,
Test Often:
Applying

Today's Best
Testing

Practices and
Techniques to

the Full
Software

Development
Lifecycle

Paper 7T2

Charles White
(Segue

Software, Inc.)
Functional
Testing of

CORBA based
Systems in Java

Paper 7A2

Scott Trappe
(Reasoning Inc.)
Find the Defects
that Traditional

Testing Misses with
Automated Software
Inspection Services

Paper 7W2

Andrea
MacIntosh &

Wolfgang
Strigel

(QA Labs Inc.)
The Living
Creature -

Testing Web
Applications

Paper 7M2

Rex Black
(Rex Black
Consulting

Services, Inc.)
The Fine Art of
Writing a Good

Bug Report

3:00 -
3:30 REFRESHMENTS IN EXHIBIT HALL

Vendor
Technical

Track

Technology
Track

Advanced
Techniques II

Applications
Track

Specifications

Internet
Track

Commercial
Quality

Management
Track

Certification

QuickStart
Track

13th Annual International Software/Internet Quality Week 2000 (QW2000) -- Conference Program

http://www.soft.com/QualWeek/QW2K/qw2k.program.html (8 of 13) [5/5/2000 11:56:44 AM]

http://www.soft.com/QualWeek/QW2K/Papers/7T2.html
http://www.soft.com/QualWeek/QW2K/Papers/7T2.html
http://www.soft.com/QualWeek/QW2K/Papers/7T2.html
http://www.soft.com/QualWeek/QW2K/Papers/7T2.html
http://www.soft.com/QualWeek/QW2K/Papers/7T2.html

8

3:30
-

5:00

Session 8V1

Mr. Jim
Bampos

(Vanteon)
Testing

E-Commerce
Applications

Paper 8T1

Atif M. Memon,
Martha E.

Pollack, & Mary
Lou Soffa

(University of
Pittsburgh)

[USA]
A

Planning-Based
Approach to GUI

Testing

Paper 8A1

John Musa
(Consultant)

A Good Idea! But
How Do We Get

People To Use It?

Paper 8W1

Adrian
Cowderoy
(MMHQ)
Technical

Quality is Just
the Start --
The Real
Battle is

Commercial
Quality

Paper 8M1

D. J. Law
(QWest

Communications)
Certification
Programs for

Software Quality
and Test

Professionals

Session 8Q

Thomas
Drake
(ICCI)

Testing
Network
Based

Software
Systems --
The Future

Frontier

Session 8V2

Mr. Mark
Myers

(Teradyne
SST)

A
Model-Based
Technique for
Test Program

Creation

Paper 8T2

W. T. Tsai, et. al.
(Arizona State

University)
Automatic Test

Case Generation
for GUI

Navigation (SB1)

Paper 8A2

Giuseppe Lami,
Stefania Gnesi,
Mario Fusani &

Fabrizio Fabbrini
(Istituto di

Elaborazione
dell'Informazione)

[Italy]
Quality Evaluation

of Software
Requirements
Specifications

Paper 8W2

Steven
Watson

(CNET Inc.)
Quality

Assurance
Challenges in
the Internet

Industry

Paper 8M2

Marc Zasada
(VeriTest)

What Does
Application

Certification Mean
in the Software

Industry?

5:00 -
6:30

Nick Borelli, Panel 8P Chair
Special Panel Session: ASK THE QUALITY EXPERTS!

Stump the Quality Experts If You Can!
Post Your Questions LIVE on the Web!

QW2000 Advisory Board Members Will Answer All!
(In Cooperation With Microsoft Corporation)

[BACK TO TOP]

13th Annual International Software/Internet Quality Week 2000 (QW2000) -- Conference Program

http://www.soft.com/QualWeek/QW2K/qw2k.program.html (9 of 13) [5/5/2000 11:56:44 AM]

http://msoffweb.rte.microsoft.com/
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage

3:30
-

5:00

Session 8V1

Mr. Jim
Bampos
(Vanteon)

Testing
E-Commerce
Applications

Paper 8T1

Atif M. Memon,
Martha E.
Pollack, &

Mary Lou Soffa
(University of
Pittsburgh)

[USA]
A

Planning-Based
Approach to
GUI Testing

Paper 8A1

John Musa
(Consultant)

A Good Idea! But
How Do We Get

People To Use It?

Paper 8W1

Adrian
Cowderoy
(MMHQ)
Technical
Quality is
Just the

Start -- The
Real Battle

is
Commercial

Quality

Paper 8M1

D. J. Law
(QWest

Communications)

Certification
Programs for

Software Quality
and Test

Professionals

Session 8Q

Thomas A.
Drake

(CRTI)
Testing
Network
Based

Software
Systems --
The Future

Frontier

Session 8V2

Mr. Mark
Myers

(Teradyne
SST)

A
Model-Based
Technique for
Test Program

Creation

Paper 8T2

W. T.
Tsai

(Arizona
State Univers.)

Auto. Test
Case Generati-
on for GUI

Navigation

Paper 8A2

Giuseppe Lami,
Stefania Gnesi,
Mario Fusani &

Fabrizio Fabbrini
(Istituto di

Elaborazione
dell'Informazione)

[Italy]
Quality Evaluation

of Software
Requirements
Specifications

Paper 8W2

Steven
Watson

(CNET Inc.)
Quality

Assurance
Challenges

in the
Internet
Industry

Paper 8M2

Marc Zasada
(VeriTest)
What Does
Application
Certification
Mean in the

Software
Industry?

5:00
-

6:30

Nick Borelli, Panel 8P Chair
Special Panel Session: ASK THE QUALITY EXPERTS!

Stump the Quality Experts If You Can!
Post Your Questions LIVE on the Web!

QW2000 Advisory Board Members Will Answer All!
(In Cooperation With Microsoft Corporation)

[BACK TO TOP]

Friday 2 June 2000
CONFERENCE DAY #3

9

8:30

Special
General

Panel
Session

Technology
Track

UML
Methods

Applications

Track

Risk

Internet
Track

Link
Checking

Management

Track

Process
Innovations

QuickStart
Track

Friday 2 June 2000
CONFERENCE DAY #3

9

8:30
-

10:00

Special
General

Panel
Session

Technology
Track

UML Methods

Applications
Track

Risk

Internet
Track

Link
Checking

Management
Track

Process
Innovations

QuickStart
Track

Panel 9P

Mr. Brian
Lawrence

(Panel
Chair)

Panelists:
Ms.

Johanna
Rothman

Esther
Derby

Maureen
O'Hara.

How Can I
Tell When

My
Project's in
Trouble?

Paper 9T1

Sam
Guckenheimer

(Rational
Software

Corporation)
Enabling
Testable

Architectures
with UML

Paper 9A1

Rob Baarda
(IQUIP

Informatica BV)
Risk Based Test

Strategy

Paper 9W1

Wen-Kui
Chang &

Shing-Kai Hon
(Tunghai

University)
A Systematic

Framework for
Ensuring Link
Validity under
Web Browsing
Environments

Paper 9M1

Hong Guo,
Graham King,

Margaret Ross &
Geoffe Stable
(Southampton

Institute)
Using

BOOTSTRAP to
Improve the

Management of
Software Process

in a Virtual
Software

Organization?

Session 9Q

Otto Vinter
(DELTA Danish

Electronics, Light &
Acoustics)

Experience-Based
Approaches to

Process
Improvement

Paper 9T2

Tim Szymanski
(Advanced
Software

Technologies,
Inc.)

Quality Starts
with

Requirements:
How the UML

Can Help

Paper 9A2

Jerrold Landau
(IBM Canada)
An Overview of

Testing
Methodology

and Experience
at IBM Corepoint

Banking
Solutions

Paper 9W2

Michael Weider
(Watchfire)
The Web

Application
Process:

Development &
Testing

Paper 9M2

Richard
Kasperowski

(Altisimo
Computing)

Opportunistic
Software Quality

10:00
-

10:30
REFRESHMENTS

PLENARY SESSION

13th Annual International Software/Internet Quality Week 2000 (QW2000) -- Conference Program

http://www.soft.com/QualWeek/QW2K/qw2k.program.html (10 of 13) [5/5/2000 11:48:41 AM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/Papers/9T1.html
http://www.soft.com/QualWeek/QW2K/Papers/9T1.html
http://www.soft.com/QualWeek/QW2K/Papers/9T1.html
http://www.soft.com/QualWeek/QW2K/Papers/9T1.html
http://www.soft.com/QualWeek/QW2K/Papers/9T1.html
http://www.soft.com/QualWeek/QW2K/Papers/9T1.html
http://www.soft.com/QualWeek/QW2K/Papers/9W1.html
http://www.soft.com/QualWeek/QW2K/Papers/9W1.html
http://www.soft.com/QualWeek/QW2K/Papers/9W1.html
http://www.soft.com/QualWeek/QW2K/Papers/9W1.html
http://www.soft.com/QualWeek/QW2K/Papers/9W1.html
http://www.soft.com/QualWeek/QW2K/Papers/9W1.html
http://www.soft.com/QualWeek/QW2K/Papers/9W1.html
http://www.soft.com/QualWeek/QW2K/Papers/9W1.html
http://www.soft.com/QualWeek/QW2K/Papers/9W1.html
http://www.soft.com/QualWeek/QW2K/Papers/9W2.html
http://www.soft.com/QualWeek/QW2K/Papers/9W2.html
http://www.soft.com/QualWeek/QW2K/Papers/9W2.html
http://www.soft.com/QualWeek/QW2K/Papers/9W2.html
http://www.soft.com/QualWeek/QW2K/Papers/9W2.html
http://www.soft.com/QualWeek/QW2K/Papers/9W2.html
http://www.soft.com/QualWeek/QW2K/Papers/9M2.html
http://www.soft.com/QualWeek/QW2K/Papers/9M2.html
http://www.soft.com/QualWeek/QW2K/Papers/9M2.html
http://www.soft.com/QualWeek/QW2K/Papers/9M2.html

10
10:30

-
12:30

Plenary Session Introduction:
Edward Miller

(Software Research, Inc.)

Keynote 10P1:
Marcelo Dalceggio

(Banco Rio de la Plata SA) [Argentina]
Automated Software Inspection Process

QWE'99 Best Presentation

Keynote 10P2:
Sanjay Jejurikar

Director of Test for Windows 2000 (Microsoft)
Engineering Process of Windows 2000

Keynote 10P3:
Gene Spafford

Director, CERIAS (Purdue University)
Information Security Requires Assurance

12:30
- 2:00

CONFERENCE LUNCH AND AWARDS
PRESENTATION

[BACK TO TOP]

Friday 2 June 2000
POST-CONFERENCE WORKSHOPS

W
2:00

-
5:00

Technology
Workshop W1

Douglas Hoffmann
(Software Quality

Methods LLC) [USA]
Oracle Strategies for
Automated Testing

Applications
Workshop W2

Cem Kaner
(Attorney at Law)

Bug Advocacy

Internet
Workshop W3

Edward Miller
(Software Research,

Inc.)
Achieving WebSite

Quality

Management
Workshop W4

Robert Sabourin
(Purkinje Inc.)

The Effective SQA
Manager - Getting

Things Done

13th Annual International Software/Internet Quality Week 2000 (QW2000) -- Conference Program

http://www.soft.com/QualWeek/QW2K/qw2k.program.html (11 of 13) [5/5/2000 11:48:41 AM]

http://www.soft.com/QualWeek/QW2K/qw2k.board.html#miller
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage

[BACK TO TOP]

SB

Standby Presentations

Yongzhong Tu
(University of Minnesota)

An Approach to Testing Component-Based
Software (SB2)

Ron Silacci
(Lucent Technologies Inc.)
Principles of Multi-System

Integration (SB3)

Giora Ben-Yaacov
(Synopsys Inc.)

Effective Software Testing
at a Leading Electronic

Design Automation (EDA)
Company (SB4)

[BACK TO TOP]

Vendor Demonstration Sessions
Wednesday 31 May 2000 Thursday 1 June 2000

10:00 10:00

10:30 10:30 LDRA

11:00 SaleView Systems 11:00

11:30 Teradyne SST 11:30

12:00 12:00

12:30 12:30

1:00
Software Development

Technologies
1:00 Superior IS

1:30 TechExcel 1:30

2:00 MuTek Solutions 2:00 Software Emancipation Technology

2:30 SilverMark 2:30 Soffront

3:00 eValid WebTest Services 3:00 eValid WebTest Services

3:30 3:30

4:00 4:00

13th Annual International Software/Internet Quality Week 2000 (QW2000) -- Conference Program

http://www.soft.com/QualWeek/QW2K/qw2k.program.html (12 of 13) [5/5/2000 11:48:41 AM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage

4:30 4:30

5:00 5:00

5:30 5:30

[BACK TO TOP]

13th Annual International Software/Internet Quality Week 2000 (QW2000) -- Conference Program

http://www.soft.com/QualWeek/QW2K/qw2k.program.html (13 of 13) [5/5/2000 11:48:41 AM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
http://www.soft.com/QualWeek/QW2K/qw2k.program.html#topofpage
mailto:info@soft.com
http://www.soft.com/srhome.html
http://www.soft.com/Info/index.html
http://www.soft.com/Users/index.html
http://www.soft.com/Jobs/index.html
http://www.soft.com/Partners/index.html
http://www.soft.com/Distributors/index.html
http://www.soft.com/Corporate/index.html
http://www.soft.com/Institute/index.html
http://www.soft.com/QualWeek/index.html
http://www.soft.com/Support/index.html
http://www.soft.com/Products/screen.html
http://www.soft.com/AppNotes/index.html
http://www.soft.com/Solutions/index.html
http://www.soft.com/Technology/index.html
http://www.soft.com/News/index.html
http://www.soft.com/contents.html
http://www.soft.com/srhome.html

QW2K Tutorial A1

Ms. Johanna Rothman
(Rothman Consulting Group)

Life as a New Test Manager

BACK TO QW2000 PROGRAM

Key Points

Using your project's definition of quality to help define when the product is ready to ship●

How to define measurable criteria●

When and what to negotiate with the project team●

How to assess the product against the criteria●

Presentation Abstract

Congratulations! You've just been promoted to test manager. Now what do you do? This tutorial walks
you through some of the requirements for succeeding as a test manager: creating a test group and
bringing new people into the organization; organizing and managing the testing; working with the
project manager and the rest of the project team; deciding how, when, and what to invest in your test
infrastructure.

About the Author

Johanna Rothman observes and consults on managing high technology product development. She
works with her clients to find the leverage points that will increase their effectiveness as organizations
and as managers, helping them ship the right product at the right time, and recruit and retain the best
people.

Johanna publishes "Reflections", an acclaimed quarterly newsletter about managing product
development. Johanna's handbook, "Hiring Technical People: A Guide to Hiring the Right People for
the Job," has proved a boon to perplexed managers, as have her articles in Software Development,
Cutter IT, IEEE Computer, Software Testing and Quality Engineering, and IEEE Software.

Johanna is the founder and principal of Rothman Consulting Group, Inc., and is a member of the
clinical faculty of The Gordon Institute at Tufts University, a practical management degree program for
engineers.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/A1.html [4/28/2000 1:05:03 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2K Seminar B1

Dr. Norman Schneidewind
(Naval Postgraduate School)

A Roadmap to Distributed Client-Server
Software Reliability Engineering

BACK TO QW2000 PROGRAM

Key Points

Help practitioners implement or improve a software reliability program in their organizations, using a
step-by-step approach based on an enhanced version of the ANSI/AIAA Recommended Practice for
Software Reliability.

●

Use case studies from the NASA Space Shuttle and the United States Marine Corps logistical systems.●

Emphasize software reliability for distributed systems.●

Abstract...

Background

In general, existing software reliability prediction methodologies do not address the characteristics of
distributed systems, including client-server systems. This is an amazing situation given the importance
of distributed systems in contemporary society. The reason for this situation is the rapid technological
development of distributed systems and networks, most notably the explosive growth of the Internet.
This rapid growth has made it difficult for the software reliability community to respond to the
challenge of the new technology. This tutorial was developed to address this deficiency.

Objective

The objective of this tutorial is to help practitioners implement or improve a software reliability program
in their organizations, using a step-by-step approach based on an enhanced version of the ANSI/AIAA
Recommended Practice for Software Reliability and case studies from the NASA Space Shuttle and
the United States Marine Corps logistical systems. Modeling methods, prediction techniques, and
defect analysis for distributed systems will be emphasized

Scope

In broad terms, implementing a software reliability program is a two-phased process. It consists of (1)
identifying the reliability goals and (2) testing the software to see whether it conforms to the goals. The
reliability goals can be ideal (e.g., zero defects) but should have some basis in reality based on
tradeoffs between reliability and cost. The testing phase is more complex because it involves
collecting raw defect data and using it for assessment and prediction.

These phases require a number of steps for their implementation. The following steps will be
presented as a process for an organization to develop a software reliability program. These steps

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/B1.html (1 of 2) [4/28/2000 1:05:11 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

provide a structured approach to the software reliability process. Each step will be discussed to
provide a good understanding of the entire software reliability process. The software reliability steps
and outline of the tutorial are as follows:

State the Reliability Requirement●

Establish a Measurement Framework●

Identify the Operational Profile●

Establish Problem Severity Levels●

Collect the Data●

Estimate Model Parameters●

Select the Optimal Set of Failure Data●

Test the Software●

Make Reliability Predictions●

Adapt the Process For Distributed System Predictions●

Validate the Model●

Assess the Risks of Deploying the Software●

Make Reliability Decisions●

Use Software Reliability Tools●

- The new SMERFS3 Windows-based system and software engineering reliability tool will be used to
illustrate software reliability assessment and prediction.

About the Author

Dr. Norman Schneidewind is Professor of Information Sciences and Director of the Software Metrics
Research Center at the Naval Postgraduate School. He is the developer of the Schneidewind software
reliability model, recommended by the American National Standards Institute of Aeronautics and
Astronautics Recommended Practice for Software Reliability.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/B1.html (2 of 2) [4/28/2000 1:05:11 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2K Tutorial C1

Mr. Michael Deck
(Cleanroom Software Engineering, Inc.)

Requirements Analysis Using Formal Methods

BACK TO QW2000 PROGRAM

Key Points

Participants will be introduced to formal notations and structures for reducing the ambiguity inherent in natural
language specification. For developers, this will allow a thorough understanding of potential problems prior to
development and permits inspections that focus on correctness evaluation. For testers, this permits
understanding of what constitutes a testing "failure" and will also supports the construction of better testing
models.

●

Participants will learn how to use functional models for isolating and then removing incompleteness and
nondeterminism from specifications.

●

Participants will learn techniques for analyzing the product's input domain especially domain components that
may be overlooked e.g. system environment influences.

●

Participants will see how formal models can be applied gradually and informally.●

Presentation Abstract

This half-day tutorial will show testers and developers how they can use formal methods to analyze
and improve software requirements. One of the significant problems of development and testing is
having to work from inadequate, incomplete, ambiguous specification documents. This tutorial will
introduce informal ways engineers can "think formally" about specification documents to reveal
domain gaps, incompleteness, and other problem spots before they have too great an impact on the
testing process. We will use a combination of the functional/denotational and model-based
approaches.

About the Author

Michael Deck is an internationally-recognized expert in Cleanroom software engineering practices. His
consulting company, Cleanroom Software Engineering, Inc., specializes in training project teams to
tailor and use Cleanroom practices to solve real-life software process problems.

The company also practices what it teaches, applying Cleanroom practices to contract
software-development projects. From 1982 to 1993 he was a member of the IBM Cleanroom Software
Technology Center, where he worked closely with the inventors of the Cleanroom approach.

He has a BA in Mathematics from Kalamazoo College and an MS in Computer Science from the
University of Maryland, College Park. His current research interests include application of Cleanroom
to object-oriented development, real-time and embedded software, and highly reliable systems. He
has published widely on various Cleanroom topics.

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/C1.html (1 of 2) [4/28/2000 1:05:21 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2K Tutorial D1

Mr. Bill Deibler
(SSQC)

Making the CMM Work: Streamlining the
CMM for Small Projects and Organizations

BACK TO QW2000 PROGRAM

Key Points

Implement a realistic and useful strategy for deploying software development practices in small organizations
and projects

●

Simplify the CMM to support appropriate, effective, flexible software development processes for any small
organization or project

●

Resolve apparent discrepancies between the guidance in the CMM and the needs of small, commercial and
internal software development projects and organizations

●

Identify and prioritize elements of advanced levels that should be considered by every organization.●

Abstract...

The SEI Software CMM is a comprehensive model that can serve as a basis for assessing and
improving the effectiveness of software development organizations. The CMM was derived from the
requirements of government purchasing agencies overseeing large, complex, third-party development
projects. Because of their large project focus, the practices described in the CMM can appear to small,
internal, or commercial software development organizations to be inapplicable or burdensome and
bureaucratic. Version 1.1 of the CMM is published in two technical reports containing a total of nearly
600 pages. The size of the CMM makes it difficult to uncover the interrelationships among the
elements that are essential to tailoring the model to a small software development environment. It also
makes the model intimidating.

About the Author

William J. Deibler II has an MSc. in Computer Science and 20 years experience in the computer
industry, primarily in the areas of software and systems development, software testing, and software
quality assurance. Bill has extensive experience in managing and implementing CMM- and ISO
9001-based process improvement in software engineering environments. Robert Bamford has an MA
in mathematics, and has managed training development, technical publications, professional services,
and third-party software development. His over 20 years of experience include the implementation of a
Crosby-based Total Quality Management System, facilitating quality courses, managing education
teams, and serving on a corporate quality council.

Bob and Bill are the principals of SSQC. Since 1990, SSQC has specialized in supporting
organizations in the definition and implementation of Software Engineering Practices, Software Quality

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/D1.html (1 of 2) [4/28/2000 1:05:26 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Assurance and Testing, Business Process Reengineering, ISO 9000 Registration and CMM
implementation. SSQC offers HM2, a unique, hybrid appraisal method that defines and correlates the
position of an organization with respect to both ISO 9001 and the CMM. The results of an HM2
assessment are a plan and framework for improving software engineering processes and for
implementing the requirements of the two models.

Bob and Bill have developed and published numerous courses, auditing tools, research papers, and
articles on interpreting and applying the ISO 9000 standards and guidelines and the SEI Capability
Maturity Model for Software. Their articles have appeared in McGraw Hill's Quality Systems Update,
IEEE COMPUTER, McGraw Hill's ISO 9000 Handbook, CrossTALK, and Software Marketing Journal.

They have presented research papers at numerous national and international conferences, including
those sponsored by the American Society for Quality Control (ASQC), Pacific Northwest Software
Quality (PNSQC), the Software Publishers Association (SPA), Software Technology Support Center
(STSC), the Software Engineering Institute (SEI) and Software Research Inc.. Their courses have
been attended by software engineering professionals from many of the country's leading technology
companies. Their courses have been sponsored for their members by professional associations,
including the ASQC, CSU Long Beach's Software Engineering Forum for Training, Semiconductor
Equipment and Materials International (SEMI), Software Engineering Institute (SEI), UC Berkeley and
UC Santa Cruz.

They are active United States TAG members in the ISO/IEC JTC1 SC7 - Software Engineering
Standards subcommittee which is responsible for the development and maintenance of ISO 12207
and ISO 15504 (SPICE). Their software development clients have successfully achieved ISO
registration and advanced CMM maturity levels.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/D1.html (2 of 2) [4/28/2000 1:05:26 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2K Tutorial E1

Mr. Ross Collard
(Collard & Company)

Test Planning

BACK TO QW2000 PROGRAM

Abstract...

Writing effective test plans is an essential survival skill for testing & QA professionals. The objective of
this workshop is to develop the participants' skills in developing system test plans. The core of the
workshop is hands-on practice, where the participants actually draft a test plan for a realistic case
study.

Workshop Description

The case study for this workshop begins: "Congratulations! (Or condolences.) You have just been
appointed the test team leader for a new, mission-critical project for your organization. The application
uses client/server, Web and data base technology. This application and the situation background are
described in the next few pages. The senior managers are confident you will do a good job, and have
asked you to give them a detailed presentation on how you will proceed. Your presentation has been
scheduled for NEXT WEEK. What will you tell them???"

Target Audience

Systems testers & quality assurance professionals, at the beginning to intermediate levels, and also
systems analysts and designers, software engineers and programmers, project leaders, auditors, and
users who are involved in systems testing.

Instructional Approach

This workshop shows the participants how to: o Analyze real-world test situations. o Identify and
understand the key issues the test planner needs to master, in developing the test plan. o Develop
workable test plans with a reasonable assurance of test coverage and reliability.

In small teams, participants work on a series of real-life test planning scenarios based on the case
study. For each scenario, we will go through four steps: (a) the instructor explains the techniques
which are most likely to apply and introduces the exercise, (b) each group develops its solution, (c) the
group reviews and critiques a suggested model answer, and (d) the entire class compares results and
discusses the issues from the exercise. We know that having fun and testing are a strange mix of
concepts in one sentence, but the intention is to both learn and have some fun too.

Exercises

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/E1.html (1 of 2) [4/28/2000 1:05:48 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

The core of the workshop is writing a draft of a test plan, in a series of exercises. These exercises
take 20 to 30 minutes each, and each one is followed by review and discussion by the entire class.
The questions addressed by each team in the series of exercises are as follows:

Test Objectives●

Test Scope and Priorities●

Risk Strategy●

Test Entry & Exit Criteria●

Test Resources●

Test Project Work Plan●

Allowing for Contingencies●

Test Plan Format and Organization●

Author Bio...

Ross Collard is a consultant who specializes in software testing & QA. Currently, he is working as a
testing consultant for American Express, AT&T, Cisco, General Electric, IBM, Intel and Lucent.

Ross Collard has been a keynote speaker for several national and international conferences on
software testing and quality assurance. He has conducted seminars for businesses, governments and
universities, including George Washington, Harvard and New York Universities, MIT, U.C. Berkeley
and UCLA.

He has a BE in Electrical Engineering from the University of New Zealand (where he grew up), an MS
in Computer Science from the California Institute of Technology and an MBA from Stanford University.
His set of books on software testing is due to be published next year.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/E1.html (2 of 2) [4/28/2000 1:05:48 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2K Tutorial F1

Dr. G. Bazzana & E. Fagnoni
(ONION s.r.l.)

Testing Web-based Applications: Techniques
for Conformance Testing

BACK TO QW2000 PROGRAM

Presentation Abstract

The tutorial focuses on testing methods and tools which can be successfully applied to the testing of
Web-based applications, notably:

Internet WWW servers●

Intranet dynamic applications●

Extrenet e-commerce application

For each application, the following aspects are dealt with:

●

testing peculiarities●

testing methods●

testing techniques●

testing tools●

case studies●

The tutorial is constituted of over 150 slides which are constantly kept up-to-date w.r.t the
unprecedented growth rate and dynamism of the Internet technologies and e-business. The
distinguishing feature of the tutorial is that it combines methodological aspects with in-depth
knowledge and experience of technical aspects, together with an overview of over 20 testing tools
which can be applied depending on various phases.

About the Author

Gualtiero Bazzana is Partner and Managing Director of ONION S.p.A., an Italian SME specialised in
the fields of sw communications, technologies, consulting (for more details please refer to the . Onion
Home Page.

He matured and exploited know-how in conducting various medium sized and large projects for
several companies in various application domains (telecommunications, data processing, MIS,
process control, ecc.), covering topics like: sw development and testing, testing methods and tools,
quality planning, test planning, reliability analysis, software product evaluation, process assessment
and improvement, definition of quality systems in accordance to ISO 9001 and 9000/3, reviews and
inspections, FDA computer system validation and so forth. He has matured significant technical
experiences especially in the telecommunications domain (notably: switching systems and GSM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/F1.html (1 of 2) [4/28/2000 1:05:55 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://net.onion.it/
http://net.onion.it/

mobile radio systems) in CIM and in networking, including Internet/ Intranet/ Extranet services and
solutions.

His research activity spanned in various fields of software engineering, ranging from Petri Nets to
development methodologies, functional and structural test coverage, metrics and related tools, CAST,
reliability evaluation, software development process evaluation and improvement, management by
metrics, software product quality evaluation, security, technology transfer and total quality
management techniques. He has acted as Project Leader of several European Projects within the
ESPRIT initiative.

He is member of the Advisory Committee of the W3C (World Wide Web Consortium) and is author of
over 50 publications at international conferences/ referred journals.

He can be contacted by e-mail at: gb@onion.it.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/F1.html (2 of 2) [4/28/2000 1:05:55 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2000 Tutorial G1

Edward Kit
(Software Development Technologies)

Software Testing in the Real World

BACK TO QW2000 PROGRAM

Key Points

This tutorial will prepare you to perform cost-effective analysis, testing, and overall evaluation of a software product
or system.

Learn the essentials of performing cost-effective analysis, testing and overall evalution of software.●

Aquire a vision for testing and identify keys to testing success and discover practical, effective, proven test
methods.

●

Review practical use of measurement, standards, and risk management and how to develop a testing
improvement action plan.

●

About the Author

Edward Kit, founder and president of Software Development Technologies, is well known as a test
expert, author, and keynote speaker at testing conferences. His best-selling book, Software Testing in
the Real World: Improving the Process, has been adopted as a standard by companies around the
world such as Sun Microsystems, Exxon, Chase Manhattan Bank and Cisco Systems.

His feature articles in Software Development Magazine have outlined new state-of-the-practice test
automation models that are currently being adopted around the world. Mr. Kit continues to advise
clients on bringing practical and proven software quality practices to their development efforts.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/G1.html [4/28/2000 1:06:10 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2K Tutorial A2

Mr. Robert Binder
(RBSC)

How To Write A Test Design Pattern

BACK TO QW2000 PROGRAM

Key Points

An overview of patterns in software development.●

The test design pattern schema.●

Development of several actual test design patterns.●

Participant pattern development breakout.●

Discussion.●

Patterns for pattern development.●

Presentation Abstract

A Test Design Pattern expresses a commonly used solution strategy for a recurring test design
problem. The Test Design Pattern template is a list of questions that must be answered to articulate
such a strategy. This tutorial introduces concepts and techniques for development of test design
patterns.

A successful pattern is much more than narrow synopsis of technique, leading some people to
observe that patterns are "discovered" and not "developed". Concepts will be presented for identifying
possible patterns and validating pattern proposals.

Participants will work on pattern identification in a small group breakout sessions and discuss their
results.

About the Author

Robert V. Binder is the developer of the test design pattern schema and author of Testing
Object-Oriented Systems: Models, Patterns, and Tools, which presents 37 test design patterns.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/A2.html [4/28/2000 1:06:46 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2K Tutorial B2

Dr. John Musa
(Consultant)

Developing More Reliable Software Faster and
Cheaper

BACK TO QW2000 PROGRAM

Key Points

Software Reliability Engineering (SRE) helps you develop more reliable software faster and cheaper.●

SRE is a standard, proven, widespread best practice.●

This tutorial quickly, efficiently teaches you the practical basics of how to apply SRE to your project.●

Presentation Abstract

SRE is based on two powerful ideas:
Determine how often your customers will use the various functions of your product; then focus
your resources in proportion to use and criticality. This approach greatly increases your
development efficiency and hence your effective resource pool for adding customer value to
your product.

●

Further increase customer value by setting quantitative reliability objectives that precisely
balance customer needs for reliability, timely delivery, and cost; engineer project strategies to
meet them; and track reliability during test to guide release.

●

You will learn how to:
Determine the reliability / availability your customers need for your product and engineer your
process to deliver it

●

Develop operational profiles to describe how customers will use your product●

Use operational profiles to:
Increase development efficiency❍

Allocate test cases and test time efficiently❍

Make test represent field use❍

●

Process failure data to:
Certify components you acquire❍

Track reliability growth and guide release of systems you develop❍

●

About the Author

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/B2.html (1 of 2) [4/28/2000 2:22:48 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

John D. Musa is an independent consultant. He was formerly Technical Manager of Software
Reliability Engineering (SRE) at AT&T Bell Laboratories, Murray Hill, NJ. He has varied and extensive
experience as a software developer and software development manager.

John Musa is one of the creators of the field of software reliability engineering (SRE). Principal author
of the highly-acclaimed pioneering book "Software Reliability: Measurement, Prediction, Application"
(McGraw-Hill), he has published some 100 papers. His new book "Software Reliability Engineering:
More Reliable Software, Faster Development and Testing" (McGraw-Hill) focuses on practice. The
IEEE elected him Fellow in 1986 for his many seminal contributions. He was recognized in 1992 as
the person who had contributed the most to testing technology. His leadership has been noted by
every recent edition of Who's Who in America and American Men and Women of Science.

Musa is widely recognized as the leader in the practical application of SRE. He initiated and
spearheaded SRE practice at AT&T, resulting in its selection as a "Best Current Practice" and leading
the team that codified that practice. He was involved in developing most of the details. His many
contributions include the concept of execution time (used almost universally in the field today), the
distinction between failures and faults, the operational profile and all its related technology, the ideas
of operational development, Reduced Operation Software (ROS), the fault exposure ratio and
software reliability prediction, and the integration of software reliability engineering into all phases of
the software development process. He has been involved for some 25 years in deploying the practice,
first within AT&T and afterwards worldwide through his consulting work.

He is an experienced international speaker and teacher (over 200 major presentations) with
consistently outstanding feedback. One of the founders of the IEEE Technical Committee on Software
Reliability Engineering, he is closely networked with the other leaders in the field, providing a broad
perspective.

(John Musa's Home Page)
(j.musa@ieee.org

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/B2.html (2 of 2) [4/28/2000 2:22:48 PM]

http://members.aol.com/JohnDMusa/index.html
mailto:j.musa@ieee.org
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2000 Tutorial C2

Mr. Tom Gilb
(Result Planning Limited)

Requirements Engineering for Software
Developers and Testers

BACK TO QW2000 PROGRAM

Presentation Abstract

A. Narrative Description 40-60% of all software bugs which escape test to the field user have been
traced to requirements and design specifications before coding. It has then been proved that
Inspecting the specifications sharply reduces this problem. This workshop will explore all aspects of
Specification Quality Control in a hands on practical workshop. Participants will actively experience
the technology necessary to attack this quality challenge.

B. Learning Objectives. 1. To learn the problem and the solutions mainly by means of personal
experience. You will get a series of individual tasks which will teach you basic principles of
specification and quality control of specification.

C. Detailed Outline 1. The Ambiguity Test: proving that specifications are unintelligible.

2. Rules: Selecting strong standards for specification which enable quality control.

3. Process Control: Deciding on the economically allowable Major Defect density allowed for a
specification to be released to your colleagues

4. Planning: Selecting a suitable sample to check. Selecting checklists. Allocating specialist checking
roles on the team. Deciding on checking rates using optimum rate data.

5. Checking: Individual effort to find defects, and especially Major defects.

6. Data Collection: Gathering data on the checking phase: defects, Majors, Rate, Sample size.

7. Extrapolation: Calculating probable team result of unique Major defects/ Logical Page. Calculating
total defect density. Calculating defects remaining after corrections {per page, total}. Calculating total
future rework costs based on remaining Major defects.

8. Drawing Conclusions: Can the document exit according to our Exit Conditions? If not, what should
we do?

9. Observations. What did you learn? What surprised you the most? What do you think you should do
back at your own work about these things? What barriers do you see to doing them? What can you do
to remove the barriers?

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/C2.html (1 of 2) [4/28/2000 2:23:31 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

About the Author

Tom Gilb is an independent consultant, teacher and author. He works mainly in UK, Europe and North
America. He is resident in Norway.

Tom coined the term 'Software Metrics' with the publication of his book of the same name in 1976
(European edition) and 1977 (USA edition). This work is the acknowledged (by R. Radice and W.
Humphrey) as inspiration for much of the Software Engineering Institute's Capability Maturity Model
Level 4 (SEI CMM Level 4). His other books include Principles of Software Engineering Management
(1988, now in 13th printing) and Software Inspection (1993 with Dorothy Graham). His main
professional interest is the development of powerful Systems Engineering methods (covering
Requirements, Design, Quality Control and Project Management).

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/C2.html (2 of 2) [4/28/2000 2:23:31 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2K Tutorial D2

Mr. Rob Baarda & Tim Koomen
(IQUIP Informatica BV)

Stepwise Improvement of the Testing
Process using TPI(tm)

BACK TO QW2000 PROGRAM

Key Points

Discussion of practical experiences regarding:
The Context, Why, What, When, Where, Who, etc. to improve?●

TPI, The Test Process Improvement Model●

Application of the Model, Management of Change●

Presentation Abstract

This tutorial deals with the TPI-model, which is based on current state-of-the-art test process
improvement practices. The model gives practical guidelines for assessing the maturity level of testing
in an organisation and for step by step improvement of the process. Since the appearance of the book
"Test Process Improvement: a practical step-by-step guide to structured testing" (by Tim Koomen and
Martin Pol) in May æ99, the model is rapidly becoming an international standard for improving test
processes, used in numerous countries like the United States, most European Community countries,
Australia, South Africa, Mexico, Columbia, China and India. The model is frequently used to help an
organisation meet the test requirements at CMM level 3.

Also included in the tutorial is a general description of the application of model, which deals with how
to implement and how to consolidate the improvements.

About the Author

Graduated in 1987 in Informatica at the University of Amsterdam, Tim Koomen is since 1991 a
professional tester. He participated in several testing projects for clients of IQUIP Informatica in the
Netherlands, a company with over 300 dedicated testers. Tim is a member of the R&D-team, covering
issues like E-commerce, ERP, testfactories and TPI. Currently he is advising organisations how to
improve their testing processes, using the presented model. He is the co-author of the TPI-book,
translated in Dutch, English and German, and regularly presents at conferences (Eurostar '97: tutorial
TPI, Eurostar '98: track presentation TPI, Quality Week Europe Æ99: TPI tutorial and two
presentations, Eurostar Æ99: discussion session and presentation) and training sessions throughout
Europe.

Rob Baarda is an information systems professional for more than 20 years, following the path from
programmer to consultant. Since 1986 he specialised in the field of testing. Starting with developing

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/D2.html (1 of 2) [4/28/2000 2:23:49 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

automated tests, Rob moved after a few years to the methodology of testing. He is now part-time
researching various test subjects in the R&D department of IQUIP, besides working as an
international test consultant and teaching TMap½ and TPI½. He also presented in QWE'99 about Risk
Based Test Strategy.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/D2.html (2 of 2) [4/28/2000 2:23:49 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2000 Tutorial E2

Dr. Linda Rosenberg, Ms. Ruth Stapko, & Mr.
Albert Gallo

(NASA GSFC)

Risk-based Object Oriented Testing

BACK TO QW2000 PROGRAM

Key Points

Software Metrics●

Object Oriented●

Software Testing●

Abstract...

Software testing is a well-defined phase of the software development life cycle. Functional ("black
box") testing and structural ("white box") testing are two methods of test case design commonly used
by software developers. A lesser known testing method is risk-based testing, which takes into account
the probability of failure of a portion of code as determined by its complexity. For object oriented
programs, a methodology is proposed for identification of risk-prone classes.

Risk-based testing is a highly effective testing technique that can be used to find and fix the most
important problems as quickly as possible. Risk can be characterized by a combination of two factors:
the severity of a potential failure event and the probability of its occurrence. Risk can be quantified by
using the equation

Risk = … p(Ei) * c(Ei),

Where i =1,2,à,n. n is the number of unique failure events, Ei are the possible failure events, p is
probability and c is cost.

Risk-based testing focuses on analyzing the software and deriving a test plan weighted on the areas
most likely to experience a problem that would have the highest impact. This looks like a daunting
task, but once it is broken down into its parts, a systematic approach can be employed to make it very
manageable.

The severity factor c(Ei) of the risk equation depends on the nature of the application and is
determined by domain analysis. For some projects, this might relative to mission criticality, for some it
would be in terms of financial loss, while for others it might be related to safety. Severity assessment
requires expert knowledge of the application as well as a thorough understanding of the potential
costs of various failures. Musa addresses ways to estimate the severity of software module failures in

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/E2.html (1 of 3) [4/28/2000 2:24:01 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

his discussion of "Operational Profiles" in his book, Software Reliability Engineering.

Both severity and probability of failure are needed before risk-based test planning can proceed.
Severity assessment is not addressed here, however, because it involves so much application-specific
knowledge. Instead we confine the remainder of the discussion to the other crucial part of the risk
equation, assessing the likelihood of component failures, p(Ei), and we suggest a way to capture the
information directly from the source code, independent of domain knowledge.

The task we address is to determine how likely it is that each part of a software system will fail. It has
been proven that code that is more complex has a higher incidence of errors or problems. For
example, cyclomatic complexity has been demonstrated as one criterion for identifying and ranking
the complexity of source code. Therefore, using metrics to predict module failures might simply mean
identifying and sorting them by complexity. Then using the complexity rankings in conjunction with
severity assessments from the domain risk analysis described above would identify which modules
should get the most attention. But restricting the focus to ranking module complexity is an
over-simplification, and we may fail to detect some very risk-prone code. Experience has shown that
object oriented programming, in particular, can result in deceptively low values for common complexity
metrics. The hierarchical nature of object oriented code calls for a multivariate approach to measure
complexity.

We narrow the topic further and focus specifically on object oriented software. The Software
Assurance Technology Center (SATC) at NASA Goddard Space Flight Center has identified and
applied a set of six metrics for object oriented source code. These metrics have been used in the
evaluation of many NASA projects and empirically derived guidelines have been developed for their
interpretation. In this paper, we will identify and discuss the interpretation and application of these
metrics.

The purpose of the metrics information is to identify the classes at highest risk for error. While there is
insufficient data to make precise ranking determinations, there is enough information to justify
additional testing of those classes that exceed the recommended values. Then, combining module risk
evaluation with expert criticality estimates, we have the two components needed for determining risk
by class. Allocating testing resources based on these two factors, severity and likelihood of failures,
amounts to risk-based testing.

Object oriented software metrics can be used in combination to identify classes that are most likely to
pose problems for a project. The SATC has used the data collected from thousands of object oriented
classes to determine a set of benchmarks that are effective when used simultaneously in identifying
potential problems. When problematic classes are also identified by domain experts as critical to the
success of the project, testing can be allocated to mitigate risk. Risk-based testing will allow
developers to find and fix the most important software problems earlier in the test phase.

Author Bio...

Dr. Linda H. Rosenberg is the Division Chief responsible for the Software Assurance Technology
Center (SATC) at Goddard Space Flight Center, NASA. The SATC primary responsibilities are in the
areas of Metrics, Assurance tools and techniques, Risk management, and Outreach programs.

Although she oversees all work areas, Dr. Rosenberg's area of expertise is metrics. The emphasis of

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/E2.html (2 of 3) [4/28/2000 2:24:01 PM]

her work with project managers is the application of metrics to evaluate the quality of development
products. Dr. Rosenberg holds a Ph.D. in Computer Science, an M.E.S. in Computer Science, and a
BS in Mathematics.

Contact Dr. Rosenberg by Email at Linda.Rosenberg@gsfc.nasa.gov or visit the SATC WebSite at
satc.gsfc.nasa.gov.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/E2.html (3 of 3) [4/28/2000 2:24:01 PM]

mailto:Linda.Rosenberg@gsfc.nasa.gov
http://satc.gsfc.nasa.gov/
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2000 Tutorial F2

Mr. Adrian Cowderoy
(MMHQ)

Cool Q - Quality Improvement for
Multi-disciplinary Tasks in Website

Development

BACK TO QW2000 PROGRAM

Key Points

Player identification. Identification of the business/marketing players. Use of profiling and stereotyping to
model the great diversity that are common at most websites. Identification of the key content and domain
experts who understand how to make the website effective for its primary business purpose. Identification of
the tool features and legacy systems/content that constraint that website.

●

Feature identification. Use of checklists, questionnaires, models and behaviour monitoring to identify the
features required by the different players.

●

Quality profiling to support constructive negotiation between the different players, and to assure a complete
view of all important quality features.

●

Commercial design. Achieving the balance between system constraints (technical quality) and system
benefits. Design websites that are engaging, inspiring and (if you have the talent) cool.

●

Killer-feature monitoring, to identify and track commercially sensitive system benefits.●

Use of size and complexity measures (and quality features) to identify components and design decisions that
create high maintenance costs and risks for website content.

●

Use of risk and cost assessment to optimize the quality profile and design complexity.●

Use of risk management planning to indicate how to improve quality in the project by appropriate staffing,
testing, monitoring, and other quality-improvement actions.

●

Creating a learning organization. Combining commercial training materials and in-house know-how to create
a simple knowledge-base of good practice.

●

Abstract...

The tutorial is targeted at website producer/directors and managers. It is also strongly recommended
for software quality people who are moving into the Internet business. The tutorial addresses website
content and structure, and the functionality resulting from using Internet development tools. The
tutorial begins by explaining the background of how the web embraces multi-disciplines and
multi-practices, and how new web-savvy organizations go beyond the boundaries of traditional
industries. The tutorial continues by introducing a set of quality improvement methods that have been
developed over the last three years, for web-site development. An explanation is provided of how

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/F2.html (1 of 2) [4/28/2000 2:24:16 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

these methods support each of the main archetypes that are used in the workplace. That is, the
engineer, the hunter/trickster, the gatherer, and the warrior.

About the Author

Adrian Cowderoy is Managing Director of the Multimedia House of Quality Limited, a company which
he established to promote quality-improvement methods for the production of websites and
multimedia.

Mr Cowderoy was the General chair of ESCOM-SCOPE-99 and ESCOM-ENCRESS-98 conferences,
and was Program chair for ESCOM 96 and 97 (The European Software Control and Metrics
conference promotes leading-edge developments in industry and research, worldwide û see
www.escom.co.uk). He is the METRICS-ESCOM Coordinator for IEEE METRICS 2001 and was on
the Program committee of Metrics 98 and 99, European Quality Week 99 and COCOMO/SCM 96-99.
In 1998 he was acting Conference Chair of the Electronics and Visual Arts conference in Gifu, Japan.
He is a registered expert to the European Commission DGXIII.

He has provided consultancy and industrial training courses on quality management, risk
management, and cost estimation to the aerospace and medical industries in the UK, Germany and
Italy since 1995. He also lectures at Middlesex University (www.mdx.ac.uk) on e-commerce project
management and managing Internet start-up's, and at City University, London (www.city.ac.uk), on
project management for systems development.

Mr Cowderoy was project manager and technical director of MultiSpace, a 14-month million-dollar
initiative sponsored by the European Commission in which 12 European organizations explored the
potential to apply quality-improvement methods to multimedia and website development projects. (See
www.mmhq.co.uk/multispace and www.cordis.lu/esprit.)

He was a Research fellow at City University from 1990-1998, and a Research Associate at Imperial
College from 1986-1989. He was also a quality consultant and software developer at International
Computers Limited, UK, from 1980-1985, where he worked on operating and networking systems for
mainframes and distributed systems.

His academic qualifications include an MSc in Management Science from Imperial College, University
of London in 1986, and is a member of the Association of MBA's. He received a BSc in Physics with
Engineering from Queen Mary College, University of London, in 1979.

Mr. Cowderoy has published and presented extensively on multimedia quality and software cost
estimation. He was joint editor of Project Control for 2000 and Beyond (Elsevier, 1998), Project
Control for Software Quality (Elsevier, 1999), and Project Control: The Human Factor (Elsevier, 2000).

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/F2.html (2 of 2) [4/28/2000 2:24:16 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2000 Keynote 1P1

Dr. Stu Feldman
(Director, IBM Institute for Advanced

Commerce,
Director, Networked Computing Software

Research,
IBM T. J. Watson Research Center

IBM Corporation)

Internet and E-Commerce: Issues and
Answers

BACK TO QW2000 PROGRAM

Presentation Abstract

The rise of Internet usage, and in particular the explosive growth of electronic commerce is raising
many problems for software researchers and practitioners. The amount of Internet commerce has
been literally rising exponentially (doubling about every 9 months since 1995), and the number of
participants, sites, domains, etc. Are also doubling rapidly. We are thus led to contradictory
requirements: many companies have been changing their e-business strategies every 6 months, their
firms are increasingly dependent on proper functioning of these business processes and systems, yet
building complex highly reliable software still takes many months (if you are lucky) or years.

It turns out that e-commerce pushes limits of the state of the art in many areas, including:
Distributed systems (with millions of servers, son to be billions of participants)●

Transactions (long lived changing multiple participants)●

Distributed massive content management●

Interface paradigms (how to manage mobile devices, speech, etc. in a world of legacy data)●

Performance and Reliability management (guarantees and expectations in a dynamic world)●

Security, Authentication●

Search (for processes and activities as well as complex content)●

New application models and structure●

Software engineering●

On the last point, there are many challenges facing the software engineer. Classic processes and
experience apply to centralized design, control and management. There is less support for a world of
independent creation, ownership, and redefinition. Business models (which will themselves be
software objects) will be defined and implemented in terms of other services and applications, each of

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/1P1.html (1 of 2) [5/2/2000 6:01:04 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

which might come from several sources and be administered independently.

Yet it is necessary to have expectations of performance, security, reliability and availability. We must
manage the specification, design, creation, testing, and dynamic reconfiguration of key processes in
such a fluid world.

This talk will address these challenges to the state of the art and practice, offering questions and
some answers.

About the Speaker

Feldman did his academic work (AB, Princeton and PhD, MIT) in astrophysics and mathematics. He is
a Fellow of the IEEE and a Fellow of the ACM. He has been a member of the Board of the Computing
Research Association and chair of ACM SIGPLAN and is founding chair of the ACM SIG on
E-Commerce.

He was a computer science researcher at Bell Labs and a research manager at Bellcore before
joining IBM in mid-1995. He has published research in software engineering (and was the creator of
Make), programming languages, scientific computing and other areas of computer science. He was
also architect for a large new line of software products at Bellcore.

At IBM's T. J. Watson Research Center, Feldman leads a department doing research in a wide variety
of network-related technologies and application enablers, including electronic commerce, parallel
databases, anti-virus technology, and advanced internet multimedia. He is also the Director of IBM's
Institute for Advanced Commerce, an organization created to increase IBM's intellectual leadership in
e-commerce, and to forge better connections to the outside research world as well as to accelerate
creation of new technologies for support of e-Business.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/1P1.html (2 of 2) [5/2/2000 6:01:04 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

The rise of Internet usage, and in particular the explosive growth of electronic
commerce is raising many problems for software researchers and practitioners.
The amount of Internet commerce has been literally rising exponentially (doubling
about every 9 months since 1995), and the number of participants, sites, domains,
etc. Are also doubling rapidly. We are thus led to contradictory requirements:
many companies have been changing their e-business strategies every 6 months,
their firms are increasingly dependent on proper functioning of these business
processes and systems, yet building complex highly reliable software still takes
many months (if you are lucky) or years.

It turns out that e-commerce pushes limits of the state of the art in many areas,
including:

• Distributed systems (with millions of servers, son to be billions of
participants)

• Transactions (long lived changing multiple participants)
• Distributed massive content management
• Interface paradigms (how to manage mobile devices, speech, etc. in a

world of legacy data)
• Performance and Reliability management (guarantees and expectations in

a dynamic world)
• Security, Authentication
• Search (for processes and activities as well as complex content)
• New application models and structure
• Software engineering

On the last point, there are many challenges facing the software engineer. Classic
processes and experience apply to centralized design, control and management.
There is less support for a world of independent creation, ownership, and
redefinition. Business models (which will themselves be software objects) will be
defined and implemented in terms of other services and applications, each of
which might come from several sources and be administered independently.

Yet it is necessary to have expectations of performance, security, reliability and
availability. We must manage the specification, design, creation, testing, and
dynamic reconfiguration of key processes in such a fluid world.

This talk will address these challenges to the state of the art and practice, offering
questions and some answers.

QW2000 Tutorial G2

Chris Loosley & Eric Siegel
(Keynote Systems)

Web Application Performance

BACK TO QW2000 PROGRAM

Presentation Abstract

How do you deploy reliable, responsive e-commerce applications in the uncontrolled and relatively
slow environment of the Internet? (Hint: it's not just a matter of bandwidth). Using many illustrative
examples and studies drawn from their experience measuring and improving leading e-commerce
sites, the presenters explain the fundamentals of web application performance engineering, from the
browser to the database backend.

About the Speakers

Chris Loosley is Senior Internet Consultant with Keynote Systems. He has a technical background in
the design and performance of enterprise information systems, and over 25 years experience in the
field of software performance engineering. Mr. Loosley is the author of "High-Performance
Client/Server" (John Wiley).

Eric Siegel is Senior Internet Consultant with Keynote Systems and wrote "Designing Quality of
Service Solutions for the Enterprise (John Wiley). He was the technical leader for all of Tandem
Computer's data communications specialists worldwide, and also worked for Network Strategies and
MITRE. His B.S. and M.E.E. are from Cornell University.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/G2.html [4/28/2000 2:24:26 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2000 Keynote 1P2

Bill Gilmore
(Intel Corporation)

The Intel Software Corporate Quality Network

BACK TO QW2000 PROGRAM

Presentation Abstract

Intel is a leading supplier of computer and internet building blocks, and has developed a powerful
Corporate Quality Network (CQN) to drive improvement and quality throughout the organization.
Software engineering is playing an increasingly important role in Intel's efforts, and in the last few
years a software wing within CQN has been established and grown to drive software quality.

Software Quality Engineers from the Software CQN are distributed throughout the company on
assignment to various divisions to establish, introduce, and nurture the adoption of "Best Known
Methods". This presentation overviews the structure of this effort, and reviews the strategies,
successes, and challenges of the program.

About the Author

Dr. Bill Gilmore is a senior Software Quality Process Engineer in the Corporate Quality Network at
Intel, and is responsible for establishing quality processes and improving product quality in Intel
business divisions. He is currently assigned to the Microprocessor Group, and has worked with the
motherboards and BIOS division, and systems management divisions at Intel. This work has included
CMM assessments, Product Life Cycle methodologies, and metrics and other software methods.

Prior to working at Intel, Dr. Gilmore was leader and manager for Software Process Improvement at
Tektronix, Inc. He used a SEI Self-Assessment, improvement projects, Software Engineering
Councils, and post-project reviews, to markedly increase awareness, priority, and participation in
software process improvement.

Dr. Gilmore has a Ph.D. in Astronomy, a B.S. in Engineering Physics, and did graduate study in
Organizational Development. He has published ~30 papers in Software Engineering, Strategic
Planning, and Astronomy.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/1P2.html [4/28/2000 2:27:04 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

The Intel Software Corporate Quality network

Intel is a leading supplier of computer and internet building
blocks, and has developed a powerful Corporate Quality Network
(CQN) to drive improvement and quality throughout the
organization. Software engineering is playing an increasingly
important role in Intel's efforts, and in the last few years a
software wing within CQN has been established and grown to drive
software quality.

Software Quality Engineers from the Software CQN are distributed
throughout the company on assignment to various divisions to
establish, introduce, and nurture the adoption of "Best Known
Methods". This presentation overviews the structure of this
effort, and reviews the strategies, successes, and challenges of
the program.

-->

QW2000 Vendor Technical Paper 2V1

Ms. Melissa Borza
(Computer Associates)

Enterprise Change and Configuration
Management

BACK TO QW2000 PROGRAM

Key Points

Preserving the integrity of software resources is the goal of effective Change and Configuration Management
(CCM). As software development becomes more complex, CCM solutions must address the new challenges
inherent in managing development in today's heterogeneous, distributed environment.

●

This presentation examines the challenges of Enterprise Change and Configuration Management and
discusses how an integrated CCM strategy can help you successfully meet these challenges. It also explores
the issues you need to address to be successful and describes Computer Associates CCM strategy for a
heterogeneous, distributed environment.

●

Learn how the integration of CA's best-of-breed CCM products (Endevor for OS/390 and CCC/Harvest) can
provide enterprise-wide benefits for your organization.

●

About the Author

Melissa Borza is the Product Manager for the change and configuration management (CCM) products
for Computer Associates International Inc. These products include the industrial-strength tools:
Endevor=AE for = MVS, CCC=AE/Harvest, and Enterprise CCM(tm). Melissa is responsible for the
marketing and support of these products, and she has written articles and has delivered seminars on
this subject around the world.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/2V1.html [4/28/2000 2:27:13 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Enterprise Change and
Configuration Management

Melissa Borza, Marketing Director
Computer Associates International Inc.

Quality Week 2000

Topics of Discussion
• Multi-tier applications
• Management issues
• Integrating the enterprise
• Summary

2

Multi-Tier Applications
• A single business system that is:

– Developed on multiple platforms
– Deployed on multiple platforms

• Heterogeneous yet integrated components
• Increasingly strategic for business, e.g.

data warehousing, e-commerce

3

Multi-tier Applications

Code for Java
interface

Legacy
code with

calls to
DB2

database

WEBSALES

Application

OS/390
UNIX

Code to
access

Oracle
database

Windows

4

Management Issues:
The Difficulties
• Errors inherent in manual procedures

– Compounded by multiple platforms

• Heterogeneous tools and procedures
– Mainframe procedures may be different than

UNIX/PC

• Disjointed approvals
– More people, more platforms means more

errors and delays

Management Issues:
The Difficulties
• Non-synchronized deployment

– Some components ready for promotion, others
take longer

• Incomplete backout
– One component must be backed out, others

remain in production

• Heterogeneous users
– Limited access to CCM tools
– Limited expertise with CCM tools

5

Management Issues:
The Business Consequences
• Production failures
• Decreased competitiveness
• Lost revenue
• Higher costs
• Lost productivity
• Loss of confidence in business systems

What’s Needed:
Enterprise Release Automation
• Leverage existing tools and procedures
• Ensure all affected components are

collected
• Obtain and track necessary approvals
• Automate promotions and demotions

… regardless of platform

6

What’s Needed:
Enterprise Release Automation
• Centralized management
• Accessible from anywhere
• Intuitive for all types of users

– Approvers
– Developers
– Managers

Integrating the Enterprise

Enterprise CCM

7

Application Life Cycle
Management

WEBSALES

Application

OS/390UNIX

Windows

Change Packages

cblpgm1.cob

Readme.txt
cblcpy.cob

orders.cxx
orders.h

...

8

Manual Promotion

OS/390
Test - QA ProductionDevelopment

Development Test - QA Production

UNIX or NT
Server

DB2DB2

Java &Java &
OracleOracle

Manual Promotion

OS/390
Test - QA ProductionDevelopment

Development Test - QA Production

UNIX or NT
Server

DB2DB2

Java &Java &
OracleOracle

OUT OF SYNC!!!

9

Manual Promotion

OS/390
Test - QA ProductionDevelopment

Development Test - QA Production

UNIX or NT
Server

DB2DB2

Java &Java &
OracleOracle

Manual Promotion

OS/390
Test - QA ProductionDevelopment

Development Test - QA Production

UNIX or NT
Server

DB2DB2

Java &Java &
OracleOracle

OUT OF SYNC!!!

10

Manual Promotion

OS/390
Test - QA ProductionDevelopment

Development Test - QA Production

UNIX or NT
Server

DB2DB2

Java &Java &
OracleOracle

Manual Demotion

OS/390
Test - QA ProductionDevelopment

Development Test - QA Production

UNIX or NT
Server

DB2DB2

Java &Java &
OracleOracle

OUT OF SYNC!!!

11

Manual Demotion

OS/390
Test - QA ProductionDevelopment

Development Test - QA Production

UNIX or NT
Server

Java &Java &
OracleOracle

DB2DB2

Enterprise Release Automation:
Promotion

OS/390
Test - QA ProductionDevelopment

Development Test - QA Production

UNIX or NT
Server

DB2DB2

Java &Java &
OracleOracle

WEBSALES

DB2DB2

Java &Java &
OracleOracle

WEBSALES

DB2DB2

Java &Java &
OracleOracle

WEBSALES

12

Enterprise Release Automation:
Demotion

OS/390
Test - QA ProductionDevelopment

Development Test - QA Production

UNIX or NT
Server

DB2DB2

Java &Java &
OracleOracle

WEBSALES

DB2DB2

Java &Java &
OracleOracle

WEBSALES

Enterprise CCM:
Enterprise Packages
• Establish correlation between

Endevor and CCC/Harvest
packages

• Enforce approvals on all
platforms

• Automate movement through
the established lifecycle

DB2DB2

Java &Java &
OracleOracle

WEBSALES

13

Enterprise CCM:
Web Interface
• Intuitive for all types of

users
• Accessible from

anywhere
• Eliminates need for

CCM expertise for
non-technical users,
e.g. approvers

Internet

Enterprise CCM:
Architecture

ECCM Web
Server

14

Enterprise CCM:
Benefits
• Enterprise-wide view of the multi-tier

application
• Elimination of manual errors

– Save time and money
– Improve quality and competitiveness

• Synchronized deployment across platforms
• Integration of tools and processes

Enterprise CCM:
Benefits
• Easy access via the Web
• Familiar and intuitive interface

– Ease of use
– Minimize learning curves

• Simplified administration
• Central management

15

16

17

This package has been reviewed by the QA review Board for
promotion to the production environment. Mar. 10, 2000

Waiting for Endevor

18

Summary
• Multi-tier application development and

deployment
• Features, architecture and benefits of

Enterprise CCM
• Tour of Enterprise CCM

Questions and Answers

??

QW2000 Paper 2T1

Mr. Michael Silverstein
(SilverMark, Inc.)

Automating Testing of Object-Oriented Components Using
Intelligent Test Artifacts

BACK TO QW2000 PROGRAM

Key Points

Common patterns of component/object test automation●

How intelligent test artifacts as an architectural foundation can address common patterns of
component/object testing, speeding test development and reducing test maintenance

●

Implementing intelligent test artifacts in Java●

Abstract

Component testing is the act of subdividing an object-oriented software system into units of particular
granularity, applying stimuli to the component’s interface and validating the correct responses to those
stimuli, in the form of either a state change or reaction in the component, or elsewhere in the system.

In the last few years, design patterns have become a currency for communicating common problems
and their solutions within a context. Testing is no exception. Several publications have endeavored to
document common design solutions to component test automation problems in terms of design
patterns.

This article presents a set of design patterns commonly encountered when creating automated test
frameworks and application domain specific test cases, and introduces the notion of test artifacts as
an abstract test component implementation model.

For most types of component testing, the component test developer must eventually find answers to
one or more of the following questions, and possibly the questions that their answers pose:

How do I create a specifically configured instance of a component under test?●

How to I manage the application of a stimulus to the component under test?●

How do I organize stimuli into reusable groups?●

How to I validate the state of the component and system under test after one or more stimuli?
How do I manage reference objects?

How do I compare references objects to target objects, so that just the states
that are important are compared?

■

❍

How do I intelligently traverse the state of my object under test❍

●

How do I manage variations on test inputs in order to drive different paths with the same test●

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/2T1.html (1 of 2) [4/28/2000 2:27:21 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

stimuli?
How do I verify that expected exceptions are raised?●

How do I map development activities to the tests that validate their correctness?●

The presentation describes several patterns for automated component test framework and test case
design, some familiar and some not, and introduces the notion of test artifacts as a component
architecture for implementing tests. Examples use the Javaä programming language. These patterns
include:

Test Component - Implement a reusable component model to represent aspects of automated
testing.

●

Test Sequence - Present a complete or commonly implemented subset of a test as a discrete,
reusable unit.

●

Configured Instance - Provide an instance of an object configured to a particular state●

Test Stimulus - Encapsulate a stimulus/response validation operation for a component under
test for singly or multiply threaded systems.

●

State Validation - Assert that a component is in the expected state. Define this assertion as a
reusable component.

●

Impression - Express a particular view of the state of a component in a compact, but human
readable form

●

Nested State - Provide a mechanism for specifying and traversing a chain of object references
to extract a specific state

●

Aggregate State - Represent the state of a component in terms of an aggregate set or subset
of the states of its subcomponents.

●

Object Variation - Organize configured object variations●

About the Author

Michael Silverstein is Lead Architect at SilverMark, Inc. (www.silvermark.com) with responsibility for
technical direction for SilverMark's Test Mentor™ line of object-oriented automated testing tools for
Java and Smalltalk. Michael frequently advises customers on how to design automated tests, and has
been developing software for twenty years, the last eight of which using object-oriented architectures
and languages, including Smalltalk and Java™.

Before SilverMark, Michael worked on a variety of software development projects at IBM, including the
VisualAge development team. Michael can be reached at msilverstein@silvermark.com (919)
858-8300 x29

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/2T1.html (2 of 2) [4/28/2000 2:27:21 PM]

http://www.silvermark.com/
mailto:msilverstein@silvermark.com
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Copyright 2000 SilverMark, Inc. 1

Copyright 2000 SilverMark, Inc. 1

Automated Testing of Object-
Oriented Components using

Intelligent Test Artifacts
 [Session 2T1]

Michael Silverstein
SilverMark, Inc.

www.silvermark.com
contact: msilverstein@silvermark.com

919 858-8300 x29

Copyright 2000 SilverMark, Inc. 2

Component Test Frameworks

• Level 0: Self tests, usually in static methods
• Level 1: Test cases implemented as methods

in harness classes.
• Level 2: Basic execution framework (J-Unit,

for example)
– TestSuite, TestCase, TestResult

• Level 3: Execution framework includes
objects that encapsulate test specific
behavior, promotes task-configured reusable
test components.

Copyright 2000 SilverMark, Inc. 2

Copyright 2000 SilverMark, Inc. 3

Test Design Questions
• How do I create a specifically configured instance of a component

under test?
• How to I manage the application of a stimulus to the component under

test?
• How do I organize stimuli into reusable groups?
• How to I validate the state of the component and system under test

after one or more stimuli?
o How do I manage reference objects?
o How do I compare references objects to target objects, so that just the

states that are important are compared?
o How do I intelligently traverse the state of my object under test

• How do I validate that expected exceptions are raised.
• How do I validate that expected events are fired?
• How do I manage variations on test inputs in order to drive different

paths with the same test stimuli?
• How do I map development activities to the tests that validate their

correctness?

Copyright 2000 SilverMark, Inc. 4

Pattern Responses to Design
Questions

• Test Component - Implement a reusable component model to
encapsulate configurable aspects of automated testing.

• Test Sequence - Present a complete or commonly implemented
subset of a test as a discrete, reusable unit.

• Configured Instance - Provide an instance of an object configured to a
particular state

• Test Stimulus - Encapsulate a stimulus/response validation operation
for a component under test for singly or multiply threaded systems.

• Nested State - Provide a mechanism for specifying and traversing a
chain of object references to extract a specific state

• Aggregate State - Represent the state of a component in terms of an
aggregate set or subset of the states of its subcomponents.

• State Validation - Assert that a component is in the expected state.
Define this assertion as a reusable component.

• Object Variation - Organize configured object variations

Copyright 2000 SilverMark, Inc. 3

Copyright 2000 SilverMark, Inc. 5

Test Component
• Intent: Implement a reusable component model to

represent aspects of automated testing, of arbitrary
granularity.

• Context: Move common test code out of test cases
and into a framework in a way that supports creation
of reusable test components.

• Strategy: Create a hierarchy of classes called
artifacts, each of which embodies specific test
execution behavior, as well as the properties required
to configure instances for specific applications of the
artifact.
– A specification for an artifact describes a specific

configuration of an artifact instance.

Copyright 2000 SilverMark, Inc. 6

Test Artifact - Properties
• Name – Used to identify and locate an artifact.
• Description – More extensive descriptive information about the artifact, either

as text or a reference to some external document (URL).
• Classification of Intent – Specifies intent of artifact for documentation, (use

case scenario, requirements, validation, invariant, etc.)
• Expected exception – A reference to an exception that is expected to be

signaled as a result of execution of the artifact. Execution of the artifact is said to
have failed if the exception is not raised.

• Precondition action – Actions to set and/or verify the state of the system under
test prior to further execution of the artifact.

• Invariant action – A set of assertions that express general consistency
constraints that apply to every class instance as a whole, regardless of stimulus.
If specified, this is executed after execution of the artifact.

• Synchronization – Strategy for determining when a response to a stimulus has
completed

– Message completed/returned [synchronous]
– Event(s) fired [synchronous or asynchronous]
– Miscellaneous system state change [asynchronous]

Copyright 2000 SilverMark, Inc. 4

Copyright 2000 SilverMark, Inc. 7

Test Artifact - Consequences
• Abstracting typical testing patterns into a palette of reusable,

individually configurable component types that embody common testing
behavior enables test developers to focus less on test implementation
and more on the problem of exercising the system under test.

• Artifacts offer arbitrary levels of test organization beyond the traditional
class, method, or statement level.

• Test artifacts support either a bottom-up or top-down test development
process.

• Test artifacts benefit test tool writers because artifacts present a facade
for complex behavior, and artifacts may be combined to form a
complete representation of a test which may then be presented for
editing by a tool user interface.

• Test development speed increases as more reusable components
become available.

• Defining test artifacts in one and only one place eases maintenance
because changes to test code due to changes in the system under test
are localized.

Copyright 2000 SilverMark, Inc. 8

Test Sequence
• Intent: Present a sequence of test actions of arbitrary granularity as a

discrete, reusable unit, where test actions may themselves be
references to predefined reusable components.

• Context:
– A prerequisite for creating tests via composition of components is a

container in which to hold them.
– Fine-grained executable units enable automated testing tools to

provide better definition UIs, better tracking of test execution
progress, and more detailed reports.

• Strategy:
– Create a composite test sequence artifact composed artifact

specifications.
– The execution behavior: execute each components in order

• Consequences:
– The test sequence artifact encourages construction through

composition.
– Because composite artifacts are responsible for sequencing through

their components during execution, they may also embody general
execution rules, such as ceasing execution on failure.

Copyright 2000 SilverMark, Inc. 5

Copyright 2000 SilverMark, Inc. 9

Configured Instance

• Intent: Provide an instance of an object configured to
a particular state.

• Context: Creating supporting objects is a necessary,
and often distracting, evil of component testing.
Supporting objects are required as:
– inputs to individual stimuli (message parameters)
– comparison targets (gold standard objects)
– starting points for sequences of stimuli for testing

components in a specific state

Copyright 2000 SilverMark, Inc. 10

Configured Instance

• Strategy: Create an artifact whose purpose is to return an
object in a particular state.
– Approaches:

• Instantiation: Create a configured instance of a class based on:
– The class to instantiate
– A constructor method and parameters
– Additional stimuli

• Materialization: Retrieve serialized object from some
table/database/file, then apply additional stimuli as necessary.

– A configured instance may be implemented as a test sequence or
test sequence subclass

• Subclass would have additional specification for instantiation or
retrieval of object, before applying additional stimuli.

• Consequences: Over time, test developers accumulate a
library of supporting object instances that they may readily apply
to test actions.

Copyright 2000 SilverMark, Inc. 6

Copyright 2000 SilverMark, Inc. 11

Test Stimulus

• Intent: Encapsulate a stimulus/response validation
operation for a component under test for singly or
multiply threaded systems

• Context:
– The basic unit of execution of a test case is the application of

a stimulus.
– The response to a stimulus should be validated in terms of a

change in the state of the component under test, or some
area of the system under test, as well as an object returned
directly by the stimulus.

– In multithreaded systems, the response to a stimulus may be
temporally non-deterministic

Copyright 2000 SilverMark, Inc. 12

Test Stimulus - Strategy
Create an artifact that embodies any or all of:
• A stimulus on some object, defined as one of:

– a reference to a target object and the action to perform on the
target object (message send), as well as any arguments.
References to configured instance artifacts serve well for acquiring
argument values.

– the selector for a method within a supporting test class
– a reference to an artifact
– other executable representation of the stimulus (Java ™ inner class,

Smalltalk block)
• precondition state validation
• postcondition state validation
• invariant validation
• a synchronization mechanism for suspending test execution

until an asynchronous process has completed, or time limit is
exceeded

Copyright 2000 SilverMark, Inc. 7

Copyright 2000 SilverMark, Inc. 13

Nested State
• Intent: Provide a mechanism for specifying and traversing a recursive

chain of object references to extract a specific state.
• Context: Complex objects and object clusters, especially

implementations of the façade pattern, conceal recursively held
collaborating objects whose individual states contribute to the whole,
and whose access is often required for state validation during testing.

• Strategy:
– Implement methods on the root class to provide nested state

• Adds code bloat to delivered code for the sake of testability
– Implement an code that returns provides a means to specify an access

scheme for a particular state of a given object. For example,
 return myObject.x().y().z();

– Configure a composite artifact to contain a sequence of stimuli to be
used to access successive states in the chain.

• Less straightforward, but presents opportunity to build off of a state
returned by an artifact reference.

• Consequences:
– A configured nested state artifact is a permanent, reusable access

strategy for a particular state within a component.
– Maintenance is localized

Copyright 2000 SilverMark, Inc. 14

Aggregate State
• Intent: Represent the state of a component in terms of an

aggregate of some subset of the states of its subcomponents.
• Context: The recursive state of an object is the value set of

instance variable values obtained by recursively expanding each
instance variable value
– A component has one complete recursive state, but may have many

aggregate state representations, or views, depending on which
states are of interest

• Strategy:
– Populate a composite aggregate state artifact with components that,

when executed, extract individual states from the object under
consideration.

• Nested state artifacts are a prime candidate for population
• Execution time behavior gathers and returns a collection of

resultant execution values of each of its components
• Implement comparison operators that take into account the

complete set of states, like equals()

Copyright 2000 SilverMark, Inc. 8

Copyright 2000 SilverMark, Inc. 15

Aggregate State

• A configured aggregate state artifact acts as a reusable representation
of a particular view of an object ’s state.

• Useful shorthand for comparing objects:

Typical aggregate state comparison
return customer.x().equals(referenceCustomer.x()) &

customer.x().y().equals(referenceCustomer.x().y()) &
customer.x().y().z().equals(referenceCustomer.x().y().z())

… etc. for each state

Artifact aggregate state comparison
(new MyArtifacts().getArtifactNamed(
 “General Customer State”)).subject(customer).equals(

 (new MyArtifacts().getArtifactNamed(
 “General Customer State”)).subject(referenceCustomer));

Copyright 2000 SilverMark, Inc. 16

State Validation
• Intent: Assert that a component is in an expected

state. Define this assertion as a reusable component.
• Context:

– State validation involves comparing an object ’s recursive
state to some known, expected state, encoded as:

• a comparison to one or more Gold Standard reference objects
• simple comparisons to primitives or literals
• a test for some known object’s inclusion or exclusion within a

collection type
• a comparison between object impressions

Copyright 2000 SilverMark, Inc. 9

Copyright 2000 SilverMark, Inc. 17

State Validation - Strategy
• A common strategy: implement an assert(boolean) test API

to log results of executing an expression that logs the success
or failure of a contained expression, during test execution.
– Simple, flexible, but not very reusable

• Use common postcondition validation action test artifact
property:
– Close, structural relationship between stimulus and response

validation enhances understanding of the test. Define a validation
action as:

• an expression that evaluates to a boolean. This is similar to the
assert API discussed above

• a reference to an artifact that performs the validation.
• Where the same validation is performed repeatedly (invariants, for

example) defining and then referencing an artifact is
advantageous, especially if many state comparisons are involved.

• implement an aggregate state artifact as a comparison wrapper,
implementing equals()

Copyright 2000 SilverMark, Inc. 18

Object Variation
• Intent: Organize variations of configured object instances as a

single, reusable resource
• Context: Need to be able to pass input variations of test objects

to a test for the purpose of driving execution of the different
paths (data driven tests)

• Strategy:
– Implement an artifact that presents an enumeration interface for

sequentially accessing its elements, whereby execution of a given
test element is repeated over the elements returned by the object
variation artifact.

• Statically described references to configured object instances
• Objects dynamically generated by rules

– for example: an Integer interval or a calculated equivalence set

– For multiple variation artifacts, implement pluggable value mixing
policy (one-by-one, each-with-every, etc.).

• Consequences: Useful variations are themselves reusable
units that may shared among test developers.

Copyright 2000 SilverMark, Inc. 10

Copyright 2000 SilverMark, Inc. 19

Example Artifact Hierarchy
Artifact

Composite

Aggregate
State

Object
Variation

Test
Sequence

Configured
Instance

Stimulus

Script Message

Nested
State

Artifact
Reference

Instance
Message

Class
Message

Constructor
Message

Copyright 2000 SilverMark, Inc. 20

Example code
/* Return a configured instance of a Calculator class after adding an int. */
 public ConfiguredInstance calculatorAfterAdd() {
 ConfiguredInstance artifact =

 new ConfiguredInstance(“Calculator after add");
 // Set subject of step via constructor specification
 artifact.setConstructorStep(

 new Stimulus(“Default").setMessageSpec(message(Calculator.class)));
 // Apply stimulus to subject via MessageStep
 artifact.addComponent(new Stimulus(“Add number").setMessageSpec(
 message(subject(),"add",new int[] {123}));
 return artifact; }

new MyClass().calculatorAfterAdd().getValue() // Execute by itself

/* Artifact that references an artifact */
public ConfiguredInstance calculatorAfterSubtract() {
 ConfiguredInstance artifact =

 new ConfiguredInstance(“Calculator after subtract");
 ArtifactReference reference =

 new ArtifactReference(“Calculator after Add”,MyClass,”calculatorAfterAdd”);
 artifact.setConstructorStep(reference);
 // Apply stimulus to subject via MessageStep
 artifact.addComponent(new Stimulus(“Subtract number").setMessageSpec(
 message(subject(),“subtract",new int[] {123}));
 return artifact; }

1

Component Testing with Intelligent
Test Artifacts

Michael Silverstein
SilverMark, Inc.

msilverstein@silvermark.com
http://www.silvermark.com

(919) 858-8300 x29

Component testing is the act of subdividing an object-oriented software system
into units of particular granularity, applying stimuli to the component’s interface
and validating the correct responses to those stimuli, in the form of either a state
change or reaction in the component, or elsewhere in the system.

Often, component testing is performed by developers who’s primary mental focus
is that of the system under test and component tests to be performed. In most
cases, the test case architecture, if any, evolves as an afterthought, driven
mostly by the tests themselves. Some developers who have been through this
process more than once write their own test frameworks.

In the last few years, design patterns have become a currency for communicating
common problems and their solutions within a context. Testing is no exception.
Publications such as [Binder 99, McGregor 99, Firesmith 96, Beck 94] have
documented some common design solutions to component test automation
problems in terms of design patterns.

This article presents a set of design patterns commonly encountered when
creating automated test frameworks and application domain specific test cases,
and introduces the notion of test artifacts as a test component architectural
model for implementing those patterns.

This article begins by presenting several patterns for automated component test
framework design, some familiar and some not, with implementation strategies. It
then shifts focus from test framework design to test case design. And briefly
applies the solutions discussed earlier as a basis for test case implementation.

Common component test design questions

The challenge to test framework developers is to recognize the common
problems and associated implementation activities, to the extent that a scalable
and easily maintainable automated test architecture can be applied as a
foundation for implementing tests. Our experience has shown that for most types
of component testing, the component test developer must eventually find
answers to one or more of the following questions, and possibly the questions
that their answers pose:

2

• How do I create a specifically configured instance of a component under

test?
• How to I manage the application of a stimulus to the component under

test?
• How do I organize stimuli into reusable groups of arbitrary granularity?
• How to I validate the state of the component and system under test after

one or more stimuli?
o How do I manage reference objects?

§ How do I compare references objects to target objects, so
that just the states that are important are compared?

o How do I intelligently traverse the state of my object under test
• How do I validate that expected exceptions are raised.
• How do I validate that expected events are fired?
• How do I manage variations on test inputs in order to drive different paths

with the same test stimuli?
• How do I map development activities to the tests that validate their

correctness?

Pattern responses to design questions
This section presents component test design patterns, with implementation
strategies. An effort was made to keep implementation strategies language
neutral, however, wherever use of code is unavoidable examples are presented
in the Java™ programming language.

Pattern: Test Component

Intent: Implement a reusable component model to represent aspects of
automated testing of arbitrary granularity.

Context

Generic component architectures are not new. For example, Java™ has Java
Beans™, and its variants. To date, the model for component tests has been
limited to units of gross execution, such as the test suite and test case [Beck 94,
Fowler 99], which is useful, but falls short in the role of a general organizational
and behavioral principal for automated testing. What is required is a higher level
of abstraction, under which specific variants may serve as architectural building
blocks for particular aspects of automated testing.

Applicability
• This pattern is indicated at many levels of testing. Test components may

express test organization or behavior and are in effect, miniature,
automated testing problem specific frameworks.

Strategy/Implementation

3

• Create a hierarchy of test component classes, called test artifacts1, each
of which embodies specific test execution behavior, as well as the
properties required to configure instances for specific applications of the
artifact.

• Artifacts may be singular or composite. The specification for a composite
artifact contains specifications for other artifacts.

o A specification for an artifact indicates a specific configuration of an
artifact instance, that is, an artifact instance whose properties are
set in a certain way. The combination of an artifact type and the
specific configuration of an instance of it results in a reusable
component whose behavior is applicable to a certain test-related
task.

o Reusability is achieved with the creation of an artifact type that can
locate a specifically configured artifact instances based on some
well known identifier. An artifact reference is itself, a specifically
configured artifact instance.

o Composite artifacts execute by executing each contained artifact, in
turn.

• Common artifact configuration properties include:
o Name – Used to identify an artifact so that it can be located.
o Description – More extensive descriptive information about the

artifact, either as text or a reference to some external document.
o Expected exception – A reference to an exception that is

expected to be signaled as a result of execution of the artifact.
Execution of the artifact is said to have failed if the exception is not
raised.

o Precondition action – Actions to set and/or verify the state of the
system under test prior to further execution of the artifact.

o Invariant action – A set of assertions that express general
consistency constraints that apply to every class instance as a
whole, regardless of stimulus. If specified, this is executed after
execution of the artifact.

o Synchronization action – An action that checks for some state
transition that indicates the completion of some asynchronous
transaction. In the case of an artifact that initiates an asynchronous
transaction, the intent of the synchronization action would be to is
to pause execution of a test until the transaction has completed.

o Classification of organizational intent – such as, use case
scenario [Jackobsen 93], requirements implementation, fix for
known problem, etc.

1 The name, artifact, is chosen as an alternative to the name, test component to avoid confusion
between test component and component under test.

4

• The specification for an artifact’s configuration should be defined one and
only one place, to ensure that multiple definitions of equivalent artifacts do
not become a maintenance problem.

Consequences

• Abstracting typical testing patterns into a palette of reusable, individually
configurable component types that embody common testing behavior
enables test developers to focus less on test implementation and more on
the problem of exercising the system under test.

• Generally, automated component test frameworks offer class or method
level granularity to test developers. Artifacts offer arbitrary levels of test
organization beyond the traditional class or method level. One or more
specifically configured test artifacts may represent a complete test. At
minimum, a complete test may be as simple as instantiating a single class,
or it may incorporate multiple artifacts as building blocks.

• Test artifacts support either a bottom-up test development process, where
basic reusable artifacts are created first as components to be used in
more broadly scoped artifacts, or a top-down development process, where
broadly scoped artifacts reference utility artifacts that are not yet
completely defined.

• Test artifacts benefit test tool writers because artifacts present a facade
for potentially complex objects with a high degree of functionality, and
places test behavior in the test framework instead of the test cases.

• As in most systems that employ a high degree of reuse, test development
speed increases as more reusable components become available.

• Defining test artifacts in one and only one place eases maintenance
because changes to test code due to changes in the system under test
are localized.

Known Uses
There are many precedents for implementing reusable components outside of
the automated component testing domain.

Pattern: Test Sequence

Intent: Present a sequence of test actions of arbitrary granularity as a discrete,
reusable unit.

Context

A prerequisite for creating tests via composition of components is a container in
which to hold them. Because of the sequential nature of tests, this container must
be a composite of sequentially executed components. It is also extremely helpful
to be able to subdivide tests into conceptual units for the purpose of enhancing
readability and understandability.

5

Fine-grained executable units enable automated testing tools to better track test
execution progress, and enable the tools to provide better test editing interfaces
for users by allowing different task specific views of individual actions to be
performed.

Applicability

This pattern is indicted wherever test creation through composition is to be
employed, or where it is advantageous to subdivide a test into sequentially
executed units.

Strategy/Implementation

Create a composite test sequence artifact that is composed of specifications for
other artifacts. The execution behavior of this artifact is to execute each of its
components in a well defined order under specified rules. For example, one may
implement an abort on failure rule to provides a convenient shorthand for
implementing a scheme where execution ceases on the first component failure
encountered. Instead of repeatedly coding a check-and-return-if-fail after each
component’s execution, the artifact embodies the intelligence to manage the
execution flow as specified by the rule.

Consequences

By simply extending the test artifact concept to include a composite artifact type,
test creation through composition is achieved.

Because composite artifacts are responsible for sequencing through their
components during execution, they may also embody general execution rules,
such as ceasing execution on failure. Execution rules such as this are often used
to dictate the level of granularity of the actions to be performed within the
sequence.

Pattern: Configured Instance

Intent

Provide an instance of an object configured to a particular state.

Context
One of the foundations of component testing is the use of objects in a particular
state as:

• inputs to individual stimuli (parameters)
• comparison targets (gold standard objects)
• test case starting state

During the process of writing component test code, creating instances of test
input objects is a tangential activity that is distracting from the overall goal of

6

stimulating the component under test, and often where a majority of the test
development effort is expended.

Unless the interface for an object is accessible exclusively via a global, static
namespace, it is likely that instances of the object, and the objects that it
recursively contains, must be instantiated or extracted from persisted location.

Furthermore, there are usually multiple ways of instantiating an object, so there
needs to be a way of encapsulating the appropriate instantiation strategy for the
component so it can be easily referenced and applied to a test. For example,
Java and C++ classes may offer multiple constructors for instantiation. Smalltalk
offers a much looser interface. This pattern offers a solution to encapsulating
instantiation or materialization of test objects as a reusable operation.

Strategy

A good, basic approach is to implement methods in some test class that return
specifically configured instances of test objects. This test class is sometimes
referred to as an Oracle [Binder 99].

A further abstraction would be to implement an artifact that, given a specification,
returns a configured object instance. This may be implemented as an extension
of the test sequence composite artifact, with the additional behavior of initially
instantiating or retrieving the object under consideration. Once an object is
present, it may be immediately returned or first acted upon by one or more
actions to be performed in sequence.

Instantiation approach
This approach assumes instantiation of an object of some class. The
specification requires:

• The class to instantiate
• A constructor method. The constructor may require recursive references

to other configured objects, as in [Siepmann 94].
• Additional stimuli to apply to the newly instantiated object, possibly in the

form of references to one or more existing scenarios.

The artifact needs to implement behavior to instantiate the object according to
the specified constructor, recursively requesting any artifacts specified for
constructor parameters to provide values, execute any additional stimuli on the
object, and return it.

Materialization approach
This approach assumes the object exists in some persistent state and may be
retrieved via a given strategy. The specification requires:

• The location (table/database/file) of the object

7

The artifact needs to implement behavior to retrieve the object, most likely
through some framework interface, execute any additional stimuli on the object,
and return it.

Known Uses

ObjectCreator in [Siepmann 94] implements a strategy for creating instances of
test objects as specified by an object description language.

Related Patterns

This pattern is in many ways similar to the Builder pattern, which separates the
construction of an object from its representation. Configured Instance certainly
separates construction from implementation, however, the focus of this pattern is
to encapsulate any operations that are required to provide a configured instance
of an object, which may include implementation of the Builder pattern, or it may
simply require materializing an externally persisted object.

Pattern: Test Stimulus

Intent: Encapsulate a stimulus/response validation operation for a component
under test for singly or multiply threaded systems.

Context

• The basic unit of execution of a test case is the application of a stimulus.

• The next level of organization for testing contains multiple discrete stimuli
for a particular purpose – a use case scenario.

• Optionally, the response to a stimulus may be validated in terms of a
change in the state of the component under test, or some area of the
system under test, as well as an object returned directly by the stimulus.

• In multithreaded systems, the responses to a stimulus may be temporally
non-deterministic.

Applicability

This pattern is indicated in any situation where a discrete stimulus or related
sequence of stimuli need to be applied to a component, with response validation.

Strategy/Implementation

Create an artifact that embodies any or all of:

• A stimulus on some object defined as one of:
o a reference to a target object and the action to perform on the

target object (message send)

8

o The selector for a method on a test class that will perform the
stimulus action when requested

o A reference to an artifact that will perform the stimulus action when
requested

o Some other executable representation of the stimulus
• precondition state validation
• postcondition state or return value validation
• invariant validation
• a synchronization mechanism for suspending test execution after

executing the stimulus, until an expected state is sensed, or time limit is
exceeded so that long running asynchronous transactions do not

Instances of implementors of this pattern are typically components of test
sequence artifacts or test sequence artifacts themselves. As such, validation
properties may be specified as references to validating artifacts. Precondition,
postcondition and invariant validation, as well as state synchronization are all
specified under the general definition common to all test artifacts, so no special
work is required to implement those for this pattern.

Related Patterns

Command in [Gamma+ 95] describes a pattern for encapsulating requests. Test
Stimulus differs because it also encapsulates expected response validation, and
synchronization.

Pattern: Nested State

Intent: Provide a mechanism for specifying and traversing a chain of object
references to extract a specific state.

Context
Many components present a primary interface through a single object that
typically follows some implementation of the façade pattern, as described in
[Gamma+ 95]. If testability were the primary motivating design force, all public
sub-object interfaces and states for a component would be promoted to the
interface of this façade object so they were easily accessible for validation.
Unfortunately, this may lead to code bloat and the need to maintain methods that
do not contribute to the overall purpose of the system beyond aiding testability.

Strategy/Implementation

Implement an artifact that provides a means to specify an access scheme for a
particular state of a given object. This scheme may be a reference to a method
that implements a daisy chained traversal of the objects, for example, return
myObject.x().y().z();

9

Another possibility would be to build on a composite artifact whose sequence of
stimuli is used to access successive states in the chain. This is a little less
straightforward, however it does present the opportunity to build off of a state
returned by an artifact reference. For example:

In the definition for the artifact that returns state ‘z’, each component applies a
stimulus to the result of the execution the previous component.

Consequences

A configured nested state artifact becomes a permanent, reusable access
method for a particular state within a component. Tests that need to validate this
state need only reference this artifact by its root artifact/name ordered pair,
passing the object under consideration. If the path to the state ever changes,
only a change in the artifact’s configuration is needed.

Known uses

VisualWorks Smalltalk uses what is known as an access path in the
ProtocolAdaptor class to describe a path to a particular object from a root object
in terms of a collection of message selectors to be sequentially sent to the root
object and subsequently the objects returned.

Pattern: Aggregate State

Intent: Represent the state of a component in terms of an aggregate of the
states of its subcomponents. An aggregate state may or may not represent the
complete, recursive state of the component and all each subcomponent.

Context
Most components, with the exception of primitives, can be described as a
federation of one or more objects that are either contained by or collaborate with
the component. Broadly speaking, each of these objects contributes its own state
to that of the whole. The recursive state of a component is the value set of
instance variable values obtained by recursively expanding each instance

State ‘z’ artifact
definition

Reference to artifact that returns myObject

Send x() stimulus to previous

Send y() stimulus to previous

Send z() stimulus to previous

10

variable value [Binder 99]. A component has one complete recursive state, but
may have many aggregate state representations, or views, depending on which
states are of interest. For example, one might choose to ignore the current time
state of a component for comparisons so as to avoid mismatches due to test
execution at different times.

Applicability

This pattern represents a strategy for specifying the subcomponent states of
interest, traversing the subcomponents to extract those states, and representing
multiple states as a single state.

This pattern is applicable when a single, representation of all or some subset of
the entire recursive state of a component is required, such as for validation
purposes.

Strategy

Populate a composite aggregate state artifact with components that, when
executed, extract individual states from the object under consideration. Nested
state artifacts lend themselves well to this purpose. The execution time behavior
of this aggregate state artifact is to gather and return a collection of the resultant
execution values each of its components as a flattened representation of the total
aggregate state of the object under consideration.

Implement comparison operators that take into account the complete set of
states

Consequences

A configured aggregate state artifact acts as a reusable representation of a
particular view of an object’s state. Used in conjunction with nested state
artifacts, the state of an entire object tree may be captured. This type of artifact
serves as a useful shorthand for comparing objects. For example, for a particular
view of the state a root object and object tree one might normally code something
like this in Java™:
return customer.x().equals(referenceCustomer.x() &&
 customer.x().y().equals(referenceCustomer.x().y()) &&

 customer.x().y().z().equals(referenceCustomer.x().y().
z())

… etc.

Given an aggregate state artifact instance configured for some set of states on
an object of a particular type, comparison of an object and a presumably
equivalent reference object is a matter of instantiating the artifact for the objects
to be compared and then sending equals() to the artifacts.

11

(new MyArtifacts().getArtifactNamed(
 “General Customer State”)).subject(customer).equals(
 (new MyArtifacts().getArtifactNamed(
 “General Customer State”)).subject(referenceCustomer));

Note: This example syntax for instantiating an artifact is not mandatory

Known uses

Any object that externalizes referenced or contained object states through
delegation

Related Patterns
• The Memento pattern captures and externalizes an object’s internal state

[Gamma+ 95].
• Implementations of this pattern make use of implementations of Nested

State for specifying and extracting states.
• The façade pattern [Gamma+ 95] presents a single interface for a cluster

of objects.

Pattern: State Impression

Intent Express a particular view of the state of a component in a compact, but
human readable form

Context

By and large, simple objects like strings and integers are much simpler to
compare to one another than complex objects, and also much simpler to capture
and store for later reference. Simple objects also have the added benefit of being
easily recognizable by the human reader, which often proves advantageous
when debugging. It becomes advantageous then, to be able to easily generate a
simple representation of a view of a component’s state so that rapid comparison
to reference state can be accomplished. A view of a component’s state means
the union of some, but not necessarily all the instance state of the objects that
comprise the component. The term Impression, is used to mean a simple
representation of a complex object’s state, in much the same way that artistic
Impressionism conveys an impression of its subject without a detailed rendering.

Applicability

This pattern is indicated in situations where simple object state views are
required, typically for comparison or debugging purposes.

Strategy/Implementation

Implement one method for each view of the states of interest. Within each
method:

12

• Employ a strategy for extracting the required states. The aggregate state
pattern describes a scheme for performing this.

• Append String representations of those states to a String or Stream, as
well as any other syntactic sugar required to make the information more
readable, and return.

The aggregate state artifact may be easily extended to include a toString()
method that gathers its composite states in a String form. Because artifacts
include a name property, it is conceivable that the names of the component
states might be used in the impression’s String representation.

Known uses

Implementations of impressions include #printString and #asString in Smalltalk,
as well as toString() in Java.

Related Patterns

Implementations of this pattern may make use of Nested State for specifying and
extracting states.

Pattern: State Validation

Intent: Assert that a component is in an expected state. Define this assertion as
a reusable component.

Context

State validation involves comparing object state to some known, expected state.
Validation of expected state may be encoded in several ways:

• as a comparison to one or more Gold Standard reference objects
• as simple comparisons to primitives or literals
• as a test for some known object’s inclusion or exclusion within a collection

type
• as a comparison between object impressions

Applicability
• Use this pattern when the state of an object at a particular moment

requires validation.
• Use this pattern when scaling up to broadly scoped system-level

validations from individual object validations.

Strategy/Implementation

A common strategy is to implement an assert(boolean) test API [Beck 99] that
logs the success or failure of a contained expression, during test execution. This
is a simple, but flexible solution that is applicable to many cases.

13

A common test artifact property discussed earlier is a postcondition validation
action, which embodies a definition for some validation action to be performed on
artifact execution completion. This has the advantage of tying the artifact’s action
to an immediate validation of its success. Having this kind of close, structural
relationship between stimulus and response validation enhances understanding
of the test, especially if the test framework provides user interface or results
reporting that maintains the link between the two.

Possibilities for defining a validation action may be:

• an expression that evaluates to a boolean. This is similar to the assert API
discussed above, which would most likely be called under the covers
during execution.

• a reference to an artifact that performs the validation. In situations where
the same validation is performed repeatedly (invariants, for example)
defining and then referencing an artifact whose sole purpose is validation
of a particular object type’s state becomes advantageous, especially if
many state comparisons are involved. A similar alternative, discussed
above, is to implement an aggregate state artifact and use it as a
comparison wrapper for an object under consideration and a reference
object.

Consequences

A useful application of validation artifacts is to create a family of them to validate
common, expected states. Consider a simple example of a Loan object with
states, new, overdue, and complete, among others. Once artifacts have been
created that validate the configurations that these states embody, they may be
easily ‘plugged in’ as postcondition properties, as appropriate. When the internal
representation of a state changes, it is a simple matter to update the validation
artifact’s specification without regard to whether it is referenced in one or one
hundred places.

Collaborators

Implementors of the nested state and aggregate state patterns may used to
extract state.

Pattern: Object Variation

Intent: Organize configured object variations as a single, reusable resource.

Context

When testing components at the interface level, the path from component input
to output often varies depending on input values. Therefore, it is advantageous to
be able to pass input variations to a test for the purpose of driving execution of

14

the different paths, both inter-object and intra-object. Ideally, one would be able
to describe a specific set of variations for a particular class, referencing that
configuration as needed. Any reference to a set of variations in a test case would
automatically result in execution of that that test case across each value.

Strategy/Implementation

Design an object variation test artifact that presents an interface for
enumerating, or sequentially accessing its values.

Values may be provided from references to configured artifacts, calculated
values or any other values.

Any composite artifact that implements a sequential access mechanism, and
whose components return useful values may serve as an object variation artifact.
Components that are likely to return useful values are configured instance
artifacts, and stimulus artifacts.

Another approach would be to implement an artifact that implements a sequential
access mechanism (an Enumerator, for example) and generates values based
on some particular strategy. Some simpler strategies are generating an Integer
interval, or random values. Thanks to encapsulation, as long as an object
variation artifact implements the required interface, the source of the objects is
irrelevant. The concept may also be extended to support retrieval of objects from
a database.

The essence of the solution is to extend the test execution framework to accept
an object (object variation artifact) that implements a sequential access
mechanism as an execution modifier, whereby execution of a given test element
is repeated over the elements returned by the object variation artifact. The
variation artifact implements a strategy for generating or retrieving objects, in
some cases based on its own particular configuration, In the example of the
Integer interval, that may configuration may be an upper and lower bound. For
database retrieval, it may be the database, table, and some SQL.

The final implementation consideration concerns the case where multiple
variation artifacts are specified. In this case, the elements provided by each of
the variation artifacts must be mixed according to some consistent and desirable
rule (one-by-one, each-with-every, etc.). The recommended approach is to
encode the rules in a hierarchy of policy objects to be used by the execution
framework to govern retrieval of variation artifact elements. The advantage to
encoding this behavior in a separate class is that instances may be plugged in to
the execution framework as appropriate to the given situation, as an execution
behavior modifier.

Consequences

Useful variations are themselves reusable units that may be shared among test
developers.

15

Even though any artifact that implements a sequencing interface may serve as
an object variation provider, it is important to note that care should be taken that
the objects that are returned are appropriate for use and of the correct type.

Related Patterns

The Oracle pattern [Binder 99] describes approaches for providing test data to
tests.

Applying artifacts
This article introduced several test artifact types as responses to common
automated component test design patterns. Test artifacts may be used as an
architectural foundation for implementing automated component tests. Test
artifacts are implemented by classes whose instances embody particular
execution behavior. The behavior for an artifact instance is affected by the
configuration of its properties.

In practice, artifacts are instantiated, configured and returned by test methods
within classes organized by purpose. Traditionally classes known as test suites
[Beck 99, Binder 99], provide specifications for test cases and supporting
methods. This class-based organization is applicable to artifacts as well, where
each artifact is represented by an instance method.

For unit tests, a suite class may appear in a hierarchy designed to mimic the
hierarchy of the classes under test [McGregor+96]. For example, consider object,
A. A parallel test suite class AT may be defined for the purpose of testing A, with
subclasses of AT following along subclasses of A, as appropriate. Using this
architecture one is encouraged to implement methods that return artifact
instances configured specifically for the class under consideration.

16

In the above diagram, ClassA and ClassB are classes under test. ClassATest
and ClassBTest are test suites arranged in a hierarchy that parallels the classes
they test. ClassATest implements methods (not indicated) that each return a
configured artifact instance. The test artifacts are:

Test Artifact name Description

“Configured instance
of A #1”

A configured instance artifact - configured to, when
executed, return an instance of ClassA in a particular
state.

“Configured instance
of A #2”

A configured instance artifact configured to, when
executed, return an instance of ClassA in a particular
state that is assumed to differ in some useful and
interesting way from the above instance

“Variations of A” A variation artifact - provides object variations and is
configured to refer to and enumerate the two configured
instances above.

“Sequence of stimuli
on instances of A”

A test sequence artifact - represents a sequence of
stimuli on some instance of ClassA, that is, a unit test
case. It is configured to take as input the “Variations of A”

ClassA

ClassATest

Configured
instance of A

#1

Configured
instance of A

#2

Variations of A
using configured

instances
#1, and #2

Sequence of
stimuli on

instances of A

instantiates

contains

Iterates over

tests

Artifact instances returned by methods
in test for class A

ClassB

ClassBTest

17

artifact, which means that the sequence of stimuli are
performed on each of the two instances of ClassA defined
above.

The above is a very simple, and in some ways contrived test, but it does show
potential relationships between classes and artifacts. A more likely usage would
be to employ variations of ClassA as input to constructors and other methods on some
other ClassX. For example,

In the above example, a “Sequence of stimuli on instances of X” (a test case for
ClassX), is passed, variations of ClassA. Though not shown here, the test case for
ClassX uses instances of ClassA as parameters for constructors and other message
sends on ClassX.

As a side note, for cluster or subsystem tests, it is less reasonable to organize according
to the structure of the objects under test, and more likely that a suite class will appear in
a flatter test hierarchy that takes a more functional perspective of the system under test.

Regardless, as a matter of policy, a well designed suite should always be targeted
toward testing some component under test, [Dwyer 99] whether it is a single class,
cluster, or subsystem.

Effectiveness

The approach described here is most effective when applied to tests for more than just a
handful of classes. Our experience has shown that the value of building tests upon a
framework of reusable test components such as the artifacts described here, increases
as the scope of the tests and the number of reusable artifact definitions grows.

It is also important to note that tests and test components are development work
products in themselves and should be designed along with the rest of the system under
test. A common question developers should ask themselves as they design code, and
that should certainly be asked at reviews, is “how do I prove that this works?” It is also
important to publicize and share reusable test components, especially configured
instance and object variation artifacts, as they become available.

Sample Code
/* Return an artifact that returns a configured instance of a
 * Calculator class after adding an int.
 */
public ConfiguredInstance calculatorAfterAdd() {

ConfiguredInstance artifact =
new ConfiguredInstance(“Calculator after add");

ClassX Sequence of
stimuli on

instances of
X

Variations of A
using configured

instances
#1, and #2

(From ClassATest above)

ClassXTest

18

// Set subject of step via constructor specification
artifact.setConstructorStep(
new Stimulus(“Default").setMessageSpec(message(Calculator.class)));

// Apply stimulus to subject via MessageStep
artifact.addComponent(
new Stimulus(“Add number").setMessageSpec(message(subject(),

 "add",
 new int[] {123}));

return artifact; }

Example 1

/* Return an artifact that references an artifact. Reference
 * an artifact that provides a Calculator in a state of having been
 * had a value added as a ‘constructor step’. Then subtract a
 * value from it.
 */
public ConfiguredInstance calculatorAfterSubtract() {

ConfiguredInstance artifact =
 new ConfiguredInstance(“Calculator after subtract");

// Reference existing artifact
ArtifactReference reference =
 new ArtifactReference(“Reference”,MyClass,”calculatorAfterAdd”);

artifact.setConstructorStep(reference);

// Apply stimulus to subject via MessageStep
new Stimulus(“Subtract number").setMessageSpec(message(

 subject(),
 "subtract",

 new int[] {123}));

return artifact; }

Example 2

/* Instantiate and execute an artifact to retrieve its value.
new MyClass().calculatorAfterAdd().getValue()

Example 3

The first example shows a method that returns an artifact that describes an
instance of Calculator configured with the default constructor, with an ‘add’
stimulus applied. The result of evaluating the constructor specification is
subsequently accessible by subject(), which is assumed to be implemented
in the method class’ hierarchy .

The second example shows a method that returns an artifact that is composed of
a reference to the first artifact, as a subject, with a subtract stimulus applied to it.

19

The third example simply shows instantiating an artifact by invoking a method
that returns it, and then sending grtValue() to execute the artifact and return its
value.

Conclusion
Widespread adoption of component architectures in the software industry is
helping increase developer productivity and software quality. Applying the same
architectural principles and design for reuse to component tests as the
components under test is a sensible approach.

This article has described a component architecture for automated component
testing frameworks, based on a family of objects called test artifacts that move
common testing behavior, frequently implemented within automated component
tests, from the tests themselves to the test artifact objects. The benefits of this
approach are

• Less time is spent implementing component tests because the framework
implements common testing behavior

• The test structure suggested by the artifacts themselves guides test
developers down well defined implementation paths, making tests
consistent and providing test developers with design momentum.

• Because artifacts can be used to completely describe tests, they may
serve as a basis for test tool implementation, and targets for automated
test generation.

20

References and further reading
[Beck 94] Kent Beck, Simple Smalltalk Testing. The Smalltalk Report 4(2):16-18,
October 1994
[Binder 99] Robert V. Binder, Testing Object-Oriented Systems: Models, Patterns, and
Tools. Addison-Wesley Object Technology Series. 1999
[Dwyer 99] Graham Dwyer and Graham Freeburn, Business Object Scenarios: a fifth-
generation approach to automated testing. In Software Test Automation : Effective Use
of Test Execution Tools. Edited by Mark Fewster and Dorothy Graham Addison-Wesley
Pub Co. 1999
[Firesmith 96] Donald G. Firesmith, Pattern Language for Testing Object-Oriented
Software, Object Magazine, Vol. 5, No. 8, SIGS Publications Inc., New York, New York,
January 1996, pages 32-38.
[Gamma+ 95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design
Patterns : Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional Computing. 1995
[Fowler 99] Martin Fowler, A UML Testing Framework. Software Development
Magazine. April, 1999
[Fewster 99] Mark Fewster, Dorothy Graham Software Test Automation : Effective
Use of Test Execution Tools. Addison-Wesley Pub Co. 1999
[Hetzel 84] Bill Hetzel, Software Testing, QED Information Sciences, Inc. 1984
[Jeffries 99] Ronald E. Jeffries, Extreme Testing, Software Testing and Quality
Engineering 1(2):23-26 March/April 1999
[Jorgenson 94] Paul C. Jorgenson and Carl Erickson,. Object-Oriented Integration
Testing. CACM, 37(9):30-38 September 1994
[Kaner 93] Cen Kaner, Jack Falk, Hung Quoc, Testing Computer Software,
International Thompson Computer Press 1993
[Marick 95] Brian Marick, The Craft of Software Testing, Prentice Hall. 1995
[McGregor 94] John D. McGregor, Testing Object-Oriented Systems Tutorial Notes In
The Conference on Object-
Oriented Systems, Languages and Applications, October 1994
[McGregor 96a] John D. McGregor and Timothy Korson, Integrating Object-Oriented
Testing and Development Processes. CACM, 37(9):59-77 September 1994
[McGregor 96b] John D. McGregor and A. Kare, PACT: An Architecture for Object-
Oriented Component Testing, in the Proceedings of The Ninth International Software
Quality Week in San Francisco, California, SR Institute, San Francisco, 22 May 1996.
[McGregor 99] John D. McGregor Test Patterns: Please Stand By, Journal of Object-
Oriented Programming, 12(3):14-19, June 1999
[Murphy 94] Gail C. Murphy, Paul Townsend, and Pok Sze Wong, Experiences With
Cluster and Class Testing. CACM, 37(9):39-47 September 1994
[Myers 79] Glenford Myers, The Art of Software Testing, John Wiley & Sons, Inc. 1979
[Poston 94] Robert M.Poston, Automated testing from Object Models. CACM,
37(9):48-58 September 1994.
[Siegel 96] Shel Siegel, Object Oriented Software Testing, a Hierarchical Approach.
John Wiley & Sons, Inc. 1996
[Siepmann 94] Ernst Siepmann, A. Richard Newton: TOBAC: A Test Case Browser
for Testing Object-Oriented Software. ISSTA 1994: 154-168

QW2K Paper 2A1

Mr. James Andrews
(The Open Group)

Automated Conformance Testing for IT & T
Product Certification

BACK TO QW2000 PROGRAM

Key Points

Methods for automatec conformance testing●

Certification of information and telecommunications technology against industry standards●

Product certification of operating systems, wireless telecommunication, and internet technology in practice●

Presentation Abstract

This talk will outline the principles of conformance testing and the methods by which automated test
suites may be develooped to assess the conforming of implementation of open standards.

The talk will further outline the various approaches to certificatio nof IT&T technology and how
automated testing can be used as teh basis of product certification.

This will be illustrated with examples of real world experience in the product certification of the UNIX
opearting system, the Wireless Application Protocol, and the network computer known as the Open
Brand.

About the Author

Mr. Andrews is the Conformance Quality Manager of the Open Group. He was responsible for the
definition of the Open Group's Test Suite development procedures and thereafter for the Operation of
the Open Group's Open Brand program.

Mr. Andrews has 20 years experience in softawre quality assurance and 15 years experience iun IT&T
software conformation testing and certification. He is a lead assessor for Natlas for the assessment of
IT&T test laboratories.

Mr. Andrews lectured extensively on conformance testing and certification and has been translated
into several European languages, Russian and Japanese.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/2A1.html [4/28/2000 2:27:33 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Automated Conformance Testing for
IT & T Certification

James Andrews

Conformance Quality Manger

The Open Group

Development Testing

• Development or QA testing.
– Test to look for bugs.
– Product is its own standard.

2

Conformance Testing

• Testing for conformity.
– Test cases traceable back to the open standard.

• Though they may become the standard themselves
for proprietary specifications.

– Test restricted only to the standard.
– No assumptions on how standard implemented.
– Avoid subjective judgments.

• Automated verdict assignment.
– Development testing.
– Final certification.

Conformance Testing Versus Quality
Assurance Testing

• Conformance testing
– Black box
– Functional
– Top down
– Portability
– Interoperability

• QA testing
– Code bugs
– Performance
– Robustness
– Quality of implementation

3

Conformance Test Suite Design
a Few Criteria

• Design of test suites to be objective
– Repeatable
– Reproducible
– And impartial

• Design of test cases
– The use of assertions
– Independence, set up and clean up
– Parameterized
– Portable
– Verdict assignment: Pass, Fail, Unresolved, Untested

TETware Test Harness
• Support for POSIX assertion-based testing

• Builds, executes and cleans up test suites
• Test scenarios can be defined using a

powerful scenario language

4

TETware Test Harness
• Test parameters can be specified using a

flexible configuration variable mechanism
• Configuration information and test results

are recorded in a journal
• Support for the standard POSIX result codes

is built in - user-defined results are also
supported

Technology Fields Where Conformance
Testing Has Been Applied?

• TETware based tests exist for
– Operating system tests
– Networking API tests
– GUI tests
– Network protocol tests
– Object oriented testing
– Data management tests

• Alternative test frameworks have been used for
– Web browsers
– Network computers
– Wireless web devices

5

Test Suite Lifecycle

• Assertion design and review
• Beta test
• General release
• Maintenance release

– Clear bugs
– New tests
– Beta review
– (6 months overlap)

Test Assertion Design

• Maps the test to the standard.
• ‘Shall, must.’
• ‘May, should.’
• As a tool to debug the specification.
• As a tool to debug the tests.
• As the basis of objective assessment of

results.

6

Certification Value Add

• Objective independent review
• Simple criteria for procurement
• Single sheet
• Continuing conformity
• Register of products
• Lab accreditation

Interpretations Process

• Agreed errors in test suite
• Errors in specification

– Permanent
– Temporary

• Independent review
• Public list
• Industry review
• Appeal

7

Conformance Statements

• Statement of options Implemented
• Means of implementation

– Eg limits

• Scope of certification
– Derived conformity

• Test suite parameterization

Trademark License Agreement

• Standards of quality
• Warranty of conformity
• Continued conformity
• Use of certificate and mark
• Appeals
• Removal of certificate mark
• Right of audit

8

Assessment

• Conformance Statements
– Self consistent, correct
– Test suite parameterization

• Referenced interpretations
• Test report self consistency
• Scope and identity
• Legal agreement

Certification in Action

• The Single UNIX® specification
• Graphical user interface

– Desktop style
• 35,000 conformance test cases

– Six test suites
• Evolution

– Certification ready
(R) UNIX is a registered trademarks of The Open Group in the US and other countries.

9

UNIX Certification

• UNIX® 98 System
• UNIX® 95 System.
• UNIX® 98 workstation.
• UNIX® 98 server.
The operating system of choice for internet

servers.

Wireless Application Protocol

• Interoperability
– Protocol
– End-to-end
– Multi-party

• Rendition
• Functional correctness
• Relationship of The Open Group to the

WAP Forum

10

Futures

• FIX –A protocol for exchanging financial information

• Directory services- LDAP

• Security – CDMA

• Realtime and Embedded Systems Testing
• Other open specifications

– Using the UNIX® System experience
elsewhere

Conclusion

• Market lead
• Consumer confidence
• Openness

– Impartiality
– Automation

• Framework
• Limitations

– Quality of service
– Value-add

QW2K Paper 2W1

Mr. Ted Fuller
(Agency.com)

Notes From The Front Lines: How to Test
Anything and Everything on a Web Site

BACK TO QW2000 PROGRAM

Key Points

Identifies Internet-specific Quality issues you need to address.●

Discusses details you don't want to miss before launching a web site.●

Explains how to apply existing Quality practices to prevent problems that might otherwise show up in testing.●

Presentation Abstract

Some of the best training in web site Quality comes only with experience. This presentation will share
the lessons you won’t find in any book, based on 35 years experience (in Internet Time) testing the full
spectrum Internet, intranet and extranet websites.

The focus of this paper will be on practical lessons and tips and tricks, but we'll also discuss how to
apply traditional Quality practices on Internet projects.

After attending this presentation, you will approach Internet projects with confidence, knowing that you
will be using familiar tools and skills, and simply applying them to a new medium.

About the Author

Ted Fuller is a veteran of Quality Assurance in interactive media with AGENCY.COM. He has five
years experience testing web sites, retail and tradeshow demos and kiosks, and computer based
training.

Past experience has served him well in QA. He honed his communication skills as a technical writer,
writing documentation and help files for products ranging from software, personal computers, and
hydroelectric generation system modeling systems, to web site content management systems,
client-server applications and database configuration tools. Internet deadlines don't faze him, after five
years fighting forest fires in California and Oregon.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/2W1.html [4/28/2000 2:27:42 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Notes From the Front Lines:
How to Test Anything and
Everything on a Web Site

Ted Fuller
Quality Control Specialist
AGENCY.COM

©2000 Ted Fuller AGENCY.COM

Today’s Program

� Lesson # 1:
Testing web sites is completely different from testing
any other software

� Lesson #2:
Testing web sites is no different from testing other
software, especially software with a GUI

� Lesson #3:
Nothing in your QA experience prepares you for
working on a web site project

� Lesson #4:
Everything in your QA experience prepares you for
working on a web site project

2

Lesson #1:
Testing web sites is completely different from
testing any other software

� Everything’s New

� Are you Testing the Latest Version?

� Quality Process in Place

� Browsers

� Changes to Software and Infrastructure

� Structural Changes to Code

� Hardware Changes

Lesson #1:
Testing web sites is completely different from
testing any other software (continued)

� Site Index Page and Search Functionality

� Appealing Indices

� Relevant Searches

� Browser Idiosyncrasies

� Confirm Functionality Support

� Browser Archives

� AOL’s Browser

� Configuration and Platform Testing

� Someone Still Has to Review Every Page

3

Lesson #2:
Testing web sites is no different from testing
any other software (especially GUI software)

� Tips & Tricks

� Common Elements

� Test Procedures

� Automated Tools

� Link Checkers

� Code Validators

� Transactions and Other Functionality

Lesson #3:
Nothing in your QA experience prepares you
for working on a web site project

� Two Challenges

� Time

� Content

4

Lesson #4:
Everything in your QA experience prepares
you for working on a web site project

� You Know More Than You Think

� Backend Functionality

� Existing Quality Practices

� Integration

� Frontend Interface

Notes From the Front Lines:
How to Test Anything and Everything on a Web Site
By: Ted Fuller

Quality Control Specialist
AGENCY.COM
tfuller@agency.com
©2000 Ted Fuller AGENCY.COM

Some of the best training in web site Quality comes only with experience. This presentation will share the
lessons you won’t find in any book, based on 35 years experience (in Internet Time) testing everything
from computer based training, retail and tradeshow demos and kiosks, to all colors, shapes and sizes of
Internet, intranet and extranet web sites.

Lesson #1:
Testing web sites is completely different from testing any other software.

Everything’s New
The World Wide Web is built and viewed using all new technology. Browsers, plug-ins, java, flash,
quicktime, mp3. Developers are doing things with code no one imagined two, five, ten years ago. How can
we test it when they're out on the edge developing and using new tools and technology
at a breakneck pace that don't have any benchmarks or standards?

You test it by defining the intended functionality, features and performance. Anything may be possible, but
it isn't necessarily what the client wants. Make sure developers and clients understand and agree on what
they need, what they want, what's feasible, and what the ultimate goal is. Help them establish those
definitions by having them explain how to measure the features and functions, and identify the
characteristics that indicate satisfactory performance. Does this sound familiar? It should: the
team needs to define requirements and specifications, and agree on how to determine that those
requirements and specifications have been fulfilled. These are fundamental Quality practices.

That being said, there are some testing issues unique to web projects.

Are You Testing the Latest Version?
Quality Process in Place: Development teams have multiple programmers, typically young workers who
may be unfamiliar with good development and Quality practices. Development teams must use version
control software. Changes are too easy to make. Testing needs to be done on a dedicated environment.
We’re all used to software evolving over the life of the project, but on the web we’re talking hourly
evolutions. If the test environment isn’t managed effectively, the resulting chaos will bog down the testing
process, and impact the project schedule and quality.

Browsers: Along with making sure your processes and procedures maintain version control and protect
your test environment, you need to make sure your browsers are showing you the latest version as well.
You need to keep your cache and cookies clean. It’s not enough to select the option to “compare cache
version to network version Every Time.” You need to empty the cache, clear the history and regularly
delete the coookies.txt file. Otherwise you risk inaccurate (not to mention embarrassing) regression test
results.

To clear cache, go to a web site outside the scope of your test project, then:
In Netscape Navigator: Edit/Preferences/Navigator branch: Clear History; Advanced branch: Cache/Clear
Memory Cache; Clear Disk Cache.

In Internet Explorer: View/Options (v4) Tools/Options (v5) General tab: Temporary Internet Files:
Delete Files; History: Clear History.

To delete the cookies file:
Search the computer’s hard disk drive for the file cookies.txt. Delete it.

Changes to Software and Infrastructure
Structural Changes to Code: Whenever a major change is made to the directory, you need to do
regression testing on all the links. A new directory, or different directory or filenames, changes the path,
which breaks all the links.

Hardware Changes: Whenever the project changes location, whether moving to a new port on the same
box, or moving from one physical box to another, you need to do thorough regression testing. Recheck
everything to verify that all the links, features and functions that worked on the original server still work on
the new server. Broken links are the obvious issue, but there’s also the risk to functionality because of
different machine configurations. Unless the boxes were obtained and configured simultaneously, and
religiously maintained and upgraded in parallel, they will not be identical, and your software is at risk.

Site Index Page and Search Functionality
Two of the common features found on nearly every web site are the ones that sometimes get the least
attention until the launch deadline approaches. Typically the Site Index page and Search functionality are
the last things coded. While they’re common components of most projects, they’re rarely included in
design and copywriting efforts. They’re reminiscent of how Online Help is approached. A standard
necessity, but nothing that gets the attention it needs until late in the process.

Appealing Indices: Good sites have Site Index pages that use the same graphics and visual navigation cues
users see on the Home Page and main sub-section pages. This helps them associate the links on the index
with the content they’ve accessed from there.

Relevant Searches: Likewise, the Search page needs the site’s look and feel, and includes instructions and
examples. More importantly, the results page is easy to interpret, with enough information to give the users
the context of the result. These are just basic requirements for Search. It’s a specialty in the industry. We’re
helping one of our major clients fine tune their search function so that it brings back relevant, accurate,
informative results.

Browser Idiosyncrasies
Browsers are a new technology unique to the web. Be grateful we’re past the early versions with their
inconsistencies and instability. The version 4 browsers from Netscape and Microsoft were the first where
the features and functions matched up pretty well. The version 5’s will be even more similar. Even so, you
need to understand all browsers are not created equal (especially on different platforms). The same web site
files can look very different on different browsers. Text, tables, fields and buttons don’t display
consistently. Spacing and position of elements is inconsistent. You need to see it to believe it (and report
it).

Confirm functionality support: One of the challenges of the web is that the technology keeps changing,
and the development tools and the browsers are rarely in step. Webmonkey is a great resource site for
developers. The Browser Chart (http://hotwired.lycos.com/webmonkey/browserkit/), provides a quick
reference to what technologies each of the major browsers supports.

Browser Archives: Although the major browsers have converging feature sets, you can’t ignore the old
versions. You don’t want to aggravate users who would rather keep their stable, functional systems rather
than upgrade with every new release. Even more importantly, the current non-US versions are one- to two
versions behind, which may include a significant portion of your audience. How do you find old versions of
browsers: Go to a browser archive: http://www.browser.com

AOL’s Browser: America Online’s proprietary browser is actually built on the Internet Explorer platform
(although probably not the next version, since AOL owns Netscape now). But it has some idiosyncrasies of
it’s own. How important is it for your site to support AOL? That depends on how much you want to
impress the 22 million members who use it. To find out more about AOL’s proprietary browser, go to:
http://webmaster.info.aol.com/ AOL’s version of the Browser Chart is accessible by clicking the Browser
Info link on the left, and the Computability text link on the page that displays.

Configuration and Platform Testing: While the field of major browsers is relatively narrow, there is a
broad spectrum of computer platforms used to surf the web. One of the key elements of a users web
experience is performance, and much of that depends on their personal system: Chip speed, RAM, Video
memory, modem speed, bandwidth available. You can’t test every possible combination, but it is possible
to evaluate performance on a variety of systems and configurations. But you don’t want to do it yourself.
The setup and maintenance is a full-time job, as evidenced by the number of test lab vendors in the Exhibit
Hall. You want a couple of machines, not only for browsers but for different hardware, so you check that
chip and modem speed and RAM don’t limit the user experience. Once you confirm the site is stable, pass
it to a lab for configuration testing, as well as performance testing. Like fine tuning Search functionality,
performance testing is a specialty. You need to be aware if the site is slow, or bogs down when the internal
network is busy, it will be much, much worse out on the real web world. But for realistic load testing, go to
a lab equipped and trained to do it right and offer tuning recommendations.

Someone Still Has to Review Every Page
Because content tone, images, and look and feel, are such important parts of the user experience, it’s
critical that every page gets reviewed for these criteria. Consistency is a subjective measure, but critical to
prevent confusion, which is fatal to audience satisfaction. You need to check the display of graphics: are
they complete, clear, and the correct images?

If you have trouble accepting this notion, think of it as if it were a print project. It’s been proofread and
copy edited by countless people throughout production and at every milestone of development. The final
milestone is the galley or proof. You see a sample of the first impressions, checking every page with a
critical eye to make sure everything’s in its proper place. And even when you give the go ahead, you still
check it as comes off the press, and during the press run, to make sure it’s right.

Lesson #2:
Testing Web sites is no different from testing other software, especially
software with a GUI.

Tips & Tricks
Here are some issues to remember and test, and surefire ways to break a website.

Drop down lists: Try selecting a heading or blank line; Is the text too long for box width? Any items
missing from list?

Forms: Do the text fields hold enough text (try: Elizabeth Montgomery in name; San Francisco in city;
Elizabeth_Montgomery@anynetwork.com), What happens when the user enters bad data or formats? Some
symbols (#$%) and Punctuation marks (":,?/) are reserved characters that require special handling in fields
(especially an apostrophe in SQL).

Authentication: If users can log on, they need to be able to log off. What if they forget their password?
You also need to include password maintenance functionality, or instructions on how to make changes.

Site Map: Does it match main navigation elements? Are all the various menu elements listed? Any missing
elements? Do all the links work?

Email links: Live address? Right address? Correct distribution when received?

External links: Poorly defined? (link to a periodical should go directly to the intended article; don’t force
users to search for it; Out of date? External sites change. Out of date links annoy users.

Printing forms: Check on all browsers (QW2000 Speaker Data Sheet). Better to use PDF.

Common Elements: The supporting documents for this presentation include an appendix: Web Site
Elements/Features Test Procedures. It's a list of software features, functions, and elements, and how to test
them. It includes:

compatible hardware, software and platform issues;
runtime, utility and support software;
conflicts with other software;
user registration, log-in and record keeping;
menu issues;
navigation issues;
special effects, animations and videos

and more.

Look at that list closely. Did you notice that nothing on the list is unique to web sites? Testing any or all of
these issues is a part of testing any software. I've included it in the presentation for people new to
software testing, and new to GUI's in particular.

For those of you who have tested GUI software, it's important to recognize you're testing the same
functionality on the web; it's just in a different software application.

Automated Tools
For basic brochure ware sites, link checkers and code validators should be used. For more complex sites
that handle transactions and other functions, you should consider automated test tools. In both cases, it’s
tools are important, but they need to be used correctly.

Link Checkers: You should use a Link Checker to automate the process of clicking every link. You have
to understand though, that the link checker isn’t perfect. Just as a spell checker won’t catch when you type
the wrong ward, a link checker can’t tell you that the link is going to the wrong place. If it only tests items
coded as links -- what about items that are supposed to be coded as links, but aren’t? What about a link that
may be functional (it points to a working URL), but is it the right target? (http://www.whitehouse.com
doesn’t go where you think). Relative links may not stay stable throughout server promotion and
deployment; what if linkages are inconsistent? The lesson here is that you need to analyze the results.

Code Validators: Your developers should use a code validator as part of their unit testing. A code
validator compares the code to the established standard (such as they are) and flags violations. While
developers should follow the standards to ensure performance on the browsers that are supposedly built to
match the code standards, often interface and functional requirements require workarounds. These
workarounds are fairly common, but you and the developers do need to be aware of them to make sure they
don’t impact performance.

Transactions and Other Functionality: The key to automated tools that develop test scripts are the time
required to set up the scripts, and maintenance to keep them current with the evolving web site. They
require a huge amount of customization, parallel to the coding effort. You have to balance this time
investment with the value of the resulting automated tests. If the site structure will remain stable, automated
tests are critical for thorough regression testing. Again, this is a specialty in the industry; and there are
vendors in the Exhibit Hall.

Lesson #3:
Nothing in your QA experience prepares you for working on a web site
project

Two Challenges
You face two major challenges in web projects: Time, and inexperience with the major components of web
sites: Marketing, graphics and the world of the web.

Time: Internet time is unreal. There are two or three presentations on the topic this week at QW2000. Most
companies are playing catch-up: if they don't have a site up yet, they need it now. If they do have a site, it's
the one they put up in a big hurry to say they had one, and it desperately needs to be updated. Either way,
most companies are in a huge hurry to get a site online. It's not as bad as the daily deadline at a newspaper,
where your talking hours and minutes. But you have to understand, we're usually talking days, weeks if
we're lucky. Most of our projects are measured in weeks, but in order to deliver on time, we require that the
client review our deliverables and return comments in 24 hours. If they can't, we can't launch on time.

The impact on testing is something we're all familiar with: Schedule slippage and compression, resulting in
time budgeted for testing getting eaten up by development. When that happens, risk assessment and
mitigation is crucial. Basic site navigation and any mission critical functions get highest priority. If there
are too many functions that are not ready for primetime, it is relatively simple to keep them inactive at
launch, by removing the links that take the users there. When they are finished, tested and ready, they can
be phased in and promoted as a new feature. This is an important option, compared to off the shelf
software, where purchasers expect a complete, fully functional package that doesn't ship
needing an immediate update.

If launching the site in phases isn't an option then you need more testers. We talked about outsourcing
previously regarding platform and configuration testing. They are also an excellent resource when you have
more test tasks than time. It's the easiest way to get help from qualified people. You don't need to teach
them how to test, or how to file a defect report. You just brief them on the site's objectives and the specific
tasks they're executing, and you're set. Two important issues: You need to make sure your site is ready for
hired testers: it's a waste of time and money for them to report broken links that keep them from getting to
the areas they need to test. And you need to be very explicit in what you want tested and how.

Content: The other major challenge in testing web sites is the critical importance of marketing, graphics
and the "satisfying user experience." If you aren't comfortable assessing these subjective aspects, that's
understandable. But if your role in QA is to help ensure a web site's success, you need to take steps that the
site meets high quality standards in these areas. Enlist experts in each field, and have them review the site
as part of your quality process. Why is this necessary? Because the quality of a web site goes far beyond
functionality.

It doesn't matter if we're talking about a public site to promote your company, or a site your customers
come to for information and service, or a site investors and analysts visit for business information, or a
single site that serves all three audiences: Of course it needs to function correctly. But even assuming it has
bulletproof functionality, if it's confusing to navigate, or hard to use, or information is hard to find, or it
doesn't meet the audiences needs, your audience will go somewhere else, perhaps a competitor, to find what
they're looking for.

If you think of your web site as a product, the marketplace where it's available is incredibly large, and filled
with others competing for your audience's attention. You've only got a matter of seconds and a few clicks
to establish the quality, functionality and usefulness of your site, before your audience will jump to another
one. There's no doubt functional quality is as important on the web as in other software. But simply
addressing functionality risks doesn't ensure your site will be successful. Success on the web is based on
complete, accurate functionality in providing easy access to useful information in a timely manner.

Lesson #4:
Everything in your QA experience prepares you for testing a web site
project

You Know More Than You Think
While the Internet and World Wide Web have revolutionized the way people communicate, the way
companies conduct business, and the way products are marketed, sold and delivered, it’s important to
understand that revolutionary Internet projects require only evolutionary adaptations to their existing
Quality practices.

Backend Functionality: No adaptations necessary here, except to understand relationship within structure
of a web site. Backend modules still need to be bulletproof, facilitating isolation of defects from separate
web site components.

Existing Quality Practices: Specifications and Documentation, Test Plans, Automated Test Scripts,
Defect Reporting and Tracking, Change management, etc. These don’t change. They are just being applied
to a new medium, and involve some different staff (content owners vs. typical SMEs) who may not have
experience with established development and Quality practices.

Integration: Connecting the web Frontend to the mainframe Backend functions. Proper documentation,
developed well, early in the process and followed meticulously, is critical. This includes component
contracts, data dictionaries, and specification of development and staging platforms and a promotion plan.

Frontend Interface: This is where Quality professionals new to the web may balk, saying that this is up to
the content owners (Subject Matter Experts), or that it’s too subjective to be measured and verified. But
because a good web site is the result of successful coordination of content and technology, the Quality
efforts can’t ignore the content. A closer look at the Interface components helps illustrate why the Quality
team needs to include them in their scope.

Documentation: The project documentation should include interface specifications and requirements, so
that the client and development team have a good understanding of what’s expected. A sitemap outlines the
content and its structural relationship. The screen deck shows which navigation elements are on each page
of the web site.

Information Design: At AGENCY.COM our Information Architecture includes interface design, logical
organization of the information to be delivered, and intuitive navigation design for ease of use.

Content: Analyze the content, make sure it is user-focused, that it is what the user wants and needs. Do the
titles make sense, is the information in a logical location? Leave style & tone to marketing department.
Focus on factual errors. Watch for poor grammar and typographical errors; they reflect poorly on the web
site and developers.

A clearly defined QA process throughout the project, and comprehensive documentation, strategies that
work so well in other projects, are your best tools for delivering Quality on a web project.

Appendix: Web Site Elements/Features Test Procedures

This section documents the real-world experience I have acquired in five years of Quality Control, testing
multimedia training projects, demo CDs, and websites. It addresses how to manually test project features
and functions item by item without aid of automated testing tools.

This document is intended as a learning guide for novice or ad hoc testers, as well as reference for the
development team regarding what’s involved in testing various features and functions. It was written the
majority of testing was done late in the development cycle.

Function Multi-platform Functionality
Description If the project needs to work on more than one platform or browser, then it needs to be

tested on each specified platform or browser.
The scope of multi-platform functionality needs to be clearly stated in the
specifications, since it may involve configuration testing that needs to be outsourced.

Lessons learned Check performance on different platforms early and often.
Various versions of Windows may have incompatible system files (.dll etc.).
Netscape Navigator and Internet Explorer perform differently. Likewise, different
versions of the same browser perform differently, and have different capabilities.
Thus, different versions of browsers should be treated as individual platforms.

Test Strategy Run software on the least common denominator platform, being sure to test all features
and functions.

Function Runtime, Driver, Plug-in Functionality
Description Need to know how files are being delivered and executed on target systems. Files can be

delivered as packaged requiring a runtime, or as a standalone executable.
If engines/runtimes and drivers need to be included, the delivery and installation must
also be tested. If Plug-ins are required, need URLs for download sites.
Instructions are needed for all.

Lessons Learned
Test Strategy Test each section of software that relies on Runtime, Driver or Plug-ins.

Function Splash Sequence
Description The Splash sequence sets the tone for the entire project. While it has little impact on the

functionality of the software, it can make a critical first impression.
Lessons Learned Test under field conditions to identify any performance issues.
Test Strategy Have the entire team review the Splash Sequence together to confirm it’s operating as

intended and consensus is reached on changes.

Function User Records Functionality
Description Depending on project specifications, user records can be used to track progress, test

scores, identify sections visited, measure elapsed time, bookmarking (when users logon,
offers them a shortcut to the last section they visited). Records may be kept on the
user’s system, or transferred to a central server. Records are generally used in real time
to mark segments as viewed, as well as a lasting usage record. Records for repeat users
are updated.

Lessons Learned On multi-platform projects, make sure each component of User Records is compatible
with the each platform.

Test that end of year-end/millennium issues won’t impact performance.
Registration, Logon, Bookmarking sections should be approached as components of the
deliverable that need to be scripted and graphically designed as part of the whole
project.

Test Strategy Use different identities to create different records. Take detailed notes on
navigation/path as project is tested. Compare to user records.
Depending on project specifications, determine how many test records need to be
created (check project specifications for anticipated load) and identify what aspect of
records needs to be tested. (see related test topics below) Develop a plan for what
records to create.
Test that existing records are updated correctly by logging on, visiting a new section
and exiting. Confirm that record accurately documents this progress.
For complex systems, it may be useful to create & save a set of preliminary records in
order to restore system after performing tests that will update records.
If the record is transmitted to a central server, check that the user instructions work
under field conditions. Set up an internal simulation (transmission to internal server),
test transmission and confirm data integrity. When successful, conduct live test
transmission to client’s system under field conditions.

Function User Registration
Description Refer to project specifications for specific details. In general: Each time the site is

visited, users are prompted to logon, with New Users given the opportunity to register.
The registration segment should be able to prevent duplicate records from being created.
New Users complete a form to establish user ID info and password. When the form is
submitted a record is created. As users move through the software, a temporary record
notes user activity. When the user exits, the initial record is updated, and referred to the
next time the user logs on.
Depending on the project specifications, users may be able to modify registration info
for an existing record. This is a complex function that would need extensive testing.

Lessons Learned Test on each platform.
Test Strategy Check that the Registration segment has instructions and that the form is easy to

complete. Navigation should be intuitive, with explanatory prompts.
Take notes on data entered and compare to record saved. Confirm with programmer and
compare to project specifications that the record is formatted correctly.

Function User Logon
Description Refer to project specifications for specific details. In general: Each time the software is

launched, users are prompted to logon using the ID and password they entered at
Registration.
Generally, users identify from a list or enter their ID, then enter their password. The
Logon system checks that the ID and password match existing registration info.
Refer to the project specifications for details on how the system should respond to
invalid logons.

Lessons Learned
Test Strategy Check that the Logon segment has instructions and that the form is easy to complete.

Navigation should be intuitive, with explanatory prompts.
After logging on, confirm that the software accessed the correct user record by
comparing to navigation/path notes.

Function Bookmarking Functionality
Description Based on User Records functionality, Bookmarking records the last section visited when

users exit, so the next time users logon, they are offered a shortcut directly to that
section.

Lessons Learned Project specifications need to identify how far bookmarking will drill down. Default is
Topic Menu level.
Confirm that Bookmarking functionality is explained to users.

Test Strategy Based on the project specifications, exit the software from each point that should have
Bookmark Functionality. Logon as the same user. At the bookmark prompt confirm that
the system displays the correct section.

Function Menu Marking
Description Menu marking helps users understand where they are, where they’ve been, and where

they still need to go. The visual cues make it easier to understand the structure of the
program and an idea of how much information is available.

Lessons Learned Menu marking should be approached as a component of the deliverable that needs to be
scripted and graphically designed as part of the whole, with consideration for
complexity of code required.
Confirm that Menu Marking is explained to users.

Test Strategy The items on each menu need to be tested for each state. This includes dependencies of
higher level menus based on state of sub-menus.
For example: check that starting each topic posts an Open icon on menus/submenus.
Use those Open icon records as the starting point to check that completing a topic posts
a Completion icon on submenus, but leaves an Open icon on the main menu until the
final topic is completed. Likewise, check that when each topic is the final topic
completed on a submenu, a completion icon is posted on the main menu.
In projects that feature menu marking and user records, menu marking is a handy way to
confirm that a logon has accessed the correct record.

Function Exit Sequence
Description An Exit sequence is the counterpart to a Splash sequence. Rather than getting dumped

straight back to the desktop when Exit is clicked, there is usually a graceful exit.
Refer to the project specifications for details, but generally: there is a confirmation
window, and then an exit screen that may contain disclaimers, copyrights, development
credits, fade out images.

Lessons Learned Exit Sequence should be approached as a component of the deliverable that needs to be
scripted and graphically designed as part of the whole project.

Test Strategy Exit from all sections of the software. If a single sub-routine can’t be used throughout,
check for inconsistent performance within each section.

Function Navigation – Menus
Description Menus are used to navigate through the structure of a project. Thus their functionality is

critical to the success of the project. They are important to users so that they get a clear
understanding of the scope of the site and how to get to the information they are looking
for. Menu Marking functionality is an important cue for indicating to users where
they’ve been.

Lessons Learned The different state of menu items should be designed.
Default “inverse” images are not acceptable.
MS Internet Explorer 3 doesn’t support JavaScript, which is typically used so that menu
items change appearance when the mouse is rolled over the element.
In projects with linear user paths, the behavior needs to be defined for the first screen,
the final screen, and whether users are able to navigate from start-to-finish and finish-to-
start.

Test Strategy Test menus by using them throughout the testing process. This is a basic functionality
that needs to be well-designed, well-programmed and well-tested. Understand the
relationship between main menus and submenus, especially in terms of menu marking.

Function Special Effects (Animations, Videos)
Description Special effects add pizzazz to projects…if they work. They need to work under

‘normal’ field conditions, as well as under more stressful situations, especially if the
user does something when the special effect is running.

Lessons Learned Make sure required drivers/runtimes/plugins links are provided & installed.
Test on target platform under field conditions as soon as possible.

Test Strategy Run the segment with the special effect in each round of testing.
Do abusive testing (ie clicking during the special effect) to ensure performance under
stressful conditions.

Function Dealer Locator Functionality
Description Dealer Locator functionality allows users to find any particular product or service

provider. It can be a closed search, where the user enters a city, state or zip code, and
the system returns the matches for that descriptor, or an open search, where the user
navigates through a list of providers, typically organized by geographic region.

Lessons Learned Know the structure and format of how the dealer info was provided to us, and how it
was entered. That will inform you of how much proofreading and structural analysis is
required.

Test Strategy Ideally, each possible search/matching criteria would be tested. But depending on the
complexity of the locator list, this may not be feasible. At least test matches in each
category

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 1 of 1 James Andrews The Open Group

QUALITY WEEK 2000.

Automated Conformance Testing for IT & T Certification

By James Andrews

Conformance Quality Manager –
The Open Group

March 2000

© The Open Group 2000

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 2 of 2 James Andrews The Open Group

Conformance Testing versus Quality Assurance Testing.
Every organization that cares about the quality of its products undertakes testing.
However only organizations concerned with meeting Open, that is Public standards
may need to undertake conformance testing.

In many respects a proprietary product is its own standard. Provided that the product
meets planned levels of quality and its end user documentation is consistent with the
functionality it delivers it may be of lesser importance whether it meets its original
design objectives, as defined in a functional specification. The primary thrust of
testing for proprietary products is to assure the quality of the implementation in terms
of fitness for purpose.

Contrast this with the requirements to be certified against an open standard. Here the
primary thrust of the testing activity is to determine the correctness of the
implementation under test with respect to the specific requirements of the standard.
That is, the implementation conforms to the standard rather than the ‘quality’ of the
implementation per se.

This is a rather different mindset to the type of testing that developers undertake to
ensure the quality of the ongoing coding. Conformance testing is by definition black
box, in nature. It does not concern itself with how a standard has been implemented
only that each and every requirement of the standard has been realized in the
implementation. In other words if bugs are present in the code which have no impact
of the functional requirements of the standard they are not the concern of conformance
testing. In particular open standards seldom concern themselves with performance or
reliability. In an extreme case a product may be slow and unreliable but still pass a set
of conformance tests since these aspects of a products concern the quality of an
implementation rather than its conformance to a standard.

So why is conformance testing important? To understand this one needs to consider
the purpose standardization. It is driven by a desire for commoditization, for products
to be interchangeable and interoperable. We demand that a telephone is capable of
receiving and making calls regardless of who supplies it, and there must be an open
standard that enables manufacturers to design devices which achieve this. Though
there remains great scope for manufactures to compete on quality and on richness of
features beyond the basic standard for connectivity, a telephone that does not conform
to this base standard can only communicate with identical telephones. Not only will
such a telecommunication device fail to find favor with consumers its very presence
will damage the market in telecommunications as a whole by undermining consumer
confidence. Thus not only is conformance testing important in telecommunications, it
is so important that both users and suppliers demand it as the basis of certification and
as a market entry requirement.

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 3 of 3 James Andrews The Open Group

In this paper I will concentrate on the science and art of conformance testing with its
complementary service of certification, and the role of these as an enabler in the IT &
T market

Testing for Conformance
It is the basis of conformance testing that the tests can be traced back to the standard
from which they are derived. They must test the standard and only the standard, and
they should not make assumptions as to the means by which the standard is
implemented. Open standards are by their nature designed to facilitate multiple
implementations. Conforming implementations should therefore be interchangeable.

A proprietary standard is a product standard. Conformance tests can be written against
such a standard but if they cannot be traced back to the specific wording of the
standard then they effectively replace it as a measure of conformance. If this is the
case the tests have ceased to be a conformance test suite and have instead become a
Quality Assurance test suite. They test the implementation rather than its specification.
For proprietary standards it is not unknown for a test suite to be labeled a
‘conformance’ test suite. However once a set of tests has migrated from being directly
traceable to the base standard from which they are derived they cease to be a
’conformance test suite’ and become simply a set of tests that must be passed for
trademark purposes. In this case the standard itself has lost much of its value as a
means to facilitate development of multiple implementations, since what is required to
conform has ceased to be publicly defined. The standard, which gave raise to these
tests, cannot be regarded as open, nor the tests be considered as a conformance test
suite. I stress this not to say that such a situation is somehow wrong but to highlight
the rigor that must be applied in the development and maintenance of true
conformance tests.

The nature of a conformance test suite is to limit each test to a realization of an
explicit requirement of the standard. Requirements should not be implied; therefore
the conformance test suite should not presume the availability of functionality beyond
the specification under test. Furthermore while a set of tests cannot normally be
exhaustive in testing all the functionality (and in particular all combinations of
functionality) they must avoid subjective judgments. It is often said that a set of tests
cannot prove the correctness of an implementation; they can only identify bugs.
Nevertheless this is the purpose of a conformance test suite is a proof of correctness,
an implementation either conforms or it does not. This inextricably links automation to
conformance testing. Wherever possible subjective evaluations by the test engineer
should be avoided. Where the status of a test result cannot be readily determined this
should be evident from the outcome of the test. This is most readily achieved by
automatic assignment of test results in the form of an appropriate set of verdicts. A test
passes, fails or has neither outcome. The verdict assigned in such indeterminate cases

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 4 of 4 James Andrews The Open Group

may be termed “Inconclusive” or “Unresolved”. It is often the role of an independent
certification authority to use objective processes to assess the meaning of the ‘fail’ or
“unresolved” verdicts on the overall conformance of the implementation. Automated
conformance test suites facilitate multiple independent developments of conforming
implementations by the objective allocation of consistent test verdicts directly
traceable to the requirements of the standard under test. This is the philosophy used
by The Open Group for certification against open standards.

A conformance test suite can have two uses. It may be used internally within vendors
during the development testing as the primary top down, black box test technique,
typically moving forward in the development lifecycle up to final functional testing. It
may also be used externally as the basis for the award of a certificate and possibly a
trademark, for tested conforming implementations of the standard.

Conformance test suite design - a few criteria

It is the nature of a conformance test to act as the arbiter of whether an implementation
conforms. Central to this is the concept of objectivity. The outcome of the test should
be determined by the standard alone as verified by a test method traceable back to that
standard. There are three qualities that make a test method objective:

• Repeatability
This means that if repeated on the same implementation, on a different
occasion, the test will produce the same results.

• Reproducibility
This means that if repeated in a different location, on the same or
functionally equivalent implementation, the test will produce the same
results

• Impartiality
This means that the test suite does not favor one conformant product over
another. Which is to say that in order to pass the test the implementation
need only conform to the specification, that no functionality outside of the
specification is required, and that the implementation of the specification is
not otherwise constrained.

In order to meet these qualities each test must itself have certain qualities. In the case
of The Open Group test technology it must be:

• Based on assertions
The use of test assertions is a way of establishing and maintaining a
traceabillity between the test method, and the specification from which it is
derived. A test assertion is a semi-formal definition of the test purpose.
Mandatory test assertions are derived from each statement in specification
where the word ‘shall’ is used. Conditional assertions are derived form
each statement in the specification where ‘may’ or ‘should’ is used.

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 5 of 5 James Andrews The Open Group

• Independence, Set up and clean up
The outcome of each test shall not depend on the outcome of another test.
This implies that each test shall undertake its own set up and clean up.

• Parameterizable
Where the specification permits optional behavior or behavior is
implementation defined this shall be reflected in the selection of test cases
and where appropriate in the values for testing.

• Portable
The test should operate on any conformant implementation of the
specification; a test should not presume a specific operating environment
other than that mandated by the specification itself. Where functionality is
required beyond the specification in order for an individual test to run it
should, where possible, be provided by the test suite itself.

• Verdict assignment, Pass, Fail, Unresolved, Untested
A consistent verdict assignment should be reported. If the verdict cannot be
resolved to a Pass or Fail this should be reported as Unresolved. When a
test is not selected or cannot otherwise be run (for example there is no
known test method for the assertion) the test should report ‘untested’

Fortunately many of these aspects of test case and test suite design can be themselves
automated

TETware Test Harness

TETware is a set of software utilities developed by The Open Group to act as a plug
and play environment for assertion based test cases. It automates much of the work of
test management and report writing so that test engineering effort can be concentrated
where it is most needed, in the design of test cases. Some of the features of TETware
are:-
• Support for POSIX assertion-based testing

TETware manages the selection of conditional tests, which are concerned with
optional functionality. Furthermore TETware includes the test assertion (and
method) in the report generated for each test case in order to facilitate
debugging of the implementation for the failed tests.

• Builds, executes and cleans up test suites
TETware manages both pre and post test conditions to ensure that each test is
independent of other tests. The result of a given test is not dependant on what
has gone before. In addition TETware provides utilities to build, configure,
install and run the test suite as a whole.

• Test scenarios can be defined using a powerful scenario language
TETware enables differing scenarios to be run depending on whether the
purpose of the test run is for debugging, regression testing or a formal
certification run. It is a feature of TETware that users can add additional tests,
select a subset of tests or repeat individual tests for development purposes. By

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 6 of 6 James Andrews The Open Group

this means users of TETware can also make use of conformance tests for
performance evaluation.

• Parameterization
Test parameters can be specified using a flexible configuration variable
mechanism. TETware handles the use of parameters to tune the testing to the
specific implementation, for example to select optional tests and to set
implementation dependant limits and values.

• Configuration information and test results are recorded in a journal
TETware supports a standardized test reporting format that includes the test
parameters, the individual test assertions with the associated result verdicts,
and time stamps. These are written into in a file known as the journal.
TETware also provides utilities to parse this journal into a test summary report
in which the overall test outcome of test campaign can be easily viewed, for
example total numbers of test in each category of, PASS, FAIL,
UNRESOLVED, and UNTESTED. These test results can also be further
broken down into test groupings.

• Test result verdict assignment
Support for the standard POSIX result codes is built in, - user-defined results
are also supported. In addition to these POSIX test verdict assignments users
can define additional test result codes for development purposes.
In addition to these POSIX test verdict assignments users...

In what Technology Fields has conformance testing been applied?The techniques
of automated conformance testing have been used in a wide variety of Information and
Telecommunications technology fields (IT&T). Much of the philosophy of
conformance testing was developed in the telecommunications field during the
deregulation from 1980 onward and in particular for the Open Systems
Interconnection (OSI) initiative. Ironically the confusion engendered by multiple
testing and certification programs associated with OSI may have compounded the over
complex standards base, engendering a relative failure of this technology in the market
place. More recently conformance testing was used much more successfully in the
field of operating system components for example the UNIX system. Today
conformance testing is now used widely across all IT&T industry sectors.

Conformance testing based on The Open Groups TETware include

• Operating System tests
In particular POSIX and UNIX systems.

• Networking API tests
NFS, XTI, and sockets.

• GUI tests
The X Window System and Motif

• Object oriented testing
The OMG’s Corba

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 7 of 7 James Andrews The Open Group

• Data management tests
LDAP

The Open Group also has a test framework for rendition tests, which include

• Web Browsers
• Network Computers
• Wireless web devices

Other technologies associated with conformance testing with which I am familiar, but
which are not based on The Open Group test frameworks include

• Leading Programming languages
- C & C++
- Fortran
- Cobol

• OSI protocols still in use.
- X25
- X400

Test suite lifecycle
It may perhaps be useful to look at a lifecycle for the design and implementation of
conformance tests.
• Assertion design

The development of a conformance test suite starts with capturing the
specifications in a series of individual test purposes know as assertions. This
forms a semi formal definition of the test suite. In an analysis of the
specifications those statements that use the term ‘Shall’ and ‘Must’ are
identified. The language around such statements is then broken down into
distinct stand-alone test assertions. For example the sentence “On calling of the
set function the value of the variable %name shall be set with %value unless
the %value, contains unescaped reserved characters, in which case the variable
shall be set with the string ‘invalid’.
This might give rise to two obvious assertions
1 On calling of the set function the value of the variable %name shall be

set with %value
2 If %value contains an unescaped reserved character the named variable

shall be set with the string ‘invalid’.

However there is also a third assertion which the test design may consider
implied.

If %value contains an escaped reserved character the named variable shall be set with
the %string with the reserved character unchangedThe design of assertions in this way
is both a science and an art. Clearly the specification fragment could be implemented

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 8 of 8 James Andrews The Open Group

in a single multiple part test but splitting it in this way makes the reason for a pass or
fail more obvious and aids debugging of the implementation. It may be that no test
method can be identified for certain specific assertions. In this case they would be
marked ‘Untestable’. In the example these assertions would be mandatory, but
language such as ‘may’ ‘either’ or ‘implementation defined’ will also give rise to test
assertions, but in this case these assertions will be conditional on the support or
otherwise of optional behavior in the specification
• Assertion review

It should be noted that the third assertion requires diligence in identification
since it is implied rather than explicit. In fact a test result of fail in this case
may well give rise to a challenge to the test method. A fail would not
necessarily represent a non-conformance since the specification fragment is
actually silent on the behavior of the function when escaped reserved
characters are in %value. The value of this third assertion is in having drawn
attention to the fact that the specification is imprecise in this area. If assertions
are written and reviewed in parallel with the review of the specification itself,
this can be a valuable tool in the review process, and may help to identity
ambiguities or errors in the underlying specification. For maximum value
assertions should be reviewed early in the test suite development lifecycle and
prior to the writing of test code. In this way the quality of both the
specification and the final test suite are improved in parallel prior to developers
expending effort on coding an implementation and of test engineers in writing
test code.

• Beta test
Once the test assertions have been written and been subject to internal testing
there is no substitute for exposing the test suite to real life implementations in a
‘beta’ test. The implementations used for the beta test need not be complete or
even conformant to the specification. Such implementations will nevertheless
identify errors in the test code, the test assertions and the specification from
which they were derived. Again the ideal time to undertake beta testing is in
parallel with the development of implementations. In this way the quality of
the implementations and the test suite are improved in parallel. An ambiguity
in the specification as captured by the example third assertion, may well be
identified during beta test, when perhaps an implementer presumes that the
escaped character in the variable string should be ignored.

• General release
General release is when a test suite becomes sufficiently stable to enter into a
formal maintenance phase, typically this may be measured by number of bugs
outstanding, bug rate, an industry consensus decision or a combination of
these. General release should logically mark the point at which a conformance
test suite is deemed adequate to be the measure of conformance for
implementations of the specification. Then it can form a basis of certification if
desired. After general release should an implementation fail the example third

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 9 of 9 James Andrews The Open Group

assertion, this could be a block to certification. A formal method must exist to
resolve the meaning of this Fail result in respect to conformance. The Open
Group calls these ‘formal interpretations’. I shall talk more about how such
false Fails relate to certification later in this paper.

• Maintenance release
After general release at some point there will be a number of errors identified
in the test suite. These could be errors in the test code, the test assertion, or the
specification itself. At this point a maintenance release may be appropriate, and
this typically takes place every six months. A maintenance release is designed
to clear bugs, but also new tests may be added to ‘plug’ holes in test coverage.
Such a maintenance release should again be subject to a beta review. In most
cases a maintenance release will clear bugs and reduce the number of false fail
verdicts and thus be ‘easier’ to pass. However a development team that is in
the midst of debugging their implementation prior to certification may find the
introduction of a new test suite adds confusion to any regression testing. For
this reason it is typical to have a period of overlap when both the new and
previous releases of the test suite are valid for certification purposes. The Open
Group has a policy that this overlap shall be 6 months.

Certification Adding Value to Conformance Testing
I have discussed the value that conformance testing can bring to the development of
conforming products and to the specification from which they are derived. I have also
stated that conformance testing forms the basis of product certification. So what
benefits does product certification bring? And how does it add value to conformance
testing? If we are to presume that there will be multiple implementations of a standard
then certification increases the Quality Assurance delivered by conformance testing
and furthermore brings significant marketing advantages to vendors of conforming
products.

• Objective independent review

A set of test results does not in itself indicate conformity. Even conformant
products may have results other than pass for some tests. Where options give
rise to conditional tests this must be reflected in the correct parameterization of
the test suite. A certification body can provide an unbiased independent review
of the test results, as a distinct activity to the testing itself. This is particularly
important in the case of self-testing by a development team when ‘mindset’
may engender errors to occur in the testing process.

• Simple criteria for procurement
Conformance test results may constitute many mega bytes of data, which it is
impractical for a procurer of a product to review. Furthermore the options
within a specification may add complexity for assessing the potential to mix
and match interoperating implementations from different suppliers.
Certification can put test results into a simple statement of conformance and

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 10 of 10 James Andrews The Open Group

available options. Purchasers of products need this to make procurement
decisions. The availability of a simple certificate of conformance when
combined with the perception of independent assessment, may be a powerful
market enabler for the sale of conformant products

• Single Sheet
A simplification of the conformance test result into a single page certificate
may bear all the key information a potential purchaser needs to take a
procurement decision. The certificate can be used by vendors in marketing
materials and may even be shipped with the product. By these means
certification has benefits to both the vendors of products and the users who will
procure them.

• Register of products
Complementary to the issue of a certificate is an entry on a searchable register
of conformance products. Procurers may use this register to build complex
systems of heterogeneous but conforming products from different suppliers.

• Continuing Conformance
Type certification makes a statement about a product’s conformance at a single
instance of time. Some certification programs back certification by trademark
law to deliver a warranty of continuing conformance. This significantly adds to
the confidence built by the testing activity. The Open Group operates a
certification program called The Open Brand that uses a legal contract called
the Trademark License Agreement to deliver such a warranty.

• Lab accreditation
Some certification programs go beyond requiring the use of a standard
conformance test suite as a basis for certification. They also consider the
environment in which the conformance testing takes place. By assessment of
the test facilities quality system, the requirements of repeatability,
reproducibility and impartiality can be ensured for the testing process itself.
Again my The Open Group provides this service for some customers, and
indeed it is my particular field of expertise.

In a quality assurance test suite, a bug is just a bug. In a conformance test suite it can
determine whether a product is awarded or denied certification. The process, by
which an applicant for certification can dispute a result other than ‘Pass’, must also be
repeatable, reproducible and fair. A customer may apply to have a ‘Fail’ or
‘Unresolved’ result waived for certification purposes. Such a waiver must only be
given if the result does not represent a non-conformance with the standard. The Open
Group calls such an request to disregard a non-pass result for certification purposes a
formal ‘interpretation. The process by which the merits of a request for interpretation
are reviewed must also be objective, with respect to certification. While I shall discuss
The Open Group approach the principles apply also to other certification programs.

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 11 of 11 James Andrews The Open Group

A non-pass result may be the result of a non-conformance in the implementation under
test, but it may also be caused by a false fail path in the test code or an error or
ambiguity in the specification.

Test Suite Deficiencies
The Open Group terms errors in the test suite that result in a false fail, a test suite
deficiency . Once it is agreed that an interpretation request constitutes a test suite
deficiency this can be referenced in support of applicant for certification by any
vendor whose implementation produces the exact same behaviour as evidenced by the
test journal. A test suite deficiency exists for the life of the version of the test suite
which gave rise to it as the test suite error will be normally corrected in its next
release. In the uncommon event that such an error cannot be corrected in the next
release for technical reasons, then a test suite deficiency may apply to more than one
specified version of the test suite.

Permanent Interpretations.
Errors in the specification from which the test suite is derived are classed as
permanent interpretations or temporary interpretations. A permanent interpretation
ordinarily spans all versions of the test suite and applies to the life of the specific
version of the specification used for certification. This reflects the policy of The Open
Group that products that are deemed conformant by virtue of the award of certification
should not be later deemed non-conformant due to a subsequent clarification of the
specification. Thus a permanent interpretation relaxes a specification never and
tightens it. Such errors in a specification are published as corrigenda and normally are
corrected in its next release.

Temporary Interpretations
A temporary interpretation is awarded when there is believed to be an error in a
specification to which The Open Group defers and over which it has no control, an
example is an international (ISO) standard. The temporary interpretation is awarded as
an interim measure while the superior standards body considers the matter. If it is
confirmed that The Open Group decision to grant an interpretation is correct then it
becomes a permanent interpretation. If the determination is that the Open Group
decision is incorrect the vendor of the certified product is given a period of time (No
more than twelve months) to correct the implementation in line with the Standard
Body’s formal ruling.

The process of determining the outcome of an interpretation commences with an
independent request for analysis by an expert. The Open Group’s Conformance
Quality Manager then further reviews this analysis and ensures any issues identified
are resolved prior to the final ruling. If the matter is straightforward the ruling may be
made on the basis of this twofold review. However if there is an element of doubt as to
the correct ruling, the applicant’s organisational and product details are removed. The

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 12 of 12 James Andrews The Open Group

interpretation is then subject to industry review by the applicant’s peer vendors before
the final outcome is determined. Irrespective of the means by which the Open Group
arrives at its ruling the applicant has a legal framework for formal appeal, though to
date no such appeal has been invoked.

Agreed test suite deficiencies, permanent interpretations and temporary interpretations
are published to all users of the conformance test suite by means of the World Wide
Web. Thus granted interpretations can be referenced in support of an application for
certification or can aid in the development of conformant products. Permanent
interpretations normally result in corrigenda to the associated specifications
comprising the standard and are published on the Open Group web site.

Conformance Statements
Conformance Statement Questionnaires are the means that The Open Group uses to
define a product precisely, which conforms to the standard. This constitutes a formal
description that is itself standard. Other certification programs have equivalent
documents, for example the Wireless Application Protocol certification program uses
the term Implementation Conformance Statement (ICS). A Conformance Statement
complements the single page certificate by defining precisely how the standard has
been implemented and provides additional information for procurers choosing
between conformant products or designing systems composed of a variety of
conforming products.
• Statement of options provided

Specifications forming standards very often have functionality, which is
optional for conforming implementations. Purchasers, when particular options
are important for their application, may use the Conformance Statement to
determine which certified products support each option.

• Means of implementation
Specifications forming standards may allow some aspects of conformance to
be implementation defined, for example certain resource limits. In the compiler
world a standard may define a value, for the minimum number of nested loops
that may be supported. Implementations may support a greater number of
nested loops than that specified by the standard as the minimum. Purchasers
intending to port a legacy application that exceeds the standards minimum
number of nested loops may wish to know the implementation dependant
maximum. Similarly it is common for certain error codes to be optional and
users who may have applications that make use of such codes, may need to
know what is supported by a given implementation. It should be stressed
however that applications designers are advised not to assume the presence of
functionality or limits beyond that mandated by the standard. This will ensure
portability and interoperability between different conformant implementations.

• Scope of certification

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 13 of 13 James Andrews The Open Group

A number of certification programs allow for derived certification of
implementations that may differ in precise configuration from the actual
implementation tested. For example operating systems may run on a series of
hardware platforms without change. The Open Group has the concept of binary
compatibility. In the Conformance Statement the supplier can define a series of
product identifications, which are supported unchanged by the tested
implementation, and for which a warranty of conformance is extended. Thus
the Conformance Statement defines the exact identity of the implementation
tested and any other products also covered by the certificate of conformance. It
must be stressed that for certification to be extended beyond the tested
implementation in this way, the software must be identical at the binary level
as well as at the source level.

• Test suite parameterizationThe optional functionality, other implementation
defined features and values are defined fully in the Conformance Statement. In
many cases this is directly related to options within the associated conformance
test suite. Thus the Conformance Statement forms part of the audit trail, which
enables test results to be reproduced and repeated.

Those interested in viewing real life examples of Conformance Statements associated
with the Open Brand certification program may do so at:
http://www.opengroup.org/csq/browse.mhtml

Trademark License AgreementThe Trademark License agreement is a legal
contract which customers of The Open Group certification program sign. It not only
defines and restricts the usage of The Open Brand trademarks but also underpins the
certificate itself with real commitments by the supplier to its customers.
• Standards of Quality

The Trademark License Agreement defines a set of Standards of Quality,
which are the devices by which conformance is established and maintained.
These include:-
• The use of standardized conformance test suites

Where standardized test suites are defined for the product standard the
vendor must provide satisfactory test results both on application for
certification, and thereafter on demand

• The requirement to provide and maintain a Conformance Statement
The Conformance Statement must be maintained up to date during the
life of the registration of the certified product

• The Open Group’s rights to audit continuing conformance of certified
products
A requirement on the vendor to provide reasonable evidence of
continued conformance on demand, not limited to test results

• Notification of any known non-conformance

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 14 of 14 James Andrews The Open Group

A vendor’s obligations to bring any known non-conformance to the
attention of The Open Group

• Continued conformance
The obligation of the vendor to ensure any maintenance, or other
subsequent releases, of the product remain in conformance within the
scope of the products registration

• Time limit to clear any known non- conformance arising after
certification
The vendor’s obligations to rectify a breach of the standards of quality,
in a timely fashion

• Removal of certification for breach of conditions.
The legal framework for removal of certification if a breach of the
standards of quality is not rectified in the specified time.

• Changes to register product identity
Procedures for a change of the product name of a registered product that
is otherwise unchanged

• Anonymous review of interpretation requests
The right to industry review of interpretation requests and associated
confidentiality rights

• Formal appeals.
.

• Warranty of conformance
The vendor of a certified product is required to publicly “warrant and
represent” that the product is in conformance with the standard. This warrant is
absolute and goes beyond the requirement to pass specific test suites. In this
respect The Open Group certification program provides greater confidence
than that delivered by a ‘type’ certification program.

• Continued conformance
Not only must a product be in conformance at the point of certification but also
it must remain so thereafter, this includes any subsequent releases within the
exact scope of this commitment as chosen by the vendor.

• Use of certificate and mark
A definition of what may be claimed concerning the certification of the
product and the trademark associated with this certification.

Assessment of Certification Applications

Conformance Statements
Conformance Statement are assessed for self-consistence and correctness. While
options may be permitted by the specifications forming the standard, some options
may be mutually exclusive, or may in other ways constrain each other. The assessment
process ensures that the optional support of functions claimed in the Statement is
valid. Similarly the specification may permit a range of values and the actual value

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 15 of 15 James Andrews The Open Group

entered will be checked to ensure that it is within range of values defined as valid
within the specification. At The Open Group we use Conformance Statement
assessment procedures designed to meet the requirements of an ISO 9000 series
quality standard. By this means we can ensure that the assessment of Conformance
Statements is repeatable, reproducible and impartial. The Conformance Statement is
also crossed-checked against the test suite parameters which have been selected by the
test engineer to ensure consistency between the options for which conformance is
claimed and the tests that have been selected.

Referenced interpretations
Interpretations may have been referenced by the applicant in support of a waiver of
test results other than pass. Such referenced interpretations are also checked for
validity. It is ensured that the interpretations cited are applicable to the specific tests
and the version of the test suite used. It is also ensured that the test result is consistent
with the example on the interpretation and that when the test has failed or did not
complete, that it did so for the same reason as that described on the referenced
interpretation.

Test report self consistency
The test report is checked as an entity, for correctness, completeness, and self-
consistency. The setting of certain parameters should result in certain test cases being
run. It also ensurs that all the tests have been run. Where appropriate it is ensured that
the test report is produced in a single test run rather than being composed of several
incomplete runs. Finally there is a cross check that all the tests which fail to report
‘pass’ are covered by valid references to approved interpretations or test suite
deficiencies.

Scope and identity
The Conformance Statement, test results and the application forms are checked to
ensure that the identity of the tested product is precisely defined and is consistent
across all documents associated with an application for certification. Similarly the
statements concerning binary compatibility (derived certification) and thus the scope
of the applicants commitment to continuing conformance are evaluated to ensure the
certificate bears an appropriate definition. A vendor may commit to the conformance
of the specific versions of a product tested or may commit that subsequent version will
also fall under this commitment. The Standards of Quality in The Trademark License
Agreement define the implications of this choice. In any event, if there is a significant
change to the functionality of a version of the product that may impact its
conformance, this is considered a new product and the vendor is required to apply for
a new certification. (Releases of a purely maintenance nature to clear bugs are
normally included in the scope of certification.)

Legal agreement

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 16 of 16 James Andrews The Open Group

The application forms are checked to ensure that a Trademark License Agreement is in
force between the applicant and The Open Group for the products for which
certification is applied.

UNIX
It was X/Open and more latterly The Open Group which has overcome the
fragmentation of the UNIX operating system and contributed to its continued market
lead as the back office application of choice. Standardization and associated testing
and certification was the basis of this achievement
The UNIX system was envisioned as a single operating system to provide a standard
application and user environment, however market forces caused diversification of
UNIX system platforms perpetuating hardware and skills dependences for
applications. Today a focus on conformance testing and certification has resulted in a
standard and stable definition of a core application-programming environment – the
UNIX Standard base; known as the Single UNIX specification. The addition of a
Graphical User Interface termed the Common Desktop Environment with associated
conformance testing and certification has provided PC style usability to top end
systems. The UNIX system is the operation system of choice for the majority of
Internet servers. The UNIX system continues to evolve in order to add innovation but
does so in parallel with conformance testing and certification with the added
advantage that the specification is designed for conformance assessment from the
onset. High quality robust versions of the UNIX system are released at the same time
as the general publication of the application portability environment, and the
availability of conformance testing and certification. There are 35,000 Test cases
available for the UNIX system family of products distributed over six test suites.
Certification is available against four product standards.

• UNIX 98 - the mark for systems conforming to Version 2 of the Single UNIX

Specification
• UNIX 95 - “the standard base” for Version 1 of the SUS
• UNIX 98 Workstation

– UNIX 98 plus the Common desktop environment
• UNIX 98 Server

– UNIX 98 plus Internet Server capabilities
– Adds interoperability services to the UNIX 98 APIs in support of

internet/intranet services

Within the product standards associated the UNIX trademark there is an option to
support Realtime functionality. Future work is planned to address certification of
realtime embedded systems using much of the certification tools used for testing the
UNIX system."
Wireless Applications

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 17 of 17 James Andrews The Open Group

The Open group has been chosen by The Wireless Application Protocol Forum
(WAPF) to be its Certification authority for wireless web devices. These devices
include cellular phones palmtops and other small telecommunication devices with text
and graphic capability. Thus the expertise used in the certification of UNIX systems is
applied to a diverse technology area being modified to meet the specific needs of the
WAPF.

•Interoperability
Unlike the UNIX system certification that is mainly concerned with the portability of
software applications between the UNIX system platforms of different suppliers, WAP
certification is primarily concerned with the interoperability of telecommunications
devices conforming to the WAP profiles, again from different suppliers. Conformance
testing consists of end-to-end testing, and protocol testing in a multi-party
interoperability scenario. In addition the correct rendition of text and graphics is also
validated.

Many of the processes of the UNIX system certification also apply to the WAP
certification program. The key differences are.

• The WAP Forum owns the specification and the trademark associated with
the certification program. The Open Group operates the processes
associated with certification on behalf of the WAP forum.

• Customers need not apply for interpretations in support of an application
for certification. Problem reports against the test suite are classified as test
suite deficiencies according to whether they may be used as a waiver for a
non-pass result.

• In order to be awarded a certificate applicant must run the conformance test
suite against at least two other supplier’s products.

Futures
I can only talk about some of the areas that my own company is researching into.
These include

FIX - A Protocol for exchanging financial information.
The Open Group is currently a member of a consortium of financial and
telecommunications companies doing work in this area. FIX is an open protocol for
real time exchange of electronic messages for communicating securities transactions
between two parties. The Open Group is researching plans to provide certification
services in the following areas:

a) Protocol Certification - certify correctness of protocol implementation
relative to specification

b) Line of Business Validation - validate correct execution of protocol
interactions required by higher-level business functionality (business
scenarios)

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 18 of 18 James Andrews The Open Group

c)
Directory Services
There is no single directory of Internet addresses. Various web browsers and mail
servers have islands of Internet address directories but these are on diverse platforms
running non-compatible database managements systems in which the data is held. The
Open Groups Lightweight Directory Access Protocol LDAP is a means of enabling
these directories to interwork and thus forming a worldwide network of distributed
Interwork directories. Certification of applications making use of the LDAP protocol
is a means to ensure their interoperability.

•Security
One of the areas where lack of consumer confidence is most definitely affecting the
growth in the area of the financial transactions over the Internet. There are two main
concerns:
• Security

There are fears that access to sensitive information including trading and
account identity can be ‘hi jacked’ on route via the Internet. News of recent co-
ordinated attacks on key Internet retailers has done little to alleviate these
fears. Certification of secure Internet trading systems may promote rapid
market growth, provided that the specifications upon which these systems are
built deliver the required security and confidentiality.

• Transaction determinism
Financial trading is a real time activity, and it is crucial that a transaction takes
place in a specified duration of time and that it is confirmed to have taken
place at a specific time. The Internet is not connectionoriented protocol which
means that a given data exchange can take place in anything from a few
milliseconds to several minutes. Tracking the progress of transactions across
public infrastructure is therefore required.

Another area where The Open Group is working on security is in Common Data
Security Architecture CDSA. This Open Group specification is of a layer between the
operating environment and the various security services to promote interoperability
and portability of secure applications. Certification of the CDSA Application
Programming interfaces or API’s is intended to accelerate market take up of secure
systems and growth in secure applications.
Other Open SpecificationsIn principle the techniques applied to the Open Groups
existing certification programs can be applied to any open standard as evidenced by
the application of skills acquired in the UNIX system program, to the wireless
applications. Certification of IT & T product is a task that is never complete. New
areas emerge at the leading edge of technology so there is a role for standardization
and associated conformance testing and certification to ‘oil’ the wheels of market
acceptance. This prevents the damaging market fragmentation that can occur if
competitive forces are left unchecked. The role of an independent vendor neutral

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 19 of 19 James Andrews The Open Group

organization such as The Open Group is to promote co-operation between product
vendors to forge consensus on common standards and to act as the objective impartial
arbitrator of conformance to these standards.

Conclusion.
Market lead
The impetus for conformance testing and certification is the market. Unless the
certification scheme meets the need of the market then vendors will have little
incentive to summit to the external quality assurance associated with a certification
program. It is market pull that supports such a program. However there are also clear
marketing advantages to vendors. A fragmented market of non interoperating
competitive products will grow more slowly than one where agreement on common
standards and a measure of conformance can engender consumer confidence. From a
vendor perspective standardization and certification are of value when they deliver
such confidence to users and help more products be sold. Logic suggests that selling a
greater $ value of products is rather more important long term than selling a greater
number of products than ones competitors. Selling this way does little to generate
profit for the company! Thus vendors will co-operate on the definition and policing of
Open Standards if it can be shown that this gives medium term benefits in potential
earnings. There was a time when most nations had more than one airframe
manufacturer, in an unregulated market. Today there are two major manufacturers
worldwide but the total value of the commercial airline business is beyond the dreams
of the air entrepreneurs of that past era. Furthermore independent certification and
regulation has helped the consumer confidence necessary for such growth. We are
beginning to see similar trends as there is an explosion of applications making use of
the standardized services provided by hardware platforms and operating systems from
a variety of vendors.

A few of the key words used in this presentation

Impartiality
Key to consumer confidence in conformance testing and certification by both users
and vendors is a perception that the process is objectivity and impartial.

Automation
To the extent that automation as is practical in the conformance testing and the
evaluation of the results, it is perhaps the most straightforward way to deliver
impartiality and objectivity into these processes.

Framework
An important aid to efficient automation of conformance testing is a standard test
framework such as The Open Group's TETware product. This automates many of the
requirements of conformance test design, and development, by providing the services

Quality Week 2000 : Automated Conformance Testing for IT & T Certification

PagePage 20 of 20 James Andrews The Open Group

required for test build run and test reporting. This frees engineering resources for the
most important task of designing good tests.

Limitations
Conformance testing and certification is not however a panacea. With certain
exceptions it does not address the quality of the conforming implementation in terms
of performance or robustness. However this is in itself not a limitation rather an
opportunity for competitions in value add features to stimulate innovation.

QW2K Paper 2M1

Mr. Joel Fleiss
(VeriTest)

The ABCs of Managing a Software Testing
Project

BACK TO QW2000 PROGRAM

Key Points

Test Management●

Test Methodology●

Test Guidelines●

Abstract...

This presentation discusses a methodology which changes test management from an art to a science.

There are numerous books and articles on project management and software testing, but none
provide a step-by-step methodology to simplify the management task. If you judge a software testing
project that is 50% over budget, significantly late, or does not fully meet the requirements as a failure,
then very few technical projects (less than 20% according to the Standish Group) are a success.

Like any Project Manager, a Test Manager's job is to maximize the use of the allocated resources in
achieving the client's goals. If you want to minimize the number of software testing projects in your
organization which exceed their original budget, improve your on-time record, and assure that your
products fulfill their requirements, then this presentation will provide you with a better understanding of
what steps to take in order to improve your organization's testing success rate.

The following are some of the questions that will be answered in "The ABCs of Managing a Software
Testing Project" presentation:

Why do projects fail?●

How do we create a test environment where projects are likely to succeed?●

What are the major software testing methodologies?●

What are the different testing goals?●

In a typical software project, what percentage is testing? What should it be?●

Is the percentage of testing changing for today's e-commerce, GUI applications?●

What class of software tools exist to support software testing?●

What are some of the key documents which should be created to support testing?●

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/2M1.html (1 of 2) [5/2/2000 10:10:17 AM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

What should a test management methodology consist of to assure project success?●

How do we simplify managing the test functions of project?●

Author Bio...

Mr. Fleiss was the President of two software firms for over two decades. His initial firm, Proprietary
Software Systems, Inc. provided software tools (compilers, assemblers, link editors, debuggers and
real-time operating systems) to major defense contractors. His second firm, Quality Information
Systems, Inc. developed and marketed a document management system for managing large
document repositories. Mr. Fleiss was responsible for the product design and managed the
implementation of both organization's products.

Mr. Fleiss graduated from the University of California at Los Angeles. After college he became a
software engineer developing compilers, macro assemblers and operating systems. Recently he wrote
a book on managing technical projects for a major financial institution. He is currently employed by
VeriTest and supports their overall project management and marketing efforts.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/2M1.html (2 of 2) [5/2/2000 10:10:17 AM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

4/3/00 1

ABCs of Managing aABCs of Managing a
Software Testing ProjectSoftware Testing Project

l Why projects fail?
l How do you establish a successful test environment?
l What are the major software test methodologies?
l What are the different testing goals?
l What percentage of product development/maintenance is testing?
l Has e-commerce and GUI applications changed this percentage?
l What class of software tools support testing?
l What are some of the key documents used to support testing?
l What test management philosophy should exist to assure success?
l How do we simplify managing the test functions of a project?

4/3/00 2

ABCs of Managing aABCs of Managing a
Software Testing ProjectSoftware Testing Project

Why Test Projects Fail
l Lack of employing a viable methodology.

l Requirements not clearly defined.
l Inappropriate schedule.
l Unstable requirements.
l Lack of experienced Test Manager.
l Lack of experienced Test Engineers.
l Lack of motivation.
l Lack of commitment.

2

4/3/00 3

ABCs of Managing aABCs of Managing a
Software Testing ProjectSoftware Testing Project

Major Software Test Methodologies
l Unit Testing
l Component Testing
l Functional (Bach) Testing
l Stress Testing
l Compatibility Testing
l Standards Testing
l Logo Testing
l Qualification Testing (Preliminary/Formal)

4/3/00 4

ABCs of Managing aABCs of Managing a
Software Testing ProjectSoftware Testing Project

Establishing a Test Environment

l Corporate commitment.
l Test laboratory with proper computer systems.
l Appropriate software test tools.
l Test matrix.
l Quality Assurance procedures.
l Problem Report system.

3

4/3/00 5

ABCs of Managing aABCs of Managing a
Software Testing ProjectSoftware Testing Project

Testing Goals
lThoroughness
lTimeliness
lReasonable Costs
lDocumented Anomalies
lDocumented Work-Arounds

4/3/00 6

ABCs of Managing aABCs of Managing a
Software Testing ProjectSoftware Testing Project

Testing Percentages

0

10

20

30

40

50

60

70

Old Apps Internet

Requirements Specification

Product Design

Implementation

Testing

Maintenance

4

4/3/00 7

ABCs of Managing aABCs of Managing a
Software Testing ProjectSoftware Testing Project

Test Tools
l Software Instrumentation
l Ghost Images
l Scripting Languages
l Software Emulators
l Debuggers
l Problem Reporting Systems

4/3/00 8

ABCs of Managing aABCs of Managing a
Software Testing ProjectSoftware Testing Project
Testing Documentation

l Test Plan
l Test Procedures
l Test Report
l Test Data
l Test Matrices

5

4/3/00 9

ABCs of Managing aABCs of Managing a
Software Testing ProjectSoftware Testing Project

Test (Project) Management Concepts

 Planning Organizing
 Coordinating Directing
 Monitoring Controlling
 Supervising Motivating

4/3/00 10

ABCs of Managing aABCs of Managing a
Software Testing ProjectSoftware Testing Project
Simplifying Test Management

l Documented Methodology
l Technically Knowledgeable Test Engineers
l Documented QA/CM Procedures
l Online Problem Report System
l Experienced Test Manager
l Comprehensive Test Document Templates
l Corporate Commitment

The ABCs of Managing a Software Testing Project

ConferencePAPER.doc Page 1 30 March 2000

Introduction
Managing a testing project is not an exact science.
Very rarely are two testing projects identical, nor is
there an accepted testing methodology practiced by
multiple organizations. There are multiple reasons
why some testing projects run like clockwork, while
others seem to drag on forever with little or no
meaningful results. Too often Test Managers run
projects by the seat of their pants instead of
performing tasks in an orderly, documented
manner. They spend the majority of their time
putting out fires (current disasters). Testing projects
are often complex, non-linear activities. A major
function of a Test Manager is to provide the
paradigm that maximizes the use of his/her
resources in achieving the project’s goals. It is the
purpose of this paper/presentation to provide a
methodology that will simplify the task of managing
a software test project.

Why Can’t Software Testing be
Comprehensive?
Almost all software products (applications) can
never be fully tested. This is often a difficult
concept to grasp for the non-software oriented
individual. The reason is a matter of numbers. If a
software program has 100 different functions, then
it is not a major task to create 100 test cases to
verify the operation of each function. If you now
say that not only must you verify that each function
works perfectly by itself, but also you need to
combine it with all the other functions to verify it
still works. So you then create 10,000 tests (100 x
100). Daunting, but still possible. Now you say to
really thoroughly test the program you need to at
least test each function with 3 other functions and
therefore create 100,000,000 tests (1004). If each
test takes 15 minutes to create, then we are looking
at over 3,000,000 people days. This does not even
count the time of running the test. If each Test
Engineer’s day costs as little as $400, then we have
a $1,200,000,000+ test project for just the test
creation. A program with 100 functions is a very
simple, small application. Thus, we will always be
burden with latent defects in software products,

even products used by millions of users, like
Microsoft Windows and Word.

Why Most Testing Projects Fail
Like other aspects of the software development
cycle (e.g., design, development and maintenance),
testing projects fail if you judge failure as not being:
Ø Within 40% of the estimated schedule.
Ø Within 40% of the estimated cost.
Ø At or near the anticipated quality.

The problem is that test projects are rarely
delivered on time, within budget and have the
required quality. The major reasons why projects
fail are shown in the following table:

Number Reasons Why Test Projects Fail
1 Lack of employing a viable methodology

(test plan, procedures, test scripts, test
matrix).

2 Requirements not clearly defined.
3 Unstable requirements.
4 Inappropriate schedule.
5 Lack of corporate commitment.
6 Lack of exhaustive verification (testing).
7 Inexperienced/unqualified Project Manager.
8 No experienced/motivated staff.
9 No measurability.
10 No or minimal testing tools.
11 Lack of appropriate equipment.

 Project Failure Reasons
The majority of software testing projects, especially
small ones (less than $100,000), use the Test
Manager’s intuition to determine what needs to be
done to fulfill the testing requirements. This lack
of using a viable methodology is the primary
reasons why so many projects fail. Unrealistic
expectations, changing requirements, impossible
schedules, internal politics (lack of commitment),
new technology and financial cuts are reasons Test
Managers often state why their projects have failed.
Yet the main reasons are not knowing what to do,
how to do it and when to do it. It is the Test
Managers responsibility to assure that the testing
requirements are realistic, clear and not haphazardly
changed on a day-to-day basis. Selecting the
“right” team and having a realistic schedule are also
critical to a test project’s success.

The ABCs of Managing a Software Testing Project

ConferencePAPER.doc Page 2 30 March 2000

Testing Methodologies Software testing covers a broad spectrum of
activities. The following table describes the more
common testing activities.

MethodologyBy Whom Description
Unit Programmer Testing of small functional units within the application.
Component Programmer Testing of multiple functional units comprising a component (e.g., a subroutine or

function) within an application.
Functional Test Engineer Testing major functionality of application by rapidly determining major features. For a

GUI application, this might be testing the menu commands for expected results.
Stress Test Engineer Testing limitations and performance.
Compatibility Test Engineer Testing compatibility of application with hardware/software products.
Standards Test Engineer Testing whether the application supports specific standards.
Logo Test Engineer Verifying the application fulfills the requirements of the logo program.
Preliminary
Qualification

Test Engineer Testing using test plans and test procedures as a precursory to formal qualification
testing.

Formal
Qualification

Test Engineer
and QA.

Formal testing using Test Plans and Test Procedures with Quality Assurance witnessing
expected results.

Test Methodologies

Establishing a Test Environment
A critical initial step in testing is the establishment
of a test environment. The initial step is to obtain a
commitment from the individual responsible for
the budget (your boss, your boss’ boss, etc.). It is
important to obtain this commitment in writing, so
when the resources are required there are no
lengthy delays in obtaining approval. The next step
is establishing the test laboratory with the proper
computer systems. This is often an overlooked
task, and few software engineers understand the
importance of logistics and a comprehensive test
environment. The test environment should include
office space to support the appropriate:

Ø Computer systems.
Ø Peripherals.
Ø Support software systems.
Ø Software tools.
Ø Network/Internet Connectivity.
Ø Expertise.

Testing Goals
It is not the goal of a testing project to build a
better mousetrap; rather its primary goal is to
determine the problems that the product currently
exhibits. Problems can be in terms of actual
anomalies, poor documentation, confusing
interfaces, incompatibilities, lack of responsiveness,
etc. Testing activities goals include:

GOAL DESCRIPTION
ThoroughnessAre all functional aspects of the

product tested in all possible ways?
How many combinations of functions
were tested together?

TimelinessHow long did the testing take relative
to the schedule?

Costs How expensive was the testing? Did it
exceed the testing budget?

AnomaliesDid the test case uncover a reasonable
number of anomalies? Were the
documents clear for the software
engineer to understand and was
supporting evidence provided?

Work-AroundsWere work-arounds provided for
anomalies? Did they satisfy the
problem as a temporary solution?
Testing Goals

Changing Percentages
In software developments initial decades (1950s
through the 1980s), testing was always the major
resource/time consumer when you considered
design, implementation and testing. With the
popularization of the PC and even more so with
the popularity of the Internet coupled with the rush
to market, the percentage of time spent testing as
compared to product design and implementation
has decreased dramatically. Recognizing that

The ABCs of Managing a Software Testing Project

ConferencePAPER.doc Page 3 30 March 2000

testing is a slow, meticulous process and at best a
triage as to what level of testing to perform,
businesses in their rush to market have minimized
the testing effort.

The net effect of this is that we now have products
that constantly exhibit malfunctions. With a less
sophisticated user population, many are left
confused as to how to work around all the
anomalies even our most popular products exhibit
(e.g., Microsoft Word). Where in the 1950s through
the 1980s testing represented more than 60% of the
product development cycle, for most Internet
products its lucky if testing represents 30% of the
development effort. Who suffers from this change
in percentages? Obviously, it is the user.

E-Commerce and GUI Applications
The 1990s brought two new activities that are
critical to today’s software business, e-commerce
and GUI (graphical user interface) applications.
GUI applications complicate the testing process
because it is difficult without a powerful emulation
tool to thoroughly test a GUI application in a
minimal amount of time. Because of the constant

human interaction GUI applications employ, it is
very time consuming to verify applications validity.
E-Commerce has popularized concurrent
processing. Similar in concept to real-time
operating systems, this activity is inherent with
unique problems because of the added “time”
factor of the order of events. In applications pre-
1990 using real-time operating systems, these
systems were subject to tremendous testing efforts
to verify their algorithms under varying
circumstances. Now days it is not uncommon for
a complex web-application to be developed in N
months and tested for a few weeks prior to it
“hitting the market.” A major culprit here is greed
to capitalize on the investment as soon as possible.

Software Support Test Tools
Software Engineers have always developed tools to
simplify the task of designing, creating, testing and
maintaining software. The exact software tools
used for an application depend on the general
functionality of the product. The following table
briefly describes some of the tools commonly used
during the testing phase of a software application.

TOOL DESCRIPTION FEATURES
Instrumentation Instrumentation tools modify the program to

include code to facilitate debugging, testing and
timing. This can be a special program that
modifies the source to include calls to specific
routines or a compiler that performs a like
operation.

Should facilitate tracing an applications path,
variable modification, memory utilization, etc.

Ghost Images One of the scientific method’s major objectives
is to control the environment. Ghost images
allow us to capture the environment at a known
state so that we minimize the number of
changing variables.

Should simplify restarting from a known
environment.

Scripting Languages Scripting languages became popular with the
advent of GUI. They eliminate the time
consuming task of using the mouse and
keyboard to designate specific sequences of user
inputs.

A scripting language should be able to emulate
anything you can do with the mouse and keyboard.
It should also contain facilities to compare the
current window against an expected results
window and report the results.

Software Emulators An emulator simulates the action of another
product. Most software emulators will emulate
a piece of hardware, be it a PC or a peripheral.

The emulator should perform the operation as
near identical as the product would perform it. A
major problem with emulators is time. Most
emulators cannot perform their operation as
rapidly as the product being emulated can, and
thus may introduce or not discover specific time
related problems.

Debuggers Programmers use debuggers to help solve
problems.

Debuggers usually allow the programmer to view
variables at specific locations within a program,
trace the path of a program, time how long a
specific set of instructions takes, etc. More

The ABCs of Managing a Software Testing Project

ConferencePAPER.doc Page 4 30 March 2000

TOOL DESCRIPTION FEATURES
powerful debuggers provide these features on a
conditional basis.

Problem Reporting
Systems

Problem Reporting Systems allow users to
record problems.

A problem reporting system should allow for the
problem to be stated, the environment in which
the problem occurred, step-by-step procedure for
recreating the problem along with whatever data is
required, work-arounds if possible and contact
information.

Measurement Tools Measurement tools facilitate timing, counting
and usage.

The ability to time specific regions of code, to
count how often certain code is used, and to
determine the percentages different parts of the
application are consuming.

Complexity Analysis An analysis of the source program can usually
provide a reasonable estimate as to the number
of problems expected and the difficulty in
correcting the problems.

Complexity analysis usually involves a combination
of the nesting depth of the program (loops,
conditionals, switches), use of recursion, iteration,
lack of comments, etc.

Testing Documentation
Documentation is a critical element of any project.
The testing documentation is critical, because it
provides a plan for how the testing is to be
accomplished along with documented evidence of
the testing completed.

The specific format and title used for the test
documentation is not as important as the content
being provided. The following table contains the
key testing documentation that should be an
integral part of any software development effort.

TITLE DESCRIPTION
Test Plan This is a design documentation that describes the testing environment, standards to be used (if

any), responsibilities, strategy, test design (including verification method) and a matrix (see Test
Matrix below).

Test Procedures This is a detailed description of each test, with sign-offs and a step-by-step procedure for how each
test is to be accomplished. It should contain the test matrix with expected results and the
associated test data to be used for each test case.

Test Matrix The test matrix is probably the most critical element of the testing process. It should contain the
following information:

• Test Identifier
• Test Description (what is being tested)
• Associated Test Data
• Expected Results
• Test Results (PASS, FAIL, OTHER)
• Reference Documents (e.g., problem report identifier)

Test Data This is the actual test data (input files, scripts, etc.).
Problem Reports This document is used to describe anomalies. It should include the following information:

• Test Identifier
• Problem Description.
• Test Environment
• Tester’s Name and Contact Information
• Problem Status
• Verification Method
• Work Arounds
• Special Comments

Test Report This document summarizes the testing activity. It should include a completed test matrix along
with a summary of all problem reports.

The ABCs of Managing a Software Testing Project

ConferencePAPER.doc Page 5 30 March 2000

Test (Project) Management Concepts
CONCEPT DESCRIPTION
Planning A critical part of any technical effort is the planning phase. The planning phase output should be a

Test Plan that describes in general terms what should be done and how it should be accomplished.
Prior to commencing any task, it is important to have a clear definition of what the effort entails.
The goal of nearly all test projects is to: (1) deliver the testing results on or ahead of schedule, (2)
deliver the testing results at or better than the specified quality, and (3) deliver the testing results at
a cost within or lower than the estimated budget. Verbal directions or instructions are often
interpreted differently, especially as time passes. A documented (written or electronic) test plan
simplifies communication for what is needed. With a stable test plan, a testing project can
proceed in an orderly, predictable and precise manner.

Organizing Organizing and using the resources provided for a testing activity should be done at the start of
the project and at any point in the project where changes occur which effect the schedule.

Coordinating Making sure the appropriate communication exist between the different interfaces of the test
project and coordinating their activities is a major function of the Test Manager.

Directing/Empowering Creating a project plan with delineated tasks and informing the Test Engineers is critical to
maintaining schedule commitments. It is often necessary to empower staff members so that they
can accomplish their tasks in the proposed time frames. Management’s commitment is crucial to
the future success of a test project. We could accomplish commitment for all team members
through a series of pep talks, or from a speech from one of our charismatic leaders, or through the
actions of our leaders or through a written policy. Although all of the above methods may
temporarily motivate test team members to commit, a more specific, recordable measurement of
commitment is still needed. Often we assign a staff member authority without documented
approval. Some may question why a project should have a documented commitment. There are
often discussions about the requirements and deliverables in complex testing projects.
Commitment without concrete action and documented proof is not commitment. It’s marketing
hyperbole. Any experienced Test Manager has probably heard such statements as:

• “I never read the test plan.”
• “I never committed to that requirement.”
• “I never promised that .”
• “What you mean you needed the proper resources to finish the task on time?”

Monitoring Status reports, time sheets, walkthroughs, periodic meetings (kickoff, status or specific technical
topics) along with occasional one-on-one meetings are the basic methods to be used for managing
a test project. A critical part of a project is the monitoring of each task’s progress. Some might
call this proactive listening. It provides the data needed for the Project Manager to make rational
decisions to effectively employ his/her resources. It also encourages problem solving at all levels.
If a team member knows that their problems will be acted upon when they communicate their
needs, then this knowledge will likely increase the probability that they will communicate their
problems and suggestions for project improvement. A key part of a Project Manager’s monitoring
activities is learning how to filter out noise. Intelligent listening and reviewing team member’s
activities is not a simple activity. The Project Manager must be able to discern what is germane to
the project’s success. This facilitates eliminating what has no consequences relative to improving
future performance and profitability or the current project success. Time management is a vital
aspect of project management and individual productivity.

Controlling/Supervising It is up to the Test Manager to control the activities of his/her staff. This includes making sure
that each staff member is working on the appropriate assignments. To accomplish this, it is critical
that each staff member have more tasks at any one time than they can accomplish, and that the
tasks are prioritized.

Motivating Motivating staff members to perform as best as they possibly can is a difficult challenge. What
motivates one individual may have no or the opposite effect on another staff member. The reason
for motivating your staff is to improve productivity. An initial step is helping team members
personalize their goals and objectives; as the Test Manager, you need to be cognizant of what
motivates your staff. The results will lead to earlier deliveries, less project costs, improved quality
and most important to your corporate bean counters, more profits. There are numerous ways to

The ABCs of Managing a Software Testing Project

ConferencePAPER.doc Page 6 30 March 2000

motivate your staff.

Simplifying Test Management
In the previous sections we discussed some of the
aspects of managing a test project. This section
discusses the “what and how” of managing a test
project.

The following table contains a step-by-step process
for managing a test project. It should be noted that
some of the steps are iterative.

STEP TITLE DESCRIPTION

1 Definition

Create a test plan that describes what is to be tested, where and with what it
will be tested and how it will be tested. This usually should be derived from a
requirements document. If a requirements document is not available, then a
user guide or user reference manual is a reasonable substitute.

2 Implementation Plan
Create test procedures detailing how each test will be conducted and
documented. A comprehensive test matrix with projected results is a critical
aspect of this step.

3 Schedule Create a project plan specifying the tasks, schedule and resources to be used
for the testing.

4 Implement Monitor that the testing staff is implementing the test procedures within the
constraints of the schedule.

5 Report Document all testing and problems.

QW2000 QuickStart 2Q

Mr. James Bach
(Satisfice, Inc.)

The Heuristic Approach to Testing

BACK TO QW2000 PROGRAM

Presentation Abstract

Heuristic testing is the systematic use of guidelines, checklists, and other empirically and theoretically
derived tools to help testers design effective tests.

Heuristic testing focuses on how testers think, and since it minimizes documentation it's particularly
useful in rapid, chaotic, or ambiguous situations that increasingly characterize modern software
development. Heuristic testing focuses on skills and ideas, rather than procedures and metrics. This
talk examines the principles, skills, and tools of heuristic testing.

About the Author

James Bach (http://www.satisfice.com) is founder and principal consultant of Satisfice, Inc. James cut
his teeth as a programmer, tester, and SQA manager in Silicon Valley and the world of market-driven
software development. He has worked at Apple, Borland, a couple of startups, and a couple of
consulting companies.

Through his models of Good Enough quality, exploratory testing, and heuristic test design, he focuses
on helping individual software testers cope with the pressures of life in the trenches and answer the
questions "What am I doing here? What should I do now?"

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/2Q.html [4/28/2000 2:28:07 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

1

Heuristic Software Testing

James Bach, Satisfice, Inc.
james@satisfice.com
www.satisfice.com

(540)631-0600

One way to conceive of testing…

Testing is the art
of evaluating the invisible

against the ambiguous
so as to avoid the unthinkable
happening to the anonymous

This definition reflects how it feels to do testing
under typical working conditions.

2

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

2

Tunnel-Vision is Our
Great Occupational Hazard

Problems you

can find with your

test approach…

invisib
le

problem
s

invisib
le

problem
s

Heuristics:
Ways to Escape From Tunnels

§adjective:
“serving to discover.”

§noun:
“a useful method that doesn’t always work.”

“Heuristic reasoning is not regarded as final and strict
but as provisional and plausible only, whose purpose
 is to discover the solution to the present problem.”

- George Polya, How to Solve It

3

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

3

Heuristic Testing is a
Personal Skill for Any Situation

Technical
Insight

Critical
Thinking

Heuristics:- models- principles- triggers- analogies

Experience Good
Enough
Results

Situation:

- complex

- volatile

- lack of info

- lack of time

Why Not Rigor and Structure?
We May Not Have a Choice…
§Staff

− Not enough people
− Wrong skills

§Risk
− Unknown risk
− High risk

§Support
− Lack tools
− Lack information
− Lack influence
− Lack popularity

§Time
− Not enough

§Product
− Too invisible
− Too volatile
− Too complex
− Too brittle
− Too unreliable
− Not controllable

What works when nothing else can?
Our minds.

4

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

4

Testing is NOT a Sub-Field
of Computer Science

§Epistemology (hypotheses and logic)
§Cognitive Psychology (thinking and perception)
§Economics (allocation of scarce resources)
§Decision/Game Theory (rational decisions)
§Forensics/Rhetoric (persuasive arguments)
§General Systems Theory (rapid analysis of systems)
§Probability Theory (estimations of risk)

The study of testing goes back at least to Aristotle.
Before there was software to test, there were theories to test.

Epistemology Lesson:
Abductive Inference

§Abductive inference is the process of finding the best
explanation for a set of data.
§Abductive inference is not the same as logical

deduction. Abductive inferences from factual data are
not necessarily true.
§Good abductive inference involves generating and

evaluating alternative hypotheses.
§One good approach to abductive inference is

conjecture and refutation…

5

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

5

Epistemology Lesson:
Conjecture and Refutation

§We never know product quality for certain.
§We conjecture about quality. To conjecture is to

explore plausible realities.
§A good conjecture is falsifiable: we can imagine facts

that would refute the conjecture.
§A conjecture can never be proven, only corroborated.

Corroborating evidence is most interesting when
gained as the result of a genuine attempt to refute.
§Good testing is a serious attempt to refute and

corroborate conjectures about product quality.

General Biases

§Beliefs: Ideas or mental models that we treat as true. We
tend to persevere in our beliefs. We are often not aware of the
beliefs that influence our thinking.

§Prominence: We give greater weight to prominent
evidence. We treat recent, disturbing, or familiar evidence as
more prominent. It’s hard to see omissions and subtleties.

§Assimilation: We assimilate evidence into our
preconceived beliefs or explanations. We ignore contrary
evidence. We treat things that look alike as if they are alike.

§Self-Interest: We look harder for conclusions that
favor our self-interest. We practice wishful thinking.

6

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

6

Some Domains of Thinking
that are Subject to Bias

§Perceiving phenomena
§Investigating causality
§Judging probabilities
§Judging severity of problems
§Judging how other people think or feel
§Deciding what to do
§Judging success and failure

Some Everyday Heuristics

§It’s dangerous to drink and drive.
§A bird in hand is worth two in the bush.
§Nothing ventured, nothing gained.
§Sometimes people stash their passwords near their

computers. Try looking there.
§Stores are open later during the Holidays.
§If your computer is behaving strangely, try

rebooting. If it’s very strange, reinstall Windows.
§If it’s a genuinely important task, your boss will

follow-up, otherwise, you can ignore it.

7

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

7

Heuristics Help You Rapidly
Make Sense of a Situation

REFLEX

REFLECTION

trigger heuristics

models
rules of
thumb

Faster
Looser

Slower
Surer

Abductive
Inference

Actively open-
minded thinking

How Heuristics Differ from
Other Procedures or Methods

§Heuristics are known to be wrong, at least some of
the time.
§No one can say for sure when a heuristic will

work.
§Heuristics aid or focus an open-ended problem-

solving or solution-searching effort.
§Heuristics can substitute for complete or rigorous

analysis.

8

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

8

Using Heuristics

§Awareness: Practice noticing the heuristics by
which you test.

§Alternatives: Learn diverse and opposing
heuristics.

§Triggers: Practice bringing them to mind when
you need them.

§Know-When: Question the dynamics of each
heuristic, so that you know when it’s best to apply it.

Heuristics are Biases

§Beliefs: A heuristic is a belief. Heuristics may
affect us in ways we aren’t conscious of.

§Prominence: Heuristics tend to stick in our
minds. They become reflexes.

§Assimilation: We tend to assume that our
heuristics fit every situation. Especially if our
situations don’t change that much. We tend to
distrust heuristics that come from other people.

§Self-Interest: We want our heuristics to be right,
so we don’t always look hard enough for their flaws.

9

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

9

A Heuristic Model of

Testing

All Product Testing is
Something Like This

Project
Environment

Product
Elements

Quality
Criteria

Test Techniques

Perceived
Quality

10

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

10

Test Techniques

Product
Elements

Project
Environment

Major Themes in
Test Design and Execution

Quality
Assessment

Reporting
Coverage

Logistics

Quality
Criteria

Oracles

Analysis &
Modeling

Analysis &
Modeling

Mission

Testability Testability

Testing Activities

A test
technique is a recipe

for performing
these tasks.

§Analyze the product.
§Model the test space.
§Select what to cover.
§Determine test oracles.
§Configure the test system.
§Operate the test system.
§Observe the test system.
§Evaluate the test results.

11

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

11

Coverage

§There are as many kinds of coverage as there
are ways to model the product.
− Structural
− Functional
− Data
− Platform
− Operations

Product coverage is the proportion of the
product that has been tested.

Coverage Heuristic:
The Function/Data Square

Functions

Data

risk testing

reliability testing

function
testing

smoke
testing

12

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

12

Oracles

An oracle is a strategy for evaluating
whether a test has passed or failed.

Oracle Strategy
What are the critical assumptions?

What reference data do you use
(if any)?

What product output do you evaluate?

How is this oracle grounded in quality
criteria?

How do you do the evaluation?

How conclusive and specific is your
answer?

Test
Case

Product
Output

Reference
Data

Oracle Output

Program output is...

...conclusively correct or incorrect.

...inconclusively correct or incorrect.

...harmless or harmful.

...normal or abnormal.

...of unknow n quality.

Quality Criteria

§Importance: how critical is the fulfillment of this
expectation?

§Source: where does it come from?

§Authority: how does it relate to the stakeholder?

§Testability: how can you know whether it is fulfilled
or violated?

§Applicability: to what product elements does it apply?

13

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

13

Quality Criteria:
Specifications

A specification is any reference
that can be used to evaluate quality.

§Explicit: a reference that is formally acknowledged.

§Implicit: a reference that is not formally
acknowledged.

Oracle Heuristic:
Consistency

§Consistent with Purpose: Function behavior is consistent with its
apparent purpose.

§Consistent within Product: Function behavior is consistent with
behavior of comparable functions or functional patterns within the product.

§Consistent with Comparable Products: Function behavior
is consistent with that of similar functions in comparable products.

§Consistent with Claims: Function behavior is consistent with what
people say it’s supposed to be.

§Consistent with History: Present function behavior is consistent
with past behavior.

14

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

14

Oracle Trigger Heuristic:
“It Works”

“...it works.”

really means

“...it appeared to meet some requirement to some degree.”

Which requirement? Appeared how?
To what degree? Perfectly? Just barely?

What was the oracle?

The Universal Test Procedure

“Try it and see if it works.”

§Learn about it
§Model it
§ Speculate about it
§Configure it
§Operate it

§Know what
to look for

§ See what’s
there

§Understand the
requirements

§ Identify problems
§Distinguish bad

problems from not-
so-bad problems.

Models OraclesCoverage

15

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

15

General Test Techniques

§Domain testing
§Stress testing
§Flow testing
§User testing
§Regression testing
§Risk testing
§Claims testing

I call these techniques
“general” because they are

common, widely applicable,
and can be combined with

many other techniques.

Domain Testing

“Try ranges and options”

- A domain is a range or set of potential data.
- Identify each domain.
- Analyze limits and properties of each domain.
- Identify combinations of domains to test.
- Coverage strategy:
 e.g., exhaustive, typical, boundaries,
 random, invalid, etc.

Key Idea:

Summary:

Good for: all purposes

16

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

16

Stress Testing

“Overwhelm the product”

- Select test items and functions to stress.
- Identify data and platform elements that relate
 to them.
- Select or generate challenging data and
 platform configurations to test with:
 e.g., large or complex data structures,
 high loads, long test runs, many test cases

Key Idea:

Summary:

Good for: performance, reliability, and
efficiency assessment

Flow Testing

“Do one thing after another”

- Define test procedures or high level cases that
 incorporate multiple tests.
- Don’t reset the system between tests.
- Incorporate the element of time.
- Combine with other techniques:
 e.g., user flow, stress flow,
 risk flow

Key Idea:

Summary:

Good for: finding problems fast
(however, bug analysis is more difficult)

17

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

17

User Testing

“Strive for realism”

- Identify categories of users.
- Determine what each category of user will do,
 how they will do it, and what they value.
- Get real user data, or bring real users in to test.
- Otherwise, systematically simulate a user.
- Do not assume that you are a user.

Key Idea:

Summary:

Good for: all purposes

Regression Testing

“Repeat testing after changes”

- Identify what product elements changed.
- Identify what elements could have been
 impacted by the changes.
- Coverage strategy:
 e.g., recent bug fixes, past bug fixes,
 likely elements, all elements

Key Idea:

Summary:

Good for: managing risks related to product
enhancement

18

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

18

Risk Testing

“Find big bugs first”

- Risk is the product of likelihood and impact.
- Determine what makes a bug “big.”
- Analyze risks using experience with similar
 products and advice from customer.
- Focus testing on highest potential risks.
- Use test results to refine the risk analysis.

Key Idea:

Summary:

Good for: making best use of testing resources;
leveraging experience

Claims Testing

“Verify every claim”

- Identify specifications (implicit or explicit).
- Analyze individual claims about the product.
- Ask customer to clarify vague claims.
- Verify each claim.
- Expect the specification and product to be
 brought into alignment.

Key Idea:

Summary:

Good for: simultaneously testing the product and
specification, while refining expectations

19

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

19

Test Strategy Heuristic:
Diverse Half-Measures

§There is no single technique that finds all bugs.
§We can’t do any technique perfectly.
§We can’t do all conceivable techniques.

Use “diverse half-measures”-- lots of different
points of view, approaches, techniques, even
if no one strategy is performed completely.

Test Strategy Heuristic:
Clearing Mines

mines

20

Copyright © 1995, Software Testing Laboratories, Inc., all rights reserved
James Bach, jamesb@stlabs.com

20

Totally repeatable tests
won’t clear the minefield

mines fixes

Variable Tests are
Often More Effective

mines fixes

The Heuristic Test Strategy Model is a set of patterns for designing a test strategy. The immediate purpose of this model is to remind
testers of what to think about when they are creating tests. Ultimately, it is intended to be customized and used to facilitate dialog, self-
directed learning, and more fully conscious testing among professional testers.

HeuHeuHeuHeuristicristicristicristic
Test Strategy ModelTest Strategy ModelTest Strategy ModelTest Strategy Model

Project
Environment

Product
Elements

Quality
Criteria

Test
Techniques

Perceived
Quality

Project Environment includes resources, constraints, and other forces in the project that enable us to test, while also keeping us from
doing a perfect job. Make sure that you make use of the resources you have available, while respecting your constraints.

Product Elements are things that you intend to test. Software is so complex and invisible that you should take special care to assure
that you indeed examine all of the product that you need to examine.

Quality Criteria are the rules, values, and sources that allow you as a tester to determine if the product has problems. Quality criteria
are multidimensional, and often hidden or self-contradictory.

Test Techniques are strategies for creating tests. All techniques involve some sort of analysis of project environment, product
elements, and quality criteria.

Perceived Quality is the result of testing. You can never know the "actual" quality of a software product, but through the application
of a variety of tests, you can derive an informed assessment of it.

Designed by James Bach
james@satisfice.com
www.satisfice.com
Copyright 1996-2000, Satisfice, Inc.

Version 2.5
2/11/2000

Page 1 of 8

Project Environment
Creating and executing tests is the heart of the test project, and is what most people think of as “software testing.”
However, there are many factors in the project environment that are critical to the successful completion of a testing
project. In each category, below, consider how that factor may help or hinder your testing. Be aware of what’s going on
in the project. Try to exploit the resources you have available, while minimizing the impact of constraints.

Customers Anyone who is a client of the test project.

Information Information about the product or project that is needed for testing.

• Availability: Do you have all the information from the developer and others that you need in order to test?

• Volatility: Is that information current? How are you apprised of new or change information?

Team Anyone who will perform or support testing.

• Size: Do you have enough people to complete all planned testing within the desired time frame?

• Expertise: Do you have people with the right knowledge to satisfactorily complete the planned testing?

• Organization: Are the testers coordinating their efforts and pulling for the same goal?

Budget Money needed to purchase testing resources and materials.

Equipment & Tools Hardware, software, or documents required to administer testing.

• Hardware: Do we have all the equipment and platforms we need in order to execute the tests?

• Automation: Are any test automation tools needed? Are they available?

• Probes: Are any tools needed to aid in the observation of the product under test?

• Matrices & Checklists: Are any documents needed to track or record the progress of testing?

Processes The tasks and events that comprise the test project.

Schedules The sequence, duration, and synchronization of events.

• Testing: When will testing start and how long will it take?

• Development: When will builds be available for testing, features added, code frozen, etc.?

• Documentation: When will the user documentation be available for review?

Test Items The product to be tested.

• Availability: Do you have the product to test?

• Volatility: Is the design and implementation of the product constantly changing?

• Testability: Is the product reliable enough that you can effectively test it?

Deliverables The observable products of the test project.

• Content: What sort of reports will you have to make? Will you share your working notes, or just the end results?

• Media: How will you record and communicate your reports?

Page 2 of 8

Execute Test

Evaluate Results

Observe System

Operate System

Configure System

Test
Idea

Test Technique Elements

Test Idea: Any idea that guides test
execution. It is not necessarily fully
articulated, recorded,or maintained.

Design Test

Analyze Situation: Identify, examine, and clarify
information about project environment, quality
criteria, and product elements.

Configure System: Prepare the product and
platform for testing. Assure that the system is in the
proper state to commence the test.

Model Product: Construct a test model-- a
depiction or representation of something you intend
to "cover" with your tests. Example: for risk-based
testing, your model might be a list of risk areas.

Select Coverage: Determine what you will cover in
the test model. In other words, decide what parts of
the product must be tested, and what parts you will
leave alone.

Define Oracles: An oracle is a strategy for knowing
whether a test passes or fails. Without one or more
oracles, you aren't really testing. Define your oracle
strategy for your tests.

Operate System: Provide the input and control to
the system necessary to carry out the test. For some
kinds of testing, this may require special tools.

Observe System: Monitor the output, or any other
relevant effect of the operation of the system. This
may require special tools in order to observe hidden
variables or subtle effects.

Evaluate Results: Use your oracle strategy to
evalute test results. Perform additional testing as
needed to confirm your evaluation.

Page 3 of 8

Define Oracles

Select Coverage

Model Product

Analyze Situation

General Test Techniques
A test technique is a way of creating tests. There are an indefinite number of interesting techniques. The list
below shows seven general techniques. These techniques were chosen because each of them is conceptually
simple, unique, and often incorporated into other techniques. Each one can be performed in a quick and dirty
way, or much more formally. They can also be combined with each other (e.g. risk-based domain testing, user-
oriented regression testing).

Domain Try ranges and options
1. Identify domains to test.
2. Analyze the limits and properties of each domain.
3. Identify combinations of domains to test.
4. Apply selection strategy:

e.g., exhaustive, typical, boundaries, random, invalid

Stress Overwhelm the product
1. Select test items and functions to stress.
2. Identify data and platform elements that relate to them.
3. Select or generate challenging data and platform configurations to test with:

e.g., large or complex data structures, high loads, long test runs, many test cases, low memory conditions

Flow Do one thing after another
1. Define test procedures or high level cases that incorporate multiple tests connected end-to-end.
2. Don’t reset the system between tests.
3. Incorporate the element of time.
4. Combine with other techniques:

e.g., user flow, stress flow, risk-based flow

User Strive for realism
1. Identify categories of users.
2. Determine what each category of user will do, how they will do it, and what they value.
3. Get real user data, or bring real users in to test.
4. Otherwise, systematically simulate a user (be careful—it’s easy to think you’re like a user when you’re not).

Regression Repeat testing after changes
1. Identify what product elements changed.
2. Identify what elements could have been impacted by the changes.
3. Select what to test, such as recent bug fixes, past bug fixes, new code, sensitive code, or all code.

Risk Find big bugs first
1. Analyze project factors, product elements, and quality criteria in order to identify sources of risk.
2. Focus testing in areas of highest potential risks.
3. Use test results to refine the risk analysis.
4. Be careful not to completely neglect low risk areas—your risk analysis might be wrong.

Claim Verify every claim
1. Identify reference materials that include claims about the product (implicit or explicit).
2. Analyze individual claims, and clarify vague claims.
3. Verify each claim.
4. If you’re testing from an explicit specification, expect it and the product to be brought into alignment.

Page 4 of 8

Product Elements Model

Operations include the user, how the user interacts with the product, and
anything else going on in the user's business, social, and physical
environment that could affect the product.

Software Component

Platform

Data

Structure

Function

Input Output

Output Input

Operations

User

All non-trivial software components consist of some structure (e.g. files,
lines of code), they all perform some sort of function, and they all exchange
data with some sort of user (which may be another progam) and some sort of
platform.

The platform, broadly speaking, is anything the software depends upon in
order to function. This includes the hardware and operating system, of
course, but may also include other external programs or configuration
parameters.

Page 5 of 8

Product Elements
Ultimately a software product is an experience or solution provided to a customer. Software products
have many dimensions. So, to test well, we must take care to examine a variety of those dimensions. Each
category of elements, listed below, represents an important and unique aspect of a product. Testers who
focus on only a few categories are likely to miss important bugs. This list is a generic starting point, but in
any particular domain of technology you should be able to construct a more specific checklist of elements
to examine.

Structures Everything that comprises the physical product.

• Code: the code structures that comprise the product, from executables to individual routines.
• Interfaces: points of connection and communication between sub-systems.
• Hardware: any hardware component that is integral to the product.

• Non-executable files: any files other than programs, such as text files, sample data, help files, etc.
• Alternate Media: anything beyond software and hardware, such as paper documents, web links and

content, packaging, license agreements, etc..

Functions Everything that the product does.
• User Interface: any functions that mediate the exchange of data with the user.
• System Interface: any functions that exchange data with something other than the user, such as with

other programs, hard disk, network, printer, etc.

• Application: any function that defines or distinguishes the product or fulfills core requirements.
• Error Handling: any functions that detect and recover from errors, including all error messages.
• Interactions: any interactions or interfaces between functions within the product.
• Testability: any functions provided to help test the product, such as diagnostics, log files, asserts, test

menus, etc.

Data Everything that the product processes.

• Input: any data that is processed by the product.

• Output: any data that results from processing by the product.

• Preset: any data that is supplied as part of the product, or otherwise built into it, such as prefabricated
databases, default values, etc.

• Persistent: any data that is stored internally and expected to persist over multiple operations. This
includes modes or states of the product, such as options settings, view modes, contents of documents, etc.

• Temporal: any relationship between data and time, such as the number of keystrokes per second, date
stamps on files, or synchronization of distributed systems.

• Invalid: any data or state that should trigger an error handling function.

Platform Everything on which the product depends.

• External Hardware: hardware components and configurations that are not part of the shipping product,
but are required (or optional) in order for the product to work. Includes CPU's, memory, keyboards,
peripheral boards, etc.

• External Software: software components and configurations that are not a part of the shipping product,
but are required (or optional) in order for the product to work. Includes operating systems, concurrently
executing applications, drivers, fonts, etc.

Operations How the product will be used.

• Usage Profile: the pattern of usage, over time, including patterns of data that the product will typically
process in the field. This varies by user and type of user.

• Environment: the physical environment in which the product will be operated, including such elements
as noise, light, and distractions.

Page 6 of 8

Conference Reference

Inference

Requirements

Testability

Applicability

Importance

Category

Test Oracles

Reference
Materials

Stakeholder

Quality Criteria Model

Oracles are strategies for detecting product failure. An oracle may be an idea in the mind of a tester that allows him to recognize a bug
when he sees one. A major task of testing is determining oracles that are in line with the true requirements of the product. We do that
mainly through conferencing with the stakeholders, referencing authoritative materials, or by inferring requirements based on other
things we know.

A stakeholder is anyone whose opinion matters with regard to the quality of the product. All requirements come, directly or indirectly,
from one or more stakeholders. A software tester is an agent for the stakeholder throughout the test process.

Reference materials are any documents or artifacts that can be used as a source of information about requirements. If a stakeholder
acknowledges a reference as an authoritative source, we call it an explicit reference. An implicit reference is any useful material that is
not acknowledged. Often, the process of testing will cause the stakeholders to improve the reference materials. Testers may also prepare
reference materials based on exploratory testing and conferring with stakeholders.

Requirements are the desires of the stakeholders. It takes a lot of time, effort, and skill to elicit anything like a complete set of
requirements from the stakeholders. Even when that is done, requirements will continue to change as the stakeholders gain experience
with the product, or the world around them itself changes. When identifying requirements, it can help to start with categories of possible
requirements. For each requirement, also consider how important is it for that requirement to be satisfied? Where, when and to what is
that requirement applicable? Is the requirement testable enough to know if the product satisfies it?

Page 7 of 8

Quality Criteria Categories
When we say that a product is “high quality” we mean that it satisfies the quality criteria of its stakeholders to
a “high” degree. We often have to test without knowing exactly what those criteria are, but we can use this list
of criteria categories to brainstorm or otherwise ask pointed questions aimed at revealing what we need to
know. For each category, determine if it is important to your project, then think how you would recognize if
the product worked well or poorly in that regard. This list particularly benefits from customization. We
recommend reviewing the ISO 9126 quality characteristics standard or the Encyclopedia of Software
Engineering for other category ideas.

Operational Criteria
Capability Can it perform the required functions?

Reliability Will it work well and resist failure in all required situations?

• Error handling: the product resists failure in the case of errors, is graceful when it fails, and recovers
readily.

• Data Integrity: the data in the system is protected from loss or corruption.

• Security: the product is protected from unauthorized use.

• Safety: the product will not fail in such a way as to harm life or property.

Usability How easy is it for a real user to use the product?

• Learnability: the operation of the product can be rapidly mastered by the intended user.

• Operability: the product can be operated with minimum effort and fuss.

Performance How speedy and responsive is it?

Installability How easily can it be installed onto its target platform?

Compatibility How well does it work with external components & configurations?

• Application Compatibility: the product works in conjunction with other software products.

• Operating System Compatibility: the product works with a particular operating system.

• Hardware Compatibility: the product works with particular hardware components and
configurations.

• Backward Compatibility: the products works with earlier versions of itself.

• Resource Usage: the product doesn’t unnecessarily hog memory, storage, or other system resources.

Development Criteria
Supportability How economical will it be to provide support to users of the product?

Testability How effectively can the product be tested?

Maintainability How economical is it to build, fix or enhance the product?

Portability How economical will it be to port or reuse the technology elsewhere?

Localizability How economical will it be to publish the product in another language?

Page 8 of 8

QW2000 Vendor Technical Paper 2V2

Mark L. Van Name
(ZD Labs)

Benchmarking the Future: Future Directions

BACK TO QW2000 PROGRAM

Key Points

Learn how to use Ziff-Davis Publishing's i-Bench to test the new generations of Web appliances as they
arrive

●

Get the inside scoop on how WebBench's custom workloads can reveal the performance of Web-related,
server-side technologies

●

See how Winstone's "hot spot" testing orientation can help you distinguish among the flood of ever-faster
processors and PCs

●

Presentation Abstract

The headlong rate of change of technology today presents those of us in the testing business with
serious challenges: How can we test these new technologies? Measure their performance? Though
we sometimes have to create new tools to meet these challenges, existing tools can often do the job.
In this presentation you'll learn how to use the current generation of Ziff Davis Publishing's
industry-standard benchmarks to cope with the technologies that are hitting you now and will be hitting
you in the months ahead.

Many of us, for example, are trying to sort through the rush of new Internet-access devices. From
Web-savvy refrigerators to Internet-linked cell phones, devices of all sorts claim to offer great online
capabilities-but how can you determine what each device can really do? i-Bench may well be the
answer. We'll discuss how to use it to measure the capabilities and performance of these
Internet-access devices as they appear.

On the server side of the Web, technologies are also evolving rapidly. We all want to understand how
our sites and servers will perform, but finding tools to apply the right workloads can be tricky. A large
number of vendors offer powerful and expensive products to address this problem, and those products
are important. You can also, however, get significant data about new technologies from Ziff Davis
Publishing's freely available WebBench product by using it to create custom workloads. We'll give you
the lowdown on building the workload you need for many types of Web-server tests.

The desktop PC isn't standing still, either. Though we're confident most people would agree that
current PCs are fast enough for most business applications, people still waste a lot of time waiting on
PCs. Ziff Davis Publishing's Business Winstone and Content Creation Winstone have evolved to
address this problem by focusing on what we call "hot spots," computing tasks that leave you twiddling

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/2V2.html (1 of 2) [4/28/2000 2:28:40 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

your thumbs. Learn how you can use these tools to determine which of the ever-faster processor,
RAM, and system technologies deliver the best performance and the best value.

About the Author

Mark L. Van Name is Vice President and General Manager of ZD Labs, the independent, for-hire
testing service of the Ziff Davis Publishing Company. With more than a decade of work as a software
developer and an M.S. in Computer Science, he brings extensive experience and a strong academic
base to product testing.

The former Editorial Director of Ziff Davis' Windows Sources Magazine, he is also, with Bill Catchings,
the author of over a thousand articles and has been a columnist for Windows Sources, PC Week, and
Computer Shopper.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/2V2.html (2 of 2) [4/28/2000 2:28:40 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2000 Paper 2T2

Mr. James Elder & Mr. Ricard Roma i
Dalfo

(Microsoft)

Object Based Machine Automation
("OSIRIS Project")

BACK TO QW2000 PROGRAM

Key Points

Discuss the problems / difficulties of automating configuration and scenario based testing●

Present the OSIRIS project as a possible strategy / technique for solving the above-mentioned problems -
explain functionality, advantages, implementation, etc.

●

Provide examples of how this automation strategy is being applied, scenarios being covered, how it could be
expanded or adapted to fit other environments

●

Abstract...

The "OSIRIS Project" is the architecture of combining many existing tools and processes and
exposing their functionality as automation objects so that they can be used in writing code to automate
user scenarios or control machine configurations. These automation objects are implemented in a
server-client model so that code running on a server can either control itself or one or more client
machines all from a single code module. These objects include applications, machine images,
snapshots, file/reg key functions as well as other system level control (reboots, auto logon, execute
command, etc.). Many of these tools or processes already exist in some format, but by combining
them in a common, automation object architecture, OSIRIS provides functionality and characteristics
(extensibility, robustness, flexibility, etc.) unavailable in previous tools.

Author Bio...

James Elder Bio:
5-7/93 - Test Engineer Intern for United Technologies Carrier Corporation
5/95 - Graduated from the University of Arkansas with a BS degree in Computer Systems Engineering
6/95 - Hired as a Software Test Engineer in the Microsoft Excel test group
10/97 - Moved to "Release and Deployment" shared feature test team Currently working on upgrades
testing for Office installations

Ricard Roma i Dal Bio:
1994-95 - Completed my 4th year in Computer Science at Trinity College of Dublin (Ireland -

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/2T2.html (1 of 2) [4/28/2000 2:28:51 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

EUROPE)
1996 - Final year project at iMAGIS, Institut National Polytechnique of Grenoble (France - EUROPE)
1991-96 - Graduated on Computer Science Engineering by Polytechnic University of Catalunya
(Catalunya - EUROPE)
1996-98 - Worked as IT Manager at Bonmacor (services company in Barcelona, Catalunya,
EUROPE)
1998- Joined Release and Deployment Office group at Microsoft (Redmond, USA).
Currently working on automation solutions for the group and other groups inside Office and Microsoft.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/2T2.html (2 of 2) [4/28/2000 2:28:51 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

����������	�	�

����������	
��
�	
������
��������
�����������

���
�����
�
�������������������

13th International Software / Internet Quality Week (QW2000)

����������	�	�

������������

����������	
���������������������
 !����
��
��������
���
����

�
���
" �#
�#�
$������
��������
���
����
" ���	
����%
����������
" ��%�
�
�������
" �����������%%���������

2

����������	�	�

��
��������
��&
����

" �%%���������#�'���
��������
���
����
��������%%���
�(����
��������
�����������������!
��
��������
�(��������)����������)��% ���
)�*

" ����������
�������
��������
���
����
+ �
�����
����
���#

+ ,��
������-����
�#�����
�������� ��������
+ .��%�
-���
����
������

����������	�	�

��������������������

" .��%�
-
��/��
���������� �������������#�����
�

" ,��������������
���
���)��� ���)�
��'

" �����%�
�������
���
������

" .�����������
������
0���
)���%��������������

3

����������	�	�

���	
����%
����������

" �	
�����
�
+ 1���������
�����)�%��%
���
�
+ �������
+ .������
��

" 2���
����%���
���������
#
��%�
��

�#�����
���

" .��%����

����������	�	�

���	
����%
����������)�����'

" �����

" .��
��3�
�#
����������

+ �����%�
�������
���
������
+ ,��������������
+ ��� �
����
������

" �-�
����

4

����������	�	�

�	
�����
�

" �	
���
+ �
�����
+ ���%
���
�

" 2�
�����
����
#
��%�
��

�#�����
���
+ �-������%%��������4�����

����%���

�������������	
�����

����������	�	�

�
���
�.������
" ������������

" ,��������������
" ��� �
����
������

Automation Code

Sub Main()
 Dim App1 As Object
 Dim Control As Object

 App1.install
 Control.reboot

 Set App1=Nothing
 Set Control=Nothing
End Sub

Machine 1

Automation
Object

Machine 4

Server Clients

Automation
Object

Machine 3

Automation
Object

Machine 2

�
���������������	�
�

5

����������	�	�

�
�#
�3.��
���.��%��
���
" �.����������%�
-����������������$���
��������

��
���#
�!

" ���-!�������
������%��
��
" ����%�����
���	
�����
�����)��
���

��������������)������	
�������
��
��#
�!

Client functionality
•Utilities EXE
• Installer EXE

Server functionality
•Utilities DLL
• Installer DLL

Server

Client functionality
•Utilities EXE
• Installer EXE

Server functionality
•Utilities DLL
• Installer DLL

Client

����������	�	�

��%�
�
���������#
�#�
$

Machine 4

Server

Client

Machine 3

Server

Client

Automation Code

Sub Main()
 Dim App1 As Object
 Dim Control As Object

 App1.init “Machine2”
 Control.init “Machine2”
 App1.install
 Control.reboot

 Set App1=Nothing
 Set Control=Nothing
End Sub

Machine 1

Server

Client

Machine 2

Server

Client

Server

Clients

6

����������	�	�

�����������%%���������

" ��
��������
������������
+ �%%����������������)����������)��% ���

+ .���� ��������#�����
�(���)���� ��

+ .��%�
-���
����
������

" �������&����
+ 4�������������%%�
�
+ 5
�%�

" ������������%%���������

����������	�	�

����������#
�

7

����������	�	�

5
���
������������#
�

����������	�	�

������������%%���������

" ,������
�
��
+ �����%�
�������
��������
+ ������
��
����������3���
�����
+ 2����6
�
-����� �����������

" ��!����������������

8

����������	�	�

.����������

" ��
��������
���
���� �������������

" ����������	
�������������
 !���������������

" ��%�
�
�����������
�

" �����������%%���������������%��#
�%������
0�����!

OSIRIS Project

Object Based Machine Automation

James Elder
Microsoft Software Test Engineer

jelder@microsoft.com

Ricard Roma i Dalfó
Microsoft Software Developer in Test

ricardrd@microsoft.com

International Quality Week, 2000

Abstract
Automation is an important part of the testing process and can greatly improve testing
efficiency and product quality if used correctly. This paper does not discuss testing
theory or methodologies, but rather a specific automation strategy for automating both
simple and complex user scenarios by defining the different components as code objects.
This strategy, which we call the “OSIRIS Project,” is based on current industry
technology, such as COM1, and allows automation writers to control multiple machines,
application installs, reboots, complex machine interactions, and so on, from a single code
source.

This paper first defines and gives a brief overview of “scenario-based” testing, then
explains the conceptual and technical implementation of an automation strategy using
“objects” and finally discusses some of its practical applications for improving software
quality. This paper reflects the authors’ perspective gained from experience testing
Office applications at Microsoft.

1.0 Introduction overview of Scenario-based testing
Testing the code and user interfaces of a software application is difficult enough by itself, but it is
even more difficult and complex when you add the testing of that application’s installation and its
interactions with the many different operating systems, other related software and even previous
versions of the same application. To help us clarify and prioritize our testing focus, we divided
this testing into two parts: “application-based” testing which focuses on the application code and
internal functionality, and “scenario-based” testing which focuses on how the applications are
installed and/or how they interact with other software. Typically application-based testing
receives more resources and attention during application development, but as the complexity
matrix of our applications and the number of environment configurations increases, the need for
better scenario-based tools, better testing processes and better overall understanding and
management becomes apparent.

1.1 Difficulties / history of scenario-based automation
In trying to automate scenario-based testing for Office applications, it was difficult to find a
practical tool or method for managing the different variables of the operating system
configuration, the install and uninstall of applications, the many different types of user
interactions and the scenarios with loss of control such as reboots, different user logon, etc.
First, we tried different industry tools and different programming methods such as batch files,
PERL scripts, Visual Basic (VB), “quiet” application installations, “send keys,” and so on. These
strategies were sufficient for particular pieces of the problem, but they did not provide a complete
solution. Next, we tried creating our own scripting language and development environment to
accommodate scenario-based automation. This later strategy seemed like a practical solution and
did provide us with a modular, extensible approach to the problem, but we soon realized that we
were spending as many resources on the testing and maintenance of the scripting environment as
we were on using it for application automation. This strategy also had a steep learning curve and
was only understood and used by a small number of testers.

Through our experience with scenario-based testing and our previous attempts to automate these
scenarios, we were able to clearly define the characteristics and functionality that would be
needed to solve this problem. Our solution needed to be:

• Robust - to handle the diverse environment configs, reboots, timeouts, etc.
• Modular - to have reusable “objects” and reusable functionality
• Extensible - to easily add additional functionality
• Compatible - to utilize existing investments in tools and testing methods
• Programmable - to provide functionality of professional development environments

 (looping, variables, conditionals, etc.)

We also realized that the different components and variables used in scenario-based testing could
be considered “objects” with properties and methods just like familiar objects in any object-based
development environment such as VB or Visual C++ (VC++). For example, if you consider the
application Excel 97 as an object, then it would have respective methods such as install, uninstall
and properties such as source/destination directory, username, product identification key, etc. A
user object for example could be defined with methods logon, logoff and properties
administrator, poweruser, etc. Consider the implications if your scenario-based automation code
could be as simple as the following sample pseudo-code:

Module InstallTest
 Declare variable MyApp as Application = Excel97
 Declare variable MyUser as User = administrator
 MyUser.logon
 MyApp.install
 Call VerifyInstallation subroutine
End Module InstallTest

Note: Although our actual implementation does not parallel this object structure exactly,
the concepts and characteristics form the basis for the OSIRIS Project. Also note that our
objects and functionality are unique for our testing needs, but the overall strategy can be
applied to almost any software application.

1.2 OSIRIS Project Specification
Our first task was to write a specification of the different objects and functionality needed to
automate our scenario-based testing and to elaborate on required characteristics of the automation
strategy.

Required characteristics
Utilize professional development environments

A major problem with current tools for scenario-based automation is that they often
require the automation writer to either learn a new scripting language or to learn a new
complex user interface. The tools and processes we tried were often limited in flexibility,
were not extensible and were not compatible with our existing tools. In some cases,
simple programming functionality like looping, variables, or conditionals was not
available. We needed a way to write automation using professional development tools,
such as VB, VC++, so that we could utilize the development environment’s features and
would have almost no learning curve if already familiar with the language.

Client-Server based to handle loss of control
Many scenario-based tests include reboots or multi-user logon, both of which usually
cause a loss of control for automated tests. The automation strategy must be client-server
based so that a single code source executing on a server can lose and regain control of a
client machine without disrupting the programmatic flow of the automation code.

Client-Server based for multiple machines
The automation strategy also must be client-server based so that it can handle multiple
machine scenario-based tests such as roaming user, administrative software deployment,
web / database / mail server interactions, and so on.

Robust
The strategy must be reliable, maintain its own error handling and work across many
different environment configurations.

Modular and Consistent
The many different components must be clearly defined as stand-alone objects so that
they can be reused throughout different code modules, in any order, etc. with expected
and loggable results. Objects also must be implemented in a consistent manner so that
familiarity of one object can transfer to another as well as provide a template for future
objects.

Compatible and Extensible
The strategy must be compatible with our custom tools and processes while still allowing
for future functionality additions.

Required Objects
Applications

A set of objects to install different versions, languages, SKUs of Microsoft Office
applications such as Office 95, German Office 97, Internet Explorer, Office 2000, etc.

Logging
Object used to manage log files and pass / fail test results

Execute
Object for execution of executables, batch files or any other command that is executable
through the OS command-line

FileInfo
Object used to query file information (times, language, version, size, etc.), to copy / move
/ delete / rename files and directories and to set NTFS file / directory security permissions

Images
Object to create and restore images of a particular hard drive (this allows automation to
control restoring different operating systems such as Win95, NT4, German Win98, or any
previously created configuration)

ProcessInfo
Object used to query for or to terminate running processes

Registry
Object used for creating / setting / deleting keys and values within the system registry or
within INI files

Shutdown
Object to shut down / reboot / set autologon for a client machine

Snapshot
Object used to take snapshots of a machines files / registry; also allows taking the
difference between two snapshots

SystemInfo
Object used to query information about a machine’s configuration: path locations (system
path, user specific paths, programs paths, temp path, etc.), system language, machine
name, logged on username, OS type, environment variables, etc.

TimeDate
Object used to query for and to modify system date and time

ToolsManagement
Object used to verify that the automation tools are installed and to update the tools to the
latest version

UserGroups
Object to create / delete NT users and groups

Note: There are an infinite number of “objects” that could be implemented for use in this
strategy. The previous abbreviated list provides examples of the types of objects we knew we
needed to implement.

With this set of objects a tester can automate almost any scenario by just writing simple code to
setup a machine and even launch other automation.

2.0 Implementation details
Once the conceptual architecture of the OSIRIS Project was clearly defined, we needed to find a
technical solution to solve these problems. The following text reviews the problem set, solutions
we found and step-by-step implementation notes.

Our strategy needed to implement the requirements from the specification:

• Robust - to handle diverse environment configurations, timeouts, and so on.
• Client/Server - to handle reboots and multiple machine scenarios
• Modular - to have reusable objects and reusable functionality
• Extensible - to easily add additional functionality
• Compatible - to utilize existing investments in tools and testing methods
• Programmable- to provide functionality of professional development environments

2.1 Automation Objects
The first goal was to create a set of objects that we could use across different programming
environments and that would define the functionality we needed. To solve this, we moved toward
a Component-programming paradigm. In short, we chose COM as the framework on which we
defined our objects. COM is based on components that can be instantiated from any
programming language (VB, VC++, Delphi, scripting languages like JavaScript, VBScript, etc.).
This allowed us to encapsulate all the functionality that we needed in distinctive components that
the user could use however they needed. To be able to support scripting languages and also make
coding easier for VB automation writers (our main target audience), we developed these COM
objects as Automation objects2.

The following is an example of an application Automation object EngOff97Pro (English Office
97 Professional). This object provides properties and methods to install or uninstall, specify
source or destination locations, userName, etc.

2.2 Automation Objects + DCOM
The next goal was to implement remote control of a client machine so that we could manage
reboots, logon as a different user, multiple machine scenarios, etc. all from a single code source.
The solution was to use a server machine that controlled the flow of the entire scenario as well as
the communication with each of the client machines. COM technology provided us with a remote
control mechanism called DCOM3, or “Distributed COM.” DCOM allowed us to remotely
instantiate the Automation objects and work with them as if they where local to the server
machine. DCOM allowed us to set permissions on the objects so that we could control which
objects to expose as well as who could use those objects.

Automation Code

Sub Main()
 Dim App1 As Object
 Dim Control As Object

 App1.install
 Control.reboot

 Set App1=Nothing
 Set Control=Nothing
End Sub

Machine 1

Automation
Object

Machine 4

Automation
Object

Machine 3

Automation
Object

Machine 2

2.3 Automation Objects + DCOM + Server/Client considerations
A new problem we quickly recognized was the complexity of the DCOM remote control
mechanism, and although DCOM was not much more complicated than COM, there were many
considerations that were not present in the client-object-only approach. The first complication we
had to address was that the instances of the objects and the objects’ properties would be lost when
the control code rebooted the client machine. Therefore, the next attempt by the control code to
access a particular object would generate an error because that object no longer existed. The
solution was to add special handling to recreate the objects after the reboot and to restore each
objects properties to their pre-boot state. We also found that the automation writer needed to
know whether they were accessing an object remotely or locally because they would need to use
different instantiation methods for both, thus making usability more complicated.

To solve these new problems, we decided to create the objects as two components: a client
component and a server component. We had already implemented the client component, which
provided the functionality we needed to control a client machine, but we added a similar server
component, which acts as a proxy to the remote client objects. This new server component exists
on the server machine and is a set of Automation objects that manage the remote control specific
actions. These server-side Automation objects have a one-to-one mapping of the properties and
methods to the original objects. The automation writer simply creates these server side objects
and the Automation objects themselves internally determine whether to create the objects
remotely or locally. To implement this solution, we added a method, Init, to all of the server
objects thus allowing the automation writer to specify which machine to control by simply using
this method. The server object maintains the object information to recreate and recover the state
of the client object after a loss of control, as in a reboot. We also decided to install both the
server and the client piece in all of our installations so that any machine could act as a server or a
client, or even a client of itself (only in those cases without reboots or other loss of control).

Client functionality
• Utilities EXE
• Installer EXE

Server functionality
• Utilities DLL
• Installer DLL

Server

Client functionality
• Utilities EXE
• Installer EXE

Server functionality
• Utilities DLL
• Installer DLL

Client

Finally we had our implementation model with a pair of Automation objects (the server and the
client component) on all machines. As you can see in the diagram the user always instantiates the
local Automation object (the server component) and this object determines whether to create the
client component either locally or remotely depending on the Init function parameter that
specified which machine to control.

Because all of the client objects relate to machine configuration (mainly Win32 API calls), we
implemented them in C++ using Microsoft ATL libraries. We also created a process that uses an
Automation object to programmatically generate its server component. This process allowed us
to quickly expand our object library. The server component code was written in Visual Basic.

Note: The OSIRIS object libraries were implemented in two parts: utilities library and
applications library. The utilities library includes functionality-related Automation objects
(for example, reboots, imaging, file/registry key manipulation, etc.) and the application
library includes Automation objects specifically for installing applications (Office 97,
German Office 2000, Internet Explorer, etc.). These two areas could easily be written as
one library or be divided into many different libraries. It was divided into these two parts
simply to balance development resources. Also, although most of our current application
Automation objects are related to the Office products, these same types of objects can be
created for any application.

Machine 4

Server

Client

Machine 3

Server

Client

Automation Code

Sub Main()
 Dim App1 As Object
 Dim Control As Object

 App1.init “Machine2”
 Control.init “Machine2”
 App1.install
 Control.reboot

 Set App1=Nothing
 Set Control=Nothing
End Sub

Machine 1

Server

Client

Machine 2

Server

Client

Server

Clients

3.0 Practical applications of the OSIRIS Project
After we implemented a few of the core objects and functionality of the OSIRIS project, we
quickly realized that this automation strategy was not only going to work well for its original goal
(scenario-based automation), but would also provide an easy way to build helpful, manual tools
and to help create lab management systems. We also noticed that our approach and perspective
to automating scenario-based testing changed from trying to work around tool and process
limitations to focusing on automating new scenarios and creating new solutions. The following
examples describe how we are currently utilizing this strategy to automate scenario-based testing
for Microsoft Office applications and how to create new tools. Keep in mind, however, that you
can apply this strategy and its techniques to any software application and in many diverse ways.

3.1 Automation of scenario-based testing
The original reason these tools were created was to automate setup, upgrades and other complex
user scenarios such as “roaming user,” software deployment, policy administration, etc. We have
been using OSIRIS for a while now and this automation strategy continues to provide us with a
powerful, easy to use solution for automating scenario-based testing. This strategy has
dramatically increased our coverage of the broad matrix of possible, real world configurations; it
has increased our manual testing efficiency (by using half automated / half manual type testing);
and it has increased our confidence in quality as our applications change during the development
process.

The following is a simplified example of real OSIRIS type automation code. The code is for an
Office 97 Professional upgrade to Office 2000 Premium CD1.

Private Sub Main()
 'DECLARE VARIABLES
 Dim TestMachine As String
 Dim objApp1 As radInstaller.EngOff97Pro
 Dim objApp2 As radInstaller.EngOff2000PrmCD1
 Dim objReboot As RadUtilitiesSrv.ShutDown

 TestMachine = "TestMach1"

 'CREATE APP AND REBOOT OBJECTS
 Set objApp1 = CreateObject("radInstaller.EngOff97Pro")
 Set objApp2 = CreateObject("radInstaller.EngOff2000PrmCD1")
 Set objReboot = CreateObject("RadUtilitiesSrv.ShutDown")

 'INITIALIZE OBJECTS ON CLIENT MACHINE
 objApp1.Init TestMachine
 objApp2.Init TestMachine
 objReboot.Init TestMachine

 'SET APP1 USERNAME PROPERTY AND INSTALL APP1
 objApp1.userName = "Office UserName"
 objApp1.Install

 'REBOOT

 objReboot.Reboot

 'SET APP2 DESTINATION DIRECTORY AND INSTALL APP2

 objApp2.destination = "C:\Program Files\Microsoft Office 2000"
 objApp2.Install

 'CLEAR OBJECTS
 Set objApp1 = Nothing
 Set objApp2 = Nothing
 Set objReboot = Nothing
End Sub

3.2 Improve Manual Testing
Manually executing scenario-based tests is very resource intensive because even simple scenarios
take a long time to run. Scenario-based testing also requires many redundant processes such as
restoring a test machine to a clean state, pre-configuring a specific environment for testing new
builds of the application, taking file and registry snapshots, etc. – all of which are important steps,
but are not always that interesting for finding bugs.

VB Applet OSIRIS driver
Below is a screenshot of a tool we created called the OSIRIS Driver.

This tool is a simple VB applet, built on the OSIRIS objects, which provides the test engineer
with a nice, simple UI for controlling a test machine. One of the key features of the OSIRIS
Driver is that by utilizing our “image” Automation object, a user can restore or create an image of
an operating system configuration by simply clicking a couple buttons (the actual creating and
restoring of the disk image is performed by an imaging tool such as Ghost, Power Quest Disk
Imaging, etc.4). Another key feature of the OSIRIS Driver is that it can execute VBS code (which
can contain OSIRIS objects) on a remote test machine. Using VBS text files allowed us to apply
the concept of macros, which can be recorded by simply echoing text to a file.

Web Based OSIRIS driver
Since these objects can be used in any code language that supports Automation objects, such as
VBScript or JavaScript, we have been using them on internal web sites to control test machines.
Hosting these objects on a web site can reduce the number of required machines by consolidating
the server side of the Automation objects onto the web server.

Below is an example of a web page that displays directory and system information about a
specified machine as well as what applications are installed, what images are available for that
machine, etc.

3.3 Lab Configuration Control
Although we already have a powerful automation lab control system for our applications, we
have found that by using the OSIRIS objects combined with a VB Applet or web page front end
that it would be fairly easy to create a utility application to control a multi-machine lab
environment. Because the OSIRIS system is client-server based and uses an “image” object, you
can programmatically restore different operating system images, run existing (or new) test
automation, collect log and/or snapshot files to a file server, restore the same machines to
different operating system images and continue running automation, etc. all from a single code
source with no user interaction whatsoever. This automation strategy simply provides intuitive
building blocks for creating custom solutions large or small.

3.4 Additional Advantages
Another big advantage of using this automation strategy is that it is extremely flexible. We can
create as many Automation objects as we need, and we can expose whatever methods and
properties we need to customize relating to those objects. Writing automation for any of the
different scenario-based tests is now limited by what we want to automate not by the tools that we
use to automate. This strategy has helped us in developing certain manual front-end tools, but it
does not prevent us from creating new solutions, better tools, or better automation.

Conclusion
Scenario-based testing is a difficult part of the software development process because it involves
many different variables with complex interactions and it is typically more resource-intensive
than traditional application-based testing. By taking the different components of scenario-based
testing and implementing them as objects with methods and properties, a tester, or other
automation writer, can automate scenario-based testing without learning custom tools or
processes, by utilizing professional development environments, and by managing complex user
scenarios all from a single, robust code source. The OSIRIS Project automation strategy was
developed to solve the problems that limited our automation of scenario-based testing for Office
applications. There are many different strategies for solving these kinds of problems and every
application development process has unique needs and obstacles and thus requires a unique
strategy. We have learned that the OSIRIS Project not only provides a generic solution for
scenario-based automation, but it also can be utilized for creating tools and for addressing other
machine management needs.

Appendix
1COM - Component Object Model

Specification that defines Microsoft Component architecture. COM components consist
of executable code distributed either as Win32 DLLs or EXEs. A component behaves as
an object but it is language independent.
http://www.microsoft.com/com/

2Automation objects

Class of COM object that uses a limited number of types and can be instantiated from
scripting languages.

3DCOM - Distributed COM

Provides a remote control mechanism for creating and using COM components on remote
computers.

4Power Quest Drive Image, Ghost

Imaging tools used to create and restore hard drive partition images.
http://www.ghost.com
http://www.powerquest.com

Additional References
MSDN – http://msdn.microsoft.com/

VNC - Remote display system used for viewing remote machines.

http://www.uk.research.att.com/vnc/

COM, Automation objects:
 Inside COM - Dale Rogerson - Microsoft Press

DCOM:
 Inside Distributed COM - Guy Eddon / Henry Eddon - Microsoft Press

QW2000 Paper 2A2

Mr. Juichi Takahashi
(Florida Institute of Technology)

Is Special Software Testing Necessary
Before Releasing Products to an

International Market?

BACK TO QW2000 PROGRAM

Key Points

Present methods of developing international software●

Present methods of testing international software.●

Present methods of organizing international developing and test team●

Presentation Abstract

Today, software developed by North American companies is sold all over the world. These
companies also already have the basic knowledge of how to develop international software,
by accommodating the fact that there is a difference in European and American date
formats,

Today, software developed by North American companies is sold all over the world. These
companies also already have the basic knowledge of how to develop international software,
by accommodating the fact that there is a difference in European and American date
formats, currency symbols, and so on. Almost all basic knowledge of global software
development can be understood by reading books from Lunde and Talor. Yet, we still run
into trouble (or bugs) in Asian or European environments that isn't found in the North
American market. Fortunately or unfortunately (depending on how you look at it),
companies, which make the effort to develop for the international market, have acquired a
great volume of sales through that international market. For instance, Microsoft gets around
50% of their sales from products sold in the international market.

Through my 6 years working for international software testing, I have had plenty of
experience in software development for the international market, mostly obtained by trial
and error, and feedback from unsuccessful projects. I am writing this paper to help others
avoid making some of the same mistakes I made.

Outline

A. Is Special Software Testing Necessary before Releasing Products to an International
Market?

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/2A2.html (1 of 2) [4/28/2000 2:28:57 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

B. Differences between English software and Globalized Software
 1. Quality Requirements
 2. Cultural, Geographical
C. Typical Issues
 1. Double byte and Single Byte
 2. Unicode (ISO 10646)
 3. Keyboard
D. International-Specific Software Testing
 1. Library, OS, Component
 2. Test Pass
 3. Double Byte and Extended Byte Checking
 4. Domain Test
 5. Keyboard
 6. Font checking
 7. Compatibility with local hardware
E. Testing Process for International Software
 1. Organize an International Test Team
 2. Project Control
 3. Cost Estimation
 4. Scheduling

About the Author

Juichi Takahashi is master degree candidate of Software Engineering at the Florida Institute
of Technology. He worked at Microsoft in both the U.S.A. and in Japan for 8 years as
Software Test Lead. He contributed to testing Far East products during his Microsoft days.
It follows that his interests include software testing and international software development.

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/2A2.html (2 of 2) [4/28/2000 2:28:57 PM]

1

Is Special Software Testing
Necessary Before Releasing
Products to an International

Market?

Juichi Takahashi
Florida Institute of Technology

®This slide is on:
http://www.fit.edu/~jtakahas/qw

®My e-mail address is:
juichi@IEEE.org

2

Who am I?
®I worked at Microsoft in both the U.S.A.

and Japan for 8 years as Software Test
Lead.

Importance of international
product

Microsoft Revenue Chart in 1998

South Pacific,
America

53%

Asia
14%

Euro, M.
East,Africa

33%

3

Issue, solution, and Testing

Unicode Benefits
®Can write a program in multiple

languages program
®Easy testing
®Easy Maintenance

4

Test Pass
®We must finish the international part test

before releasing international products.
®We must run full test cases for

international products, which are
designed for North American version
too.

International Automated
Testing

'check if there is the button
hwndResult = WButtonFind()
if hwneResult=NULL then
Fail "**Option Open::Aborting test***"

endif

cOptButtonName

="&Options >>"

cOptButtonName

5

Keyboard Testing
Do you believe?

 Type A

B

Cultural and Geographical
Testing

®Is Taiwan a country?

6

Example of Geographical Issue

Localized Side Effect
®Definition

Localized side effect is side effect from
changing the codes to fix bugs in certain

language.

7

Localized Side Effect Cont.

German Version Japanese Version

How to avoid localized side
effect bug?
®Do regression Test within International

Products
®Keep communicating among

international testing teams

8

Scheduling
®Mayers, who wrote The Art of Software

Testing, said:

It is generally recognized that the earlier
that errors are found the lower are the

costs of correcting the error.

Scheduling Cont.
®Too early testing cost much for

international products

9

Rafi Definition for Intl.
Developing Process

1.Base product engineering
2.Internationalization
3.Localization

North American
Ver. Code

Localization Code
for Japanese

North American Ver.
Code

Japanese Ver.

French Ver.

North American Ver.
Code

Localization Code
for French

International Code
for French

International Code
for Japanese

10

Testing Cost depends on if
®Target product handles double byte system.
®Target product handles high ANSI characters
®Target product handles 0x5c character set
®Team has help from local engineers.
®Target product is written in Unicode
®Target product program has any hard code.

®® Target product is shipped simultaneously withTarget product is shipped simultaneously with
North American version.North American version.

Conclusion
®Special software testing is necessary

before releasing products to an
international market.

Is Special Software Testing Necessary Before Releasing

Products to an International Market?
Juichi Takahashi

Florida Institute of Technology

juichi@IEEE.org

ABSTRACT

 In this couple of decades, the international
software market grows at a fast rate. North
American based software is released to the world
more often and get more than ever before. It is
time that we need to know more about quality,
the testing method, and the software develop-
ment process to release international products.

I. INTRODUCTION

 Today, software developed by North Ameri-
can companies is sold all over the world. These
companies also already have the basic knowl-
edge of how to develop international software,
by accommodating the fact that there is a differ-
ence in European and American date formats,
currency symbols, and so on. Almost all basic
knowledge of global software development can

be understood by reading books from Lunde [1]

 and Talor [2] . Yet, we still run into trouble (or
bugs) in Asian or European environments that
isn�t found in the North American market. For-
tunately or unfortunately (depending on how to
look at it), companies, which make the effort to
develop for the international market, have ac-
quired a great volume of sales through that in-
ternational market. For instance, Microsoft,
which I worked at, gets around 50% of their
sales from products sold in the international
market. Thus, I have had plenty of experience in

software development for the international mar-
ket, mostly obtained by trial and error, and feed-
back from unsuccessful projects. I am writing
this paper to help others avoid making some of
the same mistakes we made at Microsoft.
 Through the end of the twentieth century,
most of the important software that exists
(namely operating systems, compilers, or office
suites) was developed by North American soft-
ware companies. They often developed their
software English version first, and then devel-
oped the other language versions in sequence.
Coming into the twenty-first century, I assume
that there will be reason to develop international
software in a similar fashion. Therefore in this
paper, I will make a point to elaborate upon the
method of developing an English version first,
and then developing an international version.
This sequential development style is sort of an
irregular style compared to the simultaneous
development style of developing both the En-
glish and international versions at that same time.
In the case of developing software with such an
irregular development style, testers or quality as-
surance engineers must put much more effort and
time into testing software developed with the
sequential style than that developed using the
simultaneous method. Because almost all project
team leaders wish to have no major problems
when they release their products to the interna-
tional market, they naturally hope they won�t
need to make any code modifications to adjust
only for the international market. Also, project
managers try to cut the cost of international prod-
uct development as much as they can. Conse-
quently even on large projects, a tester is often

only working for international versions of prod-
ucts for a few months to make sure there are no
major product quality issues. The project man-
agers, of course, will assign developers and in-
ternational project managers after testers start
finding issues. Yet, they will not assign anyone
beyond a tester to that part of the project until
he or she finds issues that may be a bug or cul-
tural issue. In such a case, a tester appears to be
the only person responsible for the international
project. Therefore, in this paper I attempt to
include all related items, such as cultural issues,
coding issues, and quality issues, that are to be
checked in order to release high quality interna-
tional software products. Moreover, this paper
includes discussion of cost and schedule, since
they can contribute to the difficulty of interna-
tional software development.
 Finally, this paper, which is aimed at a spe-
cific language, was written in general in as best
a way I can. However, many parts of the ex-
amples are Japanese specific, for the reason that
the Japanese market is the best next to the United
States in sales according to many North Ameri-
can large software companies. Japanese ex-
amples are an excellent to use in international
software discussion because the Japanese lan-
guage system is one of the most complicated ones
to be handled on a computer.

II. IS SPECIAL SOFTWARE TESTING

NECESSARY BEFORE RELEASING

PRODUCTS TO AN INTERNATIONAL

MARKET?

Yes. For instance, while I worked in United
States, one of the developers asked me if

special testing was necessary before releasing
products for an international market. He con-
tinually said that our products had no user inter-
face, including cultural things. In addition, our
products were based on Unicode. But I said
�yes� again. We must test them before releas-

ing. Otherwise we loose our customers because
nobody knows if our product runs on localized
operating systems. The worst case is that we
must stop selling the product when there are criti-
cal bugs in the product. This is not a special
c a s e .
 In this paper, I will explain one by one why North
American companies need to test products be-
fore releasing for an international market and
how to do it.

A. Importance of International product

other than Northwest products.
Seeing the Fig. 1, one of the largest software
companies, Microsoft, has around 50% profits
from international software. Now, most of all
large North American software company have
released international product. The international
market is more competitive than in the last de-
cade. Therefore, if they release products which
have low quality, they may damage their half of
the profit.

����

���

�	
���

�����������

������
���

���

��	��

�����������

��
����

���

Fig. 1
Microsoft Revenue Chart in 1998

III. DIFFERENCES BETWEEN ENGLISH AND

INTERNATIONAL SOFTWARE QUALITY

A. Quality Requirements
 One of Microsoft executives announced the
delay of Windows 2000 shipment. He said that

users could easily forget the delay of shipment
date, but never forget products which are of low
quality. For instance, most of the Japanese still
do not buy American car because they think the
quality of American cars are much lower than
that of others. As far as I know, the quality of
American cars has been improved. Yet Japa-
nese still remember that American cars were of
poor quality in the past. In addition, American
cars were not localized. In the Japanese traffic
system, drivers drive left lane, so cars have right
side steering. However, American automobile
companies tried to sell the same American-style
cars in Japan. Therefore, Japanese still believe
that American cars are inconvenient for driving
and of poor quality even though they have
changed these things. The same thing might
happen if North American computer companies
keep shipping low quality products and do not
consider the situation in another countries. With-
out changing code and testing, North American
software companies may sell North American
software in an international market, but it is risky,
such as was automobile development.
 We need to know the different user preferences
between North American people and people in
other countries to sell software worldwide.

IV. ISSUE, SOLUTION, AND TESTING

A. Double byte and Single Byte
Before starting to develop international prod-
ucts, we must carefully choose the way to de-
velop international software. Especially char-
acter set is the most important part. In case the
products are Internet related, we may choose the
Unicode as one of the development styles. On
the other hand, in case that the products are for
the government, we cannot use Unicode system
but use the local code system. For international
(not using Unicode), code should be in like

Fig. 3

for(char *p=szStr; *p; p++)

 if(*p=�\\�){

}

Fig. 2
Sample Code for ANSI

for(char *p=szStr; *p; p=AnsiNext(p))

 if(*p == �\\�{

}

Fig. 3
Sample Code for International

 Input Domain Test Strategy

 Since there are complicated character sets,
such as 7 bit, 8 bit, 2 byte, and 3 byte, input
domain test is time-consuming but important.
First, it is useful that we think how many types
of characters there are in the world because
Americans use only a type (1 byte) of character
set in general.

nnnnn1 byte base : ANSI, a part of Japanese.
nnnnn 2 byte : Japanese, Korean, Chinese which

are for Chinese character set, and Unicode.

nnnnn 3 byte : EUC(Extended UNIX code)

 International products are expected to correctly
handle these three kinds of character types at
maximum.
If Unicode character set is used for the prod-
ucts, domain testing for them is much easier than
the ones without Unicode. In general, there are
no different test cases between ANSI(ISO 8859-
1) character set and Unicode. Yet, most of the
products are still not based on Unicode or
Unicode is used as just part of their products.
In the ANSI characters test cases, it is easy to
know the boundary of the input domain, and
some of the random input testing may be effec-

tive. However, there are incredible numbers of
Chinese characters and many of the Latin char-
acters in the world. Random input test strategy
is not useful in most of cases.
 Thus, before starting testing, testers should care-
fully investigate character set, and must know
as many of the boundaries that are available.

 Automated Testing Strategy

 There are infinite numbers of input domain
test cases because each country version has its
own character set and there are many more char-
acter in the Chinese languages. Therefore, the
only way to test those infinite numbers of char-
acter inputting is with an automated testing tool.
Fortunately, most of American automated test-
ing tools, such as WinRunner and Visual test,
can handle any international character.

B. Unicode (ISO 10646)
 ISO 10646 is also called Unicode, which has
great benefit to reducing developing and testing
costs. But, Unicode is not a perfect solution in
the Asian character set environment though some
English speakers think it is.
 As it is known, Windows NT, HTML 4.0, and
Java implement Unicode, but Japanese people
still think several problems[3] of Unicode should
be solved.
 The main Unicode problem is that Unicode does
not support complete Chinese character set that
is used in China, Japan, and Korea. There are
slight differences in Chinese character face
among China, Japan, and Korea. Though Asian
can read all Unicode characters even when there
are slight differences, Asian may feel odd in read-
ing Unicode character. Of course, when the dif-
ferences can be ignored for some reason,
Unicode should be used because of its benefit,
such that:

n n n n n Can write a program in multiple languages.
We do not have to have a different program
for releasing multiple. Microsoft Internet
Explore is one of the sample products,
which uses Unicode technology.

n n n n n Easy maintenance

Writing a program with Unicode, we will
have great benefit of maintenance ability.
When developers code without Unicode,
the program will be adjusted to all
languages. We might need to build for
every language. It means we have to make
each build file. Also, we might need to
insert such code without Unicode
program:(Fig. 4)

#ifdef DBCS

#ifdef JPN //For Japanese

//Do things for Japanese

#endif

#endif

Fig. 4
Low maintainable Code

These kinds of code clearly make code compli-
cate and reduce maintenance ability.

nnnnn Easy to Test

In terms of testing, we can delete large
portion of domain test, and font test case.
The input domain testing can reduce the
testing cost 40% to 60%.

Unicode Testing Strategy
 Because of the reasons above, before releas-
ing product, Chinese character font shape must
be checked whether Asians accept or not.

C. Software Resources
 When Lotus wanted to introduce its original
1-2-3 spread sheet to the European market in
1983, Lotus Development first had to rewrite

most of the North American version code[6].
 And it is still necessary for bad international pro-
gram rewrite a lot of their code because they do
not pull resources code out nor have another re-
sources files which distinguishes main control

program and resources, such as Fig. 5

Printf(�Error: Invalid File Name\n�);

Fig. 5
Hard-coded Resource

 To avoid such a problem, all resources, which
are string, font face, font size, should be taken
out from program control source code. Other-
wise, we will have a couple of problems.

n Translators change C or other sources code
directly.

n We should make all language object and
executable files.

It is not wise to make each executable code for
each language. In addition, this makes the code
reduce maintenance ability and quality.
In case that a product is capable of handling in-
ternational code set, and all the resources are
pulled out, we will have a single product for all
language without any recompile work.
 Practically speaking, there is another benefit to
have one set of executable files for an interna-
tional product. If we have series of products for
a Japanese version, north American version,
French version and so on, its operational and
manufacturing cost will be much higher than one
the product.

 Dummy Localization Test

 Dummy Localization testing is one of the suc-
cessful testing approach for internationalization.
As I mentioned above, we must not hard code
any translated string code.
But, unfortunately the translation work would

happen in the last stage of development. Because,
in most cases, user interface keeps changing from
beginning through ending, such as adding dia-
logs, and adding error messages. Therefore, even
if developers take out hardcode and move it to
resources, testers can work with it only after
translated resources are available.
 Consequently, it is the best to add dummy lo-
calized string into the real program instead of
translated string. We forcedly insert mean-less
localized string into international programs.
When we do so, we can know whether interna-
tional programs accept DBCS and extended
characters. Dummy localization testing has sev-
eral benefits:

n Can know whether all resources are not
hard code�ed

n Can know whether the code handle Euro
extended character and DBCS character

n Can know whether the code choose correct
font face

Additionally, especially finding following char-
acter set bug/problems.
n Can know whether a product works with

string that include 0x5c characters in
trailing byte.

n Can know whether a program works with
high ANSI character

n Can know whether a program works with
mixed characters that are mixed single byte
and double byte character.

D. Cultural and Geographical
Cultural and Geographical issues seems difficult
if we live in another cultural setting.
In terms of cultural and geographical issues, I
believe testers are not supposed to be expected
find them out. A international program man-
ager or other related people should take care of
them. Yet, as I explained in introduction, a tester
is often the only person who is checking prod-
ucts regarding the quality and other aspects.
Thus people expect, it is natural that a tester
should be expected to find bugs related to cul-
ture and geography. Likewise, North American

testers may find own cultural bugs.

1) Sample of geographical issues
F i r s t o f a l l , i s Ta i w a n a c o u n t r y ?
No. Taiwan is the name of a region. Is Hong
Kong a part of China? The answer is Yes. It
means that we cannot be too careful if products
sell both in Taiwan and Mainland China. Prod-
ucts may have dialogs, which show our branch
company. The dialog box title includes �Coun-
try or Region�. Otherwise, we cannot sell the
products in China.

 Test Strategy

 It is difficult to find such cultural or geographic
bugs. The best way is to test these kinds of bugs
by testers in each country where we sell prod-
ucts.

E. Keyboard
 Some developers still use low-level API to get
key input information, for example, int 21h in
PC environment. Now, almost all the platforms,
such as Sun Solaris, Linux, Windows 9x have
international keyboard API. We must use these
API calls, which support international program.
If not, users cannot type some of the characters.
In the worst case is when users type �A�, the pro-
gram displays �B� instead of �A� on Japanese NEC
PC platform.

 Test Strategy
 In general, people except North Americans use
two types of keyboards. Some people use an
English keyboard, other people use a localized
keyboard which is capable of typing localized
character directory. On the other hand, by using
English keyboard, people type localized charac-
ter indirectly, for instance, typing twice and typ-
ing combination. Thus, we must test both En-
glish keyboards and localized keyboards to con-
firm that the applications can handle user input

behavior in all input.

F. Font checking
 First, I will show you typical font error in Fig.
6. Fig 6 uses International font instead of ANSI
font(Fig. 7).
 Releasing products without font checking or
string checking, we may see this kind of bug.
 If the companies really care about legal issues,
they must stop selling the product until fixing
this bug. We must know that there is a different
character set over 0xA0 between ANSI and in-
ternational fonts.

Florida Tech_ Miami Windows _

Fig. 6
Using International Font

Florida Tech® Miami Windows ©

Fig. 7

Using Ansi Font

 Test Strategy

 Testers must test over 0x80 character set for
displaying English characters by using correct
international fonts.

G. IME (Input Method Editor)
 There are over several thousands of Chinese
characters in Korean, Chinese and Japanese.

Thus, we have to use IME (Fig. 8), which con-
verts phonetic symbols to Chinese characters.
Though double byte handling and keyboard han-
dling have similar interface in any international

computing environment, such as UNIX, Win-
dows. There is no standard program interface
to input double byte characters, and many prob-
lems come from this area.

�

 à IME à

 Input �TAKA�

Fig. 8

System to input Chinese character

 Test Strategy

 IME testing is the most difficult part of test-
ing because IME keeps sustaining to convert
character inputted into double byte character
during computer running. Under most of the
operating systems, the modules of these IME
programs are separated from the program and
the operating system.
As the same token, mouse drivers have similar
functions. A bug as this example is that some
applications might not handle DBCS correctly
when users use advanced mouse control and
IME. This mean inputted �a� is shown as �B�.
Testers are supposed to carefully check these
memory conflicts between IME and international
program.

H. Compatibility with local operating

system and local hardware
 Most operation systems have been changed
to adjust to each language system. This means
that the program has a possibility to fail to run
on a local operating system. Nobody can assure
that a program, which can run on English oper-

ating system, can run on a localized operating
system. For example, my international project
team released USB devices with PC USB con-
trol program. At that time, we considered there
was the only one USB standard in the world.
Therefore, American test manager did not do any
USB interface testing between USB driver and
international USB control program. He planned
that the only user interface test, which is check-
ing strings and fonts, was required. Unfortu-
nately, even North American version had 10%
of USB driver compatibility problem. And we
tested compatibly between the USB driver and
international control program, we could know
70% of PC have problems with Japanese OS
because there was critical issue between USB
driver and Japanese operating system. Because
of this problem, we finally gave up selling USB
system in Japan.

1) Video
 Drawing and animation functions produce
much more bugs in the recent computing envi-
ronment since most of the current applications
have used graphical user interface.
In this computing environment, redraw is one of
the major bug areas. Because Chinese charac-
ters are wider than alpha numeric Fig. 9 , we

especially need to care about it.

A

Fig. 9

 Difference width between alphabet character

and Chinese character

 Test Strategy

If products are used in the window operating

system, which is capable of graphic user inter-
face, testers are expected to test all drawing ar-
eas with Chinese character.

I. Other Stuff
 I listed most of the undocumented informa-
tion, which was not concerned in any books and
paper so far. In terms of common international-
ization issues, which are data format, currency
format, different user interface, I recommend that
you read [1] [2] as well to do complete interna-
tional testing.

V. TEST PASS

 Through the section above, I have already ex-
plained every aspect of what we are supposed
to test before releasing international software. I
believe that we must finish the test before re-
leasing international product. In addition, we
must run full test cases, which are designed for
North American version. Most people think test-
ing only international related area is enough.
However, it is not enough. Software will run on
local operating system. Naturally non-English
speakers do not use English operating system
but localized operating system. In terms of Win-
dows Operating system, Microsoft has changed
their Win32 API code to adjust local environ-
ment and language. For example, even if we
localized products, which do not have any input
area and cultural issues, any localized string, we
would pass the same test cases as North Ameri-
can version. Fortunately, in some cases, North
American version has not been hang up on lo-
calized OS. But unfortunately, the program of-
ten does hang up on localized operating system.
We assume it depends on if operating system
gives good memory. We can hardly know this
kind of bug without running full test cases.
 Thus, we must run the whole test cases on
the local OS platform to find such bugs.

Thielen[4] mentions that once we change a code,

we are supposed to execute all test cycle.

A. Automated Testing
 Kaner [5] recommends automated testing for
international products because the international
products have essentially the same functionality
and user interface as the North American ver-
sion.
 Additionally, I recommend that we make reus-
able international automated test cases. When
we use automated test case ,they include a great
number of hard code strings, such as for picking
up menu control, error message, short cut key
to control automation test scripts. These items
are localized into other control name. During
developing North American automated test
cases, we should not write in the hard coding
style. We must pull out the string resources from
control code, and recreate them individually to
outside file or header file to reduce international
testing cost.

VII. LOCALIZATION SIDE EFFECT

 In the past decade, most of the international
products did not share any source code between
North American versions and international ver-
sions. In addition, North American versions are
always developed before localized ones. At that
time, we did not have to think about localization
side effect. But today when we develop interna-
tional software simultaneous, we have to care-
fully develop localization part of code because
there are the same source code and the same
schedule in the international project. I define
the localized side effect is that:

nnnnn Localized side effect is a side effect from
changing the code to fix bugs in certain
language. The changed code causes a bug
in another language product.

 For an example of localized side effect, if we
change keyboard function code for Japanese

version, there will be a possibility to have an-
other bug for French products. Another example
is when we developed Japanese products, we
fixed IME (Input Method Editor) bug for Japa-
nese version. That bug fix was that we prohibit
to input Japanese characters in one of the edit
boxes. Unfortunately, the same product of Chi-
nese version, users cannot input any Chinese
characters in all the edit boxes on Chinese OS,
since we fixed Japanese IME bug.

 Test Strategy

 Regression test is much more important to
check localization side effect among international
products than any other tests. When we develop
an international product that is more than one
language version a multi-language version, a test
manager must establish the information sharing
about localization side effect among international
testers to do a regression test.

VIII. TESTING PROCESS FOR

INTERNATIONAL SOFTWARE

 Rafii[6] defined internationalizing software

development process as three phase:
1. Base product engineering
2. Internationalization
3. Localization

Such as Fig. 10 :

Japanese Ver.

North American
Ver. Codes

Localization
Code for French

International
Code

International
Code

Localization
Code for Japanese

French Ver.

North American
Ver. Code

North American
Ver. Code

Fig. 10
Three-phase development style

 In case that North American developers do
not know anything about internationalization,
they try to write code without consideration for
international. Consequently, developing costs
would be expensive because there is a duplica-
tion task for foreign language versions. Fig. 10
 shows the case that is three-phase development
style when every country project team is sup-
posed to develop international part as duplicated
task. If we develop a North American version
and only one foreign language version, this way
is acceptable. However, if there are more than
two language versions, in most cases, the de-
veloping and testing cost would be expensive to
conduct three phases development.
Therefore, we should have only two phases in-
stead of three phases, such as

1. Base-product engineering and international-
ization
2. Localization

See Fig. 11

Japanese Ver.

French Ver.

North American
Ver. Code with
Intl. Code

North American
Ver. Codes with
Intl. Codes

North American
Ver. Code with
Intl. Code

Localization
Code for Japanese

Localization
Code for French

Fig. 11

Two-phase development style

A. Maintainability
 Suehiro[7] also mentioned about maintenance
ability. If there are more than two versions of
the products, it is very difficult to keep interna-
tional part code because we must merge back
additional international code to a North Ameri-
can version as well as a localized one. Consid-
ering maintenance ability, we should take two-
phase development style.

North American
Ver.1

North American
Ver.1 code

International Code

Localization Code
for Japanese

Japanese Ver 1

French Ver.1

North American
Ver.1 code

International
Code

North American
Ver.2 code

International
 Code

Localization Code
for Japanese

Japanese Ver 2

French Ver.2

North American
Ver.2 code

International
Code

Localization for
Japanese

North American
Ver.2

Localization Code
 for French

Fig. 12
Low maintenance-able upgrade

 Test Strategy
 Before releasing a localized version, a North
American version should be completely tested
for international parts of the product to reduce
duplicated task in the localization test team.
Otherwise, for example, Japanese and French
testers need to test the same parts as duplicated
task.

VII. ORGANIZE AN INTERNATIONAL TEST TEAM

 Rafii [6] researched the development team
project on centralized and distributed. I will
break down more of his research since his re-
search did not mention the development team
function.
 In almost all the cases, according to my expe-
rience, developing/coding task should be done
by the North American team. American devel-
opers know much more details of code. Even if
developers can not read/write foreign language,
they could easily understand what international
products require and read international source
code which are written in C , Java or others.
However, testing team has some options in the
working location.
 On the other hand, organization of interna-
tional test team is very nasty issues to test inter-
national product because, in some cases, Ameri-
can testers need to test unknown language and
world� software.

A. Type of Organization
 There are 3 type of organization to have de-
velopment team

1) All work done in Local Country
 When testers work in local, they could know
the local configuration and the user trend. And
it is easy to distinguish important bugs and trivial
bugs. Sometimes American engineers make a
mistake how much the bug is important and risky
in the local country. Especially, they can hardly
understand what Asian local configuration and
user trend are. Thus, for example of Microsoft,
they have 4 local R&D center in Beijing, Korea,
Taipei, and Tokyo though there is the only one
Euro R&D center in Dublin because of reason
above.
 On the other hand, it is difficult to know how
progressive the main part of products is from
remote testing team. The Lack of communica-
tion between North American based developers

and local country testers often cause troubles.
When we test international version in local, we
need to establish communication protocol be-
tween North American developers and local
testers.

2) All work done in North America
 Testers can communicate easily with core
product development staff if developing staff is
in North America heading R&D. Distance is a
big issue; face-to-face communication is often
more efficient to find solution than the exchange
of e-mail [8] . Especially, it is easy to repro-
duce bugs by using the same machine or
debugger between developers and testers when
they are in the same place. In most cases, this
style is cost-effective and we should try to take
this way first.

3) All work done in both side
 Since we erase the risk of both local country
testing and north America testing, sharing test-
ing work is the most logical testing style.

B. Other issue
 Generally, wages in developing countries is
lower than those in developed countries. We
can consider testing cost in each country. For
example, the wage in Japan is higher than that in
the United States when a product is localized in
Japanese, it may cost more to test the product in
Japan than any other countries.
 On the other hand, in India, the wage is less
expensive than North American countries, and
it is easy to hire skillful engineers who speak En-
glish.

IX. SCHEDULING

 As Myers[9] pointed out, �It is generally rec-
ognized that the earlier that errors are found,
the lower are the costs of correcting the error�.

However, this rule is not appropriate for inter-
national testing. Too Early testing cost much
for international products. For example, if North
American version is still unstable to run and has
high MTTF(Mean Time To Failure) value, it is
better not to start international testing. If we do
so, testing costs may increase because it may have
into more MTTF than North American version
does. In such case, an international product may
be reboot�ed more than hundred times a day. The
appropriate schedule is divided into two phases.

A. The First Phase

1) Test if there is hard code string or

not
 Almost all the developers do not want to
change their code that work correctly even when
the international program needs to adjust inter-
nationalization. Thus, checking hard coding will
start at the same time as North American ver-
sion coding starts.
Once developers pull hard code out , testers
should use dummy localized testing.

2) Test if a product handle extended and

DBCS characters.
 Writing code for DBCS and 8 bit character
set should be developed in the first stage of de-
velopment as the same reason above. There are
different string handling code between ANSI and
international character set(Fig. 3). These test-
ing should be happened the first phase. But some
developers may say that they could change it after
finish the North American version, Yet this idea
is wrong and increase international developing
and testing cost(Fig. 11)

B. The second phase
 In finishing the work for both erasing hard
code sting and DBCS enabling, developers will
do specific work in each language, such as IME
or handling vertical writing, handling right-to-
left writing for Arabic, and so on. Consequently,

testers are supposed to test these functions.

X. COST

 Estimating an internationalization testing cost
is difficult because there can be different ap-
proaches from both general cost estimation and
international cost estimation.
There are several aspects to estimate cost of test-
ing, such as:

n Target product handles double byte system.
n Target product handles high ANSI

characters
n Target product handles 0x5c character set
n Team does hot have help from local

engineers.
n Target product is written in Unicode
n Target product program does not have any

hard code.
n Target product is shipped simultaneously

with North American version.

 When products include most of all items
above, it is better to re-design the product. Oth-
erwise, the products need cost too much for in-
ternationalization.

A. Cost versus developing style
 There is definitely close relationship between
cost and developing style to release international
products.
The goals of our international product shipment
are:

n To Ship with short delay from North
American products because of not losing
business chances at the local market.

n To ship quality product in local country.
n To ship international version with low

developing cost.

Based on the goals, we could take two kinds of

international developing style, which are:

n Simultaneous shipment and simultaneous
development
n Non-simultaneous shipment and non-si-
multaneous development

1) Non- Simultaneous Shipment and

non- Simultaneous Development
Originally most of the companies have developed
this style for international products. The com-
panies develop North American products and
ship them. Afterward, all source code are ex-
ported to the localization offices or teams and
develop localization products individually. At
that time, there was no relationship between
North American and international products.
This type of development has:
Advantage:

n Developing cost is low.

n Risk is low whether a product ships on

time.

Weak:

n Business chance may be lost in a local

country.

2) Simultaneous shipment and

Simultaneous development

 To be expected good selling in international
market, companies choose this method.

Advantage:
1. Sell products worldwide at the same time
2. Easy maintenance

 It is difficult to indicate Simultaneous devel-
opment, localization cost because of delaying
schedule. In fact, most of the software develop-
ment schedules delay. On the average large soft-

ware projects are one year late and 100 percent
over budget [10] . For example, the shipment
date of Windows 2000 is being delayed more
than two years. Therefore, if the project is de-
layed for 1 year, localization team must follow
the north American schedule, it is no way to ship
a localized product. Consequently, international
product shipment is delayed more than a year.
 We should follow up the localization sched-
ule as well. During the slipping schedule of North
West version, localization section keeps staff to
develop, test localization version. This situa-
tion is really painful for localization development
cost. The staff has nothing to do the product
development until reaching the milestone.
 On the other hand, if we take a Non- Simulta-
neous shipment and non- Simultaneous devel-
opment way, we do not have to worry about
schedule delay. In the case, usually, localization
products start after finishing the North Ameri-
can developing. We can use our staff as best as
we can. Therefore, when we decide to take the
Simultaneous shipment and Simultaneous devel-
opment way, we carefully plan arrange testers.
We should know the schedule North American
version as exactly as possible: when North West
version team starts system test, the date of re-
lease candidate, and the date of code complete.
 In short, when the North American product is
going to be shipped without delay, simultaneous
shipment and simultaneous development cost
may be low. But non-simultaneous shipment and
non- simultaneous development way is always
low-cost and low-risk to develop international
products. However, marketing point of view al-
ways focused how well the products sell in local
country. And marketing people think that simul-
taneous ship and simultaneous development have
great benefit to achieve large volume of sales.
Today, global companies tend to have the same
computing system because Internet world makes
us easily communicate in the world. Thus, the
companies want to have an international prod-
uct at the same time worldwide.
 Because of the reason when we think about
scheduling the testing, we had be better talk with

marketing people about how much effective the
both marketing profit and developing cost are.
Marketing profit and developing cost are inverse.

B. Testing cost versus development cost
 In general, localization testing cost is much
higher than localized developing cost. In case
that ratio between developers and testers is about
to be 1:1, the ratio is around 3:1 in localization
product development. And testing cost occu-
pies 20 through 50% compared the whole local-
ization developing cost. Thus, testing cost is
more worth than code developing.

XI . CONCLUSION

 Fortunately, Windows 2000 was just released,
and I can show some good example from this
product too. Windows 2000 is the biggest size
of software products not only in the U.S, but
also in the international market. Microsoft sold
international version of Windows on the same
day as North West version was released. Yet
this product has several critical international re-
lated bugs which I explained in this paper.

1. Different date format bug in between North
America and other country. This is the
most famous and typical bug.

2. When Active directory is used, some
Japanese characters are not recognized
correctly.

 In terms of Active directory, this bug came
from localization side effect. Windows 2000
team changed international code to fix German
Umlaut(German special character), so this fixed
work affected Japanese version at the same time.
Consequently, because of this bug, Microsoft has
announced that they are sending bug fixed CD
to all users. In fact, Windows 9x was sold 7.15
million copies and NT were sold 1 million only
for Japan in 1998. Through this fact, we could
easily imagine that the Windows 2000 bug has
huge impact for international selling and special

software testing is necessary before releasing
products to an international market.

XIII. ACKNOWLEDGMENT

 The author wishes to thank Microsoft co-

workers for useful technical discussions.

XIV. REFERENCES

[1] K. Lunde, Japanese Information

Processing, O'eilly & Associates, Inc.,

Sebastopol, CA, 1993

[2] D. Taylor, Global Software, Springer-

Verlag, New York, 1992

[3] Unicode wa Sukidesuka?, IPSJ Magazine

Vol.39 No.4 Apr. 1998(in Japanese)

[4] D. Thielen, No Bugs!, Addison-Wesley Pub

Co, September 1992

[5]C. Kaner, J. Falk, H. Nguyen, Testing

Computer Software, International

Thomson Computer Press, Boston, 1993

[6] F. Rafll and S. Perkins, �Internationalizing

Software with Concurrent Engineering�.

IEEE Software, Vol. 12, No.2, Sep. 1995,

pp.102-106

[7] Y. Kiyogane and Y. Suehiro, International

Programming, Kyoritsu Publishing,

Tokyo, 1998(in Japanese)

[9] J. Myers, The Art of Software Testing,

John Wiley & Sons, New York, 1979

[8] L. Belady, �Global R&D: How to Break

Barriers�, IEEE software, Vol. 16, No. 2,

July/August 1999, pp. 15-17

[10] J. Caper, Programming Productivity,

New York, McGraw-Hill, 1986

QW2000 Paper 2W2

Mr. Steven Porter
(API / Independent)

From Web Site to Web App: Ensuring Quality in
a Complex Environment

BACK TO QW2000 PROGRAM

Key Points

Differences between websites and web applications●

Things to consider for a Quality Strategy●

Some metrics as a guideline for estimating time needed for testing●

Presentation Abstract

The continued success of web development teams will depend heavily on the ability to make the
transition from deliverying web sites to delivering reliable, stable web applications.

We must develop a cost-effective strategy for quality assurance and testing through this transition and
beyond. The foundation of this strategy must rest on a thorough understanding of the nature and
dynamics of applications within a web environment. The key to success is separating the volatile
aspects of the application and the web from the non-volatile ones, and focusing on the quality
assurance efforts accordingly.

About the Author

Steven Porter hs been a certified instructor for Rational Team Test since 1996. He has written a
one-day Quality Assurance class that he teaches as part of the Object Oriented Project Management
Certification Series developed by the Advanced Programming Institute of El Dorado Hills, CA.

He has also provided content for the Process Management course of the same series, and has
developed the CD that is used with the course. In 1998 he was the QA Manager for a year-long Y2K
object-oriented project for CalPERs that involved over 40 reengineered applications.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/2W2.html [4/28/2000 2:29:03 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 1

1

From Web Site to Web App:From Web Site to Web App:
Ensuring Quality in anEnsuring Quality in an
Increasingly ComplexIncreasingly Complex
EnvironmentEnvironment

Steven D Porter – sporter@2xtreme.net

2

The Medium is The MessageThe Medium is The Message
 -Marshall McCluhan-Marshall McCluhan

lThe Web Creates Great Potential
– Increased Profits from e-Commerce
– Lower Barriers of Entry
– Easier Information Distribution and Access

lThe Web is Developing at Warp Speed
lThe Web is Still Immature, But is Being

Asked to Perform in a Mature Manner

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 2

3

AgendaAgenda

l “Web Site” vs. “Web Application”
lUser Quality & Business Quality
lThe Web Paradox & Its Effect On Quality
lQuality Strategy & Categories
lStrategic Steps
lExamples for the Categories
lWrap Up

4

Web SiteWeb Site
l Static Pages Built with HTML
l Organized Documents and Files Accessed

Through Hyperlinks
l HTTP Protocol
l Site Accessed Through Browsers
l Capable of Providing Secured Access
l Examples

– www.iseer.com
– www.a-p-i.com Volatility

Complexity
Risk

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 3

5

Web ApplicationWeb Application
l Contains the Elements of a Web Site and Extends

the Capabilities to:
l Allow User Input
l Perform Standard Database Transactions
l Perform Business Logic
l Provide Client and Server Side Validation of Data
l Perform Queries and Display Dynamically Generated

Reports

l Examples
l On-line Reservation Systems

– www. AlaskaAir.com
l On-line Sales

– www.Amazon.com

Volatility
Complexity
Risk

6

Quality to UserQuality to User

l Responsiveness
l Accuracy
l Completeness
l Ease of Use

l Relevance
l Aesthetics
l Security
l Privacy

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 4

7

Quality to BusinessQuality to Business

lCustomer Impact
lSales
lBusiness Credibility
lCost
lTime to Delivery

8

The Web ParadoxThe Web Paradox
l Web Browsers allow for Platform Independence

l Thin Client / Fat Server

l Competing Web Browsers do not:
l Uniformly Display Content
l Uniformly Perform Logic
l Uniformly Accept User Input

l Examples
l Buttons Do Not React the Same in Netscape and Internet

Explorer.
l Some Browser Versions Do Not Support JavaScript
l File Downloading is Handled Differently from Browser to

Browser.

l User Plug-Ins Effect Capabilities

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 5

9

Effect on the Quality StrategyEffect on the Quality Strategy

lThe Strategy for Quality is becoming more
Complex due to the Rising VCR Forces.

lThe Web is a Cauldron of Rapid Change
lThe Transition from Building Web Sites to Web

Applications Increases Complexity and Risk
lEscalating User Expectations Increases

Complexity
lSecurity and Privacy Issues Increase Risk
lMarket Demands Compress Development

Schedules

10

Quality StrategyQuality Strategy

l Manage the VCR Forces that Influence Quality
– Volatility
– Complexity
– Risk

l Negotiate Cost and Time

l Organize the Quality Effort into Categories
l Establish the Standards of Quality for each

Category
l Manage and Leverage Resources

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 6

11

Strategic ElementsStrategic Elements
Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

What are the basic categories that relate to quality?

12

Quality CategoriesQuality Categories

l Theme
l Content
l Presentation
l Navigation

l Data Exchange
l Performance
l Technology
l Security

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

Examples

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 7

13

Create StandardsCreate Standards

lProduct
– Based on Quality to the User
– Based on Quality to the Business
– Based on Technical Constraints

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

14

Create StandardsCreate Standards

lDevelopment Process
– Input Artifacts
– Activities and Tasks
– Output Artifacts
– Change Management
– Roles and their Relationship to other Roles

lManage to the Standards

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 8

15

Manage VolatilityManage Volatility

l Non-Volatile
– Business Analysis
– Architecture
– Theme

l Volatile
– Content
– Technology
– Personnel

Quality Category

Quality Criteria

Quality Forces

Verification Method

ImplementationSeparate The Elements

16

Manage ComplexityManage Complexity

lCompeting Internal Business Interests
lDevelopment Environment
lTechnology
lThe Application
l Interactions between Quality Categories

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 9

17

Reduce RiskReduce Risk

lAffects
– All Quality Categories
– All Development Related Processes
– Estimates and Schedules

l Identify Analyze Mitigate

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

18

Negotiate Cost & TimeNegotiate Cost & Time

l Increase as Volatility Increases
l Increase as Complexity Increases
l Increase as Risk Increases
lRapid Development Forces Testing

into Compressed Time Schedules

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 10

19

Strong BusinessStrong Business
AnalysisAnalysis
lPromotes Understanding
lReduces Volatility

lAllows for Many Solutions
lTranscends Technological Changes
lMaintains Consistency Over Time

lDecreases Complexity
lCommunicates the Same Information to Different

Development Teams or Different Members of the
Same Team

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

20

DetermineDetermine
Verification MethodVerification Method

l Manual or Visual
Review

l Spell Checkers
l Link Checkers
l Site Checkers

l Manual Testing
l Automated

Regression Testing
l Performance Testing
l Beta Testing

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 11

21

Use the WebUse the Web

lWeb-Enabled Defect Trackers
lWeb-Accessible Project Notebook
l Link Checkers
l Web-Oriented Automated Regression

Tools
l Web-Oriented Performance Tools

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

22

Maximize the UseMaximize the Use
 of Resources of Resources
l Create and Maintain an Affordable Testing

Environment
l Develop the Application in Phases that Allow

Testing to be Performed in Tandem with
Development

l Divide the Testing Effort between In-House
Resources and Independent Test Labs

l Use Trusted Beta Sites to Duplicate Test
Coverage and provide Unusual or Expensive
Testing Configurations

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 12

23

The Strategy in PracticeThe Strategy in Practice

l Theme
l Content
l Presentation
l Navigation

l Data Exchange
l Performance
l Technology
l Security

24

ThemeTheme
Standards Corporate Image

Site Objective

Volatility Low Volatility

Complexity Depend on objective (Inform vs
Exchange)

Risk Consistency with Overall Corporate
& business objectives.

Verifications Corporate Image Guidelines
Standards etc.
Traceability to site objectives

Implementation In-House Manual Review

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 13

25

ContentContent
Standards Writing Style

 Language Usage
 Legal Constraints
Accuracy, Completeness, Relevance

Volatility Potentially volatile

Complexity Variable - Depends on audience and message.

Risk Moderate – Depends on rate of change

Verifications Traceability to Objectives
Spelling
Syntax
Grammar
Logical organization etc.

Implementation Manual Reviews
Spelling & Grammar Checkers
Professional Editing

26

PresentationPresentation
Standards Graphic & Visual Standards, Corporate Image Guidelines,

Fonts, Logos, Trademarks etc. Target Display Standards

Volatility Moderate – Depends on supported browsers, platforms &
versions.

Complexity Moderate to High – Depend on
 Html usage (frames etc)
 Target browsers
 Dynamic page presentation
 The use of plug-ins

Risk Moderate – Affects Performance, Consistency, Reliability
etc.

Verifications Verify that all features of the site /Application work in the
supported browsers. (Compatibility Testing)

Implementation Consider a strategy that supports in-house compatibility
testing on current versions of major browsers, and out-
source compatibility testing of all other browsers

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 14

27

NavigationNavigation
Standards Site architecture

Navigation standards
User Interface guidelines

Volatility Depends on site objectives and the outside links

Complexity Low to High
 Sequential
 Hierarchical
 Grid
 Web-Linked

Risk Low to Moderate – Outside links, unstable site
architecture

Verifications Manual review of architecture
Verify functioning of all links

Implementation Use link checkers to:
 Verify links
 Identify orphans
 Slow downloads

28

Data ExchangeData Exchange
Standards Accuracy & Completeness, N-Tier Architecture,

Coding & Validation

Volatility Low to Moderate for the exchange mechanism.

Complexity Moderate to High - Depending on N-Tier &
Server Environment

Risk High – due to complexity and web

Verifications Verify that communication objects pass data
correctly between client and the servers, as well
as between servers
Verify that Web Application handles Add,
Modify, Delete and Query capabilities correctly

Implementation Functional Regression testing
 Manual techniques
 Automated techniques

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 15

29

PerformancePerformance
Standards Established project requirements

Industry standards
User expectations

Volatility Low – If changes comply with the standards for performance.
Performance stability is affected by the rate of change of the
hardware, software and site content and structure

Complexity Moderate to high. Depends on the Architecture

Risk High – Concurrent access to the site and database is higher
than predicted.
Hardware is insufficient to handle load.
Application is not designed for optimum performance

Verifications Volume, Load and Stress Testing across the Web.

Implementation Use In-House owned performance tools that verify
performance for 200 virtual users submitting distinct requests.
Outsource performance tests for higher numbers of users

30

TechnologyTechnology
Standards Minimum requirements for hardware and software

configurations.
Supported environments

Volatility Moderate to High –We can manage the rate of change of the
configurations we control, we have no control over the rate of
change of technology, nor the use of it by our customers.

Complexity High – Client/ Server Hardware coupled with firewall
implementations create a complex application environment.

Risk High – The broad spectrum and rapid change of technical
solutions causes the system environment to be unpredictable
and uncontrolled

Verifications Testing configurations.
Review changes to server-side and evolving client
configurations

Implementation In-House compatibility testing for primary supported
environments.
Out-source compatibility testing of marginal environments.
Perform beta testing at beta sites with different firewalls.

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 16

31

SecuritySecurity
Standards Corporate Security Policies

Fiduciary Responsibilities
Purpose of Site

Volatility High – Changes caused by new methods to
bypass current technology

Complexity High – Various encryption schemes
Various levels of security access to users and
groups of users

Risk High –Breaches of security may be
catastrophic to the business and the users

Verifications Automated and manual monitoring

Implementation 24/7 monitoring
Immediate notification for security breaches
Mitigation Plan

32

SummarySummary

lWeb Sites are increasingly becoming
complex Web Applications

lEstablish a Clear Business Direction and
Purpose

lManage the Quality Forces
lDivide and Conquer

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 17

33

Contact InformationContact Information

lSteven Porter
 3034 Estepa Dr.
 Cameron Park, CA 95682
 Cell: (916) 718-5734
 Sporter@2xtreme.net

l Thank you to David Wilkerson for the hours spent helping me organize,
clarify and edit this presentation.

 Dwilkers@calweb.com

QW2K Paper 2M2

Ms. Johanna Rothman
(Rothman Consulting Group)

The Influential Test Manager

BACK TO QW2000 PROGRAM

Key Points

An introduction to ways to influence others in the organization●

Reframes of typical test manager problems and possible solutions●

What to do when it doesn't look like it's you●

Presentation Abstract

Many of us have worked in test groups where we felt as if we didn't have enough time, hardware, or
staff to do the work. Consequently, we feel that while somebody might be in control, we are certainly
not. As test managers, we do not have to work this way. There are other, more effective ways to
develop and use your influence within your organization to help your test groupùand projectùsucceed.

About the Author

Johanna Rothman observes and consults on managing high technology product development. She
works with her clients to find the leverage points that will increase their effectiveness as organizations
and as managers, helping them ship the right product at the right time, and recruit and retain the best
people. Johanna is the founder and principal of Rothman Consulting Group, Inc., and is ASQ certified
as a Quality Auditor and Software Quality Engineer.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/2M2.html [4/28/2000 2:29:08 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

The Influential Test Manager

© 2000 Johanna Rothman www.jrothman.com 1
781-641-4046 jr@jrothman.com

The Influential Test Manager

Johanna Rothman

Rothman Consulting Group, Inc.

www.jrothman.com

781-641-4046

jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com 2

What’s a Test Manager to Do?

• We have lots of problems, many of them tactical
– Too many defects in the product

– Too little equipment

– Cascading schedule slips

– Not enough people

• We have strategic problems too
– How we are perceived within the organization

– How the organization does business

• Influence others to change

The Influential Test Manager

© 2000 Johanna Rothman www.jrothman.com 2
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com 3

What Is Influence?

• From the dictionary:

“The act or power of producing an effect without apparent
exertion of force or direct exercise of command”

“The power or capacity of causing an effect in indirect or
intangible ways: sway.”

© 2000 Johanna Rothman www.jrothman.com 4

Influence

• Mutually valuable decision about a problem

• Swaying other people to your point of view

• Producing an effect without an apparent exertion of force

• Influence is not
– Control

– Taking away choices

“A man convinced against his will is of the same opinion still” --
Anonymous

The Influential Test Manager

© 2000 Johanna Rothman www.jrothman.com 3
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com 5

Unique Perspective

• “Testers hold the flashlight” -- James Bach

• Test managers can be change agents
– Risk illumination

– Risk management

© 2000 Johanna Rothman www.jrothman.com 6

Exchange: the Essence of Influence

• Define the problem context

• For you and the other person: What’s In It For Me? (WIIFM)

• What do you have of value?

• What does the other person want?

• Choose how to provide value

• What to ask for in return

Your value and
what you want

Value to the
other person

How to
provide

value here

The Influential Test Manager

© 2000 Johanna Rothman www.jrothman.com 4
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com 7

Test Manager’s Mission

• Many possible missions
– Find and report defects, especially Big Bad Bugs.

– Test this software beast until they pry it from my unwilling fingers,
finding and reporting on all defects.

• The mission I’ll use here:
Assess the state of the product under development at any time, and

report on that state

• How do you use your mission to define value?

© 2000 Johanna Rothman www.jrothman.com 8

 Tales of Three Test Managers

• Each test manager wanted to hire more people

• Each test manager was initially turned down by his/her boss

The Influential Test Manager

© 2000 Johanna Rothman www.jrothman.com 5
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com 9

Andrea Was Not Influential

• Wanted to hire 2 more testers immediately, 2 more before
the end of the year

• VP only wanted to hire support people because of perceived
salary cost

• Can see technical debt coming, but can’t do anything about
it
– Cascading effects of technical debt:

! Higher support costs

! Higher test costs

! Higher development costs

© 2000 Johanna Rothman www.jrothman.com 10

Bill Used Influence Across the Company

• Wanted to hire 2 more testers

• Approached the Sales VP: “If you support my request for
more testers, I can give you pre-sales support after the
testing effort is complete.”

• Approached the Engineering VP: be able to assess ship risk
better

The Influential Test Manager

© 2000 Johanna Rothman www.jrothman.com 6
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com 11

Carol Influenced Within the Product
Development Organization

• Too few testers for development staff

• Enormous technical debt

• Worked with management to make the product release
dates
– Multi-pronged plan, including

! Project manager

! Peer review of bug fixes

! 4 more testers

© 2000 Johanna Rothman www.jrothman.com 12

What You Have of Value

• Personal value
– Credibility

– Fairness

– Track record

– Management capabilities

• Test Manager value
– Information about the product under development or test

– People who test

– Machines that execute the tests

– Tests

The Influential Test Manager

© 2000 Johanna Rothman www.jrothman.com 7
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com 13

People Use Their Value Differently

• Sometimes, trade project information to obtain a specific end
result
– Is that result valued?

• Sometimes, trade capability to assess risk
– Is the assessment valued?

• Others must value what you offer,
or you become less valuable

Result: lessens your influence

Your value and
what you want

Value to the
other person

How to
provide

value here

© 2000 Johanna Rothman www.jrothman.com 14

How You Provide Test Manager Value

• Assess risk
– Risks inside testing, and across product development

– Who’s affected by technical debt or schedule slips?

• Identify and solve testing problems
– What are your alternatives when the test time is inadequate?

• Manage test and measurement work to assess product state

• Helping make ship decisions

The Influential Test Manager

© 2000 Johanna Rothman www.jrothman.com 8
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com 15

Assessing Product State

• Did we build the product we intended to build?

• How much have we tested?

• How stable is the product?

• How complete is our information?

• You may have other questions to add to your list that reflect
your goals and priorities

© 2000 Johanna Rothman www.jrothman.com 16

Helping Make Ship Decisions

• Are you in a good state to influence people?

• If you don’t fall into classic testing mistakes
– Being the only one responsible for product quality (per Marick)

– Being the only one responsible for assessing product shipment risk

– Being the only one who can see the implications of shipping the
product in its current state

• When you’re the only one with the data,
and you make all the decisions,
you will make wrong decisions

The Influential Test Manager

© 2000 Johanna Rothman www.jrothman.com 9
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com 17

What Do You Want in Return?

• Assume your managers aren’t stupid or corrupt
– They may be ignorant, but they’re probably not stupid

– You choose whether to placate corrupt managers

© 2000 Johanna Rothman www.jrothman.com 18

Use Your Value to Decide What You
Want From Your Organization

• Be clear that you’re in a two-way relationship

• Explain what you want (People, machines, time, other
resources)
– The implications of shipping defect-laden products

– Funding the test group’s equipment requests will help the other
managers know sooner when the product is ready to release

– Shortening your test schedule will prevent you from collecting enough
data to know whether to ship

– You should hire enough people to do the right amount of testing so
everyone will know when to ship

The Influential Test Manager

© 2000 Johanna Rothman www.jrothman.com 10
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com 19

When It’s Not You

• If you’re responsible or product quality (classic mistake)
– Reframe that to “Here’s how I can help you make that quality

happen”

• If you’re the only one assessing product ship risk
– It’s unwise to have a decision of such broad implication with only one

person (a single point of failure)

– You may not know the business decisions involved with this product
release

• If any of the managers are having a bad-manager day
– Wait until you’re all centered, sure of what you have to offer each

other

© 2000 Johanna Rothman www.jrothman.com 20

Influence May Not Work Immediately

• Maybe people don’t know what they really want

• Maybe people don’t know their value to the organization

• You can
– Help define their value

– Help them understand your responsibility

! If your group doesn’t put the defects in,
you are not responsible for getting rid
of the defects

The Influential Test Manager

© 2000 Johanna Rothman www.jrothman.com 11
781-641-4046 jr@jrothman.com

© 2000 Johanna Rothman www.jrothman.com 21

Influence Works

• Product ship decisions or other risk-based decisions
– Knowing what you have of value

– What’s in it for the other person

– What you want in return

Your value and
what you want

Value to the
other person

How to
provide

value here

© 2000 Johanna Rothman www.jrothman.com 22

Influential Test Managers

• Provide value
– Ask questions and assess answers about the product and project

– Facilitate release tradeoff discussions

– Generate and test release criteria

• Understand what the other person wants

• Choose how to address that want

• Decide what to ask for in return

• Control is not the issue

• Share your risk perceptions to influence your project and
make it successful

The Influential Test Manager 1

© 2000 Johanna Rothman, originally published in Software Testing and Quality Engineering, Vol. 2 #2

The Influential Test Manager

© 2000 Johanna Rothman

Many of us have worked in test groups in which we felt as if we didn’t have enough time,
hardware, or staff to do the work. In those situations it’s hard to escape the feeling that while
somebody might be in control, we are certainly not. As a test manager you don’t have to work
this way. There are other, more effective ways to develop and use your influence within your
organization to help your test group—and project—succeed.

Influence is not about control, nor is it about taking away other peoples’ choices. Influence is
about coming to a mutually valuable decision about a problem—redirecting your organization’s
power and focus. As a test manager, you may want to influence others in the organization when:

• Your management wants to release a product you know is full of defects, and you’re sure the
customers will be disappointed with the release.

• Other managers ask you to give up equipment your test group needs to do their jobs, or you
can’t get the equipment you need.

• Schedule slips shorten your test schedule, and your only alternative seems to be to test less.

• Your budget isn’t large enough to hire the people you need.

These are examples of tactical problems in obtaining specific objectives. You can also exercise
influence more broadly—strategically—to change how the organization perceives itself, or to
change how it does business.

As test managers we can be valuable agents of change. We have a different perspective on these
problems than other managers in our organizations, because of our role in planning and
measuring testing to obtain and share information about the product under test. If testers, as
James Bach says, “hold the flashlight,” then test managers figure out at least some of the places
to shine that flashlight, and how long to spend flashing—a specific form of risk management.
Because we illuminate risk from a different perspective than anyone else on the project, we often
have a unique approach to problem solving.

We can influence other people to see our perspective and agree to it, or to come up with an even
better solution to our problem.

What is influence?

A dictionary definition of influence is:

“The act or power of producing an effect without apparent exertion of force or direct exercise of
command”

or

“The power or capacity of causing an effect in indirect or intangible ways: sway.”

To sway someone, you get that person to change what they’re doing. Sometimes you give them
something they want—their WIIFM (What’s In It For Me). Sometimes, you get them to
reconsider their WIIFM, to enlarge their wants to include more of the organization. To be truly

The Influential Test Manager 2

© 2000 Johanna Rothman, originally published in Software Testing and Quality Engineering, Vol. 2 #2

influential, first you must become fully aware of your problem context—the setting or
environment where the problem exists, including all those who might be affected by it. Once
you’ve surmised the problem context, you can decide how to influence the other person. (You
might even change your perspective, based on your understanding of the problem context.)

Consider how you can provide value, and finally, what your “influencee” wants. Then, you can
choose how to provide that value and what to ask for in return. This value exchange is the
essence of influence.

Note that I’m not talking about a strictly monetary exchange. Sometimes you loan your
credibility to some project your influencee wants to succeed. Sometimes you give your time to
some other group, or perform some other service to the organization. Sometimes you get a
budget increase to give more value to the organization. View your problem within the context of
your organization, so you can see what you want and what you’re willing to give.

Share the “problem context”

Many test managers don’t have the staff they need to do an effective job, nor do they have the
budget to hire the staff. One way to define that problem is:

I don’t have enough testing staff.

That problem statement is a good start, but is limited in scope and shows no way for you to
provide value to more of the organization. An alternative problem statement is:

I don’t have enough people to execute my mission.

That’s vague as it stands, because it depends on what your mission is. Your mission could be:
“Find and report defects, especially Big Bad Bugs.” Or your mission could be: “Test this
software beast until they pry it from my unwilling fingers, finding and reporting on all defects.”
There are many possible test manager missions—maybe as many as there are test managers! I
choose to define the test manager’s mission as:

To assess the state of the product under development at any time and report on that state.

With this mission statement, I can describe the problem context as:

Without more people to do the testing, I am unable to sufficiently assess and report on the
state of the product as well as I would like. I can’t give you, Project Manager or Senior
Management, the picture I think you need to see. That means you, the management team,
will make decisions with sketchy information. You can still make the decisions, but you
are assuming risk. I don’t know how to give you better information without more people.
If you want to take the risk of operating with very incomplete information, that’s okay.
But I recommend we get more staff so you don’t have to make blind decisions.

This problem context statement brings the problem’s significance to the rest of the organization.
It shows that the problem is bigger than the test manager whining about not enough people. It
makes inadequate test staffing an organizational issue, not a testing issue. Now that you’ve
shared the problem context, consider what you have of value to the rest of the organization.

The Influential Test Manager 3

© 2000 Johanna Rothman, originally published in Software Testing and Quality Engineering, Vol. 2 #2

What do you have of value?

You provide value both as a person and as a test manager. Your perceived credibility, fairness,
track record, and capabilities as a manager have value not just to the test group, but to your
peers, your managers, and the rest of the organization.

Your own level of test-manager-value depends on how you define your mission as a test
manager. Your mission defines the work you choose to accomplish: with the test organization as
a whole, with the project manager, through your mentoring of staff, and in the way you structure
your team's work. When you perform that mission, you have at least these valuable items:

• Information about the product under development or test

• People who test

• Machines that execute the tests

• Some number and type of test procedures (e.g. automated and manual, complete tests or
smoke tests)

Different people use their value differently, even when going after the same goal (getting
funding for more testers, to provide more information about defects to the organization). Here
are stories of three test managers and their approaches to getting more positions funded in their
organizations.

Andrea

was a test manager who also ran the customer support group and the technical writing group, in
addition to the test group. She had two testers, four technical support reps and two writers. (Her
organization had six developers on staff.) Andrea needed at least two more testers immediately,
and wanted an additional two automation and tools developers over the next year. Andrea’s
approach was to tell her boss, the Vice President of Engineering, exactly what was necessary: “I
need two more testers right now, and two more over the next year.”

The Vice President’s response was bottom-line-based: “How expensive are those testers? Every
time you ask me for more people, it costs me money—as much money as a developer. We’re a
young company, and we have to make our balance sheet look good. Otherwise our investors will
be upset, and we’ll be in trouble. Live with what you’ve got.”

Andrea and her boss have had this same conversation at least half a dozen times. Every few
months the development team adds more people to its staff, but Andrea can only add tech
support people—because they cost less. As the number of developers has increased, so has the
software’s complexity and the size. Andrea doesn’t have enough staff to test the product
sufficiently, so the company is building up its product technical debt.

 [Technical debt, as defined by my colleague Dave Smith, is the debt a company “owes” to a
product they persisted in shipping in an incomplete or unstable condition over several releases.
This is a situation referred to by Hunt and Thomas‘s book The Pragmatic Programmer as
“software rot”; but the software isn’t necessarily rotten—it’s just incomplete.]

At some point, as the technical debt increases, the load on the customer support staff will be so
overwhelming that the company will have to use developers to staff the phones and solve the
support problems. Andrea can see this coming, and knows there is a window of opportunity

The Influential Test Manager 4

© 2000 Johanna Rothman, originally published in Software Testing and Quality Engineering, Vol. 2 #2

before the “technical debt overload” overwhelms the company’s ability to do development—and
actually prevents new product development. She knows she needs more testers to prevent this
from happening. But she doesn’t know how to explain the significance of what she’s seeing to
her management. Even though Andrea can see what’s happening, she hasn’t defined her
organizational value in a way that would allow her to address the complete problem.

Bill

has approached the technical debt overload problem differently. Bill also has responsibility for
both a test group and the technical support group. In his organization, the writers are part of the
development team. Bill already has five testers, including one full-time test tool and automation
developer. (There are ten product developers.) Bill wants to hire two more testers—because two
releases ago, the test group fell behind the developers and significant parts of the product were
not fully tested. (Technical debt is starting to affect Bill’s organization. The testers don’t feel as
if they are fully testing the product, and the tech support folks are hearing about the same defects
repeatedly.)

Bill used the assessment and reporting mission statement to explain the problem context, the
problem significance, and his value to the situation:

If I can get two more people to do the testing, I will be able to assess and report on the
state of Modules A and B. Since the product is evolving to be based more on Modules A
and B, I will be able to provide management the information to understand the
development progress, and make ship decisions. If I get two testers now, I can do enough
testing of Modules A and B to avoid incurring more technical debt, and having to keep
people testing the inevitable fixes after we ship the product. I can use this release’s
testing as an early warning signal to anticipate the load on the technical support group.

Bill had a two-pronged approach. First, Bill went to the Sales Vice President and asked if she
needed technical pre-sales support. (He knew she did, because the sales reps constantly called the
support reps for help before they went on sales calls.) When she said yes, he made an offer: “If
you support my request for more testers, I can give you phone-based pre-sales support after the
product ships.” (More testers helped find defects before the product shipped. The testers could
focus on the next release, and the support staff wasn’t kept busy finding and reporting already-
known defects.) The Sales Vice President was thrilled, and agreed to support his cause in the
Senior Management meeting.

Then Bill went to his boss, the Engineering Vice President, and made another offer: that if he got
two more people in testing he could provide benefits across the organization.

• Engineering would know about the defects earlier. That would help them choose what to fix
and when.

• Knowing about the defects would help the testers react quickly to areas of the product,
choosing where to do more of which kinds of testing.

• Bill would be able to anticipate the support load, and possibly help the company avoid
having to hire more people for support.

• The support staff could spend more time duplicating new customer-reported defects—which
would help the developers—instead of writing up more already-known defects.

The Influential Test Manager 5

© 2000 Johanna Rothman, originally published in Software Testing and Quality Engineering, Vol. 2 #2

He said, “If you sign two more testing requisitions, and help me hire more testers before the
freeze milestone, I expect to be able to provide pre-sales phone support to our sales staff. That
should increase our sales from this product.”

Bill’s boss said he’d bring it up in the budget meeting, and was pleasantly surprised that the
Sales Vice President supported Bill’s request. Bill got his requisitions, and was able to hire the
people he needed.

Andrea’s value to the organization is more limited than Bill’s. Andrea is focused on the testing
part of the problem, which is not sufficient for showing the value she provides the organization.
Bill realized he could use his staff in a number of ways, all of which would provide overall value
to the organization. Another test manager, Carol, took a different approach, focusing on a
narrower scope of influence than Bill: the product development organization.

Carol

was recently hired to run a software test group of four people. Those four people attempt to test
the product that sixteen developers are working on. Carol realized during her interview process
that this organization had enormous technical product debt. Carol decided to investigate the
implications of the technical debt. She talked to the other managers and listed two major
consequences of the inadequate testing: developers were spending almost half their time on
product support, and the last two product releases missed their ship dates by 100%. (Since they
were working on 6-month releases, 6-month slips were disastrous.)

Carol went to her boss (who was also the development manager) with a proposal: “I have some
ideas about how to meet our desired six-month release dates, and how to reduce the time the
developers spend supporting the product.” That got her boss’s attention. She laid out a plan that
included hiring a project manager, peer review of bug fixes, and hiring four more people with a
variety of skills for the test group.

Carol chose to exercise her value inside the product development organization—more than just
the test group, but not across organizational lines in the company. Carol is showing she has more
than just “manage-the-testing” value to the organization.

Provide Value and Recognize What Others Want

To use influence, you provide value and help others see the significance of the problem. Then
it’s time to look outward to see what other people want. What is valuable for you to provide?

You provide value to your organization in many ways. Sometimes, it’s your general managerial
assets that others value: your credibility, fairness, track record, and management capabilities. In
addition to your management capabilities, you can provide additional value by:

• Assessing risk, starting at the beginning of the project and continuing through to the end

• Identifying and solving problems that prevent testers and developers, all of Product
Development from making progress

• Managing the test and measurement work (for both the product and the project) to assess the
product state, report on it, and see if it needs improvement

• Helping make ship decisions

The Influential Test Manager 6

© 2000 Johanna Rothman, originally published in Software Testing and Quality Engineering, Vol. 2 #2

You are much more than just someone who manages or leads the test effort on a product. If you
can see the significance of an issue, and can share that with the rest of the organization, you are
incredibly valuable to your organization. One way to share significance of issues is to assess and
report on risk.

Assessing Risk

Product testing and measurement is a primary vehicle for the test manager to help assess risk
during the project. The risk isn’t just limited to the testing organization, where a risk might be
“We can’t get the testing we’d planned to do done on time.” The risk exists across the product
development organization, and sometimes across the company. The three test managers above
recognized that the risk to early shipment of inadequately tested product was higher-than-desired
support costs, and less capability in development for the next release.

To provide value in risk assessment, it’s a good idea to look beyond the boundaries of the test
group to see who else is affected by creation of technical debt, or by slipping schedules.
Technical debt, for example, affects developers’ ability to adequately design the next round of
changes (and creates an unstable base on which to implement those changes), and also has an
impact on Support and Sales.

Identifying and solving problems

Here’s a problem many test managers run into: the developers miss their deadlines, and your
time in test is reduced. Before you even start testing you know there is a substantial risk that the
product that will ship is not the product your organization had planned to ship. If you can
identify that problem early to the project manager, you may be able to influence the solution.

One solution could be to ship the product as an early release, such as a Beta version, to give you
more test time. Another solution could be to change how the developers fix the defects, or to
target certain areas of the system for defect fixing and defer fixes in other areas. Another
possibility would be to reduce the number or scope of the features to be shipped in this release.
The solutions you develop will depend on why your company is shipping the product.

Managing the test and measurement work to assess product state

The testing results help all the decision makers evaluate risk. As the test manager, you look for
information about the product in order to answer a number of questions:

• Did we build the product we intended to build? When you test the product against the
requirements and the design, including functional, performance, and reliability testing, what
do you find?

• How much of the product have we tested? Does it make sense to ask this question?

• How stable is the product at this point in the testing? I expect the product to be very unstable
during the beginning and middle of the project. I expect it to become more stable as we
approach the final milestones, especially the ship date. What happens if the product does not
become more stable?

• How complete is our information? How good is the information we have now? How wise is
it to make risk assessments based on this information?

The Influential Test Manager 7

© 2000 Johanna Rothman, originally published in Software Testing and Quality Engineering, Vol. 2 #2

You may have other product- or project-specific questions to add to your list. Choose questions
that help you answer whether you’ve accomplished your goals and priorities. I tend to choose
measures that help me know when we can ship the product.

Helping make ship decisions

 “Can we ship this product yet?” If you can help your organization make that ship decision,
you’ve satisfied many people’s WIIFMs.

It is difficult for many of us to make product ship decisions. As test managers, some of us want
to keep the product in test until they physically pull it away from us. As project managers or
development managers, we may have bonuses riding on release dates (a foolish, but very
common idea). But if we are responsible for the tech support work, we have even more
motivation to find and fix more of the defects before the product ships.

No matter what our perspective is, we may think we know what the right ship decision is. It’s not
possible, however, for the test manager alone to make a ship decision without having negotiated
and objectively defined release criteria with the rest of the project team. At the very least that
criteria has to define what the organization is looking for from this product for this release, and
may be an excellent way to identify leverage points for what other people want.. (For a brief
discussion of how to create release criteria see Rothman and Lawrence.)

What do you want in return?

For the purposes of this discussion I’m going to assume you don’t work in a “corrupt”
organization, in which managers exploit their positions just because they can. Using influence on
those people requires that you look at their personal positions in the organization and satisfy
some of their selfishness. I find that placating those people gives me heartburn, so I choose not to
work with them.

Instead, I’m assuming you work with reasonable, well-intentioned project and senior managers
who Deming was talking about in Out of the Crisis-: “No matter how it looks, everyone is doing
their best.” They might not know how to use test managers, or they might be making some
classic testing mistakes themselves (such as assuming you, the test manager, are somehow
responsible for quality).

Your managers and colleagues aren’t stupid. They know they need test managers, and they know
they need the product tested. But they may not understand how to translate that abstract
“knowing” into how they can use you more effectively. When you influence people, you help
them realize what you can provide them. Now you can use your value to decide what you want in
return from the organization.

When you help define the consequences of releasing a product with technical debt…or when you
define and track release criteria…or when you have conversations about what the organization
requires from the release…you’ve provided substantial value. You may get some well-deserved
resources or support by using that value to illustrate to your managers:

§ Why shipping a defect-laden product increases other groups’ pain

§ Why funding the test group’s equipment requests will help the other managers know sooner
when the product is ready to release

The Influential Test Manager 8

© 2000 Johanna Rothman, originally published in Software Testing and Quality Engineering, Vol. 2 #2

§ Why shortening your test schedule will prevent you from collecting enough data to know
whether to ship

§ Why you should hire enough people to do the right amount of testing so everyone will know
when to ship

You may want something else in return. That’s fine. Whatever your goals are, just be clear on
what you want to get from this two-way relationship.

When It’s Not You

At times, when we attempt to provide this value to the organization, we feel like it’s us against
the rest of the world. That’s not a good place to start when you want to influence people. Let’s
examine why you might feel that way:

• If you’ve somehow gotten yourself into the position as the person responsible for quality in
the product. This, as Marick points out in Classic Testing Mistakes, is a classic testing
mistake. If the people in your organization want to hold you personally responsible for the
quality of the product, say, “Here’s how I can help you make that quality happen in the
product.” It’s not your job to uphold some arbitrary quality standard just because they say it’s
so. Work with the other people to define the value the test group provides to the rest of the
company. If other people in the company have a quality standard they want upheld, the
developers should uphold it. This might lead other people to say “That test manager just isn’t
a team player.” But you can be the best sort of team player by asking the important questions:
why the quality standard is important to the organization, what results they want to see, and
what a successful release looks like.

• If you’re the only one assessing product shipment risk and other situations where you, and
you alone, can see the implications of shipping this product on the business. If you’re the
only one with the data, and you’re the only one to make all the decisions, Murphy’s Law says
you’re bound to make some bad decisions. Murphy’s Law holds true at other times too, but
here you have a single point of failure, which is much higher risk. You also may not be aware
of the business decisions involved with this product release.

• Maybe you’re just having a bad-manager day. That’s okay. Wait to work on this problem
until you feel more centered, more sure of what you have to offer.

Even when you’ve assessed your value and you think you’ve discovered the other people’s
WIIFMs, influence may not seem to work. If that’s the case, perhaps it’s because the other
people—the project manager or senior managers—may not have considered their value or what
they want. When faced with this unevenness of perceived value, you may want to offer to help
them define their value, and in the process help clarify their WIIFMs. There’s no simple solution
when your colleagues don’t know what they want. Although we’d like to think we can figure out
a way to work with everyone, sometimes you just can’t. Ultimately, you choose with whom you
work.

Summary

As a test manager, one of your roles is to assess product state and report on it. You provide value
by planning the product testing so that you can assess—along with the rest of the management

The Influential Test Manager 9

© 2000 Johanna Rothman, originally published in Software Testing and Quality Engineering, Vol. 2 #2

team—the risk of shipping the product. The more widely you disseminate the data about the
product state, the more perceived value you will provide, and the more influence you can have.

As an influential test manager, you can

• Ask vital questions about the product and project, and assess the answers to those questions

• Facilitate a discussion about tradeoffs for the release

• Generate and test the release criteria, so you have an objective way to answer the question
“When is it ready to ship?”

You don’t have to feel out of control. The more you share your perception of the risks, the more
you can influence what happens with your project, and the more successful you can make the
organization you’ve invested in.

Acknowledgements

I thank the following reviewers for their helpful comments: Mark Druy, Elisabeth Hendrickson,
Cem Kaner, Brian Lawrence, Brian Marick, Noel Nyman, Jeffery Payne, Dave Smith., Jerry
Weinberg.

References

Cohen, Allen R. and David L. Bradford, Influence without Authority, John Wiley and Sons, New
York, 1991.

Deming, Edward, Out of the Crisis, MIT Press, Cambridge, MA, 1986.

Gause, Don and Gerald M. Weinberg, Exploring Requirements, Quality Before Design, Dorset
House, New York, 1989.

Kaner, Cem. Black Box Software Testing, a 3-day course taught by Cem Kaner, March 1999.

Marick, Brian. Classic Testing Mistakes. STAR 1997.

Rothman, Johanna and Brian Lawrence, A Pragmatic Strategy for NOT Testing in the Dark,
Software Testing and Quality Engineering, Mar/Apr 1999.

Weinberg, Gerald M. Quality Software Management, Vol. 1 Systems Thinking, Dorset House,
New York, 1992.

QW2000 Vendor Technical Paper 3V1

Michael R. Perdue
(Software Development Technologies)

New Automation Solution for Testing and Technical
Reviews

BACK TO QW2000 PROGRAM

Key Points

New architecture for test design and automation●

Automating technical reviews●

Create more cost effective and maintainable test suites●

About the Author

Michael R. Perdue, executive vice president of Software Development Technologies (SDT), has over
twenty-five years experience in software engineering and software quality with extensive experience in
process design and improvement, organizational design for quality, quality costing and ROI, change
management, assessment practices and pre & post release measurement systems.

Prior to joining SDT, Mike was the Chief Operations Officer of Integral Systems, Inc. a provider of
mainframe and client/server HR/Payroll software systems. He was responsible for reversing several
quarters of losses resulting in over 13 months of operating profits. He accomplished this by
redesigning the organization to be customer focused, implementing effective and efficient processes
for product development and customer support and building a management team that could lead the
company to be more collaborative and focused. He started with Integral as Vice President of Product
Engineering for the InPower subsidiary.

Prior to that he held positions as Vice President of Quality and Productivity, Director of Corporate
Quality, Director of Quality Technology and Sr. Manager of Operations for such firms as Cadence
Design Systems, Sun Microsystems and Motorola.

Mike has developed and led organizations consisting of over 200 technical and administrative persons
and has held positions ranging from software developer and tester to mid level manager to executive
officer of medium to large software product development firms.

Mike has developed and conducted seminars in quality management, metrics, process design and
improvement, change management, team dynamics and project management. He has been a lead
process architect for five new corporate software development processes in four different high tech
companies.

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/3V1.html (1 of 2) [4/28/2000 2:29:16 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Mike devotes most of his efforts at SDT to helping clients assess and improve their development and
test process capabilities.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/3V1.html (2 of 2) [4/28/2000 2:29:16 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Automating
Test Design and Inspections

Michael R. Perdue
www.sdtcorp.com mperdue@sdtcorp.com

Presents

© 2000 Software Development Technologies Rev 2000-1a Slide 2

Agenda

• Introduction to Software Development Technologies

• Technical Review and Inspection Overview

• What is SDT ReviewPro®?

• Results

• Test Design and Automation:

• TestFrame™ Architecture
ReviewPro is a registered trademark of Software Development Technologies. TestFrame is a registered trademark of CMG.

© 2000 Software Development Technologies Rev 2000-1a Slide 3

• Founded 1992, San Jose, CA
• CEO - Edward Kit
• Mission - Provide practical, proven, effective software

quality products and services worldwide
• Training and Consulting for:

– Software Testing, Test Planning and Design
– Technical Reviews and Inspections
– Test Automation
– Test Assessments

• ReviewPro - Technical Review Management Application
• TestFrame - Integrated Test Design and Automation

Software Development Technologies

© 2000 Software Development Technologies Rev 2000-1a Slide 4

SDT Training and Consulting Services

TESTFRAME METHODOLOGY

• Third generation test design and
automation integration system
• More efficient use of resources
• Maintainable and cost-effective test
suites that leverage the real strength
of capture/playback tools

TRAINING SERVICES

• Public and Onsite Classes in:
• Software Testing
• Testing Tools
• Technical Reviews and

Inspections

• Course licensing available

CONSULTING SERVICES

• Expertise in all areas of software
quality improvement - test,
automation, inspections,
assessments

• Senior consultants grounded in
practical, hands-on approach

REVIEWS/INSPECTIONS

• Simple, Effective Process
for technical reviews

• Web-based tool for
managing Reviews

• Customized to your process

© 2000 Software Development Technologies Rev 2000-1a Slide 5

Agenda

• Introduction to Software Development Technologies

• Technical Review and Inspection Overview

• What is SDT ReviewPro?

• Results

• Test Design and Automation:

• TestFrame Architecture

© 2000 Software Development Technologies Rev 2000-1a Slide 6

Defect Distribution

56%

[Bender & Associates]
Rqmts.

27%
Design

10%
Other

7%
Code

Rqmts.

Design
Code
Other

© 2000 Software Development Technologies Rev 2000-1a Slide 7

Defect Removal Costs Increase
Radically During Software Life Cycle

The Lesson: Find Defects Early!

0.1

1

10

100

Requirements Design Code Integration

Testing
Acceptance
Testing

Operation

Relative
Cost of
Defect
Removal

© 2000 Software Development Technologies Rev 2000-1a Slide 8

Benefits

Inspections provide a powerful way to:
• Detect defects early in the development cycle
• Prevent the migration of defects to later phases
• Improve communication to the entire project team
• Provide additional perspectives of the work to the

author
• Improve the quality and productivity of the

development and test process
• Reduce cost and cycle time
• Reduce maintenance effort

Review early and often

© 2000 Software Development Technologies Rev 2000-1a Slide 9

Agenda

• Introduction to Software Development Technologies

• Technical Review and Inspection Overview

• What is SDT ReviewPro?

• Results

• Test Design and Automation:

• TestFrame Architecture

© 2000 Software Development Technologies Rev 2000-1a Slide 10

SDT ReviewPro Highlights

• Brings automation to the most powerful defect detection
and removal process - Technical Reviews and Inspections

• Web-based, collaboration application
• Open architecture:

– Integrates with existing IT infrastructure

– Accommodates any Inspection process

� Project management for geographically-distributed teams

� Data collection and metrics reporting capabilities

• 1.0 FCS (first customer ship) in June 1998; shipping and
installed at Sun, US West, Lucent, US Navy, Cisco, etc.

• Only known commercially-available product today

From the ReviewPro Home Page, the user can create a new
Inspection or go directly into an Active or Archived Forum. This
screen is customizable to reflect your process name, page title, etc.

© 1999 Software Development Technologies Rev 1999-2A Slide 11

Indented log entries show conversations by various, possibly
distributed, team members. Most issues resolved this way.

© 1999 Software Development Technologies Rev 1999-2A Slide 12

A variety of metrics is tallied from information in the
ODBC-compliant data store.
© 1999 Software Development Technologies Rev 1999-2A Slide 13

© 2000 Software Development Technologies Rev 2000-1a Slide 14

Agenda

• Introduction to Software Development Technologies

• Technical Review and Inspection Overview

• What is SDT TRIP?

• What is SDT ReviewPro?

• Results

• Test Design and Automation:

• TestFrame Architecture

© 2000 Software Development Technologies Rev 2000-1a Slide 15

Inspection Savings Summary

Reasonable expectations:

• Net timescale reductions: 25%
• % of all defects eliminated before test execution

starts: 60 - 80%

• Reduction in test execution costs: 5X
• Number of hours of downstream correction effort

saved for each major defect found: 9
• Total systems maintenance costs reduction: 5-10 to 1

Upstream effort creates downstream benefits.
Invest early or Suffer later!

© 2000 Software Development Technologies Rev 2000-1a Slide 16

Quotes from Industry Leaders

“ . . . projects with a full system of reviews report a

10 times reduction in the number of errors

reaching each stage of testing. The concomitant

cost reduction for testing efforts runs between 50

and 80 percent, even when the cost of reviewing is

added to testing costs.”

 Gerald Weinberg, Daniel Freedman

© 2000 Software Development Technologies Rev 2000-1a Slide 17

ReviewPro Customer Quotes
“ReviewPro is the most interesting piece of software for giving
support to the Inspection process I have seen. I am recommending
that my clients evaluate it. Too many of my clients have made
multiple versions of such software within the same corporation.
This should no longer be necessary. ReviewPro will give us the
tools we need to focus on getting inspection results, not
toolmaking.” Tom Gilb, Author of Software Inspection

“The biggest complaint we’d had with our current Inspection
method/process was getting data into the system because of the
amount of paper required; this problem will be solved with
ReviewPro. Its collaborative feature allows defects to be
documented and visible before our meeting so productivity is
greatly improved.”
Edward Weller, Fellow, Bull Worldwide Information Systems

© 2000 Software Development Technologies Rev 2000-1a Slide 18

Agenda

• Introduction to Software Development Technologies

• Technical Review and Inspection Overview

• What is SDT TRIP?

• What is SDT ReviewPro?

• Results

• Test Design and Automation:

• TestFrame Architecture

© 2000 Software Development Technologies Rev 2000-1a Slide 19

Test Design and Automation:
Serious Problems

• Lack of an effective test automation architecture

• Lack of required competencies:

– Test Design

– Technical Automation

– Application
• Using capture/playback at the wrong time

• Lack of sufficient resources:

– Not enough time for automation implementation

– Ratio of testers to developers

– Dedicated capital equipment

© 2000 Software Development Technologies Rev 2000-1a Slide 20

Test Design and Automation

Recommendation:
Separate and Bridge

Test AutomationTest Design

© 2000 Software Development Technologies Rev 2000-1a Slide 21

case action
 “log in”: ...
 “enter rev log”: ...
 “check rev log”: ...
end

Functional

Technical

Test Cases
(Action Words in a spreadsheet or db)

automation system
(test tool)

Recommendation:
Separate Functional and Technical Tasks

 A B C D
. . .
log in iris rose XXXXX
enter rev log Proj1 Proj1 Reqts Error
check rev log Proj1 Proj1 Reqts Error
log out iris rose
. . .

© 2000 Software Development Technologies Rev 2000-1a Slide 22

Agenda

• Introduction to Software Development Technologies

• Technical Review and Inspection Overview

• What is SDT TRIP?

• What is SDT ReviewPro?

• Results

• Test Design and Automation:

• TestFrame Architecture

© 2000 Software Development Technologies Rev 2000-1a Slide 23

Proven Test Architecture

• TestFrame is an example of a proven test framework

• Created in 1994 by CMG, this approach has been used
successfully by hundreds of projects

• SDT successfully used TestFrame to test ReviewPro, a
Web-based Collaborative Application that brings
automation to Technical Reviews and Inspections

• SDT and CMG are working together to evolve TestFrame

• TestFrame has been used for On-line, Web, Batch, API,
Embedded for function, system, acceptance test

• Reference [Buwalda, 1998]

© 2000 Software Development Technologies Rev 2000-1a Slide 24

TestFrame
Key Roles and Responsibilities

• Test Architect -- Creates the Testing Framework, i.e.,
overall approach to verification and validation, including
an integrated approach to test process and automation

• Test Planner/Manager -- Provides test planning,
schedule, scope, resources, etc.

• Test Designer / Analyst -- Creates and documents test
design and test cases

• Test Automation Engineer / Navigator -- Creates test
case automation processing capability

• Test Executor -- Runs and evaluates tests

© 2000 Software Development Technologies Rev 2000-1a Slide 25

Action Words: Key to the Bridge

Action Words:

• Establish a high-level application usage abstraction

• Standardize application actions

• Enable communication between Test Design and Test
Case Processor

Next Step:

• Translate test cases into Action Word spreadsheets

© 2000 Software Development Technologies Rev 2000-1a Slide 26

Action Word Cluster / Spreadsheet
cluster
sheet
version
date
author

RFPL
Test the Reviewer’s Log form
2.2
2/12/00
SP

testcase RFPL1 Enter log
Expected Result: Log saved

button username password

log in SDT ReviewPro iris rose XXXXX

button location type of description
 item

enter rev log topSaveLog page 5 defect Users cannot
 enter date

button location type of description
 item

check rev log topSaveLog page 5 defect Users cannot
 enter date

button username
log out iris rose

© 2000 Software Development Technologies Rev 2000-1a Slide 27

Re-usable Framework Components

Functional Test Development Technical Test Execution

automation system

Test Case
Action Word
Worksheets

Test Case
Processor

 A B C D
. . .
log in iris rose XXXXX
enter rev log Proj1 Proj1 Reqts pg 5
check rev log Proj1 Proj1 Reqts pg 5
log out iris rose
. . .

case action
 “log in”: ...
 “enter rev log”: ...
 “check rev log”: …
 “log out” ...
end

© 2000 Software Development Technologies Rev 2000-1a Slide 28

The End

QW2000 Paper 3T1

Mr. Robert Bauer & Mr. Russell F. Ingram
(Levetate Design Systems)

Building a Parallel Test Environment

BACK TO QW2000 PROGRAM

Presentation Abstract

For the past two years, we have been developing and enhancing a test strategy called early
regression testing. In this strategy, we provide development teams with automated tests that enable
them to run complete regression testing prior to feature integration - at our organization multiple
development teams simultaneously enhance the core software product, so it is not uncommon to have
several teams making concurrent changes to the same source base.

Prior to the introduction of early regression testing, development teams would run their own unit tests,
integrate the various features and turn the software over to test teams. One problem with this
approach is that when a failure is observed during testing, development has to figure out which team
is responsible for fixing the problem. Often the problem is assigned to one team only to be transferred
to another team when the first team figures out that the problem is not in their code. Sometimes a
problem is passed back and forth among several development teams.

Early regression testing, on the other hand, enables the developers to identify and fix problems
associated with their code prior to integration. Results of this approach were significant: More than
70% of all failures detected by the regression suites were discovered prior to feature integration. By
shaving nearly 2 months off of the schedule, we helped to significantly reduce the delay of an already
delayed product.

Early regression testing makes a lot of sense, but to make it successful requires a powerful
infrastructure:

(1) Tests must be automated - Development teams are under a lot of pressure. If it takes a lot of effort
to locate, run, and analyze tests, developers will devise their own tests. These unit tests will help them
with whatever specific enhancement they are making; however, these unit tests will never be as
encompassing as the regression suite through which the software is certified.

(2) Results analysis must be automated - Automating the running of the test and leaving the test
engineer with hundred's of pages of diff'd output to analyze borders on the inhumane. We developed a
"rule-based" algorithm that analyzed the differences (between the control and output) to determine
whether the differences constituted failures or were acceptable.

(3) Present results in a useful form and make it easy for the test engineer to do their job - Our initial
release presented the test engineer with lists of tests: Those that passed, those that failed, and those

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/3T1.html (1 of 2) [4/28/2000 2:29:28 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

that didn't run to completion. We then added an X-windows based user interface whose main feature
was that with a single button press, the test engineer could bring up a side-by-side display of the
control and output files (aka windiff). We provided a "button" so the engineer could sequence from one
"error" to the next (the engineer sees the certified output in the control file, the actual output in the
results file). For differences, the tester also sees the "rule" used to determine that the difference was
not a failure.

(4) Tests and control files must be maintained under revision control. Concurrent feature development
teams require the capability to independently create and enhance feature tests. These feature tests
need to be merged into the overall regression suites. We often refer to the regression test accounting
equation:

New Regression Suite = Old Regression Suite + New Features - Obsolete Features

Thus, as each feature team demonstrates that they can pass the the Old Regression Suite with the
Obsolete Features removed and their New Feature tests, we "merge" the various regression suites
enhanced and modified by the feature test teams into a New Regression Suite that is initially used for
integration testing. Later, after product release, the New Regression suite is used for maintenance and
emergency release testing. Also, as work begins on the "next" release, the new regression suite
becomes the old regression suite as the cycle is repeated.

As the infrastructure for early regression testing proceeded, it was clear that a significant problem
remained: As we automated away much of the tedious and error-prone manual efforts, execution time
of the tests began to dominate the overall cycle-time. Also, roughly at the same time, the next
generation hardware was being released that offered a significant improvement in the database
throughput capacity. Although we employed such optimizations as overlapping test execution with
results comparison - achieving a 33% reduction in cycle-time, we knew that the next generation of
database machines would be under utilized in the present test environment.

About the Author

Robert T. Bauer was the technical lead and architect for the PTE environment. He has a MS in
Computer Science. Robert is presently a principal engineer with Levetate Design Systems where as a
member of the formal reasoning group he is responsible for developing a theorem prover for use in
formal verification of software and hardware.

Russell F. Ingram is the manager of the development group that created the PTE. He also designed
the architecture for the test lab and led the technical system administration efforts. Russell has a BS in
Electrical Engineering and is presently involved in coordinating off-shore development as well as
building a new corporate computing environment for NCR.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/3T1.html (2 of 2) [4/28/2000 2:29:28 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

2

3

4

5

6

QW2K Paper 3A1

Mr. David Carman
(Telcordia Technologies)

Measuring Test Effectiveness:
The Use and Misuse of Test Coverage

BACK TO QW2000 PROGRAM

Key Points

Runctional coverage●

Code coverage●

Software measurement●

Presentation Abstract

Quality assurance is a never ending journey to insure that the each and every customer will be
delighted with a usable and reliable product. In-process metrics are an important element of quality
assurance and they provide a cornerstone of a defined and managed software development process.

There are many compelling reasons for measuring not only the quality of software products, but also
the quality improvement impact of each phase of the development process. This talk will address
practical test coverage methods for measuring the effectiveness of your quality assurance process.
Experiences from five different case studies will be shared.

About the Author

David W. Carman is the Principal Automation Architect for Software Quality Assurance within
Telcordia Technologies. Mr. Carman has ten years of quality assurance experience in
telecommunications network and operations support systems testing. He has presented and authored
papers at international conferences including Software Quality Week, STAR, EuroSTAR and ISSRE.
He has applied theories to practice in the areas of automatic test case generation, measuring test
effectiveness and software reliability engineering.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/3A1.html [4/28/2000 2:29:32 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Measuring Test Effectiveness
The Use and Misuse of Test Coverage

David W. Carman
Principal Automation Architect
Software Quality Assurance
dcarman@telcordia.com

An SAIC Company
Copyright �2000 Telcordia Technologies.
Used by permission only.

Measuring Test Effectiveness – 2

Measurement of Test Effectiveness

� Q: Why should you measure effectiveness?

� A: Maximize resources and minimize cost:
– Which test cases are needed?
– Which order should they be executed?
– When should you release the product?

� Q: How do you measure effectiveness?

� A: Some popular techniques:
– Bugs reported by the customer
– Defect removal efficiency and defect density
– Categorizing defects found by phase (ODC)
– Test Coverage

[Are defect counts an effective measure of effectiveness?]

2

Measuring Test Effectiveness – 3

Misconceptions* of Test Coverage

� Test coverage is only code coverage.

� Functional coverage is only requirements traceability.

� Test coverage is only a number.

� 100% test coverage is good and low test coverage is bad.

* i.e. Impressions that I try to dispel.

Measuring Test Effectiveness – 4

Definitions: Test Coverage

� Comparison of what can (or should) be tested with what has
been (or will be) tested.

� Other useful definitions:
– “Every test technique implies a coverage metric that measures the
extent to which that technique has been employed”, Boris Beizer
from Black-Box Testing.

– “Any metric of completeness with respect to a test selection
criteria”, Dr. Shmuel Ur (IBM Research) at STAR 98.

– “Coverage criteria specify a class of paths she should test. In
contrast to absolutely complete path testing, these criteria define
achievable (if possibly expensive) amounts of testing” from Testing
Computer Software, 2nd ed.

3

Measuring Test Effectiveness – 5

Types of Test Coverage

� Structural (Program-based)
Determined by the system architect/designer. Tangible units which

work together to implement functionality. Well-defined and bounded.
Automated collection.

– Code blocks / functions
– Component interfaces
– Control-flow / data-flow

� Functional (Feature-based)
Determined by the customer/system engineer/tester. Sometimes

intangible units. Not well-defined and almost infinite. Manual
collection.

– Requirements
– Use-cases
– Abstract behavioral model

f1
P1 P2

f11 f12

P1

f1M

P2

f21 f22

f2N

Measuring Test Effectiveness – 6

Why is test coverage important?

� Fault finding:
– Find untested areas of the system.

� Measuring quality:
– Calibrate test quality with quality of system under test.

� Test case minimization / selection:
– Reduce duplicate test cases.

� Change management:
– Define regression test suite according to code changes or changes

in feature content.
� Education (training & mentoring):

– Improve mechanism for communicating testing approach.

4

Measuring Test Effectiveness – 7

Novel Uses of Test Coverage

� Customer defect feedback loop
– Find weaknesses in test strategy and improve coverage model.

� Cost allocation:
– Use test coverage data to negotiate and allocate testing budget.

� Risk management:
– Define what is not tested against cost and customer usage.
– Explain test coverage to a customer when describing the risks of

releasing a product before final certification.
� Documentation testing:

– Improve completeness of the specification and user guide.
– Facilitates the review process when using a “checklist” approach.

� Test case design:
– Formalize test design process to assist automatic test generation.

Measuring Test Effectiveness – 8

Test Coverage Case Studies

� Measurement by Instrumentation of Code:
– Trial 1: A large mainframe product, 1.3 million lines of code, with a

substantial regression package, 50,000 test cases, and low rate of customer
failures.

– Result: There were many operational issues which made code coverage
instrumentation difficult, but somewhat beneficial.

– Trial 2: A distributed client/server product with a rapidly changing set of
features with many customer enhancement requests. The code changes
dramatically from release to release.

– Result: Coverage was measured to be high, but there were several
additional functional areas, not tested. There were issues which made
analyzing this data difficult, but test quality was improved.

– Trial 3: A traditional 3-tier client/server product with a stable set of
features with good customer satisfaction.

– Result: Coverage was measured to be high with few duplicate test cases.
The process was very easy to introduce and it was cost effective.

5

Measuring Test Effectiveness – 9

Test Coverage Case Studies (continued)

� Measurement by Inspection of Structure:
– Trial 4: A legacy mainframe product with limited documentation and a

large regression package.
– Result: Coverage was used to document why several areas were not tested.

Coverage was used successfully for economic justification.

� Measurement by Inspection of Functionality:
– Trial 5: An emerging client/server product with up-to-date specifications

and documented designs.
– Result: Coverage was evaluated based on documented work-flows. A few

additional test cases were created based on this analysis.

Measuring Test Effectiveness – 10

Comparing Test Coverage

Project DB

release 6.0 = 67%
release 8.5 = 90%

Which project made the most improvement?

+10%

+23%

}

}

release 7.0 = 90%
release 7.1 = 100%

Project PW

6

Measuring Test Effectiveness – 11

Defining Normalized Test Coverage

� Problem: How do you make test coverage results comparable
across releases and projects?

� Simple approach:
– Calculate the size of each coverage item.

� Granularity of coverage items based on:
– System size
– Scope of the coverage analysis
– Total number of items counted

Measuring Test Effectiveness – 12

Normalized Test Coverage Results

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.1 1 10 100 1000 10000 100000

Code Functional Structural Requirements

7

Measuring Test Effectiveness – 13

Interpreting Normalized Test Coverage

X-axis = detail

+ -

Y-axis = % items tested
+

-

Pos
itiv

e

Trend

+

+

Measuring Test Effectiveness – 14

Changes in Test Coverage

Explanation:
Extra test cases created
to fill uncovered holes.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 1 10 100 1000 10000 100000

Project DB R7.0 R7.1
Coverage 90% 100%
System Size 4,927K 4,979K
Scope 20% 20%
Total 86 88
Tested 77 88
Units function function

8

Measuring Test Effectiveness – 15

Changes in Test Coverage

Explanation:
Changed scope and
method from detailed,
localized approach to
generalized, global
approach.

Project PW R6.0 R8.5
Coverage 67% 90%
System Size 303K 352K
Scope 5% 100%
Total 18,527 104
Tested 12,334 94
Units blocks function

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 1 10 100 1000 10000 100000

Measuring Test Effectiveness – 16

Observations

� Numerical coverage results depend upon many implicit
assumptions that can make comparisons misleading.

� White-box code coverage tools can improve the quality of black-
box system testing. But, code coverage technology has
limitations that prevent the collection of test coverage data for
complex systems.

� Code coverage is rigorous, but not always useful.

� Functional coverage may not be objective and repeatable, but it
can be very beneficial, if used properly.

9

Measuring Test Effectiveness – 17

Conclusions

� Measuring test effectiveness is key for improving and optimizing
the overall testing process.

� Test coverage is a fundamental approach for evaluating the
effectiveness of testing.

� Using multiple forms of test coverage together can yield
stronger results.
(e.g. requirements traceability, plus coverage of structural components)

QW2000 Paper 3W1

Mr. Alberto Savoia
(Velogic Inc.)

The Science of Website Load Testing

BACK TO QW2000 PROGRAM

Key Points

Introduction and description to the key variables and metrics for load testing websites.●

Innovate methodology for developing and validating highly realistic load scenarios using the concept of a
WebSite Usage Signature.

●

Practical tips, advice, and hard-learned lessons on website load testing.●

Presentation Abstract

The concept and practice of software load testing has been around for many years, but the advent
and exponential growth of the Internet has created a situation that has taken the magnitude,
complexity, and importance of load testing to a whole new level. In this paper we present the overview
of a methodology for approaching the very challenging task of load testing Internet websites in a
rigorous and systematic manner, in order to collect, realistic and reliable data about a websiteÆs
capacity and scalability. In the first part of the paper, we introduce, define, and explain the key
variables and metrics that are used to understand, analyze, and generate highly realistic load tests for
Internet websites.

In the second part, we introduce and explain the concept of Website Usage Signature (WUS) and use
it to describe the process for developing and validating load testing scripts and scenarios that
accurately match the way a website is used and navigated by real users. In the final section, we
address some of the practical problems and concerns associated with the actual execution of website
load tests.

About the Author

Alberto Savoia is founder and CTO of Velogic Inc., a professional services company that specializes
in website load testing. In his 15-year career he has been consistently and passionately committed to
improve the state of the art in software testing through the use of formal methods and automation, and
has been granted several software patents, including 2 US patents in the area of test automation.
Prior to Velogic, Mr. Savoia was founder and General Manager of SunTest, a business unit of Sun
Microsystems that developed and marketed award-winning Java testing tools for API, GUI, and load
testing.

Before SunTest, Mr. Savoia, was Director of Software Research at Sun Microsystems Laboratories

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/3W1.html (1 of 2) [4/28/2000 2:29:38 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

where, among other projects, he started and led the ADL (Assertion Definition Language) project, a
highly successful, 3-year, $4M, joint international research effort in automated test generation for
object oriented systems.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/3W1.html (2 of 2) [4/28/2000 2:29:38 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Software and Internet Quality Week 2000 - The Science of Website Load Testing
1

© 2000 Velogic Inc.

The eLoadTesting™
Company

The Science of
Website Load Testing

Alberto Savoia
Chief Technical Officer

Velogic Inc.

Software and Internet Quality Week 2000 - The Science of Website Load Testing
2

© 2000 Velogic Inc.

The eLoadTesting™
Company

Outline

– How website load testing differs from more traditional
enterprise load testing

– Why website load testing is absolutely critical for
eBusiness success

– Why realism and accuracy are critical to load testing
– Why most website load tests are wildly inaccurate
– The key principles for developing highly accurate,

realistic, and useful website load tests

2

Software and Internet Quality Week 2000 - The Science of Website Load Testing
3

© 2000 Velogic Inc.

The eLoadTesting™
Company

Comparison of Website to
Traditional Enterprise Load Testing

Failures highly visibleFailures are only noticed
internally

Risk

Plus firewalls, routers, hosting
company, caching systems,
…

LAN, centralized HW and
SW

System variables

Unpredictable and
uncontrollable

Predictable and
controllable

User behavior
and variables

Unpredictable and potentially
unlimited

Predictable and limitedTransaction
volumes

Website Load TestingTraditional Enterprise
Load Testing

Key Factors

Software and Internet Quality Week 2000 - The Science of Website Load Testing
4

© 2000 Velogic Inc.

The eLoadTesting™
Company

Why Websites Need
Load Testing

Website
Performance
And Uptime

eUser
Satisfaction

Revenue
Profits

Market Cap.
Brand

Load testing helps you understand, anticipate, and pre-empt
performance and uptime problems that can lead to major
eBusiness disasters and/or chronic minor losses .

The Fundamental Theorem of Website Performance and Availability

3

Software and Internet Quality Week 2000 - The Science of Website Load Testing
5

© 2000 Velogic Inc.

The eLoadTesting™
Company

Website Load vs.
Website Response Time

Website Load
(Number of concurrent users)

Website
Response
Time

Good
(0 - 8 sec.)

Borderline
(9 – 15 sec.)

Unacceptable
(15 – 30 sec.)

Virtually
Offline
(> 30 sec.)

Crash

The 8 Second Barrier

Software and Internet Quality Week 2000 - The Science of Website Load Testing
6

© 2000 Velogic Inc.

The eLoadTesting™
Company

User Abandonment vs.
Website Response Time

Website Response Time à

25%

50%

75%

100%

Good Virtually
Offline

Percentage
Of Users Who
Will Abandon
The Website

Borderline Unacceptable

4

Software and Internet Quality Week 2000 - The Science of Website Load Testing
7

© 2000 Velogic Inc.

The eLoadTesting™
Company

The Business Impact of Load

$0

$1,000

$2,000

$3,000

$4,000

$5,000

$6,000

500 1000 1500 2000

Realized Revenue / hr
Lost Revenue / hr

Concurrent Users

Software and Internet Quality Week 2000 - The Science of Website Load Testing
8

© 2000 Velogic Inc.

The eLoadTesting™
Company

Realism and Accuracy Are
Critically Important

• Realism
– The simulated load must closely match the real load

• Accuracy
– The measurements taken during the test must provide sufficient

detail and granularity

• An unrealistic or inaccurate load test can be dangerously
misleading:
– Overestimating your capacity can lead to problems when the real

load hits
– Underestimating your capacity can cause unnecessary delays and

cost additional $ for unnecessary HW and resources

5

Software and Internet Quality Week 2000 - The Science of Website Load Testing
9

© 2000 Velogic Inc.

The eLoadTesting™
Company

How Realistic and Accurate Do
You Really Have to Be?

• Zona Research experiment*
– Log files showed that a company’s 40Kb (~8 seconds to load)

home page had a 30% abandonment rate.
– The company tweaked the home page to 34Kb (~7 seconds to

load).
– Abandonment rate fell immediately from 30% to 6-8%.
– All for one (1) tiny second difference in load time.

• Conclusion:
– Most test scripts are patient, most real users are not.
– Your load testing measurements should be as accurate as possible.

Every second counts!

* “The Economic Impact of Unacceptable Web-Site Download Speeds” , Zona Research Inc. April 1999

Software and Internet Quality Week 2000 - The Science of Website Load Testing
10

© 2000 Velogic Inc.

The eLoadTesting™
Company

The Science and Art of Realistic and
Accurate Website Load Testing

• Aim for 80% “science” and 20% “art”
• Systematically capture and standardize load

parameters from real world usage
– Identify and track the key load metrics
– Web site Usage Signature (WUS)

• Develop a realistic and accurate load generation
model
– Online behavior profiling
– User demographics

1

Software and Internet Quality Week 2000 - The Science of Website Load Testing
11

© 2000 Velogic Inc.

The eLoadTesting™
Company

Key Server-Side Load Metrics

• Examples of server-side website usage metrics
– Generic

• Average pages per session
• Average hits per page
• Average session duration
• …

– Custom
• Purchases to sessions ratio
• Stock quotes per sessions
• Database searches per session
• …

Software and Internet Quality Week 2000 - The Science of Website Load Testing
12

© 2000 Velogic Inc.

The eLoadTesting™
Company

Sample WUS
 Average and Peak Load WUS

Metric Avg. Load

Metrics

Peak Load
Metrics

Comments

Sessions per hour 10,340 105,232 The average session duration,
page views, and hits are all
considerably smaller during peak
loads.

Most notably, a 10x increase in
number of users caused only a 3x
increase in hits per hour.

Page view per hour 97,200 456,708
Hits per hour 602,640 1,806,343
Average session duration 6:36 3:23
Average page views per session 7.20 4.34

Average hits per session 58.28 17.16

0 %

5 %

1 0 %

1 5 %

2 0 %

2 5 %

3 0 %

3 5 %

4 0 %

4 5 %

P e r c e n t a g e o f
R e q u e s ts

Hom
e

New
. A

cc
t.

Quo
te

Buy
/Se

ll

St
atu

s/B
ala

nc
e

P a g e C a t e g o r y

P a g e R e q u e s t D is t r i b u t io n (A v e r a g e v s . P e a k)

A v e r a g e
P e a k

2

Software and Internet Quality Week 2000 - The Science of Website Load Testing
13

© 2000 Velogic Inc.

The eLoadTesting™
Company

Gathering Data for the WUS
(Log Analyzers – Use With Care)

WebTrends Analog WebAlizer
Total Hits 1,667,256 1,886,952 1,920,405
Total Hits (Successful) 1,651,522 1,869,464 N/A
Total Hits (Failed) 15,734 17,488 N/A
Total Page Views 364,303 112,154 232,931
Total Kbytes Served 5,993,150 6,930,039 6,934,837
Avg. Kbytes served per page 16.45 61.79 29.77
Avg. Hits (Successful) Per Page 4.53 16.67 N/A
Total User Sessions 16,136 N/A 36,612
Avg. Session Length (minutes) 19:17 N/A N/A
Avg. Pages Per Session 22.58 N/A 6.36

Whatever log analysis tool and metrics you use, make sure you
use them consistently. The lack of standardization makes log
analysis data non-portable.

Software and Internet Quality Week 2000 - The Science of Website Load Testing
14

© 2000 Velogic Inc.

The eLoadTesting™
Company

Creating Realistic Loads

Online Behavior Variables

Read/write/think time
Latency tolerance
Tenacity
Familiarity with site
…

User Demographic Variables

Geographic location
Connection speed
Access time
…

Load testing realism is achieved by creating scripts and
scenarios that take into account a number of key variables
about website users and their equipment/location/configuration.

3

Software and Internet Quality Week 2000 - The Science of Website Load Testing
15

© 2000 Velogic Inc.

The eLoadTesting™
Company

Applying Behavior Variables
Latency Tolerance Simulation

Latency Tolerance % of Users

Page
Response
Threshold

(sec)

Effect on Script

Low
25% 8 Terminate script if 2

consecutive pages
exceed the page
response threshold

Medium 50% 16

High 25% 24

Familiarity Simulation

Familiarity % of Users
R/W/T
Multi-
plier

Effect on Script

First-time users 35% 2.0 The read/write/think
time is adjusted for
each type using the
specified multiplier.

Returning users 55% 1.0

Experienced users 10% 0.5

Software and Internet Quality Week 2000 - The Science of Website Load Testing
16

© 2000 Velogic Inc.

The eLoadTesting™
Company

User Speed Affects Load

Slow
User

Fast
UserServer

= Read, Think, Write Time = Server loading

4

Software and Internet Quality Week 2000 - The Science of Website Load Testing
17

© 2000 Velogic Inc.

The eLoadTesting™
Company

User Tolerance Affects Loads

Time à

Target
Number
Of Users

Average
Response
Time (sec)

16

32

This is not a
realistic load
situation.

What does it really
tell you?

It tells you what the
load would be if
you had incredibly
patient users willing
to wait a VERY
long time to get
their pages.

Since this will
never happen,
what’s the value of
this?

 8

Typical load test results:

Software and Internet Quality Week 2000 - The Science of Website Load Testing
18

© 2000 Velogic Inc.

The eLoadTesting™
Company

User Tolerance Affects Loads

Time à

Number
Of Users

Average
Response
Time (sec)

16

32

The number of
actual users never
reaches the planned
number because the
slow response
turned people away.

This is what
happens in the real
world.

 8

= Completed

= Attempted

= Satisfied

Realistic load test results:

5

Software and Internet Quality Week 2000 - The Science of Website Load Testing
19

© 2000 Velogic Inc.

The eLoadTesting™
Company

Scripts and Sessions

Page Request Distribution

Page % requests

Home 58%

Product Info 31%

Buy 11%

Script Distribution

Script % execution

Script 1: HomeàExit 47%

Script 2: HomeàProduct InfoàExit 35%

Script 3: HomeàProduct InfoàBuyàExit 18%

Definitions
Script: a sequence of page requests by a simulated user
Scenario: a combination of scripts

Scenario Objective: match the target page request distribution

Software and Internet Quality Week 2000 - The Science of Website Load Testing
20

© 2000 Velogic Inc.

The eLoadTesting™
Company

Conclusions

• Web site load testing is very different from traditional load
testing and requires new tools and new approaches.

• Most website load tests are wildly inaccurate and
unrealistic and consequently useless and/or dangerously
misleading.

• Accurate and realistic website load tests should include:
website usage signature + online behavior profiling + user
demographics.

• Approach website load testing as 80% science and 20%
art.

The Science of Website Load Testing © 2000 Velogic Inc.

 1

The Science of Website Load Testing

Alberto Savoia
Chief Technology Officer

Velogic Inc.

1 Introduction

The concept and practice of software load testing has been around for many years, but
the advent and exponential growth of the Internet has created a situation that has taken
the magnitude and complexity of load testing to a whole new level. Traditionally,
systems that required load testing existed in private LAN/WAN networks and were
accessed at rather predictable times, with rather predictable patterns, by a relatively
well known and predictable group of people. A website on the open Internet, on the
other hand, is subject to highly unpredictable load patterns by a widely heterogeneous
and unpredictable group of users. In the extremely competitive world of the Internet,
unacceptable website performance and availability because of excessive loads can
cause serious harm to a company’s bottom line, market value, and brand. For these
reasons, knowing the capacity and scalability of business and mission critical websites
is extremely important, and proper load testing is the best way to acquire this
knowledge. When load testing is not done properly, the results are at best useless and,
in the worst case, misleading, causing a company to either underestimate or
overestimate a site’s capacity. This wrong result could cause unnecessary expenses,
delays or potentially disastrous business decisions.

In this paper, we present the overview of a method for approaching the very new and
challenging task of load testing Internet websites in a rigorous, systematic, and
repeatable manner. Scientific load testing allows companies to collect realistic, useful,
and reliable data about a website’s capacity and scalability.

In the first part of the paper we explain the key variables and metrics we use to
generate highly realistic load tests for Internet websites. While some of these variables
and metrics are the same ones used in more traditional, non-Internet, load testing
situations, most have either been tuned for the specific requirements of websites or
have been developed specifically for them.

In the second part of the paper, we introduce and explain the concept of Website Usage
Signature (WUS), a very effective and systematic way for combining and presenting the
above mentioned metrics.

In the final section, we describe the process for developing and testing load scripts and
scenarios that accurately match the way a website is used and navigated by real users.

The Science of Website Load Testing © 2000 Velogic Inc.

 2

2 Key Variables and Metrics for Internet Load Testing

In this first section of the paper we introduce and explain some of the variables and
metrics that are used to analyze and reproduce website loads. We partition these
variables and metrics into the following categories:

• Server-side variables and metrics

− Basic variables
− Derived variables

• Client-side variables and metrics

− Online behavior variables
− Client system variables

Basic Server-side Website Usage Variables and Metrics

This first set of variables and metrics provides a very high-level description of a
website’s traffic and usage patterns from the server’s point of view. This description is
easy to understand. Like a car’s MPG rating, taken in isolation, these are coarse
averages, measured over a wide range of conditions, so “your actual mileage may
vary.” Nevertheless, like an MPG rating, their usefulness and directness make up for
their lack of detail. Furthermore, when used as a set rather than in isolation, their
interrelationships weave a picture that provides real insight into the way a website is
used. These basics variables and metrics are:

• Total page views per week

• Total hits per week

• Total user sessions per week

• Average session duration

• Average page size

• Average hit size

All of these metrics can easily be derived from log files using a basic log analyzer. They
are described below.

Total Page Views Per Week

A page view is the request of a single web page with all its embedded objects. This
simple metric is the number you’d like to have if you can only have one number to
gauge a website’s traffic. We chose page views (rather than page hits or bytes
transferred) as the parameter for the numerator because this is the most intuitive and
most commonly used unit for describing the traffic or size of a web page. We chose
one week as the denominator because using anything less than that for a sample (i.e. a

The Science of Website Load Testing © 2000 Velogic Inc.

 3

day or an hour) fails to take into account some very common cyclic patterns that happen
within a week, such as a much lighter volume on week-ends for business or financial
sites. Longer time samples (i.e. a month or a year) are also inappropriate because in
the highly dynamic world of the Internet, things can change dramatically in such time
frames.

Total Hits Per Week

A hit is any request for a file received by the server, including images, sound files, and
any other type of file that is requested along with a page request.

Total User Sessions Per Week

A user session is the visit to the web site where the interval between page requests
from that user does not exceed a pre-determined time (we use 30 minutes).

Ideally, a user session would be defined as a visit by a unique user. The problem with
this definition is that the concept of unique user is easier to describe than to measure.
It’s important to understand that, unless you do a retinal scan on your visitors, the
information you get is not going to be as accurate as you might like. However, knowing
unique users is still extremely useful and necessary for load testing. Having ruled out
retinal scans, the best way to know that a user is unique is to request a user name and
password every time the user visits the website. This is clearly slow and impractical for
most websites. The next most accurate way to determine the uniqueness of a user is to
use cookies (pieces of identification information put on the user’s hard disk by the
website.). The intrusiveness of this method, the fact that it’s possible for a single system
to be used by multiple users, and the reality that many users disable cookies altogether
makes this approach less than ideal and inaccurate. The final way to determine the
uniqueness of a user is to use IP addresses. While this approach is the easiest and
least intrusive of the three, it is the least accurate because most Internet Service
Providers (ISPs) use caching and load balancing schemes that can make a single user
appear as multiple users, or multiple users appear as a single user.

Despite possible inaccuracies due to the difficulty in identifying unique users, average
user sessions per week is a critical metric for website load testing because the only
practical way to load test a website is to simulate actual users and actual user sessions
navigating from one page to the next (rather than, say, simply requesting disconnected
pages). Fortunately, the inaccuracies introduced by leveraging cookies or IP addresses
can be mostly neutralized by being aware of their potential inaccuracies and, more
importantly, by standardizing on one method and definition for identifying unique users
and using it consistently throughout the entire load testing cycle.

The Science of Website Load Testing © 2000 Velogic Inc.

 4

Average Session Duration

This is the amount of time the average user session lasts, measured in minutes and
seconds, from the first page request until the last byte of the last requested page is
served. All the caveats about user session measurements also apply.

Average Page Size

This is the size, in Kbytes, of a page view. This includes all frames, images, etc. for that
page.

Average Hit Size

This is the average size of a hit measured in Kbytes.

Derived Website Usage Variables and Metrics

The basic variables and metrics described in the previous session can be combined to
yield an additional set of very useful metrics:

• Average pages per session—calculated by dividing total page views by total
user sessions.

• Average hits per page—calculated by dividing the total number of hits by the
total number of page views.

• Average page viewing time—calculated by dividing average pages per session
by average session duration.

Website Specific Variables and Metrics

The metrics introduced in the previous sections are common and should be used on all
websites, but, in addition, each website should track some metrics that are specific to its
mission. An eCommerce website, for example, should track what percentage of user
sessions result in an actual purchase, since such a transaction exercises and loads very
specific subsystems (e.g. credit card authorization, secure server) whose performance
is critical to the success of the website. Similarly, an online broker might want to keep
track of how many stock quotes per session are requested by the average user, ratio of
quotes to trades, etc.

Once the values for these variables have been collected, you begin to form a basic
picture of what the website traffic looks like and what a realistic load simulation should
look like.

The Science of Website Load Testing © 2000 Velogic Inc.

 5

Client-side Variables and Metrics

In our context, clients are people who visit a website and navigate it using a web-
browser. The loads generated and the website response time experienced by these
people can vary greatly depending on a number of what we call “client-side” variables.
These variables fall into two major categories: online behavior variables and client
system variables.

Online Behavior Variables

As the name suggests, online behavior variables deal with behavioral differences
between users. Some users, for example, read web pages and navigate websites
faster than others; we call this difference User Interaction Speed. Interaction speed is
very relevant because, in a given amount of time, a fast user is able to go through more
web pages than a slower user. This results in more requests, and therefore a higher
load, for the website under test. These variables are used in combination with other
Website Usage Signature variables to create realistic distributions.

Let’s say, for example, that the average viewing time for a website’s home page is 53
seconds. Although this number is extremely useful, it’s just an average. A slow visitor
unfamiliar with the website may spend 2 minutes on the home page, while a fast visitor
who is already familiar with the site may stay on it for just a couple of seconds before
navigating to another page. A load test that does not consider these variations is simply
not realistic and will generate misleading results. By combining the average viewing
time with the user interaction speed variable and taking into account the user’s
familiarity with the website, you create loads that simulate real usage much more
accurately.

Some of the key online behavior variables to consider for website load testing are:

• Interaction speed—as already mentioned, this is a measure of how rapidly a
user processes a web page and navigates to another page.

• Latency tolerance—a measure of how long a user will wait for a web page to
load before taking some action (e.g. abandon the website, hit reload). At the
present time, there is a widely used rule of thumb which says that most users will
wait approximately 8 seconds for a web page to load and, after that time, they
will start thinking about taking some other action.

• Tenacity—a measure of how determined a user is to accomplish something on
the website. A user may have a low latency tolerance, but if the task they want
to accomplish is extremely important to them (e.g. sell a stock during a steep
market correction), the user will adjust his or her tolerance accordingly and will
endure waits longer than usual.

The Science of Website Load Testing © 2000 Velogic Inc.

 6

• Familiarity—a measure of how well a user knows the website. It can be
assumed that frequent visitors to a website know how to navigate it and where to
go; they will process certain web pages more rapidly than new users.

Client-System Variables

Online behavior variables deal with differences between humans; client-system
variables deal with differences between the hardware, software, and location of the
client system.

Some of the key client-system variables to consider for website load testing are:

• Connection speed—how quickly the user can access the site. In terms of load
and user experience, the difference between a 56K modem and a T1 line are
very significant. It’s important to know the percentage of users in each
connection speed category and use that distribution in the scenarios.

• Location—in what geographic region is the user. A user’s geographic location
affects a number of key variables that have a significant impact on load. The
number of “hops” and the backbone speeds in the path between the website and
the client system, for example, determines how fast the packets will travel and
how many packets are dropped.

• Software/Hardware configuration—depending on the website, variables such
as type of browser, browser plug-ins, type of OS, or CPU speed, may have a
significant impact on load.

 Determining The Values of Client-Side Variables

Several methods and assumptions can be used to determine the values and ranges for
these variables. Again, a careful analysis of the website log files provides you with
some basic guidelines. There are many commercial and freely available tools that
directly provide you basic information (e.g. browser type, geographical location). Other
variables may require a bit more work. To determine the interaction speed values and
distribution, for example, you could select a few specific web pages and extract from the
log the average and standard deviation for the viewing time for each of those pages.
With this information, you can easily create a statistically significant model for
interaction speed. Some of the variables require significantly more work. To identify the
variables and distribution for familiarity, for example, you may need to first distinguish
new users from returning users and then analyze how their page viewing times vary.

In the absence of log files, or the lack of time or resources for detailed log analysis, you
can leverage some of the metrics and statistics collected by companies such as
Nielsen//NetRatings, Keynote, or MediaMetrix. Nielsen//NetRatings, for example,
provides data on average page viewing times and user session duration based on a
very large sample space of users and websites. Although these numbers are not from
your specific website, they can work quite well as first approximations.

The Science of Website Load Testing © 2000 Velogic Inc.

 7

You can also run simple in-house experiments using employees and their friends and
family to determine, for example, the page viewing time differences between new and
returning users. As a last resort, you can use your intuition, or best guess, to determine
these variables’ average value and standard deviation, and assume a normal
distribution for their ranges. For realistic load tests, even this last approach is
preferable to ignoring these variables and creating a load test where every user comes
from the same location, uses the same access speed, spends exactly 57 seconds on
each page, and waits until a server timeout to abandon the website.

The Science of Website Load Testing © 2000 Velogic Inc.

 8

3 Website Usage Signature

A load test that does not reflect actual usage is at best useless, and it could be
dangerously misleading (e.g. causing a company to either overestimate of
underestimate the capacity and scalability of their website, with potentially disastrous
consequences). In the previous section we introduced and defined some of the key
variables and metrics used in website load testing; in this section we describe how such
metrics are used systematically to design, develop, and test load scenarios that
simulate, as accurately as possible, real load situations.

To measure how closely a load test matches real world usage, we developed the
concept of Website Usage Signature (WUS). The WUS is a set of metrics and
measurements that, taken collectively, yield a very comprehensive picture of website
activity. If the WUS from a load test does not match closely the WUS from actual usage,
you should seriously question the validity and applicability of any conclusion drawn from
the tests. Conversely, if the two WUS’s are well matched, then your level of confidence
that any results apply to real world situations increases considerably.

Since every website is unique and needs to track site-specific metrics, there is no
standard format or standard set of metrics for the WUS. Factors unique to each website
determine which metrics to include. The important thing is to include enough
measurements to make it very difficult for two signatures to match closely unless the
two loads are also closely matched. If, as a trivial example, we use a WUS that tracks
pages/session, but does not track average page size, our scripts may be biased toward
substantially smaller pages, and capacity predictions from the load test could be
dangerously over optimistic.

The following is an example of a WUS:

Website Usage Signature for sample.com

Metric
Results from
Actual Usage

(Averages for 1-hr samples
taken during the week of Jan.

24, 2000)

Page view per hour 97,200
Hits per hour 602,640
Average session duration 6:36
Average page views per session 7.20
Average hits per page 6.2
Average number of quotes per session 4.5
Average number of trades per session 0.34

The Science of Website Load Testing © 2000 Velogic Inc.

 9

You can increase the precision of a WUS by applying additional statistics to some of the
metrics. Instead of simply reporting average session duration, for example, a WUS
might include all of the following statistics for session duration.

Session Duration Statistics

Average 6:36
Median 6:02
Standard deviation 3:18
Minimum 0:32
Maximum 32:56
Percentage less than 2 minutes 12%
Percentage more than 12
minutes

8%

 Page Requests Distribution

The WUS metrics we have discussed so far are extremely important to determine the
size of the traffic. However, since not all pages or hits are equal, it’s equally important to
analyze what pages (or types of pages) are requested and in what percentages. To
collect and present this information, we use the concept of page requests distribution. A
page request histogram, shown below, provides an easy way to look at the distribution
of pages.

0%

5%

10%

15%

20%

25%

30%

35%

Percentage of
Requests

Hom
e

New
. A

cc
t.

Quo
te

Buy
/S

ell
Sta

tu
s/B

ala
nc

e

Page Category

Page Request Distribution

The Science of Website Load Testing © 2000 Velogic Inc.

 10

Page request distribution should be a key part of any WUS, because when planning and
designing load test scripts and scenarios matching page requests is one of the most
important factors in achieving realistic loads.

Tracking WUS Changes

A website’s WUS can change dramatically during peak load periods. During a normal
trading day, for example, the average session on an online brokerage website may
have a ratio of quotes to trades of 14 to 1, because most people are simply checking on
their stocks rather than buying or selling them. On a day when the market is dropping
sharply, on the other hand, the quotes–to-trades ratio may change to 5 to 1, as many
people decide to sell in a panic. Since trades put a significantly higher load than
quotes on the website, this would be a key WUS to track and analyze. A load scenario
for a sharp market correction should be significantly different than a load scenario for an
average high-volume day. Similar dramatic differences in WUS can be expected on
eCommerce sites during special promotions or advertising campaigns or on portals or
news sites when big news breaks.

Sharp increases in volume are accompanied by substantial changes in WUS.
Designing and tracking a WUS with the right variables provides you with invaluable
insight for creating highly realistic loads for very different scenarios.

The following table and chart show how the WUS can change as the load shifts from
average to peak.

Average WUS vs. Peak Load WUS

Metric
Average

Load
Metrics

Peak Load
Metrics Comments

Sessions per hour 10,340 105,232
Page view per hour 97,200 456,708
Hits per hour 602,640 1,806,343
Average session duration 6:36 3:23
Average page views per
session

7.20 4.34

Average hits per session 58.28 17.16

The average session
duration, page views, and
hits are all considerably
smaller during peak
loads.

Most notably, a 10 time
increase in number of
users caused only a 3
time increase in hits per
hour.

The Science of Website Load Testing © 2000 Velogic Inc.

 11

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Percentage of
Requests

Hom
e

New
. A

cc
t.

Quote

Buy
/S

el
l

Sta
tu

s/
Bal

an
ce

Page Category

Page Request Distribution (Average vs. Peak)

Average
Peak

As the table and chart show, the WUS differences between average and peak load can
be dramatic; if they are not studied and taken into account, the conclusions from the
load test would be highly questionable. In the example above, for instance, there is a
difference of 2.86 page views per session between average and peak load. If you do
not account for an approximately 40% reduction in page views between these two
scenarios, for example, and use the 7.20 page views per session number in a peak load
scenario (instead of 4.34) the session capacity reported by the test will be less than the
actual capacity under peak load behavior.

The Science of Website Load Testing © 2000 Velogic Inc.

 12

4 Creating Realistic Loads

Having a Website Usage Signature reduces the guesswork and greatly simplifies the
task of creating and testing realistic load scenarios. This task can be systematically
approached as follows:

1. Develop the scripts and scenarios to achieve the desired page request
distribution.

2. Modify the scripts and scenarios to take into account client-side variables.

3. Execute the scenarios and compare the resulting WUS to the target WUS. If the
differences between the two WUS’s are not within your specified tolerances
make the necessary adjustment and go back to step 1 and 2.

Developing Scripts and Scenarios

The first step is to develop a set of session scripts that can be combined in various
proportions to achieve the desired page request distribution. Many log analyzers report
the most common paths through a site and, in many cases, the top 10 or 20 paths
through the site are representative of 80% or more, of all visits. If a report on the most
common paths is unavailable or too broadly distributed to be helpful, you can deduce
the required scripts by using the page request distribution, as the following trivialized
example shows.

Assume that you have a website with three pages: Home, Product Info, and Buy, and
that an analysis of the log files results in the following page request distribution:

Page Request Distribution
Page % requests
Home 58%
Product Info 31%
Buy 11%

To be able to achieve this distribution you need to develop at least three scripts:

• Script 1: HomeàExit

• Script 2: HomeàProduct InfoàExit

• Script 3: HomeàProduct InfoàBuyàExit

The Science of Website Load Testing © 2000 Velogic Inc.

 13

After deciding what scripts to develop, you must decide in what proportions those
scripts should be executed to achieve the desired page request distribution. In this
case, the script distribution should be:

Script Distribution
Script % execution
Script 1: HomeàExit 47%
Script 2: HomeàProduct InfoàExit 35%
Script 3: HomeàProduct InfoàBuyàExit 18%

If 100 scripts are executed using this script distribution, your page requests will be:

• Home Page: 100 requests (47 from script 1 + 35 from script 2 + 18 from script 3)

• Product Info Page: 53 requests (35 from script 2 + 18 from script 3)

• Buy Page: 18 requests (from script 3)

The total number of pages requested from all these scripts is 171 (100 Home + 53
Product Info + 18 Buy). A simple calculation shows that the target page request
distributions will be achieved when the load is executed (e.g. 53 Product Info page
requests represents 31% of all page requests, which is the target distribution.)

Clearly, most websites are significantly more complicated than our three-page example,
but the same principle can be applied to sites of arbitrary complexity.

Modify Scripts and Scenarios to Account for Client-side Variables

The next step in creating a realistic load test is to take into account what kind of users
would be executing these scripts. This is where additional data from the WUS and the
client side variables come into play. Let’s consider, as an example, two client side
variables: latency tolerance and familiarity, and see how they would impact the realism
of the load.

Latency tolerance is an indicator of how long a user will wait for a page to load before
becoming dissatisfied and, possibly, abandon the website. Different users will have
different tolerance levels; some may tolerate loading times of 20 seconds and others will
leave the site if they are made to wait more than 8 seconds for a page to load. A load
scenario can be made significantly more realistic by simulating the behavior of tolerant
and intolerant users. This can be done by assuming a simple distribution and by
modifying the scripts to take latency tolerance into account (e.g. by terminating a script

The Science of Website Load Testing © 2000 Velogic Inc.

 14

if the simulated user experiences response time past its threshold for two consecutive
pages.)

The following table shows a sample latency tolerance distribution and script
modification:

Latency Tolerance Simulation

Latency Tolerance % of Users

Page
Response
Threshold

(sec)

Effect on Script

Low 25% 8
Medium 50% 16
High 25% 24

Terminate script if 2
consecutive pages
exceed the page
response threshold

Familiarity is a major factor in how quickly a simulated user navigates from one page to
the next. As with latency tolerance, different people will behave in different ways: users
that are very familiar with the website move more rapidly (therefore creating more load
per unit of time) than users who are visiting the website for the first time and need to
read and understand how the website is organized to go from one page to the next.
You can use a familiarity simulation table to partition the different types of users and
define how familiarity impacts the script execution:

Familiarity Simulation

Familiarity % of Users

Read,
Write,
Think
Time

Multiplier

Effect on Script

First-time users 35% 2.0
Returning users 55% 1.0
Experienced users 10% 0.5

The read/write/think
time is adjusted for
each type using the
specified multiplier.

The scope and length of this paper prevents us from going through all the possible
client-side variables, but these two examples are indicative of how the simulation of
other client side variables can be approached.

The Science of Website Load Testing © 2000 Velogic Inc.

 15

 Comparing Website Usage Signatures

After the scripts and scenarios have been developed and modified to take into account
client-side variables, they are executed and the resulting log files analyzed to determine
how well the simulated load matches the target WUS. A WUS comparison chart and
page request distribution table makes it easy to spot any differences.

In the following WUS comparison chart, for example, we see that although the page
views per session and hits per session are both within five percent of each other, the
session duration in the load test is 43.7% shorter than during real usage. This major
difference would significantly impact the realism of the test and the accuracy of the
results. The read/write/think time in the scripts should be modified to make the sessions
last longer.

WUS Comparison Chart

Metric

Results from
Actual Usage

(Averages for 1-hr
samples taken during the
week of Jan. 24, 2000)

Results from Load
Test Difference

Page view per hour 97,200 95,665 -1.6%
Hits per hour 602,640 580,443 -3.6%
Average session
duration

6:36 3:43 +43.7%

Average page views
per session

7.20 7.08 -1.6%

Average hits per
session

58.28 56.23 3.5%

The Science of Website Load Testing © 2000 Velogic Inc.

 16

The following page request distribution chart shows another discrepancy between the
load scenario and the target WUS. The percentage of home pages requested by the
load test is significantly less than what the target WUS calls for, while the reverse is true
for quote pages. The script distribution scenario should be changed to make the
simulated load match the target load more accurately.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Percentage of
Requests

Hom
e

New
. A

cc
t.

Quo
te

Buy
/S

ell
Sta

tu
s/

Bal
an

ce
Page Category

Page Request Distribution (Target vs. Load)

Target
Load Test

Achieving a perfect match between load and target WUS is practically impossible, but
you should strive to have all the key WUS components within 5-15% of each other.

The Science of Website Load Testing © 2000 Velogic Inc.

 17

5 Conclusion

Load testing is the most effective way to gauge a website’s capacity and scalability, but
load tests that don’t simulate real scenarios can be dangerously misleading. In this
paper we introduced an approach for planning, developing, executing, and validating
load scenarios that can accurately replicate real loads.

Our systematic method for standardizing, collecting, organizing, and comparing load
testing variables, makes it possible to approach load testing in a rigorous, scientific, and
repeatable, manner. The huge numbers and ranges of variables involved in website
load testing will always present challenges and surprises. This framework gives load-
testing practitioners the necessary tools to study, understand, and control these
variables. Some amount of guesswork will always be required, but we firmly believe
that techniques like the Website Usage Signature can be used to reduce guesswork
significantly and achieve results that are more reliable.

QW2000 Paper 3M1

Mr. Phil Lones
(Lucent Technologies)

A Practical Approach to Testing Software in an
Evolutionary Delivery Environment

BACK TO QW2000 PROGRAM

Key Points

Brief description of Evolutionary Delivery.●

Introduction to steps required to effectively test in an EVO environment●

Detailed process of testing during evolutionary deliveries.●

Presentation Abstract

Are they new processes or just buzzwords? Is it the next "Silver Bullet" or just a passing fad? As a
profession, I believe we jump too often for the newest trend to solve our problems without really
looking at the tools, techniques, and processes already employed.

The evolutionary model or EVO has been used on several projects with great success including the
Message ManagerÖ project here at Lucent Technologies. We have been able to consistently keep the
project within budget and meet scheduled deliveries. However, using Evolutionary Delivery invalidates
traditional test methodologies. Testing becomes an integrated, continuous process throughout the
development life cycle not an "add-on" function at "code complete".

Just as the Evolutionary Delivery model itself requires a different mindset so does "Evolutionary
Testing". We must still employ sound concepts and techniques toward testing but we have to think
about the process differently.

This presentation does not describe any revolutionary new ideas or processes rather it describes a
practical methodology that will produce positive results. I will describe the testing methodology used
on Message Manager and our current project and by applying these techniques, rapid deliveries can
easily be accommodated. Thinking "Evolutionary" has made the testing effort more productive and has
created a better product for our customers.

About the Author

Mr. Philip Lones (Lucent Technologies) [USA] Phil Lones is currently working as the test manager for
PC and web based projects with Lucent Technologies. He has several yearsÆ experience testing
mainframe and client server applications. He presented his paper on Evolutionary Delivery at the 1998
Lucent Software Symposium, local SPIN and ACM chapters and last yearÆs Quality Week

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/3M1.html (1 of 2) [4/28/2000 2:29:47 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Symposium.

Mr. Lones holds an MS degree in Information Systems Management from the University of Colorado
at Denver, a BS degree in Computer Science from Metro State College of Denver and a BS degree in
Electrical Engineering from the University of Washington. He is a member of the Association for
Computer Machinery, the Rocky Mt. Information Managers Association, and SQUAD, Software
Quality Association of Denver.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/3M1.html (2 of 2) [4/28/2000 2:29:47 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

A Practical A Practical ApproachApproach to Testing to Testing
Software in an Evolutionary DeliverySoftware in an Evolutionary Delivery
EnvironmentEnvironment

Philip LonesPhilip Lones
Lucent TechnologiesLucent Technologies

Lucent Technologies - proprietary
2

IntroductionIntroduction

Beta Trials

Deliverables

Analysis

Design

Development Life Cycle

Functional Test

System Test

Integration

Regression Test

Sanity Test

Implementation

Bug Fixes

2

Lucent Technologies - proprietary
3

IntroductionIntroduction

bb Order out of chaosOrder out of chaos

bb Valid processesValid processes

bb Evolutionary Delivery -EVOEvolutionary Delivery -EVO

Lucent Technologies - proprietary
4

Evolutionary DeliveryEvolutionary Delivery

Investigate Plan

Plan

TestDesign Cycle NCycle 2Cycle 1

Design Implement Test

User Feedback

… .

Evolutionary Delivery Model - EVO
Tom Gilb (http://www.Result-Planning.com)

3

Lucent Technologies - proprietary
5

Evolutionary DeliveryEvolutionary Delivery

b Key Concepts

•• Early, frequent iterationEarly, frequent iteration
•• Plan, design, implement and test in each cyclePlan, design, implement and test in each cycle
•• User orientationUser orientation
•• Result orientation, not software developmentResult orientation, not software development

process orientationprocess orientation

Lucent Technologies - proprietary
6

Evolutionary DeliveryEvolutionary Delivery

bb Message Manager™ , www.messenger™Message Manager™ , www.messenger™
•• PlanPlan
•• DesignDesign
•• ImplementImplement
•• TestTest

bb Evolutionary TestingEvolutionary Testing

4

Lucent Technologies - proprietary
7

Evolutionary TestingEvolutionary Testing

bb Change Mindset - not an end of projectChange Mindset - not an end of project
activity.activity.

bb Ongoing activity throughout developmentOngoing activity throughout development
lifecyclelifecycle

bb QuestionsQuestions
•• Why test?Why test?
•• When is enough enough?When is enough enough?

Lucent Technologies - proprietary
8

Evolutionary TestingEvolutionary Testing

bb Test AxiomsTest Axioms
•• Can’t test everythingCan’t test everything

•• Will always have some “bugs”Will always have some “bugs”

•• NO RISK NO GLORYNO RISK NO GLORY

5

Lucent Technologies - proprietary
9

Evolutionary TestingEvolutionary Testing

bb Develop test strategyDevelop test strategy

bb Map to delivery scheduleMap to delivery schedule

bb Execute!!Execute!!

bb Be FlexibleBe Flexible

Lucent Technologies - proprietary
10

Test StrategyTest Strategy

bb Master Test Strategy PlanMaster Test Strategy Plan
•• Identify type of testingIdentify type of testing

–– Sanity, Bug fixes, Functional, Regression, System,Sanity, Bug fixes, Functional, Regression, System,
Performance , etcPerformance , etc

•• Test Cycles - Map to Development Support PlanTest Cycles - Map to Development Support Plan
–– Weekly deliverable - Sanity and Bug fixesWeekly deliverable - Sanity and Bug fixes
–– QFA - functionalQFA - functional
–– Code Complete- Regression, System, PerformanceCode Complete- Regression, System, Performance

6

Lucent Technologies - proprietary
11

Test StrategyTest Strategy

Sanity
Test

MR
Test

QFA

QFA

QFA

Code Complete

Feature Test

Feature Test

Feature Test

Regression, System,
Performance

Development Support Plan Master Test StrategyWeekly Deliveries

Lucent Technologies - proprietary
12

Test StrategyTest Strategy

bb Weekly deliverablesWeekly deliverables
•• Sanity test - basic functionalitySanity test - basic functionality

–– Number of test cases increase as functionality isNumber of test cases increase as functionality is
added - identify areas of risk for test cases.added - identify areas of risk for test cases.

•• MRs (bug fixes).MRs (bug fixes).
–– All MRs introduced into code base are tested.All MRs introduced into code base are tested.

7

Lucent Technologies - proprietary
13

Test StrategyTest Strategy

bb Quality Factor Assessment - QFAQuality Factor Assessment - QFA

 C 7 C 8 C 9 C 10C 11C 12C 1 C 2 C 3 C 4 C 5 C 6

QFA QFAQFA

Functional Test Functional TestFunctional Test

Lucent Technologies - proprietary
14

Test StrategyTest Strategy

bb Functional TestFunctional Test
•• Full feature functionalityFull feature functionality

•• All supported systemsAll supported systems

•• Test to the requirementsTest to the requirements

8

Lucent Technologies - proprietary
15

Test StrategyTest Strategy

bb Code CompleteCode Complete
•• Regression testRegression test

–– Does everything still work?Does everything still work?
–– Supplement Sanity TestSupplement Sanity Test

•• System Test - meets requirementsSystem Test - meets requirements
–– Customer scenariosCustomer scenarios
–– Identify RisksIdentify Risks

•• Performance/Load - meets requirementsPerformance/Load - meets requirements

Lucent Technologies - proprietary
16

ConclusionConclusion

bb Evolutionary DeliveryEvolutionary Delivery
•• Early and frequent builds to the customerEarly and frequent builds to the customer
•• Plan, Design, Implement, Test in each buildPlan, Design, Implement, Test in each build

bb Evolutionary TestingEvolutionary Testing
•• Continuous throughout life cycleContinuous throughout life cycle

9

Lucent Technologies - proprietary
17

ConclusionConclusion

bb Testing ProcessTesting Process
•• Test Strategy - Tailor to projectTest Strategy - Tailor to project

–– Delivery cycle - Sanity and MR testingDelivery cycle - Sanity and MR testing
–– Functional TestingFunctional Testing
–– Regression, System, Performance TestingRegression, System, Performance Testing

Lucent Technologies - proprietary
18

ConclusionConclusion

Beta TrialsDeliverables

AnalysisDesign

Development Life Cycle

Functional Test

System Test

Integration

Regression Test

Sanity Test

Implementation

Bug Fixes

10

Lucent Technologies - proprietary
19

ConclusionConclusion

bb Principles of Software Engineering, Tom Gilb,Principles of Software Engineering, Tom Gilb,
Addison-Wesley, 1988Addison-Wesley, 1988

bb The Evolutionary Project Managers Handbook,The Evolutionary Project Managers Handbook,
bb Tom Gilb, manuscript, (http://www.Result-Tom Gilb, manuscript, (http://www.Result-

Planning.com)Planning.com)
bb Lones@lucent.comLones@lucent.com

QW2000 QuickStart 3Q

Mr. Robert Binder
(RBSC Corporation)

Best Practices for Object-Oriented Systems

BACK TO QW2000 PROGRAM

Key Points

Lessions Learned●

State of the Art●

Stat of the Practice●

About the Author

Robert V. Binder has over 22 years of software development experience. He is President of RBSC
Corporation, providing consulting and training in software engineering and software process
improvement since 1984. He is author of "Application Debugging" (Prentice-Hall, 1985). "Testing
Object-Oriented Systems" is under contract with Addison-Wesley. He writes a regular column on
testing for "Object" magazine. His articles have appeared in American Programmer, Communications
of the ACM, Computerworld, CASE Outlook, CASE Trends, Database Programming and Design,
IEEE Computer, Journal of Knowledge Engineering, Journal of Software Testing, Verification, and
Reliability, and Software Development.

He is the Chair of a newly formed study group to develop an IEEE standard for built-in test for
object-oriented software. Mr. Binder has an MS in Electrical Engineering and Computer Science from
the University of Illinois at Chicago, and a BA and MBA from the University of Chicago. He is an IEEE
Senior Member, a member of the ACM, and holds the CDP and CCP.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/3Q.html [4/28/2000 2:29:51 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 1

Testing Object-OrientedTesting Object-Oriented
Systems: Best PracticesSystems: Best Practices

Robert V. BinderRobert V. Binder
RBSC Corporation www.rbsc.comRBSC Corporation www.rbsc.com

Software Quality Week Quick Start TutorialSoftware Quality Week Quick Start Tutorial

May 31, 2000May 31, 2000

Copyright © 2000, RBSC CorporationCopyright © 2000, RBSC Corporation

Copyright © 2000 RBSC Corporation 2

OverviewOverview
•• Best PracticesBest Practices

•• Test PatternsTest Patterns

•• OO Testing BenchmarksOO Testing Benchmarks

•• Improvement StrategiesImprovement Strategies

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 2

Copyright © 2000 RBSC Corporation 3

Key Practice DimensionsKey Practice Dimensions
•• RepresentationRepresentation

•• Design for TestabilityDesign for Testability

•• Test DesignTest Design

•• Test AutomationTest Automation

•• Process IntegrationProcess Integration

Copyright © 2000 RBSC Corporation 4

RepresentationRepresentation
•• Best PracticesBest Practices

–– UML/OCL 1.0UML/OCL 1.0

–– Syntropy, Design by ContractSyntropy, Design by Contract

–– Design PatternsDesign Patterns

•• ChallengesChallenges
–– ArchitectureArchitecture

–– Limits of cartoonsLimits of cartoons

–– Test design as software engineeringTest design as software engineering

–– Testable representationsTestable representations

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 3

Copyright © 2000 RBSC Corporation 5

Design for TestabilityDesign for Testability

•• Best PracticesBest Practices
–– Frameworks/libraries with assertionsFrameworks/libraries with assertions

–– Lakos’ levelizable architectureLakos’ levelizable architecture

–– Percolation patternPercolation pattern

Copyright © 2000 RBSC Corporation 6

Design for TestabilityDesign for Testability

•• ChallengesChallenges
–– Seamless language supportSeamless language support

–– Object-level BIT servicesObject-level BIT services

–– Runtime spec-checking (assertions)Runtime spec-checking (assertions)

–– OO testability an oxymoron?OO testability an oxymoron?

–– Loss of intellectual controlLoss of intellectual control

–– Entropy horizon about 24 monthsEntropy horizon about 24 months

–– Frameworks and componentsFrameworks and components

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 4

Copyright © 2000 RBSC Corporation 7

Test DesignTest Design
•• Best PracticesBest Practices

–– Test Design PatternsTest Design Patterns

•• ChallengesChallenges
–– Intra-class coverageIntra-class coverage

–– Polymorphic pathsPolymorphic paths

–– Testing for reuse (frameworks)Testing for reuse (frameworks)

–– Validated failure metrics/fault modelsValidated failure metrics/fault models

Copyright © 2000 RBSC Corporation 8

Test Design PatternTest Design Pattern
•• New pattern schema for test designNew pattern schema for test design

Name/Intent
Context
Fault Model
Test Model
Entry Criteria
Exit Criteria
Consequences
Known Uses

Name/Intent
Context
Fault Model
Test Model
Entry Criteria
Exit Criteria
Consequences
Known Uses

Test Model
Test Procedure
Oracle
Automation

Test Model
Test Procedure
Oracle
Automation

Testing Object-Oriented Systems: Models, Patterns,
and Tools. Addison-Wesley.

Testing Object-Oriented Systems: Models, Patterns,
and Tools. Addison-Wesley.

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 5

Copyright © 2000 RBSC Corporation 9

Test Design PatternsTest Design Patterns
•• Method ScopeMethod Scope

–– Category-PartitionCategory-Partition

–– Combinational FunctionCombinational Function

–– Recursive FunctionRecursive Function

–– Polymorphic MessagePolymorphic Message

•• Class/Cluster ScopeClass/Cluster Scope
–– Invariant BoundariesInvariant Boundaries

–– Modal ClassModal Class

–– Quasi-Modal ClassQuasi-Modal Class

–– Polymorphic ServerPolymorphic Server

–– Modal HierarchyModal Hierarchy

Copyright © 2000 RBSC Corporation 10

Test Design PatternsTest Design Patterns
•• Subsystem ScopeSubsystem Scope

–– Class AssociationsClass Associations

–– Round-Trip ScenariosRound-Trip Scenarios

–– Mode MachineMode Machine

–– Controlled ExceptionsControlled Exceptions

•• Intra Class IntegrationIntra Class Integration

–– Small PopSmall Pop

–– Alpha-Omega CycleAlpha-Omega Cycle

•• Integration StrategyIntegration Strategy
–– Big BangBig Bang

–– Bottom upBottom up

–– Top DownTop Down

–– CollaborationsCollaborations

–– BackboneBackbone

–– LayersLayers

–– StarStar

–– MeshMesh

–– High FrequencyHigh Frequency

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 6

Copyright © 2000 RBSC Corporation 11

Test Design PatternsTest Design Patterns
•• System ScopeSystem Scope

–– Extended Use CasesExtended Use Cases

–– Covered in CRUDCovered in CRUD

–– Allocate by ProfileAllocate by Profile

•• Regression TestingRegression Testing
–– Retest AllRetest All

–– Retest Risky Use CasesRetest Risky Use Cases

–– Retest ProfileRetest Profile

–– Retest Changed CodeRetest Changed Code

–– Retest Within FirewallRetest Within Firewall

Copyright © 2000 RBSC Corporation 12

Modal Class Test PatternModal Class Test Pattern

•• IntentIntent
–– Develop a class scope test suite for class Develop a class scope test suite for class

that has fixed constraints on messagethat has fixed constraints on message
sequence.sequence.

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 7

Copyright © 2000 RBSC Corporation 13

Modal Class Test PatternModal Class Test Pattern

•• ContextContext
–– Class modeled with UML StatechartClass modeled with UML Statechart

–– Sequentially constrained behavior can beSequentially constrained behavior can be
very complexvery complex

–– How can we devise a test suite thatHow can we devise a test suite that
exercises all dependencies?exercises all dependencies?

–– E.g, we can’t withdraw funds from anE.g, we can’t withdraw funds from an
overdrawn Account objectoverdrawn Account object

Copyright © 2000 RBSC Corporation 14

Modal Class Test PatternModal Class Test Pattern

•• Fault ModelFault Model
–– Missing transition or actionMissing transition or action

–– Incorrect transition or actionIncorrect transition or action

–– Sneak pathSneak path

–– Incorrect or corrupt stateIncorrect or corrupt state

–– Reaching, Triggering, PropagatingReaching, Triggering, Propagating
•• All conditions metAll conditions met

•• N-switch transition coverN-switch transition cover

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 8

Copyright © 2000 RBSC Corporation 15

Modal Class Test PatternModal Class Test Pattern
•• Test DesignTest Design

class Account extends Object {
/* Java Fragment */

private Money currentBalance;
private int accountNumber;
private Date lastActivity;
public void open() {/* */};
public Money balance() {/* */};
public void credit (Money creditAmt) {/* */};
public void debit(Money debitAmt) {/* */};
public void freeze() {/* */};
public void unfreeze() {/* */};
public Money settle() {/* */};
public void close() {/* */};

}

Copyright © 2000 RBSC Corporation 16

Frozen

OverDrawn

Inactive

Open

Closed

freeze()

unfreeze()

balance()

debit() [b - d < 0.00]

credit() [b + c >= 0.00]

debit() [!customer]

credit() [b + c < 0.00]

balance()

debit()

credit()

after: 5 Years[]

close()

settle()

balance()

Account

Modal Class Test PatternModal Class Test Pattern
•• Test DesignTest Design

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 9

Copyright © 2000 RBSC Corporation 17

Open

Overdrawn

Frozen

Inactive

Closed

Overdrawn

Overdrawn

Overdrawn

Open

Frozen

Open

Inactive

Closed

credit

freeze

unfreeze

Account

balance

balance

settle

debit [!customer]

Open

Open

Open

[(currentYear - lastYear) > 5]

debit

balance

balance

debit [b-d < 0]
credit

credit [b+c >= 0]

[b=0]close

Modal Class Test PatternModal Class Test Pattern
•• Test DesignTest Design

Copyright © 2000 RBSC Corporation 18

Modal Class Test PatternModal Class Test Pattern
•• Test DesignTest Design

Events
States

Open Over Drawn Frozen Inactive Closed

Account PSP PSP PSP PSP PSP

credit T ? PSP PSP PSP

debit ? ? PSP PSP PSP

balance T T T T PSP

freeze T PSP PSP PSP PSP

unfreeze PSP T T PSP PSP

settle PSP PSP PSP T PSP

5 years T PSP PSP PSP PSP

close ? PSP PSP PSP PSP

T = Valid transition PSP = Possible Sneak Path ? = Conditional Transition

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 10

Copyright © 2000 RBSC Corporation 19

Lessons LearnedLessons Learned
•• Class/Cluster test designClass/Cluster test design

–– Super/subclass interaction must be tested:Super/subclass interaction must be tested:
test at flattened scope.test at flattened scope.

–– Design subclass test suites to re-run onDesign subclass test suites to re-run on
superclasses.superclasses.

–– Design superclass test suites to re-run onDesign superclass test suites to re-run on
subclasses.subclasses.

–– Test polymorphic servers for LSPTest polymorphic servers for LSP
compliance.compliance.

Copyright © 2000 RBSC Corporation 20

Lessons LearnedLessons Learned
•• Class/Cluster test designClass/Cluster test design

–– Exercise each binding of a polymorphicExercise each binding of a polymorphic
server messageserver message

–– Test all parameters for genericsTest all parameters for generics

–– Test interface data flow of non-modal classesTest interface data flow of non-modal classes

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 11

Copyright © 2000 RBSC Corporation 21

Lessons LearnedLessons Learned
•• Subsystem/system test designSubsystem/system test design

–– Control easily obscured or accidentalControl easily obscured or accidental
•• Complex dependencies between concreteComplex dependencies between concrete

state and message sequencestate and message sequence

•• Hierarchic control in state-based subclassesHierarchic control in state-based subclasses

•• Mosaic modularity at larger scopeMosaic modularity at larger scope

–– Model behavior with state machines; achieveModel behavior with state machines; achieve
transition cover or bettertransition cover or better

Copyright © 2000 RBSC Corporation 22

Lessons LearnedLessons Learned
•• Subsystem/system test designSubsystem/system test design

–– Objects don’t compose (easily)Objects don’t compose (easily)

–– Producer’s framework should not be inProducer’s framework should not be in
consumer’s test scopeconsumer’s test scope

–– Minimum system/subsystem test includesMinimum system/subsystem test includes

•• Testing exceptionsTesting exceptions

•• Testing class associationsTesting class associations

•• Testing use cases (requires testable content)Testing use cases (requires testable content)

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 12

Copyright © 2000 RBSC Corporation 23

Test AutomationTest Automation
•• Best PracticesBest Practices

–– Test Automation Design PatternsTest Automation Design Patterns

–– Automatic driver generationAutomatic driver generation

–– Simple coverage analyzersSimple coverage analyzers

Copyright © 2000 RBSC Corporation 24

Test AutomationTest Automation
•• ChallengesChallenges

–– Intra-class coverageIntra-class coverage

–– Spec-based test generationSpec-based test generation

–– Testing for reuseTesting for reuse

–– Validated failure metrics/fault modelsValidated failure metrics/fault models

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 13

Copyright © 2000 RBSC Corporation 25

Test Automation PatternsTest Automation Patterns
•• Test CaseTest Case

ImplementationImplementation
–– Test Case/TestSuiteTest Case/TestSuite

MethodMethod

–– Catch All ExceptionsCatch All Exceptions

–– Test Case /Test SuiteTest Case /Test Suite
ClassClass

•• Test ControlTest Control
–– Server StubServer Stub

–– Server ProxyServer Proxy

•• Driver PatternsDriver Patterns
–– TestDriver Super ClassTestDriver Super Class

–– Percolate the ObjectPercolate the Object
Under TestUnder Test

–– Symmetric DriverSymmetric Driver

–– Subclass DriverSubclass Driver

–– Private Access DriverPrivate Access Driver

–– Test Control InterfaceTest Control Interface

–– DroneDrone

–– Built-in Test DriverBuilt-in Test Driver

Copyright © 2000 RBSC Corporation 26

Test Automation PatternsTest Automation Patterns
•• Test ExecutionTest Execution

–– Command Line TestCommand Line Test
BundleBundle

–– Incremental TestingIncremental Testing
FrameworkFramework

–– Fresh ObjectsFresh Objects

•• Built-in TestBuilt-in Test
–– Coherence assertionsCoherence assertions

–– PercolationPercolation

–– Built-in Test DriverBuilt-in Test Driver

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 14

Copyright © 2000 RBSC Corporation 27

Lessons LearnedLessons Learned
•• Test AutomationTest Automation

–– Encapsulation and mosaic modularityEncapsulation and mosaic modularity
decrease controllability and observabilitydecrease controllability and observability

–– Design-by-contract/assertions is the onlyDesign-by-contract/assertions is the only
practical counter-measure for inherent non-practical counter-measure for inherent non-
determinism and loss of testabilitydeterminism and loss of testability

Copyright © 2000 RBSC Corporation 28

Lessons LearnedLessons Learned
•• Test AutomationTest Automation

–– Avoid stubs: increase scope of the IUT orAvoid stubs: increase scope of the IUT or
test in bottom-up ordertest in bottom-up order

–– Design test harness to exploit the structureDesign test harness to exploit the structure
and particulars of the system under testand particulars of the system under test

–– Complete app = app components + testComplete app = app components + test
components under CM controlcomponents under CM control

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 15

Copyright © 2000 RBSC Corporation 29

Test ProcessTest Process
•• Best PracticesBest Practices

–– Testing by scope (about 10%)Testing by scope (about 10%)

–– Many embedded/real-time shopsMany embedded/real-time shops

–– Extreme Programming test approachExtreme Programming test approach

•• ChallengesChallenges
–– High-frequency/short cycle developmentHigh-frequency/short cycle development

–– Planning formal testing with iterativePlanning formal testing with iterative
incremental processincremental process

–– Attitudes about testingAttitudes about testing

Copyright © 2000 RBSC Corporation 30

Test Process BenchmarksTest Process Benchmarks

•• Testing by Poking AroundTesting by Poking Around

•• Testing by Use CasesTesting by Use Cases

•• Testing by ScopeTesting by Scope

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 16

Copyright © 2000 RBSC Corporation 31

Testing by Poking AroundTesting by Poking Around

•• About 70% of all organizationsAbout 70% of all organizations

•• CharacteristicsCharacteristics
–– Developer discretionDeveloper discretion

–– No test entry/exit criteriaNo test entry/exit criteria

–– High tolerance for low qualityHigh tolerance for low quality

Copyright © 2000 RBSC Corporation 32

Testing by Poking AroundTesting by Poking Around

•• Improvement StrategyImprovement Strategy
–– Assess limits of improvabilityAssess limits of improvability

–– Train developers in basic test designTrain developers in basic test design

–– Install basic tool setInstall basic tool set
•• Coverage analyzerCoverage analyzer

•• Memory leak detectorMemory leak detector

•• Test Harness generatorTest Harness generator

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 17

Copyright © 2000 RBSC Corporation 33

Testing by Use-CasesTesting by Use-Cases

•• About 20% of all organizationsAbout 20% of all organizations

•• Complies with Unified Process testComplies with Unified Process test
approachapproach

•• CharacteristicsCharacteristics
–– Assumes objects “just work”Assumes objects “just work”

–– System test from use casesSystem test from use cases

–– Frustrated with chronic bugginessFrustrated with chronic bugginess

Copyright © 2000 RBSC Corporation 34

Testing by Use-CasesTesting by Use-Cases

•• Improvement StrategyImprovement Strategy
–– Achieve exit criteria for indicatedAchieve exit criteria for indicated

class/cluster test patternsclass/cluster test patterns

–– Use appropriate component/subsystem testUse appropriate component/subsystem test
design patternsdesign patterns

–– Develop testable use casesDevelop testable use cases

–– Implement test automation to supportImplement test automation to support
regression testingregression testing

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 18

Copyright © 2000 RBSC Corporation 35

Testing by ScopeTesting by Scope
•• About one in tenAbout one in ten

•• Best-in-Class levelBest-in-Class level

•• CharacteristicsCharacteristics
–– Test design corresponds to scopeTest design corresponds to scope

–– Scope-specific test entry/exit criteriaScope-specific test entry/exit criteria

–– Appropriate testing at all scopesAppropriate testing at all scopes

–– Effective test automationEffective test automation

–– Stable, repeatable processStable, repeatable process

Copyright © 2000 RBSC Corporation 36

Testing by ScopeTesting by Scope

•• Improvement StrategyImprovement Strategy
–– Internal test design pattern-miningInternal test design pattern-mining

–– Design for testabilityDesign for testability

–– Advanced test automationAdvanced test automation

–– Quantified closed loop feedbackQuantified closed loop feedback

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 19

Copyright © 2000 RBSC Corporation 37

Best Practice ExamplesBest Practice Examples

•• MPR TeltechMPR Teltech

•• Stepstone CorporationStepstone Corporation

•• Acme Widget/XPAcme Widget/XP

•• Ericsson CEE ProjectEricsson CEE Project

•• Testing was the primary quality techniqueTesting was the primary quality technique

Copyright © 2000 RBSC Corporation 38

MPR TeltechMPR Teltech
•• C++/Eiffel telecom network managementC++/Eiffel telecom network management

•• Initially, sporadic class/cluster testingInitially, sporadic class/cluster testing

•• Persistent high defect levelsPersistent high defect levels

•• Instituted systematic class cluster testingInstituted systematic class cluster testing

•• System test defects reduced by 70:1System test defects reduced by 70:1

•• Total development effort cut by halfTotal development effort cut by half

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 20

Copyright © 2000 RBSC Corporation 39

Stepstone CorporationStepstone Corporation

•• IC-Pak Objective-C class libraryIC-Pak Objective-C class library

•• Inspections for all classesInspections for all classes

•• Extensive automated test harnessExtensive automated test harness
developed for each complex classdeveloped for each complex class

•• No systematic test designNo systematic test design

Copyright © 2000 RBSC Corporation 40

Acme WidgetAcme Widget

•• 50 KLOC Smalltalk app50 KLOC Smalltalk app

•• 45% of development used for testing45% of development used for testing

•• Test harness for each class -- semi-dailyTest harness for each class -- semi-daily
buildbuild

•• Same approach used by “ExtremeSame approach used by “Extreme
Programming”Programming”

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 21

Copyright © 2000 RBSC Corporation 41

EricssonEricsson

•• 75 KLOC C++ cellular support application75 KLOC C++ cellular support application

•• Systematic testing at class, cluster, andSystematic testing at class, cluster, and
system scopesystem scope

•• No other verification techniques usedNo other verification techniques used

Copyright © 2000 RBSC Corporation 42

Lessons LearnedLessons Learned
•• ProcessProcess

–– Inspect for omissions and inconsistencies,Inspect for omissions and inconsistencies,
test for everything elsetest for everything else

–– Design for testabilityDesign for testability
•• Implement hierarchic architecture patternsImplement hierarchic architecture patterns

•• Eliminate or encapsulate cyclic dependenciesEliminate or encapsulate cyclic dependencies

•• Assert class invariants, at leastAssert class invariants, at least

–– Support reuse with complementarySupport reuse with complementary
producer/consumer testing strategiesproducer/consumer testing strategies

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 22

Copyright © 2000 RBSC Corporation 43

Lessons LearnedLessons Learned
•• ProcessProcess

–– 3 to 6 development increments3 to 6 development increments
•• Developer class/cluster test -- Run testsDeveloper class/cluster test -- Run tests

locally, design tests globally: “unigration”locally, design tests globally: “unigration”

•• XP: “Continuous integration, relentlessXP: “Continuous integration, relentless
testing”testing”

•• Independent build/integration group testsIndependent build/integration group tests
completed incrementcompleted increment

•• Test suites must be regress-ableTest suites must be regress-able

–– System testing on final incrementSystem testing on final increment

Copyright © 2000 RBSC Corporation 44

World Class OO QualityWorld Class OO Quality

•• Best-in-Class level:Best-in-Class level:
–– An average of “less than 0.025 user-reportedAn average of “less than 0.025 user-reported

defects per function point” in the first yeardefects per function point” in the first year
after releaseafter release

•• World Class = 10x Best in ClassWorld Class = 10x Best in Class

Capers Jones . Software quality: Analysis and Guidelines for Success.

(London: International Thompson Computer Press, 1997.) p 44.

Testing Object-Oriented Systems: Best Practices

Copyright © 2000 RBSC Corporation 23

Copyright © 2000 RBSC Corporation 45

World Class OO QualityWorld Class OO Quality

Organization
Language

KLOC FP Major Post
Release
Bugs

Bugs/FP

Acme Widget
Smalltalk

50 2381 11 0.0046

Ericsson
C++

75 1364 7 0.0051

Stepstone
Objective-C

12 414 5 0.0121

•• OO testing best practices can achieveOO testing best practices can achieve
world class software qualityworld class software quality

Copyright © 2000 RBSC Corporation 46

SummarySummary
•• Lessons learned: unique test design forLessons learned: unique test design for

OO implementationsOO implementations

•• State of the art: expressed in patternsState of the art: expressed in patterns

•• State of the practice: world class qualityState of the practice: world class quality
can be achieved through testingcan be achieved through testing

QW2000 Vendor Technical Paper 3V2

Mr. Christian Hote
(PolySpace)

Runtime Error Detection

BACK TO QW2000 PROGRAM

Key Points

Efficiency: PolySpace Verifier turns detection of run-time errors on its head: PolySpace Verifier exhaustively
and automatically detects sources of run-time errors.

●

Quality: It finds run-time errors even in critical applications validated using existing top-level testing and
debugging methods.

●

Productivity: Reduce verification and validation time and costs while drastically improving software quality.
Neither changes to your process, nor constraints on the coding style are imposed.

●

About the Author

Christian HOTE obtained his PhD in Physics in 1991. He joined Verilog (European leader CASE Tools
provider) as product manager and participated in several European Research programs (Eureka,
Esprit) for embedded systems design and development. He joined PolySpace Technologies at its
creation and manages US business development and operations.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/3V2.html [4/28/2000 2:30:04 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

PolySpace Technologies/QualWeek-2000

PolySpace TechnologiesPolySpace Technologies

Software Verification and
Validation Products

PolySpace Technologies/QualWeek-2000

The problem!The problem!

F Run-time errors or non determinism
may cause:
– mission loss
– availability losses

F Financial, company image and
even human lives consequences

PolySpace Technologies/QualWeek-2000

Finding Errors Costs MoreFinding Errors Costs More
and Moreand More

F Today, 40% of errors detected during
maintenance are RTE

(IBM T.J. Watson lab. and Berkeley Univ. studies)

F Tomorrow, Software Verification costs will still
increase due to increasing applications size
and complexity

(up to 50% of total development costs)

PolySpace Technologies/QualWeek-2000

The PolySpace AnswerThe PolySpace Answer

FAutomation of Verification Processes
Using New, Simple and Non Intrusive
Tools, Satisfying:
– No Change in Development Processes

– Quality Gain

– Productivity Gain

PolySpace Technologies/QualWeek-2000

An exerciseAn exercise

Problem:

How many run time
errors ?

PolySpace Technologies/QualWeek-2000

Existing MethodsExisting Methods

FCompiler, lint-like tools: type check,
syntax check, static expressions solving;

FStatic analysis tools: Coding rules
checks, quality metrics, test coverage;

FHours of simulation;
FHours of code reviews.

PolySpace Technologies/QualWeek-2000

PolySpace VerifierPolySpace Verifier

FNon Intrusive : Source code only;
FExhaustive : Identifies and checks all

potential sources of run-time errors;
FAutomatic : Predicts where run-time

errors occur without execution.

PolySpace Technologies/QualWeek-2000

An exercise (following)An exercise (following)

Solution:

Use PolySpace Verifier
and Look at colors !!

PolySpace Technologies/QualWeek-2000

Detected ErrorsDetected Errors

– Run-time errors
F Division by zero
F Out-of-bounds array accesses & buffer overflows
F Arithmetic overflows & underflows (integer, FP)
F Arithmetic exceptions: sqrt(<0),…
F Illegal type conversion

– Unreachable code

PolySpace Technologies/QualWeek-2000

Detected ErrorsDetected Errors

– Non deterministic constructs
F Unsafe global data access
F Read access to non initialized variables
F Data corruption

– Multi-tasking
F Concurrent access on unprotected shared data

PolySpace Technologies/QualWeek-2000

PolySpace ViewerPolySpace Viewer
F Global Data Dictionary

PolySpace Technologies/QualWeek-2000

PolySpace ViewerPolySpace Viewer
F Results on Shared Data

PolySpace Technologies/QualWeek-2000

PolySpace ViewerPolySpace Viewer

F Results on
Run-Time Errors

PolySpace Technologies/QualWeek-2000

PolySpace ViewerPolySpace Viewer

F Results on run-time errors

PolySpace Technologies/QualWeek-2000

BenefitsBenefits
F Efficiency

– Actual detection of run-time errors
– Non intrusive and simple technology

F Quality
– More focused code review
– Exhaustive detection of errors (confidence improvement)

F ROI
– Drastic reduction of verification efforts thanks to high

selectivity rate (97-99% of code is checked)
– Early detection of errors
– Repeat your gains for each new software release

F1 m.m cost instead of 16m.m for code review

PolySpace Technologies/QualWeek-2000

ConclusionConclusion

F Technological breakthrough in 1997:
successful automated verification of the 502
flight software is a world première

F High quality and productivity gains
F No modification of development processes

PolySpace Technologies/QualWeek-2000

PolySpace TechnologiesPolySpace Technologies

Company Profile

PolySpace Technologies/QualWeek-2000

Business MissionBusiness Mission
StatementStatement

FProvide software validation and
verification tools allowing actual and
valuable benefits in terms of quality
and productivity

PolySpace Technologies/QualWeek-2000

MarketMarket

FEmbedded Software Industries

– avionics, space, automotive, energy,
telecommunications, transport, defense,
medical….

PolySpace Technologies/QualWeek-2000

Customer ReferencesCustomer References

FAriane 502, 503
FMission critical software: navigation, guidance, pilot
F5 interacting parallel tasks
F70000 LOC

PolySpace Technologies/QualWeek-2000

Customer ReferencesCustomer References

FAtmospheric Reentry Demonstrator
FMission critical software: navigation, guidance, pilot
F3 interacting parallel tasks
F26000 LOC

PolySpace Technologies/QualWeek-2000

PolySpace TechnologiesPolySpace Technologies

Background Technology

PolySpace Technologies/QualWeek-2000

Abstract InterpretationAbstract Interpretation

x
x

x

x

x

Interval Analysis

Convex Polyedrons
Analysis

Always a super-set of
the exact solution

y

x

x

x x

x

Program states

xx
x

x

x

x
x

x
x

x

x

x

x

x

xx x
x
x

x

x

PolySpace Technologies/QualWeek-2000

No ErrorNo Error

x
x

x

x

x

x

y

x

x

x x
x

Expression: a = x / (x-y);

Correctness condition: x ≠ y

The intersection between the set of program states and the set of
erroneous states is empty.

x x

x
x

xx

x

x x
x

x

x

x

x

x

x x

x
xx

x

x

x

x
x

x

xx x

x

x

PolySpace Technologies/QualWeek-2000

Potential ErrorPotential Error

x
xx

x

x

x

y

x

x
x

x
x

Expression : a = x / (x-y);

The intersection between the set of program states and the set
of erroneous states is not empty.

A peculiar execution may lead to an error.

x
x

x

x
x

x
x

x

x
x

x

x

x

x

x x

x
xx

x

x

x

x
x

x

xx x

x

x

PolySpace Technologies/QualWeek-2000

OptimizationsOptimizations

x xx

x

x

x
y

x

x
x

x

x

x

x

Several optimization algorithms are used to reach a high selectivity rate:

• Polyedrons union

• Integer lattices

•Gröbner bases...

x

x

x

x

x

x

x

x

x

x

x x
x

x

x

x
x

x
x

x

x

x

PolySpace Technologies/QualWeek-2000

ConclusionConclusion

F Abstract Interpretation isn’t rocket science.

QW2000 Paper 3T2

Mr. Robert Oshana
(ObjectSpace, Inc.)

Performance Engineering of an Embedded
System Application

BACK TO QW2000 PROGRAM

Presentation Abstract

This paper presents lessons learned performance engineering a CPU throughput utilization estimate
in a Raytheon Systems Company program developing a digital signal processing application
concurrently with a next generation DSP-based array processor. Algorithmic performance and an
efficient implementation were driving criteria for the program. As the processor was being developed
concurrently with the software application a significant amount of the system and software
development would be completed prior to the availability of physical hardware. This led to
incorporation of performance engineering techniques into the development life-cycle. This article
relates the mechanisms used to performance engineer the system and experiences with the
approach.

About the Author

Robert Oshana is a Project Lead at ObjectSpace, Inc. ObjectSpace is a business-to-business
integration (B2Bi) company whose products enable organizations to streamline their collaboration,
communication and integration with trading partners over the Internet. He is responsible for leading
software teams throughout all stages of business-to-business web-based development projects.
Robert has masters degrees in electrical engineering, computer science, and business administration.
He is also an adjunct professor at Southern Methodist University where he teaches several software
engineering and E-Commerce courses in the Graduate Software Engineering program. He has over
30 publications in the areas of process improvement, software development methodology, software
testing, and real-time systems.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/3T2.html [4/28/2000 2:30:12 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

1

Robert S. Oshana
Project Manager
ObjectSpace, Inc
roshana@objectspace.com
(972) 726-4530

Performance Engineering of
an Embedded System
Application

2

Avoiding Disasters
n Expensive disasters can be avoided when

system performance evaluation takes place
relatively early in the software development
lifecycle

n Applications will generally have better
performance when alternative designs are
evaluated prior to implementation

2

3

What is SPE ?
n A set of techniques for;
ugathering data
uconstructing a system performance model
uevaluating the performance model
umanaging risk of uncertainty
uevaluating alternatives, and
uverifying the models and results

4

Project Overview

n Digital signal processing application
n Software being developed concurrently with

a next generation DSP-based array
processor

n Algorithmic performance and an efficient
implementation are driving criteria for the
program

n A significant amount of the system and
software development would be completed
prior to the availability of physical hardware

3

5

Project Overview

n SPE techniques were incorporated cross-
functionally;
uSystems engineering organization

Fresponsible for developing the signal
processing algorithms

uSoftware and hardware engineering
organizations
Fresponsible for implementing the algorithms

in an embedded real-time system

n Application is a large, distributed, multi-
processing embedded system

6

Legend
DSP Node

Fibre Channel ASIC

Fibre Channel Interconnect
Mesh Interconnect

ArraySignal Processor card

Fibre Channel Switch card
Host computer

(VME) card

VME & host
interface cards

System shown:
• 110 GFlops peak

throughput
• 31 circuit cards
• 15 95 MByte/sec

I/O channels

System shown:
• 110 GFlops peak

throughput
• 31 circuit cards
• 15 95 MByte/sec

I/O channels

VME bushos t

16x10 mesh array8x10 channel array

4
x
4

2
x
1

4
x
4

4
x
4

4
x
4

4
x
4

4
x
4

4
x
4

4
x
4

Fibre Channel
Inputs Fibre Channel

Outputs

Auxiliary
Fibre Channel

DSP Array Architecture in Mesh Configuration

4

7

Risks

n Concurrent H/W - S/W development
n Development tools not immediately

available
n Delivered system not meeting

performance requirements was a serious
concern

n Algorithm stream was being enhanced
and revised as part of the development
effort

n SPE critical to mitigating these risks.

8

Information for SPE

n Workload
n Performance objectives
n Software characteristics
n Execution environment
n Resource requirements
n Processing overhead

5

9

Performance Metric
Calculation Flow

Algorithm
Document

Algorithm
Sizing

Spreadsheet

Algorithm
Prototyping

Discrete
Event

Simulation

Algorithm
Metrics

Real-time
Adjustment

Factors

Final
Performance

Metrics

System
Engineering
Task

Software
Engineering
Task

10

Factors that Influence
Throughput

n The quantity of algorithms to
implement

n Elemental operation costs (measured
in processor cycles)

n Sustained throughput to peak
throughput efficiency

n Processor family speed-up

6

11

Factors that Influence
Memory

n Size and quantity of intermediate data
products to be stored

n Dynamic nature of memory usage
n Bytes/data product
n Bytes/instruction
n size and quantity of input and output

buffers based on worst case system
scenarios (workloads)

12

CPU and Memory Utilization for Application 1

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Date/Time

P
er

ce
n

ta
g

e
o

f R
es

o
u

rc
e

U
ti

liz
at

io
n

CPU

Memory

Requirement

Initial Discrete
Event Simulation

Actual
 measurement
from prototype
system

Algorithm
optimization

Actuals from
Processor VHDL
simulation

System
requirement
change to
reduce
throughput

Actuals from
OS overhead

Actual measurements
on production hardware
for each S/W increment

Code level and
algorithm optimization

7

13

Chronology of CPU Throughput
Reduction for Application 1

Increase or Decrease in
Metric

Explanation

Initial discrete event simulation
was used as the starting point for
the metric estimation

Discrete event simulation was
built using algorithm cycle
estimations and first order
modeling for task iterations due
to context switching, etc

Measurement on prototype C40
based array

Prototype code was ported to a
C40 based DSP small scale array
and measured. The measurement
was then scaled based on the
speedup of the C67 based DSP
full scale array

Algorithm level optimization Algorithms were made more
efficient using algorithm re-
structuring methods and reducing
complexity in other areas of the
algorithm stream.

14

Chronology of CPU Throughput
Reduction for Application 1

Processor VHDL measurement Big increase in throughput
measurement was due to
unexpected high cost of
accessing data from external (off-
chip) memory. Several
benchmarks were performed and
scaled to the entire application

System level requirement change Project decision was made to
change a system level parameter.
This caused significant algorithm
restructuring and was an
unpopular decision with the
customer

OS level overhead measured Because the processor was new,
the COTS OS was not immediately
available. This point indicated the
first time to run the application in
a multi-tasking environment with
the OS.

8

15

Chronology of CPU Throughput
Reduction for Application 1

Actuals on production hardware
array of DSPs for each software
increment

The production code was initially
developed without code
optimization techniques in place
(Make it work right and then make
it work fast). Initial measurement
for the full algorithm stream was
not entirely optimized when we
first took the measurement

Continued code and algorithm
level optimization

Dedicated team in place to work
code optimization and other
algorithm transformation
techniques to reduce CPU
throughput (i.e. taking advantage
of symmetry in the algorithms and
innovative techniques to reduce
communications between DSPs
which were expensive)

16

CPU and Memory Utilization for Application 2

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

Date/Time

P
er

ce
n

ta
g

e
o

f R
es

o
u

rc
e

U
ti

liz
at

io
n

CPU

Memory

Requirement

Initial Discrete
Event
Simulation

Actual
meaasurement
from
prototype
system Algorithm

optimization

Actuals from
processor
VHDL
simulation

Add more H/W
to the system

Actual measurements
on small scale target H/W

Move S/W functionality
into H/W ASIC

S/W code and
algorithm level
optimization

Measurement on
full scale H/W array

Code optimization

9

17

Chronology of CPU Throughput
Reduction for Application 2

Increase or Decrease in
Metric

Explanation

Initial discrete event simulation
was used as the starting point for
the metric estimation

Discrete event simulation was
built using algorithm cycle
estimations and first order
modeling for task iterations due
to context switching, etc

Measurement on prototype C40
based array

Prototype code was ported to a
C40 based DSP small scale array
and measured. The measurement
was then scaled based on the
speedup of the C67 based DSP
full scale array

Add more hardware to the system Number of DSP nodes was
increased by adding more DSP
boards. Good hardware design
made scalability relatively easy.

18

Processor VHDL measurement Big increase in throughput
measurement was due to
unexpected high cost of
accessing data from external (off-
chip) memory. Several
benchmarks were performed and
scaled to the entire application

Algorithm optimization Because of the nature of the
algorithms, we were able to
significantly cut CPU throughput
utilization by restructuring the
algorithms to pipeline the major
loops of the algorithm stream.

Actual measurement on small
scale target Hardware

In our hardware/software co-
design effort, we did not have full
scale hardware until late in the
cycle. Initial benchmarking for
this application was performed on
a single node prototype DSP card.

Chronology of CPU Throughput
Reduction for Application 2

10

19

Move software functionality into
hardware ASIC

Decision was made for risk
mitigation purposes to move part
of the algorithm stream into a
hardware ASIC in another sub-
system, saving significant CPU
cycles in the application software.

Software code and algorithm level
optimization

Dedicated team in place to work
code optimization and other
algorithm transformation
techniques to reduce CPU
throughput

Measurement on full scale
hardware

Measuring the application CPU
throughput on the full scale
hardware showed that we had
under estimated the overhead for
communication among all the
array nodes. We developed a
tailored comm API to perform
intra-node communications more
quickly.

Chronology of CPU Throughput
Reduction for Application 2

20

Plan of Action and Milestones
for Application 1

Plan of Action and Milestones

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Date/Time

P
er

ce
nt

ag
e

of
 C

P
U

 T
hr

ou
gh

pu
t

U
til

iz
at

io
n Actual

Requirement

Projection

New sections of the
application measured on the
target H/W for the first time

11

21

Tools Identified in Performance Plan
and Errors Resolved

Tool Error Factors Resolved
Code Generation Tools
(Compiler, Assembler, Linker)

Compiler efficiency
Quality of generated assembly

code
Size of load image

Instruction Level Processor
Simulator

Utilization of dual processor
pipelines

Cycle counts for elemental
operations

Cycle-accurate Device Level
VHDL Model

Effect of external memory
access times

Instruction Caching effects
Device resource contention

between processor and DMA
channels

Single DSP Test Card Validate VHDL results
Runtime interrupt effects

Multi-DSP Test Card Inter-processor communication
resource contention effects

22

Make it Work Right -
Then Make it Work Fast

n Optimization learning curve
n Complex algorithms that are hard to

understand and comprehend
n Must profile the algorithm stream and

optimize the “hot spots”

12

23

Improvement in Accuracy in
Estimate over time

error in measurement of estimate

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

time

th
ro

ug
hp

ut

throughput percentage

high

low

24

Conclusions and
Lessons Learned

uPrototype early in the development life
cycle

u Ignore the processor marketing
information

uAnalyze the functions executing most
often

uDon’t ignore the interfaces
uBenchmarks of discrete algorithms don’t

scale well to real-time systems
uKeep management informed
uBudget accordingly

13

25

Where to find more

n IEEE Computer, May 2000,
“Performance Engineering of an
Embedded System Application”

26

Speaker Bio
n Robert Oshana has over 17 years of software project

management experience. He has managed various software
development efforts in both the defense and commercial
industries. His current assignment is Project Manager for
ObjectSpace, Inc., a business-to-business integration (B2Bi)
company whose products enable organizations to streamline
their collaboration, communication and integration with trading
partners over the Internet. Robert is also an adjunct professor at
Southern Methodist University where he teaches several
courses in the Graduate Software Engineering program,
including Software Testing and Quality Assurance, as well as an
E-Commerce curriculum in the graduate Telecommunications
program, and short courses in the Distance Education program.
Robert has over 30 publications in the areas of software process
improvement, software testing, software performance
engineering, and real-time systems. He has masters degrees in
Electrical Engineering, Computer Science, and Business
Administration.

1

Performance Engineering of an Embedded System Application

Robert S. Oshana
ObjectSpace, Inc.

roshana@objectspace.com

Abstract: This paper presents lessons learned performance engineering a CPU throughput
utilization estimate in a defense program developing a digital signal processing application
concurrently with a next generation DSP-based array processor. Algorithmic performance and
an efficient implementation were driving criteria for the program. As the processor was being
developed concurrently with the software application a significant amount of the system and
software development would be completed prior to the availability of physical hardware. This
led to incorporation of performance engineering techniques into the development life-cycle. This
article relates the mechanisms used to performance engineer the system and experiences with
the approach.

2

Introduction and Project Description
Expensive disasters can be avoided when system performance evaluation takes place relatively
early in the software development lifecycle. Applications will generally have better performance
when alternative designs are evaluated prior to implementation. Software Performance
Engineering (SPE) is a set of techniques for gathering data, constructing a system performance
model, evaluating the performance model, managing risk of uncertainty, evaluating alternatives,
and verifying the models and results [1,2]. SPE also includes strategies for the effective use of
these techniques. Software performance engineering concepts have been incorporated into a
Raytheon Systems Company program developing a digital signal processing application
concurrently with a next generation DSP-based array processor. Algorithmic performance and
an efficient implementation were driving criteria for the program. As the processor was being
developed concurrently with the software application a significant amount of the system and
software development would be completed prior to the availability of physical hardware. This
led to incorporation of SPE techniques into the development life-cycle. The techniques were
incorporated cross-functionally into both the systems engineering organization responsible for
developing the signal processing algorithms and the software and hardware engineering
organizations responsible for implementing the algorithms in an embedded real-time system.

The customer and application are proprietary. The application is a large, distributed, multi-
processing embedded system. One of the sub-systems consists of two large arrays of digital
signal processors (DSP). These DSPs execute a host of signal processing algorithms (various
size FFTs and digital filters, and other noise removing and signal enhancing algorithms). The
algorithm stream being implemented included both temporal decomposition of the processing
steps as well as spatial decomposition of the data set. The array of mesh-connected DSPs was
used because the spatial decomposition required mapped well to the architecture and the
required throughput of the system drove the size of the array (Figure 1). The system is a data
driven application, using interrupts to signal the arrival of the next sample of data. This system is
a “hard” real-time system in the sense that missing one of the data processing deadlines results in
a catastrophic loss of system performance.

3

Figure 1. DSP Array Architecture in Mesh Configuration

The concurrent development of a new DSP-based array processor using a next generation DSP
device still being developed and whose software development tools were not yet available
posed a significant challenge to the development team. The risk of the delivered system not
meeting performance requirements was a serious concern. To further complicate matters the
algorithm stream was being enhanced and revised as part of the development effort. The
incorporation of SPE techniques into the development processes of the various functional
organizations was deemed critical to mitigating these risks.

The issue of performance was addressed from the inception of the program throughout its
development phases. The main measures of performance are captured in three metrics:

• processor throughput,
• memory utilization,
• I/O bandwidth utilization.

These are the metrics of choice because monthly reporting of these metrics is a customer
requirement for the program. Initial estimates of these metrics were made prior to the start of
the program and updated monthly during the development effort. Uncertainties associated with
key factors driving these estimates were identified. Plans for resolving these uncertainties during
the development effort were developed and key dates identified. Updating the metrics and
maintaining the associated risk mitigation plans was a cross-functional collaborative effort
involving systems engineering, hardware engineering and software engineering.

Legend
DSP Node

Fibre Channel ASIC

Fibre Channel Interconnect
Mesh Interconnect

ArraySignal Processor card

Fibre Channel Switch card
Host computer

(VME) card

VME & host
interface cards

System shown:
• 110 GFlops peak

throughput
• 31 circuit cards
• 15 95 MByte/sec

I/O channels

System shown:
• 110 GFlops peak

throughput
• 31 circuit cards
• 15 95 MByte/sec

I/O channels

VME bushost

16x10 mesh array8x10 channel array

4
x
4

2
x
1

4
x
4

4
x
4

4
x
4

4
x
4

4
x
4

4
x
4

4
x
4

Fibre Channel
Inputs Fibre Channel

Outputs

Auxiliary
Fibre Channel

4

Initial Performance Estimates and Information Requirements
The information generally required for a SPE assessment are [1];

Workload; The expected use of the system and applicable performance scenarios. We chose
performance scenarios that provided the array processors with the worst case data rates.
These worst case scenarios were developed by interfacing with the users and our system
engineers.
Performance objectives; This represents the quantitative criteria for evaluating performance.
We used CPU utilization, memory utilization, and I/O bandwidth because of the customer
requirement that we report on these monthly.
Software characteristics: this describes the processing steps for each of the performance
scenarios and the order of the processing steps. We had accurate software characteristics due
to an earlier prototype system using a similar algorithm stream. We also had an Algorithms
Description document detailing the algorithmic requirements for each of the functions in the
system. From this a discrete event simulation was developed to model the execution of the
algorithms.
Execution environment; this describes the platform on which the proposed system will
execute. We had an accurate representation of the hardware platform due to involvement in the
design of the I/O peripherals of the DSP as well as some of the DSP core features as well. The
other hardware components were simulated by the hardware group.
Resource requirements; this provides an estimate of the amount of service required for the key
components of the system. Our key components were CPU, memory and I/O bandwidth for
each the DSP software functions.
Processing overhead; this allows us to map software resources onto hardware or other device
resources. The processing overhead is usually obtained by benchmarking typical functions
(FFTs, filters) for each of the main performance scenarios.

CPU throughput utilization was the most difficult metric to estimate and achieve. Therefore, the
rest of this paper will focus primarily on the methods we used to develop an accurate estimate
for the CPU throughput utilization metric..

Developing the Initial Estimate
The process used to generate the initial performance metric estimates is shown in Figure 2. This
flow was used throughout the development effort to update the metrics. The algorithm stream is
documented in an algorithm document. From this document the systems engineering
organization developed a static spreadsheet model of the algorithm stream which provided
estimates of throughput and memory utilization for each of the algorithms in the algorithm
requirements document. The spreadsheet includes allowances for operating system calls and
inter-processor communication. The systems engineering organization used a current generation
DSP processor to perform algorithm prototyping and investigation activities. The results of this
work influenced

5

Figure 2. Performance Metric Calculation Flow.

algorithm implementation decisions and were used to develop the discrete event simulations
used to estimate the performance metrics. A discrete event simulation was used to model the
dynamic performance of the algorithm stream. The simulation model included allowances for
operating system task switches and associated calls. The initial algorithm spreadsheet of
resource allocations for each algorithm and discrete event simulation processes provide the
system engineering ‘algorithm’ performance metrics. At this point the metrics reflect the
throughput, memory, and I/O bandwidth required to perform the algorithms defined in the
algorithm document and implemented using the prototype implementations. The software
engineering organization then updates the performance metrics to reflect the costs of embedding
the algorithm stream in a robust, real-time system. These metric adjustments include the effects
of system-level real-time control, built-in-test, formatting of input and output data, and other
‘overhead’ functions (processing overhead) required for the system to work. The results of this
process are the reported processor throughput, memory utilization and I/O utilization
performance metrics.

Tracking the Metrics
The software development team is responsible for estimating and reporting metrics related to
processor throughput and memory. These metrics are reported periodically to the customer,
and are used for risk mitigation. Reserve requirements are also required to allow for future
growth of functionality (our reserve requirement was 75% for CPU and memory). Throughout
the development life cycle, these estimates varied widely based on the different modeling
techniques used in the estimation and hardware design decisions which influenced the amount of
hardware available to execute the suite of algorithms as well as measurement error. Figure 3
shows the metric history for throughput and memory for the first array processor application.
There is a wide variability in the throughput throughout the life cycle, reflecting a series of
attempts to lower the throughput estimate followed by large increases in the estimate due to
newer information. In Figure 3, the annotations describe the increases and decreases in the
estimate for the CPU throughput measurement.

Algorithm
Document

Algorithm
Prototyping

Algorithm
Sizing

Spreadsheet

Discrete Event
Simulation

Algorithm
Metrics

Real-time
Adjustment

Factors

Final
Performance

Metrics

Systems Eng. Tasks

Software Eng. Tasks

6

CPU and Memory Utilization for Application 1

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Date/Time

P
er

ce
n

ta
g

e
o

f
R

es
o

u
rc

e
U

ti
liz

at
io

n

CPU

Memory
Requirement

Initial Discrete
Event Simulation

Actual
 measurement
from prototype
system

Algorithm
optimization

Actuals from
Processor VHDL
simulation

System
requirement
change to
reduce
throughput

Actuals from
OS overhead

Actual measurements
on production hardware
for each S/W increment

Code level and
algorithm optimization

Figure 3. Resource Utilization metric for Application1

The first large increase in the estimate came as a result of implementing the algorithm stream on
a prototype current generation processor. These measurements were then scaled based on the
anticipated performance of the next generation processor. An effort was then undertaken to
optimize the implementation of the algorithm stream to lower the throughput estimate.

The next unexpected increase came from running representative benchmarks on the next
generation cycle accurate simulator. This simulation allowed us to estimate the true cost of
external memory accesses, pipeline stalls, and other processor characteristics that increased the
cost of executing the algorithms. These results led the development teams to undertake another
significant effort to optimize the algorithm stream for real-time operation. The main techniques
undertaken during this phase included instrumentation of the Direct Memory Access (DMA) to
stage data on and off chip, re-structuring of code to allow critical loops to pipeline, assembly
language implementation of critical algorithm sections, and efficient use and management of on-
chip memory where memory access time is much shorter.

The representative benchmarks showed us that we could reduce the throughput using code-
level optimization techniques (use of on-chip memory, pipelining of important loops, etc) but we
were still in danger of not meeting our overall throughput requirement. It was at this time that a
system requirement was modified to reduce throughput.

7

The third major increase came when we measured the full application on the target array of
DSPs. The main reason for the increase was due to the fact that many of the algorithms were
not optimized. Only a small percentage of algorithm were benchmarked on the processor
VHDL simulator (representative samples of the most commonly used algorithms such as the
FFTs and other algorithms called inside major loops in the code). The software group still
needed to employ the same optimization techniques for the remaining code for each of the
software increments being developed. By this time the optimization techniques were familiar to
the group and the process went fairly fast.

The lifecycle throughput estimates for the second array processor application is shown in Figure
4. A similar pattern in the reported numbers is seen here due to the same basic issues.

Once again the initial discrete event simulation proved to be inaccurate and the prototype
system measurements were much higher than anticipated due to overly aggressive estimates of
the CPU throughput, failure to account for realistic overhead constraints, etc. A long process of
code and algorithm optimization was able to bring the estimate back down close to the goal
before the VHDL simulation measurements uncovered some other areas that made us increase
the estimate. The increase in the estimate in this application resulted in several risk management
activities to be triggered;

The estimate in month 5 was high enough and was made early enough in the program schedule
that the program was able to add more hardware resources to reduce the algorithm distribution
and lower the throughput estimate. This was made at the expense of more power and cooling
requirements as well as more money for the hardware (no new designs were required, just more
boards). These increases in power and cooling had to be offset by sacrifices elsewhere to
maintain overall system requirements on these parameters.

The measurement in month 19 was caused consternation among the managers as well as the
technical staff. Although we felt continued optimization at the code level would drop the number
significantly, meeting the application requirement of 75% CPU throughput (25% reserved for
growth) would be hard to accomplish.

One contributor to the CPU throughput estimate increase was a result of an under-estimation of
a worst case system scenario which led to an increase in data rate for the processing stream,.
This resulted in several algorithm loops being executed more frequently which increased the
overall CPU utilization.

The decision was made to move some of the software functionality being done in the DSPs into
a hardware ASIC to reduce the throughput significantly (there were a sufficient number of
unused gates in the ASIC to handle the increased functionality). With this decision coming so
late on the development cycle, however, significant re-design and re-work of the ASIC and the
interfaces was required which was extremely expensive for the hardware effort as well as delays
in the system integration and test phase.

8

The last increase in CPU utilization was a result of scaling the algorithms from the small (single
node) DSP benchmark to the full array of DSPs. The increase was mainly due to a mis-
estimation in the overhead associated with inter-processor communication. Once again, the
development teams were faced with the difficult challenge of demonstrating real-time operation
given these new parameters. At this late date in the development cycle, there are not many
options left for the system designers. The main techniques used at this point to reduce the
throughput estimate were additional code optimization, assembly language implementation of
additional core algorithms, additional limited hardware support, and a significant restructuring of
the algorithm control flow to circumvent the use of slow operating system functions. For
example, we eliminated some of the robustness in the node to node communication API in order
to save valuable CPU cycles.

9

CPU and Memory Utilization for Application 2

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Date/Time

P
er

ce
nt

ag
e

of
 R

es
ou

rc
e

U
til

iz
at

io
n

CPU
Memory

Requirement

Initial Discrete
Event
Simulation

Actual
meaasurement
from
prototype
system Algorithm

optimization

Actuals from
processor
VHDL
simulation

Add more H/W
to the system

Actual measurements
on small scale target H/W

Move S/W functionality
into H/W ASIC

S/W code and
algorithm level
optimization

Measurement on
full scale H/W array

Code optimization

Figure 4. Resource Utilization metric for Application 2

Conclusions and Lessons Learned
There were several lessons learned in this experience;

• Prototype early in the development life cycle; several of the surprises we encountered

could have been uncovered earlier if the proper level and type of prototyping was
performed.

• Ignore the processor marketing information; Most processors will never achieve the
throughput proposed in the literature.

• Analyze the functions executing most often; these areas are where the hidden cycles can
come back to haunt a development team.

• Don’t ignore the interfaces; real time systems carry an inherent “overhead” that never
seems to be accounted for in throughput estimates.

• Benchmarks of discrete algorithms don’t scale well to real-time systems;
benchmarking an individual algorithm inherently implies that algorithm has complete control
and use of all the processor resources including internal and external memory, the DMA
controller, and other system resources.

• Keep management informed; as we approach the completion of the code level
optimization effort, it appears the model we established early in the project was a relatively
accurate estimate.

• Budget accordingly; the two pass approach of functional correctness followed by code
optimization will take more time and more resources to accomplish.

10

REFERENCES

1. Smith, Connie U. “Performance Engineering for Software Architectures”, 21st Annual

Computer Software and Applications Conference, 1997, p 166-167.
2. Baker, Michelle and Warren Smith, “Performance Prototyping: A Simulation Methodology

for Software Performance Engineering”, Proceeding of the Computer Systems and
Software Engineering”, 1992, p 624-629.

3. Oshana, Robert , “Rate Monotonic Analysis Keeps Real Time Systems On Track”, EDN,
September 1, 1997.

4. Liu, C and J Layland, “Scheduling algorithms for multiprogramming in a hard real time
environment”, Journal of the Association for Computing Machinery, January 1973.

5. Obenza, Ray, “Rate monotonic analysis for real-time systems”, March 1993

QW2000 Paper 3A2

Ms. Linda Hayes
(WorkSoft)

Table Driven Testing: Making Automation
Accessible

BACK TO QW2000 PROGRAM

Presentation Abstract

This presentation will explain how to use advanced scripting techniques including modularity,
reusability, encapsulation, indirection and data-driven design to make automation easily accessible to
domain experts with a minimum of training and technical expertise. The ultimate goal is to make test
automation available, persistent and consistent across the organization, over time and change.

About the Author

Linda G. Hayes BBA, CPA, MS, JD

Linda holds degrees in accounting, tax and law, is a CPA and member of the Texas State Bar. She is
the founder of three software companies including AutoTester, where she pioneered automated test
tools for the PC. Her new company, WorkSoft, offers the next generation of enterprise-level test
automation.

A frequent industry speaker and award-winning author, she publishes the monthly Quality Quest
column for Datamation, wrote the Automated Testing Handbook and co-edited Dare to be Excellent
with Alka Jarvis on best practices in the software industry. Her article "Quality is Everyone's Business"
won the Most Significant Contribution award from the Quality Assurance Institute and was published
as part of the Auerbach Systems Development Handbook.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/3A2.html [4/28/2000 2:30:17 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Table-Driven
Testing:

Making Automation Accessible

Quality Week 2000
Linda G. Hayes

Business Case for
Test Automation

lMarket pressure drives schedules
• Product cycles are accelerating

lBudget pressure constrains funds
• Time, resources, skills are limited

lBusiness risk demands quality
• Testing is critical and complex

lAutomation is best solution
• Reduce time, cost, increase quality

2

Obstacles

l Script skills are scarce, expensive
• Tools are specialized languages

lDevelopment effort is prohibitive
• 5 to 10X manual effort

lMaintenance offsets productivity
• Applications are moving targets

lUndocumented, non-transferable
• Limited useful life

Automation Evolution

lCapture/Playback

lData-Driven

lTable-Driven

lTest Repository

3

Capture/Playback

lMost commonly recognized technique
• Easy to demonstrate, sell

l Perform test manually, capture steps
• Implies no difference in approach

l Script is generated automatically
• Appears to hide script language

Capture/Playback
Example

Select File>>Open
Select ListBox Files “Accounts”
Enter TextBox Name “Joe C. Customer”
Enter TextBox Address “1234 Main”
Enter TextBox City “Anytown, USA”
Select RadioButton Type “Individual”
Click PushButton “OK”
Verify Message ”Account Added”

4

Capture/Playback
Advantages

lLittle training, setup time
• Useful in a crisis

lDevelop tests on the fly
• Requires little process

lCaptures audit trail
• Recreate manual steps

Capture/Playback
Disadvantages

l Late in development cycle
• Software must be working

lRequires manual capture
• Limited leverage

lMay not replay reliably
• May still require some scripting

lDifficult to maintain
• Offsets productivity

5

Data Driven

l Inputs and outputs stored as data
• Each record is a test case

l Sequence of actions scripted
• Variables substituted for data values

lCapture manually then modify
• Add variables
• Add file processing
• Logic and branching

Data Driven Script
Example

Open File “TestData”
Select File>>Open
Select ListBox Files “Accounts”
Next: Read Record until EOF:
 Enter TextBox Name [Name]
 Enter TextBox Address [Address]
 Enter TextBox City [City]
 Select RadioButton Type [Type]
 Click PushButton “OK”
 Verify TextBox Message [Status]
EOF: End of File

6

Data Driven Data
Example

Name Address City Type Message

Joe C.
Customer

1234 Main Anytown,
USA

Individual Account
Added

Mary B.
Buyer

9876 Elm Othertown,
USA

Wholesale Account
Added

Little
Shoppe

12 Main
Mall

Shoptown,
USA

^ Type
Required

Data Driven Advantages

lCreate test cases earlier
• Data values defined in advance

lCreate tests in utility of choice
• Database, spreadsheet, editor

l Leverage
• Import, generate data

lReduced maintenance
• Single script per process

7

Data Driven
Disadvantages

lTechnical tool skills required
• Use of variables, external text files
• Logic to handle data variations

lScripts still recorded
• Delays test process

lData file management needed
• Data files are part of test repository

Table Driven

l Test cases stored as data
• Standard file format for all tests
• Each step is a separate record

l Single main processing script
• Single point synchronization

lGeneric function scripts
• Input, verify functions for each class
• Shared across all instances

8

Table Driven Data
Example

Window Object Action Value
Main Menu Select Accounts

Accounts Name Enter Text Joe C.
Customer

Accounts Address Enter Text 1234 Main

Accounts City Enter Text Anytown, USA

Accounts Type Select Radio Individual

Accounts OK PushButton

Accounts Message Verify Text Account Added

Table Driven Main Script

Open file TESTDATA
 NEXT: Read file TESTDATA until EOF
 Does @Window have focus?
 If no, wait for timeout
 If timeout, call Recover
 Does @Object have focus?
 If no, set focus to @Object
 Does @Object have focus?
 If no, Call LogError
 Call @Function
END: End of file

9

Table Driven Functions
Menu Select script
Does menu item Value exist?

 If no, Call LogError
Is menu item Value enabled?

 If no, Call LogError
Select menu item Value
Resume
Enter_Text
Press [Shift-End]
Enter Value
Resume
Select Radio
Select Radio @Object, Value
Resume
Verify Text
Get value of @Object into ActualValue
Verify ActualValue=Value

If no, call LogError
Resume

Table Driven
Advantages

lNo tool expertise to develop tests
• Test cases easy to write, read

lDevelop test cases, scripts earlier
• Ready to execute when software is

lMinimized maintenance
• Single occurrence of each function

l Portable architecture
• Across applications
• Across tools

10

Table Driven
Disadvantages

lNeed technical skills
• Identify object classes, actions

lNeed tool skills
• Develop and maintain scripts

lNeed data repository
• Tie tests, data together

Test Repository

lAnalyst friendly front-end
• Short learning curve

lOpen architecture
• Works with any tool

lCentralized repository
• Tests, data, results

lDocumented, maintainable
• Easy to transfer, manage

11

Certify™
Implementation

Overview &
Demonstration

Certify™ Modules

lOrganize
• Environments, Applications, Versions, Users

l Plan
• Requirements, Schedules, Cycles, Processes

lDefine
• Map, Variables, Data

l Perform
• Develop, Execute, View Results

lAnalyze
• Coverage, Status, Trends

12

Execution Engine

l Function library
• Written in tool of choice
• Mapped to object classes
• Linked to repository

l Infrastructure
• Synchronization
• Error-handling
• Recovery
• Reporting

Summary

l Evolution of Test Automation
• More sophisticated use of tools
• Easier to use for testers

l From Tool to Application
• Tests stored in database, not scripts
• Organized approach instead of do-it-

yourself
l Focus on Tests, not Tool

QW2000 Paper 3W2

Dr. B.M. Subraya & Mr. S. V. Subrahmanya
(Infosys)

Performance Testing: A Methodical Approach to
E-Commerce Applications

BACK TO QW2000 PROGRAM

Presentation Abstract

Performance of many Web sites depends on the load on the site at peak time under varying
conditions. Traditionally, client-server testing does not ensure the performance of Web sites, as there
are unknown users with many uncertainties. Under these circumstances performance testing must be
carried out in such an environment which reflects the real users. Since it is difficult to provide such an
environment before the deployment of the application, it is more appropriate to follow a methodical
approach that ensures the required performance under varied circumstances.

1.0 Introduction: The rapid rise of Web-based E-commerce applications has led to a plethora of design
and development tools designed to minimize the time to market for many e-business applications.
Designing and developing, however, are only two phases of application development. E-commerce
applications demands rapid development and deployment. Testing, a critical third phase occupies the
dominant role in the life cycle of the E-commerce application.

Successful e-business applications testing depends on a comprehensive test plan, functionality and
performance testing by using incrementally developed scripts, and using these scripts to test under
varying assumptions and parameters. This combination provides a thorough and methodical test
process.

The first step in testing the e-business architecture is to test the application layer. This type of testing
is often performed early in the lifecycle, before the actual GUI for the application is built, to ensure that
the essential foundation is present and sound before you add more complex application components.
During the deploying an e-business application, one of the most important issue need to be addressed
is application's performance. Unlike traditional client/server applications, where user loads can be
easily predicted, performance problems are inherent to e-business systems, where the volume of
users and traffic levels can change in a matter of seconds.

2.0 What is Performance Testing?

Performance testing is directly reflect the behavior of the complete Web site. Visitors expect the fast
response with in a short period of time. Therefore, a rigorous performance testing must be carried out
on each site. Performance testing can be viewed as a "Black Box" testing, which focuses on
application and system behavior from outside, with no knowledge of the program code that supports
the system. The main objectives of the performance testing is:

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/3W2.html (1 of 2) [4/28/2000 2:30:22 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

* Maximum number of concurrent users that can be supported while offering "acceptable
performance."
* Maximum number of concurrent users that can be supported prior to causing a system failure.
* Location of bottlenecks within the application architecture.
* Impact of a software or hardware change on the overall performance of the application.
* Scalability issues

The performance testing is done by recording or scripting the actions that real users perform, and then
playing those actions back against the System Under Test (SUT), in an automated and controlled
manner. Performance testing also depends on certain issues like, Graphics, Load Time and
Connection Methods.

About the Authors

Dr. Subraya B.M. currently working as Consultant to Education and Research department of Infosys
Technologies Limited, Bangalore, India. Before he comes to Infosys on sabbatical, he was working as
Professor and head of Computer Centre, at S.J. College of Engineering, Mysore, a reputed
engineering college in southern part of India, since more than 20 years.

Dr. Subraya holds Ph.D from Indian Institute of Technology, Delhi from Computer Science &
Engineering Department, in the area of hardware verification. He has guided many projects at
graduate and under graduate level. His area of interest includes Software testing, Operating System
and distributed databases. He can be reached at subraya@inf.com.

Mr. S.V. Subrahmanya holds B.E degree in Electrical Engineering from University of Bangalore,
Bangalore, India and M.Tech in Computer Science from IIT, Kharagpur. He is currently working as
Project Manager at Infosys Technology limited, Bangalore. He started his carrier as programmer then
moved to academics where in he worked as Assistant Professor in the department of Computer
Science & Engineering, BMS College of Engineering, Bangalore. Prior to joining to Infosys he was
working at Ashok Leyland Information Technology as Asst project Manager.

His areas of interest include Enterprise Application Integration(EAI), E-commerce End-to-End testing
and Software Engineering. He can be reached at subramanyah@inf.com.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/3W2.html (2 of 2) [4/28/2000 2:30:22 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

PERFORMANCE TESTING: A
METHODICAL APPROACH TO
E-COMMERCE APPLICATIONS

Dr. SUBRAYA BM
subraya@inf.com

Education & Research Deptt.
ITL Infosys, Bangalore

SESSION PLANSESSION PLAN

• Introduction to Web Testing

•Web Site Quality and Reliability

•Performance Model & Parameters

•Approaches for Performance Testing

•Performance Indicators & Analysis

•Conclusion & Future Work

n It is relatively a new area

nThere is a difference in testing Client/

Server and Web Applications

nAutomated testing of WebSites is an

opportunity and a Challenge

WEB APPLICATION TESTING

nUnknown place
nUnknown platform
nUnknown Browsers
nUnknown Architecture
nUnknown User and level
nUnknown User knowledge
nUnknown User Requirements

UNKNOWN AND UNCERTAIN

Unknown & Uncertainities

U Place

U User & level

U User know ledge

U PlatformU Brow sers

U Architecture

U User
Requirements

U Place U User & level U User know ledge

U Platform U Brow sers U Architecture

U User Requirements

n All components on client side

n All components on server side

 WHAT TO TESTWHAT TO TEST

nMore graphics oriented compare to standard
applications

nMore multimedia functionality to be
considered

nPerformance requirements for database
driven applications

WEB TEST REQUIREMENTS

nDimensions of Quality

nImpact of Quality

WEBSITE QUALITY AND
RELIABILITY

nPerformance
nTime
nStructural
nContent
nAccuracy and Consistency
nResponse Time and Latency

DIMENSIONS OF QUALITY

nPoor Quality Web Site
- broken pages and faulty images, CGI-Bin
error messages, etc

nVery Complex WebSites
-Complex colour combinations, no back
link, multiple and frequent links

IMPACT OF QUALITY

nConduct set of tests automatically and

repeatably

nCreate Test Sessions

nPlan Test Context

HOW to ENSURE QUALITY
AUTOMATICALLY?

nEasy to navigate
nConsistency in look and feel of the site
nProvide Table of Content
nHome button or link on every page
nAvoid too many pop up windows
nDownload file and its size must be

displayed
nRequirement of plug-in components
nContact information(email etc)

USABILITY

T
Y

PE
S

O
F

T
E

ST
IN

G

nSimilar to Black box testing

nLooks like an end user to the system
under test

nPerformed by recording or scripting the
actions

PERFORMANCE TESTING
T

Y
PE

S
O

F
T

E
ST

IN
G

nSupport of maximum number of concurrent

users

n Identify location of bottlenecks within the

application architecture

n Impact of a software or hardware change

nScalability issues

PERFORMANCE TEST
OBJECTIVES

Perception, Model, Measures &Perception, Model, Measures &
ParametersParameters

•Perception of performance
•Web Users
•Web Masters

•Performance depends on three models
•Workload Model
•Performance Model
•Cost Model

Perception, Model, Measures &Perception, Model, Measures &
Parameters(Parameters(ContdContd))

•Performance measures
•Response Time
•Throughput
•Resource utilization
•Resource queue length

•Performance Parameters
•System
•Resource
•Workload

Performance IndicatorsPerformance Indicators

•Form of performance measures and provides basic
information about the performance

•Category of Performance Parameters
•Server side
•Client side
•Network side

•Important Performance Indicators are:
•Processor
•Physical Disk
•Memory

TYPICAL TESTING ENVIRONMENTTYPICAL TESTING ENVIRONMENT

nLoad Testing

nStress Testing

nEndurance Testing

VARIATIONS OF
PERFORMANCE TEST

Approaches for PerformanceApproaches for Performance
TestingTesting

•Traditional Approach or Conventional Approach

•Transactional Cost Analysis(TOC)

Traditional or ConventionalTraditional or Conventional
ApproachApproach

•Set the hardware & software environment with required testing tool

•Set the performance parameters

•Maximum number of users

•Maximum number of requests

•Best response time

•Tackle one variable at a time by keeping other variables constant

•Incomplete and time consuming

•Used for benchmarking or post-mortem analysis

Transaction Cost Analysis(TCA)Transaction Cost Analysis(TCA)

•Provides the computing power available

•Framework used to estimate resource cost

•Used for Capacity Planning

Web Application & Its StructureWeb Application & Its Structure

•Web site is composed of many web pages
•Web page is

•linked with many other web pages
•linked to another web site

•Definition of Behavior of a Web site
•Definition of Web page

•as an object
•an object may be a link, a command button,
list box, images, audio or another web site
itself.

BehaviorBehavior of a Web site of a Web site

Behavior

Sub-
behavior1

Sub-
behavior2

Sub-
behavior3

Sub-
behavior4

Display of
Home page

Query on
database Downloading AnimationAnimation

File 1 File 2 File 3 File 4File 4

Definition of a Web PageDefinition of a Web Page

Web Page

Object1 Object2 Object3 Object4

Command
Button List Box Web pageWeb page

File 1 File 2 File 3 File 4File 4

Link

Testing ProcessTesting Process

 N o

 Y e s

 N o

 Y e s

 N o

 Y e s

 S t a r t

 P r e p a r e T e s t P l a n

C r e a t e T e s t E n v i r o n m e n t

 S e l e c t P r o p e r T o o l

C r e a t e N e w T e s t S c e n a r i o

 S e t P e r f o r m a n c e
 P a r a m e t e r s

 S e t t h e S t r e s s L e v e l

 E x e c u t e t h e
 T e s t S c e n a r i o

S a t i s f i e d ?

 A n a l y z e P e r f o r m a n c e
 R e s u l t s

S a t i s f i e d ?

 S c e n a r i o
E x h a u s t e d ?

 C h a n g e t h e
 S t r e s s L e v e l

 N e e d s
A p p l i c a t i o n
M o d i f i c a t i o n

 E x i t

TEST PLANNINGTEST PLANNING

nDefine test objectives

nDefine test tools

nIdentify test team members

nAssess risks

nDefine critical success factors

Testing Environment : An exampleTesting Environment : An example

• Name of the Web/Application Server
• Name of the Database Server
• Server machine RAM
• Server machine Processor Speed
• Number of Clients
• Number of User groups
• Number of Users
• Number of Threads
• Number of Sockets/Thread
• Name of the Tool selected for testing
• Test Session Duration

Performance Parameters & StressPerformance Parameters & Stress
LevelsLevels

•Parameters varies from object to object
•Processors
•Disks
•Memory etc,

•Stress Levels
•Number of Users
•User groups
•Number of clients
•Managing threads and sockets

TEST EXECUTIONTEST EXECUTION

nSet the duration/ session

nAnalyze test cases

nSetup applicable test tools

nKeep track of Configuration mgmnt process

n Identify the test run time(day, week, month)

nPerform repeated test execution

Analysis of Performance ParametersAnalysis of Performance Parameters

Stress Level Vs No.Of Hits

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600

Stress Level (No.Of Threads)

N
o

.O
f

H
it

s

Analysis of Performance Parameters(Analysis of Performance Parameters(contdcontd))

Stress Level Vs Processor Time

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Stress Level (No.Of Threads)

P
ro

c
e

s
s

o
r

T
im

e
 (

 I
n

 M
il

li
 S

e
c

o
n

d
s

)

Analysis of Performance Parameters(Analysis of Performance Parameters(contdcontd))

Stress Level Vs Requests/Sec

0
20
40
60
80

100
120
140
160
180

0 100 200 300 400 500 600

Stress Level (No.Of Threads)

R
eq

u
es

ts
/S

ec
o

n
d

Stress Level Vs Socket Errors

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600

Stress Level (No.Of Threads)

N
o

.O
f

S
o

c
k

e
t

E
rr

o
rs

Analysis of Performance Parameters(Analysis of Performance Parameters(contdcontd))

Analysis of Performance Parameters(Analysis of Performance Parameters(contdcontd))

Stress Level Vs MHz/Req/Sec

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600

Stress Level (No.Of Threads)

M
H

z/
R

e
q

/S
e

c

TEST STOP CONDITIONSTEST STOP CONDITIONS

nWhen to stop testing

nNumber of test cycles to be

carried out

CONCLUSIONCONCLUSION

nFunctional Testing is a must

nPlan for Performance testing from the beginning

nChoose appropriate method for testing

nSelect suitable Performance parameters for testing

nAnalyse the results for varying stress levels

Future WorkFuture Work

n Modelling business component with the Behavior

of the site

nMapping Behavior with Performance Testing

Thank youThank you
{{subrayasubraya, , subrahmanyasvsubrahmanyasv} @ } @ infinf.com.com

1

Performance Testing: A Methodical Approach to E-Commerce
Applications

by
Dr. B.M. Subraya and Mr. S.V. Subrahmanya

Infosys Technologies Limited
 Electronics City, Hosur Road

Bangalore 561 229 India
subraya@inf.com and subrahmanya@inf.com

Abstract:
Performance of many Web sites depends on the load on the site at peak time under
varying conditions. Traditionally, client-server testing does not ensure the
performance of Web sites, as there are unknown users with many uncertainties.
Under these circumstances performance testing must be carried out in such an
environment which reflects the real users. In order to satisfy the user, it is more
appropriate to view the performance testing from the business perspective than the
implementation. The business perspective can be captured by the behavior of the Web
site as user feels and provide similar environment for testing. Since it is difficult to
provide such an environment before the deployment of the application, it is more
appropriate to follow a methodical approach that ensures the required performance
under varied circumstances. This paper addresses the new testing process, which uses
the concept of dividing the behavior of the Web site into testable components with
varied performance parameters and stress levels.

1.0 Introduction:
The rapid rise of Web-based E-commerce applications has led to a plethora of design
and development tools designed to minimize the time to market for many e-business
applications. Designing and developing, however, are only two phases of application
development. An e-commerce application demands rapid development and
deployment. Testing, a critical third phase occupies the dominant role in the life cycle
of the E-commerce application.

Successful e-business applications testing depends on a comprehensive test plan,
functionality and performance testing by using incrementally developed scripts, and
using these scripts to test under varying assumptions and parameters. This
combination provides a thorough and methodical test process.

The first step in testing the e-business architecture is to test the application layer [10].
This type of testing is often performed early in the lifecycle, before the actual GUI for
the application is built, to ensure that the essential foundation is present and sound
before you add more complex application components. During the deployment of an
e-business application, one of the most important issues need to be addressed, is
application’s performance. Unlike traditional client/server applications [1,2,7], where
user loads can be easily predicted, performance problems are inherent to e-business
systems, where the volume of users and traffic levels can change in a matter of
seconds.

mailto:Subraya@inf.com
mailto:subrahmanya@inf.com

2

2.0 What is Web Testing?
Conventional application software testing is well defined with a set of methods and
established over the years [4,7]. Each method is implemented with a proper strategy.
However, one can use some heuristics to test the specific part, which can not be done
by the available methods due to many practical aspects of the software. But, the
conventional methods may not work with the Web based applications. These
applications vary with functionality, presentation, and target users. Thus, Web
applications are dynamic in nature and require strong testing methodology. Web
testing mainly involves testing functionality of the system like in conventional system
[4], presentation layer and performance [5]. During testing of the Web applications,
many issues must be addressed as the web site is subjected to many unknown and
uncertainties.

3.0 Unknown and Uncertainties(U&U)
Unlike in conventional system, Web based application is targeted for many unknowns
and uncertainties. Typically, in a scale of 100, the pie chart shown in fig 3.1 gives
approximate distribution U&U, which must be addressed during Web design and
testing. Some of the main issues are addressed in the following sections.

Fig. 3.1 U&U distribution

3.1 Unknown place
Though the Web site is hosted at one place, its users may be spread across the entire
globe. Different regions will have different culture, style of functioning and accepting
the target application. For example, a particular colour may represent peace in some
region whereas it may signify differently in some other region. If the colour used is
unpleasant, users may not visit that site for business. Therefore, the place of usage
must be taken into consideration while designing the application.

Unknown & Uncertainities

U Place

U User & level

U User know ledge

U Platform
U Brow sers

U Architecture

U User
Requirements

U Place U User & level U User know ledge

U Platform U Brow sers U Architecture

U User Requirements

3

3.2 Unknown User and level
Since the conventional application is targeted towards the known organization with
known users. A typical airline reservation system will be used by known users who
have sufficient knowledge and training. However, the Web based applications
targeted for everybody who may or may not be having sufficient knowledge. The
target users may not know the organizational structure of the system. Their level of
understanding may be different. A Scientist may be accessing a Web site whereas a
teacher may also be accessing the same site and their requirements are different. Their
level of thinking may be different. Their level of approach and using the site may be
different. How to ensure the unknown users with different levels will not switch to
other sites? How to leverage the site among many users that caters to their levels.

3.3 Unknown User knowledge
Many users are visiting the Web site for business but their knowledge and
expectations are unknown. A businessman who is proficient in the business may not
be having sound knowledge in using the Web site. It may be difficult to learn the
technology to use the Web site due to lack of time and interest. During the
development of the Web based applications, designers must keep track of the users
and their knowledge level.

3.4 Unknown platform
Deciding the specific platform to develop a Web based application is a critical activity
in the software development. The application may be developed in some specific
Operating System but user may be using a different platform to access the site.
Designers must ensure that the site can be accessible from all the standard Operating
Systems. It is more common that the data be stored in the legacy system where as the
Web server will be in different platform.

3.5 Unknown Browsers
Browser is necessary to access any site and it is integral part of the user requirement.
Users must be allowed to use any browsers to visit and doing business at any sites.
Web sites should not be browser specific and must be independent of browser
dependent platform. Though designers might have tested with a specific browser, it
may not work with all browsers. Some of the technologies may not work with all
browsers. These browsers will require plug-in components during browsing pages.
Many browsers are platform dependent and needs to be configured. Some of the pages
may not look clear when viewed through different browsers. Issues like, frames may
not be working properly, scroll bars may not be appearing, fonts may not be proper
must be addressed.

3.6 Unknown Architecture
The main issues related to the architecture is to find out how the developed
application can be accessed by all systems with different types of architecture. For
example, it may be Pentium, an old 486 bases system, workstation or risk based
system. During the development, it is not guaranteed that all users will have latest
technology architecture. There may not be sufficient memory or cache as assumed by
the designer during the development. Issues related to scalability must also be
addressed.

4

3.7 Unknown User Requirements
Since it is difficult to satisfy user expectations, efforts must be taken to fulfil most of
the requirements. Users always will insist the size of the downloadable file to be
displayed. Sufficient width must be provided while accepting the user profile. Table
of Contents must be on the left side of a page. Too much pop up windows may not be
acceptable. Web sites with more complexity will slowly loose its attractions among
visitors. Though the user requirements are unlimited, it is desirable to follow the
commonality among many sites.

Inspite of the above U&U, testing of Web applications is a challenge and an
opportunity to design a quality Web applications.

4.0 How to ensure the Quality Testing?
As Web sites becoming a fundamental component of businesses, quality of service
will be one of the top management concerns. Users, normally, does not care about site
failures, traffic jams, network bandwidth[9], or other indicators of system failures. To
an online customer, quality of service means fast, predictable response service level of
a Web site noted in a real time. User measures the quality by response time,
availability, reliability, predictability, and cost.

Since the Web based applications are entirely different from the conventional
systems, there is a need to ensure the quality of the final deliverable product. In
conventional system, testing is followed as per the guidelines of the test plan. The test
plan is mainly concentrating on the functionality of the application and is guided by
the requirement specification. However, test plan alone is not sufficient to test the
Web based applications. This is due to the dynamic nature of the applications.
Therefore, it is necessary to view the quality from different dimensions.

4.1 Dimension of Quality
In the dynamically changing Scenario of the world of Web sites, there are many ways
in which one can view the dimensions of the quality. They are:

4.1.1 Time

The Web site always keeps changing dynamically. Some parts of the site may be
removed or a new part may be added. There may be a separate link created externally
to integrate other sites. Contents of the Web site may be changed or updated
periodically. The business may demand the reorganisation of the Web site afresh. The
Time parameter mainly deals with the changes in the Web site since the last update.

4.1.2 Structural

A complete Web site is made out of many building blocks. A block may be a frame, a
page or multiple pages, an input text box, another Web site itself. These blocks are
connected through links. Each page may have many links and links may be repeated
in multiple pages also. There are two types of links, viz. Internal and External.
Internal links are the ones, which integrate various modules with in the site connected
through Intranet. External links are responsible for connecting modules, which are
external to the site and connected through the Internet. The structural parameter
mainly deals with how well do all of the parts of the Web site hold together. Whether
all links are working properly or images will be displayed with out any errors.

5

4.1.3 Content

The importance of the Web site lies in the relevance and quality of the information it
contains. A Web site delivers contents of many forms, such as HTML documents,
images, sound, and video clips. Content size, structure, and links affect the
performance of the site. Sometimes highly used pages may have to be mirrored either
in the same place or at different places.

Some of the Web sites are mainly concentrating on content publishing and give more
importance to the contents. Keeping in view that a third party search engine may be
used to get information by searching key phrases, the content must be created
carefully. Therefore, key phrases must exist continually in highly changeable pages.
Maintaining quality content from version to version is really a challenging task.

4.1.4 Accuracy and Consistency

Accuracy decides the correctness of the Web sites where as consistency measures the
reliability of information. It is a necessary condition to present accurate data and
maintain the consistency of data during multiple access. If a page is downloaded
multiple times, the same page must be obtained at all downloads. If the data content is
wrong during multiple downloads, the reliability of the site will be lost. The Web site
must ensure the same data or information during multiple retrievals of the same page.
Links must navigate to the destination page that is intended too.

4.1.5 Response Time and Latency

A customer who visits Web sites always expects responses for a specific query with
no or minimum delay (latency) time. The end-to-end response time must be as fast as
possible after a query is submitted. This parameter mainly helps to identify parts of
the Web site, which are slow.

4.1.6 Performance

Performance is an important dimension, which measures how a Web site can retain
the customer permanently. If more than one concurrent user access the site through
the browser, how quickly one can satisfy the query of many users. Is the connections
between various components are performing as expected? What is the measure of the
performance of an E-commerce site? Performance varies by time of day, by load and
usage. Taking ten minutes to respond to an E-commerce purchase is not acceptable.

4.2 Impact of Quality
Quality of the Web site, though depends on the above parameters, it has to be
maintained periodically to ensure the quality permanently. Poor quality implies that
the customer will no longer visit the site and hence the organization may loose
business. The issues that affects the quality are, broken pages and faulty images, CGI-
bin error messages, complex colour combinations, no back link, multiple and frequent
links, etc.

4.3 Ensuring Quality automatically
In a changing Scenario of the Web based applications, it is necessary to maintain the
Web sites with out sacrificing the quality. To ensure the quality, one has to conduct
set of tests automatically and repeatedly through test sessions. To have proper test
sessions, test plan and test context must be well prepared. Apart from keeping the
quality conscious, the Web site must address the usability issues. The usability issue

6

mainly depends on the psychology of the users which varies from one user to another.
However, following issues may be addressed during the designing and testing of the
Web applications:

• Easy to navigate
• Consistency in look and feel of the site
• Provide Table of Content
• Home button or link on every page to guide to a proper destination
• Avoid too many pop up windows
• Downloadable file and its size must be displayed
• Requirement of plug-in components must be known
• Contact information(email etc)

Quality aspects of any Web site must be addressed carefully and completely. A
systematic planning to conduct various tests to satisfy the quality parameters
described above is unavoidable. There are many ways in which tests are conducted
and organised. However, an important quality parameter, performance, has to be
addressed in order to ensure the reliability and speedy accessing of web sites.

5.0 What is Performance Testing?
Modern computer systems are becoming more complex and dependent on many
factors such as the network technologies on the Internet. Computing is distributed
between various processes such as in the client/ server paradigm or clients and Web
servers. Deploying applications that rely on Web servers, Intranets, and client/server
technologies is a challenge both in assuring that the functionality will be maintained
and in guaranteeing that the functionality will be delivered with an acceptable
performance. Performance problems can bring all sorts of undesired consequences,
including financial and sales loss, decreased productivity, and a bad reputation for a
company. It is important to plan ahead of the system deployment and capacity of
networked systems. Capacity planning involves being able to predict when the
existing applications will fail to meet the required performance levels. Performance
prediction may be accomplished through performance models [5].

Performance testing is directly reflecting the behavior of the complete Web site.
Visitors expect the fast response with in a short period of time. Therefore, a rigorous
performance testing must be carried out on each site. Performance testing can be
viewed as a “Black Box” testing, which focuses on application and system behavior
from outside, with no knowledge of the program code that supports the system. The
main objectives of the performance testing is:
• Maximum number of concurrent users that can be supported while offering

“acceptable performance.”
• Maximum number of concurrent users that can be supported prior to causing a

system failure.
• Location of bottlenecks within the application architecture.
• Impact of a software or hardware change on the overall performance of the

application.
• Scalability issues

7

The performance testing is done by recording or scripting the actions that real users
perform, and then playing those actions back against the System Under Test (SUT),
in an automated and controlled manner. Performance testing also depends on certain
issues like, Graphics, Load Time and Connection Methods.

6.0 Performance Modeling
Performance of a system in internet can be analyzed from different viewpoints. For
instance, a Web user’s perception of performance has to do with fast response time
and no connections refused. On the other hand, a Webmaster’s perception of
performance is oriented towards high connection throughput and high availability.
The Web server performance depends on several factors: hardware & software
platform, operating system, server software, network bandwidth [9] and workload.
There are various well-known methodologies for performance evaluation of computer
systems [6].

The overall performance of any system mainly depends on three models: a workload
model, a performance model, and cost model [5]. The workload model captures the
resource demands and workload intensity characteristics of the load brought to the
system by the different types of transactions and requests. The performance model is
used to predict response times, utilizations, and throughputs, as a function of the
system description and workload parameters. The cost model accounts for software,
hardware, network-communications, and support expenditures.

An important aspect of performance modeling involves predicting whether a system
will deliver performance metrics like response time and throughput. Performance
prediction is the process of estimating performance measures of a computer system
for a given set of parameters. Typical performance measures include response time,
throughput, resource utilization, and resource queue length.

Parameters are mainly divided into the following categories:

6.1 System Parameters:
Some of the characteristics at the server end normally affect the performance. Some
of the parameters include, load-balancing at the mirrored Web-server end, the type of
Network protocols, maximum number of connections supported by a Web server, and
maximum number of threads supported by the database management system.

6.2 Resource Parameters:
Some of the resources affect the performance by virtue of its intrinsic features. For
example, disk seek times, latency and transfer rates, network bandwidth, router
latency, and CPU speed ratings.

6.3 Workload Parameters:
Workloads on sever at any instant affects the Performance of the system. Some of the
parameters like number of hits/day to the Web proxy server, number of requests/sec
submitted to the file server, number of transactions submitted per second to the
database sever plays a dominant role in performance testing.

Performance prediction requires the use of models. To predict the performance of a
system we need to be able to solve the performance model that represents the system.

8

Two types of models are used: simulation and analytical model. Analytic models are
based on a set of formula or algorithms used to generate performance metrics whereas
simulation models are computer programs that mimic the behavior of the system.
However, for each model, set of performance indicators must be defined.

7.0 Performance Indicators
To ensure the stability of the Web site and provide a good measure for the
performance testing, it is necessary to define a set of indicators. These indicators will
provide the performance behavior of the Web site. One can categorize the indicators
from the client and server side. Though these indicators provide basic information
about the performance, it does not provide true picture of the real environment. Some
of the indicators are defined below:

7.1 Processor
Processor is an important resource, which affects the performance of the application.
It is necessary to measure the amount of time spent in processing the threads by one
or many CPU’s. If the number consistently above 90% on one or more processors
indicates that the test is too intense for hardware. This indicator is applicable only
when the system has multiple processors.

7.2 Physical Disk
Since the disk is a slow device with more capacity to store, the parameters like
latency and elapsed time provides more information on improving the performance.
Performance of the system depends on disk queue length also. It shows the number of
outstanding requests on the disk. Sustained queue length indicates a disk or memory
problem.

7.3 Memory
Memory in any computer system is an integral part of the hardware system. More
memory will speed up the I/O process during execution but burdens on the cost
parameter. All data and instructions to be executed must be available on the memory
comprised on pages. If more pages are available, faster will be the execution. The
observation on number of page faults will give information related to the
performance. It is worth considering how many pages are being moved to and from
the disk to satisfy virtual memory requirements.

7.4 Network Traffic
It is not possible to directly analyse the network traffic on the Internet that depends on
the bandwidth [9], type of network connection and other overheads. However, it is
possible to find out the time taken for number of bytes reaching the client from the
server. The bandwidth problem will also affect the performance as the type of
connections varies from client to client.

Performance indicators provide the basis for testing and in each category, different
types of counters can be set. The values provided by these counters will greatly helps
in analysing the performance. To set the performance counters, a proper environment
must be established for testing.

9

8.0 Right Environment for Performance Testing:
Since unknown users and uncertainties are surrounding the usability of the Web site,
it is necessary to provide the proper hardware and software environment for the
performance testing. The main focus of the performance testing is to generate
multiple virtual users and each virtual user performs a set of activities
simultaneously. It is not possible to create a real life environment at the production
centre but one can create a virtual environment by using testing tools and proper
hardware and software. Sometimes it is necessary to create cluster of clients as a
representative of different Operating Systems, multiple browsers and architectures. It
may be required to create different stress level associated with different clients.

A typical architecture[11] for such simulations may be viewed as shown in fig 8.1.

Fig 1.0 : Typical Architecture for performance testing

Fig 8.1 Typical Architecture for Performance Testing

A single load generator (fig 18.1) can typically simulate the behavior of tens of
hundreds of users through the use of very small Web clients known as virtual users.
Virtual users communicate directly with the Web server or through any type of
browser available with the client. These virtual users may be grouped and mapped on
to a specific client and such many clients may be created. However, all the clients can
be controlled from one master client. The delays for the users think time and network
latency can also be programmed. The test sessions can be planned and during the
session, the type of activities can be programmed by using the record & play or
scripting the behavior of the site.

The application servers may be typically either Microsoft Transaction Server (MTS)
or any other server[3]. If the applications are available on legacy servers, it is
necessary to build a proper mapping. Thus migration of data from such legacy system
to the Web server must be carried out automatically. In some cases, the environment
may demand cluster of application servers spread across in different locations of the
Intranet. To test the security aspects of the site, it is also necessary to build up the
security environment so that proper test case can be generated.

9.0 Variations of Performance Testing:
The performance testing is done by recording or scripting the actions that real users
perform, and then playing those actions back against the system under test in an

10

automated, controlled manner. Such scripts can be edited to suite the specific
environment, if required. Though the performance testing depends on the specific
objective set by the customer, there are three common variations of performance tests
that routinely used[1].

9.1 Load tests
Load testing provides insight into the working of the Web site in the day to day
conditions. It models the behavior of users in the real world. Test script mimics the
behaviors that the users commonly perform, and include think time delays and arrival
rates reflective of those in the real world. When selecting think time delays and
arrival rates to be used in the load test, it is best to choose values observed during
peak load. The behavior of the applications selected will depend on the type of the
system under test. In some of the applications, the test may run for a short period of
time depending on the functionality being tested. Load test mainly provides insight in
to the application under test.

Most Web actions should complete in seconds, thus a 10-30 minute test duration is
usually adequate to bring the load up to a steady state, exercise the desired
functionality, and get a large result set.

9.2 Stress tests
Stress testing is load testing with the user think time delays removed. In stress tests,
scripted actions are executed as quickly as possible. Stress testing reflects the worst
case scenario likely to be experienced by a Web site. It can bring to light performance
issues that might not otherwise be seen, such as database record contention or the
impact of too few connection service processes. In some of the applications, it is
essential to increase the stress and find out whether the application under test breaks
or not. Some of the Web site applications may not require stress testing as intensive
because of its nature.

9.3 Endurance /Durability tests
Endurance testing can be thought of as a long duration load or stress test. Instead of
test execution period lasting for tens of minutes, tests are executed for hours or even
days. Endurance tests can reveal obscure system defects such as slow memory leaks,
the accrual of uncommitted database transactions in a rollback buffer, queuing of
downstream systems, or other gradual impacts upon system resources. This type of
tests are required for applications which is of high importance and tenable for a long
time. It is difficult to conduct endurance tests at the production centre but can be done
as part of the acceptance test.

10.0 Approaches for Performance Testing:
Many approaches and strategies are available for the performance testing. However,
the type of approach to be followed depends on the type of application and the
criticality of the application. Web based applications are dynamic in nature and
requires methodical approach to test its functionality and performance. The approach
must be continuous and repeatable as performance testing is a continuous process.
Some of the basic approaches may be used to test the performance of the application.

11

10.1 Traditional or Conventional Approach
In this approach, we first set the hardware and software environment with the
required testing tool. Performance testing is then carryout keeping in view of the
required performance parameters. The parameters may be either the maximum
number of users or requests that can be handled or the best response time that can be
achieved. At any time, only one variable is tackled by keeping the other variables
constant. For example, set the response time as 1 sec and keep increase the number of
users so that the response time will not exceeds its limit. This approach determines
the number of users that the site can serve with acceptable response.

This approach may be incomplete and time consuming as it may not be possible to
perform the test with all permutations. It is better to work with a representative
number of combinations and then attempt to estimate the results by extrapolating
these results.

Conventional approach may be best used for benchmarking purposes or a post-
mortem analysis to obtain statistics on the various performance parameters. It does not
help in a practical environment where-n many external factors are involved.

10.2 Transaction Cost Analysis (TCA)
Since traditional conventional method lacks the dynamic nature of the application,
TAC provides a framework to estimate the cost based on the workload. The workload
is based on many factors which includes the following [5]:

• Number of clients that requests pages,
• Type of page reflecting size & access frequency,
• Number of pages available on the server under test,
• Number of client machines or client processes,
• Number of hardware resources used.

The framework estimates each resource cost as a function of usage profile, service
mix, or hardware configuration. Hardware resources include, but are not necessarily
limited to, CPU, cache, system bus, RAM, disk subsystem, and network. TCA also
helps in reducing the potential for over-provisioning hardware since the entire (linear)
workload range is measured. TCA captures all costs present during run-time
including operating system overheads.

To understand the costs better let us assume an ASP based application being tested
for performance. Suppose the system at optimum performance levels is able to handle
n (say) ASP requests per second.
Let us assume the average computing power of the system as y MHz. The cost of one
ASP requests per second becomes (y/x) in MHz/ASP requests per second.

If more than one processor is used as resources, the average computing power must
be computed accordingly.

i.e. Average processor time spent on specific task =
(Number of Processors) * (Speed of Processors) * (percentage of processor
utilization)

12

For example, consider 70 ASP requests per second on four processors with 200Mhz
speed with 70% processor utilization gives the cost as:

The total computing power becomes, 4 processors * 200 MHz = 800 Hz.

If we assume 70% processor utilization, the available computing power is,
 (800) * (0.70) => 560 MHz

If 70 ASP requests per second to be satisfied, the cost of one ASP per request
becomes,

560/70 => 56/7 => "8 MHz per ASP request per second"

This provides a picture about the cost utilization of an object during multiple
requests. Based on the above framework, simulate load over linear operating regime
to cost each transaction and interpolate resource costs over operating regime. Cost of
each resource as a function of usage profile is computed which reflects the
performance of the system.

TCA is a more proactive methodology and can be used for Capacity Planning
exercises. Once TCA has been performed, it can be applied to capacity planning
using the following procedure:

1. Define usage profile and calculate throughput targets.
2. Calculate total resource costs.
3. Calculate capacity requirements.

The effectiveness and flexibility of the capacity planning model depends critically
on a careful assessment of the expected usage profile for each service. This profile
consists of both individual and aggregated user behavior, and site profile
information.

10.3 Testing Process:
Once the methodology and the requirements are known, it is necessary to prepare the
test process. The Test Process depends mainly on the required resources and proper
environment associated with the test plan. The testing process can be defined only
when the structure of the Web application is properly defined.

10.3.1 Web application and its structure
Web based application is composed of many web pages and users can interact with
Web pages through browsers. Web pages may be linked with many other web pages
or external sites through links. A web page is defined as composed of many objects.
An object may be a link, a command button or a list box in a page, a message, an
image, audio or another Web site itself. Therefore, a Web page may be defined
recursively in terms of objects. Object is a fundamental entity used to construct the
Web site. Once the Web application is defined, the application as a whole is subjected
to the testing process. However, the whole application can not be tested. The
application must be sliced into testable objects. These objects reflect the behavior of
the Web page. In general, the behavior of the Web site is divided into set of sub-
behaviors represented by many integrated objects. The division of the behavior
depends on the criticality of the complete or part of the Web site. Sub-behaviors are

13

independent on its own and may be clubbed together to represent the overall behavior
of the site. These behaviors may be captured by using play and record concept and
collected in the form of scripts known as Scenarios. The Scenarios are then subjected
to testing with a set of performance parameters and stress levels. The overall process
of testing sub-behaviors is represented in the flow chart shown in fig. 10.1.

Fig 10.1 Testing Process of a Web application.

 N o

 Yes

 No

 Yes

 N o

 Yes

 S tart

 Pre pare T e s t Pl an

C re ate Te s t En vi ron m e n t

 S el e ct Prope r T ool

C re ate N e w T est S cen ari o

 S e t Pe rform an ce
 Param e te rs

 S e t the S tre ss Le ve l

 Exe cu te th e
 T e s t S ce n ari o

S atis fied ?

 An al yze Pe rform an ce
 Re su l ts

S atis fied ?

 S cenari o
Ex h aus te d ?

 C h an ge the
 S tre ss Le ve l

 Nee ds
A pplica tio n
M o di fica tion

 Exit

14

The primary activity of the testing process is to create the testing environment as
described in section 8.0. Proper testing tool must be procured and installed before
starting of the test. There are many tools available in the market, but it is important to
find the right tool for the application. One can use some standard parameters to select
the proper tool [7]. Majority of the performance testing tools provides the facility to
capture the behavior of the application under test. The behavior may be of the whole
page or in parts/ slices that is to be decided by the test designer. A set of behaviors
may be grouped in the form of Scenarios. Once the behavior is captured in the form of
Scenarios, then the performance parameters are set for the selected Scenario. These
performance parameters vary from one Scenario to another. The system is then
subjected to test under varying stress level for a specific duration against the test plan
as described in fig 10.1.

10.3.2 Test Plan
The test plan for performance testing differs from the conventional test plan of the
software testing. The conventional test plan tries to bring about the various test cases
to test the functionality of the system. In case of performance testing, the functionality
of the system is already tested and the correct system is subjected to next level of
testing from the user perspective. Thus the test plan for performance testing mainly
deals with performance indicators under varying conditions. The test cases includes
the stress levels for each performance indicators, number of users, type of grouping
the users, architecture which includes clients machine, browsers etc,. Purpose of each
test must be specified for each performance indicators and probable performance
levels have to be provided.

The output of the test based on the given test plan is analyzed. The results may be
represented in the form of graphs for different stress levels that will reflect the true
behavior of the system. Based on the analyzed reports, if the user is not satisfied then
the application can be modified and subjected to the same cycle of operation. Here the
modification of the application may be reconfiguring the servers, fine tuning the
database servers, and suitable enhancement to the architecture or software
modifications.

Each Scenario can be tested individually or as a test suite for specific interval of time,
known as test sessions. The test sessions may be one minute or hours or days that
depends on the application and the type of test conducted on the application.

10.3.3 Set the parameters and stress level
Performance parameters are important yardsticks to measure the performance of the
system. However, all parameters are not relevant to each and every application. Even
for a specific application, the parameters vary with the sub-behaviors of the Web
application. It is better to set the relevant performance parameters for a specific
behavior that is under test. These parameters vary with the resources and these
resources are called as objects. For the specific object, there may be different type of
counters to be set. For example, if we consider memory as an object then the counters
may be page faults/sec, cache hits/sec and so on. Each counter may not be relevant to
all behaviors of the applications.

The stress level depends on the number of users to be simulated for any specific
Scenario. The stress level is set to an integer value based on the Scenario that is under

15

test. The Scenario is captured for similar type of activities. For example, those pages,
which are critical and accessed by more visitors, may have to be tested with
maximum stress level. These pages may be of query type, content publishing or any
other type. Once the stress level is set for a Scenario, it must be executed for a
specified period or session. The same Scenario will be repeated for multiple stress
level till the required performance level is reached. If the testing process fail to reach
the required performance level, generate the results that can be analyzed.

10.3.4 Analyze Performance Parameters
The main issue in performance testing is to set the proper parameters and analyzing
the results of the testing. Though setting the parameters depends on the behavior of
the specific Scenario, analysis of the result may have to be done by a standard
benchmark. However, it is too difficult to take decisions based on the benchmarks
available but proper analysis will provide more in-depth knowledge about the
performance of the Web site. Graphical representation of performance results may
provide global picture for analysis and further improvement. A methodical approach
is required to analyse the results. Inorder to help analysing the result, we have used a
prototype design and used HOMER performance tool to test the application. Some of
the important parameters are analysed by keeping the stress level as base.

Stress Level vs No. of Hits
The performance test is normally conducted for specific period. Keeping this as the
base, the performance results are analyzed. During the testing session, the client may
generate requests which will be sent to the server in the form of hits. These hits at the
server end or requests from the client side depends on the number of socket
connections. During the initial stage of the stress level the total number of hits in a
session increases with the stress level and reaches a maximum level as shown in the
fig 10.2. Then the number of hits decreases with the stress level due to the collisions
among many requests. As the number of request increases, the collision among
request also increases. Further, number of socket errors also increases which leads to
the decrease in the number of hits.

Fig 10.2 Stress level vs No. of Hits.

Stress Level Vs No.Of Hits

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600

Stress Level (No.Of Threads)

N
o

.O
f

H
it

s

16

Stress Level Vs Processor Time
Processor Time is an important parameter in which the stress on the processor can be
measured. It is the amount of time spent processing threads by one or many CPU’s.
To find the sustainability of the processor, it is important to increase the stress on the
processor above 80% level as shown in the fig 10.3. It gives how much percentage
time spent on executing each thread. As the stress level increases, the process time
also increases, reached a maximum and maintains at the same level.

Fig 10.3 Stress level vs Processor Time

Stress Level Vs Requests/Sec
Sometimes the number of requests executed per second from the server gives the in-
depth information about the behavior of the sites. The number of requests per second
represents the throughput of the server. The number of requests executed per second
increases as the stress level increases and reaches a maximum, which reflects the
capability of the server. As the stress level increases the execution of request/ sec
decreases and reaches a saturation level as shown in the fig 10.4. This is due to the
fact that as stress level increases from one client, local processing time is more and at
any instant the number of requests received at the server side decreases. After
sometime, irrespective of stress level, sever gets the constant flow of requests. The
benchmark suggests that the value more than 80% reflect more stress on the server.

S tres s L e v e l V s R eq u e s ts /S e c

0
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0

S tre s s L e v e l (N o .O f T h re a d s)

Stress Level Vs Processor Time

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Stress Level (No.Of Threads)

17

Stress Level Vs Socket Errors
Socket is a connection at the server side in which the client can interact through
threads. Each thread can create multiple sockets and each socket is a concurrent
request. From the web server’s perspective, it just sees lots of incoming socket
connections. The server doesn’t care what the thread architecture is behind the
incoming requests. Thus the stress is equal to the multiple of threads and sockets, not
simply threads alone. Increasing the sockets per thread allows a single client machine
to more efficiently generate concurrent connections. As the number of socket
connections increases there is a possibility of generating the socket errors at the server
end. These socket error increases as the stress level increases as shown in fig 10.5.
Attempt must be made to decrease the number of socket errors with the stress level.

Fig 10.5 Stress level Vs Socket errors

Stress level Vs Computing Power
The computing time required to process a request in a single processor environment
depends on the percentage of time allocated to a process as explained in section 10.2.
For a fixed percentage of time allocated, the number of requests processed per second
decreases as the stress level increases.This means, the computing time allocated to a
specific process decreases as the stress level increases or the time taken to process the
request with the stress level requires more computing power as shown in fig 10.6. The
initial spike in the graph represents the overheads on the processor.

The set of performance parameters considered is to highlight importance of the
analysis of the results for various performance objects. This is only an illustration of a
sample prototype design that is subjected to a set of performance parameters.

S tre s s L e v e l V s S o c k e t E rro rs

0

200 0

400 0

600 0

800 0

100 00

120 00

0 200 400 600

S tress L e ve l (N o .O f T h read s)

18

Fig 10.6 Stress level Vs Computing power

Performance testing is not just testing the web site for the required performance but
guide the designers for a better optimum performance. This is evident from the above
results, which provides in-depth information about the performance of the system. We
have injected few errors in the application and tested the application with the same
setup. The results were encouraging and supplement the importance of the
performance testing.

11.0 Conclusion
Web based applications are more complex compare to the conventional client-server
applications due to many unknowns and uncertainties. Among many complexities,
performance testing is one of the main activities in E-commerce application
development life cycle, which has to be tackled with more vigor and aggression.

Performance testing, which enhances the customer confidence on the web site, is
based on many approaches and strategies. Testing the site as a whole is cumbersome
and tedious due to many complexities including the behavior. The behavior of the site
can be divided into testable sub-behaviors. These sub-behaviors may be part of the
web page, a query, a downloadable object or any other meaningful business entity.
Each sub-behavior can be captured by using any performance-testing tool as a
Scenario. The Scenario is then tested for a specific test session for different test levels.
The result is analysed and decision is taken about the performance. This is repeated
for all sub-behaviors, which ultimately ensures the testing of the whole site. This
methodical approach not only ensures the structured way of testing but also provides
step by step enhancement of the quality of the site.

Experimental results shows that the whole Web site need not be subjected to rigorous
performance testing with all performance indicators set for each sub-behavior. One
can identify critical behavior and test with intensive stress for a long duration to
ensure the required performance and stability. However, modeling the behavior of the

Stress Level Vs M Hz/Req/Sec

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600

Stress Level (N o.O f Threads)

19

Web site before starting of the design in a structured pattern, which helps for the
methodical testing, must be addressed.

Acknowledgments:
We sincerely thank Mr. Chandramouli who has helped in conducting the tests and
drawing various graphs during the performance analysis.

Reference:
1. Bill Jaeger, Minimizing Risk with Proactive Performance Testing, by, E-Business

Advisor Article, April 1999.

2. Microsoft Site Server 3.0 Commerce Server, Capacity and Performance Analysis.

3. Optimizing ASP Performance in Site Server 3.0, Commerce Edition, April 1999

4. Pressman & Roger S, Software Engineering: a Practionar’s Approach, McGraw
Hill International.

5. Daniel A. Menasce and Virgilio A.F. Almeida; Capacity Planning for Web
Performance Metrics, Models, & Methods; Prentice Hall, PTR, New Jersey
07458, 1998.

6. Menasce D.A. and Dowdy L.W.; Capacity Planning and Performance Modeling:
From Mainframes to Client-Server Systems.; Prentice Hall, NJ, 1994.

7. William Perry, Effective Methods for Software Testing, John Wiley, New York,
1995.

8. James A. Whittaker, What is Software Testing? And why is it so hard?, IEEE
Software, Jan/Feb 2000

9. Ralph Barker, Optimizing Internet Bandwidth, Performance Computing, January
2000.

10. Dan Sullivan, e-Business Application Testing in Action, e-Business Advisor, July
1999.

11. Internal Report, Infosys Technologies Ltd, Bangalore

QW2000 Paper 3M2

Mr. Cem Kaner

Yes, But What Are We Measuring?

BACK TO QW2000 PROGRAM

Presentation Abstract

A theory of measurement must take into account at least 8 factors:
The attribute to be measured●

The appropriate scale for the attribute●

The variation of the attribute●

The instrument that measures the attribute●

The scale of the instrument●

The variation of measurements made with this instrument●

The relationship between the attribute and the instrument●

The likely side effects of using this instrument to measure this attribute●

Software-related measurements often involve psychological or subjective components. They are
questionable when they fail to take these factors into account. This paper describes the factors and
uses the history of perceptual measurement to illustrate the application of them.

About the Author

Speaker bio to be supplied.
BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/3M2.html [4/28/2000 2:30:43 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Yes, But What Are WeYes, But What Are We
Measuring?Measuring?

Cem Kaner
Quality Week
May 31, 2000

For a related paper, e-mail me at
kaner@kaner.com

2Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

OverviewOverview

• A theory of measurement involves at least 9 factors:
– Attribute to be measured

• appropriate scale for the attribute
• variation of the attribute

– Instrument that measures the attribute
• scale of the instrument
• variation of measurements made with this instrument

– Relationship between the attribute and the
instrument

– Likely side effects of using this instrument to
measure this attribute

– Purpose of the measurement

3Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Yes, but what ARE we measuring?Yes, but what ARE we measuring?

• Do bug counts measure testers? Thoroughness
of testing? Nearness to ship-ready?

• Does “complexity” measure complexity?
• Does “coverage” measure extent of testing?

How would we know?

4Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Note what we’re measuringNote what we’re measuring

• Note that many of the variables that we’re interested in
are psychological variables. (eek!)

– Competence or effectiveness of testers
– Complexity of software
– Even completeness of testing (because completeness is

relative to the tester’s model).

5Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

What is measurement?What is measurement?

• Is measurement really “the assignment of numbers to
objects or events according to a clear cut rule”?

– No, it can’t be. If it was, then many inappropriate rules
would do.

• Measurement is the assignment of
numbers to objects or events according
to a rule derived from a model or
theory.

6Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Definitions from other fieldsDefinitions from other fields

• “Measurement is the assigning of numbers to individuals
in a systematic way as a means of representing properties
of individuals.”

• “Measurement theory is a branch of applied statistics that
attempts to describe, categorize, and evaluate the quality
of measurements, improve the usefulness, accuracy and
meaningfulness of measurements and propose methods
for developing new and better measurement instruments.”

• Allen & Yen, Introduction to Measurement Theory.

7Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Definitions from other fieldsDefinitions from other fields

• “Measurement is the process of gathering information from the
physical world. . . . Measurement is achieved by means of
sensors, also called transducers, and involves the gathering of
data and its comparison with an agreed standard. . . . A signal is
. . . a symbolic representation of some attribute (or combination
of attributes) of the system under observation. . . . Data are the
numbers associated with a signal. . . . Information is the
representation of attributes of the event or object being
measured by a known and agreed symbolism.”

• “Measurement science is the systematic study and organization
of the methods by which information is gathered from the
physical world.”

• Sydenham, Hancock & Thorn, Introduction to Measurement
Science and Engineering.

8Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Simple measurementSimple measurement

• You have a room full of tables that appear to be the same
length. You want to measure their lengths.

• You have a one-foot ruler.
• You use the ruler to measure the lengths of a few tables.

You get:
– 6.01 feet
– 5.99 feet
– 6.05 feet

• You conclude that the tables are “6 feet” long.

9Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Simple measurement (2)Simple measurement (2)

• Note the variation
– Measurement errors using the ruler
– Manufacturing variation in the tables

• Note the rule:
– We are relying on a direct matching operation and on

some basic axioms of mathematics
• The sum of 6 one-foot ruler-lengths is 6.
• A table that is 6 ruler-lengths long is twice as long as one

that is 3 ruler-lengths long.

• These rules don’t always apply. What do we do when we
have something hard to measure?

10Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Next measure: A raceNext measure: A race

• Sandy, Joe and Susan run in a race. Sandy comes in first, Joe
second, and Susan third.
– We assign Sandy the number 1 (first place) and give her

$10,000.
– We assign Joe the number 2 and give him $1000.
– We assign Susan the number 3 and give her $100.

• Questions:
– Is Sandy twice as fast as Joe and three times as fast as Susan?
– Is Sandy 10 times as fast as Joe and 100 times as fast as Susan?
– We assigned these numbers to Sandy, Joe and Susan according

to a rule. Isn’t that assignment based on their speed?

Did we measure their speed in this race or not?

11Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

The race (slide 2)The race (slide 2)

• The rankings (1st, 2nd, 3rd) could be called measures of speed
but they are on an ordinal scale. What you can tell from them is
that Sandy (1st place) was faster in this race than Joe, who was
faster than Susan. Sandy might have been lots faster or a little
faster— we can’t tell.

• There are five main types of scales (categorical, ordinal,
interval, ratio, absolute). A tremendous amount of mathematical
arm-waving can be (and has been) done about the
measurement problems and properties of scales.

• The scaling problem is moderately interesting, but it is hardly the
most difficult problem in a theory of measurement.

• The much more challenging problem lies in the relationship between
the measure and the underlying attribute.

12Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Measurement scalesMeasurement scales

• Absolute scale: You have four computers, I have two.
• Ratio scale: You are twice as wealthy as me— you have

$200, I have $100. The relationship is the same if we switch
to Canadian dollars, $300CDN vs $150CDN. Multiplying
doesn’t affect the relationship.

• Interval scale: (Temperatures of 70, 75 and 80 degrees
(Fahrenheit) differ from each other by 5 degrees. The
difference (the interval) between 10 and 15, 70 and 75, and
75 and 80 is the same. But a 70 degree day is not 7 times as
hot as a 10 degree day.

• Ordinal: (Position in the race. Bug severity: fatal, serious,
moderate, minor)

• Categorical: (This is a design bug (category 1); that is a
control flow bug (category 2).)

13Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Attributes and InstrumentsAttributes and Instruments

??? Line / branch
coverage ???

Test completeness

??? Branches ???Code complexity

??? Bug count ???Tester goodness

Sound level comparisonsLoudness

Sound level meterSound energy

Ruler / StopwatchSpeed

StopwatchDuration

RulerLength

14Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Surrogate measuresSurrogate measures

• "Many of the attributes we wish to study do not have
generally agreed methods of measurement. To overcome
the lack of a measure for an attribute, some factor which
can be measured is used instead. This alternate measure
is presumed to be related to the actual attribute with which
the study is concerned. These alternate measures are
called surrogate measures."

• Mark Johnson’s MA Thesis

• “Surrogates” provide unambiguous assignments of
numbers according to rules, but they don’t provide an
underlying theory or model that relates the measure to the
attribute allegedly being measured.

15Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Relationship between attribute & instrumentRelationship between attribute & instrument

• What is the underlying mechanism, or fundamental relationship
that justifies the use of a certain observation or statistic as a
measure of an attribute?

• Suppose that you increased the underlying attribute by 20%.
What would happen to the reading on the instrument?

• In the bug count case, 20% better testing might reflect:
– More subtle bugs that required more thorough investigation and

analysis
– Bug reports that are more thorough, better researched, and

more descriptive of the problem (and more likely to yield fixes)
– Superb testing but of an area that is relatively stable.

• The bug counts might even go down, even though tester
goodness has gone up.

16Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Side effectsSide effects

• What if you increase the count of reported bugs by
20%? Does this mean that tester goodness has gone
up by 20%

• If you reward testers for higher bug counts, won’t you
make changes like these more likely?
– Testers report easier-to-find, more superficial bugs
– Testers report multiple instances of the same bug to raise their

bug count
– Programmers dismiss design bugs as non-bugs put in the

system to raise the bug count
– No one will work on the bug tracking system or other group

infrastructure.
– Testers are less willing to spend time coaching other testers.

17Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

More bug count mischiefMore bug count mischief

What Is This Curve?

Week

B
u

g
s

P
er

 W
ee

k

18Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

More bug count mischiefMore bug count mischief

Shouldn't We Strive For This ?

Week

B
u

g
s

P
er

 W
ee

k

19Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Code coverageCode coverage

Coverage measures of the amount of testing done of a
certain type. Since testing is done to find bugs, coverage is a
measure of your effort to detect a certain class of potential
errors:

» 100% line coverage means that you tested for every bug that
can be revealed by simple execution of a line of code.

» 100% branch coverage means you will find every error that
can be revealed by testing each branch.

» 100% coverage should mean that you tested for every
possible error. This is obviously impossible.

20Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

The Problem of CoverageThe Problem of Coverage

• Several people seem to believe that complete statement and
branch coverage means complete testing. (Or, at least, sufficient
testing.)

• Part of the rationale comes from IEEE Std. 982.1-1988, § 4.17,
“Minimal Unit Test Case Determination”

• IEEE Unit Testing Standard is
100% Statement Coverage

and 100% Branch Execution

• Most companies don’t achieve this (though they might achieve
100% of the code they actually write.)

21Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

But line / branch coverage just test the flowchartBut line / branch coverage just test the flowchart

You’re not testing:
» data flow
» tables that determine control flow in table-driven code
» side effects of interrupts, or interaction with background tasks
» special values, such as boundary cases. These might or might

not be tested.
» unexpected values (e.g. divide by zero)
» user interface errors
» timing-related bugs
» compliance with contracts, regulations, or other requirements
» configuration/compatibility failures
» volume, load, hardware faults

22Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Line coverage and data flowsLine coverage and data flows
Start

1

2

4

3

5

6

7

Exit

X

X

X

X
means this routine
changes variable X

1(x) 2 3(x) 4 5 7
1(x) 2 4 6(x) 7
Now we have 100% branch
coverage, but where is 1(x) 7?
1(x) 2 4 5 7

Based on an example by
Richard Bender

23Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

If we use “coverage”?If we use “coverage”?

• If we improve testing by 20%, does this result in a 20%
increase in “coverage”? Does it necessarily result in ANY
increase in “coverage”?

• If we increase “coverage” by 20%, does this mean that
there was a 20% improvement in the testing?

• If not, then we have a “measure” that is ripe for abuse.

• People will optimize what is tracked. If you track
“coverage”, the coverage number will go up, but (as
Marick has often pointed out) the quality of testing might
go down.

24Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Lacking a theory, consider a balanced scorecardLacking a theory, consider a balanced scorecard

“Coverage” measures are popular because they provide management
with essential (if incorrect) feedback about the progress of testing.

Rather than reporting a single not-very-representative measure of testing
progress, consider adopting a “balanced scorecard” approach. Report:
– a small number (maybe 10) of different measures,
– none of them perfect,
– all of them different from each other, and
– all of them reporting progress that is meaningful to you.

Together, these show a pattern that might more accurately reflect progress.

For 101 examples of possible coverage measures, see “Software
Negligence and Testing Coverage” at www.kaner.com

Robert Austin criticizes even this approach. It will still lead to
abuse, if the measures don’t balance each other out.

25Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Postscript: Measurement and SciencePostscript: Measurement and Science

• Hetzel, “The sorry state of software practice measurement
and evaluation” in Fenton, Whitty & Iizuka’s Software
Quality Assurance & Measurement
– Unable to obtain detailed descriptions of experiments

underlying published conclusions
– Unable to obtain reference data
– Unable to get answers to questions like, “How was testing

effort calculated and measured?” In response to claims
like, “Inspections found 1 defect per hour of effort
compared to testing that typically was .2 or .3 per hour.”

• Much of the data is either proprietary or from toy programs

26Copyright © Cem Kaner, 2000. Yes, but what are we measuring?

Postscript: Measurement and SciencePostscript: Measurement and Science

• In other fields, we obtain original data from other
researchers in order to:
– Reanalyze (possibly to reinterpret, possibly to check

compatibility with an entirely different theory)
– Replicate (run the same experiment yourself).

• With most data presented in CS, we cannot obtain original
data or thorough description of the original details.

• Such data are called case studies, not scientifically
reported experiments.

• If engineering involves the application of science, and
our “science” lacks a broad, shared data base, then
how can we have genuine, licensable, Software
Engineering?

 1

CEM KANER, J.D., Ph.D.

www.kaner.com kaner@kaner.com
P.O. Box 1200 408-244-7000 (Voice)
Santa Clara, CA 95052 408-244-2181 (Fax)

YES, BUT WHAT ARE WE MEASURING?
Notes to Accompany a Talk at PNSQC 1999

Copyright © Cem Kaner, 1999. All rights reserved.

Note: This is a preliminary draft1 of a chapter on testing
and software measurement that will appear in the third
edition of Testing Computer Software (by Cem Kaner, Bob
Johnson, Brian Lawrence, Jack Falk and Hung Quoc
Nguyen). Reference lists, etc. will accompany the next
draft. We expect this chapter to be controversial, but we
very much want it to be fair and accurate. Please send
comments (including flames, if necessary) to Cem Kaner
at kaner@kaner.com.
I’ve put this early version together to supplement the
PNSQC slides. Practice runs that the material covers too
many issues at once for some attendees. This paper tracks
the flow of ideas in the talk. I hope that these notes will
improve your experience at PNSQC.

Abstract
A theory of measurement must take into account at least 8 factors:

• The attribute to be measured
• The appropriate scale for the attribute
• The variation of the attribute
• The instrument that measures the attribute
• The scale of the instrument
• The variation of measurements made with this

instrument
• The relationship between the attribute and the

instrument
• The likely side effects of using this instrument to

measure this attribute

Software-related measurements often involve psychological or subjective components.
They are questionable when they fail to take these factors into account. This article
describes the factors and uses the history of perceptual measurement to illustrate the
application of them.

1 In early drafts, I use XXX to flag something that must be updated later. I hope that these flags are not too distracting.

Yes, But What Are We Yes, But What Are We
Measuring?Measuring?

Cem Kaner
kaner@kaner.com

Draft slides, presented at Consultants Camp
Mt. Crested Butte, CO

September, 1999

6Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

OverviewOverview

• A theory of measurement involves at least 8 factors:
– attribute to be measured
– appropriate scale for the attribute
– variation of the attribute
– instrument that measures the attribute
– scale of the instrument
– variation of measurements made with this instrument
– relationship between the attribute and the instrument
– likely side effects of using this instrument to measure this

attribute
• Software-related measurements are weak when they fail to take

these factors into account.

 2

Introduction
We would probably like to measure lots of things involved in software testing. Here are three simple
examples that carry some publicity (or notoriety) in the field:

• Software Complexity: How complex (hard to
understand, hard to maintain, etc.) is a given piece
of software? How hard will it be to test? Is
McCabe’s “metric” a measure of software
complexity?

• Extent of Testing: After testing a program for a few
months, how much testing has been accomplished?
Is code coverage a measure of the extent of
testing?

• Tester Goodness: How “good” is a given tester? If
“good” is too vague, substitute “productive” or
“effective” or “valuable” (or some similar concept
of your choice). Is bug count a measure of the
goodness of testers? Of the overall effectiveness or thoroughness of the testing effort? Of the
degree to which the software is ship ready?

Claims have been made for each of these “measures” but how would we know if they were any good?
One of the core problems of measurement in computing is that many of the things that we would like to
measure are subjective—that is, they are complex, qualitative, and involve human judgment or human
performance.

• Software complexity is a psychological concept. If the term means anything, it deals with how
complex the software is to a human. Indeed, the complexity metrics are sometimes explicitly referred
to as measuring “psychological complexity.”

• “Extent of testing” metrics are judgment-driven. A theory of testing is embedded (often hidden) in
such measures. We are not using the population of all possible tests of a product as our baseline
when we compute code coverage, and therefore we can have a 100% covered product that still has
undiscovered defects. What is the underlying theory and what does it tell us about the relationship
between complete coverage and adequate testing?

• Goodness (efficiency, productivity) of testers is an issue of human performance.
It’s not easy to measure subjective attributes. Simplistic notions of measurement simply will not work. In
practice, they not only don’t work—they can also create harmful side effects.
This paper presents some concepts from measurement theory and illustrates them via an overview of the
history of the field of psychophysics (perceptual measurement). That field is far along (after 150 years of
work, it should be) despite the fact that the attributes being measured are subjective. I think that we have a lot
to learn from that history.

The Definition of Measurement
Within the computing literature, measurement is often
defined as the “assignment of numbers to objects or events
according to a clear cut rule.”
This can’t be the right definition. If it was, then we could
measure “goodness of testers” by counting their bug
reports. This (as we’ll see below) is ridiculous. The
problem is that there are lots of available clear-cut rules.
We have to select the right clear-cut rule.

2Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Yes, but what ARE we measuring?Yes, but what ARE we measuring?

• Does “complexity” measure complexity?
• Does “coverage” measure coverage?
• Do bug counts measure testers? Thoroughness of

testing? Nearness to ship-ready?

• How would we know?

3Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

What is measurement?What is measurement?

• Is measurement really “the assignment of numbers to
objects or events according to a clear cut rule”?

– No, it can’t be. If it was, then many inappropriate rules
would do.

• Measurement is the assignment of
numbers to objects or events according
to a rule derived from a model or
theory.

 3

Therefore, I prefer the following definition:
Measurement is the assignment of numbers to objects or events according to a rule derived from a
model or theory.2

Building a Theory of Measurement
Any theory of measurement has several components. This section starts by laying out key terms, then
illustrates them with examples.

Terminology
• The goal is to measure some attribute (such as length, complexity, or extent of testing).
• To do this, we often use an instrument (such as a

ruler, when we measure length).
Here are some of the issues:

• The attribute itself is probably subject to random
fluctuations. Therefore we need a theory of variation
of the attribute.

• The attribute might best be represented on a specific
type of scale.

• The act of taking measurements, using the
instrument, carries random fluctuations. Thus, we
need a theory of measurement error, or of variation
associated with using and reading the instrument.

• The measurements are taken along a specific type of scale.
• The instrument will only rarely be a direct measure of the attribute. Normally, we’ll need a theory of

the relationship between the instrument and the
attribute. Ideally, that theory will carry at least two
types of information:
1. What is the underlying cause or mechanism?

When there is an increase in the underlying
attribute, what causes an increase in the reading
on the instrument?

2. What side effects will result from using this
instrument?

A simple example: Using a ruler
Let’s start with an example of the simplest case, measuring
the length of a table with a 1-foot ruler.

• Attribute. The attribute of interest is the length of the table.
• Attribute’s Scale. We’ll have more to say about scaling soon. For now, note that the length of the

table can be measured on a ratio scale. A table that is 6 feet is twice as long as one that is 3 feet. If
we multiplied the lengths (by 12 for example), the (6x12)=72 inch table would still be twice as long

2 There’s no need to restrict measurement to the assignment of numbers. As the late S.S. Stevens pointed out,
measurement can be looked at as a matching operation on two domains. For example, he would have people indicate the
relative loudness of two tones by adjusting the relative brightness of two lights.

4Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Simple measurementSimple measurement

• You have a room full of tables that appear to be the same
length. You want to measure their lengths.

• You have a one-foot ruler.
• You use the ruler to measure the lengths of a few tables.

You get:
– 6.01 feet
– 5.99 feet

– 6.05 feet
• You conclude that the tables are “6 feet” long.

5Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Simple measurement (2)Simple measurement (2)

• Note the variation
– Measurement errors using the ruler
– Manufacturing variation in the tables

• Note the rule:
– We are relying on a direct matching operation and on

some basic axioms of mathematics
• The sum of 6 one-foot ruler-lengths is 6.
• A table that is 6 ruler-lengths long is twice as long as one

that is 3 ruler-lengths long.
• These rules don’t always apply. What do we do when we

have something hard to measure?

 4

as the (3x12)=36 inch table. This preservation of the ratio relationship (“twice as long”) when both
items are multiplied is at the essence of the ratio scale.

• Attribute’s Variation. If you measure the lengths of a few tables, you’ll get a few slightly different
measurements because there is some (not much, but a little) manufacturing variability in the lengths
of the tables. Tables that are supposed to be 6 feet long might actually vary between 5.98 and 6.02
feet. The length of individual tables might not vary much, but if you went to an office supply store
and asked for a 6-foot table, the table that you would get would only approximate (perhaps very
closely approximate) 6 feet.

• Instrument. The ruler is the measuring instrument. It’s 1 foot long, so we’ll have to lay it down 6
times to mark off a 6-foot length.

• Instrument’s Scale. The instrument (ruler) measures length on a ratio scale.
• Instrument’s Variation. Try to measure a 6-foot table with a 1-foot ruler ten times. Record your

result as precisely as you can. You’ll probably get ten slightly different measurements, probably
none of them exactly 6.000 feet. Even with ruler-based measurement, we have error and variability.

• Theory of Relationship. The relationship between the attribute and the instrument is direct. They’re
both on the same scale and (except for random error) a change in the attribute results in a directly
comparable change in the measured value. (Example: Cut the table down to 4 feet and the next time
you measure it, the ruler measurement will be 4 feet.)

• Probable Side Effects. I don’t anticipate any side effects of using a ruler to measure the length of the
table. I don’t think, for example, that that using rulers will encourage table manufacturers to change
how they make tables.

Second example: The scaling problem
Suppose that Sandy, Joe and Susan run in a race. Sandy
comes in first, Joe comes in second, and Susan third. The
race comes with prize money. Sandy gets $10,000, Joe gets
$1000 and Susan gets $100.
We know from the results that Sandy ran a faster race than
Joe and that Joe ran a faster race than Susan. Let’s review
the theory of measurement associated with these results:

• Attribute. The attribute of interest is the speed of the
runners.

• Attribute’s Scale. The attribute’s scale is probably
best expressed in terms of miles (or meters) per
hour. If so, this is a ratio scale (1 mile per 4 minutes
= 15 miles per hour).

• Attribute’s Variation. The race only gave us one
sample of the speed of these runners. If they ran the
same track and distance again tomorrow, they’d
probably have slightly different times.

• Instrument. The instrument is the simple
observation of the order of the runners as they cross
the finish line. There are two different sets of
markers on this instrument (like the inches and
centimeter markers on rulers). One set of markers
says 1st, 2nd, and 3rd. The other markers say $10,000,
$1000, and $100. You might prefer to measure
speed with some other instrument but (oops) you

6Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Next measure: A raceNext measure: A race

• Sandy, Joe and Susan run in a race. Sandy comes in first, Joe
second, and Susan third.
– We assign Sandy the number 1 (first place) and give her

$10,000.
– We assign Joe the number 2 and give him $1000.
– We assign Susan the number 3 and give her $100.

• Questions:
– Is Sandy twice as fast as Joe and three times as fast as Susan?
– Is Sandy 10 times as fast as Joe and 100 times as fast as Susan?
– We assigned these numbers to Sandy, Joe and Susan according

to a rule. Isn’t that assignment based on their speed?

Did we measure their speed in this race or not?

7Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

The race (slide 2)The race (slide 2)

• The rankings (1st, 2nd, 3 rd) could be called measures of
speed but they are on an ordinal scale. What you can tell
from them is that Sandy (1st place) was faster in this race
than Joe, who was faster than Susan. Sandy might have
been lots faster or a little faster—we can’t tell.

 5

forgot your stopwatch and this is what you’ve got. (Please suspend judgment rather than quibbling
with this detail of this example. I’m trying to use something that everyone understands in order to
make the point easily. We run into plenty of dimensions that we have to measure with crude
instruments because we have no idea what a better instrument, like a stopwatch, would be.)

• Instrument’s Scale. This instrument operates on
an ordinal scale, not a ratio scale and not an
interval scale. I’m not going to walk through
extended definitions of the different scale types
in this chapter. For detailed discussions, see
Stevens (1976)(xxx his classic book on
Psychophysics xxx) and Fenton (xxx) (book on
software measurement). The following
comparisons should give you a sense of the
differences among the scales.

o If we were operating on a ratio scale, we
would be able to say that Susan
(measured as 3) was three times slower
than Sandy (measured as 1). Or we could
say that Susan (measured as $100) was
1/100th as fast as Sandy (measured as
$10,000). Probably, neither of these
statements is correct and we have no
basis for deciding which one is closer to
the truth.

o If we were operating on an interval
scale, we could say that the difference
between Susan and Joe (3-2=1) was the
same as the difference between Joe and
Sandy (2-1=1) and that the difference
between Susan and Sandy (3-1=2) was
twice the difference between Susan and
Joe.

o On an ordinal (or positional) scale, all
we know is that Sandy crossed the line
first, Joe crossed it second, and Susan
crossed it third. Suppose that Bill crossed
the finish line too, but was disqualified
because he took steroids. The ordinal
scale tells us that if Bill crossed the line
after Susan, he must also have been
beaten by Sandy and Joe. But knowing
that Bill crossed after Sandy and Joe
doesn’t tell us whether he crossed before
Susan or not. Even if we knew that Bill
crossed the finish line 14 minutes after Joe, we could not tell from this data (from the 14
minute fact and the fact that Susan was awarded 3rd place) whether Bill crossed the finish
line before or after Susan.

o The ordinal scale doesn’t tell us much about speed but it tells us more than a nominal (or
categorical) scale. It would stretch the example too far to try to talk about a nominal scale
for speed but since we’ve been comparing the different scale types here, this is the best place
in this paper to describe a nominal scale. Suppose that you had hundreds of different pieces

8Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Measurement scalesMeasurement scales

• Absolute scale: You have four computers, I have two.
• Ratio scale: You are twice as wealthy as me—you have

$200, I have $100. The relationship is the same if we switch
to Canadian dollars, $300CDN vs $150CDN. Multiplying
doesn’t affect the relationship.

• Interval scale: (Temperatures of 70, 75 and 80 degrees
(Fahrenheit) differ from each other by 5 degrees. The
difference (the interval) between 10 and 15, 70 and 75, and
75 and 80 is the same. But a 70 degree day is not 7 times as
hot as a 10 degree day.

• Ordinal: (Position in the race. Bug severity: fatal, serious,
moderate, minor)

• Categorical: (This is a design bug (category 1); that is a
control flow bug (category 2).)

9Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Measurement scales (2)Measurement scales (2)

• It rarely makes sense to add or subtract numbers that are
not at least interval-scaled
– (Ordinal example) Is the difference between a Level 1

(“fatal”) bug and a Level 2 (“serious”) the same as the
difference between a Level 2 and a Level 3 (moderate)?

– (Categorical example) Is the sum of a user interface
design error (category 1) and a looping error (category 2)
the same as the difference between an initialization error
(category 3) and a failure to block interrupts (category 6)?
That is, in this case is 1 + 2 = 6 - 3? No.

10Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Measurement scales (3)Measurement scales (3)

• A tremendous amount of mathematical arm-waving can
be (and has been) done about the scaling problem.

• The scaling problem is moderately interesting, but it is
hardly the most difficult problem in a theory of
measurement.

• The much more challenging problem lies in the relationship
between the measure and the underlying attribute.

 6

of cloth and you sorted them by color. Here is the brown pile. There is the pink pile. This is
the green pile. By sorting, you have nominally (or categorically) scaled the cloths. For those
who insist that measurement is the assignment of number to an attribute according to a clear
cut rule, make brown color 1, pink color 2 and green color 3. Mix the three piles together
and randomly pick one of the cloths. You’ll be able to assign a number to it (1, 2, or 3)
according to a clear cut rule (brown, pink or green), so categorical scaling satisfies that
definition of measurement.

o The final scale to mention is the absolute scale. If you have 1 child, you have 1 (one) child.
This doesn’t scale. One is 1 is one. Unlike inches and centimeters for length, the units of
measurement (for number of children) are fixed. Two children are twice as many as one, and
four are twice as many as two, but these ratios reflect more children, not a change in scale.
You don’t have two half-children, you have one child. If you cut the child in half, you have a
mess, not 2 half-children and not (any longer) 1 child. (Too gruesome an example?
Substitute “laptop computer” for child.)

• Instrument’s Variation. There is probably not much variation in this example, unless the race was
very close. We would see variation if different judges, sitting in different places, disagreed as to
whether Joe or Sandy came in first.

• Theory of Relationship. The mechanism underlying the relationship between speed and position in
the race is straightforward. Faster speed results in a better position (first, second, third).

• Probable Side Effects. I don’t see obvious side-effects (changing how people run races) in this
particular case.

Example 3: Bug counts and the theory of relationship
Should we measure the quality (productivity, efficiency,
skill) of testers by counting how many bugs they find?
Leading books on software measurement suggest that we
compute "average reported defects / working day" (Grady
& Caswell, 1987, p. 227) and "tester efficiency" as
"number of faults found per KLOC" (Fenton & Pfleeger,
1997, p. 36) or "defects found per hour" (Fenton, Pfleeger,
& Glass, 1994). These authors are referring to averages,
not measures of individual performance, and they
sometimes warn against individual results (because they
might be unfair.) However, I repeatedly run into pointy-
haired bosses (or, at least, the test managers who work for
them) who compute these numbers and take them into
account for decisions about raises, promotions, and layoffs.
Let’s do the analysis and see the problems with this
measure:

• Attribute. The attribute of interest is the goodness
(skill, quality, effectiveness, efficiency,
productivity) of the tester.

• Attribute’s Scale. I don’t know. Neither do you.
• Attribute’s Variation. I don’t know. But there is

variation. Joe probably does better work on some
days than others.

• Instrument. We don’t have an obvious, easy to
use, unambiguous direct measure of tester
effectiveness / skill / etc. So instead, we use a

11Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Weak “measures”Weak “measures”

Think of bug counts as a measure of tester goodness
(efficiency, productivity). We are assigning numbers
according to a clear rule, but. . .
– suppose that one tester reported fewer bugs but they were

more subtle and required more investigation.
– suppose that one tester reported fewer bugs but they were

better analyzed and described.
– Suppose that one tester reported fewer bugs because she’s

testing a much more stable area of the program.
Is the second tester really better than the first tester?

We can’t measure “tester goodness” without a theory of
tester goodness.

13Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Surrogate measuresSurrogate measures

• "Many of the attributes we wish to study do not have
generally agreed methods of measurement. To overcome
the lack of a measure for an attribute, some factor which
can be measured is used instead. This alternate measure
is presumed to be related to the actual attribute with which
the study is concerned. These alternate measures are
called surrogate measures."

• Mark Johnson’s MA Thesis
• “Surrogates” provide unambiguous assignments of

numbers according to rules, but they don’t provide an
underlying theory or model that relates the measure to the
attribute allegedly being measured.

 7

surrogate measure, something that is easy to count and that seems self-evidently related to the
attribute of interest. In this case, the instrument is a counter of bug reports.

• Instrument’s Scale. Bug counts are an absolute scale (two half-reports do not equal one whole-
report).

• Instrument’s Variation. There’s not much random variation in counting of bug reports, though there
is some, such as bugs classified as duplicates, changing the count. There is systematic measurement-
related variation, as we’ll see in the discussion of side effects.

• Theory of Relationship. There is a rough intuition that great testers report more bugs than crummy
testers. But there is no theory of mechanism that says, an increase of so much in tester effectiveness
will result in an increase of so many in the bug count. Here are two examples of disconnection
between bug counts and value obtained from a tester. These are both from real situations.
In the first case, corporate management was overeager to ship a product by a publicized release date.
I assigned one tester to use his considerable exploratory testing skills to hunt for showstoppers. He
reported as few as four bugs per month, compared to rates of perhaps 25-150 from the other eleven
testers. We held that product for six months past the scheduled ship date by finding at least one
showstopper per week, every week. Most weeks, one of those showstoppers (often the only one)
came from our hunter. Was he the most productive member of our group or the least productive?
In the second case, a project team identified one area of the product (graphic filters) as very high
risk. This was a new version of a hot selling mass market product and there were important business
reasons for shipping the product on time. However, if we shipped with the serious problems in this
area that we expected, we would be drowned in phone calls. The two testers assigned to this area
found surprisingly few bugs and the project team (including me) worried that they might not have
gotten a complete handle on the risks. I pulled in a very senior third tester who knew a lot about
graphic filters to assess the testing and the area. Over about five weeks, he found about five bugs. He
also reported that the test plans and strategies of the first two testers were pretty good. Partially based
on this reassurance, we shipped the product a day ahead of schedule, sold a huge number of copies
on the first day, and got few complaints.
In both of these cases, testers with very low bug counts did fine work and played a more significant
role in the project than some other testers who found many more bugs in other areas. Bug counts
would have seriously mis-measured these testers.

§ Probable Side Effects. Here are just a few of the
things that can and probably will go wrong if we
measure individuals by counting their bug
reports.
§ People are good at tailoring their behavior to

things that they are measured against. If you
ask a tester for more bugs, you'll probably get
more bugs. Probably you'll get more bugs
that are minor, or similar to already reported
bugs, or design quibbles -- more chaff. But
the bug count will go up. (Weinberg &
Schulman, 1974)

§ People know that other people tailor their
behavior. Put a tester under incentive to report more bugs and every programmer will become
more skeptical of the value of the bug reports they receive. Does this tester believe in this bug,
they ask, or is she just inflating her bug count? Bug counting creates political problems
(especially if you also count bugs per programmer).

§ You can make a tester look good or bad just by choosing what type of testing she should do
(regression testing often yields fewer bugs than exploratory testing of the same area of the

12Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

MeasurementMeasurement

• We also need an appreciation of the side effects of
using the second dimension to measure the first.
If you reward testers for higher bug counts, won’t this
make the following changes more likely?
– Testers report easier-to -find, more superficial bugs
– Testers report multiple instances of the same bug to raise

their bug count
– Programmers dismiss design bugs as non-bugs put in the

system to raise the bug count
– No one will work on the bug tracking system or other group

infrastructure.
– Testers are less willing to spend time coaching other testers.

 8

program) or what area of the program she should test (fewer bugs to find in less buggy code). If
raises and promotions are influenced by bug counts, project assignments will often be seen as
unfair. More political problems.

§ The measurement system creates incentives for superficial testing (test cases are quick and easy
to create) and against deep tests for serious underlying errors. Bug counts punish testers who
take the time to look for the harder-to-find but more important bugs.

§ The system also penalizes testers who support other testers. It takes time to coach another tester,
to audit his work, or to help him build a tool that will make him more effective. The tester who
does this has less time to find bugs.

§ Time spent on any process that doesn't lead to more bugs faster is time that counts against the
tester. For example, bug counting rewards testers who minimize the time they spend
documenting their test cases.

Problems like these have caused several measurement advocates to warn against measurement of
attributes of individuals (e.g., Grady & Caswell, 1987) unless the measurement is being done for the
benefit of the individual (for genuine coaching or for discovery of trends) and otherwise kept private
(e.g. DeMarco, 1995).

With only a weak theory of relationship between bug counts and tester goodness, and serious probable side
effects, we should not use this measure (instrument).

Measurement in the Real World
The examples of length and position in the race are toys.
They are easy to figure out. The theories of relationship
are clear cut and the side effects are minimal.
When it comes to things that we would really like to
measure, life is more difficult. Examples of the kinds of
things that testers are routinely asked about are:
§ Extent: How much testing has been done?
§ Progress: Where are we relative to some plan?
§ Productivity: Who’s doing a better job of testing

or programming or whatever?
§ Reliability: What is the actual and probable

future rate of failure?
§ Usability: For example, what is the probable user

error rate?
§ Support Burden: What will this cost to support?

How do we measure these? Each one involves complex
issues. Typically they involve a lot of judgment (which is
subjective). Additionally, several of the most interesting
dimensions involve human behavior. For example,
reliability in the field depends on use patterns (use of the
product is done by humans, who might not use it the same
way as the product developers predict.)
Some of the people who talk about measurement and the
development of “science” in our field distinguish between
“hard” measurements and “soft” ones, or between
“objective” and “subjective.” I don’t think that these

15Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Some things we want to measureSome things we want to measure

• Extent

– How much testing has been done?
• Progress

– Where are we relative to some plan?
• Productivity

– Who’s doing a better job of testing or programming or whatever?
• Reliability

– Actual / probable rate of failure?
• Usability

– For example, probable user error rate.
• Support Burden

– What will this cost to support?

16Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

How do we measure these things?How do we measure these things?

• Examples like length and race results are toys compared
to the complexity of these measures.

• To further the development of measures for attributes like
these, we should look for other examples of measurement
problems that were difficult because of the difficulty of
developing an underlying theory of measurement.

• There are lots of subject domains that can provide
examples that show us what these types of measurement
theories look like. I know psychophysics
(sensory/perceptual measurement), so I’ll pick examples
from there.

 9

distinctions are useful. They carry too much emotional and judgmental baggage. They carry a notion that
subjective issues are immeasurable and unscientific. That’s not very helpful if we work in a field of human
endeavor, called computing, whose essential work product is the stuff of mental creation.
Rather than shrinking from the subjective issues that dominate our field, I think it would be useful to look at
the development of measurement in a field that deals directly with attributes that are fundamentally
subjective.

Welcome to Psychophysics
On October 22, 1850, Gustav Fechner had The Great Thought (an insight into how to measure sensation)
that initiated the field of Experimental Psychology.3 In essence, Fechner thought of a way to develop an
interval scale for sensations, such as loudness, brightness, or heaviness. Fechner’s work was extended by
several important researchers and my summary merges their extensions with Fechner’s original idea. For
important examples of the evolution, see Boring (1917), Urban (1930), and the collection of Thurstone’s
papers (1959). For thoughtful histories, see Boring (1943)
and Link (1992).
Sensations are subjective experiences. When a car honks
its horn, I might hear that sound and you might hear that
sound, but does the horn sound to me the same way that it
sounds to you? Who knows? So how could we measure
your personal, subjective experience of the loudness of
that horn? That question is the stuff of psychophysics,
which relates the psychological experience to the
physical stimulus.
Suppose that A and B are two sounds that differ only in
loudness. They don’t differ by much, so if you repeatedly
present A to an observer (a participant in your
experiment), and say, “Is this A or B?”, the observer will
sometimes mistakenly say B. Similarly, the observer will sometimes mistakenly identify B as A.
If the observer gets A and B confused often (is only right
50% of the time) then A and B must be very similar, at
least to this observer. On the other hand, if A and B are
very different, then the observer will respond correctly
most of the time. So, at this point, we don’t know how to
quantify how different A and B are to the observer, but we
can say that the more different A and B are, the more often
the observer will correctly distinguish between them.
Now suppose that we have two more auditory stimuli, C
and D, which also differ (from each other and from A and
B) only in loudness, and they don’t differ by much.
Suppose that you ran the same experiment with C and D as
you did with A and B, and the results were the same. We
wouldn’t be able to quantify C and D, but if the observer finds it as hard to tell C from D as A from B (the
error rate in identifying C vs D is the same as the rate in identifying A from B), then the difference (to this
observer) between A and B must be the same as the difference between C and D.

• Let error_rate(A,B) reflect the percentage of mistakes the observer makes when distinguishing
between stimulus A and stimulus B. Thus an error_rate(A,B) of 25% means that 75% of the time,

3 This is also often identified as the start of modern psychology as a standalone field. Fechnerfest is still celebrated
(with small parties or gatherings) by psychology departments at several universities.

17Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

An example: PsychophysicsAn example: Psychophysics

• Founding of Psychology is often traced to October 22, 1850,
when Gustav Fechner had an insight into how to measure
sensation.1

• Essentially, he figured out how to construct an interval scale for
subjective magnitude.
– Suppose there are two stimuli, A and B (such as two sounds

that differ in intensity).
– Corresponding to A is an internal sensation (of loudness).

There is a “true” value corresponding to A, but there is also
random variation. Similarly for B. Therefore, if we present one
and say “Is this A or B?”, sometimes the observer will say A
when we present B and vice versa.

1 October 22 is actually celebrated as a holiday, Fechnerfest , in some
Psychology departments. It is traditional to conduct research on the sensory
differences between different types of beer.

19Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Fechner’sFechner’sPsychophysicsPsychophysics

• Suppose A is a sound. B is louder. C is louder still.
– Suppose that we wanted to find a stimulus intensity, D,

that is subjectively as far from C as B is from A.
– How could we tell what the right value is for D?

– Under Fechner’s model,
• distance (A,B) = distance (C,D) if
• error_rate (A,B) = error_rate (C,D)

– The distance (A,B) that yields correct judgments 75% of
the time is called the Just Noticeable Difference (JND).
To compute the subjective magnitude (loudness) of
stimulus E, we compute how many JND’s it is from
silence.

 10

the observer correctly identifies the stimulus as A or B and 25% of the time, the observer is
mistaken.

• Under Fechner’s theory, two pairs of stimuli, (A,B) and (C, D) are equally different to an observer
if that observer’s error_rate (A,B) = error_rate (C,D).

In other words, two pairs of stimuli are equally similar (equally different) if we get them confused with each
other equally often.
So, we don’t know how loud A, B, C, or D are, but we now know how to meaningfully say that to a given
observer, the difference in loudness between A and B is the same as the difference in loudness between C and
D.
Let’s establish one more convention.

• If error_rate (A,B) = 25%, we say that A and B are separated by one Just Noticeable Difference
(JND).

There’s nothing magical about 75% correct. We could use some other number without affecting the theory,
but 75% is the number Fechner chose. JND is the unit of measurement on Fechner’s interval scale.
Suppose that you present two stimuli, A and B. But A is actually a silent stimulus, whereas B is a very quiet
one. Adjust the intensity of B until finally, the observer distinguishes correctly between A and B 75% of the
time. B is therefore one JND louder than silence (A).
Now compare B with a lot of slightly louder stimuli until you find one, C, that is one JND louder than B
(correctly distinguished from B 75% of the time). C is thus two JNDs louder than A (silence).
Keep going, finding a D that is a JND louder than C, and an E that is a JND louder than D, etc., until finally
you reach a sound that is too loud to listen to. The result is a scale that goes from silence to painful loudness.
We know the sound energy (measured, say, in decibels) of stimuli A, B, C, D, E, F, etc. Therefore we can
plot a graph, called the psychophysical function, that shows sound energy on one axis and subjective
loudness on the other. The subjective loudness of A is 0, B is 1 (one JND from silence), C is 2, D is 3, etc.
Now let’s look at this in terms of the 8-factor approach to describing a theory of measurement.

• Attribute. So far, we have considered only one attribute, loudness. We could just as well consider
heaviness, brightness, pitch, perceived severity of a crime, or many other subjective variables. For
simplicity, I’ll stick to loudness throughout this paper.

• Attribute’s Scale. We should probably represent the attribute on a ratio scale. However, the theory
doesn’t take us that far. The loudness of the sounds is expressed on an interval scale, whose units, by
convention of the field, are called JND’s.

• Attribute’s Variation. The same physical stimulus has varying subjective results. Sometimes a
honking car sounds louder, sometimes softer, even though the honk is the same and even when you
are as close to the car as you were the last time.
If we think in terms of the physiology of the sensory system, this makes some sense. Many cells in
the brain are activated by sound (by signals received from cells in the ear that are activated by
changes in sound-related pressure) and more of these cells “fire” in response to louder stimuli. If the
loudness of the sound is determined by the number of sound-related neurons that are firing, then the
loudness will vary across presentations of the same stimulus. This is because the firing probability of
a given cell is determined partially by the time since it last fired and the activity of neighboring cells,
as well as by the amount of direct stimulation of this cell.
If the loudness of a sound is determined by the total amount of neural activity associated with the
sound, and if the individual neural cells might fire sometimes and might not fire other times in
response to the same stimulus, then the loudness is a function of the sum of many random variables.
If we assume that the variables are independent (a hazardous assumption, but that’s the standard
assumption of this class of theory at this point in this classic discussion) then the value of the sum is
a random variable that is almost certainly normally distributed (distributed according to the
Gaussian, bell-shaped curve.)

 11

The theory of variability and error is illustrated in Figure 1, titled “Fechnerian Theory of
Discrimination.”

Figure 1--These figures have been scanned in from Boring (1943) and Link (1992)

• Instrument. There were many different
experimental techniques, and they yielded
similar psychophysical functions. You might
present single stimuli and ask which one (of two
possibilities) had been presented (“Is this the
loud one or the soft one?”) or you might present
them together (A then B or B then A) and ask
whether the louder one came first or second,
etc., etc., etc. At the core, though, the physical
thing that we are varying is the sound energy
(decibels) of the stimuli. A point of interest in
this type of work is that we don’t just do this test
a few times. We might present A and B and C
and D (etc.) hundreds or thousands of times to
the observer, in order to obtain stable behavior (the person is not distracted by the mechanics of the
experiment) and a more precise estimate of the difference between stimuli.

• Instrument’s Scale. Percent correct, in an experiment involving stimuli that vary in sound energy
(most often measured in decibels).

• Instrument’s Variation. There is some variation in the physical stimulus, but we can keep it small
by using precise equipment. Different experimental methods yield different patterns of response
error, part of the reason that several different methods were used.

• Theory of Relationship. Associated with a stimulus, we have a subjective experience. There is
variation in the experience, but there is an average value (at points “a” and “b” for stimuli A (SA on
the diagram) and B (SB on the diagram) in the diagram above). We don’t have a direct measure of the
subjective loudness associated with “a” or “b” but we can measure how close “a” is to “b” by

20Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Fechner’s PsychophysicsFechner’s Psychophysics

• Fechner established a paradigm: a small set of prototypic
experimental methods and a theoretical approach for
interpreting their results. Over the next decades, we saw
essentially linear progress:
– One of his specific assertions (a function relating the size of

the JND to the magnitude of the smaller stimuli) was tested
for a wide range of sensory and perceptual systems.

– New methods were developed to address essentially the
same issues and the results were compared.

– Data were often published in a form that made reanalysis
by other researchers easy, so the field built up a shared
body of data as well as a shared body of conclusions.

– Converging predictions were made and tested. For example,
predictions of observers’ confidence ratings (“How sure are
you that A is louder than B?”) were derived and tested.

 12

considering how often the observer says B
when the stimulus is A and how often the
observer says A when the stimulus is B. The
lower the error rate, the bigger the subjective
distance between A and B. As B increases (in
decibels), “b” (the average subjective
experience associated with B (the physical
stimulus), loudness increases too.
The psychophysical function relating sound
energy and subjective loudness is
approximately logarithmic, but is probably
better shown as a power function “b” = Bx,
where x, the exponent, is about 0.67. Different
modalities (brightness, etc.) are characterized
by different exponents.

• Probable Side Effects. Fechner didn’t
anticipate side effects of the measurement. In
particular, his approach does not anticipate
that people would change how they respond
and how they experience sounds (weights, etc) based on their participation in his experiments.

Despite the brilliance of the insight, Fechner’s approach left some puzzles behind.
• The first puzzle is that people respond more quickly when the stimuli are very different from each

other. A related finding is that, in general, the average response time is shorter for correct responses
than for erroneous responses. How are these time-related results predicted by this theory? There have
been several efforts made to extend Fechner’s approach to response times, but I haven’t found them
compelling.
If an observer’s decision is based on comparison of
the neural activity associated with stimuli A and B,
then the amount of time taken to get a reading on A
and B should be constant across different A’s and
B’s. (If you count how many pulses occur in a
certain time, the amount of time is a constant.) The
decision time should not depend on the relative
magnitudes (how much louder A is than B). We’ll
see a compelling alternative approach in Link’s
Wave Difference theory, below.

• Second, can we really represent the underlying
probability distribution for sensory magnitude as a
normal distribution? The assumption of
independence (the probability that one cell will fire is independent of the state of neighboring cells)
is wrong. The firing of one cell has a well-known effect on the probability that a neighboring cell
will fire. (See, for example, the many studies of lateral inhibition, discussed in almost every
introductory psychology text.) Without independent probabilities, the normal distribution is not
mathematically implied.
It is central to Fechner’s theory that the underlying subjective experience associated with a physical
stimulus be randomly variable, and the results obtained across several experiments were compatible
with the hypothesis that the distribution of that variable is symmetric and bell-shaped, but there were
no strong predictions from the specifics of the distributional shape about the data and therefore
(Popper, XXX) this was not an essential part of the theory.

21Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Fechner’sFechner’sPsychophysicsPsychophysics

• The theory was refined in many ways, but it still had two
key problems:
1. The JND is defined in terms of a level of difference

between A and B that yields 75% correct judgments by
observers.
• This treats both errors (you say A when it’s B; you say

B when it’s A) as errors, as the same.
• What if the observer is biased? P(A|B) might be very

different from P(B|A). Total error rate becomes a joint
function of discriminability of the stimuli and the bias of
the observer.

2. The model assumes random variation in the subjective
sensation and that the variation is normally distributed; it
does not explain the variation.

The Psychophysical Function

Physical stimulus magnitude

S
ub

je
ct

iv
e

m
ag

ni
tu

de

Figure 2 -- The Psychophysical Function

 13

• The third puzzle is that Fechner treats all errors in the same way, but they are not the same. Suppose
that A and B were correctly distinguished 75% of the time and that of the 25% of the judgments in
which errors were made, 12.5% involved saying A instead of B (which was the stimulus presented)
and 12.5% involved saying B instead of A. This is a very different pattern from 75% correct with
24% of the errors being A when B was presented and 1% being B when the observer should have said
A. Are these two 75%’s the same? They are treated the same in the theory, which does not allow for
response bias.
In general, there is no theory of measurement error. Variation is attributed to variation in the sensory
system, not to variation induced by the experiment.

• Finally, consider the core conjecture of the theory, that psychological difference between A and B is
the same as the difference between C and D if error_rate (A,B) = error_rate (C,D). This is a
conjecture, not a fact. A very plausible one, but it has been subject to direct challenges. (xxx Stevens,
1975, and other reports of difference-matching experiments. Check Cross’s publications.)

An Aside
Here are a few things to notice before we go on.

• A measurement system doesn’t start out fully formed. There are significant holes in the Fechnerian
approach.

• At the core of the success of Fechner’s approach is a strong statement of relationship between
physical stimuli and the subjective experience being measured.

• Confronting the holes in Fechner’s approach will lead us to substantially more powerful models.

Bias: Measurement Errors
When we ask an observer whether a
stimulus was A or B, there are four
results:

• The observer says A and it was A
• The observer says A and it was B
• The observer says B and it was A
• The observer says B and it was B

Fechner’s approach assumes that there is
no bias with respect to A or B. Figure 3
(Psychological Magnitudes) illustrates
this assumption.
The figure shows two probability
distributions, one associated with
stimulus A, another associated with
stimulus B. The value MA is the mean of
the distribution associated with A. In
other words, MA is the average loudness
experienced by the observer when
presented with stimulus A. Similarly, MB
is the mean of the distribution associated
with B. The average psychological
distance between A and B is the difference between MA and MB, which is shown on the figure as d.
The point c is the midpoint between MA and MB. This point, c, is called the criterion.

Signal Detection TheorySignal Detection Theory

Figure 3 Psychological Magnitudes

 14

Here’s how this works. When stimulus A (a tone) is presented, the observer hears something. If the perceived
loudness of A is less than c, the observer says “That was an A.” If the perceived loudness is greater than c,
the observer says “That was a B.” Because the criterion is halfway between MA and MB, the observer is just
as likely to say B when the stimulus is an A as she is to say A
when the stimulus is a B.
Now suppose that we create some payoffs. We’ll pay $10
every time the observer says A when it is A, and we’ll charge
the observer $10 every time she says B when the stimulus
was A. Additionally, we’ll pay $5 when the observer gets B
right and when the observer says A in response to B.
This payoff creates an incentive to guess A. If the observer
guesses A, she makes $10 when she’s right and loses only $5
when she’s wrong. If she guesses B, she makes $5 when
she’s right, but loses the full $10 when she’s wrong. Still, if
the stimulus sounds very loud, so that it is almost certainly
B, it would be foolish to say A.
The change in guessing strategy is naturally represented as a
change in the location of the criterion. Move it to the right to
a new point, c', and the observer won’t say B unless the
stimulus sounds louder than c'. Now, if we present A 50
times and B 50 times, the observer might guess A 90 times
and B 10.
By inducing the observer to change her response criterion,
we can change her percentage and pattern of errors in
response to the same pair of stimuli. The next fundamental
advance in psychophysical theory addressed this issue head-
on.

Signal Detection Theory
The classical discussions of signal detection theory start with
discriminating between (telling the difference between)
signals and noise. When you present a weak signal (tone) to
an observer, the comparison isn’t to true silence. Put
yourself in a perfectly quiet room sometime and you’ll hear
your own breathing, your heart beating, and other small
noises. A weak signal is noticed (or not) against a
background of noise.
If you present an observer with a stimulus (either silence, A
or a tone, B), the results are:

• The observer says A and it was A (correct rejection)
• The observer says A and it was B (missed the signal)
• The observer says B and it was A (false alarm)
• The observer says B and it was B (hit)

Using the analysis drawn in Figure 3 (Psychological Magnitudes), signal detection theorists use bayesian
statistical methods to separately estimate the four conditional probabilities associated with hits, misses,
correct rejections and false alarms.
Having separated out the four types of responses, the experimenter pushes around the observer’s criterion,
either by payoffs or by changing the relative probabilities of A and B (thus changing the expectation of the

23Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

The Signal Detection ProblemThe Signal Detection Problem

Response
Noise Signal

A
ct

ua
l e

ve
nt

S
ig

na
l

N
oi

se

Correct Rejection False Alarm

Miss Hit

24Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Signal Detection TheorySignal Detection Theory
• Signal detection theory provided the model for bias that

has dominated the field since 1953.
• Under the Fechner approach, your decision rule worked

like this:
– A and B are the two stimuli (e.g. sounds differing in

decibels)
– S(X) is the magnitude of the sensation (e.g. the loudness)

associated with stimulus X
– Say “A” when presented with unknown stimulus X when

S(X) is closer to S(A) than to S(B). In other words,
• Say A when S(X) < S((A+B)/2)
• Say B when S(X) > S((A+B)/2)

• S((A+B)/2) is called the criterion. It is the point “c” in the
Figure on slide 23.

26Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Signal Detection TheorySignal Detection Theory

• Signal detection theory assumes that the reference
criterion can be reset by the observer. That is, the
observer might respond “A” even though S(X) is much
closer to S(B) than S(A).
– We can readily influence the observer’s bias by

manipulating the probability of B and A
– We can also influence bias by manipulating the reward

structure. For example, when you look at undocumented
odd software behavior, you have to decide whether it is a
bug or a feature. We can bias you (toward calling X a
bug) by stressing how important it is to catch everything,
or (toward calling X a feature)by stressing how much time
it takes to deal with “nuisance” bug reports.

 15

observer.) This lets us separate out the effect of the
criterion, in order to estimate the value of , d', the
distance between MA and MB.
Signal detection theorists plot Receiver Operating
Characteristic curves to show this separation. This curve
plots:

• Probability of a False Alarm (probability that
the observer says B (signal) when A (noise) was
in fact presented)

• Probability of a Hit (probability that the
observer says B (signal) when B was in fact
presented)

In Figure 4 (Receiver Operating Characteristics), start by
looking at the line marked d'=0. The probability of a
hit must be the same as the probability of a false
alarm because there is no difference between
stimulus A and stimulus B. (That’s why d' is zero.)
Now look at the d'=0.5 curve. A and B aren’t very
different in this case. (The distance between MA and
MB is only 0.5 standard deviations of the
distribution associated with B.) On this curve, when
the probability of a false alarm is 0.10, the
probability of a hit is about 0.2. So, if you find a pair
of stimuli, A and B, that simultaneously yield a 20%
hit rate and a 10% false alarm rate, here is what you
know—if you can manipulate the observer’s bias to
yield a false alarm rate of 50%, the hit rate will be
about 65%. (xxx get the exact numbers later). Once
you know one point on the curve, you can predict
the rest.
So, if you work with a pair of stimuli and obtain a
hit rate of 53% (xxx) and a false alarm rate of 20%,
you know that the d' value for these stimuli is 1.0
and that the hit rate will be 85% (xxx) when the
false alarm rate is 60%.
These predictions were extensively studied and the
results were largely in conformance.
By developing a theory to explain measurement
errors associated with Fechner’s psychophysics, we
gained a much stronger predictor of a wider range of
behavior.

Distributional Approaches
Signal detection theory assumes that the distribution of
subjective magnitudes is normal but as leading theorists
in the field note (xxx probably Green & Swets, 1966),
this assumption is not essential. As long as the
distributions are roughly symmetrical, the theoretical
ROC curves will look much the same.

27Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Signal Detection TheorySignal Detection Theory

• Now the trick becomes to determine the distance between S(A)
and S(B), given that biased observations make percent correct a
misleading number.

• Notation:
– d’ is shown on slide 23 as the distance between S(A) (there

called MA) and S(B) (there called MB). In other words, it is the
distance between the average loudness of A and the average
loudness of B.

– If d’(A,B) is 2 and d’(A,C) is 4, then C is twice as much louder
than A as B is.

• The goal is to measure d’ accurately, without pollution by bias.
We can do that by running several experimental sessions with
the same stimuli, but with different biases. The pattern of
change in P(A|A) and P(A|B) will reveal d’.

Figure 4 Receiver Operating Characteristic

29Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Dealing with VariabilityDealing with Variability

• When you are presented with a stimulus like a sound, the
stimulus energy triggers neural discharges. The more
neural activity, the louder the sound will be perceived as
being.

• At any given time, several neurons are incapable of firing
(typically because they fired recently and are in a
refractory period). Therefore the number of neurons that
can / will fire in response to a constant stimulus will vary
over time.

• The number of discharges per unit time is often modeled
as a Poisson process. Because of the nature of that
probability distribution, we can approximate the variability
of S(X) with a Normal distribution, but if we are really
dealing with a perception that develops over time, we can
do better by thinking of the process as a random walk.

 16

Other approaches have focused on modeling the underlying mechanism. The wave theory (Link, 1992) is a
strong example of this approach. The slides explain the theory well enough for this first draft paper. (In other
words, I’m running out of steam.) The primary illustration here is that when by tackling yet another hole in
the theory (the underlying variation of the attribute and the mechanism underlying the relationship between
the attribute and the response), psychophysicists developed an approach that was stronger still.

Back To Testing
It takes a lot more than an easy-to-work-with surrogate
and a plausible story to relate a proposed measure to an
underlying attribute.

• We need a theory of the relationship between
the measure and the attribute. Otherwise, what
are we measuring?

• We need a clear idea of the probable side effects
of a given measure, or we will probably do more
harm than good.

• We need strong tests of the theory
So what should we do in the absence of a strong theory of mechanism? From the point of view of limiting
side effect risks, I think that we should use balanced scorecards.

32Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Other distributional approachesOther distributional approaches

• Many other models have developed that take into account the
sequential nature of a judgment in an experiment. For example,
– It takes time for a stimulus to trigger neural activity

– It takes time to make a decision
– It takes time to actually make the response.

• These three times are variable, and their probability distributions
are probably different. When we record response latency (time
between the stimulus and the response), we are recording a
sum of (at least) three random variables. If we have a theory of
temporal variation for each part of the sum, we can compare the
predicted distribution of response latencies to the distribution
actually obtained.

• This is another example of using converging measures to check
a theory of relationship.

31Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

WaveWave--Difference TheoryDifference Theory

• In a given unit of time, there’s a certain level of neural
activity. If the experiment involves stimuli A and B (B is
louder than A), then the level is either greater or less than
our expectation from a stimulus of intensity (A+B)/2.

• Compute the difference between the moment’s level and
the level expected from (A+B)/2.

• Add up the differences over time. Eventually, the sum will
become large positive or large negative. When the sum is
large enough, say “A” if the sum is negative; say “B” if the
sum is positive.

• This model predicts (quite well) a relationship between
responses, response times, and confidence.

34Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Relate this back to TestingRelate this back to Testing

" It takes a lot more than a plausible story to relate a
proposed measure to an underlying attribute.

We need a theory of measurement (including a theory of
the relationship between the measure and the attribute);

We need strong tests of that theory of relationship.
" Let�s look back at �code coverage� as a measure of

completeness of testing to see how much is missing

 17

For example, consider the problem of code coverage. 100% line coverage (or 100% line and branch
coverage) have often been equated with 100% testing, or with good enough testing, at least.

39Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Lacking a theory, consider a balanced scorecardLacking a theory, consider a balanced scorecard

“Coverage” measures are popular because they provide management
with essential (if incorrect) feedback about the progress of testing.

Rather than reporting a single not-very-representative measure of
testing progress, consider adopting a “balanced scorecard” approach.
Report:

– a small number (maybe 5) of different measures,

– none of them perfect,

– all of them different from each other, and

– all of them reporting progress that is meaningful to you.

Together, these show a pattern that can more accurately reflect your
progress.

For 101 examples of possible coverage measures, see “Software Negligence and Testing
Coverage” at www.kaner.com

35Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Code coverageCode coverage

Coverage measures of the amount of testing done of a
certain type. Since testing is done to find bugs, coverage is a
measure of your effort to detect a certain class of potential
errors:

» 100% line coverage means that you tested for every bug that
can be revealed by simple execution of a line of code.

» 100% branch coverage means you will find every error that
can be revealed by testing each branch.

» 100% coverage should mean that you tested for every
possible error. This is obviously impossible.

36Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

The Problem of CoverageThe Problem of Coverage

• Several people seem to believe that complete statement and
branch coverage means complete testing. (Or, at least, sufficient
testing.)

• Part of the rationale comes from IEEE Std. 982.1-1988, § 4.17,
“Minimal Unit Test Case Determination”

• IEEE Unit Testing Standard is
• 100% Statement Coverage
• and 100% Branch Execution

• Most companies don’t achieve this (though they might achieve
100% of the code they actually write.)

37Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

But line / branch coverage just test the flowchartBut line / branch coverage just test the flowchart

You’re not testing:
» data flow
» tables that determine control flow in table-driven code
» side effects of interrupts, or interaction with background tasks
» special values, such as boundary cases. These might or might

not be tested.
» unexpected values (e.g. divide by zero)
» user interface errors
» timing-related bugs
» compliance with contracts, regulations, or other requirements
» configuration/compatibility failures
» volume, load, hardware faults

38Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

Line coverage and data flowsLine coverage and data flows
Start

1

2

4

3

5

6

7

Exit

X

X

X

X
means this routine
changes variable X

1(x) 2 3(x) 4 5 7
1(x) 2 4 6(x) 7
Now we have 100% branch
coverage, but where is 1(x) 7?
1(x) 2 4 5 7

Based on an example by
Richard Bender

 18

Side effects arise from using coverage metrics as measures of the extent to which some minimum amount of
testing is complete. People focus on the count (how many lines tested) and are likely to miss many types of
bugs.
As an exercise, try to analyze code coverage as a measure. Here are the 8 factors:

• Attribute.
• Attribute’s Scale.
• Attribute’s Variation.
• Instrument.
• Instrument’s Scale.
• Instrument’s Variation.
• Theory of Relationship.
• Probable Side Effects.

The notion of the balanced scorecard is that it reports several different types of indicators. The original
scorecard had to do with overall health of a business. Rather than reporting (and optimizing for) a single
variable such as price/earnings ratio, quarterly profits, personnel turnover, investment in R&D, etc., the
scorecard reports on several (perhaps a dozen) different variables that address different dimensions of the
health of the business.
A key advantage of the balanced scorecard is that it minimizes side effects. In the absence of a solid theory
relating a measure (such as code coverage) to a key underlying attribute, the balanced scorecard provides a
general way to get at the attribute being measured while limiting the distortion caused by a half-measure.

We Need Data
Bill Hetzel tried to find out the basis of published software measurement results. He asked direct questions of
several leading people in the field.

• He was unable to obtain detailed descriptions of
experiments underlying the results. This means
that he cannot independently replicate the
experiments.

• He was unable to obtain the reference data
themselves. This means that he cannot
independently reanalyze the results.

• He was not even able to get answers to
questions like, “How was testing effort
calculated and measured?” in response to
claims like, “Inspections found 1 defect per
hour of effort compared to testing that typically
was .2 or .3 per hour.”

Hetzel reported that much of the data that are available are from proprietary software or from toy programs.
This certainly accords with my experience. And as a recent public example, Watts Humphrey presented some
striking data at the QAI conference in Orlando, 1999. James Bach recently asked whether he could have
access to the data and Watts said no, it is proprietary.
These problems are typical of applied research, whether we’re dealing with computing or psychophysics.
Research labs in psychophysics operated differently. We ran experiments that collected huge amounts of
data. My own dissertation was based on over 1,000,0000 judgments by observers. We ran these experiments
to extend or clarify theory. It was common to reanalyze other researchers’ data and to reinterpret their results.

22Copyright © Cem Kaner, 1999. Yes, but what are we measuring?

CumulationCumulation of data in CSof data in CS

• Hetzel, “The sorry state of software practice measurement
and evaluation” in Fenton, Whitty & Iizuka’s “Software
Quality Assurance & Measurement”
– Unable to obtain detailed descriptions of experiments

underlying published conclusions
– Unable to obtain reference data
– Unable to get answers to questions like, “How was testing

effort calculated and measured?” In response to claims
like, “Inspections found 1 defect per hour of effort
compared to testing that typically was .2 or .3 per hour.”

• Much of the data is either proprietary or from toy programs

 19

I am concerned about the extent to which significant projects in universities have corporate partners and
generate private data. It seems to me that we might be eating our seed corn.

(Some of the) References
Boring, E.G. (1917) “A chart of the psychometric function” American Journal of Psychology,28, 465-470.
Boring, E.G. (1943) Sensation and Perception in the History of Experimental Psychology. Appleton Century
Crofts.
DeMarco, T. (1995), "Mad about measurement" in Why Does Software Cost So Much?, Dorset House.
Fenton, N.E. & S.L. Pfleeger (1997, 2nd Ed.) Software Metrics: A Rigorous & Practical Approach, PWS
Publishing.
Fenton, N.E., S.L. Pfleeger, & R.L. Glass (1994) "Science and substance: A challenge to software
engineers," IEEE Software, 11(4), 86-95.
Gescheider, G. (1997) Psychophysics: The Fundamentals, 3rd Ed., Lawrence Erlbaum.
Grady, R.B. & D.L. Caswell (1987) Software Metrics: Establishing a Company-Wide Program, PTR
Prentice-Hall.
Green, D.M. & J.A. Swets (1966) Signal Detection Theory and Psychophysics, Wiley.
Johnson, M.A. (1996) Effective and Appropriate Use of Controlled Experimentation in Software
Development Research, Master's Thesis (Computer Science), Portland State University.
Kaner. C. (1983) Auditory and Visual Synchronization Performance Over Long and Short Intervals, Doctoral
Dissertation, McMaster University, Department of Psychology.
Kaner, C., J. Falk, & H.Q. Nguyen (1993, 2nd Ed.) Testing Computer Software, Wiley.
Link, S.W. (1992) The Wave Theory of Difference and Similarity, Lawrence Erlbaum.
Popper, K. (xxx) “Conjectures and refutations”
Stevens, S.S. (1975) Psychophysics, Wiley.
Thurstone, L.L. (1959) The Measurement of Values, University of Chicago Press.
Urban, F.M. (1930) “The future of psychophysics”, Psychological Review,37, 93-106.
Weinberg, G.M. & E.L. Schulman (1974) "Goals and performance in computer programming," Human
Factors, 16(1), 70-77.

QW2000 Vendor Technical Paper 4V1

Steve Nemzer
(Veritest)

Zero Defect of Simship? The Global Testing Challenge

BACK TO QW2000 PROGRAM

Key Points

Testing and localizing for global product rollouts●

Workflow●

International Quality Assurance●

Presentation Abstract

The global e-commerce economy is here. Are your products localized, tested, and ready?
Increasingly, sophisticated customers expect software applications to be available and fully functional
in localized versions simultaneously with the English release.

Yet, few large IT companies have a clear strategy for testing their geo-specific SKUs simultaneously
and consistently. Globalization tasks are often left to local subsidiaries who find an English language
version "thrown over the ocean" to them for localization and testing. The dynamic nature of web-based
products further complicates matters. Successful global product roll-outs require that localization
testing methods incorporate workflow attributes.

In the seminar you will learn:
How leading technology firms approach localization quality assurance●

Proven methods for releasing globally tested products●

When to apply the "Good Enough" test model, and when to apply "Four 9s" models●

When to use exploratory testing vs. when to use acceptance testing●

How to prevent defect propagation through results analysis and defect tracking●

How to utilize workflow systems for localizing and testing dynamic content●

How to apply metrics for evaluating both test teams and test projects●

This seminar targets the test managers who must develop a strategy to balance rigorous international
quality assurance with cost and time-to-market factors. It is appropriate for product managers, QA
managers, and worldwide localization managers in the commercial software and hardware business,
responsible for rolling out products to global markets. Presentation abstract to be supplied.

About the Author

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/4V1.html (1 of 2) [4/28/2000 2:30:50 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

One of the pioneers of outsourced testing, Steve Nemzer co-founded VeriTest in 1987 to provide
services to market-leading hardware and software developers. Over the last 12 years, he has led
VeriTest to prominence as the premier test lab to the IT community. VeriTest now operates
internationally as a service of Lionbridge Technologies, a leading provider of test and localization
services.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/4V1.html (2 of 2) [4/28/2000 2:30:50 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

�����������	

�������������� �

����������	
������
����
�������������
	�������������

&RS\ULJKW���������'DOH�&DUQHJLH�	�$VVRFLDWHV��,QF�

�	������	� �����������	�������	������
��	����������������
����	���������������

���
��	�	���������

� ���� �!������"�����#����$�%!	��&�!��'
� �%��(������$�	���$�%!	��&�!��'�������
�)���!��!�����������!������!����
� *���	��+	�������!���,��!-

�����������	

�������������� .

�������
	��������������	�

�� � �
�

�

��

�	
�

�

��	���������������
������������������	����	��	��
�

��	�
����� �����!���"�
�	���	��	��
��
	�����	��	��
#������������$��	��	��
��%��	� ���	&�	��	�� �������

'()'�����)�*

��
	�	������ ����	
�!
"
��!����������
�

�
��

��
��

��

���

�
�
	

��
�

��
�

�
�
�
��

�

�
�
�

�
�
�
��
�
�
�
�

����

�����������	

�������������� /

������
	����#"

� �!�0��$�����������$���!�����1�����!���(��1
�!���������-!�����!�������!��!������������
���������'�$�	�!������������!	����������	���!��
	��!���!�-	�!	'������	!����������!�
��-��'����2

�)���!��!���������	���%�������������#��!��
���-	���������������	�������!�����!��������
�!�������%�!��!�������$$�	�����3�$$�����
��!���$�	���--���4�!��'�-	������2

�$��%� ��
�������	$���
&����	�

� 5� 6�"���$�%!	�
3 662667��-���

� 8)���3������9���$�%!	�
3 �	�!	'�$��������-�	$�	��������	
�:-���!����
3 +�$�����������	������$�����������"��!����-
����!�!��	�-���$!��	�

�����������	

�������������� 5

���� �'�������
��	$���#"��	�
�
��� �������

�
��	�!����-	����	��$	����������	���!��
;&3�	����4�!��'���!����

� �	!������$	���<=�������������!�!������	�
!���>���

� ;��3����� !--�!����"�-����	!����������%3
�����-�-��!���33�-	���������-��:�'��	�%���
���	���-����!�������	�!���

� =-������	�����������

�)���!��!�����$�-	������

(����)
��	��
���!��������
���
����!����

� �������������-������>�����������!��
��	!�����$�8��	�9����-���	�����������!�!
�����	���!����!��%����!��!--��!���
�	!�������!�'����	��!	��!$$�����

�)���!��!����-	���������	�!����!�'�����
��	�!�����!�����������'���$�	������
�������

�����������	

�������������� ?

��
	�����������!�����������	��	
������� ��	
� ������ ���	����	�������"""

� �������--�	��	����	�����!'������	����������
!�	������	��	�

� <����	!���:-���!�����$�	�-	������4�!��'��!'
����	�!��	����	�!���!��'�33����"����������
$�	������ �!	�'�!��-��	�"����!���-������'
-	������

� ��!�$�	��!����-�	!�����'������!	!�����!��
��	��-�����!��$�	�-	���������������:

�������������!������	�����**
�������
������� � ���������

�
��!��+����@<����
�
�A��������	���!����!���������
� >���-�!�����	��������	$�!����������
� *������!��������
� �!����!���!����
�������
� <��-!����'�������
� ��#��-	�����
� ��#���
�������
� ��#�����-!����'�������
� +�������!���@;��-�������

�����������	

�������������� B

�������������!������	�����**
�������
������� � ���������

�
��!��+����@<����
3 	�!�3����%������:��������%�����������

�������2��<���	���!����6C7��$����	��%�
����

�
�A��������	���!���
3 %���3��	-������!��!�����������3�-�!--	�!��

%���	������������������
� >���-�!��������

3 %���3��	-������!��!���

�������������!������	�����**
�������
������� � ���������

� *������!��������
3 �����������"�	�03�!������������!	�����'

����3$�!�����!--	�!��
� �!����!���!����
�������

3 �!�����%���3��	-������!��!����������5�6�
!--	�!����

� <��-!����'�������
3 �����������"�	�03�!������������!	�����'

����3$�!�����!--	�!��

�����������	

�������������� C

�������������!������	�����**
�������
������� � ���������

� ��#���
�������
3 	�4�	���5�6��!--	�!����!���!��

�����������������������!--����!�	�����!�'
�!	!���

� ��#��<��-!����'�������
3 	�4�	���5�6��!--	�!����!���!��

������������������������!--����!�	���
�!�'��!	!����33������-�!�����	��������	

+��� �������,���
	
������������	��

� �	�!���!���-3������$����������
3 	���%��$����	���������!�����������������

������$�	�-�	����-!�������!������:�����		�	
����!��������2

� >�!�'����-����������!	'�����������/	�3
-!	�'���-��������

� �-��������������!����4��0�'
� ,������	�����!����

3 �-	�0�����!�	���

�����������	

�������������� A

�����������
� ���	���
����
-.*����
	���������

� D�!���������������$�
�A�E
3 D!������-	����������3�'�����!�����$	��

��	!���E
3
������-	��	!�����	�������������E
3 ;!��,����	���@�<������-!	!��������

�-��������E

�����������
� ���	���
����
-.*����
	���������

� ;!��!��
�A�������	���%�����
���-�����E��,���%�����!�����������$�
3 ��	�����!���F��$$�	���������!�����

�!�-��!�������	��������-!	��G
3 <�����!���!����-����
3
�-��@=��-���	�������F+�0��H�'��!	��

��	���G
3 *������!���F�	������!����-������%�	�

%	!--�������	��!����!����!���G
3 +!��@���@��		���'@�����-!���!����-����

�����������	

�������������� 6

�����������
� ���	���
����
-.*����
	���������

�
���!�!�!�!�!����$	������!�-	��	!��E
F������!��!��%����!�������	!��$����!�0G

� +�������!�'��!�!��������������--�	���E
�
$�!����!�����������	-����!��������������-��

$�	�I���	������!	��������	-�������3�'��
��!����E��
���!������!�����������!�!�!�!�!���E

�����������
� ���	���
����
-.*����
	���������

� <��-!����'�
�����
3 >	�����!���!	�%!	���!	!�����F-�!�$�	���-�	-��	!���

���%�	0���������G��0��'�����	�!������-!����'
-	������E

3 D�������-	����������������������I������!���(�<�
�-�	!�����'������-�!�$�	��E�+��"��$�	����!������
��	�����!�0��!����;D��222

3 D�!��!�������	�3-!	�'���$�%!	��!--��!����������
!�� -���3��"���!�!����������������!�!
�-�	�@�:-�	���!����$$��������E��D������	�����!��:
�$��$�I�!������!�����-	�������������	$!���%��E

�����������	

�������������� �#

���� �������	��
����-.*�
��
	���

� �!�����-�!0�	��!�������	�������������
��!	������������!�������$�����-	�����

� I:�����&>���!���!���$$����'���!���
%������!������

� �!���!����������!'��������!��
���$�!���������

%��
��������
	����'���������/
%����0����-.*1�&����	�

3 �����-	�J����
3 ����3��	����
3
�������	����!����!$$
3 �	!��������-�����!���&>���!$$���
�A��!��

��#�������
3 ;!������������:-�	����!�!�!����$�	���3���3

�-���!����!����%���==�I������

�����������	

�������������� ��

(�	���������	���

� ����,=
�	��!�����������!��!��������������	�!���!��
�	��������!�����%�����	�!������	�������:��$�%�'�!	�2
��������	!����!	�'�!��-��	��!	������	'2

� �����%��4�!��'�!���������������� *��	�6�"�!���)���
I�����"���!����!������	�-�!���!���������-�!���������
������-������'���2

� >����$�%!	����-��'��������������!�����!����������
�����!�!������	�!�������>����	��!���'�������
����������	��!�����	���-�	�!���3�8)����������9��
������������!�'��	�2

(�	���������	���
�E�

� ����
���	�������	����!��!�'�����	��������:��!���
���!���!��$�	����������	����0�����������������
-!	����!	�'�$�	�����3�'������!���2�)���!����--�	�
	�4�	�������!	�����������������		���������
-�����-�������������'�;�(��52#��D�.###�!--
�-���2������
���	����	!���������!	�$�	�	����!��������
!�����--�	��33!����J�����!�������%���!����$	��
!�'%��	���������
���	����!�������:-���������%�	0��
!����!��	���$���J��������'��	����!���!����2

�
���	!��������-�����3�!����!--��!�����F>�����K�
L!�!�>--���������G�!�����������$����-��:�'2

�����������	

�������������� �.

2�
�����

�)���!��!����M����!��!�����������	!�����
$�	�D���%��.###�<��-�!�����$�%!	��
(�	���$��<�	-2

� +�����-���
���	�!���!����$�%!	��
�!����H!��

� D���%��.###�>--��!�����-��$�!����
(�	���$��<�	-2

2�
�����

� %%%2������2�	�
� %%%2%/2�	�@
���	�!���!�
� %%%2��	���$�2���@����!����
� %%%2���!�2���@�$�@+�L�##
� %%%2J!�!2���2���@-	������@J�0@�2�@����@

����@���@���:2����
� �
�>�%������

�����������	

�������������� �/

����

�
�A������������
3 =��,�!���������F%%%2���	�!��2���G
3 <�	���<!�!�'���.2?

� ��#������������
3 ,!���!��������F,����G
3 �	!���!����<	!$��;��-&>��;�(�&>
3 �	!���!����<	!$�������	��$

� +�$����(!�!������
3 ����I:����+���	!�0

QW2000 Paper 4T1

Dr. Rainer Stetter
(Software Factory & ITQ GmbH)

Software Quality for Embedded Systems

BACK TO QW2000 PROGRAM

Key Points

Problems and special quality demands on embedded systems●

Measurements, hints and practical solutions to improve quality in embedded systems●

Future quality approaches and techniques●

Presentation Abstract

Embedded Systems is a prevalent term. Because of this I'll give an short overview of what do
Embedded Systems means for us. In our context Embedded Systems mostly are parts of machines
(e.g. tool machines or large manufacturing plants).

Therefore Embedded Systems are a conjunction of software and hardware and have to interact with a
huge number of other components (mechanical, electrical, electronic, real-time software, non real-time
software). Our experience is based on our university background and our work together with major
corporations during the last ten years. The quality of the software in this kind of systems has a major
influence on the quality of the whole system.

The system (this means the machine/plant) typically costs about 500.000 $ up to several million of $'s.
Additionally there are safety critical elements, especially in any conjunction with medical devices.

About the Author

At the Technical University, Munich I studied mechanical engineering and as I was interested in
software engineering I took some classes in computer sciences. While I was doing my PhD in
developing a robot simulation system, which I got in 1993, I improved my knowledge in software
engineering. From 1993 until 1997 I was working as a Research & Development Manager at Zwick
Company, Ulm - Germany.

Since 1997 I have been one of the General Managers of Software Factory GmbH, Munich. In addition,
since 1998 I have been working with the Munich based firm itq GmbH as a General Manager.
Together, Software Factory GmbH and itq GmbH form the Software Quality Center. With some
partners of the Technical University of Munich and VDMA (German Machinery and Plant
Manufacturers' Association), we work on approaches to improve the quality especially in the field of
embedded systems.

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/4T1.html (1 of 2) [4/28/2000 2:30:58 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Software Quality for Embedded Systems

Dr.-Ing. Rainer Stetter

2

Software Software Quality forQuality for
EmbeddedEmbedded Systems Systems

3

Software Software Quality forQuality for
EmbeddedEmbedded Systems Systems

4

Software Software Quality forQuality for
EmbeddedEmbedded Systems Systems

5

Software Software Quality forQuality for
EmbeddedEmbedded Systems Systems

Example: Personalization of Smart Cards

6

Software Software Quality forQuality for
EmbeddedEmbedded Systems Systems

Example: Material Testing

7

Software Software Quality forQuality for
EmbeddedEmbedded Systems Systems

Example: Airbag production

8

Software Software Quality forQuality for
EmbeddedEmbedded Systems Systems

Embedded Systems

Mechanics

Software

Electronics

9

Software Software Quality forQuality for
EmbeddedEmbedded Systems Systems

Quality Requirements

• Mission critical applications
– Production of the plant
– Medical devices

• Safety critical
– Dates and informations
– Life and health

• Quality Requirements according to the FDA
– stable and detailed process
– Validation plan

10

Software Software Quality forQuality for
EmbeddedEmbedded Systems Systems

Challenges
• Huge machine <-> untouchable software

• Underestimation of the CEO

• Different worlds (mechanics, electronics, software)
• Different traditions and way of thinking
• Different levels of standardisation

• Different organisations/ departments
• Esteem of each other

• Different „languages“
• Different possibilities to visualize <-> level of abstraction

• Different life cycles
• Fear of new techniques

11

Software Software Quality forQuality for
EmbeddedEmbedded Systems Systems

Levels of maturity
Mechanical engineering

Software engineering

Electronical engineering ?

12

Software Software Quality forQuality for
EmbeddedEmbedded Systems Systems

Comparison

Inter - disciplinary development

Single - disciplinary development

13

Software Software Quality forQuality for
EmbeddedEmbedded Systems Systems

Precondition for success

• Change process from chaos to control

• Measure maturity of organization

– Do the right things at the right time

14

Software Software Quality forQuality for
EmbeddedEmbedded Systems Systems

What are we working on ?

• Form a community
• VDMA – German association for machinery and plant manufacturing

– Software
– Hardware
– Research

• Transfer and adept methods and approaches of computer science
– CMM
– UML

• Implement stable processes
– Maintain test center for clients
– Coach and guide

15

Software Software Quality forQuality for
EmbeddedEmbedded Systems Systems

Measurements, techniques and tools

• FDA demands
– Validation plan

• Extensive reviews at all phases
– Requirements, specifications, design, code

• Separate test team
– Planning tests
– Testing of hard - and software
– Code coverage with CodeView

• Modeling system with UML (C++)
– Rose98 with Reverse Engineering
– Documentation with SoDa

16

Software Software Quality forQuality for
EmbeddedEmbedded Systems Systems

What will we do next?

• Analyse usefullness of formal methods in our field
– E.g. requirements engineering

• Case study – „Ideal process and techniques“
– Toy race track

• Maturity model for embedded systems
– Special needs for interdisciplinary development

• Requirements for tools
– Configuration management

• CAD, Source, Documentation

17

Software Software Quality forQuality for
EmbeddedEmbedded Systems Systems

Conclusions

• Importance of embedded systems
– Is enormous already

• But is not yet seen of everyone
– Will increase dramatically in the next ten years

• Knowledge and practices of computer science
– Has to be transferred to traditional fields of engineering
– Has to be adapted to special needs

• Main problem
– Bring together different worlds

• Social aspect is very important for success

QW2K Paper 4A1

Mr. William Lorensen & Mr. James Miller
(GE Corporate Research & Development)

Visualization Toolkit Extreme Testing: A
Production Release Every Day

BACK TO QW2000 PROGRAM

Key Points

Automated software testing for medium-sized software with concise summarization of testing results●

The process provides a daily assessment of the readiness of the system for release●

The process empowers developers to improve the software without fear of breaking it●

Presentation Abstract

Every large software development requires a process to move from requirements through design,
implementation, testing and maintenance. Although tools and methodologies exist to carry out each of
these steps, the degree to which these tools are applied is usually dictated by the size of the software
product. The Capability Maturity Model developed by the Carnegie Melon Software Engineering
Institute defines five levels to the software process. For the most part, this discipline is applicable to
large software development projects that have a separate software quality assurance and testing
organization. There are smaller projects that do not have a separate organization, but still need to
apply sound software testing to achieve low defect software.

In this paper we describe a practical, automatic software testing process for a medium sized software
package. The software is the Visualization Toolkit http://www.kitware.com/vtk.html, an open source,
C++ class library consisting of about 600 classes. Vtk's class library supports visualization, graphics
and imaging. It runs on multiple vendor Unix platforms and Windows 95/98/NT.

Author Bio...

Bill Lorensen is a Graphics Engineer in the Electronic Systems Laboratory at GE's Corporate
Research and Development Center in Schenectady, NY. He has over 30 years of experience in
computer graphics and software engineering. Bill is currently working on algorithms for 3D medical
graphics and scientific visualization. He co-developed (with Harvey Cline) the marching cubes and
dividing cubes surface extraction algorithms, two popular isosurface extraction algorithms. His other
interests include computer animation, information display, and object-oriented software tools.

Bill is the author or co-author of over 60 technical articles on topics ranging from finite element
pre/postprocessing, 3D medical imaging, computer animation and object-oriented design. He is a

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/4A1.html (1 of 2) [4/28/2000 2:31:04 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

co-author of "Object-Oriented Modeling and Design" published by Prentice Hall, 1991. He is also
co-author with Will Schroeder and Ken Martin of the book "The Visualization Toolkit: An
Object-Oriented Approach to 3D Graphics" published by Prentice Hall in November 1997. The text
describes vtk, an open source visualization C++ class library. He gives frequent tutorials at the annual
SIGGRAPH and IEEE Visualization conferences.

Bill holds twenty six US Patents on medical and visualization algorithms. In 1991, he was named a
Coolidge Fellow, the highest scientific honor at GE's Corporate R&D. Prior to joining GE in 1978, he
was a Mathematician at the US Army Benet Weapons Laboratory where he worked on computer
graphics software for structural analysis. He has a BS in Mathematics and an MS in Computer
Science from Rensselaer Polytechnic Institute.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/4A1.html (2 of 2) [4/28/2000 2:31:04 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

GE CRD

n
Bill Lorensen Jim Miller
Graphics Engineer Computer Scientist

Visualization Toolkit Extreme Testing
 A production release every day

 http://vtk.scorec.rpi.edu/Nightly/MostRecentResults

GE CRD

Software Development Team
GE CRD
ù Majeid Alyassin
ù Rick Avila
ù Rusty Blue
ù Jon Davis
ù Tim Kelliher, MBB
ù Annie Kelly

GE Medical Systems
ù Dave Deaven
ù Darin Okerlund
ù Chris Slack
ù Bill Stovel

ù Steve Linthicum, MBB
ù Bill Lorensen
ù Jim Miller
ù Matt Turek
ù Boris Yamromn

Kitware, Inc
ù Lisa Avila
ù Bill Hoffman
ùCharles Law
ùKen Martin
ùWill Schroeder

2

GE CRD

Visualization Toolkit

ù Open source toolkit for scientific
visualization, computer graphics, and
image processing

GE CRD

vtk1.0 1995 vtk2.0 1997

3

GE CRD

Visualization Toolkit
VTK is used by

· GE Medical Systems
– Platform software and applications, 1996

· GE Medical Systems CT
– Volume visualization on the scanner, live 1999

· GE Aircraft Engine
– Engineering productivity tools, 1996

· Lockheed Martin
– Composite inspection system for JSF, live 1999

· DARPA
– Virtual Endoscopy, 1996

· FBI
– Facial Reconstruction, 1999

· Engineering Animation
– Swept Surface, 1998

GE CRD

Visualization Toolkit

External “customers”
· Visual Interfaces Inc.
· Principia Mathematica Inc.
· Numerical Objects Inc.
· Brigham and Womens Hospital
· Rensselaer Polytechnic Institute
· NCSA
· Los Alamos National Lab, Argonne

· 900 people on mailing list
· 12 Universities using VTK textbook

4

GE CRD

Visualization Toolkit

ù Open Source
ù 600 C++ classes
ù 250,000 Lines of Code (100,000 executable)
ù 20+ developers
ù 5 years of development

“We don’t sell VTK, we sell what we do with VTK.”

GE CRD

Testing Motivation

ù Nature of our business
· People working on projects for many different

customers
· Leading edge algorithm and software

development
· Development cycle does not fit “nicely” into a

standard release schedule
– Partly because VTK is not our “product”

ù Software is dynamic.
· Code worked when written, may not work now

ù Need “release on demand”
· Requires continuous software quality assurance

5

GE CRD

In Search of New Software Engineering
Processes

GE CRD

6

GE CRD

GE CRD

7

GE CRDIEEE Computer October, 1999

GE CRD

Extreme Programming

8

GE CRD

www.extremeprogramming.org

GE CRD

Testing Constraints

ù We only have 10 active developers, spread
across many projects
· Can’t afford separate SQA division

ù We don’t have dedicated testing hardware
· Testing cannot hinder project work

ù We are “algorithm developers” not
“software engineers”
· Testing must be automated and concise

9

GE CRD

Testing Design Goals

ù Frequent testing
· Identify defects as soon as they are introduced
· Too hard to find cause if not done frequently

ù Automated testing
ù Automated report generation/summaries

· Must be concise yet informative

ù Minimally invasive to daily activities
ù Track testing results over time

GE CRD

Testing Terminology

ù Regression Test
ù Smoke Test
ù White Box vs Black Box Test

10

GE CRD

Regression Test
What

· test code and data that reproduces an
expected result

· usually hand crafted (white box testing)

Why
· assure that changes made to software do not

introduce new defects

Who
· developer
· team

When
· throughout the life cycle

GE CRD

Smoke Test

What
· a quick sanity check
· a single compile, link and run

Why
· show minimum capability

Who
· developer
· test process

When
· anytime a change is made

11

GE CRD

White Box vs Black Box

White Box
· exercise procedural

control points
· requires knowledge of

individual
classes/methods

· hand crafted
· logic driven

Black Box
· automatically created
· limited knowledge of

class details
· test cases derived from

specs
· data driven

GE CRD

Prior to 1998

ù 100 regression tests
ù Performed manually and infrequently

· just before a major release (6 months)

time

Quality

major
release

major
release

12

GE CRD

1998 Brought 14 Green Belt Projects

MAIC applied to various components of the
software, i.e.
· Dynamic memory analysis
· Static code analysis
· Coverage analysis

Each of these projects yielded measurable
(albeit temporary) improvement.

Next step was to apply these tests as
frequently as possible

GE CRD

Nightly
Release

Source
Code Style
Verification

Regression
Tests

Data Query
Coverage

Source
Code

Coverage

Major
Release

Data
Dependency

Analysis

Test

Defect
Tracking

Design Implement

Visualization Toolkit (VTK) Software Process

Documentation
Coverage

Cross
Platform
Testing

Requirements

Configuration
Management

Source Code
Maturity
Analysis

User
Feedback

Green Belt
Projects

New Quality
Procedures

Increased
Quality Activity

Man Page
Generation

Dynamic
Memory
Analysis

13

GE CRD

A day in the life of VTK Quality

The day starts at 8pm (EST)
ù Determine what has changed in the system
ù Update the testing system’s version of the

software
ù On 12 different system configurations, we

· Build the software
· Run 500 regression tests

ù Dynamic memory analysis
ù Coverage analysis
ù Check on coding style and documentation

GE CRD

8:01pm - Change Log

ù Every day we summarize what files changed
ù This tightens the “cause and effect” cycle

There were 45 files changed since the last dashboard.

Changes for Wed Jan 6 22:02:59 EST 1999

U common/vtkVersion.h
 revision 1.55
date: 1999/01/07 03:05:44; author: millerjv; state: Exp; lines: +3 -3
Automated commit to force versioning.
===

U common/vtkHexahedron.cxx
 revision 1.57
date: 1999/01/06 15:07:45; author: millerjv; state: Exp; lines: +3 -4
ENH: speed enhancements to Locators
===

14

GE CRD

8:05pm - Build Log

ù Summarize errors and warnings

ù Keep complete log of errors and warnings

GE CRD

9:00pm - Regression Tests

ù Each regression test produces an image
which is compared against a “gold
standard image”

15

GE CRD

Regression Tests

ù Image comparison done automatically
ù Defects quantified
ù Summary produced

GE CRD

Regression Tests

ù CPU time is recorded and compared to
history

ù “Defect” is test that takes “statistically”
more time than usual

16

GE CRD

1:00am - Coverage Analysis

ù Identify what lines of code are tested
ù “If it isn’t tested, it doesn’t work.”
ù Summarize coverage across VTK, across

each kit, and across individual files.
Coverage results: 72.70%, tested: 52088, untested: 19562, total: 71650

GE CRD

 28 numNewLines = 0;
 28 numNewPolys = 0;
 28 polyAllocSize = 0;
 28 for (inStrips->InitTraversal(); inStrips->GetNextCell(npts,pts);)
 {
 ###### numNewPts += (npts-2) * 3;
 ###### polyAllocSize += (npts - 2) * 4;
 ###### }
 28 for (inStrips->InitTraversal(); inStrips->GetNextCell(npts,pts);)

 {
 ###### for (j=0; j<(npts-2); j++)

 {
 ###### p1 = inPts->GetPoint(pts[j]);
 ###### p2 = inPts->GetPoint(pts[j+1]);
 //

// Update self and release memory
//

 28 output->SetPoints(newPoints);
 28 newPoints->Delete();

void vtkShrinkPolyData::PrintSelf(ostream& os, vtkIndent
indent)
 1 {
 1 vtkPolyDataToPolyDataFilter::PrintSelf(os,indent);
 1 os << indent << "Shrink Factor: " << this->ShrinkFactor << "\n";

}

Executable & Covered

Executable & Not Covered

Not Executable

Annotated Coverage

17

GE CRD

1:00am - Style

ù Check coding conventions
ù Detect code which has the potential for a

future defect
· Someone other than the original author may be

modifying the code

ù Summarize overall style and style per file
Style test results: 53 defective files out of 972 files, 757 defects out of 104876 opportunities.

Style Rule Opportunities Defects
Class name prefix "vtk" 507 0
Class name alphanumerics 507 0
Instance variable begins with uppercase 2222 15
Protected member data 2222 153
Member function begins with uppercase 8590 0
Dereferencing member data 33641 249
Dereferencing member function 24656 85
Braces around "if", "else", "for", ... 20721 188

GE CRD

1:00am - Memory Analysis

ù Check for memory leaks, array bound
writes, uninitialized memory reads, etc.

Purify Total Critical Defects: 0. (Purify last run on Jan 6 06:11)

VTK Dynamic Code Analysis for Thursday January 07, 1999 at 07:35 AM
=================================
Total Memory Leaked: 0 bytes
Number of Leaks : 0
Number of ABRs : 0
Number of ABWs : 0
Number of CORs : 0
Number of FMMs : 0
Number of FUMs : 0
Number of FMRs : 0
Number of FMWs : 0
Number of MAFs : 0
Number of UMCs : 213
Number of UMRs : 144

Purify Total Critical Defects: 0

18

GE CRD

7:00 am - Tests complete

ù Top level Web-dashboard constructed
ù Testing results packaged and exported
ù Software packaged and exported for world

wide distribution

GE CRD

7:00am - A Good Day

Real work begins at 7:05am

19

GE CRD

7:00am - A Bad Day

We are “prisoners of quality”...

GE CRD

How do we use the system?

ù Track the effects of major changes
ù Identify what needs to be changed
ù Portability leads to quality
ù Navigate software features

Has truly “Changed the way we work.”

20

GE CRD

Lessons Learned

ù Frequent testing
ù Automation
ù Summarization
ù Navigation
ù Cross platform

GE CRD

www.mozilla.org

21

GE CRD

Continuous Build

GE CRD

What’s next?
Current system

ù uses: csh, tcsh, tclsh, awk, grep, make, gmake,
cvs, rcp, ssh, scp, ...

ù is “vtk-centric”

ù monolithic control structure best suited for daily
testing of the complete system

ù dashboard summarizes state as of 6 am

New goal

ù Client-server model

ù Dashboard summarized the most recent results

ù Replace “rsh”, “ rcp”, etc with http

22

GE CRD

Testing Architecture
MasterCard

What is the Quality of VTK now?

On-demand testing

Scheduled testing

Delegate test

Delegate test

GE CRD

Visualization Toolkit Extreme Testing
 A production release every day

 http://vtk.scorec.rpi.edu/Nightly/MostRecentResults

Jim Miller Bill Lorensen
Computer Scientist Graphics Engineer

n

Visualization Toolkit Extreme Testing: A Production Release Every Day

William Lorensen
lorensen@crd.ge.com

James Miller
millerjv@crd.ge.com

GE Corporate R&D
KW/C223
1 Research Circle
Niskayuna, NY 12309

Introduction

Every software development project requires a process to move from requirements
through design, implementation, testing and maintenance. Although tools and
methodologies exist to carry out each of these steps, the degree to which these tools are
applied is usually dictated by the size of the software product. The Capability Maturity
Model [Paulk1994] developed by the Carnegie Melon Software Engineering Institute
defines five levels of software process. For the most part, this discipline is applicable to
large software development projects that have a separate software quality assurance and
testing organization. Smaller projects that do not have a separate testing organization still
need to apply sound software testing to achieve low defect software. In this paper we
describe a practical, automatic software testing process for a medium sized software
package. The software is the Visualization Toolkit [Schroeder1997]
(http://www.kitware.com/vtk.html) an open source, C++ class library consisting of about
600 classes. Vtk’s class library supports visualization, graphics and imaging. It runs on
multiple vendor Unix platforms and Windows 95/98/NT.

In this paper, we describe the Visualization Toolkit (vtk), our motivation for testing and
the automatic testing process we use to build, test and distribute vtk. We conclude with a
discussion of the benefits of the testing that we provide directly to the development team.

The Visualization Toolkit

The Visualization Toolkit, vtk, is a set of C++ class libraries organized into kits that
contain related functionality. These kits are used to build visualization applications for
biomedical, scientific and information visualization, Figure 1.

Visualization Toolkit Extreme Testing Lorensen/Miller

2

Figure 1. Visualization of a combustor (left), computed tomography (center) and stress
tensor hyper-streamlines(right).

Vtk is not an application but rather a toolkit that application developers use with other
software to create end-user products. Broadly speaking, vtk presents the developer with
sources, filters and graphics mappers that are connected into a visualization pipeline. Data
is pulled through the filters by graphical demands that are initiated at the end of the
process pipeline, Figure 2. A typical visualization requires from 3 to 10 vtk classes.

Figure 2. Visualization pipeline with filters, mappers and renderers.

Software Organization

The vtk source code is kept under the cvs revision control system (www.cyclic.com). The
source code exists on an Internet site donated by a university user. The source tree is
placed on this public site to maintain the Open Source goal of vtk and provide access to
vtk developers. Read access is granted to all through an anonymous user id. Members of
the development team can read and write to the repository. Some members of the vtk
development team reside behind corporate firewalls and get access to the repository
through a socks connection.

Currently five kits exist. Figure 3 shows the distribution of lines of code and number of
classes for each kit.

1. Common contains classes that are used by each of the other kits. These include
abstract filter classes, datasets, cells and utility classes. Vtk supports a variety of data
organizations that range from unstructured data produced by finite element analysis to

Visualization Toolkit Extreme Testing Lorensen/Miller

3

highly structured data produced by medical imaging Computed Tomography and
Magnetic Resonance Imaging scanners.

2. Graphics contains visualization classes. These classes process vtk’s dataset classes
and render the resulting polygonal output. The visualization filters in this kit extract
surfaces of constant value, generate streamlines, warp surfaces and resample one data
set with points from another. Many of the algorithms produce polygonal
representations that can be rendered with conventional computer graphics software.
Other filters retain the original form of the volumetric data and then apply volume
rendering techniques directly to the volume data.

3. Imaging contains classes that process volumetric image data. The image data is
structured data with implied topology. Because of the uniform storage mechanism,
imaging classes can be streamed and threaded. Streaming is a technique that pulls
pieces of image data through the pipeline.

4. Patented contains classes that implement techniques covered by US Patents. These
classes can be used for educational purposes, but require a license for commercial use.

5. Contrib contains classes contributed by the vtk user community.

Common
7%

Graphics

57%

Imaging

26%

Patented

3%

Contrib

7%Common

18%

Graphics

49%

Imaging

18%

Patented
4%

Contrib

11%

Figure 3. Distribution of Lines of Code (left) and Number of Classes (right) across the
kits.

In addition to C++, vtk allows users to access the class libraries through tcl, java and
python. This is accomplished through wrappers that are automatically generated as part of
the build process. The access to vtk through a script level interface facilitates the testing
process but also adds complexity to the testing since multiple language testing must be
performed.

User Community

Vtk users range from students to researchers to application software engineers. The level
of programming sophistication also covers a wide range. Vtk is written in C++ and
developers can write applications in C++. This is the common approach if visualization
tasks are embedded in the application. We also provide access to the individual classes in
three other languages: java, tcl/tk and python. Distributed and Internet applications prefer
java. Using java’s JNI (Java Native Interface) a user can access vtk classes from java. To
the developer, the classes appear as native java classes. However, the object libraries for

Visualization Toolkit Extreme Testing Lorensen/Miller

4

vtk must be available on the client computer. For applications that only use vtk classes,
developers often prefer writing in tcl/tk or to a lesser extent python. Both of these
languages are interpreted and lend themselves to rapid prototyping.

The vtk user community communicates through a mailing list. Users submit questions,
bugs, benchmarks and results to this forum. The community is very supportive to new
users and to developers that have OS or hardware platforms not available to the vtk
development team.

Distribution Process

The vtk release includes beta, major and nightly releases. The beta and major release
process follow common software distribution procedures. The nightly release provides
power vtk users with access to the latest software release that has passed vtk’s quality
control process. The nightly release provides frequent bug fixes and enhancements to
users without forcing them to wait for the next major release of the software. The nightly
release allows vtk’s user community to be tightly integrated to vtk’s development cycle.
A bug reported by a user in the morning can be fixed and rolled out to the user
community that night. This saves our user community the time and effort involved in
developing a “work-around” for a bug.

Providing a nightly release is not as simple as just creating a version of the source code
every night. For users to have any confidence in a nightly drop, one also has to provide
nightly testing. Thus, in vtk’s software development process, the software is tested every
night and the results summarized on the Internet before the nightly software release is
distributed. (For the true vtk devotee, we also provide anonymous access to our source
repository via the Internet. This code is made available regardless of any defects that
exist.)

Motivation

All computer software contains bugs, inconsistencies and deficiencies. We call these
problems defects. Our goal is to minimize the number of defects in the software that we
use and release to our user community. To do this we have adopted the Six Sigma
Process(http://www.sixsigmaqualtec.com/). Although we have always applied extensive
testing to vtk since its inception in the summer of 1994, we started to apply more rigor to
our testing in early 1998 as part of a Company-wide quality initiative. Several developers
in our group selected six sigma projects that focused on vtk software quality issues. Some
of these projects were specific to vtk while others applied to software in general. Each
project successfully measured the existing state of the software, analyzed the defect
patterns, corrected the defects and provided tools to control the defects. Before we started
the initiative, we assumed vtk’s software quality was high. After all, the system was
nearly four years old and had been used on a number of internal software development
projects. From the start, we had designed regression tests and did heavy testing as part of
our beta release process. In spite of its widespread use and cream of the crop software
development team, vtk remains a dynamic software class library. Dynamic software
works properly only within a narrow window of the time it was last tested. Each change
or addition to the software is an opportunity to introduce defects. From experience, the

Visualization Toolkit Extreme Testing Lorensen/Miller

5

vtk software was “relatively” defect free immediately after the testing for a major release,
but then degraded as time passed until we started the testing for the next major release.
We followed the normal separation of development and testing.

The reasons for the wide variation in software quality are complicated and hard to
address. Every software developer would test the snippet of code they were adding to the
system while they were developing it. This is standard practice when developing any
software. For complex algorithms, developers often asked colleagues to inspect the code.
But when you factor in the dynamic nature of a reasonably size software project, an
innocent change or addition by software developer “A” can have a severe impact on the
code developed by software developer “B”. It is these small and rather innocent changes
that can have a huge impact on software quality and are the hardest to track. It is
important to detect the changes and when they occur. A comprehensive and frequent
testing system is required to identify exactly when the problems arise.

A second lesson involves cross platform compatibility. Vtk runs on multiple OS and
hardware configurations. Once again, this was a goal from the beginning of the system.
We found that when the software was tested on a particular platform, the software would
work well on that platform. If we stopped testing the software on any one platform, the
software’s quality would degrade on that platform. Here the causes were related to
changes in the operating system, compilers, graphics libraries such as OpenGL, and
changes to third party software such as Tcl/Tk. Since we work in a dynamic research
environment, the only constant is that our computer systems are constantly changing.
Therefore, to maintain a prescribed software quality, we need to test frequently to keep
our software on top of our computer environment.

Finally, maintaining software quality can be a heavy burden. Software developers are
pushed to their limits just to keep up with the demands of adding new features to the
software. Manual checks of the implications of every change are costly. Furthermore, as a
small software development group, we do not have the resources for everyone to compile
and test their software on each computer architecture and OS release.

The vtk Software Testing Process

The goal of our software testing is to identify defects as soon as they are introduced into
the software. If a developer does not catch the defect before committing the change, the
nightly test suite will identify the defect so that it can be repaired before the next nightly
build. Our software testing is a combination of regression and functional testing. The
purpose of the regression tests is to assure that changes to the system do not change the
operation of the software. The functional tests assure that each element of the system
meets global requirements.

Regression Tests

Regression testing is the heart of the vtk software testing system and we have more than
500 regression tests. The purpose of the regression testing is to ensure that prior operation
of the software has not been affected by changes to the software. Vtk's regression tests are
image based and text based. Currently, we use tcl/tk scripts and C++ regression tests. The

Visualization Toolkit Extreme Testing Lorensen/Miller

6

tests are available to each developer and they can be run selectively or in their entirety.
Developers are encouraged to run tests before checking changes into the revision control
repository. Each evening, a control script choreographs the regression testing on 12
different hardware/software configurations. A variety of platforms are selected to use
different C++ compilers and different toolkit/system configurations. Text tests generate
text output that is compared with baseline results. Each image test creates an image and
compares this image pixel-by-pixel with a “valid” baseline image. The resulting image
difference is recorded. If a prescribed threshold is exceeded, the test fails. If a test fails,
the system save three images: the generated image, the expected image and a difference
image. A single line reports the test name, the elapsed and CPU time of the test and
whether it passed of failed. If a test fails, the control script saves the generated image and
creates an error image that shows the difference between the generated image and the
valid image, Figure 4.

Figure 4. A failed regression test shows the produced image (left), expected image
(center) and difference image (right).

Regression tests are also the basis for Dynamic Memory Analysis using Rational’s Purify
(www.rational.com), Source Code Coverage and CPU utilization.

Dynamic Memory Analysis

The main purpose of the Purify runs is to catch memory leaks as soon as they are
introduced. These runs also identify array bound access problems and memory uses after
VTK Dynamic Code Analysis for Sunday March 26, 2000 at 08:24 AM =================================
Total Memory Leaked: 0 bytes
Number of Leaks : 0
Number of ABRs : 0
Number of ABWs : 0
Number of CORs : 0
Number of FMMs : 0
Number of FUMs : 0
Number of FMRs : 0
Number of FMWs : 0
Number of MAFs : 0
Number of UMCs : 151
Number of UMRs : 37
Purify Total Critical Defects: 0

Figure 5. Summary of the Purify log with defects identified.

Visualization Toolkit Extreme Testing Lorensen/Miller

7

vtkOutlineSource.cxx
vtkPLOT3DReader.cxx
vtkPicker.cxx
vtkPiecewiseFunction.cxx
vtkPlaneSource.cxx
vtkPlanes.cxx
vtkPointDataToCellData.cxx
vtkPointLoad.cxx
vtkPointPicker.cxx
vtkPointSetSource.cxx
vtkPointSetToPointSetFilter.cxx
vtkPointSource.cxx
vtkPolyDataCollection.cxx
vtkPolyDataConnectivityFilter.cxx

96.97%
74.84%
69.64%
70.34%
88.57%
79.81%
88.64%
86.15%
85.71%
57.14%
51.79%
95.00%
66.67%
75.08%

3485 clipRange = camera->GetClippingRange();
3485 if (camera->GetParallelProjection())
{
tF = clipRange[0] - rayLength;
tB = clipRange[1] - rayLength;
for (i=0; i<3; i++) {
p1World[i] = this->PickPosition[i] + tF*cameraDOP[i];
p2World[i] = this->PickPosition[i] + tB*cameraDOP[i];
}
 }
3485 else {
3485 tF = clipRange[0] / rayLength;
3485 tB = clipRange[1] / rayLength;
 for (i=0; i<3; i++)
 {
10455 p1World[i] = cameraPos[i] + tF*ray[i];
10455 p2World[i] = cameraPos[i] + tB*ray[i];
10455 }
 }

Figure 7. An excerpt from the coverage pages shows the coverage in percent for each file. On
the right, an annotated listing of a file that shows how many times each line was executed or
#######’s if the line is not executed.

the memory has been freed. Figure 5 shows a summary of defects gathered from the
Purify log.

Timing

The CPU and wall time for each test is recorded. These times are compared to see if tests
are running slower or faster than they have in the past. Figure 6 shows a timing result for
an improved test. The plot shows that several days ago someone made a change that
improved the times for this test.

Figure 6. A timing result that shows a recent improvement in CPU time for a regression
test.

Coverage

One of the builds is configured to run the regression tests with a compile flag that

Visualization Toolkit Extreme Testing Lorensen/Miller

8

Complete Summary of VTK Style
Number of files 1183
Number of files with Defects 65
Style Rule Opportunities Defects

Class name prefix "vtk" 604 0
Class name alphanumerics 604 0
Instance variable begins with uppercase 2675 13
Instance variable name alphanumerics 2675 0
Constructor, destructor and assignment checks:
 Class has member function New() 547 20
 Class has constructor 578 4
 Class has default constructor 578 4
 Class has copy constructor 578 5
 Class has destructor 578 5
 Class has operator= 578 4
 Protected constructor/destructor 1722 3
Protected member data 2675 110
Member function begins with uppercase 12102 0
Member function name alphanumerics 12102 0
Macro name prefix "vtk" or "VTK" 1172 1
Dereferencing member data 39135 37
Dereferencing member function 28975 16
Braces around "if", "else", "for", ... 22754 20

Totals 130632 242

Size:

Executable lines: 93175 Low-level statements: 96169
Comment lines with text: 69574 Non-executable statements: 15656
Code lines with comments: 2618 High-level statements: 69217
Declaration lines: 27487 TOTAL STATEMENTS...181042
Whitespace lines: 56697
Preprocessor lines: 6412
Suppressed lines: 1339 Macros defined: 1172
Punctuation lines: 59802 Functions defined: 14555
 TOTAL LINES.......... 314486

Figure 8. Summary of Code Check output tailored for vtk.

produces annotated listings of the source code. Each executable line is labeled with a
number or hash marks, The number tells how many times the statement was executed.
Hash marks indicate lines that are not executed at all.

Style

As with most diverse software teams, each developer has his or her own coding style. For
the benefit of the team, however, most groups accept a coding style so that individuals
can understand the code written by others. We use a commercial style checker called
CodeCheck (http://www.abxsoft.com/codchk.htm) from Abraxas Software. CodeCheck is
programmable so that a team can encode the agreed upon coding conventions. We
process the output of the checker to summarize defects, Figure 8.

Visualization Toolkit Extreme Testing Lorensen/Miller

9

Functional Tests

Black box tests are run to check for documentation defects and adherence to functional
requirements. For example, vtk requires that each class in the system have a method
PrintSelf that prints the values of each instance variable. This is important in debugging
and in interpreted applications. Another test exercises each PrintSelf to ensure that the
Print method does not fail. A third test checks the integrity of pipeline mechanism. These
tests are generated automatically from the source files.

The Nightly Build

A nightly build beings at 8:00PM EST and completes around 7:00AM the following
morning. The build proceeds as follows:

1. The cvs repository is queried to see which files have changed since the previous
evening. Summaries of the changes are kept in a file that is accessible from the
Dashboard.

2. A build is initiated on each platform and the results are collected in a log file for each
configuration.

3. The regression suite is run. This includes image based C++ and tcl/tk tests as well as
C++ and tcl/tk text tests. The results are accumulated in logs for each platform. Each
test reports whether it passed or failed. One of the test platforms includes Purify
applied to each regression test. The Purify log is saved in a file for later processing
and reporting.

4. After all the builds and tests complete, the log files are scanned for defects. A defect
in a build is either an error or warning. An html summary page is created that contains
each defect with several lines before and after the defect to give the message context.
There are some warnings that cannot be avoided. Patterns of these warnings are kept
in an exception file so that they can be removed from the summary page. The number
of errors and warnings are computed and stored in an html table.

5. The test logs are scanned for defects. A defect in a test occurs when a test fails. The
number of tests that pass and fail are recorded and stored in an html table. For each
failed image test, a jpeg is made of the generated image, the expected image and the
difference of the two. These are stored in an html page that is linked to from the main
dashboard page.

6. A timing analysis is performed on each platform. A summary of tests that are faster or
slower is created and links are made to plots that show the variation over the last 10
days and last 12 weeks.

7. The Print test is run and the total numbers of defects are reported on the main
dashboard. A link to the detailed results is created if there are any defects.

8. The coverage listings are parsed and summaries are prepared for the overall system,
each kit and each source file. All results are available via html links.

Visualization Toolkit Extreme Testing Lorensen/Miller

10

9. The results of the style checker are summarized and links placed to the details for
each kit.

10. The Purify log is parsed and the defect counts are summarized. A link to the full
purify log is available from this summary page.

11. The top level Dashboard and all of its link pages are collected and transferred to the
external web site. These pages are available to anyone on the Internet.

12. Html documentation is generated from the C++ header files. These pages are indexed
and packaged into a compressed archive.

13. Downloadable files are created as a convenience to users:

 i. Linux RPM’s that contain executables, source code and libraries.

 ii. A complete installation for Windows 98/NT/2000 as a single executable.

 iii. A complete source distribution for both Unix and Windows 98/NT/2000.

Figure 9 shows a recent Dashboard. Each number on the Dashboard is linked to a page
containing more details.

Figure 9. A top level dashboard for one build. Colors highlight exceptions
(http://vtk.scorec.rpi.edu/Nightly/MostRecentResults/Dashboard.html).

Visualization Toolkit Extreme Testing Lorensen/Miller

11

The Continuous Build

The nightly build and test process is critical to our development cycle. The team relies on
the results to know the status of the system. After running the nightly testing for 12
months, we added a “continuous build” process to protect the nightly build from failing.
Since the open source development team is distributed between several organizations,
occasionally, a developer would check in a change that caused a compile to fail. This was
usually because the developer did not have access to the all architectures that run the
tests.

Periodically, the continuous build process checks the revision control repository for
changes. If a change occurs, the process checks out the changes, compiles the new toolkit
and runs four smoke tests to ensure a minimal conformance for the nightly tests. The
smoke tests show that the toolkit will, at a minumm, run an application in each of the four
supported lanuage bindings: C++, tcl, java and python. If the build fails or one of the tests
fails, the process sends the following e-mail to the offending party:

Subject: vtk Build Problem: 03/29/00 11:50

Please look at
http://vtk.scorec.rpi.edu/Nightly/ContinuousResults/solaris/ContinuousRes
ults.html. It appears that you may have checked in code that has broken
the vtk build. We realize that another developer may have caused the build
to break but you are one of the last people to check changes into the vtk
repository.

The developers agree to repair these defects before the nightly build. Since the continuous
build was started in September 1999, only one nightly build process has failed completely
and one has failed partially. In both cases the failure was caused because a developer
checked in changes without watching the continuous build and did not check their e-mail.
The Continuous Build Dashboard, Figure 10, shows the last 10 builds.

Visualization Toolkit Extreme Testing Lorensen/Miller

12

Figure 10. The Continuous build compiles the toolkit on one platform and runs a smoke
test for each supported language binding
(http://vtk.scorec.rpi.edu/Nightly/ContinuousResults/solaris/ContinuousResults.html).

Discussion

We have been running the nightly build since August 1998. Since that time we have
gathered and retained almost 4 million test results. The general consensus among the
development team is that we could not maintain the pace of enhancements and bug fixes
without the process. Each morning, key team members review the Dashboard
(http://vtk.scorec.rpi.edu/Nightly/MostRecentResults/Dashboard.html) to assess the state
of the system. The review normally lasts 10 minutes. If all is well, the normal workday
proceeds. If there are defects that have been introduced since the last build, assignments
are made to repair the problems. For the most part, we are able to fix introduced problems
within 24 hours. The system has had additional benefits:

1. We are able to make broad changes to the system with confidence. As long as the
tests pass, we can proceed.

2. New team members can become productive immediately.
3. We can move to new third party software and upgrades with confidence.
4. Everyone knows the status of the system daily. We encourage uses to check the

Dashboard before they download the new version.

Some lessons learned include:

Visualization Toolkit Extreme Testing Lorensen/Miller

13

1. The test system must be automatic. The main focus of our team is on development
and not testing. The testing has to be minimally disruptive to the workday.

2. The reported defects need to be as close to zero as possible. If there are large numbers
of defects being reported daily, they will be ignored. For instance, we went for years
with many warnings in the compile logs. Since there were thousands of warnings, no
one paid attention to the numbers. Now that we have driven them to zero, the defects
are noticed and developers fix them as soon as they appear.

3. The entire team must buy into the process. There is no separation of testing and
development. Developers are expected to test before they check in changes and to
monitor the Dashboard.

Our system has a number of weaknesses as it stands today:
1. The Dashboard communicates the current state of the system very effectively. It does

not show us how we are improving or where we stand with respect to our goals.
2. We continually struggle to improve our test coverage. With new classes, we find we

can get near 100% coverage, but the older code is still under tested. Most of the bugs
our users report are in untested code.

3. All of our test data is stored in flat files. This is convenient for daily reporting, but
trend analysis is difficult.

4. In the current system, the build/test process and the Dashboard generation are tightly
coupled. It is difficult to produce a Dashboard without running the tests.

Conclusions

We have implemented an automatic, nightly regression testing process that is suitable for
small to medium sized software development teams. The process does not add a burden
to the software developer but encourages the developer to perform and monitor testing on
a regular basis. We have been using the nightly testing systems for almost two years. The
testing system has the following benefits:
• Defects are detected within 24 hours of their introduction
• The readiness of the system for release is available on a daily basis
• The extensive test suite empowers developers to improve the system without fear of

breaking it.

We are working on an improved testing framework. We have created abstractions of the
testing process and have designed an object model that we can implement using a SQL
database. The new system is more flexible, allowing us to experiment with new
Dashboards and reporting mechanisms.

Acknowledgments

We appreciate the support of our GE management team, in particular Armin Pfoh, Pete
Meenan and Kirby Vosburgh. Many vtk developers have contributed elements of the
software testing. We especially thank our colleagues at GE CRD, Majeid Alyassin, Rick
Avila, Dan Blezek, Rusty Blue, Jon Davis, Tim Kelliher, Annie Kelly, Steve Linthicum,

Visualization Toolkit Extreme Testing Lorensen/Miller

14

Tony Pan, Matt Turek and Boris Yamrom. From GE Medical Systems, we thank Dave
Deaven, Darin Okerlund, Chris Slack and Bill Stovel.

Many external collaborators have contributed to vtk testing. From Kitware, we thank Lisa
Avila, Charles Law, Ken Martin, Bill Hoffman and Will Schroeder. The Kitware folks
contributed to the testing infrastructure, reducing defects and contribing tests. From
Brigham and Womens Hospital, we thank Mike Halle and Simon Warfield for running
the test suite remotely. From the Robarts Institute, we thank David Gobbi for adopting
our process so quickly. From the National Center for Supercomputing Applications we
thank Randy Heiland. From the Rutherford Appleton Laboratory, we thank John
Biddiscombe. From the Eastman Dental Institute, we thank Timothy Hutton.

Bibliography

[Paulk1994] M.C. Paulk, C.V. Weber, B. Curtis, and M.B. Chrissis, eds.: The Capability
Maturity Model. Addison-Wesley, Reading, Mass., 1994.

[Schroeder1997] Schroeder, W., K. Martin, and W. Lorensen, The Visualization Toolkit:
An Object-Oriented Approach to 3D Computer Graphics, Prentice Hall, 1997.

QW2000 Paper 4W1

Ms. Pat Garverick
(Landmark Systems Corporation)

Testing the Performance Impact of a Web-based
Application

BACK TO QW2000 PROGRAM

Key Points
Describes the approach taken to develop a test plan to test the performance impact of running a new
web-based application that has both server-side and browser-side components, including tools needed, and
a report template to report the results.

●

Describes the real life experience of putting the test plan into use testing the application on the NT 4.0
Server, using IIS 4.0 and IE5.

●

Provides a list of suggested test cases and performance metrics to be included in the Report Template.●

Presentation Abstract

This paper will describe an approach to developing a test plan to test the impact on the web server
and on the client-side browser of adding a new, web-based application. The reality of carrying out the
test with a real product under development will then be described. The test platform will include NT
Server 4.0, Microsoft Internet Information Service (IIS) 4.0, and Microsoft Internet Explorer 5.0 at the
minimum.

The goal includes writing a repeatable test plan that can be re-used as revisions are made to the
software.

An additional goal is to gather a baseline measurement of the system running the new application.
The baseline measurement will then be compared with future releases of the software to assess the
performance impact of modifications to the application.

Included in the detail test plan will be a report template that will be used to communicate the findings
each time the performance test is run.

Why a load simulation on the web server is not enough:

In this case, the application has a component that runs as part of the web server as well as Java
function calls that are executed as the page is rendered on the browser. A load simulation that
simulates "GET's" to the web server exercises the web server, including the application component
that runs there. However, if the simulated load does not include the use of real browsers, then a
browser is not rendering the web pages and the Java function calls are not getting executed.
Therefore, a simulation of a browser load on the web server does not exercise all of this application

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/4W1.html (1 of 2) [4/28/2000 2:31:10 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

and does not give a true performance picture of the application.

However, such a simulated load does serve one purpose in our test scenario. We can use it to
baseline the component that runs as part of the web server. This baseline can be used to compare
with future releases of this component of the application.

Tools Needed:

The use of several types of tools will be necessary to generate the performance data. Each of the
tools used will be described.

The Reality of Running the Test:

The real-world experience of actually making the performance runs to gather data will be discussed.
Additional values of collecting performance data, including the uncovering of hidden errors in the
software were found The final measurements used in the analysis will be presented in a report
template.

About the Author

Pat Garverick is a member of the E-Business Quality Assurance Team at Landmark Systems
Corporation (LDMK NASDAQ). Her main professional interest is the methodology of implementation of
requirements-based testing in a software vendor environment. Determining the acceptable
performance levels for web-based applications as well as developing realistic methods of testing the
performance impact of new software being added to an existing system are important components of
writing and testing against requirements.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/4W1.html (2 of 2) [4/28/2000 2:31:10 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Quality Week 2000

Testing the Performance Impact of aTesting the Performance Impact of a
Web-Based Application Containing BothWeb-Based Application Containing Both

Server and Client Side ComponentsServer and Client Side Components

Pat GarverickPat Garverick
Landmark Systems Corporation®Landmark Systems Corporation®

12700 Sunrise Valley Drive12700 Sunrise Valley Drive
RestonReston, VA. 20191-5804, VA. 20191-5804

703-464-1544703-464-1544
dvpggdvpgg@landmark.com@landmark.com

E-Business Quality AssuranceE-Business Quality Assurance

Quality Week 2000

Project GoalsProject Goals

vv Test the impact on the web server and on the client-Test the impact on the web server and on the client-
side browser of adding a new, web-basedside browser of adding a new, web-based
application, application, TestAppTestApp

ääDescribe Describe TestAppTestApp
ääDescribe Test ApproachDescribe Test Approach
ääChoose Tools and MetricsChoose Tools and Metrics
ääCreate Test PlanCreate Test Plan
ääPresent Results in Report TemplatePresent Results in Report Template

2

Quality Week 2000

TestAppTestApp Flow Flow

vv 1. Web browser requests web page1. Web browser requests web page
vv 2. Web server assembles page components2. Web server assembles page components
vv 3. 3. TestAppTestApp modifies content of page modifies content of page
vv 4. Web server sends modified web page to browser4. Web server sends modified web page to browser
vv 5. Page renders on browser, executing 5. Page renders on browser, executing TestAppTestApp

function calls which communicate to function calls which communicate to TestApp TestApp runningrunning
on web serveron web server

vv 6.6. TestApp TestApp running on web server writes data to running on web server writes data to
repositoryrepository

Quality Week 2000

TestAppTestApp Flow Flow

Modified
Web Page

Web server
Web browser

TestApp

TestApp

TestApp
Repository

A

B

1

2

3

4

5

6

Request
for Web
Page

3

Quality Week 2000

Tools NeededTools Needed

vvDuring planning phase, needed tools areDuring planning phase, needed tools are
identifiedidentified

ääTool to direct the web browser to step throughTool to direct the web browser to step through
test web pages over and overtest web pages over and over

ääTool to measure web server and operating systemTool to measure web server and operating system
statistics on the web server machinestatistics on the web server machine

ääTool to capture elapsed time between clicking onTool to capture elapsed time between clicking on
URL and completion of page renderingURL and completion of page rendering

Quality Week 2000

Tools SelectedTools Selected

vvRational Visual TestRational Visual Test
vvMicrosoft Performance MonitorMicrosoft Performance Monitor

((PerfMonPerfMon))
vvMicrosoft Performance Data Log ServiceMicrosoft Performance Data Log Service

((PerfLogPerfLog))
vvMicrosoft Web Capacity Analysis ToolMicrosoft Web Capacity Analysis Tool

(WCAT)(WCAT)
vv Landmark Systems PerformanceWorks®Landmark Systems PerformanceWorks®

SmartWatchSmartWatch

4

Quality Week 2000

Rational Visual TestRational Visual Test
vv Allows recording of mouse clicks as test web pagesAllows recording of mouse clicks as test web pages

are reviewedare reviewed

vv Allows clicks on links, etc, to be written as functionAllows clicks on links, etc, to be written as function
calls in the scriptcalls in the script

vv Allows a delay to be used to give time for the pagesAllows a delay to be used to give time for the pages
to renderto render

vv Comes with Comes with Suite ManagerSuite Manager which can repeat steps which can repeat steps
over and overover and over

Quality Week 2000

PerfMonPerfMon
vvMicrosoft Performance MonitorMicrosoft Performance Monitor
ääProvides Provides stats stats for IIS web server and for IIS web server and opsysopsys

ääPerformance Object(Instance)\CounterPerformance Object(Instance)\Counter

ääComes with Microsoft Windows NT 4.0Comes with Microsoft Windows NT 4.0

ääDescribed fully in Chapter 10 of MicrosoftDescribed fully in Chapter 10 of Microsoft
Windows NT Workstation Resource Kit bookWindows NT Workstation Resource Kit book
(Microsoft Press ISBN 1-47231-343-0. Doc can be(Microsoft Press ISBN 1-47231-343-0. Doc can be

downloaded from www.downloaded from www.microsoftmicrosoft.com).com)

5

Quality Week 2000

PerfLogPerfLog

vvPerformance Data Log ServerPerformance Data Log Server

ääLogs statistics from Logs statistics from PerfmonPerfmon

ääComes with Microsoft Windows NTComes with Microsoft Windows NT
Workstation Resource KitWorkstation Resource Kit
((PerfToolPerfTool\\MeasToolMeasTool\\PerflogPerflog.exe).exe)

Quality Week 2000

WCATWCAT

vvMicrosoft Web Capacity Analysis ToolMicrosoft Web Capacity Analysis Tool

ääComes with Windows 2000 Resource KitComes with Windows 2000 Resource Kit

ääComplete user guide includedComplete user guide included

ääSimplifies the collection of Simplifies the collection of stats stats fromfrom
PerfMonPerfMon

6

Quality Week 2000

PerformanceWorks® SmartWatchPerformanceWorks® SmartWatch

vvLandmark Systems Corporation®Landmark Systems Corporation®

vvCaptures end-to-end response timeCaptures end-to-end response time

vvYou define transactionYou define transaction
ääStarts with a window action, such asStarts with a window action, such as

mouse clickmouse click
ääEnds with a window action such as statusEnds with a window action such as status

bar indicating the page load is “Done”bar indicating the page load is “Done”

Quality Week 2000

Creation of Test PlanCreation of Test Plan

vvTest Plan is major deliverableTest Plan is major deliverable
ääCan be used repeatedly as test is rerunCan be used repeatedly as test is rerun

ääSpecifies exactly the setup and steps toSpecifies exactly the setup and steps to
followfollow

ääGives consistent resultsGives consistent results

7

Quality Week 2000

Contents of Test PlanContents of Test Plan
vv Replay tool and WCAT configured to run repeatableReplay tool and WCAT configured to run repeatable

loadload

vv Gather Gather stats stats without without TestApp TestApp over multiple runs andover multiple runs and
average resultsaverage results

vv Then, add Then, add TestAppTestApp - Full Function Mode - Full Function Mode

vv Then, change to User Controlled ModeThen, change to User Controlled Mode

vv Report TemplateReport Template

Quality Week 2000

Test ConfigurationTest Configuration

“WCAT controller
machine”

WCAT performance
counters

“Web server machine”
Test Application

“Web browser
machine”

Rational Visual Test
SmartWatch agent &
store

8

Quality Week 2000

Report TemplateReport Template

vvThe Report Template is a majorThe Report Template is a major
deliverabledeliverable
ääTools Used: description & releaseTools Used: description & release
ääPlatform description:Platform description:
äämachinesmachines
äärelease of release of opsysopsys, web server, browser, web server, browser
äärelease of application being testedrelease of application being tested

ääDefinitions of all measurementsDefinitions of all measurements

Quality Week 2000

Report Template Report Template contcont..

vvFor each TestFor each Test
ääBrief description of testBrief description of test

ääRepeatability of resultsRepeatability of results

ääRaw figures without application in the mixRaw figures without application in the mix

ääRaw figures with application in the mixRaw figures with application in the mix

ääAny caveats or causes for misleading dataAny caveats or causes for misleading data

9

Quality Week 2000

Anticipating ProblemsAnticipating Problems

vvPart of project planningPart of project planning

ääTools may not work as plannedTools may not work as planned

ääRepeatability may be difficult to achieveRepeatability may be difficult to achieve

ääApplication may be changing even as youApplication may be changing even as you
testtest

Quality Week 2000

Relevant MetricsRelevant Metrics

vvGoal - identify small set that showsGoal - identify small set that shows
performance impact of performance impact of TestAppTestApp

vvBased on “what you want to measure”Based on “what you want to measure”

vvRule of Thumb: Eyeball the detail dataRule of Thumb: Eyeball the detail data

vvAverage Task Response TimeAverage Task Response Time was was
the best overall metricthe best overall metric

10

Quality Week 2000

Project ResultsProject Results

vvReport Template was created (Report Template was created (see fullsee full
paper for complete results in format suitable forpaper for complete results in format suitable for
template)template)

vvPerformance Test Plan was createdPerformance Test Plan was created

Quality Week 2000

ResultsResults

vvProject was successful:Project was successful:
ääTest plan built and carried out usingTest plan built and carried out using

planned approachplanned approach
ääReliable data was collectedReliable data was collected
ääResults delivered to developmentResults delivered to development
ääMethod in place to measure futureMethod in place to measure future

improvementsimprovements

vvConsistency is the keyConsistency is the key

�����

����������	
��	��������������	���

	
���	����	��	�����

���������	��
����������������

������������������������

������������	

�������������������������������

��������	���
������	

���������������������������

�����

����������	
��	��������������	���

	
���	����	��	�����

���������	��
��������������������

���������������������������������	

�������������������������������

Executive SummaryExecutive SummaryExecutive SummaryExecutive Summary
���������	������
����
��
����
����������������
������	��������������
���������������

��
	����
������������	��	����������������
�����
����������
���
��������
���������	

�������
��	����������������
����������������
��
����������

����������	����������������

�����������
����������������
����������������������
�

	�������������������������������
����������������	��������������������������
������������

��
�����	���������������������
���������������������������������������
�����
��������

���������������
��
������

������������
���������������
���������������������
������������������������������	

���
�����
����������������������

�
������������������
�������������
����	����������������
�����������
����������

��
��������������
��
��������
������
����������������������������������
������������

������
������������

Description of the Test ApplicationDescription of the Test ApplicationDescription of the Test ApplicationDescription of the Test Application

������	��������
���
�������������������������������
��
�����������������������
�����

	�������������	�������������������
���������������������
��������
	����������
	���������

 �����
	�

������ !�"����������������
���������
��	����������������
	���

�������

��������

�����

�������

�����

�����

�������� ���������

���

	
���

The Components that Run on the Web Server SideThe Components that Run on the Web Server SideThe Components that Run on the Web Server SideThe Components that Run on the Web Server Side

�����������
���
���������
�����������������������
������	������������#��$��
�
��%�

&&'�������
����������&'�(&�������

(�
���������������
�������������
���
�������
���	�������������������
�����������

�	
��
����)���������������
���
���
������������
���
������
�����&����������������
�

�
��������
����	����
���������������
������������������������&��������
���
������
���

���������
�����	���������������
����
�������������

The Components that Run on the Browser SideThe Components that Run on the Browser SideThe Components that Run on the Browser SideThe Components that Run on the Browser Side

������
	���������������������	��������
������
��������
��������������������
����

�
�������
������
��������������
����������������������
���������	����	�������������

��������������������
��������
	��������������������������
������
������������

Application FlowApplication FlowApplication FlowApplication Flow

�����
	����������*�����
	��������+�������!

 � "�����
	������+������	��������

*� "��������������������������
��
������

,� ������������
���
������
������
�������

-� "�����������������
�����	���������
���
	����

.� (������������
����
	��������������������������
�������
��������	���

�
����������
�������������
���������
��	����������

/� ������������
���������
��	����������	�������������������
����
��
���

����

!���"���

�����	#�

�������

��������

�

�

�

%

&

'

$�()���

"�����

�	#�
�������

$��������
�� ��

�������	
��	��������������	���

	����	��	�����

����	��
�������������������

��������
���������

��%��

����������	
��	��������������	���

	
���	����	��	�����

Why a load simulation on the web server is not enoughWhy a load simulation on the web server is not enoughWhy a load simulation on the web server is not enoughWhy a load simulation on the web server is not enough

���
���������
��	�������������012�%�3��
�����	�����������������������	����������

�������������������
���
��
�����	�����������������4
	����������������������
��

�
����
�����������������
���������
	��������������������������
����������������������

��
	������������5���������
�������������
��������������������������
������������
��
���

��
	�����
���
������	�����������
����
��������������
�������������
�������
����
�����

�����������
��������������
�������������
��

Tools NeededTools NeededTools NeededTools Needed

6�����������������������
���������
���
��	��������
���������

��������������������	��

�����������
������������������
���������������
��������
�����������
��
	���������
���

��

	������������!

• ���

���
���������������
����������
��������
��������
����������	�������������������

��
	�����
������
�����������������������

• ���

���
���������	�����������������������
�����������������
������	���������

�������

• ���

���
����������������������������	�������������
����789�
��������
	�����������

�
�����
��
���������������
��������+������������

Tools SelectedTools SelectedTools SelectedTools Selected

• ���������	�
�����
��	������������
������������
	�������
����������
��	���������

��������
��������	��������������������
��������
������������������������������

• �����
�������������������������

��	������������
��
����������	�������������
�

����&&'�	������������(���
�������$
��
������$��
�
���"��
	��:��-�;��

����<'����

=�(�
������=��������������

���=�(���
�������$
��
���������

������������

��������>������� ;�
������$��
�
���"��
	��:��"
������
��8��
�����?���

�

<$��
�
���(�����&'@:� �.A*, �,-,�BC����������
���������
��������
��������

�
	��
���������
��			����
�
����
��

• ����������������������������������	������������
��
����������
������

������������
������������(���
�������$
��
�����
����
����(���9
�������������
�

����$��
�
���"��
	��:��"
������
��8��
�����?��-�;�>6

<(����

�D$����

�D(����
������C

• �����
��������� ����!�"���!
�
���������"���	�����������������

���
�������

�����0(���
�������$
��
�3��
��
����������������E�������������">���	������
���

������
����������������
���
������	�����������
��������������������
���
��
����

��&��

����������	
��	��������������	���

	
���	����	��	�����

������������������
������	�����������������

������������
������$��
�
���"��
	�

*;;;�8��
�����?��>6������
���������������������������
������8��
�����?��>6�

• ���#���$��!
��
���� �����������������%�	������������
�����������
	���

����
�������

Creation of Test PlanCreation of Test PlanCreation of Test PlanCreation of Test Plan

�����
��
������
��������
��������
������������(���
������������(���������������������

�
������
����������������9��������'�������

�C ������������

������">���	�������
���������
��������
������������������������

����
�����������������
���
�������������	��������
���
������������������������	��

���
�����������������������������

�C ��������������	����������������
�����������	��������
��

�C ������������������������������	�������
�����������������
�������������������������

������������

�C �������������%������������	�������
������">���������������������������������

������������	�����������������	��������������
���
��
���������������
������	��

���������<������
�����
��������������������
������������
�����
������������������

����������������������������
������������
�������	�
�������������������������
�

���
��
�����������
������������

����
�������������
�������������
��������������������
�������������
�����������

	���������������	���C

����������
��
�����
����������������	�������������
���������������������
���	����
����!

• ���������
��
�������

���������������������������
����
�

• ���������
��
�����������
�������������������
�������������������
��	����������

��������
����
	�������������
��
������

• ���������
��
�������
��	����������������������������������
����
��

• �
�����������!

• ��������������
��
����������

• ���������
��
���
	��
���������������������������������	���

• 8�	��������	��
��������������
����������

• 8�	��������	��������������
����������

• ������������
���

• 6����
���
�������������������

Anticipated ProblemsAnticipated ProblemsAnticipated ProblemsAnticipated Problems
"��������������������
�����
�����������������
�������
������	��������
��

�������
������������������
���

���������
��������������
����������
���
����������

�������
���������
�����������
�������������
������������������
��������4�����������

���������������
��������
����!

• �%�����
���!�����&��$��
� ����#'�������������
���������������������

��������
�

����������������������

�������������
������������
�������������������������������

���������

��'��

����������	
��	��������������	���

	
���	����	��	�����

• � ��������!���!���#��������������%��'�����	���������
�����
�����������������

�����������	����������������
���������������������
�����
��
	����
�������

������������

• �%�� ���������&�������%������'���������
���������������	���+������������

���
��������>
������������������
���
��������
������
������������������	��

��	������+�����	��������
�����
����	������
�����������������������������
����

�
��	����������
�������������������������
����������
�������������������������
�

��������

Determination of Relevant MetricsDetermination of Relevant MetricsDetermination of Relevant MetricsDetermination of Relevant Metrics

�����
������
��������������������
�������������������������
	�����������
������

������
������������������
��

����������
��
������
����������������������
�����
������
�������������
��	�����

����������������&���
��	�����
�����������������
�������
��
���	����������������

��
������������
��	����������������������
��������������
��������������
��	�����

���������������
�����������
������&&'�	������������
��	
������
�������������������

�����������������������
�����	������������
����!

Syntax: Microsoft Windows Performance Object(instance)\counter

Process(inetinfo)\% Processor time
Process(inetinfo)\% Privileged time
Process(inetinfo)\% User Time

��������
�����������
��������
�����	����
��
������������
������������
���������

����
���
�����������

����
����
��

������	���������E��������������������������������	����
���
�����	�������
	��
���

Rule of thumb:Rule of thumb:Rule of thumb:Rule of thumb:
��	���������������������������
��������
�������
������
�����������������E��

�
�����������������������

� "������
�������
���
��������������������
�������
	��
��

� 9�������
������
����������
��	��������������

� 9

���
����������������������������	�����
�������������
��������

� "������
����������
��������������	����������<������������
����

�����
������������C

Average Task Response TimeAverage Task Response TimeAverage Task Response TimeAverage Task Response Time
����
������������������	�������0�����������������
�������3������������	�������������

��
������'����"�������������
������
�������������������������������������
	������

����������������
������������
���
����	��
�������
��	����������������������������

��������������	���������������������
�������
����������
���������
��������
���

789��
������
���	�����������
	��������������������������+��������������&��	��	���

�����
����
�����
���������������	
���������

��*��

����������	
��	��������������	���

	
���	����	��	�����

Metrics Thrown Out:Metrics Thrown Out:Metrics Thrown Out:Metrics Thrown Out:
Network Interface/Bytes Received Per Second
Network Interface/Packets Received Per Second
Web Service(_Total)\Bytes Total/sec

��	
������������������
��	��������

������������������	������
����������
	����
	�����������
���������
����������������

������
���������������	
��
	��������������	����

	����
	����
	�������������&��
��������������
����������������������
�%����������	���

	��	�����
�����������
�	�����
	������
���

&������������
����
������������	��������������������������������������
��������������������

������	
�������
�����������������

Summary of ResultsSummary of ResultsSummary of ResultsSummary of Results

�%�� ������ ����&�
�����#'�������
���
���������������
����������������������������

�
�����
�����������������
�����������	������������������������
����������������

0(���
������������8������3��
������������������������
��������������������������

�����������������
�����������������������������������
��������
�����

�%������������
�����������#'������(���
������������(���������	������������������

��������
��������
���������������
��������
���������

�%� ��(���&�
�
���

���'����������������	�������������������
�������������������

����
���������������������	����
����������������������
�����������	�����
�����������

�����������
�������
�����������
���

�����
������
����E��
������������
�������
����������
��	�����
���
��
����

����
����������
���������	��	��������������
���
����������������
�������������

���
�
���!��
��%�$!'��>
���
���������
�

����������������
��
������������������

���
���������
������
��	����
��������

Appendix A: Related ResourcesAppendix A: Related ResourcesAppendix A: Related ResourcesAppendix A: Related Resources

���������	
�������	����	��������

�������	�	����������	������	 ����������	�������	������	��	!������	"#	$��%���&

������'	�	�()����*���	!������	"#	���	 ����������&+		�))���	��	���������	!������	,���	��

��+		-���������	�)������	�./����	���	��0�����	��	��1	��	���	�)������	�0�)�����)��.���+

���������	�$2"	(����	3�.���4�

�2�%��)���	!�.	�))��������	���5	6��0�	�����	���	6��0�	-����2�%&7	6���	!5����	���	8��

$�����7	�0�0��	,�7	�99:	;-��0���	�%��%���	��	.����	��.	���5�����0��+<

�$5�0�	=�0�	"�>�	?-	��	!������	��	24�����	@#�3A&7	.4	2�+	B?-7	���������	�$2"	(����

3�.���47	"�%��.��	C7	�99:�	5��)�DD����+���������+���D���1�5�)D�0�5��D��D���+��)+

��+��

����������	
��	��������������	���

	
���	����	��	�����

����������������������

���������	
����������
	���	����������

��,��

����������	
��	��������������	���

	
���	����	��	�����

1.0 Test Description1.0 Test Description1.0 Test Description1.0 Test Description

��������
���
����������
���������������
������������������
���������������
�������
�

����������������������
���
���������
������

• ������������

������">���	�������
���������
��������
������������������������

����
�����������������
���
�������������	��������
���
������������������������	��

���
�����������������������������

• ��������������	����������������
�����������	��������
��

• ������������������������������	�������
�����������������
�������������������������

������������

• ��������������	����������������
��
������������������
���
��������������������

�
���

• ����������
���	������������,���������������������������

• �������������%������������	�������
������">���������������������������������

������������	�����������������	��������������
���
��
�����������������������
�

����	����������

2.0 Description of the Software Being Tested2.0 Description of the Software Being Tested2.0 Description of the Software Being Tested2.0 Description of the Software Being Tested
������	��������
���
�������������������������������
��
�����������������������
�����

	�������������	�������������������
���������������������
��������
	�����������������
�

���������������
������	��������������������
���
��������������������������
�����

����������������������������
��������
������
�������
���������������
����������

���������	������������������������
��������
	����

�������������	
�	��������������
����	����

������

����������	
��	��������������	���

	
���	����	��	�����

3.0 Tools Used3.0 Tools Used3.0 Tools Used3.0 Tools Used

���� ������	

�������	6��0�	#��� ������D��)�4	���	0���	��	���%�	�5�	���	.4

���))���	�5��0�5	�5�	����	��.	����	0����	�	��.

.������+

$0���	������� ���	��	6��0�	#���+		2��%��	���	.4	��)������

�5�	����	��	���)	�5��0�5	�5�	��.	����	�5�

�)�������	�0�.��	��	�����+

���������	!�.	��)����4	���4���	#��

E!��#F	E���0���	��	���������	!������

����0���	
��F

G���5��	 ���3��	����������+		���	0���	��

������4	���	��.	���%��	��)���	��	�5�

�.������&	�0��+

3������1	$4�����	�$����!���5& ��)�0��	���	0���	���)����	����	�5��5	��	�5�

����	.������	�	��0��	���1	��	�	?�3	���	�5�

����	�5�)���	���������	��	���)���+

���������	 ����������	�������	E ���3��F

-��0���	��	���������	!������	"#

!��1�������	����0���	
��	�+�+

3��)����������	�./����	���	��0�����	��	��.

���%��	���5���+

4.0 Testing Software4.0 Testing Software4.0 Testing Software4.0 Testing Software

������	������	�����	��	������	

��	�

#�0�	B�����	$���	$0���7	#�0�	-HB�����	$���

$0���

�	�	���������	�����������	�

����	�

���

������	������	�����	�
	����� �+��

��������
������	��
	����� �+��

����
	����� �+,'

5.0 Test Platform5.0 Test Platform5.0 Test Platform5.0 Test Platform

�))�������	���)�����7	6������7	������7

������������	3�%�

#���	�))�������	 ��I������	6������	C

�))�������	���)�����7	6������7	������7

������������	3�%�

3������	���)�����	6������	,+C+�

!�.	$��%��	���5���	���	�)�4� ��9'��	"#	$��%��	�+�	���%���)��1	�

!�.	$��%��	$������� --$	�+�

!�.	�������	���5���	���	�)�4� ��)���	"#	$��%��	�+�	���%���)��1	��

!�.	�������	$������� -�������	J>)����	�+�	E�+:,+C���+�	I�,�	.��

����4)�	I	$ ��F

��

	
�

6.0 Performance Test Configuration6.0 Performance Test Configuration6.0 Performance Test Configuration6.0 Performance Test Configuration

���

7.07.07.07.0

2�

��

���

��

7.17.17.17.1

��

���

��

��

���

��

�
�

!	�-�
��0	,&
�

��������������	�

1�������%2����������	��

%

33��%2�

�������/��	���
�	#�
��4

����
!	�-�
���#	���

��������	
�����������	�

��"��	
������������������.

��	��	��-���/��������.

��	��	��-�!	
	#�.�����

���/��	���
�!	
	#�

���� ��"��	
�� ��)
�� �
�)� "�/�
������

��������	
��	��������������	���

��	����	��	�����

����������������������������

ResultsResultsResultsResults

�������������	�������,���������������������������	��������������
��
��

�������
�������������������8�����������
��������������	���	���� ;��

���������
������������������	���������

�����������
������������������
��
	!

Test Case 1.1.1 - Basic Measurements without the Test ApTest Case 1.1.1 - Basic Measurements without the Test ApTest Case 1.1.1 - Basic Measurements without the Test ApTest Case 1.1.1 - Basic Measurements without the Test Ap

�����������������������������������
������������
��������������������

���������
���������
��������

��
������������
����������@����
����6��������	�����
���������
�����

��������

�������
������������
��	��������� F;����������������������

������	��� ��
���-������������,-����
����

�������������������
���������
����
����
������
��	����F*/����
������

�����
�����������������������
���
����	��� � FA�
!	�-�
��0	��
�

5�����������	�-�
�6

1�������%2����������	���'	

$	���
	/�7��)	/�����

��	��	��-�	#�
��4�����
����	���
������

��������
�����

plicationplicationplicationplication

���	��
������

���������������

���
��
������

6����������
���

������

����������	
��	��������������	���

	
���	����	��	�����

����&&'�1�
����>�����$��������������,;������$��
��G(����������G�������������,� -�

��������:��	
���'������GH:��	
������E��
�����������*�;B.�������(�
����
�GH

(�
����
���������������BB�BBA�

7.2 Test Case 1.2.1 - Basic Measurements with the Test Application – Full7.2 Test Case 1.2.1 - Basic Measurements with the Test Application – Full7.2 Test Case 1.2.1 - Basic Measurements with the Test Application – Full7.2 Test Case 1.2.1 - Basic Measurements with the Test Application – Full
Function ModeFunction ModeFunction ModeFunction Mode

�������������������������������
������������
�����������������������	�����������

�������
��������������������
�����������0����������
�3��
���

�������������������������
	���������������
���
��������
�������������������&������������

���������������������������������������
��������������	������������
����������������
�

����������
�����������&��������������������������
��
������������������������
�����#�������

������
���
�������	���������������������������

����������

�������
������������
��	��������� F;�������������������������
��
������

���������	��� ��
��� .������������ .����
����

�����������
�������
��������������	����
�������������������
���������������
���	

�����!

• �����������
������������������������������������

�����	�������������+��������

�����
�����
��
�������������������

• ��������������
������
	����
	����������������������
������
����
	������
�����

���������������
��
�������

���������������������
��������	��� �.,.����
��������������	����
�����������������

�����������������������������6����������
����
������
�����������������������
���
���

	���A*B�

����������������������
����������������������
���
�����������������
����
�

��������
�����
�����������������
����
������
���
�������������,BH��������������

��������
������
��������������������F/���������

����&&'�1�
����>�����$�������������� -.�,,����,.;�����������������
����������

	��
�������������������
�������������������������
	�������
��������	����
��
���

�������������
��
����������������������������	������
������
��
�����������������

	������
�������������
������������
�����������	
���

����$��
��G(����������G������������� ;�..����������:��	
���'������GH:��	
��

���E��
�����������/� BB������(�
����
�GH�(�
����
���������������BB�BB.�

7.3 Test Case 1.2.2 - Basic Measurements with the Test Application – User7.3 Test Case 1.2.2 - Basic Measurements with the Test Application – User7.3 Test Case 1.2.2 - Basic Measurements with the Test Application – User7.3 Test Case 1.2.2 - Basic Measurements with the Test Application – User
Controlled ModeControlled ModeControlled ModeControlled Mode

�������������������������������
������������
�����������������������	�����������

�������
��������������������
�����������0������
���
����3��
���

��� ��

����������	
��	��������������	���

	
���	����	��	�����

�������������������������
	��������
���������
���
��������
������
�����������

4
	�����������������
���	����������

����������
���������������������
�������
����
������������������������	�������������

����������

�������
������������
��	��������� F;������
���	
�
���������������������

	���
�������
	����
������
��
����
���
��
���������#������������
���� ;-������
���	���

��
����������
������������	��������������
��������������������	��������������
����

	��������������
���������������

�����������������
��
����������������	��� ��
���..������������,;����
����

���������������������
��������	��� �F; ����
��������������	����
�����������������

�����������������������������6����������
����
������
�����������������������
���
���

	���,F;�

����������������������
������������������
���
������
�����������������
����
�

��������
�����
�����������������
����
������
���
�������������/FH��������������

��������
������
�������������������� F���������

����&&'�1�
����>�����$�������������� A,�,,�������������
��-AF���������
����������

	��
�������������������
��������$��
��G(����������G�������������/�B����������:��	
��

'������GH:��	
������E��
�����������*;� F������(�
����
�GH�(�
����
�����

���������/A�,/�������������
��,,���������
�����������	��
��������������
����6����

����
����
�����
�������	���������
��	������
����������
����������	
����������������

���������	��������������������
�������

7.4 Test Case 1.3.1 - Baseline the ISAPI Filter – Full Function Mode7.4 Test Case 1.3.1 - Baseline the ISAPI Filter – Full Function Mode7.4 Test Case 1.3.1 - Baseline the ISAPI Filter – Full Function Mode7.4 Test Case 1.3.1 - Baseline the ISAPI Filter – Full Function Mode

���������
�0���
��3�������
��
���������������	���	�����	�������
��������������������

�
�������������
�������	��������	���������������	�������&'�(&�������������������
�����

�������
�������������

8������	��������������
���������
��0����������
���
��3���������������������
��	��

��������+���������,;��������	���,�---��������
��������
������������
���	��� �B*������

������
�������������������
���	���, �FAB��������
�����������������
���	���,*�, /�

����&&'�1�
����>�����$��������������, .�/A������$��
��G(����������G������������

*;�FB����������:��	
���'������GH:��	
������E��
�����������*F�A-������(�
����
�GH

(�
����
���������������B�/�

���������	������������
��
������	��������+��������������
�������
��	�����������������

�����������������
������������
������������������������

7.5 Test Case 1.3.2 - Baseline the ISAPI Filter – User Controlled Mode7.5 Test Case 1.3.2 - Baseline the ISAPI Filter – User Controlled Mode7.5 Test Case 1.3.2 - Baseline the ISAPI Filter – User Controlled Mode7.5 Test Case 1.3.2 - Baseline the ISAPI Filter – User Controlled Mode

���%��

����������	
��	��������������	���

	
���	����	��	�����

8������	��������������
���������
��0������
���
������
��3��������������������
��	��

��������+���������,;��������	���,�-B ��������
��������
������������
���	��� �B-������

������
�������������������
���	���,*� A;��������
�����������������
���	���,*�/ *�

����&&'�1�
����>�����$��������������,,;-�/A������$��
��G(����������G������������

 A�,/����������:��	
���'������GH:��	
������E��
�����������/�A;������(�
����
�GH

(�
����
���������������*� �

���������	������������
��
������	��������+��������������
�������
��	�����������������

�����������������
������������
������������������������

8.0 Discussion of the test Process8.0 Discussion of the test Process8.0 Discussion of the test Process8.0 Discussion of the test Process

������������	�����
���
�������

���������	����
��������������������������

Unexpected factorsUnexpected factorsUnexpected factorsUnexpected factors

����������������
�������
�����
�������������

����	����������
���
��������
�����

	����������������
��������������
����������
�������������������������
���
�����������

	�������������������+�������������
����
	������
���
���������������������
����

�
��������������

• �%�����#���#�� ��!������
����#�&%���%� ���������&�
�#�������'��6��������

������
��
�����������������	��������������������
��	�������������������

����
�����������������������������

��������������������	��������	���%������������

�����
������������
���������������	���%������������
��������������

��������������

�����
�����������
����
	������������
������	����������
����������������������
�����

(���
�����������������	���������������������
���������������������������
���
��

����������������
�����������������������
��������

• �%����!���
��������%��
��" ���������������#�&��%�
����!
����&�� ��

��� ����
'��'
�����������������������
�����
���������
��������
�������������

�
������������������
���������
���
��
���������������
��
���	���������
��������
���

���
����������	��������������
���
��������
�����

• �%��&�
���� ������������
����
'���������������������	������+������
����������

��
�������#�������
������	������+���������������
��
���
����������������&�

�����+�������
����������������	���������
������������������
��,����������
��
��

	����

• �%�&��
�������%���&�
�����%�
�����
�#'��&�������
������	�������������

�������
���
������������
����	������������������������

������
������������

��
�������������������
���������������������������	���������������
���������������

	�����������������������

�������
������������

���&��

����������	
��	��������������	���

	
���	����	��	�����

Appendix A: Metric DefinitionsAppendix A: Metric DefinitionsAppendix A: Metric DefinitionsAppendix A: Metric Definitions

��	�	����������	����������		 !	����������"	���!	���	!���	����	!��#���"��	

�	��$��% ����������������	�	�	!�	���!�������������&�'	!����������	��(

��������������	
�����������������
���
����������
���5�	������	��	�5�	����	�0�.��	��	�����	�	���	�)��7	��������4	������	��	���%���I�)������	�./���

��K0���	���	���	��0��	��	�5�	���5�+

��	�����
����
��������
 ���	G�0��D���	��	�	��0��	��	�5�	 ���	G�0��	��	�5�)��������+		�)���	��0�	���0��	�5��	�)������

������	��	�	%���0�	�����4)���	�5��	��	���	��	���	!��1���	$��	��	����	�����4+		�	 ���	G�0�	��

���	��0��	�5�)���	��	.�	����5��	����	���1	��	�5��)���	��	��	�5�	�����.4	���7	���	5����	�����4	��

����	�����47	��	��	��	��	��	0��	.4	����5��)������	���5	�5��	�5�)���	��	�5����+

��������������
�� !"�#�����$�����%����

�4���	�����%��D���	��	�5�	����	�5��	.4���	���	�����%��	��	�5�	���������7	���0����	�������

�5��������+

��������������
�� !"��
������$�����%����
 ��1���	�����%��D���	��	�5�	����	�5��)��1���	���	�����%��	��	�5�	������1	���������+

�����������	��� �&�������'(�)�*+*"�,��������������-
����
 ���������	��	������1	.�������5	��	0��	��	�5��	������1	�������+

�
��������� �..�&/�0
������1���"�,�2�
��

#5�	���0��	��	�5�	 ���	G��	��������	��	0��	��)������+		$��	���	 ������� ���	G��	�4���+

������� ��������"�,�����������)�	�

 ��������	#���	��	�5�)���������	��	��)���	����	�5��	�	��	�5�	�5�����	��	�5��)������	0���	�5�

)��������	��	�>��0��	�����0������+		��	�����0�����	��	�5�	.����	0���	��	�>��0����	��	�	���)0���7	�

�5����	��	�5�	�./���	�5��	�>��0���	�����0������7	���	�)������	��	�5�	�./���	�������	�5��	�)������

��	�0�+		����	�>��0���	��	5����	�������	5�������	������0)��	��	���)	����������	��4	.�	��0����	���

�5��)������+

������� ��������"�,���������%�)�	�

 ��%�����	#���	��	�5�)���������	��	��)���	����	�5��	�5��)������L�	�5�����	5�%�	�)���	�>��0����

����	��	 ��%�����	����+		!5��	�	!������	"#	�4����	���%���	��	����7	�5�	���%���	��	�����

�0�	��	 ��%�����	����	��	����	������	��	�4����I)��%���	����+		$0�5	����	��)��������	����	������

.4	�5�����	�>��0����	��	?���	����+		���	��	�5�	�4����	��4	.�	�>)����7	��	�5�4	��4	.�	��)����

�0�5	��	�5��	�)���	��0�	��	��	������0)�	���0��+		?��1�	����	���4	�)�������	�4�����7	!������

"#	0���)������	.�0�������	���	�0.�4����)���������	��	��������	��	�5�	����������)���������	��

?���	���	 ��%�����	�����+		#5���	�0.�4����)��������)��%���	���������)���������+		#5�������7

����	���1	����	.4	!������	"#	��	.�5��	��	4�0�	�))�������	��4	�))���	��	��5��	�0.�4����

)��������	��	��������	��	�5�	 ��%�����	#���	��	4�0�)������+

������� ��������"�,�2����)�	�
?���	#���	��	�5�)���������	��	��)���	����	�5��	�5��)������L�	�5�����	5�%�	�)���	�>��0����	����

��	?���	����+		�))��������	�>��0��	��	?���	����7	��	��	�0.�4�����	�1�	�5�	������	�������

���'��

����������	
��	��������������	���

	
���	����	��	�����

���	�5�	���)5���	������+		����	�>��0����	��	?���	����	������	������	�5�	��������4	��	�5�

!������	"#	J>��0��%�7	
����7	���	��%���	���%���+		?��1�	����	���4	�)�������	�4�����7

!������	"#	0���)������	.�0�������	���	�0.�4����)���������	��	��������	��	�5�	����������

)���������	��	?���	���	 ��%�����	�����+		#5���	�0.�4����)��������)��%���	���������

)���������+		#5�������7	����	���1	����	.4	!������	"#	��	.�5��	��	4�0�	�))�������	��4

�))���	��	��5��	�0.�4����)��������	��	��������	��	�5�	 ��%�����	#���	��	4�0�)������+

������� ��������"�)���
%������

#5�	�0�.��	��	�5�����	�0�����4	����%�	��	�5��)������+		��	�����0�����	��	�5�	.����	0���	��

�>��0����	��	�)��������7	���	�	�5����	��	�5�	�./���	�5��	�>��0���	�����0������+		J%��4	�0�����

)������	5��	��	����	���	�5����+

��������� 3"�&���$
��

2 �	����	��	�5�	�%�����	����	2 �	�./����	���	K0�0��	��	�5��)��������L�	2 �	K0�0�)��	���1

���1+

��������� 3"�,�&���)�	�
2 �	#���	��	�5�)���������	��	��)���	����	�5��	�5�	 ��������	�)���	��	2�������	 �����0��	���+

!5��	�	5�������	��%���	������0)��	�5�	 ��������7	�5�	-�����0)�	@�����	��4	����	��	�>��0��	�5�

��/����4	��	���	���1	��	�	2 �+		2 �L�	�0�	��	����)������4	�5��	-�����0)��7	���	��)�����

-�����0)��	��	���0�	�5��	2 �L�	.����	�>��0��+		2�������	 �����0��	���	���	�>��0���	��

 ��%�����	����7	��	�5��	��	�	���)�����	��	 ���������	M	 ��%�����	#���+		#5��	��0����	���	5�)

���������	�5�	��0���	��	�>�����%�	����	.����	�)���	��	 ��%�����	����+

��������� 3"�,��������0��)�	�

M	-�����0)�	#���	��	�5�)���������	��	��)���	����	�5��	�5�	 ��������	�)���	5������	5�������

-�����0)��+		!5��	�	5�������	��%���	������0)��	�5�	 ��������7	�5�	-�����0)�	@�����	��	�>��0��

��	5����	�5�	���������7	0�0�4	.4	��������	-D(���)�����	���)����.4	���0���	����5��)������

-D(��K0���+		$���	��	�5��	���1	��4	.�	����	��	�	2�������	 �����0��	��	E���	M	2 �	#���+F

@���%��7	����	�)���	��	2 �L�	��	���	��0����	��	����	��	-�����0)��+		-�����0)��	���	�>��0���	��

 ��%�����	����7	��	�5��	��	�	���)�����	��	 ���������	M	 ��%�����	#���+		#5��	��0����	���	5�)

���������	�5�	��0���	��	�>�����%�	����	.����	�)���	��	 ��%�����	����+

��������� 3"�,���������%�)�	�
 ��%�����	#���	��	�5�)���������	��)��������	����	�)���	��	 ��%�����	����	��	���I-��	�5�����+

#5�	!������	"#	���%���	�4��7	�5�	J>��0��%�	��0�����7	���	�5�	!������	"#	
����	�>��0��	��

 ��%�����	����+		2�%���	���%���	���	����	��%����	��5��	�5��	���)5���	���)����	���)�������	���

�>��0��	��	 ��%�����	����+		?��1�	����	���4	�)�������	�4�����7	!������	"#	0���)������

.�0�������	���	�0.�4����)���������	��	��������	��	�5�	����������)���������	��	?���	���

 ��%�����	�����+		#5���	�0.�4����)��������)��%���	���������)���������+		#5�������7	����

���1	����	.4	!������	"#	��	.�5��	��	4�0�	�))�������	��4	�))���	��	��5��	�0.�4����

)��������	��	��������	��	�5�	 ��%�����	#���	��	4�0�)������+

��������� 3"�,�����������)�	�
 ��������	#���	��	�>)������	��	�)���������	��	�5�	��)���	����	�5��	�)��������	��	.0�4	�>��0����

�	���I-��	�5����+		-�	���	.�	%�����	��	�5�	��������	��	�5�	����	�)���	�����	0���0	���1+		J��5

)��������	��	��������	��	-��	�5����	��	�5�	-��)������	�5��5	����0���	�5���	0�)���0���%�

)��������	�4���	���	0���	.4	��4	��5��	�5�����+

��������� 3"�,�2����)�	�

���*��

����������	
��	��������������	���

	
���	����	��	�����

?���	#���	��	�5�)���������	��)��������	����	�)���	��	?���	����	��	���I-��	�5�����+		�

�))�������	����	���	�0.�4����	����	�>��0��	��	?���	����+		#5�	���)5���	������7	���)5���

��%���	���%���7)������	��%���	���%���7	���	�5�	������	�������	���	�>��0��	��	?���	����+		����

�>��0����	��	?���	����	������	������	�5�	��������4	��	�5�	!������	"#	J>��0��%�7	
����7	���

��%���	���%���+		?��1�	����	���4	�)�������	�4�����7	!������	"#	0���)������	.�0�������	���

�0.�4����)���������	��	��������	��	�5�	����������)���������	��	?���	���	 ��%�����	�����+

#5���	�0.�4����)��������)��%���	���������)���������+		#5�������7	����	���1	����	.4

!������	"#	��	.�5��	��	4�0�	�))�������	��4	�))���	��	��5��	�0.�4����)��������	��	��������

��	�5�	 ��%�����	#���	��	4�0�)������+

������#�����)��
�����

#5�	�0�.��	��	.4���	�5�	���%��	5��	����	��	���	�����%��	����	�5�	������1+		#5��	%�0�)��%����

��	�%���	����������	��	5��	.0�4	�5�	���%��	��+

�����	�,�)��
������������)�	�

#5�	M	#���	 ��������	#���	��	�5�	�%�����)���������	��	����	�5��	�	�5�)���������	��	�5�

�4����	���	.0�4	�>��0����	���I���	�5�����+		(�	�	�0��I)��������	�4����7	��	�)���������	���

���4�	.0�4	�5��	��	���M7	��	�)���������	���	'�M	.0�4	�5��	��	'�M	���	��	�D��5	��	�5�)���������

���	���M	.0�4	�5��	��	,'M+		-�	���	.�	%�����	��	�5�	��������	��	�5�	����	�)���	�����	0���0	���1+

J��5)��������	��	��������	��	-��	�5����	��	�5�	-��)������	�5��5	����0���	�5���	0�)���0���%�

)��������	�4���	���	0���	.4	��4	��5��	�5�����+

�����	������4��������������

�����>�	$����5��D���	��	�5�	����	��	�����5��	����	���	�5����	��	����5��+		#5����	�����5��	���

���0�	���5��	������	��	�	�����)������	��	������)��������+		�	�5����	�����5	��4	.�	��0���	���5��

.4	���	�5����	��1���	����5��	���	�����������7	��	.4	�	�5����	.����)����)���	.4	����5��7	5��5��

)������4	�5����	.�������	����4	��	�0�+		?��1�	����	���4	�)�������	�4�����7	!������	"#	0���

)������	.�0�������	���	�0.�4����)���������	��	��������	��	�5�	����������)���������	��	?���	���

 ��%�����	�����+		#5���	�0.�4����)��������)��%���	���������)���������+		#5�������7	����

���1	����	.4	!������	"#	��	.�5��	��	��	�))�������	��4	�))���	��	��5��	�0.�4����)��������

��	��������	��	�5�	 ��%�����	#���	��	�5�	�))�������+		$����5���	��	�5�	�0.�4����)������	��0���

���	�����>�	$����5	��	�5�	�))�������	�5����+		$����5���	.��1	��0���	����5��	�����>�	$����5	��

�5�	�0.�4����	�5����+

�����	������	��
�������

$4�����	���D���	��	�5�	���K0���4	��	���	��	!������	"#	�4����	���%���	��0�����+		#5���

��0�����)������	�	��	�5�	.����	��5��0���	���	�4��5����*�����	��	����%�����	��	�5�	���)0���7

���)��%���	������	��	���I���)5���	��%����7	�����4	����������7	���	����	�)���	����������+

)�	������

#5�	���0��	��	����	��	�5��	�.���%�����+

5��������� ')��
�"�#�����)��
�����
�4���	#���D���	��	�5�	�0�	��	�4���	$���D���	���	�4���	�����%��D���+		#5��	��	�5�	����	����	��

.4���	�����������	.4	�5�	!�.	���%���+

���+��

����������	
��	��������������	���

	
���	����	��	�����

Appendix B: Average Task Response Time Data – Raw FiguresAppendix B: Average Task Response Time Data – Raw FiguresAppendix B: Average Task Response Time Data – Raw FiguresAppendix B: Average Task Response Time Data – Raw Figures

Test RunTest RunTest RunTest Run ConfigConfigConfigConfig Suite ElapsedSuite ElapsedSuite ElapsedSuite Elapsed
TimeTimeTimeTime

SuiteSuiteSuiteSuite
ErrorsErrorsErrorsErrors

1 Hour1 Hour1 Hour1 Hour
TransTransTransTrans
CountCountCountCount

1 Hour1 Hour1 Hour1 Hour AvgAvgAvgAvg
TaskTaskTaskTask RespRespRespResp

IterationsIterationsIterationsIterations NotesNotesNotesNotes

1.1.1 Run 1 Without
Test App

1 hr 4 min 27 sec 0 1,193 0.828 180 MySleep
Time=0.1

1.1.1 Run 2 Without
Test App

1 hr 4 min 31 sec 0 1,182 0.824 180

1.1.1 Run 3 Test App
Full
Function

1 hr 4 min 43 sec 0 1,185 0.827 180

AVERAGEAVERAGEAVERAGEAVERAGE 1 hr 4 min 34 sec1 hr 4 min 34 sec1 hr 4 min 34 sec1 hr 4 min 34 sec 0000 1,1871,1871,1871,187 0.8260.8260.8260.826 180180180180

1.2.1 Run 1 Test App
Full
Function

1 hr 25 min 29 sec 40 729 1.469 180 MySleep
Time=1.5

1.2.1 Run 2 Test App
Full
Function

1 hr 10 min 26 sec 73 731 1.539 180 Errors
after 1 hr
mark

1.2.1 Run 3 Test App
Full
Function

1 hr 9 min 51 sec 75 726 1.598 180

AVERAGEAVERAGEAVERAGEAVERAGE 1 hr 15 min 151 hr 15 min 151 hr 15 min 151 hr 15 min 15
secsecsecsec

63636363 729729729729 1.5351.5351.5351.535 180180180180

1.2.2 Run 1 Test App
User
Controlled

1 hr 53 min 35 sec 0 384 1.770 180 MySleep
Time=2.0

1.2.2 Run 2 Test App
User
Controlled

1 hr 3 min 59 sec
(excluded from
avg)

0 388 1.776 104 Manually
terminate
d after 1
hour (104
iterations
)

1.2.2 Run 3 Test App
User
Controlled

1 hr 57 min 24 sec 0 367 1.856 180

AVERAGEAVERAGEAVERAGEAVERAGE 1 hr 55 min 301 hr 55 min 301 hr 55 min 301 hr 55 min 30
secsecsecsec

0000 380380380380 1.8011.8011.8011.801 155155155155

1���8��!��/������������-����/	�.��
�����
��.���"����	�-�������
���
��-��)���	������/	���"��-������

�)���2���-����/	��	//�����)""����
�������"���	#���
���
#�	
������
��	������-	���-���)���()�
����)��

�/��������-������
�	����
���//�����/�����)�����")//�2

���,��

����������	
��	��������������	���

	
���	����	��	�����

Appendix C: Averaged Data – Raw FiguresAppendix C: Averaged Data – Raw FiguresAppendix C: Averaged Data – Raw FiguresAppendix C: Averaged Data – Raw Figures

Test Run Internet
Information
Services
Global\Cache
Misses

Memory\Page
Faults/sec

Network
Segment(\Devic
e\bh_OcTk161)\
% Network
utilization

Processor(0)\Int
errupts/sec

Processor(0)\DP
Cs Queued/sec

Processor(0)\%
Processor Time

1.1.1 Without
TestApp
Averaged

30.000 3.142 2.095 184.856 80.697 99.997

1.2.1 With
TestApp -
Full Function
- Avg

145.333 10.554 6.199 208.987 104.143 99.995

1.2.2 With
TestApp -
User
Controlled -
Avg

173.333 6.942 20.181 383.452 274.784 67.356

1.3.1
Baseline
Filter - Full
Function -
Avg (30 min)

3,115.667 20.898 28.739 319.587 214.120 9.600

1.3.2
Baseline
Filter - User
Controlled -
Avg (30 min)

3,304.667 17.357 6.698 225.740 121.611 3.574

1���8���	�-��!����������)��/����	��	
�	��)�)/	��
#���)
�������-��/�"���"��-������2���-��	��)
���"��-�

�
����
�������-���
�9-�)������)
��	���	��)���"���	�-�)
2

������

����������	
��	��������������	���

	
���	����	��	�����

Appendix D: Filter Baseline Data – Raw FiguresAppendix D: Filter Baseline Data – Raw FiguresAppendix D: Filter Baseline Data – Raw FiguresAppendix D: Filter Baseline Data – Raw Figures

Test RunTest RunTest RunTest Run BaselineBaselineBaselineBaseline
SetupSetupSetupSetup

WCAT PagesWCAT PagesWCAT PagesWCAT Pages
RequestedRequestedRequestedRequested

TotalTotalTotalTotal
Responses/secResponses/secResponses/secResponses/sec

DataDataDataData
Read/secRead/secRead/secRead/sec

TotalTotalTotalTotal
Bytes/secBytes/secBytes/secBytes/sec

1.3.1 Run 1 Full
Function

3,421 1.90 31,746.99 32,180.20

1.3.1 Run 2 Full
Function

3,412 1.90 31,565.51 31,997.59

1.3.1 Run 3 Full
Function

3,500 1.95 32,325.55 32,768.76

AVERAGEAVERAGEAVERAGEAVERAGE 3,4443,4443,4443,444 1.921.921.921.92 31,879.3531,879.3531,879.3531,879.35 32,315.5232,315.5232,315.5232,315.52

1.3.2 Run 1 User
Controlled

3,511 1.95 32,412.87 32,857.48

1.3.2 Run 2 User
Controlled

3,500 1.95 32,325.55 32,768.76

1.3.2 Run 3 User
Controlled

3,463 1.92 31,771.45 32,209.98

AVERAGEAVERAGEAVERAGEAVERAGE 3,4913,4913,4913,491 1.941.941.941.94 32,169.9632,169.9632,169.9632,169.96 32,612.0732,612.0732,612.0732,612.07

Note: Only WCAT pages fetched.

QW2000 Panel 4P

Mr. Doug Whitney (Panel Moderator)
(Intel)

Protecting Intellectual Property in an Open
Source World

Panelists: Andy Wilson (Intel) Mitchell Baker
(Mozilla)

BACK TO QW2000 PROGRAM

Abstract...

This is a case study of how we created a web appliance project using both intellectual property and
open source code without jeopardizing the intellectual property. (Please note: This will NOT explain or
interpret open source license issues)

Issue 1 - Separate code in a one build environment If we inadvertently link our proprietary source code
with GPL open source the proprietary source becomes public property.

Issue 2 - Release requirements to the customer Open source code must independently compile and
be available to customers.

Solution 1 - Ensure safety of proprietary IP. We ensure licenses are present for all source files. We
use a clean room build environment to identify all linked files. For each linked file, we identify all
sources used and flag the link as illegal if it contains both proprietary source AND GPL source.

Solution 2 - Ensure source shipped to customers meets distribution requirements. We identify all open
source used in the build. We then ensure all this source is present within the distribution to be given to
the customer. We compile this open source and ensure the compilation proceeds without errors.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/4P.html [4/28/2000 2:31:20 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Developing Commercial
Software in an Open Source

World
A Panel Discussion With:

Doug Whitney
Andy Wilson

Mitchell Baker
Peter Nordquist

Introduction

• Who am I?
• Who is on the panel?
• Purpose

– To share some real-world experience with a
mixed Open Source and commercial SW
development project and discuss some of the
issues.

2

Ground Rules

• We are not here to interpret GNU license issues
• We are not here to tell you what to do for your

projects

• View it as a case study with commentary

What is Open Source?

• Free SW Foundation General Public License
(GPL) mandates that customers have access to
source code, not just binaries. GPL applies to the
Linux kernel and the FSF/GNU utilities.

• Other flavors of Open Source licenses (most
importantly Netscape Public License for Mozilla)
also mandate customer access to source.

3

What are the Challenges of
Developing Commercial SW in

an Open Source World?

• Each panelist will describe what they feel are the
problems and opportunities presented to
developers.
– Mitchell Baker
– Andy Wilson
– Pete Nordquist
– Doug Whitney

Our “Case study”

4

Project Overview

• Our project is a set top box using Linux, Mozilla,
other open source and Intel developed intellectual
property

• We are making modifications to existing Open
Source code, and

• Our product contains newly created functionality
which is not part of Linux or Mozilla
– User interface for the set top, etc.

Success Metrics for Open Source
Validation

• Strict compliance with Open Source licenses, as
measured by the ability to hand over complete
sources for GPL/NPL SW components when we
distribute our products to customers

• High confidence, backed up by automated
methods, that we have not unintentionally mixed
our proprietary code with Open Source.

5

Automating Open Source Validation:
A three step process

• Tag source code by license type in our source
control system
– “Blue code” is Open Source
– “Green code” is Intel-written proprietary code

• Modify compiler to produce link maps
• Validate the link maps to make sure that “Blue”

code is not inadvertently linked with “green”

Identify
• Create a clean room build system
• Find out from developers/build engineer what files

are Intel developed and what directory they are in
(“green” files)

• Create scripts to validate our “green” files have
proper Intel copyright attribution

• Validate that “blue” directories have an Open
Source license in root

6

Modify Compiler

• Link file maps show what files are linked and
validate which libraries are used

• Change compiler options to create link validation
files (work in progress)

• Re-run build with the enhanced compiler options
• Validate that link files are created

Check the links

• May be done individually by viewing each link
map file. (Perl is our friend. ☺)

• Links made from “green” to “blue” are flagged as
illegal

• Validate that all “green” files only link to other
“green” files

• Log illegal links as defects

7

Open Questions

QW2000 QuickStart 4Q

Mr. Tom Gilb
(Result Planning Limited)

Pitiful and Powerful Measures of Software
Metrics

BACK TO QW2000 PROGRAM

Presentation Abstract

What are 'Powerful and Pitiful Measures'? Powerful measures help management achieve their
purposes as managers of software engineering teams. Powerful measures are not indirect: they
measure as close to the customers' experience and need as possible. They help management to
attain their customer-related objectives and to control their product development and production
processes.

Measures become pitiful when they are not well suited to control what really matters. Often,
inappropriate use of measures simply occurs because their use is either conventional or convenient.

To give some examples:
function points: When used as a language-neutral measure of logic volume for comparison
purposes, function points are a powerful measure. But when they are used as a 'primary or
sole indicator' for estimating costs for a project, they become a pitiful measure. For any project,
numerous cost drivers have to be taken into account (not least, the required quality levels).

●

complexity metrics: As primary indicators of 'maintainability' or 'reliability', complexity metrics
(such as McCabe's) are pitiful. They might well be extremely convenient to use (as automatic
software tools are available to carry out the measuring), but they are much too indirect. Mean
Time To Repair (MTTR) and Mean Time Between Failure (MTBF) are more worthwhile
measures.

●

defect density: Defect density is suited as a measure for controlling software process
improvement: it can be used to track the injection of defects in a software process. However,
using it to measure software quality is pitiful because it does not reflect 'availability' (net uptime
to defined users). A reliability measure, such as MTBF in customer operational conditions,
would be much more appropriate (as availability is a function of reliability (failure rate) and
maintainability (fixing speed)).

●

About the Author

Tom Gilb is an independent consultant, teacher and author. He works mainly in UK, Europe and North
America. He is resident in Norway.

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/4Q.html (1 of 2) [4/28/2000 2:31:29 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Tom coined the term 'Software Metrics' with the publication of his book of the same name in 1976
(European edition) and 1977 (USA edition). This work is the acknowledged (by R. Radice and W.
Humphrey) as inspiration for much of the Software Engineering Institute's Capability Maturity Model
Level 4 (SEI CMM Level 4). His other books include Principles of Software Engineering Management
(1988, now in 13th printing) and Software Inspection (1993 with Dorothy Graham). His main
professional interest is the development of powerful Systems Engineering methods (covering
Requirements, Design, Quality Control and Project Management).

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/4Q.html (2 of 2) [4/28/2000 2:31:29 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Slide 1

“Powerful Measures and Pitiful
Measures of Software Engineering”

• ©By Tom Gilb, Consultant

• Gilb@acm.org

• URL: www.Result-
Planning.com
– Where many papers, books

and slides are free for your
further illumination!

October 12 1999

Slide 2
Powerful Metrics of Quality?

Excerpt from THE WALL STREET JOURNAL August 13, 1992

 18 CHINESE MANAGERS EXECUTED FOR SHODDY QUALITY

 BEIJING - Eighteen factory managers were executed for poor product quality at Chien
Bien Refrigerator Factory on the outskirts of the Chinese capital. The managers - 12
men and 6 women - were taken to a rice paddy outside the factory and
unceremoniously shot to death as 500 plant workers looked on.

Ministry of Economic Reform spokesman, Xi Ten Haun, said the action was required for
committing unpardonable crimes against the people of China. He blamed the
managers for ignoring quality and forcing shoddy work, saying the factory's output
of refrigerators had a reputation for failure. For years factory workers complained
that many component parts did not meet specification and the end product did not
function as required. Compressors were cracked, leaked freon and the electrical
components were sub-standard.

Complaining workers quoted the Plant Manager as saying, "Ship it.”

Customers, who waited up to five years for their appliances, were outraged, he says. "It
is understandable our citizens would express shock and outrage when managers
are careless in their attitudes toward the welfare of others."

Refrigerators are among the most sought after consumer items in Communist China.
"Managers in charge of production and engineering failed to perform any useful
corrections to the quality problems for the last 20 years." Haun said. "Our soldiers
are justified in wishing to bring proper justice to these errant managers."

The executed included the Plant Manager, the Quality Control Manager,

the Engineering Managers and their top staff.

2

Slide 3

“Software Engineering” defined

• Software engineering is

– the use of engineering principles

–to find designs

–which meet specified requirements

–under conditions of uncertainty.
• ‘which meet’ implies action until success

• ‘designs’ are anything which meets requirements

• ‘requirements’ are any objective, constraint, cost, time
notion

• ‘uncertainty’ means no off-the-shelf product, but
combinations of things with complex results

Slide 4
Software Engineering Requirements

Requirements

3

Slide 5

Software Engineering Design fitted to requirements

Design
Requirements

Slide 6

Software Engineering under ‘conditions of
uncertainty’

Design
Requirements

?

?

?

?

?

?

4

Slide 7
Stages of maturity : SEI Capability Maturity Model

SEI CMM Levels: A Pitiful Measure
But: ‘Management Understands it’ <--WH

Maturity
Level

Initial

Repeatable

Defined

Managed

Optimizing

Software Inspection FeaturesCharacteristics

 Depends entirely
 on individuals.

Policies, procedures,
experience base

Defect removal, Entry, ExitDefined processes,
peer reviews

Quantitative goals for
product & process

Entire organization.
focused on continuous
process improvement

none

Writing-Task Rules, QA Policies,
Inspection Procedures

Optimum rates, quality level at
exit&entry,data summary, d-base

Defect Prevention Process
Improvements logging,
Owners, Proc.. Change Mgt.. Team

1-5 Based on Paulk et al, “Capability Maturity Model Version 1.1”, IEEE
Software, July 1993.

•
•

• • • •

•••
••• ••

•• •

•••••

•

+

-

Results=
Better(+) &
smaller
range

Design Design to quality & cost none) Not SEI level yet.

1

2

3

4

5

 (6

Slide 8
Why Baldrige?

• Widely Used
– N.I.S.T, Motorola, Xerox

• Proven Track Record
– GAO Study

• Comprehensive
– Greater scope than ISO or SEI’s CMM

• Focus on Customer Satisfaction & Results

The next few slides about ISO/Baldridge are courtesy of Craig Kaplan, Ph.D.
I.Q. Company, Author of ‘Secrets of Software Quality’ (McGraw Hill 1995)

http:\\www.iqco.com

5

Slide 9

Mapping ISO 9001 to Baldrige

ANSI/ASQC Q91-1987 1994 Baldrige Categories
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Slide 10
Baldrige Self-Assessment Scores at IBM’s STL Site

0
100

200

300
400

500

600
700

800

Baldrige
Score

1989 1990 1991 1992 1993

Year

IBM STL Site

6

Tuesday, April 25, 2000 Copyright Gilb@acm.org Slide 11

Slide 11

Software Process Improvement at Raytheon:
Some Really Useful Measures

• Source : Raytheon Report 1995: Dion et al
– http://www.sei.cmu.edu/products/publications/95.reports

/95.tr.017.html

• An excellent example of process improvement
driven by measurement of improvement

• Main Motor:
– “Document Inspection”, Defect Detection

• Main Driver:
– “Defect Prevention Process” (DPP)

Slide 12Cost of Quality over Time: Raytheon 95

The individual
learning curve ??

Cost of Rework
(non-conformance)

Cost of
Conformance

End 1988 End 1994

43% Start of Effort

5%

Bad
Process
Change

7

Tuesday, April 25, 2000 Copyright Gilb@acm.org Slide 13

Slide 13

Rework Cost:
How you can set an objective to improve it

• Gist: reduce by-half wasted development effort
due to avoidable errors, if process improved.

• Scale: % of total effort which is applied to
handling {identifying, correcting, re-testing,
reissuing} avoidable errors.

• Past [Our test process, 1997] 45%
• Plan [Us, 1998 end] 30%,

– [End 1999]20%,

– [End 2000] 10%,

– End 2001] 5%

Slide 14

Project Cost

Cost of Quality Cost of Performance

Cost of Conformance Cost of NON-Conformance

Appraisal Costs Prevention Costs

Reviews, Inspections,
Testing 1st time, IV&V
(1st), Audits

Training, Methodologies, Policy & Procedures,
Planning, Quality Improvement Projects, Data
Gathering and Analysis, Fault Analysis, Root Cause
Analysis, Quality Reporting.

see next slide

8

Slide 15

Costs of Non-conformance Items

• Re-reviews

• Re-tests

• Fixing Defects (code,
documentation)

• Reworking any
document.

• Engineering Changes

• Lab Equipment Costs
of Retests

• Updating Source Code

• Patches to Internal
Code

• Patches to Delivered
Code

• External Failures

• from Crosby’s Model
according to
Raytheon95 Fig. 7

Tuesday, April 25, 2000 Copyright Gilb@acm.org Slide 16

Slide 16
Return On Investment

• $7.70 per $1 invested at Raytheon

• Sell your improvement program to
top management on this basis

• Set a concrete target for it
–PLAN [Our Division, 2 years hence] 8

to 1

9

Slide 17Raytheon 95 Software Productivity 2.7X better

+

170%

Productivity

1988 1994

Tuesday, April 25, 2000 Copyright Gilb@acm.org Slide 18

Slide 18

Achieving Project Predictability: Raytheon 95

140%

100%

1988 19941990

Cost At Completion / Budget %

10

Slide 19

Overall ‘Product Quality’:
 Definition at Raytheon

• ‘Overall Product Quality’ = bug density!!

• The primary measure used to assess ‘overall product
quality’ is the defect density in the final software
products.

• We measure this factor in “number of software trouble
reports (STRs) per thousand lines of delivered source
code (STRs/KDSI)” on an individual project basis.

• The project defect densities are then combined to
compute the monthly weighted average

• data shows an improvement from an average of 17.2
STRs/KDSI to the current level of 4.0 STRs/KDSI.

Slide 20

Overall Product Quality: Raytheon 95
Defect Density Versus Time

Defects/KDSI

11

Slide 21
Examples of Process Improvements: Raytheon 95

• Process Improvements Made
• Erroneous interfaces during integration and test -

– Increased the detail required for interface design during the requirements
analysis phase and preliminary design phase - Increased thoroughness of
inspections of interface specifications

– Lack of regression test repeatability -

– Automated testing - Standardized the tool set for automated testing -
Increased frequency of regression testing

• Inconsistent inspection process -

– Established control limits that are monitored by project teams - Trained project teams
in the use of statistical process control - Continually analyze the inspection data for
trends at the organisation level

• Late requirements up-dates -

– Improved the tool set for maintaining requirements traceability - Confirm the requirements mapping
at each process phase

• Unplanned growth of functionality during Requirements Analysis
– - Improved the monitoring of the evolving specifications against the customer baseline - Continually map the

requirements to the functional proposal baseline to identify changes in addition to the passive monitoring of
code growth - Improved requirements, design, cost, and schedule tradeoffs to reduce impacts

Slide 22
Fault Density versus Checking Rate: Raytheon 95

Thousands of Statements Checked per hour by a person

Defects
Found/Kdsi

Too quick reviews and
inspections will not find the
defects early, thus creating lots
of work for testers later.

This area is the ‘illusion of quality”

12

Slide 23
Risk Policy Summary

• .EXPLICIT RISK SPECIFICATION

• All managers/planners/engineers/testers/ quality assurance people shall immediately in writing, integrated in the main plan, specify
any uncertainty, and any special conditions which can imaginably lead to a risk of deviation from defined target levels of system
performance.

• NUMERIC EXPECTATION SPECIFICATION

• The expected levels of all quality and cost attributes of the system shall be specified in a numeric way, using defined scales of
measure, and at least an outline of one or more appropriate ‘Meters’ (test or measuring instruments for determining where we are
on a scale).

• CONDITIONS SPECIFIED

• The requirements levels shall be qualified with regard to when where and under which conditions the targets apply, so there is no
risk of us inadvertently applying them inappropriately.

• COMPLETE REQUIREMENT SPECIFICATION

• A complete set of all critical quality and cost aspects shall be specified, avoiding the risk of failing to consider a single critical
attribute.

• .COMPLETE DESIGN SPECIFICATION and IMPACT ESTIMATION

• A complete set of designs or strategies for meeting the complete set of quality and cost targets will be specified. They will be
validated against all specified quality and cost targets (using Impact Estimation Tables). They will meet a reasonable level of safety
margin. They will then be evolutionarily validated in practice before major investment is made. The Evo steps will be made at a rate
of maximum 2% of budget, and 2% of ‘project time’, per ‘incremental trial’ (Evo step) of designs or strategies.

• .SPECIFICATION QUALITY CONTROL NUMERICALLY EXITED

• All requirements, design, impact estimation and Evolutionary project plans, as well as all other related critical documents such as
contracts, management plans, contract modifications, marketing plans, shall be ‘quality controlled’ using the Inspection method
[GILB93]. A normal process Exit level shall be that ‘no more than 0.2 Major Defects per page maximum, can be calculated to remain,
as a function of those found and fixed before release, when checking is done properly’ (e.g. at optimum checking rates of 1 logical page
or less per hour).

• 7. EVOLUTIONARY PROOF-OF-CONCEPT PRIORITIES

• The Evolutionary Project Management method [Gilb97, Gilb88] will be used to sense and control risk in mid-project. The dominant
paradigms will be

– .2% steps,

– .high value to cost with regard to risk delivered first.

– .high risk strategies tested ‘offline to customer delivery’, in the Backroom of development process, or at cost-to-vendor, or with ‘research funds’ as opposed to project
budget.

Slide 24
Risk Policy Details

•Risk Policy
Details

13

Slide 25

 1. EXPLICIT RISK SPECIFICATION

• All
– managers/planners/engineers/testers/ quality

assurance people shall

– immediately in writing, integrated in the
main plan,

– specify any uncertainty,

– and any special conditions
• which can imaginably lead to a risk of deviation

• from defined target levels of system performance.

Slide 26
2. NUMERIC EXPECTATION SPECIFICATION

• The expected levels of all quality and
cost attributes of the system shall be
– specified in a numeric way, using defined

Scales of measure, -|-|-|-|-|-|->

–and at least an outline of one or more
appropriate ‘Meters’
• test or measuring instruments for

determining where we are on a scale.

14

Slide 27

3. CONDITIONS SPECIFIED

• The requirements levels shall be
[qualified]
–with regard to

• [when]

• [where]

• and under which [conditions] the
target requirements apply,

• so we don’t shoot for the wrong target!

Slide 28
4. COMPLETE REQUIREMENT SPECIFICATION

• A complete set of
–all critical quality and cost
aspects

–shall be specified,

–avoiding the risk of failing to
consider even one critical
attribute.

15

Slide 29

5. COMPLETE DESIGN SPECIFICATION and
IMPACT ESTIMATION:

• A complete set of designs or strategies for meeting the
complete set of quality and cost targets will be
specified.

• They will be validated against all specified quality and
cost targets (using Impact Estimation Tables).

• They will meet a reasonable level of safety margin.

• They will then be evolutionarily validated in practice
before major investment is made.
– The Evo steps will be made at a rate of maximum 2% of

budget, and 2% of ‘project time’, per ‘incremental trial’
(Evo step) of designs or strategies.

0
50
100
150

Slide 30Results Language Icons for requirements, design and design
goodness

Results Language Icons for requirements,
design and design goodness

Sys
PAST level

ôBenchmarkõ

PLAN level

ôDesign targetõ

(100% level)

Cost 1

Cost 2

Qual.4

Qual.3

Design idea A Design idea B

60%
of

target

How can we express the goodness of a design idea?

‘Design Target’‘Benchmark’

Quality-5

16

Slide 31

Quality
Requirements
 (defined
 quantitatively)

design ideas
(specified in detail

elsewhere)

Impact Table 3D Display:
How good are design ideas compared to your objectives?

Doc. Process
Training
ProjectSurvey
Show-&-Tell
Tracking System0

50

100

150
good stuff indicator

Slide 32“Impact Estimation” concepts: full table

Tags of proposed TOTAL SET of
strategies (defined elsewhere) to meet
objectives, within resource constraints.

AVAILABILITY

PORTABILITY

USABILITY

BUDGET

EMPLOYEES
"0->32 people"

A1 B4 CD DX Sum

0% 100% 50% -5% 145%

1 1 1 1 4%

60
±20

"99.9%->99.98%"

"0->1 million" 100

Benefit/Cost->
0

0.6

99

10%

30%

5.0

41 200 400%

? n.a. 110?

9±5

"3 mins.->1"

"80%->95%"

"PAST->PLAN"

Strategies->
Objectives

17

Slide 33“Impact Estimation” concepts: detail

AVAILABILITY

PORTABILITY

USABILITY

BUDGET

EMPLOYEES
"0->32 people"

A1 B4 CD DX Sum

0% 100% 50% -5% 145%

1 1 1 1 4%

60
±20

"99.9%->99.98%"

"0->1 million" 100

Benefit/Cost->
0

0.6

99

10%
30%
5.0

41 200 400%

? n.a. 110?

Quality and
 Benefit
Objectives

Rough sum of effects
of all strategies on a

single attribute's
planned

level.

Clearly not
good enough
design yet

Safety
margin
4XResource

Budget
tags

Sum Benefits / Sum resources
= rough relative goodness
of a strategy with respect to
all objectives.

Tags of proposed TOTAL SET of
strategies (defined elsewhere)

for meeting the quality
objectives, within resource constraints.

9±5 Explicit uncertainty estimate

"3 mins.->1"

"80%->95%"

"PAST->PLAN"

Strategies->
Objectives

USABILITY:A1

Design method A1 in all competitive products and in
our lab prototypes shows user learning time to be
under two minutes. <- Lab Report U-92

USABILITY:
SCALE: Avg. Minutes for typical
 user to learn to operate our product.
METER [accept] at least 100 users.
PAST[1993, Old Product] 3 minutes.
PLAN[New Produc,1995t] 1 minute.
 [New Product, 1996] 30 secs.

Objective
 statement, example

Evidence

A1: Graphical interfaces using minimal
language, no codes, maximum
pictures, maximum user tailoring,
maximum learning about particular
users.

Strategy Definition Example

Estimation language:

0% = no effect with respect to PAST level.

100% = expected to meet PLAN level.

negative effect= makes things worse than PAST level.

? = no basis for an estimate.

n.a. = not applicable.

Slide 34

6. SPECIFICATION QUALITY CONTROL NUMERICALLY EXITED

• All Specifications
– {requirements, design, impact estimation and Evolutionary

project plans,

– as well as all other related critical documents such as
contracts, management plans, contract modifications,
marketing plans, }

– shall be ‘quality controlled’ using the Inspection method .

• A normal process Exit level shall be
– that ‘no more than 0.2 Major Defects per page maximum, can

be calculated to remain,

– as a function of those found and fixed before release,

– when checking is done properly’ (e.g. at optimum checking
rates of 1 logical page or less per hour).

18

Slide 35Inspections and Reviews

• Inspections
– Judgement based on

conformance to standards
– Well written, clear,

complete, trustworthy
– Can be carried out by any

of ‘intended readership’
– Should be done to

guarantee decision-makers
a good basis for a decision.

• (Go No-Go) Reviews
– Judgement based on

goodness in real world
– Content, not format;
– Value, not clarity
– Approval by authorized

‘managers’
– Should not be Entered if

document not Exited from
Inspection

Inspection:
Meet standards?

Work
Product

Exited
Document

Review:
Go No-Go?

Slide 36
7. EVOLUTIONARY PROOF-OF-CONCEPT PRIORITIES

• The Evolutionary Project Management
method will be used to sense and control
risk in mid-project. The dominant
paradigms will be

– .2% steps,

– .high value to cost with regard to risk delivered first.

» .high risk strategies tested ‘offline to customer
delivery’, in the Backroom of development process,
or at cost-to-vendor, or with ‘research funds’ as
opposed to project budget.

19

Slide 37Evo Example:
Usability Goal, Complex example

• Usability:

• Gist: the relative ease of learning and using a defined product compared to previously used products.

• Scale: average minutes per [defined User type] to learn to use [defined Tasks to use the product].

• Meter: at least 30 users of representative defined User type will be monitored doing at least 10
defined Tasks of defined function type.

• Past [Old Product PP, Home Buyer, Adult, Task: Build telephone number list] 30 minutes.

• Record [MM, Adult, Task: Dial Out] 10 seconds ß Consumer Reports, January

• Trend [US Market, Children, Mix] 20 minutes ß Market Analysis Feb.

• Wish [Our Customers, Mix] 5 minutes ß Chairman’s Dream in Speech

• MinLevel: Must [Our Customers, Mix, New Product] 10 minutes ß marketing minimum

• Plan [Our customers, Mix, New Product, First Field Release] 50% of MinLevel? ß Guess by
Project Mgr., [within 2 years of First Field Release] 30% of MinLevel ßGuess.

• Local Definitions of Terms.

• Mix: Defined: representative mix of common frequent user tasks.

• User: Defined: person who intends to use the product in the long term, not a test person.

• First Field Release: Defined: First sold releases to any public market after Field Trials.

Slide 38Usability Specification example

Usability: -|-|-|- minutes for User to do TaskProduct

Record 10
secsTrend 20

minutes

Past 30
minutes

Wish 5 minutes <- Chairman

Plan [1st rel.] 50% of 10 minutes Plan [within 2 yrs.
1st rel.] 30% of 10
minutesMust 10 mins.

20

Slide 39Usability Evo Delivery Steps to meet Plan

Usability: -|-|-|- minutes for User to do TaskProduct

Record 10
secsTrend 20

minutes

Past 30
minutes

Wish 5 minutes <- Chairman

Plan [1st rel.] 50% of 10 minutes Plan [within 2 yrs.
1st rel.] 30% of 10
minutesMust 10 mins.

Evo
Step 1 Step 2 Step3 Step 4

Slide 40
Impact Table for Step Management

Step #1
Plan
A:
{Design-
X,
Function
-Y}

Step
#1
Actual

Differe
-nce.
 - is
bad
+ is
good

Total
Step 1

Step #2
Plan
 B:
{Design
Z,
Design
F}

Step #2
Actual

Step #2
Differe-
nce

Total
Step
1+2

Step #3
Next
step
plan

Reliabil-
ity
99%-
99.9%

50%
±50%

40% -10% 40% 100%
±20%

80% -20% 120% 0%

Perform
-ance
11sec.-1
sec.

80%
±40%

40% -40 40 30%
±50%

30% 0 70% 30%

Usability
30 min.
-30 sec.

10%
±20%

12% +2% 12% 20%
±15%

5% -15% 17% 83%

Capital
Cost
 1 mill.

20%
±1%

10% +10% 10% 5%
±2%

10% -5% 20% 5%

Enginee
-ring
Hours
10,000

2%
±1%

4% -2% 4% 10%
±2.5%

3% +7% 7% 5%

Calend-
ar Time

1 week 2
weeks

-1week 2
weeks

1 week 0.5
weeks

+0.5
wk

2.5
weeks

1 week

21

Slide 41

10 Principles of Risk Management:Summary
• 1. Frequent Feedback
• Early frequent and measurable feedback from reality must be planned into your development process, to identify risks

before they become dangerous.

• 2. Rigorous Requirements
• All critical success-and-failure quality/performance/cost requirements must be identified, made measurable and

tracked through design and evolutionary deployment.

• 3. Requirement Impact Estimation
• A design phase must address all critical few requirements and systematically estimate the impact of all design ideas

on all critical requirements.

• 4. Upstream Pollution Control
• All upstream documents (requirements, design) must be thoroughly inspected against a strong set of Rules for Good

Practice, and not exited to next phases until they have reached a reasonable level of Major Defect Freeness.

• 5. Personal Risk Responsibility
• People must be give personal responsibility in their sector for identification and mitigation of risks.

• 6. Design Out Risk
• Unacceptable risk needs to be ‘designed out’ of the system consciously at all levels of engineering, architecture,

purchasing, contracting, development process, motivation and maintenance process.

• 7. Maximum Risk Policy
• The total level of risk exposure at any one stage should be consciously reduced to a minimum of about 2-5% of total

budget, even with total failure of that stage alone.

• 8. Maximize profit, not minimize Risk itself
• Focus not on elimination of all risk, but on maximization of benefit to cost result delivery, even considering risks.

• 9. Backups are part of the Price
• Conscious planning and development of backup for risks is a necessary minimum cost of planning and projects.

• 10. Contract Out Risk

• Make vendors contractually responsible for risks, they will give you better advice and services as a result.

Slide 42

‘Pop’ Version Risk Principles 1->5 of 10

• 1. Frequent Feedback
– You’ve gotta shoot real bullets to see if they shoot back

• 2. Rigorous Requirements
– Your project Achilles Heel is the critical requirement that you didn’t

think was so critical.

• 3. Requirement Impact Estimation
– Design for success, or failure will have designs on you.

• 4. Upstream Pollution Control
– If you’re infected, don’t kiss your friends hello!

• 5. Personal Risk Responsibility
– Take risks personally, or they will take you personally.

22

Slide 43

‘Pop’ Version Risk Principles 6->10 of 10

• 6. Design Out Risk
– If you don’t choose the risk level, risk will make it’s own

decisions.

• 7. ‘Maximum Risk’ Policy
– If you might fail, you might as well do it on a small scale.

• 8. Maximize profit, not minimize Risk itself
– Risk is just a disturbance, profit is the point

• 9. Backups are part of the Price
– If you leave the umbrella at home, that’s when it rains.

• 10. Contract-Out Risk
– Let others bear the risks at hand, so they will join your

merry band

Slide 4410 Principles of Risk Management:
which relate to Software Metrics

10 Principles of
Risk

Management:
•Details

23

Slide 451. Frequent Feedback

“You’ve gotta shoot real bullets to see if they shoot
back”

•Early frequent and
measurable feedback
from reality must be
planned into your
development process,
to identify risks
before they become
dangerous.

Slide 46
2. Rigorous Requirements:

“Your project’s ‘Achilles Heel’ is the critical
requirement that you didn’t think was ‘so’

critical.”

• All critical success-and-
failure
quality/performance/cost
requirements must be
identified, made measurable
and tracked through design
and evolutionary
deployment.

24

Slide 47

3. Requirement Impact Estimation:
“Design for success, or failure will have

designs on you.”

•A design phase must
address all critical few
requirements and
systematically
estimate the impact of
all design ideas on all
critical requirements.

Slide 484. Upstream Pollution Control
 “If you’re infected, don’t kiss your friends

hello!”

• All upstream documents
(requirements, design) must
be thoroughly inspected
against a strong set of Rules
for Good Practice, and not
exited to next phases until
they have reached a
reasonable numeric level of
Major Defect Freeness.

• (like Max. 3.0 or 0.3 Maj/Pg)

25

Slide 49
5. Personal Risk Responsibility:

“Take risks personally, or they will take you
personally.”

•People must be
given personal
responsibility in
their sector for
identification and
mitigation of risks.

Slide 50

6. Design Out Risk:
“If you don’t choose the risk level, risk will

make it’s own decisions.”

• Unacceptable risk needs to
be ‘designed out’ of the
system consciously at all
levels of engineering,
architecture, purchasing,
contracting, development
process, motivation and
maintenance process.

26

Slide 51

7. Maximum Risk Policy:
“If you might fail, you might as well do it on a

small scale.”

• The total level of risk
exposure at any one
stage should be
consciously reduced to a
minimum of about 2-5%
of total budget, even with
total failure of that stage
alone.

Slide 52

8. Maximize profit, not minimize Risk itself:

“Risk is just a disturbance, profit is the
point”

•Focus not on
elimination of all risk,
– but on maximization of
‘benefit-to-cost’ result
delivery,

–even considering risks.

27

Slide 53
9. Backups are part of the Price:

“If you leave the umbrella at home, that’s
when it rains.”

•Conscious planning
and development of
backup for risks is a
necessary minimum
cost of planning and
projects.

Slide 54

10. Contract Out Risk:

“Let others bear the risks at hand, so they will
join your merry band”

•Make vendors
contractually
responsible for risks,

• they will give you
better advice and
services as a result.

28

Slide 55

Last Slide
Goodbye!

:-)>
Note this is skipped to by summary of
risk principles

QW2000 Vendor Technical Paper 4V2

John Bowman
(Compuware Corporation)

Which comes first, the process or the tool?

BACK TO QW2000 PROGRAM

Key Points

Establishing your software testing process●

Process Integration with complimentary software processes●

Determining your test automation criteria●

About the Author

Mr. Bowman is the Principal Architect for the QualityPoint Software Testing Methodology at
Compuware Corporation. He has 15 years of experience in the information technology industry with
the last 9 focused on developing solutions for software testing and software test automation. He has
applied theories to practice in the areas of establishing requirements based testing systems and the
use of automated test tools.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/4V2.html [4/28/2000 2:31:43 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Copyright © 2000 Compuware Corporation

Which Comes First, the
Process or the Tool?

John Bowman
Compuware Corporation

Copyright © 2000 Compuware Corporation

g Webster (circa 1983)
– Process -

g a series of actions or operations conducing to an end; a
continuous operation or treatment especially in
manufacture

– Procedure -
g a particular way of accomplishing something

g Software Testing Process
– a set of procedures that are focused on validating

software functionality in support of overall project
goals

What is a software testing process?

2

Copyright © 2000 Compuware Corporation

Project Goals

g Make sure it ...
… is on time!
… is on budget!
...works!!!!

g Software Testing - is a measurement system
for determining how well “it works”

Copyright © 2000 Compuware Corporation

What should a Software Testing System do?

g Identify the following:
– What will be tested,
– How will it be tested,
– Where will it be tested,
– Who will test it,
– What approch(es) will be used,
– What resources will be needed,
– When will it be tested,
– What happened during testing
– What does is mean to us

g Sound familiar?

3

Copyright © 2000 Compuware Corporation

Establish your Software Testing Architecture

g Get Commitment
– Senior Management (VP, CIO, CFO, COO)

g Adhere to the 3 R’s
– Repeatable
– Realistic
– Relevant

g Provide Valuable Information
– Project Managers
– Business Owners
– Stake Holders

Copyright © 2000 Compuware Corporation

Software Testing Architecture

4

Copyright © 2000 Compuware Corporation

g Test Planning … (Who, What, Why and How)
g Test Case Development … (What)
g Test Environment Preparation … (How)
g Test Execution … (When)
g Test Results Analysis … (What Happened)
g Management Reporting … (What does it

mean to us?)

Support the Architecture with Processes

Copyright © 2000 Compuware Corporation

Support the Processes with Procedures

5

Copyright © 2000 Compuware Corporation

Support the Processes with Procedures

g Clearly Defined Steps
g Common Definitions
g Measurable

– by process area
– by process step

g Modifiable

Copyright © 2000 Compuware Corporation

Support the Procedures with Templates

g Software Testing Deliverables:
– Test Strategy and Test Plan(s),
– Test Cases,
– Test Schedules
– Test Results Logs,
– Test Summary Reports,
– Management Reports

6

Copyright © 2000 Compuware Corporation

Measure the Effectiveness

g Identifies areas for the following:
– Improvement
– Automation
– Cost Estimation

g Provides for
– Control
– Repeatability
– Knowledge Retention
– Documentation

Copyright © 2000 Compuware Corporation

Integration with Complimentary Processes

7

Copyright © 2000 Compuware Corporation

Automation Criteria

g Where to automate
– Test Planning

g Test Management Tools

– Test Execution
g Code Coverage Tools, Unit Testing Tools,

Capture/Replay Tools, Data Driven Tools, Stress Testing
Tools

– Test Results Analysis
g Defect Tracking Tools

– Management Reporting
g Data Mining tools, Reporting tools (HTML)

Copyright © 2000 Compuware Corporation

Automation Criteria (cont’d)

g How to automate
– constrained by resources

g Type of Resources assigned to testing
g availability of technical support

– impacted by technology change
g # changes
g types of changes

8

Copyright © 2000 Compuware Corporation

Automation Criteria (cont’d)

g What to automate
– Critical functionality
– High Path Frequency
– Regulated Applications
– Large Volume of Data

Copyright © 2000 Compuware Corporation

What the Processes Deliver…

g Information to make release decisions,
g Quantification of application risk
g Communication to other areas,
g Repeatability
g Efficiency

9

Copyright © 2000 Compuware Corporation

What the Tools Deliver…

g Repetition
g Precision
g Volume
g Consistency

Copyright © 2000 Compuware Corporation

g Provides information for making decisions
– Risk management

g Knowledge is retained
g Basis for communication to other areas
g Produces documentation

– Litigation is a ever growing issue

g Facilitates Measurement
g Facilitates Automation
g Facilitates Process Improvement

Process Based Benefits

10

Copyright © 2000 Compuware Corporation

Questions & Answers

Page 1 of 7

Which Comes First, the Process
or the Tool?

Page 2 of 7

Introduction ... 3
Software Testing Processes and Project Goals ... 3
Software Testing Architecture .. 4

Key Process Area 1 - Test Planning (Who, What, Why and How)................................ 4
Key Process Area 2 - Test Case Development (What) .. 5
Key Process Area 3 - Test Environment Preparation (How)... 5
Key Process Area 4 - Test Execution (When) ... 5
Key Process Area 5 - Test Results Analysis (What Happened) 5
Key Process Area 6 - Management Reporting (What does it mean to us?)..................... 5

The Role of Tools in Support of the Process Model ... 6
Automation Criteria ... 6

Conclusion... 6

Page 3 of 7

Introduction

The pervasiveness use of software in support of business operations has been
well documented. However, most organizations that either develop or
implement software to support their operations are not satisfied with results
that come from their software testing system. The term “system” is used
intentionally to open a new view as to the contribution of software testing and
quality to the deployment of software systems.

Do any of the following questions sound familiar?

Does the software testing process provide them with the information they
need to make sound release decisions?

Can the Project Manager accurately predict everything required to
adequately test the software in the time allotted—the people, software,
hardware, tools, effort, money, etc.?

Do the testing project team members know what is expected from them?

Do all project members, including senior management, know the status of
the project and progress towards meeting expectations?

Upon implementation, does the software application actually meet the
needs of its users?

Many times, software testing is not considered until the end of the
development process and only given the resources “available at the time” to
complete. As business processes have become more complex, the software
applications necessary to support those processes have become more complex.
The software testing systems must keep pace with the software in order to be
effective.

To that end, there have been a plethora of tools that “solve the problems” of
the software quality industry. If the tools solved the problems, everyone
would be following the same processes, using similar tools, achieving similar
results. Since that does not appear to be the case, there must be a deeper
correlation between processes and tools.

Software Testing Processes and Project Goals
For most projects, there are three (3) basic goals.
1) Deliver it on time…
2) Deliver it on budget…
3) Make sure that it works!!!

Page 4 of 7

Of these, there are already measurement systems in place to assist project
managers and executive management in monitoring #’s 1 and 2. However,
most organizations do not have a measurement system in place that allows
them to measure how well it (the software systems) work. That is value that
software quality assurance and software testing activities add to these projects.

Software Testing Architecture

A Software Testing Architecture allows the Process Model for software testing to
be established. As with any successful implementation, the degree and level of
support provided by senior management as well as the development and testing is
critical. Without the required support at all levels, effectively establishing this
architecture and its supporting processes will be impossible.

The individual procedures contained each process area need to reflect the needs of
the specific project. The role of this architecture is to establish a structure around
which individual procedures can be constructed.

The following architecture represents the QualityPoint™ Software Testing
Methodology offered exclusively by Compuware.

Each of the Key Process Areas needs to be supported by tailored process flow
diagrams, documentation and appropriate templates. The purpose of which is to
allow the process model to become specific to the organization so that it meets
their needs.

Key Process Area 1 - Test Planning (Who, What, Why and How)

The first purpose of Test Planning is to identify the items being tested, the testing
tasks to be performed, the personnel responsible for each task, and the risks
associated with the plan. The second purpose is to develop the scope, approach,
resources, and schedule of the testing activities. Thorough test planning is critical
to the success of the testing process.

Ideally, the Test Plan is developed at the time the application requirements are
defined. This provides the test team adequate time to define the tests, locate and
configure the hardware and software resources, locate and train the human
resources, and schedule the tests. The test plan is a “living document” that will
change as the application functions become more clearly defined and stable.

The process for creating the test plan, along with the test plan itself, should be
reviewed and agreed to by the Test Team, the Development Team, the
User/Customer Team, and ultimately, the Management Team. This step cannot be
overemphasized because it establishes commitment from each contributing team.

Page 5 of 7

Key Process Area 2 - Test Case Development (What)

The purpose of Test Case Development is to document the test cases that will be
executed during this testing effort. These test cases will be used to test the
application functions identified by the Test Plan. The number and type of test
cases created are dictated by the test plan. A test case will identify the input
values to be provided to the application, the procedures for applying those inputs,
and the expected application values for the procedure being tested.

Key Process Area 3 - Test Environment Preparation (How)

The purpose of Test Environment Preparation is to document the steps necessary
to prepare the environment for test execution. This process describes the
environment, defines the initial setup, identifies data requirements, dependencies,
and recovery points, and establishes procedures for backup and restoration of the
environment.

Key Process Area 4 - Test Execution (When)

The purpose of Test Execution is to apply the test cases and log results. The
following items are examples of results typically documented during test
execution:

• Actual Results achieved during test execution compared to expected
application behavior from the test cases.

• Test Case completion status (Pass/Fail).
• Actual Results of test execution that trigger suspension criteria.
• Deviations taken from the test plan or test process.

Key Process Area 5 - Test Results Analysis (What Happened)

The purpose of Test Results Analysis is to compare results of the test execution
with the acceptance criteria defined by the Test Plan. Test Results Analysis
includes a review of the Test Execution Log, Test Execution Statistics, and
Application Defects. Test Case completion status (Pass/Fail) is also evaluated
during the course of this Key Process Area. Defects are logged into the defect
control system as appropriate.

Key Process Area 6 - Management Reporting (What does it mean to us?)

The purpose of Management Reporting is to communicate the results of the Test
Execution and Test Results Analysis KPA’s to management. It communicates
progress towards the test goals and business and technical requirements
fulfillment. In other words, does the application perform the business function for
which it was defined? Additionally, it is used to communicate the conclusions and

Page 6 of 7

recommendations of the test team to the application development team and the
user community.

The Role of Tools in Support of the Process Model

The “testing tools” currently available on the market are primarily focused on the
test execution process area leaving the other aspects of the overall software
testing architecture uncovered. That fact has lead to the “creation” of tools using
word processors, spreadsheets, small database systems and HTML to support the
remaining architectural areas.

The tools that are available from vendors are very effective when properly
focused and supported. They provide the repetition, volume, precision and
consistency that would be very difficult to achieve in a completely manual
software testing system.

Automation Criteria
The software testing process needs to provide the measurements necessary for
management to use testing tools effectively. With that in mind, there are some
common criteria that can be used to determine the need and level of automation
that your testing organization can support.

Typical candidates for automation include tests that have the following
characteristics:

• Application functions that are critical
• Execute high path frequency
• Demonstrate functionality that is regulated
• Large data volumes
• Stress or Performance test related

Additionally, there are criteria that should be reviewed that will help determine
how the automation will be performed as well as what will be automated. Using
the wrong automation approach can have a devastating impact on the testing
effort.

Typical items that should be reviewed before an automation approach should be
determined:

• Resources available for testing and support of test automation
• Volume and types of changes being made to the application under test

Conclusion
An effective software testing system can become an integral part to the software
development or deployment process. These systems can deliver the vital
information necessary to make release decisions and assess the risks associated
with the release. The efficiency and precision of the system is made more

Page 7 of 7

effective with the use and support of the appropriate tools. So, the answer to the
title of this paper is that the process comes first, paving the way and establishing
fertile ground for maximum benefits to be harvested from the use of the tools.

QW2000 Paper 4T2

Dr. Mark Blackburn & Joseph Fontaine
(Software Productivity Consortium)

Application of the Test Automation Framework
for Model Analysis and Test Generation

BACK TO QW2000 PROGRAM

Key Points

Overview describing the basic notions of model-based development and how model analysis and test
generation can significantly reduce time and effort

●

Summarizes some of the benefits obtained by some members that have used the Test Automation
Framework. One member project achieved 2 orders of magnitude greater test coverage (higher quality and
reliability). With five+ experiments performed, they indicated that the modeling of such requirements could be
done in 50% of the time (reducing cycle time).

●

Explains how using the Test Automation Framework changes the lifecycle processes; provides a perspective
on how the process changes the approach from traditional testing to continuous model-based V&V.

●

Presentation Abstract

The following outline provides a high-level summary of the "overview" describing applications of the
Test Automation Framework (TAF). The briefing starts with an overview describing the basic notions
of model-based development and how model analysis and test generation can significantly reduce
time and effort. It also summarizes some of the benefits obtained by some members that have used
the TAF. One member project achieved 2 orders of magnitude greater test coverage (higher quality
and reliability). With five+ experiments performed, they indicated that the modeling of such
requirements could be done in 50% of the time of existing (traditional) testing process (reducing cycle
time). They were able to unifying an adhoc process of test script development from incomplete textual
requirements, some of which were in the heads of the testers, and eliminated the need for several
internally maintained tools.

Through deployment of the TAF we have gained insight into how models will become important
mechanism for capturing the domain-specific intellectual property of a business unit. We explain how
using the TAF changes the lifecycle processes from a traditional testing effort to one based on a
continuous model-based V&V approach.

About the Author

Dr. Blackburn is President of T-VEC Technologies, Inc. and co-inventor of the T-VEC system and
serves as Chief Technologist at the Software Productivity Consortium. He has twenty years of

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/4T2.html (1 of 2) [5/1/2000 12:44:58 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

software systems engineering experience in development, project leadership and applied research in
object technology, requirement and design specification, formal methods, and formal verification. He is
also involved in developing strategies for integrating knowledge management and e-business, and
has also been involved in applied research and technology demonstrations in web-based knowledge
engineering, domain engineering, and reverse engineering. He earned a BS in Mathematics from
Arizona State, MS in Mathematics from Florida Atlantic University, and a Ph.D. in Information
Technology from George Mason University.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/4T2.html (2 of 2) [5/1/2000 12:44:58 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Page 1

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

SOFTWARE
PRODUCTIVITY
CONSORTIUM

 Applications of the Test Automation
Framework for Model Analysis and Test

Generation

www.software.org

Mark R. Blackburn Joseph S. Fontaine
blackbur@software.org fontaine@t-vec.com

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Problem

• Reduced cycle time of product development is critical to
a companies’ success

• Testing accounts for 40-75% of the effort

• Requirement defects account for 40-50% of failures
detected during testing*

• Members spend 50% of test time debugging test scripts

• Member reported that feature interaction problem have
resulted in as many as 30 test iterations prior to release

* Davis, Alan. Software Requirements: Objects, Functions, and States.
Englewood Cliffs, NJ: Prentice-Hall, 1993.

2

Page 2

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Test Effort Increase Over
System Life Cycles

• Initial development

–Test approximately 30% of effort/cost

• Evolution

–Test is relatively the largest activity >50%

• Maintenance

–Test can now consume >70% of the time, effort and
cost

Requirements and Analysis
Build (Design/Code)
Test

Initial
Development

Evolution and
Customization

Maintenance

Test
Build

Requirements

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Solution

• Integration of model development tools with:

–Model analysis capabilities to remove requirement
defect

–Automated test vector and test driver generation
– Eliminates manual development of test cases and determination

of expected outputs

– Eliminates manual development of test scripts for target and host-
based implementation

– Provides requirements to test coverage analysis

– Provides model simulation data to help validate the model through
execution

–Has been used for components evaluation

• Model translators provide the glue to integrate these
capabilities

3

Page 3

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Visual Modeling Examples

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Infrastructure

Domain Independence Services

Domain Specific Components

Why Model-Based Development ?

UNIX
Windows
NT
MVS
PSOS, ...

CORBA
COM
SAFEBUS
DBMS

Model-Based
Generation

Application

Code
Generation
Templates Configuration

Parameters

• Company assets are captured in
models

• Models are translated into
implementations

– Tailorable code generation
templates map to specific
architectures and languages

– Configuration parameters dictate
platform details, services, and
components

• Model-centric development
supports robust software and
process optimization

Models contain requirements & design of
information/algorithms independent from
language, platform, and infrastructure
architecture

4

Page 4

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Tool Types for Model-Based Analysis and
Test Automation

Program

Tests

Implements

Derived from Passes every
Satisfies

Specification

Model
Transformation

Specification

Specification
Analysis

Test Vector
Generation

Execution and
Results Analysis

Modeling
Environment

Model Simulation

Code Generation

COTS Components

Integration Components

Areas of Potential Automation

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Simulation
Environment

Specification
Analysis

Model
Execution

Dynamic Analysis
(Using Equivalence Classes of Data Sets)

File Edit View Tools Window Help

Model-Based Development Environment

S1

I

S2

initialize

signal3

false

I
F T

C

S2

S1

signal1

signal3 signal6

X
X

Caller 1 System Caller 2

OffHook

DialTone

Dialed Digits Ringing
Ringback Tone

OffHook

Talk

Talk

OnHookOnHook

Static Analysis

Target
Testing

Host
Testing

Test Vector
Generation IO/DataIO/Data

ProcessorProcessor

GraphicsGraphics
ProcessorProcessor

Image
Integrity
Monitor

LCDLCD
InterfaceInterface

Cross checking bus

Using Models and Applying the TAF

5

Page 5

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Test Vector and Test Driver Generation
Minimizes Manual Effort*

Simulation
Environment

Dynamic Model Analysis Using
Equivalence Classes of Data Sets

Target
Testing

Host
Testing

IO/DataIO/Data
ProcessorProcessor

GraphicsGraphics
ProcessorProcessor

Image
Integrity
Monitor

LCDLCD
InterfaceInterface

Cross checking bus

Test
Drivers

Object Mappings
Relate specification

objects to
implementation objects

Tests

Test Driver
Generator

* Member claim that testers spend 50% test time debugging test scripts

Schema
Describes algorithmic
pattern for test script

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Test Automation Framework Instance

Execution and
Results Analysis

Coverage
Analysis

Test
Generation

T-VEC Test Vector
Generation System

Test Driver
Generation

Modeling
Environment ObjecTime for

ROOM
SCR Tool
for CoRE

MatrixX
from ISI*

UML and
State Machines

Model Transformation
Family

Consortium
Developed

6

Page 6

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Summary of Detailed Process Steps
For all Subsystems

Subsystem
Specification

Implementation
#include < stdio.h>
#include <math.h>
main ()
{
 double med, var, sd, mean;
 int i, len;
 double n, sum, varsum;
 double numbers[1000];
 sum = 0;
 i = 0;
 while (scanf ("%lf", &n) != EOF)
 {
 sum += n;
 numbers[i++] = n;
 }
 len = i;
 med = numbers[len/2];
 mean = sum/(float) len;

 varsum = 0;
 for (i = 0; i < len; i++)
 {
 varsum = varsum
 + ((numbers[i]- mean)
 * (numbers[i]-mean));
 }
 var = varsum/((float) len - 1.0);
 sd = sqrt(var);
}

Generate
Test Vectors

Spec-Coverage
Analysis

Spec-Coverage
Analysis Log

Implementation/
 Specification

Object Mappings

Generate
Test

Driver

Test Inputs

Expected Output
and Tolerance

Test Log

Actual Output

Build Test
Driver

Test Procedure
Code

Target or
Test Environment

Compare Expected
and Actual Outputs

Instrumentation
for Coverage

Code
Coverage Log

Code Coverage
 Results Analyzer

Compile/Build
Specification

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Typical Organizational Situation

• Systems engineers develop textual requirements

– Comfortable with textual requirements, function list, etc.

– Pseudo rigorous graphics

• Software development and testing organizations work directly from
textual requirements

• Nearly 50% of defects traceable back to requirements

– Inconsistent or contradictory requirements

– Poor documentation and incomplete requirements

• Testing effectiveness below goals

– Requirement test coverage unknown or short of goals

– Test effort over budget

7

Page 7

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Effective Approach for TAF Deployment

• Tester involved in development of verification models by formalizing
textual requirements

• Perform model analysis and test generation during development

• Feedback results of model analysis to improve both textual and
modeled requirements

Textual
Requirements

& Models

Verification
Models

Test
Engineers

Requirements
Engineers

Designers &
Implementers

TAF

System

Tests and
Test Drivers

Test
Results

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Traditional Requirement-Driven Test Planning
• Traditional test planning determines functions and associated

conditions for each requirement

R = Requirement - TP = Test Plan - TS = Test Set

SRS

Function
List

Change
Request

Test Plan Matrix 1 2 3 4 5
Conditions/Events
Condition 1 T T F F
Condition 2 F F T F
Condition 3 T T F
. . .
Function/Action
Function 1 R R
Action 1 R R R
Function 2 R
Function 3 R
Function 4 R R
. . .

Function 1 is Required when
Condition 1 is True and
Condition 2 is False and

Condition 3 is a “don’t care”

R

TP

TS

8

Page 8

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Traditional (Manual) Test Development
• Test inputs must satisfy the conditions

• Expected outputs calculated with respect to test inputs

• Test procedure (scripts) defined to execute test in environment

R = Requirement - TP = Test Plan - TS = Test Set Test Plan Matrix 1 2 3 4 5
Conditions/Events
Condition 1 T T F F
Condition 2 F F T F
Condition 3 T T F
. . .

Function/Action
Function 1 R R
Action 1 R R R
Function 2 R
Function 3 R
Function 4 R R
. . .

Test Inputs Expected Output
and Tolerance

Test Procedure
Code

R

TP

TS

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Test Plan Matrix 1 2 3 4 5
Conditions/Events
Condition 11 T F F F
Condition 4 F T
Condition 1 F T F
. . .

Function/Action
Function 11 R
Action 1 R R
Action 2
Function 31 R
Function 6 R R R
. . .

Test Inputs Expected Output
and Tolerance

Test Procedure
Code

Test Development Redundancies

• Functions with common conditions often result in redundant tests

Test Plan Matrix 1 2 3 4 5
Conditions/Events
Condition 1 T T F F
Condition 2 F F T F
Condition 3 T T F
. . .

Function/Action
Function 1 R R
Action 1 R R R
Function 2 R
Function 3 R
Function 4 R R
. . .

Test Inputs Expected Output
and Tolerance

Test Procedure
Code

Test
Engineer 1

Test
Engineer 2

9

Page 9

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Model-Based Requirements Testing
• Model developed to characterize each requirement

• Test generation automated from requirements model

R = Requirement - RM = Requirements Model - TS = Test Set

R1
RM1

TS1

R2
RM2

TS2

R3
RM3

TS3

Model Analysis Detects
Inconsistent Features

R1
RM1

TS1

R2
RM2

TS2

R3
RM3

TS3

Combining Requirements Requirements

Req Model 1-3

Test Set 1-3

R1 R2 R3
Requirements Development Not Serial.

As requirements are introduced, they are
continuously modeled, integrated and

refined are part of the requirements model.

Continuous automated verification of the
model ensures requirements are well-formed.

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Relating Test Procedures to SCR

Condition Tables

Event Tables

Mode Tables

Condition Tables

Event Tables

Mode Tables

Monitored
Variables

Controlled
Variables

 Term
Variables

Common
Conditions

Test Plan Matrix 1 2 3 4 5
Conditions/Events
Condition 11 T F F F
Condition 4 F T
Condition 1 F T F
. . .
Function/Action
Function 11 R
Action 1 R R
Action 2
Function 31 R
Function 6 R R R
. . .

10

Page 10

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Reuse Models for Overlapping Conditions

Condition Tables

Event Tables

Mode Tables

Condition Tables

Event Tables

Mode Tables
Monitored
Variables

Controlled
Variables

 Term Variables

Condition Tables

Event Tables

Mode Tables

Common
Conditions

Test Plan Matrix 1 2 3 4 5
Conditions/Events
Condition 1 T T F F
Condition 2 F F T F
Condition 3 T T F
. . .
Function/Action
Function 1 R R
Action 1 R R R
Function 2 R
Function 3 R
Function 4 R R
. . .

Test Plan Matrix 1 2 3 4 5
Conditions/Events
Condition 11 T F F F
Condition 4 F T
Condition 1 F T F
. . .
Function/Action
Function 11 R
Action 1 R R
Action 2
Function 31 R
Function 6 R R R
. . .

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Comparison of Traditional Approach
versus

Continuous Verification and Validation

Requirements (Textual)

Design

Build

Test Planning and Development

Test Execution

Requirements Modeling

Test Execution

Verification Modeling

Design & Analysis

Test Generation

Build & Integrate

Traditional
Testing

TAF
Approach

Supported by Automation

Defects Which
Require
Rework

Fewer Defects

Less Rework

Reduced Risk
to Cost and
Schedule

11

Page 11

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

• Flight guidance avionics system

– SCR model/Java implementation

– Numerous modeling problem discovered after SCR model
checks performed

– 92% test coverage (MCDC) even
though model still had contradictions

– 6 paths out of 4620 not covered

– Some utilities not specified

– Developer told management that TAF approach “could save
40% of the full development cost, where SW Verif, as a whole,
is currently at 50% total”

Member Applications of TAF

Max
Depth

12 levels

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Member Applications of TAF
• Applied to system testing in an integrated set of systems

• 2 orders of magnitude increased test coverage

• Half order magnitude reduced effort

• SCR modeled by testers who have previously not modeled

– Ramp-up about 3 weeks

– Other models developed by person with CS degree (ramp-up
only 2 weeks)

• Experiment showed that crucial business domain knowledge was
not document - “only in the heads of the tests”

– Captures legacy assets in models

• Eliminates needs for several internally maintained tools

• Unifies entire process by modeling time, module load, etc.

12

Page 12

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Member Applications of TAF

• MatrixX model

– 200+ superblocks translated and vectors generated

– Model anomalies identified (on model with long history)

• Code was generated for execution on Native NT target.

– MS Visual C++ development environment used to build code for
select superblocks

• Test Process applied… test drivers automatically generated

– 185 super blocks verified successfully OVERNIGHT on the 1st
attempt

• Another member applying to product line

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Summary of Benefits and
Risk Management Arguments

• Requirements defects or anomalies identified early – prior to design
or implementation

• Requirement modeling appears to take no longer that traditional
test planning, but reduces redundancy, and build on existing model

– Model analysis eliminates requirement defects typically found
during testing

– Test generation from requirements model eliminates most
manual test effort

– Test generation provides measurable coverage of requirement-
based tests

• Parallel test development permits “relatively” longer development
time reducing risk of program schedule overrun

13

Page 13

Copyright © 2000, Software Productivity Consortium NFP, Inc. All rights reserved.

 SOFTWARE
 PRODUCTIVITY

 CONSORTIUM

Benefits and Results Summary
• Test automation to support manually intensive test generation and

model-based analysis is feasible and practical for system and
software testing

• Demonstrated for functional, OO, control system and hybrid
modeling approaches

• Better quality requirements for design and implementation
help eliminate rework in those phases as well as during test

• Verification modeling reduced the time normally spent in
verification test planning about 50%

• Demonstrated to reduce time and effort by 50% while increasing
coverage leading to increased quality and reliability by 200%

• Demonstrated to eliminate need for internally maintained tools

• Demonstrated as approach for modeling legacy assets

QW2K Paper 4A2

Mr. Kevin VanFlandern
(Microsoft, Inc.)

Benchmarking Large Windows Based
Applications

BACK TO QW2000 PROGRAM

Presentation Abstract

This paper covers methods used by the Office Performance team for retrieving and analyzing
benchmark data against large Windows based applications. The contents include the objectives of the
team, how we narrowed down our key goals and objectives, and how we set about, from both a
hardware and software perspective, resolving each one.

The goal of our team is to gather and report comprehensive performance information about the
applications that ship with Office for the purpose of tracking, identifying, and isolating performance
issues that occur during the product cycle.

Given the many ways available to extract performance times we create a list of goals in priority order
so that we will design the correct system to suite our needs. At first glance it may appear that
simulating a real world user system, and providing close to accurate numbers would be our goal.
Unfortunately since the data cannot consistently be reproduced, we are unable to track down and fix
issue that are found, or even determine if the anomalies are in fact real issues. With that in mind we
prioritize consistency of the data (or reproducibility), at the top of the list. The next priorities are being
able to isolate an issue once it is found, then accuracy, and last real world.

The methodology we used in obtaining these goals will be covered including the following areas. The
impact of hardware, specifically memory, processors, disk, and net works, on the application
performance. How Operating system concerns such as configuration, virtual memory, disk layout and
thrashing can affect your results. I will also cover our experiences and how we resolved the
automation needs including preparing and starting the test, driving the application and
reporting/logging the results with minimal effect on the data. Lastly I will briefly discuss tips on
reporting and analyzing the results.

About the Author

(To Be Supplied)

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/4A2.html [4/28/2000 2:31:56 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Benchmarking Overview 1

4/26/2000 Office Fundamentals Performance 1

Benchmarking OverviewBenchmarking Overview

Kevin Van Flandern

4/26/2000 Office Fundamentals Performance 2

Project Goals…Project Goals…

l Consistency of gathered data
l Isolation of anomalies
l Precision of the Benchmark data
l Reporting data (volume)
l Accuracy or “real world” data

Benchmarking Overview 2

4/26/2000 Office Fundamentals Performance 3

Consistency of gathered dataConsistency of gathered data

l Brief history of past problems
l Consistency vs. Accuracy
l Controlling the hardware
l Controlling the software
l Quiet Network

4/26/2000 Office Fundamentals Performance 4

HistoryHistory

• Very high STDEV from one build to
the next

• Scenario based tests
• Similar hardware but radically

different results
• Developers did not trust the data
• App groups started their own

performance efforts

Benchmarking Overview 3

4/26/2000 Office Fundamentals Performance 5

Consistency vs. AccuracyConsistency vs. Accuracy

l Actionable results
l Reproducibility
l Regressions
l Historical trends

4/26/2000 Office Fundamentals Performance 6

Controlling the hardwareControlling the hardware

l Build the system same components
l Tier Configurations
l Multiple Disks
l Disk Layout
l X10 technology

System files

Office files

Benchmarking Overview 4

4/26/2000 Office Fundamentals Performance 7

Controlling the SoftwareControlling the Software

l Minimize software running
during tests (Jump Start)

l Performance SDK /
Performance markers

l Driving the applications Merlin
l Creating and restoring clean

defragged images
l Plugging into an automation

system

Source OS

Target OSD:

C:

4/26/2000 Office Fundamentals Performance 8

Controlling the Software 2Controlling the Software 2

D:\

Clean Target Drive
Restore OS/Office image
Bring down test specific files
Boot to Target OS

Benchmarking Overview 5

4/26/2000 Office Fundamentals Performance 9

Controlling the Software 3Controlling the Software 3

Boot Jump StartBoot Application w/ TW testLoad Epilogue.dll log data and close appPush data to Data Base and restart

Target OS

Jumpstart Application

Merlin

Perf.Dll

Perf.Lib

Epilogue.Dll

OFTB-DB
Data
log
file

4/26/2000 Office Fundamentals Performance 10

The quiet networkThe quiet network
l Ideally benchmark

clients would run
with no network.
However...

l Short of a private
Network and fully
switch network will
effectively eliminate
net traffic impact on
tests.

Benchmarking Overview 6

4/26/2000 Office Fundamentals Performance 11

Isolation of anomaliesIsolation of anomalies

l Historical trends
l Validation of tests statistically
l Non scenario based tests
l Investigate fluctuations

4/26/2000 Office Fundamentals Performance 12

Historical TrendsHistorical Trends

Benchmarking Overview 7

4/26/2000 Office Fundamentals Performance 13

Validation of testsValidation of tests

l Verify the environment
l Verify the tools
l Check the Iterations
l Check the standard deviation of the

averages
l Check standard deviation percentage

of average

4/26/2000 Office Fundamentals Performance 14

Non scenario tests / Investigate fluctuationsNon scenario tests / Investigate fluctuations

l Scenario based tests create their own
fluctuations

l Profiling tools
• OffProf

• Regmon
• Filemon
• Workset
• Perfmon
• RPC count
• …

Benchmarking Overview 8

4/26/2000 Office Fundamentals Performance 15

Precision of the Benchmark dataPrecision of the Benchmark data

l Application performance markers
l Perf.lib 4k (1 page)
l Perf.dll 16k (4 pages)

4/26/2000 Office Fundamentals Performance 16

Application Perf MarkersApplication Perf Markers

Application Perf.lib
4K

Perf.dll
16K

Application driver
vb, vba,visual test

Benchmarking Overview 9

4/26/2000 Office Fundamentals Performance 17

Perf.libPerf.lib

l Application load library if reg key
exists

l Library preloaded into memory
l Perf .lib exposes Perf.dll API calls
l Under 1 page of memory 4KB

4/26/2000 Office Fundamentals Performance 18

Perf.Perf.dlldll

l Holds 150 64 bit marker pairs
l Supports the following API calls

– Marker Morphing
– Marker on off
– Marker filter
– Marker insert

l Logs to file on application close

Benchmarking Overview 10

4/26/2000 Office Fundamentals Performance 19

Reporting dataReporting data

l http://Perf/perf10
l Ship Criteria
l Full suite
l Data analysis

– Metrics
– Dev investigation tools

Demo Reporting tool

4/26/2000 Office Fundamentals Performance 20

Reporting PageReporting Page

Benchmarking large Windows based application

Kevin Van Flandern
KevinVF@Microsoft.com
(425) 703-1339

Level: intermediate

Keywords: Performance, Benchmarking, Automation

Biographical Sketch: Software Test Lead at Microsoft. I have been with MS for almost five years.

Abstract
This paper covers methods used by the Office Performance team for retrieving
and analyzing benchmark data against large Windows based applications. The
contents include the objectives of the team, how we narrowed down our key goals
and objectives, and how we set about, from both a hardware and software
perspective, resolving each one.

The goal of our team is to gather and report comprehensive performance
information about the applications that ship with Office for the purpose of
tracking, identifying, and isolating performance issues that occur during the
product cycle.

Given the many ways available to extract performance times we create a list of
goals in priority order so that we would design the correct system. At first glance
it may appear that simulating a real world user system, and providing close to
accurate numbers would be our goal. Unfortunately since the data cannot
consistently be reproduced, we are unable to track down and fix issue that are
found, or even determine if the anomalies are in fact real issues. With that in
mind we prioritize consistency of the data (or reproducibility), at the top of the
list. The next priorities are being able to isolate an issue once it is found, then
accuracy, and last real world.

The methodology we used in obtaining these goals will be covered including the
following areas. The impact of hardware, specifically memory, processors, disk,
and net works, on the application performance. How Operating System (OS)
concerns such as configuration, virtual memory, disk layout and thrashing can
affect your results. I will also cover our experiences and how we resolved the
automation needs including preparing and starting the test, driving the application
and reporting/logging the results with minimal effect on the data. Lastly I will
briefly discuss tips on reporting and analyzing the results.

Objectives:

Consistency:
When we first looked at trying to setup a performance lab we had thought that
real world simulation was extremely important. The idea being that by simulating
as close to real world as possible, we would catch performance anomalies in slow
user situations that would normally be lost in a more clean environment.

It was not long after we started the process that we realized our primary goal as a
test organization was not only finding performance issues but they needed to be
actionable, and reproducible as well. We also found that there were many
contributing factors in a “real world” environment that detract from the
consistency of the data.

In our first system we set up several off the shelve Personal Computers (PC’s) of
different makes and models. The basic configuration of the PC’s were the same
i.e. same processor speed, memory configuration and drive size, however the
manufacturer’s and models were different. We were surprised at both the
substantial difference from one PC to the other on a particular action timing
(several hundred percent), as well as the number of hardware differences in the
system.

The other immediate and glaring problem was the way the test scenarios were
written. The scripts were set up to drive an application through 50+ actions and
measure each one. Unfortunately each variance in performance created artifacts
that affected the results of later actions. By the time we completed any given
scenario, the memory had been so taxed and fragmented that the last handful of
tests were no where near consistent. An example of this would be, if we opened a
typical document first then a complex document later, much of the complex
document load code would be cached. If the typical load failed to run properly
then the complex document could take several hundred percent of it’s normal load
time. Even after only a handful of actions you are almost certain to see this sort
of problem occur on scenario based tests.

It became very clear that when we started reporting results on a system build in
the real world model, which 90% or more of the bugs were created in the lab, and
required a huge amount of effort to track down. Even real bugs required an
enormous effort to verify that the anomaly was real and warranted further
investigation. When it came time to regress and track the actions, the same
problem applied.

We solved these issues by concentrating our efforts on the problem of consistency
in data, and began a several phase process of cleaning up the system up from a
hardware and software perspective.

Isolation:
The next concern we faced in the lab was isolating the problem. In a non-clean
environment this problem is monumental, so it is necessary to resolve the clean up
portion of the environment before trying to tackle the isolation.

What we found was that after a problem occurred it was very difficult to track the
problem down. This is an extension of the consistency issue, and required that we
solved that concern first.

We found if we measured a degradation of an action by several hundred percent
we then had to try and resolve the question. What caused this degradation? Was
it the action itself? Was it a spike caused by the many unknown variables that are
not being monitored around it? For example many people run a mail program and
a browser in the background. However having such programs running can cause
spikes in your data when their processes, or polling.

The solution here is simple in principle. Eliminate as many non-predictable
influences to the environment so that you can confine performance anomalies to
your tests and the action(s) within those tests. The benefit is that we can then
automate the investigation process and use tools that monitor the key PC
performance bottlenecks like Registry read writes, File I/O, Memory
consumption, and processor usage.

Precision:
Precision falls third on the list because in addressing precision we found that you
must first address consistency and isolation. In this phase of the process we were
concentrating on getting timers that reflect exactly what the end user perceives
that action to be. There were several blocks that we ran across.

The first was that we had no way of triggering the timers in the correct location.
We would use an application driver like Visual Basic (VB) or Visual Test and
attempt to measure File Open just to find that VB was unable to tell us precisely
when the file open would start or stop. For some of the tests we tried to hook
system idle to figure out when it was completed but that did not work very well.
When we actually ran a profile on the application between the given markers we
found that we were missing large chucks of code, and adding lots of extraneous
code just in the timer placements alone.

Using Visual Test or VB plagued us with problem. The Dynamically Linked
Library files (DLL’s) that come with these programs uses five Megabytes (MB)
of working set space, and constantly polls the system causing unpredictable

fluctuations. In the timers, VB drives the application via the object model
(assuming you have one), which in many cases exercises radically different code
paths than what the User Interface (UI) would use causing you to measure the
wrong thing and Visual test scripts constantly break during the product cycle.
Because it drives the applications UI these scripts are vulnerable to failure due to
changes in the product.

Lastly, the timers themselves were very low resolution and could not time
relatively small actions such as refreshing a page in a document or recalculating
the value of a cell in a spreadsheet.

We approached this problem in two ways. The first was to create a timer solution
independent of the product used in driving the application. We developed a very
low impact Software Developer Kit (SDK) tool set that allowed the application
developers to actually insert markers in specified locations throughout their code.

The second portion was that we developed a tool that drove the application using
the application UI itself. (I won’t go into to much detail here except to say that
this tool is complied with the application guaranteeing that scripts do not fail with
the application. Again, this tool has an almost immeasurable impact on the
shipping product.)

Real World
The “real world” test cases are an important part of ad hoc benchmarking.
However, what we found was that by creating a clean and reproducible harness to
run the scripts we could come up with many actionable items and the results are
very measurable. The idea being a much larger set of real world anomalies
caused by our application would be fixed implicitly through the clean action
based test suite than if we concentrated on them alone.

Methodology

Cleaning up the hardware:
This was done in several phases. The first step was to get machines that
would produce similar data on a given action. We did this by building the
systems from the ground up. Every component had to be the same make,
model, and even lot number. We found that any minor deviation no
matter how small gave inherently different results. Even with identical
systems, there was a certain error margin measured from one system to the
next, which we resolved by testing the systems and grouping them
accordingly.
We then used a series of tools to measure the processor, memory, video,
and drive performance.

Each machine was given a second hard drive that would be used to isolate
the test environment from the rest of the system. (see OS and application
imaging)

We choose a processor that represented the lower end configuration of our
standard users system, and then created a set of “tiers” based on operating
system and memory configuration.

There are four primary tiers targeting to operating systems. For each OS,
there is a low memory system and a memory unconstrained system. This
allows us to distinguish disk bound problems from processor bound
problems without the use of additional tools.

We also found that the network provided some level of overhead so we
virtually eliminated that by moving to a fully switched network
eliminating local corporate traffic.

Cleaning up the software:
When running benchmarks, the virtual environment needs to be as clean as
the physical environment to minimize the impact on the data being
gathered. To run through these tests we need an OS, a set of tools that
drive the application, and additional tool(s) to extract the times.

Operating System: We set up the system in three phases; the first is to
prepare the machines. Each machine has an operating system installed on
the target hard disk. All memory resident programs that normally load on
boot are removed as well as a handful of other checks. The OS is then
defragged and stored as an image for future runs.

The second step is to prepare the systems for a suite or run for a given
build. In this step the image is restored and the current build of your
application is installed as well as all static tools needed for the run. This
image is defragged again and the image is stored on the hard disk to be
used for each test.

The last step is running the test itself. In this phase we format the drive
and the clean prepared image is restored. Additionally, all the needed
script files and documents are copied to the drive in a specified folder.
Then a short cut to your driver is added to the startup group and we reboot
into that drive triggering the start of the test.

Tools for driving the application: In the past we have tried manually
testing the application and timing with a stopwatch, Visual Test (MSTest
at the time), and Visual Basic. There are several problems with using
these programs. Manually driving the application is extremely
inconsistent. There are too many factors to try it this way, the least of

which is a .5 second standard deviation introduced by the tester
themselves. Visual Basic has at least five megabytes of working set
impact on your system, which heavily perturbs the environment. Another
common problem is that if your application supports its own object model
(OLE, COM) then you are usually exercising a different code path than
the end user is when performing a specific function. And Visual Test,
although it does exercise the UI as a user would, it often breaks due to
changes in the UI, and carries approximately five megabytes worth of
working set as well.

We addressed this by writing a tool the drives the applications through
their user interface using a lookup table that is compiled with the
applications. However that tool is not the focus of this paper. If you do
not have the resources to write such a tool, we recommend you use a
Visual Test type application to drive your test suite.

Performance SDK: Patent pending

Once the environment was set up for consistency, precision becomes
meaningful again. It is necessary to not only have very precise timers, but
accurate as well. We developed and SDK to resolve this problem.

The tool set is comprised of the following components.

Perf.lib: The Perf.lib file is linked to any application using performance
markers. This library exposes the API calls found in the Perf.dll. We
preload the Perf.lib into memory before running the application to avoid
adding the 4K (1 page) hit during boot.

Perf.dll: The Perf.lib contains all of the calls used in taking the time
stamps and storing them in memory. It also contains all of the logic used
in the Perf SDK and handles any special marker modification requests.
This Dll, can be replaced with a comparable DLL that hooks into another
tool you might have. For example we run tools that record registry
read/writes, file i/o, memory usage, and others. Each of these tools has
their own version of the Perf.dll and can be used to measure activity of
any type between two markers.

Jumpstart/Seatbelt: These two tools work in tandem. The seatbelt tool
is a very low profile tool whose job is to fire off the application and hand
it a command line. In our case we run our driver tool. Seatbelt has a very
small overhead of 20k, and nothing else is running in memory by the time
it loads.

Jumpstart is a bit bigger, it has the logic to open an INI file and create the
command line for seatbelt. Part of that command line is settle time for the
OS. The standard time we wait before running a test is 10 seconds.

Although the OS has not completely settled by this point, the background
noise should be at least consistent. Jumpstart then preloads the perf.lib so
it is effectively cached, and drops from memory as it calls seatbelt with the
created command line. Seatbelt counts the appropriate amount of time and
calls the application directly. The Driver tool is loaded as part of the
application in this case.

Reporting data
Additional Tools used in gathering data

DatParse: When all of the data has been gathered the program exits and
the data is written to a log file from memory. In the automation system,
we then push that log file to a database where it is parsed via a series of
stored procedures into the appropriate tables. However we also created a
tool for developers to use that allows them to parse the raw data into
legible marker sets and view the deltas between those markers.

Code Markers: The code markers or triggers are API calls put in the
applications at key locations. For example if you wanted to measure
“open a document” time, a developer would put a code marker at the File
Open start location in the code, and a second marker at the file open stop
location in the code. Note Markers pairs are not defined explicitly in the
code itself. That is done post processing of the data, so any marker can be
pared up with another.

Log Spinner: This tool does exactly what it sounds like it does. It
collects data log files, parses them and feeds the to the database using a
series of stored procedures.

Application

WorkSet.exe

FiRegmon.exe

IceCap.exe

Benchmarks
(no component)

Perf

Perf.dll

PerfWS.dll

PerfFR.dll

PerfIce.dll

Perfhost.lib

Performance database repository: Although this is a key piece used in
reporting the data after it has been gathered, the schema details are outside
the scope of this paper.

When the data is pushed to the database we store it as both raw data that
can be reprocessed at another time and we also store deltas of specific
marker pairs. There is a good deal of communication between the
automation system and the data repository because of the complexity and
the volume of the data stored. For example we may know that we want to
measure “file open”. In this case we create a “marker pair” in the
database and associate the two relevant markers with that id. When those
markers are detected in a test, the data is stored with the marker pair.
However, this is not enough to uniquely identify what was done. We do
not know what type of document was opened, and if we want to
differentiate between actions of the same type, but with different objects,
we need a second level of distinction. We solved this by creating a
“actions table”. Actions associate a Marker pair with a given script.

There is also a preprocessing way of differentiating marker pairs of the
same type. This is called marker morphing and is built into the Perf.dll. If
your application driver loads the Perf.dll it can tell the dll to look for
specific markers and change their ID to an alternate one if triggered. You
can also toggle between ignoring all markers and recognizing all markers.

Validating data: Once the data has been gathered it can be viewed dynamically,
however we always take a first pass at the numbers before releasing it.
Validating the results can prevent a lot of wasted dev cycles if there was a
problem with the environment.

Analysis: Part of validating the data and turning it into actionable items is the
analysis. We do this statistically, but it requires more in depth knowledge of the
different types of number we gather.

In almost all cases we take a minimum of six iterations for each action ID. There
are three types of iterations the Perf SDK supports.

OS Reboot: In this style we reboot the application between each snap
shot of the action. Because the state of the disk and memory are restored
to the same state with each reboot, the consistency is very high. These are
some of the most reliable data types we can gather, and they are also the
most expensive in terms of time.

Application Reboot: In this case the application is shut down and
restarted. Although the memory is still fragmented and much of the code
is cached via the operating system, aside from the first number the
iterations are fairly similar. Since it does not require a reboot, it takes a lot

less time to gather the data; unfortunately it also produces results with a
high standard deviation between iterations.

Cached: In this case the application is not exited until the test is
complete. The action being timed is contained within a loop and all of the
data is retrieved at the same time. This is obviously the fastest way to
gather the data, however it also is the least consistent, and most unlike a
real user situation. Generally this type of test is not recommended unless
you are trying to time a very Central Processing Unit (CPU) intensive, low
memory usage action.

Exposing the Data: When looking at this data we stack up the iterations and
derive three numbers.

The Average: Sum of all iterations multiplied by the total number of
iterations.

Standard Deviation: This number represents the what your next data
point should be with a +/- error margin. We use this to determine the
volatility of the data which also gives us an idea of how reproducible the
results are.

Percent difference of the average the standard deviation represents:
Since the Standard deviation is relative to the average, it requires more
than just a glance to understand it relevance. If the number is greater than
5% then our data is too erratic. We know that next time we run our results
we can expect up to a 5% fluctuation to occur from our last data point
without a real change in performance.

Percent Diff: This number is used to tell us how much performance has
increased or decreased from one build to the next.

(Example)

 Baseline Current Build

Iteration 1 1.336 2.43
Iteration 2 1.459 2.431
Iteration 3 1.339 2.564
Iteration 4 1.375 2.789
Iteration 5 1.421 2.549
Iteration 6 1.299 2.544
Average 1.372 2.551
StDev 0.059 0.131
%StDev 4% 5%

Open a HTML Document
Baseline Current Build %Diff
1.372 2.551 -46%

In this case we experianced a degradation of 46%. We feel comfortable
that the data is actionable because it is relativley consistant from one
iteration to the next.

We are not sure that the application change is responsible for the
degradation, but we do know that what we are measuring is really this
different.

Identifying the problem:
The percent Difference is the primary indicator that we use to determine if a
anomaly in the code has occurred. The first step in investigating that anomaly is
to check the environment and the percent standard deviation. If there are no
global problems, and the statistical data seems within an acceptable range we can
use additional tools to expose what caused the time difference and verify it is the
code itself that is the problem.

By producing logs that show the Registry, memory, file, processor usage, and
total time spent in functions between two markers we can isolate the change that
has caused the problem.

QW2000 Paper 4W2

Mr. Steven Rabin
(Interworld Corp.)

eCommerce Performance Management
Lifecycle -- Benchmarking, Methodology and

Criteria

BACK TO QW2000 PROGRAM

Presentation Abstract

One of the key aspects of a successful eCommerce initiative is performance. While this is often
overlooked or taken for granted very few customers will return to a site that exhibits sluggish
performance. Features, functions, robust tools, etc. are all important to the success of an eCom site
but in the long run don't mean much if customers don't get efficient responses from the site their
shopping. This session discusses the eCommerce Performance Management Lifecycle. This includes
the key elements in understanding customer/site dynamics and how to use this information to design
an eCom based performance testing benchmark (including the methodology that goes along with it).
This includes workload characteristics, transactional definitions and site assumptions. A framework for
eCom performance benchmarking and the criteria that need be measured is also introduced. Real
world scenarios from a variety of sites are analyzed from the lessons learned perspective.

The life cycle takes into account the 8 key elements of delivering and maintaining a robust
eCommerce environment. This includes understanding customer behavior, setting performance goals,
benchmarking, tuning and adjusting for peak periods. The eCommerce Benchmark must be designed
to measure the key processes utilized during the customer shopping experience (B2B and/or B2C).
Industry experience and customer input must be incorporated into the benchmark's design to
represent the typical workload placed on a Commerce server. Based on the results organizations can
predict how the site will perform under tough, real-world conditions. For example, the benchmark must
consider and measure the following granular activities:

1. authenticating an existing user
2. registering a new user or changing the profile of an existing user
3. browsing a catalog by category and/or product
4. processing an order
5. accessing key site pages
6. searching for products, full text and parametric
7. adding, changing, deleting items from a shopping basket (or purchase order)
8. purchasing/processing a committed order.

These activities must be incorporated into a series of transactions that measure round trip

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/4W2.html (1 of 2) [4/28/2000 2:32:05 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

performance, execution under load and scalability. The benchmark must be designed to measure
transactional workloads that exercise the key components utilized during an eCom session. This
includes:

* concurrent browser sessions
* dynamic page generation with database access and update
* processing multiple web objects
* on-line transaction execution scenarios
* multiple databases consisting of complex relationships
* efficiently resolving resource contention

Consideration must be given to capturing and interpreting the collected data. Translating these metrics
into meaningful statistics provides the information required to make key decisions. The following are
examples of what need be measured and reported:

1. orders per minute
2. registrations per minute
3. complex browsing per minute
4. simple browsing per minute
5. searches per minute
6. transactions per minute
7. dynamic vs. static pages served per minute

Finally, software and hardware environmental factors must be taken into account to insure the
measured results are meaningful. Operating System, Web Server, Database Server, SSL (Secure
Socket Layer) are software examples. RAM, CPU, disk access speeds and HTTP routing are
hardware examples.

About the Author

Steven Rabin is Chief Technology Officer of InterWorld Corp., a New York firm offering a variety of
electronic commerce application technology solutions.

He is a certified CDP and has published articles in Computer Language, Data Based Advisor, and
Systems Development as well as authoring the "Mission Critical Views" column in Application
Development Trends.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/4W2.html (2 of 2) [4/28/2000 2:32:05 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

eCommerce Performance Management LifeCycle
Steven Rabin,
Chief Technologist

How Much of Your eCommerce Sales are at Risk?

• 44.1 million on-line shoppers in the U.S.
• 37.5 million more will go on-line in the next 12 months
• on-line buyers spend an average of $200/month
• an estimated $762 million/month in eCommerce sales is

lost due to slow, spotty, inefficient sites

Zona Research, 7/99

2

Commerce Server Site Analysis

Home Page Size Bail-Out Rates
--
 70 KB * 50%

 40 KB * 30%
 34 KB 8%

 * other pages on site were 32-35KB and
 showed a 6-8% bail-out rate

 vendors must heed the 8 second rule

 Keynote Systems, 11/99

 Actions Taken After Abandoning eCommerce Site

Did Not Bought Item at Bought Item at
Demographic Buy Item Other Web Site Brick and Mortar
All 34% 24% 37%

Age < 25 years 27% 23% 53%

Age 25 to 34 43% 25% 30%

Age 35 to 44 27% 24% 43%

Age 45 to 54 35% 21% 38%

 Zona Research, 9/99

3

Top Commerce Site Performance (Xmas ‘99)

 Site HomePage Delivery Availability
 (seconds) (percent)
Amazon 4.9 99.4
Barnes & Noble 7.3 99.2
Dell 8.3 99.1
Gateway 6.4 86.7
Lands End 9.0 91.5
Toys R Us 5.7 98.1
Business 40 index 9.2 97.5

The eCommerce Performance Life-Cycle

Build and tune your application
Benchmark your system

Define your terms
Understand your customers
Set your goals
Plan your infrastructure

Build operations procedures
Adjust for special events

P
L
A
N

B
U
I
L
D

G
O

4

Performance
Management

Lifecycle
Plan

Infrastructure

Understand
Customer Behavior

Build / Tune
ApplicationBenchmark

Performance

Tune
Infrastructure

Adjust for
Peak Periods Set Site

Performance
Goals

Set
Operations
Procedures

Define Your Terms

• Simultaneous users:
– Orders / day? , Pages / second?, Visitors / day?

• What is the difference between a page?
– Hit?, Impression?

• How complex are the pages?
– Frames?, GIFs?, Applets?

• Are system capacity numbers measured in:
– pages / machine?, pages / CPU?

• Understand units of commerce work
l loading modules
lbuilding templates
l round trips (ie. database)
l transaction types

5

Understand Your Customers

• You can’t predict your traffic unless you understand
your customers.

• You must predict how many will come and what they
will do.

• Rely on past experience, industry statistics,
competitors, and all other information available.

• Consider season, time of day, marketing campaigns,
and other factors.

Set your goals
Sizing the System by Orders / Day

• Orders / Day 1000 [GOAL]
• Conversion Ratio 2% [ESTIMATE]
• Pages / Visit 10 [ESTIMATE]
• Peak Ratio 10% [ESTIMATE]
• Pages / Peak Hour 50000 [CALCULATED]
• Pages / Second 14 [CALCULATED]
• Pages / Second / CPU 2 [IW ESTIMATE]
• CPU’s Needed 7 [CALCULATED]

6

Set your goals
Sizing the System by Simultaneous Users
• Simultaneous Shoppers 1000 [GOAL]
• Desired Response Time 5 [ESTIMATE]
• Dwell Time 45 [ESTIMATE]
• Pages / Second 20 [CALCULATED]
• Pages / Second / CPU 2 [IW ESTIMATE]
• CPU’s Needed 10 [CALCULATED]

Build and Tune Your Application

• Budget time for performance tuning
• Understand the trade-off between performance and

functionality
• Consider impacts on other systems
• Focus on areas that will be the hardest hit by

customers.
• Small decisions can have a huge impact

7

Benchmark Your System

• Benchmark each component in isolation.
• Benchmark the system as a whole.
• Invest the time in accurately modeling your users with

a load testing tool.
• Assemble a team of experts to help with the final

acceptance test.
• Measure the system against the original goals.

Performance & Stability Testing (1/2)
– Simultaneous Users:
 Threaded commerce software guards against serialized resources.

However, that requires careful management of common services to
avoid deadlock. Test for concurrent usage.

• database connection pools
• CPU
• components/objects

– Transactions per second:
 Stress testing for peak performance. Turnaway capabilities based

on estimated peak availability.
• common HTML refusal page
• where is the knee of the curve

8

Performance & Stability Testing (2/2)

– Server Sizing:
• Memory/CPUs?
• What is running on each server?

– Database Sizing:
• Capacity planning using sample data.
• Foot-print per user.
• Trigger threshold notices.

– Real-world Simulations:
• Server log analysis
• Classify types of transactions:

– Example: Search versus Orders?

Scenario 1: Search to Buy Ratio Static to Dynamic Pages
 99 : 1 1 : 99

 5 : 95
10 : 90

Scenario 2: Search to Buy Ratio Static to Dynamic Pages
 95 : 5 1 : 99

 5 : 95
10 : 90

Scenario 3: Search to Browse to Buy Ratio Static to Dynamic Pages
 60 : 39 : 1 1 : 99

 5 : 95
10 : 90

Scenario 4: Search to Browse to Buy Ratio Static to Dynamic Pages
 50 : 45 : 5 1 : 99

 5 : 95
10 : 90

Benchmark Configurations

9

• Home Page Transaction
• Product Page Transaction
• Section List Transaction
• Shopping Basket Transaction
• Buy Transaction
• User Registration Transaction
• Search Transaction
• Check Status Transaction

 eCommerce Benchmark Transactions

Static and Dynamic Units of Work - Simple and Complex Transactions

Transaction Type Percent Frequency
(bookseller)

• Search on product characteristics (e.g. title 43%)
• Display particular product 32%
• View Homepage 10%
• Display Shopping Cart Contents 8%
• Add Item to Shopping Cart 5%
• Buy a product 1%
• Register new user .3%
• Display order .3%
• Error .3%

10

Home Page
Search
Basket
Order Process

OP1 = ObjBuilder, OrderProcess initialize
OP2 = " " verifyOrderDialog
OP3 = " " verifyBillingDialog
OP4 = " " verifyShippingDialog
OP5 = " " setShippingMethodDialog
OP6 = " " confirmationDialog
OP7 = " " paymentMethodDialog
OP8 = " " orderCompleteDialog
OP9 = " " deleteOrder

Benchmark Scripts
(Search-Buy)

Web Site Performance Q&A

• Do customers experience consistently good performance from your
web site?

• How does your web site compare to your competitors or to industry
benchmarks?

• Do customers in certain cities have more trouble with performance
than from other cities?

• How does your site deal with heavy traffic and/or peak load periods?
• How reliable is your site in terms of connections refused, connection

time outs and page time outs?
• Are certain pages consistently slow?
• Should geographic mirroring be considered for your site?

11

• Site Characteristics
• Determine customer value of each feature
• Remove non-essential steps
• Dynamic page analysis
• Turn off features (based on peak load scenarios)
• Remove or disable personalized pages (peak load scenarios)
• load characterization, site characterization

• Assessment
• Determine customer expectations and evaluate the impact
• Who are you selling to and what do they expect to see next?
• Does the current infrastructure support the future?
• Cost and benefit analysis of new features vs. performance

• Simulate Real World Load
• Number of users
• Types of transactions
• Database access
• Legacy connection(s)
• Network/infrastructure issues

Benchmark and Performance Technology Assessment

O p e r a t i n g S y s t e m : S o l a r i s
N u m b e r o f C P U ' s : 2
M e m o r y : 1 . 4 G B R A M

E l e m e n t 1 u s e r l o a d 5 u s e r l o a d 1 0 u s e r l o a d 2 0 u s e r l o a d 5 0 u s e r l o a d
H o m e P a g e 4 . 8 4 2 3 . 2 5 3 4 . 7 4 3 7 . 0 5

C a t a l o g L i s t 2 . 4 7 2 . 4 3 2 . 4 9 2 . 1 8 3 . 0 1

S e c t i o n L i s t - C a c h e d 3 . 3 2 1 2 . 7 3 1 7 . 2 6 2 0 . 4 4 2 2 . 2 6

C a t P r o d u c t - C a c h e d 3 . 9 7 1 3 . 6 2 1 8 . 9 2 6 . 4 9 6 . 4 0

S e c t i o n P a g e - C a c h e d 0 . 1 9 0 . 9 4 2 . 0 7 4 . 7 0 7 . 9 0

P r o d u c t P a g e - C a c h e d 0 . 1 9 0 . 9 5 1 . 8 5 2 . 5 7 . 8 4

B a s k e t (I W X) 2 . 1 8 4 . 3 3 4 . 3 1 4 . 2 9 4 . 5 0

B a s k e t S t e p s 1 . 4 1 2 . 0 7 2 . 0 7 2 . 0 7 1 . 8 8

O r d e r P r o c e s s (t o t a l s)
- I n i t i a l S t e p
- V e r i f y O r d e r
- V e r i f y B i l l i n g
- V e r i f y S h i p p i n g
- S h i p p i n g M e t h o d
- C o n f i r m a t i o n
- P a y m e n t M e t h o d
- O r d e r C o m p l e t e
- D e l e t e O r d e r

0 . 0 4 0 . 1 4 0 . 1 0

O b j e c t B u i l d e r
- N O O P p r o c e s s
- S t a t i c T e m p l a t e
- S t a t i c T e m p l a t e +

D a t a b a s e a c c e s s
S e a r c h 0 . 0 9 0 . 4 7 0 . 9 3 3 . 3 5

C a t e g o r y S e a r c h 0 . 0 9 0 . 4 7 1 . 0 0 1 . 9 6

C u s t o m e r R e g i s t r a t i o n

M i x 8 5 % t o 1 5 %

M i x 9 5 % t o 5 %

U n i t s = D y n a m i c P a g e s / s e c (t r a n s a c t i o n s / s e c)

Results vary based on
site customizations

Use benchmarks as a guide.
Your mileage may vary!

12

eCommerce Benchmarking Methodology
and Criteria

QW2000 Keynote 5P1

Mr. Leon Osterweil
(Unviersity of Massachusetts)

Determining the Quality of Electronic
Commerce Processes

BACK TO QW2000 PROGRAM

Presentation Abstract

The goal of this talk is to emphasize that a discipline of assuring the quality of electronic enterprise
systems and transactions can be built on top of the very large base of technologies that have been
developed for more traditional application software.

The talk suggests that internet transactions and enterprises should be treated as technologically
based objects that we call processes. The talk further suggests that it is feasible and beneficial to
consider such processes to be software.

Viewing these processes as software immediately suggests that such software engineering
approaches as phased development, computer-based execution, and rigorous testing and analysis
are all applicable, and that the vehicles we have used to increase our confidence in the quality of
application software should all be applicable to increase our confidence in the quality of processes.
This talk will motivate the above intuitions, and will then demonstrate how to make them tangible. We
provide as a specific example the application of dataflow analysis to the verification of critical
properties of auctions.

About the Author

LEON J. OSTERWEIL is currently a professor in the Department of Computer Science at the
University of Massachusetts, Amherst. Previously he had been a Professor in, and Chair of, Computer
Science Departments at both the University of California, Irvine, and University of Colorado, Boulder.

He was the founding Director of the Irvine Research Unit in Software (IRUS) and the Southern
California SPIN. He has been Program Committee Chair of ICSE 16, TAV 2, ISPW4, and SDE2, and
General Chair of FSE 6. He has also presented keynote talks at such meetings as CASE 92 in
Montreal, Quality Week 96 in San Francisco, the Inaugural Symposium of JAIST (the Japan Advanced
Institute for Software Technology) in Kanazawa, Japan, and ICSE 9 (the Ninth International
Conference on Software Engineering) where he introduced the concept of Process Programming.

His ICSE 9 paper has been awarded a prize as the most influential paper of ICSE 9, awarded as a
10-year retrospective. He has consulted for such organizations as IBM, Bell Laboratories, SAIC, MCC,
and TRW, and SEI's Process Program Advisory Board. Prof. Osterweil is a Fellow of the Association

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/5P1.html (1 of 2) [4/28/2000 2:32:30 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

for Computing Machinery.
BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/5P1.html (2 of 2) [4/28/2000 2:32:30 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Determining the Quality of Electronic Commerce Processes

Leon J. Osterweil, Co-Director
Interdisciplinary Center for Electronic Enterprise

University of Massachusetts
Amherst, MA 01002

USA

ABSTRACT

As increasing numbers and types of enterprises and transactions in our society continue
to migrate towards the internet, the quality of these transactions and enterprises becomes
increasingly important. It is now feasible for banks and brokerages to hemorrhage money
at microsecond speeds, for government agencies to corrupt millions of vital records in
seconds, and for businesses to compromise secrets and intellectual property (both their
own and those of others) without even knowing it. Certainly there is wonderful promise
in the internet’s incredibly fast and easy access to unimaginably rich troves of
information and human resources. But with this immense power also must come
sobering realizations about the vulnerabilities that such power creates, and the need for
assurances that this power will not become a dangerous instrument of harm and evil.

We suggest here that the transactions and enterprises that are increasingly being hosted
on the internet should be treated as technologically based objects that we call processes.
We further suggest that the base of process technology that has been built by the software
engineering community can be used effectively to assure the quality of these transactions
and enterprises. In earlier work we have demonstrated that it is feasible and beneficial to
consider such processes to be software. Viewing these processes as software
immediately suggests that such software engineering approaches as phased development,
computer-based execution, and rigorous testing and analysis are all applicable. Indeed
this analogy suggests that the vehicles that we have used to increase our confidence in the
reliability of application software should all be applicable to increase our confidence in
the reliability of the processes that we are implementing as internet-based transactions
and enterprises. This talk will motivate the above intuitions, and will then demonstrate
how to make them tangible and how to realize the benefits of this point of view.

A major focus of this work is the need for languages that can be used as the basis for
achieving demonstrable internet process quality. A key tenet of the talk is that a suitably
powerful language is needed to define the full complexity of processes, and that such a
language can then be used as the basis of establishing various quality attributes of such
processes. Once these quality attributes have been established, that same language can
then be used as the basis for supervising the execution of processes that are then known
to have these quality attributes. We demonstrate the need for this process definition
language to incorporate such features as the specification of reactive control, resource

utilization, artifact flow and structure, and realtime constraints. We illustrate this with
the example of the Little-JIL language that we have developed.

Another key focus of this work is the consideration of approaches that can be effective in
assuring quality in such processes. Dynamic testing is widely used to ascertain
application software quality, and an analogous approach, namely realtime process
monitoring, can be useful in establishing the quality of processes. We note that
monitoring statistics and summaries are more precise and definitive when they are
gathered by instrumentation of an explicitly defined process, such as results from
definition in a language such as Little-JIL. But, just as in the case of application
software, dynamic testing has serious limitations, especially when applied to concurrent
systems. Thus, since most enterprise processes are concurrent, it becomes particularly
important to consider the application of complementary approaches to quality
determination. In this talk we emphasize the use of static analysis as such a
complementary approach. We explain the applicability of such static analyzers as
dataflow analyzers in establishing the freedom of processes from certain serious types of
faults such as deadlocks and race conditions. Accordingly, we next explain that the
Little-JIL language has a rigorous semantic definition that can then be used as the basis
for definitive reasoning about the quality of processes defined in the language.

The net effect of defining processes using a rigorously defined language such as Little-
JIL is that quality characteristics of the processes can be proven using automatic
analyzers, and the processes can then be automatically translated into systems running
under control of an interpreter that guarantees adherence to these characteristics. As
Little-JIL is a very powerful and comprehensive language, the processes at issue here can
be very realistic electronic commerce processes.

In the talk we will use as an example a family of processes for describing and controlling
auctions. Our example will demonstrate the use of Little-JIL to define precisely a small
set of auctions that differ from each other in seemingly small, but nevertheless important,
ways. The different auctions have different runtime behaviors, and some of them have
faults that are not immediately obvious. We will then demonstrate how these different
auctions can be statically analyzed. We indicate how we can use FLAVERS, a dataflow
analyzer that was developed for the analysis of complex concurrent software systems to
analyze these auction processes. We demonstrate how to analyze for the presence of
undesirable race conditions, and to assure such properties as not accepting late bids, and
assuring that the high bid always wins. Once these properties have been established, it is
safe to assume that the auctions so defined will actually execute without these flaws once
the auctions have been translated to be run by the Little-JIL runtime execution system.

The goal of this talk is to emphasize the point that a discipline of assuring the quality of
electronic enterprise systems and transactions can be built on top of the very large base of
technologies that have been developed for more traditional application software.

QW2000 Keynote 5P2

Mr. Rainer Pirker
(IBM / Austria)

The Need for Quality -- e-business Performance
Testing

BACK TO QW2000 PROGRAM

Key Points

How do customers perceive performance●

Measuring performance●

Using the right tools●

Getting advantages from an independent test team●

Answering security issues●

Presentation Abstract

Customers expect the best in e-business. This includes, above all, the first contact they make with
your organization. The first impression is key, the user interface, the performance, the right response,
right away. Get ready for interfacing with your customers at first click or call - only one chance to
attract the customer with good usability, fast and reliable response. One click, one chance, period.

The time and quality of response and the perceived performance to customers is essential in
e-business. With e-business solutions you win with an innovate and high quality solution but you loose
immediately customer confidence if your system breaks down with complex user interfaces, or long
response times - so customers will cancel their transactions which drag the performance of your
e-business solution further down. Your customer care center gets flooded with angry customer calls or
e-mails.

We'll help you to get the best out of your system - for your customers' benefits. We show you the
critical success factors and the measurements which allow to decide what good quality means for
e-business testing. Learn about independent test teams working in different locations, with the help of
leading edge tools. We also take a look at security issues in e-business testing.

About the Author

Rainer Pirker is a consultant with IBM Application Development Effectiveness Practice. He specializes
in test concepts and strategies to improve software quality. He has more than 10 years of experience
in information system and application development, and has in-depth knowledge of banking,
insurance and public institutions in the fields of executing, developing and improving tests.

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/5P2.html (1 of 2) [4/28/2000 2:32:41 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Copyright by IBM 2000

The Need for Quality -
e-business Performance Testing

Software Quality Week 2000 - San Francisco

Rainer Pirker / Andreas Rudolf
IT Consultants
IBM Global Services Austria

IBM Global Services AustriaCopyright by IBM 2000

Presentation overview

Our e-business
experience

Why focus on quality?

Key quality aspects
for e-business
solutions

Complexity of
e-business solutions

Case Study:
e-billing project / Telecom
test strategy
test concept
test cases
skills needed
test environment and tools
current project status

Critical success factors

Any questions ...

IBM Global Services AustriaCopyright by IBM 2000

We have had experience of conducting large scale
testing projects in many different industries

Our Department is strongly focused on:
Test consulting (e-business, EURO, Y2k, new product developments
etc.)

Application Development Effectiveness consulting (supporting the
customer to assess and improve their application development
processes)

Our working experience is based on:
a dozen large e-business/Y2k/EURO test projects since 1996 where
we worked as consultants and as test managers

dozens of projects for marketing and workshops for customer

projects in many industries: finance, insurance, transport, utilities

IBM Global Services AustriaCopyright by IBM 2000

The traditional order placing and order receiving
process is time consuming and error prone

1) Printing order

3) Carry order to
 fax machine

3) Faxing order

4) Picking up
 & Reading order

opt. 6) clarify
order

5) Typing in order, communicate
with back-end system

Company A Company B

IBM Global Services AustriaCopyright by IBM 2000

In the e-business world the order process is fast but
security and performance issues have to be addressed

Back-end system

opt. 3) Handling exception by
 e-mail or phone

Company A Company B

Firewall

1) Submit order
electronically

2) Process order
 electronically

IBM Global Services AustriaCopyright by IBM 2000

Only if you address the e-business risks from the
beginning is a high return on investment in sight

Traditional solution:
(+) creative, experienced human
being, good exception handling

(-) expensive workforce,
processing is mainly done by
humans

(-) medium data quality, frequent
'media breaks'

(+) "Human" firewall, resistant
against "hacking"

(-) service only during business
hours

e-business solution:
(RISK) single path, weak exception
handling without human support

(+) Processing is done by
computers

(+) high data quality and no media
breaks (single electronic process)

(RISK) hacking and spoofing are
possible without a good security
solution

(RISK) customer expectations are
24h x 7 days service

To target these e-business risks,
testing is key!

IBM Global Services AustriaCopyright by IBM 2000

Key quality aspects for e-business solutions are:
scaleability/performance, security, usability and
reliability

Scaleability
and

Performance

Security

Usability

e-business
quality

Reliability

IBM Global Services AustriaCopyright by IBM 2000

Key is how users perceive the performance of your
site and service

Scalability and Performance:
Permit a maximum of 8 seconds for loading a web page. When the
loading time increases just 10% the bailout rate goes from 6% to 40%

Knowing your requirements is key (number of concurrent users, user
profiles, desired response time, throughput, type of sessions,
transaction mix, modem speed etc.)

Focus on the user's perception of performance:

loading the whole java applet vs. loading JIT the classes needed for
each transaction

loading large HTML tables vs. loading smaller ones as required by
the user

the user will accept longer download times when the site and form
are perceived as secure

IBM Global Services AustriaCopyright by IBM 2000

Taking care of your customer's security fears is a
further key to success

User security fears

Security perception is key!

Good: inform the user of your
security solution (SSL, length of
key used for encryption etc.)

Bad: your site's security problems
are made public

Only a customer who
trusts your e-business
will continue to do
business with you!

Company security

passive Web attacks: wire tapping of
password and data, analysis of the
structure of the data stream

active Web attacks: spoof, mutilate
and delete data, password guessing

Use a secure system architecture (i.e.
firewalls)

For sensitive data (credit card
numbers) use a secure protocol like
SSL, a secure protocol like SSL can
have a big performance impact if not
handled by cypto hardware

Do not allow access your companies
internal functions. Do not test call
center interfaces over the internet

IBM Global Services AustriaCopyright by IBM 2000

Usability is also key as users need to quickly and
easily find the information they seek

Usability aspects:
Navigation: usability is improved when the site supports a search facility, a
site map and buttons for navigating to and from each page.
The site should never contain any broken links.

User interactions: the user's ability to interact with the system must be
kept very simple and easy i.e. "one click" shopping.

Help messages: especially business to customer (B2C) users cannot be
trained in the normal way. Extensive help messages and FAQs are useful

Computer literacy: users find it important to be able to quickly locate the
information they require on a Web page - graphical design is not the
crucial point for most e-business users.

Printing: users tend to print Web pages. Reading a page on the screen is
about 25% slower than reading a hardcopy of the same text

Support channel: however good your usability is, strong e-mail and
telephone support remains a necessity

IBM Global Services AustriaCopyright by IBM 2000

24x7 operation and the high visibility of e-business
solutions drives reliability requirements ever higher

Reliability:
B2C: customers from across the world expect 24h x 7days operations
which leaves little time for even short service windows

Customers expect short down times and high mean time between
failure rates (MTBF)

Outages have a serious business impact:
American Express outage cost: 167,000 USD / min
Charles Schwab outage cost: 1M USD / min

IBM Global Services AustriaCopyright by IBM 2000

The complexity of e-business architectures is such that
end to end performance tests are definitely needed

The structure of an e-business solution
is:

a three-tiered architecture similar to Client/Server
PLUS:

firewalls

distributed objects

authentication, credit card verification

ISPs

etc.

 HOST
 S/390

ITOC
(IMS TCP/IP OTMA

Connector)

Web/Application
Server

Authorisation
Database

IMS

ITOC (backup)
(IMS TCP/IP OTMA

Connector)

IMS (backup)

Firewall

Call Center
Appl.

Telecommunication Provider Intranet

Internet / e-billing inquiry
User

Webbrowser
Simulator

Webbrowser
Simulator

H
T

M
L

There are two basic types of e-business solution:
new e-business solutions build new from ground up

Risk: high -> completely new system

Web enablement solutions of existing legacy applications (e-legacy)

Risk: medium: -> interface to existing production systems

IBM Global Services AustriaCopyright by IBM 2000

Our case study is based on a telecommunication
provider's first e-business project

 The customer
Telecommunication company

5M customers

Their first e-business project

The project
e-billing solution which enables customers to obtain their
telecommunication bill via the internet

pilot targeted 500 customers

IBM
A request to independently validate the solution was not received until
after the pilot implementation had been completed

IBM Global Services AustriaCopyright by IBM 2000

For rapid e-business testing a clearly defined
approach is the foundation for success

Assessing
the

base

Defining the
test strategy

Defining the
test concept

Start End

Building up
the test

environment

Executing the
test cases

Defining the
test cases

This approach has been proven in many successful projects - at
this level there is nothing e-business specific in there

e-business testing approach

IBM Global Services AustriaCopyright by IBM 2000

First we assessed the existing base in terms of test
cases, documentation, environment and tools

Assessing the base situation:
Test cases: there were none documented

User documentation: an user handbook was not available however,
the functional specification was in good shape

Requirements, design and product documentation: The functional
specifications were sufficient however, the non-functional
requirements, like performance, transaction rate, reliability etc. were
missing

Test environment: we agreed with the customer that an isolated test
environment should be built. Only the mainframe connection was to
the production environment.

Assessing
the

base

Defining the
test strategy Defining the

test conceptStart End

Building up
the test

environment

Executing the
test cases

Defining the
test cases

IBM Global Services AustriaCopyright by IBM 2000

Then we defined the test strategy, the heart of any
testing project

Defining the test strategy
Draw a system structure diagram - a diagram of the architecture was
not available so we draw the picture to obtain an insight into possible
performance bottlenecks and security implications

Fast start: a very tight time schedule of about 4 weeks forced us to do
a really fast start in order to finish the engagement in time

Performance tests first: due to the customer's priorities we had to
swap around the traditional approach and do the performance testing
before functional testing

Black box end to end test: the customer was interested in the end to
end results and how the end users perceived the system's
performance

Assessing
the

base

Defining the
test strategy

Defining the
test concept

Start End

Building up
the test

environment

Executing the
test cases

Defining the
test cases

IBM Global Services AustriaCopyright by IBM 2000

In the test concept we focus on What and How

Defining the test concept
Define the What and How

Highlight 1: Check functional and non
functional requirements - for the
functional requirements the application
and it's specifications were available
and sufficient. Non functional
requirements like performance,
response time, transaction mix,
reliability etc. were only partially
available and had to be detailed out by
us.

Highlight 2: Define test cases for
measuring end to end performance
and for checking system security

Assessing
the

base

Defining the
test strategy

Defining
the test
concept

Start End

Building up
the test

environment

Executing the
test cases

Defining
the test
cases

Defining the test cases
The test cases were for business
transactions which we found
documented in the functional
specifications and by exploring
the live application

Headlines for the test cases were
documented in MS Excel

IBM Global Services AustriaCopyright by IBM 2000

The test environment has to be isolated from the
production environment to get reproducible results

Building the test environment
Test environment: a dedicated and
isolated test environment was built quite
separate from production except for the
connection to the mainframe

For defect tracking we used a Web
based tool as the developers, customers
and testers all worked at different
locations.

Assessing
the

base

Defining the
test strategy Defining the

test conceptStart End

Building up
the test

environment

Executing the
test cases

Defining the test
cases

e-billing Subject
Matter Experts
(Telco provider)

Software-
developer
(Software-

house)

Independent
Test Team

(IBM)

Independent Test
Team

(Businesspartner)

Problem-
tracking

Internet

e-mail

IBM Global Services AustriaCopyright by IBM 2000

In the case study the test system was a very close
copy of the production system

 HOST
 S/390

ITOC
(IMS TCP/IP OTMA

Connector)

Web/Application
Server

Authorisation
Database

IMS

ITOC (backup)
(IMS TCP/IP OTMA

Connector)

IMS (backup)

Firewall

Call Center
Appl.

Telecommunication Provider Intranet

Internet / e-billing inquiry
User

Webbrowser
Simulator

IBM Global Services AustriaCopyright by IBM 2000

Response times were measured for different user
profiles and different numbers of concurrent users

0

20

40

60

80

100

120

140

160

5 user 10 user 20 user

Number of concurrent user

re
sp

o
n

se
 t

im
e

(s
ec

)

Logon Display bill Bill comparison Display detailed bill Save bill Logoff

Response time of the different e-billing transactions

IBM Global Services AustriaCopyright by IBM 2000

End to end measurements identified the application
server (data conversion) as the performance bottleneck

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Logon Display bill Display detailed bill

e-billing application Authorisation/Logging Database Mainframe

Response time distribution of different e-billing transactions measured at the
application server

IBM Global Services AustriaCopyright by IBM 2000

Within four weeks the test was completed and the
final report given to the customer

During this time the independent test team
accomplished all of the planned tasks:

Test strategy defined

Test plan defined

End to End Performance Test cases executed

Metrics and final report delivered

IBM Global Services AustriaCopyright by IBM 2000

Quality testing had shown up a very large gap between
actual performance and the requirements

The following parameters were measured on the web
application server after it was identified early as the
performance critical system in the architecture:

CPU Load

Virtual Memory Size

The performance results were about a factor of 50 worse than
requirements. The development team was unable to quickly
determine what needed to be done to meet requirements. The project
was therefore suspended and restarted with a new development
team, project management and quality assurance brief.

Metrics and reports delivered
Response times per transaction type and the number of concurrent users

Response times per transaction type for different user profiles - private
customers, small- , medium businesses

To obtain a measure for user perceived performance, we measured the
time before the first HTTP data packet arrived. This was interesting for
transactions such as bill display were a large amount of data was being
transferred. The user himself can see the first page of the bill before the
download has finished. This depends on the HTML data stream.

IBM Global Services AustriaCopyright by IBM 2000

Focusing on quality is key for e-business solutions

Summary and Critical Success Factors (1):
Security issues can kill your e-business. Address these issues
carefully in advance - use secure protocols, disclosures for the testers,
etc..

Non functional requirements: define then early in the project

Use test cases based on business transactions

Use an independent test team focused only on the requirements -
testers who work also as developers do not usually have that "black
box" view of the system

E-business test tool skills: it is necessary to have experience of Web
based problem management and browser simulator tools if you need
to deploy them fast

Quality cannot be tested into a product. Plan for quality from the
beginning using, for example, IBM's Lifecycle Testing approach

IBM Global Services AustriaCopyright by IBM 2000

Focusing on quality is key for e-business solutions

Summary and Critical Success Factors (2):
Web content development and e-business solution application
development are quite different. Application development requires a
strong quality, requirements and project oriented approach

Test the performance of your e-business solution under real world
conditions (end to end tests, load the server with the right transaction
mix, SSL) and in a near real world test environment

Use Web based tools for problem management and test case
documentation

User profiles: always keep in mind that there are a lot of different types
of users out on the Web who are accessing your e-business

Plan and execute performance tests during all of the solution
development phases

IBM Global Services AustriaCopyright by IBM 2000

Any questions?

How to contact us:

Andreas Rudolf

e-mail:Andreas_Rudolf@at.ibm.com

Phone: +43-1-1706-4347

Fax: +43-1-1706-2393

Rainer Pirker

e-mail:Rainer_Pirker@at.ibm.com

Phone: +43-1-1706-4163

Fax: +43-1-1706-2393

Web: www.geocities.com/ad_consultants

Copyright by IBM 2000 Authors: Rainer Pirker/Andreas Rudolf Page 1/16

The need for quality – e-business performance testing

Rainer Pirker
Application Development Consultant
e-mail: Rainer_Pirker@at.ibm.com

IBM Global Services
Vienna/Austria

Andreas Rudolf
Application Development Consultant
e-mail: Andreas_Rudolf@at.ibm.com

IBM Global Services
Vienna/Austria

Abstract

Customer expectations are very high in e-business. Above all when they make first contact with your
organization. The first impression is key, the user interface, the performance, the right response, right
away. Get ready for interfacing with your customers at first click or call – you only have one chance to
attract each customer with good usability and fast, reliable responses. One click, one chance, period.

In e-business it is essential to set high standards for the customer perceived usability, reliability and
performance of your solution. With e-business solutions you can win with an innovative, high quality
solution but just as quickly loose again if your system breaks down, has complex user interfaces or long
response times – frustrated customers cancel their transactions, dragging down further the performance
of your e-business solution. Your customer care centers get flooded with angry customer calls and e-
mails and these customers are lost forever.

We will help you get the best out of your system - for the benefit of your customers. We will define the
critical success factors and measurements that enable you to determine the quality of your e-business
testing. You will learn how test teams can work independently at different locations with the help of
leading edge tools. We will also take a look at the security issues affecting e-business testing.

Summary

1 Performance aspects on the Web __2
2 Key quality aspects for e-business solutions__3
3 Complexity of e-business solutions __5
4 The performance testing project ___6

4.1 Assessing the base__6
4.2 Defining the test strategy __7
4.3 Defining the test concept___7
4.4 Defining the test cases __9
4.5 Skills needed __9
4.6 Building up a test environment ___10
4.7 Test Data Security___12

5 Current Project Status __12
6 Critical Success Factors __15
7 References___16

Copyright by IBM 2000 Authors: Rainer Pirker/Andreas Rudolf Page 2/16

1 Performance aspects on the Web
One of the most dominant factors for the success of an Internet based Web service is the quality of
service as perceived by the users of the service. The principle aspect for the users is the “responsiveness”
or “good” performance of the service [2]. But what is good performance for a user? The so called “eight
second rule” has become an oft-quoted standard. It is not really clear where this statement first gained
credence, but now it is widely believed that if a Web page is not downloaded within these eight seconds,
the users will bail out – the percentage of users who simply do not wait around for pages to load and
instead go on to other sites is called the “bailout rate” for a Web site [13].

A study in the U.S. showed that the average Web backbone connection speed is around 5 Kbd/sec. The
main body of Internet users are working with 28.8Kbd and 56Kbd modems. To be able to stay within the
“8-second-rule” and not become a “load-time-frustrator”, the opening page of a Web service provider
should not exceed 40 Kb for 28.8Kb modem owners. This study further showed that the reduction of an
opening page to 34Kb lowered the bailout rate rate from 30% to 6-8% – just because of a one second
load time reduction! If users are frustrated by a page, 30% of them will not stay on and become
customers of the site. Taking into account the “8-second-rule”, the Web page load times and ISP
(Internet service provider) failures, performance and availability weaknesses account for 15% of lost e-
business [13].

Figure 1: Increasing strength of the e-commerce sales channel [1]

15

10

51

2
22

42

8

32

117

0%

20%

40%

60%

80%

100%

1997 2000

Direct sale

Mail

Phone or fax

Non Internet e-commerce

Internet e-commerce

The increasing strength of e-commerce sales means that the performance, reliability and availability of
Web services, perceived as quality of service by the users, are getting to be major economic factors.

Application performance and reliability = business performance [4]

Performance needs to be planned for both before and during the development life-cycle. The complexity
of Web based applications is best expressed in download time. The performance which a user perceives

Copyright by IBM 2000 Authors: Rainer Pirker/Andreas Rudolf Page 3/16

consists not only of the modem, processing speed but also of page size, graphical complexities,
hardware, browser type, configurations, ISP and connection speed of the backbone provider. This
complexity and the economic importance of e-commerce are creating a growing demand for adequate
performance testing.

In figures 2 and 3 you can see some actual statistics about Internet usage in the USA and within the EU
and the approximated revenue growth for e-business in Austria for the next years.

Figure 2: Internet distribution 2000

6%

9%

13%

13%

15%

18%

23%

27%

27%

29%

35%

48%

49%

19%

23%

51%

Greece

Portugal

Italy

Spain

France

Ireland

Austria

Belgium

Netherlands

Germany

Great Britain

Denmark

Sweden

Finland

EU

USA

Source: EU-commision, Data Quest,
 Eurostat

Figure 3: E-business revenue growth in
Austria

0

1000

2000

3000

4000

5000

6000

in
 m

ill
io

n
 $

1997 1998 1999 2000 2001 2002

Total

B-to-C

B-to-B

Source: IDC, Internet-Commerce in Austria

2 Key quality aspects for e-business solutions
The common key quality aspects of e-business solutions are scalability/performance, security, usability,
reliability. Measurements have to be developed for these quality of services for controlling and
improving e-business solutions.

• Scalability/Performance: The main aspects of performance are response time and throughput.
Response time can be measured at the server side and/or from the user’s perspective, in which
case it includes all various aspects of the different components influencing Web performance.

Throughput is usually measured in requests or transaction per second and determines the rate
at which the system can deliver work. Throughput is more important for a systems
administrator than for an end user – they are concerned much more about the response time.

E-business workloads are composed of different sessions [6]. Menascé defines a session by a
sequence of transactions of different types such as browse, search, select, add to the shopping
cart, and pay. There is a great variation of users working with the e-business solution. User

Copyright by IBM 2000 Authors: Rainer Pirker/Andreas Rudolf Page 4/16

can therefore be classified into different user profile categories. Each user profile uses one
specific set of sessions (transaction mix).

End to end performance in general should be measured from the end users point of view –
many current solutions tools are net server centric and measure i.e. total requests made per
hour, status of each server, boot and shutdown by domain, machine, group and server etc.

• Security: securely transmitted information through the Internet has been identified as a major
success factor for Web solutions [10]. We differentiate between security for the end user and
security for the company offering the e-business solution. The more secure an Internet
operation seems to be for a user (security perception), the likelier they will return to this site
and recommend it to other users. If only one security problem goes public about the Web site,
the commercial impact to this company will be enormous. For high security operations the
user accepts lower performance, i.e. e-banking or paying by credit card.

The costs of entry into the e-business market is rather low, the risk of failure in this
marketplace is potential very high. Internet attacks to companies offering e-business solutions
can be structured in two main categories [2] – active or passive attacks on the Web. Passive
attacks are for example wire tapping of data, IDs and/or passwords or analysis about the
structure of the data stream. Active attacks can influence, spoof, or mutilate data and/or the
communication within a company. In the worst case this can modify or delete data, disable
the access to the site or delay information for users.

• Usability: some aspects for the usability of an e-business solution are: navigation, user
interactions, help messages, computer literacy, printing.

- Navigation: a Web site must support the user to easily find the information presented
on this site. Therefore it improves the usability when the site supports a search
facility, a site map and buttons for navigating on each page. The site should not
contain any broken links.

- User interactions: the possibility to interact with the system must be very easy for the
end user i.e. “one click” shopping.

- Help messages: especially users in business to customer (B2C) environment cannot
be trained in the usual way like for company internal client-server application,
therefore help messages for the e-business solution are important to support usability.

- Computer literacy: for the user it is most important to find the information on a Web
page, he is searching for – graphical design is not the crucial point for an Internet
user. 79% of the Internet users run over the text on searching for valid information.
Only 16% of surfers are reading an articel word by word [8].

- Printing: user intend to print Web pages because reading a page on the screen is about
25% slower than reading a hardcopy of this text. If a Web page is designed with white
text on a black background the print output will not be very readable.

• Reliability: Critical aspects of reliability of an e-business solution are the duration of down
times [5] – duration indicated how long a problem persists – and the mean time between
failures (MTBF).

Copyright by IBM 2000 Authors: Rainer Pirker/Andreas Rudolf Page 5/16

These are technical quality of service criterias. However these criterias should be dedicated from to
business measurements like revenue and profit – since these are the key business drivers for e-business.
For these business measurements “revenue throughout” (dollar per second) is a useful metric [6].

3 Complexity of e-business solutions
There are two different e-business solution types on the Web [11]: companies that are developing a brand
new e-business Web site with complete new functionality, and companies that are simply building Web
functionality on top of their existing legacy applications and infrastructure. Companies of the first group
are taking the biggest risk and therefore are most in need of testing. Companies in the second category
also have to test their applications, but the underlying functionality and programs are already tested and
the extent of the test has not to be as large as for the first group.

Superficial considered the typical e-business system is a three-tiered client-server environment – so Web
testing is much like client-server testing – but with more potential tiers and greater load variability.
Given the basic structure of a database server working with application or business servers, fronted by
Web servers there are may be many other special purpose servers involved: firewalls, distributed objects,
transactions, authentication, credit card verification and payment servers, backbone provider, ISPs etc.
[3]. And with Web site, it is difficult to predict with certainty how many users will hit a site at any given
time. There are many different browsers they can use, there is no limit how many people can access the
site at once, there may be untrained users and even users who want to crack your site.

Copyright by IBM 2000 Authors: Rainer Pirker/Andreas Rudolf Page 6/16

4 The performance testing project
Based on a real life testing project we give you the measurements, the methodology and tools used. Our
project provides an electronic bill inquiry service for customers – one paper bill costs them 5 dollars per
bill during the lifecycle, and electronic one costs them only a fraction. The customers can view or
download their telecom bill over the Internet. IBM’s goal was to quickly validate in 4 weeks if the
solution provided by a software house meets the performance and stability requirements of the telecom
provider.

We teamed with an IBM business partner to form an independent test team to help the customer quickly
obtain the desired results.

Based on our experience in other testing projects (e-business, EURO, Y2k, New Application
Development) we chose a proven approach as outlined below. You will see that the basic approach is
straightforward and not in any way e-business specific.

Figure 4: e-business testing basic approach

Assessing
the

base

Defining the
test strategy

Defining the
test conceptStart End

Building up
the test

environment

Executing the
test cases

Defining the
test cases

4.1 Assessing the base
Before defining the project strategy, we checked existing concepts to see if they could be used as a base
for our project. We followed IBM’s Application Effectiveness Methodology to search for the best project
strategy. We focused on the following to obtain an understanding for the software to be tested and the
test environment required:

• Test cases based on business transactions

• User documentation

• Requirement, design and program documentation

• Available test environments

• Test tools (capture and replay, problem and test case management, test data manipulation)

To begin with we had no clear definitions for the performance and stability requirements. We discussed
this problem with the customer and defined these requirements. The functional requirements were well
defined in the functional specifications. From these performance and stability requirements and the
functional specifications we were then able to derive the goals for the tests.

Copyright by IBM 2000 Authors: Rainer Pirker/Andreas Rudolf Page 7/16

The customer did not have any tools for testing in this area so we brought in tools for Web browser
simulation and problem tracking. An isolated test environment that included a Web server, database
server and clients was available. Only on the mainframe side did we at first have to interface with the
production environment.

4.2 Defining the test strategy
The customer wanted to quickly reach a decision as to whether his e-billing solution was ready to go into
production. A very tight time schedule, about 4 weeks, meant that we had no chance to start with the
traditional test approach, where we would first have done functional testing and then performance and
stress testing. We were able to convince the customer however, that it is absolutely necessary to validate
applications against their functional requirements and that this should be the second part of our test plan.
Below you can see the outline for both the first and second part of out test plan.

 Test plan outline:

 1.Part

• Identify the requirements for performance and stress testing

• Define the performance test concept

• Define the performance test cases

• Build-up the test environment

• Customize the HTTP browser simulator for the e-billing solution specifics

• Execute the performance test cases

 2.Part

• Define the function test concept

• Define function test cases

• Execute function test cases

• Collateral acceptance of performance tests for each new application driver delivered

• Execute performance and stress tests

4.3 Defining the test concept
In the test concept we defined the “What” and “How” questions. The highlights of this concept were
checking functional and non functional requirements and the definition of test cases for measuring end to
end performance and security.

For functional requirements the application and the application’s specification were available and
sufficient. Non functional requirements such as performance, response time, transaction mix, reliability
etc. were only partially available and had to be detailed by us. First we had to define or rather “identify”
the customer requirements. We started by identifying the following:

Copyright by IBM 2000 Authors: Rainer Pirker/Andreas Rudolf Page 8/16

• Transaction types to be tested:
It was decided the following transaction types should be tested:

- Logon
- Show bill
- Show detailed bill including ticket data
- Bill comparison against former billing periods
- Logoff

The following transaction groups are not part of the concept:
- Transaction which are only relevant for the call center, since our focus is on end to

end tests for customers
- Transactions, which change existing customer data, since it is planned to use the

existing production data like registration and cancellation of the e-billing service.

• Transaction mix:
Due to a lack of requirements we started with an equally distributed transaction mix

• Transaction rate:
30 parallel transactions

• Number of users concurrently logged on:
The system should handle about 1000 concurrently logged on users

• End user response time:
Maximum of 3 seconds to display one screen of content to the user

• Availability of the system:
7*24h, maintenance window every 3 months for 3 hours

 For transactions with extremely varying data quantities we defined an average data size.

The following variations were considered for their performance impact.

Variation Transaction type
Differentiation between private customers, small
and medium companies

Logon, bill, detailed bill including ticket data, Bill
comparison against former billing periods

Display of the bill in ATS or EURO (for the
display in EURO the Web server needs a
conversion)

Bill, detailed bill including ticket data, Bill
comparison against former billing periods

Filter, Sorting Detailed bill including ticket data, Bill comparison
against former billing periods

 We decided to go for back box testing of the application based on business transactions. We selected the
most characteristic transactions that we would eventually need performance figures for.

Apart from performance and stress tests we had to execute a big part of the functional tests. This chart
shows that our main test effort was planned to be spent on functional test of business transactions, 20%
was planned on performance tests and 15% on stress tests.

Copyright by IBM 2000 Authors: Rainer Pirker/Andreas Rudolf Page 9/16

Figure 5: Distribution of test effort

Performance-
test 20%

Stresstest
15%

Functiontest
65%

4.4 Defining the test cases
The test cases were defined for business transactions as described by their functional specification and by
exploring the application itself. Short descriptions of the test cases were documented in MS Excel.

4.5 Skills needed
For building up our e-billing skills we had the
functional specifications and the application
itself, for special technology skills like
capturing, parsing and replaying HTTP we
teamed with an IBM business partner.

Figure 6: Skills triangle

Te
ch

no
lo

gy

Test Methodology

e-billing skills

Copyright by IBM 2000 Authors: Rainer Pirker/Andreas Rudolf Page 10/16

4.6 Building up a test environment
 We had a production like environment as shown in this picture. Only the host connection had to be
shared with the production environment.

Figure 7: Test Environment

 HOST
 S/390

ITOC
(IMS TCP/IP OTMA

Connector)

Web/Application
Server

Authorisation
Database

IMS

ITOC (backup)
(IMS TCP/IP OTMA

Connector)

IMS (backup)

Firewall

Call Center
Appl.

Telecommunication Provider Intranet

Internet / e-billing
inquiry User

Webbrowser
Simulator

As test tools we used a Web based problem management and browser simulation tool.

4.6.1 Problem management

Since the project team was dispersed across different locations, we need a problem management tool
which could be operated over the Internet. With TestTrack Web 1.2 from Seapine Software we choose an
easy to configure and easy to use problem management tool. Testers can open, verify and close,
developers can answer problem records via the Web.

Copyright by IBM 2000 Authors: Rainer Pirker/Andreas Rudolf Page 11/16

Figure 8: Problemtracking in different locations

e-billing Subject
Matter Experts
(Telco provider)

Software-
developer

(Softwarehouse)

Independent
Test Team

(IBM)

Independent Test
Team

(Businesspartner)

Problem-
tracking

Internet

e-mail

4.6.2 Browser simulator

The test driver runs on LINUX and simulates, as the name says, the HTTP interface of a Web browser by
using GET and POST HTTP commands. It is a generic driver, configurable to support without
reprogramming changes in the application.

 The simulator measures:

• Time for open and connect of a TCP/IP socket

• Time for sending a request

• Time for receiving the first part of the response

• Time for receiving the complete response

Furthermore the simulator delivers the data size of the complete response. For the user the time required
for the first screen of information and the display of the complete response is important.

We had to customize the HTTP browser simulator. With a capture/replay facility it was possible to
capture performance test scenarios, customize them and then replay them. The customization facility
allowed us to exchange URLs, user ids and passwords via configuration files.

Copyright by IBM 2000 Authors: Rainer Pirker/Andreas Rudolf Page 12/16

4.7 Test Data Security
In our project we used production data as test data.

We want to discuss here shortly the security implications of production test data when dealing with an
independent external test team. With production data you give the independent test team access to your
confidential company data. When you have an isolated environment, where the application under test and
the data is only available inside of your company you can handle security issues via a non-disclosure
agreement with the independent test team. However in an e-business project this data is often available
on the Internet, since access to the data is handled with a Web browser. Your company data is than
available to anyone who has a user identification / password or who can sniff itout overthe net if you are
using unsecured HTTP. We have seen examples of extended functionality, like call center access, being
tested unsecured over the Internet.

 Here are some basic guidelines for your test data:

• Use synthetically created test data or anonymized test data whenever possible

• Use SSL/HTTPS for your sensitive data

• Do not test internal functions (i.e. the call center interface) over the Internet

5 Current Project Status
We executed the defined test plan within a three week timeframe focusing on performance aspects and
accomplishing the following:

• Performance test concept was written and reviewed

• Performance test cases were defined

• Test environment was built up

• Test scripts for the browser simulator were recorded and adapted

• Problem management tool was selected and deployed including training

After three week we were are to run our first performance test. The performance test simulated a fast
user of the e-billing service and included waiting time between transactions. In the first run were not able
to collect enough statistical data owing to problems with the test environment. After these were fixed we
recorded the response times shown in the graph below for different simulated numbers of concurrent
users.

Copyright by IBM 2000 Authors: Rainer Pirker/Andreas Rudolf Page 13/16

Figure 9: Response times of the different e-billing transactions

0

20

40

60

80

100

120

140

160

5 user 10 user 20 user

Number of concurrent user

re
sp

o
n

e
ti

m
e

(s
ec

)

Logon Display bill Bill comparision Display detailed bill Save bill Logoff

The results were unfortunately for removed from the requirements and also far removed from the eight
seconds rule. The goal was now for the development team to improve these figures by a factor 50-100.
Critical for this scenario was also that the response time increased linearly above 5 concurrent users. This
was the first performance measurement for this application every made. Neither the whole application
nor parts of this application had been tested in this way before.

The test team prepared and presented to the project management and the development team the following
metrics:

• Response time per transaction type dependent on the number of concurrent users

• Response time per transaction dependent on the user profile (private customer, small- ,
medium businesses)

• To get an approximation for user perceived performance, we also measured when the first
HTTP data packet arrived. This was of special interest for transactions such as bill display
were a large amount of data is transferred. It depends on the HTTP data stream whether the
user will see the first page of the bill data immediately it has been transferred and before the
download has been completed.

Additionally the following parameters were measured at the Web server, since it was identified early as
the performance critical system in the architecture:

• CPU Load

• Virtual Memory Size

Copyright by IBM 2000 Authors: Rainer Pirker/Andreas Rudolf Page 14/16

The following actions were now taken by the development team:

• reconfiguration and adaptation of server parameters (reload time of java servlets, number of
concurrent threads)

• full usage of the JAVA JIT features

• performance traces

After profiling the application, the performance traces showed (see figure below) that most of the time
was consumed by the e-billing application itself. The request processing time on the mainframe were just
5-12% of the overall time. These mainframe transactions had not yet been optimized so these
percentages would be even lower in the final version.

Figure 10: Response time distribution of different e-billing transactions measured in the
application server

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Logon Display bill Display detailed bill

e-billing application Authorisation/Logging Database Mainframe

The development team was unfortunately not able to show how the required performance improvements
could me achieved within a month. A guess from our side: it was an architectural problem involving the
ineffective handling of the data conversion between the mainframe, the application internal format
(XML) and the browser representation (HTML). The project is being restarted with a different software
house responsible for the development.

For the test team this was a success story. We reached our given target of validating the application and
the environment against the requirements in the given timeframe.

Copyright by IBM 2000 Authors: Rainer Pirker/Andreas Rudolf Page 15/16

6 Critical Success Factors
The test team has shown how with a clear roadmap, the right skills and the right tools your can attack e-
business testing in a critical situation.

• Security can be a killer:
Within testing an e-business application,
security of the system and data has to be
addressed carefully in advance.

• Non functional requirements:
It is key to define the non functional
requirements early in the project – best
would be the customer has already defined
it.

• Using test cases based on business
transactions:
Base the definition of test cases on well
defined business transactions. The well
written functional specifications and access
to the subject matter experts enabled us to
get fast to results. E-business testers must
simulate user behavior and create test
scenarios that match reality.

• Independent test team:
The independent team orientated strictly at
the requirements – testers which work also
as developers do not usually have the “black
box” view of the system.

• E-business test tool skills:
It is necessary to have knowledge about e-
business test tool skills like Web based
problem management and browser simulator
and the ability to deploy it fast..

• Real World test environment:
Test your e-business solutions under real
world conditions.

• Application was far from ready for
performance testing:
When performance tests started this e-
business solution was far from ready to be
performance tested.

• Quality cannot be tested into a product:
Plan for quality from the beginning. For
example use IBM full Lifecycle Testing
approach.

• Automate performance tests as much as
possible:
Use the right tools i.e. browser simulators
for capture and replay of performance test
scripts.

• User profiles:
Keep always in mind that there are a lot of
different user types out in the Web who are
using your e-business solution.

• Establish metrics right from the
beginning:
We established metrics right from the
beginning. We estimated effort and for
performance and stability we defined and
measured the relevant figures (samples).
Further, each problem found during testing
was classified and weighted by severity.
Without having metrics established it is
difficult, if not impossible, to improve the
testing process over time.

Copyright by IBM 2000 Authors: Rainer Pirker/Andreas Rudolf Page 16/16

7 References
[1] Baresi, C., and Bazzana, G., and Rumi, G., RADIUM – Applying RAD to innovative ERP/ E-

commerce projects, in Proc. Software Quality Week Europe, November 1999

[2] Conti, Marco, and Gregori, Enrico, and Panzieri, Fabio, Load Distributation among Replicated Web
Servers: A QoS-based Approach, in Proc. The 2nd Workshop on Internet Server Performance, ACM
SIGMETRICS, May 1999

[3] Gerrard, Paul, E-Commerce, Risks and Testing, in Systeme Evolutif, http://www.evolutif.co.uk/
September 1999

[4] Kanaan, Elie, E-Commerce: Where Application Testing means Staying in Business – Taking Care
of E-Business..., in Proc. Software Quality Week Europe, November 1999

[5] Keynote Systems, Inc., Measuring and Improving Your E-Commerce Web Site Performance with
Keynote Perspective, White Paper, http://www.keynote.com/

[6] Menascé, D. A., and Almeida, Virgilio A. F., and Fonseca, Rodrigo, and Mendes, Marco A.,
Resource Management Policies for E-commerce Servers, in Proc. The 2nd Workshop on Internet
Server Performance, ACM SIGMETRICS, May 1999

[7] Menascé, D. A., and Almeida, Virgilio A. F., and Dowdy, Larry W., Capacity Planning and
Performance Modeling: from Mainframes to Client-Server Systems, Prentice Hall, Englewood
Cliffs, 1994

[8] Nielsen, Jakob, in Proc. Internetworld, August 1999

[9] Rabin, Steven, E-Commerce Functional Testing and Performance Benchmarking – Methodology
and Criteria, in Proc. Software Quality Week Europe, November 1999

[10] Soliman, Fawzy, Managing the E-Business Operations, in Proc. Software Quality Week Europe,
November 1999

[11] Taylor, Sandy, in True Test of The Web by Alan Earls, in Proc. Informationweek,
http://www.informationweek.com/, January 1999

[12] Telemation Netzwerke, Mit Sicherheit ins Intranet, White Paper, http://www.telemation.de/

[13] Zona Research, Inc., The Economic Impacts of Unacceptable Web-Site Download Speeds, White
Paper, April 1999, http://www.zonaresearch.com/

QW2000 Vendor Technical Paper 6V1

Mr. Ted Burnett
(Watchfire)

Why Web QA Is Essential in all Phases of the
Development Process

BACK TO QW2000 PROGRAM

Key Points

Will explore the benefits of automated website testing●

The downside of a poor website●

Web sites must be tested often●

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6V1.html [4/28/2000 2:32:49 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2000 Paper 6T1

Alan Myrvold
(Entrust Technologies Limited)

Feeling Tcl-ish? Applying Tcl to Real Test Tasks

BACK TO QW2000 PROGRAM

Tcl is a scripting language that can be used to tackle real test tasks. This talk will show simple and advanced ways
to apply Tcl to testing software.

Key Points

Tcl can be used to make new test tools●

Tcl can be used to test Web applications via HTTP●

Tcl can be used to express a state-machine model and generate tests●

Abstract...

Tcl can be used to make new test tools
If you have a C/C++ API to exercise product functionality, Tcl can create scripts that automate
functional and stress testing.

Tcl can be used to test Web applications via HTTP
Need to test a web page and CGI or Servlet? Tcl can bypass the browser to send HTTP requests to
the web page for reliable testing. This can also be used for multi-user testing.

Tcl can be used to express a state-machine model and generate tests
This one is a more complex Tcl program. With a state-machine model of a portion of the system under
test, and code for each event in the model, the script can find unreachable states and generate tests
to cover the model.

More information on TCL

For more information on TCL, visit the Scriptics web site, or the Tcl Advocacy page for a comparison
of TCL to Perl, Python, Java Script and Visual Basic, and a history of TCL.

About the Author

Alan Myrvold is the product verification manager for Entrust/PKI, and has the joy of leading one of the
best test teams in the software industry.

Entrust Technologies, http://www.entrust.com, is a global leader in solutions that bring trust to

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6T1.html (1 of 2) [4/28/2000 2:32:59 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.scriptics.com/
http://dev.scriptics.com/advocacy/
http://www.entrust.com/

e-business. Entrust is committed to securing e-business transactions and communications over
wireless networks, intranets, extranets and the Internet.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6T1.html (2 of 2) [4/28/2000 2:32:59 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2000 6T1

Feeling Tcl-ish?
Applying Tcl to Real Test Tasks

Alan Myrvold
Entrust Technologies Limited
Ottawa, Canada

QW2000 6T1 2

Tcl/Tk is ...
•a scripting language
•easy to learn
•extensible / embeddable
• free

QW2000 6T1 3

Simple script
•Suppose you need to summarize a test

log file like this:

Test#1: PASSED
Test#2: PASSED
Test#3: NOT RUN
-- because data file not present
Test#4: FAILED
Test#5: FAILED
Test#6: PASSED

QW2000 6T1 4

Simple script
set fTest [open "test.log" r]
while {[gets $fTest sLine] >= 0} {

if [regexp {^Test.*: *(.*)} $sLine sMatch sStatus] {
if [info exists total($sStatus)] {

incr total($sStatus)
} else {

set total($sStatus) 1
}

}
}
close $fTest

puts "SUMMARY"
puts "-------"
foreach sStatus [lsort [array names total]] {

puts " $sStatus: $total($sStatus)"
}

QW2000 6T1 5

Simple script
•The script produces this output:
SUMMARY

 FAILED: 2
 NOT RUN: 1
 PASSED: 3

QW2000 6T1 6

Adding commands to Tcl
•Tcl is extensible
•New commands can be added
•Scripts can take advantage of the

power of Tcl’s string manipulation and
regular expressions, and Tk’s GUIs

•Multiple chunks of functionality can be
glued together

QW2000 6T1 7

Testing web servlets + cgi’s
•Use package require http
•No browser involved … server

component of application can be
tested

•Functional tests, scalability, multi-user
•Still need to test with browsers

QW2000 6T1 8

Testing web servlets + cgi’s
proc GetStockPrice {ticker} {

package require http
set q [::http::formatQuery s $ticker d v1]
set tkn [::http::geturl http://finance.yahoo.com/q -query $q]
::http::wait $tkn
set data [::http::data $tkn]
return [ExtractPrice $data]

}

foreach tick {ENTU MSFT CORL COGN} {
set price [GetStockPrice $tick]
puts "$tick $price"

}

QW2000 6T1 9

Testing web servlets + cgi’s

proc ExtractPrice {data} {
regsub -all {</?su.>} $data {} data
set s [regexp {<td nowrap>([^<]+)} $data m price]
regsub { } $price {+1.0*} price
return [expr $price]

}

QW2000 6T1 10

Adding a GUI with Tk
• You may want to put together a

simple GUI to make a test package
easy to run

QW2000 6T1 11

Adding a GUI with Tk
frame .fApp
label .lApp -text "Application directory" -width 20 -anchor w
entry .eApp -width 20 -textvariable eApp
pack .lApp .eApp -side left -in .fApp
frame .fLog
label .lLog -text "Log file" -width 20 -anchor w
entry .eLog -width 20 -textvariable eLog
pack .lLog .eLog -side left -in .fLog
frame .fTest
radiobutton .rSanity -text "Sanity" -variable vRun -value Sanity
radiobutton .rFull -text "Full" -variable vRun -value Full
pack .rSanity .rFull -side left -in .fTest
button .bGo -text "Execute Tests" -command ExecuteTests
pack .fApp .fLog .fTest .bGo

QW2000 6T1 12

State/event model
•A few pages of code allows this

declaration

Event START collect_12_apples HAVE_APPLES
Event HAVE_APPLES pay PAID_FOR_APPLES
Event PAID_FOR_APPLES exit_store DONE_SHOPPING

 to be analyzed and a table of states
and events created, unreachable
states found, and tests to cover the
transitions.

QW2000 6T1 13

State/event model
•The test generated:
All states are reachable

Tests that cover all possible transitions

1 START collect_12_apples HAVE_APPLES pay PAID_FOR_APPLES exit_store
DONE_SHOPPING

•That one was simple … how about:
Event START collect_12_apples HAVE_APPLES
Event HAVE_APPLES pay PAID_FOR_APPLES
Event PAID_FOR_APPLES exit_store DONE_SHOPPING

Event START exit_store DONE_SHOPPING
Event HAVE_APPLES collect_12_apples HAVE_APPLES
Event PAID_FOR_APPLES collect_12_apples HAVE_APPLES

QW2000 6T1 14

State/event model
All states are reachable

Tests that cover all possible transitions

1 START collect_12_apples HAVE_APPLES pay PAID_FOR_APPLES exit_store
DONE_SHOPPING

2 START exit_store DONE_SHOPPING

3 START collect_12_apples HAVE_APPLES pay PAID_FOR_APPLES
collect_12_apples HAVE_APPLES collect_12_apples HAVE_APPLES

QW2000 6T1 15

State/event model
Or even this one:
Event START collect_12_apples HAVE_APPLES
Event HAVE_APPLES pay PAID_FOR_APPLES
Event PAID_FOR_APPLES exit_store DONE_SHOPPING

Event START exit_store DONE_SHOPPING
Event HAVE_APPLES collect_12_apples HAVE_APPLES
Event PAID_FOR_APPLES collect_12_apples HAVE_APPLES

Event HAVE_APPLES exit_store STOLE_APPLES
Event START pay GAVE_MONEY_AWAY
Event PAID_FOR_APPLES pay GAVE_MONEY_AWAY

Event GAVE_MONEY_AWAY exit_store DONE_SHOPPING
Event STOLE_APPLES pay PAID_FOR_APPLES

Event HAVE_LOTTERY_TICKET got_luck VERY_RICH
Event VERY_RICH buy_store PAID_FOR_APPLES

QW2000 6T1 16

State/event model
The following states are unreachable: HAVE_LOTTERY_TICKET

VERY_RICH

Tests that cover all possible transitions

1 START collect_12_apples HAVE_APPLES pay PAID_FOR_APPLES exit_store
DONE_SHOPPING

2 START exit_store DONE_SHOPPING

3 START pay GAVE_MONEY_AWAY exit_store DONE_SHOPPING

4 START collect_12_apples HAVE_APPLES exit_store STOLE_APPLES pay
PAID_FOR_APPLES collect_12_apples HAVE_APPLES collect_12_apples
HAVE_APPLES

5 START collect_12_apples HAVE_APPLES pay PAID_FOR_APPLES pay
GAVE_MONEY_AWAY

QW2000 6T1 17

Learning more...
•http://www.scriptics.com

From the script, you can see that Tcl supports defining variables on the fly, regular
expressions, arrays, and basic file I/O. In this example, the script would print:

SUMMARY
−−−−−−−
 FAILED: 2
 NOT RUN: 1
 PASSED: 3

Hooking up to an API to make new test tools
Suppose you have some functionality to test, and it is exposed in the form of a C/C++ API,
for example:

// Here is a function that needs to be tested. Returns 0 on success.
int Sched_MakeAppointment(char* szName, char* szYYYYMMDDwhen);

// And a function to convert a non−zero return to a meaningful string
int Sched_ErrorString(int nError,char** pszError);

// And free the string allocates
void Sched_FreeString(char* szError);

In the real world, you might be delivering a GUI or Web application to the client, and
maybe a toolkit to interface to it too, and there will be many, many more functions. You
could write a C/C++ program to test this, but every time you add a test case you will need
to recompile.

What sort of tests should you try? Long names, short names, special characters in names,
valid dates, invalid dates, dates in the past, dates far in the future, 2 digit years, NULL
pointers, and more.

To add a command to Tcl that calls this function, we just need to write a bit of wrapper
code:

int Tsched_MakeAppointment_CmdProc(
 ClientData clientData,
 Tcl_Interp *interp,
 int argc,
 char *argv[])
{
 // check arg count: must be 2 args (argc is 3)
 if (argc != 3) {
 char* szError = "Syntax:\nsched_make_appointment name date";
 Tcl_Obj *tResult = Tcl_NewStringObj(szError,−1);
 Tcl_SetObjResult(interp,tResult);
 return TCL_ERROR;
 }
 int rc = Sched_MakeAppointment(argv[1], argv[2]);
 if (rc) {
 char* szError = NULL;
 Sched_ErrorString(rc,&szError);
 Tcl_Obj *tResult = Tcl_NewStringObj(szError,−1);
 Sched_FreeString(szError);
 Tcl_SetObjResult(interp,tResult);
 return TCL_ERROR;
 }

QW2000 Paper 6T1: Feeling Tcl−ish? Applying Tcl to Real Test Tasks

2

 return TCL_OK;
}

extern "C" TSCHED_API int Tsched_Init(Tcl_Interp *interp)
{
 Tcl_InitStubs(interp,"8.0",0);
 Tcl_CreateCommand(interp, "sched_make_appointment",
 Tsched_MakeAppointment_CmdProc, NULL, NULL);
 return TCL_OK;
}

And now the command is in Tcl:

E:\tcl83\bin>tclsh83
% load tsched
% sched*
Syntax is:
 sched_make_appointment name date
% sched_make_appointment test 405
Bad date
% sched_make_appointment test 20000405
%

Why bother doing this? Tcl can be a productive programming environment, with built−in
string and regular expression handling. Also, Tcl can be used as the glue that allows many
components to be brought together.

Testing web applications with HTTP
A web application has two sides: the client and the server. As applications grow more
complex, both the client and server get more complicated to test.

There are web testing tools available, but Tcl can provide a cheap and easy way to test
server functionality.

Here's a real example that extracts stock prices from Yahoo's finance web site.

no error checking, but this shows sending information
to a web site and extracting a piece.
proc GetStockPrice {ticker} {
 package require http
 set q [::http::formatQuery s $ticker d v1]
 set tkn [::http::geturl http://finance.yahoo.com/q −query $q]
 ::http::wait $tkn
 set data [::http::data $tkn]
 return [ExtractPrice $data]
}

proc ExtractPrice {data} {
 regsub −all {</?su.>} $data {} data
 set s [regexp {<td nowrap>([^<]+)} $data m price]
 regsub { } $price {+1.0*} price
 return [expr $price]
}

foreach tick {ENTU MSFT CORL COGN} {
 set price [GetStockPrice $tick]
 puts "$tick $price"
}

QW2000 Paper 6T1: Feeling Tcl−ish? Applying Tcl to Real Test Tasks

3

Testing a state model
A state model is one way to look at software. As a tester, the process of thinking about how
to model a program with states can often uncover more flaws than actually trying each
transition.

A state model is a collection of states, and events. Each event moves us from one state to
another. With a simple model, the destination state can be uniquely determined given the
current state and the event ... no history is required.

For example, consider going to a store to buy some apples. Here is a simple model with 4
states and 3 events. Note that states are written in uppercase and events in lowercase. The 4
states are: START, HAVE_APPLES, PAID_FOR_APPLES, and DONE_SHOPPING. The
3 events are collect_12_apples, pay, and exit_store.

With the Tcl scripts shown in the appendix, the model is just:

Event START collect_12_apples HAVE_APPLES
Event HAVE_APPLES pay PAID_FOR_APPLES
Event PAID_FOR_APPLES exit_store DONE_SHOPPING
Analyze_events state_report.html test_concise.tst test_full.tst

The script generates three HTML tables.

START HAVE_APPLES PAID_FOR_APPLES DONE_SHOPPING

collect_12_apples HAVE_APPLES

pay PAID_FOR_APPLES

exit_store DONE_SHOPPING

Tests that cover all possible transitions

1 START collect_12_apples HAVE_APPLES pay PAID_FOR_APPLES exit_store DONE_SHOPPING

Tests that cover all possible transitions, allowing destructive verification

1 START collect_12_apples Verify(HAVE_APPLES)

2 START collect_12_apples HAVE_APPLES pay Verify(PAID_FOR_APPLES)

3 START collect_12_apples HAVE_APPLES pay PAID_FOR_APPLES exit_store Verify(DONE_SHOPPING)

After some thought, we might add some transitions to this model:

Event START exit_store DONE_SHOPPING
Event HAVE_APPLES collect_12_apples HAVE_APPLES

QW2000 Paper 6T1: Feeling Tcl−ish? Applying Tcl to Real Test Tasks

4

Event PAID_FOR_APPLES collect_12_apples HAVE_APPLES

And generate these tables.

START HAVE_APPLES PAID_FOR_APPLES DONE_SHOPPING

collect_12_apples HAVE_APPLES HAVE_APPLES HAVE_APPLES

pay PAID_FOR_APPLES

exit_store DONE_SHOPPING DONE_SHOPPING

Tests that cover all possible transitions

1 START collect_12_apples HAVE_APPLES pay PAID_FOR_APPLES exit_store DONE_SHOPPING

2 START exit_store DONE_SHOPPING

3
START collect_12_apples HAVE_APPLES pay PAID_FOR_APPLES collect_12_apples HAVE_APPLES
collect_12_apples HAVE_APPLES

Tests that cover all possible transitions, allowing destructive verification

1 START collect_12_apples Verify(HAVE_APPLES)

2 START exit_store Verify(DONE_SHOPPING)

3 START collect_12_apples HAVE_APPLES pay Verify(PAID_FOR_APPLES)

4 START collect_12_apples HAVE_APPLES collect_12_apples Verify(HAVE_APPLES)

5 START collect_12_apples HAVE_APPLES pay PAID_FOR_APPLES exit_store Verify(DONE_SHOPPING)

6 START collect_12_apples HAVE_APPLES pay PAID_FOR_APPLES collect_12_apples Verify(HAVE_APPLES)

Thinking a bit more about the model, we might add these transitions and states.

Event HAVE_APPLES exit_store ERROR(STOLE_APPLES)
Event START pay ERROR(GAVE_MONEY_AWAY)
Event PAID_FOR_APPLES pay ERROR(GAVE_MONEY_AWAY)

Event GAVE_MONEY_AWAY exit_store DONE_SHOPPING
Event STOLE_APPLES pay PAID_FOR_APPLES

And finally, to prove that unreachable states are detected by this script, we can add these
transitions and states.

Event HAVE_LOTTERY_TICKET got_luck VERY_RICH
Event VERY_RICH buy_store PAID_FOR_APPLES

Adding in a TK GUI
Another advantage of Tcl is how easy it is to create a GUI using Tk.

QW2000 Paper 6T1: Feeling Tcl−ish? Applying Tcl to Real Test Tasks

5

You may have a test package that needs a few configuration details, such as how to find
the software under test, what tests to run, and where the output should be placed.

All this can be done by creating a form with Tk.

Defaults for the Tk GUI
set eApp {c:\test.exe}
set eLog {c:\test.log}
set vRun Sanity

Example of a Tk GUI
frame .fApp
label .lApp −text "Application directory" −width 20 −anchor w
entry .eApp −width 20 −textvariable eApp
pack .lApp .eApp −side left −in .fApp
frame .fLog
label .lLog −text "Log file" −width 20 −anchor w
entry .eLog −width 20 −textvariable eLog
pack .lLog .eLog −side left −in .fLog
frame .fTest
radiobutton .rSanity −text "Sanity" −variable vRun −value Sanity
radiobutton .rFull −text "Full" −variable vRun −value Full
pack .rSanity .rFull −side left −in .fTest
button .bGo −text "Execute Tests" −command ExecuteTests
pack .fApp .fLog .fTest .bGo

Code executed on the button click
proc ExecuteTests {} {
 global eApp eLog vRun
 # execute tests here
}

Learning more
There's lots more to discover. Visit Scriptic's web site at http://www.scriptics.com, or drop
down to your local bookstore to buy one of many books on Tcl, such as Tcl and the Tk
Toolkit, by John Ousterhout.

Appendix: Tcl code for the state model

Routines for handling the specification of
and verification of state machines

list of states and a list of event names
set glbState_List [list]
set glbEvent_List [list]
set glbHTMLEventList {}

add a state to the list of states, if it isn't there already
proc Add_to_unique_list {list_name element_value} {
 global $list_name
 if {[lsearch −exact [subst $$list_name] $element_value] == −1} {
 lappend $list_name $element_value
 }
}

declare an event
proc Event {from_state event_name to_state} {
 global glbEventForwardsList glbEventStateForwardsList glbStateBackwardsList \
 glbHTMLEventList glbEventStateErrorList

 # An ERROR is a special case ... the to_state is the same

QW2000 Paper 6T1: Feeling Tcl−ish? Applying Tcl to Real Test Tasks

6

 # as the from, but an ERROR is generated
 if {[regexp {ERROR\((.*)\)} $to_state match err_state]} {
 set to_state $err_state
 set is_error "ERROR"
 } else {
 set is_error "SUCCESS"
 }

 # enforce style ... events lower case and states upper
 if {![regexp {^[A−Z_]+$} $from_state] || ![regexp {^[A−Z_]+$} $to_state]} {
 error "States must be upper case"
 }
 if {![regexp {^[a−z0−9_]+$} $event_name]} {
 error "Events must be lower case"
 }

 Add_to_unique_list glbState_List $from_state
 Add_to_unique_list glbState_List $to_state
 Add_to_unique_list glbEvent_List $event_name

 lappend glbStateBackwardsList($to_state) $from_state
 lappend glbEventForwardsList($from_state) $event_name

 if {[info exists glbEventStateForwardsList($from_state,$event_name)]} {
 error "Duplicate State / event"
 }
 set glbEventStateForwardsList($from_state,$event_name) $to_state
 set glbEventStateErrorList($from_state,$event_name) $is_error

 if {![info exists glbStateBackwardsList($from_state)]} {
 set glbStateBackwardsList($from_state) [list]
 }
 if {![info exists glbEventForwardsList($to_state)]} {
 set glbEventForwardsList($to_state) [list]
 }

 # Add to list for HTML output
 set glbHTMLEventList "$glbHTMLEventList
Event $from_state \
 $event_name $to_state"
}

Mark a given state as reachable. Recursively.
Also compute depths of all nodes reachable from the given node
as 1 + current depth
proc Mark_as_reachable {state_name} {
 global glbReachability glbEventForwardsList glbEventStateForwardsList \
 glbStateDepth

 # if already marked, we're done
 if {$glbReachability($state_name) == "REACHABLE"} {
 return
 }

 # mark as reachable
 set glbReachability($state_name) REACHABLE

 # record depths for next level
 set next_depth [expr 1 + $glbStateDepth($state_name)]
 foreach fwd_event $glbEventForwardsList($state_name) {
 set to_state $glbEventStateForwardsList($state_name,$fwd_event)
 if {$glbStateDepth($to_state) > $next_depth} {
 # found a shorter path to the state
 set glbStateDepth($to_state) $next_depth
 }
 }

QW2000 Paper 6T1: Feeling Tcl−ish? Applying Tcl to Real Test Tasks

7

 # mark all the states we can go to as reachable
 # this is separate from the depths loop on purpose,
 # to optimize depth assignment
 foreach fwd_event $glbEventForwardsList($state_name) {
 set to_state $glbEventStateForwardsList($state_name,$fwd_event)
 Mark_as_reachable $to_state
 }
}

Determine reachability and depth (from START) of states
proc Determine_reachability {} {
 global glbState_List glbReachability glbStateDepth

 # mark all as unreachable and deep
 foreach state $glbState_List {
 set glbReachability($state) UNREACHABLE
 set glbStateDepth($state) 99999
 }

 # can reach the start
 set glbStateDepth(START) 0
 Mark_as_reachable START

 # count how many are unreachable
 set unreachable_count 0
 foreach state $glbState_List {
 if {$glbReachability($state) == "UNREACHABLE"} {
 incr unreachable_count
 }
 }
 return $unreachable_count
}

Find a transition to a reachable state that has not been covered
proc Find_uncovered_transition {} {
 global glbState_List glbEventForwardsList glbEventStateForwardsList \
 glbReachability glbCovered

 foreach from_state $glbState_List {
 foreach fwd_event $glbEventForwardsList($from_state) {
 set to_state $glbEventStateForwardsList($from_state,$fwd_event)
 if {$glbReachability($to_state) == "REACHABLE" &&
 $glbCovered($from_state,$fwd_event) == "NO"} {
 return [list $from_state $fwd_event]
 }
 }
 }

 return [list]
}

Find an uncovered transition backwards, or,
if not found, find a transition to a node with
the least distance from start
proc Find_previous_transition {state bConcise} {
 global glbStateBackwardsList glbEventForwardsList glbEventStateForwardsList \
 glbCovered glbReachability glbStateDepth

 set rc [list]
 set minDepth 99999
 foreach from_state $glbStateBackwardsList($state) {
 if {$glbReachability($from_state) != "REACHABLE"} continue
 foreach fwd_event $glbEventForwardsList($from_state) {
 set to_state $glbEventStateForwardsList($from_state,$fwd_event)
 if {$state != $to_state} continue
 if {$bConcise && $glbCovered($from_state,$fwd_event) == "NO"} {

QW2000 Paper 6T1: Feeling Tcl−ish? Applying Tcl to Real Test Tasks

8

 set rc [list $from_state $fwd_event]
 return $rc
 } else {
 if {$glbStateDepth($from_state) < $minDepth} {
 set minDepth $glbStateDepth($from_state)
 set rc [list $from_state $fwd_event]
 }
 }
 }
 }
 return $rc
}

Find an uncovered transition forwards, or,
if not found, return an empty list
proc Find_next_transition {state} {
 global glbEventForwardsList glbCovered
 foreach fwd_event $glbEventForwardsList($state) {
 if {$glbCovered($state,$fwd_event) == "NO"} {
 return [list $state $fwd_event]
 }
 }
 return [list]
}

Arrive at tests that cover all possible STATE/event pairs
proc Design_tests {bConcise} {
 global glbState_List glbEventForwardsList glbEventStateForwardsList \
 glbReachability glbCovered glbTestlist
 # Mark all transitions as uncovered, except those from
 # unreachable states
 foreach state $glbState_List {
 foreach fwd_event $glbEventForwardsList($state) {
 if {$glbReachability($state) == "REACHABLE"} {
 set glbCovered($state,$fwd_event) NO
 } else {
 set glbCovered($state,$fwd_event) YES
 }
 }
 }

 # start with no tests
 set glbTestlist [list]

 # Find an uncovered transition to a reachable state
 set uncovered [Find_uncovered_transition]
 while {[llength $uncovered] > 0} {
 set test_sequence $uncovered
 set state [lindex $uncovered 0]
 set fwd_event [lindex $uncovered 1]
 set glbCovered($state,$fwd_event) YES
 set to_state $glbEventStateForwardsList($state,$fwd_event)

 # Work backwards to start, getting the shortest path to START state
 while {$state != "START"} {
 set prev_transition [Find_previous_transition $state $bConcise]

 # add it to test
 set state [lindex $prev_transition 0]
 set fwd_event [lindex $prev_transition 1]
 if {$bConcise} {
 # only mark it as covered if we are trying to
 # produce fewer tests
 set glbCovered($state,$fwd_event) YES
 }
 set test_sequence [linsert $test_sequence 0 $state $fwd_event]

QW2000 Paper 6T1: Feeling Tcl−ish? Applying Tcl to Real Test Tasks

9

 }

 # Work forwards, only hitting uncovered transitions
 # but only if we are trying to produce fewer tests
 if {$bConcise} {
 set next_step [Find_next_transition $to_state]
 while {[llength $next_step] > 0} {
 set state [lindex $next_step 0]
 set fwd_event [lindex $next_step 1]
 set glbCovered($state,$fwd_event) YES
 set to_state $glbEventStateForwardsList($state,$fwd_event)
 set next_step [Find_next_transition $to_state]
 lappend test_sequence $state $fwd_event
 }
 }

 # pop on last state
 if {$bConcise} {
 lappend test_sequence $to_state
 } else {
 lappend test_sequence [format "Verify(%s)" $to_state]
 }

 # Add to test list
 lappend glbTestlist $test_sequence

 # find the next
 set uncovered [Find_uncovered_transition]
 }
}

Do all the work to analyze the model and
create an HTML page to document the results
and a TCL file for the code.
proc Analyze_events {html_file test_file1 test_file2} {
 global glbState_List glbReachability glbEvent_List \
 glbEventStateForwardsList glbTestlist glbHTMLEventList \
 glbEventStateErrorList

 set fHTML [open $html_file w]
 puts $fHTML {<html><title>State chart</title><body \
 bgcolor="#f8f8f8">State chart
}

 # Show input
 puts $fHTML "$glbHTMLEventList<p>"
 # Check reachability
 set unreachable_count [Determine_reachability]
 # show state chart
 puts $fHTML {<table border=3><tr><td>}
 foreach state $glbState_List {
 if {$glbReachability($state) == "REACHABLE"} {
 puts $fHTML "<td>$state"
 } else {
 puts $fHTML "<td>$state"
 }
 }
 puts $fHTML {</tr>}
 foreach event $glbEvent_List {
 puts $fHTML "<tr><td>$event"
 foreach state $glbState_List {
 set to_state {}
 if {[info exists glbEventStateForwardsList($state,$event)]} {
 set to_state $glbEventStateForwardsList($state,$event)
 if {$glbEventStateErrorList($state,$event) == "ERROR"} {
 set to_state "<font \
 color=red>!$to_state"

QW2000 Paper 6T1: Feeling Tcl−ish? Applying Tcl to Real Test Tasks

10

 }
 }
 puts $fHTML "<td>$to_state"
 }
 puts $fHTML {</tr>}
 }
 puts $fHTML {</table>}
 # Show reachability info
 if {$unreachable_count > 0} {
 set sReach "The following states are unreachable:"
 foreach state $glbState_List {
 if {$glbReachability($state) == "UNREACHABLE"} {
 set sReach "$sReach $state"
 }
 }
 puts $fHTML "<p>$sReach"
 puts $sReach
 } else {
 puts $fHTML "<p>All states are reachable"
 }
 foreach bConcise [list 1 0] {
 if {$bConcise == 1} {
 set fTEST [open $test_file1 w]
 } else {
 set fTEST [open $test_file2 w]
 }
 # UNCOMMENT to create preamble in testfile
 # puts $fTEST [Start_testfile]
 Design_tests $bConcise
 if {$bConcise} {
 puts $fHTML "<p><Table border=3><tr> \
 <td><td>Tests that cover all possible \
 transitions</tr>"
 } else {
 puts $fHTML "<p><Table border=3><tr> \
 <td><td>Tests that cover all possible \
 transitions, allowing destructive verification</tr>"
 }
 set nTest 0
 foreach test_sequence $glbTestlist {
 # UNCOMMENT TO GENERATE TEST
 # puts $fTEST [Start_test $test_sequence]
 incr nTest
 puts $fHTML "<tr><td>$nTest<td> \
 $test_sequence</tr>"
 set test_steps [split $test_sequence]
 set n_item 0
 foreach test_item $test_steps {
 incr n_item
 if {[expr $n_item % 2] == 0} {
 set event $test_item
 set is_error $glbEventStateErrorList($state,$event)
 # UNCOMMENT TO GENERATE TEST EVENT
 # puts $fTEST [Event_$event $state $is_error]
 } else {
 set state $test_item
 }
 }
 }
 puts $fHTML {</table><p>}
 close $fTEST
 }
}

QW2000 Paper 6T1: Feeling Tcl−ish? Applying Tcl to Real Test Tasks

11

QW2000 Paper 6A1

Dr. Jean Hartmann & Mr. Claudio Imoberdorf
(Siemens Corporate Research)

Functional Testing of Distributed,
Component-Based Software (6A1)

BACK TO QW2000 PROGRAM

Key Points

Structured test design based on UML state charts.●

Tool support for test generation and test execution.●

Methods suitable for testing individual components or sets of integrated components.●

Presentation Abstract

Increasing numbers of software developers are using the Unified Modeling Language (UML) and
associated visual modeling tools as a basis for the design and implementation of their distributed,
component-based applications. Once developed, however, test cases must be designed, generated
and executed to validate the components. This is especially important for unit and integration testing.

At Siemens Corporate Research, we are addressing this issue by integrating our test generation and
test execution technology with commercial UML modeling tools such as Rational Rose; the goal being
a design-based testing environment.

In order to generate test cases automatically, developers first define the dynamic behavior of their
components via UML Statechart Diagrams. These views then need to be annotated with additional,
test-specific information such as coverage criteria, data variations and interconnected, in the case of
multiple components.

With the help of our test generation technology, test cases are then systematically derived from the
annotated UML StateChart Diagrams and executed using our test execution environment, which was
developed specifically for interfacing to components based on COM/DCOM and CORBA/IDL
middleware.

Providing such a design-based testing environment ensures major benefits for developers:
With minimal additional effort, developers can reuse their component designs as test
specifications. In the case of code changes, these test specifications can be updated and used
as a basis for automatically generating a new set of regression tests.

Developers no longer need to manually implement custom test drivers for components, which
can be especially tedious and error-prone in the case of distributed components. Executable

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6A1.html (1 of 2) [4/28/2000 2:33:05 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

test drivers are automatically generated directly from the test specifications.

The environment can be applied to individual as well as a collection of components, making it
suitable for use during unit and integration testing.

In future, we see the delivery of software components being accompanied with a standardized test
specification, possibly based on UML StateChart Diagrams. This will be necessary to ensure
compliance of the component as it is integrated into a larger software system.

About the Author

Jean Hartmann is a project manager at Siemens Corporate Research responsible for software testing
technology. His research interests focus on new techniques and tools for testing components,
graphical user interfaces, and internet-based systems. He received the Ph.D. degree in computer
science from the University of Durham, UK, in 1993 where is thesis topic emphasized improved
regression testing techniques.

Claudio Imoberdorf is a Member of the Technical Staff at Siemens Corporate Research. He has seven
years experience in the area of software design, software developmemnt, and component
technologies. Prior to joining Siements he was a lead designer on a component-based building
automation system at Siemens Building Technology, Switzerland.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6A1.html (2 of 2) [4/28/2000 2:33:05 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Seite 1

Functional Testing of Distributed, Component-Based Systems
Quality Week 2000

Slide 1

Software Engineering

Jean Hartmann and Claudio Imoberdorf

Siemens Corporate Research

Princeton NJ 08540

Tel: ++1 609 734 3361

Fax: ++1 609 734 6565

Email: jhartmann@scr.siemens.com

Functional Testing of Distributed,
Component-Based Systems

Functional Testing of Distributed, Component-Based Systems
Quality Week 2000

Slide 2

Software Engineering

Objectives

a Growing Importance of Domain-specific Frameworks

a Modeling of Software Components and their Interfaces
uUsing a standardized design notation => UML

uThe model must express the component interactions

a Using the Model for Test Generation and Execution
uFocusing on unit and integration testing (black-box)

uAutomating the test generation and execution steps

uProviding test execution support for middleware-based
components

2

Seite 2

Functional Testing of Distributed, Component-Based Systems
Quality Week 2000

Slide 3

Software Engineering

Modeling Components

a Use UML Statecharts to model each component (object)
a Statecharts should reflect the normal and erroneous

behavior of the component
a To facilitate component interaction, we extend UML with a

new transition labeling scheme
a For integration testing, users define the collection of

components to be tested (subsystem definition)
a Assumptions:

uPoint-to-point communication semantics between components
rather than a shared event model
uCommunications are synchronous (blocking)
u Implementation is deterministic

Functional Testing of Distributed, Component-Based Systems
Quality Week 2000

Slide 4

Software Engineering

Steps Taken During Model Composition

1. Normalizing the UML-based Models
u Importing the Rational Rose repository
uNoting the subsystem definition, if any
uResolving transitions with multiple events

2. Composing the Global Behavioral Model
uApplying an incremental composition and reduction

algorithm
uDetermining a composition order (based on subsystem

definition)

a Scalability
uAlgorithm complexity is better than exponential

1

Seite 1

Functional Testing of Distributed, Component-Based Systems
Quality Week 2000

Slide 5

Software Engineering

A

Timer

Receiver

rxport

Comch

txport

timing

Transmitter

timer

tuser

cherror

ruser

Example: A Communication Protocol

a Focus on integration testing
a Generate test cases to

validate component interaction
a Consider subsystem A
a External interfaces:

u tuser
u timer
u txport

a Internal Interfaces:
u timing

Functional Testing of Distributed, Component-Based Systems
Quality Week 2000

Slide 6

Software Engineering

Tim
er

Transmitt
er

Matching Send and Receive Events Between Components

timin
g

Sen
d_us
er

Tim
eout
_con
trol

Com_
chann
el

1

Seite 1

Functional Testing of Distributed, Component-Based Systems
Quality Week 2000

Slide 7

Software Engineering

Original

Transmitt
er Transmitter

(expanded)

Normalizing the UML-based Models...

Functional Testing of Distributed, Component-Based Systems
Quality Week 2000

Slide 8

Software Engineering

Timer
(expande

d)

Transmit
ter

(expande
d)

Composing a Global Behavioral Model...

Transmitter_Timer
(composed)

compos
e

user

chann
el

timer

timin
g

1

Seite 1

Functional Testing of Distributed, Component-Based Systems
Quality Week 2000

Slide 9

Software Engineering

Test Case Generation

Transmitter_Timer
(composed)

Test Cases for
Subcomponent

TEST CASE #1
 * IN user.message();
 * OUT channel.send
 * IN channel.ack();
 * IN user.message();
 * OUT channel.send
 * IN channel.ack();
TEST CASE #2
 * IN user.message();
 * OUT channel.send
 * IN timer.interrupt();
 * OUT channel.send
 * IN channel.ack();
 * IN user.message();
 * OUT channel.send
 * IN channel.ack();

For integration testing: all transitions
between components are covered

Functional Testing of Distributed, Component-Based Systems
Quality Week 2000

Slide 10

Software Engineering

Test Case Execution

a Executable test driver is
created from the
generated test cases

a We have specific
support for reactive
components

a This is achieved through
an event pattern
matching mechanism

a Supports automated
regression testing during
unit and integration
testing

IA

IU

IV

Object1: A

IX Object2: B

IB

1. doXY()

2. onOK()

3. done()

4. msg()

IY
Object3: C

Sample Componen t

Test Driver
Object

Test Driver
Sink Object

Test Driver
IU

IV

IX

IY

Test Driver
Object

Test Driver
Sink Object

Test Driver

Subsystem A

Component1
Component2

Component3
Component4

1

Seite 1

Functional Testing of Distributed, Component-Based Systems
Quality Week 2000

Slide 11

Software Engineering

Implementation : TnT = TDE/UML + TECS

 Rational Rose Test Generation Test Execution
 Modeling Tool Tool (TDE/UML) Environment (TECS)

COM Interface &
TSL Test Design

Interface Test
Language (ITL)

Functional Testing of Distributed, Component-Based Systems
Quality Week 2000

Slide 12

Software Engineering

Applying TnT in the Software Lifecycle

Inception Elaboration TransitionConstruction
Developmen
t Process

Artifacts
Use
Cases

High-level
Design

Detailed
Design

System Test Integration Test Unit Test

TnT

1

Seite 1

Functional Testing of Distributed, Component-Based Systems
Quality Week 2000

Slide 13

Software Engineering

Future Research and Development

a Modeling
uSupport additional UML model elements (e.g. nested

states)
uExamine the issues related to asynchronous

communication between components
uModeling real-time aspects (e.g. timing constraints)
uDevelop a philosophy for an optimal composition order

a Test Generation
uExploit the use of data variations within test generation

for integration testing purposes

a Test Execution
uFocus on a distributed test execution environment

Functional Testing of Distributed, Component-Based Systems
Quality Week 2000

Slide 14

Software Engineering

Conclusions

a We provide a UML-based test generation and
execution environment using Statecharts

a We focus on unit and integration testing for
components

a We support the testing of middleware-based
components

a We are starting to apply it within Siemens
a We are continuing to refine and improve TnT

QW2000 Paper 6W1

Mr. Anand Sundaram
(RSW Software, Inc.)

Managing E-Business Quality in Internet Time

BACK TO QW2000 PROGRAM

Key Points

Application scalability has become one of the top concerns most often cited by IT managers. This
presentation addresses how to alleviate scalability risk.

●

To avoid "scalability shock" load and performance testing should be an integral part of the process of
designing, buiilding, and maintaining the web application.

●

One must continuously monitor application performance to identify slowdowns and performance degradations
before users have a bad experience.

●

Presentation Abstract

Presentation abstract to be supplied.

About the Author

Speaker bio to be supplied.
BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6W1.html [4/28/2000 2:33:09 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Managing e-Business Quality in Internet TimeManaging e-Business Quality in Internet Time

Anand Sundaram, RSW SoftwareAnand Sundaram, RSW Software

IntroductionIntroduction

uu Fast paced development for internet applicationsFast paced development for internet applications

uu E-commerce systems are in a constant state ofE-commerce systems are in a constant state of
changechange

uu Typically, many QA activities are skipped due toTypically, many QA activities are skipped due to
time constraintstime constraints

uu ““ProcessProcess”” is seen as overhead and ignored is seen as overhead and ignored

No time to do it over, must do it right the first timeNo time to do it over, must do it right the first time

2

Scope of this PresentationScope of this Presentation

uu Overview of solutionOverview of solution
ll Present all aspects of e-Business QualityPresent all aspects of e-Business Quality
ll Prioritize to reflect high ROI for ‘Internet Time’Prioritize to reflect high ROI for ‘Internet Time’
ll Strong focus on scalability testingStrong focus on scalability testing

FF As it provides the highest return on investmentAs it provides the highest return on investment

FF Represents highest risk if not addressed earlyRepresents highest risk if not addressed early

uu Intended audienceIntended audience
ll Development managersDevelopment managers
ll QA Engineers/managersQA Engineers/managers
ll Operations EngineersOperations Engineers

Project Management and StaffingProject Management and Staffing

uu Managing the development process andManaging the development process and
environmentenvironment

uu Staffing issuesStaffing issues
ll QA departments are typically understaffed andQA departments are typically understaffed and

inexperiencedinexperienced
ll Key process responsibilities are often not assignedKey process responsibilities are often not assigned

to individualsto individuals
ll Required roles for success of QARequired roles for success of QA

uu Getting QA involved earlyGetting QA involved early
ll Participation in requirements analysisParticipation in requirements analysis
ll Formal Test PlanningFormal Test Planning
ll Test goalsTest goals
ll Test approachTest approach
ll Test environment creation and maintenanceTest environment creation and maintenance

3

Requirements AnalysisRequirements Analysis

uu Benefits of formal system requirementsBenefits of formal system requirements
ll Capture customer needs and business objectivesCapture customer needs and business objectives
ll Keep project aligned with business objectivesKeep project aligned with business objectives
ll Ensure the right product is developedEnsure the right product is developed
ll Enable efficient and effective testingEnable efficient and effective testing

uu Prioritizing and costing the requirementsPrioritizing and costing the requirements
ll Decide features/functionality to be implemented firstDecide features/functionality to be implemented first
ll Allows for efficient decision making for changes andAllows for efficient decision making for changes and

enhancementsenhancements

Requirements ManagementRequirements Management

uu Benefits of requirements managementBenefits of requirements management
ll Provides a means to rapidly respond to changingProvides a means to rapidly respond to changing

needs and objectives while preserving qualityneeds and objectives while preserving quality
ll Enables efficient impact analysis and defectEnables efficient impact analysis and defect

resolutionresolution
ll Enables efficient maintenance of code and test casesEnables efficient maintenance of code and test cases
ll Improve organizational communicationImprove organizational communication

uu Requirements management strategy for e-Requirements management strategy for e-
commerce development environmentscommerce development environments
ll Link system requirements to business objectivesLink system requirements to business objectives

and test casesand test cases
ll Use RM to efficiently track and manage change in theUse RM to efficiently track and manage change in the

development environmentdevelopment environment

4

Architecture Validation and Component TestingArchitecture Validation and Component Testing

uu Prototyping vs. evolutionary developmentPrototyping vs. evolutionary development
ll Verifying the feasibility of proposed systemVerifying the feasibility of proposed system

architecture (Get tools involved early -> must bearchitecture (Get tools involved early -> must be
easy to use)easy to use)

uu Code/Unit TestCode/Unit Test
ll Component testing and validation (COM Objects,Component testing and validation (COM Objects,

Java Beans, etc.)Java Beans, etc.)
ll Configuration ManagementConfiguration Management
ll Controlling the development, staging, andControlling the development, staging, and

production environmentsproduction environments
FF Full builds vs. individual file updatesFull builds vs. individual file updates

Functional TestingFunctional Testing

uu Risk Assessment Risk Assessment –– prioritization of testing prioritization of testing
activitiesactivities

uu Linking test cases to requirementsLinking test cases to requirements

uu Automation of functional testing for dynamic webAutomation of functional testing for dynamic web
sitessites
ll Determining the scope of automationDetermining the scope of automation
ll Efficient creation and maintenance of test scriptsEfficient creation and maintenance of test scripts

5

Performance TestingPerformance Testing

uu PlanningPlanning
ll Determine user and load profileDetermine user and load profile
ll Determine transactions and scenariosDetermine transactions and scenarios
ll Determine test environment/resource requirementsDetermine test environment/resource requirements

FF HardwareHardware

FF External toolsExternal tools

FF PeoplePeople

ll System level vs. component level testingSystem level vs. component level testing
FF Create scripts that isolate system components (web server,Create scripts that isolate system components (web server,

application server, WAN link, etc.) to aid in bottleneck IDapplication server, WAN link, etc.) to aid in bottleneck ID

FF Create scripts that measure complete business transactionsCreate scripts that measure complete business transactions

ll Fail-over testingFail-over testing

Performance TestingPerformance Testing

uu DevelopmentDevelopment
ll Scripts must be easy to create and maintain due toScripts must be easy to create and maintain due to

rapidly release time framesrapidly release time frames
ll Scripts must be verified in a single and multi-userScripts must be verified in a single and multi-user

environment prior to test executionenvironment prior to test execution

uu ExecutionExecution
ll Execution best practicesExecution best practices
ll Test environmentTest environment
ll Hardware/network monitoring during executionHardware/network monitoring during execution

uu AnalysisAnalysis
ll Evaluating test resultsEvaluating test results
ll Bottleneck identificationBottleneck identification

6

Regression TestingRegression Testing

uu Strategy for regression testing dynamic systemsStrategy for regression testing dynamic systems
ll Choosing what to include in a regression test (bothChoosing what to include in a regression test (both

manual and automated)manual and automated)

uu Using requirements management to efficiently maintainUsing requirements management to efficiently maintain
regression test suitesregression test suites

uu Performance and scalability regression testingPerformance and scalability regression testing
ll Early BenchmarkingEarly Benchmarking
ll Cross Benchmark ComparisonCross Benchmark Comparison

Performance Tuning and StagingPerformance Tuning and Staging

uu Staging Environment for tuning applicationStaging Environment for tuning application

uu Scale of Staging EnvironmentScale of Staging Environment

uu GoalsGoals
ll Fastest Response TimeFastest Response Time
ll Best ThroughputBest Throughput
ll Best Fail overBest Fail over

uu Re-use of load testing scenariosRe-use of load testing scenarios

uu Expertise with development environmentExpertise with development environment

7

Problem Tracking and ResolutionProblem Tracking and Resolution

uu Defect Tracking and ResolutionDefect Tracking and Resolution
ll Benefits of formal defect tracking and resolutionBenefits of formal defect tracking and resolution

workflowworkflow
ll Defect workflow strategy in an e-commerceDefect workflow strategy in an e-commerce

development environmentdevelopment environment
ll Efficient review of reported defectsEfficient review of reported defects
ll The importance of requirements management inThe importance of requirements management in

defect resolutiondefect resolution

uu Efficient impact analysisEfficient impact analysis

uu Efficient regression testingEfficient regression testing

Post-Deployment MonitoringPost-Deployment Monitoring

uu Post Deployment MonitoringPost Deployment Monitoring
ll Creating a monitoring strategyCreating a monitoring strategy
ll Determining transactions to monitorDetermining transactions to monitor
ll Determining performance / system statistics ofDetermining performance / system statistics of

various system tiers to monitorvarious system tiers to monitor
ll Monitoring from local and/or remote sitesMonitoring from local and/or remote sites

uu Making effective use of monitoring dataMaking effective use of monitoring data
ll Analyzing the dataAnalyzing the data
ll Notifying the appropriate resources of detected problemsNotifying the appropriate resources of detected problems

8

Q&AQ&A

uu www.rswsoftware.comwww.rswsoftware.com

uu Anand@rswsoftware.comAnand@rswsoftware.com

uu 781-993-8509781-993-8509

QW2000 Paper 6M1

Ms. Lisa Crispin
(TRIP.com)

Guerilla Tool Selection

BACK TO QW2000 PROGRAM

Key Points

Where to get information about tools●

How to minimize risk in tool selection●

How to best implement a new tool●

Presentation Abstract

It's a jungle out there. So many potential problems. So many tools to help avert them. So little time.
There are many tool evaluation methodologies around, but who has the time to go through them?
Here are some tips to help you slash through the tangle of sales pitches to select tools that work for
you. This paper reflects not only my own experience but also that of our development team in
selecting and implementing a variety of state-of-the-art tools. This presentation is geared toward
organizations building Web and e-commerce applications.

About the Author

I have 18 years experience in the industry with the last 9 in Testing and Quality Assurance. I began
my career as a programmer with the University of Texas Data Processing Division, where I helped
develop the Online Catalog and circulation systems. My QA experience before my current job was
with database, 4GL and client/server software on UNIX, NT and Windows at medium to large software
companies “ Software AG (now SAGA), Unidata (now Ardent Software).

I started my current job at TRIP.com in March of 1998 with little knowledge of the Web and no
experience working in a startup environment. I was the first test engineer “ no testing had been done
previously even though the site had been online more than a year. The challenge of building quality
into Web applications while meeting extremely tight development cycles has taught me much. We
have grown from a test department of one (me) to seven test engineers, and I have been promoted to
'Quality Boss.' We test state-of-the-art, first-of-their-kind applications such as our intelliTRIP product
which uses software from BEA Weblogic, StoryServer, and On Display to query partner airline Web
sites for best fares. In addition, we play a key role in finding ways to build quality into applications and
prevent errors before coding. To this end, I have been instrumental in implementing a configuration
management tool as well as unit testing and memory/performance analysis tools. I work closely with
Marketing and Product Management on process definition, formatting of specification documents, and

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6M1.html (1 of 2) [4/28/2000 2:33:16 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

planning.

Our latest testing challenge has been to move our Web sites to a new hardware and software
configuration with two mirrored data centers running load-balanced clustered UNIX servers. TRIP.com
has shown its commitment to quality by providing us with a test environment that exactly matches that
of production: the same hardware, the same database, and a separate but equal network, so that we
can effectively load test.

I have given successful presentations at both local and international user conferences to audiences of
up to 60 people. I have many years experience training both technical and end users.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6M1.html (2 of 2) [4/28/2000 2:33:16 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

1

Guerilla Tool Selection

Lisa Crispin
Quality Boss, TRIP.com

Help! I’m
trapped in
the tool
jungle!

2

Guerilla Tool Selection

•Beginning the search for tools
•Minimizing risk
•Evaluating tools quickly
•Justifying your decision
•Implementing successfully

Lessons to be Learned:

2

3

Guerilla Tool Selection

•Detailed requirements definition
•2 or more months just to select tool
•Do it if you can!

‘Standard’ Tool Selection Process

4

Guerilla Tool Selection

•You need the tool now!

•You’re the only tester

•Can’t afford ‘ shelfware’

•Fast-paced environment (Internet)

Guerilla selection defined:

3

5

Guerilla Tool Selection

Define your criteria for evaluation…
•Features

•Ease of use

•Training requirements

•Cost

•Supported environments

•Tech support

•Vendor commitment

Hacking your way through the tool jungle

6

Guerilla Tool Selection

Research resources on the Internet:
•http://www.softwareqatest.com/index.html

•http://www.crl.com/~zallar/testing.html#Kerry

•http://www.iac.honeywell.com/Pub/Tech/CM
 /CMTools.html#TeamWare

•http://www.methods-tools.com/tools/testing.html

Hacking your way through the tool jungle

4

7

Guerilla Tool Selection

Ask questions
•Coworkers
•Vendors
•Job candidates
•Newsgroups

Find survey results – does one tool stand out?

Hacking your way through the tool jungle

8

Guerilla Tool Selection

Dig through the sales material

Is it just advertising, or is concrete technical
information provided?

Scoping likely targets

5

9

Guerilla Tool Selection

Evaluate the vendor
•Is it easy to get a price quote?

•Can salespeople answer technical
 questions?

•Is this tool their specialty?

Scoping likely targets

10

Guerilla Tool Selection

Get references
Companies you know and respect
Other vendors you are happy with

Scoping likely targets

6

11

Guerilla Tool Selection

Recruit experts
•Developers, information systems, testers
•Quiz references
•Evaluate tools

Scoping likely targets

12

Guerilla Tool Selection

Install an evaluation copy
•Does the install go smoothly?
•How good is tech support?

•What’s the ramp-up time for
 basics?

Avoiding Traps – Evaluating Tools

7

13

Guerilla Tool Selection

Calculate costs
•Purchase
•Training
•Implementation

Avoiding Traps – Evaluating Tools

14

Guerilla Tool Selection

Evaluate Risks
•Is it safer to go with a big name?
•Look past bells and whistles

•Low price lowers risk

•Future flexibility

Avoiding Traps – Evaluating Tools

8

15

Guerilla Tool Selection

Justify your decision
•Pros and cons – tool types and tools
•Will it take you where you want to go?
•Is the risk acceptable?

Why buy the Titanic if an inner tube will do?

Avoiding Traps – Evaluating Tools

16

Guerilla Tool Selection

Identify a champion – examples:

•Customer support manager for defect
 tracking tool
•Developer for white-box test tool
•Someone who can carry the project!

Successful Implementation

9

17

Guerilla Tool Selection

Form a team
•Tool champion
•Experts who helped in selection

Successful Implementation

18

Guerilla Tool Selection

Get input
•All key users
•Facilitates buy-in
•Don’t lose momentum

Successful Implementation

10

19

Guerilla Tool Selection

Inform users
•How tool contributes to success
•Mutual benefits

Successful Implementation

20

Guerilla Tool Selection

Warning:

•Implementation takes longer
 than selection!

•Drive the momentum
 until it’s done.

•THEN you can relax!

Successful Implementation

Guerilla Tool Selection
Lisa Crispin
Quality Boss

TRIP.com

It’s a jungle out there!

 So many potential problems! So many tools to choose among in your battle to avert those problems! So
little time! Tool evaluation methodologies abound. But who has the time for a long, drawn-out process?
Here are some tips to help you slash through the tangle of sales pitches so that you can select tools that
work for you. This paper reflects the experiences of TRIP.com’s QA and Development teams in selecting
and implementing a variety of state-of-the-art tools.

Lessons to be Learned:
• Where to start in the search for tools
• How to minimize risk in tool selection
• How to evaluate tools quickly
• What to think about when justifying your decision
• How to successfully implement a tool

Guerilla Tool Selection Defined

Much has been written and presented on the best practices for selecting tools, such as for automated testing.
When I worked for midsized and large database software companies, we often spent a month just defining
and prioritizing our requirements. Then, we spent even more time examining tool functionality, performing
pretrial demos, and completing thirty-day trials on multiple candidates. After all of this, we felt assured that
we were choosing appropriate tools.

On two occasions since I have been employed by TRIP.com, I have needed to buy and implement tools and
in “Web time.” I’ll use a couple of examples to illustrate our “guerilla tool selection” technique:

• As the first (and at the time, only) test engineer for TRIP.com, I desperately needed both a
tracking tool and an automated test tool. It took me only a month to get both, and two years later
we’re still happy with both.

• As our development organization grew, we experienced severe problems that could have been
prevented by proper configuration management (CM). We needed a new CM tool immediately.
We pinned down our selection in a matter of days. Implementation was tougher— more on that
later! Again, the tool we selected is serving us well.

If you have enough infrastructure and time, by all means use best practices and take your time to select
your tools. If your risk of not having any tool is greater than the risk of selecting a less than optimal tool,
and you don’t have a lot of resources to spend on selection— go guerilla! In hindsight, I don’t believe we
would have changed our selections if we’d had more time and people to spend on the selection process.
When you’re facing down a dangerous beast, you can make the right split-second decision!

Here’s the procedure I’ve used to quickly hunt down tools that have worked well for us.

Disclaimer – the tools I use in my examples work well for TRIP.com. You must choose tools that work for
YOU. Also, the prices I quote in my examples may no longer be current. I provide them just to support our
decision process.

I. Hacking Your Way Through the Tool Jungle

Where to start? When it comes to tools that aid software development and testing, you can’t see the trees
for the rainforest! In my first days at TRIP.com, I needed to select an automated test tool for the Web but

knew nothing about Web testing. That was limiting! When we needed a new CM tool, my CM experience
was not extensive, and I didn’t have any idea which tools to look at.
• Define your requirements. You need some criteria for evaluating the tools. Don’t spend a month on it,

but think about the salient points. You will refine this as you go through your search and learn more
about the methodologies and available tools. Some criteria I used for my final decision on an
automated test tool include the following:

o Is the tool easy to learn? How much training is required?
o How much does it cost?
o Can scripts run unattended? Are unexpected results handled gracefully?
o Is the scripting language easy to learn and robust?
o Is the tool GUI or HTTP?
o How well does the tool emulate actual users?
o Does the tool include capture/playback, link checking, load testing?
o What browsers are supported?
o How good is the tech support?
o How committed is the vendor to Web-testing tools (as opposed to client-server or other types)

Other criteria were not important to me. For example, I didn’t care if the tool had an integrated defect-
tracking tool because I already had one. I decided that I could live without an integrated test plan
repository. These criteria might be essential for a different organization. Consider what you want and
record them in a living document that changes as you learn.

• Research resources on the Web by using an engine such as AltaVista. The following URLs were
invaluable to me for locating both automated test and CM tools:
•http://www.softwareqatest.com/index.html
•http://www.crl.com/~zallar/testing.html#Kerry
•http://www.iac.honeywell.com/Pub/Tech/CM/CMTools.html#TeamWare
•http://www.methods-tools.com/tools/testing.html

• Ask questions of coworkers and people you know in similar organizations. Vendors you already use
can be a good source of information – if they’re developing software, they need a lot of the same tools
you do. I’ve even gotten input from developer and test candidates while I’m interviewing them. When
we were researching CM tools, it was easy to ask “Have you had any experience with CM tools?
Which ones do you like? Why?” Even if you don’t hire the candidate, you could get a helpful tip!

II. Scoping Likely Targets

If you’re in a hurry, you need a narrow field to choose from. How to quickly cut the most likely beasts out
of the herd of vendors? These tactics worked for me.
• Find survey results – Does one tool stand out? When I first started searching for CM tools (which at

the time we needed ‘yesterday’) I had only worked with one Unix-based tool and was concerned that it
was overkill for our needs. In my searches on the Web, I found a document of survey results
(http://www.iac.honeywell.com/Pub/Tech/CM/CMSurveyRes.html) in which one tool, Perforce,
consistently received high ratings. That prompted me to research the vendor further.

• Dig through the sales material – Website or printed – is it just advertising or is concrete technical
information provided? For example – does their Website offer white papers and feature-by-feature
comparisons with competitor products? These documents can help your search – they can educate you
about features you may not have considered and turn you on to more potential vendors. My
experience is that vendors who want to educate you – even if it might lead you to another product –
have a good understanding of the problem and offer a well-thought-out solution. When I was Web-
impaired and started looking for Web testing tools, it was helpful to find a comparison of GUI versus
HTTP methodologies – I didn’t even know what HTTP was at the time!

• Evaluate the vendor – You’re not just buying software – you’re establishing a long-term relationship
with a company on which you will depend. Consider these criteria:
o Is it easy to get a price quote? Personally, I prefer to work with vendors who are straightforward

rather than the ones who behave like car dealers. I like to see the prices stated clearly on the
Website. I’ve found those vendors to be straightforward in all my dealings with them. This is
important when you have a problem!

o Can the salespeople answer technical questions? I like a company that hires salespeople with
some technical knowledge and trains them – it gives me more confidence that there is technical
merit in their product and that their tech support people also know what they’re doing.

o The size and way of doing business of the company influences me as well. Working for a Web
startup, I have preferred to do business with other companies who either have Web-based products
or do their business mainly on the Web; companies who are young and dynamic and growing, just
like TRIP.com. For a large, mature corporation, a vendor with similar organization may be a
better fit.

o Is the particular tool you need a specialty of the vendor? When I first started at TRIP.com, some
GUI test tool vendors had kluged together a ‘Web testing tool’ but these were not robust.

• Get references – Try to find companies you know and respect to vouch for tools they use. One source
can be other vendors whose products have satisfied you. When I was looking into Perforce for CM, I
noticed on their Web site that BEA Weblogic is their customer. Because we use BEA Weblogic’s
tools and like their quality, we called our contacts to get access to their developers and grilled them
about Perforce. Their answers influenced our buying decision. This provided a quick way to get
reliable information— perfect for the guerilla tool selector.

• Recruit experts in your company to help quiz references and evaluate the tools. These might be
developers, testers, information systems staff— people who have experience and/or a vested interest in
the tool you are purchasing. I snagged a couple of senior developers who were experienced in CM to
help evaluate CM tools. They’re the main users of the tool and I also couldn’t implement the tool
without them— more on that later. After I narrowed the search down, they were happy to interview
references.

III. Avoiding Traps – Evaluating Your Selections

A few likely products have caught your eye. Now you need to figure out fast if one will work for you. All
the paths through the jungle look both scary and inviting— which ones have well-disguised traps and which
are safe?
• Install an evaluation copy. Does the install go smoothly? How good is the support if you have

problems or questions? What’s the ramp-up time to learn basic functionality? If you’re the lone tester
in your organization, you don’t have time to go to class, you can’t afford install hassles and you’d
better be getting top-notch customer support. If the vendor doesn’t care about you when you are
running a trial, they sure won’t pay any attention to you once they have your money. When I worked
in a large test organization, we selected a couple of test tools that required weeks of training and these
tools worked out very well. When I came to TRIP.com as a test department of one, I went with a tool I
could figure out and start using for real testing in just a few hours.

• Calculate the cost, including training and implementation. Do you get what you pay for? I don’t
think this conventional wisdom applies in the software business. Some companies have to price their
products high to pay for R&D and/or marketing costs. If a few geniuses came up with a good product
and don’t spend much on marketing, they may offer their tool at a very attractive price. Don’t forget to
estimate implementation cost: if it takes five people three months to implement the tool, it’s not cheap
at any price (although it still could be worthwhile). The test tool we have used successfully for two
years, WebART, costs a ridiculous-sounding $825 a seat, including unlimited simulated users for load
testing. I didn’t need to buy any up-front training to use it and implementation was a breeze. Unless
price is a criterion due to a limited budget, don’t let it cloud your evaluation— judge each product on
its merits.

• Evaluate risks. Faced with those forks in the trail, you need to consider many factors.
o Behemoths like IBM and Microsoft have a huge competitive advantage. Nobody will criticize you

for choosing a product that millions of other people use— even if the products aren’t a good fit for
you! If you want to be safe from criticism, go with the big name. If you want a tool that really
works for you and doesn’t turn into shelfware, choose the tool you need. It doesn’t matter if
nobody has ever heard of the vendor if you can satisfy yourself that they are reliable. People look
at me like I have two heads when they ask me what test tool I use and I reply “WebART” –
nobody’s ever heard of it. It’s produced by OCLC Inc., a non-profit, which provides services to
libraries. I worked with OCLC’s products back when I was helping develop an online library

catalog, which gave me a level of comfort in choosing them. I probably would have gone with
their tool even if I wasn’t familiar with them, based on what I learned in my evaluation.

o Look past the bells and whistles. Pretty packaging doesn’t make a tool useful. Stick to the bottom
line: does the tool report the information you need?

o Low cost obviously lowers risk— an important although not essential factor in guerilla tool
selection. By keeping costs low, you avoid the whole Vietnam syndrome: “we’ve put so much
money into this we can’t stop now.” The CM tool we use, Perforce, cost $600 a seat. We didn’t
have much time to evaluate it, but we decided that if purchasing it turned out to be a mistake, at
least it wasn’t an expensive mistake. Our defect tracking system, TeamTrack, was only $400 a
seat, and also offered a limited license at about half the cost that worked for many of our users.
We didn’t buy any of these products solely based on price, but we felt more comfortable about the
amount of risk involved than if we had been buying tools costing $15,000, $50,000 or more.

o Low cost also offers future flexibility. When my test team grew, and I felt I needed some help
making better use of the tool to automate our testing, I had plenty of money in the budget to pay
for WebART training and consulting. If our needs should change, or if some new fabulous test
tool comes out that takes our breath away, WebART is inexpensive enough that we could keep
using the tests already developed there and not feel bad about buying another tool for future test
automation.

• List Pros and Cons. OK, this is a no-brainer, but don’t discount the importance of making a list of
pros and cons of different types of tools. For example, before selecting a Web-testing tool, I had to
decide if an HTTP or a GUI tool would fit our needs better. Once I’d narrowed down the features I
wanted, it was easier to compare the advantages and disadvantages of various tools.

• Justify your decision. Will the tool take you where you want to go? The Titanic was luxurious, but
kayaks work really well for the Inuit. After all, maybe all you need is a raft. Are you comfortable with
the level of risk associated with your choice? I almost didn’t buy WebART because I felt a little
foolish choosing such an inexpensive tool. Yet when I listed the pros and cons associated with each
tool I had evaluated, it came out on top.

IV. Rallying the Troops – Tips for Successful Implementation

Implementation is by far the most challenging aspect of acquiring a new tool. If you used my guerilla
tactics, you’re clearly in a hurry. Don’t slow down now. As Tarzan rallied the animals of the jungle to
combat his foes, you must rally support among potential users of the tool.
• Identify a champion for the tool. For example, a customer support manager could take ownership of a

defect-tracking system; a developer might be motivated to implement a CM or white-box testing tool.
Choose someone with a vested interest in the tool and who can carry the project forward. If you can’t
identify someone capable, you may have to look to a new hire to contribute the expertise. One of our
developers installed our CM tool, did the basic setup and admin so that other teams could start using it,
but we couldn’t fully implement until we hired a QA engineer who handles CM as part of his daily
tasks.

• Form a team with a champion to finalize the implementation plan. This team should include the
experts who helped you in the selection process. For example, the architect, analyst, and lead
developers could plan implementation of a visual modeling tool.

• Get input from all key users on the best way to implement the tool. This will facilitate buy-in. I
organized meetings of each development team along with the product champion to decide how to best
use the CM tool. A couple of rounds of these were needed to keep the momentum going.

• Inform users of what the tool will do for them and for the company. Let them know how the tool will
make them look good. They need to see the benefits of their using the tool and helping you get others
to use it.

• Drive the momentum until everyone who should be using the tool accepts it as a part of his or her
daily jobs. If you made a good choice, soon they won’t be able to imagine life without it and you can
relax and enjoy the beauty of the rainforest!

QW2000 QuickStart 6Q

Mr. Tobias G. Mayer
(eValid, Inc.)

WebSite Testing

BACK TO QW2000 PROGRAM

Key Points

Websites are very similar to ordinary pieces of application software, but different in many important ways.●

Effective testing of websites is best accomplished with a "Test Enabled Web Browser", particularly if Object
Mode operation is required.

●

Different ways of testing websites will be explored.●

Presentation Abstract

Testing a website BEFORE it is uploaded●

Testing a website AFTER it is uploaded●

Website Testing Strategies

About the Speaker

Tobias Mayer is a senior software engineer at Software Research, Inc. He is reponsible for the
main design and implementation of the "eValid" Web Test engine. Tobias has a (UK) BSc from
South Bank University, London. He is a member of, and OO Metrics consultant to, the Center
for Systems & Software Engineering (CSSE) at South Bank University. Tobias has presented
and published a number of papers on OO metrics, including papers at IEEE 'TOOLS' 1999 and
British Computer Society 'SQM' 1999.

Tobias had a number of years' experience of facilitaing group work/team building seminars
before moving into the software development field. The QW 2000 workshop is intended to be
an interactive experience, rather than a lecture. Participants will be facilitated to share ideas,
explore pertinent issues, and learn from one another.

BACK TO QW2000 PROGRAM

●

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6Q.html [5/5/2000 9:58:46 AM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 1

Tobias Mayer
eValid, Inc.

email: mayer@soft.com

WebSite Testing
QuickStart, 6Q

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 2

Summary of presentation
1. Testing a site prior to uploading

(~15 mins)

2. Testing a site after uploading
(~25 mins)

3. Testing Strategies …
(~35 mins)

4. Questions/Comments...
(~5-15 mins)

Running time = 80-90 minutes

2

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 3

l What can be tested?
» HTML

» Links

» Applets

» Scripts

» Images

l Other Considerations...

Stage 1: Before the upload

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 4

l What can be tested?
– HTML

» Does it meet company/self-imposed formatting?

» Use of WebLint, HTMLTidy, etc.

» Spell Checkers

» Can HTML be tested like regular source code?

Stage 1: Before the upload

3

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 5

l What can be tested?
– Scripts

» Again, do they meet company/self-imposed formatting?

» Syntax...

» Logic...

Stage 1: Before the upload

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 6

l What can be tested?
– Links

» do they go where they are supposed to go?

» Can we actually test this prior to upload?

l Own site -v- some other site...

» What kind of error messages can we get?

Stage 1: Before the upload

4

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 7

l What can be tested?
– Applets (and other embedded executable objects)

» To what extent does an object interact with the HTML?

» Do objects execute correctly -

l As independent entities

l In relation to the Web site

» Executable objects should be fully tested prior to their
inclusion on the site.

Stage 1: Before the upload

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 8

l What can be tested?
– Images

» Do all images (gifs, jpegs, etc) exist at the correct locations?

» Does each image have the Width & Height values set?

» Check image sizes (i.e. byte size)

l Is an image going to seriously affect the download time?

l What methods can be used to reduce an image’s size?

Stage 1: Before the upload

5

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 9

l Other Considerations…
– Where will the site be positioned?

» Internet

» Intranet

» Local, browser-based app?

– Other considerations …?

Stage 1: Before the upload

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 10

l User Interactions

l Static / Dynamic Pages

l Test the site on a regular basis

l Use Automated testing

Stage 2: After the upload

6

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 11

l User Interactions
– What will the User try to do?

– Can the developer anticipate everything?
» Every possible user interaction?

» Are users always smart???

– How can the developer deal with “user
stupidity?”

Stage 2: After the upload

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 12

l Static / Dynamic Pages
– What is the difference?

– Which is harder to test. Why?

– Can dynamic pages actually be tested?
» How. What can be validated?

» How often?

» What can we learn?

Stage 2: After the upload

7

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 13

l Test the site on a regular basis
– Regression Testing

– What else is there?

Stage 2: After the upload

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 14

l Use Automated testing
– Manual Testing:

» How many testers will be employed?

» How useful are they?

» What can they do that a robot-tester cannot do?

Stage 2: After the upload

8

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 15

l Server-Side Testing

l Client-Side Testing
– Browser-Level Testing

– Operating System-Level Testing

l What else is there…?

Stage 3: Testing Strategies

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 16

l Server-Side Testing
– Load Testing

» How many hits per (sec/millisec?)

» How many KB delivered per (sec/millisec?)

– Site Validation
» Can it be done at this level?

Stage 3: Testing Strategies

9

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 17

l Client-Side Testing
– How many times can you hit the server?

» What does this tell you?

– Validations:
l Visible Text

l Table Cells

l Images,

l etc...

Stage 3: Testing Strategies

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 18

l Client-Side Testing
– Static Sites

» Nothing changes from day to day unless the
developer explicitly changes it.

– Dynamic Sites
» Stuff changes all the time. Once created the

developer has little, or no, control...

Stage 3: Testing Strategies

10

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 19

l Client-Side Testing
– What else can be tested from the client

side?

– Is Client-Side Testing the best strategy?
If not, why not?

Stage 3: Testing Strategies

Thursday 1 June 2000 WebSite Testing, QuickStart #6 Slide 20

l Anything to ask?

l Anything to add?

Stage 4: Questions/Comments

QW2000 Vendor Technical Paper 6V2

Michael Aivazis
(ParaSoft Corporation)

Methods for Effective Unit Testing

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6V2.html [4/28/2000 2:33:38 PM]

1

Effective C/C++ Unit Testing

An overview

Dr. Michael Aivazis
Director of Technology
ParaSoft Corporation
mga@parasoft.com

2

Why Modify Your Software Development
Process

• Current industry trends are forcing companies to
turn out applications in 2-3 months

• If you don’t have an effective development process,
you will not survive

2

3

Goals of This Presentation

• Demonstrate the necessity of configuring a development
process that effectively prevents errors

• Describe what such a development process should look
like

• Discuss how tools fit into this development process
– Describe what commercial and public domain tools help you

perform each step or assess readiness to progress,
– Explain how to effectively configure public domain tools

4

Error Prevention

• Errors are not inevitable
• Errors occur because of bad coding and

development practices
• Examples in C++ and Java
• Preventing errors results in a higher-quality product

than introducing errors, then trying to find and
remove them

3

5

Example 1

IBM Study
“Projects that aim from the beginning at achieving the

shortest possible schedules regardless of quality
considerations tend to have fairly high frequencies of
both schedule and cost overruns. Software projects that
aim initially at achieving the highest possible levels of
quality and reliability tend to have the best schedule
adherence records, the highest productivity, and even
the best marketplace success.”*

* Jones, Capers. Programming Productivity. New York: McGraw-Hill, 1986.

6

Example 2

• W. Edwards Deming: Use statistical quality control to build
quality into product by implementing a process that prevented
errors, rather than by focusing on the product itself (Total
Quality Control)

• In the 1970s, American auto manufacturers’ failure to focus on
process and error prevention prevented them from improving
product quality

– They assumed defects were inevitable and did not try to stop causing defects
– Instead, they tried to remove existing defects
– Manufacturers failed to significantly reduce the number of product defects

4

7

Development Process

• Customers
• Development teams
• Methodology
• Practices
• Tools

8

Methodologies

• Waterfall
• Spiral
• RAD
• eXtreme programming

5

9

Practices

• Certain practices are universally acknowledged as
beneficial, regardless of development methodology

• Code construction
– Coding standards, code reviews, unit and application

testing
– Debugging support: firewalls, debugging information and

debugging methods

• Source monitoring
– Source control, automated and regular builds, bug

tracking, automatic error detection, metrics

10

Coding standards

• Standard code formatting
• Standard coding constructs

– beyond syntactically permissible
– standardized practices

• Promote:
– Smaller chance of introducing defects
– Smaller chance that defect will go unnoticed during code

review
– Enhanced communication through the code
– Increased efficiency

6

11

Source control

• Central repository for the entire source base
• Provide a record of the evolution of the source base

– who, when, why
• Lessen the risk of change

– recovering older, more stable version
– cheaper to try different approaches

• Facilitate group access to a common source base
– Network, remote access

• Source tagging
– Named collection of sources

12

Automated builds

• Minimize the overhead in assembling the
application pieces

• Identify certain classes of interface errors
• Promote frequent builds of the entire application
• Provide the basis for automated regular testing at

the application level

7

13

Unit testing

• Write the test before the code!
• Use the tests to document the behavior of the

object
• Guaranteed maintenance of the test suite along

with the code
• Thoroughly test the entire publicly accessible

interface
• Test the boundary conditions:

– Out of range arguments, typos, NULL objects, numbers
that are too big or too small

14

Unit testing - continued

• Provides
– Increased confidence that the unit is performing as

expected
– Continuous assessment of the quality of the code
– Early detection of incompatible changes

• Helps minimize the risk of change by providing a
means of verifying correctness and detecting fault

8

15

Application testing

• Functional tests document the expected application
behavior

• Necessary for assessing
– Overall application behavior
– Unit integration
– Performance
– Resource requirements

16

Regression tests

• Non-trivial applications have non-local defects
• Repairing a defect sometimes disturbs a sizeable

portion of the system
• Regression tests

– provide a warning system against non-local defects
– Shield against poor understanding of application

behavior by the maintainer
• A defect is not repaired until a test case that

detects its presence is placed in the regression test
suite

9

17

Additional testing

• In-house testing
• Beta cycles
• Release candidates

18

Bug tracking

• Ensure appropriate people are notified of problems
• Facilitate bug reporting
• Correlate bugs to source versions
• Facilitate tracking of individual problems
• Defect counts and defect rates are fundamental

quality metrics

10

19

Code reviews

• Promote collective ownership of the code
• Distributes the knowledge about the

implementation details to the team
• Allow more experienced developers to share know-

how
• But, most importantly, is a very effective way to

detect defects

20

Debugging support

• Add logic for pre-conditions and post-conditions
• Retain the code fragments used to exercise the

code during debugging sessions
• Write routines specifically for use during debugging:

– Expensive data structure validations
– Multi-object interrelations
– Detailed examination of memory owned by an object

11

21

Automatic error detection

• Simplest way to detect defects
• Works well with automatic application builds and

test suites
• Some tools can generate test cases automatically

22

Coverage analysis

• Measures the fraction of the application code that
has been exercised

• Uncovers certain types of defects
• Provides a metric of the thoroughness of test suites

12

23

Unit Testing Tools

Types of tools available
• Integrated
• Task-specific
• Perform black-box, white-box, and/or regression

testing
• Various degrees of automation

24

Unit Testing Tools

What to look for:
– Ease of use
– As much automation as possible

• Builds harness automatically
• Creates test cases automatically
• Automatically generates stubs

– Customizable
– Variety of tests performed
– Coverage of automatic tests

13

25

Conclusions

• Survival requires a development process that
promotes shipping reliable applications as rapidly
as possible

• Tools – both freely available and commercial– are
critical to maintaining such a development process

• As the confidence of tool vendors in Linux
increases, more specialized development tools
should become available

Methods for Effective C/C++ Unit Testing

by Michael Aivazis
ParaSoft Corporation

Unit testing--testing at the class or object level--is a much esteemed yet rarely practiced testing
technique. Although most developers and managers have heard that unit testing can result in
robust code and reduced debugging time, they often shy away from the technique because of the
time and effort required. These developers think of class testing as a sort of "golden rule"--a
form of testing they would perform in an ideal world, if only they had the time. However, there
are practical methods of performing unit testing so that the benefits vastly outweigh the initial
investment of resources.

Unit testing uncovers many errors that would be difficult--if not impossible--to find and fix if
testing were delayed until integration. The basic principle here is simple; unit testing makes
error detection easier because it pulls each class out of the application and tests it separately from
the rest of the application. Isolating each class brings you closer to each error, which increases
your odds of finding the errors.

When you compare unit testing to application-level testing, consider this metaphor: Finding an
error with application-level testing is like standing at a pool table with all the balls in the triangle,
and having to use a cue ball to hit the ball in the middle of the triangle into a particular pocket
with one stroke. Finding an error with unit testing, on the other hand, would be like trying to hit
one loose billiard ball into a particular pocket with a single stroke--a far simpler task.

The first integral part of unit testing is to create scaffolding for the class you want to test. First
and foremost, the scaffolding should be an error-free class that runs your class. Make sure your
scaffolding is error-free, or you’ll run the risk of causing additional errors in your class. You
should also take care to create scaffolding that thoroughly exercises your class and uncovers as
many errors as possible.

To help illustrate the process of creating scaffolding, let’s look at a coding example. Suppose we
want to test a class that calculates the balance of a bank account. The BankAccount class below
contains a method void deposit, which increases the balance, a method void withdraw,
which decreases the balance, a method int balance, which returns the current balance, and the
constructor BankAccount. We also use the class BankException, which allows us to process
exceptions:

#include "BankException.h"
class BankAccount
{
public:
BankAccount() : _balance(0) {}
int balance() { return _balance; }

void deposit (int amount) {
if (amount < 0) {
throw BankException("invalid deposit amount");
}
_balance += amount;
return;

}
void withdraw (int amount) {
if (amount < 0) {
throw BankException("invalid withdraw amount");
}
if (_balance - amount < 0) {
throw BankException("maximum withdraw amount is exceeded");
}
_balance -= amount;
return;
}
private:
int _balance;
};
class BankException {
private:
const char *_message;
public:
BankException(const char *message) : _message(message) {}
const char *message() { return _message; }
};

We want this class to be able to deposit and withdraw money and to calculate the proper balance.
Our first step in unit testing will be to build test scaffolding around the class. Our first step in
scaffolding is to write a class that contains the method test. We’ll use test as the place from
which we call different methods of the class we’re testing.

In this case, we will call our scaffolding class BankAccountTest. As you can see below, we are
testing to see if our class actually handles deposits and withdrawals correctly. We use our
scaffolding class to make two deposits and one withdrawal, and then we check the balance:

#include "BankAccount.h"
#include <iostream>
using namespace std;
class BankAccountTest {
public:

static void test() {
BankAccount account;
account.deposit(20);
account.deposit(30);
account.withdraw(7);
if (account.balance() == 43) {
cout << "Test passed" << endl;
} else {
cout << "Test failed" << endl;
}
}
};
int main()
{
BankAccountTest::test();
return 0;
}

After running this test, our balance comes up correctly as $43 and we read the message “Test
passed”. Here we have taken a common-sense approach to testing; we have tested the simplest

functionality first and will now test how the class handles special cases, such as a balance of $0
or a negative balance.

But we also need to make sure that our class will perform properly under unusual circumstances.
Bank accounts must be able to handle situations in which someone withdraws the entire balance
or tries to withdraw more money than they have in the account. The scaffolding class below will
test how our BankAccount class handles these situations:

#include "BankAccount.h"
#include <iostream>
using namespace std;
class BankAccountTest {
public:
static void test() {
BankAccount account;
account.deposit(20);
account.deposit(30);
account.withdraw(7);
account.withdraw(43);
if (account.balance() == 0) {
cout << "Your balance is 0" << endl;
} else {
cout << "Error!" << endl;
}

try {
cout << "withdrawing $3" << endl;
account.withdraw(3);
cout << "return from withdraw" << endl;
}
catch(BankException) {
cout << "catching BankException" << endl;
}
cout << "done " << endl;
}
};
int main()
{
BankAccountTest::test();
return 0;
}

In the code above, we brought our balance up to $50, withdrew $7 and $43 to bring our balance
back down to 0, and then instructed the class to print one of two messages. We then tried to
withdraw another $3, but the class caught an exception. Our printouts tell us that our class can
handle a balance of 0 and that it will prevent us from withdrawing more money than we have
available:

Your balance is 0
withdrawing $3
catching BankException
done

Consider the next example, which contains a LinkedList. This is a simple LinkedList that is
only linked in one direction. This LinkedList contains the variable value, which stores the
value of the LinkedList, and the variable next, which represents the next element. Each element

in the list has a container that contains a value, and a link to the next element. You can see that
we also create and print the LinkedList, and that we have created a method called test that is
sensitive to one element in the LinkedList:

class LinkedList
{
public:
LinkedList(int value, LinkedList * next):
_value(value), _next(next)
{}
static void print(LinkedList * list) {
while (list) {
std::cout << list->_value << std::endl;
list = list->_next;
}

return;
}
static void test(LinkedList * list) {
if (!list->_next) {
return;
}
if (!list->_next->_next) {
return;
}
if (list->_value == 21342
&& list->_next->_value == 8765
&& list->_next->_next->_value == -1000) {
int * null = 0;
std::cout << *null << std::endl;
}
return;
}
private:
int _value;
LinkedList * _next;
};

To test our class, we must create and print the LinkedList, then call the test. We can jump
from one container to the next, in much the same manner as one would jump from one car to the
next on a train, and we have specified that each element must be linked to the element that is one
integer greater (represented by i+1 in the code):

#include <iostream>
#include "LinkedList.h"
int main()
{
// Create
LinkedList * list = new LinkedList(0, 0);
for (int i = 0; i < 10; ++i) {
list = new LinkedList(i+1, list);
}
// Test
LinkedList::test(list);
LinkedList::print(list);
return 0;
}

When we run this test case, we get the following output:
10
9
8
7
6
5
4
3
2
1
0

We expected to receive this output because we have linked our integers in ascending order. Our
scaffolding does not throw an exception. So we’re done...right? Wrong. We still haven’t had a
chance to get into our code because one of our values is never what it is supposed to be. It just
so happens that there are hidden errors in our class.

These hidden errors raise the question, "How do we know when we’re finished with unit
testing?" The goal in unit testing is 100% coverage. We need to dig into each method, find the
exceptions, repair them, and then start the process over again. Only when each class comes up
clean will we be finished.

To that end, we must test our LinkedList again. We need to have a very specific set of
elements in the LinkedList in order to find a mistake, and we need to create a set of
LinkedLists that contain these elements. We have intentionally written the following example
in a peculiar manner to illustrate the difficulty of finding the error here. To find the hidden error,
we need to write some new scaffolding that will look for the specific error we want to find:

#include <iostream>
#include "LinkedList.h"
int main()
{
// Create
LinkedList * list;
list = new LinkedList(0, 0);
list = new LinkedList(-1000, list);
list = new LinkedList(8765, list);
list = new LinkedList(21342, list);
// Test
LinkedList::test(list);
LinkedList::print(list);
return 0;
}

There was a piece of code we hadn’t tested, but by writing the correct piece of scaffolding above,
we finally got the exception we were looking for. Actually, you can see just by glancing at the
original code that we call for an element [7], but there is no 7th element. If we had never
bothered to execute this segment of the code, we would have seen the error turn up later in the
larger application, where it would have been more costly to fix.

Now that we have performed basic testing and special case testing on our classes, we can move
on to the next step in unit testing. If the class under test references unavailable or inaccessible
external resources (such as other files, CORBA objects, or databases), we must create stubs so

that we can test interactions between the class and the external resource. Stubs should mimic the
action of the actual resource that is being referenced; the most effective stubs thoroughly test the
interaction without causing any extraneous tests to be performed.

It would be impossible to overstate the importance of specialized test cases in unit testing. To
thoroughly test all aspects of the class, a test suite should be composed of three types of test cases:
black-box, white-box, and regression. Black-box test cases should test functionality; these test
cases should be based on the specification and should be written as the code is being developed.
White-box test cases should test construction and robustness; to do so, they should achieve the
fullest possible coverage of the methods and provide a wide variety of inputs. Regression test
cases test that modifications correct previous errors and do not introduce new errors. Every time
you modify your code, you should run your code against your regression test suite to make sure
that your code has not “regressed” into previous errors. When you find an error, you can write a
test case against it and add it to your suite. As you develop your application, your regression
testing suite will grow. Previously-run white-box and black-box test cases can be re-used as
regression test cases.

Incidentally, there is no limit on regression testing. The more you perform it, the greater the
benefits for your code. You can even use a script to automatically pull up a class, compile it, and
run it against your test suite. You’ll get a clear idea of what is going on with the code, and you
don’t even need to be in the office when the testing occurs. As soon as you have created a
harness, stubs, and test cases, you can run the test cases and then flag exceptions and failed test
cases. You should correct errors and then run the class through the same test suite to verify that
modifications corrected existing problems and did not introduce new problems.

Fortunately for developers, there are now ways to automate many aspects of unit testing.
Developers can use scripts, cron jobs, Windows scheduling programs, and unit testing tools to
automate aspects of unit testing, and, by doing so, gain a practical way to incorporate unit testing
into even the most compressed development schedules.

Michael Aivazis, Ph.D., is Director of Technology at ParaSoft. You can reach him at
mga@parasoft.com.

QW2000 Paper 6T2

Ms. Elisabeth Hendrickson
(Aveo Inc.)

Quality in an Application Service Provider (ASP)
Environment

BACK TO QW2000 PROGRAM

Key Points

The difference between developing software at an ASP and developing software in a more traditional
independent software vendor.

●

How to identify and achieve the key quality criteria for an ASP environment.●

How to focus software development efforts, including testing, in an ASP environment.●

Presentation Abstract

In the last year, the term "ASP," or "Application Service Provider," has hit buzzword status. A variety of
companies have announced that they are now Application Service Providers—meaning that instead of
selling software, they sell access to servers running that software.

The challenges inherent in developing software in an ASP environment are different from developing
software for sale:

The primary "customer" of the software is in-house: in an ASP, the people who deploy and
maintain the system are internal; the people who access the system are external.

●

The software is not the business—it supports the business.●

Behind the scenes chaos is acceptable as long as the people who use the service perceive it
as reliable and steady.

●

It is the quality of the service that matters. The quality of the software supports—but is not
synonymous with—the quality of the service.

●

This talk focuses on software quality in an ASP environment, how the quality factors for software in an
ASP environment differ from software quality at a more traditional software vendor, and how to
achieve that quality.

About the Author

Elisabeth Hendrickson is the Director of Quality Engineering at Aveo Inc., an Application Service
Provider. Aveo Inc. offers Attune, a pre-emptive technical support service whose mission is to help
companies communicate the right information to the right customer at the right time. Prior to joining

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6T2.html (1 of 2) [4/28/2000 2:33:50 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Aveo, Elisabeth was the founder of Quality Tree Consulting, a software quality assurance consulting
firm. As a consultant, Elisabeth provided services to Application Service Providers as well as more
traditional independent software vendors.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6T2.html (2 of 2) [4/28/2000 2:33:50 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Quality in an ASP Environment

It Really is Different
from Developing
Software for the
Enterprise

What’s Different About an ASP

l The software is not the business— it supports
the business.

l Simplifications: control over server
configurations, internal people are the
customers.

l Greater complexity: need to support multiple
customers, scalability, greater visibility into
state of service, better measurability, two
different kinds of testing for client v. server.

2

Critical Quality Factors

l Reliability and speed of the service to the user
l Scalability of the service
l Availability of data to the customer
l Quality of any client software, including web

sites, that a user or customer must use to get
to the service

Clients v. Servers

l Don’t hold your client and server to the same
quality criteria.
– Hold the server to high standards for flexibility of

implementation, scalability, and performance.
– Hold the client to high standards for reliability,

compatibility, and fault tolerance.

3

Designing for Quality: the Server

l Is the service real time or asynchronous?
l How can multiple customers co-exist on a single

server?
l How will the software deployment scale as demand for

the service for a single customer grows?
l How will your administrators be able to tell when the

server software is not responding?
l How will the administrators deploy and administer the

software?

Designing for Quality: the Client

Think Steel Brick: Self Contained, Compact, & Unbreakable
l Small: downloads fast, takes up little space
l Fault Tolerant: can connect to the server no matter what
l Reliable: does not crash or do anything else to appear

unstable to the user
l Plays Well With Others: does not interfere with any

other programs on the system including Internet
download managers, etc.

4

Testing the Results: the Server

l Test your software in the same configuration it
will be deployed

l Work with your internal customers to define
use cases for testing

l Increase your focus on performance, load, and
stress tests.

Testing the Results: the Client

l Test the client software as though it is mission
critical—because it is.

l Test with a variety of hardware and software
configurations.

l Become expert at compatibility testing.
l Emphasize destructive testing techniques.

5

Develop Expertise in Other Areas

l Identifying environmental problems that could
result in perceived lack of quality in the service.
Example: troubleshooting network problems

l Administrating the infrastructure for your
service. Example: developers and testers
should understand the basics of setting up and
administrating a server farm.

Tools

l PQDI or Ghost for imaging the machines
l WCAT for load testing the server
l Custom stress tools to emulate real

connections to your server or lots of activity on
your client

6

Lessons Learned

l If you change your business model, your requirements
have probably changed as well.

l Perception is reality— and the Internet can warp
perceptions.

l Internal chaos is OK— as long as the customer and
user see a polished image.

l Inefficiencies are OK— for a while.
l Your service will be judged harshly by customers and

users alike— and you won’t know in advance on what
criteria, so be prepared to react quickly.

Page 1 of 7

Quality in an Application Service Provider Environment
by Elisabeth Hendrickson

March 31, 2000

In 1998 I was consulting for a traditional enterprise software development company when the CEO called
an all hands meeting. Although such meetings normally would have been only for employees, big changes
were on the horizon, and I was asked to attend.

“We’re no longer a software company. Now we’re an Application Service Provider,” the CEO proclaimed.
We all looked at each other wondering what that meant.

The CEO continued, “The executive staff struggled with this decision. After much soul searching, we’ve
concluded that this is the direction we must take. Sadly, not all of us could sign up for the new plan. I am
sorry to announce the resignation of our VP of Engineering.”

Most of us were shocked. A few people who had been warned about the meeting exchanged knowing
looks. The CEO continued, “As sad as it is to see our VP of Engineering depart, I think that it’s better that
he leave than that he stay without being fully committed to our vision. And so, as tough as this is to say, I
encourage all of you to consider this carefully. Anyone who doesn’t feel they can sign up for the new deal
should consider whether or not they should be here.”

These were brash words in one of the worst hiring markets ever. To invite your staff to leave bordered on
insanity. Yet the CEO didn’t want anyone to think that the next day would be business as usual. As far as
he was concerned, everything had changed. Sure, the engineers would keep coding. But now they were
not building enterprise software. They were building a service.

What’s Different at an Application Service Provider (ASP)?
For an independent software vendor, the software is the product. The company ships the software— usually
in a fancy box with documentation, some flyers, and a registration card— to the customer, who opens the
box, takes out the distribution media, and swears a few times as he or she installs the software on his or her
system. In contrast, ASPs sell access to the software, and not the software itself.

The ASP business model is gaining popularity because it simplifies adoption of new software:

• ASPs typically charge their customers for the service on a subscription basis. For the customer, that
means that they don’t have to pay a large sum up front to acquire software licenses. It also means that
if the new software does not work out, they can cancel their subscription— they are not stuck with
software they will not use.

• The ASP hosts the server machines and handles the installation, administration, and maintenance of the
software. For the customer it means that they don’t have to assign a system administrator to
maintaining the new software.

The term “ASP” covers a wide range of businesses:

• Companies like FaceTime and eGain provide access to software to facilitate real time and
asynchronous communication (instant messaging and email management).

• Companies like Aveo provide a mechanism for distributing targeted communications to your
customers.

• Companies like Exodus provide co-location hosting services, Internet access, and server monitoring.

A typical ASP has server-side software that directly supports the service and client-side software that
allows users to access the service. The client-side software may be a web-based application or a standalone
application that resides on the client’s machine.

Quality in an Application Service Provider Environment
by Elisabeth Hendrickson

Page 2 of 7

ASPs still need software. So why does anything need to change for the software development and testing
groups?

The company where the CEO announced the change from enterprise software development to service
provider discovered that the change in the business model meant a change in priorities. Suddenly having a
nice server-side installer was not as important as being able to support multiple clients on a single server.

The change in priorities reflects a change in the requirements for the system being built. The customers’
needs have changed, and the system must change accordingly. So it’s worth spending a little time talking
about the customer.

Who is the ASP’s Customer?
For the purposes of this paper it is worth making a distinction between the ASP’s customers and the end
users. These two stakeholders may have slightly different criteria on which they judge the quality or value
of the service.

The customer is the company paying for the service from the ASP. The customer needs to be assured that
the service will stay up. The customer also may need access to data on the system— but not directly. They
will need to run reports remotely, perhaps through web pages. The customer usually also uses client
software to access the service.

The end user is the person using the service, usually at the behest of the customers. They use the client
software provided by the ASP.

Defining Quality in an ASP
When buying software, the customer’s first impression of the quality of the software rests on the quality of
the packaging, the readability of the documentation, and the ease of installation. The customer’s continued
perception of the quality of the software rests on the software’s reliability and capability: does the software
do what the user bought it to do, does it do it reliably, and does it do it without interfering with anything
else the customer is trying to do on the computer.

In an application service provider environment, everything changes.

If the customer receives software to install, it is not server-side software; it’s a client that enables the
customer to get to the server. This client software is judged on many of the same quality attributes as
“traditional software.” However, it is only a small piece of the puzzle.

The customer’s continued perception of the quality of the service relies on the availability and reliability of
the service, not the server software. In an application service provider environment, the software is not the
product— the service is. The software enables the service. But the quality of the software is not as
important as the quality of the service.

“Quality” in an ASP is therefore:

• Reliability and speed of the service to the end user

• Scalability of the service

• Availability of data to the customer

• Quality of any client software that a user or customer must use to get to the service

Ease of installation and maintenance of the server software is no longer a key factor in the perception of the
quality of the service. If you have to use duct tape and bailing wire to get the software onto the server,
that’s OK— as long as the service stays up. Ease of installation becomes much more of a cost factor than a
quality factor: the harder it is to install the server software, the longer it takes, the more it costs to do the
installation, the more the service costs to provide. But the customer and the end user are not directly
affected by the system administrator’s installation woes.

Quality in an Application Service Provider Environment
by Elisabeth Hendrickson

Page 3 of 7

That doesn’t mean that ASPs can completely ignore installation issues. Particularly in Silicon Valley,
hiring good system administrators can be very expensive. It is not cost effective to make these people
spend hours trying to get the server software up and running on each new installation. However,
particularly when an ASP is dealing with relatively few servers, inefficiencies in the process are acceptable.

The ASP also has another advantage: since the ASP controls the servers, the ASP also controls the server
configurations. Companies that sell server software must support a variety of server configurations—
different OSes and patch levels, different back-end databases, different HTTP servers. The ASP can
choose just one server configuration to support.

Designing the Server Software for Quality in an ASP
At one enterprise-software-company-turned-ASP, we thought, “We’re still building the same software. But
now we’re just selling access to it rather than selling the software package itself.” We missed some key
requirements changes:

• The original design allowed for only one customer’s software to run on each machine. The new
ASP business model called for a large number of customers, each bringing in a relatively small
number of end users. Our server deployment scheme was now very inefficient.

• The tools that enabled administrators to add data to the servers worked well for small amounts of
data but were hopelessly poor at managing large amounts of data. The user interface should have
been entirely re-vamped given the new business model.

• Because we originally envisioned the server software being deployed behind a firewall, we did not
design the server software to work well through firewalls. We initially had some trouble with
users who could not get to the server because their firewall blocked our traffic.

• We did not take into account possible different ways in which customers would want to do
business. When we were an enterprise software company, the problem would not have existed:
the customer would have set up the server their way. In the new ASP business model, users
connect to a shared server. We had to devise a method of providing the appearance of a
customized service on a shared server very quickly.

These experiences have taught me that there are four key areas where we discovered that we had to change
our original designs:

• How can multiple customers co-exist on a single server? If your software requires a single server
for each customer, the cost of serving each customer goes up.

• How will the software deployment scale as demand for the service for a single customer grows?
Design your server software for scalability: make sure it can be deployed in single server or
multiple server configurations.

• How will your administrators be able to tell when the server software is not responding? Design
your server software for monitoring so you know immediately when the service is out. On NT,
you can do this by writing errors to the NT Event Log— there are administration packages such as
SiteScope that will look for critical errors in the log and page the administrators.

• How will the administrators deploy and administer the software? Take advantage of the fact that
the person who will be installing and supporting the software sits just a few cubicles away.
Involve the internal customers early in the design process.

Perhaps the most important lesson I learned was that when you make a fundamental change to your
business model, you must revisit your requirements.

Server Software Testing in an ASP
Originally, when we were an enterprise software company, we’d projected that the amount of data on the
server at any given time would be relatively small. Part of the new business model included adding a great
deal more data to the server. We failed to test the server software under these new conditions.

Quality in an Application Service Provider Environment
by Elisabeth Hendrickson

Page 4 of 7

Unfortunately, when we put the server software into production we discovered severe performance
degradation when large numbers of users tried to get large amounts of data.

To work around the performance problems, the servers had to be rebooted on a regular basis— about once
an hour. Fortunately, because we were not running a real time service, the end users never noticed the
difference. But our internal IT department was in an uproar.

The problems we observed might have become problems for our customers if we were selling the server
software— or they might not have. It’s hard to say if the conditions under which the server software would
have been used in an enterprise environment would have triggered the underlying faults that plagued us
those first few weeks after release.

We had one advantage: because we controlled the servers, we could roll out new software when we needed
to without waiting for a customer’s administrator to be available. We could also do a staged rollout— one
server at a time— so we could see how the new software (much more thoroughly tested this time since we’d
learned our lessons) behaved in production.

From this experience, I learned not to underestimate the importance or effort involved in performance,
load, and stress tests. I learned that for our system there are two important variables: number of end users
connecting and amount of data in the server. Both factors play an important role in the overall performance
of our system.

In retrospect, this seems obvious. It’s easy to say we did inadequate test analysis, and that we should have
known we needed to do those kinds of performance, load, and stress tests. But what seems obvious in
hindsight was anything but obvious to us when we were initially designing the load tests.

Because an ASP serves many customers, each with their own capacity requirements, server capacity tests
are critical. As you are revisiting the requirements for the system, revisit the requirements for the tests.
Perhaps you’ll need to increase the amount of data on the server during the load tests. Perhaps you’ll need
to test the server by emulating several customers’ end users so the emulated clients all get different data.

I’ve learned that as a general rule, it is a good idea to:

• Test your software in the same configuration it will be deployed— unlike testing software for sale,
you can actually know precisely what that configuration will be.

• Work with your internal customers to define use cases for testing. This will ensure that the
software is tested in a way that is representative of how it will actually be used.

• Spend a large percentage of your time designing and executing performance, load, and stress tests.
Ensuring that the server software can handle the load— and knowing how to scale the server
implementation for a heavy load— is as important as ensuring that it works as designed.

Ensuring Quality of the Client Software
Most of this paper has focused on ensuring the quality of the back end software. However, the client is the
most obvious representation of the service to the end user. We learned that if you are an ASP distributing
client software, you also have slightly different requirements than if you are an enterprise software
company:

• The client must be lightweight: users downloading it from the Internet don’t want to download
40Mb files and customers distributing it on their CDs don’t have that kind of space available.

• The client must be absolutely rock solid: if users have problems with their machine, they will
attribute those problems to your software whether or not your software was at fault. If your
software really does cause problems, the end users will abandon the service rapidly.

• The client must be robust: no matter what, it must be able to reach back to the server— or you’ve
lost the end user as surely as if they uninstalled your software.

Quality in an Application Service Provider Environment
by Elisabeth Hendrickson

Page 5 of 7

The client may be a web application so no installation is required. Even if this is the case, the three
principles above are still in effect. But now your test matrix is even larger: test with all the flavors of
browsers on different kinds of machines including Macs as well as the different PC operating systems.

If you are an enterprise software company, the client software probably isn’t considered mass-market
software. Once you become an ASP, however, you’re in the mass-market software business. You’ll want
to treat your client development effort like a mass-market software development effort: test across a very
wide range of possible client machines, test for compatibility with other software on the system, and put a
lot of effort into negative and destructive tests to ensure that the client software can withstand a lot of
abuse.

One example of a compatibility problem we found: another software package inappropriately removed one
of the system components our software relies on. We had to find ways to work around that problem, even
though it was not our bug.

Influencing Customer Perception of Quality
As stated earlier, the quality of the software supports— but is not synonymous with— the quality of the
service. There are other things that the ASP can do to improve the customers’ perception of the quality.

One ASP discovered that the customer perceived the performance of the service to be unacceptably slow,
not because the service itself was slow, but because the customers’ connection to the Internet was low-
bandwidth. The ASP dispatched a network administrator to the customer site to troubleshoot the problem.
The low-bandwidth connection was identified as the problem, the customer got a higher bandwidth
connection to the Internet, and their perception of the quality of the service went up tremendously. The
ASP developed expertise in monitoring the entire network and not just their own software.

In another case, the service administrators knew that the server installer they were getting from the software
development group was clunky and error-prone. So the administrators practiced installing the new server
software for the last two months of software development. By the time the server software was ready to
deploy, the administrators could have installed it in their sleep. The customers, braced for a little downtime
as the servers were upgraded, were pleasantly surprised to discover that the transition went smoothly from
start to finish.

Lessons Learned
If you change your business model, your requirements have probably changed as well. Whether you
realize it or not, the customers who would have bought your software probably had different expectations
from customers who are paying for access to the software. Your company almost certainly has different
needs since it will be supporting multiple customers on the same set of machines.

Perception is reality— and the Internet can warp perceptions. In the case of the company who thought
that the service was unacceptably slow, the ASP learned that the customers’ perception of speed is only
partly determined by the actual speed of the service. Fair or not, the customer gauges their assessment of
the quality of the service on their overall experience. They don’t attribute the cause of poor performance to
limitations in their environment.

Internal chaos is OK— as long as the customer and user see a polished image. In the case of the first
server rollout where the administrators had to reboot the servers every hour (they finally wrote a script to
do that), the users perception of the quality of the service did not change.

Inefficiencies are OK— for a while. If you are in start up mode, you can usually afford some inefficiency
in your business practices. The number of customers is relatively small, so the inefficiencies don’t become
huge because of multiplicative effects. However, if the ASP accepts inefficiencies in the long term, costs
will skyrocket.

Your service will be judged harshly by customers and users alike— and you won’t know in advance
on what criteria, so be prepared to react quickly. One ASP discovered that users were balking at
downloading their rather large client software. So they devised a new distribution mechanism to enable the

Quality in an Application Service Provider Environment
by Elisabeth Hendrickson

Page 6 of 7

client to slowly download in the background over time. Another ASP solved the problem by turning their
standalone windows client into a Java applet on a web page. Both changes had to be made very quickly.
Working on Internet time takes on a whole new meaning when you are an ASP.

Quality in an Application Service Provider Environment
by Elisabeth Hendrickson

Page 7 of 7

Tools & Bibliography
SiteScope is a tool for monitoring the health of servers: http://www.freshwater.com

PQDI is drive imaging software from PowerQuest: http://www.powerquest.com.

Ghost is drive imaging software from Symantec: http://www.ghostsoft.com

WCAT is a tool from Microsoft for load testing web applications:
http://msdn.microsoft.com/workshop/server/toolbox/wcat.asp

Anderson, Mark D. “The Top 13 Mistakes in Load Testing Applications,” STQE Magazine,
October/November 1999.

Hendrickson, Kirk and Hendrickson, Elisabeth, “Quality and the Technology Lifecycle,” SM/ASM 99
Proceedings

QW2000 Paper 6A2

Dr. Jerry Gao, Mr. Kamal Gupta & Ms. Shalini Gupta
(San Jose State University)

Design for Testability of Software Components

BACK TO QW2000 PROGRAM

Presentation Abstract

We focus on design for testability of software components. We first discuss our views of component
testability, including its factors and aspects.

Then, we introduce a new concept, known as testable beans, to help engineers to understand testable
components in terms of supporting features, properties and capabilities for testing.

We believe that good reusable commercial components must be deployable, testable, and
manageable.

About the Authors

Jerry Z. Gao, Ph.D., Assistant Professor, Department of Computer Information and Systems
Engineering (CISE), San Jose State University, San Jose, California. Dr. Gao has written many
technical papers on software engineering, object-oriented technology, and object-oriented testing. His
current research interests include component engineering, software testing methodology and
supporting environments, virtual software engineering environment over the Internet, and Internet
computing. Before he joined San Jose State University, he worked for Fujitsu Network
Communications System, Inc. as a manager of an R&D group in the software-engineering
department. At Fujitsu, he was instrumental in developing an enterprise software production
environment over the Internet. His team is the driving force to establish an enterprise-oriented
software-engineering environment over the Internet in Fujitsu. He is a co-editor of the book,
"Object-Oriented Software Testing", IEEE Computer Society Press, 1998.

Dr. Gao and his colleagues have established the first Internet technology Lab in SJSU. He has

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6A2.html (1 of 2) [4/28/2000 2:33:57 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

proposed and taught several graduate courses on Internet computing, including Java Programming,
Introduction to WWW, Design and Implementation of Web-based Application Systems and Tools, and
Design and Implementation of E-Commerce Systems. Dr. Gao has been invited to offer a short course
on the topic of Engineering Global Software Production on the Internet.

Kamal Gupta is a Project Leader working in the area of Software Engineering at one of the leading
EDA companies, Synopsys Inc.. He carries M.S. in Computer Engineering with specialization in
Software Engineering from San Jose State University, San Jose, California. Before doing M.S. he did
his B.S. in computer Engineering from India. His current research interests include software
component engineering, software testing methodology, distributed object programming and database
management systems. He has more than ten years of industry experience in the area of software
engineering and is currently working on the development of software tools.

Shalini Gupta is working for Fujitsu Network Communications System. Inc. as a Software Engineer.
She carries M.S. in Computer Information and Systems Engineering (CISE) with specialization in
Client/Server computing from San Jose State University, San Jose, California. Her current research
interests include component engineering, software testing methodology and Client/Server computing.
She is currently working in the area of network management tools.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6A2.html (2 of 2) [4/28/2000 2:33:57 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

4/3/00 Quality Week '2000 1

Design for Testability of Software Components

Jerry Gao, Ph.D., Kamal Gupta, Shalini Gupta

San Jose State University
One Washington Square
San Jose, CA 95192-0180

Email:gaojerry@email.sjsu.edu

4/3/00 Quality Week '2000 2

Presentation Outline

– Introduction
– Understanding Component Testability
– Evaluation of Component Testing Capability
– Mechanism to increase Component Testability
– What is a Testable Bean ?
– Why do we need Testable Beans?
– Design For Testable Beans
– Advantages & Issues
–Technology used and Status
– Conclusion

Topic: Design for Testability of Software Components

2

4/3/00 Quality Week '2000 3

Introduction

• Challenges in Software Component Engineering :
–What is Software Component Testability?
–How to increase Testability during design phase?
–How to construct Testable Software Components systematically?
–How to facilitate Component testing in a systematic way?

• Our Focus:
–Design for testability of software components

• A new concept: Testable Bean
–Propose a new component architecture
–Propose well-defined built-in test interface.

Topic: Design for Testability of Software Components

4/3/00 Quality Week '2000 4

Understanding Component Testability

• Important indicator for component quality and reliability
•Two aspects:

a) Observability and Traceability
b) Controllability

•Our perspective of Testability:
–indicates how well a component is structured to facilitate software
testing

•Current issues on component testability --> poor testability due to:
– No external tracking mechanisms and tracking interfaces
– No built-in tests
– No built-in test interface to support software testing

Topic: Design for Testability of Software Components

3

4/3/00 Quality Week '2000 5

Evaluation of Component Testing Capability

Level 1: Initial
 - Constructed with ad-hoc testing mechanism, test formats & functions
 - More time in understanding behaviors, debugging & testing

Level 2: Standardized
 - Built to support pre-defined testing mechanism, test format
 - Reduces cost on debugging & testing

 - Extra programming overhead
Level 3: Systematic
 - Designed with a set of systematic testing mechanism
 - Easy to monitor and test the components

- Reduced programming overhead
Level 4: Customizable
 - Designed to facilitate the support of testing functions & customization
 - Helps to set up testing for component based software

Topic: Design for Testability of Software Components

4/3/00 Quality Week '2000 6

Mechanism to increase component testability

Three Mechanisms to construct testable components:

- Framework-based testing facility
- well-defined framework (such as class library) to add test code
- simple and flexible to use
- needs component source code

- Built-in tests
- needs well-defined built-in mechanism to add test code
- high programming overhead during component development
- no external support needed

- Automatic component wrapping for testing
- component wrapped inside program for testing
- low programming overhead
- well-defined test framework to interact with test tools

Topic: Design for Testability of Software Components

4

4/3/00 Quality Week '2000 7

Testability enhancement mechanisms

.Testing
Perspectives

Framework-
Based Testing
Facility

Built-in Tests Automatic Component
Wrapping for Testing

Source Code Needed Needed Not needed

Testing Code
Separation

No No Yes

Development
Overhead for
Testing

High H igh Low

Complexity Low Very High H igh

Usage
Flexibility

High Low Low

Applicable
Components

In-house
components

In-house
components

In-house components
and COTS

Topic: Design for Testability of Software Components

4/3/00 Quality Week '2000 8

What is a Testable Bean?

•What is a testable bean?
- should be deployable and executable
- must be traceable by supporting basic component tracking capability
- must provide a consistent, well-defined and built-in interfaces
- standardized mechanism to include built-in test code

•Design criteria while constructing testable beans:
- minimize programming overhead for developers
- standardize the test interface for testable beans
- prevent adding detailed testing functions inside beans
- separate the functional code from built-in test code
- should not include detailed tests inside a test bean

Topic: Design for Testability of Software Components

5

4/3/00 Quality Week '2000 9

Test Interface

•Test interface supports three basic functions:

- set up a test (test case and/or data)
- exercise a test for a specified function
- validate and report the test results

•Features of a component testing support environment:

- a test management tool for updating/maintaining/recording tests
- a component test bed to set-up and exercise test
- a component test generation tool to generate test cases

Topic: Design for Testability of Software Components

4/3/00 Quality Week '2000 10

Why Testable Beans?

•Why do we need testable beans?

- reduce test costs and enhance software quality
- minimize testing efforts.

•Objectives to design and construct testable beans

- provide traceable, reusable, executable, deployable, testable beans
- provide plug-in-and-test environment
- standardized the test interface for testable beans
- achieve the component test automation
- construct software testable components with good architecture

Topic: Design for Testability of Software Components

6

4/3/00 Quality Week '2000 11

Challenges while Constructing Testable Beans

–Design and implementation in a systematic way?

–Define component architecture and test interface?

–Create Testing framework to support test automation?

–Minimize programming efforts and system overhead?

–Provide standardized interactions between Bean and its supporting
environment?

Topic: Design for Testability of Software Components

4/3/00 Quality Week '2000 12

Design for Testable Beans

•Our solution includes:
–a new architecture model
–a well-structured test interface
–a supporting test environment

•The Architecture model:
–GUI interface supporting user interaction
–Built-in test interface
–Built-in program layer to facilitate testing
–Built-in tracking interface for tracking capabilities
–Built-in tracking program layer to facilitate tracking

Topic: Design for Testability of Software Components

7

4/3/00 Quality Week '2000 13

Design for Testable Beans (cont.)

•A well-structured test interface:
–includes three functions:

•setParameters, to set up the parameters for the functions
•runMethod, to execute a given method
•validateTestResult, to validate the test results

•A supporting test environment:
–includes three parts:

•Testable Bean in a computer node
•A Test Agent (along with a testing package)
•A Tracking agent (along with a tracking package)

Topic: Design for Testability of Software Components

4/3/00 Quality Week '2000 14

Testable Bean Architecture

GUI BeanBox

Component

Built-in tracking code

Testing Interface

Built-in testing code

Tracking Interface

Topic: Design for Testability of Software Components

8

4/3/00 Quality Week '2000 15

Testing and Support Environment

Testing Agent

Tracking Agent

RMI
over

TCP/IP

RMI
over

TCP/IP

Testable Beans

GUI

Component

Built-in tracking code

Testing Interface

Built-in testing code

Tracking Interface

Topic: Design for Testability of Software Components

4/3/00 Quality Week '2000 16

Transaction sequences

Figure: Transaction Sequence (RMI Client/Server Communication)

Topic: Design for Testability of Software Components

IBeanTester
ServerBeanTesterClient

Calling Remote
Methods

and getting
results/status

RMI Naming
service

 createTester

Proxy
Server

Client Server

setSecurity Manager

rebind

look up

setParameters ()

runMethod ()

validateTestResult ()

tester.setParameters (c, m, TestDataObj)

tester.runMethod (c, m, TestDataObj)

tester.validateTestResult (c, m, TestDataObj)

Validation Result
(Succeeded or Failed)

Calls

tester

Object []

run_status

 (Succeeded or Failed)

9

4/3/00 Quality Week '2000 17

Interface between Component and Testing Agent
public interface IBeanTester
{ public Object[] setParameters(String className_val, String

methodName_val, TestData testData_val);
 public int runMethod(String className_val, String methodName_val,
 TestData testData_val);
 public int validateTestResult(String className_val, String methodName_val,

 TestData testData_val);
}

public class TestData
{ public TestData(Object[] argValueList_val,

Object[]expectedTestDataList_val)
 {Object[] argValueList = argValueList_val;
 Object[] expectedTestDataList = expectedTestDataList_val; }
}

Topic: Design for Testability of Software Components

4/3/00 Quality Week '2000 18

Connection between the Client and Server

public class CreateBeanTester
{ … .
 public IBeanTester createTester(String serverName){
 try {
 IbeanTester testerObj = (IBeanTester)Naming.lookup(serverName); }
 catch (Exception e)
 {
 System.out. println("BeanTesterClient.createTester: an exception

occurred:");
 e. printStackTrace(); }
 return testerObj; }
}

Topic: Design for Testability of Software Components

10

4/3/00 Quality Week '2000 19

Implementation of Testing Agent

public class BeanTesterServer
{
 public static void main(String args[]) {
 // Create and install the security manager
 System.setSecurityManager(new RMISecurityManager());
 try {
 // Create BeanTesterImpl
 BeanTesterImpl beanTestObj = new BeanTesterImpl("beanTestServer");}
 catch (Exception e) {
 System.out. println("BeanTesterServer.main: an exception occurred:"); } }
}

Topic: Design for Testabzility of Software Components

4/3/00 Quality Week '2000 20

Testing code example

import beantester.tester;
… . // other import package
public class BeanTesterClient
{ public static void main(String[] args)

// className, methodName, argValue_List, expectedTestData_List is supplied by the user either
 through the GUI interface or at the command line

 boolean testable_flag = true; // Set up the testable_flag to true to enable the testing
 while(flag) {
 CreateBeanTester beanTesterObj = new CreateBeanTester();
 IBeanTester tester = beanTesterObj.createTester("beanTestServer");
 TestData testDataObj = new TestData(className,methodName, argValue_List,

 expectedTestData _List);
 parameter_List = tester.setParameters(className,methodName, testDataObj);
 int run_status = tester.runMethod(className,methodName, testDataObj);
 int validateResult = tester.validateTestResult(className,methodName, testDataObj);
 testable_flag = false; }
 }

Topic: Design for Testability of Software Components

11

4/3/00 Quality Week '2000 21

Advantages and Issues

•Advantages:
- Reduces software test cost and enhances software quality
- Minimizes testing cost and efforts
- Provides a scaleable model
- Flexible to control testing capabilities
- Provides a well structured testing package
- Monitors external behavior of third-party components

•Issues:
-Software maintenance and support for component-based software
-Component behavior analysis and performance

Topic: Design for Testability of Software Components

4/3/00 Quality Week '2000 22

Technology used and Status

•Technology Used:
- JDK 1.2 for Testing Client and Testing Agent
- RMI for the communication

•Implementation Status:
-Tool partially built but has successfully verified the suggested model.

•Future Work:
– Come up with a new component test-bed technology, applicable to
diverse components developed in different languages and technologies
and on different platforms.

Topic: Design for Testability of Software Components

12

4/3/00 Quality Week '2000 23

Conclusion

•Testability offers
–significant insights that are useful during design, testing, and reliability
assessment.
–promise for quantitative improvement in software quality.
–reduction in testing cost and efforts.

•Introduced the new concept: Testable Beans

• Defined the new architecture and test interface for Testable Beans.

Topic: Design for Testability of Software Components

4/3/00 Quality Week '2000 24

References

[1] Elaine J Weyuker, "Testing Component-Based Software: A Cautionary Tale", IEEE
Software, September/October 1998.

[2] Jerry Z. Gao, "Testing Component-Based Software", STAR'99.

[3] Jerry Z. Gao, "Perspectives of Software Component Testability", submitted for publication
in 1999.

[4] Voas, J. M. and Miller, Keith W.," Software Testability: The New Verification", IEEE
Software, Vol. 12, No. 3: May 1995, pp. 17-28.

[5] Roy S. Freedman, “Testability of Software Components”, IEEE Transactions on Software
Engineering, Vol. 17, No. 6, June 1991.

[6] David S. Rosenblum, “Adequate Testing of Component-Based Software”, Department of
Information and Computer Science, University of California, Irvine, Technical Report UCI-
ICS-97-34, Aug. 1997.

[7] William T. Councill, "Third-Party Testing and the Quality of Software Components", IEEE
Software, Vol. 16, No. 4, pp. 55-57, July/August 1999.

[8] Yingxu Wang, Graham King, and Hakan Wickburg, “A Method for Built-in Tests in
Component-based Software Maintenance”, Proceedings of the Third European Conference on
Software Maintenance and Reengineering, 1998.

Topic: Design for Testability of Software Components

�PAGE � 1

Design for Testability of Software Components

Jerry Gao, Ph.D., Kamal Gupta, Shalini Gupta
San Jose State University
One Washington Square

San Jose, CA 95192-0180
Email: jerrygao@email.sjsu.edu

�PAGE � 2

Abstract
Component engineering is gaining substantial interest in the software engineering community.
A lot of research efforts have been devoted to the analysis and design methods for component-
based software. However, only few papers address the testing of software components and
component-based software. This paper focuses on design for testability of software
components. It discusses component testability, its factors and aspects and solutions in
supporting software components and component-based software. Moreover, the paper
introduces the concept of testable bean, and proposes a new way to construct a testable bean
based on a testable architecture and well-defined built-in interfaces.

Keywords: Component engineering, software component testing, software testing, software
testability.

1. Introduction
As the software programs increases in size, it is very important to reduce high software cost
and complexity while increasing reliability and controllability. With the advances in Internet
technology, more distributed systems are being built to meet diverse application needs.
Currently component engineering is gaining substantial interest in the software-engineering
community. As more third-party software components are available in the commercial market,
more software workshops have begun to use the component engineering approach to develop
component-based programs for the distributed applications.

Although a lot of research efforts have been devoted to analysis methods and design strategies
of component-based software, only a few papers address the testing of software components
and component-based software [1][2][3][4][5][6][7][8][9]. To build high quality software, we
need good quality components and cost-effective component testing methods [1]. In the
practice of component engineering, we have encountered some new problems and challenges
in testing of software components and component-based software [2]. One of them is how to
build software components with good testability. As pointed out by Jeffrey Voas [5], testability
is an important indicator for component quality and reliability. To solve this problem, we
must have a clear understanding about component testability, and provide new architecture
models and methods to help engineers to construct testable components. In addition, we need
new component test tools and technologies to support the automation of a test process for
software components.

In component engineering practice, we encountered several challenges concerning testing of
software components. They are:

§ What is software component testability?

§ How to increase the testability of software components during component design?

§ How to construct testable software components with a systematic approach?

�PAGE � 3

§ How to facilitate component testing in a systematic way?

In this paper, we focus on design for testability of software components. We believe
component testability is a very important factor to increase component quality and reduce
testing cost. Therefore, it is essential for component developers to construct deployable,
executable, testable and manageable software components.

To help people understand how to construct testable software components, we introduce a
new concept, called testable beans. To explain this concept, we propose a new component
architecture and well-defined built-in test interfaces to enhance the component testability and
facilitate component testing. In this paper, we focus on our discussion on testable beans by
answering the following questions:

§ What is a testable bean?

§ Why do we need testable beans?

§ What are the basic features, capability and properties of a testable bean?

§ What are the architecture and interfaces of a testable bean?

In addition, our application and implementation experience indicates that the research result
here is very useful and practical to develop a software test tool to automate a component
testing process. Our application experience suggests that this approach is one of the cost-
effective ways to build highly testable components. Moreover, standardized testable beans can
help us to automate a component test process for all software components. Our result and case
study suggests us that if we can standardize the architecture model, supporting test interfaces,
and built-in testing mechanisms for software components, then we achieve component test
automation from the following aspects:

§ Generate testable components (or beans) in a systematic manner.

§ Create a generic component test-bed to provide a plug-in-and-test environment for various
software components.

§ Create an independent component testing box with well-defined interfaces that interact
with testing tools and test database to facilitate component testing in a more flexible way.

§ Add built-in test codes inside a software component in a systematic way.

The paper is structured as follows. In Section 2, we first discuss our views of component
testability, including its factors and related aspects. In Section 3, we introduce a new concept,
known as testable beans, to help engineers understand testable components in terms of
supporting features, properties and capabilities for software testing. Section 4 presents a
systematic approach to construct testable beans and facilitate component testing. Finally, our
conclusion remarks and future work are given in Section 5.

�PAGE � 4

2. Understanding Component Testability
In the component engineering paradigm, one of the primary goals is to generate reusable
software components as software products. The third-party engineers use the components as
parts to build specific software systems according to the requirements given by customers.
Therefore, the testability of a program highly depends on the testability of involved
components and their integration.

Testability is an important indicator for component quality and reliability and has two aspects:
a) observability, and b) controllability. Controllability of a program (or component) is an
important property that indicates how easy it is to control a program (or component) on its
inputs, operations, behaviors and outputs. Observability of a program (or component) is
another critical property that indicates how easy it is to observe a program in terms of
operational behaviors and outputs related to its inputs. From a customer’s point of view, the
testability of current software components is poor due to the following reasons.

§ No external tracking mechanisms and tracking interfaces in software components for a
client to monitor or observe external behaviors.

§ No built-in controllable interfaces in software components to support the execution of unit
tests, checking the test results, and reporting errors.

§ No built-in tests or controllable test suites for software components to support black-box
tests at the unit level.

Component Observability and Traceability

According to Roy S. Freedman [6], software observability indicates how easy it is to observe a
program in terms of its operational behaviors, input parameters, and outputs. This implies that
the design and definition of a component's interfaces (such as incoming and outgoing
interfaces) affects its observability. In the practice of component engineering, we found that
the component traceability is another very important factor that affects the component
observability.

"Traceability" of a software component refers to the extent of its built-in capability of tracking
the status of component attributes and component behavior. It has two folds: a) behavior
traceability, and b) trace controllability. Behavior traceability refers to the degree to which a
component facilitates the tracking of its internal and external behaviors. In the real world,
component engineers have learned to check and monitor the internal and external behaviors of
software components by adding a program tracking mechanism in software. In the real
practice, engineers are not successful in delivering software components with good behavior
traceability due to the following two reasons. First, in the development of software
components, engineers used to pay much attention to track component internal behaviors than
external behaviors. Therefore, component testers, integration engineers and customers have
the difficulty in monitoring and checking the external behaviors of software components.
Next, component developers are learning how to design and develop traceable components
due to the lack of standardized component trace formats and tracking mechanism [3].

�PAGE � 5

Trace controllability refers to the extent of the control capability in a component to facilitate
the customization of its tracking functions. With trace controllability, engineers can control
and set up various tracking functions such as turn-on and turn-off of any tracking functions
and selections of trace formats and trace repositories. Although the current commercial
components and most in-house components do not provide this capability, it is an ideal and
cost-effective feature for testers and maintainers to support debugging, component integration,
and system. Trace controllability is really useful and necessary for complicated components
with customization functional features in a distributed environment.

Component Controllability

Controllability of a program (or component) is an important property that indicates how easy
it is to control a program (or component) on its inputs/outputs, operations, and behaviors [6].
Component developers look at the "controllability" of a software component from three
aspects: a) behavior control, b) feature customization, and c) installation and deployment. The
first has something to do with the controllability of its behaviors and output data responding to
its operations and input data. The next refers to the built-in capability of supporting
customization and configuration of its internal functional features. The last refers to the control
capability on component installation and deployment.

Test engineers and component customers are concerned about other factors of component
controllability, which may directly affect the component testability. The trace controllability in
software components is a typical example. Testers and customers expect components to
provide a set of control functions in software components so that they can use them to monitor
and check diverse component behaviors according to their needs. We believe component trace
controllability is very useful in component debugging, component integration, and system
testing. In addition, component testers and customers expect software component vendors to
generate components with test controllability to support acceptance testing and unit testing in a
standalone mode. Component test controllability refers to a component's capability of
retrieving and exercising component tests. Unfortunately, most current component vendors do
not provide components with this capability due to the lack of research results on how to
design and develop testable components.

Evaluation of Component Testing Capability

It is important to evaluate the testing capabilities of a software component to be able to
construct a good testable component. We have defined the following four levels for measuring
and evaluating the testing capability of a software component.

Level 1: Initial – Software components, at this level, are constructed in a way to facilitate
component and program testing by considering program tracking, built-in testing, interaction
interfaces with test tools and test databases. However, component developers use an ad hoc
approach to define program tracking format and mechanism, built-in testing methods, and
built-in interfaces and interactions with testing tools. For software components at this level,

�PAGE � 6

engineers usually encounter a lot of problems in understanding component behaviors,
executing component tests, validating and debugging test results, and interacting software
testing tools.

Level 2: Standardized – Software components, at this level, are built according to a pre-
defined set of standards on test case formats, tracking message formats and mechanisms, built-
in test techniques, and interaction interfaces with software test tools. These standards will help
component developers to construct software based on the pre-defined standards to facilitate
component testing and program testing. When developers follow these standards, they can
generate testable components to reduce the testing cost and increase component testability.
However, to reduce the programming overhead and testing overhead they need more
guidelines and systematic way help them in component construction.

Level 3: Systematic – At this level, software components are designed with a set of systematic
built-in mechanisms and interfaces to facilitate component testing and interactions with
software testing tools, so that they can be easily executed, tested, and monitored in a
systematic manner. With components at this level, component test automation can be achieved
in a systematic way. The major advantage here is to reduce a lot of programming overhead on
building testable components.

Level 4: Customizable – Components at this level consist more flexible built-in test
mechanisms and testing interfaces are embedded inside to support the customization of tests,
test formats, test function implementation and configuration. Building customizable software
components for testing enhance the component flexibility to define, select, and configure
built-in tests and testing functions, trace and test formats, as well as test tool interactions.

Mechanisms to Increase Component Testability

Since a component-based program is an integration of software components, its program
testability depends on the testability of its components. Component observability is the
fundamental base of component testability. We have discussed the component traceability and
three methods to increase software component traceability in [2][3][4]. Similar to component
traceability, we need to add some well-defined mechanisms to software components to
enhance their testability. As we pointed out in [1], component engineers need guidelines and
systematic mechanisms to construct testable components. This is very important for
supporting and testing both in-house components and commercial components (COTS). Here
we discuss three different systematic mechanisms to construct testable components by adding
program codes and interfaces to support and facilitate component testing and program testing.
Table 1 lists three basic approaches to add a consistent testing capability into software
components to increase component testability.

Method 1: Framework-based testing facility – In this approach, a well-defined framework
(such as a class library) is provided to component engineers to facilitate them to add program
testing code into software components according to the application interfaces of the given
framework. It usually is a testing facility program or a class library. Component engineers can
use the facility to add their built-in testing code into components. This approach is simple and
flexible to use. However, there are several drawbacks. Firstly, it requires a high programming

�PAGE � 7

overhead. Secondly, it relies on engineers' willingness to add the testing code due to its high
overhead in programming. Moreover, this approach assumes that component source code is
available. Therefore, it is difficult to deal with commercial components (COTS) because
usually they do not provide any source code to clients.

Testing Perspectives Framework-Based
Testing Facility

Built-in Tests Automatic Component
Wrapping for Testing

Source Code Needed Needed Not needed
Testing Code
Separation

No No Yes

Development
Overhead for Testing

High High Low

Complexity Low Very High High
Usage Flexibility High Low Low
Applicable
Components

In-house
components

In-house
components

In-house components
and COTS

Table 1. Comparisons of Three Different Mechanisms for Testing

Method 2: Built-in tests – This approach requires component developers to add test code and
tests inside a software component as its parts. Usually, this approach needs a well-defined
component built-in mechanism and coding format. Developers must follow them to add tests
and built-in test functions inside components. This causes a high programming overhead
during component development. The major advantage of this approach is that tests are built-in
inside components. Therefore, engineers can perform component tests without any external
support from testing environment and test database. It is clear that this is a good idea to
include component acceptance tests inside components like COTS. The major drawback of
this approach is that components consume large system resources and become more complex
because they include a lot of unrelated functional features. In addition, only limited types of
tests can be included inside components.

Method 3: Automatic component wrapping for testing - This approach uses a systematic way
to convert a software component into a testable component by wrapping it with the program
code which facilitates software testing. Like the first method, this approach usually uses a
well-defined test framework to interact with test tools or detailed testing functions. Compared
with the first two methods, this approach has several advantages. First, its programming
overhead is low because of automatic code wrapping. Next, it separates the code (which
facilitates testing) from the original source code of a component. In addition, this method can
be used for in-house reusable components and commercial components (COTS).

As shown in Table 1, these three approaches have different pros and cons. In real practice, we
need to use them together to support different types of testing for a program and its
components. To design and construct testable components, engineers need more guidelines on
component architecture, testing interface, and supporting facilities.

�PAGE � 8

3. Design for Testable Beans and Supporting Environment

What is a testable bean?

A testable bean is a testable software component that is not only deployable and executable,
but also testable with the support of standardized components test facilities. Unlike normal
components, testable beans have the following unique requirements and features.

§ REQ #1: A testable bean should be deployable and executable. A JavaBean is a typical
example.

§ REQ #2: A testable bean must be traceable by supporting basic component tracking
capability that enables a user to monitor and track its behaviors. As defined in [3],
traceable components are ones constructed with a built-in tracking mechanism for
monitoring various component behaviors in a systematic manner.

§ REQ #3: A testable bean must provide a consistent, well-defined and built-in interface,
called test interface, to support external interactions for software testing. Although
different components include diverse functional interfaces, they must include a consistent
test interface to support software testing. This is very important to automate component
testing, and reduce test costs on environment setting and test driver construction.

§ REQ #4: A testable bean must include some program code that facilitates software testing
by interacting with external testing facilities or tools to support test set-up, test execution
and test validation.

To construct cost-effective testable beans, it is very important for developers to understand the
following design criteria:

§ It is essential to minimize the programming overhead for developers.

§ It is important to standardize the test interface for testable beans.

§ It is suggested to prevent adding detailed testing functions inside beans.

§ It is always a good idea to separate the functional code of a bean from the built-in code
that facilitates the interactions between the bean and external testing facilities and tools.

§ It is not good to include detailed tests inside a bean, otherwise, it is not easy to manage,
reuse, and maintain tests in a flexible manner.

The test interface for a testable bean must support the basic three functions: a) set up a test
(test case and/or test data) for testing a bean, b) exercise a test for a specific function of a bean,
and c) validate the test result of a test with the given expected test data and report it.

Like traditional software testing, we can include the following features in a component testing
environment:

�PAGE � 9

§ A test management tool, which allows testers to create, update, and maintain component
tests. In addition, this tool also records the testing results from component testing.

§ A component test bed, which uses component test drivers to set-up and exercise various
test cases for a component.

§ A component test generation tool, which helps testers to automatically generate
component test cases and test data.

There are three questions regarding the design of testable beans. The first question is how to
design and define a common and consistent architecture and test interface for all testable
beans. The next question is how to generate testable beans in a systematic way. The final
question is how to control and minimize program overheads and resources for supporting tests
of testable beans.

Why do we need testable beans?

Increasing software component testability is a key to reduce software test costs and enhance
software quality. Jeffery Voas, M. Miller, W. Keith in [5] define an interesting approach to
measure and evaluate software testability of a program from the software reliability
perspective. Their approach can be useful to check the testability of software components to
help testers to find out the quality of the components. In this paper, we use the term
‘testability’ to indicate how well a component is structured to facilitate software testing. The
major purpose of constructing testable components is to minimize testing cost and efforts.

The objectives to design and construct testable beans are summarized below.

§ To provide components that are traceable, reusable, executable, deployable, and testable.

§ To minimize the testing efforts by providing a plug-in-and-test environment to support
component testing and component integration.

§ To standardize the test interface for components so that various test tools and facilities can
be integrated and used together.

§ To find a systematic approach to achieve the goal of the test automation for software
components.

§ To provide a new way to construct software testable components with well-defined design
architecture and testing interface.

To construct testable beans, we encounter the following challenges.

§ How to design and implement testable beans in a systematic way?

§ What is the component architecture and test interface for testable beans?

�PAGE � 10

§ How to provide a testing support framework (or facility) and a component test
environment to achieve component test automation?

§ How to minimize the programming efforts and system overhead during the construction
and execution of testable beans?

§ How to provide standardized interactions between a test bean and its supporting
environment?

Here we present a solution based on the concept of testable beans to solve the above problems.
We focus on component architecture and the test interface for testable beans. The solution
includes a) a new architecture model for construct testable beans, b) a well-structured test
interface for testable beans, and c) a testing environment for supporting component tests.

The Architecture Model for Testable Beans

As mentioned before, intuitively, a testable bean is a software component, which is designed
to facilitate component testing. Figure 1 shows the architecture model for a testable bean. A
testable bean includes the following extra parts other than its original functional parts.

§ A GUI interface which is an extension of BeanBox supporting component user
interactions for testing operations.

§ A built-in test interface that supports the external interactions for testing.

§ A built-in program layer that facilitates the interactions between the testable bean and
external testing facilities and supporting tools to complete various testing capabilities.

§ A built-in tracking interface which supports user interactions to configure and select
various tracking capability and features. The details are reported in [4].

§ A built-in tracking program layer that facilitates the interactions between a testable bean
and external tracking facilities and supporting tools to complete program tracking
functions. The details are reported in [4].

This component architecture has several distinct features. First, it considers the needs of
essential testing support for a software component, such as tracking and testing interfaces.
Second, it separates the testing and tracking functional code from normal functional parts of a
component. This makes it easy to add or remove testing and tracking code inside a
component. In addition, it promotes independent interfaces to support testing and maintenance
of software components.

Test Interface of A Testable Bean

As we pointed out in [1], one of the major challenges in component test automation is the fact
that various components are constructed with diverse interfaces and technologies. To deal
with this issue, we have come up with an idea to design a consistent interface for components
to support test interactions between components and external tools and component users.

�PAGE � 11

Figure 1 shows a generic test interface (IBeanTester) for a testable bean in Java. It includes
three functions:

§ Object[] setParameters(....), which sets up a test case and test data to exercise a given
method of a Java class.

§ int runMethod (....), which executes a given method of a Java class with the set-up test
data.

§ int validate testResult(....), which check the test results for an execution class method.

The major purpose of the interface is to define and regulate a test interface to component users
and test tools for exercising various functions in a software testable component (testable bean).
It plays a very important role to standardize the test interface between testable beans and
component testers or external test tools. Following this test interface, component developers
and test tool vendors can provide their detailed implementation to support component testing.

Testing Environment for Testable Beans

To support the component testing for various testable beans, we developed a simple client-
server prototype. Figure 3 shows the structure of a client-server environment for testing
testable beans. This environment includes three parts: a) testable beans, b) a test agent, and c)
a tracking agent.

Figure 1. Interface between the Component and the Testing Agent

A Test Agent is a multithreaded process. Each thread controls, supports, and monitors
component tests for a testable bean in the environment. A test agent includes the following
functional parts: a) a component test facility, which provides the detailed implementations of
test functions defined in the test interface, b), a synchronous communication interface between
testable beans and a test agent, c) administration and configuration GUI, and d) a linkage
interface to a component test tool that generates, manages, and maintain component tests for
testable beans.

public interface IBeanTester
{
 public Object[] setParameters(String className, String methodName, TestData testData_val);

 public int runMethod(String className, String methodName, TestData testData_val);

 public int validateTestResult(String className, String methodName, TestData testData_val)

}

public class TestData
{
 public TestData(Object[] argValueList_val, Object[]expectedTestDataList_val)
 {
 Object[] argValueList = argValueList_val; // Actual parameter values
 Object[] expectedTestDataList = expectedTestDataList_val; // Expected data
 }
}

�PAGE � 12

Figure 2. Testable Bean Architecture

In fact, the test agent can be located in the same machine as a component-based program. To
deal with distributed component-based programs, we intentionally set up a client-server test
environment to try our solution. We use Java RMI as a means to support the synchronous
communications between a test agent and testable beans to support the test operations. Figure
4 shows the communication sequence between a client (a testable bean) and a server (test
agent). First, the BeanTestAgent registers with the RMI Naming Service. After the
registration, any testable bean constructed with the test interface can be supported on the
network to complete the detailed test functions based on the component testing facility
implemented in a test agent. The detailed test functions listed here are:

- Set up test parameters and test cases for a component function, for example
setParameter(…).

- Invoke a component's function with a given test case, for example, runMethod(… .).

- Validate test results from a test, for example, validateTestResult(… .).

GUI BeanBox

Testing Interface

Tracking Interface

Built-in Testing Code

Component

Built-in Tracking Code

Figure 3. Component Testing Environment

Test Agent Tracking Agent

Component Test
Tool

Component
Test Database Component

Trace Repository

Testable Bean

Network

Component-based
Program

RMI

�PAGE � 13

The idea here is influenced by the concept of the remote procedure call. We implement the
detailed testing support function as a component test facility of a test agent. They can be
shared and used by all testable components (testable beans) on the network.

A tracking agent is a multithreading process that controls, records, and monitors diverse
component behaviors in a component-based program. A tracking agent consists of the
following three functional parts [4].

- Tracking Listener is a multi-thread program that listens and receives all types of
tracking events through trace message queues, and dispatches them to tracking
processor.

- Tracking Processor generates program traces according to a given trace event based
on its trace type, trace message and data, and stores them in the proper trace
repository.

- Tracking Configuration provides a graphic user interface to allow a user to discover
and configure various tracking features for each traceable component.

Due to the limited scope of this paper, we only focus on test agent and testable beans. The
more detailed information about Tracking Agent can be found in [4].

Testable Bean RMI Naming
Service

Test Agent
(BeanTest Agent)

Register with the naming service
Bind to Test Agent

Proxy Sever

tester.setParameter (… …)

tester.runMethod (… …)

tester.validateTestResult(… …)

Remote Tester
Interface

Remote call setParameter (… …)

Remote call runMethod (… …)

Return Object[]

Return Run Status

Remote call runMethod (… …)

Return Validated Result

Figure 4. Transaction Sequence between a Test Agent and a Testable Bean

�PAGE � 14

Figure 5. Implementation of the Testing Agent

Figure 6. Implementation of the Communication Support

public class BeanTestAgent
{
 public static void main(String args[])
 {
 // Create and install the security manager
 System.setSecurityManager(new RMISecurityManager());
 try
 {
 // Create the communication object to support the interactions between a test agent and
 // testable beans or test bean drivers
 BeanTesterImpl beanTestObj = new BeanTesterImpl("beanTestAgent");
 }
 catch (Exception e)
 {
 //Exception handling ...
 }
 }
}

// import packages ...

public class BeanTesterImpl extends UnicastRemoteObject implements IbeanTester {

 BeanTest beanTestObj = new BeanTest();
 public BeanTesterImpl(String s) throws java.rmi.RemoteException {

 super();

 String name = s;

 try {

 Naming.rebind(name, this); }

 catch (Exception e) {
 // Exception handling ...}

 }

public Object[] setParameters(String className_val, String methodName_val, TestData testData_val) throws RemoteException

 { Object[] argValueList = beanTestObj.setParameters(className_val, methodName_val, testData_val);

 return argValueList;

 }
public int runMethod(String className_val, String methodName_val, TestData testData_val)throws NoSuchMethodException,

 SecurityException, java.rmi.RemoteException

 { int runStatus = beanTestObj.runMethod(className_val, methodName_val, testData_val);

 return runStatus;

 }

public int validateTestResult(String className_val, String methodName_val, TestData testData_val) throws java.rmi.RemoteException
 {

 int validateRes = beanTestObj.validateTestResult(className_val, methodName_val, testData_val);

 return validateRes;

 }

}

�PAGE � 15

Implementation of Test Agent

We have implemented a simple prototype to try our idea. We use Java JDK 1.2 to construct
our testable beans, and Java RMI technology to implement the communications between
testable beans and the test agent. As we discussed before, our test agent consists of four parts:
a) a communication interface, b) component test facility, c) administration and configuration
graphic interface, and d) test tool linkage.

Here we only explain the first two parts. The other two parts will be reported in the future. We
used Java and RMI technology to implement a test agent that can be used to support Java-
based testable beans in a client-server environment. Figures 5 highlights the implementation
idea for a simple test agent, where a communication interface object, called BeanTesterImpl,
is constructed to support the communications between testable beans and a test agent. Figure 6
displays a sample of the communication interface object, which consists of binding function,
and testing interaction operations.

Figure 7. Implementation of the Test Facility of Test Agent

The detailed implementation of component test facility is highlighted in Figure 7. The
displayed test facility includes three basic functions, such as setParameter(… .),
runMethod(…), and validateTestResult(…), for component test operations. In addition,
getClass(Object obj) is included to support runMethod(…) to determine the types of objects
based on Java Reflection function.

//import packages ...

public class BeanTest implements IBeanTest

{

 public BeanTest(){}

 public Object[] setParameters(String className_val, String methodName_val, TestData testData_val)
 {// Detailed implementation ...}

 public int runMethod(String className_val, String methodName_val, TestData testData_val)

 {// Detailed implementation ...}

 public int validateTestResult(String className_val, String methodName_val, TestData testData_val)
 {// Detailed implementation ...}

 // Types of objects supported

 public Class getClass(Object obj) // method used in runMethod

 {// Used the Java Reflection to determine the type of the object such as “character”, “Byte”,” Short “,”Integer “,”Long “,

 // “Double”,” Float “,”Boolean “ and the User defined type}
 }
}

�PAGE � 16

4. Application Examples

Component developers and component testers can use the presented solution and test
environment in the different ways:

§ Add the built-in test code into a component to make it testable using the provided test
interface and test facility.

§ Use a systematic way to add the pre-defined test code into a component to make it
testable based on the given test interface.

§ Create a separate component test driver for a component using the provided test interface
and test facility.

§ Find a systematic way to generate test drivers for a component based on the given test
interface.

Figure 8 shows two different ways to construct a testable component for a component.

A Component Test Driver:

A simple example presented in Figure 9 highlights the basic idea on how to generate a
component test driver. This component driver uses the presented component test interface and
the detailed component test facility provided in a test agent. It includes the following steps:

§ Binding to a test agent through the RMI naming service.

§ Get a test case from a test repository, or a graphic user interface

§ Set up parameters through the remote test interface (setParameters(…)). It allows us to
setup the parameters for exercising and validating different functions of a component.

Component

F1

Fn

Component

F1

Fn

T1

Tm

Component

F1

Fn

Test
Interface

Built-in
Test Component Test Driver

Test
Interface

(a) Software Component (b) Component with Built-in Test (c) Component Interacting with A Test Driver

Figure 8. A Component and its Testable Components

�PAGE � 17

§ Invoke a component method using runMethod(…). RunMethod(…) uses Java "Reflection"
to obtain the information about the classes and members of the given component. This is
the technique that the JavaBeans "introspection" mechanism uses to determine the
properties, events, and methods that are supported by a bean, for example. Reflection can
also be used to manipulate objects in Java. We use the "Field" class to query and set the
values of fields, the "Method" class to invoke methods, and "Constructor" class to create
new objects.

§ Validate the test results from a test case using validateResult(…). This method compares
the execution result of the specified function in the given component with the given
expected data. A validation status is returned to indicate if the test case has been passed or
not. A test record can be generated and stored in a test management tool.

// import packages

public class BeanTestDriver

{ public static void main(String[] args) throws NoSuchMethodException, RemoteException

 { String className, methodName;

 Object[] argValue_List, expectedTestData_List, parameter_List;

 // Bind to a test agent
 try
 { // TestAgentName is given through a command line
 String TestAgentName = args[0];
 IBeanTester tester = (IBeanTester)Naming.lookup(TestAgentName);
 }
 catch (Exception e)
 {
 // Exception handling ...

 }

 // Program code to get a component name (say a class name and method name).
 // Program code to retrieve a test case and test data from a test repository or a tester

 // Programming code to set up argValue_List, and expectedTestData_list.

 // Testing Code in a test driver

 TestData testDataObj = new TestData(argValue_List, expectedTestData_List);

 // Calling the setParameters
 parameter_List = tester.setParameters(className,methodName, testDataObj);

 //executing the method

 try {

 int run_status = tester.runMethod(className,methodName, testDataObj);

 }

 catch(NoSuchMethodException ex) { // Exception handling code … }
 catch(RemoteException ex) { // Exception handling code … }

 int validateResult = tester.validateTestResult(className,methodName, testDataObj); // Performing the validation

 }

}

Figure 9. An Example of a Component Test Driver

A for loop can be added in the example to support the execution of more test cases in a test
repository. It is clear that the current example only can be applicable for function testing of
software components.

�PAGE � 18

// import packages

public class SampleComponent // Component containing the built-in testing code

{

 public int sumMethod(int a, int b, int c) {
 int sum;

 sum = a + b + c;

 System.out.println("The generated Sum of 3 numbers is :" + sum);

 return sum;

 }

 public Function_Return_Type Function_1(… … ..) { … … };
 public Function_Return_Type Function_2 (… … ..) {… … .};

 … … ..

 public Function_Return_Type Function_n (… …) { … … . };

 // Built-in Test Code

 public static void Test_Script_I (String[] args)throws NoSuchMethodException, RemoteException
 {

 // Set up a specific test case for sunMerthod(…)

 // Values for the className,methodName & arguments are supplied by the user either in the code or through GUI
 String className = "SampleComponent"; // Set the class name
 String methodName = "sumMethod"; // Set the method name
 Object[] argValue_List = new Object[3]; // Create the Object array for method arguments
 argValue_List[0] = new Integer(4); // Create the Object for the parameter value
 argValue_List[1] = new Integer(5);
 argValue_List[2] = new Integer(6);
 Object[] expectedTestData_List = new Object[1]; // Create the Object array for the expected test data
 expectedTestData_List[0] = new Integer(15);
 Object[] parameter_List = new Object[3];

 TestData testDataObj = new TestData(argValue_List, expectedTestData_List);
 // Set the TestAgentName with the actual Test Agent name.

 IBeanTester tester = (IBeanTester)Naming.lookup(TestAgentName);

 parameter_List = tester.setParameters(className, methodName, testDataObj); // Calling the setParameters

 try { // Invoke a component function with a given test case
 int run_status = tester.runMethod(className, methodName, testDataObj); // Executing the method

 }

 catch(NoSuchMethodException ex) { // Exception handling code … . }

 catch(RemoteException ex) { // Exception handling code … }

 // Validate test result
 int validateResult = tester.validateTestResult(className, methodName, testDataObj); // Performing the validation

 }

}

Figure 10. A Component Example with Built-in Test

Components with Built-in Tests:

Figure 10 shows a simple example to explain how to extend a component to include a built-in
test function, Test_Script_I(…), as a built-in test script for the component. It is clear that this

�PAGE � 19

test script can be easily extended to handle more than one test case. The built-in code in this
function consists of two parts: a) the programming code for setting up a test case, and b) the
programming code that sets up and run a component function with the test case, and checks its
execution result. The first part depends on a specific test case, and the second part is
dependent on the test interface and the implemented test agent. It is obvious that the second
part can be systematically added.

It is clear that adding built-in tests into a software component is a simple way to achieve the
goal of run-and-test. However, there are several limitations. First, components with built-in
tests usually consume more system resources. Next, the built-in tests of a component are
usually a fixed-code. Thus, they are not easy to be configured and updated unless they are
generated based on a test case repository. In addition, some test cases, such as performance
test cases, are not suitable to use with this approach.

5. Conclusions and Future Work

In this paper, we discussed the testability of software components, and introduced a new
concept for software components, known as testable beans. The purpose is to help engineers
understand how to construct testable software components and increase component testability.
We provide our solution to build testable components with a well-defined architecture model,
and standardized well-structured component test interface. With this method we can generate
testable software components in a systematic manner. In addition, we present our idea on how
to set up a generic test environment to support testable beans. The two-level testing
architecture based on Testing Client and Testing Agent provides the scalability. For example,
Testing Agent on a machine is set up as a multithreaded program to support many testable
components. Each thread is a lightweight process communicating with one component's tester.
In addition, the Testing Agent provides a way to test components in a distributed environment.

The presented solution is applicable to both in-house components and third-party components.
Its major advantages are summarized below:

§ It helps engineers to construct testable components with small programming overhead.

§ It generates testable components with a well-structured component architecture and a
consistent interface to support software testing.

§ It uses a client-server structure to provide a linkage to connect to different component test
tools.

It provides a promising approach to get started on the road to test automation for software
components.

Unlike other approaches, we focused on Java-based software components and provided
engineers a well-defined testing framework to construct testable components. A flexible

�PAGE � 20

supporting environment (including Testing Client, Testing Agent and RMI communication)
are developed based on the testing framework.

Although we address several issues in developing testable components, several other issues
have not been covered. One of the typical problems is how to provide a generic gateway in a
test agent to link to software test tools, such as a test database system. The next problem is
how to deal with complex parameters, such as class objects and arrays, in parameters set-up,
and validation. The third issue has something to do with component performance testing, such
as performance test model and analysis. The other issue is how to remove (or reduce) and
control the test overhead of a component. The last issue is how to define and generate
component test stubs in a systematic way.

We are developing a prototype environment for supporting component test automation. We
are working on a tool to generate and test testable beans. Our tool is partially implemented and
has already successfully verified our approach of creating a testable bean. We are extending
the environment to provide a graphic user interface and a test tool gateway. In addition, we are
investigating new models and methods to support component testing, component integration,
and component performance analysis.

Our research suggests that software testability is dependent on component testability.
Component testability is dependent on how well a component is designed and structured to
facilitate component testing and software testing. We believe testable components must be
defined with a standard component test interface and a well-defined architecture model for
testing. Component test automation needs systematic solutions to generate, test, and support
testable components.

6. Reference
[1] Elaine J Weyuker, "Testing Component-Based Software: A Cautionary Tale", IEEE
Software, September/October 1998.

[2] Jerry Z. Gao, "Testing Component-Based Software", STAR'99.

[3] Jerry Z. Gao, "Perspectives of Software Component Testability", submitted for publication
in 1999.

[4] Jerry Gao, et al, "Monitoring Behaviors of Software Components", accepted by Journal of
Object-Oriented Programming.

[5] Voas, J. M. and Miller, Keith W.," Software Testability: The New Verification", IEEE
Software, Vol. 12, No. 3: May 1995, pp. 17-28.

[6] Roy S. Freedman, “Testability of Software Components”, IEEE Transactions on
Software Engineering, Vol. 17, No. 6, June 1991.

[7] David S. Rosenblum, “Adequate Testing of Component-Based Software”, Department of
Information and Computer Science, University of California, Irvine, Technical Report UCI-
ICS-97-34, Aug. 1997.

�PAGE � 21

[8] William T. Councill, "Third-Party Testing and the Quality of Software Components",
IEEE Software, Vol. 16, No. 4, pp. 55-57, July/August 1999.

[9] Yingxu Wang, Graham King, and Hakan Wickburg, “A Method for Built-in Tests in
Component-based Software Maintenance”, Proceedings of the Third European Conference on
Software Maintenance and Reengineering, 1998.

QW2000 Paper 6W2

Ms. Lisa Crispin
(TRIP.com)

Stranger in a Strange Land -- Bringing
Quality Assurance to a Web Startup

BACK TO QW2000 PROGRAM

Key Points

How to get buy-in from management, information systems, development and marketing in a startup
environment

●

How to educate yourself in testing Web applications●

How to remove the testing bottleneck in Web development●

Presentation Abstract

It perhaps goes without saying that a Web startup is not an environment in which quality testing is
typically found. Development is fast and loose. Many developers are inexperienced. They're racing to
be first to market. One might be tempted to label the environment as chaotic.

When I accepted the opportunity of being the first test engineer at TRIP.com, only 25 people worked
for the Web startup. The developers had produced some exciting applications and felt they were ready
to "grow up and play with the big boys." The development team thought they were intellectually
prepared to introduce standards and procedures.

In reality, development was frenetic, and the developers didn't have a clue as to how to stop and
analyze their processes, much less how to impose discipline on them.

For my part, I was a complete stranger to Web development. For years I had been testing databases,
4-GLs, and client/server software on UNIX, NT, and Windows platforms. I spoke ODBC, but not
JDBC. I knew my customers. In my experience, the software development cycle had stretched on for
months or even years-during which your typical Web application has gone though numerous
incarnations.

This is the story of how I learned about Web application development, preached the quality gospel,
and collaborated with the software and product developers and marketing managers to implement
development standards and project processes that build quality into our applications. TRIP.com now
employs 200 people, has three million registered customers, and has introduced such cutting-edge
products such as intelliTRIP and companyTRIP.

About the Author

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6W2.html (1 of 2) [4/28/2000 2:34:03 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

I have 18 years experience in the industry with the last 9 in Testing and Quality Assurance. I began
my career as a programmer with the University of Texas Data Processing Division, where I helped
develop the Online Catalog and circulation systems. My QA experience before my current job was
with database, 4GL and client/server software on UNIX, NT and Windows at medium to large software
companies “ Software AG (now SAGA), Unidata (now Ardent Software).

I started my current job at TRIP.com in March of 1998 with little knowledge of the Web and no
experience working in a startup environment. I was the first test engineer “ no testing had been done
previously even though the site had been online more than a year. The challenge of building quality
into Web applications while meeting extremely tight development cycles has taught me much. We
have grown from a test department of one (me) to seven test engineers, and I have been promoted to
'Quality Boss.' We test state-of-the-art, first-of-their-kind applications such as our intelliTRIP product
which uses software from BEA Weblogic, StoryServer, and On Display to query partner airline Web
sites for best fares. In addition, we play a key role in finding ways to build quality into applications and
prevent errors before coding. To this end, I have been instrumental in implementing a configuration
management tool as well as unit testing and memory/performance analysis tools. I work closely with
Marketing and Product Management on process definition, formatting of specification documents, and
planning.

Our latest testing challenge has been to move our Web sites to a new hardware and software
configuration with two mirrored data centers running load-balanced clustered UNIX servers. TRIP.com
has shown its commitment to quality by providing us with a test environment that exactly matches that
of production: the same hardware, the same database, and a separate but equal network, so that we
can effectively load test.

I have given successful presentations at both local and international user conferences to audiences of
up to 60 people. I have many years experience training both technical and end users.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6W2.html (2 of 2) [4/28/2000 2:34:03 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

1

Stranger in a Strange Land:
Bringing QA to a Web

Startup

Lisa Crispin
Quality Boss, TRIP.com

2

Bringing QA to a Web Startup

•Frenetic pace
•Lack of experience in process, standards
•Little comprehension of quality and testing

What I found at TRIP.com

2

3

Bringing QA to a Web Startup

•No experience in web testing
•Used to long development cycles
•Used to a corporate environment with lots of
‘process’

Who I was when I started at TRIP.com

4

Bringing QA to a Web Startup

•How to get buy-in
•How to educate yourself
•How to prevent a testing bottleneck
•How to define a sane process
•How to create documentation

This Presentation Will Give Tips On:

3

5

Bringing QA to a Web Startup

•Identify a top manager to champion your cause
•Who understands your mission
•In leadership position, eg. VP of
Development

Get Buy-In

6

Bringing QA to a Web Startup

•Partner with someone outside of your group
•Eg., project or operations manager
•Educate them and garner their help

Get Buy-In

4

7

Bringing QA to a Web Startup

•Educate everyone about software quality
assurance

•Eg. - hold professional development session
•What QA will do for them and the site
•Meetings, face time

Get Buy-In

8

Bringing QA to a Web Startup

•Support Information Systems
•Don’t bug them for what you can do yourself
•Let them do their job
•They hold the keys and are on your team

Get Buy-In

5

9

Bringing QA to a Web Startup

•Listen to the developers
•Try to understand their point of view
•They may communicate differently
•Quality Hero award

Get Buy-In

10

Bringing QA to a Web Startup

•Brainstorm
•Developers, Database IS, Marketing,
Customer Support
•Potentially overlooked problems

Get Buy-In

6

11

Bringing QA to a Web Startup

•Evaluate and select appropriate tools
•Test, defect tracking, configuration mgmt
•Vendors who can help you
•Consider learning and implementation time
•Doesn’t have to be expensive or famous

Work Smart

12

Bringing QA to a Web Startup

•Search the Web for resources
•http://www.softwareqatest.com/index.html
•http://www.kaner.com/writing.htm
•http://www.crl.com/~zaller/testing.html#Kerry

Work Smart

7

13

Bringing QA to a Web Startup

•Hire good help
•Senior, experienced testers
•Or train your own - attitude is key
•Spend the $

Work Smart

14

Bringing QA to a Web Startup

•Get input about quality from everyone
•Form a quality board
•Hold quality review panels

Work Smart

Quality

Quality
Quality

8

15

Bringing QA to a Web Startup

•Insist on a dedicated test environment
•Looks like production
•Can handle production level load test

Work Smart

Dev Test Prod

16

Bringing QA to a Web Startup

•Learn about the development tools
•Quality issues - version control, workflow
•Configuration and performance issues
•Ask questions

Work Smart

9

17

Bringing QA to a Web Startup

•Get control of production environments
•Lock developers out!
•Work with Information Systems

Define Process

18

Bringing QA to a Web Startup

•Get involved from the beginning
•Review all documentation
•Agree on one vision for each project
•Define QA and Dev process
•Hire a good tech writer

Define Process

10

19

Bringing QA to a Web Startup

•Innovate!
•New documentation formats
•You have creative types who can help!

Define Process

Stranger in a Strange Land:
Bringing QA To a Web Startup

Lisa Crispin, Quality Boss, TRIP.com

It perhaps goes without saying that a Web startup is not an environment in which quality testing is typically
found. Development is fast and loose. Many developers are inexperienced. They’re racing to be first to
market. One might be tempted to label the environment as chaotic.

When I accepted the opportunity of being the first test engineer at TRIP.com, only 25 people worked for
the Web startup. The developers had produced some exciting applications and felt they were ready to
“grow up and play with the big boys.” The development team thought they were intellectually prepared to
introduce standards and procedures.

In reality, development was frenetic, and the developers didn’t have a clue as to how to stop and analyze
their processes, much less how to impose discipline on them.

For my part, I was a complete stranger to Web development. For years I had been testing databases, fourth-
generation languages, and client/server software on UNIX, NT, and Windows platforms. I spoke ODBC,
but not JDBC. I knew my customers. In my experience, the software development cycle had stretched on
for months or even years— during which your typical Web application has gone through numerous
incarnations.

This is the story of how I learned about Web application development, preached the quality gospel, and
collaborated with the software and product developers and marketing managers to implement development
standards and project processes that build quality into our applications. TRIP.com now employs two
hundred people, has three million registered customers, and has introduced such cutting-edge products such
as FlightTracker, intelliTRIP and companyTRIP.

TRIP.com a work in progresswe have a successful project process, but face continual challenges such as
an inadequate test environment . Even when the whole company understands and is committed to the
importance of quality assurance testing, , unexpected events can lead to surprises. The key is to keep
plugging away at the following tasks:

• Get Buy-In
• Work Smart
• Define Processes

I. Get Buy-In

I won over my managers, developers, and marketing counterparts by following these tenets:

• Identify a top manager in your organization who believes in your cause and will champion it. In my
case, it was the Vice President of Web Development and Chief Cat Herder (yes, that’s really her title) .
When I was hired, this person did not believe that five developers could keep one tester busy full time.
But, in time, she became my biggest ally. She not only pushed the developers to work for quality, but
she also lobbied the management team for testing resources.

• Partner with someone outside of your organization, such as a project or operations manager. Educate
your ally to garner his or her help. We had a topnotch project manager who, once she understood what
QA and testing would do for the company, did much of my job for me. She enforced processes such as
document review and signoff, helped implement and police the defect tracking system, and tied up a
million details involved with every big production launch. She became the prime channel of
communication between marketing and development.

• Educate everyone you come into contact with at the company about software quality assurancewhat
it is and what it will do for them and the site . Early on, I held a "Lunch 'n' learn" professional

development seminar. The company bought lunch, so attendance was good. I explained why testing is
essential and what it involves. Lots of meetings and one-on-one encounters are needed to get everyone
on board and to establish priorities.

• Support Information Systems, the group that administers the production site. These people will
benefit from not having their pager go off so much when applications are tested before being launched
to production. The Vice President of Technology and the IS director fully supported me and refused to
launch any update that had not been fully tested. This kept the rest of the organization from
steamrolling over me, giving me a chance to prove the value of testing. I don't bug IS for the things I
can do myself, but I let them do their job. For example, I installed Y2K patches on the test machines,
but IS controls all the UNIX and NT account management.

• Understand the developers’ point of view . You may have young, brilliant developers who don’t
communicate in ways you are accustomed to. Our original developers were mostly very young and
inexperienced. Some had not finished high school!. Others weren't old enough to drink! The culture
was anti-corporate, and they said what was on their minds. I found that if I listened, I learned, and they
in turn were willing to listen to my ideas. I learned everything I now know about Web applications
from the developers themselves. I present a "Quality Hero" award each month to a developer who has
taken exceptional measures to prevent defects and improve quality. The prize is just a Nerf gun and the
developer’s name is added to the Quality Hero Award plaque, but it raises the visibility of high quality
process and techniques.

• Brainstorm with developers and others about problems that may not come out in testing. For example,
I didn't know that if you change a URL, search engines may not be able to find your site. When we
implemented a content management tool that required changing every URL, this was important
information!

II. Work Smart

Here’s my advice for making the testing organization lean and mean:

• Evaluate tools. Put as much time as you can into tool evaluation, such as those for automated
testing, defect tracking, and configuration management. Identify the vendors who can help you the
most, and get as much information from them as you can. Ask fellow testers for their
recommendations and experiences. Install new tools and try them out. Select tools that are
appropriate for you and your company. It doesn’t do any good to buy a tool you don’t have time to
learn how to use, especially if your testing team is small. I ended up choosing tools that are lesser
known but stil meet our needs. For example:
• For automated testing, we use WebART, an incredibly inexpensive, easy-to-learn , but

powerful tool sold by OCLC Inc. (a non-profit company). They gave me invaluable advice
and provided insights about Web testing. Pick everyone’s brain including vendors!

• For defect tracking, we chose a Web-based tool, TeamTrack, from a startup company . It, also
is far less expensive than its competitors, but it is easy to implement and customize.

• For configuration management, we again turned to a smaller, innovative company which
produces an inexpensive, easy to implement and learn yet robust tool, Perforce.

These tools won't necessarily meet your needs – just be open and creative when evaluating tools.
• Search the Web for resources. I would have quit after a week if I had not found an excellent

Web site that points to information about testing Web applications and lists of tools. These sites,
in turn, led me to more tools and information Here are some examples:

http://www.softwareqatest.com/index.html
Everything from basic definition and articles on how to test Web applications to
comprehensive lists of Web tools to links to other informative sites.
http://www.kaner.com/writing.htm
Articles by Cem Kaner
http://www.crl.com/~zallar/testing.html#Kerry
long lists of associations, vendors, tools, training, reference information, conferences,
interesting papers.

Of course, user conferences are invaluable for both information-gathering and networking.

• Hire good help. It’s difficult to find experienced test engineers in our area, so we hired bright but
inexperienced people with the right qualities that make good test engineers : enthusiasm,
dedication to the end user, and determination. A caveat: inexperienced testers who have no
programming experience have a harder time learning a scripting language for an automated test
tool. However, by using a combination of outside classes, hiring consultants and patient, one-on-
one training, our testers have learned UNIX, SQL, test scripting, HTML, configuration
management, and other technical skills. You’re going to spend money either way – paying high
salaries for experienced test engineers, or training novice testers.

• Get input about quality from all departments in the company. I formed a quality board with
members from sales, marketing, customer support and travel to gather fresh ideas about error
prevention and prioritization of regression testing . Whenever major problems occur, we hold a
quality review panel where representatives from development and information systems hear short
presentations from the people who experienced and fixed the problem. The panel studies the
issues and recommends steps to prevent such problems from recurring. We also hold post-
mortems after all major launches. By employing these methods, we have learned some invaluable
lessons!

• Insist on a test environment that is exact replica of but is entirely independent from production.
You can’t emulate a production load without the equivalent of production hardware and software .
This [what is a moving target?] is a moving target. The architecture is key too. If production is on
a cluster, your test environment had better be on a cluster. If part of an application runs on a
separate machine, it must do so in your test environment. This [what?] has been a constant source
of problems for us. Even when the entire company is sold on the idea of a proper test environment,
there are business and technical reasons (read: excuses) that get in the way of reproducing the
production environment in for testing . Don't be complacent, and never give up. Make sure you
have the best test environment you can get for each application going into production, and work
actively with your information systems team to get the environment you really need. Even small
applications can deceive you. For example, last December, we launched a simple application,
SantaTracker, on Christmas Eve so kiddies could watch Santa's sleigh fly around the country . We
could not test this on the same architecture that it was to run in production, but we weren’t
concerned. After all, it should have worked exactly like our regular FlightTracker application!
Right? Wrong! It was a disaster!
In short: Dig your heels in and refuse to launch until some semblance of a test environment is
established. Use the SantaTracker example. And remember, i t is harder to get the test environment
once the new application is in production.

• Learn about the development tools. They present their own quality issues and offer some
solutions, too. For example, the first version of our content management tool did not have any
version control. It took more than a year to upgrade to the release that offered this capability, and
even now it doesn’t enforce version control. We have to constantly police the process to ensure
that developers version their code. The software on which our Java applications are based has
complex configuration parameters we didn’t fully understand when we first put it into production.
We had tested our intelliTRIP product with a production load in terms of transactions per second,
but never with a realistic number of concurrent users. As a result, the servers kept crashing on the
first day we put it in production. If we had understood the configuration and the user session
management parameters better in our Java-application management tool better, we could have
prevented this problem.

III. Define Processes

Collaborate with your counterparts to formalize your processes:

• Get control of the production environments. Work with your information systems team to create a
production update procedure. When I started, developers launched their own changes to
production. It was hard to wean them away from this bad habit. Even after we thought we had
implemented good production update procedures, we lacked the discipline to enforce it under
pressure. For example, since we did not have good configuration management, it became

impossible to build baselines of intelliTRIP, so developers would simply move new classes into
production to fix problems. Only nowafter two yearsare we beginning to be able to require
developers to build scripts and installation documentation before we accept any software from
development for testing.

• Get involved from the beginning of each project. This is hard work. It forces you to juggle many
tasks, but it is essential. Participate in all documentation reviews: Those for requirements,
functional specifications, and design specifications. Make sure the documents are complete and
clear. Look for ambiguities, gaps, lack of detail. All parties, including marketing, development,
test, customer support, sales must agree on a vision for the product. This vision is a short phrase
that describes the main thrust of the product. With intelliTRIP, development and test were told to
produce a server-side version of the original client-side product as quickly as possible. Sales and
marketing believed that the purpose of the product was to quickly locate fares from airline
Websites. Since development and test wasn't told that part about quickly! We released the product
even though we knew that is was sometimes slow to return results. This type of disconnect can be
prevented by including a vision statement in the requirements

• Define quality. Work with marketing and product development to define quality IS for each
product.: Should the priority be good, fast, or cheap? Even if you choose fast, don’t sacrifice the
process. We recently implemented a promotion that marketing believed to be simple and wanted
to rush to production. Since the product manager did not hold documentation reviews and get
signoff, the HTML pages produced by the developers had to be changed three times. This took
much longer than a documentation review meeting. There is no need to get bogged down in
process either. If you find that is happening, change the process , or train people how to use it
properly.

• Document the internal processes of both test and development. You can't expect marketing and
product development to follow best practices if you don't do it yourself. One of our development
directors, with the help of our technical writer, is leading an effort to define and document the
development process. By the wayno matter the size of the company, you need at least one
experienced, skilled technical writer in your development organization.

• Enforce the process. If your QA team is large enough, dedicate one person to administering and
enforcing configuration management and delivery of installation scripts and documentation . Don't
accept software to test if it is not accompanied by all the documentation and software you need to
promote, test, and launch it to production.

• Innovate! Look for ways to present documentation such as functional and specifications. Web
applications require a new approach. You have creative people at your company who can help!
Documentation format is a constant challenge for us. Our user interface team came up with a UI-
oriented format for specifications that lends itself to front-end Web applications. If this is adopted
as the company standard, we may use a similar format for our test plans . Get input from as many
different groups as you can.

Summary – As You Grow

All companies change as they grow beyond the ‘startup’ size and environment. My team and I have
endured countless frustrations when fast growth led to temporary chaos. As your organization grows,
educate new employees about project process and quality practices. Listen to them and take advantage of
their fresh outlook and new ideas. Take the initiative – if there is a gap due to a re-organization, fill it
yourself. For example, when we were temporarily without a project management function in the company,
the development director and I set up a weekly tactical meeting with representatives from all departments
so that everyone could stay informed and juggle resources. Quality assurance can be a frustrating job,
especially in a Web startup – pick your battles , keep striving for better quality and enjoy the experience!

QW2000 Paper 6M2

Mr. Brian Lawrence & Ms. Johanna
Rothman

(Coyote Valley Software / Rothman
Consulting, Inc.)

Testing in the Dark

BACK TO QW2000 PROGRAM

Presentation Abstract

A pragmatic approach to overcoming undocumented requirements.

This is a presentation based on the article that Johanna and I wrote for Software Testing and Quality
Engineering Magazine, Volume 1, Issue 2, in March/April of 1999. To date, Testing in the Dark has
been the most commented upon article that STQE Magazine has published.

In this presentation we discuss an analytical technique for discovering undocumented requirements,
how to refine and distill rough requirements to obtain their essence, and how to base your acceptance
testing on the refined requirements.

About the Author

Brian Lawrence (Coyote Valley Software) teaches and facilitates requirements analysis, peer reviews,
project planning, risk management, life cycles, and design specification techniques.

He has served as a program chair for the SEPG'97 Conference as well as the IEEE Computer
Society's 1998 International Conference on Requirements Engineering. Brian is the technical editor of
Software Testing and Quality Engineering Magazine and serves on the editorial board of IEEE
Software.

Johanna Rothman (Rothman Consulting, Inc.) observes and consults on managing high technology
product development. She works with her clients to find the leverage points that will increase their
effectiveness as organizations and as managers, helping them ship the right product at the right time,
and recruit and retain the best people.

Johanna is the founder and principal of Rothman Consulting Group, Inc., and is ASQ certified as a
Quality Auditor and Software Quality Engineer.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/6M2.html [4/28/2000 2:34:09 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Testing in the Dark

© 1999-2000 by Brian Lawrence and Johanna Rothman Page 1
www.coyotevalley.com www.jrothman.com

Testing in the Dark - Quality Week 2000 1

© 1999-2000 by Brian Lawrence and Johanna Rothman. All Rights Reserved.

Testing in the Dark

Brian Lawrence Johanna Rothman
Coyote Valley Software Rothman Consulting Group, Inc.
brian@coyotevalley.com jr@jrothman.com
www.coyotevalley.com www.jrothman.com
(408) 578-9661 (781) 641-4046

A Pragmatic Approach to Overcoming
Undocumented Requirements

2Testing in the Dark - Quality Week 2000

Acknowledgement

This presentation is based on the article

“Testing in the Dark,”

by Johanna Rothman & Brian Lawrence,

published in

Software Testing & Quality Engineering,
Volume 1, Number 2, March 1999.

Testing in the Dark

© 1999-2000 by Brian Lawrence and Johanna Rothman Page 2
www.coyotevalley.com www.jrothman.com

3Testing in the Dark - Quality Week 2000

Testing in the Dark

• You’re surprised by the request
– “Here, test this...”
– “Just go over this lightly”

• How do you know what the product is supposed to do?
• How are you supposed to know if it’s doing it?

4Testing in the Dark - Quality Week 2000

Turn on some lights

1. Discover the requirements
 to know what testing needs to be done

2. Define what quality means to the release
 to know how much time and effort to apply to testing

3. Define a test plan including release criteria
 to know when we’re ready to ship

Testing in the Dark

© 1999-2000 by Brian Lawrence and Johanna Rothman Page 3
www.coyotevalley.com www.jrothman.com

5Testing in the Dark - Quality Week 2000

Part 1: Discover the requirements

• Play detective for this release’s requirements
– Gather data
– Transform the data
– Filter the data

• Requirements drive design choices

6Testing in the Dark - Quality Week 2000

Customer requirements

• Users
– Who is affected by the product, just by its existence?
– Who uses the product?

• Attributes
– How reliable, how fast?
– What characteristics do users need?

• Functions
– What does your product do for the users?

Testing in the Dark

© 1999-2000 by Brian Lawrence and Johanna Rothman Page 4
www.coyotevalley.com www.jrothman.com

7Testing in the Dark - Quality Week 2000

The test planner’s job

• Find the different pieces of the picture that created this
disk.

• What decisions were made?
• Did the requirements get implemented in the product?

8Testing in the Dark - Quality Week 2000

Gather data to determine design
choices

• Read the documentation
• Examine the product’s architecture
• Run the product
• Ask the developers
• Ask the release manager

Testing in the Dark

© 1999-2000 by Brian Lawrence and Johanna Rothman Page 5
www.coyotevalley.com www.jrothman.com

9Testing in the Dark - Quality Week 2000

Transform “goodies” into
requirements

• You get statements, you convert them into requirements
• Organize requirements by User, Attribute, Function
• Example: "Provide 5 day per week up-time."

– this is about reliability , an attribute

10Testing in the Dark - Quality Week 2000

Requirements Snapshot

Type Requirement Specifics
Users Operator – Person who administers the system.

Guest – Visitor, but not a normal user.
Intruder – Someone not authorized to use the system. This user is

disfavored.
Attributes Reliable – The system is available; it never fails, 24 hours a day on

weekdays.
Secure – Only authorized users may access this system.
Integrated – This system brings together different components.
Remotely accessible – There are ways to reach this system other

than by the standard interface.
Easy-to-install – Installing this system is simple and intuitive.

Functions Feedback – Operators and users get indications about how their
interaction with the system is working.

Inventory – Keep track of operating assets.
Report – Collate data and produce reports.
Schedule – Show future events.
Plan – Support selecting, trading-off, and scheduling system events.

Testing in the Dark

© 1999-2000 by Brian Lawrence and Johanna Rothman Page 6
www.coyotevalley.com www.jrothman.com

11Testing in the Dark - Quality Week 2000

Make the requirements testable

• MTBF: Desired level is 168 hours
• Testable

– Specific
– Measurable

12Testing in the Dark - Quality Week 2000

Part 2: What quality means to this
release

• Rank your release’s goals
– Time to market
– Feature set
– Low defect levels

• Choose one as your top priority, manage the other two in
that context
– Helps you define your test plan

Testing in the Dark

© 1999-2000 by Brian Lawrence and Johanna Rothman Page 7
www.coyotevalley.com www.jrothman.com

13Testing in the Dark - Quality Week 2000

Requirements with quality ranking

Type Requirement Specifics Critical
for TTM?

Operator – Person who administers the system. Yes

Guest – Visitor, but not a normal user. No

Users

Intruder – Someone not authorized to use the system. This user is
disfavored.

Yes

Reliable – The system is available, 24 hours a day. Weekdays only. Yes

Secure – Only authorized users may access this system. Yes

Integrated – This system brings together different components. No

Remotely accessible – There are ways to reach this system other than
by the standard interface.

Yes

Attributes

Easy-to-install – Installing this system is simple and intuitive. No

Feedback – Operators and users get indications about how their
interaction with the system is working.

No

Inventory – Keep track of operating assets. No

Report – Collate data and produce reports. Yes

Schedule – Show future events. No

Functions

Plan – Support selecting, trading-off, and scheduling system events. No

14Testing in the Dark - Quality Week 2000

Part 3: Define a test plan including
release criteria

• Choose what to test, what not to test
• Use release criteria to illuminate testing and product goals

– Must we meet this requirement by the requested release date?
– What is the effect on our customers if we do not meet this

requirement by the release date?

• Possible release criteria
– Attribute: Reliability: Verify 5x24 uptime.
– Function: Report: Produce reports over a 1-week period.
– User: Operator functionality complete.

Testing in the Dark

© 1999-2000 by Brian Lawrence and Johanna Rothman Page 8
www.coyotevalley.com www.jrothman.com

15Testing in the Dark - Quality Week 2000

Reasonable criteria

• Surface assumptions and fears
• Allow you to resolve those assumptions and fears before

you release the product

16Testing in the Dark - Quality Week 2000

Success tips

• Clarify what management gets from their testing dollars
and time

• Release criteria belong to the whole release
• Release the product based on the release criteria and no

other criteria

Testing in the Dark

© 1999-2000 by Brian Lawrence and Johanna Rothman Page 9
www.coyotevalley.com www.jrothman.com

17Testing in the Dark - Quality Week 2000

The Dark Side

• Testing-in-the-dark is a workable alternative at all
• You work in an open communication environment
• People want to know the truth

Possible mistaken assumptions

18Testing in the Dark - Quality Week 2000

When you find yourself in the dark

• Uncover the requirements,
• Decide what quality means,
• Define a plan and release criteria, so you can measure

when you've met your plan.

Lead yourself back into the lightLead yourself back into the light

Testing in the Dark

© 1999-2000 by Brian Lawrence and Johanna Rothman Page 10
www.coyotevalley.com www.jrothman.com

19Testing in the Dark - Quality Week 2000

References

James Bach, "Good Enough Software: Beyond the
Buzzword", IEEE Computer (Software Realities column),
August 1997.

Brian Lawrence, “Requirements Happens...”, American
Programmer, April 1997, Vol. 10. No. 4.

Johanna Rothman, "Defining and Managing Project Focus",
American Programmer , February 1998, Vol. 11. No. 2.

Johanna Rothman and Brian Lawrence, “Testing in the
Dark”, Software Testing and Quality Engineering , Vol. 1,
No. 2

QW2000 Vendor Technical Paper 7V1

Greta Cohen and Jim Baack
(Superior IS)

Outsourced Testing for the Web

BACK TO QW2000 PROGRAM

Key Points

Outsourcing web testing to speed delivery and increase quality●

Aspects of functional testing for web systems●

Web performance testing services●

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7V1.html [4/28/2000 2:34:20 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2000 Paper 7T1

Dr. Andreas Spillner & Dr. Ulrich
Breymann

(Hochschule Bremen)

Semantic Differences Between C++
and Java: Consequences for the

Review and Test Process

BACK TO QW2000 PROGRAM

Key Points

Main conceptual differences between C++ and Java●

Identification of main issues arising from migration from C++ to Java●

Recommendations for analysis, review and test●

Abstract...

More and more projects use Java as an object-oriented implementation language. Often there is
already knowledge of C++ and because of the syntactical similarity of the programming languages
migration seems to be simple. Sometimes this is not the case due to important conceptual differences
between C++ and Java. Selected problems show the implications for program analysis, understanding
and testing. Early detection of problems is desirable, so the paper provides a checklist for the test
managers.

Author Bio...

Dr. Spillner is currently working as Professor at the Hochschule Bremen (University of Applied
Sciences) where he is responsible for software engineering and real time systems. Dr. Spillner has
over 20 years experience in software development and teaching. He has been involved with
development projects for government and also research projects in collaboration with industry. He has
a degree in computer science from the Technical University of Berlin and received his PhD on the
dynamic integration testing of modular systems from the University of Bremen in 1990. He has also
worked as Research Assistant and as Associate Professor at the University of Bremen.

Dr. Spillner is currently the chairman of the German Computer Society Special Interest Group for the
Testing, Analysis and Verification of Software Systems. (GI-TAV). His research interests include the
validation of software, test methods (especially for large software systems) and the testing of
object-oriented software systems.

Dr. Breymann is currently with Hochschule Bremen (University of Applied Sciences) as a professor

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7T1.html (1 of 2) [4/28/2000 2:34:31 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.fbe.hs-bremen.de/spillner/
http://www.informatik.hs-bremen.de/~brey

with the special focus on software engineering and object orientation. Before that he worked several
years in industry as analyst and project leader, among others on the subjects process control systems
for power plants and software for the international space station project. He was a member of the
German working group for the standardization of the programming language C++.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7T1.html (2 of 2) [4/28/2000 2:34:31 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Semantic Differences between C++ and Java
Consequences for the Review and Test

Process

Ulrich Breymann
Andreas Spillner

University of Applied Sciences Bremen
Germany

Phone: ++49 421 5905 –3425 / –3467
Fax: ++49 421 5905 –3412

{breymann,spillner}@informatik.hs-bremen.de

2

Agenda

• Introduction
• Important differences between C++ and Java

(pitfalls, examples and recommendations):
– Assignment operator
– Equality operator
– Immutable objects
– Argument passing
– General rules
– Clean up
– Polymorphic behaviour

• Check list for code inspection
• Conclusion

2

3

Introduction

• A strong understanding of object-oriented concepts is necessary.
• Java is more and more the language of choice for a lot of applications.
• The syntax is similar to that of C++, but much simpler,

which makes learning and using it easy.

• This talk focuses on the following subjects:
– Possible pitfalls in program understanding for developers

with C++ experience, important for the coding and
‘developer test’-phase of a project.

– What are the special issues when Java code is reviewed
during testing by a C++ expert?

4

Assignment operator

Primitive data types

// Java and C++
int a;

int b = 4;

a = b;

a = 5; // b is not changed here

3

5

Assignment operator

class objects in Java

// Java
thisArticle = thatArticle;

 // Two objects of class Article

thisArticle.changeFont("Helvetica");

 // Changes thisArticle and thatArticle

6

Assignment operator

// Java, but C++ like behaviour of assignment

thisArticle = (Article)thatArticle.clone();
 // deep copy

thisArticle.changeFont("Helvetica");
 // Does not change thatArticle !

4

7

Assignment operator
Recommendation

• Assigning class objects in Java does not mean making a copy.

• It rather creates an alias for the right hand side object
and passes the left hand side object directly to the garbage collector.

• You can focus on this problem by code inspection:
– Find any assignment to class objects in the code

and check the correct use.
– You can also use a (self-written or off-the-shelf, if there is one)

code analyser to list the alias names of all objects.

8

Equality operator

In C++, the equality-operator compares two objects
and returns true if they are equal. What does that mean?
For our purposes, we define here:

• Two objects are identical, if they cannot be distinguished.

• Two objects are equal, if they are of the same type and are in the same
state with respect to all or some selected properties.

5

9

Equality operator

 // Java
Integer I1 = new Integer(77),
 I2 = new Integer(77);

int i1 = 3, i2 = 3;

Integer I3 = I2;

i1 == i2 // true

I1 == I2 // false!

I1.equals(I2) // true

I3 == I2 // true

I3.equals(I2) // true

10

Equality operator
 Recommendation

• In Java, operator == yields false if equal,
but not identical class objects are compared.

• It returns true only if the compared references have equal values,
i.e. the underlying objects are identical.

• You can focus on this problem by code inspection:
– Find any comparison between class objects with

operator == in the code and check if they should be
replaced by the equals() -method.

– You can also use a code analyser to list all comparisons.

6

11

Immutable objects

 // C++
const string s = "hello";

s.append(" world!"); // Error! s is const

s += " world!"; // Error! s is const

// Java
String s = new String("hello");

Java strings are immutable and there is no method to change a String
object. But ...

s += " world!"; // This is ok for Java (equals s=s+" world!";)
System.out.println(s); // Output: hello world

12

Immutable objects

Remember: s is a reference, not the object! References to immutable
objects are not immutable themselves. They can be made immutable:

final String s = new String("hello"); .
s += " world!"; // Error! s is immutable

 But what about calling a state-changing method?
// Java
final MyClass aMyClass = new MyClass();
aMyClass = anotherMyClass;
 // Error! Reference aMyClass is immutable
aMyClass.setAttribute(17);
 // (Object attached to) aMyClass is changed!

7

13

Immutable objects

Only for primitive data types, final means the same as const .
There are some possible workarounds in Java to make also class
objects immutable. These workarounds are more or less clumsy and
expensive in terms of runtime.

– State checking
– Proxy
– Common Baseclass

14

Immutable objects
 Recommendation

• Trying to implement the C++ const for class objects in a Java
program is a little bit complicated and therefore will probably
introduce errors instead of preventing them.

• If a C++ program is to be rewritten in Java, we recommend just
to ignore the const keyword for non-primitive data types.

8

15

Argument passing

// same syntax in Java and C++, but different meaning

void f(Window w) {

 w.setTitle("new Title");

}

16

Argument passing

 // Java (wrong example)
void fullFilename(String path, String filename,
 String result) {
// Error: caller's result is not modified, only a local copy of result :
result = path + filename;
}

 The (copied) reference of result is changed, not the object it refers to!
 Correct example:

// Java (now ok, but different interface)
String fullFilename(String path, String filename) {
return new String(path + filename);
}

9

17

Argument passing
 Recommendation

• Be sure that the parameter passing mechanism is used correctly.

• Is there an assignment to a parameter within a method, it is only a
assignment to the local copy of the parameter. It has no effect for the
caller of the method, so there must be a special reason, which should
be documented in a comment – otherwise it is wrong and the
parameter should be declared as final .

• Use code inspection to find such cases.

18

General rules

C++ example direct semantic Java equivalent

myClass x; None, there are no automatic (stack) class
objects in Java (only references)

myClass* p = 0; myClass p = null;

p = new myClass; p = new myClass();

p->method1() p.method1()

10

19

General rules

C++ example direct semantic Java equivalent
declaration:

void f(myClass) void f(myClass)

call: f(*p) f((myClass)p.clone())

declaration:
void g(myClass*) void g(myClass)

call: g(p) g(p)

declaration: None, there is no passing by reference in Java
 void g(myClass&)

call: g(x)

20

General rules

C++ example direct semantic Java equivalent

myClass* const q final myClass q = new myClass();
 = new myClass;

const myClass* q None
 = new myClass;

11

21

General rules

Java example direct semantic C++ equivalent

String s = "hello"; const string* s
= new string("hello");

s = "abc"; delete s; s = new string("abc");

char c = s.charAt(0); char c = s->at(0);

22

General rules
 Recommendation

• C++ and Java look similar, but are different.

• Java is often regarded as ”C++ without pointers,”
which obviously is not true.

• Java is more like ”C++ with dynamic (=heap) class objects only”.

• If your company switches from C++ to Java,
special training of developers is a must. They have to know the
semantic differences of both languages.

12

23

Clean up

// C++
{
 Object myObject; // Constructor acquires resources
 myObject.doSomeThing();
} // Destructor is called here automatically
 // Its task is to release resources

In Java, the finalize() method roughly corresponds to the
destructor in C++, but it has to be called explicitly, and it is left to the
JVM (Java Virtual Machine) when finalize() will be called.

24

Clean up

// Java
{

 myClass myObject = new myClass();
 // Constructor acquires resources

 myObject.doSomeThing();

 // recommended add-on:
 myObject.cleanup(); // Release resources now!
 myObject = null; // Release object for garbage collector
 // and prevent further access
 // (if more code is to follow)
} // The garbage collector can do the rest, when it wants to!

13

25

Clean up - a safer approach

{ // begin of Java-block
 myClass myObject = null;

 try {

 myObject = new myClass(); // might throw exception
 myObject.doSomeThing(); // might throw exception
 }

 catch(Exception e) {

 // exception handling goes here
 }

... continued

26

Clean up - a safer approach

 finally {

 if(myObject != null) {

 myObject.cleanup(); // release resources
 myObject = null; // release object
 }
 }

} // The garbage collector can do the rest, when it wants to!

14

27

Clean up
 Recommendation

• If the immediate release of resources (other than the memory of the
object itself) is important, you have to do it by yourself.

• The Java Virtual Machine does not guarantee a defined moment for
release.

• Use code inspection to find critical classes and places.

28

Polymorphic behaviour

• All methods with the exception of static methods are virtual in Java.

• Static methods are class methods.

• This is no problem for those C++ people who write in good style,
i.e. they
– never override non-virtual C++ methods and
– always call static methods by a class name, not an object's name.

• The second is also our recommendation for Java.

15

29

Check list for code inspection

• Assignment of class objects:
Shall an alias (1) be created or a copy (2)?
1) ok
2) use clone()

• Comparison of class objects using:
Check of identity (1) or equality (2) intended?
1) ok
2) use equals()

30

Check list for code inspection

• Does parameter passing conform to the ”General rules” above?
If not, rethink and recode.

• Is there a local parameter on the left hand side of an assignment
in a method?
If yes: It has no effect for the caller of the method, so there must be
a special reason, which should be documented in a comment,
otherwise it is wrong.

• End of scope: Is an immediate release of resources required?
If yes, use a special self-written method for release.

16

31

Check list for code inspection

• Is reproducing the C++ const in a Java program really
necessary for class objects?
If not, avoid introducing unnecessary code complexity.

• Are class methods only called by using the class name?
If not, rethink and recode.

32

Conclusion

• There are syntactically identical elements in the programming
languages C++ and Java, where Java uses reference semantic,
but C++ employs value semantic.

• Developers have to know the semantic differences between these
similar syntactic elements.

• On the pretended simple way from C++ to Java there lie some
stumbling blocks. Overlooking them can lead to unforeseen errors.

1

Semantic Differences Between C++ and Java:
Consequences for the Review and Test Process

Ulrich Breymann and Andreas Spillner

Hochschule Bremen
University of Applied Sciences

Neustadtswall 30
D-28199 Bremen

Germany

Phone: ++49 421 5905 –3425 –3467
Fax: ++49 421 5905 –3412

{breymann,spillner}@informatik.hs-bremen.de
http://www.informatik.hs-bremen.de/~brey/

http://www.fbe.hs-bremen.de/spillner/

Abstract

More and more projects use Java as an object-oriented implementation language.
Often there is already knowledge of C++ and because of the syntactical similarity
of the programming languages migration seems to be simple. Sometimes this is not
the case due to important conceptual differences between C++ and Java. Selected
problems show the implications for program analysis, understanding and testing.
Early detection of problems is desirable, so the paper provides a check-list for the
test managers.

Key words:
object-oriented programming languages, C++, Java, migration, program understanding, review

2

Introduction

The object-oriented programming language Java is more and more the language of choice for a
lot of applications. Its platform independence and networking capability promise easier solu-
tions than other programming languages for a broad range of problems. Java [GJS96] ap-
peared at the right time and has a lot of capabilities also beyond the Internet. The syntax is
similar to that of C++ [ISO98], but much simpler, which appears to make learning and using it
easy.

Migration from C++ to Java has to consider a lot of different things. A strong understanding of
object-oriented concepts is necessary, because procedural programs are not possible – an often
occurring misuse of C++. Event-driven GUI development and development of distributed ap-
plications are main features of Java programs. An effective migration strategy has to include
training and self-education, depending on the kind of Java users, for example software devel-
opers, software architects, analysts or project managers [SU99]. Our paper, however, focuses
on the following subjects:

- Possible pitfalls in program understanding for developers with C++ experience, important
for the coding and ‘developer test’-phase of a project.

- What are the special issues when Java code is reviewed during testing by a C++ expert?

 Reviews and inspection had and have the best influence on software engineering, a known fact,
which was emphasized again recently [McC00]. Of course, if developers and reviewers have
got sufficient cross-training, there will be no big problem. But have they? We used to teach
C++ as the first programming language at our institution, the University of applied sciences
Bremen, but switched to Java only recently. Many advanced students, having a sound know-
ledge of C++, now use Java in study projects, learning Java by themselves, reading a textbook,
and starting to code quickly. We realize that they often make some special mistakes in Java.
Therefore we consider the migration from C++ to Java not as easy as one might think at a first
glance. We assume that this problem also occurs in the industrial practice, if software is written
or re-written in Java by developers with C++ experience.

 Some but not all of the difficulties arise, because a Java program is determined by a reference-
semantic behaviour of objects like in Smalltalk, whereas the expectations of Basic/C/C++/ Pas-
cal-programmers are based on a value-semantic behaviour. These wrong expectations lead to
errors and confusion. Examples demonstrate selected problems and we propose a few hints in
order to facilitate the detection of errors.

 Caught in the assignment act

 Programmers familiar with other languages like Pascal, Basic or C++ approach Java assuming
that it behaves in a similar way. So the statement A = B; is intended to copy object B to object
A with the result of two equal objects. Furthermore, it is expected that a method call
A.method1(); has no effect on object B. Primitive data types behave as known from C++:

 // Java and C++
 int a; int b = 4;
 a = b;

 a = 5; // b is not changed here

3

 However, this is not the case with class objects in Java:

 // Java
 thisArticle = thatArticle; // Two objects of class Article.

 thisArticle.changeFont("Helvetica"); // Changes thisArticle and thatArticle!

 The second statement changes also the font of thatArticle ! The reason is of course, that
assignment does not modify an object, but the reference to an object. The result of such an
assignment is that there is only one object, which can be accessed via two different names (ali-
ases).

 If we want C++-like behaviour, we have to copy the right-hand-side object (this is also called
”deep copy” in contrast to the ”shallow copy” above):

 // Java, but C++ like behaviour of assignment
 thisArticle = (Article)thatArticle.clone(); // deep copy
 thisArticle.changeFont("Helvetica"); // Does not change thatArticle!

 The cast is necessary because the type of clone() is Object , the top superclass which is in-
herited by all other classes. Cloning objects is discussed more in depth in [B00].

 Recommendation
 Assigning class objects in Java does not mean making a copy. Instead, it creates an alias for the
right hand side object and passes the left hand side object directly to the garbage collector.
You can focus on this problem by code inspection. Find any assignment to class objects in the
code and check the correct use. You can also use a (self-written or off-the-shelf, if there is
one) code analyzer to list the alias names of all objects.

 Equality is not equality

 In C++, the equality-operator compares two objects and returns true if they are equal. What
does that mean? For our purposes, we define here:

 - Two objects are identical, if they cannot be distinguished.

- Two objects are equal, if they are of the same type and are in the same state with respect

to all or some selected properties. For example, two name-objects (Peggy Sue, Mrs) and
(Peggy Sue, Dr) are considered equal for the purpose of sorting, when they are alphabeti-
cally listed and titles don’t play any role.

Identical objects are therefore always equal, but the reverse is not true. Applying these defini-
tions to objects in Java or C++ programs, we declare those objects exactly occupying the same
address space as identical, i.e. there is actually only one object, maybe with several names. Of
course, these definitions depend on the context and may not hold if we think of persistent ob-
jects. Objects with different memory addresses are distinguishable (not identical) and can inde-
pendently change their states. These objects may be equal (or not). In Java, the equality op-
erator == checks identity for class objects and equality for primitive data types. Equality of
class objects is checked by the equals() method as can be seen in the example:

4

// Java
Integer I1 = new Integer(77), // class objects
 I2 = new Integer(77);

int i1 = 3, // primitive types!
 i2 = 3;

Integer I3 = I2; // Create another reference for I2 .

i1 == i2; // true (primitive type: not identical, but equal)
I1 == I2 // false! (not identical)

I1.equals(I2); // true (equal)
I3 == I2 // true (identical)
I3.equals(I2); // true (equal)

This and some of the following points are discussed more in depth in [A98]. Of course, each
author of a class has to write a special equals() method, if objects of this class shall be check-
able for equality. If she does so, the method overrides the corresponding method of the top
class Object , which is inherited automatically by all classes.

Recommendation
In Java, operator == yields false if equal, but not identical class objects are compared. It returns
true only if the compared references have equal values, i.e. the underlying objects are identical.
You can focus on this problem by code inspection. Find any comparison between class objects
with operator == in the code and check if they should be replaced by the equals() -method.
You can also use a code analyzer to list all comparisons.

Constant problem or final confusion?

If the const keyword is used properly in C++, it helps to create safer programs. The compiler
will flag inadvertent incorrect uses of constant or immutable objects. In Java, the keyword fi-

nal prevents changing an object after initialization. But final is not const !

Example:

// C++
const string s = "hello";
s.append(" world!"); // Error! s is const

s += " world!"; // Error! s is const

// Java
String s = new String("hello");

Java strings are immutable and there is no method to change a String object. But ...
s += " world!"; // This is ok for Java (equals s = s + " world!";)
System.out.println(s); // Output: hello world

Remember: s is a reference, not the object! References to immutable objects are not immutable
themselves. They can be made immutable:

5

final String s = new String("hello"); .
s += " world!"; // Error! s is immutable

But what about calling a state-changing method? Have a look at:

// Java
final MyClass aMyClass = new MyClass();
aMyClass = anotherMyClass; // Error! Reference aMyClass is immutable
aMyClass.setAttribute(17); // (Object attached to) aMyClass is changed!

Only for primitive data types, final means the same as const . There are some possible work-
arounds in Java to make also class objects immutable. These workarounds are more or less
clumsy and expensive in terms of runtime. Some of them are listed here:

State checking
Introduce a boolean attribute to the class and the corresponding question-method boolean

isConst() . Each setter method has to throw an exception if isConst() yields true . Disad-
vantages: Only runtime check, careful programming necessary!

Proxy
This means to provide a surrogate or placeholder for the object [GHJV95, p.207 f]. The inter-
face of the Proxy class contains only methods which do not modify the object.

Common Baseclass
Split your class X into three classes:
public class XBase {...} /* contains private attributes and get-methods.
 Only the constructor can set the attributes. */

public final class constX extends Xbase {...} /* inherited API + constX(XBase)

 constructor */

public class X extends Xbase {...} // inherited API + set-methods

constX has to be final because otherwise we could derive a subclass with non-const behaviour.

Recommendation
Trying to implement the C++ const for class objects in a Java program is a little bit compli-
cated and therefore will probably introduce errors instead of preventing them. If a C++ pro-
gram is to be rewritten in Java, we recommend just to ignore the const keyword for non-
primitive data types.

Argument passing surprises

Arguments including pointers can be passed a C++ method by value or by reference. Argu-
ments are always passed by value in Java. Smalltalk users will not have a problem with this,
but people coming from C++ have to realize that parameter passing does not work as they are
used to, if objects of class type are involved.

Let's have a look at some examples:

6

// same syntax in Java and C++, but different meaning
void f(Window w) {
 w.setTitle("new Title");
}

In C++, a function call f(aWindow) does not change the passed object aWindow, because a
local copy is generated, whose method is called. At the end of the function, the local copy will
be destroyed. (Of course, in C++ the above function doesn’t seem to make much sense.)

In Java, however, the window (aWindow) gets a new title, because a local copy of aWindow

actually means a copy of a reference, i.e. passing a reference by value. The method set-

Title() is called via this copy of a reference which refers to the very same object as before
the call.

Another example:

// Java (wrong example)
void fullFilename(String path, String filename, String result) {
 // Error: caller's result is not modified, only a local copy of result :
 result = path + filename;
}

The (copied) reference of result is changed, not the object it refers to! Preventing a change
of a local copy can be achieved using final , but this does not help here. Correct example:

// Java (now ok, but different interface)
String fullFilename(String path, String filename) {
 return new String(path + filename);
}

The valuable C++ property const is also helpful within methods where arguments are passed
as a reference to a constant object (const&) for performance reasons. Unfortunately, there is
no similar support in the Java language. Immutable objects need not be copied; therefore the
runtime-expensive creation of objects is reduced in C++ with const& . If the caller wants to be
sure that a passed object will not be modified, it has to be passed as a clone in Java. This does
not, however, prevent the clone from being unnecessarily modified, in contrast to C++.

Examples:

// C++ method:
void f(const X& aX) {
 doThisAndThat();
 aX.setAttribut(1); // statically detected error!
 doEvenMore();
}

call:
myObject.f(anotherX);

// Java method:
void f(X aX) {
 doThisAndThat();
 aX.setAttribut(1); // neither statically nor dynamically detected!
 doEvenMore();
}

7

call:
myObject.f((X)anotherX.clone()); /* At least the caller can be sure that the object
 remains unmodified. */

Recommendation
You can only pass arguments by value in Java. Be sure that the parameter passing mechanism
is used correctly. Is there an assignment to a parameter within a method, it is only a assignment
to the local copy of the parameter. It has no effect for the caller of the method, so there must
be a special reason, which should be documented in a comment – otherwise it is wrong and the
parameter should be declared as final . Use code inspection to find such cases.

General rules

All the examples above are easily understood by C++ experienced people by following the
general rules:
1. Primitive data types like float , char , int etc. are treated equally in C++ and Java.
2. All Java objects of other types (including arrays) are nothing but C++ pointers in disguise.

The second point means that there are no automatic (i.e. execution stack) class objects in Java.
What is called a reference in Java, resembles more a C++ pointer than a C++ reference. Refer-
ences in C++ cannot be null or undefined, but pointers can. To show this in more detail, some
examples are listed in the following tables:

C++ example direct semantic Java equivalent
myClass x; None, there are no automatic (stack) class objects in

Java (only references).
myClass* p = 0; myClass p = null;
p = new myClass; p = new myClass();
p->method1() p.method1()

declaration: void f(myClass)

call: f(*p)

declaration: void f(myClass)

call: f((myClass)p.clone())

declaration: void g(myClass*)

call: g(p)

declaration: void g(myClass)

call: g(p)

declaration: void g(myClass&)

call: g(x)

None, there is no passing by reference in Java. It can
be simulated by a more circumstantial mechanism,
though. Encapsulation of a reference in a container
may be such an indirect semantic equivalent (see
below ”Simulating reference parameters in Java ”).

myClass* const q = new myClass;
const pointer, very seldom used in C++.
Don’t confuse with pointer to const !

(const myClass* t , see below)

final myClass q = new myClass();

const myClass* q = new myClass; None.

Java example direct semantic C++ equivalent
String s = "hello"; const string* s = new string("hello");
s = "abc"; delete s; s = new string("abc");
char c = s.charAt(0); char c = s->at(0);

8

Simulating reference parameters in Java

Simulating reference parameters has nothing to do with our intention to show possible prob-
lems in program understanding during reviews of syntactically alike C++ structures in Java, but
is given for completeness. In the function (already shown above)

// Java (wrong example!)
void fullFilename(String path, String filename, String result)
 result = path + filename;
}

the problem is: How to get out some information via the parameter list? There is no direct
way to pass arguments by reference, but a little (not very elegant) trick will do: Just wrap the
reference in a container, e.g. an array. The function then looks like

void fullFilename(String path, String filename, String[] cont) {
 cont[0] = path + filename;
}

A possible usage is as follows:

String[] container = new String[1];
fullFilename("thePath", "Filename", container);
String result = container[0]; // retrieve reference
System.out.println(result); // thePathFilename

Recommendation
C++ and Java look similar, but are different. Java is often regarded as ”C++ without pointers,”
which obviously is not true. Actually, Java is more like ”C++ with dynamic (=heap) class ob-
jects only”. If your company switches from C++ to Java, special training of developers is a
must. They have to know the semantic differences between these languages.

Lazy clean up

Big advantages of Java are (among others) that memory addresses cannot be taken and mis-
used and that there is an automatic garbage collection. In C++, the destructor of an automatic
object is called at the very moment when the object goes out of scope or when delete is
called for a pointer referring to the object. Normally the destructor is used to release resources
held by the object. Example:

// C++
{
 Object myObject; // Constructor acquires resources.
 myObject.doSomeThing();
} // Destructor is called here automatically. Its task is to release resources.

The destructor is also called if an exception is thrown within the block. In Java, the final-

ize() method roughly corresponds to the destructor in C++, but it has to be called explicitly,
and it is left to the JVM (Java Virtual Machine) when finalize() will be called, even if the
JVM is explicitly asked to do so by calling System.runFinalization() . If resources (other
than the memory of the object itself) are to be released a.s.a.p., the best is to write a special

9

routine cleanup() for that purpose and call it directly before transferring the object to the
garbage collector.

// Java
{
 myClass myObject = new myClass(); // constructor acquires resources.
 myObject.doSomeThing();

 // recommended add-on:
 myObject.cleanup(); // release resources now!
 myObject = null; // release object for garbage collector and prevent
 // further access (if more code is to follow)
} // The garbage collector can do the rest, when it wants to!

A safer approach is to use exceptions. The finally -block will be executed, no matter how the
try -block exits – normally or with an exception generated in one of the statements.

// Java
{
 myClass myObject = null;
 try {
 myObject = new myClass(); // might throw exception
 myObject.doSomeThing(); // might throw exception
 }
 catch(Exception e) {
 // here goes the excepton handling
 }
 finally {
 if(myObject != null) {
 myObject.cleanup(); // release resources
 myObject = null; // release object
 }
 }
} // The garbage collector can do the rest, when it wants to!

If applicable, cleanup() should call super.cleanup() as the last action to release resources
previously aquired by the superclass.

Recommendation
If the immediate release of resources (other than the memory of the object itself) is important,
you have to do it by yourself. The Java Virtual Machine does not guarantee a defined moment
for release. Use code inspection to find critical classes and places.

Polymorphic behaviour

All methods with the exception of static methods are virtual in Java. Static methods are class
methods (not comparable with class methods in Smalltalk, which are always dynamically
bound). This is no problem for those C++ people who write in good style, i.e. they
- never override non-virtual C++ methods and
- always call static methods by a class name, not an object's name.
The second is also our recommendation for Java.

10

Implications for program analysis, understanding and testing

How can the problems described above be avoided or recognised and solved? The most im-
portant precondition is that developers have a good knowledge of Java. The assumption ”Java
is a simpler C++” is wrong and leads to erroneous programming.

Besides a thorough training, the following ways may be suitable for finding errors:

• reviews and inspections
• tools for static code analysis
• test methods

There are two cases to be considered for developers with C++ knowledge: new software is to
be developed in Java, or software is to be ported from C++ to Java. In the second case, a di-
rect (maybe automated) comparison between the sources is possible. Check-lists for code-in-
spections should be extended by the following questions:

• Assignment of class objects: Should an alias (1) be created or a copy (2)?
1) ok
2) use clone()

• Comparison of class objects using ==: Check of identity (1) or equality (2) intended?
1) ok
2) use equals()

• Does parameter passing conform to the ”General Rules” above?
If not, rethink and recode.
Is there a local parameter on the left hand side of an assignment in a method?
If yes, it has no effect for the caller of the method, so there must be a special reason,
which should be documented in a comment – otherwise it is wrong. The compiler will
prevent this usage if the parameter is declared as final .

• End of scope: Is an immediate release of resources required?
If yes, use a special self-written method for release.

• Is reproducing the C++ const in a Java program really necessary for class objects?
If not, avoid introducing unnecessary code complexity.

• Are class methods only called by using the class name?
If not, rethink and recode.

Many of these difficulties could be detected by a static code analyser [K95], which could print
a list of possible cases.

We do not recommend special test methods and test cases because often the test engineer will
not be able to decide if there is really an error. Creating an alias with an assignment may just be
what is intended, and also a comparison of identical objects with different aliases can make
sense.

More important is that software developers really know the semantic differences between
similar syntactic elements of C++ and Java.

11

Conclusions

On the apparently ”simple” way from C++ to Java there lie some stumbling blocks. Overlook-
ing them can lead to unforeseen errors. The semantics of Java resembles the reference seman-
tics of Smalltalk, not the value semantics of C++. There are syntactically identical elements in
the programming languages C++ and Java, where Java uses reference semantics, but C++ em-
ploys value semantics. Developers have to know the semantic differences between these similar
syntactic elements. Also the destruction of objects behaves differently in both languages, and
there is no parameter passing by reference in Java. The phrase ”passing an object by reference”
is surely acceptable in a colloquial language usage between Java developers, but the actual,
precise meaning is ”passing a reference (referring to that object) by value”. Developers new to
Java have to know this too.

This article shows problems which can arise from these misunderstandings, and gives recom-
mendations and a check-list as an aid to detect possible errors.

Bibliography

[A98] Sherman R. Alpert: Primitive Types Considered Harmful, Java REPORT 3, No. 11 (Nov.
1998), pp 49-65

[B00] Steve Ball: Effective cloning, Java REPORT 5, No. 1 (Jan. 2000), pp 60-67
[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns –

Elements of Reusable Object-Oriented Software, Addison-Wesley 1995
[GJS96] James Gosling, Bill Joy, Guy Steele: The Java Language Specification, Addison-

Wesley 1996
[ISO98] Programming Language C++, ISO/IEC Industrial Standard 14882:1998 (available at

www.ansi.org)
[K95] Edward Kit: Software Testing in the real world. Appendix G – Specific tools and tool

selection, Addison-Wesley 1995
[McC00] Steve McConnel: The Best Influences on Software Engineering, IEEE Software

Jan./Feb. 2000, pp 10-17
[SU99] Martin Schedlbauer, David Udin: How to successfully Migrate to Java, Java REPORT

4, No. 1 (Jan. 1999), pp 61-66

QW2000 Paper 7A1

Dr. Yingxu Wang
(Center for Software Engineering)

A Practical New Approach to COTS Testing
(7A1)

BACK TO QW2000 PROGRAM

Key Points

How to implement built-in tests in COTS.●

How to re-use built-in tests in COTS.●

How to test COTS at run-time.●

Presentation Abstract

This paper presents a new approach to commercial off-the-shelf (COTS) component test and a
practical technology for design and implementing test-re-usable COTS. Current technologies for
COTS test are mainly based on object-oriented (OO) techniques. A new method of Built-In Test (BIT)
components for self-testable and test-re-usable software has been developed and trialed in pilot
projects.

A BIT-based COTS is a new kind of software component wherein tests are explicitly described in the
component source code as special functions. BIT technology is considered to be a significant
extension of OO technology to self-testable and test-re-usable COTS in component-based software
engineering.

About the Author

Dr. Yingxu Wang is Professor of Software Engineering and project manager with the Center for
Software Engineering at IVF, Moindal, Sweden. He was a visiting professor in the Computing
Laboratory at Oxford University during 1995. He was awarded a PhD in software engineering by The
Nottingham Trent University / Southampton Institute, UK, where he holds an academic title of Visiting
Professor.

Dr. Wang is a member of IEEE TCSE/SESE, ACM, ISO/IEC JTC1/SC7, and chairman of the
Computer Chapter of the IEEE in Sweden. He has accomplished a number of ED, Swedish and
industry funded research projects as coordinator local manager and/or principle investigator. He is the
lead author of a recent book, Software Engineering Processes: Principles and Applications and has
published over 100 papers in software engineering. He has served a session chairman, co-editor, and
program committee member for several international conferences and journals. He has won a dozen

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7A1.html (1 of 2) [4/28/2000 2:34:49 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

research achievement and teaching awards in the last 20 years.
BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7A1.html (2 of 2) [4/28/2000 2:34:49 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

The 13th International Software / Internet
Quality Week (QW2000)

The 13th International Software / InternetThe 13th International Software / Internet
Quality Week (QW2000)Quality Week (QW2000)

 © © Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 1

A Practical New Approach
to COTS Testing

Yingxu Wang, PhD
Centre for Software Engineering, IVF

Argongatan 30
S-431 53, Molndal, Gothenburg, Sweden
Tel: +46 31 706 6174, Fax: +46 31 27 6130

yingxu.wang@acm.org

AgendaAgenda

©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 2

 1. Introduction

 2. COTS test: the new challenges

 3. Built-in-test-based COTS

 4. Test-reusable COTS

 5. Run-time testable COTS

 6. Conclusions

2

COTS and BITsCOTS and BITs

 ©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 3

COTS: Commercial off-the-shelf
 software components

BIT: Built-in Test

 - Special test functions that are explicitly
 described and embedded in COTS source code
 for self-testing the component.

Challenges to COTS testChallenges to COTS test

©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 4

 • Low testability for end-users

• Low maintainability for end-users

• No support for run-time testing

• Separated software code and test cases

3

FocusesFocuses

 © © Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 5

• How to implement built-in tests in COTS?

• How to reuse built-in tests in COTS?

• How to test COTS at run-time?

A COTS prototype with built-in testsA COTS prototype with built-in tests

©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 6

 BIT_COTS ::= interface
 || implementation

 ::= { Data declaration;
 Constructor declaration;
 Destructor declaration;
 Function declarations;
 Tests (BITs) declarations }

 || { Constructor;
 Destructor;
 Functions;
 BIT-TestCases }

 BIT_COTS ::= interface
 || implementation

 ::= { Data declaration;
 Constructor declaration;
 Destructor declaration;
 Function declarations;
 Tests (BITs) declarations }

 || { Constructor;
 Destructor;
 Functions;
 BIT-TestCases }

4

Mechanisms of BIT-based COTSMechanisms of BIT-based COTS

©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 7

l Normal mode
 - With same behaviors as that of the conventional COTS
 BIT_COTS :: FunctionI;

l Test mode
 - BITs can be activated:

 BIT_COTS :: TestCase1;

 BIT_COTS :: TestCase2;

 BIT_COTS :: TestCaseN;

A sample COTS with BITA sample COTS with BIT

©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 8

Class BITsBinarySearch_COTS {

///
// Interface
///

// Member functions
BITsBinarySearch(); // The constructor
~BITsBinarySearch(); // The destructor
int BinarySearch (int Key; int DataSet[10]);
 // The conventional object
void BIT1(); // The built-in-test

///
// Implementation
///

// ================================
// Part 1: The conventional function code
// ================================

5

A sample COTS with BIT (Cont’d)A sample COTS with BIT (Cont’d)

©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 9

int BinarySearch (int Key, int DataSet[10])
{
// The conventional object
// Assume: DataSet is ordered
// LastElement -FirstElement >=0
// and FirstElement >=0
// Input: Key to be found in the DataSet
// Output: TestElemIndex
Private:
 int bott, top, i;
 int found;
found = false;
Bott = 1;
Top = ArraySize (DataSet); // The last element in DataSet
while (bott <= top) && (not found)
 {
 i = floor ((bott + top)/2));
 if DataSet[i] == Key
 Found = true;
 else if DataSet[i] < Key
 Bott = i +1
 else Top = i +1;
 }
if found == true
 return i; // The index of the element
 else return 0; // An indicator of not existence
}

A sample COTS with BIT (Cont’d)A sample COTS with BIT (Cont’d)

 © © Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 10

// ==================================
// Part 2: The BITs
// ==================================

// BIT case 1
void BIT1()
{
// BIT case 1: Array size of 1, key in array
private:
 int DataSet[1] = {16};
 int Key = 16;
 int StdElemIndex = 1;
 int TestElemIndex;
 char TestResult1[5];
// Test implementation
 TestElemIndex = BinarySearch (Key, DataSet);
// Test analysis
 cout << “StdElemIndex1 = ” << StdElemIndex << “\n”;
 cout << “TestElemIndex1 = ” << TestElemIndex << “\n”;
 if TestElemIndex == StdElemIndex
 TestResult1 = “OK”;
 else TestResult1 = “FALSE”;
 cout << “TestResult1: ” << TestResult1 << “\n”;
}
}}

6

Behaviors of the BIT-based COTSBehaviors of the BIT-based COTS

 ©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 11

Normal mode

BITsBinarySearch_COTS::
BinarySearch(int Key, int DataSet[10]);

Test mode

 BITsBinarySearch_COTS::BIT1();

 Testing results for this COTS by the BIT:Testing results for this COTS by the BIT:

 StdElemIndex1 = 1
 TestElemIndex1 = 1
 TestResult1 = OK

Reuse of BITs in COTSReuse of BITs in COTS

 ©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 12

 Application Structure Behaviour
 Interface Implementation

 Normal Function Member Normal
 mode interface functions functions

 Test Test Built-in Tests and
 mode interface test cases results

7

BIT reuse in COTS: An exampleBIT reuse in COTS: An example

©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 13

class DatabaseQuery: public BITsBinarySearch_COTS
{
//
// Part 1: The inherited conventional functions
//

int DatabaseQueryBinarySearch (int Key, int DataSet[10]) :
 BITsBinarySearch_COTS::BinarySearch(int Key; int DataSet[10]);

//
// Part 2: The inherited BIT functions
//
void BIT1() : BITsBinarySearch_COTS::BIT1();

BIT reuse in COTS: An example (Cont’d)BIT reuse in COTS: An example (Cont’d)

©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 14

//
// Part 3: The newly developed BITs
//

// BIT case 2
void BIT2()
{
// BIT case 2: Even array size, key 1st element in array
Private:
 int DataSet [6] = {16,18,21,23,29,33};
 int Key = 16;
 int StdElemIndex = 1;
 int TestElemIndex;
 char TestResult4 [5];
// Test implementation
 TestElemIndex = BinarySearch (Key, DataSet);
// Test analysis
 cout << “StdElemIndex4 = ” << StdElemIndex << “\n”;
 cout << “TestElemIndex4 = ” << TestElemIndex << “\n”;
 if TestElemIndex == StdElemIndex
 TestResult2 = “OK”;
 else TestResult2 = “FALSE”;
 cout << “TestResult2: ” << TestResult4 << “\n”;
}
}}

8

Invocation of the BITs in COTSInvocation of the BITs in COTS

©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 15

l Invoke the old BIT in COTS:
 BITsBinarySearch_COTS
 DatabaseQuery::BIT1();
 // Equivalent to BITsBinarySearch_COTS::BIT1

l Invoke the new BIT:
 DatabaseQuery::BIT2();
 // The new BIT only in COTS: DatabaseQuery

l Invoke the old BIT in COTS:
 BITsBinarySearch_COTS
 DatabaseQuery::BIT1();
 // Equivalent to BITsBinarySearch_COTS::BIT1

l Invoke the new BIT:
 DatabaseQuery::BIT2();
 // The new BIT only in COTS: DatabaseQuery

COTS fault detection/diagnosis at run-timeCOTS fault detection/diagnosis at run-time

©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 16

S y s t e m s t r u c t u r e F a u l t c a u s e a l l o c a t i o n

H a r d w a r e D e c a y R a n d o m E n v i r o n m e n t C o n f i g u r a t i o n
S y s t e m Y Y Y Y Y
S u b s y s t e m 1 Y Y Y Y Y

C l a s s 1 Y Y
O b j e c t 1 1 Y

F u n c t i o n 1 1 1
F u n c t i o n 1 1 2 Y
.
F u n c t i o n 1 1 p

O b j e c t 1 2 Y Y Y
F u n c t i o n 1 2 1 Y
F u n c t i o n 1 2 2 Y

.
F u n c t i o n 1 2 r Y Y
.

O b j e c t 1 n Y Y Y
F u n c t i o n 1 n 1 Y Y
F u n c t i o n 1 n 2 Y Y

.
F u n c t i o n 1 n s Y
.

C l a s s 2 Y Y
O b j e c t 2 1
O b j e c t 2 2 Y

.
O b j e c t 2 m Y
.

S u b s y s t e m 2
.
S u b s y s t e m k

9

COTS run-time fault handlingCOTS run-time fault handling

©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 17

Exception
diagnosis result

Exception handling strategy

Alarm
and

report

System
reset

Reload
objects

Reload
data

Re-
configuration

Switch to
stand-by
system

Replace
hardware

System x x x x x x x
 Subsystem 1 x x x x x x x
 Class 1 x x x x x x
 Object 11 x x
 Function112 x x
 Object 12 x x
 Function121 x x
 Function122 x x
 Function12r x x x
 Object 1n x x x
 Function1n1 x x
 Function1n2 x x
 Function1ms x x x
 Class 2 x x
 Object 22 x x
 Object 2m x x

ConclusionsConclusions

©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 18

ò New type of tests for COTS

 ò New philosophy for COTS test and test reuse

 ò Extended software reuse from code to tests

 ò Enable self-testable COTS

 ò Enable test-reusable COTS

 ò Enable run-time testable COTS

 ò Find useful in a wide range of applications

10

Related Work

©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 19

CRC Press, USA

ISBN: 0-8493-2366-5

http://www.crcpress.com/index.
 htm?catalog/2366

A Unified FrameworkA Unified Framework
andand

a Rigorous Approach toa Rigorous Approach to
Software EngineeringSoftware Engineering

ProcessesProcesses

(Suitable as a textbook)(Suitable as a textbook)

About the AuthorAbout the Author

©© Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 Dr. Y. Wang, QW2000, San Francisco, CA., May/June 2000 20

Yingxu Wang is Professor of Computer Science, and project
manager with the Center for Software Engineering at IVF,
Gothenburg, Sweden. He was a visiting professor in Computing
Laboratory at Oxford University during 1995. He was awarded a
PhD in software engineering by The Nottingham Trent University
/ Southampton Institute, UK.

Dr. Wang is a member of IEEE TCSE/SESC, ACM, and ISO/IEC
JTC1/SC7, and is Chairman of the Computer Chapter of IEEE
(Sweden). He is the coordinator of the National Trial Centre for
ISO 15504 (SPICE) of Sweden. He has accomplished a number of
European, Swedish, and industry-funded research projects as
manager and/or principal investigator, and has published over
100 papers in software engineering. He has won a dozen research
achievement and academic teaching awards in the last 20 years.

1

����������	�
�������������������������

<LQJ[X�:DQJ

 Ph.D., MIEEE-TCSE/SESC, MACM and MISO/IEC JTC1/SC7
Centre for Software Engineering, IVF

Argongatan 30, S-431 53, Gothenburg, Sweden
Tel: +46 31 706 6174, Fax: +46 31 27 6130

Email: yingxu.wang@ivf.se or yingxu.wang@acm.org

$EVWUDFW

This paper presents a new approach to commercial off-the-shelf (COTS) software component test
and a practical technology for design and implementing test-reusable COTS. Conventional
technologies for COTS test are mainly based on object-oriented (OO) testing techniques. A new
method of Built-In Test (BIT) for self-testable and test-reusable COTS is developed in this paper.

A BIT-based COTS is a new kind of software component wherein tests are explicitly described in
the component source code as special functions. BIT technology is considered to be a significant
extension of OO technology to self-testable, test-reusable, and run-time testable COTS in
component-based software engineering.

.H\ZRUGV� Software engineering, component, COTS, test, built-in test, test reuse, run-time
testing, real-time software

���,QWURGXFWLRQ

Component-based software engineering is a new approach to programming and software
development. Software components are adopted in order to improve software development and
maintenance efficiency and quality and also to increase reuse rate of existing software in multiple
applications. Viewing software architectures as being composed of components is helpful for
enabling software development, test, and maintenance to be carried out at a higher level than that
of language statements.

Component-based software engineering studies methods and techniques for building, acquiring,
maintaining, and managing software systems consisting of commercial off-the-shelf (COTS) and
in-house software components. The current technologies for COTS component development is
mainly based on object-oriented (OO) techniques. A new method of Built-In Test (BIT)
components for self-testable and test-reusable COTS is presented in this paper. A BIT-based
COTS is a new kind of software component where tests are explicitly described in the component
source code as special functions. BIT technologies [1-5] are considered to be a significant
extension of OO technology to self-testable and test-reusable software in component-based
software engineering.

2

This paper presents a new type of COTS incorporating BITs. The BIT components can be
embedded in any conventional COTS for enabling test reuse as well as code reuse. The BIT
component technologies are an extension of OO methods, and have found a wide range of
applications in component-based software engineering.

Adoption and wide availability of COTS have been viewed as the key precondition for enabling
component-based software engineering. However, current COTS technologies are concentrating
on code reuse. The following problems inherited in conventional COTS technologies have been
identified:

• Low testability for end-users

• Low maintainability for end-users

• No support for run-time testing

• Separated software code and test cases

Being oriented to the current problems and challenges identified above, this paper presents new
solutions and techniques for COTS testing on the basis of a recent European pilot project:

• A new technology for implementing BIT-based COTS

• A new approach to COTS test

• An extension of OO technology from code reuse to test reuse in COTS development

• A new approach to enabling run-time COTS test

The BIT-based COTS possesses a set of novelty in component-based software engineering. A
wide range of applications of COTS with BITs has been identified, LQWHU�DOLD, as follows: BIT-
based COTS test, COTS test reuse, BIT-based COTS maintenance, run-time testable COTS with
BITs, BIT-based COTS for safety critical systems, and real-time system fault-tolerance with BIT-
based COTS.

���&276�7HVW��1HZ�&KDOOHQJHV�DQG�1HZ�6ROXWLRQV

Along with the development of the Internet, and inspired by the hardware engineering
approaches, a new approach to software engineering, component-based software engineering, has
been emerged and been widely accepted in the software industry. This approach is based on the
‘plug-in’ and/or ‘add-on’ software framework structure, and the broad availability of COTS
components. This section analyses problems and challenges for COTS testing, and presents new
solutions and new type of COTS for enabling test reuse as well as code reuse.

����3UREOHPV�,GHQWLILHG�LQ�&267�7HVW

The foundations of component-based software engineering are based on technologies of OO,
reuse, COTS, middleware, patterns and frameworks. Adoption and wide availability of COTS
have been viewed as the key precondition for enabling component-based software engineering.
However, current technologies of COTS are focused on code reuse. The following problems
inherited in conventional COTS technologies have been identified as analysed below.

3

• Low testability for end-users

Because of much closer encapsulation and distribution with only executable code, end-users of
COTS components have found it was very difficult to test a purchased and adopted COTS
component. As a result, the quality and reliability of software based on COTS and in-house
components are limited.

• Low maintainability for end-users

For the same reasons described above, the maintainability of COTS and in-house software
components has been tied up with the original component developers. As a result the
maintainability of a purchased or adopted COTS component has been found to be lower than that
of conventional technologies.

• No support for run-time testing

Run-time testing comprises special test requirements for COTS and systems. In component-based
software engineering, as well as in conventional programming, run-time test is very much in
demand because almost all crucial software faults, such as code corruption, hardware platform
faults, random faults caused by external interferences, dynamic memory allocation faults, etc, can
only be detected and tested at run-time. However, run-time test of COTS has been found to be
extremely hard to implement compared with conventional static test of software components.

• Separated software code and test cases

Conventionally, software tests are regarded as extra entities other than functional code.
Therefore, for a COTS, the source code is separated from its tests, and the tests are only available
for the original developers or vendors, rather than the end-users as required in component-based
software engineering. This convention has been found cost-intensive and energy-wasting in
programming, especially in component-based software development, because all the tests have to
be regenerated by the end-users in the phases of system integration and maintenance.

To avoid the above problem, this paper provides a new approach that incorporates software
source code and tests within a single piece of software documentation, and within the same
executable code. This is also considered to be a new evolution of programming style to meet the
requirements for component-based software engineering.

����1HZ�6ROXWLRQV�IRU�&276�7HVW

Being oriented to solve the current problems identified in COTS test as analysed in Section 2.1,
this paper develops a built-in-test (BIT) method that enables tests be embedded and reused as that
of code in COTS and in-house software components. The BIT-based COTS possesses a set of
novelty, as follows, in component-based software engineering.

• A new technology for implementing BIT-based COTS

As analysed in Section 2.1, software tests in conventional programming technologies were
regarded as extra entities separated from code. Whilst, interestingly, in the author’s research in
component-based software engineering, it is found that tests should be treated as software

4

components too. This means that built-in tests can be embedded in COTS and systems as special
code. The explicitly programmed BITs in a COTS component are special functions for test and
maintenance of the component. In this way the BIT components possess the same syntax and
semantics as those of functional code. Therefore, the BIT components can be seen as a
combination of conventional code and its test cases in a unified COTS component. This provides
a novel type of software encapsulation and documentation.

• An extension of OO technology from code reuse to test reuse

By using BITs, tests can be reused for the first time just as is the code for COTS. As a result, the
reusability of OO technology can be extended from code to test. When a BIT component is
inherited, both functions and tests of the component are reusable. This adds value significantly to
the emerging new technologies of component-based software engineering. All COTS components
can benefit from this advantage. As a result, reuse software engineers and end-users of COTS
need no longer to be worried about the testing and maintaining of a component being as a black
box.

• A new approach to OO software test in component-based software engineering

As analysed in Section 2.1, COTS test techniques were mainly the same as those of non-OO
software. These tests are hardly ever available for end-users and maintainers. This is one of the
major barriers for component-based software engineering. This paper provides the BIT and
reusable tests for COTS components. It is a significant progress toward component-based
software engineering.

• A new approach to enabling run-time software test

As analysed before, run-time tests of COTS are a hard problem and in high demand for dealing
with dynamic faults such as code corruption, hardware platform faults, random faults caused by
external interferences, and dynamic memory allocation faults, etc.

A new approach is provided that enables the BIT-based COTS components be self testable and
the dynamic faults be detected at run-time, whenever the BITs are periodically executed and/or
manually triggered. Run-time testable COTS by using BITs is considered to be another significant
technological advance for improving software reliability and fault-tolerant capability in
component-based software engineering.

• A new style of programming: Software = functional code + testing code

Conventionally, software development technologies were focused on implementation of normal
functionality. Therefore, what the end-users of COTS have purchased are purely functional code
packaged in a component as a black box. However, in the later phase of integration and
maintenance, COTS users will realise that they need more than just the executable code.

From this scenario it can be deduced that COTS users in component-based software engineering
need a new style of programming documentation – a combinatorial source code and the built-in
test code. By adopting the BIT technologies, the combinatorial software code and tests within the
same COTS can be implemented in a practical way.

5

���$�1RYHO�0HWKRG�IRU�%,7�%DVHG�&276�7HVW

This section describes new methodologies and techniques of BITs and BIT-based COTS. It is
noteworthy that a good new technology is not necessarily complicated. The BIT technologies can
be implemented much easier and be used in a wide range of applications.

����7KH�$UFKLWHFWXUH�RI�D�%,7�&RPSRQHQW

The fundamental attributes that can be commonly identified in OO-based COTS technologies are
encapsulation, inheritance, reusability and polymorphism. A conventional COTS consists of two
structural parts: an interface and an implementation. The ‘interface’ of a COTS is the only means
of external access to the functions packaged in the component; The ‘implementation’ of a COTS
is the description of codes for all internal functions. A COTS component is reusable because of its
natural encapsulation and inheritability.

There are two basic findings in this paper on software component architectures: a) the tests of
COTS components are code too; and b) tests and code can be integrated into a unified
encapsulation of software components. Based on these principles, a BIT-based COTS component
can be described by using CSP-like notations as shown in Figure 1.

Figure 1. The architecture of a BIT-based COTS

In Figure 1, the built-in tests of a COTS component are declared in the interface and are
implemented in the component’s body. In this way, the BITs can be naturally inherited and reused
in the same way as that of code in the COTS. The BITs adopt the same syntax and semantics as
those of the conventional functions in a COTS component. Thus BITs can be well fit into any OO
components and may be supported by any OO languages.

A BIT-based COTS has the same behaviours as that of the conventional COTS when normal
functions of the component are executed. Whilst if the Lth BIT is called as a special built-in
function of the COTS, e.g.:

���������������%,7B&276 ::= interface
 || implementation

 ::= { Data declaration;
 Constructor declaration;

 Destructor declaration;
 Function declarations;
 7HVWV��%,7V��GHFODUDWLRQV��}
 || { Constructor;
 Destructor;
 Functions;
 %,7�7HVW&DVHV� }

6

 BIT-COTS :: TestCase1;
 BIT-COTS :: TestCase2;

 BIT-COTS :: TestCaseI;

 BIT-COTS :: TestCaseN;

the component can be automatically tested by the BITs in static environment and at run-time. This
provides a new capability to enable self-testable, test-reusable, run-time testable, and end-user-
testable COTS components to be developed and implemented at the same technical platform of
conventional OO components.

Inheritance and reuse of the BIT components in development and maintenance of BIT-based
COTS are useful in two ways: a) to activate the BIT components for self-test, maintenance and/or
fault diagnosis; and b) to derive a new COTS that inherits the existing BITs in the parent
components. Applying the BIT technology in COTS, what the programmer, tester, maintainer,
and end-user inherited, is instant and self testable. Assuming that the existing software systems are
reengineered using the BIT-based COTS technologies, the future software production, testing and
maintenance will benefit strongly from the reuse of the BITs in the COTS components.

����$�6DPSOH�&276�ZLWK�%,7V

In this subsection, methods for design and implementation of BIT-based COTS components are
developed that treats tests as software components too. The basic approach is embedded BITs
into the conventional COTS as special code. The explicitly programmed BITs in a COTS are
special functions for test and maintenance of the component. Therefore, the BIT components can
be seen as a combination of conventional code and its test cases in a unified COTS encapsulation
and a new type of software documentation.

A case study on implementing BIT-based COTS is provided in Figure 2. A typical example, a
binary search COTS, is taken to show how the BIT method is used to develop test built-in COTS.
In Figure 2, the BIT-based COTS of binary search is implemented in two parts: the conventional
functions and the BIT functions.

For the binary search function listed in Part 1 of Figure 2, a set of test cases may be generated by
using equivalency partitioning technique or others. In Figure 2, one of the test cases is built-in to
show the method of BITs. It is significant that the BIT method can incorporate any test cases
generated by the black-box (functional) and/or white-box (structural) testing methods as the
BITs.

7

Class BITsBinarySearch_COTS {

///
// Interface
///

// Member functions
BITsBinarySearch(); // The constructor
~BITsBinarySearch(); // The destructor
int BinarySearch (int Key; int DataSet[10]); // The conventional object
void BIT1(); // The built-in-test

///
// Implementation
///

// ================================
// Part 1: The conventional COTS code
// ================================
int BinarySearch (int Key, int DataSet[10])
{
// The conventional COTS
// Assume: DataSet is ordered
// LastElement -FirstElement >=0
// and FirstElement >=0
// Input: Key to be found in the DataSet
// Output: TestElemIndex

Private:
int bott, top, i;
int found;

found = false;
Bott = 1;
Top = ArraySize (DataSet); // The last element in DataSet
while (bott <= top) && (not found)
 {
 i = floor ((bott + top)/2));
 if DataSet[i] == Key
 found = true;
 else if DataSet[i] < Key
 bott = i +1
 else Top = i +1;
 }
if found == true
 return i; // The index of the element
 else return 0; // An indicator of not existence
}

// ==================================
// Part 2: The BITs
// ==================================

// BIT case 1
void BIT1()
{
// BIT case 1: Test for odd array size, and key not in array
private:
int DataSet[7] = {16,18,21,23,29,33,38};
int Key = 25;
int StdElemIndex = 0;
int TestElemIndex;

char TestResult1 [5];
// Test implementation
TestElemIndex = BinarySearch (Key, DataSet);
// Test analysis
cout << “StdElemIndex1 = ” << StdElemIndex << “\n”;
cout << “TestElemIndex1 = ” << TestElemIndex << “\n”;
if TestElemIndex == StdElemIndex
 TestResult1 = “OK”;
 else TestResult1 = “FALSE”;
cout << “TestResult1: ” << TestResult1 << “\n”;
}

} Figure 2. A BIT-based COTS of binary search

8

���7HVW�5HXVDEOH�&276�ZLWK�%,7V

The methods for developing BIT-based COTS have been developed in Section 3. Corresponding
to the design of the BIT-based COTS, reuse of the BITs can be implemented systematically.

����%,7�5HXVH�LQ�&276

The tests of conventional COTS are hardly ever available for maintainers and end-users. This is
one of the major barriers for component-based software engineering. This subsection develops
practical technologies for built-in test reuse in a COTS, including inherence and invocation
technologies for BITs.

Functions of a BIT-based COTS can be categorised into normal mode and test mode as shown in
Figure 3. The former is applied for code reuse and the latter for test reuse.

 Application Structure Behaviour
 Interface Implementation

 Normal Function Member Normal
 mode interface functions functions

 Test Test Built-in Tests and
 mode interface test cases results

Figure 3. Reuse modes of a test-built-in COTS

In the normal mode, a BIT-based COTS component has the same functions as that of
conventional COTS. Its static and dynamic behaviours are the same as those of the conventional
ones. The application-specific member functions can be called by: ClassName::FunctionName,
such as:

BITsBinarySearch_COTS::
 BinarySearch(int Key, int DataSet[10])

and the BITs are stand-by and without any effect to run-time behaviours.

In the test mode, the test-built-in COTS can be activated by calling the test cases as member
functions: ClassName::TestCaseI, such as:

BITsBinarySearch_COTS::BIT1();

Each TestCaseI consists of a BIT driver and test cases for the specific object. Test results can be
automatically reported by the BIT driver.

A BIT-based COTS has testing mechanisms ready as well as functional code. This enables end-
users of an applied test-built-in COTS to call and reuse all BITs as member functions in the test
mode.

9

����$�&DVH�6WXG\�RQ�%,7V�5HXVH

The approach to reuse BIT-based COTS components in software testing and maintenance is
shown in Figure 4. For instance, when a new COTS, DatabaseQuery, is needed, the BIT
components (Part 2, Figure 2) developed in the BITsBinarySearch_COTS can be inherited and
reused directly as that of the conventional member functions (Part 2, Figure 4). Also, additional
BITs can be incorporated into the new COTS as shown in Part 3 of Figure 4.

In the new object DatabaseQuery as listed in Figure 4, the existing BITs developed in the
BITsBinarySearch_COTS object can be activated by calling:

DatabaseQuery::BIT1(); // equivalent to BITsBinarySearch_COTS::BIT1

and the new BITs supplemented in the DatabaseQuery object can be activated in the same way:

 DatabaseQuery::BIT2(); // new BITs only in class DatabaseQuery

Class DatabaseQuery: public BITsBinarySearch_COTS
{
//
// Part 1: The inherited conventional functions
//

int DatabaseQueryBinarySearch (int Key, int DataSet[10]) :
 BITsBinarySearch_COTS::BinarySearch(int Key; int DataSet[10]);

 …

//
// Part 2: The inherited BIT functions
//
void BIT1() : BITsBinarySearch_COTS::BIT1();
…

//
// Part 3: The newly developed BITs
//
//
// ---
// BIT case 2
// --
void BIT2()
{
// BIT case 2: Test for even array size, key in array, and key is not first or last
private:
 int DataSet[6] = {16,18,21,23,29,33};
 int Key = 23;
 int StdElemIndex = 4;
 int TestElemIndex;
 char TestResult2 [5];
// Test implementation
 TestElemIndex = BinarySearch (Key, DataSet);
// Test analysis
 cout << “StdElemIndex2 = ” << StdElemIndex << “\n”;
 cout << “TestElemIndex2 = ” << TestElemIndex << “\n”;
 if TestElemIndex == StdElemIndex
 TestResult2 = “OK”;
 else TestResult2 = “FALSE”;
 cout << “TestResult2: ” << TestResult2 << “\n”;
}
}

 Figure 4. Inheritability and reusability of BITs in BIT-based COTS

10

 It is interesting to note that in the BIT approach, software tests themselves are software too. As
shown in Figures 2 and 4, the effort for implementing BITs in the COTS
“BITsBinarySearch_COTS” has been repaid by the ideal inheritability and reusability of tests in
the case shown in Figure 4 and all the subsequent reuse of the BITs in any future applications.
Assuming that the existing COTS components and systems can be reengineered using the BITs
method, the future software production will benefit strongly from the reuse of BITs in new COTS
development, testing and maintenance.

In the BIT approach, what the developer, end-user and maintainer of COTS inherit, is instant and
self testable. It is a kind of well engineered software with complete design messages and high
testability, reusability, and reliability.

���5XQ�7LPH�7HVWDEOH�&276�ZLWK�%,7V

With the BITs incorporating in a conventional COTS, faults of the COTS can be detected,
diagnosed, and handled at run-time. A generic example is provided in this section for
demonstrating how dynamic faults of COTS may be handled by BITs at run-time.

In case a fault of a COTS is detected, source and type of the fault can be diagnosed and allocated
by the BITs deployed in the COTS as shown in Table 1. By this approach, detailed causes and
locations of faults can be allocated by the corresponding BITs at run-time.

 Table 1. A sample COTS fault detection and diagnosis report

6\VWHP�VWUXFWXUH)DXOW�FDXVH�DOORFDWLRQ
Hardware Decay Random Environment Configuration

System Y Y Y Y Y

Subsystem1 Y Y Y Y Y

Class1 Y Y

Object11 Y

Function111

Function112 Y

......

Function11p

Object12 Y Y Y

Function121 Y

Function122 Y

......

Function12r Y Y

......

Object1n Y Y Y

Function1n1 Y Y

Function1n2 Y Y

......

Function1ns Y

......

Class 2 Y Y

Object21

Object22 Y

......

Object2m Y

......

Subsystem2

......

Subsystemk

11

The diagnosis results in Table 1 show the accurate sources and reasons of faults occurred in a
COTS. Observing Table 1 it can be seen that one subsystem, two classes, five objects and seven
functions have been allocated for a specific or hybrid fault(s).

After the detection and allocation of any faults in a COTS at run-time, a software system can
invoke an appropriate fault handling subroutine according to a pre-designed fault processing
strategy. Typical fault handling strategies can be measures such as to alarm, report, reset system,
reload objects, reload data, reconfiguration, switch to stand-by system, replace hardware, etc. [6].
A decision table of COTS fault handling for a real-time software system, for instance, is given in
Table 2.

 Table 2. A sample COTS fault handling decision table

)DXOW�GLDJQRVLV
UHVXOW

)DXOW�KDQGOLQJ�VWUDWHJ\

Alarm
and

report

System
reset

Reload
objects

Reload
data

Re-configuration Switch to
stand-by
system

Replace
hardware

System x x x x x x x

 Subsystem1 x x x x x x x

 Class1 x x x x x x

 Object11 x x

 Function112 x x

 Object12 x x

 Function121 x x

 Function122 x x

 Function12r x x x

 Object1n x x x

 Function1n1 x x

 Function1n2 x x

 Function1ms x x x

 Class2 x x

 Object22 x x

 Object2m x x

Based on the decision table, automatic or manual system fix can be carried out for a real-time
system, according to the pre-designed fault handling strategies for the COTS. This example shows
that the BIT-based COTS enables real-time detection, diagnosis and handling of software faults at
COTS and system level. BIT provides a systematic approach to improve COTS and software
system reliability, maintainability, test-reusability, and run-time testability.

���&RQFOXVLRQV

This paper has developed a new type of COTS architecture incorporating built-in tests. BIT-based
COTS components have enabled tests be reused at both debugging phase and run-time. The BIT
method has not only extended inheritability and reusability of conventional COTS from code to
tests, but also significantly improved COTS run-time testability.

The BIT-based COTS technologies provide a number of significant advantages for programmers
and system designers in component-based software engineering, such as:

12

• Self-testable COTS and in-house components

• Test-reusable COTS and in-house components

• Run-time testable COTS and in-house components

• End-user testable COTS and in-house components

• Easy maintainable COTS and in-house components

• Built-in run-time fault handling capability for COTS and in-house components

• Higher quality and more reliable COTS and in-house components

The BIT-based COTS technologies have found a wide range of applications in the software
industry. These include, LQWHU� DOLD: BIT-based COTS test, COTS test reuse, BIT-based COTS
maintenance, run-time testable COTS, COTS for safety critical systems, and real-time system
fault-tolerance with BIT-based COTS.

$FNQRZOHGJHPHQWV

This work has been partially supported by the EC SPIRE and Swedish PALBUS projects. The
author would like to acknowledge the funding organisations for their support and the software
organisations for their participation in the pilot projects.

5HIHUHQFHV

[1] Binder, R.V. [1994], Design for Testability in Object-Oriented Systems�� &RPPXQLFDWLRQV� RI� WKH
$&0� Vol. 37, No. 9, Sept., pp. 87-101.

[2] Wang Y., King, G., Fayad, M., Patel, D., Court, I., Staples, G., and Ross, M. (2000), On Built-in
Tests Reuse in Object-Oriented Framework Design, $&0�-RXUQDO�RQ�&RPSXWLQJ�6XUYH\V� Vol.32,
No.1, March.

[3] Wang Y., Wickberg, H. and King, G. (1999), A Method for Built-in Tests in Component-based
Software Maintenance, 3URFHHGLQJV�RI��UG�,(((�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�6RIWZDUH�0DLQWHQDQFH
DQG�5HHQJLQHHULQJ��,(((�&605¶���� IEEE CS Press, Amsterdam, March, pp.186-189.

[4] Jorgensen, P.C. and Erickson, C. [1994], Object-Oriented Integration Testing, &RPPXQLFDWLRQV� RI
WKH�$&0� Vol. 37, No. 9, Sept., pp. 30-38.

[5] Wang, Y., Trujillo, J. and Palomar, M. (1997), On a Metric of Software Testability, -RXUQDO�RI� WKH
6SDQLVK�&RPSXWHU�6RFLHW\��1RYDWLFV�, Vol.125, Jan/Feb Issue, pp.10-13.

[6] Wang, Y., King, G., Patel, D., Patel, S. and Dorling, A. (1999), On Coping with Software Dynamic
Inconsistency at Real-Time by the Built-in Tests, Special Volume on Real-Time Software
Engineering, ,QWHUQDWLRQDO�-RXUQDO� RI�$QQDOV� RI�6RIWZDUH�(QJLQHHULQJ� Baltzer Science Publishers,
Oxford, Vol.7, pp.1-14.

QW2000 Paper 7W1

Ms. Jeanette Folkes & Mr. Bert Lamar
(Ogilvy Interactive)

The Challenges of Web Testing

BACK TO QW2000 PROGRAM

Key Points

Challenges of managing WebSites●

Challenges of testing WebSites●

QA methodologies that work on WebSites●

Presentation Abstract

The recent proliferation of interactive web site development in virtually every industry has created
challenges for Quality Assurance Test departments. These challenges demand innovative solutions.
This presentation will focus on those challenges and hopefully offer some insight for those new to web
testing.

This will be a joint presentation discussing the challenges of web testing from a management and a
production standpoint. Ms. Jeanette Folkes and Mr. Bert Lamar have worked together for three years -
a year and a half on client server applications and most recently testing for the web.

Ms. Folkes will address the challenges of web testing from the management perspective. She will
outline solutions for developing a company wide test methodology, recruiting and training a skilled test
team, and scheduling adequate time for testing. She will discuss which areas have been the most and
the least receptive to integrating quality assurance.

Mr. Lamar will address the challenges of testing Interactive web sites from a production standpoint. He
will offer solutions for rapid test planning and test case execution, and will explore the limitations of
automated testing in an interactive environment.

About the Authors

Jeanette Folkes - Jeanette is the Quality Assurance Manager at OgilvyInteractive, a division of
OgilvyOne, a major advertising firm. Her experience has stemmed from supporting and managing a
helpdesk, writing documentation, providing user training and managing a training group. She has
studied to become a webmaster, has worked as a tester for 4 years and has been responsible for
managing QA departments for the last three years. Her recent accomplishments have been to define
and establish the Quality Assurance departments at Cushman & Wakefield for Citibank, at Grey
Advertising for Grey Direct and currently at Ogilvy & Mather for Ogilvy Interactive. Jeanette is recently

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7W1.html (1 of 2) [4/28/2000 2:34:57 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

married and lives in New York.

Bert Lamar - Bert is the Lead Quality Assurance Tester at OgilvyInteractive, a division of OgilvyOne.
Bert got his start in Quality Assurance at the Vanguard Group of Investors, where he completed a
six-month QA internship before accepting a full-time position testing financial transaction processing
applications. In addition to six years of Quality Assurance test experience, Bert is a documentation
specialist and trainer, and has developed training programs and materials for the Vanguard Group,
Cushman & Wakefield, Citibank and Chase Manhattan. Bert also serves on the board of directors of
the Girls' Vacation Fund, a non-profit organization that owns and operates Camp Oh-Neh-Tah, a
summer camp for low-income girls from New York City and upstate New York. Bert is married and
lives in New Jersey.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7W1.html (2 of 2) [4/28/2000 2:34:57 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

8-97 OgilvyOne Credentials Page 1

11

Welcome to

22

World’s Strongest,World’s Strongest,
Most Experienced NetworkMost Experienced Network

OgilvyOne was founded over
25 years ago by David Ogilvy

“Direct Response was my
 first love. And later my
 secret weapon.”

■■ During the 70’s and 80’s our companyDuring the 70’s and 80’s our company
has grown outward from New Yorkhas grown outward from New York
to cover the worldto cover the world

8-97 OgilvyOne Credentials Page 2

33

Ogilvy InteractiveOgilvy Interactive

■ The first global advertising agency with a
dedicated interactive capability (beginning in
1984).

■ Today, OgilvyInteractive is the largest integrated
interactive agency in the world, with 22 offices
and 12 service bureaus servicing more than 40
countries.

44

New York: Client ListNew York: Client List

■ Air France

■ American Express

■ Brooklyn Museum of Art

■ Butch

■ Childline

■ Cotton Incorporated

■ Ford Motor Company

■ GTE

■ Hershey’s

■ House of Mao

■ IBM

■ Jaguar

■ Kimberly-Clark

■ Kodak

■ Kraft Foods

■ Unilever

■ Lotus

■ MotherNature.com

■ Ortho Biotech (J & J)

■ Perrier Group of America

■ Petersen Publishing

■ Royal Mail

■ Safari Lager

■ TIAA-CREF

8-97 OgilvyOne Credentials Page 3

55

Jeanette FolkesJeanette Folkes

■ OgilvyInteractive
—— QA ManagerQA Manager

■ Grey Direct
—— QA ManagerQA Manager

■ Cushman & Wakefield /
Citibank

—— QA Manager for JavaQA Manager for Java
applicationapplication

■ Wall Street Access
—— Training ManagerTraining Manager
—— Directory of OfficeDirectory of Office

AutomationAutomation
—— WebMasterWebMaster

■ WSP&R
—— TrainerTrainer

■ Transammonia
—— Help Desk AnalystHelp Desk Analyst

■ The NPD Group
—— QA Tester for proprietaryQA Tester for proprietary

client server applicationclient server application
—— Project ManagerProject Manager

66

Bert LamarBert Lamar

■ OgilvyInteractive
—— Senior QA TesterSenior QA Tester

■ Grey Direct
—— Senior QA TesterSenior QA Tester

■ Cushman & Wakefield/Citibank
—— Senior QA TesterSenior QA Tester

■ Vanguard Group of Investors
—— Lead QA TesterLead QA Tester

8-97 OgilvyOne Credentials Page 4

77

QA MethodologyQA Methodology

 Ensures that a product or service satisfies the
customer’s needs, wants and expectations

■ Team

■ General Process

■ Documents

■ Integration

88

Quality Assurance GrowthQuality Assurance Growth

■ Dedicated staff established May 1999

■ QA Methodology adopted August 1999

■ Full-time staff hired September 1999

■ QA lab established ?

8-97 OgilvyOne Credentials Page 5

99

QA TeamQA Team

■ QA Manager hired 5/99

■ Senior Tester hired 9/99

■ 2 Junior Testers hired 10/99

■ Tester hired 2/00

■ 2 additional Junior Testers hired 3/00

■ Additional Tester hired 4/00

■ Consultants on an as needed basis

1010

Team hoursTeam hours

■ 10:00am - 10:00pm, Monday - Saturday

■ Consultants on an as needed basis

8-97 OgilvyOne Credentials Page 6

1111

Skill Sets - Jr. TesterSkill Sets - Jr. Tester

■ Responsible for all manual testing

■ Entry level position

■ Familiarity with basic HTML

■ Own web site

■ College editor

■ Has own computer

■ Good software background

■ PROOF their resume

■ Evening and weekend hours

1212

Skill Sets - TesterSkill Sets - Tester

■ Responsible for all testplanning

■ At least 2 years testing

■ At least 1 year testplanning

■ Familiarity with basic HTML

■ Good software background

■ Flexible hours

8-97 OgilvyOne Credentials Page 7

1313

Skill Sets - Senior TesterSkill Sets - Senior Tester

■ Responsible for all automated testing

■ At least 4 years testing

■ At least 2 years testplanning

■ Familiarity with HTML, plug-ins, software

■ Basic programming

1414

General ProcessGeneral Process

■ Test plans, outlines of the areas to be tested, are
written

■ Test cases, documentation of the actual steps,
are written

■ Automated testing is used to improve testing

■ Exceptions are logged in an exception tracking
database

■ Reports are generated

8-97 OgilvyOne Credentials Page 8

1515

DocumentsDocuments

■ QA Checklist

■ Test plan

■ Exception reporting

■ QA authorization report

1616

QA ChecklistQA Checklist

■ Browsers / OS’s

■ Required plug-ins and versions

■ Alt tags

■ Print testing

■ Links - pop-ups, new windows

■ Forms - validation

■ Resolution

■ Load testing

■ Connection speed

■ Any other relevant information

8-97 OgilvyOne Credentials Page 9

1717

Test PlanTest Plan

■ General overview of what’s being tested

■ Lists all test cases created

■ Cannot be done until documentation is received

1818

Exception ReportingException Reporting

MS Access database

■ URL

■ Problem Type

■ Reproducible

■ Browser / OS

■ Tester

■ Test date

■ Assignee

8-97 OgilvyOne Credentials Page 10

1919

QA Authorization ReportQA Authorization Report

■ Exceptions by type, quantity

■ Sign off from QA or authorizing person

2020

IntegrationIntegration

■ Include QA in all schedules and estimates

■ Initial QA performed on Asset Inventory

■ Test plans are written

■ Test cases are generated

■ Testing begins

■ Exceptions logged

■ QA authorization report

8-97 OgilvyOne Credentials Page 11

2121

Real World ChallengesReal World Challenges

QA needs money and an enforcer

■ Staff

■ Equipment

■ Working with developers

■ Getting management buy-in

■ CYA

2222

StaffStaff

■ Keeping them motivated

■ Showing appreciation

■ Remaining flexible

8-97 OgilvyOne Credentials Page 12

2323

EquipmentEquipment

■ QA Lab

■ Each tester has 2 computers

■ Dial up connection

2424

Working With DevelopersWorking With Developers

■ Avoiding us vs. them

8-97 OgilvyOne Credentials Page 13

2525

Getting Management Buy-inGetting Management Buy-in

■ More than $

■ Constant reporting
—— Let them know before the client doesLet them know before the client does

2626

CYACYA

■ Adobe Acrobat

■ MS Word

■ Export all exceptions

8-97 OgilvyOne Credentials Page 14

2727

Production-related challenges ofProduction-related challenges of
Web TestingWeb Testing

■ Finding adequate time for Test Planning

■ Planning with incomplete or no specifications

■ Finding time for regression testing

■ Finding time for Automated testing

■ Continuing Education

2828

Documentation required for TestDocumentation required for Test
PlanningPlanning

■ Functional Design Document

■ Sitemap

■ Copy deck

■ iBoards

8-97 OgilvyOne Credentials Page 15

2929

Test Planning with no SiteTest Planning with no Site
documentationdocumentation

■ QA Checklist

■ Sitemap Tools
—— Astra Astra Site ManagerSite Manager
—— LinkbotLinkbot

3030

Regression TestingRegression Testing

■ Finding Time

■ An automated regression test regime
—— LinkbotLinkbot
—— Adobe AcrobatAdobe Acrobat
—— SilkTestSilkTest

8-97 OgilvyOne Credentials Page 16

3131

Automated TestingAutomated Testing

■ Requires additional time for planning

■ Requires code to be frozen or complete

■ Does not work with certain interactive media

3232

Continuing EducationContinuing Education

■ Research

■ Training

■ Industry Group Affiliations

QW2000 Paper 7M1

Mr. Patrick Copeland
(Microsoft)

Redesigning a Testing Organization for Delivery
to the Web

BACK TO QW2000 PROGRAM

Key Points

Businesses are becoming internet-centric. This prsents several challenges to a traditionally organized test
team.

●

Microsoft's WebData Team (which delivers XML) has shifted to this model and is a good case study for
successful change.

●

Focusing on web-centric delivery mechanisms and timelines required a complete redesign of our processes.●

Presentation Abstract

WebData is a newly organized team with the mission to ship rich-featured high-quality world-class
data access components to the Web. Moving away from longer product cycles, we've overhauled the
way we do business.

By adjusting our thinking we developed a plan that prioritized and set attainable milestones that put
WebData on the path of improvement and allowed us to deliver in the fast paced world of the internet.
Six ingredients were essential: automation, development, growth, information, planning, and process.

About the Author

Patrick Copeland manages WebData's Quality Assurance Team for the SQL Programming Model at
Microsoft Corporation. His team develops the testiong process and strategy for Microsoft's newest and
most flexible database components, such as XML. Throughtout the product cycle, he's responsible for
maintainina dn shipping high quality builds for dozens of configurations, multiple languages, and
numerous client-server combinations.

As an undergraduate he attended the University of Arizona, and he received an MS from the
University of Southern California.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7M1.html [4/28/2000 2:35:04 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Redesigning a Testing
Organization for

Delivery to the Web

Patrick Copeland
SQL Server Quality Assurance

Manager
Microsoft Corporation

Concepts

• Why WebRelease?
• What is success?
• Web-time
• Quality Bar
• Feedback

2

Political Speed Bumps

• Lack of agreement
• Team treading water
• Decision making slow
• Empires, home-grown processes,

territoriality

Structural Speed Bumps

• Built for monolithic releases
• Functional team controlled labs
• Different processes and tools
• Duplication
• Underutilization

3

Reorganization Rules

• Break down fortifications
• Needed to be Surgical
• Faster delivery
• Quality levels same or higher

Service Group Defined

• Mission
– “provide foundation of processes and solutions to help ship

world class data platforms faster”

• Uniformity
– Labs
– Build
– Tools
– Setup and release
– Sustained engineering teams

4

Service Group Transition

Functional
Team I

lab

Functional
Team II

lab Functional
Team I

Functional
Team II

Services
Group

Component Teams Defined

• Empower smaller teams
• Faster Paced decisions
• Risks:

– knowledge more compartmentalized
– coordination would be more difficult

• No structural change
• Created virtual organizations

5

Component Teams Transition

Functional
Team I

Functional
Team II

Services
Group

Services
Group

Functional
Team I

Functional
Team II

= component team

Stabilization Phase

• Open Stabilization
– Component teams drive
– Lots of autonomy
– Component WebRelease

• Managed Stabilization
– Global team drives
– Reduced autonomy
– Integrated WebRelease and Final Product

6

WebRelease

web

final

web

web

web

final

web

web web

Open Stabilization
Managed

 Stabilization

Traditional
Process

WebRelease
Process

Ongoing Improvement

thePlan
• Automation
• Development
• Growth
• Information
• Planning
• Process

7

Summary

WebRelease is…
• the buzzword to capture our structural,

process, and cultural changes.
• a way to release products.
• the way that we focused and redesigned our

team.

Microsoft

8

Questions

Latest WebRelease can be found here:
http://www.msdn.microsoft.com/downlo
ads/webtechnology/xml/msxml.asp

Redesigning a Testing Organization for Delivery to the Web

Quality Week 2000 - 1

Redesigning a Testing Organization for Delivery to the Web

Patrick Copeland
SQL Server Quality Assurance Manager

Microsoft Corporation

Introduction
Gone are the days when developers are willing to wait six months to glimpse new
features. E-businesses need solutions to data access problems yesterday. They want to
hear about what’s coming down the pike, they want to see why it’s valuable to them, and
they want to know how they’ll be able to use it.

Customers expect more partnering today. Nine months ago, we realized that we were
getting creamed by the competition. We saw several rivals delivering new product
features directly to the Web. They were beating Microsoft to the punch and, more
importantly, stealing mind share from our solutions. By ignoring the new world of
software Glasnost on the Web, we were putting our projects, and our development
community, at risk. What follows is the story of how we restructured our thinking around
what we call WebRelease. Most of the work was done during the Microsoft® SQL
Server™ 2000 project cycle.

WebData was structured to accommodate the typical release model: spec, design, code,
test, beta, release. As a component group, we had several major commitments to
battleship projects, including Office, SQL, and Windows® 2000. We were moderately
insolated from our customers and structured to deliver at what we would now consider
the leisurely pace of every 3–4 months. When we initially asked our sub-teams about
moving to the faster WebRelease strategy, we heard screams of agony, “How do you
expect us to ship more frequently? We’re already breaking our necks!” We realized that
our approach to change would need to be organic, credible, and revolutionary.

Redesigning a Testing Organization for Delivery to the Web

Quality Week 2000 - 2

Concepts
Initially, there were two important questions. What were we trying to solve? How would
success be measured? We came up with two simple answers:

1. The WebData team’s goal was to enable faster adoption of our technology by
Web and database developers.

2. We would measure success by tracking the adoption rates of the latest releases.

Simple? Well, not exactly. In addition to understanding the goals, framing and defining
the problem space was necessary. This required some market research.

The first concept researched was “Web-time.” The competition was delivering new
features and previews at a staggering pace. They were clearly ahead of us. We knew we
needed to be faster, but we also needed to decide how fast was fast enough. We learned
that customers wanted to be early adopters, but they didn’t want to be on an upgrade
treadmill. They wanted time to understand and use new features, but they also wanted to
avoid spending all of their time rewriting their code to keep pace. We needed to find a
balance between satisfying the development community and protecting the customer
from the chaos of constant integration.

Another concept was the “quality bar,” the idea being that each product has a level of
quality that is measurable. The level lies somewhere between bug-free and unusable.
Early adopters are willing to accept some rough edges in return for a glimpse of newer
technology, but they are unwilling to accept delivery of software that is significantly
crippled due to coding errors.

“Feedback” was the third concept. A key component in empowering a development
community is soliciting feedback and utilizing it. Throwing products onto a Web site is
no longer enough to satisfy the technology-adopting customer. As seen with the
enthusiasm of the “open source” movement, allowing free channels of communication
invites the customer to have impact as well as a voice in the design and feature set of new
programs. This openness also allows Microsoft to target the right set of features for the
audience and provides a test bed of real-world environments. Our presence on the Web
required places for new products, certainly. More importantly, our solution needed:
defect lists, Q&A forums, bug submission forms, feature request aliases, developer chat,
and in a nutshell openness.

Speed Bumps
When WebData initially began to tackle the myriad of problems between where we were
and where we wanted to be, the consensus from the team was a resounding “You’re
nuts!” The way the team did business needed an overhaul. Due to a constant atmosphere
of fire fighting, reorganization, and general lack of planning, the team was treading
water; we were having difficulty moving forward. This section will touch on a few of the
major structural and political speed bumps.

Redesigning a Testing Organization for Delivery to the Web

Quality Week 2000 - 3

We had been originally organized around a premise of monolithic releases. At any given
moment, the entire team was focused on a single major milestone. While this model has
its benefits, it isn’t suited for impatient Web customers. On the one hand, tracking
progress was easy because only one date was significant. On the other hand, a hierarchy
of management was entrenched in homegrown processes that slowed down the making of
decisions. Given the rigidness of the organization, shortening the release cycles wouldn’t
allow enough time to fully test integration. There was a perception that we would throw
quality out the window if we tightened up the schedule. The running opinion was that less
time equals lower quality.

Along the same lines, management of the test and build labs was controlled by the
functional teams. WebData was divided into two parts: one working on a mature code
base, and the other on brand new functionality. To facilitate coordination between the
two functional teams, labs had been created within each organization. This had led to a
situation where each lab used different processes and tools. Also, because the focus of the
functional teams was to ship, corners were cut on infrastructure that left the labs in a
constant fire-fighting mode.

In general, the team wasn’t quality assurance focused. Schedules and features were
agreed upon without consideration of testing schedules. Planning phases were optimized
out of the process because we didn’t have any time to spare. Quality assurance was
something done at the end of the project. Being the final group to catch the hot potato,
testing was frequently blamed for the delays and truncated features. Many of the real and
perceived roadblocks were typical of any traditionally structured development process.
From time to time, all teams struggle with holding to promises. When randomizers
dominate a project, without any coping mechanisms, teams tend to overcommit and
underdeliver.

Building empires, establishing process solely for its own sake, and territoriality are
universally maligned. In organizations where chaos is the norm, many teams fortify
themselves and attempt to become impregnable from the chaos around them. These walls
typically are built over several releases, and their reason for being is forgotten. WebData
had plenty of good targets for our first attack on the fortifications. It was clear that we
needed to do surgical reorganization. Our challenge was to identify and build solutions
for the problems we could solve while learning to accept the remaining chaos in the
system. Our approach was to put in place a structure that allowed WebData to deliver
faster and with the same or higher levels of quality. We asked our team to think about the
question, “What role did I play in allowing problems to persist?”

Nothing can refocus a team like new vision and leadership. WebRelease would be the
buzzword to capture our structural, process, and cultural changes. WebRelease would be
a way to release products. WebRelease would also be the way that we focused and
redesigned our team.

Redesigning a Testing Organization for Delivery to the Web

Quality Week 2000 - 4

Reorganization
The first order of business was to consolidate the labs into a single group. These labs
were responsible for running a matrix of hardware, software, and test configurations
generated by the functional groups. Originally, as mentioned earlier, the functional
groups each had independent lab teams. This was wasteful on several levels. The move to
a single lab structure allowed WebData to leverage spare bandwidth, unify processes,
streamline test passes, and reduce overlapping responsibilities and staff. The lab became
the engine of the testing organization. Its capacity dictated throughput, and it was critical
to make it as efficient as possible. More importantly, it was now predictable.

Service Group Unification

Functional
Team I

lab

Functional
Team II

lab Functional
Team I

Functional
Team II

Services
Group

This slide shows how WebData moved from a group with multiple functional teams, each
having an lab, to a group with all of the services consolidated on a separate team.

Consolidation of the labs went so well that it motivated the building of a Services group.
This group’s mission was to “provide a set of technologies and services that act as the
foundation for an integrated set of business processes and solutions to help ship world
class data platforms faster.” The gains observed by having a single lab org were
abstracted and applied to the build, tools, setup and release, and sustained engineering
teams. As an autonomous entity, the Services group gained the power to plan and fix
problems independent of the functional team’s mission, schedule, and demands (the
issues that historically prevented progress). The group’s sole focus was to create optimal,
unified, and reusable infrastructure. For example, build machines were now leveraged to
compile multiple projects. In the past, because each team had a set of machines, many
were sitting idle most of the time. The Services group was now poised to push change
throughout the rest of WebData.

Redesigning a Testing Organization for Delivery to the Web

Quality Week 2000 - 5

A microcosmic recurrence of WebData’s lack of uniformity in process and methodology
appeared for a brief time in the Services group. The team had taken on a collection of
responsibilities and technologies that were neither uniform nor integrated. We solved this
problem by removing duplication, unifying process, and investing heavily in tools. The
multiple build process, for instance, was turned into a single generic process that could be
applied to any project. This transition took time and a large investment in engineering.
The new team had several advantages:

1. Lower learning curve—only one system to be understood and taught
2. Single system to maintain—lower number of points of failure
3. System advances had the effect of improving the entire process
4. Cross-pollination—better cooperation and collaboration across teams
5. Reduced duplication of effort and Uniformity in operations output

Within the functional teams, a different surgical reorganization was done. We took an
approach opposite the consolidation done for the Services group. Instead of unification,
we componentized the functional teams to a greater degree. We had seen that monolithic
team structures slowed down decision making. By empowering smaller teams to make
choices and trade-offs based on their respective product features, we saw that we could
quicken the pace.

The risk of fracturing the groups in this way was that knowledge could become more
compartmentalized and that coordination would be more difficult. To avoid this problem,
we didn’t structurally change the team’s chain of command but created dotted line, or
virtual, organizations.

Component Teams Defined

Functional
Team I

Functional
Team II

Services
Group

Services
Group

Functional
Team I

Functional
Team II

= component team

The functional teams were reorganized into smaller component teams in order to increase
responsiveness to customers and speed the development of new features.

Redesigning a Testing Organization for Delivery to the Web

Quality Week 2000 - 6

Stabilization Phases
With the team reasonably organized, it was time to turn attention to process. With a
number of new and less globally focused component teams came a need to impose some
rules to avoid randomness. The project was divided into two phases:

1. Open Stabilization
2. Managed Stabilization

Open Stabilization
The Open Stabilization phase began when the coding was finished. Component teams
were required to meet regularly to discuss the priority of bugs, the proper milestone for
the fixes, the correct assignment, and appropriate resolution of all bugs within their areas
of ownership. During this phase, the component teams were the sole decision makers and
had nearly complete autonomy to take on or reject work items. These groups were
assigned responsibility for the following areas:

1. Managing the bugs within a specific technology area.
2. Reviewing progress vs. the schedule.
3. Reviewing new feature requests within their control.

To provide some consistency, the Global Triage group was created as a team made up of
senior managers. The primary role of this group was to ship a quality product and was
therefore less focused on any individual area. The Global Triage group enforced a
symbolic bar that rose with each passing day. The theory was that this would make it
harder to make code changes, thus reducing churn and instability, and easier to focus only
on showstopper problems. Providing this oversight was a critical part of the stabilization
process.

To keep coordination and knowledge flowing between the component teams, the Global
Triage group conducted regular feature reviews. These reviews would highlight
blockages and assumptions. It was expected that each component team would deliver a
snapshot of its progress including, functional code coverage, defect tracking statistics, an
accounting of design change requests, and a general catharsis.

Redesigning a Testing Organization for Delivery to the Web

Quality Week 2000 - 7

WebRelease

web

final

web

web

web

final

web

web web

Open Stabilization
Managed

Stabilization

Traditional
Process

WebRelease
Process

Traditional process had multiple teams working on interrelated projects, all converging
into a single release and managed by one monolithic organization. WebRelease gives
autonomy to the component teams to manage smaller product releases, eventually
converging into a final release managed by the Global Triage group.

Managed Stabilization
In the Managed Stabilization phase, the component teams were asked to make
recommendations, but their ability to make project-wide decisions was removed. The
Global Triage group took control of the project and drove it to completion. The shift in
ownership took place a few months prior to release. At that point, the bar became
extremely high. Only a few highly reviewed and tested code changes were allowed. Most
of the time was spent looking for holes in coverage and assessing the risks involved in
accepting a code change. By limiting control during the managed phase and staying very
focused, the team was still able to deliver large releases while satisfying the Web
development community.

Ongoing Change
Along with structural and process changes, an ongoing improvement program was
started. This initiative was simply called thePlan. It defined the way we prioritized and
set attainable milestones that put WebData on the path of continual improvement. Central
to thePlan was giving people permission to innovate, and it was made clear that the
front-liners owned change.

We framed the challenges by focusing on the “six-pack”: automation, development,
growth, information, planning, and process. The team’s suggestions were each placed in

Redesigning a Testing Organization for Delivery to the Web

Quality Week 2000 - 8

one of these six buckets. Initially, the teams made hundreds of suggestions. These ideas
were prioritized and delegated for research. In total, there were 100 prioritized sub-tasks.
They were required to be actionable, clear, and concise. Following is a verbatim
description of each central issue:

Automation
We are investing in building a strong tools team, with the mission to create a reliable and
sustainable set of harnesses and automation. As we move forward, the functional, tools, and lab
teams will be more closely woven together —sharing ideas and partnering to put in place a
topflight set of tools and processes.

Development
Beefing and cleaning up existing tests is a priority. Tests need to be reviewed for coverage and
usage. Where are our holes? Are we doing enough on high-priority features? We need to answer
these questions.

Growth
If all we are doing is fire fighting, we aren’t paying attention to a very important part of our
team—growth. We need more moments of reflection in the process. We need clear definitions of
our roles. We need to pay attention to people being burned out and tired of “doing the same old
thing.” At the same moment, we need to understand that we are a business and are expected to
achieve our goals. A balance needs to be struck between growth and productivity.

Information
A sign of a good test team is its ability to communicate “Where we are.” Testing owns driving the
quality higher. Improving our organization will require other teams to make adjustments—for
example, PMs writing better specs, or developers articulating design trade-offs. They need to
know where to focus attention , and testing/services owns the advocacy role for the customers and
the product quality. We need to develop a b etter way of visualizing and delivering status.

Planning
We are going to take a breath and make some changes. Management has been supportive of us
reinventing ourselves. Let's hit the hard reset button. There may be some chaos in the short term,
but having time to plan is critical and will be factored into all of our schedules moving forward.

Process
Drop the baggage you've been carrying. Why are you carrying that baggage? How can we make
our lives easier and more manageable? Adding process means adding focus to our work.

Redesigning a Testing Organization for Delivery to the Web

Quality Week 2000 - 9

Summary
WebData and WebRelease are still works in progress. The goal is to continually review
and invent better ways of supporting the Web community while shipping high-quality
bits faster. An explicit non-goal is to allow the fortifications to reenter the team culture.

When we started the process of reinventing ourselves, our initial step was to ask
ourselves two questions: What were we trying to solve? How would success be
measured? We agreed on several concepts to help us focus our effort: Web-time, quality
bar, and feedback. Having a good plan wasn’t enough; we had to make some
organizational changes to break down historical fortifications such as monolithic team
structure, territoriality, and lack of quality focus. The invention of the service team and
creation of component teams were key to our success. The Services group was the
“hammer” and enforcement branch of the team that helped unify process and resources.
The Global Triage group served as the senior voice overseeing the whole process. The
creation of component teams gave WebData more flexibility and encouraged the smaller
virtual teams to make decisions and control their own release destiny. The final step was
to shift our focus from the daily fire fighting to ongoing improvement with thePlan.

Our latest WebRelease can be found here:
http://www.msdn.microsoft.com/downloads/webtechnology/xml/msxml.asp

#########
Microsoft, Windows, Office, SQL, and SQL Server are either registered trademarks or trademarks of Microsoft Corp.

in the United States and/or other countries.
Other product and company names herein may be trademarks of their respective owners.

© 2000 Microsoft Corporation. All rights reserved.

QW2000 QuickStart 7Q

Mr. Brian Marick
Mr. James Bach
Mr. Cem Kaner

Evaluating Test Suites

BACK TO QW2000 PROGRAM

Key Points

We give a systematic process for discovering how good a test suite is by examining the suite and questioning
its author.

●

We also describe likely properties of a good test suite. Different projects will attach different weights to those
properties. An important result of evaluation is a clearer understanding of what matters to this project.

●

A single evaluation is not sufficient. Instead, evaluating a test suite is part of a continuous conversation about
the project's goals.

●

Presentation Abstract

If a test suite is used to judge something about the goodness of a software product, surely it itself
must be good. And surely its goodness must be evaluated before its results can be trusted.

This paper is about how to do that.

We will first discuss how one might statically evaluate a finished test suite. As a part of that evaluation,
we will begin to answer the question "what does it mean for a test suite to be good?" We'll illustrate
the analysis with a specific example. The static evaluation procedure will include these elements (not
all of which would be used in any given situation). Note: the final paper's list will doubtless differ in
some ways.

1. Is the suite's purpose clearly understood? A test suite is created to serve some person, often a
project manager wanting to know if the software is ready to ship, sometimes a developer wanting to
know if it's time to move on. The customer of the suite has certain criteria. A suite whose creator
doesn't know those criteria cannot be a good one.

2. In practice, the customer may have only vague criteria. In even the best case, a suite's creator
should have refined the criteria through a risk analysis. Does the suite's creator have a good
understanding of:

* The different classes of end users and their relative importance to the project?
* What kinds of failures matter most to those different end users?

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7Q.html (1 of 2) [4/28/2000 2:35:11 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

* What kinds of failure-producing situations the product is likely to encounter?
* What characteristics of the product are shakiest?

A suite whose creator cannot answer these and related questions will be misdirected.

3. Is the suite's approach appropriate to the risks? Can the suite's creator describe (or has she already
described) how the decision about what, where, and how to test was guided by the risks? Has the
approach chosen been compared to any checklists of common test practices?

4. Were the right tests retained? Here, we distinguish between two different definitions of "the test
suite". One definition is "all the tests run against the product up to the present time". The other is "all
the tests that will be run again in the future". It often makes sense to discard tests if they are not
expected to be likely to find bugs in the future. Can the test suite creator articulate the policy by which
the tests were discarded or retained? Does it seem to sort tests into the right categories?

5. Are the retained tests maintainable? For those tests that are automated, do they avoid the
automation trap: tests that are intended to be rerun, but are so sensitive to product change that the
testers will spend all their time trying to keep old tests working, none of their time creating new tests?
Do manual tests use elaborate scripts? Do these combine the worst aspects of automated tests (poor
maintainability) with the labor-intensiveness of manual testing?

6. What does the suite not do? Here, we evaluate the suite against various types of coverage. Code
coverage is one example, but there can be many others (such as checking whether every statement in
the user documentation has been tested). More than one type of coverage is appropriate. A larger set
will compensate for the weaknesses of any given type.

In all uses of coverage, we must take care to match the coverage against the test approach. Branch
coverage, for example, says little about the goodness of load testing of multi-user systems.

You will note that this approach is highly subjective. We will not duck this issue. We will in fact
confront the tendency to retreat to those few measures that are completely objective (such as code
coverage), as we believe they do more harm than good.

About the Author

James Bach (http://www.satisfice.com) is founder and principal consultant of Satisfice, Inc. James cut
his teeth as a programmer, tester, and SQA manager in Silicon Valley and the world of market-driven
software development. He has worked at Apple, Borland, a couple of startups, and a couple of
consulting companies. Through his models of Good Enough quality, exploratory testing, and heuristic
test design, he focuses on helping individual software testers cope with the pressures of life in the
trenches and answer the questions "What am I doing here? What should I do now?"

Brian Marick has worked in testing since 1981. A consultant since 1992, he concentrates on developer
testing, the interface between developers and independent testers, the criteria for test evaluation, and
helping teams and projects understand and manage the tradeoffs inherent in software assurance. He
is the author of The Craft of Software Testing (1995) and was the first editor of Software Testing and
Quality Engineering Magazine.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7Q.html (2 of 2) [4/28/2000 2:35:11 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

A Manager’s Guide to
Evaluating Test Suites

Brian Marick, Testing Foundations
James Bach, Satisfice, Inc.

Cem Kaner, kaner.com

www.testing.com, www.satisfice.com, www.kaner.com
marick@testing.com, james@satisfice.com, kaner@kaner.com

Copyright © 2000 by Brian Marick, James Bach, and Cem Kaner. All rights reserved.
Some images copyright www.arttoday.com

2

Your Problem

How Good Is It?

3

What You Want

Sorry

4

Objectivity

… different
answers

… the same
answer

Different
people get…

Subjective
Methods

Objective
Methods

5

Objectivity

HIGH
chance of
BAD answer

End result

… different
answers

… the same
answer

Different
people get…

Subjective
Methods

Objective
Methods

For this task

6

Objectivity

Opportunity
for a
USEFUL
answer

HIGH
chance of
BAD answer

End result

… different
answers

… the same
answer

Different
people get…

Subjective
Methods

Objective
Methods

Our job is to gain the skills and
experience to be useful

7

An Evaluation Approach

• Evaluate the test suite from
several broad perspectives
– is the suite targeted toward what’s

important?
–are maintainability and repeatability

handled well?
–what got overlooked?

• Primarily by asking questions of
its developer

8

Perspectives

ØIs the suite targeted toward what’s
important?

• Are maintainability and
repeatability handled well?

• What got overlooked?

9

Step 1:
What Does the Tester Need to Know?

• Evaluate her specific understanding
of how best to look for bugs

• James Bach’s risk model

10

What Does It Mean for a
Product to Have a Bug?

ProblemThreat VictimProduct

11

By Way of Example

www.abisource.com

12

Victim

• Consequences
–concentrate on basic features
–things should “just work”

Who are the important classes of user?

The church secretary

Crossing the Chasm,
Geoffrey Moore

13

Problem

What types of failure matter most?

• Crashes, especially if data is lost

• Failure to import from Word

• Usability of undo

14

Threat

• Consequence: much configuration
testing
–note: especially installation and first-

invocation problems

What failure-producing situations is the
product likely to encounter?

Win95, Win98, WinNT, Win2000,
BeOS, Linux, *BSD, …

15

Product

What areas in the product are shakiest?

Printing was a problem a while back…

Artifacts on on-screen layout…

Undo seems to be completely solid…

(Sign of unstable area?)

(Manual testing)

16

Step 2: Is the Suite’s Approach
Appropriate to the Risks?

We are favoring task-based tests over
functional tests because…

We favor manual testing because…

… except that our core set of configuration
tests…

(covering basic operations, usability)

(screen artifacts, usability)

(cross-platform emphasis)

17

Perspectives

• Is the suite targeted toward what’s
important?
ØAre maintainability and

repeatability handled well?
• What got overlooked?

18

Repeatability Is a Tradeoff

• There should be unrepeated
manual tests

• There should be automated
tests

• Is there a good balance?
• Can the tester articulate her reasoning?

Fewer
unique threats

More
re-execution

19

How’s the Maintainability?

weaker
tests

weaker
tests

Suite runs fine

Product changes

Tests have to
be fixed

new
tests
new
tests

20

Avoiding the Automation Trap

Suite runs fine

Product changes
Tests have to

be fixed

What was the approach?

Describe the last three changes you made to
the suite

21

Perspectives

• Is the suite targeted toward what’s
important?

• Are maintainability and
repeatability handled well?
ØWhat got overlooked?

22

Look at a Sample of Tests
In Detail

• Approach not followed?
• Gaps in approach?
• Gaps in tester’s skill set?

• Execute tests manually
• Watch the tester run tests

You know… these tests just
aren’t gonna find enough bugs…

23

What Has the Suite Missed?

• Any suite misses bugs
• Bugs are found by

–other project members
–beta testers
–customers

24

Use Missed Bugs

• Examine them and ask why they
were missed
– is the test approach flawed?
–has it been implemented poorly?

• Do not over-react

25

Coverage

• A simple form of code coverage

• Statement coverage measures which lines
of code in the program have not been
executed

status = perform_operation();
if (status == FATAL_ERROR)

recover from error
perform normal, non-ERROR action

26

Coarse Granularity Coverage

Missed
feature

Under-
tested
feature

More on coverage in paper

27

Summary

• This approach is highly subjective
– it relies on your skill and experience

• Important skills
–testing
–human communication and

cooperation
–good overall judgement

28

Bach’s Commentary

Evaluating a test suite is not enough, if you want to
understand the quality of your testing. Your “suite”

may represent a fraction of the test process.

Test Suite

testers

The Testing Enchilada

29

Bach’s Commentary

• Exploratory Testing: Is there any testing you do that
is not enshrined in a suite? If not, why not?

• Reporting and Advocacy: In what way do you report
results and deliver value to your clients?

• Tester Role: In what way do testers add value to the
suite, or make it work?

• Test Cycling: When is testing done? How is that
coordinated with new builds? How long does it take?

• Authorship: How do you avoid test suite stagnation?
Is the suite a work in progress, or a sacred relic?

Evaluating testing is not a simple, linear process.
It’s an ongoing exploration.

30

Kaner’s Commentary

Evaluation, eh?

What do you think you mean by
“evaluation”?

Beware of Silly MetricsBeware of Silly Metrics

31

Kaner’s Commentary

• The best suite is the one that:
– Finds the most bugs?

– Covers the most code?

– Represents the most common customer use
patterns?

– Is most automated?

– Is most easy to explain to executives?

• Why?

LET’S FOCUS ON BUG COUNTS

32

Kaner’s Commentary

Metrics:
• Attribute: goodness of the test suite

• Measure: bugs found during testing

• Relationship: what if we increased testing goodness
by 20%? Can we do this without increasing bug
count?

• Side effects: what if we increased the bug count by
20%? Can we do this without improving testing?

• Purpose of measurement? Discovery (education) or
Motivation (management / performance standard)?

• Purpose of testing? Does this measure help us fulfill
our testing mission? What is our testing mission?

33

Kaner’s Commentary

Models based on

silly metrics
can lead us into

weaker testing.

34

Kaner’s Commentary

Reliability Curve?

Week

B
u

g
s

P
er

 W
ee

k

35

Kaner’s Commentary

Immunization Curve?

Week

B
u

g
s

P
er

 W
ee

k

36

Kaner’s Commentary

Test Case Power Curve?

Week

B
u

g
s

P
er

 W
ee

k

37

Kaner’s Commentary

Shouldn't We Strive For This ?

Week

B
u

g
s

P
er

 W
ee

k

38

Kaner’s Commentary

Conclusions:

• Goodness of testing is context dependent

• Evaluation of testing without evaluation of context will
yield undesired side effects

• Models based on simplistic evaluations are
misleading

• Test design, development, maintenance and
extension are done by humans, for humans. The
value of the work depends on how well it serves the
involved or affected humans.

Contact information: marick@testing.com, www.testing.com; james@satisfice.com, www.satisfice.com;
kaner@kaner.com, www.kaner.com

Copyright 2000 Brian Marick, James Bach, and Cem Kaner. All Rights Reserved. Permission granted
to copy for personal use.

Some images copyright www.arttoday.com.

A Manager’s Guide to Evaluating Test Suites

Brian Marick, Testing Foundations
James Bach, Satisfice Inc.

Cem Kaner, kaner.com

Whatever else testers do, they run tests. They execute programs and judge
whether the results produced are correct or not. Collections of tests – test
suites – are expensive to create. It’s fair to ask how good any given suite
is. This paper describes ways we would go about answering that question.

Our audience
There are two broad traditions of testing. One holds that the purpose o f testing is to justify
confidence in the program. Reliability modeling [Lyu96] is in that tradition. The other
tradition focuses on producing valid bug reports. We will not argue here which tradition is
correct. We merely state that we belong to the second tradition. This paper is addressed to
people like us.

Evaluating a test suite one time
In this section, we’ll assume that you have been presented with a test suite, the tester who
created it, the bugs it found, and all relevant documentation. We’ll prese nt steps you could
use to evaluate the suite. When detailed discussions of topics are readily available online,
we only sketch them here.

Step 1: What is the suite’s purpose?
Suppose you have two test suites, Suite1 and Suite2. Is Suite1 better if it finds more bugs?
Not necessarily. Let’s explore the issue by way of an example.

Suppose the product has five subsystems. For whatever reason, the testing team devotes
almost all its effort to subsystem 1 and files 100 bug reports. The development team
works diligently and fixes them all. The testing team can’t find any bugs in the fixed
subsystem, so the product is released. After release, we discover that the testing team did
a good job on subsystem 1: no bugs are reported in it. 12 bugs are reported in each of the
undertested subsystems. Here’s a table representing this scenario:

A Manager’s Guide to Evaluating Test Suites Version 1.0

 2

 Bug reports before
release

Bug reports after
release

Subsystem 1 100 0

Subsystem 2 0 12

Subsystem 3 0 12

Subsystem 4 0 12

Subsystem 5 0 12

 100 48 148

Here’s another p ossible scenario. The testing team spreads its work more evenly among
the subsystems. It finds only 50 of the bugs we know are in subsystem 1, but it also finds
half of the bugs in the other subsystems. After release, all unfound bugs are reported by
customers. We have the following situation.

 Bug reports before
release

Bug reports after
release

Subsystem 1 50 50

Subsystem 2 6 6

Subsystem 3 6 6

Subsystem 4 6 6

Subsystem 5 6 6

 74 74 148

In which scenario did the testing team do the better job? In the first one, they find more
bugs. But there’s something disconcerting about the notion that they did a better job by
mostly ignoring most of the system.

We can illustrate why they in fact did a worse job by considering what the test manager
can tell the project manager before release in each of the two scenarios.

In the first scenario, the test manager can say, “We tested subsystem 1 into submission.
We found a lot of bugs, and they got fixed. We’ve tried really hard to break it again, and
we think it’s now solid. Unfortunately, we don’t really know anything about the stability
of the other subsystems.” The team is presenting the project manager with a gamble: just
what’s going to happen in subsystems 2 through 6 after release? Will there be a few bu gs?
Or will each subsystem have 100 bugs? Since we know the future of this project, we know

A Manager’s Guide to Evaluating Test Suites Version 1.0

 3

that the gamble to release would pay off – but the manager might not care to make that
bet.

In the second scenario, the test manager can say, “We’ve done a pretty t horough pass
over all the subsystems. We’ve found only a modest number of bugs in subsystems 2
through 5, so we predict few will be found there after release. But subsystem 1 is very
shaky. We’ve found a lot of bugs, and we expect that there are still more to find. What do
you want to do?” The team is presenting the project manager with information, not a
gamble. It’s unwelcome information – bad things will happen after release – but it’s
appropriate to the needs of the project manager.

The purpose of testing is to give good information to help the release decision. It’s to let
project managers know what will happen if they let the product go [Marick98c].1

The same applies when a tester helps a developer who needs to know whether it’s safe to
add new or changed code to the master source base [Marick98a]. Because that case is less
common than the previous, we will assume for concreteness that the project manager is
the customer of the test suite.

A test suite that provides information that the project manage r already knows, and leaves
unanswered questions she has, may be technically proficient, but it is not a good one.

If you are evaluating a test suite, you must therefore first evaluate the test suite creator’s
specific understanding of what the project manager needs to know. This is a matter of risk
analysis. In this paper, we will analyze risk according to four factors: Product, Threat,
Problem, and Victim. See also [Bach99a].

1 Kaner is less sure of this assertion. Certainly, sometimes the purpose of testing is to help the project manager make

a tough decision. But sometimes the project manager isn’t looking to the testing group for the primary ship/no -ship
release data. Instead, the company might just be hoping to find and fix the maximum number of defects in a fixed
period of time. In that case, if the first group did enough testing of the five subsystems to realize that bugs were
easy to find in subsystem 1 and hard to find in the others, then it followed the right strategy in focusing on
subsystem 1. Alternatively, the company might have decided to ship the product at a certain date and be unwilling
to change the decision unless the test group buries the company in open bug reports. In this case too, as long as the
first subsystem is the richest source of bugs, the first group is acting appropriately.

 Students of Kaner’s have sometimes attacked this example as artificial. It is constructed to be simple in its
presentation, and in that sense it is artificial. But every test group runs into the tradeoff that this example
illustrates. Toward the end of the project, the test group is often under fundamentally conflicting pressures. They
can operate in “assessment mode” and (like the s econd group) test broadly but find fewer bugs or they can operate
in “bug -hunter mode” and (like the first group) maximize their bug finding rate at the expense of their assessment.
Either role might be appropriate.

A Manager’s Guide to Evaluating Test Suites Version 1.0

 4

The following picture illustrates this style of risk analysis. What does it mean to say that a
product has a bug? First, the product must be presented with some Threat – something in
the input or environment that it cannot handle correctly. In this case, the threat is two cute
but identical twins. (This corresponds to the common case of software being unable to
handle duplicate inputs.) Next, the Product must perform its processing on that input or in
the context of that environment. If it cannot handle the threat, it produces a Problem in
the form of a bad result. But a problem means little or nothing unless there is some Victim
who is damaged by it.

All four of these factors have to be considered in order to direct testing toward those bugs
that are most likely to make it unwise to ship the product. As evaluators, we would ask
questions probing whether the tester had considered them well.

For concreteness, let’s suppose the tester was assigned to “black box” testing of the
Tables feature in the Open Source word processor AbiWord (http://www.abiword.com).
What might this tester’s answers be?

Victim – who are the important classes of user?
The AbiWord developers consistently refer to their preferred user as “the church
secretary” – someone less than a power user who has a strong preference for basic
features that “just work”. Therefore, a Tables test suite should concentrate more
heavily on basic features at the expense of obscure ones. Everything on the Tables
toolbar had better work in lots of circumstances. The subfeatures available through
three levels of menu can fail much more often.

The AbiWord team’s preferred user reminds us of the “target customer” in the
marketing book Crossing the Chasm [Moore91] (chapter 4). There, Moore
recommends creating 8 to 10 descriptions of users, giving them names, job
descriptions, goals, and values. His reason?

A Manager’s Guide to Evaluating Test Suites Version 1.0

 5

Neither the names nor the descriptions of markets evoke any
memorable images – they do not elicit the cooperation of one’s
intuitive faculties. We need to work with something that gives more
clues about how to proceed. We need something that feels a lot
more like real people. However, since we do not have real live
customers as yet, we are just going to have to make them up. Then,
once we have their images in mind, we can let them guide us to
developing a truly responsive approach to their needs. (pp. 94-95)

 The same effect – engagement of the imagination – applies to testers as well as to
marketers. We recommend Moore’s approach.

Problem – what types of failure matter most?

Crashes would be bad for a church secretary, especially if they left documents
unreadable by AbiWord. A failure to import Word tables is likely to be harmful –
church secretaries exchange documents by email, so our AbiWord user will be
often be using it to read Word attachments. When secretaries exchange
documents, they probably cut and paste pieces from one document to another, so
integration of tables with cut-and-paste code should work well.

Church secretaries are likely to be working with old equipment, so any
performance problems will be amplified.

Has the tester looked at many church documents? Is there commonality across
different types of churches, synagogues, mosques, and temples? If so, failures to
handle commonalities – such as a particular preferred typeface – would be
important problems to this class of victims.

Undo should work well with tables, because a non-expert user is likely to become
confused if the actions that Undo undoes don’t correspond well to the actions she
thought she performed (as is likely if Tables are implemented as an afterthought,
using underlying paragraph mechanisms 2).

Finally, the testers should pay attention to the usability of the software. There is no
usability team on this project, and the developers are power users, entirely
unrepresentative of the canonical users. In order to properly prioritize their work,
testers must develop an understanding of how the program is used. They should
apply that knowledge to an evaluation of the program’s design.

As these examples suggest, it can be hard to be sure you’ve found the important
classes of ways in which the product might fail. Catalogs of failures, such as
Appendix A in [Kaner93], can help.

2 This is not the case with AbiWord, which doesn’t even have tables as we write.

A Manager’s Guide to Evaluating Test Suites Version 1.0

 6

Threat – what kinds of failure-producing situations is the product likely to encounter?

One threat that an e-commerce application must contend with is activity from
multiple simultaneous users. But testers of AbiWord needn’t worry about that.
However, AbiWord is highly cross-platform. It runs on Windows, BeOS, and
Linux – indeed, this is one of its claims to fame. So a good test suite had better
handle configuration issues well.

Product – what areas in the product are the shakiest?

Every product has certain things that are hard to get – and keep – right. As of late
1999, it seemed that printing might be one of those things for AbiWord (though it
was really too early to say). More generally, it seemed difficult to get all layouts of
the document looking right in all circumstances. In contrast, early users didn’t
seem to complain about undo bugs.

Step 2: What is the suite’s approach?
A fine risk analysis doesn't assure a good test suite. Is the test suite's approach appropriate
to the risks?

As an evaluator, we'd look for a written or oral description that went something like this:

“Because the church secretary is so important, it seems we should favor a use-case
(task-based) style of tests over strict functional tests.3

“Further, the risk analysis affects our automation strategy. We've identified that
usability is important. Moreover, some of the most persistent (but perhaps lower-
impact) bugs are printer-layout or screen-layout bugs. Those argue for less automation
than we might otherwise use. We need real humans executing real church secretary
tasks and watching for usability problems. They should also watch for the kinds of
layout problems that are notoriously difficult to detect with automation tools.

“However, we have the problem of configuration tests, which are hard to do manually.
It's bad enough to run a configuration test once, much less over and over again on
different platforms. We have identified a subset of the test suite that can be automated
and will be particularly sensitive to configuration dependencies. We believe it's
sensitive because..."

The actual approach should be compared to a checklist of common practices, such as the
following:

• “Stroke tests” are tests in which a tester checks every claim of fact and example in
the manual.

3 By use-case tests, we mean tests that behave like a user. For example, one such test might build a table, add one

shading feature to it, print the page, use undo to remove the shading, add text to the table, print the page again, etc.
In contrast, strict functional tests concentrate on exploring the possibilities of one feature (like shading) at the
expense of creating the kinds of tables that real users create, in the way that real users create them.

A Manager’s Guide to Evaluating Test Suites Version 1.0

 7

• “Staked application testing” [Kaner/Marick00] is an attempt to use the application
under test to duplicate the results of a competing application. To do this for
AbiWord, the tester should find some actual church secretaries, get some real
church bulletins built with Word, and attempt to recreate them exactly with
AbiWord. (This is a test of more than tables.)

At the moment, we know of no thorough checklist. One is slowly being built at
www.testingcraft.com, partially based on Appendix A from Testing Computer Software
[Kaner93]. It would be a good idea to build an explicit checklist for your company.

In evaluating any approach, it's important to look at two things:

• are important things being done?
• are unimportant things not being done?

You need to check that the planned tasks are proportionate to both the risks and the
project resources [Kaner96a].

Step 3: How’s the maintainability?
For those tests that are automated, do they avoid the automation trap: tests that are
intended to be rerun, but are so sensitive to product change that the testers will spend all
their time trying to keep old tests working, none of their time creating new tests? This is a
difficult matter of test suite design, and it’s easy to go astray [Kaner97]. (See also the
papers surveyed in [Marick99a].)

Don’t just ask whether the suite was designed to be maintainable. Ask what’s actually
happened as the product evolved. How much time is spent upgrading the suite?

Do manual tests use elaborate scripts? These cost a fortune to develop, and they are
expensive to maintain. After their initial use, they are unl ikely to find additional defects. If
scripts are used, they should straddle the boundary between the repeatability of scripting
and the maintainability and benevolent side effects of less detailed test documentation
[Marick97].

Has the tester chosen a good balance between manual and automated tests? [Marick98b]

Step 4: What do the details tell you?
Spend a little time looking at the details of the tests. Can you find gaps in the overall
approach, in the tester’s understanding of the project, or in her raw testing skills? There
are two areas to look at:

Threats. How well do the specific tests implement the test approach? What test inputs
were chosen? Do they cover all things that could affect the processing the program does:
user inputs, machine configurations, contents of databases, network timeouts, and the
like? Does the tester seem weak on particular test design techniques?

Result checking. A threat that provokes a problem does no one any good if the problem
is overlooked. Here are some examples of things to check:

A Manager’s Guide to Evaluating Test Suites Version 1.0

 8

• Suppose the tester is doing purely exploratory testing ([Bach99c], [Pettichord99]).
Does she only look for obvious problems (“the program crashed”), or does she
notice small oddities like oddly slow operations? Does she then attempt to escalate
oddities into major failures?

• Suppose the product provides a GUI front end to a bank. Does a test that removes
€100 from an account with €100 in it only check that the ending balance on the
screen is €0? Or does it also check whether the backend database has been
updated? More generally, does the test check whether everything that should be
affected has been?

• Suppose a test uninstalls a product. Does it check that the action leaves alone
those things that should be unaffected? For example, does it check that
components shared with other products are not removed? Does it check that all
user data is left on disk?

• As noted above, automated tests need to be insulated from irrelevant changes to
the product’s interface. This is done by selectively filtering out information.
Sometimes that leads to an inadvertent side effect: the tests become insulated from
bugs as well. [Bach96] notes an extreme example: 3000 tests that always returned
success, no matter what the product under test did! When reviewing automated
tests, ask what kinds of bugs they might miss.

Step 5: What does the suite not do?
We’ll first discuss code coverage. Code coverage tools add instrumentation to code.
When the test suite executes, the instrumentation records how it exercises the program.

Our experience with such tools has been mixed. Some coverage tools are of poor quality.
The most common problems in the weaker tools are that they are difficult to integrate into
the build process, they fail to instrument some valid code that the compiler accepts
(breaking the build), and they slow down execution to a ridiculous extent. Less common –
but worse – is instrumentation that introduces a bug into the program. Their management
of data is often crude. They typically assume a fully-automated test suite that is rerun
against every build of the product, so are not good at merging data from several builds.
The better tools are less prone to these problems.

All that having been said, we believe that code coverage can be a useful, but usually
minor, part of test suite evaluation. We would use code coverage in two ways. The first is
a quick look for major omissions; the other is a detailed look at critical code.

First, let’s describe the major types of coverage that are measured by these tools.

Line coverage
This type measures which code statements were executed.

Branch coverage
Branch coverage measures which branches in the code were executed in which
directions. It’s possible to execute all statements without executing all branches, so
branch coverage is stricter than line coverage.

A Manager’s Guide to Evaluating Test Suites Version 1.0

 9

Multicondition coverage
This type measures whether each Boolean condition in a branch has been evaluated
to both true and false. It’s a stricter criterion than branch coverage.

Multicondition is the best of these types, but line coverage is sufficient for our first
purpose.

We would have a coverage tool summarize coverage at a fairly high level of granularity.
Since AbiWord is C++ code, we would probably use the class level, which roughly
corresponds to file-by-file summaries. We would look at those classes which had low or
no coverage, and we would ask "why not?". Was it an intentional omission in the test
(probably due to lack of time), or a mistake?

Next, if the importance of the code under test warranted, we would look at a sample of
missed lines, branches, or conditions. (We would also like to use coverage that checks
whether a loop has been executed zero, one, and many times, and whether boundaries
have been checked. But the only coverage tool that we know measures those [Marick92]
doesn’t work on C++.)

Detailed code coverage is valuable when omitted coverage can be related back to the test
design process to yield useful insights [Marick99b]. For example, any branch that has
never been taken corresponds to some expected condition in the product’s input or
environment that has never occurred. Why not? Is it a natural consequence of the test
approach? (Perhaps it corresponds to a test that couldn’t be run because of lack of time.)
Is it a mistake in test implementation? Is it a test design oversight? Is it symptomatic of
pervasive oversights – for example, has error handling been systemat ically undertested?

Note that code coverage is less useful for some kinds of testing than others. For example,
knowing that a line of code has been executed does not tell you whether it's been executed
in a realistic user task. So coverage sheds less light on use-case style testing than on
functional testing.

Code coverage is not the only type of coverage. Any systematic and tractable method of
enumerating the ways a test suite exercises the code can be used in the same way. For
example, Marick learned a style of documentation coverage from Keith Stobie. You begin
with a highlighter and user documentation. You highlight every sentence in the
documentation that has a test. At the end, there should be a justification for each un -
highlighted sentence. ("Other t hings were more important" can be a good justification.)

[Kaner96b] gives a list of many other types of coverage.

Step 6: What has the suite missed?
Any test suite will miss some bugs. They might be discovered by other project members,
by beta testers, or (after release) by end users. We think it is a good practice to examine
those bug reports and ask questions. What do they tell you about how well the test
approach has been implemented? Do they suggest flaws in the approach?

A Manager’s Guide to Evaluating Test Suites Version 1.0

 10

It’s best to look at bugs that have been fixed. You can understand not only the observed
failure, but also something of the underlying cause.

In a conversation on this topic on the SWTEST-DISCUSS mailing list (swtest-discuss-
request@rstcorp.com), Jon Hagar warned that you should be careful not to overreact.
Some bugs just get missed. Frantically changing plans in response to every serious missed
bugs will lead to unproductive thrashing. We echo his comments.

Summary
This evaluation approach is highly subjective. In particular, it depends on the skill and
experience of the evaluator. But an evaluator who is less good than the creator of the test
suite can still produce value if she has good skills at human communication and
cooperation, and good overall judgment. The worst thing is an evaluator who - like many
drawn to evaluation - combines a lack of skill and experience with a dogmatic lack of
knowledge of her lack of knowledge.

Although subjective, we think this method is preferable to an overly narrow objective one.
Like it or not, objective rules are easy to misuse except in extremely well understood
situations, such as counter work at a fast food restaurant. Ironically, we would only trust
objective testing criteria in the hands of someone we had subjectively decided knows
better than we do.

This approach is also expensive, if done in full. But it needn’t be. The effort spent in
evaluation should be tailored to the risk posed by a weak test suite. If the risk is low, a
quick spot-check would suffice: an hour or so of interviewing about the test suite’s
purpose and approach, a brief check of maintainability, a small sample of bug reports and
coverage.

What’s missing?
This paper is incomplete in an important way. It assumes that e valuation is a “point
activity”. You as evaluator swoop in, take a snapshot of the knowledge of the tester and
test suite, make your judgment, then ride off into the sunset.

Real projects don’t work that way. At least, they shouldn’t. A project begins wit h radically
incomplete and incorrect answers to all of the questions we asked in this paper. Over time,
the answers get better. For example, a project’s idea of the canonical user will change.

If you evaluate once, when should that be? At the end of the project, when you can make
the most accurate judgment? – but when it’s too late to affect anything? Or early, when
you can make a difference, but perhaps a difference based on bad data?

The answer, of course, is that you shouldn’t evaluate once. The evaluati on process should
be continuous throughout the project. These questions should be constantly asked, to
constantly refine your understanding of what a good (appropriate) test suite for this
project would be.

A Manager’s Guide to Evaluating Test Suites Version 1.0

 11

Moreover, any project is in effect a conversation among product members (and, indeed,
among all stakeholders4). By asking these questions, and others, you not only learn the
answers, you also change them. That’s an important service. For more, see [Bach97] and
[Bach99b].

Appendix A: Approaches we reject
Error seeding and mutation testing are sometimes advocated as ways of evaluating a test
suite. Here we explain why we reject them.

Background
A bug report describes what the tester believes to be a failure in the program. A failure is
a difference between what a program did in some execution and what it should have done.
The question of whether a particular result is really a failure is sometimes cause for lively
debate.

A failure is caused by an underlying fault. In a program, a fault can be defined as t he code
that’s changed to resolve the bug report. A single fault may cause multiple failures, and it
may not be possible to tell that two failures are caused by the same fault until the fault is
discovered.

Since there may be several reasonable fixes for a bug, a single failure might be said to be
caused by multiple faults. What the fault really is can also be cause for great debate.

Specifications and requirements documents may also contain faults. If so, they describe or
require results that are wrong from the perspective of a reasonable user. It is quite possible
for the code to be right and the requirements document to be wrong. The fault in such an
“upstream” document can be defined as the text that’s changed to resolve a bug report. In
the common case where the documents don’t exist or are not updated, the fault is
whatever you’d write down if you wrote down those kinds of things.

Error seeding
Let’s define a perfectly effective test suite as one that reveals at least one failure for every
fault in the program.

Given the background, this definition has some immediate problems:

1. What constitutes a failure is debatable.

2. The set of faults is debatable.

3. Some faults are not in the program.

4 See The Cluetrain Manifesto [Locke00]: “A powerful global conversation has begun. Through the Internet, people

are discovering and inventing new ways to share relevant knowledge with blinding speed. As a direct result,
markets are getting smarter —and getting smarter faster than most companies… These markets are
conversations… ”

A Manager’s Guide to Evaluating Test Suites Version 1.0

 12

However, these are secondary issues. The fundamental question is how you would
measure how close a test suite comes to perfection. You cannot simply say:

Effectiveness = number of faults found by suite / number of faults present

You don’t know – and cannot know – the number of faults present in the code.

You could estimate number of faults present by adding the number of faults found in, say,
the first six months after release to number of faults found by suite . This estimate of
effectiveness comes a bit late. We’d like an estimate that would let us do something useful
before release.

One alternative estimate is error seeding [Mills70]. In our terminology, it would be called
“fault seeding”. The process is this:

1. Seed, or inject, N representative faults into the program. For example, one seeded
fault might be the removal of code that checks whether the network has gone
down.

2. Test. You’ll find some fraction, some-of-N, of the N seeded faults.

3. You probably found roughly the same proportion of the unseeded “native” faults.
The estimated effectiveness is (some-of-N / N).

The problem is that it is surprisingly difficult to inject representative faults. We lack a
useable taxonomy of the different kinds of faults, knowledge of their relative chances of
occurring, and an understanding of how the placement of faults in a program affects their
visibility as failures.5 If we seed the wrong proportions of the wrong kinds of faults in the
wrong places in the program, our estimate may be wildly off.

We don’t deny that fault seeding can provide some insight into a test suite. But does it
provide more than coverage does? Statement coverage tells you that any fault seeded into
an uncovered line will not be caught. Missed multicondition coverage tells you that a test
suite could not have caught certain Boolean operator faults. Generally, each type of
coverage can be viewed as targeting a particular class of seeded fault [Marick95] without
actually doing the seeding. To accept fault seeding, we require experimental evidence that
seeding additional classes of faults provides additional value.

Mutation testing
A variant of fault seeding is called mutation testing [DeMillo78]. It attempts to avoid the
problems just cited through brute force and one key assumption. Mutation testing makes
use of one token faults. A one token fault is, for example, changing a “+” to a “ -”, a “<” to
a “<=”, or the variable “i” to the variable “j”. These faults are injected everywhere they
can be, each one in a new copy of the program. This avoids the issue of deciding where to
place faults and whether bad placement affects visibility.

5 See, however, Voas’s testability models for work on understanding the placement of faults. [Voas92] is an

introduction. See also papers at the Reliable Software Technologies web site (www.rstcorp.com).

A Manager’s Guide to Evaluating Test Suites Version 1.0

 13

It’s still the case that not all faults in programs are one -token faults. For example, the fault
of omitting a network error check is a multiple-token fault. Mutation testing’s coupling
assumption asserts that a test suite adequate to find all one-token faults is also adequate to
find all (or almost all) faults of all kinds. That given, it would perhaps be reasonable to say
that a test suite adequate to finding 50% of one-token faults will probably also find 50%
of all faults.

Mutation testing has problems that we believe makes it unsuitable for commercial use.

The coupling assumption is one that must be tested by experiment. To our knowledge,
that has not been done, except for the simple case of pairs of one token faults [Offutt92].
We suspect that the coupling assumption is not true. A key problem is faults of omission,
which are faults fixed by adding code. For example, a program that fails to check for
network outages is fixed by adding code to do the check. Mutation testing – which
concentrates on checking for variant implementations of code that’s present – would seem
to have little leverage for code that’s not present. Since faults of omission represent a
large fraction of faults that escape test suites (see [Marick00] for some numbers), that lack
of leverage is worrisome.

Still, our approach in this paper was to recommend a collection of approaches, each
making up for some of the weaknesses of the rest. Why shouldn’t mutation testing be
included in that collection?

Mutation testing requires tools to inject the faults. As far as we know, no commercially
relevant mutation testing tools are available. One of us wrote a tool that provides a variant
of mutation testing for C programs [Marick92], but it is available only for C programs
and works only on old versions of Unix. Moreover, his experience with that tool
[Marick91] left him unconvinced that mutation testing provides value over code coverage.
Examining undiscovered mutation faults did not lead him to discover omissions in his test
suite. Experiments or case studies applying mutation testing to large -scale software over
an extended period of time might change his mind.

Acknowledgements
Boris Beizer prompted this paper by asking this question in an exchange with Marick on
the SWTEST-DISCUSS mailing list (swtest-discuss-request@rstcorp.com):

ASSERT: A good tester is one that produces a good test suite -- a suite that has a
high probability of finding bugs if there are any to find. [.. .]

QUESTION: What objective method do you propose to use to measure the
effectiveness of a test suite?

As you’ve seen, we have not provided an objective method (that is, one that would yield
the same results no matter who applied it). We do not believe that a useful objective
method is possible. Still, it was a good and fair question.

A Manager’s Guide to Evaluating Test Suites Version 1.0

 14

References
[Bach96]

James Bach, “Test Automation Snake Oil,”, Windows Tech Journal, October
1996. http://www.satisfice.com/articles/test_automation_snake_oil.pdf.

[Bach97]
James Bach, “Good Enough Quality: Beyond the Buzzword” (Software Realities
column), IEEE Computer, August 1997.
http://www.satisfice.com/articles/good_enough_quality.pdf

[Bach99a]
James Bach, “Risk-based Testing”, Software Testing and Quality Engineering
Magazine, Vol. 1, No. 6, November/December 1999.
http://www.stqemagazine.com/featured.asp?stamp=1129125440

[Bach99b]
James Bach, “What Software Reality is Really About” (Software Realities
column), IEEE Computer, December 1999.
http://www.satisfice.com/articles/software_reality.pdf

[Bach99c]
James Bach, “General Functionality and Stability Test Procedure for Certified for
Microsoft Windows Logo”. (A description of an exploratory testing procedure.)
http://www.satisfice.com/tools/procedure.pdf

[DeMillo78]
R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “Hints on Test Data Selection: Help
for the Practicing Programmer,” IEEE Computer, Vol 11, no. 4, April 1978.

[Kaner93]
Cem Kaner, Jack Falk, and Hung Quoc Nguyen, Testing Computer Software, 2nd
edition, 1993.

[Kaner96a]
Cem Kaner, “Negotiating Testing Resources: A Collaborative Approach,” a
position paper for the panel session on “How to Save Time and Money in
Testing”, in Proceedings of the Ninth International Quality Week (Software
Research, San Francisco, CA), 1996. (http://www.kaner.com/negotiate.htm)

[Kaner96b]
Cem Kaner, “Software Negligence and Testing Coverage,” STAR 96 Proceedings,
May 1996. (http://www.kaner.com/coverage.htm)

[Kaner97]
Cem Kaner, “Improving the Maintainability of Automated Test Suites,” in
Proceedings of the Tenth International Quality Week, May 1997.
http://www.kaner.com/lawst1.htm

[Kaner/Marick00]
Brian Marick wrote a description of Kaner’s Staked Application Testing at this
URL: http://www.testingcraft.com/staked-application-testing.html.

[Locke00]
Christopher Locke, Rick Levine, Doc Searls, and David Weinberger, The

A Manager’s Guide to Evaluating Test Suites Version 1.0

 15

Cluetrain Manifesto: The End of Business as Usual , Perseus, 2000. Much material
at http://www.cluetrain.com.

[Lyu96]
Michael Lyu, The Handbook of Software Reliability Engineering, IEEE Computer
Press, 1996.

[Marick91]
Brian Marick, “Experience with the Cost of Different Coverage Goals for
Testing”, Pacific Northwest Software Quality Conference, October 1991.
http://www.testing.com/writings/experience.pdf.

[Marick92]
Brian Marick, The Generic Coverage Tool (GCT). Source and user documentation
available at ftp://cs.uiuc.edu/pub/misc/testing/gct.1.4/. See also
ftp://cs.uiuc.edu/pub/misc/testing/gct2.0Beta/. Brian Marick does not support this
software any more.

[Marick95]
Brian Marick, The Craft of Software Testing, 1995.

[Marick97]
Brian Marick, “Classic Testing Mistakes”, STAR Conference, May 1997.
http://www.testing.com/writings/classic/mistakes.html.

[Marick98a]
Brian Marick, “Working Effect ively With Developers”, STAR West Conference,
October, 1998.
http://www.testing.com/writings/effective.pdf.

[Marick98b]
Brian Marick, “When Should a Test be Automated?” Proceedings of International
Quality Week, May, 1998.
http://www.testing.com/writings/automate.pdf.

[Marick98c]
Brian Marick, “The Testing Team’s Motto”.
http://www.testing.com/writings/purpose-of-testing.htm.

[Marick99a]
 Brian Marick, “Web Watch: Automating Testing”, Software Testing and Quality

Engineering Magazine, Vol. 1, Num. 5, Sep/Oct 1999.
http://www.stqemagazine.com/webinfo_detail.asp?id=102

[Marick99b]
Brian Marick, “How to Misuse Code Coverage”, International Conference and
Exposition on Testing Computer Software, June 1999.
http://www.testing.com/writings/coverage.pdf.

[Mills70]
Harlan Mills, “On the Statistical Validation of Computer Programs”. Reprinted in
Harlan Mills, Software Productivity, 1983.

[Moore91]
Geoffrey A. Moore, Crossing the Chasm, 1991.

A Manager’s Guide to Evaluating Test Suites Version 1.0

 16

[Offutt92]
A. Jefferson Offutt, “Investigations of the Software Testing Coupling Effect,”
ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1,
1992.

[Pettichord99]
Bret Pettichord, “An Exploratory Testing Workshop Report,” July 1999.
http://www.testingcraft.com/exploratory-pettichord.html

[Voas92]
J. Voas, “PIE: A Dynamic Failure -based Technique,” IEEE Transactions on
Software Engineering, August 1992.

QW2000 Vendor Technical Paper 7V2

Bruce Katz
(Rational Software)

Test Early, Test Often: Applying today's best
testing practices and techniques to the full

software development lifecycle.

BACK TO QW2000 PROGRAM

Key Points

Overview of an iterative software development process incorporating the best practices for testing - testing
early, testing often, testing throughout the entire software development life cycle.

●

Examples of the type of tests and test technologies used throughout the development life cycle in support of
the best practice - test early, test often.

●

Guidelines for implementing the best practices of testing early and often.●

About the Author

Bruce R. Katz is a Sr. Test Consultant and Process Engineer with Rational Software. He is
responsible for researching and incorporating the best testing practices in the Rational Unified
Process. Bruce has over fifteen years experience in software testing and is a Certified Quality Analyst
(CQA), by the Quality Assurance Institute (QAI).

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7V2.html [4/28/2000 2:35:17 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Test Early Test Often:
Applying today’s best testing practices and techniques to the

full software development lifecyle

Test Early Test Often:
Applying today’s best testing practices and techniques to the

full software development lifecyle

Bruce R. Katz, CQA
Sr. Test Consultant, Process Engineer
Rational Software Corporation

Bruce R. Katz, CQA
Sr. Test Consultant, Process Engineer
Rational Software Corporation

AgendaAgenda

wBest Testing Practices: Past
wBest Testing Practices: Present and Future
wSample Roadmap of Test Early, Test Often
wSummary and Q and A

wBest Testing Practices: Past
wBest Testing Practices: Present and Future
wSample Roadmap of Test Early, Test Often
wSummary and Q and A

2

Best Testing Practices: PastBest Testing Practices: Past

Verified by:Verified by:

Verified by:Verified by:

Verified by:Verified by:

RequirementsRequirements

DesignDesign

CodeCode
Unit TestUnit Test

√√
Integration TestIntegration Test

√√
System TestSystem Test

√√

The “Test – V”The “Test – V”InceptionInception
DeploymentDeployment

Best Testing Practices: PastBest Testing Practices: Past

wImprove management of
 requirements

wRequirements not well
 specified, understood,
 or interpreted

wRequirements well
 specified

wMaximize efficiency &
 effectiveness
wIncrease reuse

wScrap & rework
wNo sharing or reuse

wEveryone working
 hard

wIncrease test coverage
wTest the right things
wTest appropriately

wRequirements change
wNot testing right things
wNot testing properly

wTesting is progressing
 and defects are being
 discovered

wTest earlier in lifecycle
wVerify quality constantly

wInsufficient, timely,
 objective, data

wEverything going well

ChallengeRealityAssumption

3

Best Testing Practices: Present and FutureBest Testing Practices: Present and Future

Test Early, Test Often (TETO)
Tenets:
wTest all Quality Dimensions
§Reliability
§Function
§Performance

wDesign for Testability
§Design and implementation artifacts are used by all
§Test built into / from the design and implementation artifacts

wMaximize Efficiency and Effectiveness
§Managed, repeatable, well documented and communicated process
§Automation

• use tools and technology
• implement throughout the lifecycle

Test Early, Test Often (TETO)
Tenets:
wTest all Quality Dimensions
§Reliability
§Function
§Performance

wDesign for Testability
§Design and implementation artifacts are used by all
§Test built into / from the design and implementation artifacts

wMaximize Efficiency and Effectiveness
§Managed, repeatable, well documented and communicated process
§Automation

• use tools and technology
• implement throughout the lifecycle

Rational Unified ProcessRational Unified Process

Management
Environment

Business Modeling

Implementation

Test

Analysis & Design

Preliminary
Iteration(s)

 Iter.
#1

Phases
Process Workflows

Iterations

 Iter.
#2

 Iter.
#n

 Iter.
#n+1

 Iter.
#n+2

 Iter.
#m

 Iter.
#m+1

Deployment

Configuration Mgmt

Requirements

Elaboration TransitionInception Construction

4

Sample RoadmapSample Roadmap

Management
Environment

Business Modeling

Implementation
Test

Analysis & Design

Preliminary
Iteration(s)

 Iter.
#1

Phases
Process Workflows

Iterations

 Iter.
#2

 Iter.
#n

 Iter.
#n+1

 Iter.
#n+2

 Iter.
#m

 Iter.
#m+1

Deployment
Configuration Mgmt

Requirements

Elaboration TransitionInception Construction

ArchitectureArchitecture

Application

Construction

Application

Construction

E-business application:

• Telephone Service Reps (TSRs)

• Transfer funds between two
 accounts

• Supplemental Requirements
 include:

• Performance (sub-second)

• Scalability (> 1,000 TSRs)

E-business application:

• Telephone Service Reps (TSRs)

• Transfer funds between two
 accounts

• Supplemental Requirements
 include:

• Performance (sub-second)

• Scalability (> 1,000 TSRs)

Elaboration: Architectural IterationElaboration: Architectural Iteration

Goal of Iteration: Architecturally significant risks

Example: Deployment Architecture

Obstacles / Challenges:
wWhich architecture provides best performance and scalability?
wHow to test?
w Is effort justified to create and test the test harness?

Solution:
wRational Rose, Performance Architect, and PerformanceStudio

Goal of Iteration: Architecturally significant risks

Example: Deployment Architecture

Obstacles / Challenges:
wWhich architecture provides best performance and scalability?
wHow to test?
w Is effort justified to create and test the test harness?

Solution:
wRational Rose, Performance Architect, and PerformanceStudio

5

Elaboration: Architectural IterationElaboration: Architectural Iteration

Steps:
wCreate Design and Implementation models

Rational Rose
wGenerate test scripts (automatically) from models

Rational Performance Architect
wModify, enhance, and create additional test artifacts

Rational PerformanceStudio
w Instrument code for code-based test coverage (optional)

Rational Purify, Quantify, PureCoverage
wExecute and Evaluate tests

Rational PerformanceStudio, Purify, Quantify,
and PureCoverage

Steps:
wCreate Design and Implementation models

Rational Rose
wGenerate test scripts (automatically) from models

Rational Performance Architect
wModify, enhance, and create additional test artifacts

Rational PerformanceStudio
w Instrument code for code-based test coverage (optional)

Rational Purify, Quantify, PureCoverage
wExecute and Evaluate tests

Rational PerformanceStudio, Purify, Quantify,
and PureCoverage

Elaboration: Architectural IterationElaboration: Architectural Iteration

Deployment DiagramDeployment Diagram

Sequence DiagramSequence Diagram

Steps:
wCreate Design and Implementation models
wGenerate test scripts (automatically) from models
wModify, enhance, and create additional test artifacts
wInstrument code (optional)
wExecute and Evaluate tests

Steps:
wCreate Design and Implementation models
wGenerate test scripts (automatically) from models
wModify, enhance, and create additional test artifacts
wInstrument code (optional)
wExecute and Evaluate tests

6

Elaboration: Architectural IterationElaboration: Architectural Iteration

Steps:
wCreate Design and Implementation models
wGenerate test scripts (automatically) from models
wModify, enhance, and create additional test artifacts
wInstrument code (optional)
wExecute and Evaluate tests

Steps:
wCreate Design and Implementation models
wGenerate test scripts (automatically) from models
wModify, enhance, and create additional test artifacts
wInstrument code (optional)
wExecute and Evaluate tests

Elaboration: Architectural IterationElaboration: Architectural Iteration

Results:Actions:TETO Tenet:

wMinimized effort
wMaximized reuse

wGenerated & executed
 test scripts automatically

wMaximize efficiency
 & effectiveness

wMaximized test
 coverage
wProvided objective test
 coverage

wTest considerations
 included in models
wTest scripts & test
 coverage based on
 models

wDesign for
 testability

wPerformance &
 scalability issues
 addressed early

wArchitectural
 assumptions tested

wTest all dimensions

Status Report:Status Report:

7

Construction: Development IterationConstruction: Development Iteration

Goal of Iteration: Remaining product requirements addressed

Example: Developing component(s)

Obstacles / Challenges:
wWhat is the reliability of components / subsystems / application?
wHow to test? In isolation? As integrated subsystems?
w Is effort to create and test reusable test harness justified?

Solution:
wRational Rose and Rational ComponentTest

Goal of Iteration: Remaining product requirements addressed

Example: Developing component(s)

Obstacles / Challenges:
wWhat is the reliability of components / subsystems / application?
wHow to test? In isolation? As integrated subsystems?
w Is effort to create and test reusable test harness justified?

Solution:
wRational Rose and Rational ComponentTest

Construction: Development IterationConstruction: Development Iteration

<<Form>>
dlg_Transaction

<<Class Module>>
Account

<<Class Module>>
Customer

<<Class Module>>
Customers

<<Class Module>>
Transaction Type

<<Module>>
Db

<<Module>>
Persistence

<<Module>>
Transaction

-Active_Customer

-All_Customers

-Active_Account

-mBankCust

* - transactions

--mTransaction

--Storage

--Storage

--Storage

Given this component
structure of the
application thus far,
what is its measure of
reliability?

Given this component
structure of the
application thus far,
what is its measure of
reliability?

8

Construction: Development IterationConstruction: Development Iteration

Steps:
wDesign and Implement components

Rational Rose
w Instrument model (for model-based test coverage)
wGenerate Test Drivers and Stubs

Rational ComponentTest
wModify / Enhance Test Drivers and Stubs
wExecute and Evaluate tests

Rational ComponentTest

Steps:
wDesign and Implement components

Rational Rose
w Instrument model (for model-based test coverage)
wGenerate Test Drivers and Stubs

Rational ComponentTest
wModify / Enhance Test Drivers and Stubs
wExecute and Evaluate tests

Rational ComponentTest

Construction: Development IterationConstruction: Development Iteration

9

Construction: Development IterationConstruction: Development Iteration

Results:Actions:TETO Tenet:

wMinimized effort
wMaximized reuse

wGenerated & executed test
 scripts automatically

wMaximize efficiency
 & effectiveness

wMaximized test
 coverage
wProvided objective
 test coverage

wTest considerations
 included in models
wTest scripts & test
 coverage based on models

wDesign for
 testability

wReliability &
 functional defects
 addressed early

wTested Individual components
wTested integrated subsystems

wTest all dimensions

Status Report:Status Report:

Construction: Development IterationConstruction: Development Iteration

Goal of Iteration: Remaining product requirements addressed

Example: Testing application via the application-user-interface

Obstacles / Challenges:
wHow complete is testing? Navigation? Data entry?
wCan / how is testing automated?
wWhat impact does changing the UI have on test scripts?

Solution:
wRational TestFactory

Goal of Iteration: Remaining product requirements addressed

Example: Testing application via the application-user-interface

Obstacles / Challenges:
wHow complete is testing? Navigation? Data entry?
wCan / how is testing automated?
wWhat impact does changing the UI have on test scripts?

Solution:
wRational TestFactory

10

Construction: Development IterationConstruction: Development Iteration

Steps: (all performed using Rational TestFactory)

w Instrument Code (opt., code-based test coverage)
wMap Application User Interface
wGenerate Test Scripts
wExecute and Evaluate Tests

Steps: (all performed using Rational TestFactory)

w Instrument Code (opt., code-based test coverage)
wMap Application User Interface
wGenerate Test Scripts
wExecute and Evaluate Tests

Construction: Development IterationConstruction: Development Iteration

11

Construction: Development IterationConstruction: Development Iteration

Results:Actions:TETO Tenet:

wMinimized effort
wMaximized coverage
 & reuse, especially
 when UI changes

wGenerated and executed
 test scripts automatically

wMaximize efficiency
 & effectiveness

wMaximized test
 coverage
wProvided objective
 test coverage

wTest scripts & test
 coverage based on
 application user interface

wDesign for
 testability

wReliability &
 functional defects
 addressed effectively

wApplication navigation
 and input tested via
 application user interface

wTest all dimensions

Status Report:Status Report:

Test Early, Test Often: SummaryTest Early, Test Often: Summary

wImprove management
 of requirements

wMaximize efficiency &
 effectiveness
wIncrease reuse

wIncrease test coverage
wTest the right things
wTest appropriately

wTest earlier in lifecycle

Challenge

wEnabled earlier understanding and validation
 of requirements

wAutomation:
§ Reduced manual effort
§ Eliminated misinterpretation
§ Enabled more complete and objective test coverage
§ Reduced rework and modification

wObjective test coverage
wDesign and Implementation used as basis
 for test implementation and execution

wEnables testing as early as design

TETO

12

Test Early, Test Often: SummaryTest Early, Test Often: Summary

RequirementsRequirements

DesignDesign

CodeCode

Unit TestUnit Test

√√
Integration TestIntegration Test√√

System TestSystem Test

√√

The TETO “Test - V”The TETO “Test - V”InceptionInception

DeploymentDeployment

Requirements1Requirements1

Test Early Test Often:

Q and A

Test Early Test Often:

Q and A

Bruce R. Katz, CQA
Sr. Test Consultant, Process Engineer
Rational Software Corporation

Bruce R. Katz, CQA
Sr. Test Consultant, Process Engineer
Rational Software Corporation

QW2000 Paper 7T2

Mr. Charles White
(Segue Software, Inc.)

Functional Testing of CORBA Based Systems in
Java

BACK TO QW2000 PROGRAM

Key Points

CORBA and EJB Objects in E-Business●

Testing for Success in Distributed Systems●

Understanding Middleware●

Presentation Abstract

Three-tier applications are becoming the norm in the development world. The components in the
middle-tier, often refered to as business objects, are frequently based on standard middleware such
as CORBA or EJB. This paper discusses testing the middle-tier or business objects in a distributed
application. There are two kinds of testing that can be done on business objects, structural and
functional. Structural testing is internal testing of a single component. Functional testing is unit testing
of one or more components. By the time a distributed, multi-tier application gets to the QA group, it is
often no longer possible to do structural testing. However, with the rise of standard middleware, the
testing of business objects can be done through the exposed business object interfaces. SilkPilot is a
Java application which can do functional testing of the business objects in a distributed application.
With support for testing both CORBA and EJB servers, SilkPilot can reduce your time to market by
greatly accelerating your testing cycles.

This talk discusses
Structural and functional testing on business objects at different stages of the product life-cycle●

How using standard middleware helps improve testability of business objects●

What CORBA and EJB are and how they are used.●

How SilkPilot works with CORBA and EJB to test business objects●

How SilkPilot can save time, protect your investments, improve productivity and increase
reliability of depolyed applications.

●

About the Author

Charles White is the CTO for the Distributed Development Group at Segue Software. Charles was a
founder of Black & White Software (since acquired by Segue), one of the first companies to venture

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7T2.html (1 of 2) [4/28/2000 2:35:23 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

into the CORBA tools space.

Charles has worked architecting and implementing development tools for Unigraphics, Daisy Systems,
Siemens-Nixdorf, Visual Edge Software, Black & White and Segue for the the past 20 years. Charles
has published numerous technical papers, and has been a speaker at numerous conferences on user
interfaces and distributed objects. Charles can be reached at chas@segue.com.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7T2.html (2 of 2) [4/28/2000 2:35:23 PM]

mailto:chas@segue.com
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Functional Testing of CORBAFunctional Testing of CORBA
and EJB Business Objectsand EJB Business Objects
Charles WhiteCharles White
Segue Software, Inc.Segue Software, Inc.

chas@segue.comchas@segue.com
http://www.segue.comhttp://www.segue.com

QW2000
San Francisco

May 2000

2

Presentation OverviewPresentation Overview

ll What is Functional Testing?What is Functional Testing?
ll The Challenge: Multi-tiered ApplicationsThe Challenge: Multi-tiered Applications
ll Distribution in Heterogeneous EnvironmentsDistribution in Heterogeneous Environments
ll EJB in Heterogeneous EnvironmentsEJB in Heterogeneous Environments
ll Functional Testing of CORBA & EJB ObjectsFunctional Testing of CORBA & EJB Objects
ll SilkPilot SilkPilot - A Generic Functional Testing Tool- A Generic Functional Testing Tool

2

3

How is Software Tested?How is Software Tested?

ll Functional Testing (Black-box testing)Functional Testing (Black-box testing)
ww Goal: Prove that software conforms to its specificationGoal: Prove that software conforms to its specification
ww Test scenarios derived from functional specificationTest scenarios derived from functional specification

ll Structural Testing (White-box testing)Structural Testing (White-box testing)
ww Goal: Try to find cases that will break the software because ofGoal: Try to find cases that will break the software because of

conditions the programmer did not expectconditions the programmer did not expect
ww Test scenarios derived by examining the source codeTest scenarios derived by examining the source code

4

When is Software Tested?When is Software Tested?

ll Component TestingComponent Testing
ww Goal: Find errors in new componentsGoal: Find errors in new components
ww During developmentDuring development

ll Integration TestingIntegration Testing
ww Goal: Find errors in interactions and interfaces of new,Goal: Find errors in interactions and interfaces of new,

untested modulesuntested modules
ww During development and maintenanceDuring development and maintenance

ll Regression TestingRegression Testing
ww Goal: Re-establish the confidence that the software willGoal: Re-establish the confidence that the software will

continue to function after modificationscontinue to function after modifications
ww During maintenanceDuring maintenance

3

5

Structural Structural vsvs. Functional Testing. Functional Testing

ll Importance and amountImportance and amount
of required Structuralof required Structural
Testing decreasesTesting decreases

ll Importance and amountImportance and amount
of required Functionalof required Functional
Testing increasesTesting increases

Component Integration Regression

Functional Testing Structural Testing

6

How to Test Non-Distributed Applications?How to Test Non-Distributed Applications?

ll UI levelUI level
ww Tester simulates the end user, tries to break applicationTester simulates the end user, tries to break application
ww Tool support for record/playback, e.g. Tool support for record/playback, e.g. SilkTestSilkTest
ww Completely black-box, so origin of errors is usually unknownCompletely black-box, so origin of errors is usually unknown

ll Object/Module levelObject/Module level
ww Developer writes specialized test driversDeveloper writes specialized test drivers
ww Objects/Modules need to be linked with the driversObjects/Modules need to be linked with the drivers
ww If modules do not have public interfaces, testing on this levelIf modules do not have public interfaces, testing on this level

is usually done during development by the developer onlyis usually done during development by the developer only

4

7

Test Like This!Test Like This!

Let’s break it!

8

Presentation OverviewPresentation Overview

ll What is Functional Testing?What is Functional Testing?
ll The Challenge: Multi-tiered ApplicationsThe Challenge: Multi-tiered Applications
ll CORBA in Heterogeneous EnvironmentsCORBA in Heterogeneous Environments
ll EJB in Heterogeneous EnvironmentsEJB in Heterogeneous Environments
ll Functional Testing of CORBA & EJB ObjectsFunctional Testing of CORBA & EJB Objects
ll SilkPilot SilkPilot - A Generic Functional Testing Tool- A Generic Functional Testing Tool

5

9

Multi-tiered ApplicationsMulti-tiered Applications

Presentation &
Interaction

Business
Objects

Data

10

Business ObjectsBusiness Objects

ll Objects can be anywhereObjects can be anywhere

ll Clients have transparent access to serverClients have transparent access to server

ll No language or platform restrictionsNo language or platform restrictions

ll Provide basis for delivering component-based applicationsProvide basis for delivering component-based applications

6

11

Testing Multi-tiered ApplicationsTesting Multi-tiered Applications

Presentation
& Interaction

Business
Objects

Data

Complexity:Complexity: Many system componentsMany system components
Coordination:Coordination: Many participants in creation and deploymentMany participants in creation and deployment
Change:Change: Rapid delivery cyclesRapid delivery cycles

12

Solution: Use Standard Solution: Use Standard MiddlewareMiddleware!!

Presentation
& Interaction

Business Objects Data

CORBA and/or EJB

7

13

Presentation OverviewPresentation Overview

ll What is Functional Testing?What is Functional Testing?
ll The Challenge: Multi-tiered ApplicationsThe Challenge: Multi-tiered Applications
ll CORBA in Heterogeneous EnvironmentsCORBA in Heterogeneous Environments
ll EJB in Heterogeneous EnvironmentsEJB in Heterogeneous Environments
ll Functional Testing of CORBA & EJB ObjectsFunctional Testing of CORBA & EJB Objects
ll SilkPilot SilkPilot - A Generic Functional Testing Tool- A Generic Functional Testing Tool

14

CORBA - What is it?CORBA - What is it?

ll Software bus for client-server object distribution inSoftware bus for client-server object distribution in
heterogeneousheterogeneous environments environments

ll Object interfaces specified independent of implementationObject interfaces specified independent of implementation

ll ORB mediates between clients and serversORB mediates between clients and servers

Client Server

InterfaceInterface

JavaJava

Object Request Broker (ORB)

JavaJava

InterfaceInterface

C++C++

InterfaceInterface

SmalltalkSmalltalk

InterfaceInterface

C++C++

InterfaceInterface

AdaAda

InterfaceInterface

8

15

Server
Object
(C++)

Skeleton

IDL - Interface Definition LanguageIDL - Interface Definition Language

interface CheckingAccount :
 Account
{
 attribute float overdraftLimit;
 boolean orderCheckBook();
};

IDL File
Client
Stub

(Java)
IDL to Java

IDL Compiler

IDL to C++

IIOP

16

IIOP Protocol Ensures InteroperabilityIIOP Protocol Ensures Interoperability

Internet Inter-ORB Protocol (IIOP):Internet Inter-ORB Protocol (IIOP):

ll CORBA wire protocolCORBA wire protocol

ll Permits CORBA clients and servers to utilize differentPermits CORBA clients and servers to utilize different ORBs ORBs

ll On top of TCP/IPOn top of TCP/IP

9

17

Presentation OverviewPresentation Overview

ll What is Functional Testing?What is Functional Testing?
ll The Challenge: Multi-tiered ApplicationsThe Challenge: Multi-tiered Applications
ll Object Distribution in Heterogeneous EnvironmentsObject Distribution in Heterogeneous Environments
ll EJB in Heterogeneous EnvironmentsEJB in Heterogeneous Environments
ll Functional Testing of CORBA & EJB ObjectsFunctional Testing of CORBA & EJB Objects
ll SilkPilot SilkPilot - A Generic Functional Testing Tool- A Generic Functional Testing Tool

18

Enterprise Java BeansEnterprise Java Beans

ll Reusable server componentsReusable server components
ll Beans reside in the EJB containerBeans reside in the EJB container
ll Container communicates with the client on behalf of EJBContainer communicates with the client on behalf of EJB
ll Transaction/Security/Persistence are automaticallyTransaction/Security/Persistence are automatically

provided by the containerprovided by the container

10

19

Enterprise Java BeansEnterprise Java Beans

ll Session BeansSession Beans
ww may or may not have a statemay or may not have a state
ww disappear when server crashesdisappear when server crashes
ww new instance for each clientnew instance for each client

ll Entity BeansEntity Beans
ww represent data in the databaserepresent data in the database
ww survive server crashessurvive server crashes
ww one instance for many clientsone instance for many clients
ww found by primary keyfound by primary key

20

Client View of the beanClient View of the bean

ll Client can not see the beanClient can not see the bean

ll Home interface - Home interface - EJBHomeEJBHome
ww create methodscreate methods
ww finder methodsfinder methods
ww remove methodsremove methods

ll Remote interface - Remote interface - EJBObjectEJBObject
ww business methodsbusiness methods

EJB Home

EJB Object

EJB Home

EJB Object

Bean 1

Bean 2

Other beans

EJB Container

Client

11

21

Client Application Server

EJB Container

Services

JNDI (Naming)
JTS (Transaction)
Persistence

BeanBeanEJB Home
create()

remove()

EJB Object
business methods

DatabaseInvoke
Business
Methods

Destroy Bean

Communication ScenarioCommunication Scenario

Locate Bean
Home

RMI or IIOP
Protocol

Bean Home Instance

Create Bean
Instance

Bean remote
Instance

BeanBean

22

EJB Deployment in ContainerEJB Deployment in Container

EJB Package

Deployment descriptor

EJB Home Interface

EJB Remote Interface

Enterprise Java Bean

Support classes

Other Beans

ll Deployment descriptorDeployment descriptor
ww EJB ClassesEJB Classes
ww bean typebean type
ww policiespolicies

ll Home and remote interfacesHome and remote interfaces
ll Support classesSupport classes

12

23

EJB Deployment in ContainerEJB Deployment in Container

ll Container analyzes EJB packageContainer analyzes EJB package
ww read deployment descriptorread deployment descriptor
ww generate implementations for home and remotegenerate implementations for home and remote

interfaces and client stubsinterfaces and client stubs
ll Bean home object is registered with the naming serviceBean home object is registered with the naming service
ll Home and remote interfaces are available to the clientHome and remote interfaces are available to the client
ll Wait for connection from the clientWait for connection from the client

24

Container ContractContainer Contract

ll How EJB container manipulates the bean?How EJB container manipulates the bean?
ll Bean implements methods required for itsBean implements methods required for its

managementmanagement
ww ejbCreateejbCreate()()
ww ejbFindejbFind()()
ww some other methodssome other methods

ll Bean contains business logic methodsBean contains business logic methods
ww bean should not implement remote interfacebean should not implement remote interface
ww container uses Java reflection to redirect callscontainer uses Java reflection to redirect calls

to the beanto the bean

13

25

Common MisunderstandingCommon Misunderstanding

EJB, RMI and CORBA are not mutually exclusiveEJB, RMI and CORBA are not mutually exclusive

ll RMI over IIOP allows transparent mapping of RMI toRMI over IIOP allows transparent mapping of RMI to
CORBACORBA

ll EJB client may use EJB API over IIOP or use CORBAEJB client may use EJB API over IIOP or use CORBA
mapping of EJBmapping of EJB

26

EJB CORBA ClientsEJB CORBA Clients

ll EJB/CORBA ClientEJB/CORBA Client
ww uses EJB Java APIuses EJB Java API
ww JNDI to locate objectsJNDI to locate objects
ww RMI over IIOP to invokeRMI over IIOP to invoke

methodsmethods
ww JTS for transactionsJTS for transactions
ww use of IDL is implicit touse of IDL is implicit to

programmerprogrammer

ll Plain CORBA ClientPlain CORBA Client
ww written in any languagewritten in any language

that supports CORBAthat supports CORBA
ww COSCOS Naming to locate Naming to locate

objectsobjects
ww CORBA IDL to invokeCORBA IDL to invoke

methodsmethods
ww CORBA OTS forCORBA OTS for

transactionstransactions
ww explicit use of IDLexplicit use of IDL

14

27

Advantages of EJBAdvantages of EJB

ll Established roles for application developmentEstablished roles for application development
ll Automatic transaction managementAutomatic transaction management
ll Distributed transaction supportDistributed transaction support
ll PortabilityPortability
ll ScalabilityScalability
ll Integration with CORBAIntegration with CORBA
ll Vendor enhancementsVendor enhancements

28

Presentation OverviewPresentation Overview

ll What is Functional Testing?What is Functional Testing?
ll The Challenge: Multi-tiered ApplicationsThe Challenge: Multi-tiered Applications
ll Object Distribution in Heterogeneous EnvironmentsObject Distribution in Heterogeneous Environments
ll EJB in Heterogeneous EnvironmentsEJB in Heterogeneous Environments
ll Functional Testing of CORBA & EJB ObjectsFunctional Testing of CORBA & EJB Objects
ll SilkPilot SilkPilot - A Generic Functional Testing Tool- A Generic Functional Testing Tool

15

29

Testing Multi-tiered CORBA ApplicationsTesting Multi-tiered CORBA Applications

Presentation &
Interaction

CORBA
Business Objects

Data

ll Can we test at the object interface level, in theCan we test at the object interface level, in the
real world, independent from the GUI?real world, independent from the GUI?

ll YES! YES!

30

Functional Testing of CORBA ObjectsFunctional Testing of CORBA Objects

Presentation &
Interaction

CORBA
Business Objects

Data

ll How to obtainHow to obtain
information aboutinformation about
object interfaces?object interfaces?

ll How to invoke methods?How to invoke methods?
ll How to record/replay?How to record/replay?

Generic Test Tool

16

31

Obtain Information about Object InterfacesObtain Information about Object Interfaces

CORBA Interface Repository (IFR)CORBA Interface Repository (IFR)

ll Provides information about objects atProvides information about objects at
runtimeruntime

ll Programming Interface for InterfaceProgramming Interface for Interface
Definition Language (IDL)Definition Language (IDL)

ll API defined by CORBA SpecificationAPI defined by CORBA Specification

ll Full READ/WRITE access to IDLFull READ/WRITE access to IDL

ll Implemented as standalone CORBAImplemented as standalone CORBA
serverserver

interface CheckingAccount :
 Account
{
 attribute float overdraftLimit;
 boolean orderCheckBook();
};

Interface Repository

32

How to Invoke Methods?How to Invoke Methods?

Dynamic Invocation Interface (DII)Dynamic Invocation Interface (DII)
ll API defined by CORBA SpecificationAPI defined by CORBA Specification
ll “Lower level” interface“Lower level” interface
ll Provides fully dynamic access to remote objectsProvides fully dynamic access to remote objects
ll No compiled IDL stubs in client!No compiled IDL stubs in client!

17

33

How to Record/Replay?How to Record/Replay?

ll Save CORBA IIOP request/replies using a suitable externalSave CORBA IIOP request/replies using a suitable external

data representationdata representation

ll Test tool can interpret external data and replay a sessionTest tool can interpret external data and replay a session

ll External data can be used to generate standalone testExternal data can be used to generate standalone test

clientsclients

34

Presentation OverviewPresentation Overview

ll What is Functional Testing?What is Functional Testing?
ll The Challenge: Multi-tiered ApplicationsThe Challenge: Multi-tiered Applications
ll CORBA in Heterogeneous EnvironmentsCORBA in Heterogeneous Environments
ll EJB in Heterogeneous EnvironmentsEJB in Heterogeneous Environments
ll Functional Testing of CORBA & EJB ObjectsFunctional Testing of CORBA & EJB Objects
ll SilkPilot SilkPilot - A Generic Functional Testing Tool- A Generic Functional Testing Tool

18

35

SilkPilot SilkPilot - A Generic CORBA Testing Tool- A Generic CORBA Testing Tool

Test ClientTest Client

generategenerate

IIOP Request

Presentation &
Interaction

Business
Objects

Data

InterfaceInterface
RepositoryRepository

SilkPilotSilkPilot

IIOP Reply

36

SilkPilot SilkPilot - Open Object- Open Object

19

37

SilkPilot SilkPilot - Main Window- Main Window

38

SilkPilot SilkPilot - IFR Browser- IFR Browser

ll CORBA IFR browserCORBA IFR browser
ww Use built-in or ORBUse built-in or ORB

supplied IFRsupplied IFR
ww visual representationvisual representation

of IDL objectsof IDL objects

20

39

SilkPilot SilkPilot for EJBfor EJB

ll JNDI browserJNDI browser
ww browse any JNDIbrowse any JNDI

compliant servicecompliant service
ww visual representation ofvisual representation of

EJB and RMI objectsEJB and RMI objects
ww narrow to any basenarrow to any base

interfaceinterface

40

SilkPilot SilkPilot - Object Window- Object Window

21

41

SilkPilot SilkPilot - Create Account- Create Account

42

SilkPilot SilkPilot - Make Withdrawal (1)- Make Withdrawal (1)

22

43

SilkPilot SilkPilot for EJBfor EJB

ll EJB EJB MetadataMetadata
ww home and remotehome and remote

interfacesinterfaces
ww bean typebean type
ww business methodsbusiness methods

44

Test Client Code GenerationTest Client Code Generation

ll Generates Java ClientGenerates Java Client

ll All steps done in SilkPilot can be put into codeAll steps done in SilkPilot can be put into code

ll Generates Generates Makefile Makefile to build the clientto build the client

ll Generates script to run the client after building itGenerates script to run the client after building it

23

45

Summary of FeaturesSummary of Features

ll Saves Time and MoneySaves Time and Money

ww No need to manually build custom test programsNo need to manually build custom test programs

ll Investment ProtectionInvestment Protection

ww SilkPilot is built on standards - CORBA and EJBSilkPilot is built on standards - CORBA and EJB

ll Improve ProductivityImprove Productivity

ww Intuitive graphical user interfaceIntuitive graphical user interface

ww Generated client code can be reusedGenerated client code can be reused

ll Maximize successful developmentMaximize successful development

ww Easily test all components within a distributed systemEasily test all components within a distributed system

<
the end

>

Thanks for Coming

QW2000 Paper 7A2

Mr. Scott Trappe
(Reasoning Inc.)

Find the Defects that Traditional Testing Misses
with Automated Software Inspection Services

BACK TO QW2000 PROGRAM

Key Points

Automated software inspection -- new techniques that improve software quality●

Inpsection tools vs. services -- taking advantage of the oursourcing trend●

ROI for automated software inspection -- amazing returns for little effort, but what's the catch?●

Presentation Abstract

Producing high quality software for increasingly complex applications is a constant challenge. Due to
the constraints placed on osftware development schedules and budgets, traditional testing techniques
have limited ability to catch all critical defects prior to software release. Automated Software
Inspection Services are a new and largely untapped method of finding defect soften missed by
tranditional testing. This session explores the potential of these methods a s a cost-effective and
automated means of improving quality without taxing in-house resources.

About the Author

Scott Trappe is a senior VP of Operations for Reasoning, Inc. He is considered an expert in
Automated Source Code Analysis methods, having contributed numerous articles on the subject to
software development publications as well as having hosted presentations at industry related events.
Previously he worked at Intrinsa, where he held the dual role of VP of Engineering and Marketing. Mr.
Trappe has also worked at Netopia; Telekom in Malaysia; Operations Control System; and Tektronix.
He holds an MBA from the University of Californig, Berkeley and a B.S. from the University of Arizona.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7A2.html [4/28/2000 2:35:29 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

1
© 2000 Reasoning, Inc.

Find Defects thatFind Defects that
Traditional TestingTraditional Testing

Misses withMisses with
Automated Software InspectionAutomated Software Inspection

ServicesServices

Scott TrappeScott Trappe

Senior Vice President & General ManagerSenior Vice President & General Manager

Reasoning, Inc.Reasoning, Inc.

© 2000 Reasoning, Inc.

2

Problem: The Software ParadoxProblem: The Software Paradox

� ��������	
�	����	������	���	�
�
��	����	����	��	���
�����������	����	����	�
��	��	�������	���	����	
�

					����������	����
��������������

� ��������	��
����	�������	
�	����	�������	����	���	����
� ���	��������	��������	�����	���
�����	������
���	��
����

�����	����	��	���
����
� ����	��	������	��������	�����
���	 �
!��
� ����	����	����������"	����	��	���������	�����

	 �	��������������
���
��������������

2

© 2000 Reasoning, Inc.

3

Testing Alone Is Not EnoughTesting Alone Is Not Enough

� #���	���	����	�
������	����
��	���������	��	$%�%
�����
��	�
���	����	��&	��	���	��������	������%

'��������	
������(

�)���	����
��	��������	����	����	*+&	��	,+&	��	��
����
��
��%	 	'�������
�������	������(

� -.���
��	
�	�����	�
�
�����	����	���������/
	 '�
����	������	���	��������
��
����
�(

� 0���
��	����	��
���	���	����	����	������	
�	�
��
���

© 2000 Reasoning, Inc.

4

Code Coverage vs. Path CoverageCode Coverage vs. Path Coverage
Conventional Testing
100% Path Coverage

3

© 2000 Reasoning, Inc.

5

Solution:Solution:
Software InspectionSoftware Inspection

��	��������
������	
���� ������������
����!	����������"�
����
�#����	����!	"�
�����������
��	������$%

��	
��

© 2000 Reasoning, Inc.

6

Software Inspection OverviewSoftware Inspection Overview

� 1�
�
�2	3�����	���	�����
��	4�����
���	���������	
�
���	567+�	��)
����	8����	��	4�)

� 9��
�
�
��2		4�����
��	
�	�	����	��	������	����
��	����
�����:��	�����	���	��	�
��	����������
	������

� 4����2	1���	����	��	���	������	
�	��������	��������
����
��
���	��	��	�����	�������	4�����
��

� 3�����2	9��������	��	����	��	����������	�������	�
-���������	���!��������/	��	���	�����	���%		.���	���!
���	���������	������	����	��	����	��	�������	��
����

4

© 2000 Reasoning, Inc.

7

Software Inspections Find SeriousSoftware Inspections Find Serious
Defects Testing MissesDefects Testing Misses

�

������

������

������

������

�������

�������

�0 �0 �0 �0 �0 �0 �0 �0 �0 ��0

Without inspection

With inspection

6RXUFH� Capers Jones, Software Productivity Group'HIHFWV

/LQHV�RI�FRGH��PLOOLRQV�

Based on 1 defect
per 100 LOC

© 2000 Reasoning, Inc.

8

Software Inspection ComplementsSoftware Inspection Complements
TestingTesting

� 4�����
��	����	����
��	��	�
��	6�&	��	���	��������
������																																																�	������������������

� 4�����
��	
����
�
��	���������	�������	�����
��	�������	��
����	��	����
����	������

� 4�����
��	�
���	������	����
��	���	�������	����
��	��
�����	�����������	��������	����	���	�����	����
��
��������

� ;
��	5++&	���	��������	4�����
��	��	�����:�	���
��������	���	������	��	����
�
����	����
��	�������

5

© 2000 Reasoning, Inc.

9

Software Inspection Reduces CostsSoftware Inspection Reduces Costs

� 4�����
��	�
���	��	��	<�&	��	���	������	���	���	������
��
����	����
��	����	�
��	���	���%5

� .��	���	��	�
�
��	�	�����	
�	����
��	
�	5+	�
���	���	���
��	�
��
��	�	�����	��
��	��	����
��%=

� 4�����
���	����	<+&	��	�����!	����%*

1. Capers Jones, Software Productivity Research, Inc.
2, 3. Robert B. Grady, Successful Software Process Improvement, Prentice

Hall PTR, 1997.

© 2000 Reasoning, Inc.

10

Drawback:Drawback:
Manual Software Inspection IsManual Software Inspection Is
ExpensiveExpensive

�)�����	4�����
��	�� �
���	�����
����	��������
���
�����

� 4�����
��	
�	�
��������
��
� ��	���
������	����������	�������
� 1�������
��	���2	�
��	���
�����	�����	��
��

�����
���	��!��	����	����	�����	�����������

6

© 2000 Reasoning, Inc.

11

Alternative:Alternative:
Automated Software InspectionAutomated Software Inspection

© 2000 Reasoning, Inc.

12

Automated Software Inspection (ASI)Automated Software Inspection (ASI)
AdvantagesAdvantages
� >�
!	������!	����
�	���	���?��
� ��	������	��	���
����
��	�����
� 8
���	������	�
����	��	������
����	����
��
� 3
���
���	�����	���	�����	
�	
�	���	���
� @����������	���
�����	�������
� ��	����	����	�� �
���
� ����
�����
��

A ������	
�������������������	�
��������������	��
A ����������
����������������������
���
A ���
����
�	������������

7

© 2000 Reasoning, Inc.

13

Example: Embedded SystemsExample: Embedded Systems

� #�������	�������	���2
A 9
��
���	��	.���
A 9
��
���	��	9����
A 8�
�����	���	#�����
��BC���������

� D��������	��������	4�����
��2
A ��	������	���
�������	�� �
���
A E��
�����	�����������
��	���
A 9���	���	�����	������
��	����������
A .��������������	
����������

© 2000 Reasoning, Inc.

14

;�	����	����	�	���
��	�������	�����	���	�����:��
����	��	���F	'
�	���	�����������	��	;
�����	=+++(%	;�
����	��
�	����%	4�	�����	��	
������	���	���	���	������
�
��
���	
�	��	�
��	����	����	���	����
��	���	���	�
��%
G
�	D���
�
H����	E
�	3���
�����	3��������	H����
)
������	C�������
��

8�������	5��	=+++

One Company s Experience with
ASI

8

© 2000 Reasoning, Inc.

15

Product-based ASI has DisadvantagesProduct-based ASI has Disadvantages

� C�����	�
������
�����	��	���������	��������	
�������
������	���
�����	���	��
���
�	������

� I
��	-���������
�
��/	����

� @� �
���	�����������	�������	��	���	������	���
�
����	�������

� #������2	3C	J
��

© 2000 Reasoning, Inc.

16

Better Approach:Better Approach:
Automated Software InspectionAutomated Software Inspection
ServicesServices

� 8
���	������	�
�����	���
��	
�������	��������
� 8���	K�������	��������	
�	�����	5	���!L
� C�������	����	����	C�
�
��	9������	��	-��
��/
� @���������	�	��	�����	��	�� �
���
� $�
�
:��	�������	���������	���	���
�����	��	�	������
� #������	�	4������>DVP	����
��	����	@�����
��

9

© 2000 Reasoning, Inc.

17

-4����������	�����	C���	E��
�
��
��	K4�CEL
�
��	��	�	������	����
��	������	���!��
���
��	���	����	�
��	�����	���	�
��	�����	��
������
����	����	��	���	4.	����
��
��������%/	M

Trend:Trend:
Market is Shifting to Market is Shifting to OutsourcedOutsourced
Software InspectionSoftware Inspection

*Source: The GartnerGroup-ISCV: An Independent Service to Aid Software QA, June 29, 1999

© 2000 Reasoning, Inc.

18

Examples of Defects ASI Services canExamples of Defects ASI Services can
FindFind

hDeeply Nested If StatementshOut of Bounds Array Read/Write

FragilityhNull Pointer Dereference

Dead CodePointer Management

hCICS Length MismatcheshVariable Conditionally Uninitialized

hParameter MismatcheshVariable Always Uninitialized

InterfacehBad Deallocation

hData Element Used but Not SethMemory Leak

InitializationDynamic Memory Issues

CobolC/C++

Initialization hUnchecked Return-Code

10

© 2000 Reasoning, Inc.

19

 int len;
 if ((to - from) > 86400) {
 now = localtime(&from);
 len = strftime(__internatl_OdateToStr, 64, "%m/%d/%Y - ", now);
 now = localtime(&to);
 len = strftime(&__internatl_OdateToStr[len], 64, "%m/%d/%Y", now);
 }
 else {
 now = localtime(&from);
 len = strftime(&__internatl_OdateToStr[len], 64, "%m/%d/%Y", now);
 }

E��
����	9������

E��
����
���

E��
����	$���	
���	���	���

Detailed Example - Initialization ErrorDetailed Example - Initialization Error

© 2000 Reasoning, Inc.

20

ASI Services Return on InvestmentASI Services Return on Investment

� .����	�����
��
A D�4	����
�	��%)�����	4�����
��
A D�4	����
�	��%	C������
����	.���
��
A 4�����
��	9����	@������	@����

� D������
���
A D���
��
��	
�	�++	0J1C
A D�4	����
�	�
���	5	�
�
��	�����	���	0J1C2	�++	������

A D�4	����
�	���2	�%5+B�
��	×	�++	0J1C	N	��+�+++
A @������	��������	�
��
�	=	���!�

11

© 2000 Reasoning, Inc.

21

ASI Service vs. Manual InspectionASI Service vs. Manual Inspection

� Assumptions:
– Cost of software engineer is $10,000 per month
– Software engineer works on average 200 hours/month

� Cost for Manual Inspection:
– Engineer will require an average of 5 hours to find a defect1

– 5 hrs ÷ 200 hrs/month × $10,000/month = $250 Defect
– $250 × 500 defects = $125,000 and 12 months

� ROI: ASI Service finds the same number of defects:
– for $75,000 less
– in 2 weeks, not 12 months

1. [Watts Humphrey 1999, Software Engineering Institute]

© 2000 Reasoning, Inc.

22

ASI Services vs. ConventionalASI Services vs. Conventional
TestingTesting
� Assumptions:

– Cost of QA engineer is $10,000 per month
– QA engineer works on average 200 hours/month

� Cost for Conventional Testing:
– QA Engineer will find an average of 8 defects/month1

– $10,000/month ÷ 8 defects/month = $1,250/Defect
– $1,250 × 500 defects = $625,000 and 5 man-years

� ROI: ASI Service finds the same number of defects:
– for $575,000 less
– in 2 weeks, not 5 man-years

1. [Gartner Group]

12

© 2000 Reasoning, Inc.

23

Improving Defect Removal RateImproving Defect Removal Rate

� Assumptions
– $15,000 avg. cost to find a defect after deployment1

– 5,000 bugs introduced before any testing or inspection2

� “Best in class” Defect Removal Rate2: 85%
– With a 15% miss rate (1 – 85%) x 5,000 = 750 bugs will

make it to the field

� Assume ASI Service boosts DRR 5%: from 85% to
90%:
– Eliminates 250 defects
– Savings: 250 * $15,000 – $50,000 = $3,700,000

1 [The Cutter Consortium]
2 [Capers Jones]

© 2000 Reasoning, Inc.

24

The Worst CaseThe Worst Case

For a 500 KLOC application and assuming
$15,000 average cost to find a defect after
deployment1…

If ASI Service finds ≥ 4 defects that would have
missed detection through other testing, this more
than recovers the cost of the inspection
($50,000).

1 [The Cutter Consortium]

13

© 2000 Reasoning, Inc.

25

SummarySummary

� .���
�
����	����
��	���	�
�
���	��
�
��	��	�
��	������	
�

�����
����	������	��������	����
��
���

� ��������	4�����
��	��	�������	����
��	��	�
��
��
����	������	����
��	���	��	����	���

� .��	�
�
���
���	��	������	��	������������	��������

�����
���	��	��	��
�
�����	��	��
��	D��������
��������	4�����
��	����
��

� D��������	��������	4�����
��	����
��	����	�
������
��	@�����	��	4���������

QW2000 Paper 7W2

Ms. Andrea MacIntosh & Mr.
Wolfgang Strigel

(QA Labs Inc.)

"The Living Creature" - Testing
Web Applications

BACK TO QW2000 PROGRAM

Key Points

Web application testing●

Web application architecture●

Web user●

E-business●

Presentation Abstract

While few people in the software development industry doubt the need or at least the advantage of
including testing and quality assurance in development projects, it has taken many years, many
projects, and many failures to get to this point. Now we are entering the age of web applications, a
new era, and one that somehow doesn't seem like "real software development": these projects are
fast, faster than any application software project, moving in Internet-time. Perhaps it is the speed of
creation and deployment, the ease of publishing components, or the perceived lightweightness of
these components ("it's just some JavaScript") that allows many to believe that testing can be omitted,
or done on the fly by the development staff. But with the fast web-time environment comes a new type
of customer - one who can, in the blink of an eye, browse away from your site if it's too slow, hard to
use or doesn't work the first and every time.

Now, web application companies are seeing the importance of adding testing to their project
schedules, and many are finding it to be a very difficult task. Why? One would think that a web
application project could be treated much the same as a software application development project,
and thus could be subject to many of the software engineering practices developed over the last 30+
years. But herein lies the problem: the initial assumption that a web application project is similar (if not
identical) to a software application project is a false one.

Web applications target a different type of user, who has different needs and wants than the traditional
desktop application user. Web applications also move at a completely different pace and move in a
different timeframe than off-the-shelf software, a far faster one with shorter and shorter schedules.
While traditional applications only had to be compatible with several versions of an operating system,
web applications need to run on a wide spectrum of browser versions and cope with complex browser

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7W2.html (1 of 2) [4/28/2000 2:35:36 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

incompatibilities that change much quicker than the traditional operating system release cycles. Web
applications also have the extra burden of a wide variety of external marketing pressures, including
shortened time-to-market, advertising revenues, and branding. Add to this situation a fundamentally
different application architecture, one that follows more closely a business transaction model than any
other, and you are facing quite a different beast than your traditional desktop application.

This paper will describe our experience in testing web applications and give some practical hints for
the "do's and don'ts" in web testing.

About the Authors

Wolfgang B. Strigel is the founder and President of the Software Productivity Center Inc. (SPC), and
of QA Labs Inc. The SPC is an international resource centre with products and services for software
development organizations. QA Labs offers services in quality assurance and software testing,
including QA outsourcing, consulting and training. Previously, he was a Vice President at MacDonald
Dettwiler, a Canadian aerospace company, where he was responsible for the engineering department.

Mr. Strigel is a member of several academic advisory boards. He also serves on the board of several
private corporations and the Japanese Software Productivity Society. Mr. Strigel is a member of the
Editorial Advisory Board of IEEE Software Magazine, a member of TIA, CIPS, IEEE, ACM, PMI,
ASQC and ISO standards council. He is an expert advisor to Giga Information Group. He is a frequent
speaker at international conferences. Mr. Strigel received a B.Sc. (Munich, Germany) and M.Sc.
(McGill University, Montreal, Canada) in Computer Science, and a MBA (SFU, Vancouver, Canada).

Andrea MacIntosh is one of the founding partners of QA Labs Inc., where she focuses on Quality
processes, training and consulting. Her areas of technical expertise include Java, XML, web
applications, Macintosh and Linux operating systems, file formats, and ISO 9000 series
implementation. Previously she was the Director of Quality Assurance for Paradigm Development
Corporation, where she worked on projects for Microsoft, Adobe, Corel, Inso, and Disney Interactive.

Ms. MacIntosh's formal education is in the field of Physics (B.Sc. UBC) where she had the opportunity
to perform research in the area of non-linear dynamics of water turbulence and human cardiac
patterns.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7W2.html (2 of 2) [4/28/2000 2:35:36 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

The Living Creature
Testing Web Applications

Andrea MacIntosh and Wolfgang Strigel
QA Labs Inc.

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Outline

• Web Application Architecture
• Development Lifecycle of a Web

Application
• Quality In The Web Space
• Testing In The Web Space

2

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Web Application Architecture

Basic Workflow
Browser

w⌧
Web Server

 w⌧
Application Server(s)

w⌧
Database

WEB SITE

DATA BASE

USER
TRANSACTION

ADMINISTRATION FULFILLMENT

Browser

INTERNET

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Development Lifecycle of a Web
Application

3

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Requirements

– More to do with marketing, art, branding,
and advertising than providing a solid set
of core functionality

– Requirements for the initial release
captured in a document and changes
("CRs") subject to rigorous scope
management

Development Lifecycle

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Implementation

• Traditional Thinking: “Prototypes are
thrown away, never shipped”

• New Web Thinking: “Evolutionary
development processes”
– High risk of insufficient testing before the site is

launched

Development Lifecycle

4

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Quality In The Web Space

• Reliability
• Recoverability
• Security
• Usability
• Performance

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Reliability

– Opinion of the authors that reliability of web
applications is a user-defined quality factor

• the definition of "reliable" as it applies to web
applications is a subjective one, and that the
user is the creator and modifier of any such
definition

Quality In the Web Space

5

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Recoverability

– Recoverability includes
• fail-safe switchover
• re-synchronization with all connected systems

(warehousing systems, payment fulfillment
operations, etc.)

• data validation to ensure that data has not been
lost or become corrupted

Quality In the Web Space

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Security
• Some methods of reducing these kinds

of risks include:
– Researching current security issues in

third-party products you plan on using - this
may affect your decision to use that
product

Quality In the Web Space

6

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Security

– Reviewing your design to try to remove as
many potential security issues as possible,
including examining architectural designs

Quality In the Web Space

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Security

– Writing "defensive" code, as demonstrated
with the rules for good defensive Java
programming listed in Chapter 7 of
Securing Java, by Gary McGraw and
Edward Felten.

Quality In the Web Space

7

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Security

– Creating coding standards that reflect
some of these "defensive" techniques

– Performing code inspections on the high-
risk components of the web application.

Quality In the Web Space

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Usability

• UI ≠ Usability
– The UI is the browser
– The UI is not images, logos
– Most web applications exhibit poor usability

• Techniques
– Pilot or focus groups
– Computer Human Interface performance factors

Quality In the Web Space

8

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Performance

– Conduct some of the early performance
testing on a minimum configuration
machine

– Include connecting via modem (many
users will have connection speeds of
28.8k)

– Automate performance testing so it is more
accurate and can be run on a regular basis

Quality In the Web Space

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Testing In The Web Space

• What’s different than testing any other
application?
– The Test Environment
– Platforms and Browsers
– Back to Front Test Approaches
– Focusing Test Efforts

9

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

The Test Environment
• Your test team shouldn't crash your site --

they should crash a separate test server.
• Minimum Set-Up:

– A development server used for the development
team.

– A staging server that is periodically updated with a
new release, used as the test platform.

– A production server that hosts the live site.
Nobody, except the appointed web master is
allowed to modify this server.

Testing In the Web Space

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Platforms and Browsers
– Testing schedules are aggravated by browser and

operating system compatibility testing
– Separate the configurations into 2 groups: a core

set of "primary" configurations, on which the
majority of your testing will be completed; and a
set of "secondary" configurations, on which
security, performance, system, and acceptance
testing will be performed

Testing In the Web Space

10

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Testing Back-to-Front

– Focus on testing a web application not
from the client-side (browser), but from the
server-side

– Scripting is your best tool here
• Perl LWP or Win32::Internet libraries

Testing In the Web Space

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Focusing Your Test Efforts

– Develop a test plan which is as complete as
possible and focuses on a Back-to-Front approach

– Structure the plan by functional component
– Prioritize components using the associated risk of

failure as a guide
– Start testing the high priority items and work your

way down to lower priorities until you run out of
time.

Testing In the Web Space

11

Copyright © 2000 QA Labs Inc.
All Rights Reserved.

Conclusion

Copyright © 2000 QA Labs Inc.
Page 1 of 1

"The Living Creature" - Testing Web Applications

Table of Contents

Web Application Architecture... 1

Figure 1: Web Application Architecture .. 2
The Development Life Cycle of a Web Application .. 2

Figure 2: Effort vs. Time for a Typical Web Application ... 5
Requirements .. 5
Implementation: The Prototype as Product .. 6

Quality in the Web-Space.. 7
Some Quality Factors of Web Applications ... 7

Reliability.. 8
Recoverability ... 8
Security ... 9
Usability.. 10
Performance .. 10

Testing in the Web-Space- What’s different? .. 11
The Test Environment - Does such a thing currently exist in web-space? 12
Platforms and Browsers... 13
Focusing Your Testing Efforts... 14

Conclusion.. 14

Web Application Architecture

What do we mean by “Web Application”? There is an incredible range of sophistication
in web applications from a simple company web site with ”brochure ware” to sites like
Yahoo or Amazon with complex search engines and order fulfillment. One way to look at
the web application architecture is to take the model of a traditional business transaction
application and to replace the user front end by the web site. A customer acquires goods
and/or services from your company, in exchange for money. There are mechanisms in
place to facilitate that transaction between client and company. Instead of a sales rep, a
clerk, a cashier, or such person, you have a browser pointing at a web site. The company
is never closed! Customers can serve themselves!

Think of a vending machine: this machine fills orders based on input from users, verifies
transfer of funds, and has a basic user interface. Now add some complexity: make the UI
a browser-based solution that must run in multiple browsers on multiple operating
systems instead of a touch pad, and have the machine fill orders directly from a
warehouse in the mid-Western US, while tracking and re-stocking (real-time) inventory.
In general, people will not be putting coins in the machine, but entering their credit card
numbers - which requires real time access to credit companies to have each transaction
approved. Moreover, we would expect that all credit card information should be
extremely secure.

Copyright © 2000 QA Labs Inc.
Page 2 of 2

The average web application architecture is shown in Figure 1 (below). The client end of
the system is represented by a browser, which connects to the web site server via the
Internet. The centerpiece of all web applications is a relational database which stores
dynamic contents. A transaction server controls the interactions between the database and
other servers (often called “application servers”). Fulfillment may include interfacing
with financial institutions, warehouse systems, etc. The administration function handles
data updates and database administration. Of course, there are many possible
permutations that form this basic picture.

Figure 1: Web Application Architecture

Considering this architecture, it should now become clear that web applications are not
simply web sites with some artwork and some HTML or Java. They are very similar to
the traditional transaction systems with additional complexity at the front end. The testing
effort required for such a system is considerably larger than for applications without web
interface.

The Development Life Cycle of a Web Application

Most of us have been exposed to a few software development lifecycle models, such as
the Spiral model, the Waterfall model, and so forth. While the typical software project
includes such phases as planning, requirement gathering, analysis and design,

WEB SITE

DATA BASE

USER
TRANSACTION

ADMINISTRATION FULFILLMENT

Browser

INTERNET

Copyright © 2000 QA Labs Inc.
Page 3 of 3

implementation (coding), integration, testing, release and maintenance, how do these
phases match up for a web application project? Here is one view the authors have
frequently observed:

Typical software project Web application project

Gathering of market/user requirements

"What are we going to build? How does it
compare to products currently available?"

This is typically supported by a detailed
requirements specification.

 Gathering of market/user requirements

"What services are we going to offer our
visitors/customers? What is the best user
interface and navigation to reach the most
important pages with a minimum of clicks?
What are the current trends and hot
technologies?”

This is typically based on discussions, notes
and ideas.

Planning

"How long will it take our available
resources to build this product? How will we
test this product?"

Typically involves experience-based
estimations and planning.

 Planning

"We need to get this out NOW! Marketing has
picked this date to go live; we'll just have to
have it done by then (typically 3 to 4
months)."

Purely driven by available time window and
resources.

Analysis and Design

"What technologies should we use? Any
design patterns we should follow? What kind
of architecture will allow us to reuse code
most effectively, particularly for future
versions?"

Mostly based on well known technologies
and design methods. Generally complete
before implementation starts.

 Analysis and Design

"How should the site look? What kinds of
logos and graphics will we use? How do we
develop a 'brand' for our site? Who is our
'typical' customer? How can we make it
usable? What technologies will we use?"

Short, iterative cycles of design in parallel
with implementation activities.

Implementation

“Let’s decide on the sequence of building
blocks that will optimize our integration of a
series of builds”

Sequential development of design
components.

 Implementation

"Let's put in the framework and hang some of
the key features off of it. Then we can show it
as a demo or pilot site to our prospective
users."

Iterative prototyping and story-boarding with
gradual transition of a prototype to a
production site.

Copyright © 2000 QA Labs Inc.
Page 4 of 4

Integration

"How does the product begin to take shape,
as the constituent pieces are bolted together?
Are we meeting our requirements? Are we
creating what we set out to create in the first
place?"

Assembly of components to build the
specified system.

 Integration

This phase typically does not exist. It is a
point in time when prototyping stops and the
site goes live.

Testing

"Have we tested the product in a
reproducible and consistent manner? Have
we achieved complete test coverage? Have
all serious defects been resolved in some
manner?"

Systematic testing of functionality against
specifications.

 Testing

"It's just a website -- the designer will test it
as (s)he develops it, right? How do you test a
website? Make sure the links all work?"

Testing of implied features based on a general
idea of desired functionality.

Release

"Have we met our acceptance criteria? Is the
product stable? Has QA authorized the
product for release? Have we implemented
version control methods to ensure we can
always retrieve the source code for this
release?"

Building a release candidate and burning it to
CD.

 Release

"Go live NOW! We can always add the rest of
the features later!"

Transfer of the development site to the live
server.

Maintenance

"What features can we add for a future
release? What bug fixes? How do we deal
with defects reported by the end-user?"

Periodic updates based on feature
enhancements and user feedback.

 Maintenance

"We just publish new stuff when it's
ready…we can make changes on the fly, since
there's no installation required. Any changes
should be transparent to our users…"

Integral part of the extended development life
cycle for web apps.

Average timeframe for the above:

One to three years

 Average timeframe for the above:

4 months

There are many possible terms for the web app development life cycle including the
spiral life cycle or some form of iterative life cycle. A more cynical way to describe the
most commonly observed approach is to describe it as the unstructured development
similar to the early days of software development before software engineering techniques
were introduced. The “maintenance phase” often fills the role of adding missed features
and fixing problems.

Copyright © 2000 QA Labs Inc.
Page 5 of 5

The fundamental difference from traditional development is the extreme time pressure
under which web systems are developed. This necessitates a new approach, which can
severely limit the scope of the initial release and pushes many features into iterations that
follow the initial release. The resulting life cycle model could be called a whale/dolphin
model. The whale is the initial hump of effort to release the first version of the web app
and the dolphins are subsequent cycles of functionality increments. These subsequent
cycles continue throughout the life of the web application (see Figure 2 below).

Figure 2: Effort vs. Time for a Typical Web Application

The first step in planning life cycle activities for a web application is to recognize the
iterative nature of this product life cycle. Planning for subsequent releases right at the
beginning of the project will greatly facilitate tradeoffs that may have to be made in each
of the cycles.

Requirements
Requirements are traditionally the foundation for test planning. Web application projects
often have requirements that are fuzzy to start with, subject to rapid changes throughout
the project lifecycle, and often have more to do with marketing, art, branding, and
advertising than providing a solid set of core functionality that works. Typically, there is
an initial vision for the basic functions and the look-and-feel for the site. This vision is
implemented for the initial release. However, the initial vision is subject to frequent
updates and additions; especially once the initial release has gone live. A major reason
for the initial release is to meet time-to-market requirements while postponing additional
features that often are added later. As a result, we have an initial development lifecycle
followed by ripples of smaller cycles for feature additions. The web-time that so
constrains these kinds of projects usually does not allow for complete documentation and
analysis of the initial requirements and this situation does not improve much for future
additions.

Copyright © 2000 QA Labs Inc.
Page 6 of 6

This makes test planning difficult. It may have to be based on intuitive interpretation of
intended functionality. Even more aggravating is the very fluid nature of the functionality
of the site design and the lack of documenting this change. As a result, many test efforts
may go off into a “wild goose chase” testing for functionality that was changed or
deleted.

"We'll write them as we go."
"We don't have time to write requirements.... We have to ship!"
"Requirements? For a website?"

Sound familiar? The following is a direct quote from The Mythical Man-Month by
Frederick Brooks, Jr.: "The most pernicious and subtle bugs are system bugs arising from
mismatched assumptions made by the authors of the various components" (p.142). The
writing of requirements is one simple method to reduce the amount of assumptions that
have to be made by project personnel, including testers. Application software developers,
testers, and managers have learned, from painful and expensive mistakes, that this
approach can make all the difference in delivering a solid product to the customer.

Serious testing is impossible in an environment of uncontrolled changes to requirements.
Combining this statement with the realities of web development, we suggest a simple
technique that has proven useful for both the development team and the test group.
Requirements and functional specifications for the initial release should be captured in a
document. Any subsequent changes (called change requests or "CRs") should be
managed and subjected to rigorous scope management. The set of test cases will then be
based on the combination of the initial spec and the approved CRs. In the end, it is not
uncommon that the set of approved CRs will represent the majority of the feature set for
the system. There are many change request management systems on the market that can
be used for this purpose.

Implementation: The Prototype as Product
One of the fundamental software engineering principles is that prototypes are thrown
away, never shipped. Occasionally, a company will, under time-to-market pressures, ship
a product that has morphed from a prototype, often with poor results. However, it is
common practice to ship web applications that either are prototypes themselves or are
early descendants of prototypes. The implementation phase then looks much like
evolutionary development, where requirements changes lead to an evolutionary sequence
of prototypes. Any of these prototypes may be declared to be the initial production
version when time for additional iterations runs out.

This method bears a high risk of not allowing for sufficient testing before the site is
launched. If the development organization feels that it must follow the evolutionary
model, each iteration should be finished off with a test pass on a separate staging server
that is not subjected to any interference from development changes.

Copyright © 2000 QA Labs Inc.
Page 7 of 7

Quality in the Web-Space

Remember, many different companies define quality in many ways, but to the end user,
quality always means, "Am I satisfied?" If we define quality as perceived value to the
user over cost to the user, then web applications, which have no real cost to the user,
should move towards infinitely greater quality. In fact, as the cost goes down and the
marketplace becomes saturated with more and more sites that offer similar transaction
functionality, and as these sites become increasingly complex, we see the opposite occur.
Decreasing quality of software, for both desktop applications and web applications, is
something that has been occurring for quite some time now, and the sad truth is that end
users have been tolerating (if not encouraging) this trend.

We believe that market forces will cause this trend to reverse. As the Internet becomes
swamped with dot.coms competing against each other, the limited attention span of users
will reward only those sites that do not disappoint the user. This is the key argument for
increasing pressure towards better testing of web applications: with traditional software a
user has spent a certain amount of money and hence feels motivated to get the best utility
from his or her investment. The alternative would only be to buy a different solution
(which implies more expenditure, a new learning curve, incompatibilities etc.). A web
user does not have such a difficult choice. If she uses an airline reservation system that
does not behave according to expectations, she can click through to another service
provider and see if she likes that environment better. The switching costs for most web
applications are so low, that users will simply browse away from sites that exhibit poor
usability. (Refer to Jakob Nielsen's and Donald A. Norman's article for InformationWeek
Online entitled "Usability On The Web Isn't A Luxury" at
http://www.informationweek.com/773/web.htm, or refer to Dr. Neilsen's website,
http://www.useit.com, for more information on usability in general.) We believe that
quality and functionality of web sites will ultimately be a major factor in the inevitable
shake-out, which will reduce the number of redundant dot.coms.

Some Quality Factors of Web Applications
Security, reliability, and recoverability are all issues that can make or break a site. Up-
time requirements for web applications are far more stringent than for off-the-
shelf/shrink-wrap software. Web sites are just not allowed to fail, become corrupt, or
exhibit poor usability, while the average computer user may tolerate buggy software (but
not so buggy that they cannot do their work).

Some key quality factors that can be related to web applications include:

1) Reliability;
2) Recoverability;
3) Security;
4) Usability; and
5) Performance.

Copyright © 2000 QA Labs Inc.
Page 8 of 8

Reliability
One definition of "reliable" is exhibiting a reasonable consistency in results obtained.
How many web sites today can be called "reliable"? Another definition is that which may
be relied upon, worthy of confidence, trustworthy. Perhaps a web application is trusted by
users who use an on-line banking web application (service) to complete all of their
banking transactions. One would hope that the results are consistent. However, perhaps
the site is not always accessible on a consistent basis or displays periodic performance
problems.

One example is that of a financial institution which set-up on-line trading services for its
clients. Many customers signed up for and used the service. However, this institution did
not grow the back-end application and database servers and the fulfillment personnel
(brokers, traders, etc.) in line with the growth of the customer base. It wasn't long before
customers could not access the site for periods of three to fours hours at a time, and when
they did get access to request a trade, it often took several additional hours before their
trades were processed. One can easily image the frustration and potential financial losses
of the customers when their trades could not be completed on time and as requested. This
would be an example where a lack of consistency implies a lack of reliability. (This
scenario, from the perspective of the developing company, may be more of a scalability
issue; however, from the user's point of view, it is a reliability issue.) A simpler example
of reliability might be a shopping site that is constantly unavailable to its users, whether
due to excessive traffic or hardware/software problems. A user will, after successive
failed attempts to connect to the site, browse to a competitor's site.

It is the opinion of the authors that reliability of web applications is purely a user-based
quality factor. That is, the definition of "reliable" as it applies to web applications is a
subjective one, and that the user is the creator and modifier of such a definition. Having
web application project personnel define "reliability" as it should apply to their web
application is misleading. This is one more reason to acquire information regarding
targeted audiences when designing and testing web applications.

Recoverability
This is another quality factor that is often ignored or put-off until after the initial release.
Many web applications will have a back-up or "redundant" server -- a server to which
web traffic is rerouted should the primary server fail. This set-up may be mimicked for
the database server component(s) as well. The re-routing mechanism(s) must be tested
with methods similar to tests performed on fault tolerant systems. However,
recoverability implies much more than a fail-safe switchover. It has to be re-synchronized
with all connected systems, such as warehousing systems, payment fulfillment
operations, etc., as well as performing data validation to ensure that data has not been lost
or become corrupted. This can increase the complexity of test scenarios significantly.

The potential financial losses from having your web application unavailable are large. If a
user finds your service unavailable for an excessive period of time (excessive from the
user's perspective), the likelihood of that user switching or browsing to a competitor's
service is increased. The quicker your site can recover in a manner that is transparent to

Copyright © 2000 QA Labs Inc.
Page 9 of 9

the user, the less chance you give that user to browse away from your site, and thus your
services. If the site cannot recover quickly (or in a manner that is transparent to the user),
the next step is to manage the user's expectations, by informing the user when you expect
your site to be available and functional. Explaining to a user that your site will be
available within 24 hours from the shut down will allow you to keep more users coming
back to your site once restored, as compared to providing the user with no information.

Security
Probably the most critical criterion for a web application is that of security. The need to
regulate access to information, to verify user identities, and to encrypt confidential
information is of paramount importance. Credit card information, medical information,
financial information, and corporate information must all be protected from persons
ranging from the casual visitor to the determined cracker. There are many layers of
security, from password-based security to digital certificates, each of which has its pros
and cons. For a good on-line reference about security issues, refer to the W3C FAQ on
Security (http://www.w3.org/Security/Faq/www-security-faq.html).

Many of the security measures used for web applications are third-party products.
Certificates, Secure Sockets Layer (SSL) software, web server software (IIS, Apache,
etc.), and so forth, are all products created by companies other than your own. They all
have defects, some of which can be exploited by those who wish to intercept secure data,
corrupt your servers or databases, hijack your content and/or scripts, or tap into password
files. When a security defect is discovered, it can difficult to see a solution in a
reasonable time frame from a third-party vendor. Which leaves only one feasible option:
modify your product to deal with these defects.

Some methods of reducing these kinds of risks include:

1) Researching current security issues in third-party products you plan on using - this
may affect your decision to use that product;

2) Reviewing your design to try to remove as many potential security issues as
possible, including examining architectural designs;

3) Writing "defensive" code, as demonstrated with the rules for good defensive Java
programming listed in Chapter 7 of Securing Java, by Gary McGraw and Edward
Felten, (copyright 1999, John Wiley and Sons) available on-line at
http://www.securingjava.com/chapter-seven/chapter-seven-1.html.

4) Creating coding standards that reflect some of these "defensive" techniques; and
5) Performing code inspections on the high-risk components of the web application.

A dangerous and common approach is to release software and wait for someone to
discover a security-related defect, which can then be addressed by releasing a "patch."
For a web application, the patch can usually be installed in a seamless manner (one that is
transparent to the user). However, since security has a large dependence on environment,
changing the environment by installing such a patch may put your web application at
risk.

Copyright © 2000 QA Labs Inc.
Page 10 of 10

Usability
Usability is a critical area for a web application. In the past, only very sophisticated
projects consulted GUI designers or experts in human-machine interaction. These
specialists are now in greater demand since the success of a web application depends
largely on usability. Many of the web GUI designers are in fact artists, desktop
publishers, and the like. They may not have had formal training or even exposure into
some of the basic GUI and usability principles.

Usability of web applications will gain in importance over the next few years, as more
and more web applications emerge, and as web application users become more
experienced, or “sophisticated” users. The sophisticated user will have very different
usability issues than a novice user. To date, the Internet has been about providing
information (largely textual information) and a few services to relatively inexperienced
users. As that model moves towards increased services for intermediate or sophisticated
users, new approaches will have to be undertaken and implemented.

How do you test this without a large beta test group? Some companies are using the
concept of a "pilot" site, which is a scaled-back version of the web application, accessible
only to a small to medium-sized focus group. Feedback regarding the interfaces, the look
and feel, and the workflow of the site is then collected from these groups and used to
modify the application before it goes live (or for future iterative releases). Understanding
the types of users that will visit the site will allow initial design efforts to focus on those
kinds of users. The focus group can then be used to confirm or correct the initial design.

There are two approaches to this problem. The first is to capture and quantify the
meaning of learnability, understandability, and operability in a testable form. In other
words, it is an attempt to formulate these testable requirements by describing how they
are supposed to be accomplished. This may then form the basis of a usability test plan. A
second approach is to gather a group of representatives of the target user community and
to let them work through the site while observing their problems and the bugs they run
into. However, this approach may make it difficult to clearly determine what constitutes a
bug. There are many techniques that can be used to help distinguish usability defects
from feature requests, such as using "thinking aloud" and "question asking" combined
with basic performance information gathering. (For basic information on these techniques
and reference links to other resources, refer to James Hon's The Usability Methods
Toolbox website at http://www.best.com/~jthom/usability/.)

Performance
Performance testing involves testing a program for timely responses. The time needed to
complete an action is usually benchmarked, or compared, against either the time to
perform a similar action in a previous version of the same program or against the time to
perform the identical action in a similar program. For example, the time to open a new
file in one application would be compared against the time to open a new file in previous
versions of that same application, as well as the time to open a new file in the competing
application. The benchmark time for a piece of software can also be defined explicitly by

Copyright © 2000 QA Labs Inc.
Page 11 of 11

the client in the requirement specification document. When documenting these
requirements, state the performance requirements in terms of real numbers instead of
using statements like "must be at least as fast as the previous version." Using real
numbers makes reporting performance problems much easier to rank in order of priority
and severity. Report performance problems in terms of the percentage of improvement
needed to meet the performance requirements.

When conducting performance testing, be sure to pay attention to the data volume (i.e.
file size) so you’re comparing apples to apples instead of apples to oranges. Calibrate
your performance test machine against other machines of the same class to make sure that
the times are comparable. Make sure that at least some performance testing is done early,
even if the formal performance testing is scheduled to be conducted at a later milestone.
Early performance testing will give an indication of how much work will need to be done
in order to meet the performance requirements. Conduct some of the early performance
testing on a minimum configuration machine. Include connecting via a dial-up
connection with a modem (many users will have connection speeds of 28.8k, yet many
testers are testing via a T1 or xDSL connection) so any problems with performance can
be identified as early as possible. Whenever possible automate performance testing so
that it is more accurate and can be run on a regular basis.

One flavor of performance testing is load testing. Load testing for a web application can
be thought of as multi-user performance testing, where you want to test for performance
slow-downs that occur as additional users use the application. The key difference in
conducting performance testing of a web application versus a desktop application is that
the web application has many physical points where slow-downs can occur. The
bottlenecks may be at the web server, the application server, or at the database server, and
pinpointing their root causes can be extremely difficult. Refer to Mark D. Anderson's
article in Software Testing and Quality Engineering (September/October 1999, Vol 1,
Issue 5, pages 30-41) for a good discussion on load (multi-user performance) testing.

Testing in the Web-Space- What’s different?

By now it should be apparent that testing web applications is not trivial. Testing a web
page with relatively static content and little to no forms will take very little time (Are all
the links correct and working? Does all content load correctly? Is loading time fast
enough?). Testing complete e-commerce applications requires much more sophisticated
testing strategies, and thus more time.

One of the major weaknesses of web application testing is inadequate technical expertise
and ability. Testers have to understand subtle browser, operating system, web server, and
database differences. The more they know about scripting (ASP, XML, HTML, etc.),
databases (Oracle, SQL, etc.), web servers (IIS, Apache, etc.), and the data transfer
mechanism behind the UI (TCP/IP, HTTP, FTP, etc.), the more effective they will be.
Testers simply cannot just test the functionality by exercising the UI (in this case, the
browser); they will miss all the other aspects of testing required for web applications

Copyright © 2000 QA Labs Inc.
Page 12 of 12

(such as performance, security, database integrity, etc.). Remember, crackers do not use
browsers to crack sites; they use scripts.

As well, the lack of mature test tools makes automation difficult. This situation is
reminiscent of when Java first hit the high-tech scene. Developers and project managers
alike wanted to use this new technology. Testers suddenly had their workloads doubled,
tripled, or more, simply because of the number of configurations and the lack of any
mature testing and automation tools. One company for whom one of the authors worked,
had developed a large Java application, and was forced to write custom debugging and
automation tools because, at the time, nothing comparable existed. This situation will not
change as long as web technology continues to evolve at the current rate.

The Test Environment - Does such a thing currently exist in web-space?
Poorly defined development and test environments can hamper version control and other
configuration management efforts. How do you rollback code changes when you have no
previous build? How does new functionality and defect fixes get migrated into each
build? Does the term “build” mean anything in the web-space? For most web application
projects, it doesn't. Test personnel cannot revert to a "known state" if the source code is
not being archived or not being labeled or branched in the version control repository. Not
having a previous release to revert to for testing purposes makes isolating and analyzing
defects more difficult as the environment continually becomes more complex. Another
problem area is the common (and dangerous) practice of migrating defect fixes and new
functionality to a live server prior to testing, and testing on live servers. Your test team
shouldn't bring down your site; they should bring down a separate test server.

What is the best environment to set-up for a web-testing team? How can companies
organize their environment to help testing, instead of making it nearly impossible? We
suggest at a minimum three separate servers:

• A development server used for the development team. This may be a place for a
prototype or simply to play with features.

• A staging server that is periodically updated with a new release. This server can
also be used as the test platform. Crashing the staging server does not affect the
development team or the live site.

• A production server that hosts the live site. Nobody, except an appointed web
master is allowed to modify this server. Its contents are updated periodically from
the staging server.

This is a minimum configuration and there are many variations of this basic scheme,
especially when the full (final) web application itself consists of several servers, not all of
which are necessarily at the same geographic location.

A test environment should mimic the destined (planned) deployment environment as
closely as possible. Testing a web application in a LAN setting will not be the same as
testing a web application hosted on a series of external web and application servers.
Proper security testing cannot be performed on a web application in any configuration
other than the final one. The complexity of the networking, security (firewalls, proxy

Copyright © 2000 QA Labs Inc.
Page 13 of 13

servers, etc.), hardware, and software configurations cannot be reproduced to any degree
of accuracy in an internal LAN-type environment. If your company were developing
software for hand-held devices, you would test on the intended devices, not on your NT
machine. Yet, many companies choose to test in this manner. With a short test schedule,
there can be some benefit to testing on an environment other than the final one - if the
testing performed is only usability testing or beta group/pilot site testing with the sole
purpose of gathering user feedback for future iterations.

Platforms and Browsers
Testing issues are aggravated by the large variety of browser and operating system
compatibility testing required. Creating a matrix of operating systems vs. browser
versions, we see how large this can be. Since it is very difficult to force users to use the
latest browsers (there will always be someone using Netscape 2.x somewhere), you will
have to test with older versions.

One cannot assume that browsers behave in similar ways. There are known differences
between browser versions and between MS Explorer and Netscape. Nonetheless, it is
important to understand the issue of multiple configuration testing, and how that can
really grow your test needs in a hurry. Look at this basic matrix. Imagine having to test
on each of these platforms with each of the main browsers!

 Netscape Internet Explorer HotJava Other
Windows 95
Windows 98
Windows 98SE
Windows 98ME
Windows NT 4.0 Workstation
w/SP 3

Windows NT 4.0 Workstation
w/SP 5

Windows NT 4.0 Workstation
w/SP 6

Windows NT 4.0 Server w/SP
6

Windows 2000 Pro
Windows 2000 Server
MacOS 9.0
MacOS 8.6
MacOS 8.0
MacOS 7.6

This list does not even include WebTV, Linux, UNIX, and UNIX-like machines, nor
does it express the multitudes of browser versions. There are significant HTML and/or
XML compliance, security, and performance differences between browsers and between
browser versions, so it is important to test on a variety of browser versions. A good
understanding of the make up of the application's typical users and a breakdown of the

Copyright © 2000 QA Labs Inc.
Page 14 of 14

browsers and browser versions currently being used should help focus your test effort in
this area. For example, Microsoft Explorer offers good performance when connecting to
the IIS server while the Netscape Navigator browser performance is remarkably more
sluggish in that configuration.

The goal is to separate the various configurations into two groups: a core set of "primary"
configurations, on which the majority of your testing will be completed; and the
remaining or "secondary" configurations, on which security, performance, functionality,
system, and acceptance testing will be performed (time permitting of course). Separating
the possible configurations into these two lists will allow a test team to best utilize the
short amount of time allocated to testing.

Focusing Your Testing Efforts
Testing for usability, browser compatibility and other front-end aspects may easily
detract from testing the functionality of the back-end. Fortunately, back-end applications
represent more traditional software applications such as data base access, transaction
servers, etc. In many cases, these functional areas can be isolated and exercised using test
drivers and stubs. Provided the system is designed using a modular architecture, testing
the back-end components can be done in parallel to the development and testing of front-
end components.

Critical for overall test planning is to recognize that there will probably not be enough
time to test all parts of the system exhaustively. In an ideal world, we would develop a
test plan and systematically work through the plan. In web time, this is not likely to
happen. Here is what we suggest:

♦ Develop a test plan which is as complete as possible
♦ Structure the plan by functional component
♦ Prioritize components using the associated risk of failure as a guide to

determine the priority
♦ Start testing the high priority items and work your way down to lower

priorities until you run out of time.
The required risk prioritization is the most critical part. It should be derived from the
business case, reviewed with those who define the product vision, and verified with user
representatives.

Conclusion

Web applications require a new perspective on software development and testing
practices. While many activities are similar to traditional software engineering, we have
to adapt to the new realities of developing in web time. Some of these realities, including
shorter life cycles, multidisciplinary teams, rapidly changing technology, increase the
risks of development. In the past, we learned to increase the rigor of the development
process to manage increased risk. However, in an era of shorter and shorter development
cycles, the time available for process must also be shortened. The only way out of this
conundrum is to focus on those process aspects that give the highest return for the time

Copyright © 2000 QA Labs Inc.
Page 15 of 15

invested. Each team member has to work smarter, not just harder. When it comes to
testing, this means that the time spent on test planning is becoming even more valuable
since it allows us to test strategically important parts of the application instead of testing
tactically convenient ones.

QW2000 Paper 7M2

Mr. Rex Black
(Rex Black Consulting Services, Inc.)

The Fine Art of Writing a Good Bug Report

BACK TO QW2000 PROGRAM

Key Points

Bug reporting is a critical, daily task for most test personnel during test execution. Bugs reported well get
development and management attention and get fixed; bugs reported poorly are ignored, returned, or
improperly prioritized.

●

We test professionals have paid a great deal of attention to the art of test software, but we have talked much
less about the art of reporting test results, especially failures.

●

This presentation will introduce attendees to a ten-step process for writing bug reports that are accurate,
concise, thoroughly edited, well-conceived, and high-quality technical documents.

●

Presentation Abstract

In a speech at Quality Week '99, Roger Sherman, a Microsoft test manager, identified the leading
cause of bug report closure as "unreproducible." This is a regrettable circumstance, since such bug
reports waste precious time during tight development schedules, add absolutely nothing to product
quality, and lead to frustration and bad feelings between development engineers and test engineers.
Sometimes, these bug reports arise from transient or random events, inconsistency of tools and
configurations between test and development, or a vague definition of "correct" behavior under the
tested conditions, but many bug reports closed as unreproducible are unclear, misleading, or just plain
wrong.

Fortunately, I have learned some tricks for writing great bug reports that get management attention,
communicate clearly to developers, and get fixed. Not only do these techniques provide solid technical
payoffs in terms of a greater proportion of bugs fixed, they also communicate to development and to
management that testers are serious about helping developers fix bugs. Writing bugs reports using
these methods on projects I have managed, only around one out of eight of bug reports are closed
without a fix.

About the Author

Rex Black has almost two decades in the computer industry, primarily in testing and quality
assurance. He is the President and Principal Consultant of Rex Black Consulting Services, Inc., an
international software and hardware testing and quality assurance consultancy. RBCS' clients include
Dell, Sun, First USA/Bank One, Hitachi, Netpliance, Motorola, Omnipoint, Pacific Bell, Clarion, and

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7M2.html (1 of 2) [4/28/2000 2:35:43 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

others. His work with these clients has taken him to Taiwan, Hong Kong, Japan, the U.K., Canada,
Germany, Holland, France, Spain, Switzerland, and Italy, along with locations throughout the United
States.

Rex is the author of Managing the Testing Process , published by Microsoft Press in their Best
Practices series,. He gives speeches, presents papers, and teaches tutorials at events such as
Quality Week, Practical Software Quality Techniques, Software Testing and Analysis Review, and
others on topics related to software testing.

He is also a Trainer for the International Institute for Software Testing, teaching their certification
course (CSTP) on software test management.

Mr. Black holds a B.Sc. in Computer Science and Engineering from UCLA. He belongs to the
Association for Computer Machinery and the American Society for Quality.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/7M2.html (2 of 2) [4/28/2000 2:35:43 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

The Fine Art of
Writing a Good Bug Report

Rex Black
RBCS, Inc.
31520 Beck Road
Bulverde, TX 78163

Phone: +1 (830) 438-4830
Fax: +1 (830) 438-4831

HTTP: //www.rexblackconsulting.com
E-mail: Rex_Black@rexblackconsulting.com

Stable fly photo courtesy of

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 2

What Is a Bug Report and Why
Do We Write Them?

• Bug report is a technical document
– Describes failure mode in system under test (SUT)
– The only tangible “product” of testing

• Not a management problem escalation tool
– “Build not delivered on time” is not a bug report summary
– “Build 781 fails to install” is a bug report summary

• Written to increase product quality
– Documents a specific quality problem quality of SUT
– Communicates to developers

2

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 3

Are Bad Bug Reports a Problem?
• Anecdotally, developers return many bug reports as

unreproducible, leading to:
– Wasted time writing the report
– Frustration for tester and developer alike
– No increase in product quality

• Bug reports can be unreproducible due to:
– Intermittence
– Inconsistent test/development environments
– Disputes over “correct” behavior

• But many unreproducible bug reports are poorly
conceived and poorly written

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 4

Ten Tips for a Good Bug Report
1 Structure: test carefully
2 Reproduce: test it again
3 Isolate: test it differently
4 Generalize: test it elsewhere
5 Compare: review results of similar tests
6 Summarize: relate test to customers
7 Condense: trim unnecessary information
8 Disambiguate: use clear words
9 Neutralize: express problem impartially
10Review: be sure
!Remember, writing is creative: two good bug reports on one

problem can differ in style and content (but not substance)

3

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 5

Case Study: SpeedyWriter

• Let’s use a case study to illustrate these
techniques

• SpeedyWriter
• A Java-based word processor
• Supports the usual word processing

functions
• Differences highlighted in italics in case

study

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 6

Structure
• Structured testing foundational to good bug

reports
– Use deliberate, careful approach to testing
– Follow written test cases or run automated ones

per written or standardized process
– Take careful notes

• Bug reporting begins when expected and
observed results differ

• Sloppy testing results in sloppy bug reports

4

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 7

Structured Testing Paradigms

Ben Franklin standing in a
thunderstorm hoping to get hit
by lightning

M. Maria Sklodowska-Curie
performing a carefully
designed experiment

Good software
testing should be

more like a
carefully designed

laboratory
experiment than a
random walk in

an electrical
storm--or worse.

Testers are
engineers, after

all.

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 8

Reproduce
• Always check reproducibility of the failure

as part of writing bug report
!Three times is a good rule of thumb

• Document a crisp sequence of actions that
will reproduce the failure

• Report intermittent, hard-to-repeat failures
– Note failure incidence rate (i.e., 1 in 3 tries)

⋅ Clean steps to reproduce addresses issue of
unreproducibility head-on

5

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 9

Good
Steps to Reproduce
1. I started the SpeedyWriter editor, then I created a
new file.
2. I then typed in four lines of text, repeating “The
quick fox jumps over the lazy brown dog” each
time, using different effects each time, bold, italic,
strikethrough, and underline.
3. I highlighted the text, then pulled down the font
menu, and selected Arial.
4. This nasty bug trashed all the text into
meaningless garbage, wasting the user’s time.
5. I was able to reproduce this problem three out of
three tries.

Bad
Nasty bug trashed contents of new file that I created
by formatting some text in Arial font, wasting my
time.

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 10

Isolate
• Change variables that may alter symptom

– Make changes one by one
– Requires thought and understanding of SUT
– May not be immediately obvious

• Can be extensive
– Match amount of effort to severity of problem
– Avoid getting into debugging activities

⋅ Good isolation shows due diligence and
gives developers head start on debugging

6

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 11

Better
Steps to Reproduce
1. I started the SpeedyWriter editor, then I created a
new file.
2. I then typed in four lines of text, repeating “The
quick fox jumps over the lazy brown dog” each
time, using different effects each time, bold, italic,
strikethrough, and underline.
3. I highlighted the text, then pulled down the font
menu, and selected Arial.
4. This nasty bug trashed all the text into
meaningless garbage, wasting the user’s time.
5. I was able to reproduce this problem three out of
three tries.
Isolation
On the vague suspicion that this was just a
formatting problem, I saved the file, closed
SpeedyWriter and reopened the file. The garbage
remained.
If you save the file before Arializing the contents, the
bug does not occur.
The bug does not occur with existing files.
This only happens under Windows 98.

Good
Steps to Reproduce
1. I started the SpeedyWriter editor, then I created a
new file.
2. I then typed in four lines of text, repeating “The
quick fox jumps over the lazy brown dog” each
time, using different effects each time, bold, italic,
strikethrough, and underline.
3. I highlighted the text, then pulled down the font
menu, and selected Arial.
4. This nasty bug trashed all the text into
meaningless garbage, wasting the user’s time.
5. I was able to reproduce this problem three out of
three tries.
Isolation
Doesn’t happen on Solaris.

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 12

Generalize
• Look for related failures in SUT

– Does the same failure occur in other modules or
locations?

– Are there more severe occurrences of the same
fault?

• Avoid confusing unrelated problems
– Same symptom can arise from different bugs

"Generalizing reduces duplicate bug reports
and refines understanding of failure

7

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 13

Better
Steps to Reproduce
1. I started the SpeedyWriter editor, then I created a
new file.
2. I then typed in four lines of text, repeating “The
quick fox jumps over the lazy brown dog” each
time.
3. I highlighted the text, then pulled down the font
menu, and selected Arial.
4. This nasty bug trashed all the text into
meaningless garbage, wasting the user’s time.
5. I was able to reproduce this problem three out of
three tries.
Isolation
Also happens with Wingdings and Symbol fonts.
On the vague suspicion that this was just a
formatting problem, I saved the file, closed
SpeedyWriter and reopened the file. The garbage
remained.
If you save the file before changing the font of the
contents, the bug does not occur.
The bug does not occur with existing files.
This only happens under Windows 98.

Good
Steps to Reproduce
1. I started the SpeedyWriter editor, then I created a
new file.
2. I then typed in four lines of text, repeating “The
quick fox jumps over the lazy brown dog” each
time, using different effects each time, bold, italic,
strikethrough, and underline.
3. I highlighted the text, then pulled down the font
menu, and selected Arial.
4. This nasty bug trashed all the text into
meaningless garbage, wasting the user’s time.
5. I was able to reproduce this problem three out of
three tries.
Isolation
On the vague suspicion that this was just a
formatting problem, I saved the file, closed
SpeedyWriter and reopened the file. The garbage
remained.
If you save the file before Arializing the contents,
the bug does not occur.
The bug does not occur with existing files.
This only happens under Windows 98.

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 14

Compare
• Examine results for similar tests

– Same test run against earlier versions
– Similar conditions, other tests, same version

• Is failure a regression?
– Change introduces defect not in earlier versions
– Usually found when previously passed tests fail

• Not always possible
– Test previous blocked, reinstall impractical
– Tested feature unavailable in earlier versions

8

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 15

Better
Steps to Reproduce
1. I started the SpeedyWriter editor, then I created a
new file.
2. I then typed in four lines of text, repeating “The
quick fox jumps over the lazy brown dog” each
time.
3. I highlighted the text, then pulled down the font
menu, and selected Arial.
4. This nasty bug trashed all the text into
meaningless garbage, wasting the user’s time.
5. I was able to reproduce this problem three out of
three tries.
Isolation
New to build 1.1.018; same test case passed against
builds 1.1.007 (System Test entry) through 1.1.017.
Also happens with Wingdings and Symbol fonts.
On the vague suspicion that this was just a
formatting problem, I saved the file, closed
SpeedyWriter and reopened the file. The garbage
remained.
If you save the file before changing the font of the
contents, the bug does not occur.
The bug does not occur with existing files.
This only happens under Windows 98.

Good
Steps to Reproduce
1. I started the SpeedyWriter editor, then I created a
new file.
2. I then typed in four lines of text, repeating “The
quick fox jumps over the lazy brown dog” each
time.
3. I highlighted the text, then pulled down the font
menu, and selected Arial.
4. This nasty bug trashed all the text into
meaningless garbage, wasting the user’s time.
5. I was able to reproduce this problem three out of
three tries.
Isolation
Also happens with Wingdings and Symbol fonts.
On the vague suspicion that this was just a
formatting problem, I saved the file, closed
SpeedyWriter and reopened the file. The garbage
remained.
If you save the file before changing the font of the
contents, the bug does not occur.
The bug does not occur with existing files.
This only happens under Windows 98.

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 16

Summarize
• Put a short “tag line” on each report

– Capture failure and impact on customer
≈ Analogy: Bumper sticker

• Harder than it seems
– Testers must spend time thinking about this

√ Advantages of good summaries
– Get management attention
– Name bug report for developers
– Help set priorities

9

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 17

Better
Summary
Arial, Wingdings, and Symbol fonts corrupt new files.
Steps to Reproduce
1. I started the SpeedyWriter editor, then I created a
new file.
2. I then typed in four lines of text, repeating “The
quick fox jumps over the lazy brown dog” each time.
3. I highlighted the text, then pulled down the font
menu, and selected Arial.
4. This nasty bug trashed all the text into meaningless
garbage, wasting the user’s time.
5. I was able to reproduce this problem three out of
three tries.
Isolation
New to build 1.1.018; same test case passed against
builds 1.1.007 (System Test entry) through 1.1.017.
Also happens with Wingdings and Symbol fonts.
On the vague suspicion that this was just a formatting
problem, I saved the file, closed SpeedyWriter and
reopened the file. The garbage remained.
If you save the file before changing the font of the
contents, the bug does not occur.
The bug does not occur with existing files.
This only happens under Windows 98.

Good
Steps to Reproduce
1. I started the SpeedyWriter editor, then I created a
new file.
2. I then typed in four lines of text, repeating “The
quick fox jumps over the lazy brown dog” each time.
3. I highlighted the text, then pulled down the font
menu, and selected Arial.
4. This nasty bug trashed all the text into meaningless
garbage, wasting the user’s time.
5. I was able to reproduce this problem three out of
three tries.
Isolation
New to build 1.1.018; same test case passed against
builds 1.1.007 (System Test entry) through 1.1.017.
Also happens with Wingdings and Symbol fonts.
On the vague suspicion that this was just a formatting
problem, I saved the file, closed SpeedyWriter and
reopened the file. The garbage remained.
If you save the file before changing the font of the
contents, the bug does not occur.
The bug does not occur with existing files.
This only happens under Windows 98.

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 18

Condense

• Eliminate extraneous words or steps
– Reread report carefully
– Avoid both cryptic commentary and droning on

• Are any details or actions irrelevant?
• Everyone’s time is precious, so don’t waste

any of it on unnecessary verbiage, but don’t
cut any meat, either

10

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 19

Better
Summary
Arial, Wingdings, and Symbol fonts corrupt new files.
Steps to Reproduce
1. Started SpeedyWriter editor, then created new file.
2. Typed four lines of text, repeating “The quick fox
jumps over the lazy brown dog” each time.
3. Highlighted text, then pulled down the font menu,
and selected Arial.
4. This nasty bug trashed all text into meaningless
garbage, wasting the user’s time.
5. Reproduced three out of three tries.
Isolation
New to build 1.1.018; same test case passed against
builds 1.1.007 (System Test entry) through 1.1.017.
Also happens with Wingdings and Symbol fonts.
On vague suspicion this was a formatting problem,
saved file, closed SpeedyWriter and reopened file.
Garbage remained.
Saving file before changing font prevents bug.
Bug does not occur with existing files.
Only happens under Windows 98.

Good
Summary
Arial, Wingdings, and Symbol fonts corrupt new files.
Steps to Reproduce
1. I started the SpeedyWriter editor, then I created a
new file.
2. I then typed in four lines of text, repeating “The
quick fox jumps over the lazy brown dog” each time.
3. I highlighted the text, then pulled down the font
menu, and selected Arial.
4. This nasty bug trashed all the text into meaningless
garbage, wasting the user’s time.
5. I was able to reproduce this problem three out of
three tries.
Isolation
New to build 1.1.018; same test case passed against
builds 1.1.007 (System Test entry) through 1.1.017.
Also happens with Wingdings and Symbol fonts.
On the vague suspicion that this was just a formatting
problem, I saved the file, closed SpeedyWriter and
reopened the file. The garbage remained.
If you save the file before changing the font of the
contents, the bug does not occur.
The bug does not occur with existing files.
This only happens under Windows 98.

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 20

Disambiguate
• Remove, rephrase, or expand vague,

misleading, or subjective words and
statements

• Make sure report is not subject to
misinterpretation

√ Goal: Clear, indisputable statements
of fact
∴ Lead developer by the

hand to bug

11

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 21

Better
Summary
Arial, Wingdings, and Symbol fonts corrupt new files.
Steps to Reproduce
1. Started SpeedyWriter editor, then created new file.
2. Typed four lines of text, repeating “The quick fox
jumps over the lazy brown dog” each time.
3. Highlighted all four lines of text, then pulled down
the font menu, and selected Arial.
4. This nasty bug trashed all text into meaningless
garbage, including control characters, numbers, and
other binary junk, wasting the user’s time.
5. Reproduced three out of three tries.
Isolation
New to build 1.1.018; same test case passed against
builds 1.1.007 (System Test entry) through 1.1.017.
Reproduced with same steps using Wingdings and
Symbol fonts.
On vague suspicion this was a formatting problem,
saved file, closed SpeedyWriter and reopened file.
Garbage remained.
Saving file before changing font prevents bug.
Bug does not occur with existing files.
Only happens under Windows 98, not Solaris, Mac, or
other Windows flavors.

Good
Summary
Arial, Wingdings, and Symbol fonts corrupt new files.
Steps to Reproduce
1. Started SpeedyWriter editor, then created new file.
2. Typed four lines of text, repeating “The quick fox
jumps over the lazy brown dog” each time.
3. Highlighted text, then pulled down the font menu,
and selected Arial.
4. This nasty bug trashed all text into meaningless
garbage, wasting the user’s time.
5. Reproduced three out of three tries.
Isolation
New to build 1.1.018; same test case passed against
builds 1.1.007 (System Test entry) through 1.1.017.
Also happens with Wingdings and Symbol fonts.
On vague suspicion this was a formatting problem,
saved file, closed SpeedyWriter and reopened file.
Garbage remained.
Saving file before changing font prevents bug.
Bug does not occur with existing files.
Only happens under Windows 98.

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 22

Neutralize

• Deliver bad news gently
• Be fair-minded in wording and implications
• Avoid:

– Attacking developers
– Criticizing the underlying error
– Attempting humor or using sarcasm

• Confine bug reports to statements of fact
!You never know who’ll read the reports

12

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 23

Better
Summary
Arial, Wingdings, and Symbol fonts corrupt new files.
Steps to Reproduce
1. Started SpeedyWriter editor, then created new file.
2. Typed four lines of text, repeating “The quick fox
jumps over the lazy brown dog” each time.
3. Highlighted all four lines of text, then pulled down
the font menu, and selected Arial.
4. All text converted to control characters, numbers,
and other apparently random binary data.
5. Reproduced three out of three tries.
Isolation
New to build 1.1.018; same test case passed against
builds 1.1.007 (System Test entry) through 1.1.017.
Reproduced with same steps using Wingdings and
Symbol fonts.
On vague suspicion this was a formatting problem,
saved file, closed SpeedyWriter and reopened file.
Garbage remained.
Saving file before changing font prevents bug.
Bug does not occur with existing files.
Only happens under Windows 98, not Solaris, Mac, or
other Windows flavors.

Good
Summary
Arial, Wingdings, and Symbol fonts corrupt new files.
Steps to Reproduce
1. Started SpeedyWriter editor, then created new file.
2. Typed four lines of text, repeating “The quick fox
jumps over the lazy brown dog” each time.
3. Highlighted all four lines of text, then pulled down
the font menu, and selected Arial.
4. This nasty bug trashed all text into meaningless
garbage, including control characters, numbers, and
other binary junk, wasting the user’s time.
5. Reproduced three out of three tries.
Isolation
New to build 1.1.018; same test case passed against
builds 1.1.007 (System Test entry) through 1.1.017.
Reproduced with same steps using Wingdings and
Symbol fonts.
On vague suspicion this was a formatting problem,
saved file, closed SpeedyWriter and reopened file.
Garbage remained.
Saving file before changing font prevents bug.
Bug does not occur with existing files.
Only happens under Windows 98, not Solaris, Mac, or
other Windows flavors.

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 24

Review
• Each tester should submit each bug report to

one or more test peers for a review
• Reviewing peers should:

– Make suggestions to improve report
– Ask clarifying questions
– Even challenge “bugginess” if appropriate

!Test team should only submit best possible
bug reports, given time constraints
appropriate to priority of bug

13

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 25

Conclusions
• A bug report is a technical document

– Accurate
– Concise
– Well-conceived
– High-quality

• Instill tester focus on writing good reports
• Quality indicators for good bug reports

– Clear to management (especially the summary)
– Actionable by development
– Move quickly from opened to closed

Quality Week 2000 Copyright (c) 2000, Rex Black, All Rights Reserved 26

ROI for Good Bug Reporting
• Improved Test team communication to

senior and peer management
– Can enhance credibility, standing, and

resources

• Better tester/developer relationships
– Helps developers be effective, reduces

arguments

• Faster, more efficient bug lifecycles
– Quicker fixes and fewer reopens

⇒ Support increased product quality

Page 1 Copyright © 2000, Rex Black, All Rights Reserved rex_black@acm.org

The Fine Art of
Writing a Good Bug Report

In a speech at Quality Week ’99, Roger Sherman, a Microsoft test manager, identified the
leading cause of bug report closure as “unreproducible.” This is a regrettable
circumstance, since such bug reports waste precious time during tight development
schedules, add absolutely nothing to product quality, and lead to frustration and bad
feelings between development engineers and test engineers. Sometimes, these bug
reports arise from transient or random events, inconsistency of tools and configurations
between test and development, or a vague definition of “correct” behavior under the
tested conditions, but many bug reports closed as unreproducible are unclear, misleading,
or just plain wrong.

Fortunately, I have learned some tricks for writing great bug reports that get management
attention, communicate clearly to developers, and get fixed. Not only do these techniques
provide solid technical payoffs in terms of a greater proportion of bugs fixed, they also
communicate to development and to management that testers are serious about helping
developers fix bugs. Writing bugs reports using these methods on projects I have
managed, only around one out of eight of bug reports are closed without a fix.

Applying the following ten tips will help you achieve better bug reports:

1. Structure. A tester who uses a deliberate, careful approach to testing, and takes
careful notes, tends to have a good idea of what’s going on with the system under test.
When failures occur, he knows when the first signs of failure manifested themselves.

2. Reproduce. The tester should check reproducibility of a failure before writing a bug
report. If the problem doesn’t recur, she should still write the bug report, but she
must note the sporadic nature of the behavior. A good rule of thumb is three attempts
to recreate the failure before writing the report. Documenting a clean set of steps to
reproduce the problem addresses the issue of reproducibility head-on.

3. Isolate. After reproducing the failure, the tester should then proceed to isolate the
bug. This refers to changing certain variables, such as system configuration, that may
alter the symptom of the failure. This information gives developers a head start on
debugging.

4. Generalize. After the tester has an isolated and reproducible case, he should try to
generalize the problem. Does the same failure occur in other modules or locations?
Can he find more severe occurrences of the same fault?

5. Compare. If a tester has previously verified the underlying test condition in the test
case that found the bug, the tester should check these prior results to see if the
condition passed in earlier runs. If so, then the bug is likely a case of regression,
where a once-working feature now fails. Note that test conditions often occur in more
than one test case, so this step can involves more work than just checking past runs of
the same test case. Also, if you have a reference platform, repeat the test there and
note result.

Quality Week 2000 The Fine Art of Writing a Good Bug Report

Page 2 Copyright © 2000, Rex Black, All Rights Reserved rex_black@acm.org

6. Summarize. The first line of the bug report, the failure summary, is the most critical.
The tester should spend some time thinking through how the failure observed will
affect the customer. This not only allows the tester to write a bug report that hooks
the reader and communicates clearly to management, but also helps with setting bug
report priority.

7. Condense. With a first draft of the bug report written, the tester should reread it,
focusing on eliminating extraneous steps or words. Cryptic commentary is, of course,
not the goal, but the report should not wear out its welcome by droning on endlessly
about irrelevant details or steps which need not be performed to repeat the failure.

8. Disambiguate. In addition to eliminating wordiness, the tester should go through the
report to make sure it is not subject to misinterpretation. Some words or phrases are
vague, misleading, or subjective, and should be avoided. Clear, indisputable
statements of fact are the goal.

9. Neutralize. Being the bearer of bad news presents the tester with the challenge of
delicate presentation. Bug reports should be fair-minded in their wording. Attacking
individual developers, criticizing the underlying error, attempting humor, or using
sarcasm can create ill will with developers and divert attention from the bigger goal,
increasing the quality of the product. The cautious tester confines her bug reports to
statements of fact.

10. Review. Once the tester feels the bug report is the best one he can write, he should
submit it to one or more test peers for a review. The reviewing peers should make
suggestions, ask clarifying questions, and even, if appropriate, challenge the tester’s
assertion that the behavior is buggy. The test team should only submit the best
possible bug report, given the time constraints appropriate to the priority of the bug.

A bug report should be an accurate, concise, thoroughly-edited, well-conceived, high-
quality technical document. The test team needs to focus on the task of writing bug
reports, and the test leads and manager must make it clear to each member of the test
team that writing good bug reports is a primary job responsibility. Quality indicators for a
well-tuned bug reporting process include:

• Clarity to management, particularly at the summary level;

• Utility to the development team, primarily in terms of giving the developer all the
information needed to effectively debug the problem;

• Brevity of the bug lifecycle from opened to closed, reducing cycles where developers
return poor quality reports for more information, leading to tester rework.

Improving the bug reporting process does require an effort, but provides significant
payoffs. First, a crisp process improves the test team’s communications with senior and
peer management, which enhances the team’s credibility and professional standing, and
can encourage management to invest more resources in testing. Second, the smooth
handoff to developers promotes positive relationships. Third, shorter bug lifecycles are
more efficient, so the time invested up front writing a good bug report is repaid in time
not wasted rewriting a poor bug report. These payoffs help the development process
achieve better product quality through effective communication and efficient workflows.

QW2000 Vendor Technical Paper 8V1

Mr. Jim Bampos
(Vanteon)

Testing E-Commerce Applications

BACK TO QW2000 PROGRAM

Presentation Abstract

The Testing e- seminar addresses the needs and strategies for specialized testing of e-applications.
Specific approaches to e-application verification are covered, including Load and Performance
Testing, Usability Testing, Functional/Transaction Testing, Configuration Testing, and Automated
Testing. Test strategies and testing complexities are identified for the e-application from Front-end to
Back-end.

About the Author

As Vice President of e-Quality and Test Solutions, James Bampos is responsible for Vanteon's quality
assurance (QA) and software testing services for development centers throughout the nation. Mr.
Bampos manages the QA Outsourcing division, in addition to managing QA and testing activities in
support of the company's eBusiness, wireless, commercial software, and hardware and embedded
development solutions. Over the last three years, Mr. Bampos has grown the QA Outsourcing division
by 1000%.

Mr. Bampos joined Vanteon in the Boston development center (formerly Turning Point Software) in
1995 and implemented best-of-breed SQA/Test methodologies, standards, and practices that made
the organization a quality leader in the outsourcing industry. Mr. Bampos is involved with the Los Altos
Workshop for Software Testing and the Software Testing Managers Roundtable - both periodic
gatherings of senior practitioners in the QA industry. Mr. Bampos has been published in Software
Testing and Quality Engineering magazine and frequently speaks at industry seminars and QA/Test
conferences. Mr. Bampos has 14 years of experience in software development, quality assurance and
management, and holds a Bachelor of Science degree in Computer Science from Massachusetts'
Fitchburg State College.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8V1.html [4/28/2000 2:35:54 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Presented To

Quality Week
San Francisco, California

May - June 2000

Testing e-Testing e-

Presented By

Jim Bampos
VP, e-Quality & Test Solutions

Lauri MacKinnon
QA Technical Leader

• Introduction
• The Need for Testing
• The Test Strategy
• Types of Testing
• e-Business Challenges
• Strategy for e-Quality
• Testing Complexities
• Test Result Interpretations

OverviewOverview

2

• Intent
• Who this applies to

IntroductionIntroduction

• The Market
• Web Site Profile
• Target Clients
• Company Revenue
• PR Effort
• Problem Definition
• Data on Losses
• The Approach
• The Solution

The Need for TestingThe Need for Testing

A Situation:A Situation:

3

DOCUMENTATION
Test Plan

Test Cases
Status Reports

RESOURCES
Experience

Skills
Equipment

PROCESS
Development Strategy

Source Control
Requirements

TEST ENVIRONMENT
Alpha / Beta

Staging Systems
Test Lab

RISKS
Quality Requirements

Impact of Failure
Likelihood of Defects

TEST TOOLS
Capture/Playback
Web Performance

Bug Database

TEST OBJECTIVES
Requirements
Quality Criteria
Intended Market

QA
Strategy

“Manage / Design / Build / Test - for Quality”

• Stress & Performance Testing

• Usability Issues

• Configuration Testing

• Verification:
Is your site ready to go live?

Testing e-Testing e-

4

• Know your users
• Prioritize your goals
• Company goals and user goals
• Choose your principles

- Learnable - Understandable
- Flexible - Robust
- Efficient - Pleasing / Satisfying

Usability TestingUsability Testing

• Browser / Operating System
Compatibility Testing

• Performance / Load Testing
• Content Testing
• Security Testing

And…And…

5

• Load Testing
• Performance / Benchmark Testing
• Load Balancing
• Capacity / Stress Testing
• Uptime / Availability Testing
• Scalability Testing

Go the Extra Mile…Go the Extra Mile…

• Error Recovery Testing
• Web Site Optimization
• Bandwidth Verification
• Security Testing
• Market Impact Anticipation
• Competitive & Industry Benchmarks

… or Two.… or Two.

6

• Feature
• Acceptance
• Regression
• Performance
• Load

Automated TestingAutomated Testing

• e-Business systems are continuously
changed based on market conditions 1

• e-Business systems are designed in a
component fashion to facilitate this rapid
change 2

• Fundamentally, e-Business systems are
continuously being assembled, validated
and deployed 3

(1,2,3 Courtesy of Segue Software)

Why is e-Business different?Why is e-Business different?

7

• Unlike traditional C/S and Legacy Systems
- e-Business systems are not developed only by

traditional engineering groups4

- e-Business systems are worked on by many
different groups (Content Designers, Web
Masters, Domain Experts, DBA’s, Software
Engineers & QA)5

- Fundamentally, e-Business systems are
designed and developed (and thus owned) by
all departments in the enterprise6

(4,5,6 Courtesy of Segue Software)

WRQE - a place to start
End to End testing - and everything in between:

 Scenario Tests Component Tests
Web Site Transaction Accuracy Functional Testing
 Content
 Links
 Online Activity

Front Office Transaction Volumes Web Server Load Testing
 Transaction Processing
 Online Transactions

Back Office Timing Bottlenecks Database Load Testing
 Order Processing
 InterBusiness
 Service/Suppliers

Business to Business Concurrency Bottlenecks Unit and System Testing
 Internal Corporate Processes Resource Contentions

(Graph Courtesy of Segue Software)

Strategy for e-QualityStrategy for e-Quality

8

WebSite

Web Server

Internet

Application
Servers

Intranet

Extranet

Front-end
• Netscape, IE
• ActiveX, HTML, Cgi0Bin
• 3rd party UIs
• MTS, Orbix, Tuxedo clients
• Java, JavaScript, Flash…
• MQ Series Middleware

Web, App, DB Server
• Netscape Enterprise Server
• IIS
• WebSphere
• Netscape App Server
• Oracle App Server
• Microsoft Transaction Server
• Sun/NetDynamics
• Orbix or Tuxedo Middleware
• Oracle, DB2, MS SQL Server ,

Informix DB

Traffic
• HTTP, HTTPS
• SSL, TLS

POP3, SMTP,IMPA
• FTP
• IIOP
• LDAP
• Java (TCP/IP)
• ADO/RDO (ODBC)
• OLE DB
• DCOM
• ActiveX (TCP/IP)
• Oracle NCA

Back Office
• ERP Systems...

Front Office
• SAP
• Baan
• Peoplesoft
• Oracle Apps

InterBusiness Logic
• Java
• JavaBeans
• C++ …
• COM
• ActiveX
• Oracle App Builder

Traffic
• Tuxedo ATMI
• Encina API
• MQ Series
• DCOM
• CORBA/IIOP

Traffic
• ODBC 2.x,3.x
• OCI
• JDBC
• Inet
• CtLib, DbLib

• Performance
- Multiple protocols (proprietary and standard)
- Multiple servers and server applications
- Web Server - App Server Interaction
- Database Integrity
- Bandwidth Restrictions
- Synchronous Transactions
- Unique/Randomly Generated Data
- Distributed Java Applets on JVM’s; EJB

• Usability
- Permutations of User Configurations (Hardware & Software)
- Handling Novice and Expert Users
- Verifying Site Stability

• Configuration
- So Many Permutations
- Representative Sampling
- Using Orthogonal Arrays

• Ready to go Live
- The Checklist… Are you ready?

Testing ComplexitiesTesting Complexities

9

ConclusionsConclusions

QW2000 Paper 8T1

Mr. Atif Memon, Dr. Martha E. Pollack, & Dr.
Mary Lou Soffa

(University of Pittsburgh)

A Planning-Based Approach to GUI Testing

BACK TO QW2000 PROGRAM

Presentation Abstract

Graphical user interfaces (GUIs) have become nearly ubiquitous as a means of interacting with
software systems. The widespread use of GUIs is leading to the construction of more and more
complex GUIs. With the growing complexity comes challenges in testing the correctness of GUIs and
the underlying software. Some of the important challenges include test¡case generation, test¡ oracle
creation, and regression testing.

Current GUI testing practices involve a significant amount of manual effort on the part of the test
designer. Most test designers employ tools that automate certain aspects of the testing cycle. Most
common among such tools are capture/playback tools used to capture the user events and GUI
screens during an interactive session. The recorded sessions are later played back whenever it is
necessary to recreate the same GUI states. These tools generally store information at a low level of
abstraction, capturing actual mouse positions, button clicks and storing bit¡maps. Representing the
information at such a low level of abstraction makes it difficult to tailor the recorded session for other
test cases. A popular alternative to using capture/playback tools is to program a test case generator.
Programming requires that the test designer program all possible decision points present in the GUI.
However, this approach is time consuming, and is susceptible to missing important GUI decisions.
Moreover, the expected output must also be determined by the programmer.

Planning Assisted Tester for grapHical user interface Systems (PATHS) is a research project
designed with the primary goal of facilitating the automation of GUI testing. PATHS is based on
planning -- a well developed and used technique in Artificial Intelligence (AI). Given a set of operators,
an initial state and a goal state, a planning system produces a sequence of operators that will
transform the initial state to the goal state. The key idea of using planning as the core of PATHS is
that the GUI test designers will often find it easier to specify typical goals that users of the GUI
software might have than to specify sequences of GUI actions that users might perform to achieve
those goals. Thus we cast GUI testing as an instance of planning. PATHS has the goals of generating
test cases automatically, incorporating oracle information into the testing process, and then
automatically generating a regression test suite when re¡testing is done.

Currently, the PATHS system is capable of using GUI specifications to automatically generate a test
suite, exploit the planning model to create test oracles, execute the test cases and pinpoint errors in
the GUI. A test designer provides PATHS with a description of the GUI (e.g., in the form of GUI speci¡

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8T1.html (1 of 3) [4/28/2000 2:36:16 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

fications). PATHS analyzes this description and creates an abstract model of the GUI and returns a
list of operators from the model to the test designer. By using knowledge of the GUI, the test designer
then defines the preconditions and effects of the operators in a simple language provided by the
planning system. The test designer then triggers test¡case generation and oracle creation by
describing scenarios (tasks), represented by a set of initial and goal states. PATHS generates a test
suite for the scenarios. The test suite also has the oracle information built into it. During testing, the
GUI exerciser uses this oracle information to compose the expected GUI state. The GUI exerciser
compares the expected GUI state with the actual state to determine if the GUI's run¡time behavior is
correct. After testing, identified problems in the GUI are corrected. Modifi¡ cations then lead to
regression testing. The test designer describes the changes in the GUI, and PATHS generates the
regression test suite.

The key to efficient test¡case generation, oracle creation and maintenance is PATHS's hierar¡ chical
decomposition of the GUI. PATHS models a GUI hierarchically with high¡level operators that
decompose into sequences of lower level ones. More specifically, PATHS begins the modeling
process by partitioning the GUI events into several classes: (1) Menu¡open events that open menus,
i.e., they expand the set of GUI events available to the user, (2) Modal events that open modal
windows (i.e., no other window in the program can be interacted with until this dialog is closed), (3)
Non¡modal events that open non¡modal windows, and (4) System¡interaction events that interact with
the underlying software to perform some action. These event classes are then used by PATHS to
create two types of planning operators -- system¡interaction operators and abstract operators. The
system¡interaction operators are derived from the system¡interaction events. Abstract operators are
more complex and are responsible for driving the hierarchical planning algorithms used by PATHS.
The basic idea behind an abstract operator is that it represents a sequence of GUI events that invoke
a modal window. The abstract operator encapsulates the events performed on the modal window by
treating the interaction within that window as a separate planning problem. Abstract operators are
decomposed into lower level operators by an explicit call to the planner. PATHS uses the
system¡interaction and abstract operators to generate the test suite.

PATHS automatically generates test oracles to check the GUI's state during and after test execution.
The key to oracle creation is to have oracle information integrated into the test case so that the GUI
exerciser knows what to check at each step. One of the primary motivations of using planning for GUI
testing is that much of the state can be recovered directly from the planning model. During plan
construction, the planner keeps track of the intermediate states of the GUI. PATHS extracts these
intermediate states and integrates them with the generated test case to act as oracles.

We are currently extending PATHS with efficient regression testing techniques that draw on planning.
The hierarchical decomposition of the GUI done by PATHS allows identification and isolation of GUI
components that were modified. Changes are then made only to the effected test cases and oracle
information. Moreover, hierarchical planning aids in retaining most of the test cases and oracle
information defined at the higher levels of abstraction. Changes are made only at the lower levels.

About the Author

Atif M. Memon is a Mellon Fellow at the Department of Computer Science, University of Pittsburgh. He
received his BS and MS in Computer Science in 1991 and 1995 respectively. He was awarded a Gold
Medal for First Position in BS. He enrolled at the University of Pittsburgh in 1996 and is currently a

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8T1.html (2 of 3) [4/28/2000 2:36:16 PM]

Ph.D. candidate. In 1999, he was awarded a Fellowship from the Andrew Mellon Foundation for his
Ph.D. research. His research interests include program testing, software engineering, artificial
intelligence, plan generation, and code improving compilation techniques. He is a member of the ACM
and the IEEE Computer Society.

More information can be found at the Author's Home-page
BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8T1.html (3 of 3) [4/28/2000 2:36:16 PM]

http://www.cs.pitt.edu/~atif/
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

�

$�3ODQQLQJ�EDVHG�$SSURDFK�WR�
*8,�7HVWLQJ

$WLI�0��0HPRQ

0DUWKD�(��3ROODFN

0DU\�/RX�6RIID

'HSW��RI�&RPSXWHU�6FLHQFH

8QLYHUVLW\�RI�3LWWVEXUJK

�

3UREOHP

*8,

8QGHUO\LQJ
&RGH

7HVWLQJ�D�*8,

,QWHUDFWLRQV EHWZHHQ�WKH
*8,�DQG�WKH�8QGHUO\LQJ�&RGH

�

3UREOHPV�ZLWK�*8,�7HVWLQJ

� *HQHUDWLQJ�7HVW�&DVHV

� 9HULILFDWLRQ

� 3URYLGLQJ�&RYHUDJH�&ULWHULD

� 3HUIRUPLQJ�5HJUHVVLRQ�7HVWLQJ

�

� ,QGLYLGXDO�8VHU�(YHQWV
² 127�(128*+��

² 6HTXHQFHV�RI�8VHU�(YHQWV�OHDG�WR�
'LIIHUHQW�6WDWHV

� 7HVW�&DVH��6HTXHQFH�RI�8VHU�(YHQWV

:KDW�LV�D�*8,�7HVW�&DVH�"

�

� 5DQGRPO\�&KRRVH�6HTXHQFHV

� ([SHUW�&KRRVHV�6HTXHQFHV

� *HQHUDWH�6HTXHQFHV�IURP�D�
'HVFULSWLRQ�RI�WKH�*8,

*HQHUDWLQJ�7HVW�&DVH�6HTXHQFHV

This is the text. This is the text.

3UREOHPV

6HTXHQFH

(DFK�6HTXHQFH�7UDQVIRUPV�WKH�*8,�6WDWH

�

Software
Under Test Verification

Procedure

Output

Error Report
Input

Expected
Output

3UREOHPV
9HULILFDWLRQ

GUI

Verification
ProcedureGUI

Exerciser

Event i of
test case

feedback

Error Report

Input
Expected

Output
Event 1

Event i
Event N

Expected Output
for Event i of test case

Event i of
test case

Output

�

*8,

8QGHUO\LQJ
&RGH

,QWHUDFWLRQV EHWZHHQ�WKH
*8,�DQG�WKH�8QGHUO\LQJ�&RGH

&RYHUDJH�&ULWHULD

0RVW
7UDGLWLRQDO�
&RYHUDJH�
&ULWHULD�
:RUN�+HUH

25

DW�WKH�
6SHFLILFDWLRQ�
/HYHO

3UREOHPV

�5HJUHVVLRQ�7HVWLQJ3UREOHPV

Obsolete
test cases

+ Oracle Info.
(to be deleted)

1
Old

test cases
+ Oracle Info.
(Not used for

re-testing)

2

Old
test cases

+ Oracle Info.
(to rerun)

3

Entire old test suite

New
test cases

+ Oracle Info.
(for re-testing)

4

Entire new test suite

Complete regression
testing suite

Obsolete
test cases

+ Oracle Info.
(deleted)

1

Old
test cases

+ Oracle Info.
(Not used for

re-testing)

2

New
test cases

+ Oracle Info.
(for re-testing)

4
Old

test cases
+ Oracle Info.

(to rerun)

3

�

� $XWRPDWLFDOO\�*HQHUDWH�7HVW�&DVHV�
IRU��(;3(&7('�7$6.6

1RYHO�,GHD

,QLWLDO�6WDWH *RDO�6WDWH

0XOWLSOH
7HVW�
&DVHV

This is the text. This is the text.

��

$,�3ODQQLQJ�DQG�*8,�7HVWLQJ

� 5HFHQW�$GYDQFHV�LQ�$,�3ODQQLQJ�
3URSRVLWLRQDO 3ODQQHUV

� 9HU\�)DVW

� %DVHG�RQ�
²)ORZ�*UDSKV >.RHKOHU�HW�DO��¶��@

² 6$7�6ROYLQJ >.DXW] 	 6HOPDQ ¶��@

� $,�3ODQQLQJ��(VSHFLDOO\�6XLWDEOH�IRU
² *HQHUDWLQJ�7HVW�&DVHV

² $XWRPDWLFDOO\�*HQHUDWLQJ�9HULILFDWLRQ�,QIRUPDWLRQ

² 5HJUHVVLRQ�7HVWLQJ

��

$�3ODQ

,QLWLDO
6WDWH

*RDO
6WDWH

$FWLRQ
$

$FWLRQ
%

$FWLRQ
&

,QLWLDO
6WDWH

$FWLRQ
$

$FWLRQ
%

$FWLRQ
&

*RDO
67$7(

,QLWLDO
6WDWH

$FWLRQ
%

$FWLRQ
$

$FWLRQ
&

*RDO
6WDWH

��

$�3ODQ�IRU�D�*8,�7DVN

6HOHFW7H[W�´7KLVµ�

6HOHFW7H[W�´WH[Wµ�

6HW)RQW6L]H����

0RXVH&OLFN�U�

,QLWLDO�6WDWH

This is the text.

*RDO�6WDWH

This is the text.

is theThis text.

is theThis text.

��

*RDOV�RI�'HVLJQLQJ�3$7+6
�)HDWXUHV�RI�3$7+6

² 7HVW�&DVH�*HQHUDWLRQ

² 9HULILFDWLRQ

² &RYHUDJH

² 5HJUHVVLRQ�7HVWLQJ

� 5HTXLUHPHQWV�RI�3$7+6
² $XWRPDWHG

² (IILFLHQW

² 5REXVW

² 3RUWDEOH

² *HQHUDO

��

User
Assertions

Profile
Information

Domain
Information

Usage
Algorithms

2YHUYLHZ�RI�3$7+6
GUI

Specifications

Planner based Test Case
Generator

Test Cases
Core

Test
Scenarios

Oracle
Information

Augmentation
Tool

Test Suite
(Test Cases +

Oracle Information) Output

Test cases and
Oracle Information

from Previous
Version

Coverage
Report

Output

Update for
Regression

Testing

Regression
Testing

Algorithms

Coverage
Evaluation
Algorithms

Coverage
Criteria

��

'HVLJQ�6WHSV
� 'HYHORS�DQ�(IILFLHQW�5HSUHVHQWDWLRQ�RI�WKH�
*8,

� &KRRVH�'HVLJQ�3ODQQLQJ�6\VWHP

� 8VH�3ODQQLQJ�6\VWHP�DQG�5HSUHVHQWDWLRQ�WR
² *HQHUDWH�7HVW�&DVHV

² 'HILQH�DQG�&UHDWH�*8,�7HVW�2UDFOHV

² 'HVLJQ�&RYHUDJH�&ULWHULD�IRU�*8,V

² 'HYHORS�7HFKQLTXHV�IRU�*8,�5HJUHVVLRQ�7HVWLQJ

² ([SORLW�'RPDLQ�,QIRUPDWLRQ

��

6WUDLJKWIRUZDUG�$SSURDFK

� 'HILQH�2QH�2SHUDWRU IRU�HDFK�8VHU�
$FWLRQ

2SHUDWRU ���&87
3UHFRQGLWLRQV�

LV&XUUHQW�0HQX���

(IIHFWV�
)25$// 2EM LQ�2EMHFWV

6HOHFWHG�2EM��⇒
$'' LQ&OLSERDUG�2EM�
'(/ RQ6FUHHQ�2EM�
'(/ 6HOHFWHG�2EM�

$'' LV&XUUHQW�0HQX��
'(/ LV&XUUHQW�0HQX���

0HQX�

0HQX�

)LUVW�2UGHU�3UHGLFDWH�/RJLF

File Edit View Ins

Cut

��

([SORLW�WKH�*8,·V�6WUXFWXUH

� 5HGXFH�WKH�1XPEHU�RI�2SHUDWRUV
² 6\VWHP�PRUH�(IILFLHQW

² (DVLHU�IRU�WKH�7HVW�'HVLJQHU

� 7ZR�7\SHV�RI�$EVWUDFWLRQV
² &RPELQH�%XWWRQV�⇒ &UHDWH�0DFUR
2SHUDWRUV

² 'HFRPSRVH�*8,�+LHUDUFKLFDOO\ ⇒ &UHDWH�
$EVWUDFW 2SHUDWRUV

��

&UHDWH�0DFUR�2SHUDWRUV

)LOHB6HQG7RB0DLO5HFLSLHQW

 ��)LOH���6HQG7R��
0DLO5HFLSLHQW !

0DFUR�2SHUDWRU�

File

Send To

Mail Recipient

��

&UHDWH�$EVWUDFW�2SHUDWRUV�

6HOHFW)URP/LVW��
'HIDXOW
2.

&DQFHO

Language :LQGRZ·V�
2SHUDWRU�6HW

0DLQ�*8,·V
2SHUDWRU�6HW

«
6HW�/DQJXDJH

6HOHFW)URP/LVW��
'HIDXOW
2.

&DQFHO
���

English (United States)

OK Cancel Default...

6WUDLJKWIRUZDUG�
$SSURDFK

Set Language

«
6HW�/DQJXDJH

���

0DLQ�*8,·V
2SHUDWRU�6HW

8VLQJ�$EVWUDFWLRQ

��

&UHDWH�$EVWUDFW�2SHUDWRUV�

6HW/DQJXDJH��

6HOHFW)URP/LVW
�´(QJOLVK�86�µ�

2.

$EVWUDFW
2SHUDWRU

3ODQQHU

6HOHFW)URP/LVW��
'HIDXOW
2.

&DQFHO

/DQJXDJH :LQGRZ·V�
2SHUDWRU�6HW

6HW/DQJXDJH��

��� ���
+LJK�
/HYHO�3ODQ

6XE�3ODQ
'HILQH
$EVWUDFWLRQ

��

(IIHFWV�RI�([SORLWLQJ�WKH�
*8,·V�6WUXFWXUH

� 5HGXFWLRQ�LQ�3ODQQLQJ�2SHUDWRUV
² ����RSHUDWRUV�⇒ ���RSHUDWRUV

² 5DWLR������IRU�06�:RUG3DG

� 6\VWHP�$XWRPDWLFDOO\�'HWHUPLQHV�WKH�
0DFUR�DQG�$EVWUDFW�2SHUDWRUV

��

2YHUYLHZ�RI�7HVW�*HQHUDWLRQ
3KDVH 6WHS 7HVW�'HVLJQHU $XWRPDWLF

3ODQQLQJ�EDVHG
6\VWHP

6HWXS � 'HULYH�3ODQQLQJ
2SHUDWRUV
IURP�*8,

� &RGH�3UHFRQGLWLRQV
DQG�(IIHFWV�RI
2SHUDWRUV

7HVW�&DVH
*HQHUDWLRQ

� 6SHFLI\�D�7DVN
�,QLWLDO�DQG�*RDO
6WDWHV�

� *HQHUDWH�7HVW
&DVHV

��

,QLWLDO�
6WDWH

*RDO�
6WDWH

This is the text.

This is the text.

��

)RUPDW)RQW)RUPDW)RQW

([SDQG�0DFUR ([SDQG�0DFUR

6HOHFW7H[W
�´7KLVµ�

)RUPDW)RQW �� 2.
6HOHFW7H[W
�´WH[Wµ�

)RUPDW)RQW 8QGHUOLQH 2.

6HOHFW7H[W
�´7KLVµ�

)RUPDW)RQW
�´7KLVµ����SW�

)RUPDW)RQW
�´WH[Wµ��8QGHUOLQH�

6HOHFW7H[W
�´WH[Wµ�

3ULPLWLYH
2SHUDWRU

3ULPLWLYH
2SHUDWRU

$EVWUDFW
2SHUDWRU

$EVWUDFW
2SHUDWRU

,
1
,
7
,
$
/

*
2
$
/

)RUPDW)RQW �� 2.)RUPDW)RQW 8QGHUOLQH 2.

3ODQQHU 3ODQQHU

7HVW�&DVH

��

$OWHUQDWLYH�7HVW�&DVH

6HOHFW7H[W
�´7KLVµ�

6HOHFW)URP/LVW
����

)RUPDW)RQW
�´WH[Wµ��8QGHUOLQH�

6HOHFW7H[W
�´WH[Wµ�

3ULPLWLYH
2SHUDWRU

3ULPLWLYH
2SHUDWRU

3ULPLWLYH
2SHUDWRU

$EVWUDFW
2SHUDWRU

6HOHFW7H[W
�´7KLVµ�

6HOHFW)URP/LVW
����

6HOHFW7H[W
�´WH[Wµ�

)RUPDW)RQW 8QGHUOLQH 2.

��

0HWKRGV�WR�*HQHUDWH�$OWHUQDWLYH
7HVW�&DVHV

� 'LIIHUHQW�5HVXOWV�IURP�3ODQQHU

� $EVWUDFW�2SHUDWRU�'HFRPSRVLWLRQV

� /LQHDUL]DWLRQV�RI�WKH�3DUWLDO�RUGHU�
3ODQ

��

([SHULPHQWDO�5HVXOWV
Generating Test Cases and Deriving Verification Info.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 6 11 16 21 26 31 36 41 46 51 56

Test-Case Length

T
im

e
(s

e
c.

)

��

([SHULPHQWDO�5HVXOWV��FRQWG«�
Executing Test Cases and Verifying Results

0

1

2

3

4

5

1 6 11 16 21 26 31 36 41 46 51 56

Test-Case Length

T
im

e
(s

ec
.)

��

7HVW�2UDFOHV�	�
5HJUHVVLRQ�7HVWLQJ

� ([SORLW�3ODQQLQJ�$OJRULWKPV�WR�JHW�
([SHFWHG�%HKDYLRU�RI�*8,

� 8VH�+LHUDUFKLFDO�*8,�0RGHO�IRU�
(IILFLHQW�5HJUHVVLRQ�7HVWLQJ

��

5HODWHG�:RUN

� *8,�7HVWLQJ
²)60 >(VPHOLRJOX DQG�$SIHOEDXP@�DQG�9)60
>6KDKDG\ DQG�6LHZLRUHN@�0RGHOV�

² *HQHWLF�$OJRULWKP 7HFKQLTXH�>.DVLN DQG�
*HRUJH@

² 9LVXDO�7'(�IRU�*8,V >)RVWHU� *RUDGLD��2VWUDQG��
DQG�6]HUPHU@�

� 3ODQQLQJ�IRU�7HVWLQJ
² >$GHOH�+RZH� $QQHOLHVH 9RQ 0D\UKDXVHU��
5LFKDUG 0UD] LQ�$6(�¶��@

��

&RQFOXGLQJ�5HPDUNV

� $XWRPDWLF�3ODQQLQJ�LV�D�)HDVLEOH�
$SSURDFK�IRU�*8,�7HVWLQJ

� $XWRPDWLF�*HQHUDWLRQ�RI�
3UHFRQGLWLRQV�DQG�(IIHFWV�IURP�*8,�
6SHFLILFDWLRQV

A Planning-based Approach to GUI Testing�

Atif M. Memony, Martha E. Pollack, Mary Lou So�a

Dept. of Computer Science

University of Pittsburgh

Pittsburgh, PA 15260 USA

+1 412 624-8850

fatif, pollack, soffag@cs.pitt.edu

Abstract

Graphical user interfaces (GUIs) have become nearly
ubiquitous as a means of interacting with software sys-
tems. The widespread use of GUIs is leading to the
construction of more and more complex GUIs. With
the growing complexity comes challenges in testing the
correctness of GUIs and the underlying software. Some
of the important challenges include test-case generation,
test-oracle creation, and regression testing. In this pa-
per, we present the design of Planning Assisted Tester
for grapHical user interface Systems (PATHS) { a re-
search project designed with the primary goal of facili-
tating the automation of GUI testing. PATHS uses a
new GUI testing technique based on user event interac-
tion sequences. The key idea is to test the GUI software
using interactions most likely to be exercised in actual
use. A novel feature of PATHS is its reliance on AI
plan generation techniques to generate testing informa-
tion. Given a set of operators, an initial state and a
goal state, a planning system produces a sequence of
operators that transforms the initial state to the goal
state. Using PATHS, GUI test designers can gener-
ate likely user interaction sequences by specifying typ-
ical goals that users of the GUI software might have.
PATHS �rst analyzes the GUI and derives hierarchical
planning operators from the actions in the GUI. The
test designer determines the preconditions and e�ects
of the hierarchical operators, which are then input into
a planning system. With the knowledge of the GUI and
the way in which the user will interact with the GUI,
the test designer creates sets of initial and goal states.
Given these initial and �nal states of the GUI, a hierar-
chical planner produces plans, or a set of test cases, that
enable the goal state to be reached. Our technique has
the additional bene�t of associating oracle information
with the test cases automatically. We implemented our
technique by developing the GUI analyzer and extend-

� Partially supported by the Air Force O�ce of Scienti�c
Research (F49620-98-1-0436) and by the National Science
Foundation (IRI-9619579) (EIA0906525).
y Partially supported by the Andrew Mellon Pre-doctoral
Fellowship, awarded by the Andrew Mellon Foundation.

ing a planner. We generated test cases for Microsoft's
WordPad to demonstrate the viability and practicality
of the approach.

Keywords

GUI testing, application of planning, GUI regression
testing, automated test-case generation,

1 Introduction

Testing is a critical component of the software develop-
ment process and is required to ensure the safety, ro-
bustness and usability of software. Unfortunately, it is
also labor and resource intensive, accounting for 50%-
60% of the total cost of software development [9, 29].
Hence, there has been signi�cant research aimed at au-
tomating the testing process. Although some success
has been achieved, many problems remain. In particu-
lar, it is not yet clear how to automate the testing of
user interfaces, which constitute an increasingly large
portion of software systems, as much as 45-60% of the
total software code [21, 25]. The most popular form of
user interfaces are direct-manipulation interfaces called
Graphical User Interfaces (GUIs) [26]. GUIs have be-
come an important and accepted way of interacting with
today's software. As GUIs become more and more pop-
ular, they are increasingly being used in critical systems
[35] and testing them is necessary to avert catastrophes
[26].

Testing the correctness of a GUI is di�cult for a num-
ber of reasons. First, the space of possible interactions
with a GUI is enormous. Each sequence of GUI actions
can result in a di�erent state of the combined system
(i.e., the GUI and underlying software). In general, a
GUI action might have di�erent results in each state,
and thus need to be tested in a very large number of
states: the amount of testing required can be enormous
[34]. Related to this is the fact that measures of cov-
erage that have been de�ned for testing conventional
software systems do not work well for GUIs. For conven-
tional software, coverage is measured using the amount
and type of underlying code exercised. In testing GUIs,
while one must still be concerned with how much of the
code is tested, there needs also to be signi�cantly in-
creased focus on the number of di�erent possible states

in which each piece of code is exercised. Existing metrics
do not allow one to say whether a GUI has been \well-
enough" tested. As a result, GUI testing often relies on
extensive beta testing: for example, Microsoft released
almost 400,000 beta copies of Windows95 targeted at
�nding program failures [15].

GUI testing involves several steps. Initially, a set of test
cases must be generated. This is particularly challeng-
ing for GUI testing, because of the di�culties mentioned
above: the set of possible test cases is huge, and con-
ventional metrics for selecting \good" test case sets do
not apply. After test cases are constructed, they must
be executed: this is when the actual \testing" occurs,
to check whether the GUI is performing correctly. An
incorrect GUI state can lead to an unexpected screen,
making further execution of the test case useless because
events in the test case might not match the correspond-
ing GUI components on the screen. Consequently, the
execution of the test case must be terminated as soon
as an error is detected. Veri�cation checks, performed
by using test oracles, must therefore be inserted after
each step, to catch errors as soon as they occur. Yet
another challenge is posed by regression testing, i.e., up-
dating the set of test cases and the veri�cation check af-
ter changes are made to the GUI during development or
maintenance. Regression testing presents special chal-
lenges for GUIs, because the input-output mapping of-
ten does not remain constant across successive versions
of the software [24].

Current GUI testing practices involve a signi�cant
amount of manual e�ort on the part of the test designer.
Most test designers employ tools that automate certain
aspects of the testing cycle. Most common among such
tools are capture/playback tools [13, 11] used to cap-
ture the user events and GUI screens during an inter-
active session. The recorded sessions are later played
back whenever it is necessary to recreate the same GUI
states. These tools generally store information at a low
level of abstraction, capturing actual mouse positions,
button clicks and storing bit-maps. Representing the
information at such a low level of abstraction makes
it di�cult to tailor the recorded session for other test
cases. A popular alternative to using capture/playback
tools is to program a test case generator. Programming
requires that the test designer program all possible deci-
sion points present in the GUI. However, this approach
is time consuming, and is susceptible to missing im-
portant GUI decisions. Moreover, the expected output
must also be determined by the programmer.

In this paper, we present the design of Planning Assisted
Tester for grapHical user interface Systems (PATHS) { a
research project designed with the primary goal of facil-
itating the automation of GUI testing. PATHS is based
on planning { a well developed and used technique in

Arti�cial Intelligence (AI). Given a set of operators, an
initial state and a goal state, a planning system pro-
duces a sequence of operators that will transform the
initial state to the goal state. The key idea of using
planning as the core of PATHS is that the GUI test de-
signers will often �nd it easier to specify typical goals
that users of the GUI software might have than to spec-
ify sequences of GUI actions that users might perform
to achieve those goals. Thus we cast GUI testing as an
instance of planning. PATHS has the goals of gener-
ating test cases automatically, incorporating oracle in-
formation into the testing process, and then automati-
cally generating a regression test suite when re-testing
is done.

The main contributions of PATHS are as follows.

� Most of the GUI testing tasks are automated so
that the test designer's work is simpli�ed as much
as possible.

� The overall testing cycle de�ned by PATHS is e�-
cient since software testing is usually a tedious and
expensive process.

� PATHS is robust in that whenever the GUI enters
an unexpected state, the testing algorithms detect
the error state immediately, recover from it and
report all information necessary to debug the GUI.

� The testing information generated by PATHS is
portable. Test information (e.g., test cases, oracle
information, coverage report, error report) gener-
ated and/or collected on one platform is usable on
all other platforms on which the GUI can be exe-
cuted.

� Finally, PATHS is general enough to be applied to
a wide range of GUIs.

In the next section, we present a high-level overview of
the design of PATHS. Section 3 presents a discussion
of AI planning. In Section 4, we show how PATHS
automatically models the GUI hierarchically so that a
restricted form of hierarchical planning can be applied
to e�ciently generate testing information. In particular,
we show in Section 5 how the hierarchical model is used
to generate test cases. In Section 6, we also indicate
how the hierarchical model is used to create test oracles
and for regression testing. We present a discussion on
related work in Section 7 and conclude in Section 8.

2 Overview of PATHS

PATHS uses a new GUI testing technique based on user
event interaction sequences. The key idea is to test the
GUI software using interactions most likely to be exer-
cised in actual use. The primary function of PATHS is

to generate likely user interaction sequences and then to
test the GUI using these sequences (test cases) as input.
A novel feature of PATHS is its reliance on AI plan gen-
eration techniques to generate test cases. The central
component of PATHS is a planning based test case gen-
erator. In addition to planning algorithms, PATHS is
supplemented with techniques and algorithms for e�ec-
tive regression testing, coverage evaluation, and incor-
poration of domain speci�c knowledge. The test case
generator is given a description of the GUI and test sce-
narios consisting of pairs of initial and goal states as
input, and it generates test cases as output. The GUI
description is assumed to provide a complete working of
the GUI. An oracle information augmentation tool as-
sociates additional information with each test case to be
used to verify the state of the GUI during test case ex-
ecution. Currently, the PATHS system is capable of us-
ing GUI speci�cations to automatically generate a test
suite, exploit the planning model to create test oracles,
execute the test cases and pinpoint errors in the GUI.
Various measures for coverage are undergoing develop-
ment. The coverage evaluation algorithms will measure
the quality of the generated test cases. The regression
testing algorithms will use results from prior testing ses-
sions to guide regression testing. Additional user sup-
plied domain information will be used for increased ef-
�ciency and e�ectiveness. Actual execution of the test
cases will be done by a GUI exerciser. The high-level in-
teractions between the components of PATHS are shown
in Figure 1. The ovals represent the processes that con-
trol the test case generation and execution. The outputs
include the �nal test suite, coverage report, and the er-
ror report. Other entities are either generated by the
components or provided as input by the test designer.

3 AI Plan Generation

PATHS makes use of planning for GUI testing. This
section gives a brief introduction to planning and the
di�erent planning techniques.

Automated plan generation has been widely investi-
gated and used within the �eld of arti�cial intelligence.
Given an initial state, a goal state, a set of operators,
and a set of objects, a planner returns a sequence of ac-
tions (instantiated operators) to achieve the goal. Many
di�erent algorithms for plan generation have been pro-
posed and developed. Weld presents an introduction
to least commitment planning [32] and a survey of the
recent advances in planning technology [33].

Formally, a planning problem P (�; D; I;G) is a 4-tuple,
where � is the set of operators, D is a �nite set of
objects, I is the initial state, and G is the goal state.
The solution to the planning problem is a plan: a tuple
< S;O;L;B > where S are steps (instances of opera-
tors { typically represented as sets of preconditions and
e�ects), O are ordering constraints on the elements of

S, L are causal links representing the causal structure
of the plan, and B are binding constraints on the vari-
ables in S. Causal links are triples < Si; c; Sj >, where
Si and Sj are elements of S and c is both an e�ect of
Si and a precondition for Sj . Typically, the ordering
constraints only induce a partial ordering, so the set of
solutions are all linearizations of S consistent with O.

The output of the planner is a set of actions with cer-
tain constraints on the relationships among them. An
action is an instance of an operator with its variables
bound to values. One well-known action representa-
tion uses the STRIPS1 language [8] which speci�es op-
erators in terms of parameterized preconditions and ef-
fects. STRIPS was developed more than twenty years
ago, and has limited expressive power. For instance, no
conditional or universally quanti�ed e�ects are allowed.
Although, in principle, sets of STRIPS operators could
be de�ned to encode conditional e�ects, such encodings
lead to an exponential number of operators making even
small planning problems intractable. A more powerful
representation is ADL [28, 27], which allows conditional
and universally quanti�ed e�ects in the operators. This
facility makes it possible to de�ne operators in a more
intuitive manner. A more recent representation is the
Planning Domain De�nition Language2 (PDDL), used
in the AIPS'98 planning competition. The goals of de-
signing the PDDL language were to encourage empirical
evaluation of planner performance, and the development
of standard sets of planning problems. The language has
roughly the expressiveness of ADL for propositions.

Recently developed planning technology based on
propositionalization of the search space has greatly in-
creased the e�ciency of plan generation. A well-known
planner based on this technology is the Interference Pro-
gression Planner (IPP) [19], a system which extends
the ideas of the Graphplan system [2] for plan gener-
ation. Graphplan introduced the idea of performing
plan generation by converting the representation of a
planning problem into a propositional encoding. Plans
are then found by means of a search through a leveled
graph, in which even levels (0; 2; : : : ; i) represent all the
(grounded) propositions that might be true at stage i of
the plan, and odd levels (1; 3; : : : i+1) represent actions
that might be performed at time i + 1. The planners
in the Graphplan family, including IPP, have shown in-
creases in planning speeds of several orders of magni-
tude on a wide range of problems compared to earlier
planning systems (but cf. [22]).

IPP uses ADL for the representation of actions in which
preconditions and e�ects can be parameterized: subse-

1STRIPS is an acronym for STanford Research Institute Prob-

lem Solver
2Entire documentation available at

http://www.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz

Test cases and
Oracle Information

from Previous
Version

GUI
Specifications

Planner based Test Case
Generator

Test Cases

Oracle
Information

Augmentation
Tool

Test Suite
(Test Cases +

Oracle Information)

GUI
Exerciser

User
Assertions

Profile
Information

Coverage
Report

Error
Report

GUI

Core

Test Case Generation

Testing

Output

Output

Output

Update for
Regression

Testing

Test
Scenarios

Regression
Testing

Algorithms

Domain
Information

Usage
Algorithms

Coverage
Evaluation
Algorithms

Figure 1: The Components of PATHS.

Up

Select

Figure 2: The Example GUI.

quent processing does the conversion to propositional
form. In fact, IPP generalizes Graphplan precisely by
increasing the expressive power of its representation lan-
guage, allowing for conditional and universally quanti-
�ed e�ects. As is common in planning, IPP produces
partial-order plans.

Planning at one level of abstraction may be impractical
for complex systems which consist of a large number of
objects and operators. Techniques have been developed
to generate plans at multiple levels of abstraction; this is
typically called

QW2000 Paper 8A1

Dr. John Musa
(Consultant)

A Good Idea! But How Do We Get People To
Use It?

BACK TO QW2000 PROGRAM

Key Points

Process improvement●

Organizational change●

Technology transfer●

Presentation Abstract

The acceleration of innovation in software development and testing to internet time means that every
software professional will be more and more frequently faced with the need to introduce and deploy
new technology. This talk will examine how to go about it. It will cover the stages of new technology
deployment, the approaches that work and don't work, the pros and cons of various methods for
actually transferring technology, and how to handle some of the problems one commonly encounters.
It will bring out specific examples from the speaker's extensive experience as a technology transfer
manager and as a teacher and consultant.

About the Author

John D. Musa is an independent consultant. He was formerly Technical Manager of Software
Reliability Engineering (SRE) at AT&T Bell Laboratories, Murray Hill, NJ. He has varied and extensive
experience as a software developer and software development manager.

John Musa is one of the creators of the field of software reliability engineering (SRE). He is widely
recognized as the leader in its practical application. He has been involved for some 25 years in
deploying the practice, first within AT&T and afterwards worldwide through his consulting work. His
new book "Software Reliability Engineering: More Reliable Software, Faster Development and
Testing" (McGraw-Hill) was written to help disseminate SRE.

The IEEE elected him Fellow in 1986 for his many seminal contributions. He was recognized in 1992
as the person who had contributed the most to testing technology. His leadership has been noted by
every recent edition of Who's Who in America and American Men and Women of Science. He is an
experienced international speaker and teacher (over 200 major presentations) with consistently
outstanding feedback.

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8A1.html (1 of 2) [4/28/2000 2:36:24 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

(John Musa's Home Page)
(j.musa@ieee.org

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8A1.html (2 of 2) [4/28/2000 2:36:24 PM]

http://members.aol.com/JohnDMusa/index.html
mailto:j.musa@ieee.org

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 A Good Idea! But How Do We Get PeopleTo Use It?

Copyright 2000 by John D. Musa 1

1

A Good Idea! But How Do We Get
People To Use It?

John D. Musa
j.musa@ieee.org

DEPLOY - 2

2

Copyright John D. Musa 2000

Sources of Talk

1. 25+ yr of introducing software reliability
engineering technology

2. 10+ yr of managing new technology
introduction groups at AT&T Bell
laboratories

3. Extensive observation from editorial board
and program committee perspectives

4. Software Engineering Institute Metrics
Steering Committee

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 A Good Idea! But How Do We Get PeopleTo Use It?

Copyright 2000 by John D. Musa 2

DEPLOY - 3

3

Copyright John D. Musa 2000

Example for Talk

software reliability engineering (SRE): a practice for
quantitatively planning and guiding software development
to make it faster and cheaper, while ensuring that product
reliability and availability meet user needs[1,2,3]. SRE:

1. Quantitatively characterizes the product’s expected
use and focuses resources on the most used and
most critical functions.

2. Sets quantitative objectives for reliability and/or
availability as well as schedule and cost and
engineers strategies to meet the objectives.

3. Tracks reliability in system test against its objective
as one of the release criteria.

DEPLOY - 4

4

Copyright John D. Musa 2000

Stages of Introduction

1. Pilot the idea
2. Test sphere of application
3. Seek endorsement (best practice)
4. Raise awareness and interest
5. Implement organization by organization

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 A Good Idea! But How Do We Get PeopleTo Use It?

Copyright 2000 by John D. Musa 3

DEPLOY - 5

5

Copyright John D. Musa 2000

Pilot the Idea

1. Apply to real project
Example: Guide release of military
command and control system

2. Use regular practitioners, not researchers
3. Experiment with details, evaluate successes

and failures, modify idea
Example: Failure of calendar time
estimation led to execution time estimation

4. Provide support
5. Evaluate benefits and costs
6. Publicize success of idea

DEPLOY - 6

6

Copyright John D. Musa 2000

Test Sphere of Application

1. Recruit advocates to apply to variety of
applications (at least 8 -10)

Example: Inventory control, naval
surveillance, operating system, word
processor

2. Develop rudimentary training, support tools
3. Adapt idea to different environments

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 A Good Idea! But How Do We Get PeopleTo Use It?

Copyright 2000 by John D. Musa 4

DEPLOY - 7

7

Copyright John D. Musa 2000

Test Sphere of Application

4. Continue experimenting with details,
evaluating successes and failures,
modifying idea

Example: Developing concept and practice
of operational profile

5. Reward feedback of problems
6. Publicize success of advocates globally to

motivate them (also publicizing idea)

DEPLOY - 8

8

Copyright John D. Musa 2000

Raise Awareness and Interest

1. Broadcast the idea (publication and talks
targeted to practitioners, especially outside)

2. Translate proven “benefits” to “problems
solved”

3. Screen reactions to terminology; modify
teminology as needed

Example: software reliability measurement
vs software reliability engineering

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 A Good Idea! But How Do We Get PeopleTo Use It?

Copyright 2000 by John D. Musa 5

DEPLOY - 9

9

Copyright John D. Musa 2000

Raise Awareness and Interest

4. Differentiate approaches by audience:
A. Practitioners: conflicting pressures
B. Project managers: reducing risks
C. Executives: financial success

5. Identify promising organizations - look for:
A. Extremes
B. Advocates

DEPLOY - 10

10

Copyright John D. Musa 2000

Implement Organization by
Organization

1. Match idea to problems of organization
2. Qualify potential adopters
3 Plan pilot application
4. Transfer technology
5. Follow up

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 A Good Idea! But How Do We Get PeopleTo Use It?

Copyright 2000 by John D. Musa 6

DEPLOY - 11

11

Copyright John D. Musa 2000

Match Idea to Problems of
Organization

1. Convene focus group to identify
organization key problems
A. Include all stakeholders, even product

users
B. Refine and prioritize problems

2. Identify problems idea might help

DEPLOY - 12

12

Copyright John D. Musa 2000

Qualify Potential Adopters

1. Introduce idea to organization with highly
interactive overview presentation

2. Show how idea can help organization key
problems

3. Identify advocates
4. Have advocates prepare draft deployment

plan

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 A Good Idea! But How Do We Get PeopleTo Use It?

Copyright 2000 by John D. Musa 7

DEPLOY - 13

13

Copyright John D. Musa 2000

Qualify Potential Adopters

5. Advocates present draft plan to entire
organization
A. Circulate copies in advance
B. Strongly encourage inputs in meeting
C. Assign action items for issues that can’t

be resolved in meeting
D. Identify candidates for pilot application

6. Identify and deal with resistance

DEPLOY - 14

14

Copyright John D. Musa 2000

Plan Pilot Applications

1. Select pilot applications
2. Plan transfer of technology
3. Monitor for problems; record and provide

support as required
4. Plan recording of benefits

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 A Good Idea! But How Do We Get PeopleTo Use It?

Copyright 2000 by John D. Musa 8

DEPLOY - 15

15

Copyright John D. Musa 2000

Transfer Technology

 1. Approaches
 A. Consultant do all
 B. Self - teaching
 C. Course
 D. Course with workshops

2. Need to adapt

DEPLOY - 16

16

Copyright John D. Musa 2000

Follow Up Pilot Applications

1. Summarize benefits
2. Summarize problems and solutions
3. Have advocates publicize:

A. In organization
B. Outside

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 A Good Idea! But How Do We Get PeopleTo Use It?

Copyright 2000 by John D. Musa 9

DEPLOY - 17

17

Copyright John D. Musa 2000

Problems and Solutions

Problem Solution

Critique from researchers Address proactively in
working with practitioners

No time to implement Staged introduction focused
on quick initial benefit
Example: operational profile

“We’re already doing it” Request details and compare
with idea’s details

DEPLOY - 18

18

Copyright John D. Musa 2000

Problems and Solutions

Problem Solution

Reorganization Restart, but leverage alumni

Loss of key advocate Recruit multiple advocates,
restart, leverage advocate

Cost reduction and
downsizing

Emphasize cost benefit of
idea

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 A Good Idea! But How Do We Get PeopleTo Use It?

Copyright 2000 by John D. Musa 10

DEPLOY - 19

19

Copyright John D. Musa 2000

Conclusion

Deploying a new idea is primarily a
marketing, sales, and organizational
development problem, not a technical one.

DEPLOY - 20

20

Copyright John D. Musa 2000

References

1. Software Reliability Engineering website: overview,
briefing for managers, bibliography of articles by
software reliability engineering users, course
information, useful references, Question of the Month:
 http://members.aol.com/JohnDMusa/

2. Musa, J. D., Software Reliability Engineering: More
Reliable Software, Faster Development and Testing ,
ISBN 0-07-913271-5, McGraw-Hill, 1998.

3. Musa, J.D., “Developing More Reliable Software
Faster and Cheaper,” Proc. 5th. IEEE International
Conference on Engineering of Complex Computer
Systems, Las Vegas, NV, Oct. 18 - 21, 1999, pp. 162 -
176.

QW2000 Paper 8W1

Mr. Adrian Cowderoy
(MMHQ)

Technical Quality is Just the Start -- The Real
Battle is Commercial Quality

BACK TO QW2000 PROGRAM

Presentation Abstract

In 1997 and 1998 a consortium of European companies and universities, supported by the European
Commission, undertook a major exercise to explore the meaning of quality in the context of
multimedia and website development, with attention to both the content and functionality. The author
was the project manager and technical director of this research project, "MultiSpace".

Technical quality. Each of the different digital assets used in websites and multimedia has distinct
characteristics that asset developers believe to represent "quality", such as listed in Table 3 below.
While the importance of some technical quality features have loose relationship to system quality,
others can be critical. For example, colour accuracy is safety-critical for some medical and defence
systems.

The MultiSpace project reviewed system quality features, and especially those of the draft ISO/IEC
9126.1 and .2 ("Software product evaluation - Quality characteristics and guidelines for their use").
The project found that the ISO/IEC 9126 characteristics and sub-characteristics can be interpreted for
multimedia and website content in a similar way as multimedia and website functionality. Indeed, the
two are sometime inseparable (such as in usability).

However there were some significant technical problems. The first was that the usability
sub-characteristic of "attractiveness" was inadequate at describing the richness of the experience of
using multimedia and the Internet. The second was that the entire topic of usability concerns only
reducing pain of using the human-system interface, and there is minimal attention to the joys. An
effective description of website/multimedia quality would also be effective at describing the quality of
the component media: books, films, training, games, advertising, etc.

Quality in use. Software systems are developed for a use (or set of uses) resulting from clearly
defined needs. Although some multimedia and websites are utilitarian, many are also designed to
please personal needs. Especially in the context of websites, these personal needs comes from a
highly diverse audience and are difficult to model.

We have found it useful to make a distinction between the system constraints needed for achieving
the primary purpose, and the system benefits that create the experience.

System benefits. System benefits involve giving people more than they expected, in a satisfying way.

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8W1.html (1 of 2) [4/28/2000 2:36:29 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Some vendors of commercial software packages achieve this by adding a wide range of new
functions, some of which may be useful. Apart from resulting in bloatware and increased maintenance
costs, this focuses only on utilitarian purpose. In contrast, traditional media combine quality with a
heavy emphasis on rewards that create increase the quality of the experience. Specifically, they offer
a variety of novelty features, supplementary learning, inter-personal participation and emotional
satisfaction (or stimulation). Table 4 below lists sub-characteristics that describe these effects.

About the Author

Adrian Cowderoy is Managing Director of the Multimedia House of Quality Limited, a company which
he established to promote quality-improvement methods for the production of websites and
multimedia.

Mr Cowderoy was the General chair of ESCOM-SCOPE-99 and ESCOM-ENCRESS-98 conferences,
and was Program chair for ESCOM 96 and 97 (The European Software Control and Metrics
conference promotes leading-edge developments in industry and research, worldwide û see
www.escom.co.uk). He is the METRICS-ESCOM Coordinator for IEEE METRICS 2001 and was on
the Program committee of Metrics 98 and 99, European Quality Week 99 and COCOMO/SCM 96-99.
In 1998 he was acting Conference Chair of the Electronics and Visual Arts conference in Gifu, Japan.
He is a registered expert to the European Commission DGXIII.

He has provided consultancy and industrial training courses on quality management, risk
management, and cost estimation to the aerospace and medical industries in the UK, Germany and
Italy since 1995. He also lectures at Middlesex University (www.mdx.ac.uk) on e-commerce project
management and managing Internet start-up's, and at City University, London (www.city.ac.uk), on
project management for systems development.

Mr Cowderoy was project manager and technical director of MultiSpace, a 14-month million-dollar
initiative sponsored by the European Commission in which 12 European organizations explored the
potential to apply quality-improvement methods to multimedia and website development projects. (See
www.mmhq.co.uk/multispace and www.cordis.lu/esprit.)

He was a Research fellow at City University from 1990-1998, and a Research Associate at Imperial
College from 1986-1989. He was also a quality consultant and software developer at International
Computers Limited, UK, from 1980-1985, where he worked on operating and networking systems for
mainframes and distributed systems.

His academic qualifications include an MSc in Management Science from Imperial College, University
of London in 1986, and is a member of the Association of MBA's. He received a BSc in Physics with
Engineering from Queen Mary College, University of London, in 1979.

Mr. Cowderoy has published and presented extensively on multimedia quality and software cost
estimation. He was joint editor of Project Control for 2000 and Beyond (Elsevier, 1998), Project
Control for Software Quality (Elsevier, 1999), and Project Control: The Human Factor (Elsevier, 2000).

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8W1.html (2 of 2) [4/28/2000 2:36:29 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Copyr ight © NexusWor ld.net L im i ted,
2000 P a g e 1

Techn i ca l Qua l i t y i s j u s t the s t a r t – the rea l ba t t l e i s Commercial Quality
Adrian Cowderoy, NexusWor ld .ne t L im i t ed

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 1

T e c h n i c a l Qua l i t yT e c h n i c a l Qua l i t y
is j u s t t h e s t a r t –is j u s t t h e s t a r t –

t he r e a l ba t t l e i st he r e a l ba t t l e i s
Commercial QualityCommercial Quality

Adr i a n Cowde r o y
Copyright © NexusWorld.net Limited 2000

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 2

• T h e Mu l t i Spa ce Pro jec t –
– Ma j o r i n i t i a t i v e s u ppo r t e d b y E u r o p e a n

C o m m i s s i o n
t o e xp l o r e t h e app l i c a t i o n o f qu a l i t y

e n g i n e e r i n g t e c h n i q u e s t o m u l t i m e d i a
a n d t h e w e b

– 1 2 c o m p a n i e s a n d u n i v e r s i t i e s

• Que s t i o n s :
– Is c o n t e n t d i f f e r e n t t o f u n c t i o n a l i t y ?
– D o s o f t w a r e q u a l i t y c h a r a c t e r i s t i c s

d e s c r i b e b o o k s , t e a c h i n g , m u s i c a n d
e n t e r t a i nm e n t ?

– How c a n q u a l i t y b e s p e c i f i e d , t e s t e d
a n d m a n a g e d ?

What is meant by Quality?

Copyr ight © NexusWor ld.net L im i ted,
2000 P a g e 2

Techn i ca l Qua l i t y i s j u s t the s t a r t – the rea l ba t t l e i s Commercial Quality
Adrian Cowderoy, NexusWor ld .ne t L im i t ed

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 3

The Con t r a c t V i ew: S ystem Quality

• Ex t e r n a l l y v i s i b l e v i ew o f qu a l i t y
– a l l o w s e f f e c t i v e m a n a g e m e n t o f

c o n t r a c t s
– i s a d ap t ab l e t o “ con t e n t ”

 C h .3 of
h t t p : / / w w w . m m h q . c o . u k /m u l t i s p a c e /d2-
2p .p d f

• E x amp l e , I SO/IEC 9126.2
– F u n c t i o n a l i t y (su i t ab i l i t y , a ccu r a cy ,

s ecu r i t y , e t c)
– Re l i ab i l i t y ()
– Usab i l i t y (lea rnab i l i ty , unde r s t andab i l i t y ,

ope rab i l i t y , a t t r a c t i vene s s)
– Main t a i nab i l i t y ()
– E f f i c i e n c y ()
– Por t ab i l i t y ()

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 4

Example measure of system quality

“Using text input”

X = A / B
A = n u m b e r o f p l a c e s w h e r e t e x t i n p u t

c a n b e u s e d
B = t o t a l n u m b e r o f p l a c e s w h e r e i n p u t

c a n b e g i v e n

In t e r p r e t a t i o n :
0 ≤ X ≤ 1
“A h i g h e r v a l u e m e a n s t h a t m o r e t e x t

i n p u t
c a n b e u s e d .”

Mea s u r e s
X i s r a t i o - s c a l e m e t r i c , A & B a r e c o u n t s

Copyr ight © NexusWor ld.net L im i ted,
2000 P a g e 3

Techn i ca l Qua l i t y i s j u s t the s t a r t – the rea l ba t t l e i s Commercial Quality
Adrian Cowderoy, NexusWor ld .ne t L im i t ed

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 5

The Dev e l ope r ’ s V i ew : Technical
Quality

• As s e t q u a l i t y (v i s i b l e t o u s e r s)
w w w .m m h q . c o . u k / m y - q u a l i t y / m e a s u r e - c o n t e n t -

q u a l i t y . s h t m l
– Na r r a t i v e

 Spe l l i n g , g r amma r , l i n g u i s t i c s imp l i c i t y , t o n e o f
v o i c e , c omp a c t n e s s , wo r d s p e r s e c t i o n , l o g i c a l
s t r u c t u r e , t e x t l a you t

– Im a g e s 2 D
 I m a g e q u a n t i t y , i m a g e c omp r e s s i o n , c o n t r a s t

c o n t r o l , g r a d a t i o n , e d g e s h a r p n e s s , u s e o f c o l o r ,
co lo r mode , co lo r f i de l i t y , p r i n t i n g a c cu r a cy , co lo r
v i b r a n c y , h a r mo n y w i t h s c h em e , c ompo s i t i o n .

– Nav i g a t i ona l a i d s , Mov i e s , 3V & VR, e t c

• Use f o r s p e c i f y i n g t e s t i n g c r i t i c a l
f e a t u r e s
– e . g . m ed i c a l a n d c u l t u r a l a r t s n e ed q u a l i t y

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 6

Other types of Technical Quality

• As s e t c omp l e x i t y (i n t e r n a l
c h a r a c t e r i s t i c s)

h t t p : / / w w w . m m h q . c o . u k / m y - c o m p l e x i t y /

– ob j e c t c omp l e x i t y
 e . g . im a g e l a y e r s , s i z e , co l o r s , e t c

– s t r u c t u r a l c o m p l e x i t y b e t w e e n o b j e c t s

→ i n d i c a t e s p o s s i b l e p r o b l e m s :
 i d en t i f y h i g h - r i s k componen t s
 c h a r g e - r a t e f o r c h a n g e s , s u b j e c t t o c o n s t r a i n t s
 i nd i ca to r s o f poo r ope rab i l i t y

• P r o c e s s e f f i c i e n c y
– a s s e t m a n a g e m e n t s y s t e m
– d o c u m e n t a t i o n

Copyr ight © NexusWor ld.net L im i ted,
2000 P a g e 4

Techn i ca l Qua l i t y i s j u s t the s t a r t – the rea l ba t t l e i s Commercial Quality
Adrian Cowderoy, NexusWor ld .ne t L im i t ed

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 7

T h e Comme r c i a l V i ew : S ys tem
Rewards

• Usab i l i t y : a t t r a c t i v e n e s s
– u s a b i l i t y i s t h e e f f i c i e n c y o f h u m a n -

m a c h i n e - i n t e r f a c e
– on l y “ s u f f i c i e n t ” u s a b i l i t y i s n e ed ed

• T h e w e b i n v o l v e s m u l t i p l e m ed i a
– w h a t m a k e s a g o o d b o o k , f i l m o r m u s i c

t r a c k ?
– w h a t m a k e s e f f e c t i v e t r a i n i n g ?
– w h a t i n c r e a s e s s a l e s ?

→To c ompe t e w i t h t h e t o p w eb -
de v e l ope r s
ALL q u a l i t y p e r s p e c t i v e s m u s t b e
c o n s i d e r e d

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 8

T h e Comme r c i a l V i ew : S ys tem
Rewards

• S y s t e m c o n s t r a i n t s
– n e e d j u s t e n o u g h f o r u s e r s , i m m e d i a t e

b u s i n e s s p u r p o s e , a n d l o n g - t e r m
ma i n t a i n ab i l i t y

• T e c h n i c a l q u a l i t y o f a s s e t s
– n e e d j u s t e n o u g h f o r c r i t i c a l a s s e t s

• S y s t e m r e w a r d s
– e f f e c t s t h a t e n h a n c e b u s i n e s s p u r p o s e
– n e e d a s m u c h a s p o s s i b l e w i th i n

p r o j e c t c o n s t r a i n t s

Copyr ight © NexusWor ld.net L im i ted,
2000 P a g e 5

Techn i ca l Qua l i t y i s j u s t the s t a r t – the rea l ba t t l e i s Commercial Quality
Adrian Cowderoy, NexusWor ld .ne t L im i t ed

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 9

S ystem Rewards

• 5 cha r a c t e r i s t i c s (w i t h 29 s ub -
c h a r a c t e r i s t i c s):
– Part ic ipat ion (…, ...)
– Discovery (…, ...)
– Nove l t y (e x p e r i e n c e , p a r a do x ,

d r am a t i c , t e c h n i c a l)
– Involvement (…, ...)
– Comfort (…, ...)

• B a l a n c e
– d i f f e r e n t p eop l e l i k e d i f f e r e n t f e a t u r e s
– s o m e h a v e n e g a t i v e e f f e c t s
– s o m e f e a t u r e s w o r k b e s t t o g e t h e r
– s o m e f e a t u r e s a r e c o n t r a d i c t o r y

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 10

Sub - c h a r a c t e r i s t i c s o f Participation

• Bu l l e t i n bo a r d s

• Ema i l c i r c u l a r s

• Rea l - t ime i n t e r a c t i o n

• P h y s i c a l m e e t i n g s u p p o r t

• P u s h e d c o n t e n t

• Pe r s o n a l i z a t i o n o f i n t e r a c t i o n

Copyr ight © NexusWor ld.net L im i ted,
2000 P a g e 6

Techn i ca l Qua l i t y i s j u s t the s t a r t – the rea l ba t t l e i s Commercial Quality
Adrian Cowderoy, NexusWor ld .ne t L im i t ed

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 11

Sub - c h a r a c t e r i s t i c s o f Discovery

Le a r n i n g a bo u t …

…peop le

…e v e n t s

…o r g a n i z a t i o n s

…t o o l s a n d p r o c e s s e s

…s c i e n c e a n d t e c h n o l o g y

…t h e wo r l d

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 12

Sub - c h a r a c t e r i s t i c s o f Novelty

• P e r s o n a l e x p e r i e n c e

• Paradox / r idd le

• D r a m a t i c e x p e r i e n c e

• T e c h n i c a l g i m m i c k s

BEWARE :
B a l a n c e n o v e l t y w i t h Usab i l i t y a n d
C o m f o r t

Copyr ight © NexusWor ld.net L im i ted,
2000 P a g e 7

Techn i ca l Qua l i t y i s j u s t the s t a r t – the rea l ba t t l e i s Commercial Quality
Adrian Cowderoy, NexusWor ld .ne t L im i t ed

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 13

Sub - c h a r a c t e r i s t i c s o f Involvement

E n c o u r a g e s e l e c t e d e m o t i o n s
a n d d i s c o u r a g e o t h e r s

• New s m ed i a o f t e n r e l y o n a n g e r ,
fea r , p i ty

• Adv e r t i s i n g r e l i e s o n c o n f i d e n c e ,
g r e e d / a v a r i c e

• E n t e r t a i nm e n t e x p l o i t s o ppo s i t e s
(e . g . l o ve and ha t e)

a n d e x c i t e s p h y s i o l o g i c a l e f f e c t s
(s u c h a s l u s t)

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 14

Sub - c h a r a c t e r i s t i c s o f Comfort

• V i s u a l b e a u t y

• Poe t i c a c t

• E n g i n e e r i n g e l e g a n c e

• E xp e c t a t i o n

• C o n f o r m a n c e t o s o c i a l n o r m s

N.B. C om f o r t i s a r e w a r d ,
U s ab i l i t y i s a r e q u i r e m e n t

Copyr ight © NexusWor ld.net L im i ted,
2000 P a g e 8

Techn i ca l Qua l i t y i s j u s t the s t a r t – the rea l ba t t l e i s Commercial Quality
Adrian Cowderoy, NexusWor ld .ne t L im i t ed

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 15

Us i n g b e n e f i t s : Resolve conflicts

• Re s o l v e c o n f l i c t s
– b u s i n e s s a n d m a r k e t i n g p e o p l e n e e d

c o s t c o n t r o l
– u s e r s w a n t a s m a n y bene f i t s a s

p o s s i b l e ,
a n d s u f f i c i e n t u s a b i l i t y , e t c .

– t e c h n i c a l s t a f f h a v e t e c h n i c a l
c o n s t r a i n t s f r o m t h e t o o l s a n d l e g a c y
c o n t e n t

– d o m a i n s p e c i a l i s t s m e s s a g e
c o n s t r a i n t s
(f o r t r a i n i n g , ad v e r t i s i n g , e t c)

• P r o p o s e d m e c h a n i s m
– r a n k e a c h (r e l e v a n t) f e a t u r e

on s ca l e 1(i r r e l e van t) to 3 (c r i t i c a l)

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 16

Us i n g b e n e f i t s : User diversity

• L ingu i s t i c ab i l i t y

• F am i l i a r i t y w i t h t h e doma i n

• Compu t e r l i t e r a c y

• Web-beha v i o r
– s e e ke r , r e s i d en t , t u t o r , e t c …

• Cu l t u r a l
– d i f f e r e n t l e a r n i n g m e t h o d s
– d i f f e r e n t p r o b l e m - s o l v i n g m e t h o d s
– d i f f e r e n t i n t e r p e r s o n a l b e h a v i o r
– d i f f e r e n t v a l u e s y s t e m s
– d i f f e r e n t h i s t o r y (a n d s y m b o l s)

Copyr ight © NexusWor ld.net L im i ted,
2000 P a g e 9

Techn i ca l Qua l i t y i s j u s t the s t a r t – the rea l ba t t l e i s Commercial Quality
Adrian Cowderoy, NexusWor ld .ne t L im i t ed

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 17

Us i n g b e n e f i t s : Plan Quality

1) Is i t e n g a g i n g ?
– i t t a k e s o n e c l i c k t o l e a v e a w eb - s i t e !

2) Is i t i n s p i r i n g ?
– w h y r e t u r n t o t h e w eb s i t e ?

3) Is i t coo l? (I s t h e s t y l e r i g h t?)
– b e i n g c o o l i s h a r d w o r k .

4) Is i t e f f e c t i v e?
– a r e t h e p r om i s e s f u l f i l l e d?

5) Is i t m a i n t a i n a b l e?
– a d a p t a t i o n s a n d e x t e n s i o n o f t e n c o s t

m o r e
t h a n t h e o r i g i n a l w eb s i t e c r e a t i o n .

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 18

Is it cool?

• Coo l i s b e i n g l a i d b a c k
– c o o l w e b s i t e s d o n o t r e q u i r e m a s s i v e

c o n t e n t o r f u n c t i o n a l i t y (a l t h o u g h t h e y
m a y h a v e t h e m)

• C o o l i s b e i n g s e l f - a s s u r e d
– y o u r w eb s i t e m u s t n ' t p r e t e n d t o b e

s o m e t h i n g e l s e

• C o o l i s b e i n g c o n s i s t e n t
… u n t i l y o u c h a n g e y o u r m i n d

• Coo l i s a bo u t s t y l e , n o t f u n c t i o n a l
or u t i l i ty
– s o m e c o o l s i t e s a r e d i f f i c u l t t o u s e

• Coo l n e s s c a n n o t b e p h o t o c op i e d !

Copyr ight © NexusWor ld.net L im i ted,
2000 P a g e 10

Techn i ca l Qua l i t y i s j u s t the s t a r t – the rea l ba t t l e i s Commercial Quality
Adrian Cowderoy, NexusWor ld .ne t L im i t ed

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 19

Examples of building coolness

• Novel ty
– p e r s o n a l e x p e r i e n c e - c r e a t e e x p e r i e n c e s f o r

v i s i t o r s o r d e s c r i b e c oo l e x p e r i e n c e s , b u t s t a y l a i d -
b a c k

– p a r a d o x / r i d d l e c a n b e u s e d t o c r e a t e
c o o l n e s s
- t a k e c a r e t o m a i n t a i n c o n s i s t e n c y

– d r a m a t i c e x p e r i e n c e r e q u i r e s a g r e a t
s k i l l t o d o i n a c o o l w a y - don’t
pho tocopy i ng o t he r peop l e

– t e c h n i c a l g i m m i c k s
- a v o i d g i mm i c k s t h a t a r e m e r e l y f u n c t i o n a l o r a r e
w i d e l y u s e d

• L i k ew i s e f o r d i s c o v e r y ,
p a r t i c i p a t i o n , i n v o l v emen t , c om fo r t

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 20

Us i n g b e n e f i t s : Control Asset
wastage

• Con t e n t f r om l i b r a r i e s a n d
s u b c o n t r a c t o r s c a n d o m i n a t e
p r o j e c t c o s t s

• Co s t o f e r r o r s
– u n s u i t a b l e c o n t e n t h a s t o b e c h a n g e d

o r r e p l a c e d
– i n d i r e c t c o s t s o f r e p l a c i n g m a t e r i a l i n

t he f i e l d

• Imp a c t o f c h a n g e d p r i o r i t i e s
– c o s t o f n e w c o n t e n t ,

a n d w a s t e w h e n s o m e o l d c o n t e n t i s
a b a n d o n e d

Copyr ight © NexusWor ld.net L im i ted,
2000 P a g e 11

Techn i ca l Qua l i t y i s j u s t the s t a r t – the rea l ba t t l e i s Commercial Quality
Adrian Cowderoy, NexusWor ld .ne t L im i t ed

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 21

Process improvement - how?

• M a n u f a c t u r i n g p r o c e s s e s :
r e d u c t i o n o f w a s t e
– e q u a t e s w a s t e w i t h i n e f f i c i e n c y
– b e n e f i t s f r o m s t a t i s t i c a l p r o c e s s

c o n t r o l
– n e e d s p r o c e s s s t a n d a r d i z a t i o n
– r e l i e s o n s t e a d y c h a n g e s i n t e c h n o l o g y

a n d m a r k e t

• Al t e r n a t i v e i mp r o v eme n t
m e c h a n i s m s
– r i s k r e d u c t i o n
– q u a l i t y c h e c k i n g a t m i l e s t o n e s
– p e r f o r m a n c e r e v i e w b a s e d o n 2 - 4

m e a s u r e s

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 22

Web sites

h t t p : / /www .mmhq . co . u k /
/m y - q u a l i t y / m e a s u r e - i t . s h t m l …

q u a l i t y m e a s u r e s
/my -q u a l i t y / i s - i t - o k . s h tm l … app l y i n g

m e a s u r e s

/m u l t i s p a c e / f r a m e w o r k . s h t m l …
q u a l i t y p r o c e s s e s

 f r o m t h e E U
p r o j e c t

/m y - c o m p l e x i t y / …
c o m p l e x i t y m e a s u r e s

/ q u a l i t y - p l a n n i n g / … m ini-
t u t o r i a l

Copyr ight © NexusWor ld.net L im i ted,
2000 P a g e 12

Techn i ca l Qua l i t y i s j u s t the s t a r t – the rea l ba t t l e i s Commercial Quality
Adrian Cowderoy, NexusWor ld .ne t L im i t ed

C o p y r i g h t © N e x u s W o r l d.net L imi ted, 2000

“The r e a l b a t t l e i s
Comme r c i a l Qu a l i t y ”

QW2000, page 23

Contact details

A d r i a n C o w d e r o y

e m a i l a d r i a n @n e x u s w o r l d . n e t

p h o n e +44(UK) 118 9 427 970

s n a i l m a i l Ne x u sWo r l d . n e t L im i t ed
46 We s t e r n A lm s Av e n u e
Reading RG30 2AN
Un i t e d K i n g dom

URL w w w .n e x u s w o r l d . n e t

7HFKQLFDO�4XDOLW\�LV�MXVW�WKH�VWDUW�

7KH�UHDO�EDWWOH�LV�&RPPHUFLDO�4XDOLW\�

$GULDQ�&RZGHUR\

1H[XV:RUOG�QHW�DQG�7KH�0XOWLPHGLD�+RXVH�RI�4XDOLW\

,Q������WKH�(XURSHDQ�&RPPLVVLRQ�IRUPHG�D�SURMHFW�WR�H[SORUH�WKH�PHDQLQJ�RI�TXDOLW\�LQ
WKH� FRQWH[W� RI�PXOWLPHGLD�DQG� ,QWHUQHW� V\VWHP�GHYHORSPHQW�� DQG� WR� HVWDEOLVK�ZKHWKHU
HQJLQHHULQJ� DSSURDFKHV� WR� TXDOLW\�LPSURYHPHQW� FRXOG� EH� DSSOLHG� WR� WKLV� HPHUJLQJ
GRPDLQ�

7KH�VWDUWLQJ�SRLQW�ZHUH�WKH�YDULRXV�VRIWZDUH�IUDPHZRUNV�XVHG�IRU�TXDOLW\�VSHFLILFDWLRQ�
LQFOXGLQJ� WKH� SHUVSHFWLYHV� RI� V\VWHP� TXDOLW\�� TXDOLW\� LQ� XVH� DQG� 7HFKQLFDO� 4XDOLW\
�´LQWHUQDO� SURGXFW� FKDUDFWHULVWLFVµ��� :H� DQWLFLSDWHG� WKDW� WKH� SHUVSHFWLYH� RI� 7HFKQLFDO
4XDOLW\�ZRXOG�QHHG�PDVVLYH�H[WHQVLRQ�WR�VXSSRUW�LQGLYLGXDO�GLJLWDO�DVVHWV��SLFWXUHV��WH[W�
PRYLHV��HWF���:KDW�ZH�GLG�QRW�DQWLFLSDWH��ZDV�WKDW�WKDW�WKHUH�LV�D�IRXUWK�SHUVSHFWLYH�RQ
TXDOLW\�WKDW�KDV�EHHQ�DOPRVW�HQWLUHO\�LJQRUHG�LQ�WKH�VRIWZDUH�LQGXVWU\�

7KLV�SDSHU�LV�DERXW�WKH�IRXUWK�SHUVSHFWLYH��DQG�KRZ�LW�ZDV�IRXQG�

���&RPPRQ�SHUVSHFWLYHV�RQ�TXDOLW\

7KH� 0XOWL6SDFH� SURMHFW� FRPELQHG� H[SHUWV� IURP� WZHOYH� RUJDQL]DWLRQV� LQ� WKH� VRIWZDUH
TXDOLW\�LQGXVWU\�ZLWK�ZHEVLWH�GHYHORSHUV�DQG�H[SHUWV���7KH�WHUP�´ZHEVLWHµ�LV�XVHG�LQ�WKLV
SDSHU�� EXW� PRVW� RI� WKH� PDWHULDO� DOVR� DSSOLHV� WR� PXOWLPHGLD�� ,QWHUQHW�� LQWUDQHW� DQG
H[WUDQHW� V\VWHPV��� 7KH� ILUVW� PHHWLQJ� ZDV� WUDXPDWLF� ²� WKH� VRIWZDUH� SHRSOH� KDG� WLJKWO\
UHILQHG� LGHDV� DERXW� TXDOLW\� ZKLFK� WKH� ZHE�GHYHORSPHQW� SHRSOH� VDZ� DV� VHHPLQJO\
LUUHOHYDQW�WR�PRVW�RI�WKH�UHDO�LVVXHV�WKH\�UHJXODUO\�IDFHG�LQ�PDNLQJ�HIIHFWLYH�V\VWHPV�

7KH�ILUVW�H[HUFLVH�ZDV�WR�H[DPLQH�WKH�H[LVWLQJ�PDWHULDOV�DQG�OLVWHQ�WR�WKH�QHHGV�RI�D�ZLGH
YDULHW\�RI�SUDFWLWLRQHUV��:LWK�WKLV�WKH�WHDP�GHYHORSHG�LWV�PDQ\�LQLWLDO�YLHZV�LQWR�D�VLQJOH
V\QWKHVLV� WKDW� FRQVLGHUHG� ZKDW� TXDOLW\� PHDQW�� KRZ� LW� FRXOG� EH� PDQDJHG� DQG� KRZ� LW
ILWWHG� ZLWKLQ� WKH� ZHEVLWH� GHYHORSPHQW� F\FOH�� �7KHUH� ZRXOG� EH� OLWWOH� SRLQW� LQ� GHILQLQJ
TXDOLW\�� LI� LW� FRXOG�QRW�EH�PDQDJHG��� ,W�DOVR� FRQVLGHUHG�KRZ� WR�SURILOH� WKH�YHU\�GLYHUVH
UDQJH� RI� XVHUV�� &ROOHFWLYHO\�� WKLV� UHSUHVHQWV� WKH� 0XOWL6SDFH�)UDPHZRUN� >&RZGHUR\� 	
'DLO\������@�

$PRQJVW�WKH�REVHUYDWLRQV�LQ�WKH�0XOWL6SDFH�)UDPHZRUN�DUH�WKDW�TXDOLW\�LV�LPSRUWDQW�IRU
PDQDJLQJ� FRQWUDFWV�� IRU� SODQQLQJ� WKH� TXDOLW\�LPSURYHPHQW� DQG� WHVWLQJ�� DQG� IRU
HYDOXDWLQJ� WKH� GLIIHUHQW� UHVSRQVHV� WKDW� XVHUV� KDYH� WR� D� VLQJOH� V\VWHP��)RU� WKLV�
GHVFULSWLRQV�DUH�QHHGHG�RI�V\VWHP�TXDOLW\��7HFKQLFDO�4XDOLW\��DQG�WKH�XVHUV��7KLV�VHFWLRQ
SUHVHQWV�WKH�ILUVW�WZR�RI�WKHVH�²�WKH�WKLUG�LV�SUHVHQWHG�LQ�VHFWLRQ�����

http://www.nexusworld.net/
http://www.mmhq.co.uk/

7KH UHDO EDWWOH LV &RPPHUFLDO 4XDOLW\ $GULDQ &RZGHUR\

SDJH � &RS\ULJKW � 1H[XV:RUOG�QHW /LPLWHG� ����

�����6\VWHP�&RQVWUDLQWV

(IIHFWLYH�PDQDJHPHQW� RI� FRQWUDFWV� LV� HVVHQWLDO� WR� FOLHQW�FRQWUDFWRU� UHODWLRQVKLSV� ZKHQ
WKH� ILQDQFLDO� DPRXQW� LV� WR� JUHDW� IRU� UHODWLRQVKLSV� RI� WUXVW�� RU� ZKHQ� WKH� WHFKQLFDO
FRPSOH[LW\�LV�WRR�JUHDW�IRU�DQ�LQGLYLGXDO�DUFKLWHFW��RU�ZKHQ�D�PDUNHW�GULYHQ�DSSURDFK�LV
XVHG� IRU� SURGXFWLRQ� RI� LQGLYLGXDO� FRPSRQHQWV�� �0DUNHW�GULYHQ� SURGXFWLRQ� LQYROYHV
RXWVRXUFLQJ�HDFK�VWHS�RI�WKH�SURGXFWLRQ�FKDLQ�WR�ZKLFKHYHU�FRQWUDFWRU�LV�FKHDSHVW�DW�WKH
UHTXLUHG�TXDOLW\�DQG�GHOLYHU\�WLPH�>:LOOLDPVRQ�����@��

(IILFLHQW�FRQWUDFWV�IRU�ZHEVLWH�GHYHORSPHQW�QHHG�WR�VSHFLI\�ZKDW�QHHGV�WR�EH�GHOLYHUHG�LQ
WHUPV�RI�FRQWHQW��IXQFWLRQDOLW\�DQG�TXDOLW\��7KH�TXDOLW\�VSHFLILFDWLRQ�QHHGV�WR�DGGUHVV�DOO
TXDOLW\�FKDUDFWHULVWLFV��QRW�MXVW�WKRVH�WKDW�DUH�HDV\�WR�GHILQH�

,Q�WKH�VRIWZDUH�LQGXVWU\��YDULRXV�VFKHPHV�KDYH�EHHQ�SURGXFHG�IRU�PHDVXULQJ�WKH�TXDOLW\
RI� GHOLYHUHG� IXQFWLRQDOLW\�� 0RVW� RI� WKHVH� IRFXV� RQ� PHDVXULQJ� D� VSHFLILF� FKDUDFWHULVWLF�
VXFK� DV� UHOLDELOLW\� RU� XVDELOLW\�� DQG� LJQRUH� RWKHU� LVVXHV�� 8QIRUWXQDWHO\� VFKHPHV� RIWHQ
FRQWUDGLFW�HDFK�RWKHU��)RU�VRPH�\HDUV��WKH�,62�,(&������FRPPLWWHH�KDV�EHHQ�ZRUNLQJ�RQ
D� TXDOLW\� FKDUDFWHUL]DWLRQ� VFKHPH� WKDW� GHVFULEHV� DOO� TXDOLW\� FKDUDFWHULVWLFV� DQG� VXE�
FKDUDFWHULVWLFV� RI� VRIWZDUH�� 7KLV� DOVR� KDV� FRQWUDGLFWLRQV� ZLWK� RWKHU� VFKHPHV�� DQG
ZHDNQHVVHV� �VXFK� DV� ZLWK� VDIHW\� LVVXHV��� EXW� LW� IRUPV� D� XVHIXO� VWDUWLQJ� SRLQW� IRU
GHVFULELQJ�TXDOLW\���7KH����'HVLJQ�4XDOLW\�IHDWXUHV�SURSRVHG�E\�)HOOHQVWHLQ�DQG�:RRG�RI
,%0�>����@��DOVR�FRUUHVSRQG�WR�D�VXEVHW�RI������TXDOLW\�VXE�FKDUDFWHULVWLFV��

:HEVLWHV�LQFOXGH�GHOLYHU�ERWK�FRQWHQW�DQG�IXQFWLRQDOLW\��7KH�IXQFWLRQDOLW\�LV�GHVFULEHG�E\
WKH�H[LVWLQJ������GHILQLWLRQV��,Q�WKH�0XOWL6SDFH�SURMHFW��ZH�H[SHULPHQWHG�ZLWK�DGDSWLQJ
WKRVH�GHILQLWLRQV�WR�GHVFULEH�FRQWHQW��7KLV� LQFOXGHG� WH[W���'� LPDJHV���'� LPDJHV��YLGHR�
DXGLR�DQG�QDYLJDWLRQ�DLGV��7KH�VXEFKDUDFWHULVWLFV�GHVFULSWLRQV�FDQ�EH�IRXQG�LQ�FKDSWHU��
RI� WKH� 0XOWL6SDFH� 3ULRULWLHV� >YDQ� 9HHQHQGDDO@�� 7KHVH� DUH� VXSSOHPHQWHG� E\� RYHU� ���
PHDVXUHV��ZLWK�VXSSRUW�IRU�DOO�WKH�VXEFKDUDFWHULVWLFV�>%RRQVWUD������@��:KHQ�0XOWL6SDFH
VWDUWHG��WKH�DFFXVDWLRQ�KDG�EHHQ�ODEHOHG�DW�WKH�SURMHFW�WKDW�TXDOLW\�ZDV�IDU�WRR�LOOXVLYH�WR
EH� PHDVXUHG�� 7KH� ZRUN� RI� WKH� 3KLOLSV� DQG� .(0$� WHDPV� LQ� 0XOWL6SDFH� SURYHG� WKDW
FRQWHQW�TXDOLW\�FDQ�EH�PHDVXUHG�IRU�ZHEVLWHV��LQ�WKH�FRQWH[W�RI�ILWQHVV�IRU�SXUSRVH�

7DEOH����([DPSOHV�RI�2SHUDELOLW\�PHWULFV�IRU�,QWHUQHW�DQG�PXOWLPHGLD�V\VWHPV
>%RRQVWUD�����@�

([WHUQDO
PHWULFV 0HDVXUHPHQW ,QWHUSUHWDWLRQ

6FDOH
W\SH

0HDVXUH
W\SH

8VLQJ WH[W
LQSXW

; �$ � %�

$ QXPEHU RI SODFHV ZKHUH
WH[W LQSXW FDQ EH JLYHQ

% WRWDO QXPEHU RI SODFHV
ZKHUH LQSXW FDQ EH JLYHQ

�� ;� �

$ KLJKHU YDOXH
PHDQV WKDW
PRUH WH[W LQSXW
FDQ EH XVHG�

5DWLR ; 5DWLR

$ &RXQW

% &RXQW

http://www.nexusworld.net/

7KH UHDO EDWWOH LV &RPPHUFLDO 4XDOLW\ $GULDQ &RZGHUR\

SDJH � &RS\ULJKW � 1H[XV:RUOG�QHW /LPLWHG� ����

8VLQJ YRLFH
LQSXW

; �$ � %�

$ QXPEHU RI SODFHV ZKHUH
YRLFH LQSXW FDQ EH JLYHQ

% WRWDO QXPEHU RI SODFHV
ZKHUH LQSXW FDQ EH JLYHQ

�� ;� �

$ KLJKHU YDOXH
PHDQV WKDW
PRUH YRLFH LQSXW
FDQ EH XVHG�

5DWLR ; 5DWLR

$ &RXQW

% &RXQW

8VLQJ
GLVSODFHPHQW
LQSXW

; �$ � %�

$ QXPEHU RI SODFHV ZKHUH
GLVSODFHPHQW LQSXW FDQ EH
JLYHQ

% WRWDO QXPEHU RI SODFHV
ZKHUH LQSXW FDQ EH JLYHQ

�� ;� �

$ KLJKHU YDOXH
PHDQV WKDW
PRUH
GLVSODFHPHQW
LQSXW FDQ EH
XVHG�

5DWLR ; 5DWLR

$ &RXQW

% &RXQW

&RS\ULJKW � 7KH 0XOWL6SDFH SDUWQHUV� DV SURMHFW (3����� XQGHU WKH (635,7 3URJUDPPH�

�����7HFKQLFDO�4XDOLW\

(DFK� RI� WKH� GLIIHUHQW� GLJLWDO� DVVHWV� XVHG� LQ� ZHEVLWHV� KDV� GLVWLQFW� FKDUDFWHULVWLFV� WKDW
´TXDOLW\µ��VXFK�DV�OLVWHG�LQ�7DEOH���EHORZ��7KH�H[WHQW�RI�WKH�FRQWULEXWLRQ�WR�TXDOLW\�YDULHV
EHWZHHQ� DSSOLFDWLRQV�� IURP� H[WUHPHV� RI�]HUR� UHOHYDQFH� WR� H[WUHPH� KLJK��)RU� H[DPSOH�
FRORU�DFFXUDF\�LV�VDIHW\�FULWLFDO�IRU�VRPH�PHGLFDO�DQG�GHIHQVH�V\VWHPV��WH[WXDO�DFFXUDF\
LV�V\VWHP�FULWLFDO�IRU�ZHE�UHWDLO�VLWHV�DQG�WHDFKLQJ�PDWHULDOV�

7DEOH����6XPPDU\�RI�FKDUDFWHULVWLFV�IRU�GLIIHUHQW�W\SHV�RI�GLJLWDO�DVVHW�

$VVHW W\SH &KDUDFWHULVWLFV

1DUUDWLYH 6SHOOLQJ� JUDPPDU� OLQJXLVWLF VLPSOLFLW\� WRQH RI YRLFH� FRPSDFWQHVV�
TXDQWLW\ SHU VHFWLRQ� ORJLFDO VWUXFWXUH� WH[W OD\RXW�

1DYLJDWLRQDO DLGV '\QDPLF HIIHFWV� QDYLJDWLRQ KDUPRQ\ ZLWK PDLQ VFKHPH� K\SHUOLQN
TXDQWLW\� 85/ DGGUHVVHV VKRZQ� H[FOXVLRQ RI DGYHUWLVLQJ EDQQHUV�

,PDJHV �' ,PDJH TXDQWLW\� LPDJH FRPSUHVVLRQ� FRQWUDVW FRQWURO� VPRRWK WRQDO
WUDQVLWLRQ ��JUDGDWLRQ��� HGJH VKDUSQHVV� XVH RI FRORU� FRORU PRGH� FRORU
ILGHOLW\� SULQWLQJ DFFXUDF\� FRORU YLEUDQF\� LPDJH KDUPRQ\ ZLWK PDLQ
VFKHPH� LPDJH FRPSRVLWLRQ�

0RYLHV)UDPH VL]H� PRYLH FRPSUHVVLRQ� IUDPH UDWH� GLUHFWLQJ� PRYLH FRPSRVLWLRQ�
HGLWLQJ� DIWHU HIIHFWV�

)RU GHWDLOHG GHVFULSWLRQV� VHH KWWS���ZZZ�PPKT�FR�XN�P\�TXDOLW\�

7KHUH�DUH�DOVR�VXJJHVWLRQV� WKDW� WKH�DGDSWDELOLW\�DQG�H[WHQGLELOLW\�RI�D�ZHEVLWH�PD\�EH
OLQNHG� WR� FRPSOH[LW\� DQG� VL]H� RI� LQGLYLGXDO� DVVHWV�� DQG� WKH� FRPSRXQG� VWUXFWXUHV� WKDW
FRPELQH� DVVHWV� >&RZGHUR\� ����� DQG� KWWS���ZZZ�PPKT�FR�XN�P\�
FRPSOH[LW\�EHQHILWV�VKWPO@�

http://www.nexusworld.net/
http://www.mmhq.co.uk/my-quality/
http://www.mmhq.co.uk/my-complexity/benefits.shtml
http://www.mmhq.co.uk/my-complexity/benefits.shtml

7KH UHDO EDWWOH LV &RPPHUFLDO 4XDOLW\ $GULDQ &RZGHUR\

SDJH � &RS\ULJKW � 1H[XV:RUOG�QHW /LPLWHG� ����

���6\VWHP�5HZDUGV

�����7KH�DUJXPHQW�IRU�6\VWHP�5HZDUGV

)RU�FHQWXULHV��HQJLQHHUV�KDYH�ZRUNHG�WR�VDWLVI\�WKH�QHHGV�RI�WKHLU�FOLHQWV�DQG�WKH�SXEOLF�
,Q�SDVW�FHQWXULHV�� WKLV�ZDV�VRPHWLPHV�VXSSOHPHQWHG�E\� IOLJKWV�RI�FUHDWLYLW\� WKDW�DGGHG
IHDWXUHV�WKDW�ZHUH�DHVWKHWLFDOO\�SOHDVLQJ�WR�VRPH�SHRSOH��EXW�VHUYHG�QR�FOHDU�IXQFWLRQDO
SXUSRVH�

'XULQJ�WKH�WZHQWLHWK�FHQWXU\�� WKH� LQIOXHQFH�RI� IDFWRU\�SURFHVVHV�ZDV�H[WHQGHG� WR�RWKHU
LQGXVWULHV��7KLV�FUHDWHG�D�PDVVLYH�LPSURYHPHQW�LQ�WKH�VWDQGDUG�RI�OLYLQJ��HVSHFLDOO\�DV�D
UHVXOW�RI� WKH�ZLGHVSUHDG�XVH�RI� VWDWLVWLFDO�SURGXFW�DQG�TXDOLW\� WHFKQLTXHV� WKDW�VXSSRUW
HYHU�FORVHU� VDWLVIDFWLRQ� RI� IXQFWLRQDO� SXUSRVHV�� :LWK� VXFK� WHFKQLTXHV�� ZH� FRXOG� QRZ
FRQVWUXFW�WKH�DUFKLWHFWXUH�RI�6W�3HWHU·V�GRPH��WKH�ZRUNV�RI�6KDNHVSHDUH�DQG�WKH�PXVLF�RI
%HHWKRYHQ� ZLWK� PXFK� JUHDWHU� HIILFLHQF\� ²� VXUSOXV� RUQDPHQWDWLRQ�� ZRUGV� DQG� QRWHV
ZRXOG�EH�UHPRYHG��DFKLHYLQJ�LPSURYHG�YDOXH�IRU�PRQH\�DQG�KLJKHU�V\VWHP�HIILFLHQF\�

7KH� LPSRUWDQFH�RI�EHDXW\�ZDV� UHFRJQL]HG�E\� WKH� ,62�,(&�������� FRPPLWWHH�ZKHQ� WKH\
GHILQHG�WKH�XVDELOLW\�VXE�FKDUDFWHULVWLF�RI�$WWUDFWLYHQHVV��+RZHYHU�LQ�LWV�FXUUHQW�IRUP�LW
LV�LQDGHTXDWH�DW�GHVFULELQJ�WKH�ULFKQHVV�RI�WKH�H[SHULHQFH�RI�XVLQJ�ZHEVLWHV�

7KH�,62�,(&(��������XVH�RI�$WWUDFWLYHQHVV�LV�DOVR�LQ�FRQWUDGLFWLRQ�WR�WKH�RWKHU�XVDELOLW\
VXE�FKDUDFWHULVWLFV��ZKLFK�GHVFULEH� KRZ� WKH�SDLQ� RI� XVLQJ� WKH�KXPDQ�V\VWHP� LQWHUIDFH
FDQ�EH�UHGXFHG�

$Q� HIIHFWLYH� GHVFULSWLRQ� RI� ZHEVLWH� TXDOLW\� ZRXOG� DOVR� EH� HIIHFWLYH� DW� GHVFULELQJ� WKH
TXDOLW\� RI� WKH� FRPSRQHQW� PHGLD�� ERRNV�� ILOPV�� WUDLQLQJ�� JDPHV�� DGYHUWLVLQJ�� HWF�� LI
0LFKHODQJHOR��6KDNHVSHDUH�DQG�%HHWKRYHQ�ZHUH�FRUUHFW�LQ�WKHLU�ZRUNV��WKHQ�VRPHWKLQJ�LV
PLVVLQJ�IURP�WKH�HQJLQHHU·V�GHILQLWLRQ�RI�TXDOLW\��0RUH�VSHFLILFDOO\���

7KH�FRPPHUFLDO�IDLOXUH�RI�VRPH�ZHEVLWHV�FDQ�EH�OLQNHG�WR�EDG�V\VWHP�TXDOLW\��EXW
RQFH�DGHTXDWH�V\VWHP�TXDOLW\�KDV�EHHQ�DFKLHYHG��WKHUH�LV�QR�VWUXFWXUH�IRU�GHILQLQJ
ZKDW�PDNHV�VRPH�VLWHV�D�FRPPHUFLDO�VXFFHVV��DQG�RWKHUV�D�GLVDVWHU�

)ROORZLQJ� VRPH� HDUOLHU� ZRUN� LQ� 0XOWL6SDFH�� ZH� SURSRVHG� DW� WKH� ,(((� 6\PSRVLXP� RQ
6RIWZDUH�0HWULFV�WKDW��ZLWK�VRPH�H[FHSWLRQV��ZHEVLWHV�KDYH�WR�SURYLGH�UHZDUGV�WR�WKHLU
XVHUV�DV�ZHOO�DV�VDWLVI\LQJ�QHHGV�>&RZGHUR\�HW�DO������@��,Q�HIIHFW��TXDOLW\�FRQVLVWV�RI�WZR
VHWV�RI�IHDWXUHV�

� 6\VWHP�&RQVWUDLQWV� LQYROYLQJ� WKH�VDWLVIDFWLRQ�RI�QHHGV� WR�SHUIRUP� WKH� IXQFWLRQDO
SXUSRVH�RI�WKH�ZHEVLWH��$�ZHOO�GHVLJQHG�V\VWHP�SURYLGHV�´MXVW�HQRXJKµ�TXDOLW\�IRU
WKH�SXUSRVH�²�DQ\WKLQJ�PRUH�ZRXOG�UHGXFH�SURGXFWLYLW\�DQG�GHOLYHU\�WLPH�

� 6\VWHP� 5HZDUGV�� LQYROYLQJ� WKH� SURYLVLRQ� RI� IHDWXUHV� LQ� DGGLWLRQ� WR� WKH� SULPDU\
SXUSRVH�� 6XFK� IHDWXUHV� DUH� LQGLYLGXDOO\� GHSHQGHQW� ²� HDFK� SHUVRQ� OLNHV� VRPH
IHDWXUHV�� DQG� LJQRUHV� �RU� GLVOLNHV�� RWKHUV�� 7KH� REMHFWLYH� RI� WKH� GHYHORSHUV� LV� WR
SURYLGH� DV�PXFK� UHZDUG� DV� SRVVLEOH� ZLWKLQ� WKH� EXGJHW�� DQG� WLPHVFDOH�� 5HZDUGV
LQFUHDVH� DWWHQWLRQ�� SURORQJ� YLVLWV� WR� ZHEVLWHV�� DQG� HQFRXUDJH� UHWXUQ� YLVLWV�� 7KH

http://www.nexusworld.net/

7KH UHDO EDWWOH LV &RPPHUFLDO 4XDOLW\ $GULDQ &RZGHUR\

SDJH � &RS\ULJKW � 1H[XV:RUOG�QHW /LPLWHG� ����

ILQDQFLDO�EHQHILWV�RI�WKHVH�FDQ�EH�VR�VLJQLILFDQW�WKDW�LW�FDQ�MXVWLI\�LQFUHDVHG�EXGJHW
DQG�GHOD\HG�GHOLYHU\�

7KH�V\VWHP�EHQHILWV�DUH�OLVWHG�LQ�GHWDLO�LQ�VHFWLRQ���DQG�VHFWLRQ���

�����$VVHW�ZDVWDJH

,GHDOO\��6\VWHP�5HZDUGV�VKRXOG�EH�GHILQHG�DW�WKH�VWDUW�RI�WKH�SURMHFW��DQG�HLWKHU�LQFOXGHG
LQ� WKH� EXGJHW� RU� SULRULWL]HG� VR� WKDW� WKH� PRVW� LPSRUWDQW� RQHV� DUH� LQFOXGHG�� +RZHYHU
W\SLFDOO\� 6\VWHP� 5HZDUGV� FDQ� RQO\� EH� RXWOLQHG� DW� WKH� VWDUW� RI� WKH� SURMHFW� LQ� D� YHU\
JHQHUDO� IDVKLRQ��7KH�VSHFLILF� LGHDV�RQO\� FRPH�SDUW�ZD\� WKURXJK��DQG�PD\�FRPH�DW� WKH
ILUVW� FXVWRPHU� GHPRQVWUDWLRQ�� � 7KHVH� ODWH� DUULYDOV� PD\� UHTXLUH� D� FKDQJH� RI� SULRULWLHV
SDUWZD\� WKURXJK� WKH� SURMHFW�� $Q� HIIHFW� RI� FKDQJLQJ� SULRULWLHV� LV� D� OHYHO� RI�ZDVWH� ²� L�H�
DVVHWV�WKDW�DUH�SDUWO\�GHYHORSHG��WKHQ�GLVFDUGHG�

7KHUH�LV�D�PLVOHDGLQJ�VLPLODULW\�EHWZHHQ�WKH�ZDVWHG�UHVRXUFHV�IURP�GLVFDUGHG�DVVHWV�LQ
FRQWHQW� GHYHORSPHQW�� DQG� WKH� ZDVWHG� HIIRUW� UHVXOWLQJ� IURP� ODWH� GHWHFWLRQ� RI� IDXOWV� LQ
VRIWZDUH�GHYHORSPHQW��7KH�PDLQ�GLIIHUHQFHV�DUH���

� :DVWHG�DVVHWV�FDQ�RFFXU�IURP�FKDQJHG�SULRULWLHV�� UHVXOWLQJ� LQ� LQFUHDVHG� ILQDQFLDO
DGYDQWDJH�

� :DVWHG� DVVHWV� FDQ� DOVR� RFFXU� EHFDXVH� WKH� GHVLJQ� LQFOXGHV� VRPH� GHVLJQ� IHDWXUHV
WKDW�DUH�FHUWDLQWLHV��DQG�RWKHUV� WKDW�DUH�RSSRUWXQLWLHV� ²� L�H�� WKHUH� LV�D�SRVVLELOLW\
WKDW� WKHLU� LPSDFW�ZLOO� EH� GLIIHUHQW� WR� RULJLQDO� H[SHFWDWLRQV� �JUHDWHU� RU� OHVV��� DQG
WKH\�PD\�FUHDWH�VHFRQGDU\�ULVNV��VXFK�DV�UHGXFHG�XVDELOLW\�DQG�UHOLDELOLW\�DQG�QHZ
RSSRUWXQLWLHV��

�����4XDOLW\�LPSURYHPHQW�VWUDWHJLHV

,Q� VRIWZDUH� HQJLQHHULQJ�� LW� LV� RIWHQ� VDLG� WR� EH� ´JRRG� SUDFWLFHµ� WR� XVH� SURFHVVHV� WKDW
UHGXFH�WKH�SRVVLELOLW\�RI�IDXOWV��+RZHYHU�LQ�FRQWHQW�GHYHORSPHQW��WKH�PDMRU�FKDOOHQJH�LV
WR�PDQDJH� WKH� ULVNV� DQG� RSSRUWXQLWLHV� HIILFLHQWO\�� 7KH�PRVW� HIILFLHQW�ZD\� RI� KDQGOLQJ
WKLV� LV� ZLWK� ULVN� PDQDJHPHQW� WHFKQLTXHV�� EXW� WR� OLVW� ERWK� JRRG� DQG� EDG� HYHQWV�� DQG
FRQWURO� DFWLRQV� WKDW� FUHDWH� OHYHUDJH� WR� LPSURYH� HDFK� RSSRUWXQLW\� RU� ULVN�� 2IWHQ� WKHVH
FRQWURO�DFWLRQV�FRUUHVSRQG�WR�FRQYHQWLRQDO�TXDOLW\�DVVXUDQFH�DQG�TXDOLW\�FRQWURO�DFWLRQV�
KRZHYHU� FRPSDUHG� WR� VWDQGDUGL]HG� VRIWZDUH� HQJLQHHULQJ� SUDFWLFHV�� WKHVH� H[WUD� TXDOLW\
PHWKRGV� DUH� XVHG� RQO\� ZKHQ� WKH� EHQHILWV� FOHDUO\� RXWZHLJK� WKH� FRVWV� IRU� WKH� FXUUHQW
SURMHFW�

$QRWKHU� SURPLVLQJ� PHWKRGV� IRU� ZHE� GHYHORSPHQW� LV� FRQFXUUHQW� HQJLQHHULQJ� >&DUWHU� 	
%DNHU@�� 7KH� FRQFXUUHQF\� KHOSV� ZLWK� 5DSLG� $SSOLFDWLRQ� 'HYHORSPHQW�� WKH� PDVVLYH
EURDGEDQG� FRPPXQLFDWLRQV� KHOSV� LPSURYH� FUHDWLYLW\� DQG� UHGXFHV�PDQ\� RI� WKH� TXDOLW\
ULVNV�ZLWKLQ�WKH�SURMHFW�� ,W�DOVR�VXSSRUWV�ULVN�PDQDJHPHQW��TXDOLW\�SURILOLQJ�DQG�SHRSOH
PDQDJHPHQW�

http://www.nexusworld.net/

7KH UHDO EDWWOH LV &RPPHUFLDO 4XDOLW\ $GULDQ &RZGHUR\

SDJH � &RS\ULJKW � 1H[XV:RUOG�QHW /LPLWHG� ����

�����,QWURGXFLQJ�TXDOLW\�LPSURYHPHQW�WHFKQLTXHV

:H� KDYH� HQFRXQWHUHG� VRPH� KRVWLOLW\� WR� WKH� LQWURGXFWLRQ� RI� HQJLQHHULQJ� PHWKRGV� LQWR
HQYLURQPHQWV� WKDW� GHSHQG� RQ� FUHDWLYLW\� DQG� FUDIW� VNLOOV�� 7KLV� KDV� OHG� WR� YDULRXV
FRQFOXVLRQV�

� 3URFHVV�GHILQLWLRQ��VWDQGDUGL]DWLRQ�DQG�LQVSHFWLRQ�WHFKQLTXHV�FXUUHQWO\�RQO\�DSSO\
WR�FHUWDLQ�DFWLYLWLHV�

� 4XDOLW\� HQJLQHHU·V� EHOLHI� LQ� WKH� LPSRUWDQFH� RI� VWDWLVWLFDO� PHWKRGV� LV� VHHQ� DV� D
UHOLJLRQ��VRPHWLPHV�IDQDWLF��DQG�QRW�D�SURSRVLWLRQ�WKDW� LV� IHDVLEOH� LQ�DQ� LQGXVWU\
WKDW�FDQ�VHH�PDMRU�FKDQJHV�ZLWKLQ�RQO\���PRQWKV�

� 4XDOLW\�WUDLQLQJ� QHHGV� WR� IRFXV� RQ� D� IHZ� NH\� LVVXHV� WR� ZKLFK� ZHE� GHYHORSPHQW
VWDII�FDQ�GLUHFWO\�UHODWH�

7DEOH����([DPSOH�RI�D�WHDFKLQJ�DLG�LQ�WKLV�DUHD
IURP�KWWS���ZZZ�PPKT�FR�XN�FRRO�ZD\�

7R� WHDFK� QHZFRPHUV� WR� SURMHFW� PDQDJHPHQW�� WKH� 00+4� ZHEVLWH� HQFRXUDJHV
SHRSOH� WR� IRFXV� RQ� IRXU� DUHDV�� WKH� SURMHFW� SDUWLFLSDQWV�� WKH� SURGXFW� TXDOLW\�� WKH
SURMHFW�ULVNV��DQG�FRQWURO�PHFKDQLVPV���,Q�WKLV�FRQWH[W��FRQWURO�LV�XVHG�WR�LPSURYH
FRPPXQLFDWLRQV��TXDOLW\�DQG�ULVNV��7KH�VWURQJ�HPSKDVLV�RQ�SURMHFW�SDUWLFLSDQWV�LV
LPSRUWDQW�IRU�D�FUDIW�EDVHG�LQGXVWU\���7KH�HPSKDVLV�LV�RQ�LQFUHDVLQJ�DZDUHQHVV�RI
KRZ� HDFK� RI� WKH� IRXU� DUHDV� HIIHFWV� WKH� RWKHUV�� DQG� FDQ� EH� XVHG� WR� LPSURYH� WKH
RWKHUV��:LWKLQ� HDFK� RI� WKH� IRXU� DUHDV�� SHRSOH� DUH� HQFRXUDJHG� WR� DSSUHFLDWH� WKH
EUHDGWK�RI�WRSLFV�WKDW�VKRXOG�EH�FRQVLGHUHG��7R�KLJKOLJKW�LQWHUHVW��WKH�H[HUFLVH�LV
SUHVHQWHG� DV� D� VHW� RI� FDUG� JDPHV� �´WKH� &RRO� :D\µ��� ,W� HQFRXUDJHV� XVH� RI
�FRQYHQWLRQDO�� PHWKRGV� VXFK� DV� ULVN� PDQDJHPHQW� DQG� TXDOLW\� SURILOLQJ�� DQG� LW
SURYLGHV�D�IUDPHZRUN�RQ�ZKLFK�PRUH�GHWDLOHG�DQG�DGYDQFHG�PHWKRGV�FDQ�EH�EXLOW�

�����8VHU�SHUVSHFWLYHV

&RQWHQW�ULFK� ZHE�VLWHV� PD\� UHFHLYH� D� PXFK� PRUH� GLYHUVH� UDQJH� RI� XVHUV� WKDQ
FRQYHQWLRQDO�VRIWZDUH�V\VWHPV�

�)RU� VRIWZDUH�� WKH� GHVLJQHUV� DQG� XVDELOLW\� HYDOXDWRUV� KDYH� WR� DGGUHVV� GLIIHUHQW
OHYHOV�RI�FRPSXWHU�OLWHUDF\��SK\VLFDO�YLVXDO�GH[WHULW\�DQG��SHUKDSV��IDPLOLDULW\�ZLWK
WKH�DSSOLFDWLRQ�DUHD�

�)RU� ZHEVLWHV�� WKH� ´IDPLOLDULW\� ZLWK� WKH� DSSOLFDWLRQ� GRPDLQµ� FDQ� EHFRPH� PXFK
PRUH� FRPSOH[�� HVSHFLDOO\� IRU� WKH� 6\VWHP� %HQHILWV�� 7KHUH� DUH� DOVR� LPSRUWDQW
GLIIHUHQFHV� IURP� ZHE�EHKDYLRU� �VHHNHU�� UHVLGHQW�� WXWRU�� HWF��� OLQJXLVWLF� DELOLW\�
QDWLRQDO�YDULDWLRQV�LQ�JURXS�EHKDYLRU�DQG�OHDUQLQJ�VWUDWHJLHV��DQG�YDOXH�VHWV��VXFK
DV� IURP� HWKQLF� WUDGLWLRQV��� �)DLOXUH� WR� DGHTXDWHO\� DGGUHVV� WKHVH� GLIIHUHQFHV� FDQ
UHVXOW� LQ� FXVWRPHUV� DEDQGRQLQJ� WKH� ZHE�VLWH�� DQG� FDQ� HYHQ� UHVXOW� LQ� KRVWLOH
EHKDYLRU�

7R�SHUIRUP�VWDWLVWLFDO�HYDOXDWLRQ�RI� WKH�V\VWHP�UHZDUGV�ZHEVLWHV�ZRXOG�UHTXLUH�D� ODUJH
SRSXODWLRQ��VDPSOHG� WR� LQFOXGH�DOO� WKHVH�GLIIHUHQW� FDWHJRULHV��7KLV�ZRXOG�EH�H[SHQVLYH�
WLPH�FRQVXPLQJ� DQG� LW� FDQ� EH� GLIILFXOW� WR�PDLQWDLQ� FRQILGHQWLDOLW\� DQ� DOWHUQDWLYH� LV� WR

http://www.nexusworld.net/
http://www.mmhq.co.uk/cool-way/

7KH UHDO EDWWOH LV &RPPHUFLDO 4XDOLW\ $GULDQ &RZGHUR\

SDJH � &RS\ULJKW � 1H[XV:RUOG�QHW /LPLWHG� ����

XVH�D�VPDOO�VDPSOH��WKDW�DUH�FDUHIXOO\�FKRVHQ�VR�WKDW�HDFK�FDWHJRU\�LV�UHSUHVHQWHG�E\�RQH
�RU�PRUH��SHRSOH�LQ�WKH�VDPSOH��7KH�SHRSOH�LQ�WKH�VDPSOH�WHQG�WR�ILW�LQWR�WKUHH�JURXSV���

� 1RYLFHV� DUH� QHZ� WR� HYDOXDWLRQ�� DQG� JLYH� XQELDVHG� RSLQLRQV�� ZKLFK� QHHG� WR� EH
VROLFLWHG�XVLQJ�D�FRPELQDWLRQ�RI�TXHVWLRQQDLUH��LQWHUYLHZ�DQG�REVHUYDWLRQ�²�L�H��WKH
HYDOXDWLRQ�FRVW�LV�UHODWLYHO\�KLJK�

� $FWRUV�DUH�H[SHULHQFHG�HYDOXDWRUV�ZKR�SOD\�D�VSHFLILHG�UROH�²�WKH\�PD\�JLYH�YHU\
GHWDLOHG�UHVSRQVHV��UHVSRQGLQJ�XVLQJ�TXHVWLRQQDLUHV�DQG�IUHHVW\OH��EXW�WKHUH�LV�ULVN
WKDW�WKHLU�UHVSRQVHV�DUH�VWHUHRW\SHG�

�)RFXV�JURXS�PHPEHUV�LQWHUDFW�ZLWK�HDFK�RWKHU��DV�ZHOO�DV�WKH�PRGHUDWRU��PD\�WHQG
WR�GRXEOH�JXHVV�EXVLQHVV�VWUDWHJLHV�DQG�RWKHU�LQIRUPDWLRQ�WKDW�KDV�EHHQ�ZLWKKHOG
IURP�WKHP�

���3ODQQLQJ�WKH�6\VWHP�5HZDUGV

7KHUH�DUH�ILYH�JHQHUDO�FDWHJRULHV�RI�UHZDUG��([LVWLQJ�ZHEVLWHV�RIWHQ�WRWDOO\�LJQRUH�VRPH
RI�WKHVH�FDWHJRULHV��EXW�LQ�FRPPHUFLDOO\�RULHQWHG�ZHEVLWHV��PRVW�RU�DOO�RI� WKHVH�QHHG�WR
EH�FRQVLGHUHG�

� 3DUWLFLSDWLRQ� LV� WKH� FRUH� RI� WKH� RQH�WR�RQH� PDUNHWLQJ� DQG� FRPPXQLW\�EDVHG� H�
EXVLQHVV�ZKLFK�LV�RQH�RI�WKH�FKDUDFWHULVWLFV�RI�WKH�1HZ�(FRQRP\�>6LHJHO������@�

� 'LVFRYHU\�LQFUHDVHV�UHWHQWLRQ�DQG��LI�WKHUH�LV�VXIILFLHQW�QHZ�PDWHULDO��LW�HQFRXUDJHV
UHWXUQ�YLVLWV�

� 1RYHOW\�DWWUDFWV�DWWHQWLRQ��ZKLFK�LQFUHDVHV�UHWHQWLRQ�DW�WKH�VLWH�DQG�PD\�LPSURYH
FRQFHQWUDWLRQ�

� ,QYROYHPHQW� LQFUHDVHV� FRQFHQWUDWLRQ� DQG� UHWHQWLRQ�� :KHQ� WKHUH� LV� D� VWURQJ
HPRWLRQDO�HOHPHQW�LW�FDQ�HQFRXUDJH�UHWXUQ�YLVLWV�

� &RPIRUW�LV�HVVHQWLDO�IRU�SHRSOH�WR�FRSH�ZLWK�WKH�VWUHVV�IURP�XVLQJ�WKH�V\VWHP�DQG
LWV�UHZDUGV�

7KH��� UHZDUG� FDWHJRULHV� VXEGLYLGH� LQWR� ��� VSHFLILF� IHDWXUHV�� (IIHFWLYH� TXDOLW\� SODQQLQJ
QHHGV�DOO����VSHFLILF�IHDWXUHV��,Q�DVVLJQLQJ�LPSRUWDQFH��EHZDUH�RI�WKH�VSHFLDO�FDVHV�

� 6RPH� IHDWXUHV�PD\� KDYH� QHJDWLYH� HIIHFWV� IRU� D� SDUWLFXODU� EXVLQHVV� RU� DXGLHQFH�
�)RU� H[DPSOH��PRVW�VLWHV�ZRXOG�EH�QHJDWLYHO\� LQIOXHQFHG�E\� WKH� LQFOXVLRQ�RI� DQ\
IHDWXUH�WKDQ�LQFLWHG�OXVW��

� 6RPH� IHDWXUHV� DUH� FRPSOLPHQWDU\� WR� RWKHU� IHDWXUHV� ZLWKLQ� WKH� VDPH� FDWHJRU\�
7KHVH�ZRUN�EHWWHU�ZKHQ�XVHG�WRJHWKHU���)RU�H[DPSOH��´SRHWLF�DFWµ�EHQHILWV�IURP�FR�
H[LVWHQFH�ZLWK�´YLVXDO�EHDXW\µ��

�)HDWXUHV� LQ� RQH� FDWHJRU\� PD\� FRPSOLPHQW� RU� FODVK� ZLWK� IHDWXUHV� LQ� DQRWKHU
FDWHJRU\��RU�ZLWK�6\VWHP�&RQVWUDLQWV���)RU�H[DPSOH��QRYHOW\�UHTXLUHV�WKH�SUHVHQFH
RI�FRPIRUW�DQG�WKH�V\VWHP�FRQVWUDLQW�RI�XQGHUVWDQGDELOLW\��

$V�ZHOO� DV� FRQVLGHULQJ� VSHFLDO� FDVHV�� WKH� LPSRUWDQFH� RI� HDFK� IHDWXUH� QHHGV� WR� UHVROYH
FRQIOLFWLQJ�QHHGV�IURP�WKH�IRXU�W\SHV�RI�SOD\HU�LQ�WKH�SURMHFW�

� %XVLQHVV�DQG�PDUNHWLQJ�SHRSOH��ZKR�UHTXLUH�WKH�ZHEVLWH�WR�MXVWLI\�LWV�FRVWV��7R�WKLV
SXUSRVH�� WKH\� QHHG� WKH� LQFOXVLRQ� RI� VRPH� IHDWXUHV� EXW� VHH� QR� GLUHFW� ILQDQFLDO

http://www.nexusworld.net/

7KH UHDO EDWWOH LV &RPPHUFLDO 4XDOLW\ $GULDQ &RZGHUR\

SDJH � &RS\ULJKW � 1H[XV:RUOG�QHW /LPLWHG� ����

EHQHILW� IURP� PDQ\� RWKHUV�� XQOHVV� WKHVH� RWKHU� IHDWXUHV� FKDQJH� WKH� EHKDYLRU� RI
XVHUV�

� 8VHUV�� ZKR� PD\� LQFOXGH� GLIIHUHQW� DQG� FRQIOLFWLQJ� DXGLHQFHV� DQG� PD\� LQFOXGH
SHRSOH�ZKR�DUH�KRVWLOH�WR�WKH�ZHEVLWH�RZQHUV��$V�H[SODLQHG�LQ�VHFWLRQ������WKHUH�LV
XVXDOO\�D�GLYHUVH�UDQJH�RI�XVHUV�WR�LQWHUYLHZ�

� 'RPDLQ�VSHFLDOLVWV��ZKR�SURWHFW�WKH�VLWH�IURP�PLVUHSUHVHQWDWLRQ�RI�PHVVDJHV���)RU
H[DPSOH��PDUNHWLQJ�SHRSOH�SURWHFW�EUDQG�LPDJHV��DQG�WHDFKHUV�GHPDQG�VWULFW�XVH
RI�WHUPLQRORJ\��

� 7HFKQLFDO�VWDII��ZKR�FDUU\�WKH�OHJDF\�RI�WKH�H[LVWLQJ�ZHEVLWH��WKH�FRQVWUDLQWV�IURP
WRROV�� DQG� WKH� FRQVWUDLQWV� RI� H[LVWLQJ� VRIWZDUH� VROXWLRQV� WR� ZKLFK� WKH� ZHE�VLWH
SURYLGHV�D�IURQW�HQG��ZKLFK�LV�FRPPRQ�IRU�DGYDQFHG�H�FRPPHUFH�V\VWHPV��

,W�WDNHV�D�PRGHVW�HIIRUW� WR� LGHQWLI\�WKH�SULRULWLHV� IRU�VR�PDQ\�SOD\HUV��DQG�WKHQ�UHVROYH
WKHP�� �$�VHW�RI� OLQNHG�VSUHDGVKHHWV�KHOSV���+RZHYHU�ZLWKRXW� WKDW� HIIRUW� WKHUH� LV�D� ULVN
WKDW�NH\�IHDWXUHV�KDYH�EHHQ�IRUJRWWHQ��RU�XQGHU�HPSKDVL]HG��RU�H[DJJHUDWHG��7KH�FRVW�RI
VXFK�PLVWDNHV�FDQ�EH�PXFK�JUHDWHU�WKDQ�WKH�HIIRUW�RI�SHUIRUPLQJ�TXDOLW\�SURILOLQJ�

���&KDUDFWHUL]DWLRQ�RI�6\VWHP�5HZDUGV

7KLV� VHFWLRQ� FRQWDLQV� OLVWV� RI� WKH� YDULRXV� FKDUDFWHULVWLFV� DQG� VXE�FKDUDFWHULVWLFV�ZKLFK
FROOHFWLYHO\� GHVFULEH� WKH� 6\VWHP� 5HZDUGV�� ([DPSOHV� FDQ� EH� IRXQG� DW
KWWS���ZZZ�PPKT�FR�XN�P\�TXDOLW\�H[DPSOHV�VKWPO

�����3DUWLFLSDWLRQ

3DUWLFLSDWLRQ� LQFOXGHV� LQYROYHPHQW�ZLWK�RWKHU�SHRSOH� LQ�ERWK� UHDO�DQG�YLUWXDO� FRQWH[WV�
2Q�WKH�ZHE��SDUWLFLSDWLRQ�WHQGV�WR�EH�DLPHG�DW�YHU\�VSHFLILF�XVHU�FRPPXQLWLHV��L�H��SHRSOH
ZLWK�VRPH�VLPLODU�REMHFWLYHV���7R�PDNH�SDUWLFLSDWLRQ�HIIHFWLYH�RWKHU�UHZDUG�IHDWXUHV�PD\
EH�QHHG�WR�HPSKDVL]HG�WR�VXLW�WKH�ORFDO�QHHGV�RI�WKH�WDUJHW�XVHUV�

1�%�� 3DUWLFLSDWLRQ� RIWHQ� UHTXLUHV� PDMRU� WHFKQLFDO� FKDOOHQJHV�� ZKLFK� LQWURGXFH� RWKHU
SUREOHPV��VXFK�DV�ZLWK�UHOLDELOLW\��XVDELOLW\�DQG�SHUIRUPDQFH��

)HDWXUH 6XPPDU\ 6LPSOH VFDOH

%XOOHWLQ ERDUGV (OHFWURQLF QRWLFH�ERDUGV WR ZKLFK XVHU
V FDQ
DSSHQG WKHLU RZQ PHVVDJHV �XVXDOO\ ZLWKRXW
FHQVRUVKLS��

,UUHOHYDQW� 0LQLPDO�
*RRG SUDFWLFH� RU 6WDWH�
RI�DUW�

(PDLO FLUFXODUV /HWWHUV VHQW HOHFWURQLFDOO\ WR DQ GLVWULEXWLRQ
OLVW�

,UUHOHYDQW� 0LQLPDO�
*RRG SUDFWLFH� RU 6WDWH�
RI�DUW�

5HDO�WLPH LQWHUDFWLRQ ,Q ZKLFK XVHU
V HQJDJH LQ UHDO�WLPH GLDORJXH
LQ DQ RQ�OLQH HQYLURQPHQW� �,QFOXGHV XVH RI
DYDWDUV DQG YLGHR FRQIHUHQFLQJ��

,UUHOHYDQW� 0LQLPDO�
*RRG SUDFWLFH� RU 6WDWH�
RI�DUW�

http://www.nexusworld.net/
http://www.mmhq.co.uk/my-quality/examples.shtml

7KH UHDO EDWWOH LV &RPPHUFLDO 4XDOLW\ $GULDQ &RZGHUR\

SDJH � &RS\ULJKW � 1H[XV:RUOG�QHW /LPLWHG� ����

3K\VLFDO PHHWLQJ
VXSSRUW

6XSSRUW RI PHHWLQJV ZLWK SUHSDUDWLRQ�
EURDGFDVW� DQG GLVVHPLQDWLRQ�

,UUHOHYDQW� 0LQLPDO�
*RRG SUDFWLFH� RU 6WDWH�
RI�DUW�

3XVKHG FRQWHQW ,QIRUPDWLRQ SXVKHG RQWR D UHFLSLHQWV
FRPSXWHU ZLWKRXW WKH XVHU GLUHFWO\
UHTXHVWLQJ LW�

,UUHOHYDQW� 0LQLPDO�
*RRG SUDFWLFH� RU 6WDWH�
RI�DUW�

3HUVRQDOL]DWLRQ RI
LQWHUDFWLRQ

$XWRPDWLF VHOHFWLRQ RI FRQWHQW RU
IXQFWLRQDOLW\ EDVHG RQ D XVHU
V DFWXDO RU
SHUFHLYHG QHHGV� �8VHG DV D PDUNHWLQJ WRRO
DV ZHOO DV IRU KDQGOLQJ LQIRUPDWLRQ
RYHUORDG��

,UUHOHYDQW� 0LQLPDO�
*RRG SUDFWLFH� RU 6WDWH�
RI�DUW�

�����'LVFRYHU\

7KLV� LQFOXGHV� WKH� GLVFRYHU\� RI� XVHIXO� RU� LQWHUHVWLQJ� LQIRUPDWLRQ� QRW� UHODWHG� WR� WKH
SULPDU\�SXUSRVH�RI�WKH�V\VWHP��&RYHUV�RWKHU�LQGLUHFWO\�UHODWHG�WRSLFV���&XUUHQWO\�WKH�PRVW
FRPPRQ� LQWHQGHG� XVHV� RI� VXSSOHPHQWDU\� OHDUQLQJ� LV� LQ�ZHEVLWH� GHVLJQ�� ZKHUH� UHODWHG
LQGLUHFW� WRSLFV�DUH� LQWHQWLRQDOO\� LQFOXGHG� LQ�VLWH�FRQWHQW� LQ�RUGHU� WR�SOHDVH�VRPH�RI� WKH
YLVLWRUV��

)HDWXUH 6XPPDU\ 6LPSOH VFDOH

/HDUQLQJ DERXW
SHRSOH

3URYLVLRQ RI LQIRUPDWLRQ DERXW SHRSOH
UHODWHG WR FXUUHQW FRQWH[W�

,UUHOHYDQW� 2FFDVLRQDO�
([SOLFLW� RU 'RPLQDWLQJ�

/HDUQLQJ DERXW
HYHQWV

5HSRUWV RI XSFRPLQJ DQG FRPSOHWHG HYHQWV
ORRVHO\ UHODWHG WR WKH FXUUHQW FRQWH[W�

,UUHOHYDQW� 2FFDVLRQDO�
([SOLFLW� RU 'RPLQDWLQJ�

/HDUQLQJ DERXW
RUJDQL]DWLRQV

3URYLVLRQ RI LQIRUPDWLRQ DERXW
RUJDQL]DWLRQV DQG VRFLDO JURXSV LQGLUHFWO\
UHODWHG WR FXUUHQW FRQWH[W�

,UUHOHYDQW� 2FFDVLRQDO�
([SOLFLW� RU 'RPLQDWLQJ�

/HDUQLQJ DERXW WRROV
DQG SURFHVVHV

3URYLVLRQ RI LQIRUPDWLRQ DERXW WKH WRROV DQG
SURFHVVHV XVHG WR LPSURYH WKHLU ZRUN
HIILFLHQF\ DQG WKH TXDOLW\ RI WKHLU UHVXOWV�

,UUHOHYDQW� 2FFDVLRQDO�
([SOLFLW� RU 'RPLQDWLQJ�

/HDUQLQJ DERXW
VFLHQFH DQG
WHFKQRORJ\

3URYLVLRQ RI LQIRUPDWLRQ DERXW KRZ DQG ZK\
WKLQJV ZRUN�

,UUHOHYDQW� 2FFDVLRQDO�
([SOLFLW� RU 'RPLQDWLQJ�

/HDUQLQJ DERXW WKH
ZRUOG

3URYLVLRQ RI LQIRUPDWLRQ DERXW PDQNLQG�
QDWXUH� VFLHQFH� RXU SODQHW DQG RXWHU VSDFH�

,UUHOHYDQW� 2FFDVLRQDO�
([SOLFLW� RU 'RPLQDWLQJ�

http://www.nexusworld.net/

7KH UHDO EDWWOH LV &RPPHUFLDO 4XDOLW\ $GULDQ &RZGHUR\

SDJH �� &RS\ULJKW � 1H[XV:RUOG�QHW /LPLWHG� ����

�����1RYHOW\

1RYHOW\�LQYROYHV�WKH�SURYLVLRQ�RI�VRPHWKLQJ�XQXVXDO�RU�QHZ��7KH�H[WHQW�RI�QRYHOW\�FDQ
EH� LQIOXHQFHG� E\� WKH� XVHU
V� IDPLOLDULW\�ZLWK� WKH� GRPDLQ�� �1�%��+LJK�QRYHOW\� IUHTXHQWO\
UHVXOWV� LQ� VLJQLILFDQWO\� UHGXFHG� XVDELOLW\� �� VHH� 8VDELOLW\� PHDVXUHV� DQG
KWWS���ZZZ�HPPXV�RUJ��

)HDWXUH 6XPPDU\ 6LPSOH VFDOH

3HUVRQDO H[SHULHQFH $ V\VWHP VDWLVI\LQJ D XVHU
V SUHYLRXVO\
XQUHFRJQL]HG QHHG RU VWLPXOXV�

,UUHOHYDQW� $YHUDJH�
8QXVXDO� RU
([FHSWLRQDO�

3DUDGR[�ULGGOH 3URYLVLRQ RI FRQWUDGLFWRU\ IHDWXUHV RU
SKUDVHV WR ZKLFK D VROXWLRQ LV SURPLVHG�

,UUHOHYDQW� $YHUDJH�
8QXVXDO� RU
([FHSWLRQDO�

'UDPDWLF H[SHULHQFH 3URYLVLRQ RI D QRYHO VWDWH RU VLWXDWLRQ LQ WKH
WUDGLWLRQV RI VWRU\�WHOOLQJ� DUW RU PXVLF
PDNLQJ�

,UUHOHYDQW� $YHUDJH�
8QXVXDO� RU
([FHSWLRQDO�

7HFKQLFDO JLPPLFNV 3URYLVLRQ RI DWWHQWLRQ�JHWWLQJ GHYLFH� ,UUHOHYDQW� $YHUDJH�
8QXVXDO� RU
([FHSWLRQDO�

�����,QYROYHPHQW

(PRWLRQDO� LQYROYHPHQW� LQFOXGHV� WKH� H[FLWHPHQW� RU� VWURQJ� IHHOLQJ�� HQFRXUDJLQJ
SV\FKRORJLFDO��DQG�SK\VLRORJLFDO��HIIHFW��7KLV�FDQ�EH�DGGLFWLYH��HQFRXUDJLQJ�UHWXUQ�YLVLWV�
(PRWLRQDO� LQYROYHPHQW� LV� XVHG� H[WHQVLYHO\� LQ� DGYHUWLVLQJ�� HQWHUWDLQPHQW� DQG� QHZV
VHUYLFHV�

,Q�WKH�FRQWH[W�RI�D�ZHEVLWH��RQO\�VRPH�HPRWLRQDO� IHDWXUHV�DUH�GHVLUDEOH��ZKLOH�VRPH
RWKHUV�PD\�EH�KLJKO\�XQGHVLUDEOH��,Q�KLJKO\�XWLOLWDULDQ�ZHEVLWHV��LW�LV�QRUPDO��DQG�HDV\�
WR�DYRLG�DOO�HPRWLRQDO�LQYROYHPHQW�

)HDWXUH 6XPPDU\ 6LPSOH VFDOH

&RQILGHQFH)DLWK DQG WUXVW LQ WKH IXWXUH� &RXUDJH WR
KDQGOH HYHQWV� �7KH LQYHUVH LV WKH FRQGLWLRQ
RI �OHDUQHG KHOSOHVVQHVV�� LQ ZKLFK DOO
DFWLRQV DUH EHOLHYHG WR UHVXOW LQ IDLOXUH�
GHVSLWH QHZ HYLGHQFH WR WKH FRQWUDU\��

,UUHOHYDQW� 2FFDVLRQDO�
([SOLFLW� RU 'RPLQDWLQJ�

/RYH 6WURQJ DIIHFWLRQ IRU D SHUVRQ RU JURXS RI
SHRSOH� EDVHG RQ DGPLUDWLRQ� EHQHYROHQFH�
FRPPRQ LQWHUHVWV RU SHUVRQDO WLHV�

,UUHOHYDQW� 2FFDVLRQDO�
([SOLFLW� RU 'RPLQDWLQJ�

3LW\ (PSDWK\ ZLWK RQH RU PRUH SHRSOH LQ D
VLJQLILFDQWO\ ZRUVH VLWXDWLRQ WKDQ WKH XVHU�

,UUHOHYDQW� 2FFDVLRQDO�
([SOLFLW� RU 'RPLQDWLQJ�

http://www.nexusworld.net/
http://www.emmus.org/

7KH UHDO EDWWOH LV &RPPHUFLDO 4XDOLW\ $GULDQ &RZGHUR\

SDJH �� &RS\ULJKW � 1H[XV:RUOG�QHW /LPLWHG� ����

*UHHG 'HVLUH IRU DFTXLVLWLRQ� FRQVXPSWLRQ RU
SRZHU�

,UUHOHYDQW� 2FFDVLRQDO�
([SOLFLW� RU 'RPLQDWLQJ�

$QJHU 6WURQJ GLVSOHDVXUH UHVXOWLQJ IURP DFWXDO RU
SHUFHLYHG LQMXU\� $QJHU LV RIWHQ DFFRPSDQLHG
E\ D GHVLUH IRU DFWLRQ� 7KH TXDOLW\ IHDWXUH
QHHGV WR EH FDUHIXOO\ FRPELQHG ZLWK
DSSURSULDWH RWKHU IHDWXUHV�

,UUHOHYDQW� 2FFDVLRQDO�
([SOLFLW� RU 'RPLQDWLQJ�

)HDU $QWLFLSDWLRQ RU DZDUHQHVV RI GDQJHU WR VHOI�
RU SHRSOH ZLWK RQH KDV DQ DIILQLW\�

,UUHOHYDQW� 2FFDVLRQDO�
([SOLFLW� RU 'RPLQDWLQJ�

/XVW 6WURQJ FDUQDO GHVLUH� GHYRLG IURP ORYH� 7KLV
PD\ KDYH DQ LPPHGLDWH HIIHFW �SRVLWLYH RU
QHJDWLYH� WKDW FDQ JUHDWO\ GLPLQLVK WKH
HIIHFW RI PRVW RWKHU TXDOLW\ IHDWXUHV�

,UUHOHYDQW� 2FFDVLRQDO�
([SOLFLW� RU 'RPLQDWLQJ�

6HOILVKQHVV 'LVUHJDUG IRU RWKHUV� (QFRXUDJLQJ
VHOILVKQHVV� DQG FDQ DJJUDYDWH UDFLVP DQG
ELJRWU\�

,UUHOHYDQW� 2FFDVLRQDO�
([SOLFLW� RU 'RPLQDWLQJ�

�����&RPIRUW

&RPIRUW�LQFOXGHV�WKH�SURYLVLRQ�RI�UHDVVXUDQFH�DQG�SOHDVXUH��&RPIRUW�LV�XVHG�WR�EDODQFH
WKH�GLIILFXOWLHV�W\SLFDOO\�DVVRFLDWHG�ZLWK�RWKHU�UHZDUGV��QRYHOW\��VXSSOHPHQWDU\�OHDUQLQJ�
SDUWLFLSDWLRQ�DQG�HPRWLRQDO�LQYROYHPHQW���6RPH�RI�WKH�FRPIRUW�IHDWXUHV�OLVWHG�EHORZ�DUH
LPSRUWDQW�RQO\�LQ�VRPH�IRU�FHUWDLQ�W\SHV�RI�SURGXFW�

7KHUH�LV�D�VXSHUILFLDO�VLPLODULW\�EHWZHHQ�WKH�6\VWHP�5HZDUG�RI�´FRPIRUWµ�DQG�WKH�V\VWHP
FRQVWUDLQW�RI�´XVDELOLW\µ��+RZHYHU�FRPIRUW�LV�D�SRVLWLYH�HIIHFW��DQG�VRPH�SHRSOH�UHTXLUH
DV�PXFK�FRPIRUW�DV�SRVVLEOH��,Q�FRQWUDVW��XVDELOLW\�LQYROYHV�RQO\�WKH�UHGXFWLRQ�RI�SDLQ�LQ
XVLQJ� WKH� V\VWHP�� DQG� LW� LV� RQO\� QHFHVVDU\� WR� KDYH� ´MXVW� HQRXJKµ� XVDELOLW\�ZLWKLQ� WKH
V\VWHP�

)HDWXUH 6XPPDU\ 6LPSOH VFDOH

9LVXDO EHDXW\ 9LVXDO LPSUHVVLRQ GHVLJQHG WR FUHDWH
SRVLWLYH HPRWLRQ�

,UUHOHYDQW� $YHUDJH�
+LJK� RU ([WUHPH�

3RHWLF DFW (OHJDQFH RI DFW RU WKRXJKW� ZLWK DOWUXLVWLF
PRWLYH� :ULWWHQ SRHWU\ LV RQH RI PDQ\ IRUPV
RI SRHWLF DFWLRQ�

,UUHOHYDQW� $YHUDJH�
+LJK� RU ([WUHPH�

(QJLQHHULQJ HOHJDQFH 3URYLVLRQ RI HIILFLHQW VWUXFWXUH ZLWK
IXQFWLRQDO VLPSOLFLW\�

,UUHOHYDQW� $YHUDJH�
+LJK� RU ([WUHPH�

([SHFWDWLRQ 8VH RI WKHPHV WKDW SURPLVH D ODWHU UHZDUG� ,UUHOHYDQW� $YHUDJH�
+LJK� RU ([WUHPH�

&RQIRUPDQFH WR
VRFLDO QRUPV

$GRSWLRQ RI SROLWLFDO FRUUHFWQHVV DQG JRRG
PRUDOV�

,UUHOHYDQW� $YHUDJH�
+LJK� RU ([WUHPH�

http://www.nexusworld.net/

7KH UHDO EDWWOH LV &RPPHUFLDO 4XDOLW\ $GULDQ &RZGHUR\

SDJH �� &RS\ULJKW � 1H[XV:RUOG�QHW /LPLWHG� ����

���&RQFOXVLRQ

:HE�VLWH� RZQHUV� DQG� GHYHORSHUV� GUHDP� RI� FUHDWLQJ� NLOOHU� ZHEVLWHV�� 7KH� SUREDELOLW\� RI
DFKLHYLQJ�WKLV�FDQ�EH�JUHDWO\�LQFUHDVHG�E\�LGHQWLI\LQJ�WKH�SULRULWLHV�IRU�6\VWHP�5HZDUGV�
WKHQ�PHWKRGLFDOO\�LPSURYLQJ�WKH�PRVW�LPSRUWDQW�RQHV�

7KLV� SDSHU� LV� D� VWDUW�� 7KHUH� LV� VWLOO� PXFK� UHVHDUFK� WKDW� LV� QHHGHG� WR� LPSURYH� WKH
GLFKRWRP\�RI�6\VWHP�5HZDUGV��DV�SUHVHQWHG�LQ�VHFWLRQ�����WR�SURYLGH�VXLWDEOH�PHDVXUHV
DQG�WR�SURYLGH�DSSURSULDWH�TXDOLW\�LPSURYHPHQW�VFKHPHV��+RZHYHU�WKH�NH\�OHVVRQ�LV�WKDW
HQJLQHHULQJ�PHWKRGV�FDQ�EH�DSSOLHG�WR�VXSSRUW�FUHDWLYH�DQG�FRPPHUFLDO�DFWLYLWLHV�

5HIHUHQFHV

%RRQVWUD��)���´'HILQLWLRQ�RI�H[WHUQDO�PHWULFVµ��LQ�0XOWL6SDFH�4XDOLW\�3DFN����4XDOLW\
VSHFLILFDWLRQ��TXHVWLRQQDLUHV�DQG�PHWULFV��(3������'���&��)HE����������

&DUWHU��'��(��DQG�%DNHU��%��6��&RQFXUUHQW�(QJLQHHULQJ��7KH�3URGXFW�'HYHORSPHQW
(QYLURQPHQW�IRU�WKH�����
V��5HDGLQJ��0$��$GGLVRQ�:HVOH\��������$6,1
�����������

&RZGHUR\��$�-�&���'DLO\��.���7KH�0XOWL6SDFH�)UDPHZRUN��(635,7�(3������������
$YDLODEOH�DW�KWWS���ZZZ�PPKT�FR�XN�PXOWLVSDFH�G���S�SGI

&RZGHUR\��$�-�&���'RQDOGVRQ��$�-�0���-HQNLQV��-�2���´$�PHWULFV�IUDPHZRUN�IRU�PXOWLPHGLD
FUHDWLRQµ��3URF��RI�WKH��WK�,QWHUQDWLRQDO�6RIWZDUH�0HWULFV�6\PSRVLXP��1RY�������
������0DU\ODQG��86$��,(((�&RPSXWHU�6RFLHW\��,6%1���������������

&RZGHUR\��$�-�&���´0HDVXUHV�RI�VL]H�DQG�FRPSOH[LW\�IRU�ZHE�VLWH�FRQWHQWµ��(6&20�6&23(
������$SULO��������������3XEOLVKHG�LQ�3URMHFW�&RQWURO��WKH�+XPDQ�)DFWRU��6KDNHU�
$YDLODEOH�DW�KWWS���ZZZ�PPKT�FR�XN�SDSHUV�HVFRPVFRSH�����SGI

)HOOHQVWHLQ��&���DQG�:RRG��5���([SORULQJ�(�&RPPHUFH��*OREDO�(�%XVLQHVV�DQG�(�6RFLHW\�
3UHQWLFH�+DOO��������,6%1�������������

6LHJHO��'���)XWXUL]H�<RXU�(QWHUSULVH��%XVLQHVV�6WUDWHJ\�LQ�WKH�$JH�RI�WKH�(�FXVWRPHU�
-RKQ�:LOH\�	�6RQV��������,6%1��������������:HEVLWH�
KWWS���ZZZ�IXWXUL]HQRZ�FRP�

:LOOLDPVRQ��2�(���0DUNHWV�DQG�+LHUDUFKLHV��$QDO\VLV�DQG�$QWLWUXVW�,PSOLFDWLRQV��)UHH
3UHVV��������,6%1������������

YDQ�9HHQHQGDDO��(�3�:�0���´4XDOLW\�FKDUDFWHULVWLFV�IRU�PXOWLPHGLD�V\VWHPVµ��&K���RI�7KH
0XOWL6SDFH�3ULRULWLHV��(3������'���3��������$YDLODEOH�DW
KWWS���ZZZ�PPKT�FR�XN�PXOWLVSDFH�G���S�SGI

http://www.nexusworld.net/
http://www.mmhq.co.uk/multispace/d2-1.pdf
http://www.futurizenow.com/
http://www.mmhq.co.uk/multispace/d2-2p.pdf
http://www.mmhq.co.uk/papers/escomscope2000.pdf

QW2000 Paper 8M1

Mr. D.J. Law
(QWest Communications)

Certification Programs for Software Quality and
Test Professionals

BACK TO QW2000 PROGRAM

Presentation Abstract

For the serious software quality and test practitioner, a quality or test professional certification
enhances one's career, realizes professional development goals, gains recognition for performance
excellence, and distinguishes yourself from your peers in today's competitive marketplace. In this
presentation, you will learn why it is important to become certified, the benefits of certification, what
you will need to qualify, how the certification process works, how to pass the examinations, and how
to keep your certification.

There will be a detail analysis of six certification programs for the software quality and test
professional, from two different quality certifying bodies and one test product vendor, and the
prescribed common body of knowledge for all six certification programs will be examined.

In addition, there will be a discussion of exam taking techniques, sample test questions, resources for
further study, and how to market your certification.

About the Author

Mr. Law is an independent consultant at Qwest Communications where he specializes as a
web-based test engineer. He has 16 years of software testing experience in managing test teams,
designing test cases, developing test scripts, and establishing automated test infrastructures for test
organizations.

His prior clients have included IBM, Lockheed Martin, Fannie Mae, Oracle, EDS, Boeing, Mobil, and
The Executive Office of the President. Mr. Law is a member of the American Society for Quality and is
an ASQ Certified Software Quality Engineer.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8M1.html [4/28/2000 2:36:36 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

– –

– –1

Professional Certification
Programs for the Software

Quality and Test Practitioner

Presented by D. J. Law, CSQE, CSTE

Copyright © 2000 D. J. Law 2

Presentation Outline

• What is certification?
• Why become certified?
• How to get certified?
• Which certification?
• How to study?
• How to pass the exam?
• How to keep your certification?
• Where to go for resources?
• How to get started?

– –

– –2

Copyright © 2000 D. J. Law 3

What is Certification?

• Certify (verb): 1. To confirm formally as
true, accurate, or genuine. 2. To guarantee as
meeting a standard. (Dictionary)

• Certification is the formal recognition that an
individual has demonstrated a proficiency
within and comprehension of a specified
body of knowledge at a point in time. (ASQ)

• Not a license or registration

Copyright © 2000 D. J. Law 4

• Formal proof of credibility in a profession
• Demonstration of competency in a specified

subject matter
• Official recognition of proficiency within a

prescribed body of knowledge
• A common standard to evaluate knowledge and

skill
• A credential to measure an individual’s job-

related skill set
• An up-to-date performance-based assessment of a

person’s abilities and mastery in a particular area
of expertise

Why Become Certified?

– –

– –3

Copyright © 2000 D. J. Law 5

Benefits of Certification

• Career advancement
• Salary goal fulfillment
• Faster promotion
• Hiring advantage
• Better job opportunities
• Professional development
• Greater marketability
• Professional credibility
• Affirmation of your

commitment to quality
• Enhanced confidence and

self-esteem

• Personal satisfaction
• Financial rewards
• Peer recognition
• Sense of professional

accomplishment
• Resume booster

Copyright © 2000 D. J. Law 6

Benefits for Employer and Client

• Tangible measure of employee’s capabilities
• Ensures clients that employee has proven experience
• A reliable benchmark for hiring and promoting
• Provide higher levels of service and customer satisfaction
• Assurance of quality when outsourcing services
• Win-win situation for employee, employer, and client
• Recognition and reward for productive employees
• Objective evidence of employee’s abilities
• Increased employee productivity
• Adds value to key job functions
• Greater job commitment
• Validates training investment
• Competitive market advantage

– –

– –4

Copyright © 2000 D. J. Law 7

Disadvantages and Criticisms

• Limited useful lifespan
• Must maintain certification
• Recertification due to new

release or version
• Employee may leave
• Must have time to study
• Expensive application fee

• Book knowledge
• No real-world skills

required

Benefits Outweigh Drawbacks

Copyright © 2000 D. J. Law 8

Certification Program Types
• Organization-based (vendor-independent, CBOK)

– ASQ (CSQE, CQMgr)
– QAI (CSTE, CQA)
– BCS (CST)

• Institution-based (vendor-neutral, no renewal)
– IIST (CSTP)

• Vendor-based (specific product and version, no CBOK)
– Mercury Interactive (CPS, CPI)
– Segue (CSSC)

– –

– –5

Copyright © 2000 D. J. Law 9

Some Certification Facts

• History
– ASQ: 1968, 81,000+
– ICCP: 1973, 50,000+
– Novell: 1989, 400,000+
– Microsoft: 1992, 400,000+

• Over 320 certifications from over 60 certifying entities
• Mostly ASQ and QAI for the quality and test profession
• Future possibilities

– ASQ: Certified Software Test Engineer?
– Segue: Certified Segue Functional Consultant?
– BCS: Practitioner and Diploma levels of CST?

Copyright © 2000 D. J. Law 10

How to Become Certified?

• Certification lifecycle:

– Eligibility determination
– Application submittal
– Eligibility notification
– Examination preparation
– Examination
– Results notification
– Certification maintenance

– –

– –6

Copyright © 2000 D. J. Law 11

Eligibility Criteria

• Must satisfy qualification requirements
– Baccalaureate degree (diploma, transcript)
– Proof of professionalism (letters, references, societies)
– Subscribe to code of ethics (signature)
– X years of professional paid experience (resume)

• Waivers
– Substitute advanced degrees for x years of experience

Copyright © 2000 D. J. Law 12

Application Process

• Complete application
• Submit documentary materials
• Enclose application fee
• Letter of notification

– –

– –7

Copyright © 2000 D. J. Law 13

Which Certification?

• For the Software Quality Professional:
– Certified Software Quality Engineer (CSQE)
– Certified Quality Analyst (CQA)
– Certified Quality Manager (CQMgr)

• For the Software Test Professional:
– Certified Software Test Engineer (CSTE)
– Certified Software Test Professional (CSTP)
– Certified Product Specialist (CPS)
– Certified Product Instructor (CPI)
– Certified Segue Scalability Consultant (CSSC)
– Certificate in Software Testing (CST)

Copyright © 2000 D. J. Law 14

Certified Software Quality Engineer
• Sponsor --- American Society for Quality
• Eligibility --- 8 years work experience, 1 to 5 years waiver permissible
• Application due --- 2 months before exam date
• Fee --- $90 member, $195 non-member
• Format --- 160 multiple choice questions, not categorized, random order
• Answer sheet --- optical scanned (mark with No. 2 pencil)
• Type --- open book, but no sample questions/answers in materials
• Permissible --- basic calculator, reference books (proctor must review)
• Length --- 4 hours
• Breaks --- permitted as necessary at your convenience
• Dates --- twice a year (1st Sat. in June and December)
• Times --- usually 8:00 AM to 12:00 PM noon
• Location --- hosted by local ASQ chapters (offices/schools)

– –

– –8

Copyright © 2000 D. J. Law 15

CSQE
• Passing score --- scale score of 550 (range 200 to 750)
• Expiration --- 3 years from exam date
• Renewal --- every 3 years, $30 members, $50 non-members
• Refunds --- yes, minus $20 processing charge
• Retake --- no limit on number of times but charges a resit fee
• Common body of knowledge (8 areas)

– General knowledge, conduct, and ethics (24, 15%)
– Software quality management (16, 10%)
– Software processes (24, 15%)
– Software product management (16, 10%)
– Software metrics, measurement, and analytical methods (24, 15%)
– Software inspection, testing, verification, and validation (24, 15%)
– Software audits (16, 10%)
– Software configuration management (16, 10%)

Copyright © 2000 D. J. Law 16

Certified Quality Analyst
• Sponsor --- Quality Assurance Institute
• Eligibility --- (1) no degree, 6 years experience, (2) 2-year degree, 2

years experience, (3) 4-year degree, 0 years experience
• Application due --- 30 days before exam date
• Fee --- $250
• Format --- (1) 50 mc/tf/m, (2) 10 essays, (3) 50 mc/tf/m, (4) 10 essays
• Answer sheet --- non-standard, hand-graded, traditional, low-tech
• Type --- closed book
• Length --- 4 hours total, (1) 45 min, (2) 75 min, (3) 45 min, (4) 75 min
• Breaks --- 10 minute break between each of 4 parts
• Dates --- throughout the year at different locations nationwide
• Times --- usually 8:30 AM to 1:00 PM
• Location --- hosted by local QAI federation chapters (offices/hotels)

– –

– –9

Copyright © 2000 D. J. Law 17

CQA

– Communications
– Human resource principles
– Training and development
– Quality management
– Quality assurance
– Quality control techniques
– Quantitative methods
– Reviews

– Auditing and control
– Testing
– Vendor control
– Standards
– Disaster recovery
– Management techniques
– Change management
– Principles of information systems

• Passing score --- 75% on each of 4 separate parts
• Expiration --- 1 year from exam date
• Renewal --- $20 maintenance fee, due by April 30th every year
• Reschedule --- 10 days prior, $25 fee; withdrawal: refund - $100 fee
• Retake --- Can resit up to 2 times for failed portion of exam for $50 fee
• Common body of knowledge (16 domains)

Copyright © 2000 D. J. Law 18

Certified Software Test Engineer
• Sponsor --- Quality Assurance Institute
• Eligibility --- (1) no degree, 6 years experience, (2) 2-year degree, 2

years experience, (3) 4-year degree, 0 years experience
• Application due --- 30 days before chosen exam date
• Fee --- $250
• Format --- (1) 50 mc/tf/m, (2) 10 essays, (3) 50 mc/tf/m, (4) 10 essays
• Answer sheet --- non-standard, hand-graded, traditional, low-tech
• Type --- closed book
• Length --- 4 hours total, (1) 45 min, (2) 75 min, (3) 45 min, (4) 75 min
• Breaks --- 10 minute break between each of 4 parts
• Dates --- throughout the year at different locations nationwide
• Times --- usually 8:30 AM to 1:00 PM
• Location --- hosted by local QAI chapters (offices/hotels)
• Passing score --- 75% on each of 4 separate parts

– –

– –10

Copyright © 2000 D. J. Law 19

CSTE

– Communications
– Professional development
– Quality principles and concepts
– Methods for software development

and maintenance
– Test principles and concepts
– Verification and validation methods
– Test management, standards, and

environment
– Reviews

– Test tactics (approaches, tools,
and environment)

– Planning process
– Test design
– Performing tests
– Defect tracking and

management
– Quantitative measurement
– Test reporting
– Improving the test process

• Expiration --- 1 year from exam date
• Renewal --- $20 maintenance fee, due by April 30th every year
• Reschedule --- 10 days prior, $25 fee; withdrawal: refund - $100 fee
• Retake --- Can resit up to 2 times for failed portion of exam for $50 fee
• Common body of knowledge (16 domains)

Copyright © 2000 D. J. Law 20

Certified Software Test Professional
• Sponsor --- International Institute for Software Testing
• Requirements --- job experience and formal training
• Experience --- 1+ years of testing experience; letter from supervisor
• Training --- 10 days of classroom instruction
• Course length --- 1 or 2 days
• Tests --- given at the end of each 1-day or 2-day course
• Passing score --- 80% on each test
• Time limit --- 2 years to complete all courses
• Substitutions --- up to 2 days of non-IIST courses; also certain 1-day

tutorials in IIST-sponsored conference (PSQT)
• Dates --- twice a month but different courses and different cities
• Locations --- Minneapolis, Las Vegas, Orlando, Boston, San Francisco

– –

– –11

Copyright © 2000 D. J. Law 21

CSTP
• Tuition --- 1-day course, $450; 2-day course, $845; 3-day combination,

$1,295; 4-day combination, $1,595
• Discounts --- 10% off when 5+ students from same company register
• Refunds -- at least 10 working days, $10 fee; less than 5 days, none
• Courses offered

– Practical techniques for software quality assurance (2)
– Testing web and e-business applications (2)
– Software test planning and design (2)
– Software requirements exploration and definition (2)
– Software test automation and scripting techniques (2)
– Software inspections and reviews (2)
– Managing the software testing process (2)
– Testing object-oriented systems (2)

• 9 additional 1- and 2-day courses available for on-site delivery only

Copyright © 2000 D. J. Law 22

Certified Product Specialist
• Sponsor --- Mercury Interactive Corporation
• Product --- TestSuite (WinRunner and TestDirector), LoadRunner (NT

or Web); both are version-specific
• Eligibility --- no specific academic or experience requirements
• Recommended training --- beginning and advanced instructor-led courses
• Fee --- $2,500 for 1 week course; $500 exam grading fee
• Discounts --- 50% off exam fee for Quality Channel Partners
• Type --- self-paced, self-study, take-home project
• Format --- 3 to 6 chapters; each chapter short answers and programming

specifications
• Length --- no time limit, but recommend 1 to 2 weeks full-time
• Dates --- apply anytime you are ready
• Location --- work on your own at office or home
• Expiration --- none, but version dependent

– –

– –12

Copyright © 2000 D. J. Law 23

CPS
• Passing score --- 75%
• Renewal --- $100 annual fee
• Grading criteria:

– Adherence to programming specifications
– Adherence to programming guidelines
– Portability
– Maintainability
– Documentation
– Modularity
– Best practices

• After submitting application, candidate receives certification package
on CD by mail containing training materials, AUT, and project

• Application under test (AUT) is the sample flight reservation system
• When completed, return project by mail for evaluation and grading

Copyright © 2000 D. J. Law 24

Certified Product Instructor
• Sponsor --- Mercury Interactive Corporation
• Product --- TestSuite (WinRunner and TestDirector), LoadRunner (NT

or Web); both are version-specific
• Eligibility --- (1) must be CPS certified, (2) must have had training

within last 3 months, (3) product implementation experience
• Fee --- $3,500
• Discounts --- 50% off for Quality Channel Partners
• Type --- 3 day workshop and lab
• Format --- 33% trouble-shooting exercises, 47% presentation/teaching

exercises, 20% final exam
• Dates --- apply anytime you are ready, event offered at least once per

month but at different locations
• Location --- Mercury Interactive regional offices and corporate

headquarters in Sunnyvale, California

– –

– –13

Copyright © 2000 D. J. Law 25

CPI
• Expiration --- none, but version dependent
• Passing score --- 75%, graded on delivery of training presentation and

final exam
• Restrictions --- if failed, must wait 6 months before retake
• Renewal --- $750 annual fee
• Day 1 - Problem Labs

– Common installation and configuration problems
– Common student errors

• Day 2 - Presentation Delivery
– Deliver 1 lesson from training materials
– Graded on knowledge of lessons, enthusiasm, presentation skills

• Day 3 - Final Exam
– 25 questions, 2 points each
– 3 categories: (1) Troubleshooting, (2) Labs, (3) Student frequently asked

questions

Copyright © 2000 D. J. Law 26

How to Study?

• Learn to select what is most important to learn
• Review by predicting questions on test
• Review by reorganizing subject matter into logical

divisions (CBOK)
• Focus on concepts, principles, fundamentals
• Avoid trivia, incidentals, details, opinion, conjecture
• Know your test and quality vocabulary
• Take a review or refresher course
• Don’t cram the week before

– –

– –14

Copyright © 2000 D. J. Law 27

Some Successful Smart Study Strategies

• Use mnemonic devices
• Organize your study time

– Example: QAI exams, 1 week, 1 domain
– Example: ASQ exams, 1 month, 1 section of CBOK

• Identify your weak areas of domain or CBOK
• Take sample exams at every opportunity
• Determine your best place and time to study
• Get a good night’s rest the night before
• Consider spending the night in a nearby hotel

Copyright © 2000 D. J. Law 28

How to Pass the Exam?
• General

– Answer all questions
• A missing answer is an incorrect answer
• Prevents “answer skipping offset” on answer sheet

– Preview entire exam first
– ASQ exams allows feedback on questions
– Time yourself, bring watch
– Use red tape flags

• Multiple choice
– Usually only one BEST answer
– ASQ Exams: Which of the following are roles played by

participants in an inspection meeting? I. Proctor. II. Moderator.
III. Author. IV. Manager (a) I and II, (b) I, III, and IV, (c) I only,
(d) I, II, III, and IV

– Watch for NOT and EXCEPT, double negatives and reverse logic

– –

– –15

Copyright © 2000 D. J. Law 29

Test-Taking Tips, Traps, Tricks, Tactics, Techniques

• True/False
– Observe qualifying words like sometimes, never, always,

usually, most, some, no, none, all, every
• Essays

– Usually based on scenario that requires problem-solving
– Brainstorm first, jot down all ideas, concepts, points
– Arrange in order of presentation
– Use narrative style or bulleted style (recommended)
– Use underline or all caps to emphasize key concepts
– Content counts (objective), but neatness helps (subjective)
– Understand instructional verbs like compare, contrast,

criticize, define, describe, discuss, evaluate, explain,
illustrate, justify, narrate, outline, relate, state,
summarize

Copyright © 2000 D. J. Law 30

How to Keep Your Certification?
• Purpose

– To maintain the integrity of your certification
– To maintain the same level of proficiency originally

demonstrated

• CSTE and CQA
– Renewal period 1 year
– Renewal fee $20 due by April 30th
– Require 40 CPE credits
– Each CPE credit = 1 hour of activity time
– Example: 1 college course = 30 CPE credits
– Work experience does NOT count

– –

– –16

Copyright © 2000 D. J. Law 31

Maintaining Your Certification

• CSQE
– Renewal period 3 years
– Renewal fee $30 member, $50 non-member
– Each activity is assigned a point value (RU)
– Example: employment is 0.3 RU per month
– Maximum allowed per activity (10.8 RU)
– Require 18 RUs

• CSTP - none
• CPS and CPI - none (version specific)

Copyright © 2000 D. J. Law 32

Qualifying Activities

• For ASQ (CSQE)
– Professional development
– Paid employment
– Instructor ***
– Student
– Professional society meetings
– Committees
– Other certifications
– Proctoring exams ***
– Viewing videotapes
– Publishing books and articles
– Presentation/speech

• For QAI (CSTE, CQA)
– Educational activities
– Publications
– Presentations
– Professional participation
– Self-study courses
– Unique and innovative job

tasks

– –

– –17

Copyright © 2000 D. J. Law 33

Resources

• ASQ (CSQE)
American Society for Quality
P. O. Box 3005
Milwaukee, Wisconsin 53201-3005
Phone: 414-272-8575
Toll-free: 800-248-1946
Fax: 414-272-1734
Email: cs@asq.org

Website: www.asq.org

• QAI (CSTE, CQA)
Quality Assurance Institute
7575 Dr. Phillips Boulevard
Suite 350
Orlando, Florida 32819-7273
Phone: 407-363-1111
Fax: 407-363-1112
Email: certify@qaiusa.com

Website: www.qaiusa.com

Copyright © 2000 D. J. Law 34

More Resources

• IIST (CSTP)
International Institute for Software
Testing
8476 Bechtel Avenue
Inver Grove Heights, MN 55076
Phone: 651-306-1387
Fax: 651-552-0791
Email: sbrown@psqtconference.com
Website: www.softdim.com/iist/

• Mercury (CPS, CPI)
Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, California 94089
Phone: 408-822-5200
Toll-free: 800-TEST-911
Fax: 408-822-5300
Email: info@merc-int.com
Website: www.merc-int.com

– –

– –18

Copyright © 2000 D. J. Law 35

Really Reliable Reputable Resources

• Quality Council of Indiana
– www.qualitycouncil.com
– Primer and solutions text for CSQE
– 400 practice exam questions on diskette

• Quality Assurance Institute
– www.qaiusa.com
– Study guides for CQA and CSTE

• Your online bookstore
– 40+ titles on software testing
– 15+ titles on software quality

• Your local ASQ section
– CSQE review course

Copyright © 2000 D. J. Law 36

How to Get Started?

• Decide to get certify
– Motivation, need, desire, commitment

• Select certification program
• Determine eligibility
• Complete the application
• Study and review
• Practice taking sample exams
• Take exam
• Reap the benefits and rewards

– –

– –19

Copyright © 2000 D. J. Law 37

When is the Best Time?

• When do you want to …
• The time is now … it’s never too late
• Remember:

– If you do what you’ve been doing, you’ll get what
you’ve been getting (Anonymous)

– I know of no more encouraging fact than the
unquestionable ability of man to elevate his life by a
conscious endeavor (Henry David Thoreau)

Copyright © 2000 D. J. Law 38

Questions and Answers

1

Certification Programs for the Software
Quality and Test Professional

Presented by D. J. Law, CSQE, CSTE

13th Annual International Quality Week 2000
Paper 8M1

June 1 2000, Thursday 3:30 PM,
Management Track

2

Certification Programs for the Software Quality and Test Professional

Professional certification provides the certificant (certification holder) with the necessary
credentials and knowledge to succeed in today’s competitive marketplace. There are a
number of certification programs available for the software quality and test professional:
Certified Software Quality Engineer, Certified Quality Analyst, Certified Software Test
Engineer, Certified Software Test Professional, Certified TestSuite Product Specialist,
and Certified LoadRunner Product Instructor, just to name a few.

Through a series of nine Frequently Asked Questions (FAQs), you will learn a great deal
about the current array of certification programs.

(1) What is certification? You will learn the meaning of certification.
(2) Why become certified? The benefits of being certified are discussed.
(3) How to get certified? The certification process is explained.
(4) Which certification? Details of six certifications are examined.
(5) How to study? Study strategies and techniques are presented.
(6) How to pass the exam? Test-taking skills and methodologies are explained.
(7) How to keep your certification? The certification maintenance process is examined.
(8) Where to go for resources? Various sources are listed for your convenience.
(9) How to get started? Steps to take to get started.

What is Certification?

Let’s examine what it means to be certified. The dictionary defines the verb certify as “to
meet a standard or confirm formally as true, accurate, or genuine”. The American
Society for Quality (a certifying organization) provides a working definition of the word
certification: “Certification is the formal recognition that an individual has demonstrated
a proficiency within and comprehension of a specified body of knowledge at a point in
time”.

Certification, then, is a formal proof of credibility in a profession, a demonstration of
competency in a specified subject matter, and an official recognition of proficiency
within a prescribed body of knowledge. Because certification is based on a common
standard to evaluate knowledge and skill, it serves an update-to-date performance-based
assessment of an individual's abilities and mastery in a particular area of expertise. Note
however, it is neither licensure nor registration.

Why Become Certified?

The Benefits of Certification - For the Employee

There are tremendous advantages to being certified from an employee's perspective:
career advancement potential, easier fulfillment of salary goals, faster promotions, hiring
advantages, better job opportunities, professional development, greater marketability,

3

professional credibility, personal satisfaction, financial rewards, peer recognition, sense
of professional accomplishment, and a resume booster, just to name a few. Certification
literature from the American Society for Quality (ASQ) states that by becoming certified,
you may realize your salary goals, advance within your organization, enhance your career
and self-esteem, gain recognition for performance excellence, and affirms your
commitment to quality. An ASQ survey published in the November 1998 issue of
Quality Progress cites an average salary difference of $11,388 for those with a Certified
Software Quality Engineer designation as compared to those not certified.

Benefits of Certification - For the Employer

There are an equal number of benefits from the employer's perspective: a tangible
measure of an employee's capabilities, a reliable benchmark for hiring and promotion,
ensures clients that employee has proven expertise, provides higher levels of service and
customer satisfaction, assurance of quality when outsourcing services, recognition and
reward for productive employees, objective evidence of an employee's abilities, increased
employee productivity, adds value to key job functions, greater employee job
commitment, validates training investment, and is a competitive market advantage when
submitting bids or proposals, just to name a few. Certification indeed appears to be a
win-win situation for the employee, employer, and client.

Disadvantages and Criticisms

Certification is not without drawbacks and disadvantages. Critics say that certification
exams only test book knowledge (theory, not practice) and that no real-world skills are
required. A certification is only valid for a specified period of time; each certificate has a
limited useful lifespan. The applicant must maintain his or her certification, must have
the time to study for the exam, and in some instances may pay a high application fee of
several hundred dollars. For certifications based on a product from a vendor, regular re-
certification is necessary due to a new release or version of the software. Employers who
certify their employees may be afraid that the new certificant might leave the company
after obtaining his or her certification. In the final analysis, it appears that the benefits
outweigh the drawbacks by a wide margin.

How to Get Certified?

Certification Program Types

Certification programs can be grouped according to the type of the issuing certifying
entity: organization-based, institution-based, or vendor-based. Organization-based are
those professional societies and associations that serve a particular industry segment or
profession. The certifications are vendor-independent, that is, they do not focus on any
one particular product, manufacturer, or vendor. The exams and tests of organization-
based certifications concentrate on a prescribed common body of knowledge (CBOK)
that is defined by the organization for that specific profession or discipline. Examples of
these professional organizations and their certifications are: the American Society for

4

Quality (ASQ), which issues the Certified Software Quality Engineer (CSQE)
designation, the Quality Assurance Institute (QAI), which grants the Certified Software
Test Engineer (CSTE) and Certified Quality Analyst (CQA) designations, and the British
Computer Society (BCS), which offers the Certificate in Software Testing (CST)
certification.

Institution-based programs are those offered by educational institutions, either for profit
or not. These programs are vendor-neutral and no renewal or maintenance is required
once certification is obtained. Certification is obtained by both class attendance and the
passing of a series of tests given after each class. An example is the Certified Software
Test Professional (CSTP) certification program offered by the International Institute for
Software Testing (IIST).

Vendor-based certification programs are those offered by manufacturers or vendors of a
particular product. The certification always applies to a specific version or release of a
product. The exams are not based on an industry-wide common body of knowledge, but
the ability to use the product to the fullest extent in a real-word situation. Examples are
the Certified Product Specialist (CPS) and Certified Product Instructor (CPI)
certifications offered by Mercury Interactive Corporation, and the Certified Segue
Scalability Consultant (CSSC) designation issued by Segue Corporation, both makers of
automated software test tools.

How to Become Certified?

The certification process usually consists of several steps: eligibility determination,
application submittal, eligibility notification, examination preparation, the taking of the
exam, and results notification.

Most certification programs have eligibility requirements that must be satisfied in order
to even apply for admission to the certification program. Some of these qualifications are
a baccalaureate degree, a certain number of years of paid experience, proof of
professionalism in the form of letters or membership in a professional society, and your
commitment to subscribe to a professional code of ethics in the form of a signature.
Some certifying bodies may allow the candidate to substitute advanced degrees for lack
of the prerequisite years of professional experience.

An applicant may submit the certification application either online at the certifying
entity’s website, or by fax, or via regular mail. Some organizations may require resumes,
letters of character references and work ethics, or other supplemental documentation.
After the application is processed, the applicant is notified of his or her eligibility to sit
for the certification examination. In the mean time, the candidate then prepares for the
examination by study the common body of knowledge, taking certification review
courses, and reading the recommended books. Notification of test results is usually sent
to the candidate 4 to 6 weeks after the examination.

Which Certification?

5

Note that a definite distinction is made between software quality assurance and software
testing.

There are two professional certifications currently available for the software quality
practitioner: (1) the Certified Software Quality Engineer (CSQE) from the American
Society for Quality (ASQ), and (2) the Certified Quality Analyst (CQA) from the Quality
Assurance Institute (QAI). Note that three other quality-related certifications are
available from ASQ: (1) the Certified Quality Manager (CQMgr), (2) the Certified
Quality Engineer (CQE), and (3) the Certified Quality Auditor (CQA, not to be confused
with the CQA from QAI). However, these three certifications are not software-related,
only quality-related.

For the software test professional, there are presently five certifications available: (1) the
Certified Software Test Engineer (CSTE) from the Quality Assurance Institute (QAI), (2)
the Certified Software Test Professional (CSTP) from the International Institute for
Software Testing (IIST), (3) the Certified Product Specialist (CPS) in either the TestSuite
(WinRunner and TestDirector combined) or the LoadRunner products, both from
Mercury Interactive Corporation, (4) the Certified Product Instructor (CPI) in either the
TestSuite (WinRunner and TestDirector combined) or the LoadRunner products, both
from Mercury Interactive Corporation, (5) the Certified Segue Scalability Consultant
(CSSC) from Segue Corporation, and (6) the Certificate in Software Testing (CST) from
the British Computer Society.

The Certified Software Quality Engineer (CSQE)

Sponsor: the American Society for Quality

Eligibility: a minimum of 8 years of work experience in one or more areas of the CSQE
CBOK. A minimum of 3 of 8 years must be in a decision-making position. 1 year may
be waived if the applicant has a diploma from a technical or trade school. 2 years waived
for an associate degree. 4 years waived for a bachelor's degree. 5 years waived for a
Master's or doctorate degree.

Application Due: approximately 2 months before a scheduled exam date.

Fee: $90 for members of ASQ, $195 for non-members.

Exam Format: 160 multiple choice questions, not categorized according to areas in the
CBOK, random order.

Answer Sheet: standard format (4 choices a through d), optical scanned, mark with No. 2
pencil.

Exam Type: open book, can bring reference materials, but no sample questions/answers
are allowed (if book contains questions/answers, they must be completely covered).

6

Permissible Materials: basic 4-function calculator (non-programmable, non-graphing),
reference books (proctor must review books).

Exam Length: 4 hours

Breaks: no scheduled breaks, permitted as necessary at your convenience (snacks,
bathroom, etc.)

Exam Dates: twice a year, usually the first Saturday in June and the first Saturday in
December, in the year 2000, the dates are Saturday June 3 and Saturday December 2,
check ASQ website for latest dates.

Exam Times: usually in the morning, from 8:00 AM to 12:00 Noon.

Exam Location: at various offices/hotels/schools hosted by local ASQ chapters and
proctored by local ASQ members.

Passing Score: scale score of 550 minimum (range from 200 to 750).

Certificate Expiration: 3 years from examination date, which is also used as the
certification date.

Certificate Renewal: every 3 years, $30 for ASQ members, $50 for non-members.

Application Refunds: yes, but less a $20 processing fee.

Exam Retake: no limit on number of times, but must pay a resit fee, and must retake
exam within 2 years of last attempt.

Results: if pass, no score is given, only that you are certified. If fail, score and analysis is
provided.

The Common Body of Knowledge (8 areas):

(1) General knowledge, conduct, and ethics (24 questions, 15% of exam)
(2) Software quality management (16 questions, 10% of exam)
(3) Software processes (24 questions, 15% of exam)
(4) Software product management (16 questions, 10% of exam)
(5) Software metrics, measurement, and analytical methods (24 questions, 15% of exam)
(6) Software inspection, testing, verification, and validation (24 questions, 15% of exam)
(7) Software audits (16 questions, 10% of exam)
(8) Software configuration management (16 questions, 10% of exam)

A CSQE textbook, The CSQE Primer, is available from the Quality Council of Indiana,
602 West Paris Avenue, West Terre Haute, Indiana 47885, phone 812-533-4215, fax 812-
533-4216, email qci@qualitycouncil.com, website http://www.qualitycouncil.com. Price

7

$65. A solution text and a 400 question diskette are also available for $35 and $60
respectively.

A CSQE correspondence course and reference book is available from TBSC Inc., P. O.
Box 23436, Rochester, New York 14692, phone 716-385-7570, fax 716-385-5662, email
info@tbscinc.com, website http://www.planetquality.com.

ASQ's most recently certified software quality engineers recommends the following
books for study:

(1) Software Engineering: A Practitioner's Approach, by Roger S. Pressman, 1997, 4th
edition, McGraw-Hill, ISBN 0-07-052182-4, current list price $85.95.
(2) Managing the Software Process, by Watts S. Humphrey, 1989, Addison-Wesley,
ISBN 0-201-18095-2, current list price $59.95.
(3) Metrics and Models in Software Quality Engineering, by Stephen H. Kan, 1995,
Addision-Wesley, ISBN 0-201-63339-6, current list price $43.95.

For a 12-page application and certification information brochure:
American Society for Quality, P. O. Box 3005, Milwaukee, Wisconsin 53201-3005,
phone 414-272-8575, toll-free 800-248-1946, fax 414-272-1734, email cs@asq.org,
website http://www.asq.org.

The Certified Quality Analyst (CQA)

Eligibility: 6 years of work experience if no Bachelor’s degree, 2 years of work
experience if applicant has a 2-year degree, 0 years of work experience if Bachelor’s
degree.

Application Due: 30 days before selected exam date.

Fee: $250.

Exam Format: 4 parts, part 1 contains 50 multiple choice, true/false, and matching
questions, part 2 contains 8 to 10 essay/short answer questions, part 3 contains 50
multiple choice, true/false, and matching questions, part 4 contains 8 to 10 essay/short
answer questions.

Answer Sheet: traditional, low-tech, hand-graded, not optical-scanned, non-standard
format (number of answer choices per question varies).

Exam Type: Closed book.

Exam Length: 4 hours total, part 1 is 45 minutes, part 2 is 75 minutes, part 3 is 45
minutes, part 4 is 75 minutes.

Breaks: 10 minute break between each of 4 parts.

8

Exam Dates: throughout the entire year in various cities nationwide, and at QAI-
sponsored conferences, check QAI website for latest dates.

Exam Times: usually in the morning, from 8:30 AM to 1:00 PM.

Exam Location: at various offices/hotels/schools hosted by local QAI regional offices
and federation chapters.

Passing Score: 75% on each of 4 parts, each part is graded individually.

Certificate Expiration: 1 year from examination date, which is also used as the
certification date.

Certificate Renewal: every year, $20 maintenance fee, due by April 30th every year.

Exam Rescheduling: 10 days prior to exam - $25 fee, withdrawal – refund minus $100
fee.

Exam Retake: Can resit up to 2 times for failed portion of exam for $50 fee.

Results: separate score is provided for each of 4 parts, notification in 6 to 8 weeks.

The Common Body of Knowledge (16 domains):

(1) Communications
(2) Human resource principles
(3) Training and development
(4) Quality management
(5) Quality assurance
(6) Quality control techniques
(7) Quantitative methods
(8) Reviews
(9) Auditing and control
(10) Testing
(11) Vendor control
(12) Standards
(13) Disaster recovery
(14) Management techniques
(15) Change management
(16) Principles of information systems

A CQA Study Guide is automatically sent to the applicant upon receipt of the application
form. This reference contains detailed information on the 16 domains that make up the
QAI CQA common body of knowledge.

9

In addition to the above CQA Study Guide, you may wish to study the following books
on software quality:

(1) Quality Assurance for Information Systems, by William E. Perry, 1991, John Wiley &
Sons, ISBN 0-471-58804-0.

(2) Handbook of Software Quality Assurance, edited by G. Gordon Schulmeyer and
James I. McManus, 3rd edition, 1999, Prentice Hall, ISBN 0-13-010470-1.

(3) Software Quality: Concepts and Plans, by Robert H. Dunn, 1990, Prentice Hall,
ISBN 0-13-820283-4.

(4) Software Quality: Analysis and Guidelines for Success, by Capers Jones, 1997,
International Thomson Computer Press, ISBN 1-85032-867-6.

For application form and certification information: Quality Assurance Institute, 7575 Dr.
Phillips Boulevard, Suite 350, Orlando, Florida 32819, phone 407-363-1111, fax 407-
363-1112, email certify@qaiusa.com, website http://www.qaiusa.com.

The Certified Software Test Engineer (CSTE)

Eligibility: 6 years of work experience if no Bachelor’s degree, 2 years of work
experience if applicant has a 2-year degree, 0 years of work experience if Bachelor’s
degree.

Application Due: 30 days before selected exam date.

Fee: $250.

Exam Format: 4 parts, part 1 contains 50 multiple choice, true/false, and matching
questions, part 2 contains 8 to 10 essay/short answer questions, part 3 contains 50
multiple choice, true/false, and matching questions, part 4 contains 8 to 10 essay/short
answer questions.

Answer Sheet: traditional, low-tech, hand-graded, not optical-scanned, non-standard
format (number of answer choices per question varies).

Exam Type: Closed book.

Exam Length: 4 hours total, part 1 is 45 minutes, part 2 is 75 minutes, part 3 is 45
minutes, part 4 is 75 minutes.

Breaks: 10 minute break between each of 4 parts.

Exam Dates: throughout the entire year in various cities nationwide, and at QAI-
sponsored conferences, check QAI website for latest dates.

Exam Times: usually in the morning, from 8:30 AM to 1:00 PM.

10

Exam Location: at various offices/hotels/schools hosted by local QAI regional offices
and federation chapters.

Passing Score: 75% on each of 4 parts, each part is graded individually.

Certificate Expiration: 1 year from examination date, which is also used as the
certification date.

Certificate Renewal: every year, $20 maintenance fee, due by April 30th every year.

Exam Rescheduling: 10 days prior to exam - $25 fee, withdrawal – refund minus $100
fee.

Exam Retake: Can resit up to 2 times for failed portion of exam for $50 fee.

Results: separate score is provided for each of 4 parts, notification in 6 to 8 weeks.

The Common Body of Knowledge (16 domains):

(1) Communications
(2) Professional development
(3) Quality principles and concepts
(4) Methods for software development and maintenance
(5) Test principles and concepts
(6) Verification and validation methods
(7) Test management, standards, and environment
(8) Reviews
(9) Test tactics (approaches, tools, and environment)
(10) Planning process
(11) Test design
(12) Performing tests
(13) Defect tracking and management
(14) Quantitative measurement
(15) Test reporting
(16) Improving the test process

A CSTE Study Guide is automatically sent to the applicant upon receipt of the
application form. This reference contains detailed information on the 16 domains that
make up the QAI CSTE common body of knowledge.

In addition to the above CSTE Study Guide, you may wish to study the following books
on software testing:

(1) The Art of Software Testing, by Glenford J. Myers, 1979, John Wiley & Sons, ISBN
0-471-04328-1.

11

(2) Testing Computer Software, by Cem Kaner, Jack Falk, and Hung Quoc Nguyen, 2nd

edition, 1999, John Wiley & Sons, ISBN 0-471-35846-0.
(3) Managing the Testing Process, by Rex Black, 1999, Microsoft Press, ISBN 0-7356-

0584-X.
(4) Software Testing in the Real World, by Edward Kit, 1995, ACM Press (Addison-

Wesley), ISBN 0-201-87756-2.
(5) Software Test Automation, by Mark Fewster and Dorothy Graham, 1999, ACM Press

(Addison-Wesley), ISBN 0-201-33140-3.
(6) Automated Software Testing, by Elfriede Dustin, Jeff Rashka, and John Paul, 1999,

Addison-Wesley, ISBN 0-201-43287-0.

For application form and certification information: Quality Assurance Institute, 7575 Dr.
Phillips Boulevard, Suite 350, Orlando, Florida 32819, phone 407-363-1111, fax 407-
363-1112, email certify@qaiusa.com, website http://www.qaiusa.com.

Certified Software Test Professional (CSTP)

Sponsor: International Institute for Software Testing

Eligibility/Requirements: job experience and formal training

Experience: minimum of 1 year software testing experience, letter from supervisor or
manager is necessary.

Training: Attendance of 10 days of classroom instruction is required.

Course Length: 1 or 2 day instructor-led classes.

Exams: given at the end of each 1-day or 2-day course.

Passing score: 80% on each test.

Time limit: 2 years to complete all courses.

Substitutions: up to 2 days of non-IIST courses. Also certain 1-day tutorials in IIST-
sponsored conference (PSQT) may be substituted.

Course dates: usually twice a month, different courses in different cities.

Course locations: usually in Minneapolis, Las Vegas, Orlando, Boston, and San
Francisco.

Tuition: 1-day course - $450. 2-day course - $845. 3-day combination - $1,295. 4-day
combination - $1,595.

Discounts: 10% when 5+ students from same company register.

12

Refunds: at least 10 working days prior to class - $10 fee. Less than 5 days – no refunds.

2-day courses offered:

(1) Practical techniques for software quality assurance
(2) Testing web and e-business applications
(3) Software test planning and design
(4) Software requirements exploration and definition
(5) Software test automation and scripting techniques
(6) Software inspections and reviews
(7) Managing the software testing process
(8) Testing object-oriented systems

9 additional 1-day and 2-day courses are available for on-site delivery only.

Books are included as part of the courseware.

In addition to the provided classroom materials, you may wish to study the following
books on software testing:

(1) The Art of Software Testing, by Glenford J. Myers, 1979, John Wiley & Sons, ISBN
0-471-04328-1.

(2) Testing Computer Software, by Cem Kaner, Jack Falk, and Hung Quoc Nguyen, 2nd

edition, 1999, John Wiley & Sons, ISBN 0-471-35846-0.
(3) Managing the Testing Process, by Rex Black, 1999, Microsoft Press, ISBN 0-7356-

0584-X.
(4) Software Testing in the Real World, by Edward Kit, 1995, ACM Press (Addison-

Wesley), ISBN 0-201-87756-2.
(5) Software Test Automation, by Mark Fewster and Dorothy Graham, 1999, ACM Press

(Addison-Wesley), ISBN 0-201-33140-3.
(6) Automated Software Testing, by Elfriede Dustin, Jeff Rashka, and John Paul, 1999,

Addison-Wesley, ISBN 0-201-43287-0.

For additional information and course registration form:
International Institute for Software Testing, 8476 Bechtel Avenue, Inver Grove Heights,
Minnesota 55076, phone 651-306-1387, fax 651-552-0791, email
sbrown@psqtconference.com, website http://www.softdim.com/iist/.

Certified Product Specialist (CPS)

Sponsor: Mercury Interactive Corporation

Product: TestSuite (WinRunner and TestDirector), or LoadRunnerNT. Both are version
specific. Latest version is 6.0 for both products.

Eligibility: no specific academic or work experience requirements.

13

Recommended Training: beginning and advanced instructor-led courses offered by
Mercury Interactive or its authorized training partners.

Fee: $2,500 for a 5-day training course (recommended), $500 exam grading fee.

Discounts: 50% off for channel partners.

Exam type: self-paced, self-study, take-home project.

Exam format: 3 to 6 chapters, each chapter has preparation questions, programming
specifications and guidelines, and final questions. Questions are short answer.

Exam length: recommend approximately 160 hours to complete exam. Applicant has up
to 3 months maximum.

Exam dates: apply anytime you are ready.

Exam location: work on your own at office or home.

Expiration: none. Certification is version dependent. Certificant is expected to take add-
on exam when new version is deployed.

Passing score: 75%

Renewal: $100 annual fee.

Grading criteria:

(1) Adherence to programming guidelines
(2) Adherence to programming specifications
(3) Portability
(4) Maintainability
(5) Documentation
(6) Modularity
(7) Best practices

After submitting application form, candidate receives certification package on CD by
mail containing training materials, the application under test (AUT), and the
programming project. When the project is completed, applicant returns project my mail
for evaluation and grading. Applicant is notified of results within 30 days.

For application form and certification information:
Mercury Interactive Corporation, 1325 Borregas Avenue, Sunnyvale, California 94089,
phone 408-822-5200, toll-free 800-TEST-911, fax 408-822-5300, email info@merc-
int.com, website: www.merc-int.com.

14

Certified Product Instructor (CPI)

Sponsor: Mercury Interactive Corporation

Product: TestSuite (WinRunner and TestDirector), or LoadRunnerNT. Both are version
specific. Latest version is 6.0 for both products.

Eligibility: must be CPS certified. Must have had training within the last 3 months. Must
have product implementation experience.

Fee: $3,500.

Discounts: 50% off for channel partners.

Exam type: 3-day workshop and lab.

Exam format: 33% trouble-shooting exercises, 47% presentation/teaching exercises, 20%
final exam.

Exam dates: apply anytime you are ready, CPI certification event is offered at least once
per month, but maybe at different locations.

Exam location: Mercury Interactive regional offices and corporate headquarters in
Sunnyvale, California.

Expiration: none. Certification is version dependent. Certificant is expected to take add-
on exam when new version is deployed.

Passing score: 75%, graded on delivery of training presentation and final exam.

Renewal: $750 annual fee.

Restrictions: if failed, must wait 6 months before retake.

Day 1: Problem Labs – common installation and configuration problems, common
student errors.

Day 2: Presentation Delivery – deliver one lesson from training materials, graded on
knowledge of lessons, enthusiasm, and presentation skills.

Day 3: Final Exam – 25 questions, 2 points each. 3 categories: (1) troubleshooting, (2)
labs, and (3) student frequently asked questions (FAQs).

For application form and certification information:

15

Mercury Interactive Corporation, 1325 Borregas Avenue, Sunnyvale, California 94089,
phone 408-822-5200, toll-free 800-TEST-911, fax 408-822-5300, email info@merc-
int.com, website: www.merc-int.com.

How to Study?

Preparing for the examination is the most difficult and time-consuming part of the
certification process. Here are some time-proven study techniques and strategies:

(1) Learn to select what is most important to learn.
(2) Review by predicting questions on the test.
(3) Review by organizing subject matter into logical divisions (CBOK areas or domains).
(4) Focus on concepts, principles, and fundamentals.
(5) Avoid trivia, incidentals, details, opinions, and conjecture.
(6) Know your test and quality vocabulary.
(7) Take a review or refresher course.
(8) Don’t cram the week before the exam.
(9) Use mnemonic devices to help you memorize specific facts.
(10) Organize your study time. Example: QAI exams – 1 domain per 1 week. ASQ

exam – 1 area of CBOK per 1 month.
(11) Identify your weak areas of domain or CBOK early.
(12) Take sample exams at every opportunity.
(13) Determine your best place and time to study.
(14) Get a good night’s rest the night before the examination.
(15) Consider spending the night in a nearby hotel to minimize stress.

How to Pass the Exam?

An applicant may know everything on an exam but still not do well because he or she
might lack test-taking skills. Here are some hints and tips to ensure that you perform
your utmost during your test:

(1) Answer all questions. A missing answer is an incorrect answer.
(2) Always preview the entire exam first.
(3) Some exams, such as those from ASQ, allows for feedback on questions.
(4) Time yourself, bring a watch.
(5) Use tape flags to mark questions that you wish to come back to.
(6) For multiple choice questions, there is usually 1 best answer.
(7) Watch for Not, Except, Never, Always, No, None, All, Every.
(8) For short answer questions, use bulleted style when answering. Don’t use complete

sentences.
(9) Make sure you understand instructional verbs like compare, contrast, define,

describe, discuss, evaluate, explain, illustrate, justify, narrate, outline, state,
summarize.

How to Keep Your Certification?

16

All organization-based certifications require the certificant to participate in some type of
certification maintenance program in order to remain certified. This is usually
accomplished by participating in some kind of professional development activities.
Institution-based certificates usually do not require any “maintenance”. For vendor-
based certifications, usually the certificant “upgrades” to the next product version or
release in order to stay current. This is accomplished by taking an “upgrade” or add-on
exam.

Details of the CSTE and CQA certification maintenance from QAI are as follows:

(1) Renewal period is 1 year.
(2) Renewal fee is $20, due by April 30th of each year.
(3) Requires 40 CPE (continuing professional education) credits
(4) Each CPE credit is equivalent to 1 hour of activity time
(5) Unlike the ASQ certification maintenance, work experience does NOT count toward

CPE credits.
(6) Example: 1 college course = 30 CPE credits.

Qualifying activities for the CSTE and CQA include:

(1) Educational activities
(2) Publications
(3) Presentations
(4) Professional participation
(5) Self-study courses
(6) Unique and innovative job tasks

Details of the CSQE certification maintenance from ASQ are as follows:

(1) Renewal period is 3 years.
(2) Renewal fee is $30 for ASQ members, $50 for non-members.
(3) Each activity is assigned a point value called RU (recertification unit).
(4) Example: employment is 0.3 RU per month.
(5) There is a maximum RU allowed per activity.
(6) Program requires 18 RUs every 3 years.

Qualifying activities for the CSQE maintenance program include:

(1) Professional development
(2) Paid employment
(3) Instructor
(4) Student
(5) Professional society meetings
(6) Committees
(7) Other certifications

17

(8) Proctoring exams
(9) Viewing videotapes
(10) Publishing books and articles
(11) Presentation/Speech

The CSTP, CPS, and CPI certifications do not require professional activities for
certification maintenance.

Where to Go for Resources?

ASQ (CSQE certification):

American Society for Quality
P. O. Box 3005
Milwaukee, Wisconsin 53201-3005
Phone: 414-272-8575
Toll-free: 800-248-1946
Fax 414-272-1734
Email: cs@asq.org
Website: http://www.asq.org

QAI (CQA and CSTE certifications):

Quality Assurance Institute
7575 Dr. Phillips Boulevard
Suite 350
Orlando, Florida 32819-7273
Phone: 407-363-1111
Fax: 407-363-1112
Email: certify@qaiusa.com
Website: http://www.qaiusa.com

IIST (CSTP certification):

International Institute for Software Testing
8476 Bechtel Avenue
Inver Grove Heights, Minnesota 55076
Phone: 651-306-1387
Fax: 651-552-0791
Email: sbrown@psqtconference.com
Website: http://www.softdim.com/iist/

Mercury Interactive (CPS and CPI certifications):

Mercury Interactive Corporation
1325 Borregas Avenue

18

Sunnyvale, California 94089
Phone: 408-822-5200
Toll-free: 800-TEST-911
Fax: 408-822-5300
Email: info@merc-int.com
Website: www.merc-int.com

How to Get Started?

You can become certify in seven easy steps. Here’s how:

(1) Decide to get certify (motivation, need, and desire).
(2) Select your certification program (CSQE, CSTE, CQA, etc.).
(3) Determine the program’s eligibility requirements.
(4) Complete the application online, fax, or mail it in.
(5) Study and review and common body of knowledge.
(6) Practice taking sample exam.
(7) Take the certification exam.

Finally, you can sit back and reap the benefits and rewards that certification may bring.
Good luck.

QW2000 QuickStart 8Q

Mr. Thomas Drake
(CRTI)

Testing Network Based Software Systems -- The
Future Frontier

BACK TO QW2000 PROGRAM

Presentation Abstract

The increasing cost and complexity of software development for enterprise electronic commerce and
other network based applications and solutions is leading software organizations in the industry to
search for new and innovative ways for improving the quality of the software they develop and deliver.

However, the overall process is only as strong as its weakest link. This critical link, I would argue, is
software quality engineering as an activity and as a process and testing is the key instrument for
making that happen. But what should testing measure in these new and emerging environments?

As conventional programs get increasingly complex the corresponding cost, development time, and
defect rates are climbing. It is reasonable to expect, based on current trends, that this problem will
only grow worse with the advent of even more complex, interactive, and interdependent programming
and development environments for network based information technology solutions.

However, it also appears that the more intelligent and dynamic we try to make computers and our
programs the more they slow down and break. Conventional software development and testing
practices and processes are increasingly strained and coming up short in the face of this growing and
alarming complexity.

So what does a tester do in the face of all this complexity? A tester must take a destructive attitude
toward the code and the associated system, knowing that this activity is, in the end, constructive.
Testing is a negative activity conducted with the explicit intent and purpose of creating a stronger
software product and is operatively focused on the "weak links" in the software. So if a larger software
quality engineering process is established to prevent and find errors, we can then begin to change our
collective mind-set about how to ensure the quality of the software developed.

The other problem is that we really never have enough time to test, anyway. We need to change our
conceptual understanding about the development and delivery environment and use the testing time
we do not have time for and apply it to the earlier phases of the software development life cycle. We
need to think about testing the first day we think about the system, rather then viewing testing as
something that takes place after development, and focus instead on the testing of everything. This
includes the concept of operations, the requirements and specifications, the design, the code, and of
course, the tests! But what are we actually testing and how do we determine those weak links?

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8Q.html (1 of 2) [4/28/2000 2:36:42 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

This presentation would introduce a biologically inspired model-based conceptual framework for
network-centric testing. It involves an architecture that can deal with computers and software viewed
as a system of interactive and dynamic behavioral objects rather than strictly for data processing and
number crunching that are themselves part of a larger system.

This conceptual framework for testing would allow for testing a range of behaviors and outcomes and
the possible interactions for these application objects without the necessity for fully understanding
them in advance! This could permit testing the fundamental structure of the program and the
application environment and the executable functional mechanisms underneath as a testing
framework that is anchored in living systems theory. It permits an "inside out" approach such that
testing is based on the "genetic" makeup of the expected and anticipated dynamic "state" attributes
and characteristics of the system using its own behavioral specifications as the test instruments for
locating and stimulating the "weak" links.

About the Author

Mr. Drake is a software systems quality specialist and management and information technology
consultant for Integrated Computer Concepts, Inc. (ICCI) in the United States. He currently leads and
manages a U.S. government agency-level Software Engineering Knowledge Based CenterÆs quality
engineering initiative.

As part of an industry and government outreach/partnership program, he holds frequent seminars and
tutorials covering code analysis, software metrics, OO analysis for C++ and Java, coding practice,
testing, best current practices in software development, the business case for software engineering,
software quality engineering practices and principles, quality and test architecture development and
deployment, project management, organizational dynamics and change management, and the people
side of information technology.

He is the principal author of a chapter on "Metrics Used for Object-Oriented Software Quality" for a
CRC Press Object Technology Handbook published in December of 1998. In addition, Mr. Drake is
the author of a theme article entitled: "Measuring Software Quality: A Case Study" published in the
November 1996 issue of IEEE Computer. He also had the lead, front page article published in late
1999 for Software Tech News by the US Department of Defense Data & Analysis Center for Software
(DACS) entitled: Testing Software Based Systems: The Final Frontier.

Mr. Drake is listed with the International WhoÆs Who for Information Technology for 1999, is a
member of IEEE and an affiliate member of the IEEE Computer Society. He is also a Certified
Software Test Engineer (CSTE) from the Quality Assurance Institute (QAI).

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8Q.html (2 of 2) [4/28/2000 2:36:42 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

 1Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

 Testing Network Based
Software Systems

The Future Frontier

Thomas A. Drake

Quality Architect/Software Anthropologist
Enterprise Management and Information Technology Consulting

Certified Software Test Engineer (CSTE)
Integrated Computer Concepts, Inc. (ICCI)

Quality Week 2000

thomas.drake@integratedcc.com
© Copyright 2000 by Thomas Drake. All Rights Reserved

 2Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Introduction
and

Overview

Setting the Stage

A Little Bit of Background

 3Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

The Challenge for the Enterprise

þ Boston Consulting Group, Inc. Study - Winter 2000

þ 100 executives in industries from manufacturing,
telecommunications, to financial services
üOnly one of three enterprise management software

implementations was successful in terms of cutting
costs, meeting business goals and showing a tangible
financial impact

ü 60% of respondents said the new systems had helped
ü Just over 1/2 said it met their business goals
ü 1/3 said software vendors encouraged “excessive”

spending
ü 12% of the vendors were “fired”

 4Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Sobering Numbers (1)

þ Standish Group Study in late 1995
ü USA spent $81 billion for cancelled software projects
ü $59 billion for projects completed late, over budget, or

lacking key or essential functionality
ü Only 16.2% of projects were completed on time & within

budget with only 9% in larger companies
ü In larger companies completed projects had an average of

42% of the desired functionality

þ Causal Analysis?
ü Lack of user/customer input (requirements not

understood/captured)
ü Incomplete requirements and specifications
ü Changing requirements and specifications/requirements creep

(+ & -)

 5Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Sobering Numbers (3)

þ Standish Group study updated 4 years later…
ü Over $250 billion spent annually on IT application development
ü 31% of all projects are cancelled before completion
ü 88% of all projects are over schedule, over budget, or both
ü For every 100 projects started, there are 94 restarts
ü Average cost overrun is 189% of original estimates
ü Average time overrun is 222% of original estimates

þ Even with strong technical skills many project managers and
project team members find themselves in over their heads
ü On projects out of control
ü Without the necessary business organization and political

skills

þ Faith is not a management method!

 6Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Historical Evolution

T

E

E

T T

T

T

T

E

1950 to 1980
• System-centric systems
• Data Processing
• MIS

E = Enterprise
T = Technology

1981 to 1995
• Data processing
• User-centric systems
• Departmental computing
• Distributed computing
• Workgroup computing

1996 to 2000+
• Data warehousing
• End-user empowerment
• Network computing
• Client-Server computing
• Workgroup computing
• Intranet/Internet & OLTP
• Electronic commerce
• Business-centric
• Enterprise computing

 7Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Running Rampant in Cyberspace

Missing the Obvious

Forgetting the Fundamentals

Shortened Product Release Schedules

Testing Never Stops when Content is
Continuously Changing

Web Time is ALL the Time!

 8Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Internet/Cyberspace Quality (1)

þ Internet and World Wide Web are the next logical step
ü The Web is huge - 24/7 & 365
ü Part of our culture
ü Look at any ad on television and you will see a Web address

þ Endless possibilities for the Web and they go far beyond
just static advertising
ü A cybersurfer can find information on almost anything, play

games, download software, interact with “live” humans
ü Web is the “Great Equalizer”
ü A one or two person company can look like a multibillion dollar

corporation to its customers

 9Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Internet/Cyberspace Quality (2)

þ Competing for shelf space versus competing for Web space
ü Producing a shift toward the Web and more and more testing

of internet-based software

þ More complex programs and applications like Java and
Shockwave are emerging

þ Testing on multiple platforms and operating systems
ü Different Internet service providers and methods of

connecting to the Internet
ü Can't afford to put out a shoddy product on the Web

þ Quality is STILL quality and even more so on the Web
ü Stakes are much higher in this kind of “operating”

environment and bugs/problems/defects are much more visible

 10Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Where We Are Going

þIntegrated Component Design and Code
þSoftware Reuse
þNetwork Common Services
þXML & Web Technologies
þIntelligent Agents
þData Visualization
þSecurity
þ Private/Public Network
þWeb-based Workflow

 11Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Our IT Love Affair

 12Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

The IT Adventure - Software is at
the Heart of IT!

þ Internet/Virtual Reality

þ Surfing the Planet/Real-Time Data Flows

þ E-mailing/Electronic Communication and Messaging

þ Critical Reliance on Cyberspace

þ Satellites/Computer Networks/Digital
broadcasting/Cellular/Interactive TV

þ Entertainment and Games!

 13Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

And Only Getting MORE Connected

þ The future is not what it used to be!

þ Pace of change (Default Standard)

þ Time, communications, space (compressing)

þ Implication - Speed of light access and impact

þ All linked together in one dense,
interconnected web of information
and data!

 14Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Our Reliance on Software is Huge!

þThe network is the program

þ Increased recognition that software is a
critical national resource and vital to the
economy

 15Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Living in a state of
constant ambiguity...

 16Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Network Testing Overview

þDesign is fundamental!

þBusiness Rule Algorithms

þBehavioral modeling

þAttributes - The key for testing

 17Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Legacy Issues in Development

þ Issue of market cycle time and shelf life

þ Problem of code entropy

þ Impact of incremental patching and upgrading

þDoing it right the first time - interface design is
everything

þSimple elegant solutions - stand the test of time and
the marketplace

 18Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

 19Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

The Software Development Challenge:
“Easy to Hack Out - Easy to Hack In…”

Swamp Beehive

Hacker’s
Heaven

Software
Factory

High

Low
Organizational Maturity

T
ec

h
n

ol
og

y
In

ve
st

m
en

t

 20Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Testing and QA

þ Get the bugs out!

þ Indispensable for high quality development/delivery

þ Usability labs/focus testing

þ In house testing - unit, component, white and black box
with gray, integration, system, compatibility, chipsets,
functional, automated, regression, ad hoc, dirty testing
(break the software), stress and load testing (resource
constraints/bugs and memory leaks)

þ Deriving test “cases” (read complex coverage scenarios)
from the scripting engine - usually created by the testers

 21Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Functional vs. Compatibility Testing

þ Functionality testing - Process of systematically testing all
aspects of a software program
ü Verify program/software system performs the way it was

intended by its designers
ü The purpose of functionality testing is to help develop the

most stable program possible

þ Compatibility or configuration testing - Process of running
a stable software program on a variety of hardware
components
ü Produce a profile of the program's expected "compatibility" in

the real-world of end users/customers
ü Observe how a functionally stable program performs when

integrated with the products of various hardware/network
vendors and manufacturers (including your own!)

 22Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

The Critical Role of QA

þThe primary objective of QA is in really making sure
that the right “mix” of testing talent is available and
that the right amount of quality is present

þThey are also the binary go, “no go” gates for that
all important release quality

þThey also ensure that the vital information and
feedback loops are running at or near full bandwidth
on the project and are constantly pulsing the project
in order to make sure it meets its goals.

 23Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

The Importance of Engineering
Process and Practice Discipline (1)

þ Programming Standards/Coding Standards -

þ Peer Reviews
ü Permit the removal of defects from the software product

early and more efficiently.
ü Better understanding of the game product elements and the

defects that might actually be prevented
ü The discovery of problems and potential problems before they

are found in the testing stage
ü All the participants in a peer review process learn to avoid

both common and subtle errors in their own work
ü Peer reviews are finding important problems that have

traditionally defied other debugging and testing methods

 24Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

The Importance of Engineering
Process and Practice Discipline (2)

þ Process working groups -
ü Concept
ü Requirements definition
ü Design
ü Interface and implementation
ü Maintenance/support

þ All of these processes have feedback mechanisms designed for
continual improvement

þ Software testing plans are initially created in the design phase
of the process, completed in the implementation phase
ü High quality software test plans describe both the

methodology and the elements that make up the actual tests
for the software based on the requirements

 25Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

The Importance of Engineering
Process and Practice Discipline (3)

þHigh Quality Network Testing Techniques - The
Heart of It All!
üTransaction Based Testing
üEvent Triggers
üEnd to End
üFunctional “Thread” Testing
ü “Flow”
üInterface Testing
üDomain requirements

 26Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

The Real Business of Business!

þ One thing in common - Transformation!

þ Leveraging of information, period!

þ Information is the center of the enterprise

þ Building business around information & people

þ The “Crown Jewels” of who we are (intellectual capital)

þ Questions -
ü What is business transformation?
ü Why is the customer critical to success?
ü How does this accommodate change?
ü And what about “good enough” business systems??

 27Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

The Real Quality Challenge...

 28Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Measuring Quality

þ Software is fundamentally chaotic by nature
ü Complexity can quickly exceed what we can predict
ü Difficult to determine let alone predict what it will do next!

þ There remains a lot of variation in software - So reduce
the variation! The problem is systemic in nature.
ü Given a known environment with known inputs software CAN

operate in a precise and well understood manner by reducing
the inherent instabilities!

þ Oh Really! So what must we “add” to software?
ü Identify the functional “flow” abstraction layers of a

program! Reqs/Specs
ü Determine the “state condition” information in order to

reduce the uncontrolled distribution of information and data

 29Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Out of the Box

þA Raising of the Bar - How high can you jump? Far
more than just “getting” the next release out.
“Unintended consequences…”

þValue high-quality, usable, reliable IT systems and
software from the beginning!

þSo….
ü Abstraction - “flow” tasking
ü Analysis - problem space
ü Design - system space
ü User interfacing and prototyping - an “outside in”

approach

 30Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Best Practices - The Use of
Domain/Design Patterns (1)

þ Set of objects with certain known roles and responsibilities
ü Relationship to each other
ü Common usage
ü Prerequisites
ü Cataloged/documented
ü Refinement/updates/extensibility

þ Emerging due to Internet time/intense schedules

þ Program structures are fundamental
ü Where are the execution cycles
ü “The most efficient instruction set is the one that’s never

executed!”
ü Provides for the abstraction that provides summary/overview

 31Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Best Practices - The Use of
Domain/Design Patterns (2)

þ Patterns should also identify the intended use audience
ü Provide for the external and internal assumptions

þ Document/Document/Document! (1)
ü Name, problem, context, constraints, trade-offs, static

relationships and dynamic rules/behavior,
variants/specializations

ü Examples - sample implementations
ü Known uses - describes known occurrences of the pattern and

its relationship and application within existing systems

þ Generalize! - How can the program be developed such that
it minimizes the code interdependencies among the various
subsystems?

(1) Source: Patterns and Software: Essential Concepts and Terminology - Brad Appleton
(www.enteract.com/~bradapp/docs/patterns-intro.html)

 32Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

The Future Frontier?

þNet time is test time!

þ Customer are approaching zero tolerance for poor
performing web sites due to bugs, performance and
use “quirks”

þ Front-end applications and back-end service providers

þ Find and fix network problems no matter how trivial
they are

þWhat is at stake? What will it really take?

 33Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Network Testing Strategy (1)

þRisk - manage and mitigate

þ Client security

þ Customer security

þ CM and defect tracking

þ Link verification and continuity
ü End to end - top to bottom - depth and breadth

þWeb code testing

þUsability testing

 34Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Network Testing Strategy (2)

þ Performance/Load Testing

þState Testing (California is different!)
ü Event triggering

þ Platform configuration

þ Business rules/domain logic testing

þSystem and end-user testing

þ Continuous continuity testing

 35Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

IT Paradigm Shift
Where are You on the Line?

Degree of
Change

Software
Development

Process
Improvement

Workflow Package-process
Integration

Process
Transformation

Project Type

The
Future!

 36Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Some Final Thoughts About Network
Based Software Systems

þDealing with multiple levels of complexity
ü Testing enemy #1

þNth Order Computing (modeled after cell life)
ü Computer is 1st order
üObjects/components are 2nd order
ü Interaction of objects is 3rd order
ü Result/outcome/state transition is 4th order
üNth Order is shifting function onto structure and code

onto data

þ Bandwidth, Turnaround Time, and Complexity

 37Thomas A. Drake

Testing Network Based Software Systems - The Future Frontier Quality Week 2000

Questions & Answers

QW2000 Vendor Technical Paper 8V2

Mr. Mark Myers
(Teradyne SST)

A Model-Based Technique for Test Program
Creation

BACK TO QW2000 PROGRAM

Key Points

Test programs for most modern software-based systems are still generated manually.●

Automating software test generation significantly increases test quality and reduces life cycle costs.●

Using a model-based approach, TestMaster not only automates test generation, but makes it easy to respond
quickly to changes in requirements, system configuration, or test execution environment.

●

Presentation Abstract

Software verification has become a bottleneck in the delivery of new communications products.
Creating test content is the biggest part of the problem. Organizations that adopt an automated
approach to test content creation will have a significant competitive advantage in the race to cover the
glove with reliable communications systems. TestMaster offers a new approach to creating test
content that combines a graphical specification, or model, of system-under-test behavior with an
automatic test script generator. TestMaster customers report 80-90% improvements in test
development time and productivity across a wide range of software applications and test execution
environments.

About the Author

Mark A. Myers is product manager for in-circuit board test systems and for the BoardWatch Test
Process Management System at Teradyne Inc. He attended the University of Michigan, where he
earned his B.S.E.E., M.S.E., and M.B.A degrees. He joined Teradyne in 1977 as a sales engineer,
and managed the company's Detroit sales office before assuming his current position.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8V2.html [4/28/2000 2:36:52 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Teradyne ConfidentialSlide 1 Rev 04-00
©1998 Teradyne Software and System Test

TestMaster:
Model Based Test Generation

for Software Systems

Teradyne Software & Systems Test
www.teradyne.com/sst

Teradyne ConfidentialSlide 2 Rev 04-00
©1998 Teradyne Software and System Test

The Compounding Effect of Defects

Requirements Functional Design Code
Correctly defined
requirements

Correctly defined
functional description

Correctly designed
specifications

Correctly coded
software

Incorrectly defined
requirements: missing,
misunderstood, ignored,
outdated, unneeded,
unspoken (assumed)

Erroneous functional
specs based on
incorrectly defined
requirements

Design errors based
on incorrectly defined
requirements

Coding errors based
on incorrectly defined
requirements

Incorrectly defined
functional specs

Design errors based
on incorrectly defined
functional specs

Coding errors based
on incorrectly defined
functional specs

Design errors Coding errors based
on design errors
Coding errors

Even good work on a faulty base will result in a defective product

Source: A. Davis. Software Requirements; J. Taft, Nationsbank

2

Teradyne ConfidentialSlide 3 Rev 04-00
©1998 Teradyne Software and System Test

Defects Introduced In Early Stages Are Not
Found Until Very Late In the Process

ORIGIN OF DEFECTS

DETECTION OF DEFECTS

User
Reqm’ts

Functional
Requirements

Definition
Functional

Design
Detailed
Design

Integ
Test

System
Test Maintenance

Code/
Unit Test

User
Reqm’ts

Functional
Requirements

Definition
Functional

Design
Detailed
Design

Integ
Test

System
Test Maintenance

Code/
Unit Test

a.k.a. The Big Bang Approach to Quality

Teradyne ConfidentialSlide 4 Rev 04-00
©1998 Teradyne Software and System Test

Phase Containment - finding and fixing errors
within the phase of origin

ORIGIN OF DEFECTS

DETECTION OF DEFECTS

Model Based Testing Enables Incremental Testing
to Detects Defects Within the Phase of Origin

User
Reqm’ts

Scope
Assessm’t

Functional
Requirements

Definition
Functional

Design
Detailed
Design

Integ
Test

System
Test Maintenance

Code/
Unit Test

User
Reqm’ts

Scope
Assessm’t

Functional
Requirements

Definition
Functional

Design
Detailed
Design

Integ
Test

System
Test Maintenance

Code/
Unit Test

3

Teradyne ConfidentialSlide 5 Rev 04-00
©1998 Teradyne Software and System Test

Validate

Verify

Test Prep

Test phasesSpecification phases
Code/Unit Test

Functional
Requirements

Definition

Detailed Design

User
Requirements

Functional
Design

Unit Test

System Test

User
Acceptance Test

Defect Review’s

Component /
Integration Test

TestMaster Improves V Model by Improving Up
Front Validation and Leveraging Validation Effort for

Test Development

Test

Teradyne ConfidentialSlide 6 Rev 04-00
©1998 Teradyne Software and System Test

TestMaster Automatically Generates
Tests Programs for Test Execution

Environments

TestMasterTestMaster

Test Generation Test Execution

Application
Under Test

Test Execution
Environment

Test
Scripts

4

Teradyne ConfidentialSlide 7 Rev 04-00
©1998 Teradyne Software and System Test

TestMaster Complements Other Test
Automation Tools

TestMasterTestMaster Application
Under Test

Test Execution
Environment

Test
Scripts

Test
Management

System

Requirements
Management

System

Code Coverage
Tool

Defects
Tracking
System

Configuration
Management

System

Teradyne ConfidentialSlide 8 Rev 04-00
©1998 Teradyne Software and System Test

TestMaster Complements Model-
Based Design Tools

System
Req’s Behavioral

Model

Define
Implementation

and Code

Generate
Test Plan
& Scripts

Decompose
into Structural

Model

Add Test
Strategy &
 Execution

Verify Actual
System

Behavior

System Engineering

Design EngineeringTest Engineering

R
E
Q
U
I
R
E
M
E
N
T
S

Simulation
Verification

TestMaster or
Design Tool

TestMaster Design Tool

5

Slide 9 Rev 04-00
©1998 Teradyne Software and System Test

TestMaster’s Unique Capabilities
Deliver these Major Benefits

High Engineering Re-Use

Feature Benefit

Concurrent Design & Test
Automatic Test Generation

Known & Controllable Fault
Coverage

High Quality
Product

Fast
Time-to-Market

Low Test
Development

Cost

Teradyne ConfidentialSlide 10 Rev 04-00
©1998 Teradyne Software and System Test

TestMaster Integrates Requirements
Definition Through Test Execution

Test Generation Test Execution

Graphical Description
of System Behavior

Graphical
Model
Editor

Test
Generation

System

TestMaster

Requirements Capture and
Analysis

Req’t /Functional
Specification

Application
Under Test

Test
Execution

Environment

Test
Scripts

Test Plan
Documents

Reports*Config Data Test
Language*

6

Slide 11 Rev 04-00
©1998 Teradyne Software and System Test

TestMaster Models Behavior at
One or More of the System

Interfaces
Model the interface,
not implementation

Constraints limit the
number of test casesModels become

repository for usage
scenarios

Start with typical use
cases

Models are built
iteratively

Slide 12 Rev 04-00
©1998 Teradyne Software and System Test

TestMaster is Ideally Suited for
Integration & System Test
System Executable

User
Interface

Communication
Interface

Hardware
Interface

Print/
Report

Analysis Routing Control

External Interfaces

Subsystems & Features

Services/Framework

Test Phase

GUI / Call
Processing

Protocols /
Classes /
Messages&Data

API /
Language

Unit

Integration

System

Behavior
Modeled

7

Slide 13 Rev 04-00
©1998 Teradyne Software and System Test

The TestMaster User Interface
Consists of These Primary Windows

Example: Automatic Teller Machine

Root ModelRoot Model

Sub-modelSub-model

DeclarationDeclaration

Message & ToolMessage & Tool

Slide 14 Rev 04-00
©1998 Teradyne Software and System Test

Models are Composed of States
and Transitions

Current State
of System

Transitions with
Input Events

File
Menu

Print
Dialog

•All Transitions contain an INPUT EVENT and a NEXT STATE
•Test Generation is accomplished by traversing from

STATE to STATE via transitions
•A Transition can also: define probability, outputs,

manipulate variables, describe test actions

Exit

Next
States

Select Print

Select Exit

8

Slide 15 Rev 04-00
©1998 Teradyne Software and System Test

TestMaster Models Are Extended
Finite State Machines Where

Transitions Contain Most of the Data

Current
State

Next
State

Transition

Modify Edge Attributes

EVENT
PREDICATE
CONSTRAINT
ACTION
ARGUMENTS
COMMENTS

TEST INFO

Predicate: An expression that
describes the context that must
exist for transition to be valid.

Predicate: An expression that
describes the context that must
exist for transition to be valid.

Constraint: Limitations
imposed to make the length
and number of test programs
practical.

Constraint: Limitations
imposed to make the length
and number of test programs
practical.

Test Info:“Snippet” of test
execution language to be added to
the Test being developed.

Test Info:“Snippet” of test
execution language to be added to
the Test being developed.

Teradyne ConfidentialSlide 16 Rev 04-00
©1998 Teradyne Software and System Test

TestMaster Generates Test for Any
Execution or Simulation Environment

Test Generation Simulation or Test Execution

TestMasterTestMaster Test
Scripts

WinRunner,
QAPartner,
Custom

Hammer, T-Berd,
Custom

GUI/Web

Interface

SS7

T1/E1

Analog

Simulation
Backplane

Subsystem A Model

Subsystem B Model

Test Execution
Environment

Application Under Test

Test Plan
Documents ISDN, etc

9

Teradyne ConfidentialSlide 17 Rev 04-00
©1998 Teradyne Software and System Test

A Single Model can Create Multiple
Test Suites

• Once Captured a Model is a
Source of Tests for All Aspects of
the Testing Process

– Specific Requirements or Modules
– Negative Behavior
– Full Regression Tests

• Test Suites are Easily Rebuilt For
Saved Configurations

• Tests are Generated Independent
of Test Language

Number of Tests Generated

In
cr

ea
si

n
g

 T
es

t
C

o
ve

ra
g

e

 Full Cover

 Profile Cover

 n-Switch Cover

 Transition Cover

QuickCover

Teradyne ConfidentialSlide 18 Rev 04-00
©1998 Teradyne Software and System Test

Each Path Defines a Test / Use Scenario
and is Traced Back to the Requirements

Use
Scenario 2 3 2 3 3 0 1

Total
Req per

Test

Test
Number

1.0 1.0.1 1.0.2 1.1 1.1.1 1.2 1.2.1
3 1 X X X
1 2 X
2 3 X X
1 4 X
0 5
2 6 X X
3 7 X X X
0 8
1 9 X
1 10 X

Total Tests per Req
Requirement ID

10

Teradyne ConfidentialSlide 19 Rev 04-00
©1998 Teradyne Software and System Test

TestMaster Provides a Comprehensive Test
Solution for All Members of a Project Team

Technical Managers
• Measures test coverage

relative to requirements to
focus test investment

• Measures test progress
and completeness

Program/Business Managers
• Proven solution
• Improve initial test productivity

by 2x- 10x
• Improve test productivity by

10x - 20x for successive builds

System Engineers
• Eliminates requirements

ambiguity
• Enables explicit testing

for illegal conditions

Test Engineers
• Thorough test coverage
• Rapid response to

changes
• Rapid test generation for

multiple configurations

Teradyne ConfidentialSlide 20 Rev 04-00
©1998 Teradyne Software and System Test

Lucent Ericsson
Nortel AT&T
Motorola Bellcore (SAIC)

… With Proven Results:

TestMaster is Deployed in a Wide
Range of Telecom Companies:

Using TestMaster to automate our test
generation can increase our productivity by

over 80%

Jim Clarke
Lucent Technologies

Jim Clarke
Lucent Technologies

TestMaster takes the guess-work out of
defining test cases … it has paid for itself
many times over with the problems it has

found in our software

Neil Anderson
Ericsson Mobile Phones

Neil Anderson
Ericsson Mobile Phones

The beauty of the TestMaster-Hammer approach is that as
our software changes we can keep thousands of regression

tests in sync with just a small change to the TestMaster
model --- that saves us months of rework for each update

Peggy Champlin
Nortel

Peggy Champlin
Nortel

QW2000 Paper 8T2

Mr. W. T. Tsai & Mr. Xiaoying Bai &
Mr. Baisu Huang, George Devaraj,

Ray Paul
(Arizona State University)

Automatic Test Case Generation for
GUI Navigation

BACK TO QW2000 PROGRAM

Presentation Abstract

GUI has been pervasive today and it has been used in safety-critical application where failures of the
application can have serious consequences. Unfortunately, GUI testing is expensive and currently
many of steps are manual. Currently, most GUI testing techniques focus on capture-and-replay
mechanism. Even though it is a powerful technique and has been used testing numerous GUI testing
projects, the initially set of test cases must be developed, possibly manually. Furthermore, it is difficult
to state the coverage of GUI by using the capture-and-replay mechanism because the coverage is
provided with respect to the existing test cases, rather than with respect to other criteria such as
navigation.

This paper presents a technique to develop the initial set of GUI test cases. In this approach, test
cases can be generated systematically thus ensuring test coverage. This approach divides testing
GUI into two parts:

Screen navigation: this part ensures that each screen will be visited, as well as all the paths
that might be used to traversed from one screen to another;

●

Widget logic: this part ensures that the software behind a widget will respond correctly when
the corresponding widget is selected or activated by the application.

●

By separating GUI testing into these two parts, the testing effort and complexity can be significantly
reduced. This paper will illustrate the saving that can be achieved using this approach. Since widget
logic is application dependent, this paper then focuses on screen navigation.

This paper propose a model called SNet (for Screen Net) to model screen navigation. It is a directed
graph model with a node represents a screen, and a link between two nodes a navigation path from
one screen to another. The conditions, precondition and post-conditions, for traversing from one
screen to another are also specified on the link. Each navigation step (NStep) is defined by 5
components: the departure screen, the arrival screen, the navigation event, the precondition and the
post-condition. Pre-conditions and post-conditions are specified by the states of the screens, which
are further specified by the combination of the values of the GUI widgets inside the screen container.

The proposed model SNet has been automated with friendly user interface. A user can use the tool to

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8T2.html (1 of 2) [4/28/2000 2:36:58 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

interactively input the navigation information, and the tool will check the completeness and
consistency of the input. Once the SNet has been specified, the tool can systematically generate all
kinds of test cases based on various navigation paths and scenarios based on certain coverage
criteria such as path coverage or node coverage. The test cases are written in a high-level description
language. An example is shown below:

The tool has been constructed and used to test a variety of GUI applications successfully.

About the Authors

W. T. Tsai is currently Professor of Computer Science and Engineering at Arizona State University.
He received his Ph.D. and M.S. in Computer Science from University of California at Berkeley. He has
been involved in software engineering research.

Xiaoying Bai is currently a graduate student in the Department of Computer Science and Engineering
at Arizona State University. She received her M.S. in Computer Science and Engineering from
University of Minnesota, Minneapolis, MN 55455, 1999.

Baisu Huang is currently a Research Associate in the Department of Computer Science and
Engineering at Arizona State University. She was Associate Professor at Peking University, Beijing,
China. She received her Ph.D. from Northwestern Polytechnical University in China.

George Devaraj is current a graduate student in the Department of Computer Science and
Engineering at University of Minnestoa, Minneapolis, MN 55455.

Ray Paul is current the Directorate at DoD OASD Y2K Office. He recently received his Ph.D. in
Computer Science and Engineering.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8T2.html (2 of 2) [4/28/2000 2:36:58 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Wei-Tek Tsai*+,
Xiaoying Bai*,
Baisu Huang*,
George Devaraj+,
Ray Paul-

Test Case Generation for
GUI Navigation

*Arizona State University
+University of Minnesota
- OASD Y2K Office

3/31/002

Outline

� Introduction
� SNet: the Model for GUI Navigation Behavior
� Test Case Generation Based on SNet
� Tool and Experiments
� Conclusion

2

3/31/003

Introduction: The Problem

� Main Problem
– GUI is pervasive but GUI testing is difficult

� Variety of GUI components
� Complex GUI construction
� Complex user interaction

– GUI testing is expensive and many steps are done
manually

– Test case generation is an issue

3/31/004

Introduction: Current Approach

� Capture and Replay
– The principal technique used in current GUI testing

tools
– Capture and store user’s interactions during a test

session, which can be repeated and reused
– Initial set of test cases must be developed manually
– Hard to evaluate the coverage of the test

3

3/31/005

Introduction: Our Approach

� Two levels of GUI testing
– Screen navigation

� Take the top-level container as the basic functional module and
test the inter-module GUI behavior

� Ensure screen and navigation path coverage

– Widget logic
� Test the correctness of the behavior of the widgets inside a

functional module - the top-level container

� Advantage
– Testing effort and complexity can be significantly reduced

3/31/006

Introduction: Screen Navigation

� Problem
– A test case is a navigation through many screens. In addition

to generate test data for each navigation step between two
screens, we also need to identify the sequence of execution
steps.

– The pre-condition for a navigation from one screen to another
is hard to define

� Solution presented in this paper
– Model the navigation behavior by a directed graph SNet (for

Screen Net)
– Three-level test case generation based on SNet model
– Tool support for user interactive SNet specification and

automatic test case generation

4

3/31/007

SNet: Screen Network

� Screen Navigation Model
– A directed graph to model the navigation behavior

through all the screens in a GUI system

� Defined by:
– A set of screen nodes
– A set of directed navigation links, or navigation

steps

3/31/008

SNet: Screen Nodes

� Represent the top-level containers in the GUI system
� Specified by:

– ID
– A set of widgets
– A set of states
– A set of navigation events

� States are defined by the values of the GUI widgets
that are contained in the screen and that accept user
inputs

5

3/31/009

SNet: Navigation Steps (NStep)

� Directed Navigation Links:
– Represent the navigation logic with pre and post condition information

attached
� Specified by:

– ID
– Departure Screen
– Arrival Screen
– Pre Condition
– Post Condition
– Navigation Event

� Conditions are defined by the states of the screen. A condition is a
logical expression (“and”, “or”, “not”) on a set of screen states.

3/31/0010

An Example of SNet

Begin Logon

Logon Help Shutdown
Computer

Logon Message Logon
Information

NE: Ctrl+Alt+Delete
preCond : any state
postCond : S0

NE: Cancel
preCond : any state
postCond : S0

NE: OK
preCond : any state
postCond : S0

NE: OK
preCond : invalid user
postCond : S0

NE: Help
preCond : any state
postCond : S0

NE: Shutdown
preCond : any state
postCond : S0

NE: Cancel
preCond : any state
postCond : S0

NE: Cancel
preCond : any state
postCond : S0

NE: OK
preCond : valid user
postCond : S0

NE: OK
preCond :
Shutdown checked
postCond : S0

NE: OK
preCond :
Shutdown & Restart
checked
postCond : S0

Enter
System

System
Shutdown

System
Shutdown
& Restart

Name

The screen of the GUI system

NE: event
preCond : prec
postCond : postc

A navigation step:

� NE: navigation event, the event
that triggers the navigation

� preCond: the precondition of
the navigation

� postCond: the post conditon of
the navigation

6

3/31/0011

SNet Completeness and
Consistency Checking

� Checking Screens
– Ensure that all screens are represented in the SNet model and

that each node in SNet uniquely represents a screen
– Ensure that there is no conflicting information in screens

� Checking NSteps
– Ensure that there is no conflict in the navigation conditions
– Ensure that for each screen, each combination of pre-condition

and navigation event uniquely decides the target screen
– All screens are connected by navigation links (NSteps)

3/31/0012

Test Case Generation by SNet

� Three levels of Test Case Generation
– Navigation Paths: Navigation sequence between

screens in terms of screens, navigation conditions
and links.

– Test Scenarios: Navigation paths specified by
screen states rather than by conditions

– Test Cases: Specification of the actual test data and
testing activities

7

3/31/0013

Tree Structure of the 3-Level Test
Case Generation

Root

Navigation Path
1

Navigation Path
n

Scenario
1.1

Test Case
1.1.1

......

......

...

Scenario
1.n

Test Case
1.1.n

Test Case
1.n.1

... Test Case
1.n.n

Scenario
n.1

...

Scenario
n.n

Test Case
n.1.n

Test Case
n.n.1

... Test Case
n.n.n

Test Case
n.1.1

3/31/0014

An Example of Test Scenarios
Derived from A Navigation Path

A [E] ���� B

A.s1 [E] ���� B.s0 A.s2 [E] ���� B.s0 A.s3 [E] ���� B.s0

Navigation Path

Corresponding
Test Scenarios

Consider two screens A and B. Under any state, A can be navigated to the default state of
B on the occurrence of event E. Suppose A has 3 states: s1, s2, s3 and the default state of
B is s0. The 3 scenarios derived from the navigation path A � B are illustrated in
following figure:

8

3/31/0015

An Example of Test Case Derived
from A Test Scenario

Take 3 screens of the Logon System in the
example: “Begin_Logon”, “Logon_Info”,
and “Logon_Help”. And take the navigation
path: from “Begin_Logon” to “Logon_Info”
to “Logon_Help”

Take the following Test Scenario:
• Triggered by the event “Ctrl+Alt+Delete”,
screen Begin_Logon in state S0 is navigated
to screen Logon_Info is state S0
• Triggered by the event “Button Help
Click”, screen Logon_Info in state “Valid
User” is navigated to screen Logon_Help in
state S0

Suppose one of the 4 valid users for the
logon system is: “Name = bxy, Password =
bxy, Domain = selab1”

3/31/0016

Tool Prototype

� A prototype tool is constructed to facilitate the user-
interactive SNet specification process and to automate
the test case generation process

� Three parts of the prototype system
– Data Dictionary : Store the general information of the GUI

system – the screens, their widgets and navigation events
– SNet Manager : Provide an interface for user to interactively

build, store and maintain the navigation diagram
– Test Case Generator : Generate the navigation paths, test

scenarios and test cases in a high level description language

9

3/31/0017

Prototype System

End User

SNet Manager Test Case Generator

Data
Dictionary

Configuration
Build
SNet

Modify
SNet

Navigation
Paths

Test
Scenarios

Test
Cases

Data
Dictionary SNet

Diagram

3/31/0018

Experiments

105272112SATM GUI

7125115Logon GUI

Test CasesTest
Scenarios

NavigationsScreensExample
System

� Test cases generated by the tool for two example GUI system

� Comparison of the time to generate the same number of test cases shown
in the table above for two approaches

1050 minutes35 minutesSATM GUI

710 minutes20 minutesLogon GUI

Manual
Generation

Automatic Generation
Supported by Tool

Example
System * Assuming it takes

average 10 minutes
to develop each test
case manually

10

3/31/0019

Experiments

� Experiments on small systems shows that
SNet is helpful for
– Understanding the GUI system
– Reducing testing effort and cost
– Improving the reusability and manageability of test

cases as well as the generation process
– Test coverage analysis with respect screen nodes,

navigation path and screen states

3/31/0020

Conclusion

� This approach significantly reduce complexity and
testing effort by separating GUI testing into two parts

� SNet provides a formal model to specify the GUI
navigation behavior

� SNet establishes the basis for systematic test cases
generation, ensuring coverage and reliability

� Multilevel test case generation approach improves the
reusability of test cases at each level, facilitates test
case maintenance and change management

 - 1 -

Test Case Generation for GUI Navigation

W. T. Tsai*+, Xiaoying Bai*, Baisu Huang*, George Devaraj+

*Department of Computer Science and Engineering
Arizona State University

Tempe, AZ 85259

+Department of Computer Science and Engineering
University of Minnesota
Minneapolis, MN 55455

Ray Paul

OASD Y2K Office
Washington, D.C.

Abstract

GUI is an important feature enabling human-
computer interaction to be more user friendly.
It has been used in safety-critical applications
where failure of the application can have
serious consequences. Unfortunately, GUI
testing is expensive and currently many of the
steps are manual. This paper proposes a
model called SNet (for Screen Network) to
model screen navigation and presents a
technique to develop the initial set of GUI
navigation test cases based on various
navigation paths and test scenarios. The
model also allows coverage analysis such as
path coverage. In this way, test cases can be
generated systematically while at the same
time ensuring coverage. This paper then
presents a prototype tool, which can help user
to interactively input the navigation
information, check the completeness and
consistency of the input, and automatically
generate test cases.

1 Introduction

GUI (Graphical User interface) is a common
feature in most modern software systems. It is

widely used as the front-end control sub-
system in many applications including safety-
critical systems. GUI is where the end-users
look, feel and interact with the underlying
application system. Due to the increasing
importance of a GUI system, GUI testing is
gaining attention. But unfortunately, because
of the variety of GUI components as well as
the complexity of GUI construction and user
interaction, testing a GUI is difficult.
Currently, GUI testing is expensive and many
of steps are done manually.

Many tools are available today to facilitate
GUI testing, such as QA Parterner [QA],
JavaStar [Star], XRunner [XR], TestMaster
[TM] and so on. The basic technique used in
these tools is capture-and-replay. Capture-
and-replay tools can capture the user's
interactions on the GUI objects, which are
under test during a test session, store them in
a test script which can be interpreted and
executed by the tool. Once captured and
stored, testing can be repeated at any time,
thus addressing the reusability problem. Even
though capture-and-replay is a powerful
technique and has been used for testing
numerous GUI projects, the initial set of test
cases must be developed. All this has to be

 - 2 -

possibly done manually. Furthermore, it is
difficult to state the coverage of the GUI test
by using the capture-and-replay mechanism
because the coverage is provided with respect
to the existing test cases, rather than with
respect to other criteria such as navigation.

Test case generation in GUI testing is an
issue. This paper presents a technique to
automatic generate the initial set of GUI test
cases based on a GUI behavior model. In this
approach, test cases can be generated
systematically thus ensuring proper test
coverage. This approach divides testing GUI
into two parts:

• Screen navigation: take the top-level
container as the basic functional
module and test the inter-module GUI
behavior. This part ensures that each
screen will be visited, as well as all
the paths that might be used to
traversed from one screen to another

• Widget logic: test the correctness of

the behavior of the widgets inside a
functional module - the top-level
container. This part ensures that the
software behind a widget will respond
correctly when the corresponding
widget is selected or activated by the
application

By separating GUI testing into these two
parts, the testing effort and complexity can be
significantly reduced. This paper illustrates
the savings in cost and effort that can be
achieved using this approach. Since widget
logic is application dependent, this paper
focuses on screen navigation.

Top-level containers, called screens are the
building blocks of a GUI system. As an
interactive system, each function in a GUI
system is performed by navigation through a
set of screens. A screen can take input from

users, produce output to display, and consists
of all the underlying logic to process user
requests based on the user’s inputs.
Navigation through screens describes the
high-level functionality of the system and the
inter-relationship among screens.

For large applications, navigation through
screens can be quite complex. Each Screen in
the GUI system can be in several states
depending on the data, which it contains in its
GUI widgets. There is a set of navigation
events, which would enable transitions
between screens. Pre-condition is the current
status of the screen when a particular event is
triggered. Post-condition is the expected
status of the target screen after it becomes the
focus of the GUI system. Each screen can be
navigated to different targets under different
combinations of pre-conditions and the
triggering events. The system may also
navigate to a particular screen but with
different post conditions.

For example, consider a GUI system with 10
screens. Assume each screen has 3 states and
2 navigation events. Then, at least 60
(601023 =××) test cases are needed. With
the increase in complexity of the GUI system,
the number of test cases required to test the
states grows exponentially.

Therefore, automating the process of test case
generation for GUI navigation can
significantly save the time and effort involved
in testing. This paper presents an approach for
automatic test case generation based a model
specification of the GUI navigation behavior.

Extensive research has been done on test
cases generation [Clarke 1984, Boehm 1984,
Tsai 1990, Weber 1994, Paradkar 1996, Yin
1997]. [Clarke 1984] describes a test case
generation method based on symbolic
execution technique. [Tsai 1990] discusses
the automatic test case generation technique

 - 3 -

for relational algebra specifications expressed
as queries. [Yin 1997] presents an automatic
test generation scheme for black box testing,
using checkpoint encoding and anti-random
testing schemes. One particular problem for
GUI navigation testing is that, in addition to
generate the test data for each input, we also
need to generate the sequence of execution
steps.

This paper proposes a model called SNet (for
Screen Network) to model screen navigation.
It is a directed graph model where a node
represents a screen and a link between two
nodes represents a navigation path from one
screen to another. The precondition and post-
conditions for traversing from one screen to
another are also specified on the link. Each
navigation link (NStep) is a six tuplet and is
defined by 6 components: the ID for the
navigation step, the departure screen, the
arrival screen, the navigation event, the
precondition and the post-condition.
Conditions are specified in the states of the
screens, which are further specified by the
combinations of the values of the input GUI
widgets inside the screen container.

Based on the model, test cases can be
generated systematically from various
navigation paths and scenarios based on
certain coverage criteria such as path
coverage. The navigation paths, test scenarios
and test cases construct the three levels of the
test elements. They are organized into a tree
structure, which can be maintained and
reused at different levels.

A prototype tool is developed to help user
interactively input the navigation information.
It will check the completeness and
consistency of the input. Once a SNet has
been specified and checked, the tool can then
generate all kinds of test cases in a
description language.

The paper is organized in the following
manner:

• Section 2 briefly introduces GUI

components and GUI system structure
• Section 3 presents the navigation model

SNet and the rules for its completeness
and consistency checking

• Section 4 discusses the technique for test
case generation based on SNet.

• Section 5 presents the prototype tool and
some experimental results.

2 GUI Components and System
Structure

A GUI system is built from GUI components
by containment. For example, the
containment hierarchy of swing components
is illustrated by the following figure [Swing]:

Figure 1. Swing GUI component structure

Viewed in a top-down manner, a GUI system
is constructed by following a hierarchical
containment structure using containers and
widgets.

2.1 GUI container

Containers serve as the carriers of atomic
GUI controls. These containers decompose

 - 4 -

the complex GUI system into loosely coupled
functional modules layer by layer.
Containers, such as Windows (VC), Frame
(Java), Form (VB), Dialog, can also be
divided into two categories:

• The top-level container

Such containers lie at the outermost
level of the containment structure of
the GUI system. They separate GUI
widgets into loosely coupled groups,
representing relatively independent
functional modules. GUI components
in this category include Windows
(VC), Dialog, Applet (Java), Frame
(Java), and Form (VB) and so on.

• The intermediate container

Components in this category such as
menubar, toolbar and panel (Java) are
embedded within top-level containers
and contain atomic GUI components
or other intermediate containers.
Doing so simplifies the positioning
problem of atomic GUI widgets. Such
a container plays a weak role in
functional decomposition compared to
the top-level container.

2.2 Atomic GUI control - GUI widget

In contrast to containers, atomic GUI controls
or GUI widgets such as buttons, textfields and
checkboxes are the simplest elements inside
GUI containers. For example, a logon dialog
can be made up of two input text fields for
NAME and PASSWORD and two buttons for
OK and CANCEL.

GUI widgets are the real carrier of system
functionality. They accept user's interactions
as events and associate events with specific
program logic. For example, a click event on

a button A will trigger the procedure called
onButtonAClicked ().

3 Screen Navigation Model

Each top-level container is called a screen
and is a relatively independent functional
module in the GUI system. The current focus
of the GUI system shifts from one screen to
another by specific events. Such logic is
called screen navigation and it reflects the
relationship between the functional modules
and behavior of the system when the
functional modules are integrated. Testing the
correctness of the navigation logic is an
important issue in GUI system testing.

A model SNet (Screen Network) is proposed
to model the navigation behavior though all
the screens in a GUI system. It uses a
directed graph model where nodes represent
screens and directed links represent the
navigation logic. Conditions, which include
both preconditions and post-conditions of the
navigation, are also specified on the link.

The following sections will introduce the
definition of screen navigation, navigation
step, navigation diagrams, their identification
process and C&C checking on the SNet
model.

3.1 Screen Navigation

In a GUI system, at each time, a particular
active screen is interacting with the user.
Triggered by specific events, the current
screen may be deactivated and another screen
will be loaded in or activated. This is an
example of screen navigation, and these two
screens are logically connected by the event
that caused the navigation.

 - 5 -

For example, consider the logon system in the
Windows NT workstation 4.0. The first
screen is a dialog titled "Begin logon".
Triggered by the event "Ctrl+Alt+Delete", the
"Begin Logon " disappears and another dialog
titled "Logon Information" is loaded in. Then,
when the event "click the button Help" is
fired, the dialog "Logon Information" is
deactivated and another dialog titled "Logon
Help" is loaded in and becomes the focus of
the system. To specify the relationship
between these dialogs, we say that:

• Screen "Begin Logon" is navigated to
screen "Logon Information" by event
"Ctrl+Alt+Delete"

• Screen " Logon Information " is
navigated to screen "Logon Help" by
event "Help button click"

3.2 Navigation Step: NStep

Each direct connection between two screens
is called a navigation step or NStep. There are
usually two kinds of navigation:
unconditioned and conditioned. In case of
unconditioned navigation, a screen, which is
triggered by the same event, always arrives in
the same target screen, no matter what state
the departure screen is in. For conditioned
navigation, a screen, which is triggered by the
same event, will arrive at different target
screens depending on the status of the
departure screen.

For example, consider the “Logon
Information” screen in the logon system. No
matter what name and password the user put
in, whenever the “Help” button is clicked, the
“Logon Help” screen appears. This is an
example of unconditioned navigation.

For the case of conditioned navigation,
consider the "Logon Information" screen. The
"OK button click" event will result in

different screens under different conditions.
In case the user puts in the correct name and
password, the interface for Windows NT
operating system will appear. Otherwise, a
dialog "Logon Message" will appear,
instructing the user to re-enter the logon
information. This is a typical example of
conditioned navigation. In this case, the status
of the departure screen or the condition is the
key to distinguish navigation steps from each
other.

In general, a navigation step is decided by the
following elements:

• The unique identification of the
navigation step called ID;

• The screen the navigation departs
from, called the departure screen DS;

• The screen the navigation arrives at,
called the arrival screen AS;

• The pre-condition of the navigation,
called preCond;

• The post-condition of the navigation,
called postCond; and

• The event that triggers the navigation
is a navigation event or NE.

Thus, a navigation step NStep in this model is
defined as a 6-tuplet:

),,,,,(NEpostCondpreCondASDSIDNStep =

Most navigation steps are conditioned, and
they need to be specified. Pre-condition is the
current status of the screen when a particular
event is triggered. Post-condition is the
expected status of the target screen after it is
activated. Each screen can be in a number of
states depending on the values associated
with the widgets inside the screen. A
navigation condition is defined by a group of
states of the screen. For example, in the
Windows NT logon example mentioned
earlier, a navigation condition for the “Logon
Information” screen can be “invalid user”.

 - 6 -

This condition can be specified by the
following states of the screen:

• An invalid user name within a valid
domain; or

• A valid user name, but with an invalid
password, within a valid domain;

3.3 Navigation Diagram: SNet

The SNet (for screen network) is a graph
model that describes GUI screen navigation
information. In a SNet, a node represents a
screen and a directional link between two
nodes the navigation from the first screen to
the next. In other words, a SNet is defined as
a set of screens and a set of navigation steps:

}){},({ NStepScreenSNet =

Each screen is defined by the following
elements:

• A unique identification, ID
• A set of atomic GUI widgets
• A set of states
• A set of navigation events

 }){},{},{,(EventsStateWidgetIDScreen =

The state of the screen is determined by the
values of the GUI widgets, which accept
user’s inputs, inside the screen.

Appendix A gives a visual illustration of the
SNet for the example Windows NT Logon
GUI system.

3.4 Completeness and Consistency
Checking

Software specification is an interactive
process, and it is prone to errors [Kirani
1994]. It is also subjected to continuous

modifications due to the changes in the
requirements or design. This section
introduces rules to perform completeness and
consistency (C&C) checking of a SNet model
to ensure that the model is correct.

C&C checking for SNet involves checking
whether each screen and navigation is
represented properly in the SNet model. The
C&C checking includes two parts:

• C&C check on screens; and
• C&C check on navigation steps.

Checking Screens

Screen C&C checking ensures that:

• All screens are represented in the
SNet model and that each node in
SNet uniquely represents a screen;
and

• There is no conflicting information in
each screen.

Checking NStep

NStep represents the navigation logic. C&C
checking on NStep ensures that

• There is no conflict in the navigation
conditions;

• For each screen, each combination of
pre-condition and navigation event
uniquely decides the target screen;
and

• All the screens are connected by
navigation links (NSteps).

These rules have been formalized and can be
automatically executed on a SNet model.

4 Test Case Generation in the SNet
model

 - 7 -

Currently, most test cases are generated
manually. A typical GUI application can have
numerous scenarios, however, in practice few
of these scenarios can be generated and
tested. With a limited number of test cases
generated, it is difficult to have any assurance
of reliability and coverage. This paper
introduces a hierarchical approach to generate
test cases systematically from the SNet
model, and test engineers can use the SNet
model to ensure certain test coverage.
Furthermore, a prototype tool has been
developed that can generate templates for test
scripts to test the GUI application, thus
significantly reduces the time and effort to
generate test cases.

The test case generation takes a 3-level
approach:

• Navigation Paths: This step specifies
the navigation sequence between two
screens in terms of screens, navigation
conditions and links.

• Test Scenarios: This step specifies the

navigation conditions in terms of the
states of the screen, rather than pre
and post conditions.

• Test Cases: This step specifies the

actual test input data, actions and the
expected output.

The 3-level approach is illustrated as a tree
structure as shown in figure 2. This tree
structure promotes test case reuse and
supports test case maintenance [Poonawala
1997]. Once a navigation path is obtained,
one can generate a set of test scenarios based
on the states of the departure screens. And for
each test scenario, one can derive a set of test
cases by replacing the states with actual data
values. This 3-level approach follows the
same approach as in [Kirani 1994, Tsai
1999].

Each of these levels will be discussed in the
following subsections.

Root

Navigation Path 1 Navigation Path n

Scenario
1.1

Scenario
1.n

Scenario
n.1

Scenario
n.n

Test Case
1.1.1

Test Case
1.1.n

Test Case
n.n.1

Test Case
n.n.n

......

..................

............

Figure 2. Tree of Three-level Test Case

Generation

4.1 Navigation Path Generation

Navigation paths can be generated by tracing
the SNet model. The SNet is a graph model,
thus one can use various graph traversing
algorithms such as the depth-first search or
breadth-search search algorithms to generate
navigation paths. One may also generate
navigation paths based on certain test
coverage criteria such as:

• All the navigation paths between
two screens;

• A set of independent paths
between two screens;

• All the paths between two screens
that include a set of specific
screens such as the beginning and
ending screens; and

• All the paths between two screens
that include a set of specific links;

• The set of paths that include all
the screens; and

 - 8 -

• The set of paths that include all
the links;

Figure 3 shows an algorithm to generate all
the navigation paths between two arbitrary
screens in a SNet model using the depth-first
search algorithm.

Figure 3. A Depth-First Algorithm for
Navigation Path Generation

4.2 Test Scenario Generation

The conditions to move from one screen to
another are based on the state of the departure
screen. Thus, once a navigation path has been
obtained, one can generate specific test
scenario by the examining the possible states
of the departure screens in the path.

For example, consider two screens A and B.
In any state, A can navigate to the default
state of B on the occurrence of event E.
Assume that A has 3 states: s1, s2, s3 and the
default state of B is s0. Then, the 3 scenarios
corresponding to the navigation path A � B,
can be illustrated in figure 4:

Figure 4. An Example of Deriving Test
Scenarios From a Navigation Path

4.3 Test Case Generation

Once a test scenario has been generated, one
can generate specific test cases to drive the
test scenario.

Test data can be generated based on different
considerations, such as:

• Different widget types, such as a text
field which allows users to input
whatever they want, and a combo box
which enumerates all the possible
input values

• Different data types, such as integers
for which boundary value based test
data generation technique can be used,
strings for which random test data
generation technique can be used

• Different data source, such as data
defined by database

Data Structure:
PathArray arrPaths;
LinkArray aPath;

Algorithm:

1. Diagram::Search (CString from, CString to)
1) Remove all elements in arrPaths
2) Create a new LinkArray aPath
3) Get the start and end nodes pFrom, pTo
4) Call RecursiveSearch (pFrom, pTo, aPath)

2. Diagram::RecursiveSearch
(CNode* pFrom, CNode* pTo, LinkArray* aPath)
 {
 if pFrom = pTo
 add a new path, aPath, to the arrPaths
 else {
 for each link that starting from pFrom do {
 get the node that the link ends at

to pNextNode;
 if pNextNode is not in aPath {

 add the link to aPath;
 RecursiveSearch (pNextNode,pTo,aPath);
 Remove the last link in aPath;
 }
}

 }
 }

A Navigation
Path
A [E] ���� B

A.s1 [E] � B.s0

A.s2 [E] � B.s0

A.s3 [E] � B.s0

Corresponding
Test Scenarios

 - 9 -

• Different data attributes, such as
independent or dependent

Figure 5 illustrates test cases generated from
a test scenario using the Windows NT logon
as the example. The navigation path is from
screen “Begin Logon” to “Logon
Information”, and finally to screen “Logon
Help”. The event “Ctrl+Alt+Delete” causes
the screen “Begin Logon” in state S0 to
navigate to the screen “Logon Information” in
state S0. And the event “Button Help click”
causes screen “Logon Information” in any
state navigated to “Logon Help” in state S0.

The test scenario taken here is the “Valid
User” state of the screen “Logon
Information”. Assume one of the 4 valid users
is “name bxy, password bxy, domain selab1”.
Figure 5 shows the test cases corresponding
to the test scenario.

Figure 5. An Example of Generating Test

Cases from a Test Scenario

5 Tools and Experimentation

A prototype tool has been constructed to
facilitate the interactive specification and to
automate the test case generation. The tool
runs on Windows NT and is built using
Microsoft’s Visual C++.

5.1 Tool Prototype

The prototype system is made up of three
modules:

• Data dictionary: The storage of the
general information of the GUI
system: the screens, their widgets and
navigation events.

• SNet Manager: Provide an interface

for user to interactively construct,
store and maintain the navigation
diagram.

• Automatic Test Case Generator:

Based on the SNet constructed, the
test case generator generates the
navigation paths, test scenarios and
test cases in a description language as
shown in figure 5.

5.2 Experimental Results

Experiments on several systems show that the
SNet model is helpful for understanding the
GUI application and simplifying test case
generation. The model also promotes
reusability and facilitates change
management. Two examples are illustrated
below.

The first example is the Windows NT Logon
system, and its SNet specification is in
Appendix A. Assume that there are four valid
users in two domains. The following table

 - 10 -

specifies the number of states and navigation
steps of each screen.

Screen States Navigations
Begin Logon 1 1
Logon Information 5 5
Logon Message 1 1
Logon Help 1 1
Shutdown Computer 2 3

The following table lists the number of
scenarios and test cases generated from the
screen “Begin Logon” to each of the other
nodes (loops are bypassed).

Destination Scenarios Test Cases
Logon Information 1 1
Logon Message 3 9
Logon Help 5 15
Shutdown Computer 5 14
Exit 11 32

Total 25 71

In another experiment, a Simple Automatic
Teller Machine (SATM) is taken as the
example system. This version (Appendix B)
is a revision of an example in [Paul 95]. It has
twelve screens. The following table specifies
the system in terms of the number of states
and navigation links.

Screen States Navigations
Screen 1 1 1
Screen 2 4 3
Screen 3 1 1
Screen 4 4 3
Screen 5 3 2
Screen 6 4 4
Screen 7 1 1
Screen 8 1 1
Screen 9 1 1
Screen 10 2 2
Screen 11 1 1
Screen 12 1 1

For a user account database with four
accounts, 27 scenarios and 105 test cases are
generated from screen 1 (the start point for all
scenarios) to screen 12 (the end screen for all
scenarios).

For the first example, it took 10 minutes to
build the data dictionary and another 10
minutes to construct the SNet model. Once
specified, the prototype tool automatically
generates 71 test cases.

For the second example, it took 15 minutes to
create the data dictionary and another 20
minutes to construct the SNet model. And the
tool generates 105 test cases.

The manual test case generation takes much
more time and effort. Even assuming each
test case can be developed in 10 minutes by
an experienced tester, it will take 710 minutes
and 1050 minutes to generate the same
number of test cases for these two examples
respectively.

6 Conclusion

This paper presents a way to generate test
case for GUI testing based on SNet. The SNet
uses a directed graph with conditions attached
to model the navigation behavior of the GUI
system. The technique has the following
advantages:

• The testing techniques separate GUI
testing into two parts, screen
navigation and widget logic. By
separating GUI testing into these
parts, the complexity and testing effort
can be significantly reduced.

• The model is formal and allows users

to extract and specify the navigation
aspect of the GUI system. Once

 - 11 -

specified, test engineers can use the
specification to generate test cases.

• The test case generation using the

SNet model is hierarchical and
systematic, and can use the traditional
test coverage criteria to ensure
adequacy of testing. These features
also significantly reduce the time and
effort in GUI testing, and at the same
time provide some assurance for
reliability.

• An important by-product of the

multilevel test case generation is that
all the intermediate results (navigation
paths, test scenarios, test cases) can be
reused at their levels. This helps in
maintenance of test cases as well as
facilitates change management.

7 Reference

[QA] Segue Software. Inc., QA Partner,
available at: http://www.segue.com.

[QES] QES Inc. Flexible, productive
automated GUI testing, available at:
http://www.questest.com/.

[Star] Sun Microsystem. Inc., JavaStar
Overview, available at: http://www.sum.
com/.

[Swing] Sun Microsystems. Inc, All about
JFC and Swing, Available at: http://
java.sun.com.

[TM] Teradyne Inc., Software and System
Test, available at: http://www.teradyne.com.

[XR] Mercury Interactive Corporation,
XRunner, available at: http://www.merc-
int.com.

[VB] Microsoft Corporation, Visual Basic,
available at: http://msdn.microsoft.com.

[VC] Microsoft Corporation, Visual C++,
available at: http://msdn.microsoft.com.

[Clarke 1984] L. A. Clarke, and D. J.
Richardson, “Validation by Symbolic
Evaluation or Symbolic Execution”, in
Software Validation, edited by H. L. Hausen,
North-Holland, 1984.

[Kirani 1994] S. Kirani and W. T. Tsai,
“Specification and Verification of Object-
Oriented Programs”, technical report,
Department of Computer Science and
Engineering, University of Minnesota,
Minneapolis, MN 55455, 1994.

[Paradkar 1996] A. Paradkar, K. C. Tai, M.
A. Vouk, “Automatic Test Generation for
Predicates”, Seventh International
Symposium on Software Reliability
Engineering, 1996. Proceedings, 1996, pp. 66
–75.

[Paul 1995] Paul C. Jorgensen, Software
Testing: a Craftsman’s Approach, CRC
Press, New York, New York, 1995.

[Poonawala 1997] M. Poonawala, S.
Subramanian, R. Vishnuvajjala, W. T. Tsai,
R. Mojdehbakhsh, and L. Elliott, "Testing
Safety-Critical Systems -- A Reuse-Oriented
Approach", Proc. of 9th International
Conference on SEKE, 1997, pp. 271-278.

[Tsai 1990] W. T. Tsai, Volovik, and T. F.
Keefe, “Automatic Test Case Generation for
Programs Specified by Relational Algebra
Queries”, IEEE Transactions on Software
Engineering, Vol. 16, No. 3, March 1990, pp.
316-324.

[Tsai 1993] W. T. Tsai, W. Xie, I. A.
Zualkernan, and S. K. Musukula, "A

 - 12 -

Framework for Systematic Testing of
Software Specifications", Proc. of
International Conference on Software
Engineering and Knowledge Engineering,
1993, pp. 380-387.

[Tsai 1999] W. T. Tsai, Y. Tu, W. Shao and
E. Ebner, “Testing Extensible Design Patterns
in Object-Oriented Frameworks through
Hierarchical Scenario Templates”, Proc. of
IEEE COMPSAC, 1999.

[Weber 1994] R. Weber, K. Thelen, A.
Srivastava, and J. Krueger, “Automated
Validation Test Generation”, Digital Avionics
Systems Conference, 1994. 13th DASC.,
AIAA/IEEE , 1994 , pp. 99 –104.

[Yin 1997] H. Yin, Z. Lebne-Dengel, and
Y.K. Malaiya, “Automatic Test Generation
Using Checkpoint Encoding and Antirandom
Testing”, The Eighth International
Symposium on Software Reliability
Engineering, 1997 Proceedings, 1997, pp. 84
–95.

 - 13 -

Appendix A: SNet Diagram for Logon GUI System

Begin Logon

Logon Help Shutdown Computer

Logon Message Logon Information

NE: Ctrl+Alt+Delete
preCond : any state
postCond : S0

NE: Cancel
preCond : any state
postCond : S0

NE: OK
preCond : any state
postCond : S0

NE: OK
preCond : invalid user
postCond : S0

NE: Help
preCond : any state
postCond : S0

NE: Shutdown
preCond : any state
postCond : S0

NE: Cancel
preCond : any state
postCond : S0

NE: Cancel
preCond : any state
postCond : S0

NE: OK
preCond : valid user
postCond : S0

NE: OK
preCond :
Shutdown checked
postCond : S0

NE: OK
preCond :
Shutdown & Restart
checked
postCond : S0

enter
system

System
Shutdown

System
Shutdown
& Restart

Name The screen of the GUI system

NE: event
preCond : prec
postCond : postc

A navigation step:
event: the event that triggers the navigation
prec: the precondition of the navigation
postc: the post conditon of the navigation

 - 14 -

Appendix B: the SATM system

There are 12 screens in the system, as shown
in figure 6.

The navigation logic through these 12 screens
are illustrated in figure 7:

Screen 1

Welcom

continue

Screen 2

Please enter your
Account Information

Account number: ----------
PIN: ---------
Cancel OK

Screen 3

Invalid Identification.
Your card will be

returned.

Screen 4

Select transaction type:
balance
deposit

withdrawal
Cancel OK

Screen 5

Select account type:
checking
savings

Cancel OK

Screen 6

Enter amount.
Withdraw must be in
increments of $10

----------.----
Cancel OK

Screen 8

Insufficient funds.

Screen 9

Your balance is being
updated. Please take

cash from the dispenser.

OK

Screen 10

Please put the envelope
into deposit slot. Your

balance will be updated.

Cancel OK

Screen 11

Your balance is printed
on your receipt.

Screen 12

Please take the receipt
and your ATM card.

Thank you.

Screen 7

Machine cannot dispense
that amount

Figure 6. Screens for the SATM system

 - 15 -

Screen 1

Screen 2

Continue
clicked

Screen 6

Screen 5

Screen 4

Screen 3

Screen 12

Screen 10

Screen 11

Screen 9

Screen 8

Invalid input
OK clicked

Valid input
OK clicked

Withdrawal /
balance selected

OK clickedCancel
clicked

Deposit Selected
OK clicked

Cancel clicked

Withdrawal
OK clickedCancel

clicked

Sufficient
balance

OK Clicked

OK Clicked

Screen 7Invali input
OK clicked

Insufficient balance
OK clicked

Balance
OK clicked

Cancel
clicked

Cancel
clicked

OK
clicked

Figure 7. Screen Navigation Diagram for SATM System

QW2000 Paper 8A2

Mr. Giuseppe Lami, Ms. Stefania Gnesi, Prof. Mario
Fusani & Mr. Fabrizio Fabbrini

(Istituto di Elaborazione dell'Informazione)

Quality Evaluation of Software Requirements
Specifications

BACK TO QW2000 PROGRAM

Presentation Abstract

The criticality of the Software Requirements Specifications (SRS) phase is widely recognised for the
success of the whole software project and the attention played on it by the software developers is
more and more significant. The software science developed in the past methods and techniques for
producing quality SRS: structured languages, controlled languages, formal languages.

Nevertheless the SRS phase is, especially in the Small and Medium Enterprises (SME) community,
still one of the weaker steps of the whole software process. One of the principal reason of this
situation is that SME, stressed by the time-to-market, do not have enough resources for establishing
rigorous methods for the SRS. Furthermore such rigorous methods, should be shared among all the
parties involved in a software project, customer included, asking for a further effort in terms of
resources to be expended. It is not surprising then that the Natural Language (NL) SRS are, in spite of
their inherent inaccuracies, still the most used technique for SRS.

With the objective of transferring methodologies and tools for improving the software development
process of SMEs, the IEI/CNR started a new project, funded by CNR, aiming to realise an automatic
tool supporting the analysis and quality evaluation of NL SRS. The adopted approach has been, first
to define a Quality Model for SRS, then to verify this Model on real cases of SRS in order to be sure
that the Quality Model provides a real contribution for solving some NLSRS related problems for
SMEs. Finally we have developed an automatic tool for the verification of the requirements to
guarantee their conformance to the Quality Model itself. The process for evaluating SRS by using the
defined Quality Model and the corresponding Tool is shown in the figure below:

The Quality Model against which to evaluate the quality of NLSRS has been defined so that the
Quality Properties included in it can be really evaluated by means of Metrics automatically and
numerically computable. The Quality Model inovolves the following components:

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8A2.html (1 of 3) [4/28/2000 2:37:08 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Requirements
Specification
Process
Requirements
Document
Review
Process
Quality
Model
Expert Reviewer
TOOL
produces
supports
performs
determines
changes

Definitions of Terms:
Implicit Subjects Sentences: A sentence is an implicit subject sentence if its subject contains a
demonstrative adjective, is expressed by means of pronouns, is specified by a preposition as:
above, below, or by an adjective as such: previous, next, following, last, first, ...

●

Optional Sentences: A sentence is optional if it contains an option (e.g. it contains words as:
possibly, eventually, if appropriate, if needed

●

Subjective Sentences: A sentence is subjective if it refers to personal opinion or feeling●

Vague Sentences: A sentence is vague if it contains a vague adjective or derived adverb●

Weak Sentences: A sentence is weak if it contains a weak verb (Weak verbs are: can / could,
may)

●

Underspecified sentences: A sentence is underspecified if its subject contains a word
identifying a class of objects without a modifier specifying an instance of such class.

●

Multiple sentences: A Sentence is multiple if it has more than one subject or more than one
main verb or more than one direct or indirect complement that specifies its subject

●

The above Properties, although not covering all the possible quality properties of NLSRS, are
sufficiently specific to compare and verify the quality of SRS Documents. The above Metrics represent
tangible aspects of SRS that can be automatically calculated and they can provide information on the
related Quality Property of the Model.

In order to verify if the defined Quality Model provides significant and useful results on real cases, it
has been applied on two different sets of documents of real industrial requirements specifications. The
first is a set of Telecommunication Software Requirements Specification documents, the second is a
case of Safety Critical Space Software Requirements Specification documents. In both cases the
organizations that produced these SRS use standards for writing them, perform revision sessions and
produce the related reports. The results achieved, on a set of over 800 requirements, are shown
below:

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8A2.html (2 of 3) [4/28/2000 2:37:08 PM]

The results obtained are encouraging because many possible problems, then risk identifications, have
been detected and pointed out, and that has been appreciate by the firms who provided the SRS.

About the Authors

Fabrizio Fabbrini obtained his degree in Computer Science from the University of Pisa, Italy, in 1974.
Since 1975 he has served as a scientific researcher at the Institute for Information Processing (IEI) of
the Italian National Research Council (CNR), where now he is Senior Researcher. Fabrizio Fabbrini's
present activity is focused on Software Quality, and more precisely on the development of
methodologies and standards for the assessment and the evaluation of software products and
processes, with particular attention to Software Engineering Standards and Software Certification.
Software Process Assessment & Improvement, Software Verification & Validation, Computer Security
& Data Privacy represent the main fields of application of such research activities.

Mario Fusani obtained his degree in Electrical engineering from the University of Pisa, Italy, in 1971.
Since 1973 he has served as a scientific researcher at the Institute for Information Processing (IEI) of
the National Research Council (CNR), where now he is Senior Research. His present activity is
focused on Software Quality, including the development of methodologies and standards for the
assessment and the evaluation of software products and processes.

Stefania Gnesi graduated cum laude in Computer Science at the University of Pisa, Italy. Since 1984
she has been a researcher in the Programming Languages and Operating Systems group of the
Italian National Research Council (CNR), Pisa, Italy. Her current research interests include methods
and tools for the high-level specification and formal verification of concurrent systems, and
applications of temporal logic.

Giuseppe Lami since 1994, when he obtained the degree in Computer Science from the University of
Pisa, Italy, focused his interests on Software Engineering and Software Quality issues. His current
research activity at the Institute for Information Processing (IEI) of the National Research Council
(CNR) includes methods and tools for software testing and requirements engineering.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8A2.html (3 of 3) [4/28/2000 2:37:08 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

QUALITY EVALUATION OF
SOFTWARE REQUIREMENTS

SPECIFICATIONS

F. Fabbrini, M. Fusani, S. Gnesi, G. Lami

IEI-CNR, Pisa, Italy

REQUIREMENTS
ENGINEERING

Requirements Engineering phase Level of Detail People involved

Requirements Definition:
statement, in a natural language plus diagrams, of
the services the system is expected to provide and
the constraints under which it must operate.
Generated using customer-supplied information.

General Managerial Level
End-users
System architects
Client engineers

Requirements Specification:
structured document which sets out the system
services in detail. This document should be precise.
It may serve as a contract between the system
buyer and software developer

Intermediate End-users
System architects
Client engineers
SW developers

Software Specification:
abstract description of the software which is a
basis for design and implementation.

Highly detailed System architects
SW developers

2

Techniques for Producing SRS

Approach to Requirements
Specifications

Description

Natural Language -
Structured Natural Language restricted natural language where the terminology is limited

and templates can be used. Control constructs derived from
programming languages can be included.

Semi-formal Languages usually special-purpose graphical notations with a precise
syntax and a non-rigorous semantic.

Formal Languages mathematics based languages with vocabulary, syntax and
semantics formally defined.

SRS Quality Evaluation

Goal Properties
• Requirements Sentence Quality (RSQ)

the syntactical quality of single sentences considered

separately.

• Requirements Document Quality (RDQ)

the quality of the sentences considered in the context of the
whole requirements document.

3

SRS Quality Evaluation

RSQ related Properties

• Non-Ambiguity: the capability of a Requirement to have a
unique interpretation.

• Completeness: the capability of each Requirement to
make reference to precisely identified entities.

• Understandability: the capability of each Requirement to
be fully understood when used for developing software.

SRS Quality Evaluation
RDQ related Properties

• Completeness: the capability of the Requirements
Specification Document to avoid potential or actual
discrepancies.

• Understandability: the capability of the Requirements
Specification Document to be fully understood when read
by the user.

4

SRS Quality Evaluation

NL SRS Quality Indicators

syntactic aspects of the requirements
specifications that can be automatically
calculated and that provide information on a
particular Quality Property of the SRS.

A NLSRS Quality Model

Goal Properties Properties Quality Indicators

Requirement Sentences
Quality

Non-Ambiguity Implicit Subjects Sentences,

Optional Phrases,
Subjective Sentences,

Vague Sentences,
Weak Sentences

Completeness Underspecified Sentences

Understandability Multiple Sentences

Requirement
Document Quality

Completeness Underreferenced Sentences

Understandability Comments Frequency,
Readability Index,
Unexplained Sentences

5

Ambiguity Indicators

• A sentence is an implicit subject sentence if its
subject:
– contains a demonstrative adjective: this, these, that, ...

– is expressed by means of pronouns: it, they, ...

– is specified by a preposition as such: above, below, ...

– is specified by an adjective as such: previous, next,
following, last, first, …

(Example: The above requirements shall be verified

by test)

Ambiguity Indicators

• A sentence is optional if it contains an option.
Note: A sentence is to be considered as optional if it contains
words as such: possibly, eventually, if appropriate, if needed

(Example: The system shall be such that the
mission can be pursued, possibly without
performance degradation.)

6

Ambiguity Indicators

• A sentence is subjective if it refers to personal
opinion or feeling.

Note:The sentences containing the following kinds of
wording are to be pointed out as potentially subjective:

– having in mind, take (into) account, take into
consideration, ...

– similar, better, similarly, worse, ...
– as [adjective] as possible.

(Example: Software tasks shall be as much as possible
synchronous.)

Ambiguity Indicators

A sentence is vague if it contains words holding
inherent vagueness.

Note: Words holding inherent vagueness:

• Adjectives related to intrinsic, environmental, time,
location characteristics of an object;

• Adverbs derived from the previous adjectives;

• Vague nouns or verbs (e.g. support)

(Example: The C code shall be clearly commented.)

7

Ambiguity Indicators

A sentence is weak if it contains a weak verb.
Note: Weak verbs are:

• can, could, may.

(Example: The results of the Initialization checks may
be reported in a special file.)

Completeness Indicators

A sentence is underspecified if its subject
contains a word identifying a class of objects
without a modifier specifying an instance of such
class.

(Example: The testers shall be independent of the
software developers.)

8

Understandability Indicators

A Sentence is multiple if:

• it has more than one subject or more than
one main verb;

• it has more than one direct or indirect
complement that specifies its subject.

(Example: The mean time needed to remove a
faulty board and restore service shall be less than
30 minutes.)

Doc. Completeness Indicators
• A sentence of a Requirements Document (RD) is

underreferenced if it contains explicit references
to:

• not-numbered sentences of the RD itself,
• documents not-referenced into the RD itself,
• entities not defined nor described within the RD

itself.
Note: The following kinds of wording are to be considered as explicit
references:
according to, on the basis of, relatively to, compliant with, conformant to

(Example: The Software shall be designed according to
the rules of the Object Oriented Design)

9

Doc. Understandability Indicators

The Comment Frequency of a Requirements
Document is the value of the CFI (Comment
Frequency Index).

(CFI = NC / NR where:

NC is the total number of Requirements having one or
more comments,

NR is the total number of Requirements of the document).

Doc. Understandability Indicators

The readability index is the value of ARI
(Automated Readability Index).

(ARI=WS + 9SW where:

WS is the average words per sentence,

SW is the average letters per word).

10

Doc. Understandability Indicators

A sentence of a Requirements Specification
Document (RSD) is unexplained if it contains
acronyms not explicitly and completely explained
within the RSD itself.

(Example: The handling of any received valid TC
packet shall be started in less than 1 CUT.)

Validation of the Quality Model

TLC Application
SRS

Total number of
Requirements
Evaluated = 395

Warnings

rate = 73%

Quality Indicator number of not

conformances
frequenc
y

Implicit Subjects Sentences 5 1,3%

Multiple Sentences 72 18,2%

Optional Sentences 3 0,8%

Subjective Sentences 8 2%

Underspecified Sentences 41 10,4%

Vague Sentences 95 24,1%

Weak Sentences 0 0%

Underreferenced Sentences 7 1,8%

Unexplained Sentences 58 14,7%

Number of non-conformancies

0

20

40

60

80

100

11

Validation of the Quality Model

Space
Application SRS

Total number of
Requirements
Evaluated = 444

Warnings

rate = 49%

Quality Indicator number of not

conformances
frequenc
y

Implicit Subjects Sentences 88 19,8%

Multiple Sentences 97 21,8%

Optional Sentences 3 0,7%

Subjective Sentences 4 0,9%
Underspecified Sentences 7 1,6%

Vague Sentences 17 3,8%

Weak Sentences 3 0,7%

Number of non-conformancies .

0

20

40

60

80

100

120

Implicit
Subjects

Multiple Optional Subjective Underspecified Vague Weak

Validation of the Quality Model

Joint Results

Total number of
Requirements
Evaluated = 839

Warnings

rate = 53%

Quality Indicator number of not

conformances
frequenc
y

Implicit Subjects Sentences 93 11,1%
Multiple Sentences 169 20,1%

Optional Sentences 6 0,7%

Subjective Sentences 12 1,4%
Underspecified Sentences 48 5,7%
Vague Sentences 112 13,3%

Weak Sentences 3 0,4%
Underreferenced Sentences 7**

Unexplained Sentences 58**

**: calculated only for the Telecommunication Software Requirements Specification

documents.

Number of non-conformancies .

0

20

40

60

80

100

120

Implicit
Subjects

Multiple Optional Subjective Underspecified Vague Weak

12

QuARS Tool

- -- - --
-- -- --
- - --- --

- -- - --
-- -- --
- - --- --

- -- - --
-- -- --
- - --- --

GRAMMAR

SYNTACTICAL
RECOGNISER

TREE BUILDER

QUALITY
EVALUATOR
TYPE A

QUALITY
EVALUATOR
TYPE B

SRS
Phrases

SYNTACTICAL
ANALYSER

WARNING MESSAGES

SPECIAL
DICTIONARIES

QuARS:

Quality Analyser of
Requirements
Specifications

13

14

NL SRS Evaluation Process

Requirements

Specification
 Process

Requirements

Document

Review
Process

Quality

Model

Expert Reviewer

TOOL

produces

supports

performs

determines

changes

15

NL SRS Evaluation Process

Requirements

Specification
 Process

Requirements

Document

Review
Process

Quality

Model

Expert Reviewer

TOOL

produces

supports

performs

determines

changes

QuARS

Conclusions

• A Model for the syntactic quality of SRS
– incomplete

– including indicators (metrics) numerically and
automatically computable

• An automatic Tool providing support for the
Quality Evaluation of SRS by means of
calculation of the Quality Model metrics

16

Future Work

• To make QuARS able to provide automatic
calculation of all the Quality Indicators of
the Quality Model;

• To include an on-line SRS editor

• To provide Guide Lines for tailoring the
Quality Model according to particular needs

1

Quality Evaluation of Software Requirements
Specifications_

F. Fabbrini, M. Fusani, S. Gnesi, G. Lami

I.E.I. - C.N.R. Pisa, Italy

The criticality of the Software Requirements Specifications (SRS) phase of the software life cycle for
the success of the whole software project is widely recognized and the attention played on it by software
developers is more and more significant. The software science developed in the past methods and
techniques for producing quality SRS: structured languages, controlled languages, formal languages.
Nevertheless the SRS phase is, especially in the Small and Medium Enterprises (SME) community,
still one of the weakest steps of the whole software process. One of the principal reasons of this
situation is that SMEs, stressed by the time-to-market, do not have enough resources for establishing
rigorous methods for the SRS. Furthermore such rigorous methods should be shared among all the
parties involved in a software project, customer included, asking for a further effort in terms of
resources to be expended.
It is not surprising then that Natural Language (NL) SRS are, in spite of their inherent inaccuracies,
still the most used technique for SRS.
In this paper we describe the effort made at I.E.I - C.N.R. for realizing an automatic tool (called
QuARS - Qu ality A nalyzer of R equirements S pecifications) supporting the analysis and quality

evaluation of NL SRS. The adopted approach has been first to define a Quality Model for SRS, then to
verify this Model on real cases of SRS in order to be sure that the Quality Model provides a real
contribution for solving some NLSRS related problems for SMEs. Finally we have developed an
automatic tool for the verification of the requirements to guarantee their conformance to the Quality
Model itself.
This paper is organized as follows: in Section 1 we provide general considerations on Software
Requirements Specification by considering NL techniques and other more formal techniques. In Section
2 we describe the proposed Quality Model for NL SRS. In Section 3 we describe the outcomes of the
experimentation of the proposed Quality Model on real industrial cases. In Section 4 we describe the
functionalities of the QuARS tool. In Section 5 we focus on the Quality Evaluation Process of NL
SRS, and, finally, in Section 6 we discuss conclusions and future works.

* This work was partially supported by SSSUP S.Anna in the framework of the LINK project,

MURST L. 488/92.

2

1. Techniques for producing Software Requirements
Specifications

The Requirements Engineering is the process of establishing the services the system should provide and
the constraints under which it must operate [13].

Ideally the Requirements Engineering process should be separated into three sub-processes, each needing
different styles, levels of detail and people to be involved. The separation of these processes should
guarantee the production of a suitable final output toward the software designer. The next table
summarizes the principal aspects of these processes [13]:

Requirements Engineering phase Level of Detail People involved

Requirements Definition:
statement, in a natural language plus diagrams, of
what services the system is expected to provide
and the constraints under which it must operate. It
is generate using customer-supplied information.

General Managerial Level
End-users
System architects
Client engineers

Requirements Specification:
a structured document which sets out the system
services in detail. This document should be
precise. It may serve as a contract between the
system buyer and software developer

Intermediate End-users
System architects
Client engineers
SW developers

Software Specification:
abstract description of the software which is a
basis for design and implementation.

Highly detailed System architects
SW developers

The expected outputs of the previous phases are documents that gradually fill the gap between the
conceptual understanding of the system we want to build and the detailed description of its
functionalities that have to be fed to the system architects.
The phase of the Requirements Engineering Process addressed in this paper is the Requirements
Specification.

The scheme presented before is an ideal scheme and often it doesn't correspond to the practices of
software firms. In fact, the real software process of many firms considers the Requirements Engineering
process as composed of an unique phase aimed to provide a document describing, in some way, the
Requirements of the system to be developed.
There are several risks associated with this practice, as, for example, those listed below:
• The requirements related to different functionalities of the system may be not expressed with the

same level of detail and precision;
• The requirements may be too abstract and then not easily usable by the software designers.
• The involvement of some people in the Requirements Engineering process may be not fully

adequate (e.g. software developers, end-users, ..).
We will focus our attention on a product that we can assume will be anyway provided as an outcome of
the Requirements Specifications phase: a document describing somehow and with a certain level of
precision the functionalities and the constraints of the system under construction.

3

Several approaches to producing Requirements Specification exist and their precision and cost may vary
considerably. We will concentrate our attention on one of these approaches: the use of Natural
Language for writing Requirements Specification. Even though it is out of the scope of this paper to
compare weaknesses and strengths of different Requirements Specifications approaches and to establish
if one of them is better than another, in the next scheme we provide a brief description of the most used
approaches.

Approach to Requirements
Specifications

Description

Natural Language -

Structured Natural Language restricted natural language where the terminology is limited
and templates can be used. Control constructs derived from
programming languages can be included.

Semi-formal Languages they are usually special-purpose graphical notations with a
precise syntax and a non-rigorous semantic.

Formal Languages mathematics based languages with vocabulary, syntax and
semantics formally defined.

 It is clear that the effects of the use of each of them on the quality of the Requirements Specifications
are different and it is also quite clear that the order in which they are listed into the scheme correspond
to an increasing "quality" of the Requirements Specification they produce. In other words, it is clear
that Requirements Specifications written by using NL may contain ambiguities, while SRS written by
using Formal Methods are more precisely and rigorously understandable.
However, the establishment of a formal method for the SRS needs some initial additional costs. These
costs are due to the training of people in order to make them able to use the formal techniques. In other
words it is necessary to make all the people involved in the SRS phase, often coming from different
social, business and technical contexts, able to share these formalisms.
In spite of these considerations, many SMEs, even though they recognize both the importance and the
benefits of the use of formal methods, and the risks due to the use of NL in writing SRS, continue to
write SRS using natural languages unless they are not obliged to do otherwise by precise contractual
constraints.

Then the fact that writing SRS in NL is not a good practice because they are prone to ambiguities and
that they are neither a good input for the design phase nor a good basis for the contractual issue
between the customer and the supplier doesn't mean that we have to renounce achieving an acceptable
level of quality even in NL SRS. On the contrary we are persuaded that it is useful to have a pragmatic
approach to the question and then it is a worth-while effort to provide a contribution in the quality
improvement of NL SRS. This approach has been adopted in the definition of the Quality Model and in
the consequent realization of the QuARS prototype.

2. A NLSRS Quality Model

The Quality Model defined in this paper aims to provide the means for evaluating quantitatively two
aspects of the SRS quality, called Goal Properties:

• Requirements Sentences Quality (RSQ): the syntactical quality of single sentences
considered separately; [4]

• Requirements Document Quality (RDQ): the quality of the sentences considered in the
context of the whole requirements documents.

4

These two Goal Properties are obviously too abstract for being directly evaluated. For this reason some
Properties have been associated to each Goal Property in order to provide quality characteristics less
abstract and then easier to evaluate. Table 1. shows the Quality Model Goal Properties and the related
Properties:

Goal Properties Properties

Requirement Sentences Quality Non-Ambiguity

(RSQ) Completeness

Understandability

Requirement Document Quality Completeness

(RDQ) Understandability

Table 1.

The Properties related to the RSQ Goal Property included within our Quality Model are:
• Non-Ambiguity: the capability of a Requirement to have a unique interpretation.
• Completeness: the capability of each Requirement to make reference to precisely identified entities.
• Understandability: the capability of each Requirement to be fully understood when used for

developing software.

The Properties related to the RDQ Goal Property included within Quality Model are:
• Completeness: the capability of the Requirements Specification Document to avoid potential or

actual discrepancies.
• Understandability: the capability of the Requirements Specification Document to be fully

understood when read by the user.

The above Goal Properties and Properties have been included into the Quality Model because they can
be automatically evaluated by means of tangible Indicators that can be counted/detected during the
parsing of the requirements document, and because possible problems related to these Properties can be
pointed out precisely so that corrective actions may be easily done.

This Quality Model is focused on linguistic properties of SRS and cannot be considered complete
because other aspects of the SRS quality, as for example semantic consistency aspects, exist and they
are not taken into account.

2.1 Quality Indicators

Quality Indicators are syntactic aspects of the requirements specifications [14] that can be automatically
calculated and that provide information on a particular quality Property of the requirements
specifications themselves. Several Indicators have been included in the Quality Model, each associated
to a Property.
In the following, the Indicators are listed and described, then the association between them and the
Properties of the Quality Model is shown.

The Quality Indicators included in the Quality model are divided into Indicators related to Requirement
Sentences Quality (RSQ) and Requirement Document Quality (RDQ):

Requirement Sentences Quality (RSQ) related Indicators:

5

• Implicit Subjects Sentences
• Multiple Sentences
• Optional Sentences
• Subjective Sentences
• Underspecified Sentences
• Vague Sentences
• Weak Sentences

Requirements Document Quality (RDQ) related Indicators:
• Comment frequency,
• Readability Index
• Underreferenced Sentences
• Unexplained Sentences

In the following the definition of each Quality Indicator is provided along with some examples.

Implicit Subject Sentences:
A sentence is an implicit subject sentence if its subject:
• contains a demonstrative adjective: this, these, that, those
• is expressed by means of pronouns: it, they.
• is specified by a preposition as such: above, below, ...
• is specified by an adjective as such: previous, next, following, last, first, ...

Examples:

Implicit Subject Sentences:
• This counter shall be incremented by 1 each time a RTI occurs.
• It shall be stored in non-volatile memory.
• The above requirements shall be verified by test.

Non-implicit Subject Sentences:
• The MC counter shall be incremented by 1 each time a RTI occurs.
• The detected erroneous data shall be stored in non-volatile memory.
• The requirements number 1 to 56 shall be verified by test.

Multiple Sentences:
A Sentence is multiple if:
• it has more than one subject or more than one main verb
• it has more than one direct or indirect complement that specifies its subject

Examples:

Multiple sentence:
• The System shall provide for the generation of stub/driver skeleton and for the simulation

of module interface.
• The customer perception of System Down Time and Partial System Down shall be zero.

Non-multiple sentences:
• The System shall provide for the generation of stub/driver skeleton.
• The System shall provide for the simulation of module interface.

• The customer perception of System Down Time shall be zero.

6

• The customer perception of Partial System Down shall be zero.

Optional Sentences:
A sentence is optional if it contains an option .
Note: A sentence is to be considered as optional if it contains words as such: possibly, eventually, if
appropriate, if needed

Examples:

 Optional sentence:
• The system shall be such that the mission can be pursued, possibly without performance

degradation.

Non-optional sentence:
• The system shall be such that the mission can be pursued, with performance degradation

not greater than 10%.

Subjective Sentences:
A sentence is subjective if it refers to personal opinion or feeling.

Note: sentences containing the following kinds of wording are to be pointed out as
potentially subjective:
• having in mind, take (into) account, take into consideration, ...
• similar, better, similarly, worse, ...
• as [adjective] as possible.

Examples:

Subjective Sentences:
• The System should allow computation analysis results to be presented on-line during the

coding phase (having in mind the basic set of metrics).
• Software tasks shall be as much as possible synchronous.

Non-subjective Sentences:
• The System should allow computation analysis results to be presented on-line during the

coding phase by showing values of the basic set of metrics.
• Software tasks shall be synchronous.

Underspecified Sentences:
A sentence is underspecified if its subject contains a word identifying a class of objects without a
modifier specifying an instance of such class.

Examples:

Underspecified Sentence:
• The testers shall be independent of the software developers.

Non-underspecified Sentence:
• The module testers shall be independent of the software developers.

Vague Sentences:
A sentence is vague if it includes words holding inherent vagueness.

Note: Vague adjectives are:

7

• adjectives related to intrinsic characteristics as such: clear, well, easy, strong, weak, good,
bad, efficient, low

• adjectives related to environmental characteristics as such: useful, significant, adequate,
fast, slow....

• adjectives related to time characteristics as such: old, new, future, recent, past, today’s, ...
• adjectives related to location characteristics as such: near, far, close, back, in front,

Examples:

Vague Sentences:
• The C code shall be clearly commented.
• The User Manual shall provide adequate information about the installation procedure.
• The Reports shall be produced according to the today’s trend.

Non-vague Sentences:
• The sentences of the comments into the code shall be no longer than 20 words.
• The User Manual shall provide step by step procedure for the installation.
• The Reports shall be produced according to the template provided in figure 1.2.

Weak Sentences:
A sentence is weak if it contains a weak verb.

Note: Weak verbs are:
• can / could
• may

Examples:

Weak Sentence:
• The results of the Initialization checks may be reported in a special file.

Non-weak Sentence:
• The results of the Initialization checks shall be reported in a special file.

Comment Frequency:
The Comment Frequency of a Requirements Document is the value of the CFI (Comment Frequency
Index). (CFI=NC / NR where NC is the total number of Requirements having one or more comments,
NR is the total number of Requirements of the document)

Underreferenced Sentences:
A sentence of a Requirements Document (RD) is underreferenced if it contains explicit references to:

• not-numbered sentences of the RD itself,
• documents not-referenced into the RD itself,
• entities not defined nor described within the RD itself.
Note: The following kinds of wording are to be considered as explicit references:

• according to
• on the basis of
• relatively to
• compliant with
• conformant to

Example:

Underreferenced Sentence:

8

• The Software shall be designed according to the rules of the Object Oriented Design

Non-underreferenced Sentence:
• The Software shall be designed according to the rules contained in [TD.4]. (where [TD4]

is included into the list of references of the same Requirements Document).

Unexplained Sentences:
A sentence of a Requirements Specification Document (RSD) is unexplained if it contains acronyms
not explicitly and completely explained within the RSD itself.

Examples:

Unexplained Sentences:
• The handling of any received valid TC packet shall be started in less than 1 CUT.
• The results of the Initialization checks shall be reported in the HK TM.

Readability Index:
The unreadability index is the value of ARI (Automated Readability Index) [6] (ARI=WS + 9SW where
WS is the average words per sentence, SW is the average letters per word)

Each of the above Quality Indicators has been associated with a Property and the Quality Model has
been then completed. The table 2 shows the Quality Model obtained by including the previously
defined Quality Indicators.

Goal Properties Properties Quality Indicator

Requirement
Sentences
Quality

Non-Ambiguity Implicit Subjects Sentences,
Optional Phrases,
Subjective Sentences,
Vague Sentences,
Weak Sentences

Completeness Underspecified Sentences

Understandability Multiple Sentences

Requirement
Document
Quality

Consistency Underreferenced Sentences

Understandability Comment Frequency,
Readability Index,
Unexplained Sentences

Table 2.

2.2 Quality Requirements for Software Requirements Specifications

The Quality Indicators can be automatically detected and counted during the analysis of the requirements
specification document. The results of this analysis have to be provided in order to make the user able
to point out the sentences that are potentially incorrect. Then the user, on the basis of his experience
and skill has to judge if the pointed out sentences are really incorrect or if they can be accepted by
taking into account the following quality requirements.

9

The quality requirements for each Indicator are listed below.

A Requirements Document shall not contain:
• Implicit Subjects Sentences ;
• Multiple Sentences;
• Optional Sentences;
• Subjective Sentences;
• Underspecified Sentences;
• Vague Sentences;
• Weak Sentences;
• Underreferenced Sentences;
• Unexplained Sentences;

A Requirements Document shall:
• have the Comments frequency value greater than an established target value X*;
• have the Readability Index value greater than an established target value Y*.

*: the target values determination is project dependent.

3. Validation of the Quality Model

In order to verify if the defined Quality Model provides significant and useful results on real cases, it
has been applied to two different sets of documents of real industrial requirements specifications.
The first is a set of Telecommunication Software Requirements Specification documents, the second is
a case of Safety Critical Space Software Requirements Specification documents. In both cases the
organizations that produced these requirements specifications use standards for writing them, perform
review sessions and produce the related reports.
The results achieved are shown below:

Telecommunication Software Requirements Specif icat ion documents analysis and
evaluation results
Indicators taken into account:
a) Implicit Subjects Sentences
b) Multiple Sentences
c) Optional Sentences
d) Subjective Sentences
e) Underspecified Sentences
f) Vague Sentences
g) Weak Sentences
h) Underreferenced Sentences
i) Unexplained Sentences

Total number of evaluated requirements: 395

The following table shows the number of requirements that don’t satisfy the quality requirements:

10

Quality Indicator number of not

conformances

frequency

Implicit Subjects Sentences 5 1,3%

Multiple Sentences 72 18,2%

Optional Sentences 3 0,8%

Subjective Sentences 8 2%

Underspecified Sentences 41 10,4%

Vague Sentences 95 24,1%

Weak Sentences 0 0%

Underreferenced Sentences 7 1,8%

Unexplained Sentences 58 14,7%

Number of non-conformancies

0

20

40

60

80

100

Faults rate = 73%
Note: Faults rate = (number of non-conformances) / (number of requirements)

Safety Crit ical Space Software Requirements Specification documents analysis and
evaluation results:
Indicators taken into account:
a) Implicit Subjects Sentences
b) Multiple Sentences
c) Optional Sentences
d) Subjective Sentences
e) Underspecified Sentences
f) Vague Sentences
g) Weak Sentences

Total number of evaluated requirements: 444

The following table shows the number of requirements don’t satisfy the quality requirements:

11

Quality Indicator number of not

conformances

frequency

Implicit Subjects Sentences 88 19,8%

Multiple Sentences 97 21,8%

Optional Sentences 3 0,7%

Subjective Sentences 4 0,9%

Underspecified Sentences 7 1,6%

Vague Sentences 17 3,8%

Weak Sentences 3 0,7%

Number of non-conformancies .

0

20

40

60

80

100

120

Implicit
Subjects

Multiple Optional Subjective Underspecified Vague Weak

Faults rate = 49%

note: Faults rate = (number of non-conformances) / (number of requirements)

Joint results:
Total number of evaluated requirements: 839

Quality Indicator number of not

conformances

frequency

Implicit Subjects Sentences 93 11,1%

Multiple Sentences 169 20,1%

Optional Sentences 6 0,7%

Subjective Sentences 12 1,4%

Underspecified Sentences 48 5,7%

Vague Sentences 112 13,3%

Weak Sentences 3 0,4%

Underreferenced Sentences 7* *
Unexplained Sentences 58* *

**: calculated only for the Telecommunication Software Requirements Specification documents.

12

Number of non-conformancies .

0

20

40

60

80

100

120

Implicit
Subjects

Multiple Optional Subjective Underspecified Vague Weak

Faults rate = 53%
note: Faults rate = (number of non-conformances) / (number of requirements)

The firms that provided the analyser with the requirements were presented these results in order to
achieve their comments and, in particular, to understand if the potential lacks of quality outlighted by
QuARS are considered actually significant and noteworthy by their Requirements Engineers. The
outcomes of the discussion with the Requirements Engineering have been encouraging, since QuARS
has been considered a valid support for solving part of the problems they encounter during the SRS
phase.

4. QuARS (Qu ality A nalyzer of R equirements
S pecifications) tool

In order to make the analysis of NL SRS automatic, a prototype has been realized at I.E.I.. This
prototype named QuARS (Qu ality A nalyzer of R equirements S pecifications) has been conceived to

perform a parsing of the SRS phrases written in Natural Language and point out a number of potential
sources of errors into the SRS themselves.

13

The principal functionalities provided by QuARS are listed below:
• Lexical Analysis of the SRS sentences;
• Syntactical Analysis of the SRS sentences based on a special-purpose grammar and construction of

the derivation trees (structures that represents the possible derivations of the analyzed sentence by
using the grammar);

• Analysis of each sentence of the SRS against the Quality Properties by using the Quality
Indicators provided within the Quality Model;

• Provision to the user of warnings messages indicating those sentences having potential problems
and explanation of these problems;

We don't want to provide implementation details of QuARS in this paper, but figure 1 can help
understand how the prototype works.

The structure of QuARS is composed of the following key components:
• Lexical Analyser: it reads the input SRS sentences, performs a morphological analysis of the

items of the sentences, verifies if they are in the English Dictionary and produces on output file
the appropriate lexical category associated to each word of the sentence.

• Syntactical Analyser: it is composed of two sub-components: the Syntactical Recogniser and the
Tree Builder. The first is a parser that on the basis of a special grammar and of the output of the
Lexical Analyser recognise if a sentence is syntactically correct. The second component builds the
derivation trees for each sentence. A derivation tree is a tree representing a possible derivation of
the sentence by using rules of the grammar.

• Properties Evaluator: it is composed of two sub-components: the Evaluator of Indicators of Class
A and the Evaluator of Indicators of Class B. The first performs the computation of those
Indicators of the Quality Model for which information on the syntactical structure and semantic
value of the items of the sentence is needed (e.g. the Underspecified Sentences Indicator). The
second component performs the compilation of those indicators that don't require information on
the syntactical structure and semantic value of the items of the sentence (e.g. the Vague Sentences
Indicator).

• Special Dictionaries: each Indicator has a special dictionary associated that contains the special
words necessary for its computation. These Dictionaries have to be considered modifiable when it
is necessary to make the evaluation more suitable for particular SRS.

QuARS then has a Grammar, Special Dictionaries and the SRS Sentences as input data and provides
the user with messages where the sentences having some potential problems are shown and the
problems are outlighted.

14

- -- - --
-- -- --
- - --- --

- -- - --
-- -- --
- - --- --

- -- - --
-- -- --
- - --- --

GRAMMAR

SYNTACTICAL
RECOGNISER

TREE BUILDER

QUALITY
EVALUATOR
TYPE A

QUALITY
EVALUATOR
TYPE B

SRS
Phrases

SYNTACTICAL
ANALYSER

WARNING MESSAGES

SPECIAL
DICTIONARIES

Figure 1

In the rest of this section we present the user interface of QuARS in three phases of the SRS Quality
Evaluation:
• The main menu that ask against which Property we need the SRS Evaluation.

15

• A possible output in case of potential Vagueness problems detected.

16

5. The NL SRS Quality Evaluation Process

The Quality Model discussed in Section 2 drove the realization of the QuARS prototype, in fact this
tool provides the real calculation of the Indicators of the Quality Model on SRS documents.
In this section we discuss how to integrate QuARS within the SRS process and in particular the SRS
Evaluation process.
As mentioned in Section 1, the object of the evaluation by means of QuARS is the SRS, that, in the
framework of the 'ideal' Requirements Engineering process, are precisely identified as the intermediate
level between Requirements Definition and Software Specifications, or they are elsewhere simply a
more or less precise definition of the tasks to be performed by the system (or by the Software
component of the system). In this second case the SRS document may be the only outcome of the
Requirements phase of the software life-cycle and then it may be closer to Requirements Definition or
Software Design. In any case, since we aim to perform a linguistic analysis of the SRS sentences, we
can, in this context, consider any document containing SRS sentences the object of the Quality
Evaluation.

A typical evaluation of SRS written in NL is performed by an expert reviewer (or a team of expert
reviewers) who by reading the SRS documents outlights ambiguities, inconsistencies or, in general,
inaccuracies. Other actors may be involved in the preparation of these documents, but at evaluation
(review) time the reviewer is the key actor.
QuARS can be helpfully included in this scheme (see figure 2). The document on which the Reviewer
performs the Evaluation is analysed by QuARS that with its outputs supports the Reviewer in the
detection of inaccuracies, ambiguities and linguistic inconsistencies in the document.

The QuARS Tool, for its nature, can be changed in order to make it more adequate to particular context
or type of SRS. Then the inclusion of the QuARS tool in the SRS Quality Evaluation process allows
the reviewer to change the Quality Model if necessary in order to make it more respondent to the
particular SRS under evaluation. Typically, these evolutive changes concern the contents of the special
dictionaries that are the basis for the calculation of the Indicators (figure 1). The conceptual changes on
the Quality Model can be easily transferred on QuARS for its modularity. Finally, the corrective
actions are made on the SRS document and the process can be re-started on the modified document.

Requirements

Specification
 Process

Requirements

Document

Review

Process

Quality

Model

Expert Reviewer

TOOL

produces

supports

performs

determines

changes

figure 2

17

The role of the expert reviewer is then crucial in the SRS Quality Evaluation process because, not only
he performs the analysis the outputs of QuARS in order to determine if the potential errors pointed out
are or not concrete errors to be removed from the SRS document but he has to make also the evaluation
environment suitable for the particular SRS under evaluation, by performing evolutive changes to the
Quality Model and then to QuARS, if needed.

6. Conclusions and Future Work

This paper reports the work made for realizing an analyser of Software Requirements Specifications
(SRS) using a Quality Model for SRS sentences based on linguistic quality properties of the
Requirements. In order to automatize the application of the Quality Model to real cases, we have
defined, for each Property, a set of Indicators that are tangible aspects of the requirements
specifications, can be automatically calculated and provide information on the related Property.
The Quality Model has been experimented on industrial real cases of SRS in order to verify the
usefulness and significance of its basis. The results of the experimentation are encouraging, since a
significant number of inaccuracies and ambiguities have been detected and pointed out, and the firms
that provided us with these real SRS have judged these results very interesting and useful.
Then, on the basis of this experience, we have developed a prototypal tool, named QuARS (Qu ality
A nalyzer of R equirements S pecifications), that automatically performs the quality evaluation of SRS

by measuring the Indicators and pointing out the sentences containing potential inaccuracies and
ambiguities. The underlying idea is that avoiding these inaccuracies decreases the risk of errors in the
software product due to misunderstandings or incompleteness of the SRS.

Several possible evolutions of this work may be foreseen. Engineering QuARS in order to make it a
free tool for the Enterprises interested in this area will be the next step. Another evolutionary direction
is to use this Quality Model and this approach to the quality of NL SRS for developing an on-line
editor for the SRS. In this case the Quality Model will be used for guiding the production of SRS and
not for their ex-post evaluation. Another interesting area of study can be the definition of guidelines for
tailoring the Quality Model (and consequently the tool) according to particular Application Areas of the
software to be developed or other criteria. These guidelines should be used by the Reviewer for the
evolutionary changes to perform on the Quality Model.

7. References

[1] J. Allen: Natural Language Understanding. The Benjamin/Cummings Publishing Company,
1987.

[2] F.Fabbrini, M.Fusani, V.Gervasi, S.Gnesi, S.Ruggieri. On linguistic quality of Natural
Language Requirements. In 4

th
 International Workshop on Requirements Engineering:

Foundations of Software Quality REFSQ’98, Pisa, June 1998.
[3] A. Fantechi, M.Fusani, S.Gnesi, G.Ristori. Expressing properties of software requirements

through syntactical rules. Technical Report. IEI-CNR, 1997.
[4] J. Krogstie, O.I. Lindland, G. Sindre. Towards a deeper understanding of quality in requirements

engineering. In 7
th

 International CAiSE Conference, vol. 932 of Lecture Notes in Computer
Science, pages 82-95, 1995.

[5] G. Lami. Towards an Automatic Quality Evaluation of Natural Language Software
Specifications. Technical Report. B4-25-11-99. IEI-CNR, 1999.

[6] F.Lehner. Quality control in software documentation based on measurement of text
comprehension and text comprehensibility. Information Processing & Management, vol; 29,
No. 5, pp 551-568, 1993.

18

[7] O.Lindland, G. Sindre, A. Sølvberg. Understanding quality in conceptual modeling. IEEE
Software, 11 (2): 42-49, March 1994.

[8] B.Macias, S.G. Pulman. Natural Language processing for requirements specifications. In
Redmill and Anderson, Safety Critical Systems, pages 57-89. Chapman and Hall, 1993.

[9] M.Mannion, B.Keepence, D.Harper. Using viewpoints to define domain requirements. IEEE
Software, January-February 1998, pages 95-102.

[10] K.Matsumura, H.Mizutani, M.Arai. An application of structural modelling to software
requirements analysis and design. IEEE Transactions on Software Engineering, vol. SE-13, No.
4, April 1987.

[11] B.Meyer. On formalism in specifications. IEEE Software. January 1985, pages 6-26.
[12] P. Sawyer, I. Sommerville, S.Viller. Capturing the benefits of requirements engineering. IEEE

Software, March/April 1999, pages 78-85.
[13] I.Sommerville Software Engineering, Fifth Edition, Addison-Wesley, 1995.
[14] W.M.Wilson, L.H. Rosenberg, L.E. Hyatt. Automated quality analysis of Natural Language

requirement specifications. PNSQC Conference, October 1996.

QW2000 Paper 8W2

Mr. Steven Watson
(CNET Inc.)

Quality Assurance Challenges in the Internet
Industry

BACK TO QW2000 PROGRAM

Key Points

Personal experience in developing a QA group in an internet startup is a strong basis.●

Which QA methods work and which ones don't work in the internet industry.●

The challenges -- some unique -- which a QA professional will face in the internet industry.●

Presentation Abstract

As we begin the new century, it is quite apparent that the QA professional will continue to be faced
with many challenges. One area of technology in particular, the internet, has proven to be and will
continue to be the one of the most challenging. This talk will focus on the challenges I have
encountered, during the implementation of QA processes at both an early stage internet start-up and a
later stage internet start-up company. Examined in more detail, I will identify some of the key issues a
QA professional will be faced with and why the challenges are amplified when compared to more
traditional software development industries. Training, defect tracking, management support, high
turnover, experience, documentation control, release management, project management and statistics
are just some of the subjects to be discussed. Drawing upon my experience with two successful
internet companies and ten years of experience in the medical device industry, methods to overcome
these somewhat unique challenges will be presented. What worked, what didn't work.

About the Author

Steven Watson has 15 years experience in Quality Assurance/Test Engineering. He began his career
as a test engineer with Underwriters' Laboratories, spent 10 years in QA within the medical device
industry, and the last 2-1/2 years developing and managing Quality Assurance departments for two
leading internet companies. Preview Travel and CNET. Steve has a B.S.E.E. from the University of
the Pacific.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8W2.html [4/28/2000 2:37:14 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QA CHALLENGES IN THE INTERNET INDUSTRY
by

Steven Watson

Let me start off by saying that the target audience for my paper is the QA

professional who is thinking about joining the Internet Industry.

Perhaps you’ve been employed in a more traditional software industry

and you’re looking for something different. Or you’ve been employed

with companies in regulated industries such as the aerospace industry

or medical device industry, and you’ve been hearing about the more

relaxed working environments in Internet companies. Whichever

industry you’re coming from, you’ve made a decision to join an Internet

company, more than likely an Internet start-up. This paper is for you.

Dot com this, dot com that. We really are in the middle of a revolution.

Over the past few years, the Internet industry has exploded with a

plethora of companies. Living in the SF Bay Area, it’s all around you.

You can’t escape it. So, in October of 1997, I decided it was time for me

to depart the “quality critical” medical device industry. After 10 years, I

felt it was time for a change. I was also tired of the commute. If you’ve

seen the opening scene in the movie OfficeSpace, you have a good idea of

what it’s like to commute to work by car around here. For those of you

who haven’t seen the movie, there’s a guy in his car stuck in morning

rush hour traffic. Everytime he changes lanes, the lane he was in

2

previously, starts moving. After several lane changes, he looks on the

side of the street and sees an old man with a walker. After a while, he

sees the old man walking further and further away. Pretty funny.

Well, going back to my change. Back in late 1997, I was discussing the

Internet with several fellow engineers in the last medical device company

I worked at. Some of the comments I heard were, “That Internet stuff will

never succeed!” or “We’re way too biased living here. Most people in this

country don’t even know how to turn on a computer!” But I was also

hearing comments like, “My friend has a friend that is doing some web

stuff. All I know is that she’s making a ton of money!” Hmmm. Well, a

comment like that will catch the attention of most people. So, there I

was. I made the decision that, after all my years in QA within a

regulated industry. FDA, ISO9000, CE, IEEE, etc.. I was going to jump

into the Internet Industry. Didn’t have a clue as to what I would be up

against, but I knew I wanted to join an Internet company and I didn’t

want to be the guy in OfficeSpace anymore. I live in San Francisco and

“Damn it”, I thought, “I’m going to work in San Francisco!” Well, back in

late ’97, here’s where I have to remind everyone that that was quite a

while ago in web years, I didn’t find a lot of classified ads for QA

Managers in Internet companies. Nothing at all like today. But I found

one. A start-up! And it was in San Francisco! Sounded good to me.

Sent in my resume, got a call and went in for the interview.

3

Good sounding business model, management team with good credentials

and a VERY different working environment from the medical device

companies I was used to working at. Hey look! There’s two guys putting

golf balls down the hall! Was that a dog? Is that a punching bag

hanging from the ceiling? Wow, a pool table! Everyone sure looks

young! So I asked, during the interview, “What are you expecting from

the person who comes on board as QA Manager?” In so many words, the

answer was, “We need you to tell us what QA is?” Little did I know what

challenges I was in for ahead.

QA Challenge Number One: Lack of QA Knowledge. Within the medical

device industry, I didn’t hear the term Q & A very much. Well, really not

at all. After joining my first internet company, I was hearing it on a

fairly regular basis. During the interview, it was communicated to me

that there was no QA group in the company. Just two guys in Marketing

who were in charge of “banging” on the site. “Banging?” After hearing

that, I was waiting for them to tell me that their idea of a test tool was a

hammer. I never thought I’d “banged” on any systems I’ve tested. Well,

maybe when I worked at Underwriters Laboratories.

So we’ve got the term “banging” and the misnomer Q&A. Hmmm. 2

years and 8 months later. Guess what I’ve discovered? Within the

Internet Industry there is very little knowledge of what Quality Assurance

really is and what a QA group does. Due to this lack of “QA knowledge”,

4

you’ll get a lot of blank stares if you start using terms like Unit testing,

Integration testing, System testing or Regression testing. “Uh, dude, we

just want you guys to “bang” on it and let us know what breaks.” Or

you’ll hear some business or development managers in a meeting using

the terms incorrectly, after they heard you mention them in a previous

meeting. Why is there such a lack of “QA knowledge”?

In Internet companies, especially startups, you’ve got people from all over

the place. And a majority of them are in their 20’s or early 30’s. All

jumping onto the pre-IPO Internet bandwagon. And all hoping to get rich

in the process! But guess what? The supply can’t fill the demand. What

you end up with are companies filled with some people that have never

even been exposed to a traditional software development process, and

therefore, don’t have a clue as to what the QA test process is all about.

So how do you implement QA processes in an industry where QA is

called Q&A? And they just want you to “bang” on the site. What’s my

answer? Selectively and with training! What? Yes, training. A QA

professional joining an internet company will constantly be training the

company’s employees. You will need to evangelize the QA process within

the organization. If you’ve had experience implementing ISO9000 in any

of your past companies, you know that training is critical to obtaining

your certification. Is there time to train? Ha! In the Internet Industry,

things move as fast as the guy in the OfficeSpace movie was moving slow.

5

But you’d better find the time. Take any opportunity to train. Going out

to lunch with some co-workers? Going out for a beer after work? Seize

the moment. Of course if you have management’s support, you’ll be in

good shape.

But that’s Challenge Number Two: Management Support.

One of the most critical, if not THE most critical, needs of a QA

professional forming a group and implementing QA processes in an

Internet startup. If you don’t have management support, then why are

you even working at the company, right? Well, guess what. It happens.

It happens because of the first challenge, Lack of QA Knowledge. You

can ask all the right questions, during your interview, and hear all the

right answers and you may still hear silence when you ask for support.

So why do internet start-ups hire QA Managers? Well, to be fair, some

Internet companies have management teams that are sort of familiar

with QA processes, but some just have an investor on the board who

wants a QA group in place. So it’s possible that some managers don’t

know anything about QA. And as soon as they hear wind from a

business manager that QA delayed the schedule, you’ll be in trouble.

But then we’re back to training again. It’s up to you to train the

management team on the QA process, and if it sinks in, you’re in better

shape. They’ll understand how unrealistic schedules contribute to a low

quality release, which results in dissatisfied users. And they’ll feel more

6

comfortable when they hear the term “Regression testing”. Hopefully,

then, management will understand the need to train the rest of the

company on QA processes. But don’t think your training job will be over

though.

Because of Challenge Number Three: High Turnover. With so many

Internet companies out there. It’s extremely difficult for Internet

companies to retain employees these days. Technical and business types

alike, right now, can literally walk across the street from their existing

company and land a new job over their lunch hour. What? Your

company’s stock didn’t split in the last year? Your company hasn’t IPO’d

yet. Dude, your laggin! Or you’ll receive emails like, “It’s been a great

two years! Bye everyone! I’m off to my next pre-IPO dot com!” What this

means is that you’ll be continuously training new “QA deficient”

employees. If you’re in a later stage Internet company, you may have the

luxury of having a formal Training department in place to help you.

Either way, a formalized and appropriately scheduled QA training class

for all new hires, mandated by upper management, is essential to

effectively communicate the QA process throughout a company with a

high turnover rate. Did I say communicate?

Because that’s Challenge Number Four: Communication. Now here is

a BIG challenge for QA. You know the cartoon that shows a bunch of

7

drawings of a tire swing, along with captions under each drawing? The

first one shows a regular tire swing attached normally to a tree branch.

The caption under this drawing reads, “What the customer wanted”.

Then there’s one with a caption, “What Marketing wanted.” Then one

that reads, “What Engineering designed”, and so on. Well, I saw that

cartoon about 10 years ago. Boy does it apply to the Internet Industry.

In such a rapid paced industry, you’d think that most Internet

companies would have some system to aid in communication from one

group to another. Communication is so important! Well, the reality is

they’ve got a system, but it doesn’t aid in maintaining communication

between groups. In fact, it’s probably the main cause of inadequate

communication. It’s email. Email is only effective if all the appropriate

people on a project team receive copies. For example, if a Product

Manager on a project, doesn’t know what QA is or does, the manager

won’t include QA on any important emails related to a project. The

current Internet company I’m working for uses mailing lists to aid in

maintaining communication between project team members. This helps.

But email really can’t take the place of verbal communication. If an

initial email is unclear, it can result in a long thread of replies from

people asking questions on the content in the first email. Then you’ll see

replies to replies to replies. The main thing a QA professional will need

to do is maintain communication by taking your own initiative to meet

with other project team members. Tell them how important it is for you

8

to be kept in the loop, and badger them if they don’t. It’s the squeaky

wheel gets the grease technique and in my experience, it’s you’re best

alternative in this fast paced industry. Tight schedules mean people are

extremely busy. If they don’t know that you need to be communicated

to, you won’t be. Let them know that communication is required!

Which brings us to Challenge Number Five: Requirements. Right

before I left the medical device industry, the FDA was communicating the

importance of proper design controls. How patient injuries and deaths

caused by a malfunctioning medical device were continuously being

traced back to the device manufacturer’s lack of proper design controls.

For software controlled devices, they were enforcing the documentation of

a Software Requirements Specification and Software Design

Specification. In the Internet Industry it is rare to be involved in a

project where a Requirements document exists. You’ll hear statements

like, “The requirements on my project are changing on a daily basis.

Why should they be documented?” And it’s true. They can change on a

daily basis or even more frequently. Why? I think a big reason is that a

limited number of people are involved at the early stages of defining a

project’s requirements. Because someone who should have been

involved much earlier on the project, wasn’t, the requirements change,

after that person provides their input at a later stage in the project’s

schedule. Then someone else who was left out wants to. And so on. At

9

the end of the project, changes to requirements could have been greatly

reduced, if a requirements gathering or brainstorming meeting was held

early on with all the appropriate people in attendance. So be prepared to

be involved in many projects without a Requirements document. Or any

other semi-formal documentation for that matter. You may need to

gather and piece together emails that you weren’t copied on. You’ll need

to speak with the developer or developers involved to get their

understanding of the requirements. My suggestion to overcome this

challenge is to let the business and project managers know how much

longer it takes to prepare a test plan without clearly documented

requirements. As soon as you point out how time in the schedule can be

saved, they’ll start listening. IF, and that’s a big IF, you are lucky

enough to be involved in a project that has a Requirements document.

More than likely you’ll be faced with the next challenge. That being the

issue of testability. I could go on and on with examples, but suffice it to

say that I have read very few requirements in a Requirements

specification that are written in a testable manner. Phrases like, “The

page should load fast and be user friendly”, come to mind. So let’s say

you’re really lucky and find an Internet company, which does document

Requirements AND they’re stated in a testable manner. The next

question to ask is, “Are revisions to the document controlled”.

10

Aha! Challenge Number Six: Documentation Control. Again, I have to

draw upon my experience in the medical device industry and with

ISO9000 standards.

Documentation control processes are so critical in the medical device

industry and truly critical if a company wants to obtain ISO9000

certification. Well, in my experience so far in the Internet Industry,

almost every document I’ve read related to a project I was testing, was

not maintained throughout the life of the project. A first version of the

document would be created, but it was never updated. Or if it was

updated, not on a regular enough basis to be of any help to the

“customers” of the document. A Requirements specification is the perfect

example. A first draft may be created, but by the time coding is started.

The document may be totally inaccurate in it’s representation of the

latest project requirements. By the time QA is ready to test, guess what,

the document may as well not exist. So how to overcome this challenge?

Well, knowing what you’ll be up against will help. But educating the

document originators on the importance of maintaining version control

on their documentation is key. Again, the fast pace of this industry, is

the main cause here. I’ve heard both Business Managers and Developers

complain that they don’t have time to maintain their documentation. At

CNET, we are slowly moving toward the direction of having technical

writers work along side the Business Managers and Developers. The

thinking is that technical writers are the experts at creating and

11

maintaining documentation. They will be responsible for translating

verbally communicated requirements from the Business Manager into a

Requirements document. The same would go for Design requirements

communicated by a developer or technical lead. At this point, I can’t say

that I’ve actually seen this approach work. It’s in the early stages of

implementation. We’ll see how it goes. Hopefully there won’t be any

bugs.

Challenge Number Seven: Bug Reporting/Tracking. One of the more

common tasks a QA professional will be faced with in most any software

related industry is setting up and maintaining a bug tracking system.

But in the Internet Industry, one of the challenges is getting developers

and others to just use the system. From what I’ve experienced so far,

don’t waste your time setting up a non-web based bug tracking system.

Most everyone in this industry is pro-web. They work for a web

company, so they want to use web-based applications. You also won’t be

faced with platform dependency issues. You’ll eliminate excuses like, “It

doesn’t work on my Sparc station so I don’t use it.” Then there’s that

evil email system again. Guess what? That’s how bugs are most

commonly being reported prior to the implementation of a bug tracking

system. It’s faster than logging a bug into the bug tracking system and

more people are familiar with using email than using the bug tracking

system. How to overcome this challenge? Well, hopefully, all the

12

managers are aware of the need for a bug tracking system to be

implemented in the company. And, hopefully, they each had a say in the

system selected for implementation. If not, you’ll undoubtedly

experience some resistance in it’s usage. But if you’ve conquered

Challenge Number One and Challenge Number Two, you’re in good

shape. I know! Perhaps you could try automating the process!

Challenge Number Eight: Automated Testing. Don’t know when I’ll stop

hearing managers say. “Wow, we can automate all the front end GUI

testing and we’ll be able to just concentrate on testing the back end stuff!

This is challenge number eight. Getting managers to understand the

limitations of automating the testing of a website. Especially if your

company’s website contains a lot of content which is constantly

changing. The automated test tools out there are getting better, but they

still have their fair share of bugs. Which is the last thing you want to

deal with. Using an automated test tool to test for bugs on your

company’s website, which contains bugs itself! Communicate to these

pro-automation managers the limitations of automation testing. Which

test cases make the most sense to automate. But bring them back down

to earth. Functional regression test tools and load test tools will be the

common tools you hear about in the Internet Industry. But in the early

stage start-ups, you’ll see System Admins scrambling to set up another

two or three NT servers. “Forget load testing!” is what you may hear from

13

the CTO. We’re growing way too fast. Just keep adding boxes and pray

that the air conditioning system in the server room doesn’t break down.

Challenge Number Nine: Release Management. Guess what? A clearly

defined release management process doesn’t exist in an Internet start-up

and I can say that even some later stage Internet companies are still

struggling with this issue. First is the question of who is responsible for

release management. Once the environments are set up: Development,

QA, Staging and Production. Which can be a challenge on it’s own.

Then there is the deployment of code between these environments. Who

deploys the code from Development to QA? How should the process

work? Then from QA to Staging. Who deploys and what’s the process?

But actually, I’m describing a later stage Internet company. Walking into

a 30 person start-up, you can expect no defined process whatsoever for

code deployment. And even worse, you may see developers making

changes to the code, directly in the Production environment. An early

stage start-up, that’s a bit more together, will at least have separate

development and production environments. Here you’ll experience the

fun of testing within the development environment, at least until a

separate QA environment is established. Wonder at the number of bugs

logged against a software release that were actually not bugs with the

software under test, but were bugs caused by developers making

changes to the environment your testing in. So back to the companies

14

who have all the proper environments set up. You’ll still deal with the

lack of a defined deployment process. And believe me, proper

deployment from the Development environment to the QA environment

will be the major challenge. So my advice is to work together with the

Development managers, Operations managers, etc. to get a deployment

process defined ASAP. I’ve seen some companies recently, which are

lumping Release Management responsibilities into QA. But I’ve heard

the phrases “I’m burned out” and “I gave up my life” from QA Managers

who are also responsible for Release Management. The later stage

Internet companies may form a separate Release Management team

composed of one or two Release Engineers and possibly a Release

Manager. But in a small start-up, be ready to be involved to some extent

with the release process.

Last, but certainly not least, is Challenge Number Ten: The Rapid Pace.

I’ve been eluding to this challenge so far. Really, the reason for many of

the previous challenges I’ve just discussed, is the rapid pace of

development within this industry. Where the average time for a project’s

development cycle in a traditional software company might take one to

several months, in an Internet company, it’s common to release code on

a daily basis. In this industry, you don’t have to wait for tech pubs to

complete the User’s Manual or go through the process of packaging

design. It’s plan, code, test and launch! The BIG misconception is that

15

any attempts to add order to a process, in this rapid development

environment, will delay the schedule. In my opinion, the fact that this

industry’s development pace is so rapid, is all the more reason to review

the processes involved and increase efficiency by refining the processes

appropriately. My advice is to communicate the need for efficient

processes to the other managers. Let them know that you are aware of

the need for speed and that it’s everyone’s job to agree on the processes,

which will ensure the highest level of quality in this rapid paced

environment. Communicate the importance of defining and agreeing

upon these processes. How time spent now, will save immeasurable

amounts of time on every future project in the company. Lastly, make

sure they are aware that process adjustments will be needed as changes

occur within the company. In a regulated industry, formal audits of

established processes are conducted on a regular basis. Not so in the

Internet Industry, but just knowing this can help. If a process is in need

of revision, call a meeting with the appropriate managers, explain why

and continue to speed along.

So now that I’ve listed some of the challenges a QA professional will be

faced with in the Internet Industry, let me say this. In the midst of all

the chaos you’ll find that the general feel of the environment in these

companies, is exciting. It’s fast paced and always changing. There are

no real rules established yet. It’s still very much the wild, wild, west.

16

Remember that this industry is still in it’s infancy stage. With time, we

should hear less people calling QA, Q&A, and hopefully less people

asking us to “just bang on the site”. Also, competition in this industry is

building. With competition comes increased awareness of the

importance of quality. Like the Big 3 US auto manufacturers who got

caught by the quality conscious Japanese auto manufacturers, back in

the 1970’s, there are internet companies out there concentrating on

doing it right the first time. Those companies will rise and the industry

will mature.

But for now, it’s full speed ahead and hold on to your test plans.

Whoever gets to market first is perceived as the winner. The Internet

Industry, like the old man with the walker in OfficeSpace, is moving

much faster than the more traditional software industries, which

comparatively appear to be the ones in the rush hour traffic. Only, at

this stage, I’d replace that old man with an infant. An infant who is

crawling very fast. Let’s just hope that this infant doesn’t skin it’s knees

too badly on it’s way to learning how to walk.

17

QW2000 Paper 8M2

Mr. Marc Zasada
(VeriTest)

What Does "Application Certification" Mean in
the Software Industry?

BACK TO QW2000 PROGRAM

Key Points

Industry-wide Application and ASP Certification programs are growing in popularity●

The history of Certification programs●

What Certification programs mean●

Where Certification is headed●

Presentation Abstract

Market-leading companies have long seen the value in providing a logo program for the third-party
products that integrate properly their products. Standards for these programs have varied wildly, and
customers have not always understood them. As the software industry matures, standards for
software and hardware are more critical than ever. End users are demanding higher levels of reliability
and manageability. As a result, there is a trend to upgrade logo programs to more rigorous certification
programs, and there is even a trend to "Certify" ASPs and ISPs.

An overview of "Certification" within the industry will be presented, along with a focus on Microsoft's
efforts over the years. Created by Microsoft and VeriTest in 1994, the "Designed for Windows 95" logo
test was comprised of a relatively simply array of tests performed against a small set of requirements
devised by the Windows logo team at Microsoft. With the advent of Windows NT 4.0 came the
"Designed for Windows NT and Windows 95" logo program in which the requirements, written by the
Microsoft Windows team with input and edits from the logo team at VeriTest, became more stringent.
This evolved into the "Designed for Windows NT and Windows 98" logo test, and the testing process
became even more in depth and demanding.

To license the new "Certified for Windows 2000" Logo, products must undergo extensive functionality
testing in addition to compatibility testing. Applications qualifying for this logo must be shown to
provide the highest level of reliability, security, and manageability available. Compliance with the
Application Specification for Microsoft Windows 2000 for desktop applications is strictly enforced and
the Windows logo team at Microsoft closely monitors the needs of developers and consumers before
allowing any variance or making changes to the requirements.

About the Author

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8M2.html (1 of 2) [4/28/2000 2:37:19 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

For 9 years, Marc Zasada has been the Vice President of VeriTest, one of the world's most respected
independent labs. Since 1994, Marc has helped craft the global software certification strategies for the
Microsoft Windows, Windows CE and BackOffice logo programs, and is now working closely with
Microsoft in rolling out the "Windows 2000 Application Spec" testing program at VeriTest worldwide.
VeriTest was acquired by Lionbridge in 1999.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8M2.html (2 of 2) [4/28/2000 2:37:19 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

What Does It Mean to “Certify” a
Software Product in the
Commercial Marketplace?

Marc Zasada
V.P., Certification Programs

VeriTest, a Service of Lionbridge

 What Is Software “Certification”?

n Introduction
n Goals
n Role of the Lab
n Levels of Certification
n Methods & Approaches
n Case Study: Certified for Windows 2000
n The Global E-Certification Challenge

2

Introduction
n Who is VeriTest?
n Marketing or Testing?
n A Little History

n Logos, logos, everywhere
n Failure Rates
n Worth the ink it’s printed with?
n Microsoft

n Redefining Certification
n The Current Situation

n Open Source
n ASPs

VeriTest Certification Programs

3

 Certification Program Goals

Goals for Sponsor
Ø Delivers brand extension
Ø Defines Partner “solar system”
Ø Provides technical direction to Partners

& End-Users
Ø Promises consistent quality to End-Users

Goals for ISVs
Ø Gating for “Partnership” Benefits
Ø End-User Recognition

Ø Internal discipline

Certification Goals

End-User Benefits
Ø Follows Standards
Ø Has “joined the technical wagon train” with

Sponsor
Ø “Stamp of Approval”
Ø Guarantees support for certain

technologies or features

4

Ø Operate fairly and independently.
Ø Create consistent, auditable, and

repeatable results.
Ø Track exemptions and changes.
Ø Anticipate technology.

Programmatic Goals

Role of the independent Lab

n “Cooperative Competition” in the
marketplace

n “Middleman” role of the lab
n Global consistency

5

Levels of Testing

 Scalability, Stress, Boundary
Functionality & Stability

 Verification with Standards
Demo of Compat & Compliance

Self-Certification with Audit
Self-Certification with Standards

Approaches

n Creating Compliance Criteria
n Livability
n Viability
n Testability
n Survivability

6

Approaches

n Creating a Test Plan
n Definitions
n Convenience
n Public Distribution
n Auditability

Case Study:
Certified for Windows 2000

n Defining the Criteria
n Discussions with Customers & Analysts
n Creating the Test Plan
n Automated Test Tools

7

The Global Certification
Challenge

The “E-Certification” Challenge

Source: Rosettanet.org

8

The “E-Certification” Challenge

Source: Rosettanet.org

n The Needs of ASPs
n Scalability
n Provisioning
n Multi-tier

n Open-Source

The “E-Certification” Challenge

9

Conclusion

n Standards, standards, standards

QW2000 Panel 8P
Thursday, 1 June 2000

5:00 - 6:30?

Mr. Nick Borelli
(Microsoft Corporation)

Ask The Quality Experts!

Stump the Quality Experts If You Can!
QW2000 Advisory Board Members Will Answer All!

Post Your Questions LIVE on the Web!
(Live question collection and voting
provided by Microsoft Corporation)

BACK TO QW2000 PROGRAM

How The Ask The Quality Experts Panel Works

This special QW2000 panel session works interactively with you to get your key questions answered!
If you have a burning question about any aspect of Software or Internet Quality, click on the Ask The
Quality Experts! page.

You'll see the current set of questions posed to the Panel Of Experts, rank ordered based on the
number of votes each question has received.

Are The Questions Moderated?

Yes, the questions posted are moderated. From time to time the Ask The Quality Experts! Panel
Moderator, Nick Borelli, will review the current set of questions. He'll remove off-topic questions,
consolidate obvious duplicates, and make other necessary corrections. If there are high-scoring
questions that seem to be outside the range of the experts currently on the panel we will add more
experts to the panel.

About The Panelists

The panelists are chosen from among the International Quality Week Advisory Board. You can see
who the panelists are on the current Ask The Quality Experts! page.

How Often Can I Vote?

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8P.html (1 of 2) [5/2/2000 5:12:53 PM]

http://msoffweb.rte.microsoft.com/
http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://msoffweb.rte.microsoft.com/
http://msoffweb.rte.microsoft.com/
http://msoffweb.rte.microsoft.com/
http://www.soft.com/QualWeek/QW2K/qw2k.board.html#borelli
http://www.soft.com/QualWeek/QW2K/qw2k.board.html
http://msoffweb.rte.microsoft.com/

You can vote as often as you like, but, please we ask that you only vote for your favorite question(s).
P.S. QW2000 will have Web workstations available where you can vote on-site.

How Will I Get Answers to My Question?

Yes. During this special session the Advisory Board Experts will answer the top ranking questions --
using the data from the web as of Noon on Thursday 1 June 2000. QW2000 will have Web
workstations available where you can vote on-site before then.

Brief summaries of the answers will be posted on the Web shortly after the conference is over.

About the Moderator

Nick Borelli is currently a Group Test Manager at Microsoft Corporation and is responsible for the
World-Wide releases of the award-winning application, Microsoft Word.

Nick has over 15 years experience in both Software Testing and Development and has worked in both
small start-ups such as Pensoft, Go and EO, as well as working at Triad Systems, Apple and Software
Publishing Corporation.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/8P.html (2 of 2) [5/2/2000 5:12:53 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.board.html#borelli
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2000 Panel Session 9P

Mr. Brian Lawrence
(Coyote Valley Software)

How Can I Tell When My Project's in Trouble?

Panelists:
Maureen A. O'Hara

Esther Derby
Johanna Rothman

BACK TO QW2000 PROGRAM

Key Points

Identifying clues that projects are in trouble●

Interventions once risk is identified●

experienced views of turning around software projects●

Presentation Abstract

Many software projects fail. Many might not fail if we could only recognize the signs of trouble in time.

This is a 90 minute panel proposal to discuss real circumstances where projects have started to go
south, how the panelists recognized the signs, and what they did. I've chosen experienced and
thoughtful participants who have seen many software projects, and are experts at intervention.

Each panelist will take a few minutes to present their top three techniques for identifying project
trouble, and how they might intervene. Then the chairmain will open the rest of the session to
audience questions.

About the Panel Chair and Panelists

Panel Chair: Brian Lawrence - Coyote Valley Software

Brian has moderated panels in a number of conferences, including several past Quality Weeks. He
has served as a program chair for the SEPG'97 Conference as well as the IEEE Computer Society's
1998 International Conference on Requirements Engineering. In his consulting practice, Brian teaches
and facilitates requirements analysis, peer reviews, project planning, risk management, life cycles,
and design specification techniques. Brian is the technical editor of Software Testing and Quality
Engineering Magazine and serves on the editorial board of IEEE Software. Brian Lawrence Home
Page

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9P.html (1 of 2) [5/2/2000 5:17:59 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.coyotevalley.com/
http://www.coyotevalley.com/

Panelist: Johanna Rothman (Rothman Consulting) observes and consults on managing high
technology product development. She works with her clients to find the leverage points that will
increase their effectiveness as organizations and as managers, helping them ship the right product at
the right time, and recruit and retain the best people. Johanna is the founder and principal of Rothman
Consulting Group, Inc., and is ASQ certified as a Quality Auditor and Software Quality Engineer.

Panelist: Esther Derby (Esther Derby Associates) has over twenty years experience in software
development. She's been a programmer, systems manager, project manager, and internal consultant.
She currently runs her own consulting firm, Esther Derby Associates, Inc., in Minneapolis, Minnesota.
Esther works with people to increase their effectiveness in understanding and managing complex
systems -- like software development organizations and software development projects.

Panelist: Maureen A. O'Hara has an extensive and diverse background in software project
management. Through her 22 years in the software industry, and most recent seven years at
Microsoft, Maureen has worked in software project development methodologies including team
management and crisis management. Recently at Microsoft, she founded a group dedicated to
improving the software development process and overall product quality.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9P.html (2 of 2) [5/2/2000 5:17:59 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Coyote Valley Software

Quality Week 2000 Panel Proposal 1 January 19, 2000

Quality Week 2000 Panel Proposal

"How Can I Tell When My Project’s In Trouble."

Many software projects fail. Many might not fail if we could only recognize the signs of trouble in time.

This is a 90 minute panel proposal to discuss real circumstances where projects have started to go south,
how the panelists recognized the signs, and what they did. I’ve chosen experienced and thoughtful
participants who have seen many software projects, and are experts at intervention.

Each panelist will take a few minutes to present their top three techniques for identifying project trouble,
and how they might intervene. Then I will open the rest of the session to audience questions.

Panel Moderator

Brian Lawrence – Coyote Valley Software

Brian has moderated panels in a number of conferences, including several past Quality Weeks. He has
served as a program chair for the SEPG’97 Conference as well as the IEEE Computer Society’s 1998
International Conference on Requirements Engineering. In his consulting practice, Brian teaches and
facilitates requirements analysis, peer reviews, project planning, risk management, life cycles, and design
specification techniques. Brian is the technical editor of Software Testing and Quality Engineering
Magazine and serves on the editorial board of IEEE Software.

Contact info: http://www.coyotevalley.com/
brian@coyotevalley.com
(408) 578-9661

Panelist

Johanna Rothman – Rothman Consulting, Inc.

Johanna Rothman observes and consults on managing high technology product development. She works
with her clients to find the leverage points that will increase their effectiveness as organizations and as
managers, helping them ship the right product at the right time, and recruit and retain the best people.
Johanna is the founder and principal of Rothman Consulting Group, Inc., and is ASQ certified as a
Quality Auditor and Software Quality Engineer.

Panelist

Esther Derby – Esther Derby Associates, Inc.

Esther Derby has over twenty years experience in software development. She's been a programmer,
systems manager, project manager, and internal consultant. She currently runs her own consulting firm,
Esther Derby Associates, Inc., in Minneapolis, Minnesota. Esther works with people to increase their
effectiveness in understanding and managing complex systems -- like software development
organizations and software development projects.
Panelist

Maureen A. O'Hara

Maureen O'Hara has an extensive and diverse background in software project management. Through her
22 years in the software industry, and most recent seven years at Microsoft, Maureen has worked in
software project development methodologies including team management and crisis management.
Recently at Microsoft, she founded a group dedicated to improving the software development process
and overall product quality.

Coyote Valley Software

Quality Week 2000 Panel Proposal 2 January 19, 2000

SUBMISSION INFORMATION:

Target Audience is:

• Managerial

Please indicate the level:

• Could be Beginner, Intermediate, or Advanced, depending on audience questions

Also, indicate if the basis of your paper is:

• Opinions/Perspectives based on Work Experience

Give three bullets describing your presentation

• Identifying clues that projects are in trouble

• Interventions once risk is identified

• Experienced views of turning around software projects

Lessons to be learned from this presentation

The audience will have the chance to ask questions of these three experts on software project
management, which they may take back and use in their own circumstances.

How Can I Tell When My Project’s in Trouble?

© 2000 Johanna Rothman

I look for quantitative and qualitative cues for when a project is in trouble.

Quantitative Clues

I like to take some specific measurements to see what’s going on:

• Defect find and close rates by week, normalized against level of testing effort. Are the
testers keeping up with the developers? Are the developers keeping up with the
testers?

• Defects found per activity vs. total defects found. Where am I finding the most
defects? Could I find them in other ways, with other techniques

• Schedule estimates vs. schedule achieved, by major milestone. Am I keeping up with
what I thought I could achieve?

• People-hours on the project, planned vs. actual by week or month. Do I have the staff
to do the work?

• Major and minor changes to requirements by week over the project. How often are
we changing what we think this project is about?

• Number of tests planned, run, passed by week. Are the testers making progress, or is
the work ever-expanding,

Qualitative Clues

It might be easier if all we had to do was measure things and know about our projects.
Measuring things isn’t adequate; looking at what people are doing is as important as the
hard data.

One clue that something is wrong on a project is when the people start coming in later
and leave even later. When people come in a little early and leave a little late, they’re
excited about their work. When people come in later and leave even later, they’re tired.
They’re trying to make up schedule overruns with overtime. This generally means they
are making more mistakes than they would normally.

Another cue to a project in trouble is to see what’s not talked about. Are there issues that
run into walls of silence? Anything that’s not talked about is generally the thing that’s a
disaster.

Sometimes, people know what’s wrong on a project, but they don’t feel as if they have
permission to tell anyone.

How Do I Know a Project is in Trouble?
© 2000 Esther Derby

Basic measurement data is a good place to start looking for signs of trouble -- when you can
get it. Number of defects opened and closed, planned to actual staff hours, milestones
met, number of requirements changes, test cases planned, executed, and passed can provide
useful clues.

But I see a lot of projects that don't collect much data. That's generally enough to tell me
there's a problem -- with the project and with the organizational system.

I look at management and the organizational context:
♦ Does the organization have an established project management practice?
♦ Does the organization have an overall project agenda and a way to track that

agenda?
♦ Does the organization have the process and cultural capability to do the type of

project they're undertaking?
♦ Is the reward structure designed to support building good quality software?

On the project level I look for a reasonable set of processes to track progress and control
change:
♦ Are there clear, written, testable requirements?
♦ Is there a mechanism to control change?
♦ Is there a plan?
♦ Is status visible?
♦ Is there a way to track and problems (issues, risks, defects)?

These don't have to be fancy or sophisticated, paper will do when an organization is starting
to bring their project practices under control.

And I look at the relationships between people and groups:
♦ What are the relationships like?
♦ Do the business and development teams get along?
♦ Is there a climate of respect and teamwork?
♦ Is there a climate of blame?

Sometimes I can tell there's a problem without looking at any of these things. Sometimes
the way the project manager talks or react tells the story: "We don't have time to do
reviews!" or "There's no way you can stop this project!"

Sometimes it's the unspoken climate: the humor is dark, developers and testers are working
lots of overtime, people are leaving the project.

All of these seem pretty obvious. And they can be hard to see when you are part of the
system. They can be even harder to talk about when you are in a climate that kills the
messenger or refuses to hear bad news.

How to Tell When Your Project Is Going South

Copyright © 2000, Maureen A. O'Hara

“Management” considers a project failing if the project is behind schedule;
and they sometimes even consider being over-budget, or not delivering what
was expected in terms of content or quality failing. The signs of pending
failure are not elusive or mysterious, and if you know where to look, they are
apparent before management reads your progress report. You can monitor
specific areas to identify problems early. The cost of the additional
monitoring, including educating the participants in what to monitor, is far
more cost efficient then to remedy problems. The types of problems found
in projects are usually endemic to an organization. Your management’s lack of
commitment to process quality is a telltale sign that there are projects in
trouble.

The core areas to watch are:

• Documentation – if your project does not have the “standard” set of
documents that are not disseminated to the team and are not kept
current, send up a red flag. Signs of documentation woes include
discontinuous progress, staffing/resource needs in flux, and
continuous changes in end-user product documentation. Other warning
signs include team members do not having the “big-picture” or do not
understanding where their work fits into the end product or the
implementation plan. The band-aid solution of doing a one-time
documentation update is not the solution; you should put in place
procedures for creating, reviewing, up dating, and disseminating
documentation.

• Project Life Cycle – is the team using a “reasonable” method or
process for implementing similar projects? Warning signs are dusty
copies of general industry methods, and explanations that all projects
are unique and methods are not needed, as the team is small and
experienced. Beware when team members say that all projects always
have the same problems. The fix is to take the painful step to stop
the project, develop a plan, and then to use it!

• Team and team management – this includes issues of staffing,
training, communication, individual effectiveness, and morale. Projects
with issues in this area see people working long hours for too long a
time, as well as people working minimal hours. Warning signs are team
members not speaking about their work, peers or management with
any sense of belonging or pride. If you see too little communication or
interaction among team members, be it formal or informal, this is a
sign that there are fundamental problems. Don’t underestimate the
impact of this issue -- a “together” team can make a troubled project
succeed.

• Quality – project quality problems are the easiest to find -- if you
look. Some of the simplest metrics are the best tell-tale signs. Large
pieces of the project not fitting together, or too much retrofitting
are also signs of poor QA during the design phase. Usually if there is
“quality smoke”, there is fire. Remedies include a QA plan and
commitment to the plan that starts from senior management and goes
down to the “little fishes”. This commitment includes funding with
people and other resources, education, and commitment not ship a low
quality product. This usually starts with an appreciation that quality is
more than just testing, and bad quality always costs more in the end.

• Technology – surprisingly enough, projects infrequently fail due to
technology problems. Warning signs are: if only one or two team
members grasp key technical areas, or if there is little or no detail
design for areas where new or “to be developed” technology is to be
used. Problems here are usually a sign of delivery promises made by
people who do not understand the technical hurdles, or management
not understanding how to deal with technical unknowns. Remedies
start with telling the truth about the problems; first within the team
and then to management.

QW2000 Paper 9T1

Mr. Sam Guckenheimer
(Rational Software Corporation)

Enabling Testable Architectures with UML

BACK TO QW2000 PROGRAM

Key Points

Overview of the industry-standard Unified Modeling Language (UML) for testers●

Examples of using UML to capture test design as part of system design and to provide access methods for
testing the AUT

●

Guidelines for an architectural process around UML to enable testing from the beginning of the software
development lifecycle

●

Abstract...

Architectural process and patterns for testability will have a significant impact on software quality. Yet
testing technology has largely ignored the use of architectural artifacts as a source of test design and
instead focused on processes of deriving test requirements or testability solely from the as-built
system. This is backwards, as it is architectural process and standards that are the single greatest
factor determining the testability of software, whether at component, integration or system levels. The
Unified Modeling Language (UML) has become the industry standard for capturing software
architectures and elaborating system design. This talk provides an overview of the use of the UML to
capture test design and specify accessbility for testing the AUT.

Author Bio...

Sam Guckenheimer is the senior director of technology for Rational's Automated Testing products. In
this role, he is responsible for the product vision, strategy and implementation of Rational's software
testing products and the formulation of architectural standards for testability. He joined the engineering
team at SQA Inc. in 1995 as director of technology integration, assumed responsible for marketing of
test products when SQA merged with Rational in early 1997, and assumed his current position in
autumn 1999.

Sam has held several marketing, engineering, and general management positions in US and
European software companies over the last eighteen years. At Rational, Sam has spearheaded the
integration of the load testing products, the development of Java and Web server testing technologies,
the internationalization of SQA Suite, and the introduction of OEM versions of these products. Prior to
joining SQA, he spent six years with Softbridge, Inc., ending his time there as managing director of
Softbridge Capital Markets, a subsidiary based in London, England. A Phi Beta Kappa graduate of

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9T1.html (1 of 2) [4/28/2000 2:37:30 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Harvard University, he is a frequent speaker on software development and application topics at
industry conferences and seminars, and has spoken as a guest lecturer at the management schools
of MIT, Harvard, and Yale.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9T1.html (2 of 2) [4/28/2000 2:37:30 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Enabling Testable Architectures with UMLEnabling Testable Architectures with UML
Sam Guckenheimer
samg@rational.com
Sam Guckenheimer
samg@rational.com

AgendaAgenda
� What is Architecture?
� What is UML?
� What is a testable architecture?
� What does UML provide for testing?
� What process does this imply?
� Some predictions

� What is Architecture?
� What is UML?
� What is a testable architecture?
� What does UML provide for testing?
� What process does this imply?
� Some predictions

2

AgendaAgenda
� What is Architecture?
� What is UML?
� What is a testable architecture?
� What does UML provide for testing?
� What process does this imply?
� Some predictions

� What is Architecture?
� What is UML?
� What is a testable architecture?
� What does UML provide for testing?
� What process does this imply?
� Some predictions

What is Architecture? (1/2)What is Architecture? (1/2)
� Easy to plan
� Easy to build
� Easy to test

� Easy to plan
� Easy to build
� Easy to test

3

What is Architecture? (2/2)What is Architecture? (2/2)
� Require architecture and process
� Testing is different
� Can’t reverse engineer

as-built structure to
derive intent

� Require architecture and process
� Testing is different
� Can’t reverse engineer

as-built structure to
derive intent

AgendaAgenda
� What is Architecture?
� What is UML?
� What is a testable architecture?
� What does UML provide for testing?
� What process does this imply?
� Some predictions

� What is Architecture?
� What is UML?
� What is a testable architecture?
� What does UML provide for testing?
� What process does this imply?
� Some predictions

4

Unified Modeling LanguageUnified Modeling Language
� The UML is the standard language for visualizing,

specifying, constructing, and documenting the artifacts
of a software-intensive system

� The UML combines the best of the best from
� Data Modeling concepts (Entity Relationship Diagrams)
� Business Modeling (work flow)
� Object Modeling
� Component Modeling

� OMG Standard

� The UML is the standard language for visualizing,
specifying, constructing, and documenting the artifacts
of a software-intensive system

� The UML combines the best of the best from
� Data Modeling concepts (Entity Relationship Diagrams)
� Business Modeling (work flow)
� Object Modeling
� Component Modeling

� OMG Standard

History of the UMLHistory of the UML

Nov ‘97 UML approved by the OMG

5

What UML Can OfferWhat UML Can Offer

Use Case
DiagramsUse Case

DiagramsUse Case
Diagrams

Scenario
DiagramsScenario

DiagramsCollaboration
Diagrams

State
DiagramsState

DiagramsComponent
Diagrams

Component
DiagramsComponent

DiagramsDeployment
Diagrams

State
DiagramsState

DiagramsObject
Diagrams

Scenario
DiagramsScenario

DiagramsStatechart
Diagrams

Use Case
DiagramsUse Case

DiagramsSequence
Diagrams

State
DiagramsState

DiagramsClass
Diagrams

Activity
Diagrams

A model is a complete
description of a system
from a particular
perspective

Models

UML ConceptsUML Concepts
� The UML may be used to visually model:

� The interaction of your application with the outside world
� The behavior of your application
� The structure of your system
� The architecture of your enterprise
� The components in your system

� The UML may be used to visually model:
� The interaction of your application with the outside world
� The behavior of your application
� The structure of your system
� The architecture of your enterprise
� The components in your system

6

AgendaAgenda
� What is Architecture?
� What is UML?
� What is a testable architecture?
� What does UML provide for testing?
� What process does this imply?
� Some predictions

� What is Architecture?
� What is UML?
� What is a testable architecture?
� What does UML provide for testing?
� What process does this imply?
� Some predictions

Testable ArchitectureTestable Architecture
Three criteria determine testability of an architecture:
� Test Design Captured
� Runtime Test Access Provided
� Traceability Measured

Three criteria determine testability of an architecture:
� Test Design Captured
� Runtime Test Access Provided
� Traceability Measured

7

Test Patterns Capture Repeatable Test DesignTest Patterns Capture Repeatable Test Design
Binder's Template:
� Intent
� Context
� Fault Model
� Strategy
� Entry Criteria
� Exit Criteria
� Consequences
� Known Uses
� Related Patterns

Binder's Template:
� Intent
� Context
� Fault Model
� Strategy
� Entry Criteria
� Exit Criteria
� Consequences
� Known Uses
� Related Patterns

Test Patterns Apply At All PhasesTest Patterns Apply At All Phases
� Unit Test of Class

� Method: Pre-/poscondition
� Invariant boundaries

• Positive/negative
• Equivalence classes

� Inheritance
� Integration Test

� Sequences
� Transaction integrity
� Exceptions

� System Test
� “Login”
� “Shopping cart”

� Unit Test of Class
� Method: Pre-/poscondition
� Invariant boundaries

• Positive/negative
• Equivalence classes

� Inheritance
� Integration Test

� Sequences
� Transaction integrity
� Exceptions

� System Test
� “Login”
� “Shopping cart”

8

Test AccessTest Access
� Mechanism to allow nonintrusive automation
� Interface to provide

� Preconditions
� Postconditions
� Built-In Self-Test

• Invariant boundaries

• Equivalence conditions

� May differ in debug and production

� Mechanism to allow nonintrusive automation
� Interface to provide

� Preconditions
� Postconditions
� Built-In Self-Test

• Invariant boundaries

• Equivalence conditions

� May differ in debug and production

TraceabilityTraceability

Model Element

location
name
type

Use Case

Requirement

name
location

Special Requirement

Iteration Objective

statement

State of Testing

Interaction Diagram Component

State or Activity Diagram

Test Pattern
Test Planning-Design Input

Test Case
name
user defined attributes
expected result
acceptance criterion
risk

Test Result
completion status
reason

+evaluates
acceptance

criterion

Software Under Test

version
build number
environment

source

describes

9

AgendaAgenda
� What is Architecture?
� What is UML?
� What is a testable architecture?
� What does UML provide for testing?
� What process does this imply?
� Some predictions

� What is Architecture?
� What is UML?
� What is a testable architecture?
� What does UML provide for testing?
� What process does this imply?
� Some predictions

UML and TestingUML and Testing

Use Case
DiagramsUse Case

DiagramsUse Case
Diagrams

Scenario
DiagramsScenario

DiagramsCollaboration
Diagrams

State
DiagramsState

DiagramsComponent
Diagrams

Component
DiagramsComponent

DiagramsDeployment
Diagrams

State
DiagramsState

DiagramsObject
Diagrams

Scenario
DiagramsScenario

DiagramsStatechart
Diagrams

Use Case
DiagramsUse Case

DiagramsSequence
Diagrams

State
DiagramsState

DiagramsClass
Diagrams

Activity
Diagrams

Models

Static Diagrams: Structure
•Reliability
•Coverage measurement

Dynamic Diagrams: Behavior
• Natural representation of high level

requirements
• Expression of test procedure
• Pre-, post-conditions and invariants

10

Student

Registrar

Professor

Register for Courses

Maintain Course Information

Request Course Roster

Billing System

Use Case DiagramUse Case Diagram
� Use case diagrams are created to visualize the

interaction of your system with the outside world
� Use case diagrams are created to visualize the

interaction of your system with the outside world

Activity DiagramActivity Diagram

Select courses
to teach

Create
curriculum

Create
catalog

Place catalog
in bookstore

Open
registration

Close
registration

[Registration time period expired]

Mail catalog
to students

11

SwimlanesSwimlanes

Registrar Professor

Select courses
to teach

Create
curriculum

Create
catalog

Place catalog
in bookstore

Open
registration

Close
registration

[Registration time period expired]

Mail catalog
to students

: Student registration
form

registration
manager

math 101

1: fill in info

2: submit

3: add course(joe, math 01)

4: add(Joe)
5: are you open?

6: add (Joe)

math 101
section 1

Sequence DiagramSequence Diagram
� A sequence diagram shows step-by-step what has to

happen to accomplish a piece of functionality provided
by the system

� A sequence diagram shows step-by-step what has to
happen to accomplish a piece of functionality provided
by the system

12

: Registrar

course form :
CourseForm

theManager :
CurriculumManager

aCourse :
Course

1: set course info
2: process

3: add course

4: new course

Collaboration DiagramCollaboration Diagram
� A collaboration diagram displays object interactions

organized around objects and their links to one another
� A collaboration diagram displays object interactions

organized around objects and their links to one another

Course

Student

Professor

RegistrationUser

RegistrationForm

RegistrationManager

CourseOffering

ScheduleAlgorithm

addStudent(Course, StudentInfo)

open()
addStudent(StudentInfo)

open()
addStudent(StudentInfo)

major

name
numberCredits

locationtenureStatus

name

1
0..*

0..*
1

1

1..*
4

3..10

0..4
1

Class DiagramClass Diagram
� A class diagram shows the structure of your software� A class diagram shows the structure of your software

13

entry: Register student
exit: Increment count

Initialization Open

Closed

Canceled

do: Initialize course

do: Finalize course

do: Notify registered
students

Add Student /
Set count = 0

Add student[count < 10]

[count = 10]

Cancel

Cancel

Cancel

The State of an ObjectThe State of an Object
� A state transition diagram shows the lifecycle of a single

class
� A state transition diagram shows the lifecycle of a single

class

Course Course
Offering

Student Professor

Course.dll
People.dll

Course

User

Register.exeBilling.exe
Billing

System

The Physical WorldThe Physical World
� Component diagrams illustrate the organization and

dependencies among software components
� Component diagrams illustrate the organization and

dependencies among software components

14

Deploying the SystemDeploying the System
� The deployment diagram visualizes the distribution of

components across the enterprise.
� The deployment diagram visualizes the distribution of

components across the enterprise.

Registration Database

Library

Dorm

Main
Building

Extending the UMLExtending the UML
� Stereotypes can be used to extend the UML notational

elements
� Stereotypes may be used to classify and extend

associations, inheritance relationships, classes, and
components

� Examples:
� Class stereotypes: interface, exception
� Inheritance stereotypes: uses, extends
� Component stereotypes: subsystem

� Stereotypes can be used to extend the UML notational
elements

� Stereotypes may be used to classify and extend
associations, inheritance relationships, classes, and
components

� Examples:
� Class stereotypes: interface, exception
� Inheritance stereotypes: uses, extends
� Component stereotypes: subsystem

15

AgendaAgenda
� What is Architecture?
� What is UML?
� What is a testable architecture?
� What does UML provide for testing?
� What process does this imply?
� Some predictions

� What is Architecture?
� What is UML?
� What is a testable architecture?
� What does UML provide for testing?
� What process does this imply?
� Some predictions

Test Design ParadoxTest Design Paradox

Techniques that reduce ambiguity in a requirement often
decrease understandability and alienate customers and users. Our goal is to
find the “sweet spot” at which we attain the greatest amount of
understandability with the least amount of ambiguity:

Understandability

Ambiguity

The sweet spot

Understandable
requirements

Effective
test design

- Leffingwell

16

Using the Model for Design CaptureUsing the Model for Design Capture

Annotate
elements with
testability info

Define Test
Case

Design Test

Test
Plan

Model Under
Test

Test Pattern

Test
Case

Testability
annotations

Initial
Planning

Requirements
Capture Analysis & Design

Implementation

Test

DeploymentEvaluation

Test Design Has To Be Roundtrip
� The theoretical

development lifecycle:
Requirements first

� The theoretical
development lifecycle:
Requirements first

Initial
Planning

Requirements
Capture

Analysis & Design

Implementation

Test

Deployment

Evaluation

� The reality:
Requirements
not specified,
but discovered
through testing

17

AgendaAgenda
� What is Architecture?
� What is UML?
� What is a testable architecture?
� What does UML provide for testing?
� What process does this imply?
� Some predictions

� What is Architecture?
� What is UML?
� What is a testable architecture?
� What does UML provide for testing?
� What process does this imply?
� Some predictions

How We Can Improve Software QualityHow We Can Improve Software Quality

Expected
return
based on
time to
market

Expected
return
based on
time to
market

$$

Defect
discovery
and
removal

Defect
discovery
and
removal

Today’s
practice
Today’s
practice

100%100%

tt

Best
practice

Best
practice

Opportunity

Opportunity

18

A Closing PredictionA Closing Prediction
HardwareHardware

Transistors (1960s)

Integrated
circuits (late 60s)

Large-scale
ICs (early 70s)

MicroprocessorsMicroprocessors

Design for Testability
standards (late 80s)

As applications become more complex,
spreading over multitiers, across varying
networks, and including different client
configurations, application architecture
testing will become increasingly mandatory.

GIGA Group, 8/99

SoftwareSoftware

Assembly language (1960s)

3GLs, 4GLs (70s and 80s)

Object languages
(early 90s)

Design for
Testability
standards (00s)

Iterative,
Component-Based

Development

Iterative,
Component-Based

Development

UML (late 90s)

QW2000 Paper 9A1

Mr. Rob Baarda
(IQUIP Informatica BV)

Risk Based Test Strategy

BACK TO QW2000 PROGRAM

Key Points

Well defined steps from business risks to test coverage●

Early and stronger test involvement of all parties concerned●

Useful for all tests●

Presentation Abstract

Testing of an information system should be based on the business risks for the organisation in using
that information system. In practice, the test manager often takes the steps to go from risks to test
coverage in an intuitive way. In this presentation, the steps to define a testing strategy are made
explicit. This gives all parties involved better insight and provides a sound basis for negotiating testing
depth.

A good risk assessment is a part of these steps. Very important is that this explicit way of looking at
risks clearly shows that a test manager or tester can't do this alone. The involvement of users and
managers of the client organisation and of project people like the developers, testers, QA'ers and
project manager is necessary. Discussing risks and testing in the above way proves in practice to be
real eye-openers for all parties concerned. This also enables negotiating about testing depth by letting
the customer choose what should be tested how thoroughly.

The stepwise defining of the test strategy can be used for any test level and also for an overall
strategy, including and co-ordinating all test levels and even inspections.

About the Author

Rob Baarda is an information systems professional for more than 20 years, following the path from
programmer to consultant. Since 1986 he specialised in the field of testing. Starting with developing
and implementing automated testtools, Rob moved after a few years to the methodology of testing. He
is now part-time researching various test subjects in the R&D department of IQUIP, besides working
as an international test consultant and teaching TMap« and TPI«. He also presented in QWE'99 about
Risk Based Test Strategy.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9A1.html [4/28/2000 2:37:35 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Risk Based Test Strategy
Rob Baarda

March 2000

Copyright (C) 2000, IQUIP Informatica B.V.
Diemen, The Netherlands 1

IQUIP
00 nr Be 1

Risk Based Test Strategy

Rob Baarda
baardaro@iquip.nl
IQUIP Informatica B.V.
The Netherlands

IQUIP
00 nr Be 2

Tester under pressure

Development

RAD

OO
GUI’s

Integration

Automation

Internet

CBDC/S Tester

Business

Time-to-market

Error free

Quality

Cheap

Reuse

User-friendliness
Maintainability

Packages

Growing
Complexity

Needed: communication between
Development, Business and Tester

Risk Based Test Strategy
Rob Baarda

March 2000

Copyright (C) 2000, IQUIP Informatica B.V.
Diemen, The Netherlands 2

IQUIP
00 nr Be 3

Risk Based Test Strategy helps!

Agenda
• Test strategy
• Risk analysis
• Procedural steps
• Conclusion

IQUIP
00 nr Be 4

What is Test Strategy?

Test Strategy =
the distribution of the effort for testing
-based on the test coverage-
over parts and quality characteristics
of the system under test

Quality characteristics:
• Functionality
• Performance
• Usability
• Security
 Etc.

Risk Based Test Strategy
Rob Baarda

March 2000

Copyright (C) 2000, IQUIP Informatica B.V.
Diemen, The Netherlands 3

IQUIP
00 nr Be 5

Aim of Test Strategy

Aim: To detect the most important defects
 as early as possible at the lowest costs!
Aim: To detect the most important defects
 as early as possible at the lowest costs!

What are the most important defects?

Risk thinking gives the answer!

IQUIP
00 nr Be 6

Risk thinking: an introduction

• Business reasons

• No risk, no test

• Risk analysis approach

coverage
riskbudget

Risk Based Test Strategy
Rob Baarda

March 2000

Copyright (C) 2000, IQUIP Informatica B.V.
Diemen, The Netherlands 4

IQUIP
00 nr Be 7

Risk: definition

Frequency of Use

Chance of Error

Chance
of

Failure

Damage

Risk

*

IQUIP
00 nr Be 8

Risk definition Chance of Error

• Chance of Error
– globally

= size * complexity
– in detail

= knowledge of development quality
• Possible development problems

(partly based on Schaefer 1996)
– Badly documented
– Completely new functions
– Frequently adjusted functions
– Tools or techniques used for first time
– Insufficient quality of low-level tests
– Extreme time pressure

Risk Based Test Strategy
Rob Baarda

March 2000

Copyright (C) 2000, IQUIP Informatica B.V.
Diemen, The Netherlands 5

IQUIP
00 nr Be 9

Risk definition Damage

• Damage
– direct financial
– loss of faith of customers
– damage to corporate identity
– impact on other functions and/or systems
– detection and repair time

IQUIP
00 nr Be 10

Risk analysis applicable-1

• Applicable on the level of:
– system
– subsystem
– individual function (e.g. interest calculation)

• Applicable:
– New developments
– Maintenance

Risk Based Test Strategy
Rob Baarda

March 2000

Copyright (C) 2000, IQUIP Informatica B.V.
Diemen, The Netherlands 6

IQUIP
00 nr Be 11

Applied in maintenance

• Risk =
Chance of failure * Damage

• Chance of failure =
Frequency of use * Chance of error

IQUIP
00 nr Be 12

Risk analysis applicable-2

Applicable on quality characteristics
• What is the chance that a failure will happen and

what will be the damage for:
– functional defects
– low performance
– low maintainability
– ...

Risk Based Test Strategy
Rob Baarda

March 2000

Copyright (C) 2000, IQUIP Informatica B.V.
Diemen, The Netherlands 7

IQUIP
00 nr Be 13

System

Debt management
Cast management
Stock transactions

Example

Failure
1-5

5
3
1

Damage
1-5

5
2
5

Risk
1-25

25
6
5

Risk classes:
• Great risk (25)
• Middle risk (6,5)

IQUIP
00 nr Be 14

Important hints

• Risk analysis should lead to a limited number of
classes of (more or less) equal risks

• Pay attention to the scales of measuring
• Get the right parties involved

Risk Based Test Strategy
Rob Baarda

March 2000

Copyright (C) 2000, IQUIP Informatica B.V.
Diemen, The Netherlands 8

IQUIP
00 nr Be 15

Parties involved
Damage
Frequency of use

System
management

 Data
centre

Accountancy

CM & CC

Technical
design

Project

TEST

QA
DBA

Business

Functional
design

Chance of error

management

Developer

Functional
management

IQUIP
00 nr Be 16

Risk Based Test Strategy helps!

Agenda
• Test strategy
• Risk analysis
• Procedural steps
• Conclusion

Test Strategy =
the distribution of the effort for testing

-based on the test coverage-
over parts and quality

characteristics
of the system under test

Risk Based Test Strategy
Rob Baarda

March 2000

Copyright (C) 2000, IQUIP Informatica B.V.
Diemen, The Netherlands 9

IQUIP
00 nr Be 17

Procedure visualized
 Relative

importance %

5

75

20

0

100

System
Debt Cash Stock

70 15 15

+

+++ ++ +

+ +
TT1 TT2 TT2

Quality
characteristics

Security

Functionality

Usability

…

TT2

TT3 TT3

IQUIP
00 nr Be 18

Steps

• Master Test Plan
– selection of quality characteristics
– relative importance of quality characteristics

based on risks
– quality characteristics allocated to the test levels

• For one Test Level Plan
– determine (relative importance) of system parts

based on risks
– specify test importance per system part and

quality characteristic
– choose test design techniques (TT) and testing

depth

Risk Based Test Strategy
Rob Baarda

March 2000

Copyright (C) 2000, IQUIP Informatica B.V.
Diemen, The Netherlands 10

IQUIP
00 nr Be 19

Test Strategy supports communication

A documented Risk Based Test Strategy helps:
• To be complete in assessing the risks
• Discussions with the parties involved
• To get commitment from the customer
• In the future to:

– have documented proof if needed
– make a switch in test manager position easier
– do a re-planning
– use in the maintenance situation

IQUIP
00 nr Be 20

Conclusion

Risk Based Test Strategy
• one line from risks to test design techniques
• less intuition, more business reasons
• applicable for different test levels
• supports customers to make choices
• is a medium to have communications between

users, developers and testers
• makes the test process more manageable

QUESTIONS?

Copyright © 2000 IQUIP Informatica B.V. page 1

Risk Based Test Strategy

Rob Baarda

IQUIP Informatica B.V.

P.O. Box 263, 1110 AG Diemen, The Netherlands

Tel: +31 20 660 6600

Fax: +31 20 695 3298

E-mail: baardaro@iquip.nl

1. Introduction

Nowadays the pressure on the tester increasing due to demands from the business
on one side and faster development of software on the other hand. A good
approach for the tester to establish a good communication between all the parties
is the use of a test strategy.. A test strategy is, in short, the choice which aspects of
a (sub)system will be tested with what testing depth. In recent years we have had
splendid opportunities for the further development and implementation of test
strategies

We were able to combine theory on business risks with the existing theory of test
strategy as described in TMap® (see references). This lead to a straight line of
thinking from business risks into detailed testing depth per function. Some
organizations started in parallel to change from the intuitive way of making a test
strategy into a more rational one based on business risks.

In this paper we first describe the theory from business risk unto test techniques,
followed by two concise case-stories of the previous described situations.

We will make clear that the described manner to define a test strategy has the
advantage of:
− improved communication between the tester and other parties concerned;
− better test coverage on the right spot.

Copyright © 2000 IQUIP Informatica B.V. page 2

2. Test strategy and risks

The development of a test strategy is a means of communication with the
customer commissioning the test on such matters as the organization of testing
and the strategic choices that go with it. The test strategy indicates how testing is
to be carried out. In order to make the best possible use of resources and time, it is
decided on which parts and aspects of the system the emphasis should fall. The
test strategy forms an important basis for a structured approach to testing and
makes a major contribution to a manageable test process.

The customer who commissions the test will expect specific qualities of the
system when in production, and wants to know whether the released system will
meet these requirements. If the system qualitatively does not meet the
requirements or only to a limited extent, this implies high damage for the
organisation, for instance since high rework costs will be needed or clients/users
will be unsatisfied. Therefore, this situation forms a risk for the organization.
'Risk' in this paper is defined as:

A risk is the chance of an error1 occurring (chance of failure) related to the damage
expected when this error does occur

Testing covers such risks by giving insight into the extent to which the system
meets the quality demands. When quality turns out to be insufficient timely
measures can be taken, e.g. rework by developers. If the shipping of the system
implies many risks for the organization, better testing is obvious as a solution.
And the reverse also holds:

No risk, no test

Although in the above we refer to quality and risks in a general sense, there may
be large differences depending on the situation. It is of great importance to discuss
this with the customer, and to translate the customer's wishes in this respect into
the way testing will be performed. Thus, the test strategy is directed towards
finding the optimal balance between the test effort to be exerted and the coverage
required for the risks. To this purpose the risks are specified up to the level of
quality characteristics and separate subsystems. In doing so it becomes possible to
find a suitable test coverage for the assessed risks. Here a higher test coverage
usually results in more test effort. In order to reach at the variation in test
coverage needed, the use of more than one test specification technique (test design
technique), each offering a specified test coverage, is crucial.

An analogy with insurance industry may clarify this matter a bit more. A person
wants to cover a relevant risk and takes an insurance with a coverage fitting this
risk as best as possible. This insurance takes a certain premium. If the person
wants to pay less, an insurance with a lower coverage is bought. The consequence
is that there will be no payment if the uncovered risk occurs. On the other hand, if
coverage was too large, then too much premium is paid, since a situation has been
insured which is unlikely to occur for this person.

1 The terms error, defect and failure are not used as exactly as IEEE advocates. In this paper error
= fault or mistake; failure = the result or manifestation of one or more errors.

Copyright © 2000 IQUIP Informatica B.V. page 3

budget
risk

coverage

The balance between budget and risk coverage

3. Risk Assessment

Test strategy is based on risk assessment. This means assessing the damage of the
consequences of failures, both undetected prior to operation and occurring during
operation.

Risk assessment takes place on the basis of quality characteristics and subsystems.
For instance, if the system is insufficiently user-friendly, what will be the negative
consequences. And what will be the damage when the salary calculation module
in a payroll system does not work correctly.

In order to be able to perform this assessment well, the separate aspects of a risk
are considered:
Risk = chance of failure * damage,

where chance of failure is related to aspects including frequency of use and the
chance of an error occurring.

These aspects are listed below:

• Frequency of use
In a function which is used dozens of times each day the chance of an error
demonstrating itself is much bigger than with a function used once a year.
• Chance of error
For the assessment of the chance of errors the following list can be helpful. It
presents the locations where errors tend to cluster. It is partly based on H.
Schaefer, 1996 (Surviving under time and budget pressure, in: Conference
Proceeding EuroSTAR1996, Amsterdam, the Netherlands):

◊ Complex functions;
◊ Completely new functions;
◊ (Especially frequently) adjusted functions;
◊ Functions for which certain tools or techniques were employed for the

first time;

Copyright © 2000 IQUIP Informatica B.V. page 4

◊ Functions which were transferred from one developer to another during
development;

◊ Functions that were realized under extreme time pressure;
◊ Functions which had to be optimized more frequently than on average;
◊ Functions in which many errors were found earlier (e.g. in previous

releases or during earlier reviews);
◊ Functions with many interfaces;
◊ Inexperienced developers;
◊ Insufficient involvement of users;
◊ Insufficient quality assurance during development;
◊ Insufficient quality of low-level tests;
◊ New development tools and development environment;
◊ Large development teams;
◊ Development teams with sub-optimal communication (e.g. owing to

geographical spread or personal causes);
• Damage
If and when the error manifests itself, what will be the damage for the
organization. Aspects are costs of repair (both of the system and of the
consequences), forgone income and loss of clients or of confidence. Usually the
damage increases if the error has its impact on other functions or systems. In the
case of errors occurring in batch processes there may be a possibility to prevent
them from hampering users, so that the eventual damage will be smaller than with
similar on-line processes. Of course, this only holds if errors are detected on time.

Because of the complexity of the matter, it is impossible to assess risks with
complete objectivity and in detail: it is a global assessment. It is therefore
important for the risk assessment not to be carried out by the test manager alone.
A large number of people involved in the scheme should contribute: customer,
users, development team, accountants, IT auditors and so on. This not only
increases the quality of the strategy, but it also has the advantage that the different
parties are more aware of the risks and the extent to which testing contributes to
making these risks manageable in a better way.

The developer of the test strategy should realize that 'users' are the best people to
assess the damage and the frequency of use when valuing the risks (end-users,
system managers and application managers, line management), whereas project
team members are best to assess the chance of error (project managers, designers,
programmers, project quality staff, test manager).

The focus in risk assessment is on product risks, or, in other words, what is the
risk for the organization if the product does not demonstrate the expected quality.
In addition to this, there are also (test) project risks. If the system must be in
production on January 1st, if functional specifications are produced too late, if no
experienced testers are available, or if the test infrastructure is not ready on time,
then we speak of (test) project risks. These are not taken into account in
determining the test strategy; they do play a role in the test plan.

In developing a test strategy the aim is to see to it that the test will be organized in
such a way that with a certain extent of reliability
• the most important problems will be found;
• the problems will be found in an early stage;
• the problems that require the most rework time will be found first:
• efficient use is made of resources;
• and eventually an accurate quality advice can be given.

Copyright © 2000 IQUIP Informatica B.V. page 5

This can be summarized as:

Test strategy aims at finding the most important errors as early as possible against the
lowest costs

In practice, the development of a test strategy is often planned to coincide with
preparing the budget, for example with the help of test point analysis. The
advantage is that the consequences of the adopted strategy are immediately
translated into time required for testing, and consequently the cost of testing,
which makes the strategic choices manageable. If the time available for testing is
more or less fixed, it is also possible to use test strategy combined with test point
analysis to determine what is achievable within the time limits. It is probably even
more important to make it clear at this time which parts cannot be tested, or
cannot be fully tested, and what risks will therefore be incurred.

4. Quality Characteristics

The quality characteristics we distinguish can be divided into dynamic and static
quality characteristics. The dynamic quality characteristics deal with features of
the information system in use; examples are security, usability, continuity,
traceability, functionality, userfriendliness, suitability, efficiency, performance.
The static are concerned with intrinsic characteristics of the information system
and the documentation, as considered from the standpoint of developers and
future system managers. Examples are manageability, maintainability,
connectivity, reusability, portability, testability.

5. Steps in different situations

The development of a test strategy is not something that can be done purely
methodically or formally. The below steps are aids and indicators. Experience and
skills of the performer of this activity in the area of testing is a major success
factor for a sound test strategy.

One should also realize that test strategies arise as a result of iterative processes
and in connection with other activities for a test plan. If the first test strategy
produces an amount of test effort needed or a certain time schedule which is
unacceptable for the customer, the strategy should be adjusted. The lack of test
skills or suitable infrastructure can also result in adjustments of the test strategy.

The stepwise defining of the test strategy can be used for any test level and also
for an overall strategy (master test plan), including and coordinating all test levels
and even inspections. The steps differ for both situations.

Also we describe shortly considerations managing the test process and for the
maintenance situation.

5.1 Strategy in Master Test Planning

The steps to be taken for a test strategy are:
• Decide on the quality characteristics;

Copyright © 2000 IQUIP Informatica B.V. page 6

• Determine relative importance of quality characteristics;
• Attribute quality characteristics to test levels.

5.1.1 Step 1: Selection of Quality Characteristics

In close liaison with the customer and other parties involved a selection of quality
characteristics is made on which the tests must focus. In doing so one should take
risks for the business into account as well as aspects including system
requirements, business objectives concerning the information system, directions
and standards set by the computer center. These quality characteristics are also
used for reporting to the customer during test execution and completion.

Some characteristics are difficult to test. There may be a wish for a system to be
user-friendly and flexible, for instance, but these wishes turn out not to have been
translated into measurable requirements. That is why a substantial part of the
effort here is devoted to formulating the relevant quality demands as measurably
and unambiguously as possible. It is also the case that some quality characteristics
demand relatively much effort in testing. Since it is not useful to offer possibilities
which cannot be fulfilled, it should be determined beforehand what will be the
estimated effort needed for a decision made.

For non-IT people our quality characteristics may be hard to handle. It helps when
we translate them to the conceptual environment of our conversational partners.
This can be done by finding illustrative examples of problems or errors that may
occur in production and the damage that would be caused by this. This is one of
the most difficult aspects of the formulation of a test strategy.

5.1.2 Step 2: Relative Importance of Quality Characteristics

On the basis of the results from Step 1 the importance of the selected quality
characteristics is determined in relation to one another. This is done in the Matrix
of Weights (see below), by weighing the relative risks per quality characteristic.
Here the relative importance is indicated (in percentages). Note that it is not of
importance to have exact percentages: the objective is to arrive at a general
picture of the relative importance of the various quality characteristics. The filling
in of the matrix helps evaluating the risks.

The customer should be forced to make choices. Therefore, as a directive we ask
for a percentage of 5 as the minimum. The sum of all percentages should not
exceed 100. An example of a Matrix of Weights is given below:

 Quality characteristic Relative
importance

Manageability 5

Security 5

Usability -

Connectivity -

Continuity 10

Traceability -

Flexibility -

Copyright © 2000 IQUIP Informatica B.V. page 7

Functionality 50

Userfriendliness 10

Reusability -

Infrastructure -

Suitability 10

Maintainability 5

Performance 5

Portability -

Testability -

Efficiency -

Total 100%

The Matrix of Weights

The high percentage for functionality in this matrix may strike the reader. This is
in conformance with practical experience: generally 50% of the importance or
more is attributed to this characteristic. The reason for this is that risks usually are
larger for incorrect performing systems (Functionality) than for slow systems
(Performance) or awkward systems (Userfriendliness).

5.1.3 Step 3: Quality Characteristics Attributed to Test Levels

With the aim of spending the total test effort as efficiently as possible, during test
strategy development it is decided with which test level or combination of test
levels the various selected quality characteristics will be tested. Also inspections
may fall under the scope of the master test plan and under the test strategy. In the
remaining sections when 'test' is used, inspections are also included.

In this way the various test levels within a project are brought into balance. It is
obvious that the different responsibilities and authorities remain intact.

A +-sign in a matrix (for an example, see matrix below) indicates whether the test
strategy takes a quality characteristic into account. '++' or '+++' indicate that
relatively much attention is to be paid to the quality characteristic for the specified
test level. It is obvious that one quality characteristic can be in effect for more
than one test level, but depth will often vary. If structured test specification
techniques are used, the acceptance test, for example, may use results of previous
tests levels, on the basis of which it may be decided to test with less depth.

Copyright © 2000 IQUIP Informatica B.V. page 8

Insp
RQMS

Insp
Specs

Insp
Design

PT IT ST FAT PAT Relative
importance

Manageability + + ++ + 5

Security + + + + + 5

Usability -

Connectivity -

Continuity + + ++ 10

Traceability -

Flexibility -

Functionality ++ ++ + + +++ ++ 50

Userfriendliness ++ ++ 10

Reusability -

Infrastructure -

Suitability + ++ ++ 10

Maintainability + + 5

Performance + + + 5

Portability -

Testability -

Efficiency -

100%

Example of a Test Strategy for Test Levels

Legenda:

Insp RQMS Inspection of Requirements
Insp Specs Inspection of Functional Specification
Insp Design Inspection of Technical Design
PT Program Test
IT Integration Test
ST System Test
FAT Functional Acceptance Test
PAT Production Acceptance Test

Copyright © 2000 IQUIP Informatica B.V. page 9

5.2 Strategy for a Test Level

The steps to be taken for a test strategy for a specific test level are:
1. Decide on the quality characteristics;
2. Determine relative importance of quality characteristics;
3. Divide the system into subsystems;
4. Determine relative importance of subsystems;
5. Specify test importance per subsystem and quality characteristic;
6. Establish test techniques to be used.

The strategy determination for a specific test level naturally has the master test
plan strategy as a precondition and a starting point. If a master test plan, including
a test strategy, is there, step 1 can be omitted and step 2 will be an easy and fast
performed activity. Nevertheless, all steps are worked out below.

5.2.1 Step 1: Decide on Quality Characteristics

In collaboration with the customer and perhaps other parties concerned the quality
characteristics are determined on which the test will focus, in relation to business
risks. During the test and in the completion phase, results are reported on the basis
of these quality characteristics.

5.2.2 Step 2: Determine Relative Importance of Quality Characteristics

Based on the results of step 1 the relative importance of the selected quality
characteristics is determined. Determination of the importance takes place by
weighing the risks per quality characteristic. This is shown in a Matrix of Weights
by a percentage in the column Relative importance. In order to force the customer
to make choices, a percentage of 5 is the minimum.

An example of a matrix for a functional acceptance test is given below:

 Quality characteristic Relative
importance

Security 5

Functionality 60

Userfriendliness 10

Performance 5

Suitability 20

Total 100%

The Matrix of Weights for a Functional Acceptance Test (Example)

Copyright © 2000 IQUIP Informatica B.V. page 10

5.2.3 Step 3: Divide System into Subsystems

During this step and the following steps the test strategy is refined more and more.
This implies that the quality characteristics and their relative importance as
indicated in the Matrix of Weights are to be broken down for the combination of
test specification technique and subsystem, later even for test specification
technique and test unit.

The information system is divided into subsystems. The reason for this is that the
same quality demands do not have to be valid for each subsystem. Moreover, the
various subsystems may have different risks for the organization. In principle the
division is the same as given in the design documentation. If we deviate from this
one, we must clearly indicate the motivation for this. Examples of alternative
divisions are on the basis of extent of risk or on the basis of order of release by the
developer. If a conversion module is there, this is to be treated as a separate
subsystem. Often the subsystem 'Total system' is distinguished. This serves the
purpose of indicating that some quality characteristics can be evaluated effectively
only with the help of an integral test, testing the coherence of the various
subsystems.

In a later stage the various subsystems are further divided into independent test
units. E.g. in a logistics system the subsystem Sales may be divided into the test
units Quotations (all functions regarding quotations) and Orders.

5.2.4 Step 4: Determine Relative Importance of Subsystems

On the basis of the result of the previous step the relative importance (in
percentages) of the subsystems should be indicated in the Matrix of Weight. This
is done by weighing the risks per subsystem. It is not a matter of exact
percentages; rather it is a matter of getting a general image of the importance of
the subsystems as seen through the eyes of the customer and other parties
concerned. This step helps in asking people to form an opinion of this.

The relative importance is determined of each subsystem within the information
system. In the Matrix of Weights this is indicated with a percentage in the column
Relative importance.

An example of a Matrix of Weight for a functional acceptance test (based on the
Strategy Matrix for test levels in the master test plan, shown above) is given here:

Relative
importance

Subsystem 1 30

Subsystem 2 15

Subsystem 3 20

Conversion 15

System 20

Total 100%

Relative Importance of Subsystems for a Functional Acceptance Test (Example)

Copyright © 2000 IQUIP Informatica B.V. page 11

5.2.5 Step 5: Specify Test Importance per Subsystem and Quality Characteristic

Finally a refinement is made by assessing the importance of the combination
quality characteristic - subsystem. E.g., a refinement may be that userfriendliness
is important (relative importance of 10), but this holds predominantly for
subsystem 1 and not at all for subsystem 3. Again it is emphasized that test
strategy determination is not a mathematical affair: it is meant to get an image of
the relative test importance of the various subsystems and quality characteristics.
This is also the reason why we choose +, ++ and +++ as notation symbols, rather
than opting for the pseudo-certainty of a mathematical formula. An example of
this is the following: suppose both userfriendliness and a specific batch subsystem
are very important, a mathematical formula would probably result in large test
effort to be spent on the userfriendliness of the batch procedure. The Matrix of
Weight may look like this:

Subsystem
1

Subsystem
2

Subsystem
3

Con-
version

Total
system

Relative
importance

Security + + 5

Usability -

Continuity -

Traceability -

Functionality ++ + + ++ + 60

Userfriendliness ++ + 10

Performance + + 5

Suitability + + + ++ 20

Efficiency -

Relative
importance

30 15 20 15 20 100%

Relative Importance of Subsystem x Quality Characteristic (Example)

5.2.6 Step 6: Establish Test Specification Techniques to be Used

The final step in test strategy involves the selection of the techniques that will be
used to test the combination of the selected quality characteristics and subsystems.
A high importance implies the use of techniques with a high coverage or the use
of more techniques, a low importance implies the use of techniques with a lower
coverage or the use of fewer techniques.

In choosing the techniques one should also take into account various other factors,
a number of which are listed below.

• Quality characteristic to be tested
 A technique is fit for testing one or more quality characteristics. Some quality

characteristics can best be tested with one (set of) techniques, others with another
one.
• Area of application

Copyright © 2000 IQUIP Informatica B.V. page 12

Some techniques are specifically suitable for testing the interaction (screens,
reports, on-line) between the system and the users, others are better in testing the
processing of systems (batch processes). There is a relation with the type of error
to be found with a technique, e.g. false input checks, incorrect processing or errors
of integration.
• Availability of test basis

 Each techniques starts from a certain test basis. This may be the functional specification,
the technical design, program code or descriptions of the end-user organization.
The exact form of the test basis is also relevant to the choice of a technique, e.g.
decision tables, pseudo-code, structured language or unstructured prose.
• Extent of formality
Informal test specification techniques offer more freedom for the tester in making
the test cases than do formal techniques.
• Use of resources
The application of a techniques requires a specific amount of resources, in terms
of man capacity as well as machine capacity. The use of resources has a direct
relation with costs.
• Required knowledge and skills
Not each tester is equipped for each technique. For the useful application of some
techniques much business knowledge is needed. For other techniques more
analytic talent is required. Therefore, the knowledge and skills of the test staff
also influences the choice for techniques.

For practical reasons one should attempt to cover all selected quality
characteristics with a minimal set of test specification techniques.

The selection of the test specification techniques should be done in an early stage
of the test process, for then the test team can take the appropriate actions in
training for techniques and the necessary checklists can be made or adjusted for
the specific situation.

As a result of this step the techniques that will be used per subsystem are defined.
Optionally, especially with large test projects, this last step in the test strategy is
performed slightly later in the process, namely during the preparation phase. As a
part of this the priority order of the tests to be performed is determined. The aim
of this is to have the most important tests take place as early as possible.

5.3 Strategy during the Test Process

The test strategy determined in advance often will be put under pressure in a later
stage of the test project. In such a situation the test manager is asked to perform
less tests or shorter tests in order to conform to the adjusted schedule. The
consequences are to be seen mainly in the last step of strategy development:
suddenly some tests must be cancelled or must be carried out with less depth.
Using the test strategy as a basis the test manager may discuss with the customer
which tests can be dropped or where less thorough testing can be done. By
indicating which parts are to be tested less in relation to the risks assessed
(translated into importance levels in the strategy), the test manager can report in a
solid fashion on the increased risks after the testing phase. Therefore it is essential
not to change the steps 1 to 5: the risks and the importance levels do not change.
The result is that, when testing is reduced, there will be more risks after the
system has been implemented.

Apart from this there is also the situation that during testing it turns out that part
of the system contains an excessive number of errors or excessively few errors.

Copyright © 2000 IQUIP Informatica B.V. page 13

Both cases justify adjustments in the test strategy, namely the increase and
decrease of test effort, respectively. Contrary to the situation in the previous
paragraph here risks will remain the same after implementation of the system. The
correction can be summarized as follows:

Testing should continue as long as the costs for finding and correcting errors during
testing are lower than the costs connected to the error occurring in production

In 'finding and correcting errors' more costs than just test costs play a role; other,
extensive costs may be concerned with the delay in shipping the product. For 'the
error occurring in production' one should also take into account the chance that
the error will actually occur: an error that will never occur is no error (defect)!

5.4 Strategy during Maintenance

The main difference between the development of new systems and maintenance
for the test strategy is the chance of error. In the case of maintenance changes are
made to an existing information system. These changes should be tested. During
maintenance there is a risk that new errors are introduced, with a decrease in
quality for the system as a result (regression).

The implication of this different chance of error in the case of maintenance
implies for the strategy that the relative importance of the subsystems may
change: a subsystem which had a high importance when it was developed, may be
unchanged in maintenance. Since the chance of regression is the only risk in this
case, the test importance is much lower. Therefore, test strategy development for a
test level can be modified by changing the concept of 'subsystem' in the steps to
'change'. For each change it is analyzed which system parts were mutated, which
parts may have been influenced by the change, and which quality characteristics
are relevant. There are various possibilities for testing each change, dependent on
the risks:
• A limited test, only focused on the change;
• A complete (re)test of the function which had been changed;
• A test of the coherence of the changed function and the adjacent functions.

There should also be a regression test for the system as a whole. This test focuses
on the coherence of the changed and unchanged parts of the system, since the
chance of regression is largest here. If the test strategy for the new developed
system is available, the importance levels attributed to the subsystems here can be
of use.

Apart from the changed chance of error there are more differences between a
system developed and a system under maintenance. However, they have no
influence on the technique of test strategy development. Examples of these
differences include:
• Test basis is missing, incomplete or not up-to-date
This situation, frequent in maintenance, has consequences for the test
specification techniques to be chosen.
• Predictable versus ad-hoc maintenance

 The majority of maintenance situations are predictable and can therefore be planned. The
strategy determination is easily to be applied to this type of maintenance. The
situation is more difficult in the case of ad-hoc maintenance, where the focus is on
putting right a production break-down and getting the system in the air as soon as
possible. A formal strategy determination costs too much time here. It is feasible,

Copyright © 2000 IQUIP Informatica B.V. page 14

however, to have some test strategy scenarios available: if program x goes wrong
and is repaired, what should be tested? These scenarios support an optimal test for
ad-hoc maintenance.

6. Conclusion

The testing of information systems can be based on the business risks which the
organization will experience in using these information systems if the system is
not tested. In practice, test managers often take the steps to come from risks to test
coverage in an intuitive manner. In this paper, the steps needed for the definition
of a test strategy are made explicit. The result of such a test strategy is better
insight for all parties involved and a sound basis for negotiating testing depth.

Good risk assessment is a part of these steps. It is essential to realize that this
explicit way of looking at risks cannot be done by a test manager or tester alone. It
is necessary to ascertain for the involvement of users and managers of the client
organization, of auditors, and of project people such as developers, testers, QA
staff and project managers. In practice, the discussion of risks and related testing
strategies in this way proves to be a real eye-opener for all parties concerned. It
also enables negotiation of testing depth by having the customer decide which
elements should be tested how thoroughly.

The stepwise definition of the test strategy can be used for any test level (e.g.,
system test, acceptance test) and also for an overall strategy (master) test plan,
including and coordinating all test levels and inspections/reviews.

7. References

In English with a short description of test strategy
Pol, Martin and Veenendaal, Erik van, Structured Testing of Informations
Systems (1998), Kluwer Deventer The Netherlands, ISBN 90-267-2910-3,

In Dutch with an extensive description of test strategy
Pol, Martin, Teunissen, Ruud and Veenendaal, Erik van, Testen volgens TMap
(1999), Tutein Nolthenius, s' Hertogenbosch The Netherlands, ISBN 90-72194-
58-6.
The translation into English is planned for the end of 2000.

QW2000 Paper 9W1

Dr. Wen-Kui Chang & Mr. Shing-Kai Hon
(Tunghai University)

A Systematic Framework for Ensuring Link
Validity under Web Browsing Environments

BACK TO QW2000 PROGRAM

Key Points

This paper will present a methodology to test web links, and walk you through a practical software certification
process It takes a user-oriented software validation approach.

Introduction of a framework for website quality assurance●

Investigation application of statistical usage testing●

Consideration from the end-user operations●

Presentation Abstract

Web applications are increasingly developed in many domains and most were implemented by the ad
hoc approach. However, various quality metrics become progressively more difficult to measure and
mange as the developing application size and scope grows. Among the typical non-functional
characteristics, in this research, factors of link validity will be deeply investigated. Essentially link
validity includes various characteristics such as correctness, relevance, completeness and integrity
implicitly, which will deeply affect the effectiveness and efficiency on information retrieval and
browsing.

In most web applications, it is unlikely that the application developers may validate all possible
navigation paths. In this paper, a framework of quantitative certification on link validity will be proposed
to ensure that all linked paths provide consistent and reasonable information streams and appropriate
contexts.

In this research, the rational for statistical usage testing is investigated and employed to certify links
for a website. In principle, a software usage model is first established, which characterizes various
operational uses of a software system. Suppose that an operational use is a skeleton for the intended
use of the software in an intended environment. Thus, all possible operational uses of a software
system will constitute a population with a huge size. If a usage sample of test cases is drawn
statistically from the usage population, performance on this sample may then be used as a basis for
the evaluation of software quality.

Under the web-browsing environments, all possible navigation paths are first formulated to represent a
usage model with the Markov chain property, that is then analyzed and used to generate test script file

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9W1.html (1 of 2) [4/28/2000 2:37:41 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

statistically. The proposed mechanism is not only systematic on certifying effectively hyper links, but
also efficient highly for those complex information structures. A real application of the proposed
approach to a web application will also be demonstrated quantitatively through a certification tool
ToolCertify.

About the Author

Associate Professor at Software Engineering Laboratory in Tunghai University

Points of interest: software engineering, software quality assurance, software quality certification,
project management

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9W1.html (2 of 2) [4/28/2000 2:37:41 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Software Engineering Lab

A System Framework for Ensuring Link A System Framework for Ensuring Link
Validity under Web Browsing EnvironmentsValidity under Web Browsing Environments

Wen-Kui Chang and Shing-Kai Hon
Dept. of Computer & Information Sciences

Tunghai University, Taiwan ROC

2
Software Engineering Lab

outlinesoutlines

Ø1. introduction
Ø2. web links and information structure
Ø3. software quality certification
Ø4. certification on link correctness
Ø5. conclusions

2

3
Software Engineering Lab

introductionintroduction

Øthis paper investigates
ê issue of link validity

v under web browsing environment

Ørationale of statistical usage testing
ê is employed and adopted for

v web-based certification environments

Øall possible navigation paths
êare formulated to

v represent a usage model with
üMarkov chain property

4
Software Engineering Lab

web links and information structureweb links and information structure

Ø1. web links
êstructure link
êassociative link
êreferential link

Ø2. link validity
Ø3. link correctness
êcontent correctness
ê linking correctness

Ø4. information structure

3

5
Software Engineering Lab

software quality certificationsoftware quality certification

Ø1. statistical usage testing
Ø2. software usage model
Ø3. Markovian usage model
Ø4. statistical usage testing procedure

6
Software Engineering Lab

statistical usage testingstatistical usage testing

Ørationale lies in the fact that
êfailures which occurred most frequently in

practical use
v will be found early during the test cycle

Ømain benefit
êmake use of statistical inference techniques

to
v compute probabilistic properties of the testing

process

4

7
Software Engineering Lab

software usage modelsoftware usage model
Øcharacterize various operational uses of

a software system
ØIf a usage sample of test cases is drawn

statistically from usage population
êperformance on the sample may be used as

a basis for
v evaluation of software quality

Øin this paper
êMarkov approach will be employed for

v usage modeling

8
Software Engineering Lab

markovian markovian usage modelusage model

Ø usage model consists of
êall usage states that

v are connected by links which
ü indicate all possible stimuli, responses

üwith a probability index

Ø generated test scenarios are formulated as
êMarkov chain by the following facts

v occurrence of the current state depending on the previous
state only

v all usage states are incompatibility
v all probabilities emerged from each state are summed to

one

5

9
Software Engineering Lab

statistical usage testing procedurestatistical usage testing procedure
Ø 1. building a usage model that defines
êall possible events
ê their transition distribution

Ø 2. generating test cases statistically
êby associated distribution

Ø 3. executing test cases
Ø 4. collecting
êperformance information
ê inter-failure data

Ø 5. certifying the software by
ê reliability evaluation model

10
Software Engineering Lab

certification demonstrationcertification demonstration
on link correctnesson link correctness

Ø1. usage model
Ø2. analysis report
Ø3. failure analysis
Ø4. certification result
Ø4. discussion

6

11
Software Engineering Lab

usage modelusage model

Øbegin with statistical usage testing
êbuild navigation structure to

v delegate all possible navigation paths for a web
site

Ønavigation map may be established by
êFrontPage

Øsome hyperlink paths have no
termination that
êmay be assumed to terminate at

v some level

12
Software Engineering Lab

navigation map for IDS SOFTWAREnavigation map for IDS SOFTWARE

7

13
Software Engineering Lab

usage model of IDS Softwareusage model of IDS Software

A B

14
Software Engineering Lab

analysis reportanalysis report

652.909Least Likely Transition Coverage Expected At

652.909Least Likely State Coverage Expected At

4.586Expected Script Length

154Number Of Active Arcs

78Number Of Nondeleted States

8

15
Software Engineering Lab

failure analysisfailure analysis

0.0013070.00029110
0.0013070.0002919
0.0013070.0002918
0.0013070.0002917
0.0013070.0002916
0.0013070.0002915
0.0013070.0002914
0.0013070.0002913
0.0013070.0002912
0.0013070.0002911

Probability of
Occurrence

Mean First
PassageFailure ID

16
Software Engineering Lab

certification resultcertification result

1001000.0009680.0007370.98692876.50001Pass 765

98.701398.717950.0009690.0007380.98691176.40002Pass 764

98.701398.717950.0009710.0007390.98689476.29996Pass 763

98.701398.717950.0009720.0007390.98687776.20015Pass 762

97.402697.43590.0012680.0009650.98287758.40002Fail 584

96.7532497.43590.0012720.0009680.98437564Fail 576

79.2207884.615390.0027660.0021040.98717977.99983Pass 234

79.2207884.615390.0027780.0021130.98712477.66654Fail 233

79.2207884.615390.0026960.0020510.991379116.0001Pass 232

42.307690.8493190.0181350.0137980.94117617.00000Fail 34

42.307690.8493460.0137970.0104980.96969733.00003Pass 33

41.025640.8625040.0146740.0111650.96774230.99997Pass 31

39.743590.87190.0151540.0115310.96666729.99997Fail 30

% Arcs

Certified

% States

Certified
C=99%C=95%ReliabilityMTTFResultScript #

9

17
Software Engineering Lab

discussiondiscussion

Ø1. challenges
Ø2. research in future

18
Software Engineering Lab

challengeschallenges
Øif states in usage model are so many
êthe number of test scripts will

v become quite huge

Øin this research
êmanual execution of 765 test scripts took

about 5 hours

Øautomated testing of web site will be
êopportunity
êchallenge

10

19
Software Engineering Lab

research in futureresearch in future

Øweb testing must validate
ênot only hyperlinks
êbut also web technologies, such as

v JAVA
v Active X

Øour purpose are
êvalidating E-business website, such as

v broken pages
v faulty images
v CGI-Bin error messages

20
Software Engineering Lab

conclusionsconclusions
Ø approach based on statistical usage testing
êprovide

v complete testing coverage and quantitative analysis

Ø it has many benefits such as
êhelping in testing plan
êallocating testing resource
êgenerating test scripts automatically
ê reaching the maximal testing coverage

��������	
����	���	�����	���������
������� � � � � � � � � � � � � � � � � ������� ���	
��������

���������	
����
���
�����
����������������������
������
����������
������
++++
�

��������� ���
∗∗∗∗ ������ ��������!��

"�#�$�����#���
�%�&��
�������'���'��(�)��� ���*����
����(�)������+,��

���

+
� ����� ������	�� ��� �
������� ��� ��� �������� �	���	�� ��
�	��� ��� ���� ������

��������� �!�"���""#$� %� �
��� ��� ��� ��������&��� ��� ���'���� ����������� 	�����	�����

���	���(�

∗
�������������	�� �
���$�%��$� ���'����!�)�������)�*��������+� ,(�(�-�.� /��"���
�)����

0��1�����+� ���	�
�)� ���'��� 2"3� ���($� 4��5�2� /����/6� ��.$� 4��5�2� /��/536� �&���$�

'7	8&���(�
(��
('�

����
�'�-�

����� ������ ��1���)���� ��� ���
�� ��� ���7� 1�������
����� '��� ���'���)�

��1����&���(� ���� ��������� ��� �����	���
��)�� ����)� ��� �&������� ����

������� ���� ��� '��������� 	�����	����� ��1����&���(� %��� ���������

��1�)����� ����� ���� ����� ���&
����� �� ��������� ��
��)��&����� '��� ���

9��7�1� 	����� �������� �� ������ ���� 	�&������� ���� ��:�����+� '��	�� ���

����
���� ��)������� ��� �	����� �����	����(� ��� ������&� ���7� 1��������+�

��	��)� ����� ��� ����� ��� �	����+� ���� ���� �����;��)� ����
��� �����&�����

������ ��� ��� 9��7�1� 	����� �����(� ���� ��	�&&������ ���&�'��7� '����

���1���� 	�����	����� ���
�� <
�����1���(� ���� ���������&�	�����&� ��� ���

����� ��������� ���� ����&��	� ��� 	�������)� ����	�1���� ��������7�+� �
� �����

����	�1����)����������������)�������1�������������������1�)�������
	
��(�

%� ����� �����	����� ��� ��� ��������� ������	�� �� �� '��� ���� '���� ���

��&��������<
�����1�������
)����	�����	�������������������(�

����
��$������	���
��)������)+�
��)��&����+�9��7�1�	����+����'����

<
�����	�����	����+����'���������������

�
�

��� &��
��'����

:��� �����	������ ���� ��	������)��� ��1������� ��� &���� ��&����� �
� ��� ���� &��� '����

�&���&����� ��� ��� ��� ��	� ������	�(� =
����&���+� 1����
�� <
����� &���	�� ��	�&��

���)�����1����&���������	
�� ��&���
�������&��)����� ��� ��;�������	������� �����1������)�

�����	������)��'�(� >�� ���� ������	�+� ��	��� ��� ���7� 1������+� �&��)� ����� ���	���

�����
�	������ 	����	�����	�+�'���� ���������� ��1���)���(�!���������� ���7�1������� ��	�
����

1����
��	����	�����	�� �
	����� 	����	����+� ����1��	�+�	�&������������� ���)���� �&���	���+�

'��	��'��������	����1��������	�1��������������	���	����������&����������1����������'���)�

���	���(�

=���&���'��������	�����+� �� ���
���7������������	�������1��������1��������������������

��1�)���������(�>�����������+������&�'��7����<
�����1��	�����	�����������7�1�������'����

�����������������
�������������7�����������1�������	����������������������������&�����

����&�����������������	���.�(� �

>�� ���� ������	�+� ��� �������� ���� �����	���
��)�� ����)� ��� ��1���)���������&������� ��

	������ ���7�� ���� ��'�����(� >�� ����	����+� �� ���'����
��)��&����� ��� ����� ����������+�'��	��

	����	���;���1����
�������������
������������'��������&(��
�����������������������
������

��������	
����	���	�����	���������
������� � � � � � � � � � � � � � � � � ������� ���	
��������

���7���������������������
������������'��������������������1����&��(���
�+��������������

�����������
������������'��������&�'����	����
�������
������'������
)����;�(�>����
��)��

��&���� ��� ��� 	����� ��� ���'�� �����	����� ���&� ���
��)�� ���
�����+� ������&��	�� ��� ����

��&����&����������
�����������������������1��
�����������'����<
����(�

0����� ���'������'���)���1����&���+����������������1�)�������������� ��������&
�����

�������������
��)��&�����'������9��7�1�	����������������������������;�������
������

)�����������	����������	����(��������������&�	�����&����������������&��	����	�������)�

����	�1������������7�+��
����������	������)���� ���� �����	�&���.� �����&�������
	
���(�%�

����� �����	����� ��� ��� ��������� ������	�� �� �� '��� ���� '���� ����� ��� ��&��������

<
�����1�������
)����	�����	�������������������(�

��� �����������������
��������
�'��
��

���������������

>��)������+�'������7��	������	��)���;�����������������?�@$�

./��
�'��
�������

��
	
��� ���7�� ����'�
����� ��
��������� ��� �	���� ��� �����&����� ���	�� ���� �����
�����

��1�)�������	�1�������� �����&�������
	
��+�'��	��&��������� ������&����� ���������
	
��+�

������	��	��� ��
	
��+� ��'��7� ��
	
��+� ���&���.� ��
	
��� ?�@(� ����&���� ������� ��� �
	��

7����������7��������������&��������
������������'����)
��������1��'���	����)��<
�	7��(�

0/���'������������

%������	���1�����7�������������&���	���������������'���������&��������&�����������

������ ��� ��� &�����)� ��� ��������� �����&����� 	�&������(� 9���� ���	���	����+� ��� ��&��

���7�������������	�������7�����	��	��
��������������������&����.���������������(�>����	+�

���������������������1������������	�����'������'���)(�

1/+���
������������

%���������������7����1����������7���'���������&���������&���������������������������

��� �����&����(� >�������'����+� ����.����	����� �����&��������������������������� ���7����

�
�� �� ��� ��������	�� ��� ��� ����(� !���������+� �
	�� 7���� ��� ���7�� ��� ����������� '��� ���

�
���������)
����)�
������1��'�������������������������7�(� �

��&��'��������������
����������'�����
�������&�	�����&�����������������)���'����

��� ���1�� ���7�� ����(� A��	�+�
����� '���� ��� �������� ����� �� �����	� ��� ��
	
��� ��� ���

�����&����� ���	�� ���&� ��� 	����� ��� ��� �����&����� ���	�+� �
��&�7��)�'��� ��1�)�����

��&�'��������	
�(�

%&��)���������7�����������7��������������1�+�1�������	�����	������������	�������7�������

�����1����	�&���	�����7��
���������&���	�����	�����(�>��������1���)����+�������
	
���

���7��������������������7��'���������)������1���)������������������)�(�

�����������������

���	���	����+� ���7�1������� ��	�
����1�������)�1����
�� 	����	�����	�� �
	�� ��� 	����	����+�

����1��	�+�	�&����������������)�����&���	����?�@+�'��	��'���������������	��������	�1������

���� ����	���	�� ��� �����&����� �����1��� ���� ���'���)(�A�'�1��+� �� ��� ��� ��������� �� ���
���

	�&����� ���7� 1������� ���� ���	�	��� �����	�����+� ���	�� �����&����� ��
	
��� ��� '���

�����	���������&
	�������������������'��)���	�$�

�#*��7�������&��������1����(�

��������	
����	���	�����	���������
������� � � � � � � � � � � � � � � � � ������� ���	
��������

�#*��7����'���������B�	���	��	��������&�����(�

 #����&�������7��	�
��������&�����	�
�7�������&�����)����(�

2#>����&�������
	
�������������&��������
������1���������)�(�

%�� �� ��1������)� ���)���	���� '��� �����	�����+� ��� ���1�� �����	�� ���� &���� �&�����(�

%����	����� ��1�������&
�� ��	������ ���7� 1������� ���&
	�� ��� ��������� �� �1���� ��� ���1��

��
�����(�%		�����)��+�1���������������&�������
	
���'����������	����������(�

��������'

�'������

>�����������+����7�1�������'���������&���������&�����)����	���	����	�����	��C�

	����	����+�'��	��&����
��������	�������������'������	�$�

./�������'

�'������

��� �	<
���� 	����� 	����	����+� �� ��� ��)���� ��������� ��� ��� ��&���	�� ��� �����	�����(�

��
�+�����7�������	����	�����1������������������������������	���������	�������&����(�

0/��������'

�'������

=
�	�������+� ���7�	����	���������	���������� 	�&������������ ��� �����1��� �����&�����

�
������	�&������������������'����������&�������
	
��(�-������+����7��&����������������

1���� �������� ���7��)�	����	����(���&������������� ���7��)����	����&���
�
�����	�
��� ����
���

���7(�9����1��+������������&��	�������'��7�	���������
	�������'��7�������)+�����'����+�

���1��D��	��������+��	(�'��������
��	��1���������������&��	���������7��)�	����	����(�

��
�+��������	���������������
���������������7��)�	����	�����'�������1������)����)��'���

�����	�����+�'��	������������	�������������������������	�(�

���&��
��������
�'��
��

������ ��� �� '����� ��� ��	���� �&��	��)� ��� ��� ��
	
��� ��� '��	�� '��� �����	����� ���

����������+� �&���&���������
���(� >��)������+��&������)������������ �����&�������
	
���

'����&�7�����&����������
���������
��������)�	��	��������		��������������&����
���������

�����&����(� A�'�1��+� ��������� ��
	
���� ��1�� ��������� �&��	��)� ��� ��� ��1����&���

���	���(�

>��)������+������������
���������������&�������
	
�����������'��)�?�@$�

./�����
���
�'��
���

*��������
	
���	������
����������������<
��������
	
��������)�	�������������������

���� ��� �� �
&���� ��� '���� '����� �����&����� �����	����(� :��� �����	����� ��1�������

��&��&����&���&�������7��)���
	
������������)��������������������)������������<
������

'��(�����������	�&&�����
������� ����
	����������(����� �&���	��)
�����
��	��� ������ ���

'������ ����
	�����)���;��� ����������������� �����&����� ����� ��)�	������)����������������

���
��'�����
	��'��������	������������)�
���������1�������	��
��������
	����(�

0/!��
�
' �'�����
�'��
���

A�����	��	��� ��
	
��� 	��� ���
���� �� ������ ��� ���)����� ��
	
��� ��� ��� �����&�����

�&���&����� �����'��������	����+����� �����	����'�������'�����������������'���)� �����

������	��	��� ���7�(� 0���� 	���)�� �� �����	����� ����.� ���� ����	� �� ���7� ����� '����� ���

�����&��������	�����
�����������&��'������������)�����'�����
	
��(�

���	��
����+��1������������������	��	��������	�������������������)���������	��(����� ��+�

��������	
����	���	�����	���������
������� � � � � � � � � � � � � � � � � ������� ���	
��������

���������������
�
�������������)������������
���+��������&�������������������������'�����

�����	����� ���� ���	�����(�%		�����)��+� ����
���� 	��� 	�	�� ���'����� ��
	
��� ���'��� ����

����	�����������		�������'���������<
�	7��(�

1/2���
����
�'��
���

��'��7� ��
	
��� ��� 	�&������ ��� ����	���1�� ���7�+� '��	�� ���� ��� ��&���	� ��� �������	�

��
��� ���� ���� ������<
�����(� ����� ����� ��)
���� ��� ������� 	��	���� �)����� '����� ���

�����&����� ���	�(� >� ��� ����� ��� ���� ��� ���&���� ��1���)��� ���'��� �����	����� ����� ���

���)�����	���1�����7��'����&�7������	�1�����'���)��&��)���������&��������	�(�

3/4��
�5���
�'��
���

�		���������� 	��)���;����� ��� �����&����� ��� ��� ���)��� ��&��������(� A�'�1��+� &���.�

��
	
���	���	��
������&
����&��������������1����
����
�	�����������&����(������<
����+�

�� �������������� ��
���&���.���
	
������ ��� ��1������ �����&�������
	
��� ���������������

'��� �����	����+� ���1����)� ��� ����.��)� &�	�����&� �� ��'��� ��1���� ��� 	�&��������1��

�����&����(�

��� �����
��6�������'�
����'�����

�����������'�����������������

��	����� �����	���
��)�� ����)� ?�+ +2+/@� ���� ����� B
������� ���� '������ �������� ��

���'����<
�����	�����	����(����	��
����+���������������������	���
��)������)������������

��	�����������
�����		
�����&������<
�����������	�	���
���'���������
����������
���)����

���	�	��(� �

>�������	�+� ���&�������������� �����	���
��)�� ����)� ��� ��� ��&�7���
������ �����	���

�������	�� �	���<
��� �� 	�&�
�� �����������	� ���������� ��� ��� ����)� ���	���+� �
	�� ���

����������+����&�����&��������
����9�-=#��������'����<
�����	�����	����(�

��������
�������������

>�� �����	�+� �� ���'����
��)��&����� 	����	���;���1����
�������������
������� �� ���'����

����&(��
�����������������������
���������7���������������������
������������'����������

����������1����&��(�����+�������������������������
������������'��������&�'����	����
��

�����
������'������
)����;�(�>����
��)����&����������	�����������'�������	��������&�����

��)�����
�����+�������&��	����������&����&����������
�����������������������1��
�����

������'����<
����(�

:���7����
))����?5@�������'��������)�����������
������������������������	����	�

���	���� ���+� ���
��)�� ���&������� ��� �� ������ ���+� ���	���� ����&���+� �&�� ��&�)����
�+�

�����
	����� 9��7�1� 	����(� >�� ���� �����+� 9��7�1� ������	�� '���� ��� �&������� ����
��)��

&������)�?3@(�

���4�
�����������������

���������������������������9��7�1�	����+���
��)��&�����	��������������
��)�������

��� ���� 	����	��� ��� ���7�(� ������ ���7�� ����	��� ���� ��������� ��&
��� ���� ���������� '��� ��

���������������.(�������������������������������7�����������	������)��������7����&���
��)��

���� �� ��� ����(� =
����&���+� ��� �	�������+�)�������� �����&��� ��� �� ��&���� ��� ���

���
�����+����'����&�����������
��)����������'������1��������
��)��&��������&��������

�����������&����������(�

=
����&���+� ���)�������� ��� �	�������� ���� ���&
����� ��� �� 9��7�1� 	����� ��� ���

��������	
����	���	�����	���������
������� � � � � � � � � � � � � � � � � ������� ���	
��������

�����'��)���	��?3@$�

�#�		
����	��������	
�����������������)����������1��
����������(�

�#%���
��)�������������	�&��������(�

 #%�����������������&��)������&���	�����������
&&��������(�

�����������'�����������������#
'���
��

>������	����+����'����<
�����	�����	�����������
��)������)�������	��&������������&���

�����������'��)�? +�@$�

�#-
�����)���
��)��&������������������������������1����������������������������
���(�

�#��������)����	����������	���������������	�����������
���(�

 #!.�	
��)�������	����(�

2#�����	��)�������&��	�������&������������������
������(�

/#��������)�������'����������������������1��
�����&����(�

��� ��
����'������������'

�'������

���"�����
��������'
�#����

>�����������+���:������>E�����'����?�@�������'�����=�)(��������
��������������&����

���������:������ ��(� %�� ������� ��� ��� ���1��
�� ��	���+� ��
�� ��
	
���� �
	�� ��� ������+�

������	��	��+���'��7�����&���.�����
�
�����
�����������������
	
�����������&��������	�(�

-������+�&������������7������������&�������
	
���&�������&������������'��������	����(�

>�� ���� >E�� ���'���� �.�&���+� �����&����� ��
	
��� ��� ��	�)��;��� ��� ����)� ������	��	��+�

'��	�� 	��� ��� �����1��� ���&� ��� ��1�)����� ��
	
��� ��� ���'�� ��� =�)(�(� ���	�� ������	��	���

��
	
��������&�7���
��������
	
���� ���7�+� ���������&������
	
���� ���7���&���&��������

���>E�����'����:�����(�%����������1��
���+����&������1���)�����������	��	�����
	
���

����� ��� ��&��� ������ ���)����� ��
	
��� ��� �����&����� 	�������� ��� ��� �����	����� ����&(�

���	���������	�&&��	����:�����+��������	
���+����7����������������������	��	�����
	
���&���

�������
����������'������'�������1�)���������������7�
�����������������
	�(�>���������+�

����	���)������'������D������.���������	������'����������&��������	�������'���������

��&��'��������'����
��(�

�

�

�

�

�

�

�

�

�

=�)(���>E����=�:%�!��.�&������&���)��

��������	
����	���	�����	���������
������� � � � � � � � � � � � � � � � � ������� ���	
��������

���*����������

�����)���'��������	���
��)������)+�����1�)�������
	
���&
�����������
���������)���

���������������1�)���������� ������'������(�A�'�1��+� �� ��� ��&�'��������	
�� ��	����	� ����

	�&��������'���)�������������������������&���)����1��)�����'���
���&������(���
�+�

��&�	�����
	
��������)������&������1����������)����������&��&����������������������

����������&������	�������������������'�������1�)�������
	
��(���1��������+��������������

�����&�������
	
������'��������	�����
�
�����&�7���������7��)����	������1������	�&���.(�

=��
��������&��������
	������%,-%FG:!-�?�"@+�9�	������=���,�)�+��	(+�&���
��������

H���'�;����H���	������������7�+������
���+�����=��9�	��������������)��(�

>������������	�+�����1�)�����&��������������������=���,�)��������'�����=�)(�(��
������

����1������������7���������'���)��������������&���)�������������)����(�:�����
���)�

>E�� ���'���+�
���� 	��	7�� �1���� ��������� ��������7� ���&� ��� �����)� �����
���� ��� ��������

���	���� ��� �.�� ����� �� ��&����� ���� ���'���)(� %�� �� ���
�+� ����� ��������� �����������

����������&
������9��7�1�	����(�

%������ ���
������+� �����1�)�����&���	����������
	
���������
��)��&����� ���=�)(+� ���

'��	����������	��	���%�����-����=�)(�����.���������=�)(2�����=�)(/+������	�1���(�

%���
)�����
��)��&��������>E�����'�������	��)���;��������������	��	�����
	
��+���&��

��������7��������1�������&������+����	��������7���.������������(���������1���
	��7�������

���������&+�	������������&���	��������	��	�����
	
���	����
��)���������
	
���'������

���� ����� ��&���)�#� ��� ��� ��1��� �(�%		�����)��+� ���'����� ���� ��
	
��� ��� >E�����'����

	����������5���1���+������&�����������=�)(�(�

=
����&���+� ��&�� ��������7�+� �� �1���� 	�)���1�� �1������� ���� ���)���� ���7�+�&��� ���

���
&��� �� ��&����� �� ��&�� ��1��� ��������)���� ��� �&������ 	����(�=��� �����	�+� �<
����

���������=�)(���)���������
����&������������+�'���������)����������&������������
�����

��1���
�	�&��)����7�+��
��������
&����������&���������������7�������&�����	����(�

�

=�)(��������1�)�����&�������>E����=�:%�!��.�&����

�

�

��������	
����	���	�����	���������
������� � � � � � � � � � � � � � � � � ������� ���	
��������

�

�

�

�

�

�

�

�

�

=�)(� ����
��)��&���������>E����=�:%�!��.�&����

�

�

�

�

�

�

=�)(�2������.�������
��)��&�����������������	��	���%����=�)� �

�

�

�

�

�

=�)(�/������.�������
��)��&�����������������	��	���-����=�)� �

���4���������������� ��������������
�'��
��

%�����'���������������+�����
���
��)��&������������>E�����'����'��������	�
����3��

� �

�

�

�

��������	
����	���	�����	���������
������� � � � � � � � � � � � � � � � � ������� ���	
��������

�����������+����'������������
���&��������&�'��7��������7�	�����	��������'��������	�����(�

:������������������������	�����	���������?��@+���������;���������&�������
&&���;������

�������������(�

�������(�%���������������������>E����=�:%�!���1�)�������
	
���

��������	��
��������������� ���

��������	������������� ����

��������������������� � �!��"�

��������#�$�������%
������������������� "�&!'('�

��������#�$�)�������
��%
������������������� "�&!'('�

�����
����'����������������������
������##��'������

./)�����'
�#���

�������	����+� ����
&������� ��� �	����� ��<
����� �����'�������3����1�)���������������

���������	�������7��������&�������5/ ��5/�(�"�#(�A�'�1��+�������.�	
��)������)��������

5/ �����	�����������	�	�+���1��������7��������'������
�������������������������(���
�+����

�
&���� ��� ��� �	�������� ��<
����� �� �	���1�� ��� 	�&����� 	�1���)�� ��� ��� ��&��������

��
	
��������	���������35/(�

0/	����
�����������

��� �����1��)� ��� ����
��� �����&����+� ���� ��
�	�� ��� ���7� ��1������� &��� ��� ���
	���

�&��)��������
�����1��������7��������'���������&����)��IA��,�2"2����=�
��J����������

��������'���(����)������� �������
���	�&������&����������?>E����	���
�����,���	�@�������

�
����� �.������� ���&� ��� ����� %(� ���� ����
��� ���� ��� ��� ?�
����� �����@� ������ ��� ����

�
�	�������?A����=��&@(���������
�����������7��?>E�����'��������	������	���
�����,���	�@�

������?A����=��&@(�

>������������+�������������������
�����1����������������������	�����	�
������&�����"�

�����	�����
�����&��)����35/�����)����'���)�����(�

�������(�=���
�������������������>E����=�:%�!��.�&����

������+,� � -���������
.�������

.�
������$�
	�
����������� � �

�� (!(((&'�� (!((�/(��

&� (!(((&'�� (!((�/(��

/� (!(((&'�� (!((�/(��

�� (!(((&'�� (!((�/(��

�� (!(((&'�� (!((�/(��

"� (!(((&'�� (!((�/(��

�� (!(((&'�� (!((�/(��

�� (!(((&'�� (!((�/(��

'� (!(((&'�� (!((�/(��

�(� (!(((&'�� (!((�/(��

�

1/��
����'�����
������

-�����������������
������1������&����9��7�1�
��)��&����+��������	�����	�����&������

�
&&���;������������������ +�'����/K�������K�	�������	������1���(���&��	�����������)�

����	������������'�����������2(�

�

��������	
����	���	�����	���������
������� � � � � � � � � � � � � � � � � ������� ���	
��������

�

�

������ (�������	��������
���������>E����=�:%�!��.�&����

�������0� 1����� -))*� 1� %2'�3� %2''3�
3��������
%����	����

3������
%����	����

/(� � *��� � &'!''''��(!'""""��(!(���/��(!(������ (!���'� /'!��/�'�

/�� � .���� �/(!''''��(!'"���&�(!(���"��(!(��"��� (!�"&�(�� ��!(&�"��

//� � .���� �//!((((/�(!'"'"'��(!(�(�'��(!(�/�'�� (!��'/�"� �&!/(�"'�

/�� � *��� � ��!(((((�(!'����"�(!(�/�'��(!(���/�� (!��'/�'� �&!/(�"'�

&/&� � .���� ���"!(((��(!''�/�'�(!((&(���(!((&"'"� ��!"��/'� �'!&&(���

&//� � *��� � ��!"""���(!'���&��(!((&��/�(!((&���� ��!"��/'� �'!&&(���

&/�� � .���� ���!'''�/�(!'����'�(!((&�(��(!((&�""� ��!"��/'� �'!&&(���

��"� � *��� � "�� (!'��/���(!((('"��(!((�&�&� '�!�/�'� '"!��/&��

���� � *��� � ��!�(((&�(!'�&����(!((('"��(!((�&"�� '�!�/�'� '�!�(&"�

�"&� � .���� ��"!&((���(!'�"����(!(((�/'�(!((('�&� '�!���'�� '�!�(�/�

�"/� � .���� ��"!&'''"�(!'�"�'��(!(((�/'�(!((('��� '�!���'�� '�!�(�/�

�"�� � .���� ��"!�(((&�(!'�"'���(!(((�/��(!((('"'� '�!���'�� '�!�(�/�

�"�� � .���� ��"!�(((��(!'�"'&��(!(((�/��(!((('"�� �((� �((�

�

�

������2(������	�����������>E����=�:%�!��.�&����

)����������4�/(�)����������4�&//�

��
�
	�5�����
��+��
#���
�!��
�
�������

�������

��
�
	�5�����
��+��
#���
�!��
�
�������

�������

&�
&!����#��
��6..�1)��7+�,�7�'��
�6..�1)��7+�,�7�'��

&�
&!����#��
�7 ��8����5&�
7 ��8����5&�

/�
/!����#��
�9���*
���
9���*
���

/�
/!����#��
�9���*
���
9���*
���

��
�!����#��
�+,��)�� �����
���.
��$�
+,��)�� �����
���.
��$�

��
�!����#��
�+,��)�� �����
���.
��$�
+,��)�� �����
���.
��$�

��
�!����#��
��
	�5����)����������
�
	�5����)����������

��
�!����#��
��
	�5����)����������
�
	�5����)����������

)����������4���"�)����������4�����

��
�
	�5�����
��+��
#���
�!��
�
�������

�������

��
�
	�5�����
��+��
#���
�!��
�
�������

�������

&�
&!����#��
��6..�1)��7+�,�7�'��
�6..�1)��7+�,�7�'��

&�
&!����#��
��6..�1)��7+�,�7�'��
�6..�1)��7+�,�7�'��

/�
/!����#��
�9���*
���
9���*
���

/�
/!����#��
�9���*
���
9���*
���

��
�!����#��
�+,��)�� �����
���.
��$�
+,��)�� �����
���.
��$�

��
�!����#��
�+,��)�� �����
���.
��$�
+,��)�� �����
���.
��$�

��
�!����#��
��
	�5����)����������
�
	�5����)����������

��
�!����#��
��
	�5����)����������
�
	�5����)����������

�

�

��������	
����	���	�����	���������
������� � � � � � � � � � � � � � � � � �������� ���	
��������

���"��'������

./� ���������

:���
�����
�+�����������������
��)��&������������&���+�����
&�����������	�����'����

��	�&��<
����
)�(�9����1��+�&���� ��� �	�����'���� �&����&���� �.�	
���� �&�(���&������+�

��� ���)��� ��� ��1�)����� ���+� ��� &���� ����)� �.�	
���� �&�(� >�� ���� ������	�+� &��
���

�.�	
�������35/� ��� �	����� ��7� ���
�/���
��(� >������	
���+� �1���� ��� �	����&��� �7��/�

�2(/�5#����������1���)���������'���)+��		�����)����������(���
�+��
�&��������)����'���

����'���������������
����������	������)���������'����
	�����
�(�

%������	������)������'�������)�	�&������&�������'���� �����(����
)�+��� ���	
�����

��)�+���������������'���.����)��������+��(�(�>������!.��������������	������1�)��������

�
������
�����&����������������+��������)����	������	�&����&�'���	�&���	���(�>����	+�

��������� ���'����� ���� ��&��&��� ����'��� '��� ��������� ���
���� ���� �
����� ���������

�	���<
��(� �����<
����+� 	�&���.��� ��� '��� ����)� ���)������ ��	������(� =
����&���+�

������&��	�� ��� ��'��� ���'���� ��� ��)���� 	���������'��� 1����
�� ��	���� �
	�� ��$� �������)�

����&�+� ������&�+� &�	����� 	����)
������+� �	(� =��� �����	�+� ����)� ��� ��� ���������

	����)
������	�&���������	���<
�	7�����	�&�����
)���������
�&�
��������7(�

0/+����
' ��������
��

>��)������+�'�������)�&
��1�����������������������7���
������'����	�����)���+��
	��

���L%M%�����%	�1��N(�>������	
���+����
������������	�����������)���'����.��&����������

�����	��������(�>����&�����&��������	������<
�����������
�������'������(�!��
�������'����

����'��������<
������
	����$����7�����)��+���
����&�)��+���>�-���������&����)��+��	(�	���

��'�����1����������
���(� �

>�� �����+� ��� 	�&�������� ���'��� ���� 	�&���.��� ���� ��'� <
����� ��� ���������� ����� ��

	�&������
������(�������
�����'����<
�	7���������������������������6���������'�������������

���1��'����������&��������(�A�������+�1�������)����
�������'�������������

�������	�������

�
��������	�(�

��� ��'�������

=������'����<
�����	�����	����+������&�'��7���������	���
��)������)������1���)�������

���������+�������&�	�����&�����	�������)����������������1�)��������7�������1������(�

���������������������	���
��)������)������	�&�������������&�	�&����+�'��	�����������

�������)������������	�������	���(����������1���)����������	�������	������������	�����

)
������� ��� ���� ��1�)����� ����� ���� 	�&������� ��1�� ����� ����(� ��� ��� 	������+� ���

�
))�����������	����������������	���
��)������)�&������1����	�&���������)�	�1���)��

����<
�����1��������������'���(�

���� ��������� &�	�����&� ���� ����� ���'�� �� ��� ����	�1�� ���� 	�������)� <
�	7��� ���7�

1������� ��� '������ �����	�����(� >� ���� &���� �������� �
	�� ��$� ������)� ��� ����)� ����� ����

����	���)� ����)� ����
�	�+�)�������)� ��� �	����� �
�&��	����+� ���� ���	���)� ���&�.�&���

����)�	�1���)�(�A��	�+�����������������)����&�'��7�'�������&�������	�	�����������	����

������������������)(�

>���

���������	�+�1�������)���������7������'����	�����)�������'������������)���:������

'���� ��� ��)���� �&�����;��(� 9���'����+� ��� �
�&���� ��� ��1����&��� ���� �.�	
��)� ���

)�������)� ��� �	����� ���:������ �����	������'���� ��� ��1���)���� ���� ��1������(�-������+�

��&��	�&&����	���<
��� ������
�������:������ �
	����$� ���&+��
�����
�&�+���>��	���+�

�	(�������������1��'��������������&����1��'��������<
��������
���	�(�

��������	
����	���	�����	���������
������� � � � � � � � � � � � � � � � � �������� ���	
��������

+���
��'���

�(� *�'�+�E�1��+�:�����A���$�A����&������������:��C%��!�)�������)�%�����	�+�L����

:�������������+�>�-�$�"23��� ���+�����+���(�5"�5/(�

�(� :���7��+�L(�%(�����9(��(����&����$�H%�9��7�1�������9��������������	������'����

�����)+H�>!!!�������	�����������'����!�)�������)+��	��������2+��"���"#+���(�

������2(�

 (� :����+��(�A(+�L(�A(�,����������(�L(����&&���$�H�����	��������)�������'����-����������

0��)��9����+H����'����,��	�	������!.������	�+�L��
�������/+�/��#+���(��3��"�(�

2(� ����)+�:���F
�$�H�%�O
�����	�,��)��&&��)�%�����	����0��)��9������)��������'����

�����������������	����+H��
�)����L�
����+�L
������3+�M��(� �+���(�5/�3�(�

/(� ����)+�:���F
�+���������'
�����:�����&����)$�I!��
���)�=
�	������������1���)��

=���%1����	���������%����	����������
)�������	���0��)�������)+J�=!�9%P���������

!
����������'����9���
��&�����������	��2���%&�����&+���������������+��	�����

����+���(��5���5�(�

5(� :���7��+�L(�%(�����L(A(�,����$�H9��7�1�%��������������'�������	���	�����+H�%�9�

������	�����������'����!�)�������)�����9�������)�+�M��(����#+���� +���(�� ��"5(�

3(� ����)+�:���F
�+�����,��:��)+���������)���
��=
$�I%��>�1���)�����������

9��7�1����,����������0��)��9������������'����O
�����������	����+J�,��	(�������

��������>���
�����>��
������!�)�����������������������	�+����'��+�E�	�&��������+�

��(������ /(�

�(� ����)+�:���F
�+�����,��:��)+���������)���
��=
$�I%��
������0��)��9������)�����

���'���������������������	�����1���,�������)���&
�����+J����� �����&����
&����

���������������9������������+����'��+��	���������+���(�3����/(�

�(� >E����=�:%�!�'�����$���$GG�������(�&+��"""(�

�"(����'����������	�+�>�	($��%,-%FG:���?>!@�M��(��(/�0����9��
��+�����=���	��	��0�%+�

����(�

��(�O�*���$������������0�����
���+�M�������2("+�����(�

QW2000 Paper 9M1

Mrs. Hong Guo, Prof. Graham King,
Ms. Margaret Ross & Mr. Geoffe Stable

(Southampton Institute)

Using BOOTSTRAP to Improve the
Management of Software Process in a

Virtual Software Organization?

BACK TO QW2000 PROGRAM

Presentation Abstract

The aim of this paper is to introduce a new development trend in software industry and to present the
initial findings in evaluating specific requirements for software process improvement in Virtual
Software Environments (VSE). Surveys were designed with the purpose of identifying key issues of
successful software development in Virtual Software Organisations (VSO).

The results of the survey indicate that a suitable process approach for managing and improving the
software development process is also the most important issue in achieving product quality
improvement in VSE. This issue has not been addressed by existing software process models.
Research suggests that a software process model for Teleworking software development based on
the modification of the BOOTSTRAP process assessment and improvement approach may be
generated. To provide the necessary groundwork in developing such a model, the focus of this paper
is the analysis of the BOOTSTRAP modelËs methodology, with the identification of the issues that are
not covered in BOOTSTRAP. As a consequence of this study, the possible extensions are suggested.

About the Authors

Hong Guo is a Ph.D. research student at Research Centre of Computer Systems, Southampton
Institute, in UK. Her research interests include software development, software process assessment
and improvement, quality control. Hong Guo received a MSc Diploma from Tsing-hua University,
Peking, in 1987 and a B.Sc. from Luoyang Institute of Technology in 1982, both in Solid Mechanics in
P.R.China. She was a senior lecturer at university in P. R. China, teaching and research in
programming languages, software design and development, solid mechanics analysis and finite
element analysis.

Graham King is Professor of Computer Systems Engineering at Southampton Institute in U.K.. His
expertise lies in Data Compression & Communication, mobile radio condition monitoring, VLSI
systems and parallel computation. In the course of having succesfully completed numerous research
programmes for commercial and non-commercial research sponsors, he has over 80 publications
(conferences, journals, books) and he is named inventor in a project for which patent protection is

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9M1.html (1 of 2) [4/28/2000 2:38:05 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

currently being sought.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9M1.html (2 of 2) [4/28/2000 2:38:05 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

 Process Improvement
In Virtual Software Organisation

with BOOTSTRAP

Hong Guo, Graham King
Margaret Ross, Geoff Staples

Southampton Institute, Southampton, UK

The world is changing

� The world is in Information Technology Age

u Rapid communication

u Global information accessing

u New product delivery channels

u New kinds of business

u New kinds organization

u Flexible working - Teleworking

� Software industry is the enabling force

2

� Demand for software product
u Continues increasing in quantity, complexity

u Deliver on time, Cheaper, Better quality

� Supply and resource
u Demand is increasing much faster than supply

u Shortage of software professionals

� Global competition

u Competitive pressures are changing

 the nature of software industry

New challenges in software industry

Responses to the challenges

n Geographically distributed projects

n Distributed software development environments

n Virtual Software Organization

n Virtual Corporations

3

Teleworking
n Telecommuting, Home working ...

n Working from home, Telecentre, Telecottage

n The use of computers and telecommunications to
change the accepted geography of work

n Based on or facilitated by network technology

n Benefits
u Increasing flexibility & convenience
u Increasing productivity & job satisfaction
u Reducing costs with less stress
u Solving transport problems
u Improving quality of human life

Virtual Software Organization
n Organizations developing software involve some of

their software engineers working from distance -
Teleworking

n Software project is implemented in geographically
distributed environments

n Benefits
u Savings in staff training & office overhead
u Improved product quality
u Shorter time to market
u Extensive opportunity to exploit competent

human resource
u Stronger competence

4

Software measurement
and Quality
n Measurement of products is absolutely

fundamental to the engineering process

n It is convinced that measurement as practised in
other engineering disciplines is IMPOSSIBLE for
Software Engineering

n Software process is a set of empirical practices in
software development, organisation and
management

n Software process assessment and improvement
is an alternative to improve software quality

Improving Software Quality by
Well-defined Process Management
n CMM

u The first SPI model developed by SEI at Carnegie
Mellon University in U.S.

n SPICE - ISO/IEC TR 15504
u Emerging international standard for software

process assessment, capability determination, and
improvement developed by the SPICE project

n BOOTSTRAP methodology
u The European process assessment and improvement

approach developed by a European consortium, and
BOOTSTRAP Institute

5

Process Management & Improvement
in distributed environments

n A well-defined and managed software process is also
most crucial as a guarantor of software quality

n Little attention has been paid to the support of large
distributed projects and its development environments

n A major requirement for the creation and management
of virtual software project and virtual organization is
distributed project coordination and communication

Objective of the study

n To address the needs of virtual software
organisation and its distributed project

n To adopt the existing process modeling to take
account of the circumstances surrounding
geographically distributed software environments

6

BOOTSTRAP methodology 3.0
n The purpose is to provide a European approach for

process assessment based software process
improvement

n The goal of the improvement is to apply good
software engineering principles in the software
development process

n Include
u A process model
u An assessment process
u A mechanism to score the process and present the results
u Guidelines on process improvement
u Assessor training program & Licensing policy
u A database of assessment results

Architecture of BOOTSTRAP
n Adopt three dimensions

u Process dimension: a set of good processes & activities

u Capability dimension: a rating framework for each process

u Technology dimension: Advantage over other models

n The objectives of software process management are
to produce products according to plan while
simultaneously improving the organisation’s capability
to produce better products

n Achievement of process implementation and its
capability are judged by objective evidence

7

The Process Model in BOOTSTRAP
n Used as basis to perform an assessment
n Fully compatible with the requirements of ISO TR 15504
n Structured as a tree that identifies

u Process categories

o Organisation

o Technology

o Methodology

u Process areas

u Processes and best practices

Issues Specific
to distributed software project
Major requirements are:

n Distributed project coordination management:

u Different people working on a common project agree to a
common definition of what they are building, share
information and mesh their activities

u They must coordinate their work so that it gets done and
fits together

p How to handle the effects of changes to software artifacts
p How to constrain the effect one change has to other parts

of the software system
p How to ensure proper flow of change information, e.g. to

notify people involved in the process of the changes that
concern them

8

Issues Specific
to distributed software project
n Distributed Software Configuration Management

u A communicator that establishes relationships with all the
project activities - providing technical information about
specification, document, manual, code, test results, and so
forth, provided to the project team

u To ensure that changes to the software are managed

p Stronger change control management system

p Stronger configuration management system:
p Stronger documentation management system:

Documentation becomes the most used means of
communication

p An effective version control system

Issues Specific
to distributed software project
n Effective communication
u A virtual software team must be able first to communicate

in a distributed fashion, second to communicate effectively
along the spectrum from real time to non-real time

u Most popular communication techniques

p Telephone
p video conference
p Teleconference
p Networking

p E-mail
p Voice-mail
p Pagers
p Fax

p Mail
p GroupWare
p Bulletin-Board
p Database

Real time Near Real time Non Real time

u Most effective communication: Face-to-Face meeting

9

Requirement of Support System
for distributed software projects
n Integrated automated support systems for

u Co-ordination
u Collaboration
u Communication
u Project monitoring
u Configuration management

n Intranet - the most enabling factor

u Quickly transferring large amounts of data from one
site to another, with fairly secure

u Faster communication services with integrated
support capability

u Easier channel to deliver computer-based training
u Cheap and easy-to-construct

Extending BOOTSTRAP for VSE
n Establish management system for technique support

system at organisational and project level

n Establish communication systems

n Set up an Intranet system to support information
sharing, and project management

n Adopt automated configuration management tools

n Adopt automated version control management tool

n Adopt documentation tools to develop and maintain
the project documents

n Establish and maintain a problem report repository to
enable continually process improvement

10

Conclusion
n Formation of VSE & VSO is an inevitable trend caused

by changes in the social structure induced by the
global network and communication technology

n Present the initial findings of an evaluation of the
specific problems and requirements for software
process improvement in VSE

n Analysed the methodology of BOOTSTRAP to provide
the background knowledge

n Indicated the suggested extension in BOOTSTRAP
concerning its application into distributed software
environment

1

 Process Improvement In Virtual Software Organisation
with the BOOTSTRAP Methodology

Hong Guo, Graham King, Margaret Ross, Geoff Staples
Research Centre for Systems Engineering
Southampton Institute, Southampton, UK

Abstract

The aim of this paper is to introduce latest development trends in the software industry and to present the initial
findings in evaluating specific requirements for software process assessment and improvement in Virtual Software
Environments. Surveys were designed with the purpose of identifying key issues of successful software
development in Virtual Software Organisations.

The results of our survey indicate that a suitable process approach for managing and improving the software
development process is also the most important issue in achieving product quality improvement in distributed
development environments. This issue has not been addressed by existing software process assessment and
improvement models. Research suggests that a software process approach for Teleworking software development
environments may be based on the modification of the existing process models. To provide the necessary
groundwork in developing such an approach, the focus of this paper is the analysis of the BOOTSTRAP model’s
methodology, with the identification of the issues that are not covered in BOOTSTRAP. As a consequence of this
study, the possible extensions are suggested.

Key Words: BOOTSTRAP model, Teleworking, Virtual Software Environments (VSEs), Virtual Software
Organisation (VSO), Software Process Improvement (SPI), Software Quality.

1. Introduction: Teleworking, Virtual Software Environments, Virtual Software Organisation

It is becoming increasingly harder to justify completing a software development project inside company walls [1].
As the software community begins to appreciate the economy of merging diverse development skills and domain
expertise, and as communication media become more sophisticated, the cost, time to delivery and competitive
pressures are pushing more companies toward geographically distributed projects: It is becoming less and less cost-
effective or competitive to develop a software product within the same building, company, or even country.
Meanwhile, the structure of society has steadily changed into a new era of Information and Communication
Technology, which means we are being able to work and live wherever we like. The distance boundary between
home, organisation, and country is becoming less and less important for everyone in the world. Now work may
traverse time and space instead of people having to travel, because the power of information technology (IT)
existing today has made it possible to remotely access information across organisational and national boundaries.
All of which is therefore allowing groups from different locations and cultures and with different expectations and
goals to come together as a global software development team.

The trend towards distributed software development is induced by the changes in the social and economical
environment of software engineering. The major driver of this trend is the changes in the nature of the software
industry:

• Supply and Demand: The demand for software services has historically outpaced the supply of people who
perform them [1]. There is a common recognition that software development is a very competitive and
profitable business. More importantly, software is the enabling force of the changes happening today, and is
becoming the key element that governs competition at the threshold to the 21st century. As society improves,
the demand for software with better quality at lower cost will continues to increase as a faster pace than the
supply, whilst the software development projects get continually larger and more complicated. Software is now
a huge global industry faced with a great challenge in attracting and retaining highly skilled software
professionals.

2

• Cost and Resource: Labour costs have escalated as companies compete for resources. As equivalent resources
became available at a lower cost – especially overseas – work started to migrate outside the company. In
essence, the supply and demand of software professionals was driving costs, which in turn was driving the
migration of software development outside company walls. Today, many companies are finding it economically
attractive to have some of their employees working remotely in full or part time. These staff would otherwise
unavailable to them in bringing together the scarce competencies and resources to meet development
requirements. This is therefore necessitating the emergence of global distributed software development projects.

• Global Business and Market: Competition in business today has significantly changed. Competitors are now all
over the world. Customers may be global as well. The rapid development in global networking, with increasing
power at low-cost nature has not only caused an explosion in e-business and e-commerce activity, which
creating a paradigm shift in the business world, but also provided organisations with extensive opportunities to
develop an additional channel for doing business. Putting business “on-line” is opening up a whole new world
of possibilities such as enhanced service levels, increased efficiency, reduced costs, faster delivery of products
like software, shorter time-to-market and wider market reach. Meanwhile, computers, especially lower end
types like PCs, are increasingly less expensive, contain more computing power, and include more features and
functions than they did even one year ago. All of this is particularly beneficial for organizations developing
software and promotes the growing formation of Virtual Software Environments and Virtual Software
Organizations. On the other hand, this means new challenges. Organisations will have to keep pace with the rate
of technology change to remain globally competitive. For those who produce software, this means they can no
longer pass off a product with poor quality or average performance. It is no longer a seller’s market. Customers
will start demanding software that meets more of their particular need.

The pace of change is now extraordinary. Not only new kinds of organisation and new ways of organising are being
fostered, the new way of working - Teleworking, is also developing very rapidly as an increasingly normal way of
working [2] that can greatly expand the pool of available workforce and improve the quality of human life. The
product life cycle increasingly takes place within so-called virtual team [3] and virtual organisation [4,5] that
requires close co-operation across a variety of distributed locations or national boundaries. The number of new
concepts: Teleworking software engineer; Virtual Software Environments (VSEs); and Virtual Software
Organisation (VSO) are also being generated as a representation of new way of working and a novel form of
organisation [6].

A characteristic of VSEs and VSO is the intensive use of new technologies to provide support for interactions
between its members who are operating in geographically distributed locations, whilst Teleworking is the use of
computers and telecommunications to change the accepted geography of work that is based on or facilitated by the
world-wide interconnected network technology. The creation of the VSE and VSO is a modern approach to
economies of scale. It provides the software industry with a great opportunity to exploit highly competent human
resources all around the world to dramatically increase its global competitive power.

Competition in business today is fierce. Firms have to change just about everything they do simply to survive. The
trend towards global or virtual software development is inevitable as practical response to the changes, and increases
the magnitude of problems to be addressed. For organisations developing software, the most important goals were
still getting control of software cost, schedules, and quality. However, the problems associated with the poor quality
software products has not only given a bad name to software organizations, but also increasingly became a rigorous
obstruction in the way software engineering developing. As such, the problem must be resolved, as a major
challenge now facing the software industry. Unfortunately, there is no measure that comprehensively represents
programming quality [7], neither is there a sign of a magic new technology to solve these problems [8]. Probably it
is because of the nature of software - both finite and incomplete. Software is a finite and incomplete model of an
unbounded application in an unbounded operational domain [9]. In order to escape from a continuous software
crisis, fundamental changes must occur both in how we manage software development processes and in the way
software engineers do their work. A considerable effort in current software engineering has consequently being
concerned with Software Process Improvement (SPI) as an alternative to improve software quality.

Over the last decade, software process assessment and improvement approaches have played a momentous role in
achieving, evaluating, maintaining and improving software quality in the software industry. A number of process
models have been developed and contributed efficiently to a fundamental awareness of the concepts and the
importance of adopting a defined and disciplined software process and management system, both at organisational

3

and individual level in software engineering. A number of methods and tools which support software process
modelling, evaluation and improvement are currently available [10].

However, the existing process models are only concerned with the traditional centralised software development
environments, little attention has been paid to the support of large distributed projects and its development
environments. Given the number of SPI models available, the questions arises as to whether these models can be
used or which one of them is the best suited for software development in the geographically distributed
environments. A significant difference is that this kind of software development project and team members spans
extensive distances and a numbers of countries of varying culture while still operating as if they are at company
headquarters. The resulting need for the VSEs and VSO is now a great challenge for project management and
requires new techniques for project co-ordination, communication and change control.

The authors explicitly address the problem with the two important issues: software process improvement and
managerial activities relevant to the VSE of VSO. The attempt is to adopt existing process modelling to take account
of the circumstances surrounding geographically distributed software environments. In doing this, two surveys have
been conducted to gain the practical insights into the software industry. The results of the survey revealed that a
suitable process approach for managing and improving the software development process is also the most important
issue for VSEs and VSO. The issues of supporting large distributed software projects and their special needs with
respect to managing and improving the software process have however not been addressed by the existing SPI
models. More discussion about the surveys can be found in [11, 12].

To provide the necessary background knowledge in developing such approaches for VSE, a comparative analysis of
the existing SPI model has been made in terms of its possible application into VSE [13, 14]. One of the most
important existing models, the European software process assessment methodology – BOOTSTRAP, is further
identified as a potential candidate in the attempt of the development. The primary focus of this paper is to analyze
the methodology of BOOTSTRAP, with the initial identification of the issues specific to VSEs that are not covered
in BOOTSTRAP.

2. The BOOTSTRAP Methodology

2.1 Background of BOOTSTRAP

Bootstrap methodology is the most well known European process assessment and improvement approach developed
by a European consortium partially funded by the European Commission within the ESPRIT program (ESPRIT
Project 5441) [15]. This project ran from 1989 to February 1993, with mission to study investments in technology
upgrades and lay the groundwork for European technology transfer standards and common practices. The main goal
was to speed up the application of software engineering technology in the European software industry.

The purpose of the Bootstrap methodology is to provide a European approach for assessment based software process
improvement. The goal of the improvements is to apply good software engineering principles in the software
process. In executing this goal, BOOTSTRAP includes both CMM and the ISO9000 standards, ISO 9000-3 in
particular, as its starting points. Since the end of the project, the methodology has been further developed and
marketed by the BOOTSTRAP Institute. The latest version of BOOTSTRAP 3.0 has been developed by
BOOTSTRAP Institute in September 1997 [16]. The result is to ensure full conformance to ISO 15504, and to align
to ISO 12207.

The methodology includes a process model, an assessment process, a mechanism to score the process and present
the results, guidelines on process improvement, assessor training program, licensing policy. The Bootstrap Institute
maintains a database of assessment results mainly from European companies but also from others in the rest of the
world.

2.2 Architecture of BOOTSTRAP

The BOOTSTRAP methodology supports both software process assessment and improvement. It makes an
assumption that assessment is a part of the improvement process and provides assessment results as main input for
the improvement action planning and as feedback from the improvement activities implemented in the process [15].
Three dimensions are adopted in version 3.0 to create a single set of best-in-class practices for software engineering
utilising existing internationally-recognised process assessment methodologies. They are:

4

• The process dimension provides a set of fundamental processes and activities associated with good software
engineering.

• The capability dimension provides a rating framework for each process assessed. The capability of each process
assessed is measured within six maturity levels on the basis of a quartile scale dividing each maturity level into
quartiles. Thus more detailed and precise results can be obtained, and the quartiles make it possible to compare
different assessment results inside the same capability level.

• The technology dimension aims to evaluate the extent to which the process capability is strengthened with
adoption of suitable tools for each process.

The fundamental elements throughout the BOOTSTRAP architecture are the process purpose in process dimension
and process attribute in capability dimension. They are the criteria against which an assessment is performed. The
achievement of the performance and the capability of implemented processes are judged and measured by objective
evidence of process implementation and capability achievement (see Figure 1). The methodology not only provides
an assessment of the current practices, but also provides guidelines for transforming the assessment results into an
action plan and gives guidance on prioritising the actions. Version 3.0 also supports software process improvement
driven by the organisation’s needs and business goals.

One of the unique features to BOOTSTRAP is the assessment is performed at two levels: the Software Producing
Unit (SPU) level and its projects level. One of the advantages is to show the capability of single processes as
capability profiles and with quartile precision within each level. The output profiles are specific to the
BOOTSTRAP methodology, it may be expressed by the absolute maturity level of all the key attributes forming the
strengths and weaknesses profile of the SPU or project.

capability of process assessed by

providing

BOOTSTRAP METHODOLOGY

Assessment at SUP or/& project level

 providing

Capability Dimension

6 Capability levels
determined with quartiles

 measured by

9 Process Attributes
evaluated on 4 point scale

 achieved by

33 Management Practices
to achieve process factors

 performed by

• Resource & Infrastructure characteristic
• Practice Performance characteristic

Evidence of capability achievement

performed by

organized from

including

Process Dimension

6 Process Cluster

classified by activities

 accomplished by

33 Processes

described by process purpose

Base Practices

To achieve the process goals

• Potential Input/Output Work Product
• Work Product Characteristic

Evidence of process implementation

Technology Dimension

Technology Support

Technology support profile

used to

lead to

Capability Profile for Each Process
Output of the assessment

Analysis of Strength & Weakness

Generation of
improvement plan

Figure 1 BOOTSTRAP Principle and Architecture

5

METHODOLOGY

BOOTSTRAP Process Architecture

ORGANISATION

-. ORG 1 Business engineering
-. ORG 2 Human Resource management
-. ORG 3 Infrastructure management

Process Related

-. PRO.1 Process definition
-. PRO.2 Process Improvement

Lifecycle Dependent

-. ENG.1 System requirements analysis
-. ENG.2 System architecture design
-. ENG.3 Software requirements analysis
-. ENG.4 Software architecture design
-. ENG.5 Software detailed design
-. ENG.6 Software implementation & testing
-. ENG.7 Software integration and testing
-. ENG.8 System integration and testing
-. ENG.9 Maintenance
-. ENG.10 Migration
-. ENG.11Retirement

 Figure 2 BOOTSTRAP process tree

Support

-. SUP.1 Documentation
-. SUP.2 Configuration

management
-. SUP.3 Quality assurance
-. SUP.4 Verification
-. SUP.5 Validation
-. SUP.6 Joint review
-. SUP.7 Audit
-. SUP.8 Problem resolution

Lifecycle Independent

Management

-. MAN.1 Project management
-. MAN.2 Quality management
-. MAN.3 Risk management
-. MAN.4 Subcontractor

management

Customer Supplier

-. CUS.1 Acquisition
-. CUS.2 Customer need

management
-. CUS.3 Supply
-. CUS.4 Software operation
-. CUS.5 Customer support

TECHNOLOGY

-. TEC 1 Technology Innovation
-. TEC 2 Technology Support for life Cycle

Processes
-. TEC 3 Technology Support for life Cycle

Independent Processes
-. Tool Integration

2.3 Process model of BOOTSTRAP

The process model is used as basis to
perform an assessment. As shown in figure
2, the processes in the process model are
structured as a tree that identifies the
following objects: process categories,
process areas, processes and best practices.

Like other SPI models (e.g. CMM, SPICE),
a software process is a set of empirical
practices in software development,
organisation and management. The process
is defined as a set of activities, methods,
practices, and transformations that people
use to develop, maintain software and the
associated products, whilst the objectives of
software process management are to
produce products according to plan while
simultaneously improving the
organisation’s capability to produce better
products.

However, all these processes and practices
defined are originally concentrated on the
issues within a single-site development
environments. Few existing process
assessment and improvement models
address the needs of VSEs and VSO. As
yet little research has specifically addressed
modelling the software process relevant to
VSEs, notwithstanding the fact that their
intellectual characteristic application areas
are frequently the most challenging in terms
of integrity and reliability, and those in
which a well-defined and managed software
process is therefore most crucial as a guarantor of software quality.

Based on the surveys and the research we carried out so far, a number of issues specific to the virtual software
environments that are not addressed in the existing SPI models were identified [11,12, 6]. One of the most important
aspects that must be considered by the distributed software development process is that it requires facilities to
support collaboration, communication and coordination among software developers. A significant advantage of
BOOTSTRAP over other models is that it contains the Technology dimension in evaluating the process capability,
which is the major reason for its selection. Unfortunately, the unique feature of BOOTSTRAP also forms its
weakness, since the technology rating in BOOTSTRAP based assessment is indicated as having no influence on the
overall maturity or capability in the BOOTSTRAP version 3.0. In the following sections we further describe the
issues specific to VSEs in addition to the issues identified and discussed in [6], with emphasis on investigation of
the issues relevant to technical support systems.

3. Issues specific to the distributed software projects and its development environments

A major requirement for the creation and management of virtual software projects and virtual organizations is
distributed project coordination and communication. This includes the planning and scheduling of projects,
execution of projects, coordination of tasks, resolution of competing objectives, achievement of global coherence,
change propagation, communication across heterogeneous individuals or groups, and maintenance of access to valid
information. Without these and other similar functions, the development process becomes disorganized and the
goals of improving competitiveness and productivity cannot be achieved.

6

3.1 Technology support in distributed project coordination management

Coordination has been defined as the direction of “individuals’ efforts toward achieving common and explicitly
recognised goals” [17] and “the integration or linking together of different parts of an organisation to accomplish a
collective set of tasks”[18]. In software development, it means that different people working on a common project
agree to a common definition of what they are building, share information, and mesh their activities. They must have
a common view of what the software they are constructing should do, how it should be organised, and how it should
fit with other software systems already in place or undergoing parallel development. To build the software
efficiently, they must share detailed design specifications and information about the progress of software modules.
Overall, they must coordinate their work so that it gets done and fits together, so that it isn’t done redundantly, and
so that components of the work are handed off expeditiously.

It is clear that achieving a successful software system requires tight coordination among the various efforts involved
in the software development cycle. Yet this coordination is difficult to achieve [19] even for the software projects
developed in a single-site. Coordinating multiple developers working on a distributed software development project
is much more difficult, and gives rise to the following management problems:

• Developers need specific tasks assigned, which must be coordinated to ensure a working system results.
• Developer need to, at times, communicate and collaborate closely, while at other times can independently work

on parts of the project.
• Software artefacts (code, designs, documentation etc.) need to be shared and kept consistent.
• Multiple tools must be used to modify artefacts, with some tools supporting close collaborative editing (e.g. via

synchronous editing), while others supporting looser collaboration (e.g. via alternate version editing and
subsequent merging).

• Progress towards specified goals needs to be tracked, developers need to remain aware of others’ work, and
complex software systems need to be configured from the constituent, distributively developed parts.

• Developers need to flexibly configure their environments’ support for artefact management, communication,
and work coordination.

In effect, the efficient management of changes in requirement, design, and code documents appears to be one of the
main problems of software development. Questions that arise are:

• How can one handle the effects of changes to software artifacts, e.g. to update its internal state to reflect the
current state of the software development process.

• How can we constrain the effect one change has to other parts of the software system.
• How can we ensure proper flow of change information, e.g. to notify people involved in the process of the

changes that concern them.

All of these aspects have to be taken into account in the software process management activities. Such global
distribution of software projects drastically increases the need for coordination and communication support.
Additionally, it adds another dimension to the problem of coordinating such a project: Not only does the project’s
complexity make it hard for people to figure out who to contact when questions come up. In a distributed project
they cannot just walk over to the person in question. Even picking up the phone and calling the other person might
not be feasible if the project is distributed over different time zones. Discussions in the style that people are used to,
i.e. official group meetings, or informal discussions over some idea on a piece of paper, become impossible. Instead,
the necessity arises to support asynchronous as well as synchronous collaboration with computer tools.

Over the last few years, many systems, techniques and tools have been developed which attempt to address these
issues. Computer Supported Collaborative Work (CSCW) systems have been used to aid distributed software
development [20]. Groupware tools provide support for collaborative work by providing shared workspaces that can
be accessed from geographically distributed locations; workflow management approaches support the coordination
of software engineering processes, change impact analysis and change management techniques can be used to send
notifications to an appropriate set of users in order to ensure the timely conclusion of a project with high-quality
products, and so on. However, none of these technologies by themselves are enough to solve the problems posed by
distributed software engineering [21]. In order to provide useful support for that complicated process, methods and
tools must integrate coordination, collaboration and communication support, i.e. it must integrate, to a degree, all of
the above technologies, as well as provide support for project monitoring, and configuration management. Since

7

VSEs are becoming more common in software development projects, there is an urgent need in these domains to
improve project coordination by using automated computer support systems.

3.2 Distributed Software Configuration Management

Configuration management is a key contributor to successful software development [22]. The configuration
management (CM) is an important function on any software project since it is a communicator that establishes
relationships with all the project activities. CM communicates by providing technical information about each
specification, document, manual, code, test results, and so forth, provided to the project team. Basically, Software
Configuration Management ensures that changes to the software are managed. While Configuration Management as
such is necessary as an underpinning of a continuous process improvement programme, distributed Configuration
Management is essential for a VSEs.

In a single-site development environment, it is considered good practice to apply established SCM tools and
techniques. A problem arise is the fact that multi-site projects are much more complex that give rise to unique
challenges:

� How to manage different changes at different sites as one product. It can be difficult to control the changes
within each location and coordinate each location’s change process with total product development across
multiple sites. The changes at each site must be coordinated according to the schedule for that site, but they
must also be viewed in the context of their effect on the total project schedule.

� How to apply standards consistently. Maintaining the consistency of standards application – such as enforcing
when to release software, what documentation format to use, or how to approve changes – is more difficult in a
virtual organisation. Different sites tend to interpret the standards according to their culture and local interests.
Written expectations should make it clear how standards should be applied so that everyone is working from the
same interpretation. Wrong assumptions can lead to a misapplication of the standard, which can show up as
problems during integration and test. This in turn can delay releasing the product, which hurts all parties. The
consistent application of standards assures the customer that the software has gone through an acceptable
process, no matter where it was developed.

� How to incorporate changes in a timely manner. Challenges here include how to coordinate changes into
different software builds, make different versions work together, and ensure that everything follows the process
in an acceptable timeframe. With changes going through a local software configuration control board, and then
through additional reviews at the location where the software is integrated. This is much more difficult than in a
nonvirtual organisation, where changes are managed in one location.

In order to address these issues, a stronger configuration management process and change control management has
to be proposed. All these may be addressed through a virtual software configuration management board that reports
to a centralised software configuration control manager. The virtual SCM board must represent all affected and
interested functional and organizational parties; to be a single body accepts responsibility for review, approve, or
reject proposed changes to the software; and ensure that the proper process and documentation exists. Consequently,
a centralized configuration library needs to be set up to help in configuration control; a version control system is
need to help track changes and a centralized version control system should automatically handle changes from each
remote site.

It is believed that a strong SCM process will help overcome differences in management styles and cultural
interpretations by enforcing a common discipline and set of expectations for documentation and change handling.
Documentation control is another important SCM task. In a distributed software project, documentation becomes the
most used means of communication, like glue its holds the project together. An SCM plan that documents the
expectations of all team members is an extremely useful tool. As first step, it is important to lay a solid foundation
for global development and unite everyone’s expectations about lines of responsibility, schedules, cost, and other
business and technical concerns. To do this, a legal document, a statement of work identifies what must be
performed or delivered and over what timeframe, should be as unambiguous as possible. Documenting the virtual
organisation structure also gives management, each project team member, and other project stakeholders a sense of
organisation and an understanding of individual roles and responsibilities. Documentation requirements
specifications and plans such as quality assurance identify expectations for all team members before issues come up
and cause confusion. The reference to maintenance, and ownership of these documents and the benefits they provide
are critical in large teams with geographically distributed members.

8

Also, in distributed projects it is vitally important to make sure the requirements are thoroughly understood by
everybody involved, and to arrive at high quality definition of the interfaces between components that are to be
developed at different sites. This means that more time and effort needs to be spent in the early phases of system
requirements, system design, and interface definition, rather than implementing first and finding problems only
during system integration and testing. In other words, the focus of the project has to be moved from implementation
to earlier phases of the software engineering process, thereby putting into action an important software engineering
paradigm.

Clearly, stronger configuration and change management are needed to achieve process adaptability. A central
feature is the need to automatically inform the appropriate users about a change and its consequences for their work.
In doing this, Software Configuration Management (SCM) is key in holding a virtual project together. Since a SCM
system tracks both changes and their impact on the whole system, its implementation involves tools and methods
unique to controlling software process. It is thus necessary to create a virtual configuration management system to
support the VSEs, and the approach to such a system must exploit the latest technologies for distributed systems and
distributed problem solving.

3.3 Effective Communication
A virtual software team or virtual software
organisation must be able first to
communicate in a distributed fashion and
second to communicate effectively along the
spectrum from real time to non-real time.
When managing software development
projects at distributed locations,
communications methods and tools offer one
of the most powerful and effective ways to
gather and disseminate information and
control the project. In effective communication, people not only send and receive verbal or text messages, but
nonverbal indicators make it easier for the receiver to interpret the message’s intent and for the sender to ascertain
that the message was received and understood. Figure 3 shows the most popular communication techniques for
supporting virtual software development with classification from real-time, to non-real time delivery.

All the communication techniques today have increased our ability to communicate meaningfully. Cellular
telephones, portable telephones, pagers, telephone conferencing have allowed access to instant information, thus
increasing information frequency. Videoconferencing and teleconferencing have enabled groups of individuals
communicate instantly in meetings without being in the same place. Access to stored information through voice
mail, e-mail, electronic networking such as Internet or Intranet, bulletin boards and databases that contain common
project information, such as schedules, problems report, and the shared software and tools in Groupware packages
has increased information bandwidth. Some or all of these technologies must be in place for a virtual software
development project to be successful.

However, there is no substitute for regular face-to-face meetings. Whatever advance in communication technology
is, the face-to-face meeting is always the most effective method for human interaction at real-time. Since only in this
type of communication the receiver can most effectively understands both the message and its intent, including
nonverbal messages such as body language, gestures, eye movements, intonation, and facial expression. During a
conversation, messages are formed, communicated, interpreted, responded to, and clarified. With this rich
interaction, communicators can grasp the message with little misunderstanding.

In a VSE, face-to-face communication is unfortunately far less frequent than in a nonvirtual environment because it
is costly. How often depends on the company, the project’s budget, and the project management structure. It should
be part of the project’s kickoff, if at all possible, and used in meetings where it is important that a message must be
clearly sent and understood.

The next best communication is likely to be video conference which promises the same type of interface quality as
face-to-face meetings without the cost. The only difference in between is the quality of the communication. The
inherent transmission delays between speech and video make video conference communications that involve
movement less effective than a face-to-face meeting. As transmission delays continue to diminish, this artificial
environment will hopefully improve. The availability of this technology is also an issue. It is still expensive to
purchase transmission bandwidth and the proper equipment. As the information superhighway infrastructure

Non-real timeNear-real timeReal time

� Telephone
� Video Conference
� Teleconference
� Networking

� Mail
� Groupware Software
� Bulletin Boards
� Database

� E-mail
� Voice-mail
� Pagers
� Fax

Figure 3: Classification of communication according to real -
time, near-real time, and non-real time delivery

9

continues to build worldwide, this type of technology should become more widely available via the Internet, and
personal computer vendors will intensify efforts to add video conference peripherals to PCs. Until these problems
are addressed on a large scale, however, face-to-face and telephone communications will continue to be more
effective media for the virtual development team.

3.4 Development support through Intranet

So far, we have been discussing specialised process support systems that need to be used for distributed software
development. Practically, distributed software development would be much harder, maybe even impossible, without
the Internet’s capability of quickly transferring large amounts of data from one development site to another. The
Internet, more specifically, Intranet, is thus the most important enabling factor for distributed software development.

In fact, the Intranet also facilitates the asynchronous exchange of messages, allows the deployment of
documentation and even software, on central servers for everybody to access, thereby avoiding the necessity to hold
redundant data at each development site. In addition to data transfer and communication services, distributed
configuration management and other data management can be provided via the Intranet. Also, project management
and coordination services can be implemented using the Internet [23] with fairly secure since Intranets usually
employ firewalls to keep out intruders from the outside world. Building on artifact handling services the Internet
already provides, dependencies between those artifacts, and between the activities that create the artifacts, will be
identified and managed. Intranet will create easier channel to deliver computer-based training just in time, capture
and share their knowledge, learn and innovate.

Though Groupware has become very popular and has proven its worth in companies worldwide, the problem with
Groupware is that it’s been very expensive and difficult to implement. With the introduction of cheap and easy-to-
construct intranets [24], that’s no longer the case. Firms can now get the benefits of groupware on their intranet.

The uses for intranets are almost unlimited. Intranets are just as easy to build as they are to use, so this may be just
the perfect solution to support distributed software development and share information throughout intranets allow
the employees to do a better job. These things give organisations a competitive edge. Though the Internet today is
restricted to visual means only, restricting human communication to a serious extent, this problem might be solved
with growing bandwidth, allowing for audio and video conferences. More introduction of Intranet can be found in
[24].

4. Extending BOOTSTRAP for VSE of VSO

VSEs and VSO have evolved largely because of technology improvements over the last decade. These include
improved communications structure, increased communication bandwidth, decreased communication cost, better
price-performance ratio for PCs and controllers, and better software. Technology has made it easier and more cost-
effective to manage organisations that are geographically distributed.

The success of software developing organisations heavily depends on the quality of their software products which is
intrinsically related to the quality of the software development processes. Since VSEs and VSO are becoming more
common in software industry, process assessment and improvement models should not only be definable for single-
site development, but also for a distributed project. In contrast to the single-site, there are significant differences and
problems in the distributed development environment, as discussed above, non of these issues are included in the
BOOTSTRAP methodology. Therefore a number of extensions should be made in the BOOTSTRAP methodology
to achieve process management success for the VSE and VSO.

In addition to the issues discussed in [6], the technology dimension in BOOTSTRAP are concerned mostly affected,
and the processes in this dimension has to be extended. At a high level, the extensions are:

• Technology support system management needs to be established at organisational and project level.
• The documentation management process may need to be added into project management category.
• Adopt documentation tools to develop and maintain the project documents.
• Establish communication systems.
• An Intranet system should be set up to support information sharing, and project management.
• Adopt automated configuration management tools.
• Adopt automated version control management tool.

10

• Establish and maintain a problem report repository to enable continually process improvement.

5. Conclusion

The formation of Virtual Software Environments and Virtual Software Organisation is an inevitable trend caused by
the changes in the social structure induced by the global network and communication technology. The development
of software products has become a highly cooperative and distributed activity involving working groups at
geographically distributed locations [25]. These groups show an increasing mobility and a very flexible
organisational structure. Process methodology and technology have to take such evolutions into account.

This project is addressing practically the needs of virtual software organisation and its distributed development
environments. This is the first attempt to apply software process assessment and improvement models into the
virtual software environment. In addition to the need for a well defined software process and disciplined process
management and improvement approach, distributed software development strongly requires facilities to support
coordination, and communication among software developers.

This paper presents the initial research findings of an evaluation of the specific problems and requirements for
software process improvement in VSEs. The methodology of the BOOTSTRAP approach has been analysed to
provide the background knowledge, and the suggested extension has been indicated concerning its application into
distributed software environment.

6. Reference

[1] Dale Walter Karolak, Global Software Development, IEEE Computer Society, 1998.

[2] Status Report on European Telework 1999 – New Methods of Work, Annual Report from the European
Commission. < http://www.eto.org.uk/twork/tw99/index.htm>, 1999.

[3] J. Lipnack and J. Stamps, Virtual Teams: Reaching Across Space, Time and Organisation With Technology,
Wiley & Sons, New York, 1997.

[4] Katrina D. Talbot, The virtual company, http://forum.iee.org.uk/forum/library/items/1999_05/talbot/frame2.htm

[5] R. Posch, Maintaining Public Trust in the Virtual Organisation World, Direct Marketing, Vol.57, 76-79, 1994.

[6] H. Guo, G. King, M. Ross, G. Staples, Extending ISO/IEC (TR) 15504 for Virtual Software Environments,
accepted by the 1st International SPICE Conference, June, 2000, Limerick, Ireland

[7] Humphrey, W. S., Managing the Software Process, Addison Wesley, Reading, MA, 1989.

[8] Humphrey, W.S., A discipline for Software Engineering, Addison-Wesley, 1995, pp. 97-106.

[9] M.M.Lehman, Software’s Future: Managing Evolution, IEEE software, Vol.15, No. 1, 1998, pp.40-44.

[10] A. M. Christie, Software Process Automation - The Technology and Its Adoption, Springer-Verlag, 1995

[11] H. Guo, M. Ross, G. King, G. Staples, A Study of Software Quality Assurance and Teleworking in The
Software Industry, Proceeding of INSPIRE III (Training and Teaching for the understanding of Software
Quality), pp.251-261, 1998, London.

[12] H. Guo, M. Ross, G. King, G. Staples, An investigation of Software Quality Implementation in Teleworking
Environments, Proceeding of INSPIRE IV (Training and Teaching for the understanding of Software Quality),
pp.176-192, 1999, Crete

[13] H. Guo, G. King, M. Ross, G. Staples, SPICE: A Suitable Model for managing the Software Process in Virtual
Software Environments ? Proceeding of CONQUEST’99, pp.44 – 52, 1999, Germany.

[14] H. Guo, M. Ross, G. King, G. Staples, BOOTSTRAP 3.0 – An European Software Process Assessment
Methodology based on CMM and SPICE, accepted by the international conference of World Computer
Congress 2000, Beijing, China.

[15] Kuvaja, P., Simila, J., Krzanik, L., Bicego, A., Koch, G., and Saukkonen, S., Software Process Assessement and
Improvement - The BOOTSTRAP Approach, Blackwell Business, Oxford, UK, and Cambridge, MA 1994

11

[16] A Bicego, M Khurana, P Kuvaja, Bootstrap 3.0 - Software process assessment methodology, Proceedings of
Software Quality Management (SQM 98), 1998, pp. 26 -37.

[17] Blan. P. and Scott. W. R., Formal Organizations, Scott, Foresman, San Francisco, 1962.

[18] Van de Ven, A. H., Delbecq, A. L., and Koenig, R. Jr., Determinants of coordination modes within
orgnnisations. Amer. Soc. Rev. 41 (1976), 322-338.

[19] Roberl E. Kraut and Lynn A. Streeter, Coordination in Software Development, Communications of the ACM,
Vol. 38, 3, pp.69-81, 1995.

[20] John McCarthy, The state-of-the-art of CSCW: CSCW systems, cooperative work and organisation, Journal of
Information Technology (1994) 9, pp. 73-83

[21] Harald Holz, Sigrid Goldmann, Frank Maurer, Working Group Report on Coordinating Distributed Software
Development Projects, Proceedings of the IEEE 7th Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE ’98), 1998, pp.69-72, Stanford University Californian, USA

[22] H. Ronald Berlack, Software Configuration Management, John Wiley & Sons, Inc. 1992

[23] Kigrid Goldmann, Boris Kotting, Working Group Report of the 2nd Workshop on Coordinating Distributed
Software Development Projects, Proceedings of the IEEE 8th Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE ’99), 1999, Stanford University Californian, USA

[24] Mellanie Hells, Intranet as Groupware, Wiley & Sons, New York, 1997. ISBN 0-471-16373-2.

[25] Norbert Glaser, Jean-Claude Derniame, Software Agents: Process Models and User Profiles in Distributed
Software Development, Proceedings of the IEEE 7th Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE ’98), 1998, pp. 45-56, Stanford University Californian, USA

QW2000 QuickStart 9Q

Mr. Otto Vinter
(DELTA Danish Electronics, Light & Acoustics)

Experience-Based Approaches to Process
Improvement

BACK TO QW2000 PROGRAM

Key Points

Problem diagnosis
Is a simple and effective way to find problems in software development process●

Is a good starting point for process improvement programmes in companies●

Step-wise improvements with quick wins●

Changes assessment recommandations●

About the Author

Otto Vinter is a project manager specializing in software process improvements with the Danish
software engineering consultancy company DELTA. Until recently, he was responsible for software
process improvements at Br’el & Kj†r.

He has been active in defining software engineering standards, procedures, and methods to be
employed at Br’el & Kj†r. He has been the driving force in the company's improvement activities in
testing, requirements engineering, development models, and introduction of object-oriented
development methods.

He has managed software development projects for 30 years; with Br’el & Kj†r from 1986, before that
with the Danish branch of Control Data Corporation, and with Regnecentralen.

He received his Masters Degree in Computer Science from the Danish Technical University in 1968.
He is an associate teacher for BSc. level education in Computer Science, is an active participant in
Danish software knowledge exchange groups, is on the programme committee of several international
conferences, performs mentoring activities for clients, and is an expert evaluator on the framework
programmes of the CEC.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9Q.html [4/28/2000 2:38:20 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1Experience-Based Approaches to Process Improvement© Otto Vinter /

Quality Week 2000

Experience-Based Approaches to
Process Improvement

-
Otto Vinter

Project Manager Software Process Improvements,
DELTA Software Engineering,

Tel: +45 4586 7722, Fax: +45 4586 5898
otv@delta.dk

&
Software Engineering Mentor

Tel/Fax: +45 4399 2662, Mobile: +45 4045 0771
vinter@inet.uni2.dk http://inet.uni2.dk/~vinter

2Experience-Based Approaches to Process Improvement© Otto Vinter /

Normative Models for SPI

CMM
BOOTSTRAP

SPICE (ISO15504)

Defined comprehensive process
Levels of maturity (capability)
Key process areas (KPAs) for each level
Assessed by certified assessors

3Experience-Based Approaches to Process Improvement© Otto Vinter /

Fundamentals in Normative Models

Software Process
Assessment & Improvement
(The BOOTSTRAP Approach)
ISBN 0-631-19663-3

4Experience-Based Approaches to Process Improvement© Otto Vinter /

Problems with Normative Models

Abstract model
Assessment by external body
Costs money
Organisational focus
Points out KPAs to be improved
Little help on precisely what to do
Raises a lot of expectations

5Experience-Based Approaches to Process Improvement© Otto Vinter /

Alternative Approaches to SPI

Experience-based improvement actions

• Analyse problems from previous projects to extract
knowledge on frequently occurring problems

• Change the development process through the use of an
optimum set of methods and tools available to prevent
these problems from reappearing

• Measure the impact of the changes in a real-life
development project

• Diffuse the results to the rest of the organisation

6Experience-Based Approaches to Process Improvement© Otto Vinter /

Characteristics of Alternative Approaches

Experience-based
No specific model
Hot-spot driven
Focus on prevention
One issue at a time (incremental)
Piloting at project level
Evolve rather than define (feed-back)
Fits CMM level 1-2 cultures
(where most of us are)

7Experience-Based Approaches to Process Improvement© Otto Vinter /

Examples of Alternative Approaches

Analysis of
• defects
• progress reports, etc.

Structured/Selective interviews
• project managers
• project members
• customers, etc.

Goal-Question-Metric paradigm (GQM)

Some frameworks for alternative approaches:
• Experience Factory (V. Basili e.a.)
• Product Process Dependency Models

(PROFES: www.ele.vtt.fi/profes)
• but primarily: you must find your own way

8Experience-Based Approaches to Process Improvement© Otto Vinter /

Brüel & Kjær - Sound & Vibration Measurement

Transducer Signal
conditioning

Digital
conversion

Signal
processing

Post
processing

Output

Brüel & Kjær

Conditioning Amplifier

ISO 9001
CERTIFIED

9Experience-Based Approaches to Process Improvement© Otto Vinter /

Defect Analysis from Error Logs

Definitions
• Bugs are anything between serious defects and

suggestions for improvements
• Problem reporting starts in the integration phase

Error Logs Analysed
• Embedded and PC Windows development projects
• Project sizes app. 5-7 person years
• In total app. 1000 bugs analyzed in detail
• Problem reports covered a period until 18 months after

first release

10Experience-Based Approaches to Process Improvement© Otto Vinter /

Problem Report Distribution over Time

Example of an Error-prone Product

Weeks

B
ug

s
R

ep
or

te
d

Trial-release
Production-release

11Experience-Based Approaches to Process Improvement© Otto Vinter /

Defect Analysis Technique

Interview sessions
• 1-2 developers and 1-2 process consultants
• app. 5 minutes / bug

Bug Categorisation
• based on a bug taxonomy by Boris Beizer:

- Boris Beizer: Software Testing Techniques, Van Nostrand Reinhold,
1990

• comprehensive set of bug categories and statistics

Capture Subjective Information on the Bugs
• where and how the bug occurred
• quality factor (reliability, usability, functionality ...)
• complexity of bug (correction cost)
• what could prevent the bug

12Experience-Based Approaches to Process Improvement© Otto Vinter /

The Beizer Bug Taxonomy

1. Requirements and Features
2. Functionality as Implemented
3. Structural Bugs
4. Data
5. Implementation (standards violation,

and documentation)
6. Integration
7. System and Software Architecture
8. Test Definition or Execution Bugs
9. Other Bugs, Unspecified

Each category detailed to a depth of up to 4 levels

13Experience-Based Approaches to Process Improvement© Otto Vinter /

0,0 5,0 10,0 15,0 20,0 25,0

1. Requirements and Features

2. Functionality as Implemented

3. Structural Bugs

4. Data

5. Implementation

6. Integration

7. System and Software Architecture

8. Test Definition or Execution Bugs

9. Other Bugs, Unspecified

%

Our Analysis
Beizer

Problem Report Categorization

Category

14Experience-Based Approaches to Process Improvement© Otto Vinter /

1st Action: The Prevention of Errors through
Experience-driven Test Efforts (PET)

Results of the analysis of error logs
• no special bug class dominates embedded software

development
• requirements problems, and requirements related

problems, are the prime bug cause (>36%)
• problems due to lack of systematic unit testing is the

second largest bug cause (22%)

Action: Improve Testing Processes
• static analysis

- source code complexity, data flow anomalies, coding standards

• dynamic analysis
- code coverage by test cases, cross references code to test cases

Funded by CEC. Final Report: http://www. esi.es/ESSI/Reports/All/10438

15Experience-Based Approaches to Process Improvement© Otto Vinter /

Static Flowgraph (McCabe = 10)

16Experience-Based Approaches to Process Improvement© Otto Vinter /

Static Flowgraph (McCabe = 20)

17Experience-Based Approaches to Process Improvement© Otto Vinter /

Test Coverage Strategy

Test coverage must take into consideration
• perceived complexity

- based on a visual inspection
• criticality

- product and project issues
• developer experience

- domain, product, and unit
• bug and change request history
• degree and type of reuse

Test cases for dynamic analysis are selected by
normal testing techniques

• equivalence partitioning, boundary value analysis etc.

18Experience-Based Approaches to Process Improvement© Otto Vinter /

Results of the Improved Testing Process

46% Improvement in Testing Efficiency
• Removing static bugs
• Increasing unit branch coverage to > 85%

75% Reduction in Production-Release Bugs
• Compared to Trial-Release

70% Requirements Bugs in Production-Release

Next Action: Improve Requirements Engineering

19Experience-Based Approaches to Process Improvement© Otto Vinter /

2nd Action: A Methodology for Preventing Requirements
Issues from Becoming Defects (PRIDE)

Results of the analysis of error logs
• Requirements related bugs 51%
• Usability issues dominate 64%
• External software (3rd party & MS products) 28%

Action: Introduce requirements techniques
• Use Situations (Scenarios)

- Relate demands to use situations. Describe tasks for each scenario.

• Usability Test, Daily Tasks, Navigational Prototype
- Check that the users are able to use the system for daily tasks,

based on a navigational prototype of the user interface.

Funded by CEC. Final Report: http://www. esi.es/ESSI/Reports/All/21167

20Experience-Based Approaches to Process Improvement© Otto Vinter /

Scenarios

“The defining property of a scenario is that it projects a
concrete description of activity that the user engages in
when performing a specific task, a description sufficiently
detailed so that design implications can be inferred and
reasoned about”

John M. Carroll,
Scenario-Based Design:
Envisioning Work and Technology in System Development,
Wiley 1995.

Many names for the same concept:
• scenarios
• use situations
• work situations
• work setting

21Experience-Based Approaches to Process Improvement© Otto Vinter /

Road Test Scenario

Road tests are done in the car when it is driving on special
test roads. The purpose of the recordings is to identify
noise sources, comparing them to earlier measurements,
and eventually removing the noise through changes to the
car design.
The engineer will record noises from various parts of the car
when it is driving at various speeds, when it is turning,
when it is breaking, etc. The microphone will have to be
mounted at various places not accessible from the drivers
seat.
Usually, the engineer has a plan for what to measure, but
circumstances may change so that he has to do something
different and later find out what he actually did and which
sounds relate to what.
Back at the lab the sounds will be analyzed by the engineer
himself, or - in many cases - someone else.

22Experience-Based Approaches to Process Improvement© Otto Vinter /

Usability Test Environment

PC

V

• •

Experiment Leader

User

Log Keeper

Tape Recorder

Microphone

23Experience-Based Approaches to Process Improvement© Otto Vinter /

Results of the 2nd Improvement Action

Product is selling steadily more than twice
as many copies

• compared to a similar product developed for a similar
domain by the same team

Usability is exceptional in the market
• Users’ interaction with the product was totally changed

as a result of the early usability tests

Almost 3 times increase in productivity for
the development of the user interface

27% reduction in problem reports

24Experience-Based Approaches to Process Improvement© Otto Vinter /

Improvement Approach Based on
 Project Manager Perceived Problems

Interview project managers
• 1 project manager and 3 process consultants
• app. 1 hour per interview
• process-oriented interview guide

Analyze problems raised
• classify the problems according to software process
• present the issues at a project manager workshop
• establish consensus on a few major issues
• let each manager select an issue to improve

Monitor development projects
• introduce and train the team on the selected issue
• coach, and support regularly and on request
• collect experience and results

25Experience-Based Approaches to Process Improvement© Otto Vinter /

Improvement Approach Based on
Project Manager Perceived Problems

Major Issues
• iterative software development model
• requirements
• project monitoring (estimation, progress evaluation, etc.)
• project conclusion (test, configuration management, etc.)

Improvement Actions:
• diffuse and adopt the test and requirements techniques
• define new iterative development models
• improve project monitoring

Results:
• improvement actions were performed with enthusiasm
• project related actions completed successfully

26Experience-Based Approaches to Process Improvement© Otto Vinter /

3rd Action: Iterative Software Development Model

Demo
Prototype

Functionally
Complete

Model

Specification

Spec.

Test

Design

Test

Code Code Code Code

Design Design Design

Test Test

Spec. Spec. Spec.

Customer
 Req. Spec.
Validation

Release
Vers. 1.0

Final
Customer
Validation

Intermediate
Customer
Validation

Pre-Project

StabilizationPartial
 Implementation

Full
 Implementation

Specification
and user interface

mock-up

Released
Product

Customer
Views:

Product
Views:

Cycles:

Phases: Specification Development Operation

Development
Views:

27Experience-Based Approaches to Process Improvement© Otto Vinter /

Iterative Software Development Model

Types of Iteration
• user validation (usability test)
• exploration (e.g. performance)
• proof-of-concept (e.g. architecture)
• well-defined functionality (increment)

Duration
• time-boxed

- less than 6 weeks, with 2 weeks spacing

• full increments
- app. 3 months, with 2 weeks of stabilization

Essential for Success
• user validation
• stabilization

28Experience-Based Approaches to Process Improvement© Otto Vinter /

Results of the 3rd Improvement Action

• drive and motivation of team increased dramatically
• turbulence within and around team decreased
• control over project progress increased
• requirements creep was kept under control
• resources used more efficiently
• serious problems were uncovered early
• quality improved step-by-step

29Experience-Based Approaches to Process Improvement© Otto Vinter /

Comparison of Recommendations

Recommendation Defect 1st Bootstrap Project Mgr. 2nd Bootstrap
 Analysis Assessment Interviews Assessment

Development Model
 - iterations x x x √
 - risk management x

Requirements x x x √
Project Monitoring
 - estimation x x x
 - time & resource usage x x
 - monitor progress x x x

Project Conclusion
 - configuration mgmt. x x x
 - testing x x x (√)
 - release criteria x x

Reuse x

Process Descriptions x √

30Experience-Based Approaches to Process Improvement© Otto Vinter /

Problem Diagnosis Results

Defect analysis from error logs
• has established a basic process for testing and release
• has improved our requirements process and products

Improvements from interviews
• successful diffusion and adoption of previous

improvement actions
• established a new software development model

Impacts on maturity
• development model, test, and requirement issues are no

longer on the Bootstrap recommendation list

31Experience-Based Approaches to Process Improvement© Otto Vinter /

In Conclusion

Problem diagnosis approach
• is a simple and effective way to find problems in the

software development process
• good starting point for process improvement

programmes in companies
• step-wise improvements with quick wins
• changes assessment recommendations

However, normative models are needed
• comprehensive framework

- KPAs are important, levels are not
• established assessments

- effect of improvements

© Otto Vinter / Brüel & Kjær Quality Week 2000 Page 1 of 13

Experience-Based Approaches to
Process Improvement

Otto Vinter1

DELTA Software Engineering, DK-2970 Hørsholm, Denmark
Email: otv@delta.dk

Abstract

Software process improvement (SPI) is usually based on well-known models of software
process maturity such as the Software Engineering Institute’s Capability Maturity Model
(CMM) and the European counterpart Bootstrap. This paper reports on alternative
approaches to SPI based on knowledge and experience that is already available in the
organisation. Rather than a formal comprehensive assessment of the all software
development processes in the organisation a “problem diagnosis” is performed. The
problem diagnosis approach to SPI aims at identifying the most important (process) issues
as perceived by the organisation. Improvement actions are then planned and implemented
in close collaboration with the powerful actors in the organisation. The paper focuses on
the results of using such problem diagnosis techniques at Brüel & Kjær as an alternative
SPI strategy. The paper will report on problems and successes, and relate these results to
formal assessments performed in parallel by an external body.

1 Introduction

Software process improvement (SPI) is usually based on well-known models of software process
maturity such as the Software Engineering Institute’s Capability Maturity Model (CMM) [6] and the
European counterpart Bootstrap [2]. The assessment of current practices through the use of such
normative models is generally considered as the proper way of identifying and prioritising improvement
initiatives.

However, it is also claimed [3] that these models represent a too rigid and limited view of the software
development processes and that they do not consider the variety and complexities of software producing
organisations.

1 The work reported in this paper was performed while the author was employed as manager for software

process improvement (SPI) projects at Brüel & Kjær Sound & Vibration Measurement A/S, DK-2850
Nærum, Denmark. For more information on the process improvement activities at Brüel & Kjær visit:
http://inet.uni2.dk/~vinter/engindex.htm and look for projects.

© Otto Vinter / Brüel & Kjær Quality Week 2000 Page 2 of 13

Furthermore, many organisations have found it very difficult to translate the assessment results into
concrete improvement actions. And almost all process improvement persons or groups in organisations
at the lower levels of maturity (1-2) have encountered severe resistance to their improvement initiatives
from within the organisation. Alternative or complementary approaches to assessments should therefore
be considered.

This paper reports on alternative approaches to SPI based on knowledge and experience that is already
available in the organisation. Rather than a formal comprehensive assessment of the all software
development processes in the organisation a “problem diagnosis” is performed. The problem diagnosis
approach to SPI aims at identifying the most important (process) issues as perceived by the
organisation. Improvement actions are then planned and implemented in close collaboration with the
powerful actors in the organisation.

The paper focuses on the results of using such problem diagnosis techniques at Brüel & Kjær as an
alternative SPI strategy. The paper will report on problems and successes, and relate these results to
formal assessments performed in parallel by an external body.

Brüel & Kjær is a leading manufacturer of high-precision measurement instruments for sound and vibration
measurement applications. The company is headquartered in Denmark, but the majority of the products
are sold through subsidiaries around the world. In the past most of the products were based on
embedded real-time software, but now PC-Windows applications prevail.

The next section (section 2) describes one problem diagnosis approach based on the analysis of defects
(error reports) from earlier projects. Two improvement actions were initiated and completed
successfully as a result of this approach. In section 3 is reported the findings of the first Bootstrap
assessment, which was performed during the implementation of the above-mentioned improvement
actions.

Section 4 describes another problem diagnosis approach based on interviews of the leading project
managers in the organisation – the powerful actors of a level 2 organisation. Based on the findings from
these interviews a number of improvement actions were identified and implemented by the project
managers. Improvement actions that directly related to development projects succeeded; those of a more
general nature (e.g. organisation-wide) did not.

Section 5 describes the findings of the second Bootstrap assessment, which was performed after the
above improvement actions. The findings and recommendations clearly indicate that the improvement
actions performed as a result of the problem diagnosis approaches actually helped our organisation to
improve on the key practices of a normative model.

Section 6 compares the findings of the different approaches. Section 7 draws the conclusion, that
problem diagnosis approaches to SPI seem to be an effective improvement strategy for an organisation
at the lower maturity levels (1-2), and a valid alternative to formal assessments according to normative
models like CMM and Bootstrap, when an organisation wants to initiate a SPI programme.

© Otto Vinter / Brüel & Kjær Quality Week 2000 Page 3 of 13

2 Defect Analysis

When we first considered improving our processes at Brüel & Kjær, our management did not want to
invest in a comprehensive improvement programme. The company had just been through a major
reorganisation and downsizing. So rather than starting our process improvement programme with an
assessment according to one of the common maturity models, the improvement strategy had to be an
experience-driven, incremental process based on the available information in the organisation, and
focusing first on the major process issues.

We therefore started by performing root cause analyses of error logs generated during previous
development projects. Based on the findings of the analyses we would then introduce improvements in
our development process to prevent frequently occurring types of errors. We conducted thorough
analyses of bugs reported during development and after release of products. In these analyses we
classified bugs according to a taxonomy described by Boris Beizer [1].

The analyses [7][8] showed the need to perform a more systematic unit test of our products. The first
improvement action therefore focused on improving our testing process. However, the analyses also
showed that the major cause of bugs stemmed from requirements related issues. So when the test
improvement action had completed with success, a second improvement action was then undertaken to
improve our requirements engineering process.

These improvement actions have been funded by the Commission of the European Communities (CEC)
under the ESSI programme: European System and Software Initiative. The title of the test improvement
project is: PET - The Prevention of Errors through Experience-Driven Test Efforts (ESSI project no.
10438) [7][8]. The title of the requirements engineering project is: PRIDE - A Methodology for
Preventing Requirements Issues from Becoming Defects (ESSI project no. 21167) [9].

2.1 The Test Improvement Project

The software quality of our company was felt to be unsatisfactory. Too many products were shipped
with bugs. It was the general opinion that this was caused by a lack of testing by the developers before
release.

It was therefore decided to conduct a process improvement experiment to find ways to improve the
testing process. The project was titled: The Prevention of Errors through Experience-Driven Test
Efforts (PET) [7][8].

The problem reports were analysed and bugs in them categorised using Boris Beizer's taxonomy [1]. We
found that bugs in embedded real-time software follow the same pattern as other types of software. We
found that the major cause of bugs reported (>36%) are directly related to requirements, or can be
derived from problems with requirements. The second largest cause of bugs (22%) stems from lack of
systematic unit testing.

The techniques selected to improve unit testing were: Static and dynamic analysis. Tools were installed
to support these techniques. We experienced a 46% improvement in testing efficiency (bugs found per
person hour) and we raised the branch coverage of all units to above 85%.

© Otto Vinter / Brüel & Kjær Quality Week 2000 Page 4 of 13

An improved (production) version of the baseline product was then released and tracked for the same
number of weeks we had measured on the existing (trial) version after its release, so that we were able
to evaluate the effect of the experiment on problem reports.

The team received 75% fewer error reports than for the trial-release version of the product. Of those
error reports 70% were found to be related to requirements e.g. to bugs that could not have been found
through static and dynamic analysis. This once more confirmed the need for us to improve the
requirements process.

In spite of these remarkable results the use of static and dynamic analysis never spread throughout the
organisation. Some project managers ignored the results. Others started to work with the techniques, but
stopped when time pressure built up. Those who continued, released products with remarkably fewer
bugs.

2.2 The Requirements Engineering Improvement Project

In the second improvement action we performed a closer analysis of requirements related bugs in order
to find and introduce effective prevention techniques in our requirements engineering process. The
project was titled: A Methodology for Preventing Requirement Issues from Becoming Defects (PRIDE)
[9].

From the analysis of requirements related bugs we found that requirements issues are not what is
expected from the literature. Usability issues dominate (64%). Problems with understanding and co-
operating with 3rd party software packages and circumventing their errors are also very frequent (28%).
Functionality issues that we (and others) originally thought were the major requirements problems only
represent a smaller part (22%). Other issues account for 13%. The sum of these figures adds up to
more than 100% because one bug may involve more than one issue.

This result had an impact on our methodology. We focused on usability problems, and early verification
and validation techniques, rather than correctness, and completeness of requirements documents.

We therefore introduced the following techniques on a real-life project:

• Scenarios
Relate demands to use situations. Write down short descriptions for each known use situation.
Explain the work environment, purpose of the work, and the people working. Describe the essential
tasks in each scenario. Tasks should have a goal, a beginning, and a termination.

• Navigational Prototype Usability Test, Daily Tasks
Check that the users are able to use the system for daily tasks based on a navigational prototype of
the user interface. Navigational means: screens have static content; menu points and buttons
automatically change to another screen. The technique tests the prototype with users simulating
daily tasks, revises the design, tests it again, and so on until the result is acceptable.

The quantitative results of using these techniques on the project were an overall reduction in error
reports of 27%, a 72% reduction in usability issues per new screen, and a 3 times increase in
productivity in the design and development of the user interface.

© Otto Vinter / Brüel & Kjær Quality Week 2000 Page 5 of 13

What was also surprising was that not only did we experience a reduction in bugs related to
requirements issues, we also found a reduction in other bug categories. The derived effect on other types
of bugs than the requirements related can be explained by the fact that most of the developers achieved a
deep understanding of the domain in which the product was going to be used from describing use
situations (scenarios) and taking part in the usability tests. This invariably leads to a reduced
uncertainty and indecision among the developers on what features to include and how they should be
implemented and work. In the previous project the new screens were constantly subject to change all
through to the end of the project.

However, the impact of these techniques on the perceived quality of the released product is even greater
than the prevention of bugs. Describing use situations (scenarios) enabled the team at a very early stage
in the requirements engineering process to capture the most important demands seen from a
user/customer perspective. The developers therefore got a very clear vision of the product before the
requirements were fixed. The subsequent usability tests on very early prototypes verified that the
concepts derived from the descriptions of use situations (scenarios) still matched the users’ needs and
could be readily understood by them in their daily use situations.

The product has now been on the market for more than 18 months and it steadily sells more than twice
the number of copies than the product we have compared it to. This is in spite of the fact that it is aimed
at a much smaller market niche, and that the price of the new product is much higher.

In contrast to the test techniques, the interest among project managers to adopt the scenario and
usability techniques has been much higher. This may be because developers much rather will work with
requirements than with test.

3 Bootstrap Assessment

When the first results of the improvement actions based on defect analysis had materialised, the
management of our company could be convinced that a more formal assessment of our software
development processes should be performed in order to further the improvement programme.

A Bootstrap assessment was performed using the Danish company DELTA as assessors. Four projects
and the software development management were interviewed by the external assessors. The overall
result of the assessment was that we were at level 2.25.

The recommendations from the assessors pointed out weaknesses in the following areas:

• Development Model
The shift in focus from a primarily hardware driven development to software had to be more
focused. The assessors recommended to introduce a specific life-cycle for software development.

• Process Descriptions
Introduce the formal as well as informal improvement actions of the software processes in the
quality management system.

• Unit and Integration Testing
The assessors commented that the improvements we had achieved under the test improvement
experiment (PET) needed to be applied on a wider scale in the company.

© Otto Vinter / Brüel & Kjær Quality Week 2000 Page 6 of 13

• Configuration Management
Again the assessors commented on the need for a more uniform way of performing configuration
management, change control, and planning.

• Requirements
The assessors were aware of the ongoing requirements engineering experiment (PRIDE) and
commented on the need for a description of the process.

• Project Management
Improve planning, estimating procedures, introduction of time and resource usage, closer
monitoring of project progress.

The recommendations above clearly show that a Bootstrap assessment has a much wider perspective of
the software development process than defect analysis. Defect analysis primarily highlights “hot-spots”
in the development process. However, the testing and requirements “hot-spots” that we found through
our defect analysis were also found through the assessment.

Due to the strong project manager culture of our company, which is typical of a level 2 maturity, the
recommendations from the assessment were never turned into improvement actions. Top management
had stated their commitment to follow up on the assessment recommendations, but in the end they left it
to the project managers themselves to find and introduce improvement actions on their individual
projects. And the process improvement group did neither have the resources nor the “power” to be able
to introduce new activities on a wider scale.

With no “pressure” from the top, and projects running late, it is no wonder that the project managers
chose to concentrate on their day-to-day problems of getting products out of the door. Consequently, no
improvement actions were started as a result of the assessment. This is characteristic of an organisation
of level 1-2 maturity.

4 Project Manager Involvement

At this point it was evident to us that we were effective in defining and introducing new and improved
processes on individual development projects. However, the diffusion and adoption of the techniques on
an organisation wide scale did not happen by itself. The failure of the Bootstrap assessment to spur new
improvement initiatives among the project managers themselves made it evident to us that we had to
involve these powerful organisational actors directly in order to improve on a broader scale.

For this to happen we needed to increase our resources for process improvements, and we succeeded in
convincing our management to let Brüel & Kjær participate in the Center for Software Process
Improvement [5], which is partly funded by the Danish government. The participation gave us access to
a number of researchers and consultants and the resulting joint effort became the basis for spreading
improvements on a wider scale in the organisation.

We involved the project managers directly by performing a new type of problem diagnosis. We wanted
to analyse which (process) issues were perceived as important by them. The most common problems
would then form the basis for our next improvement activities, and this - we hoped - would enable an
easier diffusion and adoption across the projects.

© Otto Vinter / Brüel & Kjær Quality Week 2000 Page 7 of 13

The problem diagnosis technique [4] we used was to conduct a series of structured interviews with each
of the leading project managers where they were asked about which type of problems in their
development projects they felt were the most serious. Seven project managers were interviewed and
detailed minutes were recorded.

From these minutes we could compose a list of problem areas that the project managers found to
influence their projects most. The problems perceived by the project managers correlated very well, so a
consensus could be reached quite easily:

• Software Development Model
The present ISO9001 registered waterfall model was deemed unsatisfactory for efficient software
development. A new model based on iterations, e.g. through experimental prototypes, was asked for.
Risk management was also mentioned as an important element.

• Requirements
The project managers were aware of the ongoing requirements engineering improvement action
(PRIDE) and requested improvements in this area.

• Project Monitoring
Better estimating procedures, follow up, and progress evaluations.

• Project Conclusion
Configuration management, release criteria, and testing.

• Reuse
Actually this item did not appear in the interviews, but the organisational changes that took place at
the time of the evaluation centred on establishing a group responsible for reuse. So the process
improvement group added reuse to the list.

The problems perceived by the project managers clearly resemble the recommendations from the
Bootstrap assessment. Once again we see a much wider perspective of the software development
process than defect analysis. However, the testing and requirements “hot-spots” that we found through
our defect analysis were also found through this evaluation.

The project managers were presented with the findings at a workshop where top management also was
present. They were each asked to select a topic from the list that they felt most natural to work with on
their present (or up-coming project). The process improvement group and the researchers from the
Center for Software Process Improvement then established support groups that would train, mentor, and
follow these projects.

Three project managers chose to work with implementing the requirements engineering techniques from
PRIDE (section 2.2). Two chose to work with new development models. One chose to work with reuse
and one with project conclusion. Finally the R&D manager wanted to contribute by improving project
monitoring.

These new improvement actions were performed headed by the project managers with mentoring and
support from the process improvement group.

© Otto Vinter / Brüel & Kjær Quality Week 2000 Page 8 of 13

4.1 Diffusion and Adoption of the Test and Requirements Techniques

The project manager, who agreed to work on the project conclusion issue, concentrated on testing. The
action concurred with the efforts to concentrate our products on fewer hardware and software platforms,
and the project manager was responsible for one of these. Unfortunately, the tool that was introduced
with the test improvement project (section 2.1) did not integrate well with the MFC environment needed
for the project.

The philosophy from PET, however, that a project should achieve a certain level of testing before
release was permanently in the minds of the team, and it determined the way that the testing process was
organised. A specific group of people was assigned to testing the products on the platform, and they
managed to achieve the necessary credibility from the developers and project managers, so that the
products were not released until accepted by them. They automated the test suites and are currently
investigating tools to reintroduce static and dynamic analysis in their process as advocated by PET.

Three projects decided to work with the requirements techniques (section 2.2), and later another project
that worked on the iterative software development model adopted the techniques too. The teams were
trained in the techniques, and they immediately accepted them with great enthusiasm. Later as the
requirements phase progressed, the project managers and the teams continued to find the techniques
effective. The mentoring and support from the support group ensured that the techniques were used
properly by the projects.

The projects have released successful products to the market. It is too early to report sales figures,
however. The techniques are now accepted by all project managers as the standard way of conducting
the requirements phase at Brüel & Kjær.

4.2 The Software Development Model Improvement Actions

The most important problem perceived by the project managers was the existing waterfall software
development model. They felt that it was inconsistent with the way they actually wanted to develop their
products. They needed a new development model based on iterations, e.g. some form of prototyping.

One of the project managers, who agreed to work on the development model, wanted to extend the
prototyping principle used in the requirements phase to the implementation phase also, e.g. frequent
functional prototypes for user validation. When this model was defined, two more projects wanted to
adopt the model too. The other project manager, who agreed to work on the development model, wanted
to drive the iteration further and base it on the principle of time-boxing from RAD.

The process improvement group worked closely with the projects to define the new iterative software
development models. The models were initially presented in draft form for the teams. As the
development progressed and experience was gained, the models were revised and amended. The
mentoring and support from the support group turned out to be essential to the successful use of the
models. There seemed to be very little resistance to the improvements recommended by the support
group. In fact there was great enthusiasm in the teams for the development model improvement actions.

We found that introducing an iterative software development model clearly had an effect on the involved
projects. We have not been able to find a way to quantify the effects. However, through interviews and
observations we have been able to establish the following statements:

© Otto Vinter / Brüel & Kjær Quality Week 2000 Page 9 of 13

• drive and motivation of team increased dramatically
• turbulence within and around team decreased
• control over project progress increased
• requirements creep was kept under control
• resources were used more efficiently
• serious problems were uncovered early
• quality improved step-by-step

The project managers involved in the improvement action have clearly expressed that they want to
continue to use these iterative software development models. However, more experience with the models
is needed before they can be deployed as a new standard software development model at Brüel & Kjær.

4.3 Unsuccessful Actions

The reuse improvement project was initiated, but the group responsible for this never received the
necessary resources and support to get the project going. This is in fact quite natural since the item was
added by the improvement group and not perceived as a problem by the project managers. We are a
level 2 company, and reuse is an organisation wide activity (level 3).

Similarly the project monitoring improvement project did not succeed. The R&D manager acquired and
implemented a tool to support estimation and monitoring activities. But since he did not press the project
managers to use the tool, which by the way also had quality problems, the project managers to a very
large extent simply ignored the tool. The improvement group tried to establish a support group, which
should assist in getting the project managers to accept the tool, but the R&D manager felt that he was
too busy to take part in such an activity. The failure of this improvement project is also quite natural. A
tool by itself never solves a process problem, you need methodology and organisational support, and
this was not achievable at our level of maturity.

The conclusion that can be drawn from these improvement actions is that only those improvements will
be successful that are perceived by the project managers as solving their problems. Neither the
introduction of tools nor organisation wide actions will be effective in an organisation at maturity level
1-2 unless they align with the “power structure”.

5 Did We Improve Our Maturity?

After the improvement actions mentioned in the previous sections had been completed a second
Bootstrap assessment was performed in order to check on the results and further the improvement
programme.

The Bootstrap assessment was performed by the same assessors from DELTA. Four projects and the
software development management were interviewed by the external assessors. The overall result of the
assessment was still level 2.25.

This immediately seems like no improvement. However, when you study the detailed results that lead to
this number, you can see that the first assessment result was only a little more than halfway between 2.0
and 2.25 (and the final result therefore achieved through rounding), the second is straight at the level.

© Otto Vinter / Brüel & Kjær Quality Week 2000 Page 10 of 13

More important, however, than this number was the changes in recommendations made by the
assessors. This time they pointed out weaknesses in the following areas:

• Configuration Management
The assessors commented on the need for a more uniform way of performing configuration
management, change control, and planning.

• Project Management
Improve planning, estimating procedures, introduction of time and resource usage, closer
monitoring of project progress.

• Management Responsibility
Improve status reporting, roles and responsibilities, common policies and strategies.

• Architectural Design
Introduce interface design methods and standards.

• Process Measurements
Introduce measurement programme and procedures.

• (Unit and Integration Testing)
The assessors acknowledge that the present level of testing seems adequate for the quality of the
products in the market.

These recommendations clearly show that those improvement actions that the project managers have
undertaken w.r.t. development model and requirements are no longer on the list. The testing
recommendation has been moved to the bottom position of the list, and the assessors acknowledge that
the testing performed seems to be adequate for products like ours, even though it is not performed fully
according to the maturity model.

The recommendations from the previous assessment on configuration management and project
management that we had either ignored in our improvement actions (configuration management) or not
succeeded in getting to work (project management) are still on the list and now at the top of the list.

Shortly after the second assessment, we performed another round of interviews with the project
managers, e.g. repeated the problem diagnosis. We wanted to find out whether the improvement actions
had had an effect on the (process) issues that they perceived as important to them. Four project
managers were interviewed in this round.

The conclusions from the interviews are in remarkable concordance with the conclusions from the
Bootstrap assessment above: development model and requirements issues are no longer on their list.
Testing issues have been reduced in importance. The top issues on the list are configuration
management and project management. There is also an agreement on two of the new issues:
management responsibility and design.

Based on these new recommendations, two further improvement actions have been initiated. One
improvement action addressing configuration management, and one action attempting to revitalise the
acceptance and use of the estimation and monitoring tool, this time focusing on project feed-back and
management reporting, e.g. addressing the organisation around the tool.

© Otto Vinter / Brüel & Kjær Quality Week 2000 Page 11 of 13

Due to a change in R&D management the intention is to perform these improvement actions with much
more higher-level management attention and involvement, e.g. an improvement style suiting a level 3
maturity organisation. It remains to be seen whether this approach will be successful.

6 Comparison of Approaches

The recommendations from the different approaches to SPI that we have performed show a great deal of
overlap though they sometimes use different words.

Recommendation Defect Analysis

(section 2)

Bootstrap
Assessment
(section 3)

Project Mgr.
Interviews
(section 4)

Development Model
- iterations
- risk management

x x x
x

Requirements x x x
Project Monitoring
- estimation
- time & resource usage
- monitor progress

x
x
x

x

x
Project Conclusion
- configuration mgmt.
- testing
- release criteria

x
x

x
x

x
x
x

Reuse x
Process Descriptions x

What is important, however, is the fact that the findings from the defect analysis approach are
recommended by the more general evaluations. This means that a problem diagnosis approach to SPI
based on the available error logs in the organisation is a valid approach to initiate a process
improvement programme. And we have seen that improvement actions based on the defect analysis
approach actually lead to improvements that changed the recommendations in a formal Bootstrap
assessment.

The majority of the assessment recommendations are also found by the approach based on project
manager interviews. This means that a problem diagnosis approach to SPI based on the (process) issues
perceived by the project managers is also a valid approach to initiate or sustain a process improvement
programme. And we have seen that improvement actions, which are adopted by the project managers,
actually lead to improvements that changed the recommendations in a formal Bootstrap assessment.

7 Conclusions

From the above comparison of approaches and the results of our improvement actions, we conclude that
problem diagnosis approaches to SPI based on already available experience in the organisation are
effective and valid alternatives to formal assessments for organisations at maturity level 1-2.

© Otto Vinter / Brüel & Kjær Quality Week 2000 Page 12 of 13

Normative models for SPI like CMM and Bootstrap should not be discarded because of this. They
represent a comprehensive framework for improvement actions and have established a way of
measuring (assessing) whether improvement actions have been successful within an organisation.

However, their basic principle of establishing levels of maturity, and consequently the recommendation
for organisations to improve from one level to the next until the top level is reached, seems to be very
difficult for organisations to accomplish. This may discourage many organisations from improving their
processes at all.

Alternative approaches to SPI like the ones we have employed tend to be hot-spot solutions to very
specific problems. However, they have a high motivational effect because of the immediate quick wins
they bring. This will encourage the organisation to pursue a continuous line of improvement actions, and
as we have seen, completely in sync with the key process improvement areas of the normative models.

Irrespective of the SPI approach, it is our experience that in order to achieve a widespread adoption of
process improvements in an organisation, it is necessary that the improvement actions are defined by or
co-ordinated with the powerful actors in the organisation, which at a level 2 maturity are the project
managers. Recommendations from a Bootstrap assessment or dedicated improvement actions will only
be effective if they are aligned with the “power structure” of the organisation.

8 References

[1] Beizer B., Software Testing Techniques. Second Edition, Van Nostrand Reinhold New York,
1990.

[2] Bicego A., Khurana M., Kuvaja P., BOOTSTRAP 3.0: Software Process Assessment
Methodology, Proceedings of the SQM’98, 1998.

[3] Bollinger, T. B. and McGowan, C., A Critical Look at Software Capability Evaluations, IEEE
Software, Vol. 8, No. 4, pp. 25-41, 1991.

[4] Iversen, J., Nielsen, P. A., and Nørbjerg, J., Problem Diagnosis in Software Process
Improvement, Proceedings of the IFIP WG8.2 & WG8.6 Working Conference, Helsinki, Finland,
1998. (http://www.bi.no/dep2/infomgt/wg82-86/proceedings/iversen.pdf)

[5] Mathiassen L., Beskrivelse af forskningsprojekt om: Softwareprocesforbedring, Aalborg
Universitet, DK-9220 Aalborg Øst, Denmark, 1996.

[6] Paulk, M.C., Curtis, B., Chrissis, M.B., and Weber, C.V., Capability Maturity Model for
Software, Version 1.1, 93-TR-024, Software Engineering Institute, Pittsburgh, Pennsylvania,
1993.

[7] Vinter O., Poulsen P.-M., Nissen K., Thomsen J.M., The Prevention of Errors through
Experience-Driven Test Efforts. ESSI Project 10438. Final Report, Brüel & Kjær A/S, DK-2850
Nærum, Denmark, 1996. (http://www.esi.es/ESSI/Reports/All/10438).

[8] Vinter O., Poulsen P.-M., Nissen K., Thomsen J.M., Andersen O., The Prevention of Errors
through Experience-Driven Test Efforts, DLT Report D-259, DELTA, DK-2970 Hørsholm,
Denmark, 1996.

[9] Vinter O., Lauesen S., Pries-Heje J., A Methodology for Preventing Requirements Issues from
Becoming Defects. ESSI Project 21167. Final Report, Brüel & Kjær Sound & Vibration
Measurement A/S, DK-2850 Nærum, Denmark, 1999.
(http://www.esi.es/ESSI/Reports/All/21167)

© Otto Vinter / Brüel & Kjær Quality Week 2000 Page 13 of 13

Appendix: CV of Author

Otto Vinter is a project manager specialising in software process improvements with the Danish
software engineering consulting company DELTA. Until recently he was responsible for software
process improvements at Brüel & Kjær. He has been active in defining software engineering standards,
procedures, and methods to be employed at Brüel & Kjær. He has been the driving force in the company's
improvement activities in testing, requirements engineering, development models, and introduction of object-
oriented development methods.

He has managed software development projects for 30 years; with Brüel & Kjær from 1986, before that
with the Danish branch of Control Data Corporation, and with Regnecentralen.

The author received his Masters Degree in Computer Science from the Danish Technical University in
1968. He is an associate teacher for BSc. level education in Computer Science, is an active participant
in Danish software knowledge exchange groups, is on the programme committee of several international
conferences, performs mentoring activities for clients, and is an expert evaluator on the framework
programmes of the CEC.

QW2000 Paper 9T2

Mr. Tim Szymanski
(Advanced Software Technologies, Inc.)

Quality Starts with Requirments: How the UML
Can Help

BACK TO QW2000 PROGRAM

Key Points

Setting requirements should be the first significant engineering work product of any software development
lifecycle.

●

A quality process for gathering and documenting an undestanding of the problem to be solved is essential to
attaining quality products throughout the development lifecycle.

●

Using the Unified Modeling Language (UML) and a light weight process, the development team can maximize
quality during a very early phase of the lifecycle and leverage those results throughout the project's lifetime.

●

About the Author

Mr. Tim Szymanski is an expert in object oriented technology. As a known speaker and publisher in
the field, Mr. Szymanski brings a fresh and down-to-earth approach to implementing OO technology.

Mr. Szymanski currently supports technical sales and OO consulting with Advanced Software
Technologies, a leader in UML modeling technology and OO training.

Mr. Szymanski began his career with 8 years as an officer in the United States Air Force, involved in a
variety of sophisticated military and communications technology. Mr. Szymanski's work experience
also includes: Reltec Corporation and Gateway Computers where his area of focus involved process
improvement, implementation of UML technology and commercial application development.

Mr. Szymanski graduated from the United States Air Force Academy in 1990 with a Bachelor of
Science degree in Electrical Engineering. In 1994 he received a Master of Science degree in
Computer Science from California State University Sacramento. He may be contacted at:
tszymanski@advancedsw.com.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9T2.html [4/28/2000 2:38:27 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Quality Starts with Requirements
How the UML Can Help

Tim Szymanski
Senior Consultant

Advanced Software Technologies, Inc.

Quality Week 2000

June 2, 2000

© 2000 Advanced Software Technologies, Inc.

Introduction

• SRA – The Weak Link
• The Goals of SRA
• Problem Space vs. Solution Space
• A Recipe for Success
• Results

2

© 2000 Advanced Software Technologies, Inc.

SRA – The Weak Link

• A Plethora of Incredible Tools Exist
in Today’s Software World

• Many More Incredible Tools are
Right Around the Corner

• Many Projects are Still Late and/or
Over Budget

© 2000 Advanced Software Technologies, Inc.

Who Wants to be a Millionaire?

– A Technical Barrier
– Long Lunches
– Insufficient Understanding of

the Problem to be Solved

What Factor Most Often Causes a
Project to Encounter Hurdles?

3

© 2000 Advanced Software Technologies, Inc.

The Solution

• Better Software Requirements Analysis

• However…
– “We Don’t Have Time”
– “We Don’t Have the Resources”
– “The Requirements are not Yet Known”

© 2000 Advanced Software Technologies, Inc.

Once Again…

– A Technical Barrier
– Warm Springtime Weather
– Insufficient Understanding of

the Problem to be Solved

What Factor Most Often Causes a
Project to Encounter Hurdles?

4

© 2000 Advanced Software Technologies, Inc.

The Goal of SRA

• The goal is not to produce as much
documentation as possible.

© 2000 Advanced Software Technologies, Inc.

The Goal of SRA

• The real goal is to capture an
understanding.

• The UML is the perfect
tool to capture that
understanding!

5

© 2000 Advanced Software Technologies, Inc.

SRA - The First Step

My
Understanding

My
Problem

CustomerAnalyst

UML
Business

Knowledge
ANALYSIS MODEL

© 2000 Advanced Software Technologies, Inc.

SRA – The First Step

• A Picture is Worth 1000 Words
• Build an Analysis Model First
• Analysis Model Should Drive a

Requirements Document
• If Need Be, the Analysis Model May

Be Your Requirements Document

6

© 2000 Advanced Software Technologies, Inc.

What is an Analysis Model

• Class Diagrams
– Business Entities and Relationships

• Use Case Diagrams
– Business Functionality

• Activity/State Diagrams
– Business Processes and Logic

© 2000 Advanced Software Technologies, Inc.

What is an Analysis Model

• An Analysis Model Captures Required
Business Information and Behavior

7

© 2000 Advanced Software Technologies, Inc.

Tie It All Together

• A Proper Analysis Model Can…
– Minimize Project Risk
– Maximize Project Quality
– Build a Foundation for a Complete SRA
– Substitute for Detailed Requirements

when the Schedule is Tight

© 2000 Advanced Software Technologies, Inc.

Building an Analysis Model

Problem Space
Vs.

Solution Space

8

© 2000 Advanced Software Technologies, Inc.

Problem Space

• Business Rules
• Business Entities
• Business Relationships
• Business Processes and Logic
• Any information or behavior that

exists in the customer’s world.
• 100% Implementation Independent

© 2000 Advanced Software Technologies, Inc.

Solution Space

• Components Working Together to
Implement a Solution

• Many Solutions for any One Problem
• Most Frequent Application of the UML
• Must be Implementation Aware

(I.e. C++ vs. Java, Unix vs. Windows)

9

© 2000 Advanced Software Technologies, Inc.

Problem Space / Solution Space

Problem Space Solution Space
1

0..*

Analysis Model Design Model
1

0..*

Implementation Independent Implementation Aware

Software Requirements Analysis Software Design

1

1

1

1

© 2000 Advanced Software Technologies, Inc.

Remember…

• Software Requirements Analysis
often overlaps with business process
design.

• Designing business processes is still
very different than designing
software.

10

© 2000 Advanced Software Technologies, Inc.

A Repeatable Process

• Build a Domain Model
• Identify Use Cases for Functional

Requirements
• Identify Use Cases for Interface

Requirements

© 2000 Advanced Software Technologies, Inc.

A Repeatable Process

• Model Complex Interactions
Between the User and the System

• Add Detail to the Domain Model

• Identify Requirements Statements
(rules) that Govern Each Use Case

11

© 2000 Advanced Software Technologies, Inc.

Domain Model

• Defines a Mutual Understanding of
the Customer’s World

• Identifies Business Entities and the
Relationships Among those Entities

• 100% Independent of Design and
Implementation Details

© 2000 Advanced Software Technologies, Inc.

Example:

“I need a system that allows me to
track issues as identified via e-mail
by our customers. For each issue I
need to track activities performed by
support reps while trying to solve the
various issues.”

12

© 2000 Advanced Software Technologies, Inc.

Domain Model

Customer

IssueActivity

Support_Rep

0...*

1

10...*

0...*

1

0...*

1

E-Mail

1...*1

---Problem Space---

© 2000 Advanced Software Technologies, Inc.

Functional Capabilities

• For each entity on the domain model:
– Create - Does the system need to allow

the user to create new instances?
– Review - Review Existing Instances?
– Update - Update Existing Instances?
– Delete - Delete Existing Instances?

13

© 2000 Advanced Software Technologies, Inc.

Functional Capabilities

Create a New Customer

Update an Existing Customer

Review an Existing Customer

Project
Organization

14

© 2000 Advanced Software Technologies, Inc.

Interface Requirements

• Does the user have any specific
requirements regarding the system’s
interface?

• If so, develop use cases that describe
these interface requirements.

© 2000 Advanced Software Technologies, Inc.

Example

“When a new e-mail is received, I
want the system to lead me through
a process. First I search to see if the
customer already exists. Only if the
customer exists do I proceed. I then
search for an existing issue that
matches the issue brought up in the
new e-mail. If the issue exists, I ...

15

© 2000 Advanced Software Technologies, Inc.

Example

…attach the e-mail to the existing
issue. Otherwise, I create a new
issue and attach the e-mail. If I
create a new issue I must also assign
a support rep to handle that issue.

© 2000 Advanced Software Technologies, Inc.

Interface Requirements

Handle New Email

16

© 2000 Advanced Software Technologies, Inc.

Model Complex Interactions

• Interface requirement use cases often
have many paths that use many of the
primitive use cases identified in the
functional requirements.

• Current industry direction suggests
writing scenarios.

© 2000 Advanced Software Technologies, Inc.

Model Complex Interactions

• Activity diagrams and state
diagrams are specifically designed to
show multiple behavior paths that
depend on various conditions.

• Draw one model that represents the
required interaction as it pertains to
the use case in question.

17

© 2000 Advanced Software Technologies, Inc.

Model Complex Interactions

Searching for Customer Handling Invalid Customer

Evaluating Email Content

Customer Not Found

Customer Found

Creating a New Issue

Searching for Existing Issue

Attaching Email to Existing Issue

Assigning Sales Rep

Issue Not Found Issue Found

© 2000 Advanced Software Technologies, Inc.

Add Detail to Domain Model

• The original domain model only
contained classes and associations.

• Fill in attributes for each class.

18

© 2000 Advanced Software Technologies, Inc.

Add Detail to Domain Model

- Job Title :
- Name :

Customer

- Date Closed :
- Date Opened :
- Description :

Issue

- Desciption :
- Type :

Activity

- Badge Number :
- Name :

Support_Rep

0...*

1

10...*

0...*

1

0...*

1

E-Mail

1...*1

© 2000 Advanced Software Technologies, Inc.

Identify Requirements Stmts.

• Most Difficult Step
• Requires Precision to be Valuable
• Questions MUST be Answered

Sooner or Later
• Too Many Projects Leave this Step

to the Programmers

19

© 2000 Advanced Software Technologies, Inc.

Identify Requirements Stmts.

• The system shall allow the user to create a new issue for
any existing customer.

• When creating a new issue, the system shall require the
user to supply an issue description.
– Issue description shall be a minimum of 5 characters.
– Issue description shall be a maximum of 500 characters.

• When creating a new issue, the system shall assign the
current date to the the issue’s date opened attribute.

© 2000 Advanced Software Technologies, Inc.

Process Review

• Domain Model
• Functional Requirements
• Interface Requirements
• Complex Interactions
• Domain Model Detail
• Requirements Statements

20

© 2000 Advanced Software Technologies, Inc.

Summary

• The Goal of SRA is to understand
the customer’s problem.

• Current industry direction suggests
a subjective approach using use
cases to model understanding.

© 2000 Advanced Software Technologies, Inc.

Summary

• Applying engineering discipline and
process to use cases can produce a
repeatable use case technique for
understanding and modeling
problems.

• 10 analysts working independently
will produce similar results.

21

© 2000 Advanced Software Technologies, Inc.

Final Result

If Process.IsGood() = True Then
Repeatable Process = Repeatable Success

End If

QW2000 Paper 9A2

Mr. Jerrold Landau
(IBM Canada)

An Overview of Testing Methodology and Experience at IBM Corepoint
Banking Solutions

BACK TO QW2000 PROGRAM

Key Points

Web based application●

Real-life experience●

Java●

Presentation Abstract

Corepoint solutions are a set of web-based components and reference applications designed primarily
for the banking industry. Currently, there are four applications available: Internet Banking, Contact
Center Management, Teller, and Branch Sales. These products, produced by the IBM Toronto Lab,
are written in Java, and run on an AIX or NT server and an NT client. This presentation will provide an
overview of the testing strategies and methodologies used by IBM to test these products, discuss our
experience with automation, and outline the problems and challenges that are encountered in our
testing effort.

At this point, the components are bound together in the four different reference applications, and are
intended to be customized by an engagement team prior to being installed at a real customer site. We
anticipate moving toward a paradigm of more generalized components in the future, which will
defocus further from the end-user banking application. Of course, this will present a new set of
challenges for the testing group.

Topics covered in this presentation include:

The makeup of our testing department●

The system test process that we use, with examples of testplans and testcases●

A discussion of incident reporting and tracking●

A brief overview of Performance testing●

A brief overview of Component testing●

Our experience with Testcase automation●

A discussion of the problems, pitfalls and challenges that are encountered during our
testing effort

●

It is not the aim of this presentation to present any new theories and methodologies to
approach the testing effort. Rather, it will show how existing test methodologies are

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9A2.html (1 of 2) [4/28/2000 2:38:32 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

adapted to fit a real life, dynamic, leading edge development environment, replete with the
time constraints, plan changes, moving target, and other such challenges that all professional
testers are accustomed to. Anyone who is interested in learning from our experience is
welcome to attend this presentation.

About the Author

Jerrold Landau has been an employee of IBM Canada for over 9 years. He spent his first 8 years with
the AS/400 Compiler group, being primarily involved in testing and customer support. For the last year
and a half, he has been working as part of the testing group with the Corepoint division of the IBM
lab.. Prior to joining IBM, Jerrold worked at two smaller companies, Cherniak Gottlieb and Netron, as a
software developer-analyst.

Jerrold has a M.A.Sc. in Industrial Engineering from the University of Toronto, 1986, and a B.Sc. in
Computer Science from the University of Toronto, 1984.

Jerrold has been involved with various aspects of the software development process during his
career, and has always maintained a primary interest in testing and quality assurance. He is interested
in enhancing the stature of the testing discipline within the software development environment.

Recently, Jerrold was the chairman of a workshop entitled ôPractical Experience with Quality
Assurance at the IBM Toronto Labö, presented at the CASCON 1999 conference in Toronto.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9A2.html (2 of 2) [4/28/2000 2:38:32 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Software Testing at the Software Testing at the
 IBM Toronto Lab IBM Toronto Lab
(Corepoint Banking Solutions) (Corepoint Banking Solutions)

Jerrold Landau, M.A.Sc.Jerrold Landau, M.A.Sc.
landau@ca.ibm.comlandau@ca.ibm.com

copyright: Jerrold Landau, IBM Canada, 2000

Topics of DiscussionTopics of Discussion

Organization of Test DepartmentOrganization of Test Department
Corepoint Product SuiteCorepoint Product Suite
System Test ProcessSystem Test Process
Reporting of ResultsReporting of Results
Unit, Component, and Performance TestUnit, Component, and Performance Test
AutomationAutomation
Testing ChallengesTesting Challenges

Testing OrganizationTesting Organization

Separate Testing department (8 people)Separate Testing department (8 people)
Manual System and Regression Testing testing Manual System and Regression Testing testing
GUI based applicationsGUI based applications
various backgrounds various backgrounds

business
technical
co-ops
Borrow people from other teams during peaks

Unit Testing done by developersUnit Testing done by developers
Performance and Scalability TestingPerformance and Scalability Testing
Component Testing done by separate groupComponent Testing done by separate group

Corepoint Product SuiteCorepoint Product Suite

Contact CenterContact Center
Internet BankingInternet Banking
TellerTeller
Branch SalesBranch Sales

Contact CenterContact Center
Internet BankingInternet Banking
TellerTeller
Branch SalesBranch Sales

Contact CenterContact Center
Internet BankingInternet Banking
TellerTeller
Branch SalesBranch Sales

These are Reference Applications, built on top These are Reference Applications, built on top
of a set of frameworksof a set of frameworks

Corepoint Product SuiteCorepoint Product Suite

CONTACT CENTER V 1.4CONTACT CENTER V 1.4

Contact Center DesktopContact Center Desktop

Contact Center PrerequisitesContact Center Prerequisites

Testing staff need to have a basic understanding of:Testing staff need to have a basic understanding of:

Java environment (JDK, JVM)Java environment (JDK, JVM)
AIX operating systemAIX operating system
Websphere web server and Servlet EngineWebsphere web server and Servlet Engine
IBM TX Series (CICS, Encina, DCE)IBM TX Series (CICS, Encina, DCE)
DB2 / UDBDB2 / UDB
MQ SeriesMQ Series
CallflowCallflow
CallpathCallpath
COBOLCOBOL
Jetform PrintingJetform Printing
Domino WebserverDomino Webserver
Netscape BrowserNetscape Browser

Types of TestingTypes of Testing

Unit TestUnit Test
Component TestComponent Test
System TestSystem Test
User Acceptance TestUser Acceptance Test
Performance / Scalability TestPerformance / Scalability Test
Fixpack TestingFixpack Testing

All of the above can be done in a manual or automated All of the above can be done in a manual or automated
fashionfashion

System Test ProcessSystem Test Process

Test Plan

Test Cases

Test Case
Execution Cycles

Use Cases

Exit Criteria

Tracebility throughout documents
Master Test Plan
Component Test Plans
Test cases tuned during test

 execution
Formal Sign Offs

Incident Reports
and Test Results

Use Case - Funds TransferUse Case - Funds Transfer

#
(Main course)
UCFND

Action By Actor System Response

M1 requests to transfer funds displays a view that allows
the input of a funds transfer

M2 enters the appropriate funds
transfer details, including
- from account (mandatory)
- to account (mandatory)
- amount (mandatory)
- date, fee, description, etc.

accepts the entries

M3 submits the funds transfer
request

- accepts the submission
- displays confirmation of the
 request
- updates the appropriate
 accounts

System Test ProcessSystem Test Process

Test Plan

Test Cases

Test Case
Execution Cycles

Use Cases

Exit Criteria

Incident Reports
and Test Results

Test Plan - Funds TransferTest Plan - Funds Transfer

System Test ProcessSystem Test Process

Test Plan

Test Cases

Test Case
Execution Cycles

Use Cases

Exit Criteria

Incident Reports
and Test Results

Test Case- Funds TransferTest Case- Funds Transfer

System Test ProcessSystem Test Process

Test Plan

Test Cases

Test Case
Execution Cycles

Use Cases

Exit Criteria

Incident Reports
and Test Results

System Test CycleSystem Test Cycle

Typically 6-8 builds per release at weekly Typically 6-8 builds per release at weekly
intervalsintervals
Schedule always subject to changeSchedule always subject to change
Installation TestInstallation Test
Focus on new functionalityFocus on new functionality
Verification of fixesVerification of fixes
Regression testing, tuned to the specific Regression testing, tuned to the specific
functionality provided in the build (typically functionality provided in the build (typically
full for 2 builds, partial for rest)full for 2 builds, partial for rest)

System Test ProcessSystem Test Process

Test Plan

Test Cases

Test Case
Execution Cycles

Use Cases

Exit Criteria

Incident Reports
and Test Results

Incident Reporting System Incident Reporting System

Lotus Notes - home grown application

Incident SeveritiesIncident Severities

Incident Reports Classified by Four Severity Incident Reports Classified by Four Severity
LevelsLevels

Sev 1 -- Totally Inoperable. A critical component with a Sev 1 -- Totally Inoperable. A critical component with a
major business impact cannot be used because the major business impact cannot be used because the
required functionality does not exist.required functionality does not exist.

Sev 2 -- Severely Inoperable. Functionality exists but is Sev 2 -- Severely Inoperable. Functionality exists but is
impaired or incomplete.impaired or incomplete.

Sev 3 -- Partially InoperableSev 3 -- Partially Inoperable

Sev 4 -- AnnoyanceSev 4 -- Annoyance

Recording of Results (Metrics)Recording of Results (Metrics)

Manual data entry :o(Manual data entry :o(
Excel spreadsheets with graphsExcel spreadsheets with graphs

 test case execution - pass/fail
 total and by component

Automated :o)Automated :o)
Lotus 123 spreadsheets with graphsLotus 123 spreadsheets with graphs

 defect reporting by priority

System Test ProcessSystem Test Process

Test Plan

Test Cases

Test Case
Execution Cycles

Use Cases

Exit Criteria

Incident Reports
and Test Results

Exit CriteriaExit Criteria

checklist of activities to be completed and checklist of activities to be completed and
criteria to be met prior to shippingcriteria to be met prior to shipping
criteria identified by stakeholderscriteria identified by stakeholders

example of exit criteriaexample of exit criteria
6 test cycles6 test cycles
0 open sev 1, 10 sev 2, 3 sev 30 open sev 1, 10 sev 2, 3 sev 3
performance meets agreed to criteria performance meets agreed to criteria
release notes describe all outstanding problemsrelease notes describe all outstanding problems
all documentation items completedall documentation items completed

Sign OffSign Off

Release notes describing existing problems Release notes describing existing problems
prepared for usersprepared for users

Sign Off Document outlining status of product Sign Off Document outlining status of product
prepared for stakeholdersprepared for stakeholders

Meeting of stakeholders called to discuss exit Meeting of stakeholders called to discuss exit
criteriacriteria

Signoff solicited from all stakeholdersSignoff solicited from all stakeholders

Component TestingComponent Testing

Test cases written in Java to test functionality Test cases written in Java to test functionality
of componentof component
Test plan necessary for each componentTest plan necessary for each component
JUnit (freeware) used to provide testing JUnit (freeware) used to provide testing
framework, automation and result loggingframework, automation and result logging
Assert statements to check resultsAssert statements to check results
Important to test correct inputs as well as Important to test correct inputs as well as
incorrect inputsincorrect inputs
Tests can be run singlely or as a batchTests can be run singlely or as a batch
Problems logged just as in system testProblems logged just as in system test

Performance and ScalabilityTestPerformance and ScalabilityTest

Insert code hooks to provide time stampInsert code hooks to provide time stamp
Run typical business scenarioRun typical business scenario
Obtain timings for key checkpointsObtain timings for key checkpoints
for single user, 50 users, and 100 usersfor single user, 50 users, and 100 users

Compare timings with benchmarks provided Compare timings with benchmarks provided
by client expectationsby client expectations

Two week session at Dallas lab for 500+ usersTwo week session at Dallas lab for 500+ users

Performance Test ExamplePerformance Test Example

Checkpoint Run 1 Run 2

Login 3016 2758

Customer Search 531 510

Customer In Context 4265 3687

Account Inquiry 1256 1073

Funds Transfer 2448 3762

Wrap Up Customer 3926 3548

Total 15442 15338

times in millisecondstimes in milliseconds
times are average of several runstimes are average of several runs
slight overall improvement but severe slight overall improvement but severe
degradation in one areadegradation in one area

Automation Automation

GoalsGoals

to be able to run test suites more frequently, and thereby to be able to run test suites more frequently, and thereby
to catch errors soonerto catch errors sooner

eliminate ambiguity in interpertationeliminate ambiguity in interpertation

free up testing staff for more in-depth testingfree up testing staff for more in-depth testing

Automation ToolAutomation Tool

Segue Silk Test (GUI based tool)Segue Silk Test (GUI based tool)
Manages test plans and test suitesManages test plans and test suites
Provides charts and graphical reportsProvides charts and graphical reports
You must capture declarations prior to writing You must capture declarations prior to writing
test casestest cases
Test cases written in 4Test language Test cases written in 4Test language
You can write or record the test casesYou can write or record the test cases
You must insert error checking into test cases You must insert error checking into test cases
to determine pass/failto determine pass/fail

Automation - Our ExperienceAutomation - Our Experience

Pilot project completed successfullyPilot project completed successfully
Test suite with 100 test cases producedTest suite with 100 test cases produced
Very expensive and time consumingVery expensive and time consuming
Long training period, much education neededLong training period, much education needed
Chasing current technology -- Netscape Chasing current technology -- Netscape
support as well as recognition of Java objectssupport as well as recognition of Java objects
Product suite evolution makes benefits Product suite evolution makes benefits
questionablequestionable

Not advisable to completely automateNot advisable to completely automate

Testing ChallengesTesting Challenges

AutomationAutomation
Constricting of timeframesConstricting of timeframes
Moving TargetMoving Target

feature creepfeature creep

Home grown reporting toolHome grown reporting tool
manual tallyingmanual tallying

Fixpack procedures not in place yetFixpack procedures not in place yet
Fluid exit criteriaFluid exit criteria
Balance between quality and market pressureBalance between quality and market pressure

SummarySummary

Team of people with diverse backgroundsTeam of people with diverse backgrounds
Test GUI applications (CBS)Test GUI applications (CBS)
Follow proven testing methodologiesFollow proven testing methodologies
Unit, Component and Performance TestingUnit, Component and Performance Testing
Automation vs Manual TestingAutomation vs Manual Testing

Lots of challengesLots of challenges

Software Testing at the Software Testing at the
 IBM Toronto Lab IBM Toronto Lab
(Corepoint Banking Solutions) (Corepoint Banking Solutions)

Jerrold Landau, M.A.Sc.Jerrold Landau, M.A.Sc.
landau@ca.ibm.comlandau@ca.ibm.com

QW2000 Paper 9W2

Mr. Stephen Kingston
(Watchfire)

The Web Application Process: Development & Testing

BACK TO QW2000 PROGRAM

Key Points

This presentation will review every stage of application testing, from user requirements to deployment and the
various forms of testing involved:

Maximizing your web environment●

Importance of SQA●

Importance of Qaulity Analysis●

About the Author

Stephen Kingston's responsibilities include establishing the direction for Watchfire's solution line up
and facilitating the working relationships among cross-functional groups involved in product
development. Stephen joined Watchfire in 1999. His prior experience includes nine years at JetForm
and then at Corel in various customer-oriented roles. At Watchfire, Stephen has been instrumental in
building the Product Management Team and implementing the process infrastructure of the Product
Development Lifecycle.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9W2.html [5/5/2000 1:43:59 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Web Applications Testing 1

Functional and Regression Testing of
Web Applications

Stephen Kingston
Director, Product Management

Watchfire
Presentation for: Quality Week 2000

Web Applications Testing 2

Overview

• Web application testing is evolving as sites
become more complex.

• Automation of some functions is essential.

• Cross-functional teams and related
requirements have a significant impact on
testing websites.

2

Web Applications Testing 3

“Brochure ware” Web Architecture

The “olde days”:

The website was the web-based application.

Testing requirements:

Simple, page by page link checking - not many
pages

Web Applications Testing 4

Applications-based Web Architecture

Websites now:

The website can be huge and act mainly as a front-end to a
complexity of various applications.

Overall testing goal:
Need to ensure that the whole thing works together from
the customer’s perspective.

3

Web Applications Testing 5

Main Testing Requirements

• Can the customer navigate your site?
• Link testing/Integration testing

• Is site performance adequate? Do pages load
fast enough?
• Stress testing/Performance monitoring

• Is the site and its application infrastructure
accessible?
• Infrastructure monitoring

Web Applications Testing 6

Main Testing Requirements cont’d.

• Do the applications work on your site from the
customer’s perspective?
• Functional testing

• Does the site still work properly after changes?
• Regression testing

4

Web Applications Testing 7

Functional Testing

• Do key page elements have the correct properties?
• Are forms, graphics and links structured properly

for customer interaction?

• Are forms interacting properly with the application?
• Are values or error messages generated?

During development, during QA and UA, and once a
site is operational, web-based applications must be
tested and monitored for their operational functionality.

Web Applications Testing 8

Functional Testing cont’d.

• Do different values, including invalid values, input into
forms produce expected results from the back-end?
• Are the application’s business rules properly

reflected by the web front-end?

• What are the page load times for key web/back-end
interactions?
• Is the application performing adequately on

average and on a regular basis?

5

Web Applications Testing 9

Regression Testing

• Do key page elements still have the correct properties?

• Are forms still interacting properly with the application?

• Do different values, including invalid values, input into forms
still produce expected results from the back-end?

• Have the application’s business rules changed and are these
changes properly reflected by the web front-end?

As new builds are produced, and as the production
site is updated:

Web Applications Testing 10

Regression Testing cont’d.

• What are the page load times for key web/back-end
interactions?

• Are links to other parts of the site and to external sites
still functioning?

• Were any old files left over from the last build?

• Have old problems that were previously fixed been
re-introduced?

6

Web Applications Testing 11

Automated Testing: Why automate?

Time - Resources - Scope

• Time to market for Web applications -- manual testing
takes too long

• HR crunch -- not enough people to test everything

• Not enough time to run through all permutations and
combinations of possible values

• Repetitive testing of the same functions after any
changes to the front-end or back-end

• Repetitive testing of the same functions with different
input values

Web Applications Testing 12

Automated Testing: What to automate?

• Page elements verification

• Content verification

• Performance - page loads, response times

• Forms input - multiple values, data input capabilities

• Browser interactions - testing from the customer’s
perspective

7

Web Applications Testing 13

Old Corporate Web Organizations

Web Applications Testing 14

New Corporate Web Organizations

8

Web Applications Testing 15

Cross-Functional Web Teams –
Why have them?

• SDLC

• Many players with key responsibilities for the application
throughout the product development, testing and release
cycle

• RAD

• Short development cycles require that joint development
teams test throughout development process

• User Acceptance Testing

• End-to-end testing of final application to ensure all
applications work as expected from the customer’s
perspective (i.e. web front-end)

Web Applications Testing 16

Cross-Functional Web Teams –
Who are the Members?

• Management

• Bottom line - revenues or cost savings

• Product/Project Management

• User acceptance of the complete application

• Operations

• 24x7 - site accessibility; site functionality

9

Web Applications Testing 17

• Quality Assurance

• Testing of all aspects of application

• Development

• Unit testing during development and end-to-
end testing of pre-Alpha

Cross-Functional Web Teams –
Who are the Members?

Web Applications Testing 18

Cross-Functional Testing
Requirements

• Ease of use

• Web-centric

• Sharing of scripts and reports across teams

• Geographic diversity

• Historical reporting - trends over time

• Scheduling/monitoring

• Performance bench marks

10

Web Applications Testing 19

Wrap-Up

• Complexity of web sites means testing is complicated and
involved

• Testing from the user’s perspective is paramount
• Time/resource constraints make automated testing essential
• Complex organizations and rapid development make testing a

cross-functional responsibility
• Cross-functional web teams have varying requirements for

testing and related solutions

QW2000 Paper 9M2

Mr. Richard Kasperowski
(Altisimo Computing)

Opportunistic Software Quality (9M2)

BACK TO QW2000 PROGRAM

Key Points

Opportunistic software testing: a strategy for improving quality with limited resources●

Examples from a recent project●

Data and results●

Presentation Abstract

I recently worked on a project for which I was the sole QA person and the ship date was only three
months away. The project was to build and deliver a web-based billing system for the local telephone
customers of a large telephone company. The team used HTML and JavaScript to present bills, a
relational database at the back end, and Java and Enterprise Java Beans in the middle.

The development team consisted mainly of highly skilled designers and programmers who knew little
about quality assurance. They were motivated to deliver a great product on time. My job was to help
them do that, by inventing and executing a QA program for the project.

I was the only team member concerned primarily with product quality, and the delivery date was firm. I
didn't have time to develop a well thought-out plan to assure the goodness of the product. Instead, I
kept my eyes open for opportunities to improve product quality, and took advantage of these
opportunities. I later realized that I have done this many times over the years, and began to think of
my capitalizing on quality improvement opportunities as a general strategy--"opportunistic software
quality."

Here are examples of the opportunities we discovered during this project and how they helped us
deliver a high quality product on time:

Configuration management: Prior to my joining, the team was already using a configuration
management system. They used the system to track source code changes and to label the
configurations that were delivered to their customer. I increased the rigorous use of this
system, making it easier to identify the configuration that corresponded to the one the customer
was using, and thus making it easier to fix the defects the customer identified.

●

Bug tracking system: Again before I joined, the team put a bug tracking system in place. They
used it sporadically and didn't record all defects in it. I became the manager of the bug tracking
system, making sure all defects were recorded and addressed. We didn't forget to fix any of the

●

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9M2.html (1 of 3) [4/28/2000 2:38:41 PM]

http://www.soft.com/QualWeek/QW2000/qw2k.program.html

defects we needed to fix, so the product we delivered was better than otherwise.
Automated nightly builds: Infrequent source code builds are a quality problem. "Code rot" can
occur: individual programmers' code changes can break the compilation of another
programmers' code. Broken builds can be difficult to repair if the defect was introduced too long
ago for the programmer to remember why he changed the code. On previous projects, I found
that it is possible to find defects simply by compiling the source code and building the product
at regular intervals. On this project, I established a system for automatically building the
product every night, after the programmers had gone home. The programmers agreed that
they would only check-in source code changes that would at least compile correctly. We found
a number of defects with this method. Because we found the defects the within a day of the
code change, it was easier for the programmers to fix the defects than it would have been if we
hadn't built the code regularly. In addition, builds usually succeeded when they were needed
most, such as for an emergency patch release.

●

Automated nightly testing: The programmers had built a number of semi-automated tests for
particular sections of code. I fully automated the existing tests. Over time, I added tests of other
important sections of code. I built a system for automatically executing the tests and analyzing
the results. I augmented the nightly builds with the nightly automated tests. This also helped us
find new defects within a day of a broken code change, making it easier for the programmers to
fix the defects than it would have been if we hadn't built the code regularly.

●

QA web site: The team's philosophy was that delivering a high quality product was a group
effort, and not merely my responsibility. To give the other team members a view of the state of
the product's quality, I built a QA web site for the team. The web site consisted of the most
recent automated test results, a way to compare any set of test results with any other set of
test results, hyperlinks to web pages that could be used for manual testing, and hyperlinks to
written procedures. The test results section of the site made it easy for me to analyze nightly
results and update baseline results. The hyperlinks to web pages that could be used for
manual testing turned out to be extremely useful for the other team members; they vociferously
complained whenever the site was down.

●

Manual testing: It wasn't practical to automate all testing, especially GUI testing. I adapted an
old test script so we could use it to test the current version of the product. I made it a policy that
the script had to be executed at least once per week, and I rigorously followed the policy. With
this regular planned testing, augmented by ad hoc testing from other team members, we
identified many defects.

●

Source code compiler: One of the team members recommended a better Java source code
compiler. I modified the nightly build-and-test scripts to use the new compiler. The new
compiler used a stricter definition of the Java language; we identified a few defects simply by
using the new compiler.

●

Improved delivery: One of my responsibilities was to deliver patch releases and beta releases
to the customer. Before I joined the team, these deliveries were time consuming and plagued
with mistakes. I developed a set of scripts to automatically build and install the product, and a
procedure for making the delivery, drastically reducing the number of delivery mistakes.

●

HTML validation: On a previous project, I used a tool to automatically check the validity of the
HTML code the product delivered to users' web browsers. I used the tool on this project and
successfully found a few defects.

●

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9M2.html (2 of 3) [4/28/2000 2:38:41 PM]

There were a few techniques we considered using, but did not use. These were: automated GUI
testing, code coverage analysis, exhaustively testing all source code, retrofitting pre-existing tests to a
better test framework, and reorganizing the source code to improve building and maintenance.

Our results were good. The customer discovered only 7% of the total number of known defects. The
two best techniques for identifying defects were manual testing and automated nightly testing. Manual
testing was responsible for finding 46% of known defects, and automated nightly testing helped us find
29% of known defects. (These figures are slightly out of date; I will present current figures in the final
version of the paper and at the conference.)

We delivered a relatively high quality product on time. The customer accepted the delivery and found
very few defects. The opportunistic strategy worked.

Author Bio...

Richard Kasperowski is president of Altisimo Computing, a software development consulting firm
based in Cambridge, Massachusetts. Richard has worked as tester, developer, manager, and
consultant since 1988. He has a degree from Harvard University, is a member of the ACM, and
usually cycles to his clients' offices.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/9M2.html (3 of 3) [4/28/2000 2:38:41 PM]

mailto:kasper@altisimo.com?Subject=QW2000
http://www.altisimo.com/
http://www.soft.com/QualWeek/QW2000/qw2k.program.html

Abstract: I recently acted as the sole quality advocate on a software project that had a rapid
development schedule. As the project progressed, I realized that I was addressing the need for
quick and productive quality assurance activities in a way that was similar to what I had done
on other projects I was identifying and acting on the best opportunities for quality
improvement, iteratively improving the product’s quality as I went. I call this strategy
"opportunistic software quality."

In this paper I present this strategy, using examples from the project described above. For each
of the opportunities I identified, I present the number of software defects the opportunity helped
me find. For this project and others on which I have worked, this strategy for improving
software quality was successful.

Keywords: Rapid software testing, techniques for quality assurance and quality improvement,
short product development schedule, opportunistically improving software quality

1. Introduction

I recently worked on a project for which I was the sole QA person and the ship date was only
three months away. The goal of the project was to build and deliver a web−based billing system
for the local telephone customers of a large telephone company. The software development
team used HTML, JavaScript, and Java servlets to present bills, a relational database at the back
end to hold customer and bill information, and Java and Enterprise Java Beans (EJB) in the
middle for business logic.

The development team consisted mainly of highly skilled designers and programmers who had
little experience with quality assurance. They were motivated to deliver a great product on time.
My job was to help them do that, by inventing and executing a QA program for the project.

I was the only team member concerned primarily with product quality, and the delivery date was
firm. I didn’t have time to develop a well thought−out plan to assure the goodness of the
product. Instead, I continuously looked for opportunities to improve product quality and took

 Richard Kasperowski is president of Altisimo Computing, a software development consulting firm based in
 Cambridge, Massachusetts.

© 2000 Altisimo Computing Corporation

Opportunistic Software Quality

Richard Kasperowski

Altisimo Computing
28 Regent Street

Cambridge, Massachusetts 02140
http://www.altisimo.com/

Email: kasper@altisimo.com

advantage of these opportunities. I later realized that I have done this on many projects over the
years, and began to think of my capitalizing on quality improvement opportunities as a general
strategy "opportunistic software quality."

2. Opportunistic software quality
The strategy is to identify opportunities to improve software quality and to take advantage of
these opportunities. To take advantage of the opportunities is to turn them into effective,
persistent, reusable processes and procedures. Over the life of a project, one−time hacks are not
as useful as repeatable, sustainable quality improvement activities. The value of this strategy
lies in the improvement to the product gained by the repeated application of the opportunities.

In the following sections, I present examples of the opportunities we identified during this
project and how they helped us deliver a high quality product on time.

2.1 Configuration management
Problem: Configuration management (CM) is an important part of any large project. Most CM
systems share a few characteristics. They make it possible to track revisions of individual files,
including who made the change, why the programmer made the change, and the content of the
change. By branching source code into multiple trees, CM systems make it possible to maintain
a production version of a software system on one branch while enhancing the system on an
independent branch. CM systems also let you label a particular set of files and their revision
numbers, making it easy to identify exactly which set of files corresponds to a particular release
or bug fix.

Opportunistic solution: Prior to my joining, the team was already using CVS [SourceGear] as
the project’ s configuration management system. They used CVS to track revisions to individual
files and to label major releases using CVS’ s tag feature. I increased the use of CVS by creating
branches for maintenance and for further development. I also began labeling each patch release,
making it possible to identify the configuration that corresponded to the one the customer was
using in production, thus making it easier to fix the defects the customer identified.

Results: Our overall experience with CVS was that it is a reasonable CM tool. It does a fine job
tracking revisions to individual files and enabling the identification of sets of files and their
revisions. Unlike some more advanced CM tools, CVS doesn’ t directly facilitate associating
code changes with defect IDs; we worked around this deficiency by keeping a separate database
of release labels and defect IDs.

CVS is a little different from other CM systems in that you don’ t have to exclusively lock a file
in order to edit it. Because the files a programmer is working on aren’ t marked as "locked,"
programmers sometimes forget to check in all their changed files to the central repository; the
result is that a programmer might fix a defect in his private "sandbox" but not fully propagate the
fix to the central repository.

CVS isn’ t for programmers who need a graphical front−end on their CM system. Graphical user
interfaces (GUIs) are available for CVS, but they do not fully support all the CVS features
available on the command line. Using CVS via the command line is thus more powerful than
using it via a GUI, but with command line use it can be easy to make mistakes.

2.2 Defect tracking system
Problem: A defect tracking system is another important tool on large projects. Without a defect
tracking system, it is easy to forget to fix defects you know exist. Another problem is that one
team member can be unaware that another team member is actively solving a problem; the two
team members might duplicate each other’ s efforts. "Number of defects" is a basic quality
metric, but it is difficult to measure without a defect tracking system. Finally, without a defect
tracking system there is no specific history of what went wrong (the defects injected) while
developing the system and how the team addressed the defects.

Opportunistic solution: Again before I joined, the team put JitterBug [Tridgell] in place as the
project’ s bug tracking system. JitterBug is a free defect tracking system used on open source
software projects such as jikes [IBM]. The team used JitterBug sporadically and didn’ t record
all defects in it. I became the manager of the bug tracking system, making sure all defects were
recorded and addressed. We didn’ t forget to fix any of the defects we needed to repair, so the
product we delivered was better than it otherwise would have been.

Results: JitterBug is not as good as low−end commercial defect tracking systems, but it served
our needs nonetheless. By the end of the project, we identified and recorded 177 defects in
JitterBug, including defects identified during the first phase of the project, duplicates, and issues
that turned out not to be defects. The customer perceived a high level of quality in the product
we delivered; the perceived level of quality undoubtedly would have been lower if we had not
been so careful about tracking and fixing defects.

2.3 Automated nightly builds
Problem: Infrequent source code builds are a quality problem. "Code rot" can occur: when old
code is not compiled frequently, new or modified code can make the old code uncompilable.
Broken builds can be difficult to repair if the code changes were introduced too long ago for the
programmer to remember how he changed the code.

Opportunistic solution: An easy way to assure quality is to appoint a build master who makes
sure he can build the code, with no compiler errors, at regular intervals. The interval we chose
was one day. Programmers agreed that by the end of each day, any code changes they had
checked in to the CVS repository would build correctly.

The best way to build the system regularly is to do it automatically. Before I joined the team,
they used a set of build scripts to compile all the source code and build EJB components. The
scripts were interactive, prompting the user for which components he wanted to build. As build
master, I automated the build scripts, replacing interactive prompts with command line
arguments. I added a wrapper script that would backup the previous instance of the source tree,
check out the latest source code, and build the whole system. I used cron to run the wrapper
script automatically each weekday night at 2:00 AM. The wrapper script emailed a log of the
build to me; each morning I reviewed the log for build errors, isolated the source of each error,
and asked the programmer who injected the error to fix it. This system was known as the
"nightly build."

Results: We found a number of defects with this method. The usual problem was that the
programmer didn’ t check in all of his changes, so some source files in the repository were
inconsistent with each other. Because we found the defects within a day of the code change, it
was easier for the programmers to fix the defects than it would have been if we hadn’ t built the

code regularly. In addition, builds usually succeeded when they were needed most, such as for
an emergency patch release.

2.4 Automated nightly testing
Problem: The programmers had built a number of semi−automated tests for particular sections
of code. We wanted to run the tests regularly to help us identify newly introduced defects, but
there were too many tests to be able to run them manually.

Opportunistic solution: I initially attempted to automate the existing tests by adapting them to
the Java Test Driver [Kasperowski]. Because the tests were not designed for that kind of test
framework, however, it was time consuming, and I soon realized that I wouldn’ t be able to finish
porting the tests before the ship date. Instead, I built a wrapper script to simply execute the
existing tests in sequence. I added this script to the nightly build, which became the "nightly
build−and−test."

To analyze the results of each nightly build−and−test, I built a means of automatically
comparing the current results log with the results log of any other run of the nightly build−and−
test. My first attempt to do this was to use diff for a simple file comparison. There were two
problems with this approach: (1) the application’ s running log contained time stamps, which
were expected to be different every day, and (2) the application’ s running log contained verbose
Java garbage collector messages, which by their nature are nondeterministic. I minimized (but
did not completely solve) this problem by augmenting the simple diff with a number of sed
filters to produce a reasonable build−and−test log comparison tool.

Over time, I added tests of other important sections of code, using the Java Test Driver as the
test framework for the new tests.

Results: Automated nightly testing helped us find new defects within a day of a broken code
change, making it easier for the programmers to fix the defects than it would have been if we
had not built the code regularly.

2.5 QA web site
Problem: The nightly build−and−test logs were each over one megabyte in size; I grew tired of
receiving these huge logs as email attachments. I also didn’ t want to have to remember the long
command line required for comparing two sets of nightly build−and−test logs. Finally, I was the
only team member with a view of the results of the nightly build−and−test; I wanted the whole
team to have a view of the quality of each night’ s build−and−test.

Opportunistic solution: I built a QA web site for the team, using the Apache web server
[Apache], the Apache JServ servlet engine [JServ], and Java servlets [Davidson]. The web site,
shown in Figure 1, consisted of the most recent automated test results, a way to compare any set
of test results with any other set of test results, hyperlinks to web pages that could be used for
manual testing, and hyperlinks to written procedures.

Results: Using servlets to build a web site was relatively easy, but it was difficult to learn how to
configure JServ. (My motivation for implementing this web site with servlets was that the
project used servlets in its implementation, and I wanted to understand how they worked.) The
web site made it very easy for me to review nightly build−and−test results.

Figure 1: The nightly build−and−test web site

The test results web site grew into a more general project web site, with hyperlinks to sample
test bills and deployment procedures. The hyperlinks to web pages that could be used for
manual testing turned out to be extremely useful for the other team members; they vociferously
complained whenever the site was down.

Unfortunately, few team members used the test results part of the web site. They were more
interested completing the implementation than in viewing the day−to−day results of the nightly
build−and−test.

2.6 Manual testing
Problem: We wanted to evaluate the quality of the GUI regularly, but it wasn’ t practical to
automate GUI testing. One reason was that the team had not acquired automatic GUI testing
tools and it would have taken too long to purchase one. Another reason was that the GUI design
was not frozen, so it would have been a poor use of our time to develop and maintain automated
GUI tests.

Opportunistic solution: A written script for testing the GUI was left over from the first phase of

the project, and I adapted it for use with the current version of the product. I made it a policy
that the script had to be executed at least once per week, and I rigorously followed the policy.

Results: With this regular planned testing, augmented by ad hoc testing from other team
members, we identified many defects. In fact, manual GUI testing identified more defects than
any other part of the quality program. The success of the manual GUI testing effort probably
stems from the fact that all team members participated; the other quality initiatives were
executed by me alone.

2.7 Source code compiler
Problem: Different Java compilers have different characteristics. One important characteristic is
whether the source code they accept conforms to the Java Language Specification [Gosling]. If
a compiler accepts non−conforming source code, the compiled code’ s behavior might be
unpredictable. In addition, non−conforming source code is more time−consuming to maintain
than conforming source code.

Another important characteristic of a Java compiler is the amount of time it takes to compile the
source tree. Programmers are unlikely to use the project’ s build scripts to test whether their code
is buildable if it takes too long to execute a whole−system build.

A third characteristic of a Java compiler is its cross−platform portability. The usual Java
compiler, Sun’ s javac [Sun], is portable in that it is written in Java, but the format of the path
names in its command line parameters varies depending on whether it is running on Windows or
UNIX. Because of this, we were maintaining two sets of build scripts, one for Windows and one
for UNIX. As the build scripts evolved, it was difficult to keep the Windows−specific build
scripts synchronized with the UNIX−specific ones. Programmers sometimes complained that
the Windows−specific build scripts were broken; the scripts were indeed broken, because we
often forgot to update them to match the behavior of the UNIX−specific build scripts.

Opportunistic solution: One of the team members suggested that we use jikes [IBM] as our
Java compiler. jikes rejects non−conforming source code. jikes is written in C++ and is
compiled into a platform−native executable, so its execution speed is faster than that of javac .
jikes accepts UNIX−style path names (that is, paths with forward slashes) on both Windows
and UNIX. I modified the nightly build−and−test scripts to use jikes by default.

Results: The amount of time it took to build the whole system decreased from 63 seconds to 16
seconds, an improvement of nearly four times. (Times were measured on a Sun Enterprise 250
with 2 CPUs, 512M bytes of RAM, and 27G bytes of total disk space.)

Because jikes accepts UNIX−style path names on both Windows and UNIX, I was able to
retire the Windows−specific build scripts. I no longer had to maintain two sets of build scripts,
struggling to keep them synchronized. Programmers were more likely to use the build scripts
because the single set of scripts was more likely to succeed.

We identified a few instances of non−conforming Java source code. Two kinds of errors were
typical: unreachable code and uncatchable exceptions.

2.8 Improved delivery
Problem: Delivering the product to the customer and installing it on the customer’ s machine was
an ad hoc procedure. It was difficult to repeat successful instances of deployment. The

installation guide was too difficult to follow, so the person installing the system usually made
mistakes. It was time consuming to debug each unsuccessful deployment.

Opportunistic solution: I developed a set of scripts to automatically build and install the product,
as well as a procedure for making the delivery; this drastically reduced the number of
deployment mistakes. I began by carefully recording the steps I followed to build, deliver, and
install the system. I used this list of steps as the de facto procedure for deployment, refining it
every time I deployed the system. When I was comfortable deploying the system manually, I
built a script to do the work for me. Thereafter, the deployment procedure consisted of my
following a few manual steps and running the script.

Results: Deployment was almost always successful. There were no defects injected by poor
deployment.

2.9 HTML validation
Problem: The product is web−based, but there weren’ t enough resources to be able to test the
GUI on every combination of web browser and operating system. How could we be confident
that the application would generate valid web pages for arbitrary combinations of web browser
and operating system, and for arbitrary customer billing information?

Opportunistic solution: On a previous project, I discovered a tool called weblint [Bowers] to
automatically check the validity of the HTML code that the product delivered to users’ web
browsers. weblint validates HTML files against the World Wide Web Consortium’ s HTML
3.2 standard [W3C]. weblint also has parameters to validate the HTML extensions accepted
by Microsoft’ s Internet Explorer and Netscape’ s Navigator browsers.

The billing application generated web pages dynamically based on the user’ s monthly account
information and on what kind of page he requested. weblint can only validate static HTML
files, though. One of the team members had built a simple web spider that visited parts of a
customer’ s bill to ensure they exist. I enhanced the spider to visit every page of a customer’ s
bill, saving the dynamically generated HTML files to disk. I created a large number of
representative bills, saved their HTML to disk, and ran weblint on the disk files to validate
the generated HTML. I added the execution of the web spider and weblint to the nightly
build−and−test.

Results: The generated HTML was surprisingly good we identified only a small number of
defects this way. I write "surprisingly good" based on my experience with other web testing
projects, where the HTML was largely non−conforming with respect to the standard.

When I ran weblint in Netscape−compatibility mode, it identified many instances of non−
compliant HTML code. These were not considered defects because the web pages were
designed to use Internet Explorer HTML extensions.

2.10 Opportunities not taken
There were a few techniques we considered using, but did not use. They were good ideas and
might have identified defects, but we did not have the resources to execute them.

One of our ideas was to automate GUI testing. Unfortunately, we didn’ t already have a GUI
testing tool in our possession, and we probably didn’ t have enough time to develop and maintain
automated GUI tests anyway. In addition, the GUI was in a state of flux, so adjusting the tests to

match a given day’ s instance of the GUI would have been costly. "The cost of automating a test
is best measured by the number of manual tests it prevents you from running and the bugs it will
therefore cause you to miss;"[Marick] by this measure, automating the GUI testing would not
have been a good investment.

We considered performing code coverage analysis to help determine the goodness of our
existing tests and to guide new test development. We went so far as to evaluate tools, select one,
and place an order for it. In this case, big−company bureaucracy impeded us. Two months after
my placing the order, the tool had not arrived; the project was nearing its end date, and we
would not have enough time left to use the tool effectively. In retrospect, this delay might have
been a good thing: we had plenty of other development work to do, and the use of the code
coverage tool might have interfered with other quality assurance activities.

We did not build many new tests. I began building a tool that would identify dependencies
between Java classes. I wanted to test the classes exhaustively, in order from those with the least
number of dependencies to those with the greatest number of dependencies, using a levelization
technique similar to the one described in [Lakos]. However, while building this tool, I would
not have been identifying defects, so I dropped the idea. We were fairly comfortable with the
existing code anyway, despite that it had not been extensively tested in the lab. Much of the
code was already running in production and working well in that environment.

The semi−automated tests that existed before I joined the team exercised large sections of code
and sent the results to stdout. I wanted to modify these tests so they would exercise smaller
sections of code, to make it easier to identify the source of a defect when one was found. I also
wanted the tests to be able to determine automatically whether their results matched the expected
results, and report that information to the human tester. I began retrofitting the existing tests to
work within the Java Test Driver framework. This proved to be too time consuming; I estimated
that I would have spent all my time on this activity and nothing else.

Finally, we wanted to reorganize the Java source code tree. The existing source code tree did
not follow the Java convention. The convention is that the source code tree is a tree of
directories whose names match Java package names. The .java files that declare themselves to
be in a given package go in the corresponding directory. Instead of following this convention,
the files in the source code tree were grouped by module name, which was independent of the
Java package names. This is a problem because Java compilers and other development tools do
not work efficiently, if at all, unless the .java files are in a conventional Java source tree. It also
makes maintenance difficult because experienced Java programmers have difficulty finding
source code files if they are not in the conventional directory tree. I built a tool that takes an
arbitrary Java source tree as its input and constructs a conventional Java source tree. The tool
appeared to work, but we were afraid of the potential instability that reorganizing the source tree
might introduce. We postponed this activity until the next phase of the project.

3. Results
We identified 127 potential defects during this phase of the project. Of these, 21 were duplicates
or were issues that were not really defects, leaving 106 unique defects. The customer discovered
at most 10 of these defects, or 9% of the total number of known defects. In fact, the customer
discovered fewer than 10 defects: 10 is the sum of the number of defects identified by the
customer and the number of defects we identified while investigating those defects. Although
we did not establish a specific target at the beginning of the project, our delivering 10 defects to

the customer indicates that we were successful in delivering a high quality product.

The two best techniques for identifying defects were manual testing and automated nightly
testing. Manual testing was responsible for finding 49 defects, or 46% of known defects, and
automated nightly testing helped us find 28 defects, or 26% of known defects. The combination
of automated nightly build and automated nightly testing together identified 38 defects, or 36%
of known defects.

Table 1 and Figure 2 show the number of defects identified by each defect identification activity.

We delivered a relatively high quality product on time. The customer accepted the delivery and
found very few defects. The opportunistic quality improvement strategy worked.

Table 1: The usefulness of each means of identifying defects is indicated by the number of defects identified by
each means. "Manual testing" includes both GUI and non−GUI manual testing. "Other" includes all ad hoc
means. "Customer discovered" includes defects identified by the customer, as well as defects we identified while
investigating those defects. "Trash" includes duplicates and issues that were not truly defects.

Figure 2: The relative utility of each means of identifying defects. Manual testing is clearly a productive means
of identifying defects. The combination of automated nightly build and automated nightly testing is close behind.

Means of identifying defects % of total
Automated nightly build 10 7.9% 9.4%
Automated nightly testing 28 22.0% 26.4%
Manual testing 49 38.6% 46.2%
Source code compiler 4 3.1% 3.8%

2 1.6% 1.9%
Other (Unknown, code review, etc.) 3 2.4% 2.8%
Customer discovered 10 7.9% 9.4%
Trash (duplicates, non−defects, etc.) 21 16.5%
Totals 127 100.0%
Totals, non−trash 106 83.5% 100.0%

Number of
defects

% of
non−trash

HTML validation

0

5

10

15

20

25

30

35

40

45

50

Comparison of means of identifying defects

Automated nightly
build

Automated nightly
testing

Manual testing

Source code
compiler

HTML validation

Other (Unknown,
code review, etc.)

Customer
discovered

Trash (duplicates,
non−defects, etc.)

Means of identifying defects

of

 d
ef

ec
ts

4. References
[Apache] The Apache Software Foundation. The Apache HTTP server project.

"http://www.apache.org/httpd.html ".

[Bowers] Bowers, N. Weblint. "http://www.weblint.org/ ".

[Davidson] Davidson, J., and Ahmed, S. Java servlet API specification, version 2.1a.
Sun Microsystems, Inc., 1998.

[Gosling] Gosling, J., Joy, B., and Steele, G. The Java Language Specification,
edition 1.0. Sun Microsystems, Inc., 1996.
"http://java.sun.com/docs/books/jls/html/ ".

[IBM] IBM. Jikes project.
"http://oss.software.ibm.com/developerworks/
opensource/jikes/project/ ".

[JServ] The Apache Software Foundation. The Apache JServ project.
"http://java.apache.org/jserv/ ".

[Kasperowski] Kasperowski, R. The design and implementation of a Java test driver. In
Proceedings of the 16th International Conference and Exposition on
Testing Computer Software (Washington, D.C.), 1999;
"http://www.altisimo.com/research/
design−implement−test−driver.html ".

[Lakos] Lakos, J. Large−scale C++ Software Design, Addison−Wesley, 1996,
203−324.

[Marick] Marick, B. When should a test be automated? In Conference
Proceedings: Eleventh International Software Quality Week (San
Francisco), May, 1998.

[SourceGear] SourceGear Corporation. CVS.
"http://www.sourcegear.com/CVS/ ".

[Sun] Sun Microsystems, Inc. Java 2 SDK tools.
"http://java.sun.com/products/jdk/1.2/docs/
tooldocs/tools.html ".

[Tridgell] Tridgell, A. JitterBug.
"http://samba.anu.edu.au/jitterbug/ ".

[W3C] World Wide Web Consortium. HTML 3.2 Reference Specification. Jan.,
1997. "http://www.w3.org/TR/REC−html32.html ".

QW2000 Keynote 10P1

Mr. Marcelo Dalceggio
(Banco Rio de la Plata SA)

Automated Software Inspection Process

QWE'99 Best Presentation Award

BACK TO QW2000 PROGRAM

Presentation Abstract

Due to the huge effort that inspection process demands, we developed an automated inspection
process based on our experience with Y2K code control in order to increase the efficiency of the
inspection process.

Our systems have more than 10 million LOC and we produce/modify 900 programs per month and
these programs have to be compliant with more than 150 rules established with different standards.
It's almost impossible to inspect manually that volume of code and to pay attention to the rules during
inspection.

Our inspection process has four basic steps: selection of the inspection candidates, identification of
the attributes of each component, inspection execution and reporting, defect removal tracking and
verification.

We built a compliance policy and rules database based on different sources: code standards, failure
tracking lessons learned, technical books suggestions, prohibited commands, software reuse and we
developed a system that reviews source code and matches rules with statements producing an
inspection report.

About the Author

Marcelo R. Dalceggio is currently chief of the Quality Assurance Department at Banco Río de la Plata
S.A. in Argentina. In this capacity, he is responsible for the development and implementation of defect
prevention, improvement opportunities and quality assurance activities. Prior to this position he was
the chief of the Development Department at DAZ Consulting and was responsible for software
development.

He received his undergraduate degree from the Universidad Tecnológica Nacional and his
postgraduate degree from the Universidad CAECE in Argentina. He has been working at Universidad
Tecnológica Nacional since 1991 as a Professor of Software Engineering Fundamentals.

Contact: mdalceggio@intranet.bancorio.com.ar

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/10P1.html [4/28/2000 2:38:53 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
mailto:mdalceggio@intranet.bancorio.com.ar
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

Automated Code Inspection

A practical approach to improve codeA practical approach to improve code
inspection efficiencyinspection efficiency

Banco Banco RíoRío de la Plata work experience de la Plata work experience

Marcelo Dalceggio
Alvaro Ruiz de Mendarozqueta

June 2000 ~ Argentina

2

Presentation Overview

z Who we are
z Y2K Experience
z Manual Code Inspection
z How the idea originated
z Automated Code Inspection Implementation Process
z Automated Code Inspection Execution Process
z Where it fits in project life cycle
z Conclusions & Achievements

2

3

Who we are
z Banco Río de la Plata is one of the major private

banks of Argentina and belongs to Banco
Santander Central Hispano

z 250 branches executing one million transactions a
day and providing universal banking services

z IBM mainframe based core systems
z COBOL & Assembler, CICS, VSAM, DB2
z The goal: Reduction of costs in the software

development and maintenance

4

Y2K Experience

z Y2K Contamination Control
y Windowing technique solution
y Code revision to detect possible violations

to the Y2K fix
y Few Y2K Compliance rules to be applied

in all the programs
y SW-assisted inspection process
y Very satisfactory outcomes

3

5

Code Inspection
z There’s no doubt of its advantages

y Defects are detected before the testing
process, saving time and money

y Identifies defects that testing misses
y Gives complete code coverage
y Finds root cause defects (no symptoms)
y Additional advantages

x Improvement opportunities
x Good & Bad practices are finally learned

6

Manual Code
Inspection

z Code Inspection formal outline

InspectionProgram Report

Design Construction
Rules

Checklists

Author

4

7

Manual Code
Inspection

z Most common scenario

InspectionProgram Report

Design Construction
 Rules

Checklists

Few
Inspectors

Big
Old
No documentation

Ambiguous
Missing

Missing

Legacy
Author

Missing

8

How the idea originated

Programa

Manual Code Inspection

Y2K Contamination Control

Program
Rules

1, 2, 3, 4, 5, 6, n

Rules
1, 2, 3

Program

Program

Program

Program

5

9

How the idea originated

Programa

Automatic Code Inspection

Rules
1, 2, 3, 4, 5, 6, n

Program

Program

Program

Program

5, 6, n

1,2

10

Automated Code Inspection
Implementation Process
z Process applied

y Source rules identification
y Rules development & construction
y Violated rules detection
y Implementation decision

6

11

Automated Code Inspection
Implementation Process
z Source rules identification (I)

y Code Standards
y SCM

x Library of Reusable Modules
x Existing /Discontinued Modules

y Good practices
y Failure tracking system
y Classic Code Inspections (Fagan style)
y Development area ‘feedback’

12

Automated Code Inspection
Implementation Process
z Rules development & construction (II)

y Identify rules from each source
y Identify application domain from each rule
y Avoid ambiguities

x “... Cobol paragraphs should not be long ...”

y Validate rules with those in charge
x Sponsor’s support is very important

y Record rules in the Compliance DB

7

13

Automated Code Inspection
Implementation Process
z Rules development & construction (II)

y Rules could have different formats:
x Prohibited commands

• Alter, Go to, ……

x Data handling
• Lack of return code checks

x Exception handling
• When Other clause in Evaluate statement

x Configuration Management
• Module no longer supported

14

Automated Code Inspection
Implementation Process
z Rules development & construction (II)

y Rules could have different formats: (cont.)
x Performance

• Avoid Join 4 or more tables

x Cosmetic
• How to indent certain commands

x Naming Convention
• Minimal length of characters in variable names

x Module Size
• Maximum number of statements it should contain

8

15

Automated Code Inspection
Implementation Process
z Rules development & construction (II)

y Considerations about rules
x A rule violation doesn’t mean avoiding a defect

• It makes code more susceptible to the introduction of
new defects

y The code should be
x Correct
x Understandable
x Efficient
x Maintainable

16

Automated Code Inspection
Implementation Process
z Violated rules detection (III)

y Discover different ways in which rules
could be violated within the code

z Implementation decision (IV)
y Evaluate detection method

x Scanning, parsing, control flow analysis, etc..

y Define automated/assisted detection
y Tool: Buy or build ?

9

17

Automated Code Inspection
Implementation Process
z Implementation decision (IV)

y Evaluate detection method
x Scanning

• Perform string searches looking for specific patterns
• OK for ‘prohibited commands’

x Parsing
• Understand the syntax of the language
• OK for ‘exception handling’

x Control Flow Analysis
• Follow the implications of each control statement
• OK for ‘dead code’

18

Automated Code Inspection
Implementation Process
z Implementation decision (IV)

y Define automated/assisted detection
x Automated

• A defect is identified without needing any later
human analysis

x Assisted
• Code scanned by defined wild card search criteria to

find potential defect candidates
• Final decision through manual intervention

– Environment information /Author’s information

x Not everything can be automated !!

10

19

Automated Code Inspection
Execution Process

z Process applied
y Candidate programs identification
y Inspection execution
y Defect reporting
y Tracking

20

Automated Code Inspection
Execution Process
z Candidate programs identification (I)

y Criteria definition
x New & Modified
x Belonging to a certain domain
x After or Before a given deadline
x Reported as fixed
x On demand
x At random

??

11

21

Automated Code Inspection
Execution Process
z Inspection execution (II)

y Program domain checking
y Rules compliance verification to each

identified domain
y Results review
y Record defects in the defect tracking DB

22

Automated Code Inspection
Execution Process
z Defect reporting (III)

y Inform the ones in charge
y Record the report delivery

z Tracking (IV)
y Verify the ones solved
y Request unsolved defects
y Metrics collection

12

23

Where it fits in project life
cycle

Production
Development

QA Testing

24

Conclusions
z This kind of Inspection...

y is a good alternative in today’s schedule-
driven projects

y is more scalable than manual inspections
x More rules and more programs
x Few resources
x Adding rules do not affect inspection efficiency

y does not require ‘special’ skills
y does not replace ‘Fagan Style’ inspections

13

25

Conclusions

y Once a new type of defect has been
detected it is possible to...

x prevent it from happening again, and
x get rid of it from the existing programs

y Inspection ensures fewer trivial defects
will delay the application testing

y Code quality & reliability metrics could
be defined

26

Achievements
z 189 rules identified
z 820 KLOC per month with 3 QA reviewers
z 1.23 defects detected per KLOC
z Reporting ‘on demand’ for different critical

projects
z Reporting ‘on demand’ for third party

developments

14

27

Contact

z Marcelo Dalceggio
x mdalceggio@intranet.bancorio.com.ar
x phone (54) 11 4341-3515
x fax (54) 11 4341-3480

z Alvaro Ruiz de Mendarozqueta
x aruizdemendarozqueta@intranet.bancorio.com.ar
x phone (54) 11 4341-3514
x fax (54) 11 4341-3480

1

Automated Code Inspection

A practical approach to improve code inspection
efficiency
Banco Río de la Plata work experience

Marcelo Dalceggio mdalceggio@intranet.bancorio.com.ar

Alvaro Ruiz de
Mendarozqueta

aruizdemendarozqueta@intranet.bancorio.com.ar

Banco Río de la Plata S.A. Grupo Banco Santander Central Hispano

Executive Summary
Banco Río de la Plata is one of the major private banks of Argentina, with 250 branches
executing one million transactions a day and providing universal banking services to local,
regional, and international customers.

In 1997 it faced the challenging Y2K problem. It contracted different service providers to
assess and remediate the code using automated tools. Some applications were replaced and
others were solved in-house by manual process. The code was fixed using the ‘windowing’
technique (This solution carries a long term risk. ‘Windowing’ logic changes program code
but not data). It performed Y2K baseline (regression) testing and post-Y2K testing. More
than 7.000 kloc of Cobol and Assembler code were reviewed and a lot of new code was
added to the legacy system making it vulnerable to the introduction of new defects, because
those changes made the code larger and more complex. In this context, QA staff had the
mission to provide a process that would let the Bank ensure that maintenance activities
(changes and enhancements) wouldn’t infect the programs. This process was called ‘Y2K
Contamination Control’.

It was almost impossible to perform this activity manually. A tool-based inspection process
was developed in order to achieve the goal. Good results encouraged QA staff to extend it
to address other common defects (not only correct date processing) such as code standards
& good coding practices violations.

This paper summarizes this process and how it was enhanced to become part of the ongoing
software quality process, increasing productivity and reducing costs.

How the idea originated
Code Inspections advantages are very well known but
they are very hard to implement, cost a lot, and
critical projects not always have the opportunity to
apply them.

During Y2K project we developed a ‘Process’ in order
to control code contamination within the maintenance
activities

Both experiences triggered the original idea

The Company

Grupo Santander has been for years the leader financial group in Spain and with the last
merger with Banco Central Hispano has become the new Grupo BSCH, one of the biggest
financial groups in the unified Europe today.
In Latin America, it has the major foreign bank commercial net with banks in many
countries of the region. Two years ago, Grupo Santander acquired Banco Río de la Plata in
Argentina, one of the major private banks in the country, which with its 250 branches
executing one million transactions a day provides universal banking services to local,
regional, and international customers.
Since its acquisition, Banco Río de la Plata has been continuously creating new and
sophisticated financial products, demanding legacy systems transformations while
increasing productivity and reducing costs to maintain a competitive edge and operational
excellence in today’s business world. Best software engineering practices are helping the
organization to achieve these goals.

Y2K Experience

YY22KK PPrroojjeecctt

The Y2K Conversion Project applied windowing technique in order to solve the two-digit
data for the year. This technique reduced costs and allowed an easier implementation but
one of its major problems is the risk associated with maintenance. During the modification

activities the modified code with windowing technique could easily be changed undoing the
Y2K fix.
With the goal of reducing those risks we developed what we call ‘Y2K Contamination
Control Process’

CCoonnttaammiinnaattiioonn CCoonnttrrooll

We established code revisions to detect possible violations to the Y2K fix during
maintenance activities. We did a survey looking for different ways of introducing a defect
within the code or certain situations that might be a risk for future modifications.
These few Y2K compliance rules had to be applied in all the programs, not only at the end
of Y2K conversion project, but also during the everyday maintenance work. This was the
real challenge and for that volume of work it was impossible to apply code inspections in
the ‘Fagan style’. Manual code inspections were unfeasible.
We developed a software-assisted inspection process with a very simple tool. We parsed
the programs with it and in every situation of a probable ‘fix violation’, a QA staff analyzed
the very nature of the problem.
We obtained very satisfactory outcomes and the results presented the following
characteristics:

§ Every system was reviewed and the results were reported to the managers.

§ A weekly revision is being performed for all the new and modified programs.

§ The final costs are cheaper than those of the consultant firms running in the
market.

§ Some findings were checked with manual code inspections and with
consultant firms. The results were optimal.

§ The contamination control process has to continue as long as windowing
fixes remain within the code.

§ The following picture shows how we moved from the manual code
inspections (many rules in one program) into a software-assisted
contamination control (few and stable rules in all the programs).

Programa

Code Inspection

Y2K Contamination Control

Program
Rules

1, 2, 3, 4, 5, 6, n

Rules
1, 2, 3

Program

Program

Program

Program

Some problems with the manual code inspections

Code Inspections advantages are very well known but very hard to implement, cost a lot,
and critical projects not always have the opportunity to apply them.
These are the main advantages:

§ Defects are detected before the testing process, saving time and money.

§ Identifies defects that testing misses.

§ Gives complete code coverage.

§ Finds root cause defects (no symptoms).

§ Additional advantages: Improvement opportunities, Good & Bad practices
are finally learned.

OOtthheerr ddiiffffiiccuullttiieess wwiitthh ppeerrssoonnnneell

§ Programmers are not used to sharing code, neither during inspections, nor
during coding activities.

§ Programming as an artistic activity prevails.

§ Managers encourage heroic programmers and schedule-driven results.

§ Standards are not usually used. Programs are very big and count on no
documentation.

DDiiffffiiccuullttiieess iinn MMaannuuaall CCooddee IInnssppeeccttiioonnss

In manual code
inspections the well-
known authors
recommend the following
components:
the program that will be
the object of the
inspection, the design
document that originated
the program, the
construction rules taken into account during the programming activities, the checklists for
the inspection, the author's program and the inspectors.
In our environment we have very old programs. It is very hard to find the design
documents. The author may no longer belong to the bank or may be doing other activities
rather than programming. (He might not even remember the program structure). It is also
very difficult to trace the rules applied during programming. Some of them depend on
projects or individual criteria. Checklists include a lot of ambiguity.
Inspectors candidates are assigned to critical projects. They have demanded skills which
makes it impossible to assign them to inspections.

InspectionProgram Report

Design Construction
Rules

Checklists

Author

Ambiguous
Missing

InspectionProgram Report

Design
Construction

 Rules
Checklists

Few
Inspectors

Big
Old
No documentation

Missing

Legacy

Author

Missing

DDiiffffiiccuullttiieess rreellaatteedd ttoo oouurr wwoorrkk eennvviirroonnmmeenntt

Our System Department creates or modifies and average of 900 programs per month. Each
program has an average size of 1000 lines of code (LOC).
The monthly demand for inspections is:

900 pgms * 1KLOC/pgm = 900.000 LOC monthly

Taking into account that industry considers an average inspection rate of 100 lines of code
reviewed per hour, the total amount of hours needed in our case is:

900.000 LOC / 100 LOC/hour = 9.000 hours

Assuming that we would like to inspect the total amount of programs we need:

9.000 hours / 160 hours/staff = 56 staff

This clearly shows it is economical unfeasible to inspect all the programs. Assuming only
10 percent of the total amount would demand 6 staff per month leaving the 90 percent
without revisions.

The idea

With the aim of inspecting the total number of programs, we combined
our experience with the automated part of ‘Y2K Contamination Control
Process’, with the one from ‘Manual Code Inspections’.
We merged both ideas and wondered if we could check the total number
of rules known in all the programs.

We developed what we called ‘Automated Code Inspection Process’ .

Programa

Automatic Code Inspection

Rules
1, 2, 3, 4, 5, 6, n

Program

Program

Program

Program

5, 6, n

1,2

Automated Code Inspection
Implementation Process
The process followed to get ready for the inspection.

 It doesn’t matter the way you are going to inspect the
code, the most important thing is to recognize which
elements make your code vulnerable to the
introduction of defects.

Depending on the level of accuracy you expect from
the automation is the level of sophistication you need
from the tool you buy or build.

Source rules identification

The first task to fulfill is the search of all the sources from where you can obtain the rules to
be controlled.
Some of the sources identified are the following:

§ Code Standards: They’re the most important sources. Language std. (Cobol),
transactional monitor std. (Cics), database std. (DB2), security issues std.,
etc… .

§ Library of reusable modules: Transforming code to allow a migration that
requires important code changes often need to maintain modules that are
going to be discontinued and new ones that are going to be used gradually.
This information is managed by SCM and it’s the source of several controls
that have to ensure that the new written code is not ‘legacy code’ and that
each program that’s taken out of Production environment is returned to it
working with the new modules.

§ Failure Tracking System: It’s another important source. There are a lot of
simple defects that could be easily identified. For example, a typical case is
the lack of end-of-file checks. It’s very important to find the root cause of the
defect, as in this way we can develop a rule and verify its compliance in the
rest of the programs, because of the new tendency to create new code by
using ‘cut & paste’ technique.

§ Classic Code Inspection (‘Fagan style’): Although they’re not performed
frequently, they always allow us to identify new defects.

Rules development and construction

After identifying all the sources, they should be analyzed so as to define the rules to be
controlled. We should avoid ambiguity. Rules like “… Cobol paragraphs should not be
long … ” or “… SQL commands should be simple … ” are useless.

Those rules which can be identified could have different formats. For example:

§ Prohibited commands: such as ALTER, GO TO, SELECT *.

§ Interface: such as the lack of return code checks.

§ Data handling: such as the lack of I/O return codes.

§ Exception handling: such as WHEN OTHER clause in EVALUATE
statement, AT END clause in SEARCH statement.

§ Configuration Management: such as the use of a module that is no longer
supported.

§ Performance: such as the JOIN of four tables or more.

§ Cosmetic: such as how to indent certain commands.

§ Naming convention: such as the minimal length of characters in variable
names.

§ Module size: such as the maximum number of statements it should contain.

§ Etc.

A rule violation doesn’t mean avoiding a defect, but if violated it makes the code more
susceptible to the introduction of new defects during maintenance activities. In some cases
there is the assertion about a potential defect, but it can also be a process improvement
suggestion or a matter that requires attention. (Remember that the code must be correct, but
it should also be understandable, efficient and maintainable).

Each rule belongs to a certain domain. This means that the control of the rule can be
performed over the programs that belong to that domain. For example, there are certain
commands that are allowed in a batch environment but they’re not in an on line
environment. Or, naming convention standard has to be followed by all the programs
developed in the organization but cannot be demanded to third party developments already
built.
Examples of different domains are:

§ Batch & On Line

§ New programs & Legacy programs

§ In-house development & Third party developments

§ DB2 / DLI / Vsam files

Once the rules have been developed and their domains identified, they should be validated
with the people in charge.

Finally, the rules should be recorded in the Compliance Database (specifying their source
and the date they come into effect).

Violated rules detection

The different ways in which rules could be broken within the code have to be evaluated.
This task is not easy, and depending on the rules to be controlled, special skills to perform
the task will be needed.
The ideal profile of the analyst is:

§ Rule domain expertise

§ Not less 3 years development experience’

§ Survived a bad implementation of an application (Understands the pain of a
poor quality application)

Some defects are easy to catch while others are extremely difficult. The language syntax
should be well known in order to identify all the situations.

Implementation decision

Taking the decision which rules will be automated with what tool.
Two different kinds of inspection were identified.

§ Automated: when a defect is identified without needing any later human
analysis.

§ Assisted: when a defect is identified but it needs later human analysis. For
example, the code can be scanned for certain defined wild card search criteria
(pattern-matching technique based) that finds potential defect candidates and
then the final decision is made by the analyst through manual intervention.
(Some defects can only be found by looking at every line of code and
understanding the flow of logic and data within and between programs).

Many rules are controlled through assisted inspection. Sometimes this is because the
information obtained from the program is not enough and some environment information is
needed to decide if the rule is violated or not. This is the case of DB2 performance related
rules. Depending on the number of files of the tables, there will be SQL commands that will
be prohibited or not. In these cases, these commands are first detected and later the analyst
will decide if there’s a problem.

There are other cases when the author’s program is needed. For example, this was the
situation while searching date related fields in the Y2K conversion project. Variables were
analyzed by name, definition and use. If the name of a field referred to ‘date’, ‘year’,
‘yymmdd’ or other such clue, it became a potential suspect. But unfortunately, it is well
known that programmers use a great variety of reasonable and unreasonable names for their
variables. Correctly finding all true candidates required knowledge about all ways that a
date could enter a program and a thorough analysis of everything that could happen to those
dates within the program.

So, not everything can be automated. But even less sophisticated tools (developed or
bought) are faster and more accurate than performing the same task manually.

To buy or build your own tool is a personal decision that depends on a lot of factors (staff
skills, time, money, etc..). The market offers a great variety of tools that help to identify
defects accurately which could cause application failure, data corruption or unpredictable
results (such as arithmetic overflow, unintialized variables). Selecting a tool is a hard
activity. The difference in product cost is often due to product quality and reliability,
vendor experience and level of available support (it’s important to pay attention to
capabilities rather than price). Depending on the level of accuracy you expect from the tool
is the level of technique sophistication you will need from the tool (scanning, parsing,
control flow analysis).

Automated Code Inspection
Execution Process
A four-step process to execute the inspection.

Candidate programs identification

Several ways to select the programs to be inspected were identified.

§ New programs / Modified programs: Every program that is taken into
Production environment (either a new or an existing one with enhancements),
should be inspected. This is the criteria used to perform the activity daily and
to ensure that Production environment is not going to be contaminated.

§ Programs belonging to a certain domain: In this case, all the programs that
belong to a certain domain are inspected. This criteria is often applied when a
rule is discovered and we want to ensure than there are not existing programs
in Production environment that violate it.

§ Reported as fixed: Each program that is reported as fixed is inspected in order
to verify the defect removal and that no new defect has been added.

§ On demand: Key projects ask for revisions early in the construction phase of
the life cycle in order to evaluate quality and standard compliance during the
construction phase (validating code from the very beginning is helpful)

§ Random: Programs are often selected at random from Production
environment in order to ensure programs remain defect-free.

Inspection execution

Once the set of programs to be reviewed has been selected, the inspection is executed. First,
program’s domain should be identified so as to perform the appropriate rules. Analysts start
the inspection process, running the tools which automate the different rules.
After the inspection has been completed, analysts check the tool-generated results,
reviewing defects with the application owner and making adjustments if necessary. Then,
only defects (statements that violate the rules) are recorded in the defect tracking DB.

Defect reporting

Defects are reported to the ones in charge. Reporting date and responsible name should be
recorded perform later tracking activities.
The report contains the following data:

§ Inspection date

§ Analyst

§ Program name

§ Reason for inspection selection

§ Incident description

§ Line number

§ Violated rule description

§ Program statement/s that violate the rule

§ Comments

Tracking

A defect is completely removed only when the program is returned to Production
environment and analysts verify it has been fixed satisfactory.

Unsolved defects are periodically requested to be fixed.

Metrics collections are performed to help the company to control, monitor and assess its
software quality goals.

Where it fits in project life cycle
Inspection should be executed before testing, saving
time and money.

The Development Cycle

Code is inspected prior to testing stage. All common and identified defects should be
removed before a program leaves QA stage. In this way, inspection ensures that fewer
trivial defects will delay the application testing, saving time and money (they are found
faster and at a lower cost than in the testing environment).

Production
Development

QA Testing

Conclusions
Code Inspection is such a good practice that, even
applying it partly, lets you obtain good results.

Inspection is the most useful and cost-effective form of error removal. Everybody agrees
consistently in the value of inspections.
We experimented an alternative to classic inspection (Fagan style). The Y2K challenge and
our today’s schedule driven projects force us to find another approach that lets us reach
inspection well known benefits. But this kind of inspection doesn’t replace ‘Fagan style’
one. It complements it.
Detecting certain classes of defects in all the existing programs instead of searching for all
the possible defects in one program gave us very satisfactory outcomes.
This is our experience. We know that the process has weaknesses and we have to continue
improving. But we gave an important step and we came to the conclusion that there is no
excuse for not doing inspections. We hope you agree.

QW2000 Keynote 10P2

Mr. Sanjay Jejurikar
Director of Test for Windows 2000

(Microsoft)

The Engineering Process of Windows 2000

BACK TO QW2000 PROGRAM

Presentation Abstract

This talk will give an overview on the engineering process used by Microsoft to develop and test
Windows2000 product with a specific focus on the QA process. It will give a glimpse into the daily QA
activity taking place in the teams while working on a project like Windows2000, and provide high level
information on the way testing and deployment effort was staged.

About the Author

As a Director in the Windows Division, Sanjay is responsible for overseeing the building, testing and
quality assurance of the Windows 2000 family of products.

Sanjay joined Microsoft in July 1989 as a software design engineer in the Windows NT test team and
is part of this group since then in a variety of roles. His most recent role is managing the groups
responsible for build, QA/OS testing , business applications integration testing , and logo testing for
Windows NT products as a Director of Test.

Prior to joining Microsoft, Sanjay was a post graduate student in Computer Engineering at Syracuse
University, New York. He holds a Masters degree in Computer Engineering from Syracuse University
and a Bachelor of Electrical Engineering degree from VJTI, Mumbai, India.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/10P2.html [4/28/2000 2:39:00 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

This talk will give an overview on the engineering process used by Microsoft to develop
and test Windows2000 product with a specific focus on the QA process. It will give a
glimpse into the daily QA activity taking place in the teams while working on a project like
Windows2000, and provide high level information on the way testing and deployment effort
was staged.

QW2000 Keynote 10P3

Gene Spafford
Director, CERIAS (Purdue University)

Information Security Requires Assurance

BACK TO QW2000 PROGRAM

Presentation Abstract

As computerization has become more ubiquitous, and as more critical societal functions have been
entrusted to computers, we have become more aware of shortcomings in the security of our
information infrastructure. Many (if not most) of these shortcomings can be traced to poor software
development practices, lack of testing, and faulty design. Vendors claim -- in so many words -- that
there is no economic reason to produce higher quality software because consumers want features
before more security.

In this talk, I will examine these issues and discuss some future consequences of the lack of focus on
quality. This will include discussion of how the issue may be addressed in law in the not-too-distant
future.

About the Author

Eugene H. Spafford is a professor of Computer Sciences at Purdue University, the university's
Information Systems Security Officer, and is Director of the Center for Education Research
Information Assurance and Security. CERIAS is a campus-wide multi-disciplinary Center, with a
broadly-focused mission to explore issues related to protecting information and information resources.
Spaf has written extensively about information security, software engineering, and professional ethics.
He has published over 100 articles and reports on his research, has written or contributed to over a
dozen books, and he serves on the editorial boards of most major infosec-related journals.

Dr. Spafford is a Fellow of the ACM, Fellow of the AAAS, senior member of the IEEE, and is a charter
recipient of the Computer Society's Golden Core award. Among other activities, he is chair of the
ACM's U.S. Public Policy Committee, a member of the Board of Directors of the Computing Research
Association , and is a member of the US Air Force Science Advisory Board. He regularly serves as a
consultant on information security and computer crime to law firms, major corporations, U.S.
government agencies, and state and national law enforcement agencies around the world.

Complete bio at: www.cerias.purdue.edu/homes/spaf.
BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/10P3.html [4/28/2000 2:39:10 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.cerias.purdue.edu/homes/spaf
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

As computerization has become more ubiquitous, and as more critical societal functions
have been entrusted to computers, we have become more aware of shortcomings in the
security of our information infrastructure. Many (if not most) of these shortcomings can be
traced to poor software development practices, lack of testing, and faulty design. Vendors
claim -- in so many words -- that there is no economic reason to produce higher quality
software because consumers want features before more security.

In this talk, I will examine these issues and discuss some future consequences of the lack
of focus on quality. This will include discussion of how the issue may be addressed in law
in the not-too-distant future.

QW2000 Workshop W1
Technology Track

Mr. Douglas Hoffmann
(Software Quality Methods LLC)

Oracle Strategies for Automated Testing

BACK TO QW2000 PROGRAM

Abstract...

Software test automation is often a difficult and complex process. The most familiar aspects of test
automation are organizing and running of test cases and capturing and verifying test results. A set of
expected results are needed for each test case in order to check the test results. Verification of these
expected results is often done using a mechanism called a test oracle. This paper describes classes
of oracles the author has used for various types of automated software verification and validation.
Several relevant characteristics of oracles are included with the advantages, disadvantages, and
implications for test automation.

When the topic of Oracles was first presented at Quality Week 1998 it had caused ripple effect. A two
day LAWST (Los Altos Workshop on Software Testing) session was dedicated to discussion of
oracles and test automation and several new papers on the subject were generated and presented by
other people at conferences in 1999. I have updated and expanded the original work based on the
LAWST workshop and further investigation, comparison, refinement, and critical reevaluation of
oracles as used in automated software testing.

Real world oracles vary widely in their characteristics. Although the mechanics of various oracles may
be vastly different, a few classes can be identified which correspond with automated test approaches.
These types of oracles are categorized based upon the strategy for verification using the oracle. Thus,
an oracle strategy using a lookup table to generate expected results can be the same as one that
uses an alternate algorithm implementation to compute them. Four types of oracle strategies (and not
using any oracle) are identified.

Author Bio...

Douglas Hoffman is an independent consultant with Software Quality Methods, LLC. He has been in
the software engineering and quality assurance fields for over 25 years and now is a management
consultant in strategic and tactical planning for software quality. For five years he served as the
Chairman of the Santa Clara Valley Software Quality Association (SSQA), a Task Group of the
American Society for Quality (ASQ). He has been a presenter and participant at dozens of software
quality conferences and has been Program Chairman for several international conferences on
software quality. He is a member of the ACM and IEEE and is active in the ASQ as a Senior Member,
participating in the Software Division, the Santa Clara Valley Section, and the Software Quality Task

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/W1.html (1 of 2) [4/28/2000 2:39:40 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Group. He has earned a BA in Computer Science, an MS in Electrical Engineering, an MBA, a
Certificate from ASQ in Software Quality Engineering, and has been a registered ISO 9000 Lead
Auditor.

Douglas' experience includes consulting, teaching, managing, and engineering across the computer
systems and software industries. He has over fifteen years experience in creating and transforming
software quality and development groups, and has worked as an independent consultant for over ten
years . His work in corporate, quality assurance, development, manufacturing, and support
organizations provides a broad technical and managerial perspective on the computer industry.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/W1.html (2 of 2) [4/28/2000 2:39:40 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2000 Workshop W2
Applications Track

Mr. Cem Kaner

Bug Advocacy

BACK TO QW2000 PROGRAM

Key Points

Finding a bug is just the first part of the process of getting it fixed. This tutorial looks at the bug reporting process as
a persuasive process -- finding ways to make the programming staff more interested in fixing defects and less likely
to rely on excuses to not fix them. The tutorial looks at

Technical issues (such as ways to find more powerful variations of a defect and ways to replicate a
hard-to-replicate failure)

●

Organizational issues (for example, find out which group in the company will pay the costs associated with
this defect because they're your best advocates for getting it fixed)

●

Persuasive writing (who are you trying to influence with this report and how does your writing advance your
case?)

●

About the Moderator

Dr. Cem Kaner consults on technical and management issues, and practices law within the software
development community. He is senior author of two books, Testing Computer Software, and Bad
Software. He recently accepted an appointment as Professor of Software Engineering at Florida
Institute of Technology. Also, in the talk with Marick and Bach, my name is misspelled as Kem Caner.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/W2.html [4/28/2000 2:39:45 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2000 Workshop W3
Internet Track

Dr. Edward Miller
(Software Research, Inc.)

Achieving WebSite Quality

BACK TO QW2000 PROGRAM

Key Points

How is WebSite quality assessed?●

What are WebSite failure modes?●

How can WebSite problems be predicted? Prevented? Compensated for?●

What are the best and worst WebSites in terms of quality?●

Presentation Abstract

WebSite Quality measured by a user consists of many facets: Visual appeal, response time, quality of
content, correctness of response, reliability, security, etc. This workshop investigates alternative
routes to achieving WebSite Quality. Attendees will learn the state of the art in WebSite Quality
approaches and technology and gain practical knowledge about

WORKSHOP OUTLINE:
What is WebSite Quality●

WebSite Categories
Complexity: Static, Passive, Collective, Interactive, Responsive❍

Size❍

Criticality❍

Other Attributes❍

●

Browser Dependencies●

Failure Modes
Time❍

Content❍

Other❍

●

Static Analysis/Testing
HTML Checking❍

Link Checking❍

●

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/W3.html (1 of 2) [4/28/2000 2:39:51 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Content Checking❍

Other❍

Dynamic Analysis/Testing
Validation Processes

Text■

Images■

Dialogs■

Sequences■

❍

Performance Timing
Single and Multiple Download Timings■

Overall User-level Response Times■

Perceived User-level Response Times, Thresholds■

❍

●

Load and Capacity Checking/Testing
Load Imposition❍

Load Measurement❍

User Scenarios❍

Realistic vs. Non-Realistic Experiments❍

Client-Based vs. Server-Based Experiments❍

●

Recommended Procedures & Discussion●

About the Author

Edward Miller is President of Software Research, Inc., San Francisco, California, where he has been
involved with software test tools development and software engineering quality questions. Dr. Miller
has worked in the software quality management field for over 25 years in a variety of capacities, and
has been involved in the development of several families of automated software testing and analysis
support tools.

Dr. Miller has chaired the SR/Institute Quality Week Conferences (QW, in the San Francisco Bay Area
in late May, and QWE, in Brussels, Belgium, in November) since their beginning. He was chairman of
the 1985 1st International Conference on Computer Workstations, and has participated in IEEE
conference organizing activities for many years. He is the author of Software Testing and Validation
Techniques, an IEEE Computer Society Press tutorial text. Dr. Miller received his Ph.D. (Electrical
Engineering) degree from the University of Maryland, an M.S. (Applied Mathematics) degree from the
University of Colorado, and a BSEE from Iowa State University.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/W3.html (2 of 2) [4/28/2000 2:39:51 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2K Workshop W4
Management Track

Mr. Robert Sabourin
(Purkinje Inc.)

The Effective SQA Manager -- Getting Things
Done

BACK TO QW2000 PROGRAM

Presentation Abstract

This interactive tutorial walks you through several "down to earth" practical aspects of running an SQA
team.

The tutorial is presented in parable form. In this tutorial the audience will experience the real life
problems encountered by a NOGO.COMs neophyte SQA Manager "Fred". "Fred" must turn around an
enthusiastic but severely under staffed and under budget team of SQA professionals working in a
chaotic development environment into a productive effective team! "Fred" is under the gun - he has to
get things done!

"Fred" is experiencing common pressures which dominate the software industry today:

* Tight time frame projects: "must ship it now", "Internet Time"
* Frequently changing requirements: "cannot sell without this last minute change"
* Communications problems: "they changed the code but not the spec and then they
didn't tell the test team"
* Hiring and keeping staff: "there is a shortage of qualified staff on market - lot's of
pressure to move - if your key SQA lead gets upset he can be in a new job tomorrow!"
* Keeping up with technology: "which tools should we use?"
* Test automation: "what should be automated, when - who has time to automate?"
* Understanding shifting business priorities: "Why is this project so important anyhow?
How do I tell how to split resources within my team?"
* Co-ordination with other teams: "who did what when to whom and why?"
* Not enough people to test: "short staffed"
* Not enough time to test: "under the gun"
* When we have people to test we do not have a product ready for test: "why are we
always waiting"
* Test coverage: "what should and should not be covered?"
* Estimating: "time and effort?"
* Making and keeping commitments: "What to commit to, when and how?"
* Capturing important data for downstream process improvement: "we are already using

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/W4.html (1 of 3) [4/28/2000 2:40:08 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

every second to get as much of the job done as we can - how can be start capturing
metrics?"
* SQA is always getting blamed and squeezed because the product is LATE!

"Fred" of course cannot "do it alone". In search of wisdom "Fred" gets advice from many mentors -
each of whom helps "Fred" conquer another hurtle! Incrementally "Fred" builds his organisation into a
world class effective team famous for "getting things done!" consistently "On-Time", "On-Quality" and
"On-Budget".

The tutorial covers practical aspects of SQA management and organisation:

* Goals
* Business drivers
* Roles and responsibilities
* Decision makers, decision making, dealing with bugs
* Getting buy in from other teams, paradigm shifts
* Test planning, prioritisation, execution
* Staffing, triage, creative resource usage, getting some free resources
* Automation what, when, how
* Incremental process improvement
* Starting a practical, useful and used metrics program
* The many faceted role of formal inspections
* Effective software requirements and specifications
* Focus on doing "the right things" "the right way" (tuning tunnel vision)
* Marketing and promoting excellence
* Building team spirit - involving people in business decisions

Several practical examples are given.

About the Author

Robert Sabourin has been involved in all aspects of development, testing and management of
software engineering projects. Robert graduated from McGill University in 1982. Since writing his first
program in 1972, Robert has become accomplished software engineering management expert. He is
presently the Director of Research and Development at Purkinje Inc; a Montreal-based international
firm specializing in the development of sophisticated, critical medical software used at the point of
care. Previously, Robert managed Software Development at Alis Technologies for over ten years. He
has built several successful software development teams and champions the implementation of "light
effective process" to achieve excellence in delivering on-time, on-quality, on-budget commercial
software solutions.

Robert has championed many complex international multilingual software development and
globalization efforts involving several intricate business partnerships and relationships including
international government (Czech, Egypt, France, Morocco, Algeria...) and commercial entities
(Microsoft, IBM, AT&T, HP, Thompson CSF, Olivetti...). Systems included concurrent coordinated
multilingual multiplatform product releases.

Robert's pioneering work with Infolytica Corporation led to the development of the first commercially

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/W4.html (2 of 3) [4/28/2000 2:40:08 PM]

available platform independent graphics standard GKS and several toolkits which allowed for cross
platform development and porting of complex CAD, Graphics, Analysis and Non-Destructive
Simulation systems.

Robert is a frequent guest lecturer at McGill University where he relates theoretical aspects of
Software Engineering to real world examples with practical hands-on demonstrations.

In 1999, Robert completed a short book illustrated by his daughter Catherine entitled "I Am a Bug"
(ISBN 0-9685774-0-7). Written in the style of a children's book, "I am a Bug" explains elements of the
software development process using a fun metaphor. Throughout his career, he has also been the
author of several articles and papers, and has given presentations relating to software development at
a number of international conferences. Most recently, Robert presented an interactive half-day tutorial
on Bug Priority and Severity at Software Quality Week in Belgium - November 1999.

Robert has received professional recognition for many accomplishments over the years. These
include Byte Middle East's 1992 Product of the Year for the AVT-710 product family achieving a ZERO
FIELD REPORTED software defect rate with over 15,000 units installed. (Project involved over
27-man month's effort!); Quebec Order of Engineers' recognition for creating and managing the Alis
R&D Policy Guide - Development Framework and process; CANARIE Gold Proposal for CANARIE
PHASE I (Internet en français); and CANARIE Gold Proposal for CANARIE PHASE II (multilingual
internet).

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/W4.html (3 of 3) [4/28/2000 2:40:08 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

QW2000 Standby Paper SB2

Mr. Yongzhong Tu & Mr. Wei-Tek Tsai, Baisu
Huang, Raymond Paul

(University of Minnesota)

An Approach to Testing Component-Based
Software

BACK TO QW2000 PROGRAM

Key Points

Test scripts should be delivered with components●

Component vendors and component users use different views of the test scripts of the components●

Using ripple effect analysis to reuse test scripts for component testing can significantly reduce testing cost●

MtSS/MgSS/MfSS+ are good language for component specification, test script generation●

Abstract

Currently many object-oriented (OO) applications are developed using software components. It
imposes more pressure on the integration testing because of the different perspective of component
suppliers and users. How to reuse test scripts and how to reduce test redundancy are the main issues
in testing component-based software.

In this paper, an enhanced message framework sequence specification (MfSS+) is used as
hierarchical test scenario templates to generate test scenarios for the component-based software
testing. MfSS+ was an extension of MtSS and MgSS originally proposed for testing OO applications
and it was proposed to test OO design patterns, frameworks, and their applications. This paper uses
the MfSS+ to specify test specifications for components. The specification can be used by component
suppliers to test the component before delivery, and it can be used by component users during
application development and maintenance. Techniques in test specification slicing, test scenario
generation and applying traditional testing techniques in test scenario generation are introduced.

Component suppliers and component users have different responsibilities in the component-base
system testing, the former test the component itself and provide component test specifications for
component users, the later verify the configured component's functionalities and test the interactions
between the component and its client objects. So, they use different test scripts in testing. Test scripts
used by component suppliers concern with testing component interfaces with internal views, while
those used by component users concern only with the correctness of used part of the functionalities of
the component, thus test component interfaces with external views of the component.

Even more, test scripts vary in different phase of the integration process and contain different sets of

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/SB2.html (1 of 2) [4/28/2000 2:40:20 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1

3/29/00 QW2000 1

An Approach to Testing
Component-based Software

Yongzhong Tu, Wei-Tek Tsai, Baisu Huang
Department of Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455

 {Tu, Tsai}@cs.umn.edu

Raymond Paul
OASD, Y2K Office
Washington, D.C.

PaulR@osd.pentagon.mil

3/29/00 QW2000 2

Overview of the paper

■ Component Test Specifications

■ Test Scenario Generation from Test Specification

■ Test Script Derivation

■ Component Testing with Different Views

■ Component Integration Testing

■ Test Case Reuse by Using Ripple Effect Analysis

■ An Example

■ Conclusion

2

3/29/00 QW2000 3

Techniques proposed

■ Component test specifications
– Using MfSS+ to specify component

■ Test scenario generation from component test specifications
– Applicable to component supplier and user

– Various kinds of test cases can be generated

■ Different views of the component test specifications
– Component user and component supplier use different views of the

component test specifications

■ Application integration testing with component test specifications
– Hierarchical test specifications

– Use different test specifications in different test phases

– Test case reuse

3/29/00 QW2000 4

Example: ITSS Bank Subsystem

■ Inter-bank Transaction Switching-center System
(ITSS)

– Follows ISO 8583

– on COM/DCOM

– in VB 6.0

Switching
Center

Subsystem

Bank ControllerATM
Subsystem

Bank Agent

FileAccount

User accounts
database

Bank
Subsystem

message message

Message
Component

Bank Agent
Component

BankManager(GUI)

3

3/29/00 QW2000 5

MtSS, MgSS, MfSS and MfSS+

Message Source Message Destination Constraints
MtSS Multiple classes Single class Sequence that methods of a class are called
MgSS Single class Multiple classes Sequence that a method calls other methods
MfSS Multiple classes Multiple classes Sequence that objects should follow

Dynamic binding and dynamic typing involved
in the sequence are specified.

MfSS+ Multiple classes Multiple classes Data constraints: preconditions and post-
conditions of an operation, data invariants
through the whole lifecycle of an object

■ In MfSS+, various data constraints such as
dynamic data constraints, static data constraints,
sequence constraints and object relationship
constraints, are specified

3/29/00 QW2000 6

Why using MfSS+

■ IDL specifies the interface of component

■ MfSS+ is more powerful in testing
• Formal specifying the sequence constraints

• Various testing strategies can be used

• Data constraints facilitate the input and expected
output derivation of test cases

• Hierarchical arrangement of test specification
facilitates test driver and stub construction

• Different views can reduce test case redundancy

4

3/29/00 QW2000 7

Using MfSS+ in testing

■ Specify component in MfSS+

■ Derive test specifications from component
specification
– Specify test scenario templates in MfSS+

■ Generate test scenarios from test scenario
templates

■ Derive test cases from test scenarios
– Derive input and expect output from data constraints

3/29/00 QW2000 8

Using test strategies in generation

■ Partition testing, boundary testing, negative
testing, positive testing, stress testing,
random testing

■ Special test scenarios
– Testing dynamic typing and dynamic binding

– Extensibility

– Communication

– Exception handling

5

3/29/00 QW2000 9

Test case generation

■ Different views of test specifications

■ Generate test scenarios
– Plug in concrete objects

– Expand branches to full sequence

– Determine iterations

– Determine preconditions and post-conditions

■ Derive input and expected output from data
constraints

3/29/00 QW2000 10

Test script
//Test script for component integration
#Mode = Integration testing
#MfSS+ for component BankAgent
BankAgent_{create} • ({# Message.getBankId() ==
BankAgent.BankId #}BankAgent_{process} • ({#
Message.getTransactionType() == ”withDraw” #}
Account_{withdraw} | {# Message.getTransactionType() ==
”checkBalance” #} Account_{checkBalance}) | {#
Message.getBankId() != BankAgent.BankId #}
BankAgent_{forward})* • BankAgent_{close}
//……………
#end of MfSS+
#Test cases for component BankAgent
#1: POSITIVE
objSendMsg=CreateObject(“Message.Imessage”);
objSendMsg.setAttributes(“Withdraw”,”0000111122”,”Password”,4287);
objBankAgent=createObject(“BankAgent.Iwithdraw”);
objectBankAgent.process(objSendMsg);
#/1
#2//test case 2
//……………….
#end of test cases for component BankAgent
//…………..
#end of test script

Comments

Unit testing or
integration testing

Begin of MfSS+ for
the component

MfSS+

End of MfSS+

Begin of test cases
for a component

Test case #

Test case

End of a test case

End of test cases

End of test script

6

3/29/00 QW2000 11

Component testing with different
views
■ Component suppliers

– Test component with internal views

– Supply component with specifications

■ Component users
– Verify the configured component

functionalities

– Test the interactions between component and its
application with external views

3/29/00 QW2000 12

Component testing with different
views (Cont’)
■ Component suppliers

– Component specification

– Unit testing and integration testing

■ Component users
– Reconfigure component services and slice test

specifications

– Test the component interface as a unit

– Test the integration of the component with
application

7

3/29/00 QW2000 13

Component Integration Testing

■ Object unit testing

■ Component integration testing

■ Test component interface as a unit

■ Integrating component into the application
 Step 3bankController

Message

BankAgent
Component
Interface

bankController

bankAgent

FileAccount Message

 Step 1

BankAgent Component

bankController

bankAgent

FileAccount
Message

 Step 2

3/29/00 QW2000 14

Software structure and test scenario
template hierarchy

Bank GUI

Bank Controller

BankAgent
Component
Interface

Message
Component
Interface

Withdraw
Agent

CheckBalance
Agent

Message

FileAccount

GUI Test Cases

Template for Unit Testing

Template for Unit
Testing of the Interface

Template for Unit
Testing of the Interface

Template for
Unit Testing

Template for
Unit Testing Template for Unit Testing

Component supplier

Component
user Template for Integration Testing

Template for
Unit Testing

Template for Integration Testing

Template for Integration Testing

Use:
Mapping:

8

3/29/00 QW2000 15

Test case reuse through ripple
effect analysis
■ Object interface not changed

– Reuse all test cases and redo unit testing

■ Component interface not changed
– Component user can reuse all test cases and run them to test the

component as a unit

■ External view of the component interface not
changed

– Component user can reuse all test cases and run them to test the
component as a unit

■ External view changed
– Regenerate test cases and redo everything

3/29/00 QW2000 16

Example:test scenario generated

of test scenarios Bank
Controller

Message
Component

Withdraw
Agent

CheckBalance
Agent

FileAccount
Component

Object testing 124 32 78 55 65
Sliced None None 48Component

Integration Unsliced None None 278

Sliced None 32 42Component
Unit Testing Unsliced None 32 278

Sliced 63System
Integration Unsliced Up to thousands of test scenarios can be generated

■ Most test scenarios are negative

■ Reduce redundant test cases significantly

■ Enhance efficiency

9

3/29/00 QW2000 17

Example: test result

■ 96 bugs seeded

■ Various kinds of bugs
– Boundary mismatching bugs, branch condition bugs,

wrong expression bugs, loop bugs, wrong sequence
bugs, variable bugs, operation-missing bugs and type
bugs

of bugs detectedObjects # of
bugs

seeded
Object Component

Integration
System

integration
Total

BankController 17 16 No testing 5 17
Message Component 8 7 No testing 8 8
WithdrawAgent 12 11 10 7 12
CheckBalance Agent 10 10 9 6 10
UserAccounts Manager 8 8 4 2 8

3/29/00 QW2000 18

Example: reuse test cases

Change1
FileAccount

Change2
FileAccount

Change3
Withdraw
Agent

Change4
Withdraw
Agent

Change5
Withdraw
Agent

Change6
BankCont
roller

Object
specification

No Yes No Yes Yes No

Component
interface

No No No No Yes No

Component
external view

No No No No No No

Inner object Yes Yes No No No No
Integration
testing by
vendor

No Regenerate
test cases

Rerun Regenerate
test cases

Regenerate
test cases

Unit testing
by vendor

Rerun Test
cases

Regenerate
test cases

Rerun Regenerate
test cases

Regenerate
test cases

Integration
testing by user

No No No No Regenerate
test case

Yes

Unit testing
by user

No No Rerun Rerun Regenerate
test cases

Yes

10

3/29/00 QW2000 19

Conclusion

■ MfSS+ facilitates component specification for testing

■ Component test specification can be used to generate test
cases either by component supplier and user thus
significantly save costs

■ Component user and component supplier use different
views of the component test specifications

■ Hierarchical test specifications and ripple effect analysis
enhance test case reuse in integration testing

3/29/00 QW2000 20

Acknowledgement

■ This project is supported by OASD Y2K
Office through Army Research Laboratory.

test cases derived from the test scenarios generated from the specific MfSS+. By using ripple effect
analysis and test specification slicing techniques, test cases can be reused and test redundancy can
be reduced.

A COM-based inter-bank transaction switching-center system (ITSS) is used as an example to
illustrate the techniques present. The test results show that the approach proposed in this paper
significantly reduced the test redundancy and enhanced the test script reuse.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/SB2.html (2 of 2) [4/28/2000 2:40:20 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

13th International Software/Internet Quality Week, San Francisco, California, May30-June2,2000

1/10 Copyright 2000. All rights reserved by authors

AN APPROACH TO TESTING COMPONENT-BASED SOFTWARE

Yongzhong Tu, Wei-Tek Tsai, Baisu Huang

Department of Computer Science and Engineering
University of Minnesota
Minneapolis, MN 55455

Raymond Paul

OASD, Y2K Office
Washington, D.C.

ABSTRACT

Currently many object-oriented (OO) applications are developed using software components
which imposes more pressure on testing because of the different perspectives of component
suppliers and users. How to reuse test cases and how to reduce test case redundancy have become
the main issues in testing component-based software. In this paper, an enhanced message
framework sequence specification (MfSS+) is used as hierarchical test scenario templates to
generate test scenarios for component-based software testing. Test scripts vary in different phases
of the integration process and Ripple effect analysis techniques can be used to enhance test case
reuse and reduce test case redundancy in regression testing. A COM-based inter-bank transaction
switching-center system (ITSS) is used as an example to illustrate the techniques presented. The
test results show that the proposed approach significantly reduce test case redundancy and
enhanced test case reuse.

Keywords

Object-oriented testing, Component testing, integration testing, test script reuse, unit testing

1. Introduction

Components are objects that are built following the specifications of a component platform
[Szyperski 1997]. Several component platforms have been proposed and implemented including
CORBA, JavaBeans, and COM/DCOM [Brown 1996]. A component-based system is composed
of reusable components and other software. Components have well-defined interfaces, often work
in a well-defined infrastructure, and most existing components are based on object-oriented (OO)
technology.

This paper considers a component-based system that consists of three parts: the user application,
the components, and the infrastructure that provides communication channels between user
application and components. The user application communicates with components through
interfaces mapped by the communication infrastructure. A component provides multiple sets of
functionality and each set of the functionality can be accessed by a configuration.

This paper discusses testing a component-based system from two perspectives: component
provider’s and component user’s. A component provider may have limited knowledge of how
components will be used by component users. A component user, in contrast, may not have
complete knowledge of the component supplied, but must know how components are used in the
application. The component user is thus concerned with only those aspects of components that are
relevant to the application.

Component-based software introduces new problems in software development and maintenance,
hence, testing component-based programs has led to a new research direction. Integration
testing, regression testing and functional testing of component-based software have not yet been
addressed in the literature. Only a few guidelines are available to test applications developed
using components where state machine and data-flow approaches [Harrold 1999, Buy 1998 and
Sohn 1999] or specifications of components are proposed [Cho 1998, D’Souza 1999].

This paper presents the following techniques to address this problem:

13th International Software/Internet Quality Week, San Francisco, California, May30-June2,2000

2/10 Copyright 2000. All rights reserved by authors

1) Component test specifications: a component often has its functional or design specification,
e.g., a component may use CORBA’s IDL to specify its input and output. In addition to these
specifications, this paper proposes a test specification for each component that uses the
enhanced Message Framework Sequence Specifications (MfSS+) [Tsai 1999, Tu 1999]. The
specification can be used by component suppliers to test the component before delivery, and
it can be used by component users during application development and maintenance.

2) Test scenario generation from component test specifications: test scenarios can be generated
from test specifications. Both component suppliers and users can use these scenarios to
generate test cases and scripts in testing component-based software.

3) Different views of the component test specifications: component users may configure the
functionality that the suppliers provided; some services may not be used by the application.
Thus only the sliced test specifications, which are called MfSS+ views, are used as test
scenario templates to generate respective test scenarios.

4) Application integration testing by using component test specifications: An important issue in
testing component-based software is integration testing. An approach is to develop a set of
hierarchical test specifications for the application by using component test specifications. In
different phases of integration, we use different test specifications as test scenario templates
to generate an efficient set of test cases. Redundant test cases can be recognized and need not
be used again, addressing the reuse issue.

2. An Example – Bank Subsystem of ITSS

This section presents the bank subsystem of a component-based software on COM/DCOM: inter-
bank transaction switching-center system (ITSS). The system follows the ISO 8583 standards and
is implemented using Visual BASIC version 6.0. This paper uses the bank subsystem for
illustration.

Figure 1: Architecture of the bank subsystem

Transactions and request approval or denial occur at the bank subsystem. The architecture of the
subsystem can be shown as Figure 1. This subsystem has two components: Message component
and bankAgent component. The Message component, used by all subsystems, manipulates the
messages transferred on the net. The FileAccount object manages the user accounts database and
is only used by the bankAgent object and those integrated with it to form the bankAgent
component. The bankAgent object has two different concrete objects, WithdrawAgent and
CheckBalanecAgent, which handle respective transactions. Both components are used by the
BankController object, which is responsible for: 1. accepting sign in/out commands from the GUI
of the bank manager and sending the requests to the SC it is connected; 2. accepting transaction
messages sent by ATM or SC, forwarding them to SC if they are not to it or creating respective
bankAgent objects to handle the requests otherwise.

Switching
Center

Subsystem

Bank ControllerATM
Subsystem

Bank Agent

FileAccount

User accounts
database

Bank
Subsystem

message message

Message
Component

Bank Agent
Component

BankManager(GUI)

13th International Software/Internet Quality Week, San Francisco, California, May30-June2,2000

3/10 Copyright 2000. All rights reserved by authors

3. Component Test Specifications

To facilitate component-based system testing, testing issues need to be considered in the design
phase. In our approach, component testing is based on component specifications and component-
based system testing is based on system specifications. We use MfSS+ to specify the components
as well as the system using them.

• MtSS, MgSS and MfSS+

Method sequence specification (MtSS) is a language used to describe the constraints on the order
in which the methods of a class are invoked. Message sequence specification (MgSS) is another
kind of language to describe constraints on the order in which the methods of other classes are
invoked within a method of a class. MfSS+ is an extension of MtSS and MgSS, and it specifies
the sequence constraints on the interactions between objects. Further more, in MfSS+, various
data constraints such as dynamic data constraints, static data constraints, sequence constraints and
object relationship constraints, are specified in the preconditions and/or post-conditions in logic
expressions [Tu 1999]. They were proposed to test OO design patterns, frameworks and their
applications. They have been extended to concurrent applications [Wang 1997] and real-time
applications [Vishnuvajjala 1996]. The differences are listed in Table 1.

Message Source Message Destination Constraints
MtSS Multiple classes Single class Sequence that methods of a class are called
MgSS Single class Multiple classes Sequence that a method calls other methods
MfSS Multiple classes Multiple classes Sequence that objects should follow

Dynamic binding and dynamic typing involved
in the sequence are specified.

MfSS+ Multiple classes Multiple classes Data constraints: preconditions and post-
conditions of an operation, data invariants
through the whole lifecycle of an object

Table 1: Differences of MtSS, MgSS, MfSS and MfSS+

• Some Concepts about Specifying Components

Test specification for a component contains a set of test scenario templates for test scenario
generation and test script derivation. Although any software comes with its unique specifications,
it is necessary that different test specifications be used for different purposes (unit testing or
integration testing) and for different perspectives (component suppliers or component users).

A test scenario is a typical sequence of messages sent to objects. Test scenario templates are
templates used to derive test scenarios. One test scenario template can generate a family of test
scenarios. Because MfSS+ specifies the sequence constraints on the messages among application
objects, it can be used to specify test scenario templates. A test scenario template is not simply
copied from the respective MfSS+, it is usually sliced from the respective MfSS+ for certain
reasons. The sliced MfSS+ of a MfSS+ is called MfSS+ view. All test scenarios generated are
represented with the same grammar as that of the MfSS+ except:

1) No undetermined symbols appear. For example, all iteration marks are replaced by concrete
numbers, all abstract classes are replaced with concrete objects of their subclasses.

2) The logic expressions appear in the preconditions and post-conditions are no longer data
constraints but tell us the status at that time.

3) No branches appear in the scenarios.

Applications are often organized hierarchically; the architecture of the applications affects the
integration process and the organization of the test scenario templates in the test specifications
[Tu 1999]. Generally, each object has a test scenario template for unit testing and another one for

13th International Software/Internet Quality Week, San Francisco, California, May30-June2,2000

4/10 Copyright 2000. All rights reserved by authors

integration testing. As for component, the services offered by the component suppliers may be
configured by the component users, but not all services are used by the application. Thus the test
scenario templates that the component suppliers provided are necessarily sliced to new test
scenario templates.

Generally, MfSS+ is used to specify components where the specification is intentionally sliced to
different test specifications which contain test scenario templates, and finally, test scripts are
derived from the templates to provide test scenarios or test cases.

• Why Specify Components in MfSS+?

Nowadays, component suppliers often use Interface Definition Language (IDL) to specify their
components. With IDL, component developers can specify the interfaces of their components. In
other words, the IDL file specifies the services that the component provides and the input and
output of the component. However, from the testers’ point of view, it is not sufficient enough.
Component testers need sequence specifications of the component to perform testing. These
sequence constraints are not specified in the IDL file, let alone the data constraints for the
sequence.

On the contrary, MfSS+ is more powerful in testing than IDL file, thus it is used as a supplement
in component-based system testing. It has the following advantages:
1. MfSS+ can specify sequence constraints in a formal way, all sequences that can not be

derived out from the MfSS+ specification can be regarded as invalid.
2. Various testing techniques such as partition testing, random testing, negative testing and

boundary testing can be used in test scenario generation from MfSS+.
3. By studying preconditions and post-conditions of the MfSS+ for a sequence, test input and

expected output can be inferred out.
4. Hierarchical arrangement of the MfSS+ can facilitate the test driver and stub construction.
5. By using different MfSS+ views as test scenario templates, testers can generate different sets

of test scenarios for different purposes. When a change is made, not all test cases need to be
run again. Testers can use a relevant MfSS+ to generate related test scenarios. This method
can systematically reduce redundant test cases in integration testing and component/
component-based system maintenance.

4. Test Scenario Generation from Test Specifications

MfSS+ can be used as a scenario template from which test scenarios can be generated [Tsai 1999,
Tu 1999]. Given the scenario templates, testers can focus their testing on different aspects of the
application by using common testing techniques such as partition testing, boundary testing,
random testing, positive testing and negative testing. Test scenarios can be generated to test
dynamic typing and dynamic binding testing, extensibility and communication testing with
MfSS+ [Tsai 1999].

• View Generation by Test Specification Slicing

Component specifications in MfSS+ systematically describe the sequence constraints of the
component along with the detailed data constraints. To reduce the number of redundantly used
test cases, testers often focus on features of the specifications.

One can apply the program slicing techniques to sequence specifications to obtain a subsequence
related to certain aspects. The test scenarios used for unit testing of WithdrawAgent are derived
from its MfSS+ according to the object type, and the test scenarios used for integration testing are
derived by slicing out the messages related to inter-object communication.

13th International Software/Internet Quality Week, San Francisco, California, May30-June2,2000

5/10 Copyright 2000. All rights reserved by authors

By using test specification slicing, one can get test scenario templates from the sequence
specifications. Because the so-generated test scenario templates focus on the given aspect, test
case reuse can be facilitated and redundant test cases can be reduced. At the end of this paper, test
results are given to illustrate the power of this technique.

• Generate Test Scenarios from Templates

To derive real test scenarios from a test scenario template, testers need to do the following:

1. Plug in concrete objects for abstract objects. For example, the abstract object BankAgent will
be replaced with concrete object WithdrawAgent or CheckBalanceAgent to get the scenario.

2. Expand a branch to a full sequence. The final test scenario has no optional operations. Thus a
template that contains branches is sure to generate more than one test scenario.

3. Undetermined iteration marks should be replaced with concrete numbers. For example, the
fuzzy iteration constraint symbol “*” should be replaced with a concrete number, for
example, zero or one to get the test scenarios.

4. The logic expressions appear in the preconditions and post-conditions are determined to stand
for the concrete status at that time.

Figure 2: An example test script

5. Test Script Derivation

To automate the testing process, preparation of a well-organized test script is very important. In
our approach, each test case contains a set of methods that are called according to a certain
sequence and preconditions and post-conditions for each method.

The test script derivation process can be like the following:

1. Slice proper MfSS+ view from the test specification of the component;
2. By using different test strategies, generate test scenarios;

//Test script for component integration
#Mode = Integration testing
#MfSS+ for component BankAgent
BankAgent_{create} • ({# Message.getBankId() ==
BankAgent.BankId #}BankAgent_{process} • ({#
Message.getTransactionType() == ”withDraw” #}
Account_{withdraw} | {# Message.getTransactionType() ==
”checkBalance” #} Account_{checkBalance}) | {#
Message.getBankId() != BankAgent.BankId #}
BankAgent_{forward})* • BankAgent_{close}
//……………
#end of MfSS+
#Test cases for component BankAgent
#1: POSITIVE
objSendMsg=CreateObject(“Message.Imessage”);
objSendMsg.setAttributes(“Withdraw”,”0000111122”,”Password”,4287);
objBankAgent=createObject(“BankAgent.Iwithdraw”);
objectBankAgent.process(objSendMsg);
#/1
#2 //test case 2
//……………….
#end of test cases for component BankAgent
//…………..
#end of test script

Comments

Unit testing or
integration testing

Begin of MfSS+ for
the component

MfSS+

End of MfSS+

Begin of test cases for
a component

Test case #

Test case

End of a test case

End of test cases

End of test script

13th International Software/Internet Quality Week, San Francisco, California, May30-June2,2000

6/10 Copyright 2000. All rights reserved by authors

3. By studying test scenarios, infer the input and the expected output to generate appropriate test
cases;

4. Write test cases into test scripts in a certain format.

For the bank subsystem example, a test script is developed for system integration testing,
component integration testing, object testing and unit testing of the component objects,
respectively (Figure 2).

6. Component Testing with Different Views

Component suppliers and component users have different responsibilities in the component-based
system testing, the former test the component itself and provide component test specifications for
component users, the latter verify the configured component’s functionalities and test the
interactions between the component and its client objects. Thus, they use different test scripts in
testing.

• Testing Component Interfaces with Internal Views

The component suppliers are responsible for the component specification testing, unit testing of
the component objects and the integration testing of the component. All services the component is
designed to provide should be tested. The test scenario templates used by the component
suppliers are more complex than those used by component users. These templates are internal
views of the component.

• Testing Component Interfaces with External Views

Component users may get the component from the Internet. They need to test the interface of the
component and its specification to verify its services and the method to get the service. In
addition, it is necessary that component users use the component in a different context from that
of the component suppliers. Users might not require all services from the component and care
only about the correctness of a part of the functionalities of the component. In this case, it is
obvious that the component users need not run all the test scenarios originally designed to test all
services.

From the component users’ point of view, one component can be regarded as a unit to be tested.
The reason is that its source code may not be available, and no matter how complex the
component is constructed, only the specifications of the interface can be seen. In this case, the
component poses the same place as an object does. Thus the idea is to treat the component as an
object. The users apply unit testing techniques on the component at first, and integration testing
techniques when it is integrated with the application.

The templates used by component users are external views of the component. Unused services
can be sliced out from the MfSS+. One component has only one internal view but may have
several different external views in different contexts (Figure 3). Different users may have
different sets of test cases.

Figure 3: Different views of a component

Component

Internal View

Component
Supplier External View 1

Application 1

External View 2

Application 2Component
Users

13th International Software/Internet Quality Week, San Francisco, California, May30-June2,2000

7/10 Copyright 2000. All rights reserved by authors

7. Component Integration Testing

One issue for component-based system testing is how to do integration testing without running
too many redundant test cases [Jorgensen 1994]. Because each object that composes the
component has had unit testing, not all test cases need to be run again. Only the test cases that are
related to the communication between objects integrated are to be run again. Thus the test cases
that have no tight relationship with the integration are significantly reduced.

On the other hand, when doing system integration testing, the component is regarded to have
been tested as an object. The external view of the component is used to generate test scenarios for
the integration.

Figure 4: Three steps of integration testing of component-based system

In general, unit testing focuses on the functionality testing of objects and integration testing
focuses on the communication between the newly integrated objects. In each integration step, a
MfSS+ view can be used as a test scenario template to generate test scenarios for the integration
testing of the step. Figure 4 illustrates three steps of the integration testing. In the first step,
component suppliers and component users do unit testing for each objects they developed with
test scenario templates for the objects. In the second step, the supplier of the bankAgent
component integrates bankAgent object, FileAccount object and Message component together to
form the bankAgent component, a special test scenario template is used for this step. Step three
shows that the component user integrates the bankAgent component and Message component
with bankController object, another special MfSS+ view is used as a template to generate test
scenarios for this step.

8. Test Case Reuse by Using Ripple Effect Analysis

Another issue for component-based system testing is the ability to reuse test cases when a change
is made to a component. The goal is to run the fewest test cases as possible.

Test scenario templates are often organized according to the hierarchy of the system. For
component-based system testing, each object including component objects, has a test scenario
template for unit testing and a test scenario template for integration testing. A component has
three different sets of test scenario templates: one for the unit testing of the component objects,
one for the integration testing of the component and another for unit testing of component
interface. These test scenario templates compose a hierarchy similar to the software structure in
Figure 5. This hierarchy indicates the dependency relationship as well [McGregor 1997].

According to Figure 5, the testers can do ripple effect analysis (REA) [Wang 1996] for test case
reuse when an object is modified. The REA for component testing mainly considers the following
issues:
1. Is the interface of the object changed? If the interface of the object is changed, the

specification of that object is also changed, thus testers need to derive new test scenario
templates and regenerate the test scripts for unit testing and related integration testing. If the
interface is not changed, all test cases can be reused. Test cases that need to be run again are
those for unit testing of the object, integration testing of the object integrated with the used
and using objects.

 Step 3bankController

Message

BankAgent
Component
Interface

bankController

bankAgent

FileAccount Message

 Step 1

BankAgent Component

bankController

bankAgent

FileAccount Message

 Step 2

13th International Software/Internet Quality Week, San Francisco, California, May30-June2,2000

8/10 Copyright 2000. All rights reserved by authors

2. Is the interface of the component changed? As for component, the interface of the component
is separated from the implementation of the component. It is necessary that when the
interface of the implementation of the component is changed while the interface of the
component is kept stable. In this case, all the test cases used by component users can be
reused while the component supplier has to regenerate test scripts for the changed component
implementation.

3. Is the external view of the component changed? Since the component users actually use
external view of the component to do testing. It is possible that the change of the interface of
an object may not require the regeneration of test scripts for component users because the
change may not affect the external view of the component or the service is not directly used
by the application.

Figure 5: Test scenario template hierarchy of the bank subsystem

By using REA, it is unnecessary to run all test cases again when a change is made to the
component and sometimes only related test scripts need to be regenerated, saving a lot of time
and money.

9. Test Results

• Bank subsystem testing

The number of the test scenarios we used in each phase and those generated from the original
specification are listed in Table 2. Most test scenarios (up to 70%) are negative test scenarios. The
unsliced MfSS+ is too complex to generate test scenarios, which has eleven operations without
counting the constraints. From the table, we know that the technique of MfSS+ slicing
significantly reduces the number of test cases for integration testing.

To illustrate the effect of the techniques we present in this paper, we seeded ninety-six bugs into
the subsystem (not at same time), and performed the whole test process. The seeded bugs include
various kinds of bugs, such as boundary mismatching bugs, branch condition bugs, wrong
expression bugs, loop bugs, wrong sequence bugs, variable bugs, operation-missing bugs and
type bugs.

The test results are listed in Table 3. From the table we know:
1) Object testing missed two bugs related to the communication,
2) Component integration testing detected less bugs than that of object testing, but detected out

the missed bug,

Bank GUI

Bank Controller

BankAgent
Component
Interface

Message
Component
Interface

Withdraw
Agent

CheckBalance
Agent Message

FileAccount

GUI Test Cases

Template for Unit Testing

Template for Unit Testing
of the Interface

Template for Unit Testing
of the Interface

Template for
Unit Testing

Template for
Unit Testing

Template for Unit Testing

Component supplier

Component
user Template for Integration Testing

Template for
Unit Testing

Template for Integration Testing

Template for Integration Testing

Use:
Mapping:

13th International Software/Internet Quality Week, San Francisco, California, May30-June2,2000

9/10 Copyright 2000. All rights reserved by authors

3) System integration testing detected much less bugs, but the last missed bug was found,
4) All bugs were detected out,
5) Eighty twenty rules applied here: 20% test cases can detect out 80% bugs. Actually, after

only 10 test cases were run, all seeded bugs seeded in the WithdrawAgent were detected out.

of test scenarios Bank
Controller

Message
Component

Withdraw
Agent

CheckBalance
Agent

FileAccount
Component

Object testing 124 32 78 55 65
Sliced None None 48Component

Integration Unsliced None None 278
Sliced None 32 42Component

Unit Testing Unsliced None 32 278
Sliced 63System

Integration Unsliced Up to thousands of test scenarios can be generated

Table 2: Number of test scenarios for subsystem testing

of bugs detectedObjects # of
bugs

seeded
Object Component

Integration
System

integration
Total

BankController 17 16 No testing 5 17
Message Component 8 7 No testing 8 8
WithdrawAgent 12 11 10 7 12
CheckBalance Agent 10 10 9 6 10
UserAccounts Manager 8 8 4 2 8

Table 3: Test result of the testing of the bank subsystem

• Reuse test cases

We also made changes to check whether our approach can successfully detect seeded bugs
without repeating all tests (Table 4). Tests for all these cases are successful in detecting all bugs.
The result tells us that the approach that uses specification and generation techniques with the
help of ripple effect analysis is efficient in test case reuse and test redundancy reduction.

Change1 Change2 Change3 Change4 Change5 Change6
Object changed FileAccount FileAccount Withdraw

Agent
Withdraw
Agent

Withdraw
Agent

Bank
Controller

Object specification No Yes No Yes Yes No
Component interface No No No No Yes No
Component external
view

No No No No No No

Inner object Yes Yes No No No No
Integration testing
by vendor

No Regenerate
test cases

Rerun Regenerate
test cases

Regenerate
test cases

Unit testing by
vendor

Rerun Test
cases

Regenerate
test cases

Rerun Regenerate
test cases

Regenerate
test cases

Integration testing
by user

No No No No Regenerate
test case

Yes

Unit testing by user No No Rerun Rerun Regenerate
test cases

Yes

Table 4: Changes made to illustrate the test case reuse

13th International Software/Internet Quality Week, San Francisco, California, May30-June2,2000

10/10 Copyright 2000. All rights reserved by authors

10. Conclusion

This paper discusses issues that arise in the component-based system testing which can be viewed
from both the component vendor’s and the component user’s point. Test case redundancy and
reuse is a difficult problem for integration testing with components. MfSS+, which is used to
specify component and application, is presented in this paper as an approach to solve these issues.
From the specifications, test scenarios can be generated both for unit testing and for integration
testing of components as well as their applications. In addition to traditional test techniques,
MfSS+ view, the hierarchical organization of test scenario templates and the ripple effect analysis
can all facilitate test case reuse and significantly reduce test redundancy. The bank subsystem of
ITSS was chosen as an example. The whole test process detected out all seeded bugs which
shows that the approach presented in this paper is practical and efficient.

Acknowledgement

This project is supported by OASD Y2K Office through Army Research Laboratory.

References
[Brown 1996] A.W. Brown and K.C. Wallnau, "Engineering of component-based systems", In A. W.

Brown, editor, Component-based Software Engineering, pages 7-15, IEEE Press, 1996.
[Buy 1998] U.Buy, A. Orso and M. Valsasna, "A framework for testing object-oriented

components", Technical report, Politecnoco di Milano, Milan, Italy, December 1998.
[Cho 1998] I. Cho, "Testing Components Using Protocols", OOPSLA’98 Doctoral Symposium.
[D’Souza 1999] D. D’souza and A. Wills, Objects, Components, and Frameworks with UML: The

Catalysis Approach, Addison Wesley Longman, 1999.
[Harroald 1999] M. J. Harroald, D. Liang and S. Sinha, “An approach to analyzing and testing

component-based systems”, the first international ICSE workshop, Los Angeles,
California, USA, 17 May 1999, P134-140.

[Jorgensen 1994] P. Jorgensen and C. Erickson, "Object-oriented integration testing", Communications of
the ACM, 37(9):30-38, September 1994.

[Kirani 1994] S. H. Kirani and W.T. Tsai, “Specification and Verification of Object-Oriented
Programs”, Technical Report, Department of Computer Science, University of
Minnesota, December, 1994.

[McGregor 1997] J. D. McGregor, "Parallel Architecture for Component Testing", Journal of Object-
Oriented Programming, May 1997.

[Sohn 1999] H.W. Sohn, D. C. Kung, P. Hsia, "CORBA Components Testing with Perception-based
State Behavior", COMPSAC'99, Phoenix, AZ, October 27-29, 1999.

[Szyperski 1997] C. Szyperski, Component Oriented Programming, Addison-Wesley, 1997.
[Tsai 1999] W. T. Tsai, Y. Tu, W. Shao and E. Ebner, “Testing Extensible Design Patterns in

Object-Oriented Frameworks through Hierarchical Scenario Templates”, IEEE
COMPSAC, 1999.

[Tu 1999] Y. Tu, W.T. Tsai, and Y. Xiang, “Specifying Data Constraints in MfSS”, 6th Asia-
Pacific Software Engineering Conference, Dec.7-10, 1999, Takamatsu, Japan.

[Vishnu 1996] R. Vishnuvajjala, W. T. Tsai, R. Mojdeh and L. Elliot, “Specifying Timing Constraints
in Real-Time Object-Oriented Systems”, Proc. of High-Assurance System Engineering,
1996, pp. 32-40.

[Wang 1996] Y. Wang, W. T. Tsai, X. P. Chen and S. Rayadurgam, “The Role of Program Slicing in
Ripple Effect Analysis”, in Proc. of Software Engineering and Knowledge Engineering,
1996, pp. 369-376.

[Wang 1997] Y. Wang, R. Vishnuvajjala and W. T. Tsai, “Sequence Specification for Concurrent
Object-Oriented Applications”, Proc. of WORDS, 1997.

QW2000 Standby Paper SB3

Mr. Ron Silacci
(Lucent Technologies Inc.)

Principles of Multi-System Integration

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/SB3.html [4/28/2000 2:40:25 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html

Copyright Lucent Technologies Inc. April 2, 2000

R. C. Silacci

June, 2000

PrinciplesPrinciples
ofof

Multi System IntegrationMulti System Integration

2Copyright Lucent Technologies Inc. April 2, 2000

Architecture

Switch Mgmt

Service Management

Billing

Transport Mgmt Fault Mgmt Traffic Mgmt

Switch Net 1 Net 2 Net 3 Switch

Operations GUIs

To All Layers

3Copyright Lucent Technologies Inc. April 2, 2000

Integration Lab

l Make it a Separate Environment
l As Close to Production As

Possible
l Apply Configuration Management
l Control the Remote Access
l Communication Links Needed?
l Must Have an Entrance & Exit

Criteria

4Copyright Lucent Technologies Inc. April 2, 2000

Testing Phases

l Unit Test
l Pairwise Test
l System Test
l Interface Test
l Integration Test
l Customer Acceptance Test
l Installation Test

5Copyright Lucent Technologies Inc. April 2, 2000

Organization

l Release/Project Management
l Requirements
l Architecture
l Integration Test
l Training & Documentation
l Deployment
l Customer Technical Support

6Copyright Lucent Technologies Inc. April 2, 2000

Change Control

l Document Process and Forms
l Can’t Install Without It!
l Make It Part of the Entrance

Criteria
l Use the Same Process for Both

the Integration Lab and the
Production Site

7Copyright Lucent Technologies Inc. April 2, 2000

User Interface

l Make It Appear to the User As
One Big System

l Common Look and Feel
l Front End System to All Systems

or
l All Systems Follow GUI Standard
l Ability to Launch Applications
l Systems Must Co-display
l Support PC and Work Station

8Copyright Lucent Technologies Inc. April 2, 2000

System Interfaces

l 90% of the Bugs
l Have Interface Agreements

Between Systems
l If Possible Use Standard

Interface Tools (CORBA)
l If Changes to the Interface, Both

Systems Must Change
l Watch Out for the Data

Dependencies and
l Data Synchronization

9Copyright Lucent Technologies Inc. April 2, 2000

OAM&M Strategy

l Operations, Administration,
Maintenance and Monitoring

l Take Data Center Operations
Perspective

l Startup & Shutdown
l Backup/Recovery
l High Availability
l Hardware/Software Maintenance

Contracts
l Hardware and Application

Monitoring

10Copyright Lucent Technologies Inc. April 2, 2000

Performance/Load/Stability
Test

l A Must Do!
l Need Performance Requirements
l Individual Systems Must Do Their

Own
l Integration Team Performance

Tests Areas of Vulnerability
l Run a 48 Hour or Longer Test
l Problems

– Systems Slow Down
– Systems Hang
– Queues Overflow
– CPU at 100%
– Thrashing
– Crashing
– Timeouts

11Copyright Lucent Technologies Inc. April 2, 2000

Conclusion

l Common Hardware and Software
Platforms

l Systems Use the Same DBMS
l GUI Standards and Development

Tools
l Integrated OAM&M Strategy
l Implement Standard Interfaces
l Common Table Maintenance

Strategy

 Copyright Lucent Technologies Inc. March 2000 1

Principles of Multi-System Integration

R. C. Silacci
Lucent Technologies Inc.

System integration is becoming a vital component of delivering a complete solution to
customers. The current competitive environment requires individual system teams to
work together with an Integrator in delivering a complete solution to the customer. In an
effort to meet this challenge, more and more pressure is being put upon the systems
integration effort. From practical experiences in integrating many telecommunication
systems, System Integration Principles have emerged. This list contains the principles that
will make integrating multiple systems successful and a testers work life easier.

The environment in Lucent consists of many system product teams that develop
individual systems to meet specific customer needs. Examples are service provisioning
systems, network trouble reporting systems, network management systems, and billing
systems. In order to deliver a complete solution to customers, all of these types of systems
have to work together in the following fashion:

• Provision a service on a network.
• Make a call using that service on the network.
• Bill the call usage on the network
• Manage the network.
This paper discusses the principles that have been used in recent integrated offerings to
customers. Below is an example of an architecture diagram containing multiple systems
that need to be integrated.

Switch Mgmt

Service Management

Billing

Transport Mgmt Fault Mgmt Traffic Mgmt

Switch Net 1 Net 2 Net 3 Switch

Operations GUIs

To All Layers

 Copyright Lucent Technologies Inc. March 2000 2

1. Build an Integration Test Lab

This is obvious, but it takes preparation and planning to configure this. It should be a
separate environment from development and resemble, as close as possible, the
customer’s production site. All systems make deliveries to this test lab. This is the place
where, for the first time, all of the systems come together for an integration party. A
Physical Architecture document drives the hardware and network that is needed. This lab
has to be administered with expertise in Operating System Administration, Data Base
Administration, system application administration, data center administration and
network administration. There has to be close communication between the Integration test
team and the Lab support team. In constructing this lab there are questions that need to
be answered.
• Does the Customer site have a firewall?
• Does the customer hardware really need to be duplicated or can a “lite” version

suffice?
• Are external communication links needed?
• Will it be used as a demo site?
• Will there be room to grow?
• Who pays for 3rd party software licenses

2. Develop Integration Test Processes

To manage a large multi-system integration, all system involved need a uniform test
process to follow.
This test process should contain the participants, their roles and responsibilities and the
test process flow.
All the phases of testing should be defined and explained. Pairwise Testing, Interface
Testing and Integration Testing are examples of the phases of testing an integrated
solution. On the next page is the definition of each testing phase.

 Copyright Lucent Technologies Inc. March 2000 3

Testing Phases

Test Phase Definition
Unit Test New development is tested by the developers, on a unit or module basis,

to verify that each feature works as required. The purpose of Unit Test is
to ensure that the code delivered to System Test is the highest quality
possible and that the code, at the individual developer level, works as
stipulated in the requirements.

Pairwise Test Interfaces between systems are tested (developer to developer) to verify
that there is connectivity and that basic messages flow .. Pairwise testing
is conducted after Unit Test. Pairwise Test cases are typically written by
the system that is originating the message.

System Test The product is exercised to show that the individual features, now
integrated, function as specified in the requirements, and that all
requirements are implemented and complete. Simulators are used to
simulate responses from other systems or external interfaces. System Test
is done after Unit Test and can be done concurrently with Pairwise Test.
However, System Test completion is dependent upon completion of
Pairwise testing.

Interface Test Interface Test, which is system to system testing can take place in parallel
with System Test. Its purpose is to test out all the functionality of the two
systems in regards to what is sent across the interface and to ensure that
the interface requirements are met.

Integration
Test

Integration testing is performed to validate the flow of data through
multiple systems and to verify that customer requirements have been met
across involved systems. Testing is performed on an “end-to-end” or
“flow through” basis. The Integration Test environment is designed to
simulate the production environment. Test scenarios are designed to
cover production user scenarios. Included in Integration Test is the
assessment of performance of systems against performance
indicators/metrics. Examples might include transaction volumes,
transaction process time, response time, etc. Integration Test is ideally
conducted after Interface Test, but can overlap with it.

3. Organize for Integration

The following roles and responsibilities are needed:

• Release/Project Management
An overall release manager must coordinate all of the systems involved in a
release so that they march along to a common schedule. Individual schedules are
gathered up from the system teams and a consolidated integrated schedule is built.
Tracking of each system’s critical milestones and weekly project meetings are

 Copyright Lucent Technologies Inc. March 2000 4

important to keep the entire project on schedule. The project manager must also
be the liaison to the customer.

• Customer Requirements Team
The customer requirements are gathered by this team and these requirements are
distributed by the architect to the different systems that compose the integrated
solution.

• Architecture

Both logical and physical architecture have to be established. The logical
architecture denotes the functions and the system interfaces. The physical
architecture stipulates the hardware, network, software, and performance
characteristics. The physical architecture can identify hardware and 3rd party
software that can be shared. The architecture also determines the common user
interface and ensures that all systems are compliant with this common set of
standards. All systems have to follow the architecture.

• Integration Test
This team plans the integration, turns the requirements/user scenarios into test
cases and expected results and executes the tests. IT also writes trouble reports
and works closely with the Integration Lab and system teams.

• Training
The users have to be trained on all the systems that are in their workflow and they
have to understand the data flow between the systems. They must also learn to
populate tables with their particular set of values.

• Deployment/Customer Technical Support
Deployment to the customer site is a major work effort. The following tasks are
involved:
• Site preparation.
• Hardware and software provisioning.
• Systems installation schedule and coordination.
• Change Control and software media distribution.
• Provide responsive Customer Technical support.

4. Develop and Implement Change Control Processes

Change control is the overall process of managing the changes to systems. It also takes
into account when and where the changes are implemented in the Integration lab and the
customer production site. It starts with a change control process. The same process should
be used for both the Integration Test Lab and the Production site.

 Copyright Lucent Technologies Inc. March 2000 5

5. Develop to a Common User Interface

Something has to glue all of these systems together so that the user sees it as one large
system.
A single window into all the systems in a particular work flow needs to be provided so
that one user can view multiple systems at once on their terminals. There either needs to
be a system that front ends all of the other systems involved or all systems have to code to
the same GUI standard using the same GUI development tools. Both solutions have to be
able to support multiple system windows being displayed on workstations and/or PC’s.

6. Implement Standard System Interfaces

It is difficult to integrate multiple system interfaces when the interfaces are of different
types. Types means the protocol and message format used in sending transactions
between systems. If all system interface using a common language/tool, such as CORBA,
integration is much easier.

7. Have an Integrated Operation, Administration, Maintenance and Monitoring
(OAM&M) strategy

From a data center operations standpoint, it would be nice if all of the systems were of the
same hardware platform using the same backup and restore procedures. However, with
different hardware platforms, different data base managers and different Operating
Systems, an integrated OAM&M is difficult. A common strategy for system backups and
restores is the ideal solution. A common way to monitor all of these systems is also
desirable.

8. Execute a Performance /Load /Stability Test.

Functionally a set of systems may look like they are working fine together. Put the
systems under a load test and behold what gets uncovered. In order to execute a
performance test, one must have performance requirements from the customer. How
many transactions per hour must the systems process? What is the peak volume and hour?
What is the expected GUI response time? How long can one transaction take to process?
These are just a few questions that need to be answered. Each system involved in the flow
of this testing must perform an individual performance test to determine the limits of their
system and must meet these performance requirements by themselves. A simulator or
driver to generate transactions at different rates is also required. Note that the systems
have to have some logging or tracing mechanism so that time stamps of transactions can
be used later for analysis. Then run the test and watch what happens. One of several
things will happen.

1. Flow through performance slows down depending on load.
2. A system will hang
3. A Queue will overflow
4. A timeout will occur

 Copyright Lucent Technologies Inc. March 2000 6

5. A Core dump will occur
6. The CPU needle will get pinned on one or several systems
7. A system will thrash
8. After a certain amount of time performance will slow to a crawl.
9. Everything will work fine

As you can see, more things may go wrong than right.

Conclusion

If we had to do it all over again, the following recommendations would be made:
• All systems use a common hardware platform with the same version of the OS.
• All systems use the same DBMS.
• All systems implement the GUI the same way (Java for example)
• All systems implement the same OAM&M strategy.
• All systems implement the same hardware and software monitoring systems.
• All systems implement a standard interface between them. (CORBA for example).

QW2000 Standby Paper SB4

Dr. Giora Ben-Yaacov
(Synopsys Inc.)

Effective Software Testing at a Leading Electronic Design
Automation (EDA) Company

BACK TO QW2000 PROGRAM

Presentation Abstract

This paper is based on the author experiences with "real world" deployment of software testing
processes and methods at a large high-tech software company that produce very complex software
products that require rapid innovation changes and time-to-market constraints. The testing techniques
and methods presented require true "testing partnerships" among software developers, testing and
application engineers, and customers. The paper also covers subjects such as "six steps for
developing defect-free code", "goals and processes for effective software testing" and a descripttion of
the "software testing life-cycle".

About the Author

Giora's 25 years of experience in software quality improvement programs, software testing, software
development management, program management, and customer support include a spectrum of
results ranging from that of individual contributor, through project leader, program manager,
maintenance & training coordinator, instructor, consultant, and, since August 1998, a quality specialist
with Synopsys Inc,. At Synopsys, Giora holds responsibility for leadership and implementation of
software quality & business improvements programs, and he is working closely with the various
software development and testing communities at Synopsys striving to achieve performance
excellence.

Dr Giora Ben-Yaacov is a senior member of IEEE and a member of the American Society for Quality.
He has served for 6 years on the editorial board of the IEEE CAP journal, has authored 30 technical
papers, and made presentations at various conferences and industry meetings.

BACK TO QW2000 PROGRAM

QW2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QW2K/Papers/SB4.html [4/28/2000 2:40:30 PM]

http://www.soft.com/QualWeek/QW2K/qw2k.program.html
http://www.soft.com/QualWeek/QW2K/qw2k.program.html

1
© 1997 Synopsys, Inc.
Synopsys Confidential Unit 3—1

Revised 4/30/97

Giora Ben-Yaacov ®

Effective Software Testing
at a Leading

Electronic Design Automation (EDA)
Company

Giora Ben-Yaacov
Corporate Quality Dept, Synopsys, Inc

giora@synopsys.com

Giora Ben-Yaacov ®

What is Software Quality?

2
© 1997 Synopsys, Inc.
Synopsys Confidential Unit 3—2

Revised 4/30/97

Giora Ben-Yaacov ®

 Software

 Life-Cycle

Synopsys Roadmap for Process ImprovementSynopsys Roadmap for Process Improvement

Quality
Planning

Quality
Development

Quality
Bug

Management

Quality
Testing

Giora Ben-Yaacov ®

Software Defects

q R&D Development
Goal: Build QUALITY into the product (Prevent & Remove
development defects)

q Alpha/Beta Testing
Goal: Improve QUALITY by Testing (Find MORE defects, fix MORE
before release)

q Customer Defects (after Release)
Goal: Improve RESPONSE TIME, Reduce BACKLOG of opened
defects, and Improve COMMUNICATION (R&D-CAE -field-customers)

 R&D Development Alpha/Beta Testing Customer Use

 (Industry average: 40%-60%) (Industry average: 30%-40%) (Industry average: 5%-10%)

Product Development Post-Release

3
© 1997 Synopsys, Inc.
Synopsys Confidential Unit 3—3

Revised 4/30/97

Giora Ben-Yaacov ®

Goal: Finding and Eliminating Software Defects
During the Development and Testing Phases

Removing
 Defects

Injecting
 Defects

of defect at
Release Time

 Backlog
 of

Development

Defects

 Development Testing Customer Use

Defect Detection Rate: 30%-70% 20%-50% 5%-10%
(Software Industry Average)

FCS

 Requir. Specs. Design Code Unit-test alpha-test beta-test Life-Cycle

Finding Defects
 (testing)

 Removing
 Defects

Giora Ben-Yaacov ®

Synopsys Six-Steps Process for

Developing “Defect-Free” Code
l Step 1: Commit to deliver defect-free code

Making a firm commitment by developers to delivering defect-code free in spite of schedule and other
pressures is absolutely necessary (additional benefit - you will also see real improvements in schedules)

l Step 2: Specifications and Design for simplicity and reliability
A clean and well structured functional and design simplifies the development of reliable code. A poor
functional and design specs make it impossible to achieve defect-free code. Specifications and design
reviews are important to ensure correctness and simplicity.

l Step 3: Review code (typically 2 engineers: developer+senior, or developer+manager)
Code reviews have consistently been shown to be the single most cost-effective way of removing bugs from
code. The process of showing and explaining a new section of code to another engineer has several positive
impacts: (a) confirms that the design is functioning as intended, exposes inefficient code, shows code that is
working for a wrong reason, etc.; (b) forces the engineer to articulate assumptions -- many times the
developer himself/herself suddenly realized that he/she had made an invalid assumption; © encourages
cross-training and sharing of techniques

l Step 4: Create regression test suite
The most effective testing for delivering defect-free code that we use at Synopsys is to create a fully
automated regression test suite that are run after each build of the software. The tests are designed to
exercise every part of the software and produce a success/failure report. For each new release, the
regression test suite is modified and expanded with new test cases that cover new functionality, bug fix, ar
any other new capability that were added to the new release.

l Step 5: Build and test daily
Daily builds and running the regression test suite after every build give developers quick feedback about the
changes they are making. It also gives management clear and objective feedback about the project status.

l Step 6: Use automated tools to check the code
 Automated tools are used in addition to clean design and good coding practices. Using automated checking

tools alone will never turn poorly designed and buggy code into defect-free code. However, the automated
checking tools find a lot of bugs that would otherwise take a lot of testing time and effort to find and fix.

4
© 1997 Synopsys, Inc.
Synopsys Confidential Unit 3—4

Revised 4/30/97

Giora Ben-Yaacov ®

Synopsys Test Process

Planning

 Release Preparation

Specs, Code, Unit Test

Alpha Testing

Development life-cycle

Beta

Test Activities
-- Quality plan

-- R&D prepare and execute new test cases (new unit tests, new designs, …)
-- R&D add tests to regression suite and run regression
-- CAE prepare Test plan for each project (meet specs for new functionality)
-- CAE create test cases per test plan (for the alpha testing)
-- CAE review Level I, II, and III QoR Test Suites (and add/modify, when needed)
-- CAE prepare plan, resources & schedule for Alpha testing

-- R&D (with Ops) deliver integrated, stable and executable code on all platforms
-- R&D regression suite >95% pass

-- CAE testing (functional test per test plan, QoR test (Level I,II,III)
 Duration 2 weeks (1 week CAE concentrated testing, 1 week additional testing)
-- R&D fix bugs
-- CAE+Mkt prepare plan for beta, sign-up customers, obtain ACs commitment, ..

-- Mkt coordinate customer beta testing
-- CAE coordinate AC testing (2-5 days concentrated testing plus additional testing)
-- R&D fix bugs

-- Production-Ready testing

-- Post Mortem

Integration & Regression
Alpha-entry criteria

Planning-exit criteria

Beta-entry criteria

Release-ready criteria

Giora Ben-Yaacov ®

Regression Test Suites

lQuality Regression Test Suite
sOwner: R&D
s Nightly

lQoR Regression Suite (performance improvements from
release to release)
sOwner: CAE
sOnce or more per release

lCustomer Designs Regression Suite(s)
sOwner(s): CAE and/or R&D and/or Flow Test
sOnce or more per release

5
© 1997 Synopsys, Inc.
Synopsys Confidential Unit 3—5

Revised 4/30/97

Giora Ben-Yaacov ®

Other Testing

q Testing in customer environment (independent computer
environment, installation, licensing, … …)

q GUI testing

q Stress/boundary testing

q Flow testing

q Documentation

q Release-ready testing

q … … … .

Giora Ben-Yaacov; “Effective Software Testing at a Leading EDA Company” Page 1 of 7

Effective Software Testing at a Leading
Electronic Design Automation (EDA) Company

By:
Giora Ben-Yaacov

Corporate Quality, Synopsys Inc.

Contact: Giora Ben-Yaacov, Ph.D., Synopsys Inc., (650)584-1410, giora@synopsys.com

===

Customers of Electronic Data Automation (EDA) companies such as Intel, IBM, HP,
Siemens, or Motorola often ask “what does The EDA industry do to improve the quality
of their software products and of their responsiveness to customer quality issues”? This
paper is intend to describe one important element of the overall quality improvement effort
that had been deployed at a leading market-driven EDA company (Synopsys Inc.) -- The
deployment of effective software testing techniques and methods that represent real-world
customer issues. The testing techniques and methods presented here require true “testing
partnerships” among software developers, testing and application engineers, and
customers.

The paper outline below includes short descriptions and figures for the subject areas that
will be covered in detail in the full paper and in the presentation materials:

(1) About Synopsys and its commitment to Quality

(a) Synopsys, Inc. provides comprehensive software tools and technology for the product
development requirements of the world's leading electronics companies. Synopsys is the
largest supplier of software tools used to accelerate and manage the design of
semiconductors, computer systems, networking and telecommunications equipment,
consumer electronics, and a variety of other electronic-based products. With nearly 3,000
employees and 1999 annual sales of over $800 million, Synopsys has software
development and research facilities around the world. The company is headquartered in
Mountain view, California and traded on Nasdaq under the symbol SNPS. More
information about the company, its products and services may be obtained at
www.synopsys.com.

(b) In a recent EE Times survey, Synopsys was ranked as the top leader in EDA. In order
to stay on top in this highly competitive market, Synopsys must not only lead in
technology, it must also make a continuing commitment to quality improvement. As the
company Chairman and CEO noted in his recent message to all employees: “In the eyes of
most customers, we are viewed as the most reliable, highest quality, most technically
savvy EDA company in the world. This is precisely the brand that we intend to
perpetuate”

Giora Ben-Yaacov; “Effective Software Testing at a Leading EDA Company” Page 2 of 7

© Quality management concepts have been around for many years - under various guises
and with varying degrees of popularity. Since the business success of Synopsys’ customers
is largely driven by technology, time-to-market, and quality -- improving our quality
systems and processes is essential for our own competitive strength. Moreover, as
competition among EDA tool vendors increases, quality becomes the distinguishing factor.
Customers have indicated that many EDA products today offer similar technical capability
and functionality. Therefore, selection is often based upon the perceived quality of the
vendor organization.

(2) Synopsys Roadmap for Quality Improvements

Giora Ben-Yaacov ®

Roadmap for Quality Improvements

Quality Build-in

Quality Defect
ManagementResponse-time Backlog

 Software Tools (GCC, Purify, ...)

Code Reviews

 Test Coverage

 Software Lifecycle & Phase-exit Quality Criteria

Specs & Design Reviews

Unit Regression Suite

Customer Design Suite
Flow & Inter-operability Tests

Quality Testing

Requirements & Project Plans Reviews

 Test Plan Reviews

Defect-lifecycle

 Sharing “Best Practice”

Performance & Capacity Testing

Giora Ben-Yaacov; “Effective Software Testing at a Leading EDA Company” Page 3 of 7

(3) Synopsys six steps for developing “defect free” code

(4) About goals of the testing processes

Giora Ben-Yaacov ®

Synopsys Six-Steps Process for

Delivering “Defect-Free” Code
l Step 1: Commit to deliver defect-free code

Making a firm commitment by developers to delivering defect-code free in spite of schedule and other
pressures is absolutely necessary (additional benefit - you will also see real improvements in schedules)

l Step 2: Specifications and Design for simplicity and reliability
A clean and well structured functional and design simplifies the development of reliable code. A poor
functional and design specs make it impossible to achieve defect-free code. Specifications and design
reviews are important to ensure correctness and simplicity.

l Step 3: Review code (typically 2 engineers: developer+senior, or developer+manager)
Code reviews have consistently been shown to be the single most cost-effective way of removing bugs from
code. The process of showing and explaining a new section of code to another engineer has several positive
impacts: (a) confirms that the design is functioning as intended, exposes inefficient code, shows code that is
working for a wrong reason, etc.; (b) forces the engineer to articulate assumptions -- many times the
developer himself/herself suddenly realized that he/she had made an invalid assumption; © encourages
cross-training and sharing of techniques

l Step 4: Create regression test suite
The most effective testing for delivering defect-free code that we use at Synopsys is to create a fully
automated regression test suite that are run after each build of the software. The tests are designed to
exercise every part of the software and produce a success/failure report. For each new release, the
regression test suite is modified and expanded with new test cases that cover new functionality, bug fix, ar
any other new capability that were added to the new release.

l Step 5: Build and test daily
Daily builds and running the regression test suite after every build give developers quick feedback about the
changes they are making. It also gives management clear and objective feedback about the project status.

l Step 6: Use automated tools to check the code
 Automated tools are used in addition to clean design and good coding practices. Using automated checking

tools alone will never turn poorly designed and buggy code into defect-free code. However, the automated
checking tools find a lot of bugs that would otherwise take a lot of testing time and effort to find and fix.

Giora Ben-Yaacov ®

Testing Goal: Reducing Software Development Defects

 Development Testing

*

Reducing
Defect levels

Current
Defect levels

FCS
of defect
 at FCS

 Backlog
 of

Development

Defects

 Development Alpha/Beta Testing Customer Use

Defect Detection Rate: 40%-60% 30%-40% 5%-10%
(Software Industry Average)

FCS

FCS

 Requirements Specs. Design Code Unit-test integ-test alpha-test beta-test.. Life-Cycle

Giora Ben-Yaacov; “Effective Software Testing at a Leading EDA Company” Page 4 of 7

(5) About the testing process life cycle

Our software life-cycle activities as applied to software testing is illustrated in the figure
below. It encompasses the following software development tasks:

• Product Requirement Specifications
• Functional Specifications
• Design Specifications
• Implementation
• Unit Testing
• Functional/Feature Testing
• Systems/Solution Flow Testing
• Documentation (Tech Publications)
• Release
• Post-Mortem Analysis

Giora Ben-Yaacov ®

Synopsys Test Process

Planning

 Release Preparation

Specs, Code, Unit Test

Alpha Testing

Development life-cycle

Beta

Test Activities

-- Core team (with Ops) prepare Test strategy (???)

-- R&D prepare and execute test cases (unit tests, designs, …)
-- R&D add tests to regression suite and run regession
-- CAE prepare Test plan for each project (meet specs for new functionality)
-- CAE create test cases per test plan (for the alpha testing)
-- CAE review Level I, II, and III QoR Test Suites (and modify, if needed)
-- CAE prepare plan, resources & schedule for Alpha testing

-- R&D (with Ops) deliver integrated, stable and executable code on all platforms

-- CAE testing (functional test per test plan, QoR test (Level I,II,III)
 Duration 2 weeks (1 week CAE concentrated testing, 1 week additional testing)
-- R&D fix bugs
-- CAE+Mkt prepare plan for beta, sign-up customers, obtain ACs commitment, ..

-- Mkt coordinate customer beta testing
-- CAE coordinate AC testing (2-5 days concentrated testing plus additional testing)
-- R&D fix bugs

-- Production-Ready testing (???)

Integration & Regression

Alpha-entry criteria

Planning-exit criteria

Beta-entry criteria

Release-ready criteria

Giora Ben-Yaacov; “Effective Software Testing at a Leading EDA Company” Page 5 of 7

PRS

FSpecs

DSpecs

Implementation

System/Solution
Test Plans

System/Solution
Testing

Func Test Plans

Func Testing

Unit Testing

Release

P
M
P

T
M
P

(6) About Different Categories of Testing

The various types of testing performed during the release cycle include Feature Test Plans,
which cover feature testing and its regressions, and System/Solution Test Plans, which
cover all the other types of testing.

Typically the defects uncovered through validation are reported via “Synopsys Technical
Action Requests” (STAR) and are tracked during the release cycle. The STARs are used
as metrics, but more importantly, they record critical problems that must be fixed before
the product is released. These STARs also provide data for performing root-cause and
post-mortem analyses. The Defect Tracking and Help Desk Management system are used
by Customer Support, Software Engineering, Electronic Publishing, Applications
Engineers and Software Developers. Any Synopsys employee may enter a STAR defect or
enhancement request.

The Table in the next page shows the main different categories of testing that are
performed by the developers and the application engineers:

Giora Ben-Yaacov; “Effective Software Testing at a Leading EDA Company” Page 6 of 7

Action Description

Unit Testing Unit testing is usually at the code level, where the developer wants to
test the C-function(s) created. Some of these tests may be added to
the regression.

Feature Testing Also referred as function testing, this generally focuses on the
product features. Ideally, a test should be developed for every feature
in the product. However, in practice, a number of small features will
undergo a single test. The development teams are expected to do all
feature-level testing. The R&D team can negotiate with the testing
team to do some or all feature testing. These tests are typically added
to a feature regression suite. One of the criteria for product release is
to ensure that 100% of feature regression passes.

Extended
Feature

Similar to feature testing, but a few features are used together in
logical order, representing a typical customer task. If, for example, a
simulator is being checked, the feature testing may look at the ability
to set a breakpoint, while the extended feature testing might use the
ability to set breakpoints while debugging. All extended feature tests
are automated and added to the regression.

Flow Testing Flow testing addresses product-to-product interactions and is based
on information from customer use models and flow documents. Flow
testing tries to verify that the customer can pass data from one tool to
another in the given use model. It would be ideal to automate these
tests; however, operational/tool issues usually prevent this. As a
result, flow tests remain mostly manual in the regression.

Regression
Testing

As new test cases are created, they are automated and added to
regression so that they can be executed for every release. This
ensures that adding features or fixing bugs has not interfered with
the rest of the product. The regressions can include any type of
testing.

Performance
Testing

The product performance is compared against the previous versions
and against the stated goals of performance improvements.
Performance measurements include speed in completing the task,
memory consumption (swap), and accuracy of results.

Stress Testing Stress testing (also known as capacity testing), subjects the product
against known boundary conditions or large customer designs with
the objective of characterizing the product stress levels.

Giora Ben-Yaacov; “Effective Software Testing at a Leading EDA Company” Page 7 of 7

ABOUT THE AUTHOR

Giora Ben-Yaacov, Ph.D. (giora@synopsys.com)
Giora’s 25 years of experience in software quality improvement programs, software
testing, software development management, program management, and customer support
include a spectrum of results ranging from that of individual contributor, through project
leader, program manager, maintenance & training coordinator, instructor, consultant, and,
since August 1998, a quality specialist with Synopsys Inc,. At Synopsys, Giora holds
responsibility for leadership and implementation of software quality & business
improvements programs, and he is working closely with the various software development
and testing communities at Synopsys striving to achieve performance excellence. In the
two and a half years prior to his tenure at Synopsys, Giora was a Quality Architect at
Cadence Design Systems, Inc. At Cadence, Giora held responsibility for implementation
of software development processes, software verification & validation methodology, and
deployment of industry quality standards such as ISO 9000 and the Software Engineering
Institute (SEI) assessment methodology.

Dr Giora Ben-Yaacov is a senior member of IEEE and a member of the American Society
for Quality. He has served for 6 years on the editorial board of the IEEE CAP journal, has
authored 30 technical papers, and made presentations at various conferences and industry
meetings.

eValid TM -- The Internet Quality Authority TM
Client-Side Browser-Based WebSite Quality Checking,
Testing, Validation, Tuning, Loading, 24x7 Monitoring

Training, Consulting, Seminars
© Copyright 2000 by eValid, Inc.

eValid -- The Internet Quality Authority

eValid enhances your e-business success by assuring that your WebSite is trouble-free, reliable, speedy,
and available 24x7. In a Web-paced world your WebSite is your key asset. eValid checks, protects and
insures.

eValid Products

eValid's Test Enabled Web BrowserTM is a test engine that provides you with browser based 100% client
side quality checking, dynamic testing, content validation, page performance tuning, and webserver loading
and capacity analysis.

This new cutting-edge technology 100% client side based and is completely object-oriented. eValid offers a
unified approach to WebSite testing that is unique in its simplicity, power, efficiency, effectiveness, and
superior ease of use.

By focusing entirely on the users' view of WebSite quality, eValid results are accurate, complete, repeatable,
and highly effective -- all as experienced by your users. The eValid test engine is available in several
product configurations.

Testing: eValid test scripts can exercise the key parts of your site, confirm links, check content,
and simulate users' activities. Make sure your customers get the right message!
Validation: eValid can confirm selected content, validate document properties, images and
applets. Have confidence that you are delivering correct information!
Tuning: eValid timing capabilities let you identify slow-loading pages so you can "tune up" your
site for optimum performance. Keep customers from clicking away!
Loading: eValid load testing scenarios can simulate 100's or 1000's of users. Can your WebSite
handle the traffic when a serious crunch comes?

eValid Services

eValid website quality services are all based on the eValid test engine, and are are supported through
training, consulting, and technical seminars.

Standard Monitoring: eValid monitoring, based on the eValid test engine, runs standard tests
on your site. eValid's 24x7 website performance monitoring provides for email and/or
pager/beeper alert service, plus customer access on our WebSite to historic testing and
monitoring data. Be the first to know whenever your site is misbehaving.
Custom Monitoring: Use eValid test services to contract us to run tests you have recorded and
proved out yourself using the standard eValid test engine. Custom eValid test executions run on
standard intervals, in varying time zones, and are all 24x7. Make sure your own tests run
successfully all the time.
WebSite Testing, Qualification, Verification, Loading: eValid consulting services include
WebSite testing, test suite development, WebSite qualification, e-commerce verification, and
WebSite loading and capacity checking exercises. All work is based on application of the eValid
test engine plus other non-released WebSite analysis facilities.
WebSite Quality Consulting & Seminars: eValid website quality experts can work along side
your web developers to make sure your site meets the highest reliability, quality, performance,
and capacity standards. eValid seminars and workshops are aimed at bring your own team up to
speed.

eValid -- Your E-Business Partner

eValid -- offering products and custom services -- is your one stop solution provider for WebSite quality.
eValid is your true e-business partner.

eValid, Inc.
901 Minnesota Street

San Francisco, CA 94107 USA

Phone [+1] 415.550.3020
FAX [+1] 415.550.3030
evalid@soft.com.

Are you a good enough
developer to be

a Microsoft Tester?

m
Where do you want to go today?®

© 2000 Microsoft Corporation. All rights reserved. Microsoft and Where do you want to go today? are registered trademarks of Microsoft Corporation in the United States and/or other countries. Microsoft is an equal opportunity employer and supports workplace diversity.

microsoft.com/jobs
/test.htm

MSJ-6222/QualityWeek 5/5/00 3:48 PM Page 1

MICROSOFT CORPORATION

The reason so many people from various disciplines come to Microsoft is
because we provide the most exciting challenges in the industry.

Since our inception in 1975, Microsoft's mission has been to create software
for the personal computer that empowers and enriches people in the
workplace, at school and at home. Microsoft's early vision of a computer on
every desk and in every home is coupled today with a strong commitment to
Internet-related technologies that expand the power and reach of the PC and
its users. You can help shape the industry in nearly countless ways, all
while gaining invaluable experience. Our casual environment lends itself to
free thinking and therefore, creative problem-solving. However, the coolest
part of all is the diversity of opportunity. You're guaranteed not to get
bored.

http://www.microsoft.com/jobs/test.htm

Allen & Gerritsen 85 School Street Watertown, MA 02472 617.926.4005

Job Number: RTNL.9.0044C Version: 3
Job Name: Revised Single Page Launch Ad Date: 4/4/00 Released:
Live: 8" x 101/8" Art: EO
Trim: 83/4" x 107/8" Studio: RB/KR/JG
Bleed: 9" x 111/8" Production: JT
Gutter: — Creative Code: RTNL.9.0044C TH

IS
IS

 A
M

EC
HA

NI
CA

L
ECAMPUS.COM NETWORK ASSOCIATES EZENIA! MICROSOFT FOOD.COM SUN MICROSYSTEMS ALCATEL HEWLETT-PACKARD

MICROSOFT IXL ERICSSON FOOD.COM SUN MICROSYSTEMS RECRUITSOFT.COM CALICO COMMERCE COMMERCE ONE ROCK-

WELL SOFTWARE COMMERCE ONE IBM TICKETWEB MICROSOFT RECRUITSOFT.COM TRELLIX EZENIA! J.D. EDWARDS

DELOITTE NSULTING CASE PARTS AUCTIONROVER.COM BOOKSONLINE.COM CASE PARTS CONTEXT INTEGRATION ECAMPUS.COM

FOOD.COM SUN MICROSYSTEMS ECAMPUS.COM MICROSOFT HEWLETT-PACKARD IBM IXL NETWORK ASSOCIATES ROCKWELL

SOFTWARE LANTE IBM ECAMPUS.COM CALICO COMMERCE HEWLETT-PACKARD RECRUITSOFT.COM ROCKWELL SOFTWARE

TICKETWEB IXL HEWLETT-PACKARD EZENIA! ERICSSON TRELLIX ALCATEL AUCTIONROVER.COM LANTE BOOKSONLINE.COM

IXL CASE PARTS J.D. EDWARDS COMMERCE ONE ICG COMMUNICATIONS FOOD.COM DELOITTE CONSULTING IXL SUN

MICROSYSTEMS TICKETWEB TRELLIX MICROSOFT ECAMPUS.COM PEOPLESOFT ROCKWELL SOFTWARE LANTE DELOITTE

CONSULTING EZENIA! PEOPLESOFT J.D. EDWARDS LANTE AUCTIONROVER.COM ERICSSON ALCATEL IBM BOOKSONLINE.COM

Companies creating software in the electronic, Internet-driven economy are faced with a
modern e-software paradox: how do you create software faster – in Internet time – and
achieve the high quality you need to satisfy customers? The answer is e-development from
Rational® Software. Thousands of companies around the world increase their software
development speed and quality by applying Rational’s software engineering best practices,
unif ied tools and services. That’s why Rational has been the leader in multiple segments
of the software development life-cycle management market for many years*. Want to build
software faster and better? Visit us at www.rational.com/success.

* IDC 1999 Report: Development Life Cycle Management

© 2000 Rational Software Corporation. All trademarks are the property of their respective owners.

RATIONAL SOFTWARE

Rational Software, the e-development company, helps organizations develop
and deploy software for the Internet through a combination of tools,
services and software engineering best practices. Rational's e-development
solution helps organizations overcome the e-software paradox by accelerating
time to market while improving quality. In 1999, International Data
Corporation recognized Rational as the leader in multiple segments of the
software development life cycle management market.
www.rational.com

Rational Software
18880 Homestead Road
Cupertino, CA 95014
Web: www.rational.com

NTS-XXCAL

NTS-XXCAL is the oldest and largest testing laboratory of it's kind,
having tested Software & Hardware since 1982, Environmental testing
since 1961. Lab locations are in Los Angeles, London and Japan.
NTS IS AN "NRTL" CERTIFIED (NATIONALLY RECOGNIZED TEST LAB) - A US
GOVERNMENT RECOGNIZED LAB. NTS-XXCAL tests Software, Hardware &
Peripherals. Decrease your time-to-market! We help you validate the
integrity of your product by covering your target market thus leaving
your valuable development resources free to work on your new products.
This makes our testing service extremely cost effective!
www.ntsxxcal.com

ZD LABS

ZD Labs (www.zdlabs.com) leads the industry in Internet and technology
testing. Building on Ziff-Davis Publishing's history of leadership in
product reviews and benchmark development, ZD Labs brings independent
testing, research, development, and analysis directly to publications, Web
sites, vendors, and large IT organizations everywhere.
www.zdlabs.com

Vanteon e-Quality Solutions

Vanteon e-Quality and Test solutions are as creative as the software you write, as innovative as the web site
your business depends on.

For more than fifteen years, Vanteon has developed and refined the industry’s most effective QA and
testing methodologies, processes, documentation and tools to meet the business, market and quality
requirements of our clients. As business and technology platforms constantly change, Vanteon
continuously evolves its methodologies to keep pace with the rapid deployment of new web technologies,
and hardware and software designs. At Vanteon, we not only implement QA and testing best practices for
our internal product development, we create them for our clients as well.

Through its diverse experience, Vanteon has built a repository of knowledge accessible to companies
looking for customized Quality Assurance and Testing solutions. Vanteon specializes in QA process
consulting, test planning, test documentation development and test execution, including strategies and
scripts for Automated Desktop (capture/playback) and Automated Web Testing (functional, load, stress,
performance, benchmark). Compatibility testing is performed in our Configuration Test Labs. Vanteon
solutions span eBusiness, wireless peripherals, desktop/consumer, networking, client/server, embedded and
print/imaging. Our professionals are experts in a range of technologies, including Windows, Mac, UNIX,
LINUX, Windows CE, VxWorks, QNX and PSOS.

Vanteon is the premier national provider of comprehensive engineering solutions that generate revenue for
clients ranging from the Fortune 500 to hot.com start-ups. In our seven centers of engineering excellence,
Vanteon has assembled one of the industry’s most proficient integrated teams of engineering and
consulting professionals in e-business, quality assurance, commercial software development, and hardware
and embedded systems. For more information, call 1.800.266.5046 or visit www.vanteon.com.

Ziff Davis Labs (www.zdlabs.com) is the independent, for-hire testing service of Ziff Davis
Publishing. At our facilities in Silicon Valley and North Carolina's Research Triangle area, we
perform two distinct but related kinds of work:

• providing top-quality independent, for-hire testing of Internet and technology products,
and

• developing and distributing for Ziff Davis Publishing its industry-standard benchmark
software

We provide the trusted, independent testing services you need to move at top speed in the
Internet economy. Whether you want us to test your Web site, your desktop or server system, or
any other Internet or technology product, we have the expertise, experience, and equipment to do
the job.

We live and work at the heart of the Internet economy, testing for companies large and small,
established and up-and-coming. We’ll put your product--and, if you wish, your competitor's--
through its paces. Our experts will give you an objective assessment and warn you about any
bugs or potential problems. We'll examine your product from a fresh perspective, go as deeply
into the details of its operation as necessary, and put our findings in a meaningful, action-oriented
context.

If you’d like to keep our findings to yourself, we’ll provide strict confidentiality. If you want to
publicize the results, our marketing team can help you leverage our testing and analysis efforts to
your best competitive advantage. When your customers see that Ziff Davis Labs has tested your
Internet or technology product, they will know they can trust the results.

LL II VV II NN GG OO NN II NN TT EE RR NN EE TT TT II MM EE ??

Are you fighting to earn customer trust? Facing the challenges of hiring expert
testing staff and buying costly test equipment?

Turn to ZD Labs. You’ll save time, valuable resources, and energy by testing with
ZD Labs, the independent, trusted, testing service designed to give you a competitive

edge. For more detailed information and a complete listing of ZD Labs’ testing services,
go to www.zdlabs.com.

 Compuware Corporation is a leading worldwide provider of software
 products and professional services.Compuware productivity solutions
 help 14,000 of the world's largest corporations more efficiently
 maintain and enhance their most critical business applications.
 Providing immediate and measurable return on information technology
 investments, Compuware products and services improve quality, lower
 costs and increase the speed at which systems can be developed,
 implemented and supported. Compuware employs more than 11,000
 information technology professionals worldwide, including more
 than 6,600 in its professional services organization. With calendar
 1998 revenues in excess of $1.5 billion, Compuware is the world leader
 in client/server development technology.

 The Compuware QACenter product family offers the best in automated
 testing technology for today's enterprise needs. From mainframe to
 client/server to web, from test management through validation, from
 unit through load testing, for Year 2000 and euro conversions-QACenter
 tools are helping companies achieve consistent, dependable application
 performance

 The Products:

 QACenter products are available separately or as a part of an
 integrated family of products that includes:

 QARun- comprehensive capabilities for thorough, accurate
 client/server testing.

 QALoad- Load testing for client/server applications

 QADirector- managing the testing process across the enterprise.

 QAHiperstation- broad capabilities for testing VTAM-based
 applications.

 QABatch- regression testing for MVS batch applications.

 QAPlayback- advanced capabilities for testing CICS-based
 applications.

 QAHiperstation+ - testing mainframe applications from the
 desktop.

 QAPlayback+- windows-based interface for testing
 mainframe-based applications from the desktop.

 QASolutions- process, people and products for quality testing.

COMPUWARE CORPORATION

With trailing 12-month revenues of more than $2 billion, Compuware is a
world leader in the practical implementation of enterprise and e-commerce
solutions. Compuware productivity solutions help 14,000 of the world's
largest corporations more efficiently maintain and enhance their most
critical business applications. Providing immediate and measurable return on
information technology investments, Compuware products and services improve
quality, lower costs and increase the speed at which systems can be
developed, implemented and supported. Compuware employs more than 15,000
information technology professionals worldwide. For more information about
Compuware, please contact the corporate offices at (800)521-9353. You may
also visit Compuware on the World Wide Web at www.compuware.com.

COMPUWARE CORPORATION
31440 Northwestern Hwy
Farmington Hills, MI 48334

Vanteon e-Quality and Test Solutions
QA with a high IQ.

QA and Test solutions as creative as the software you write,
as innovative as the web site your business depends on.

Discover the significant advantages of
partnering with Vanteon, who has the
depth of experience, resources and
collaborative spirit to work closely with you
to create innovative and highly effective QA
and Test solutions.

For more information about Vanteon,
please visit BOOTH #301.
www.vanteon.com
QA@vanteon.com
800.266.5046

QA/Test Services
• QA Consulting
• Web Performance
• System (Black Box) Testing
• Unit (White Box) Testing
• OS/Browser/Platform

Compatibility
• Automation
• Functional Localization
• Rapid Quality Evaluation
• FDA/ISO/CE Mark Process

Consulting

For
• eBusiness
• Wireless Peripherals
• Desktop/Consumer
• Networking
• Client/Server
• Embedded
• Print/Imaging

Technologies
• Windows
• Mac
• UNIX
• LINUX
• Windows CE
• VxWorks
• QNX
• PSOS

����������	�
����������������������
���������	�����������
���������	��
�����������	��
����������������������
�������������������������������������
������������	��� !�"���#���� ��$%
&���	�'�������()�&��������%
���������������������

���������	
���	��
	�
��	��
�
��������	�	����	����������������	��

�����������	�
�
���������������������
�� 	�
�����
����
	�
�� ������	����	������

!	�"��#�$��%&��''$$���(�)"��#�$��%&���*�'
+++,))���,��������-���	�.))���,���
����������		
��

�����������	��
��������������
��
���������
�+��

	���	������������������������
�
�����������	��
��������������
��
���������
�+��

	���	������������������������
�

NTS-XXCAL

NTS-XXCAL is the oldest and largest testing laboratory of it's kind,
having tested Software & Hardware since 1982, Environmental testing
since 1961. Lab locations are in Los Angeles, London and Japan.
NTS IS AN "NRTL" CERTIFIED (NATIONALLY RECOGNIZED TEST LAB) - A US
GOVERNMENT RECOGNIZED LAB. NTS-XXCAL tests Software, Hardware &
Peripherals. Decrease your time-to-market! We help you validate the
integrity of your product by covering your target market thus leaving
your valuable development resources free to work on your new products.
This makes our testing service extremely cost effective!
www.ntsxxcal.com

MEDIA SPONSORS...

Software Development Magazine, published by Miller Freeman
Inc., is the leading trade publication covering the people,
products, and practices of corporate development. Software
Development magazine provides practical solutions for technical

team leads and project managers leading corporate application development projects. Editorial
features strategies and solutions for evaluating and implementing development tools and
solutions for evaluating and implementing development tools and technologies, software
engineering and quality assurance practices, project and people management strategies,
process improvement, as well as tips on Software Development magazine go to:
http://www.sdmagazine.com.

Cutter Consortium, LLC helps organizations leverage IT for
competitive advantage and business success. Cutter Consortium

offers high-level advisory and publication services, journals, online resource centers, on-site
assessments, consulting, and training to help organizations forge solutions to the IT challenges
they face. What is unique about the Consortium is that its products and services are provided by
the top thinkers in IT today -- a distinguished group of internationally recognized experts
committed to providing top-level, critical, objective advice.

Software Business (description to be supplied).

"Ferreting Out Bugs"

Azor, Inc. is located in Palo Alto, California and specializes in outsource e-commerce
testing and software application testing. Azor provides methodology trained software
testing experts to do work on your site or in our lab. Azor has its own proprietary test
automation and estimation tools (Ferret and CodePlan) and rents and sells testing
equipment. Azor test engineers are trained and certified in a number of popular
automated tools (Win Runner, Load Runner, RSW e-Test Suite, McCabe Visual
Testing, Soffront Track, Segue Silk, etc.), and Azor maintains relationships with
the leading tool vendors. Azor also has partnerships with some of the largest testing
companies in the world, bringing to bear additional resources on your project, if
necessary. Azor supplies Test Engineers, Trainers, Technical Writers, and Project
Managers, to do Test Planning, Test Design, Test Case Layout, Test Execution, Test
Automation, Load and Performance Testing, Test Reporting, Test Documentation, Test
Training, and Project Leadership. Azor’s approach to software quality is to develop long
term relationships with repeat customers to understand your business and leverage this
knowledge for efficient testing and support. Azor also has a No Bugs, No Bucks offer.
Azor will test your product for a week, and if we can not find a defect, the week of
testing is on us. Azor is located at 1032 Elwell Ct, Suite 240, Palo Alto, CA. 94303, 650-
934-2869, info@azor.com, www.azor.com.

Who We Are
Cisco Systems is the worldwide leader in networking for the Internet. Cisco's networking
solutions connect people, computing devices and computer networks, allowing people to
access or transfer information without regard to differences in time, place or type of
computer system. Every day, Cisco and its customers are proving that networking and the
Internet can fundamentally change the way companies do business.

What We’re Really Like
Ours is a culture of driven by innovation. Every day, Cisco products and solutions are
enriching people’s entertainment options, expanding their educational experiences,
simplifying their complex lives, and deepening the interaction they have with others. It’s
challenging – we encourage individual thought, and reward initiative and creativity. It’s
exciting – we move fast around here, the pace of the wired world demands it. It’s fun –
being part of one of the world’s most successful companies feels good, and it also allows us
the resources and time to turn your ideas into realities.

What It All Means
The global economy is the Internet economy. And no company understands that better than
Cisco Systems. The Internet Revolution of today is driving change and economic growth
around the world. We’re using technology and expertise to enable a world where everyone
and everything are seamlessly connected; where people have access to information,
resources, and other people in the easiest ways possible. Which means the question “Are you
ready?” is about a lot more than asking you if you’re ready to start. It’s about reminding you
that you already have.

COMPUTER ASSOCIATES INTERNATIONAL, INC.

Computer Associates International, Inc. (NYSE: CA), with headquarters in
Islandia, N.Y., is the world leader in mission critical business software
that develops, licenses and supports more than 700 interoperable solutions
worldwide. These solutions provide powerful end-to-end, distributed
enterprise management, visual application development, object-oriented and
relational database management; completely customizable, distributed
business applications, Internet/Intranet, storage management, antivirus,
communications, financial, manufacturing, and human resources systems. CA
provides business technical consulting worldwide through its Global
Professional Services (GPS) organization. CA employs over 17,500 people in
160 offices in more than 100 countries and had revenue of $5.3 billion in
fiscal year 1999. CA can be reached by visiting www.cai.com, emailing
info@cai.com or calling 1-631-342-5224.

COMPUWARE CORPORATION

With trailing 12-month revenues of more than $2 billion, Compuware is a
world leader in the practical implementation of enterprise and e-commerce
solutions. Compuware productivity solutions help 14,000 of the world's
largest corporations more efficiently maintain and enhance their most
critical business applications. Providing immediate and measurable return on
information technology investments, Compuware products and services improve
quality, lower costs and increase the speed at which systems can be
developed, implemented and supported. Compuware employs more than 15,000
information technology professionals worldwide. For more information about
Compuware, please contact the corporate offices at (800)521-9353. You may
also visit Compuware on the World Wide Web at www.compuware.com.

COMPUWARE CORPORATION
31440 Northwestern Hwy
Farmington Hills, MI 48334

Dunn Systems is a leading e-Business consulting firm who partners with our
clients to transform the way they do business. We leverage our Quality
Assurance, Strategic Marketing, Web Design, Application Development, Data
Warehousing and Technical Education practice areas to deliver complete
solutions quickly and with minimal risk. Dunn Systems Quality Assurance
services include Test Planning, Defect Tracking and Management, Regression
Testing and Performance/Web Testing. We have a proven track record of
implementing, training and mentoring clients in the use of automated testing tools
and an integrated testing methodology. Let Dunn Systems identify a functional
Quality Assurance process and the necessary tools to ensure your enterprise
and e-Business applications work flawlessly before reaching the end user. For
more information, contact us at (847) 673-0900 or visit www.dunnsys.com.

eValid TM

Test Services
Summary

BenchMark Testing
Transaction Testing

Security Testing
SpotCheck Testing

Single or Multiple URLs
Single or Multiple Text

Area Checking
Single or Multiple User

Interactions
Daily, Four-Hourly, Hourly,

Quarter-Hourly Checking
Intervals

Automatic Alert Modes
Emailed Alert Reports

Archival of Data

Assuring Web Site Quality, Reliability and Performance

Web users demand a lot! If your web site is too slow, has errors, is missing content, or fails to work
correctly, your online customers may click away in an instant -- with likely unhappy results for your
revenue stream.

While you can't affect very much how fast the Web itself works, you can control what your web site does
and how well it does it. And at least you need to be aware of small problems so they don't become big
problems!

eValid Test Services enable companies and web site managers to monitor and optimize E-commerce
service validity, availability, internal quality, and performance -- as perceived by typical users with
realistic test scripts. This is the Quality of Service (QoS) that really counts! You get test results that
reflect what your customers see with simple and easy-to-understand reports.

eValid Test Services are customized applications of TestWorks Test Tools that validate that web sites
meet key needs of performance, content, behavior, and security. Our unique "user perspective" testing
assures your sites quality in the context in which your customers use it -- from a web browser running
under real-world conditions (e.g. on a mid-size PC with a 28.8 kpbs or 56.6 kbps dialup modem).

Key eValid Capabilities

With pre-programmed eValid Test Services you can test your web site exactly the way a user uses your
web site. You can make sure your web site meets quality criteria you set:

Benchmark how fast your site runs from hour to hour and day to day.●

Evaluate your E-Commerce transactions to confirm they are working advanced validate
selected text capabilities .

●

eValid Test Services Summary

http://www.soft.com/Products/Web/eValid/index.html (1 of 4) [5/4/2000 3:45:46 PM]

http://www.soft.com/Products/Web/eValid/evalid.benchmark.html
http://www.soft.com/Products/Web/eValid/evalid.transaction.html

Monitor your site security by performing with tests that behave just like a real user.●

SpotCheck key areas of your web site to make sure it hasn't been hacked!●

Overall you gain confidence that your web site is working the way you want it to. And, you get email
and/or pager warnings immediately when a problem is found.

How eValid Works

The foundation of all eValid Test Services is application of custom programmed tests on a regular
schedule with automated responses to the web site manager. These series of tests are designed to confirm
critical properties of the web sites they exercise, including:

Geographic availability in multiple time zones;●

Confirmation of content of selected pages;●

Simulation of user interaction including type-ins and FORM submittals;●

Checking security access to restricted areas on your web site;●

Measuring typical-user retrieval times for one or more URLs.●

In short, all the things that your own testers would do if they knew how and had the tools to do the work.

eValid Features and Benefits

Customized outsourced automated testing. You get the advantage of the best, most efficient scripting,
with all of the test suite development and execution done for you on a service-level basis at very
attractive pricing.

Powerful test tools "at your service". eValid Test Services is based on use of released versions of
TestWorks products such as the CAPBAK/Web browser-based capture/replay system and the SMARTS
test management system, combined with custom-developed test scripts and custom-developed test
support utilities.

Realistic simulated-user tests. Tests are run the same way your users run them, at mid-speed dialup
connections. Results are based on realistic response times and download rates and are completely
isolated from the effects of caching, etc.

Multiple time zone coverage. eValid Test Services are available from up to six time zones (four USA
plus Europe and Pacific Rim) so you know how your web site appears to users in all of the major
markets.

Automated notification of test failures. When something goes wrong you are automatically sent email
(or, you're paged) telling you of the problem.

Superior Return on Your Investment. Just imagine if your web site accounts for $100K/month in
business. If your site is "off the air" even for a few hours, your lost-income costs could exceed the
monthly cost of an eValid Test Services subscription.

eValid Test Services Summary

http://www.soft.com/Products/Web/eValid/index.html (2 of 4) [5/4/2000 3:45:46 PM]

http://www.soft.com/Products/Web/eValid/evalid.security.html
http://www.soft.com/Products/Web/eValid/evalid.spotcheck.html
http://www.soft.com/Products/Web/CAPBAK/capbakweb.html
http://www.soft.com/Products/Regression.msw/smartsmsw.html

eValid -- An Integrated Set Of Test Service Offerings

eValid Test Services are integrated to offer you a range of standardized test capabilities adapted to the
most common web site managers' concerns. All eValid Test Services are oriented to measuring and
testing how real users perceive your web site. Tests are executed from typical dial-up web site
connections 24x7 from every 4 hours (lowest intensity) to every 15 minutes (highest intensity).

eValid Test Services

BenchMark Testing Transaction Testing SpotCheck Testing Security Testing

Tests confirm that selected
web site pages (URL's) are
present and are retrieved
within customer preset
maximum time limits.

Either 1-5 URLs or 6-12
URLs are downloaded in a
non-cached environment
and carefully timed. Error
messages are issued
when the actual retrieval
times exceed customer
specified limits.

There is complete logging
of all test data for later
analysis.

Tests simulate a "shopper"
selecting items and
purchasing them in a
realistic manner using
E-commerce transactions
on your web site.

Up to 2 "picks" of products
are included, plus user
inputs that simulate the
buying process.

Error messages are issued
if the testing finds selected
items are unavailable or if
the purchase transaction
fails.

Tests simulate a customer
looking at various pages in
your web site for certain
text items or passages.

Tests download a selected
set of pages from your web
site and examine the
content of up to 6 text
areas from each page.

Error messages are issued
if the testing finds the text
you expect to be present
on the page is absent or
has moved to a new
location.

Tests simulate a customer
accessing information in a
login-protected, restricted
area of your web site and
confirm that access is
granted only with proper ID
and password.

Tests go to selected page
on your web site and
simulate user qualification
(login) process. At least
two tests are performed: a
legal login (success) and
an illegal login (failure).

Error messages are issued
if the testing finds that
authorized users cannot
get access when they are
supposed to, or that
unauthorized users gain
access when they are not
supposed to.

Complete Description Complete Description Complete Description Complete Description

eValid Pricing and Customization Options

Typical web sites in E-commerce focused companies often represent a very large investment, and in many
companies this investment is not protected against failure. eValid Test Services are priced according to the service
type and level of service chosen, and according to the level of validity of the web site that the service helps assure.
eValid Test Services are a one-stop solution to questions of web site effectiveness and quality.

eValid Test Services are priced from $89/month to $579/month. A minimum 3-month service commitment applies;
there are discounts for multiple service combinations and yearly subscriptions. Complete details and a free 3-day
evaluation of eValid Test Services are available on request from webtest@soft.com.

In addition to standard eValid Test Services we can customize the tests we run to handle very large web sites and
to handle web sites that present special or unusual types of operation. Please explain your needs to us at

eValid Test Services Summary

http://www.soft.com/Products/Web/eValid/index.html (3 of 4) [5/4/2000 3:45:46 PM]

http://www.soft.com/Products/Web/eValid/evalid.benchmark.html
http://www.soft.com/Products/Web/eValid/evalid.transaction.html
http://www.soft.com/Products/Web/eValid/evalid.spotcheck.html
http://www.soft.com/Products/Web/eValid/evalid.security.html
mailto:webtest@soft.com

webtest@soft.com and we'll respond promptly.
eValid Test Services Summary

http://www.soft.com/Products/Web/eValid/index.html (4 of 4) [5/4/2000 3:45:46 PM]

mailto:webtest@soft.com
mailto:info@soft.com
http://www.soft.com/srhome.html
http://www.soft.com/Info/index.html
http://www.soft.com/Users/index.html
http://www.soft.com/Jobs/index.html
http://www.soft.com/Partners/index.html
http://www.soft.com/Distributors/index.html
http://www.soft.com/Corporate/index.html
http://www.soft.com/Institute/index.html
http://www.soft.com/QualWeek/index.html
http://www.soft.com/Support/index.html
http://www.soft.com/Products/screen.html
http://www.soft.com/AppNotes/index.html
http://www.soft.com/Solutions/index.html
http://www.soft.com/Technology/index.html
http://www.soft.com/News/index.html
http://www.soft.com/contents.html
http://www.soft.com/srhome.html

IEEE COMPUTER SOCIETY
10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1314
Phone: 714-821-8380
Fax: 714-821-4010
email: membership@computer.org
Web Site: http://computer.org
contact: Marian Anderson

IEEE Computer Society, one of the most prestigious professional associations in
the world, serves its members through numerous publications, conferences, and
workshops. Membership information, magazines, and books are on display.

Please visit us at BOOTH #409

IIST is an educational and professional development organization that has been founded to
promote a disciplined approach to software testing and to caution against ad hoc testing by non-
qualified individuals and groups. IIST operates according to the following charter:

• To promote and provide education and certification of software testing professionals
around the world.

• To create a pool of qualified software testing professionals to meet the needs of testing
organizations.

• To provide assistance and guidance to members performing testing of all types of
software systems.

• To partner with different software quality groups around the world to assure continuity of
information flow among testing professionals.

• To serve as a clearinghouse of services, methods, and tools supporting the discipline of
software testing.

IIST has the following offerings:
• Certification of Software Testing Professionals (CSTP)
• Comprehensive Training program to support the certification
• The International Conference on Practical Software Quality Techniques (PSQT)
• The Journal of Software Testing Professionals (JSTP)

Contact Information:

International Institute for Software Testing
8476 Bechtel Ave
Inver Grove Heights, MN. 55076
Attn: Steve Brown, Director of Education & Marketing
Phone: (651) 306-1387
Fax: (651) 552-0791
www.softdim.com
sbrown@softdim.com

LDRA Ltd
131 Mount Pleasant
Liverpool L3 5TF
UK

Tel: +44 (0)151 708 8505
Fax: +44 (0)151 709 2027
E-mail: info@ldra.com
www.ldra.com

The Company

LDRA, the world's longest established vendor of automated code analysis
testing tools, celebrates its 25th birthday this year. World renowned for
its role in developing industry leading testing methodologies in this
highly specialised field, LDRA has recently been described in Software
Magazine as the market leader.

LDRA Testbed helps its users to enforce industry quality standards on their
code, to locate software defects and to ensure that code is testable and
maintainable in the long term. Whether unit, integration or regression
testing, LDRA Testbed is used to maximise the effectiveness of the testers'
efforts. Importantly, LDRA Testbed has been proven to improve testers'
motivation.

Complementary to the company's R&D into testing and tools development, LDRA
provide testing consultancy. In this area, LDRA have been responsible for
software inspections in motorsport, including FIA Formula 1&3 and the BTCC.

Through LDRA's worldwide representation, LDRA's customers enjoy exceptional
sales and product support.

On Show

LDRA will be presenting their latest tool enhancements, including TBrun, a
revolutionary test harness generator to assist you in automating your unit
testing process.

TBrun:
- Automatically generates test drivers & harnesses
- Runs tests on code units
- Detects changes in source code
- Documents changes required in tests
- Performs regression tests
- Maintains test data and results
- Runs in a host/target environment

We welcome you to visit our stand and come along to LDRA's Technical
Presentation and Demonstrations.

Interim Technology Consulting – Software Quality Management
250 Word Description

The incredible growth of the Internet has introduced business change on such a
massive scale that it is forcing companies to redefine their core strategies and
the manner in which they conduct business. With organizations quickly
responding to this rapidly changing business by developing eBusiness
applications, the risks to their business is skyrocketing.

For more than 30 years, clients have trusted Interim Technology Consulting with
their Software Quality Management (SQM) solutions for both Information
Technology (IT) and user departments. Our world-class expertise along with our
unique approach to service delivery, provides an unbeatable combination in
exceeding our client’s expectations with each and every engagement.

Our services include Strategic Quality Consulting, eSQM sm through eBusiness
Testing Strategy and Planning as well as Independent eBusiness Integration
Testing, Software Testing and Validation, Tool Automation Evaluation and
Implementation, Project Quality Services, Metric Services, User Services,
Environment Readiness Testing, Performance/Recovery Testing, Security
Testing and Usability Testing Services.

Our services are supported by a proprietary set of tools and methodologies
including our state-of-the-art hypertext VALI/TEST Pro® (Validation & Testing
methodology) and the Interim Technology/SQM Tool Suite sm.

The future of Software Quality Management -- eSQMsm

Delivering quality applications that meet business’ needs the day they are
implemented has become a critical challenge for IT managers. As business
critical applications have become more complex, so has the validation and
testing process. Due to the complexity of the architecture and rapid application
development, testing requires a defined, disciplined strategy, a revised approach,
tools and trained/experienced resources. Therefore, we’ve introduced a service
offering wrapped around eSQMsm – enhanced eBusiness solutions for our clients
encompassing long-established Software Quality Management success.

Interim Technology Consulting
823 Commerce Drive
Oak Brook, IL 60523
630-645-8800
630-645-8801 – Fax
www.interimtechnology.com

McCabe & Associates, Inc.
9861 Broken Land Parkway

Fourth Floor
Columbia, Maryland 21046

1-800-638-6316
Balt. 410-381-3710
Fax 410-995-1528

http://www.mccabe.com

McCabe & Associates…because some things just have to work right. In today's
competitive business environment software is no longer a productivity tool, it has
become the business and it must work right. McCabe & Associates enables IT to
deliver better applications, by providing products and process that implement a
relevant, repeatable, and measurable approach to managing software changes
and their effects on the testing and quality of applications. McCabe Integrated
Quality (McCabe IQ), our proven methodology and product suite, tightly
integrates change management with software quality analysis and increased test
effectiveness to promote and assure the delivery of high quality software
systems. McCabe IQ has been implemented by global corporations and
government agencies in their efforts to:
• Manage and thoroughly test software changes
• Quickly and easily merge software changes into released code
• Objectively assure the quality of released software
• Lower the maintenance time and costs of strategic systems
• Assure the stability of enterprise software

About ParaSoft

ParaSoft Corporation develops and markets error prevention
and error detection tools for UNIX, Windows, and Internet development
environments. ParaSoft's award winning products and
patented technologies assist developers and managers in improving software
quality, accelerating time to market, and reducing development costs.
ParaSoft's headquarters is located at 2031 S. Myrtle Ave., Monrovia, Ca
91016. Telephone (888) 305-0041. Fax (626) 305-3036. Email to:
info@parasoft.com. URL:http://www.parasoft.com

Product Description

Insure++is a tool that automatically detects large classes of programming
and run-time errors, including algorithmic anomalies, bugs, and
deficiencies.

CodeWizaed is a unique coding standars enforcement tool that uses
patented Source Code Analysis technology (patent #5,860,011) to
help deveopers prevent errors and standardize C++ code
automatically. CodeWizard spontaneously enforces C++ coding
standards, saving hours of labor-intensive analysis.

Jtest is a fully integrated, easy-to-use, automatic class testing tool for
Java. Jtest integrates every essential type of Java testing in one
intuitive tool, automatically performing white box testing,
regression testing and static analysis, and helping to automate
black-box testing.

SiteRuler is a comprehensive Web site testing and maintenance tool that
checks for broken links, non standars HTML, and spelling errors.
In addition, SiteRuler can publish a site and test it before it
goes online, preventing any WEB site glitches from reaching the
public. SiteRuler's open architecture allows Web developers to
plug in their favorite editors, authoring tools, graphic tools,
and source control.

C++Test, a soon-to-be released tool from ParaSoft, automates the unit
testing process for C and C++ developers. C++Test is an
easy-to-use tool taht can easily fit into any existing C/C++
development cycle. C++ Test automatically tests any number of C
functions or C++ classes from any program that can compile with
the Microsoft Visual C++6.0 compiler, including embedded systems
and device drivers.

A Major Technological Leap Forward

PolySpace Technologies offers a static verification product: PolySpace Verifier. An innovative and efficient tool
used to automatically and exhaustively detect run-time errors in Ada and C applications.

PolySpace Verifier discovers all run-time errors including division by zero, overflow, out of bounds array access,
arithmetic exceptions, illegal type conversion, concurrent access to shared data without execution nor intrusion into
the software (source code is enough).

The unparalleled benefits of our technology

1.Efficiency and ROI: a significant level of software process automation, providing quickly measurable productivity,
reliability, time to market and reproducibility gains; Both automation and early detection of errors is a well-
known source of time and money saving. PolySpace helps in detecting all run-time errors before you run
integration tests.

2.Easy-to-use: a remarkably low level of disruption of established development methodologies and tools, achieved in
particular by compatibility with existing programming languages; Use PolySpace Verifier just as source code
compiles without changing your development process.

3.Quality: a level of software safety that simply was impossible to attain before. PolySpace Verifier is the unique
product solution able to exhaustively detect run-time errors in software.

Markets

PolySpace Technologies addresses the needs of companies building mission-critical, embedded and real-time
software systems in many sectors including avionics and space, automotive and ground transportation, consumer
electronics, medical equipment, energy and telecommunications.

… … …

PolySpace Technologies is a start-up high-technology company whose mission is to provide our customers with
highly innovative, unintrusive and quickly deployable software verification and validation tools for real time

systems.

PolySpace Technologies
c/o INRIA - 655, avenue de l’Europe - 38330 Montbonnot Saint-Martin – France -

Tel. : +33 476 61 52 60 - Fax : +33 476 61 54 09
email: contact@polyspace.com

www.polyspace.com

MuTek Solutions, Inc. targets the world's leading software developers and
commercial organizations. MuTek's flag-ship product- BugTrapper, is used by
independent software vendors (ISVs) that develop software for resale,
information systems (IS) departments that develop software to support
internal operations, and engineering departments that develop software as a
component of a manufactured product. The company mission is to become a
market leader in providing support solutions for service desks and personal
computer users.

Aimee Potter
Raleigh Group International
5440 Atlantic Springs Rd./ Suite 115
Raleigh, NC 27616
(919) 878-3717
http://www.ralgi.com

RATIONAL SOFTWARE

Rational Software, the e-development company, helps organizations develop
and deploy software for the Internet through a combination of tools,
services and software engineering best practices. Rational's e-development
solution helps organizations overcome the e-software paradox by accelerating
time to market while improving quality. In 1999, International Data
Corporation recognized Rational as the leader in multiple segments of the
software development life cycle management market.
www.rational.com

Rational Software
18880 Homestead Road
Cupertino, CA 95014
Web: www.rational.com

SaleView Systems is an application service provider (ASP) offering Internet
performance and content quality monitoring with real-time alert
notifications. Flexible, and non-invasive, multi-protocol monitoring is
performed on a 24x7 basis from various locations around the world. SaleView
emulates end-user web activities to determine the actual performance and
availability experienced by your web visitors. SaleView can monitor
standard protocols (i.e. FTP, HTTP, etc) as well as complex web-based
applications. Unlike most ASP services, the customer, via a web interface,
can control monitoring and notification configurations. Contact24 technology
provides sophisticated alert notification management, including flexible
escalation policies that notify support personnel as problems are observed.
Notifications can be placed to email, directly to two-way pagers, and to
voice phones using text to voice technology.

Segue Software, Inc.
201 Spring Street
Lexington, MA 02421

Phone: 781-402-1000
Fax: 781-402-1099
Email: info@segue.com
Web: www.segue.com

Segue Software, Inc. (NASDAQ: SEGU), a leader in providing e-business reliability software products.
Segue develops and markets solutions that help companies deliver more reliable e-business systems. Segue
partners with clients deploying business-to-business and business-to-consumer sites to help them achieve
dial-tone level reliability and a rapid, integrated quality assurance methodology. Segue Software is the first
and only company to deliver a comprehensive solution for ensuring the reliability of application-level
transactions within complex middleware environments. Segue’s Silk product family includes:

- SilkTest for automated functional and regression testing;
- SilkPerformer for load and performance testing;
- SilkPilot for functional and regression testing of Java programs through CORBA/IIOP, RMI and EJB

interface specifications
- SilkObserver for diagnostics and monitoring of distributed Java and non-Java objects over IIOP
- SilkMeter for tracking of how Java server objects are used, enabling proper billing in e-commerce,

collecting usage metrics and enforcing access rules
- SilkRadar for automated defect tracking and results management and
- SilkMonitor for real-time monitoring of Web applications and data base servers.

Representative customers from around the world include AT&T, Citibank, Ericsson, Hewlett-Packard,
Liberty Mutual, Lockheed Martin, Lucent, Merrill Lynch, Pratt & Whitney, Sony Pictures, Sprint, T.Rowe
Price, Telcordia and Warburg Dillon Read.

Headquartered in Lexington, Massachusetts, with offices across North America and Europe, Segue can be
reached at 800.287.1329, or at www.segue.com

3/00

Company/Product Profile

Company Profile:

SilverMark, Inc. provides object test automation tools and services. SilverMark's object
testing solutions and expertise have a proven track record throughout the world, in
various industries such as insurance, banking, finance and manufacturing.

Product Description:

SilverMark's Test Mentor for Java(tm) - SilverMark is presenting their automated,
component testing tool for Java. Integrated with the VisualAge(r) Java development
environment, Test Mentor for Java takes component test automation to new levels by
providing a specialized test development and code generation environment. Test Mentor for
Java strongly promotes well structured, reusable tests through a component-oriented test
architecture. Test Mentor for Java speeds test development and reduces maintenance costs,
making the ideal of parallel code and test development practical, economical, and
enjoyable.

SilverMark's Test Mentor for Smalltalk - The most effective and complete automated testing
solution for Smalltalk. Test Mentor for Smalltalk has been developed for IBM's VisualAge
Smalltalk, Cincom's VisualWorks Smalltalk, as well as IBM's VisualAge Generator. Test
Mentor for Smalltalk automates test creation by generating tests from recorded user
interface interactions, as well as Rational Rose or IBM UML Designer design models. Test
Mentor for Smalltalk creates and executes tests in development or deployment images.

SilverMark's Connection Detangler for VisualAge Smalltalk & Generator - is a "Powerful
connection debugger that puts to shame all previous attempts to make a debugging tool for
links and connections" - product review

SOFFRONT SOFTWARE, INC.

Since 1992, more than 45,000 users and over 2,500 corporations worldwide,
including many Fortune 500 companies have thoroughly tested and ranked
TRACKWeb as their number one choice to satisfy their Defect Tracking,
HelpDesk and Sales Automation needs.

TRACKWeb is fully web-based and allows full database administration,
including customization, report generation, data submission and access to
information through a web browser. TRACKWeb offers fully customizable and
easy-to-use solution for organizations of all sizes.

TRACKWeb Defects application is the pioneer defect tracking application for
Windows environments. It sets the software standard for managing product
Defects / Bugs, Code Changes, Test Cycles, Product Releases, System
Configurations and more.

The product integrates with TRACKRules component for defining business
rules, such as automatic escalation of issues, field updates and email
notifications. TRACKKB component helps build defect Knowledge Base that
automates location of possible solutions to recurring defects.

To satisfy your helpdesk need Soffront offer TRACK HelpDesk application. The
application is designed to offer multi-level helpdesk, customer service, and
customer support structure. This fully web-based and fully-customizable
enterprise-level application is designed to track all aspects of a helpdesk
operation including problem management, problem resolution, asset inventory
management, and change request management. TRACK HelpDesk is designed to
handle more calls in less time and achieve lower costs of operation while
assisting in the construction of a global helpdesk operation across multiple
campuses. The application integrates with a knowledge base to further
automate and expedite helpdesk operation.

Soffront Software Inc.
830 Hillview Court, Suite 140
Milpitas, CA 95035
Web: www.soffront.com

• Software Development Technologies (SDT) is committed to supporting
organizations throughout the world with improving their software quality and
testing efforts. Assistance may take the form of training and consulting —
Software Testing, Software Test Automation, Test Planning and Design,
Integrated Test Design and Automation and Technical Review and Inspection —
software test automation products and/or outsourcing your test efforts. SDT
offers the following solutions for solving your testing needs:

o Technology Assessments
o Test Design and Automation Solution (TestFrameTM)
o Review and Inspection Solution (ReviewProTM and TRIPTM)
o Test Curriculum -- onsite and public courses as well as curriculum

licensing
o Outsourcing Test Services

SDT clients include Cisco Systems, Sun Microsystems, Norwest Financial,
Fidelity Investments, NASA and GoTo.com.

• Software Development Technologies (SDT)
125 South Market St., Suite 700, San Jose, CA 95113
ph (408) 297-1911
fx (408) 297-1993
www.sdtcorp.com

SOFTWARE QUALITY ENGINEERING

Founded in 1986, Software Quality Engineering (SQE) assists software
professionals and organizations throughout the world with improving
their software testing and quality engineering practices. The
company's hands-on experience and training expertise help companies -
large and small - to improve testing practices, gain measurable control
over software projects, and ultimately deliver better software.

SQE can assist your software organization through the following services:
Professional Services - SQE understands that a one-size-fits-all approach
to software improvement is rarely effective. Our professional support
process begins with assessment and analysis of the unique needs of your
organization, followed by hands-on, targeted action. From on-site
training to in-depth project implementation support, SQE has the technical
experience and resources to address the special needs of your organization.
Training Seminars - SQE delivers specialized training seminars on systematic
testing, test automation, Web/eBusiness testing, software metrics,
requirements, software management, and more. These high-leverage courses
are presented publicly throughout the year and provide verifiable results
in improving productivity and software quality. International Conferences -
SQE organizes international conferences, including ASM Software Measurement
Conference, SM Software Management Conference, and the STAR Software Testing
Conferences. Publications & Research - In an effort to make good software
testing and development information more readily available, SQE publishes
Software Testing & Quality Engineering magazine. Each issue focuses on
nuts-and-bolts information and practices you can apply in your projects
and daily work.

Software Quality Engineering
330 Corporate Way
Suite 300
Orange Park, FL 32073(904) 278-0707
(800) 423-8378
sqeinfo@sqe.com
www.sqe.com

Software Research, Inc.'s TestWorks, an integrated suite of software test tools, is the
broadest test tool suite available. TestWorks tools help automate and streamline the
software development and testing process with product lines that work independently or
as an integrated toolsuite. TestWorks is the only tool suite that offers Regression
Testing, Test Suite Management, and Test Coverage support for Web and Windows
and UNIX Platforms.

TestWorks Overview You can get most of your basic questions about
TestWorks products answered from the
TestWorks Frequently Asked Questions
(FAQs).

Send Email with your question to
info@soft.com and we're respond quickly.

TestWorks
for Web

TestWorks/WebTM is a bundle of software test
tools tailored to support complete regression
testing for Web Sites, including those that
exploit the advanced features of JavaTM.

The TestWorks/Web product bundle consists
of three major components:

CAPBAK/Web for Windows
 Frequently Asked Questions(FAQs)
 Take a Tour of CAPBAK/Web
 Features and Benfits Summary
 Pricing and Order Form

●

SMARTS (hierarchical test controller)●

TCAT for Java/Windows (coverage
analyzer for Java)

●

Read the new White Papers by Edward Miller
on The WebSite Quality Challenge. and
WebSite Testing.

TestWorks Product Descriptions

http://www.soft.com/Products/index.html (1 of 4) [5/4/2000 3:59:12 PM]

http://www.soft.com/Technology/faq.html
http://www.soft.com/Technology/faq.html
mailto:info@soft.com
http://www.soft.com/Products/Web/index.html
http://www.soft.com/Products/Web/index.html
http://www.soft.com/Products/Web/CAPBAK/capbakweb.html
http://www.soft.com/Products/Web/CAPBAK/faq.html
http://www.soft.com/Products/Web/CAPBAK/Documentation.IE/CBWeb.GUI5.html
http://www.soft.com/Products/Web/CAPBAK/features.benefits.html
http://www.soft.com/Products/Web/CAPBAK/price.order.web.html
http://www.soft.com/Products/Regression.msw/smartsmsw.html
http://www.soft.com/Products/Coverage.msw/tcatj.html
http://www.soft.com/Products/Web/Technology/website.quality.challenge.html
http://www.soft.com/Products/Web/Technology/website.testing.html

Consider one or more of our new
subscription-based eValid Test Service Options
that analyze your site's performance, security,
reliability, content quality and performance.

TestWorks
For Windows

TestWorks for Windows, an integrated suite
of automated testing tools, is the broadest suite
of tools available to test applications running
under MS/Windows (Win3.1), MS/Windows
NT or MS/Windows '95/'98 (Win32).

Testworks for Windows has two main bundles
of tools:

TestWorks/Regression
CAPBAK/MSW❍

SMARTS/MSW❍

●

TestWorks/Coverage
TCAT C/C++❍

TCAT for Java/Windows❍

●

TestWorks
For UNIX

TestWorks for UNIX is designed
to work independently or as an
integrated tool suite to provide an
efficient, automated testing
environment for most UNIX-based
platforms.

TestWorks for UNIX consists of
three product lines:

TestWorks/Regression
CAPBAK❍

SMARTS❍

EXDIFF❍

●

TestWorks Product Descriptions

http://www.soft.com/Products/index.html (2 of 4) [5/4/2000 3:59:12 PM]

http://www.soft.com/Products/Web/eValid/evalid.summary.html
http://www.soft.com/Products/windows.html
http://www.soft.com/Products/windows.html
http://www.soft.com/Products/Regression.msw/index.html
http://www.soft.com/Products/Regression.msw/capbakmsw.html
http://www.soft.com/Products/Regression.msw/smartsmsw.html
http://www.soft.com/Products/Coverage.msw/index.html
http://www.soft.com/Products/Coverage.msw/tcat.html
http://www.soft.com/Products/Coverage.msw/tcatj.html
http://www.soft.com/Products/unix.html
http://www.soft.com/Products/unix.html
http://www.soft.com/Products/Regression/index.html
http://www.soft.com/Products/Regression/capbak.html
http://www.soft.com/Products/Regression/smarts.html
http://www.soft.com/Products/Regression/exdiff.html

TestWorks/Coverage
TCAT C/C++❍

TCAT for Java/UNIX❍

TCAT/S-TCAT
Ada/f77

❍

●

TestWorks/Advisor
METRIC❍

TDGEN❍

STATIC❍

●

Your
Quality
Process

TestWorks products support a multi-filter
Quality Process ArchitectureTM for software
development projects in C, C++, Java, plus Ada
and F77.

The TestWorks Quality Index is a quantitative
Quality Index (Figure Of Merit) that
characterizes your Application Development
Process.

Downloading
Products

Download Datasheets

DOWNLOAD PRODUCTS

License Key Request

QuickStart Manuals

User Manuals

 Platforms
Support

Check Available Bundles, Products,
Platform/OS, and Versions

TestWorks Product Descriptions

http://www.soft.com/Products/index.html (3 of 4) [5/4/2000 3:59:12 PM]

http://www.soft.com/Products/Coverage/index.html
http://www.soft.com/Products/Coverage/tcat.html
http://www.soft.com/Products/Web/tcat.java.html
http://www.soft.com/Products/Coverage/stcat.html
http://www.soft.com/Products/Coverage/stcat.html
http://www.soft.com/Products/Advisor/index.html
http://www.soft.com/Products/Advisor/metric.html
http://www.soft.com/Products/Advisor/tdgen.html
http://www.soft.com/Products/Advisor/static.html
http://www.soft.com/Products/aboutstw.html
http://www.soft.com/AppNotes/TestWorksIndex/index.html
http://www.soft.com/Products/Downloads/download.datasheets.html
http://www.soft.com/Products/Downloads/index.html
http://www.soft.com/Products/Downloads/send.license.html
http://www.soft.com/Products/Downloads/down.quickstart.html
http://www.soft.com/Products/Downloads/down.manuals.html
http://www.soft.com/Products/product.matrix.html
http://www.soft.com/Products/product.matrix.html
http://www.soft.com/Images/TestWorks.Images/SRTW1.GIF

TestWorks Product Descriptions

http://www.soft.com/Products/index.html (4 of 4) [5/4/2000 3:59:12 PM]

mailto:info@soft.com
http://www.soft.com/srhome.html
http://www.soft.com/Info/index.html
http://www.soft.com/Users/index.html
http://www.soft.com/Jobs/index.html
http://www.soft.com/Partners/index.html
http://www.soft.com/Distributors/index.html
http://www.soft.com/Corporate/index.html
http://www.soft.com/Institute/index.html
http://www.soft.com/QualWeek/index.html
http://www.soft.com/Support/index.html
http://www.soft.com/Products/screen.html
http://www.soft.com/AppNotes/index.html
http://www.soft.com/Solutions/index.html
http://www.soft.com/Technology/index.html
http://www.soft.com/News/index.html
http://www.soft.com/contents.html
http://www.soft.com/srhome.html

 1

Superior IS is a rapidly growing IT technology solutions provider to both the Global 1000 and fast-
moving dot.com startups. SIS specializes in executing and delivering IT services and products
that are a combination of high-end consulting services wrapped around business-focused high
technology solutions.

1. Strategic and Technology eConsulting
Superior IS has always focused on leading edge strategic business and technology
issues. Current services include:

• IT and Internet Strategy & Planning

• IT and Internet Architecture Planning & Implementation

• Acting CTO’s

• Strategic Sourcing

• Web Development Project Management

• ECommerce Development & Deployment Management

• LAN/WAN Technical Services

2. Outsourced Testing Solutions at the Speed of eBusiness
Superior IS’s testing solution is a factory-based, fast and comprehensive approach to
testing, created specifically for the eWorld.

• Functional Testing: Removes most of the functional testing burden from your staff
by shifting the load to our testing specialists located in our “testing factory”

• Load Testing: Stress testing web-sites with 100's of users, differentiating between
users, accessing your site simultaneously to ensure scalability.

• Site Integrity: Review of the navigation, HTML syntax, graphics download speed,
and multiple browser compatibility to ensure proper operation by all users.

• Site Monitoring: Vigilant quality assurance by providing continuous/scheduled
testing and monitoring to ensure peak performanceSuperior IS – Experience

Companies have Trusted for over Fifteen Years

For more information on Superior IS’s eTechnology Services, please contact:

Matthew Dusanic
Superior IS

760 Market Street, Suite 306
San Francisco, CA 94102

415 398-6500
mdusanic@superioris.com

Greta Cohen
Superior IS

3361 Berry Drive
Studio City, CA 91604

213-500-8097
gcohen@superioris.com

www.superioris.com

TechExcel, Inc.
Company Profile

TechExcel is a leading provider of integrated Web and client/server solutions for tracking
and workflow applications. Founded in 1995, TechExcel is dedicated to integrating the
power of the Internet with robust LAN-based systems, providing comprehensive
solutions for today’s demanding high-technology companies.

High Profile Customers

TechExcel’s products have been embraced by some of the top companies and software
development teams around the world. U.S. customers include Hewlett Packard, Texas
Instruments, Dolby Labs, Honeywell DMC, Eastman Kodak, EDS, Fujitsu Software, and
the Gartner Group. International customers include Nortel Networks (Canada), Cochlear
Ltd. (Australia), Ericsson (Sweden), Orion (Norway), LionBridge Technologies (Ireland),
Software Kinetics Ltd. (Canada) and Mosaic Software (South Africa).

Feature Product

DevTrack is the premiere defect- and project-tracking tool for software development
teams. DevTrack comprehensively tracks and manages all product defects, development
issues, and related documentation. DevTrack also provides robust reporting and
communication tools, and allows for extensive customization. Intuitive and powerful,
DevTrack provides a sophisticated Web and client/server solution for software
development teams.

Features Include

Comprehensive tracking and management of software defects, feature requests, and other
development issues.
Definable workflow allows the defect-resolution process to be fully defined and
controlled, ensuring high-quality products.
Full ODBC-compliance ensures easy scalability from one to many thousands of users.
The industry's best integration with Microsoft’s Visual SourceSafe version control
software.
Automatic e-mail notification for any QA or development team member when selected
events occur, based on definable criteria.
DevTrack Web provides nearly all of DevTrack’s powerful features, with an easy and
intuitive LAN-like interface.

The Telcordia Software Process Improvement Practice offers consulting expertise that
allows for rapid, common sense improvement of processes. This is based on first-hand
knowledge of successful techniques and quantifiable data to support potential savings in
time-to-market, testing and development costs and increased customer satisfaction. The
offerings are customized to meet the specific needs of each company’s software
development organization.

In 1999, Telcordia Technologies became one of the few corporations in the world to have
their own software development organization assessed by the most stringent industry
standard – the Software Engineering Institute (SEI) Capability Maturity Model (CMM).
The 3,500 person IT Group attained Level 5 status, making it the largest in the world ever
to achieve this distinction. These results enable our expert consultants to bring practical
experience, as well as, cutting edge methods for rapid process improvement to each or
our clients, including: strategy definition customized process framework and goal-
oriented metrics programs.

Telcordia Technologies, Inc., an SAIC company, provides software, engineering,
consulting and training services to optimize the performance of communication networks
worldwide. Telcordia was created in 1984, employs 6000 professionals, and has
revenues of more than $1.2 billion. Telcordia (www.telcordia.com) is headquartered in
Morristown, NJ, with offices throughout the United States, Europe, Central and South
America and Asia Pacific.

TERADYNE SOFTWARE & SYSTEMS TEST

SST is the leading supplier of solutions for automating the system definition
and test generation process for software systems. Major telecom suppliers
currently use SST’s products across a wide range of telecom systems to achieve
80-90% improvement in test development time and productivity. TestMaster is a
general-purpose solution that generates tests for virtually any application
running under any test execution environment or combination of test execution
environments. Hammer CallMaster is a new optimized test generation solution for
computer telephony applications that are tested using the Hammer IT Test system.

Teradyne Software & Systems Test
44 Simon Street
Nashua, NH 03060
Web: www.teradyne.com

Vanteon e-Quality Solutions

Vanteon e-Quality and Test solutions are as creative as the software you write, as innovative as the web site
your business depends on.

For more than fifteen years, Vanteon has developed and refined the industry’s most effective QA and
testing methodologies, processes, documentation and tools to meet the business, market and quality
requirements of our clients. As business and technology platforms constantly change, Vanteon
continuously evolves its methodologies to keep pace with the rapid deployment of new web technologies,
and hardware and software designs. At Vanteon, we not only implement QA and testing best practices for
our internal product development, we create them for our clients as well.

Through its diverse experience, Vanteon has built a repository of knowledge accessible to companies
looking for customized Quality Assurance and Testing solutions. Vanteon specializes in QA process
consulting, test planning, test documentation development and test execution, including strategies and
scripts for Automated Desktop (capture/playback) and Automated Web Testing (functional, load, stress,
performance, benchmark). Compatibility testing is performed in our Configuration Test Labs. Vanteon
solutions span eBusiness, wireless peripherals, desktop/consumer, networking, client/server, embedded and
print/imaging. Our professionals are experts in a range of technologies, including Windows, Mac, UNIX,
LINUX, Windows CE, VxWorks, QNX and PSOS.

Vanteon is the premier national provider of comprehensive engineering solutions that generate revenue for
clients ranging from the Fortune 500 to hot.com start-ups. In our seven centers of engineering excellence,
Vanteon has assembled one of the industry’s most proficient integrated teams of engineering and
consulting professionals in e-business, quality assurance, commercial software development, and hardware
and embedded systems. For more information, call 1.800.266.5046 or visit www.vanteon.com.

VeriTest certifies information technology for global e-business through
definitive, real-world testing. As the testing arm of Lionbridge
Technologies, we cut time-to-market through cost-effective, global
processes. Our state-of-the art labs in North America, Europe and Asia offer
advanced test architecting, scripting, and execution. Emerging dot.com's and
established industry leaders alike come to us for:

Web Testing: We offer load, UI, hostability, compatibility and functional
testing of web-deployed applications, using automated and manual test
methodologies. Clients include developers, ASPs, site-builders, and
e-commerce leaders.

Localization and Internationalization Testing (L10N & I18N) of products as
they are globalized for deployment. We offer UI, compatibility and
functionality test capabilities in over 27 languages. Our technical and
linguistic expertise allows us to work with the industry's most complicated
network management and multi-tier web-enabled products.

Functionality and compatibility testing of software and hardware products.
We work within a full range of worldwide business and consumer environments,
including wireless and mobile infrastructures. Our labs offer professional
test planning and a huge library of products for interoperability
evaluations. Clients include some of the world's largest software vendors
and OEMs.

Certification Testing with leading industry standards in the Windows, Web,
Linux, Unix, ASP and advanced multi-platform network infrastructure realms.
We pioneered certification testing with Microsoft in 1994, and are now the
authorized site for critical software testing programs including Certified
for Microsoft Windows 2000. We also run compliance testing programs on
behalf of Autodesk, Oracle, and BMC Software.

Contact VeriTest today by U.S. Telephone 310.450.0062, email
info@veritest.com <mailto:info@veritest.com> , or see www.veritest.com
<http://www.veritest.com> .

Watchfire
135 Michael Cowpland Drive
Suite 400
Kanata, ON K2M 2E9
Tel: (613)599-3888
Fax: (613)599-3826
http://www.watchfire.com

Founded in 1996 as Tetranet Software, Watchfire of Kanata, is the leading
provider of quality analysis solutions for websites. Watchfire specializes in
the development of best of breed solutions that aid in reaching the highest
potential of the web environment as a means of communication and commerce.
Automated, scalable solutions make it simple for organizations to ensure their
ebusiness sites maintain the most efficient levels of content quality,
application reliability, site accessibility and usability.
Watchfire's powerful portfolio of software solutions has received numerous top
accolades. These include PC Computing's Most Valuable Product Award for Site
Management Software, Network Computing's Well-Connected Award for eCommerce Web
Content Management Software. Watchfire has also won support from such key market
leaders as Microsoft, Compuware, PSINet and Allaire.
Watchfire was early in recognizing that the promise of the information highway
was being seriously undermined by quality control problems. By developing the
first generation of website testing solutions, their team of experts responded
to the problem.
The intricacy compounded by the amount of quality control problems faced by web
developers is increasing alongside the exponential growth of Internet use, the
augmenting sophistication of web-based applications, and the ever-expanding
complexity and quantity of website content. Watchfire confronts these new market
changes with their progressive development of next generation quality analysis
solutions, which will allow organizations to ensure that their mission- critical
ebusiness websites provide high performance and superlative quality for the
customer experience.

Ziff Davis Labs (www.zdlabs.com) is the independent, for-hire testing service of Ziff Davis
Publishing. At our facilities in Silicon Valley and North Carolina's Research Triangle area, we
perform two distinct but related kinds of work:

• providing top-quality independent, for-hire testing of Internet and technology products,
and

• developing and distributing for Ziff Davis Publishing its industry-standard benchmark
software

We provide the trusted, independent testing services you need to move at top speed in the
Internet economy. Whether you want us to test your Web site, your desktop or server system, or
any other Internet or technology product, we have the expertise, experience, and equipment to do
the job.

We live and work at the heart of the Internet economy, testing for companies large and small,
established and up-and-coming. We’ll put your product--and, if you wish, your competitor's--
through its paces. Our experts will give you an objective assessment and warn you about any
bugs or potential problems. We'll examine your product from a fresh perspective, go as deeply
into the details of its operation as necessary, and put our findings in a meaningful, action-oriented
context.

If you’d like to keep our findings to yourself, we’ll provide strict confidentiality. If you want to
publicize the results, our marketing team can help you leverage our testing and analysis efforts to
your best competitive advantage. When your customers see that Ziff Davis Labs has tested your
Internet or technology product, they will know they can trust the results.

	QW 2000
	Conference Program
	Pre-conference Tutorials
	Conference Day #1
	Conference Day #2
	Conference Day #3
	Post-Conference Workshops
	Standby Presentations

	Tutorials
	A1: Rothman
	B1: Schneidewind
	C1: Deck
	D1: Deibler
	E1: Collard
	F1: Bazzana & Fagnoni
	G1: Kit
	A2: Binder
	B2: Musa
	C2: Gilb
	D2: Baarda & Koomen
	E2: Rosenberg, Stapko, & Gallo
	F2: Cowderoy
	G2: Loosey & Siegel

	Conference
	Keynotes
	1P1: Feldman
	Abstract/Bio
	Paper

	1P2: Gilmore
	Abstract/Bio
	Paper

	5P1: Osterweil
	Abstract/Bio
	Paper

	5P2: Pirker
	Abstract/Bio
	Slides
	Paper

	10P1: Dalceggio
	Abstract/Bio
	Slides
	Paper

	10P2: Jejurikar
	Abstract/Bio
	Paper

	10P3: Spafford
	Abstract/Bio
	Paper

	QuickStart
	2Q: Bach
	Abstract/Bio
	Slides
	Paper

	3Q: Binder
	Abstract/Bio
	Slides

	4Q: Gilb
	Abstract/Bio
	Slides

	6Q: Mayer
	Abstract/Bio
	Slides

	7Q: Marick, Bach, & Kaner
	Abstract/Bio
	Slides
	Paper

	8Q: Drake
	Abstract/Bio
	Slides

	9Q: Vinter
	Abstract/Bio
	Slides
	Paper

	Technology
	2T1: Silverstein
	Abstract/Bio
	Slides
	Paper

	2T2: Elder & Roma-i-Dalfo
	Abstract/Bio
	Slides
	Paper

	3T1: Bauer & Ingram
	Abstract/Bio
	Slides

	3T2: Oshana
	Abstract/Bio
	Slides
	Paper

	4T1: Stetter
	Abstract/Bio
	Slides

	4T2: Blackburn & Fontaine
	Abstract/Bio
	Slides

	6T1: Myrvold
	Abstract/Bio
	Slides
	Paper

	6T2: Hendrickson
	Abstract/Bio
	Slides
	Paper

	7T1: Spillner & Breymann
	Abstract/Bio
	Slides
	Paper

	7T2: White
	Abstract/Bio
	Slides

	8T1: Memon, Pollack, & Soffa
	Abstract/Bio
	Slides
	Paper

	8T2: Tsai, Bai, Huang & Paul
	Abstract/Bio
	Slides
	Paper

	9T1: Guckenheimer
	Abstract/Bio
	Slides

	9T2: Szymanski
	Abstract/Bio
	Slides

	Applications
	2A1: Andrews
	Abstract/Bio
	Slides
	Paper

	2A2: Takahashi
	Abstract/Bio
	Slides
	Paper

	3A1: Carman
	Abstract/Bio
	Slides

	3A2: Hayes
	Abstract/Bio
	Slides

	4A1: Lorensen & Miller
	Abstract/Bio
	Slides
	Paper

	4A2: VanFlandern
	Abstract/Bio
	Slides
	Paper

	6A1: Hartmann & Imoberdorf
	Abstract/Bio
	Slides

	6A2: Gao, Gupta, & Gupta
	Abstract/Bio
	Slides
	Paper

	7A1: Wang
	Abstract/Bio
	Slides
	Paper

	7A2: Trappe
	Abstract/Bio
	Slides

	8A1: Musa
	Abstract/Bio
	Slides

	8A2: Lami, Gnesi, Fusani, & Fabbrini
	Abstract/Bio
	Slides
	Paper

	9A1: Baarda
	Abstract/Bio
	Slides
	Paper

	9A2: Landau
	Abstract/Bio
	Slides

	Internet
	2W1: Fuller
	Abstract/Bio
	Slides
	Paper

	2W2: Porter
	Abstract/Bio
	Slides

	3W1: Savoia
	Abstract/Bio
	Slides
	Paper

	3W2: Subraya & Subrahmanya
	Abstract/Bio
	Slides
	Paper

	4W1: Garverick
	Abstract/Bio
	Slides
	Paper

	4W2: Rabin
	Abstract/Bio
	Slides

	6W1: Sundaram
	Abstract/Bio
	Slides

	6W2: Crispin
	Abstract/Bio
	Slides
	Paper

	7W1: Folkes & Lamar
	Abstract/Bio
	Slides

	7W2: Macintosh & Strigel
	Abstract/Bio
	Slides
	Paper

	8W1: Cowderoy
	Abstract/Bio
	Slides
	Paper

	8W2: Watson
	Abstract/Bio
	Paper

	9W1: Chang & Hon
	Abstract/Bio
	Slides
	Paper

	9W2: Kingston
	Abstract/Bio
	Slides

	Management
	2M1: Fleiss
	Abstract/Bio
	Slides
	Paper

	2M2: Rothman
	Abstract/Bio
	Slides
	Paper

	3M1: Lones
	Abstract/Bio
	Slides

	3M2: Kaner
	Abstract/Bio
	Slides
	Paper

	6M1: Crispin
	Abstract/Bio
	Slides
	Paper

	6M2: Lawrence & Rothman
	Abstract/Bio
	Slides

	7M1: Copeland
	Abstract/Bio
	Slides
	Paper

	7M2: Black
	Abstract/Bio
	Slides
	Paper

	8M1: Law
	Abstract/Bio
	Slides
	Paper

	8M2: Zasada
	Abstract/Bio
	Slides

	9M1: Guo, King, Ross & Stable
	Abstract/Bio
	Slides
	Paper

	9M2: Kasperowski
	Abstract/Bio
	Slides
	Paper

	Panels
	4P: Whitney & Nordquist
	Abstract/Bio
	Slides

	8P: Borelli
	Abstract/Bio

	9P: Lawrence
	Abstract/Bio
	Paper
	Rothman's Paper
	Derby's Paper
	O'Hara's Paper

	Vendor Technical
	2V1: Borza
	Abstract/Bio
	Slides

	2V2: VanName
	Abstract/Bio

	3V1: Perdue
	Abstract/Bio
	Slides

	3V2: Hote
	Abstract/Bio
	Slides

	4V1: Nemzer
	Abstract/Bio
	Slides

	4V2: Bowman
	Abstract/Bio
	Slides
	Paper

	6V1: Burnett
	Abstract/Bio

	6V2: Aivazis
	Abstract/Bio
	Slides
	Paper

	7V1: Cohen & Baack
	Abstract/Bio

	7V2: Katz
	Abstract/Bio
	Slides

	8V1: Bampos
	Abstract/Bio
	Slides

	8V2: Myers
	Abstract/Bio
	Slides

	Standby
	SB2: Tu
	Abstract/Bio
	Slides
	Paper

	SB3: Silacci
	Abstract/Bio
	Slides
	Paper

	SB4: Ben-Yaacov
	Abstract/Bio
	Slides
	Paper

	Workshops
	W1: Hoffmann
	Abstract/Bio

	W2: Kaner
	Abstract/Bio

	W3: Miller
	Abstract/Bio

	W4: Sabourin
	Abstract/Bio

	Sponsors
	Industry
	Software Research, Inc.

	Gold
	eValid
	Microsoft
	Rational
	ZD Labs

	Silver
	Compuware
	Vanteon
	NTS XXCAL

	Golden Leaf
	Software Emancipation Tech.
	Watchfire

	Media
	Software Development Magazine
	Cutter Consortium
	Software Business

	Expo
	AZOR
	Cisco Systems
	Computer Associates Intenational
	Compuware
	Dunn Systems
	eValid, Inc.
	IEEE
	Interim Technology
	Int'l institute for Software Testing
	LDRA
	McCabe & Associates
	Microsoft
	NTS XXCAL
	ParaSoft Corporation
	Polyspace
	Raleigh Group International/MuTek
	Rational
	Saleview Systems
	Segue Software
	SilverMark, Inc.
	Soffront Software
	Software Development Technologies
	Software Quality Engineering
	Software Research, Inc.
	Superior IS
	TechExcel, Inc.
	Telcordia Technologies, Inc.
	Teradyne Software & Systems Test
	Vanteon
	VeriTest
	Watchfire
	ZD Labs

