
THE 12TH INTERNATIONAL SOFTWARE

4XDOLW\�:HHN�����
San Jose, California

24 - 28 May, 1999

4XDOLW\�:HHN�����

Facing the Future

Conference
Tutorials
Expo Sponsored by

Sponsors
Software Research, Inc.

Conferences
Keynote Presentations

Technology Track

Tools & Solutions Track

Applications Track

Management Track

Vendor Technical Track

Extra Presentations

Exhibitors Informantion

Authors Index

Tutorial SessionsQuick-Start

Birds-Of-A-Feather

Sponsors

12th International Software Quality Week

Expo

Exhibitors Information

Vendor Technical Track
Wednesday, 26 May, 1999
Thursday, 27 May, 1999

12th International Software Quality Week

Keynote Presentations
Plenary Session

Conference
Welcome

Dr. Edward Miller, Software Research
Conference Overview

Plenary Keynote
#1

(DAY 1)

Dr. Martin Pol, IQUIP Informatica
Facing Test maturity

Plenary Keynote
#2

(DAY 1)

Mr. Jeff Schuster, Rational
E-Commerce Quality and YOU!

Plenary Keynote
#3

(DAY 2)

Mr. Cam Kaner, Independent Consultant
Facing the Future: The Law

Plenary Keynote
#4

(DAY 2)

Mr. Roger Sherman, Consultant
Commercial Product Testing

Plenary Keynote
#5

(DAY 3)

Dr. Jakob Nielsen, Nielsen Norman Group
Usability Aspects of Quality

Plenary Keynote
#6

(DAY 3)

Mr. Brian Marick, Reliable Software Technologies
Trapped by Models

Plenary Keynote
#7

(DAY 3)

Dr. Boris Beizer, Independent Consultant
The Mavin

12th International Software Quality Week

Technology Track

Conference Day #1 (2T1 - 4T2)
Wednesday, 26 May, 1999

Conference Day #2 (6T1 - 8T2)
Thursday, 27 May, 1999

Conference Day #3 (9T1 - 9T2)
Friday, 28 May, 1999

12th International Software Quality Week

Application Track

Conference Day #1 (2A1 - 4A2)
Wednesday, 26 May, 1999

Conference Day #2 (6A1 - 8A2)
Thursday, 27 May, 1999

Conference Day #3 (9A1 - 9A2)
Friday, 28 May, 1999

12th International Software Quality Week

Tools & Solutions Track

Conference Day #1 (2S1 - 4S2)
Wednesday, 26 May, 1999

Conference Day #2 (6S1 - 8S2)
Thursday, 27 May, 1999

Conference Day #3 (9S1 - 9S2)
Friday, 28 May, 1999

12th International Software Quality Week

Management Track

Conference Day #1 (2M1 - 4M2)
Wednesday, 26 May, 1999

Conference Day #2 (6M1 - 8M2)
Thursday, 27 May, 1999

Conference Day #3 (9M1 - 9M2)
Friday, 28 May, 1999

12th International Software Quality Week

QuickStart Track

Conference Day #1 (2Q - 4Q)
Wednesday, 26 May, 1999

Conference Day #2 (6Q - 8Q)
Thursday, 27 May, 1999

Conference Day #3 (9Q)
Friday, 28 May, 1999

12th International Software Quality Week

Birds-of-a-Feather

Conference Day #1 (2B - 4S)
Wednesday, 26 May, 1999

Conference Day #2 (6B1 - 8B2)
Thursday, 27 May, 1999

Conference Day #3 (9B1 - 9B2)
Friday, 28 May, 1999

12th International Software Quality Week

Vendor Technical Track
Wednesday, 26 May, 1999

VT1 8:30 CSVerilog Alain Kerbrat
VT2 9:15 McCabe & Associates Mi ke Smith
VT3 10:30 Q-Labs Ara Kouchdjian
VT4 11:15 Cyrano Shari Turney
VT5 12:00 Performance Research Eugenio Cervetto
VT6 12:45 Compuware Steve Goodhall
VT7 1:30 Soffront Manu Das
VT8 2:15 In formation Balance Peter Szirmak
VT9 3:30 Intrinsa Steven Prothero
VT10 4:15 Interim Technology Fred Scheck

Thursday, 27 May, 1999
VT11 8:30 Sunpower Computing Dave Priest
VT12 9:15 Rational Software TBA
VT13 10:30 ErgoLight Avi Harel
VT14 11:15 KeyLabs Eric Bowden
VT15 12:00 Software Emancipation Tech. Bruce Boes
VT16 12:45 Computer Associates John Okanishi
VT17 1:30 Testmasters George Van der Veen
VT18 2:15 Data Dimensions Gerry Ocampo
VT19 3:30 Software Research, Inc. Edward Miller
VT20 4:15 International Institute Magdy Hanna

for Software Testing

12th International Software Quality Week

Technology Track

2T1 Dr. Selim Aissi & Ms. Wendi Hummel, Applied
Dynamics International
Automating Syntax Testing: The Case of a Real-
Time Simulation Tool

2T2 Mr. Kenneth Nagin & Dr. Alan Hartman, IBM
TCBeans Software Test Tool Kit

3T1 Mr. Brian Miller, Teradyne
Automated Test Generation for Computer
Telephony Systems

3T2 Dr. Bettina Buth, Prof. Jan Peleska & Dr. Hui Shi,
Bremen University
Combining Methods for the Analysis of a
Fault-Tolerant System

4T1 Mr. Ira Baxter, Mr. Andrew Yahin, Mr Srinivas
Neunuri & Mr. Leonardo Moura, Semantic Designs
Lowering Maintenance Costs by Code Clone Removal

4T2 Mr. Christopher Agruss, Autodesk, Inc.
Automating Software Installation Testing

Conference Day #1 (Wednesday, 26 May, 1999)

12th International Software Quality Week

Technology Track

6T1 Ms. Fan Yang, Mr. Trung Nguyen & Mr. Anant
Adiga, Sequent Computer Systems, Inc.
A Web-Based System Testing Repository Model

6T2 Ms. Frances Medina & Mr. Andrew Van Kraanen,
AT&T Operational Technology Center
Test Automation of a GUI WEB Based Application: An
Experience Developing Reusable Automated Testing

7T1 Mr. Patrick Copeland, Microsoft
Approaches in Testing Componentization in the
Windows CE Operating System

7T2 Mr. Sergio Cherskov, Microsoft
Testing Windows CE 3.0 Real-Time Kernel

8T1 Mr. Steven Toeppe & Mr. Scott Ranville, Ford Motor
Company
An Automated Inspection Tool for a Graphical
Specification and Programming Language

8T2 Mr. John Kent, CISS Ltd.
Advanced Automated Testing Architectures

Conference Day #2 (Thursday, 27 May, 1999)

12th International Software Quality Week

Technology Track

9T1 Mr. Bor-Yuan Tsai, Mr. Simon Stobart, Mr. Norman
Parrington & Mr. Ian Mitchell, University of
Sunderland
A State-Based Testing Approach Providing Data
Flow Coverage in Object-Oriented Class Testing

9T2 Ms. Martina Marre, Ms. Monica Bobrowski & Mr.
Daniel Yankelevich, Universidad de Buenos Aires
A Software Engineering View of Data Quality

Conference Day #3 (Friday, 28 May, 1999)

12th International Software Quality Week

Applications Track

2A1 Mr. Graham Thompson, InCert Software
Minimizing Testing While Maximizing Failure
Detection

2A2 Dr. Frank Ackerman & Ms. Cherie McKinney,
Institute for Zero Defect Software / Adobe Systems
Measuring Fault Density in the Real World

3A1 Mr. Ron Silacci, Lucent Technologies
A Tester’s Top 10 List

3A2 Ms. Lisa Boden & Mr. Jon Hagar, Lockheed Martin
How to Build a 20 Year Successful Independent
Verification and Validation (IV&V) Program for the
Next Millennium

4A1 Mr. Steven Rabin, Interworld Corporation
eCommerce Performance Benchmarking --
Methodology and Criteria

4A2 Mr. Federico Pacquing, Jr., TechWave Inc.
Usability Testing in E-Commerce Applications

Conference Day #1 (Wednesday, 26 May, 1999)

12th International Software Quality Week

Applications Track

6A1 Dr. Mei-Hwa Chen & Mr. Ming-Hung H. Kao,
SUNY Albany
Investigating Test Effectiveness on Object-Oriented
Software -- A Case Study

6A2 Mr. Glen Xia, Deloitte Consulting
An Industrial Case Study of Quantitative
Management for Object-Oriented Software Testing

7A1 Mr. Leon Slota, Neoglyphics Media Corporation
Developing Load and Performance Requirements
for Web Sites

7A2 Mr. Sam Guckenheimer, Rational Software Corp.
Effective Testing for Java-Based Web Software

8A1 Mr. Lorenzo Lattanzi & Mr. Mario Musmeci,
Alenia Aerospazio
Safety Critical S/W Development for a Satellite
Based Navigation System

8A2 Mr. Matias Vierimaa & Ms Minna Makarainen,
VTT Electronics.
Improving DSP Software Engineering Processes
from the Testing Viewpoint

Conference Day #2 (Thursday, 27 May, 1999)

12th International Software Quality Week

Applications Track

9A1 Mr. Jon Hagar, Lockheed Martin
Industrial Experiences in Establishing Laboratories
and Software Models for Testing Software

9A2 Ms. Johanna Rothman, Rothman consulting Group
Using Quality to Drive Product Development
Processes

Conference Day #3 (Friday, 28 May, 1999)

12th International Software Quality Week

Tools & Solutions Track

2S1 Mr. Douglas Hoffman, Software Quality Methods, LLC
Test Automation Architectures: Planning for Test
Automation

2S2 Mr. Alan Ark & Ms. Sarah Ackroyd, Thomson
Financial Services
Euro: An Automated Solution to Currency Conversion

3S1 Mr. Ron Silacci, Lucent Technologies
A Tester’s Top 10 List

3S2 Mr. Rob Oshana, Raytheon Systems Company
An Automated Testing Environment to Support
Operational Profiles of Software Intensive Systems

4S1 Dr. Heesun Park, SAS Institute Inc.
Optimum Level of Test Automation for Multi-
Platform Client/Server Software

4S2 Dr. Huey-Der Joseph Chu, National Defense
Management College
Automating Client/Server Testing in the Real World

Conference Day #1 (Wednesday, 26 May, 1999)

12th International Software Quality Week

Tools & Solutions Track

6S1 Mr. Hanania T. Salzer, RTS Software Ltd.
ATRs (Atomic Requirements) Used Throughout
Development Lifecycle

6S2 Mr. Larry Apfelbaum & Mr. Steve Meyer,
Teradyne / At&T
Use Cases Are Not Requirements

7S1 Mr. Jim Williams, CableData, Inc.
Testing for Y2K Compliance: A Case Study

7S2 Mr. Gunther Chrobok-Diening, Mr. Andreas Ulrich
& Mr. Peter Zimmerer, Siemens AG
Test Architectures for Testing Distributed Systems

8S1 Dr. Siegfried Voessner, Mr. Michael O’Sullivan &
Mr. Joachim Wegener, Stanford / Daimler-Chrysler
Genetic Algorithm with Cluster Analysis for
Software Testing

8S2 Mr. Yuri Chernak, Valley Forge Consulting, Inc.
In-Process Validation and Improvement of Test-Case
Effectiveness

Conference Day #2 (Thursday, 27 May, 1999)

12th International Software Quality Week

Tools & Solutions Track

9S1 Mr. Alain Kerbrat & Mr. Iulian Ober, Verilog
Automated Test Generation from SDL/UML
Specifications

9S2 Dr. Ingrid B. Ottevanger, IQUIP
Test Factory (TSite): A Next Step in Structured
Testing

Conference Day #3 (Friday, 28 May, 1999)

12th International Software Quality Week

Management Track

2M1 Mr. Roger Records, Mr. Jay Ahlbeck, Ms. Linda Lin
Mr. Jon Scharer & Ms. Margaret Stocking,
Boeing Commercial Airplanes
Deploying SQA in Very Small Projects

2M2 Mr. Mike Ross, Quantitative Software Management
Size Does Matter: Continuous Size Estimating and
Tracking

3M1 Mr. John N. Romanak, Bellcore
Life As A CMM Level 5 Test Organization

3M2 Dr. Ilene Burnstein, Dr. Ariya Homyen, Dr. Taratip
Suwannasart, Mr. Robert Grom & Mr. Gary Saxena,
Illinois Institute of Technology
Using the Testing Maturity Model (TMM) to Assess
and Improve Your Software Testing Process

4M1 Mr. Nathan Baddoo & Dr. Tracy Hall,
South Bank Univeristy
The Impact of Software Practitioner on Software
Quality

4M2 Mr. Michael Deck, Cleanroom Software Engineering
Process Diversity: How I Stopped Worrying and
Learned to Love Chaos

Conference Day #1 (Wednesday, 26 May, 1999)

12th International Software Quality Week

Management Track

6M1 Mr. Herb Krasner, Krasner Consulting
Using the Cost of Quality Approach for Software

6M2 Mr. Tom Gilb, Result Planning Limited
Risk Management Technology: A Toolkit for Identi-
fying, Documenting, Analyzing and Coping with
Project Risk

7M1 Mr. Philip Lones, Lucent Technologies
Revolutionary? a Development Method That Works

7M2 Mr. Nick Borelli, Microsoft Corporation
Seizing Control of the Development Lifecycle

8M1 Mr. James Bindas, Intel Corporation
Tactical Improvement Projects: Real-Life Lessons in
Leading Change

8M2 Mr. Scott Young, Perot System Corporation
Them and Us: Communication Between
Development and Test

Conference Day #2 (Thursday, 27 May, 1999)

12th International Software Quality Week

Management Track

9M1 Mr. Tom Wissink, Lockheed Martin Mission Systems
Test Engineering -- A “Value Add” Career Path

9M2 Mr. Keith Stobie, BEA Systems, Inc.
Creating a Testing Culture

Conference Day #3 (Friday, 28 May, 1999)

12th International Software Quality Week

QuickStart Track

2Q Mr. Rainer Pirker & Mr. Andreas Rudolf, IBM
Millennium is Getting Closer -- The Quickstart to
Y2K Testing

3Q Mr. Tom Gilb, Result Planning Limited
Evolutionary Project Management (‘Evo’)

4Q Mr. Bill Deibler, Software Quality Consulting (SSQC)
Making the CMM Work: Streamlining the CMM for
Small Projects and Organizations

Conference Day #1 (Wednesday, 26 May, 1999)

12th International Software Quality Week

QuickStart Track

6Q Mr. Douglas Hoffman & Dr. Cem Kaner, Software
Quality Methods, LLC / Independent Consultant
Thoughts on Oracles and Software Test Automation

7Q Mr. Ted Hammer, NASA GSFC SATC
Continuous Risk Management at NASA

8Q Dr. Cem Kaner, Independent Consultant
Recruiting Software Testers

Conference Day #2 (Thursday, 27 May, 1999)

12th International Software Quality Week

QuickStart Track

9Q Ms. Elfriede Dustin & Mr. John Paul,
CSC / Freddie Mac
Moving From Conventional Testing to
Object-Oriented Testing

Conference Day #3 (Friday, 28 May, 1999)

12th International Software Quality Week

Birds-of-a-Feather

2B Ms. Elisabeth Hendrickson, Aveo, Inc.
Mass Market Software Testing

3B1 Ms. Peggy Fouts, Compuware Corporation
Medical and Safety Critical Application Testing

3B2 Mr. Mark Wiley, nCUBE
OS and Embedded System Testing Techniques

4B1 Mr. Larry Apfelbaum, Teradyne
Telecommunications Software

4B2 Mr. Jon Hagar, Lockheed Martin
Testing for Military and Government Software

Conference Day #1 (Wednesday, 26 May, 1999)

12th International Software Quality Week

Birds-of-a-Feather

6B Ms. Johanna Rothman, Rothman Consulting Group
Life as a New Test Manager

7B1 Dr. Cem Kaner, Independent Consultant
Status Report on US Software Quality Laws

7B2 Mr. Richard Denney, Landmark Graphics
Blue Collar Formal Methods

8B1 Mr. Rodney Wilson, KLA-Tencor
Care and Feeding of a Testing Career

8B2 Mr. Mark Johnson, OrCAD
Productivity in Small Integrated Teams

Conference Day #2 (Thursday, 27 May, 1999)

12th International Software Quality Week

Birds-of-a-Feather

9B1 Mr. Mark D. Anderson, Discerning Software Corp.
Client/Server Load Testing

9B2 Ms. Carla Oexmann, ATI Research
Running a Nightly Test

Conference Day #3 (Friday, 28 May, 1999)

12th International Software Quality Week

Application
Track

Mr. Rex Black, Rex Black Consulting Services
Charting the Progress of System Development Using
Defect Data

Tool &
Solutions

Track

Mr. J. P. Schroeder, Teradyne
Model-based Testscript Generation for a C++ Class

Extra Presentations

12th International Software Quality Week

Exhibitors Information
$XWR7HVWHU

$=25��,QF�

&DSLWDO�2QH

&RPSXWHU�$VVRFLDWHV��������

���,QWHUQDWLRQDO��,QF�

&RPSXZDUH

&LVFR�6\VWHPV

&6�9(5,/2*

&<5$12

'DWD�'LPHQVLRQV

(UJR/LJKW

+DOO�.LQLRQ

,QIRUPDWLRQ�%DODQFH

,QWHULP�7HFKQRORJ\

,QWULQVD�&RUSRUDWLRQ

.H\/DEV��,QF�

0F&DEH�	�$VVRFLDWHV

0LFUR&UDIWV��,QF�

0LFURVRIW�&RUSRUDWLRQ

3HUIRUPDQFH�5HVHDUFK

4XDQWLWDWLYH�6RIWZDUH�0DQDJHPHQW

4�/DEV��,QF�

5DWLRQDO�6RIWZDUH

5HDVRQLQJ��,QF�

6RIIURQW�6RIWZDUH

6RIWZDUH�'HYHORSPHQW�7HFKQRORJLHV

6RIWZDUH�(PDQFLSDWLRQ�7HFKQRORJ\

6RIWZDUH�4XDOLW\�(QJLQHHULQJ

6RIWZDUH�5HVHDUFK��,QF�

6XQSRZHU�&RPSXWLQJ

7HFKQRORJ\�6HDUFK�,QW·O

7HUDG\QH�6RIWZDUH�	�6\VWHPV�7HVW

7HVWPDVWHUV

7KH�,QWHUQDWLRQDO�,QVWLWXWH�

���IRU�6RIWZDUH�7HVWLQJ

12th International Software Quality Week

Authors Index
Frank Acherman 2A2
Sara Ackroyd 2S2
Anant Adiga 6T1
Christopher Agruss 4T2
Selim Aissi 2T1
Mark Anderson 9B1
Larry Apfelbaum 4B1
Larry Apfelbaum 6S2
Alan Ark 2S2
Nathan Baddoo 4M1
Ira Baxter 4T1
Boris Beizer F1-F2
Boris Beizer 10P3
William Bently C2
James Bindas 8M1
Robert Binder H1-H2
Karen Bishop-Stone C1
Rex Black ST
Monica Bobrowski 9T2
Lisa Boden 3A2
Bruce Boes VT15
Nick Borelli 7M2
Eric Bowden VT14
Ilene Burnstein 3M2
Bettina Buth 3T2
Hans Buwalda A1-A2
David Carman 3S2
Eugenio Cervetto VT5
Mei-Hwa Chen 6A1
Yuri Chernak 8S2
Sergio Cherskov 7T2
G. Chrobok-Diening7S2
Huey Joseph Chu 4S2
Patrick Copeland 7T1
Manu Das VT7
Michael Deck K1-K2
Michael Deck 4M2
Bill Deibler 4Q

Richard Denney 7B2
Thomas Drake B2
Sally Drew J2
Elfriede Dustin 9Q
Peggy Fouts 3B1
Tom Gilb G2
Tom Gilb 3Q
Tom Gilb 6M2
Steve Goodhall VT6
Robert Grom 3M2
S. Guchenheimer 7A2
Jon Hagar
Jon Hagar 4B2
Jon Hager 9A1
Tracy Hall 4M1
Ted Hammer 7Q
Magdy Hanna G1
Magdy Hanna VT20
Avi Harel VT13
Alan Hartman 2T2
E. Hendrickson 2B
Douglas Hoffman 6Q
Ariya Homyen 3M2
Wend Hummel 2T1
Mark Johnson 8B2
Cam Kaner 5P2
Cam Kaner 7B1
Cem Kaner 6Q
Cem Kaner 8Q
Ming-Hung Kao 6A1
John Kent 8T2
Alain Kerbrat 9S1,vt1
Atte Kinnula 8A2
Edward Kit A1-A2
Ara Kouchakdjian VT3
Herb Krasner 6M1
Lorenzo Lattanzi 8A1
Phillip Lones 7M1
M. Makarainen 8A2

Brian Marick 10P2
Martina Mar re 9T2
John McGregor B1
Frances Medina 6T2
Steve Meyer 6S2
Brian Miller 3T1
Edward Mille r 1P1
Edward Mille r 5P1
Edward Mille r 10P4
Edward Mille r VT19
Ian Mitchell 9T1
Leonardo Moura 4T1
John Musa D2
Mario Musmeci 8A1
Kenneth Nagin 2T2
Srinivas Neunuri 4T1
Trung Nguyen 6T1
Jakob Nielsen 10P1
Gerry Ocampo VT18
Carla Oexmann 9B2
John Okanishi VT16
Rob Oshana 3S1
Ingrid Ott evanger 9S2
Federico Pacquin 4A2
Heesun Park 4S1
John Paul 9Q
Rainer Pirker 2Q
Norman Parrinton 9T1
Jan Peleska 3T2
Martin Pol 1P2
Dave Priest VT11
Shel Prince VT12
Steven Prothero VT9
Steven Rabin 4A1
Jeff Raksha 9Q
Scott Ranville 8T1
Roger Records 2M1
John Romanak 3M1

Linda RosenbergE1-E2
Mike Ross 2M2
Johanna Rothman 6B
Johanna Rothman 9A2
Andreas Rudolph 2Q
Hanania Salzer 6S1
Gary Saxena 3M2
Fred Scheck VT10
N. Schneidewind D1
J.P. Schroeder ST
Jeff Schuster 1P3
Roger Sherman 5P3
Hui Shi 3T2
Ron Silacci 3A1
Leon Slota 7A1
Mike Smith VT2
Keith Stobie 9M2
T. Suwanasart 3M2
Peter Szirmak VT8
Graham Thompson 2A1
Steven Toeppe 8T1
Bor-Yuan Tsai 9T1
Shari Turney VT4
Andreas Ulrich 7S2
G. van der Veen VT17
Leonard Verhoef J1
Matias Vierimaa 8A2
Siegfried Voessner 8S1
Mark Wiley 3B2
Jom Williams 7S1
Rodney Wilson 8B1
Tom Wissink 9M1
Glen Xia 6A2
Andrew Yahin 4T1
Fan Yang 6T1
Daniel Yankelevich 9T2
Scott Young 8M2
Peter Zimmerer 7S2

12th International Software Quality Week

Tutorial Sessions
TUTORIAL DAY #1

Mr. Edward Kit & Mr. Hans Buwalda
DT / CMG

A
1

Mr. Edward Kit & Mr. Hans Buwalda
SDT / CMG

A
2

Dr. John McGregor
Clemson University

B
1

Mr. Thomas Drake
Coastal Research & Technology, Inc.

B
2

Ms. Karen Bishop-Stone
Testware Associates, Inc.

C
1

Mr. William Bently
mu_Research

C
2

Dr. Norman Schneidewind
Naval Postgraduate School

D
1

Dr. John D. MUsa
Consultant

D
2

Dr. Linda H. Rosenberg
SATC, NASA

E
1

Dr. Linda H. Rosenberg
SATC, NASA

E
2

TUTORIAL DAY #2
Dr. Boris Beizer

Independent Consultants
A
1

Dr. Boris Beizer
Independent Consultants

A
2

Dr. Magdy Hanna
Int’l Institute for Software Testing

B
1

Mr. Tom Gilb
Result Planning Limited

B
2

Mr. Robert Binder
RBSC Corporation

C
1

Mr. Robert Binder
RBSC Corporation

C
2

Mr. Leonard Verhoef
Human Efficiency

D
1

Ms. Sally Drew
Tescom UK SGT

D
2

Mr. Michael Deck
Cleanroom Software Engineering Inc.

E
1

Mr. Michael Deck
Cleanroom Software Engineering Inc.

E
2

The Tutorial Notes and prior Conference Publications are available
from Software Research Institute
Click here for an order form

For more information about the Quality Week Conferences series,
please visit our web site at: http://www.soft.com/QualWeek/

http://www.soft.com/QualWeek/

Sponsors
Software Research, Inc.

Co-Sponsors:

Gold Sponsors:

Rational Software

Silver Sponsors:

Capital One

Interim Technology

Testmasters

Software SETT Corp.

12th International Software Quality Week

Sun Microsystems

1

1
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #1

Facing the Future means Facing Test Maturity

by

Martin Pol

IQUIP Informatica B.V., The Netherlands

2
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #2

Agenda

• Facing the Future
• Future Challenges
• Facing Test Maturity

2

3
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #3

Why keep on Testing ?

No Risk, No Test

• Maturity of the industry
– Error free software?
– Prevention not enough
– Technogoly push

• Business risks
– Importance software quality
– Integration business processes
– Time-to-market
– Competition

4
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #4

Testing in the Past, Present and Future

Exploitation

Past

Future

Present

Development

3

5
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #5

Testing under Pressure

Development

RAD

OOGUI’s

Integration

Business

Time-to-market

Error free
Quality

Efficiency

Tester
Automation

Internet

CBDC/S
Reuse

User-friendliness
Maintainability

Packages

6
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #6

Agenda

• Facing the Future
• Future Challenges
• Facing Test Maturity

4

7
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #7

Future Challenges

• Component Based Development
• Growing Complexity
• Suitable Test Methods and Tools
• Adequate Test Process Maturity

8
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #8

Component Based Development
What’s happening?

Tailor made Packages

Low

High

Components

Best-fitEfficiency

5

9
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #9

The CBD Process

Buy

Assembly

Selection

Architecture

Reuse Build Wrap

Execution

10
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #10

Growing Complexity

back-office
front-office
customer
supplier
employee
government

7 days a week
24 hrs
world wide

e-commerce
virtual organizations
knowledge mngmnt
data mining
computer & telephone

object orientation
client / server
GUI’s
component assembly
internet

hardware
software
network
color
graphics
art
sound
video
TV

6

11
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #11

Suitable Test Methods and Tools

• Research & Development
– Vendors & service suppliers
– Universities, EC, trendwatchers
– In company
– SIGISTs

• Training, conferences & publications
– Certified staff

• Tester’s professionalism
– Skills and expertise for “whatever” test

12
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #12

Unwanted Situation

Effort

Development

Testing

4GL, CASE, OO, SPI, CBD

198x 200xImportance Software Quality
“Test Legacy”
Testing becomes Visible
Growing Complexity

7

13
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #13

Desired Situation

198x Test Professionalism
Test Automation
Reuse
Test Process Improvement

200x

Effort

Development

Testing

14
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #14

Agenda

• Facing the Future
• Future Challenges
• Facing Test Maturity

8

15
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #15

What is Test Process Improvement ?

“Continuous improvement of the quality and the
 efficiency of the testing process, related to the
 output of the total software process”

• Quality Insight
Coverage
Control
Timeliness

• Costs Cheaper
• Lapse time Faster

16
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #16

General Improvement Life-cycle

• Goal & scope
• Current situation
• Desired situation
• Implementing changes

Required:

reference model

9

17
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #17

Model Requirements

• Controlled improvement steps
• Practical
• As objective as possible
• Options and priorities
• Highly detailed
• Fast assessment
• Independent

18
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #18

TPI® and CMM

Repeatable

Defined

Managed

Optimizing

Initial 1

5

4

3

2

Improving
process

Predictable process

Standard & consistent
process

Disciplined process

Ad hoc/chaotic process

TPI®

10

12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #19

The TPI®-model

Key Areas

Levels Test
Maturity
Matrix

Improvement suggestionsCheckpoints

20
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #20

Key Areas

• Testing strategy
• Life-cycle model
• Moment of involvement
• Estimating & planning
• Design techniques
• Static test techniques
• Metrics
• Test tools
• Testing environment
• Office environment

• Commitment & motivation
• Testing functions & training
• Scope of methodology
• Communication
• Reporting
• Defect management
• Testware management
• Test process management
• Evaluation
• White-box testing

11

21
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #21

Test Maturity Matrix
K e y A r e a / S c h a l e 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

1 T e s t s t r a t e g y A B C D

2 L i f e c y c l e m o d e l A B

3 M o m e n t o f i n v o l v e m e n t A B C D

4 E s t i m a t i n g & p l a n n i n g A B

5 T e s t d e s i g n t e c h n i q u e s A B

6 S t a t i c t e s t t e c h n i q u e s A B

7 M e t r i c s A B C D

8 T e s t t o o l s A B C

9 T e s t i n g e n v i r o n m e n t A B C

1 0 O f f i c e e n v i r o n m e n t A

1 1 C o m m i t m e n t & m o t i v a t i o n A B C

1 2 T e s t f u n c t i o n s & t r a i n i n g A B C

1 3 S c o p e o f m e t h o d o l o g y A B C

1 4 C o m m u n i c a t i o n A B C

1 5 R e p o r t i n g A B C D

1 6 D e f e c t m a n a g e m e n t A B C

1 7 T e s t w a r e m a n a g e m e n t A B C D

1 8 T e s t p r o c e s s m a n a g e m e n t A B C

1 9 E v a l u a t i o n A B

2 0 W h i t e - b o x t e s t i n g A B C

22
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #22

• Each Key Area has from 1 up to 4 Levels
• Each Level includes prior Level
• Based on priorities and dependencies
• To enable correlation: 13 Scales of maturity

Test Maturity Matrix Structure

12

23
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #23

K e y A r e a / s c h a l e 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

1 T e s t s t r a t e g y A B C D

2 L i f e - c y c l e m o d e l A B

3 M o m e n t o f i n v o l v e m e n t A B C D

4 E s t i m a t i n g & p l a n n i n g A B

5 T e s t d e s i g n t e c h n i q u e s A B

6 S t a t i c t e s t t e c h n i q u e s A B

7 M e t r i c s A B C D

8 T e s t t o o l s A B C

9 T e s t i n g e n v i r o n m e n t A B C

1 0 O f f i c e e n v i r o n m e n t A

1 1 C o m m i t m e n t & m o t i v a t i o n A B C

1 2 T e s t f u n c t i o n s & t r a i n i n g A B C

1 3 S c o p e o f m e t h o d o l o g y A B C

1 4 C o m m u n i c a t i o n A B C

1 5 R e p o r t i n g A B C D

1 6 D e f e c t m a n a g e m e n t A B C

1 7 T e s t w a r e m a n a g e m e n t A B C D

1 8 T e s t p r o c e s s m a n a g e m e n t A B C

1 9 E v a l u a t i o n A B

2 0 W h i t e - b o x t e s t i n g A B C

Current Situation - example

24
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #24

Desired Situation - example
K e y A r e a / s c h a l e 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

1 T e s t s t r a t e g y A B C D

2 L i f e c y c l e m o d e l A B

3 M o m e n t o f i n v o l v e m e n t A B C D

4 E s t i m a t i n g & p l a n n i n g A B

5 T e s t d e s i g n t e c h n i q u e s A B

6 S t a t i c t e s t t e c h n i q u e s A B

7 M e t r i c s A B C D

8 T e s t t o o l s A B C

9 T e s t e n v i r o n m e n t A B C

1 0 O f f i c e e n v i r o n m e n t A

1 1 C o m m i t m e n t & m o t i v a t i o n A B C

1 2 T e s t f u n c t i o n s & t r a i n i n g A B C

1 3 S c o p e o f m e t h o d o l o g y A B C

1 4 C o m m u n i c a t i o n A B C

1 5 R e p o r t i n g A B C D

1 6 D e f e c t m a n a g e m e n t A B C

1 7 T e s t w a r e m a n a g e m e n t A B C D

1 8 T e s t p r o c e s s m a n a g e m e n t A B C

1 9 E v a l u a t i o n A B

2 0 W h i t e - b o x t e s t i n g A B C

13

25
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #25

Levels:
A) Testing strategy for single test
B) Combined testing strategy for black-box tests
C) Combined strategy for black-box tests plus white-box tests

or evaluation
D) Combined strategy for all testing and evaluation activities

Levels: Test Strategy

26
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #26

Checkpoints:
• Conscious risk analysis
• Differentiation in scope and depth of the tests

(subsystems, quality attributes), depending on the risks
• > 1 design technique is used, suitable for the desired

testing depth
• Re-tests also have a (simple) strategy definition
• Strategy is defined, executed and controlled

Level A: Strategy for single test

Checkpoints: Test Strategy

14

27
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #27

Improvement Suggestions: Test Strategy

Improvement Suggestions (from 0 --> A):
• If only 1 technique is available, make simple variations,

which give either more or less test depth
• Define a re-test approach which makes a balance

between total or partial testing
• Divide the system under test in testable subsystems: give

priorities
• Divide the system under test in testable quality attributes:

give priorities
• To shorten the critical path testing-time: incremental

testing

Level A: Strategy for single test

28
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #28

Process of Change

Perform
evaluation

Formulate
plan

 Implement
improvement

actions

Awareness

Execute
assessment

 Define
improvement

actions

Determine scope
and approach

15

29
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #29

Don’ts

• Strictly top-down or strictly bottom-up
• Education only
• One-sided improvement
• Unsuitable pilots
• Black-box tests only
• Underestimation of resistance & culture
• (Too) high expectations

30
12th International Software Quality Week, May 24 - 28, 1999, San Jose IQUIP Informatica B.V. 1999, #30

Questions ?
What ??

How ?
Who !

Where ...Do you really think ...Can you explain…?

Information:

Books:

Website:

Email:

TPI (Addison Wesley)

www.iquip.nl/tpi

tpi@iquip.nl

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

FACING THE FUTURE MEANS
FACING TEST MATURITY

Martin Pol
IQUIP Informatica B.V.
Wildenborch 3, 1110 AG Diemen, The Netherlands,
phone: +31 20 660 66 00, fax: +31 20 695 32 98
email: polmarti@iquip.nl,

TPIemail: tpi@iquip.nl
TPI-website: www.iquip.nl/tpi (in Dutch, English, German and Spanish)
TPI-book authors: Tim Koomen and Martin Pol
(books available in Dutch, English and German (August 1999)

1. Background
Apart from continuous evolution in the technical infrastructure (e.g. Client/Server,
GUI's and the Internet) and in the development infrastructure (e.g. OO, RAD), the
challenges for testing lie in the integration of business processes and related innovations
such as electronic commerce and computer telephony integration. We will connect
customers, suppliers, employees, public services, etc., 24 hours per day, 7 days a week,
world-wide. Complexity of the IT-solutions and testing will grow dramatically. The
industry will focus on component integration: components of tailor-made software,
packages, odd data files and incompatible technical infrastructure have to play together.
Reusability and adaptability will be major quality requirements.

The future requires new test solutions and more mature test processes. Many
organisations still struggle with the implementation and consolidation of structured
testing. Frequently, day-to-day's pressure causes reinvention of the testing wheel over
and over again. Structured, continuous test improvement programmes are required to
establish a stable foundation for the challenges to come.

The TPI-model, which is based on current state-of-the-art test process improvement
practices, gives practical guidelines for assessing the maturity level of testing in an
organisation and for step by step improvement of the process. The purpose of such
improvement could be reaching CMM level 3.

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

2. Description of the TPI model
The model is visualised as follows:

Key Areas

Levels

Checkpoints Improvement Suggestions

Test
Maturity
Matrix

2.1 Key Areas

In each test process certain areas need specific attention in order to achieve a well defined
process. These Key Areas are therefore the basis for improving and structuring the test
process. The TPImodel has 20 key areas.

The scope of test process improvement usually comprises black-box tests like system and
acceptance tests. Most key areas are adjusted to this. However, to improve more "mature" test
processes, attention must also be given to verification activities and white-box tests like unit
and integration tests. Separate key areas are included in order to give due attention to these
processes as well.

A full list of key areas is given below, followed by an explanation.

Test strategy
Life cycle model
Moment of involvement
Estimating & planning
Test design techniques
Static test techniques
Metrics

Test tools
Test environment
Office environment
Commitment and motivation
Testing functions and training
Scope of methodology
Communication

Reporting
Defect management
Testware management
Test process management
Evaluation
White-box testing

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

Key Area Description

Test strategy Test strategy should be aimed at finding the most important defects as early
and as cheap as possible. In the test strategy it is determined what
(quality)risks are covered by testing. By involving more tests and more
detective measures, a better balanced strategy is possible. Unintentional
overlaps or gaps between different tests can be prevented by co-ordinating
testers and test activities, and by determining thoroughness.

Life cycle model Within the test process a number of phases are discerned: planning,
preparation, design, execution and completion. In each phase several
activities are performed. For each activity aspects like goal, input, process,
deliverables, dependencies, techniques and tools, facilities and
documentation are recorded. The importance of a life cycle model lies in
better control of the test process, since the activities can be planned and
controlled consistently.

Moment of involvement Although the actual test execution usually starts after the realisation of the
software, the test process should start a lot earlier. Earlier involvement of
testing in the system development life cycle helps detecting defects as early
and/or as easy as possible, and even helps preventing defects. Better co-
ordination between tests is possible and the critical path time of testing can
be greatly reduced.

Estimating & planning Estimating and planning are required in order to define which activities are
performed at what moment and how many resources will be needed.
Estimating and planning is the basis for reserving capacity and for co-
ordinating test activities and project activities.

Test design techniques A test design technique is defined as 'a standardised approach for deriving
test cases from documentation'. Usage of these techniques increases insight
in the quality and coverage of tests and leads to higher re-usability of tests.
Based on a test strategy, different test design techniques are used in order
to produce test coverage of the intended parts of the software to the extent
which was agreed upon.

Static test techniques Not everything can and needs to be tested dynamically, i.e. by running the
programmes. The phenomenon of checking products without running the
actual programmes or evaluating specified quality measures, is called static
testing. Checklists and similar devices are very useful here.

Metrics Metrics are quantified observations (measurements). For the test process,
measuring the progress and the quality of the software under test is very
important and so are metrics in these areas. Metrics are used in order to be
able to manage the test process, in order to support advice to be given, and
also in order to compare different systems or processes. It helps answering
questions such as 'Why is it that system A has far less failures in production
than system B has, why is it that test process A can be performed faster and
more thoroughly than process B can?' In the improvement of the test
process, metrics are specifically important for judging the results of certain
improvement actions. This is done by measuring before and after the
improvement takes place.

Test tools Automation of the test process can be done in a variety of ways. As a rule,
automation serves one of the following goals:
- less resource consumption;
- less time consumption;
- better test coverage;
- more flexibility;
- more or faster insight in the status of the test process;
- better motivation of test staff.

Testing environment Test execution takes place in a so called test environment. This
environment consists of the following components:
• hardware;
• software;
• communication facilities;
• facilities for creation and use of data sets;
• procedures.

The environment should be arranged so that optimal testing is possible.
The environment greatly influences the quality, duration and costs of the
test process. Important aspects of the environment are responsibilities,
control, timely and sufficient availability, flexibility and representativeness
of the actual production situation.

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

Office environment Test personnel need offices, desks, chairs, PC's, word processing facilities,
printers, telephones, etc. Good and timely arrangement of the office
environment positively influences motivation of testers, and
communication and efficiency of (the execution of) test tasks.

Commitment &
motivation

Commitment and motivation of the people involved in testing are
conditions for a mature test process. People involved are not only
members of the test team, but also, amongst others, project managers and
senior management. The test process is supplied with sufficient time,
money and resources (both quantitatively and qualitatively) to perform a
good test. Co-operation and communication with the others in the project
results in an efficient process and in earlier involvement.

Testing functions &
training

The test team requires a certain composition. A mixture is needed of
different disciplines, functions, knowledge and skills. For example, apart
from specific test expertise, also knowledge of the system under test is
necessary, knowledge of the organisation and general knowledge of
automation. Certain social skills are also very important. In order to get this
mixture, education and training is needed.

Scope of methodology For each test process a certain methodology or approach is used, consisting
of activities, procedures, standards, techniques, etc. If these methodologies
differ for each test process in the organisation, or if the methodology used
is too generic, a lot of things have to be reinvented over and over again.
The aim for an organisation is to use a methodology that is sufficiently
generic to be widely applicable, but that has enough detail at the same time
to be able to prevent undesired reinvention for each new test process.

Communication In a test process communication takes place in a number of ways, both
between testers as a group, and between testers and other members of the
project, such as the developer, the end-user, the project manager. Topics of
communication are test strategy, progress and quality of the software under
test.

Reporting Testing does not only deal with the detection of defects, but also with
giving advice on (the lack of) quality of software. Reporting should be
aimed at giving well funded advice to the project and customer on (the
quality of) software and even on the software development process.

Defect management Although defect management is in fact the project's responsibility, testers
are strongly involved here. A good administration should be able to control
the life cycle of a defect and to create several (statistical) reports. These
reports are used to give well funded quality advice.

Testware management Test products should be maintainable and reusable, and should therefore be
managed. Apart from test products, also the products of prior phases, such
as design and realisation, have to be managed well (although not by
testers!). The test process can be seriously disrupted by delivery of wrong
programme versions, etc. The demand of good management of these
products, increases testability (and quality) of software.

Test process
management

In order to manage each process and each activity, the four steps of the so
called Deming circle are essential: plan, do, check, act. A well managed
test process is of the utmost importance to perform the best possible test in
the often very turbulent test arena.

Evaluation Evaluation in this context means testing deliverables such as the functional
design. In comparison to testing, the advantage of evaluation is the
opportunity of early detecting defects. This causes the costs of repair to be
considerably lower. Also, evaluation is relatively simple to establish since
no programmes have to be run, no environment needs to be composed, etc.

White-box testing A white-box test is defined as a test of the internal properties of the object,
using knowledge of internal functioning. These tests are performed by
developers. Well known white-box tests are the unit test and the integration
test. Just like evaluation these tests take place earlier in the system
development life cycle than black-box tests. Also, white-box tests are
relatively cheap because less communication is required and because
analysis is easier (the person detecting the defect is often the same person
as the one who is to do the repairing. Besides, smaller objects are tested).

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

2.2 Levels

The way key areas are organised within a test process determines the 'maturity' of the process.
It is obvious that not each key area will be addressed equally thoroughly: each test process has
its strengths and weaknesses.

In order to enable insight in the state of the key areas, the model supplies them with Levels
(from A to B to C). On the average, there are three levels for each key area.

Each higher level (C being higher than B, B being higher than A) is better than its prior level
in terms of time (faster), money (cheaper) and/or quality (better). By using levels we can
unambiguously assess the current situation of the test process. It also increases the ability to
advice targets for stepwise improvement.

Each level consists of certain requirements for the key area. The requirements (= checkpoints)
of a certain level also comprise the requirements of lower levels: a test process at level B
fulfils the requirements of both level A and B. If a test process does not satisfy the
requirements for level A, it is considered to be at the lowest and, consequently, undefined
level for that particular key area.

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

Below a description is given of the different levels of the key areas.

Levels
Key Area

A B C D

Test strategy Test strategy for single test Combined test strategy for black-box tests Combined strategy for black-box tests plus
white-box tests or evaluation

Combined strategy for all test and
evaluation activities

Life cycle model Planning, Design, Execution Planning, Preparation, Design, Execution,
Completion

Moment of involvement Completion of specification Start of specification Start of requirements definition Project initiation

Estimating and planning Fundamental estimating & planning Statistically founded estimating &
planning

Design techniques Informal techniques Formal techniques

Static test techniques Intake test basis Checklists

Metrics Project statistics (product) Project statistics (process) System statistics Organisation statistics

Test tools Planning & control tools Test execution & analysis tools Integrated test automation

Test environment Managed and controlled environment Testing in most suitable environment Environment on call

Office environment Adequate & timely office environment

Commitment and motivation Assignment of budget & time Testing integrated in project organisation Test engineering

Test functions and training Test manager and testers Support (methodical, technical,
functional), control

Internal Quality Assurance

Scope of methodology Project specific Organisation, generic Organisation, optimising (R&D)

Communication Internal communication Project communication (defects, change
control)

Communication in organisation

Reporting Defects Progress (status of tests and products),
activities (costs + time, milestones),
defects with priorities

Risks & advice, including statistics SPI advice

Defect management Internal defect management Extended defect management, flexible
reporting facilities

Project defect management

Testware management Internal management & control of test
deliverables

External management & control of test
basis and test object

Reusable testware Traceability: from requirements to test
cases

Test process management Plan, do Plan, do, check, react Check, react in organisation

Evaluation Evaluation techniques Evaluation strategy

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

White-box testing Life-cycle: Planning, Design, Execution White-box design techniques White-box test strategy

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

2.3 Checkpoints

In order to determine levels, the TPI-model is supported by an objective measurement
instrument. The requirements for each level are defined in the form of Checkpoints:
questions that need to be answered positively in order to classify for that level. Based on the
checkpoints a test process can be assessed, and for each key area the proper level can be
established. As each next level of a key area is considered an improvement, this means that
the checkpoints are cumulative: in order to classify for level B the test process needs to
answer positively to the checkpoints both of level B and of level A.

2.4 Test Maturity Matrix

After determining the levels for each key area, attention should be directed as to which
improvement steps to take. This is because not all key areas and levels are equally important.
For example, a good test strategy (level A of key area Test Strategy) is more important than a
description of the test methodology used (level A of key area Scope of Methodology). In
addition to these priorities there are dependencies between the levels of different key areas.
Before statistics can be gathered for defects found (level A of key area Metrics), the test
process has to classify for level B of key area Defect management. Such dependencies can be
found between many levels and key areas.

Therefore, all levels and key areas are related to each other in a Test Maturity Matrix. This
has been done as a good way to express the internal priorities and dependencies between
levels and key areas. The vertical axis of the matrix indicates key areas, the horizontal axis
shows scales of maturity. In the matrix each level is related to a certain scale of test maturity.
This results in 13 scales of test maturity. The open cells between different levels have no
meaning in themselves, but indicate that achieving a higher maturity for a key area is related
to the maturity of other key areas. There is no gradation between levels: as long as a test
process is not entirely classified at level B, it remains at level A.

Scale

Key Area

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Test strategy A B C D

Life cycle model A B

Moment of involvement A B C D

Estimating and planning A B

Test design techniques A B

Static test techniques A B

Metrics A B C D

Test tools A B C

Test environment A B C

Office environment A

Commitment and motivation A B C

Test functions and training A B C

Scope of methodology A B C

Communication A B C

Reporting A B C D

Defect management A B C

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

Scale

Key Area

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Testware management A B C D

Test process management A B C

Evaluation A B

White-box testing A B C

The main purpose of the matrix is to show the strong and weak sides of the current test
process and to support prioritising actions for improvement. A filled in matrix offers all
participants a clear view of the current situation of the test process. Furthermore, the matrix
helps in defining and selecting proposals for improvement.

The matrix works from left to right, so low mature key areas are improved first. As a
consequence of the dependencies between levels and key areas, practice has taught us that real
'outlyers' (i.e., key areas with high scales of maturity, whereas surrounding key areas have
medium or low scales) give little return on investment. For example, what is the use of a very
advanced defect administration, if it is not used for analysis and reporting? Without violating
the model, deviation is permitted, but sound reasons should exist for it.

In the example below, the test process does not classify for the lowest level of the key area test
strategy(level < A), the organisation is working conform a life cycle model (level A) and the
testers are involved at the moment when the specifications are completed (level A).

Scale

Key Area

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Test strategy A B C D

Life cycle model A B

Moment of involvement A B C D

etc.

Based on this instance of the matrix, improvements can be discussed. In this example, a
choice is made for a combined test strategy for black-box tests (=> level B) and for a full life
cycle model (=> level B). Earlier involvement is at this moment not considered to be of
relevance. The required situation is represented in the following matrix.

Scale

Key Area

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Test strategy A B C D

Life cycle model A B

Moment of involvement A B C D

etc.

2.5 Improvement Suggestions

Improvement actions can be defined in terms of desired higher levels. For reaching a higher
level the checkpoints render much assistance. Beside these, the model has other means of
support for test process improvement: the Improvement Suggestions, which are different
kinds of hints and ideas that help to achieve a certain level of test maturity. Unlike the use of
checkpoints, the use of improvement suggestions is not obligatory. Each level is supplied with
several improvement suggestions.

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

3. Application of the TPI model
The process of test improvement is similar to any other improvement process. The figure
below shows the various activities of an improvement process. These activities are discussed,
with special attention for the places where the TPI model can be used.

Awareness

 Define
improvement

actions

Perform
evaluation

Formulate
plan

Determine scope
and approach

 Implement
improvement

actions

Execute
assessment

Awareness
The first activity of a test improvement process is to create awareness for the necessity to
improve the process. Generally speaking, a number of problems concerning testing is the
reason for improving the test process. There is a need to solve these problems and an
improvement of the test process is regarded as the solution. This awareness also implies that
the parties mutually agree on the outlines and give their commitment to the change process.
Commitment should not only be acquired at the beginning of the change process, but be
retained throughout the project. This requires a continuous effort.

Determine scope and approach
We determine what the improvement targets are and what the scope is. Should testing be
faster, cheaper or better? Which test processes are subjects for improvement, how much time
is available for the improvement and how much effort is it allowed to cost?

Execute assessment
In the assessment activity, an evaluation is given of the current situation. The use of the TPI

model is an important part of the assessment, because it offers a frame of reference to list the
strong and weak points of the test process. Based on interviews and documentation, the levels
per key area of the TPI model are examined by using checkpoints, and it is determined which
checkpoints were met, which were not met, or only partially. The Test Maturity Matrix is used
here to give the complete status overview of the test process. This will show the strengths and
weaknesses of the test process in the form of levels assigned key areas and their relative
position in the matrix.

Define improvement actions
The improvement actions are determined based on the improvement targets and the result of
the assessment. These actions are determined in such a way that gradual and step by step
improvement is possible.

The TPI model helps to set up these improvement actions. The levels of the key areas and
the Test Maturity Matrix give several possibilities to define gradual improvement steps.
Depending on the targets, the scope, the available time and the assessment results, it can be
decided to carry out improvements for one or more key areas. For each selected key area it can

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

be decided to go to the next level or, in special cases, even to a higher level. Besides this, the
TPI model offers a large number of improvement suggestions which help to achieve higher
levels.

Formulate plan
A detailed plan is drawn up to implement (a part of) the short term improvement actions. In
this plan the aims are recorded and it is indicated which improvements have to be
implemented at what time to realise these aims. The plan deals with activities concerning the
content of the test process improvement as well as general activities needed to steer the
change process in the right direction.

Implement improvement actions
The plan is executed. Because during this activity the consequences of the change process
have the largest impact, much attention should be spent on communication. Opposition, which
no doubt is present, must be brought to the surface and be discussed openly.
It has to be measured to what extent actions have been executed and have been successful. A
means for this is the so-called "self assessment", in which the TPI model is applied in order
to quickly determine the progress. Here, the persons involved inspect their own test processes
using the TPI model.
Another vital part of this phase is consolidation. It should be prevented that the implemented
improvement actions have a once-only character.

Perform evaluation
To what extent did the implemented actions yield the intended result? In this phase the aim is
to see to what extent the actions were implemented successfully as well as to evaluate to what
extent the initial targets were met. A decision about the continuation of the change process is
made based on these observations.

4. Conclusions and remarks
Current developments proceed at a very high speed. The productivity of developers is rising
continuously and the customers demand ever higher quality. Even if your current test process
is fairly satisfactory, your process will need to improve in the future. The TPI-model can
help you with this.

The TPI-model is an objective means to gain quick insight in the current situation of the test
process. The model greatly offers help for improvement in the form of key areas, levels and
improvement suggestions. It supports the definition of small and controlled improvement
steps, based on priorities.

The reader might get the impression that use of the TPI-model automatically leads to good
analysis of the current and required situation. This is not true. The model should be seen as a
tool for structuring the improvement of the test process and as a very good means of
communication. Apart from the tool, improvement of test processes demands a high degree of
knowledge and expertise of people involved, at least in the areas of testing, organisation and
change management.

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

5. References
Beizer, B. (1990), Software Testing Techniques, International Thomson Computer
Press, ISBN 1-850-32880-3

Bender, R. (1996), SEI/CMM Proposed Software Evaluation and Test KPA, STAR
'96

Boehm, B.W. (1979), "Software Engineering Economics", Prentice-Hall, Inc.,
Englewood Cliffs, NJ 07632

Boeters, A., Noorman, B., (1997), Kwaliteit op maat, Kluwer Bedrijfsinformatie,
ISBN 90-267-2579-5

Burns, T., Stalker, G.M. (1995), The Management of Innovation, Oxford University
Press, ISBN 0-19-828878-6

Deming, W. Edwards (1992), Out of the crisis, University of Cambridge, ISBN 0-
521-30553-5

Emam, K. El (editor), Drouin, J. (editor), (1998), Spice: The Theory and Practice of
Software Process Improvement and Capability Determination, IEEE Computer
Society, ISBN 0-81867-798-8

Ericson, T., Subotic, A., Ursing, S. (1996), Towards a Test Improvement Model,
EuroSTAR '96

Gelperin, D. (1996), A Testability Maturity Model, STAR '96

Grady, Robert B., Caswell, Deborah L. (1987), Software Metrics: Establising a
Company-Wide Program, Prentice-Hall, ISBN 0-13-821844-7

Graham D., Herzlich, P., Morelli, C. (1996), Computer Aided Software Testing, The
CAST-report, Cambridge Market Intelligence Limited, ISBN 1-897977-74-3

Hall, Terence J. (1995), The Quality Systems Manual : The Definitive Guide to the
Iso 9000 Family and Tickit, John Wiley & Sons, ISBN 0-471-95588-4

Hetzel, W. (1993), Making Software Measurement Work, Wiley-QED, ISBN 0-471-
56568-7

Horch, John W. (1996), Practical Guide to Software Quality Management, Artech
House Publishers, ISBN 0-89006-865-8

Humphrey, Watts S. (1989), Managing the Software Process, Addison-Wesley,
ISBN 0-201-18095-2

Jarvis, A., Crandell, V. (1997), Inroads to Software Quality, Prentice Hall, ISBN 0-
13-238403-5

Juran, J.M. (1988), Juran's Quality Control Handbook, McGraw-Hill, ISBN 0-070-
33176-6

Kaner, C., Falk, J., Nguyen, H. Q. (1993), Testing Computer Software (second
edition), International Thomson Computer Press, ISBN 1-85032-847-1

Kit, Edward (1995), Software testing in the real world, Addison-Wesley, ISBN 0-
201-87756-2

Kuvaja, P., Simila, J., Krzanik, L., Bicego, A., Saukkonen, S., Koch, G. (1994),
Software process assessment and improvement: the Bootstrap approach, Blackwell

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

McFeeley, Bob (1996), IDEALsm: a user's guide for Software Process Improvement,
Software Engineering Institute

Myers, G.J. (1979), The Art of Software Testing, Wiley-Interscience, New York
NY10158, ISBN 0-471-04328-1

Perry, William E., Rice, Randall W. (1997), Surviving the Challenges of Software
Testing, Dorset House Publishing, ISBN 0-932633-38-2

Pol, M., Teunissen, R., Veenendaal, E. van (1995), Testen volgens TMap®, Tutein
Nolthenius, 's-Hertogenbosch, ISBN 90-72194-33-0

Pol, M., Teunissen, R., Veenendaal, E. van (1996), Gestructureerd testen: een
introductie tot TMap®, Tutein Nolthenius, 's-Hertogenbosch, ISBN 90-72194-45-4

Pol, M., Veenendaal, E. van (1998), Structured Testing of Information Systems: an
Introduction to TMap®, Kluwer, Deventer, ISBN.90-267-2910-3

Pulford, K., Kuntzmann-Combelles, A., Shirlaw S. (1995), A quantitative approach
to Software Management, the ami Handbook, Addison-Wesley, ISBN 0-201-87746-5

Software Engineering Institute, Carnegie Mellon University (1995), The Capability
Maturity Model, Addison-Wesley, ISBN 0-201-54664-7

Trienekens, J., Veenendaal, E. van (1997), Software Quality from a Business
Perspective, Kluwer Bedrijfsinformatie, ISBN 90-267-2631-7

Books on TPI:
Dutch:
Koomen, T. and M. Pol (1998), Test Process Improvement, Leidraad voor stapsgewijs beter
testen, published by Kluwer BedrijfsInformatie,The Hague
English:
Koomen, T. and M. Pol (1999), Test Process Improvement: a Practical Step-by-Step Guide
to Structured Testing, Published by Addison Wesley Longman, London
German:
Koomen, T. and M. Pol (1999), Test Process Improvement, Anleitung für ein stufenweise
optimiertes Testen, planned to be published in August 1999

Internet:
at 'www.iquip.nl/tpi' several TPI-products can be viewed and downloaded. Also questions
can be asked and remarks can be made. Products are available in Dutch, English and German.

1

E-Commerce Quality
and You

presented bypresented by

Jeff SchusterJeff Schuster
Director, Performance Test ProductDirector, Performance Test Product

ManagementManagement
Rational Software CorporationRational Software Corporation

Do You Know Where YourDo You Know Where Your
Icebergs Are?Icebergs Are?

2

Internet Time

JANUARY

February March

June

January

April May

YEAR

SeptemberJuly August

DecemberNovemberOctober

Are You Ready to Release?

Release to Users

Project Duration

Release to Users

100%

50%

0%

P
ha

se
 C

om
pl

et
io

n

Features Coded

Defects
Removed

Q
ua

lit
y

G
ap

Ship Delay

3

Are You Ready to Release?

Release to Users

Project Duration

Release to Users

100%

50%

0%

P
ha

se
 C

om
pl

et
io

n

Features Coded

Defects
Removed

Q
ua

lit
y

G
ap

Ship Delay

Business Impact

What is the Team Objective?

Release to UsersRelease to Users

Project Duration

100%

50%

0%

P
ha

se
 C

om
pl

et
io

n

Bus
ine

ss
 Im

pa
ct

 Close the
 Quality Gap
 Earlier

Defects
Removed

4

What’s Your Most Common Defect “Resolution”?

1.1. Cannot reproduceCannot reproduce
2.2. Not a bugNot a bug
3.3. Deferred to next releaseDeferred to next release

100. 100. FIXED FIXED

Different DataDifferent Data

Different MetricsDifferent Metrics

Different ToolsDifferent Tools

Different MethodsDifferent Methods

TesterTester DeveloperDeveloper

How Testers and Developers Work

5

TesterTester DataData MetricsMetricsToolsTools MethodsMethods DeveloperDeveloper

Bridge the Information Gap

PerformancePerformancePerformance

Test All Dimensions of Quality

ReliabilityReliabilityReliability

FunctionalityFunctionalityFunctionality

6

The Web

What Do These Companies Have In Common?

7

0

10

20

30

40

50

Users

Re
sp

on
se

 T
im

e

Unacceptable
Performance

Incorrect
Behavior

Locating the Bottleneck
�� Predict when the system break in a productionPredict when the system break in a production

environment?environment?

Load Testing Tools
�� Measures system behavior under realistic loadMeasures system behavior under realistic load

WebWeb AppApp DBDB

8

Lets Review a Simple Web Environment

�� Customer presses buttonCustomer presses button
�� Browser submits request(s)Browser submits request(s)
�� Order gets processedOrder gets processed

What if performance is too slow?

�� Add Memory?Add Memory?
�� Add CPU Card?Add CPU Card?
�� Reconfigure Cache?Reconfigure Cache?

9

MiamiMiami

San JoseSan Jose

What if the Letter does not Arrive?

�� Buy a Faster Delivery Truck?Buy a Faster Delivery Truck?
�� Buy a new Watch?Buy a new Watch?
�� Buy a Ferrari?Buy a Ferrari?

MiamiMiami

San JoseSan Jose

10

Load Testing Tools
�� Measures system behavior under realistic loadMeasures system behavior under realistic load

WebWeb AppApp DBDB

0

10

20

30

40

50

Users

Re
sp

on
se

 T
im

e

0

10

20

30

40

50

Re
sp

on
se

 T
im

e Current
Performance

Reconfigured
Performance

Tuning the System

�� Fix the system before release?Fix the system before release?
� Change the architecture?
� Implement client-side logic?
� Reconfigure?

Copyright (c) Cem Kaner, 1999. 1

The Future:
Law of Software Quality

Cem Kaner
Quality Week

May, 1999

Copyright (c) Cem Kaner, 1999. 2

New Statutes Are New Products

• During development, a new statute has the same problems as
any other new product:

– Different stakeholders have different, often conflicting
interests

– Stakeholders might be favored, disfavored, or simply silent
and unnoticed (for now)

• Core requirements for any commercial law:
– The purpose of commercial law is to facilitate commerce.

– Parties to a transaction must be able to understand and
trust the transaction.

– Uniformity facilitates commerce.

– Stability facilitates commerce.

Copyright (c) Cem Kaner, 1999. 3

Key Legislative Proposals and Cases

Uniform Commercial Code: Article 2B
• Rewrites all laws governing software contracts. Virtually

eliminates accountability of vendors to customers, especially
in COTS products. (Protects computer vendors too.)

Software Lemon Laws
• Nothing official yet, but I’ve seen drafts. UCC 2B pulls the

pendulum one way. These pull it the other way.

Wild swings between these agendas will
drive the industry into chaos.

Copyright (c) Cem Kaner, 1999. 4

Key Legislative Proposals and Cases

Y2K Liability Shield Laws
• On January 1, 2000, the skies will open and rain lawyers. We will

be visited with a plague of lawsuits, taking over the entire judicial
system for years to come. This is what happened in the Y1K
crisis, and the result was the Dark Ages. To avoid this, we
allegedly need Y2K shield laws (or at least Y2K Umbrellas.)

Important Recent Cases
• Timberline Software: Known defects didn’t trigger liability.

• Gateway 2000: Claims of massive consumer fraud can be buried
in arbitration

• Boyd: The shrink-wrap reasoning (of 2B) applies to mobile
homes.

• Creative Labs: Claims of compatibility may be fully enforceable
against the vendor.

Copyright (c) Cem Kaner, 1999. 5

Bad Software: Mis-set Customer Expectations

The Canadian government (Industry Canada, Competition Bureau)
recently completed a study of the claims made on the packaging of
consumer software. Here is the bottom line:

“Over 2000 claims were evaluated during this survey. Overall, some
163 or 8.1% of all claims evaluated were potentially false or
misleading. While this may appear to be a small percentage based on
the number of claims evaluated, these incorrect claims represent 65%
of all the software titles tested.”

For detail, http://strategis.ic.gc.ca/FBP and search for “software”.

50% of software publishers don’t give their manuals to the test
group for testing. (Savings: about 15 minutes labor per page.)
(Risk: In most states, the manual creates express warranties.
The product must conform to all of the manual’s “statements of
fact”. The manual provides evidence of breach of contract.)

Copyright (c) Cem Kaner, 1999. 6

Bad Software: Defects

• In software, we routinely ship products with many
known defects.

• Complete testing is impossible. No one ships bug-free software.
The most responsible publishers pick the bugs they ship more
carefully and deal with complaining customers more responsibly.

• Immense pressure to ship products quickly: The 4th competitor to
market probably gets less than a 3% share.

• High cost of entry for new publishers’ products. Over-investment
in reliability or too-high a risk of liability will kill startups.

• Watts Humphrey and colleagues report products with
nearly zero coding errors discovered in the field. The
state of the art is advancing.

Copyright (c) Cem Kaner, 1999. 7

Bad Software: Pressure on Support
• Increasingly complex hardware/software configurations drive up

support calls and costs.

• Skyrocketing support costs: staff ratios rose from 1:12 to 1:7

• In 1996, 200 million calls to tech support. Software customers spent
over 3 billion minutes on hold. This is tip of the iceberg because
most American customers don’t complain.

• Cross-industry study of call hold times: Complaining software
customers left on hold for longer than any other industry studied,
even longer than airlines and government offices.

• Software companies have started charging for support. $3 per minute
or $35-95 per call (or incident) are common. Some companies charge
even in the event of known bugs. Quality / cost pressures from
support cost go away.

• Customer satisfaction with software technical support declined for
ten straight years.

Copyright (c) Cem Kaner, 1999. 8

Bad Software: Genuinely Bad Support

Companies routinely deny their defects during calls for
support (even known defects):

• we’ve never heard of that

• it must be your video card

• it must be you

• it’s a feature

Doing research for Bad Software, David Pels and I dug up
bug reports on BugNet and called publishers to complain
about those bugs. We always got denials. After getting
past denial, we still often heard these other excuses.

• For more data, see Bad Software or www.badsoftware.com/stats.htm

• For examples of lawsuits deriving from bad support, see my paper,
“Liability for Bad Software and Support” at www.badsoftware.com.

Copyright (c) Cem Kaner, 1999. 9

Irrational Myths About Customer Dissatisfaction

• Myth: no one uses documentation.
– Dataquest -- 85% of people in trouble solve their own problem

– Kaner’s data (financial application) -- 88% of callers said they
checked the docs first and could identify the weakness in the
doc that led them to give up and call for help.

• Myth: investments in support don’t improve sales.
– Jeff Tarter, SoftLetter, on MS’s $500 million investment in

support: “Despite lots of wishful thinking to the contrary, spending
money to upgrade a company’s service reputation remains a lousy
investment.”

• Myth: most calls for help reflect customer ignorance

 or customer fault.
– Kaner / Pels data (desktop publishing application): 50% of

calls could have been prevented with cheap fixes.

Copyright (c) Cem Kaner, 1999. 10

The Law Today: Uniform Commercial Code

• Uniform Commercial Code (UCC) is the law in 50
states.

• Article 2 governs contracts for sale of goods in USA
in 49 states.
– Sale of packaged software is a sale of goods.
– Sale of custom software is a sale of services, not

directly covered by the UCC.

• UCC is supplemented by laws governing fraud,
deceptive trade practices, unfair competition, public
safety, and consumer protection.

Copyright (c) Cem Kaner, 1999. 11

The Law Today: Copyright Act

• Copyright Act is federal law. Supercedes state laws that try to
govern copying and distribution of original works.

• Copyright Act provides a balance of rights to creators /
publishers and buyers.

– First sale doctrine
• Buyer of a copy may lend, resell, destroy, or mark up her

copy. The seller’s rights to that particular copy are exhausted
when the sale takes place.

– Fair use rights: limited copying allowed for
• reviews, parody

• classroom use

• reverse engineering

Copyright (c) Cem Kaner, 1999. 12

The Law Today: Copyright

First sale and some fair use rights depend on ownership of a
copy. Article 2B defines a sale of a copy of a program as a
license, but read the book of Ray Nimmer, Article 2B’s senior
author.

Ownership of a copy should be determined based on the actual character,
rather than the label, of the transaction by which the user obtained
possession. Merely labeling a transaction as a lease or license does not
control. If a transaction involves a single payment giving the buyer an
unlimited period in which it has a right to possession, the transaction is a
sale. In this situation, the buyer owns the copy regardless of the label
the parties use for the contract. Course of dealing and trade usage may
be relevant, since they establish the expectations and intent of the
parties. The pertinent issue is whether, as in a lease, the user may be
required to return the copy to the vendor after the expiration of a
particular period. If not, the transaction conveyed not only possession,
but also transferred ownership of the copy.

Ray Nimmer, The Law Of Computer Technology § 1.18[1] P. 1-103 (1992).

Copyright (c) Cem Kaner, 1999. 13

UCC Article 2B: Background

• UCC is jointly maintained and updated by the National
Conference of Commissioners on Uniform State Laws
(NCCUSL) and by the American Law Institute (ALI).

• NCCUSL is a legal drafting organization funded by the 50 US
states that writes all “Uniform” laws. It has about a 50%
success rate in passage of bills introduced into state
legislatures. (If the same bill is introduced into 50 legislatures,
on average, 25 would pass it.)

• The American Law Institute is a non-profit body of 3000
senior lawyers (judges, professors, senior partners in BIG law
firms).

• UCC and ALI appoint a joint Drafting Committee to prepare
recommended revisions.

Copyright (c) Cem Kaner, 1999. 14

UCC Article 2B: Background

• Will govern all contracts for the development, sale, licensing,
maintenance and support of software and almost all contracts
involving “digital” information (will gradually encompass
most books, movies, etc.).

• Current draft is over 200 pages

• 12 years in the works so far.

• Current draft significantly criticized at ALI, which passed
motions calling for fundamental revision. ALI will not
approve 2B in 1999.

• Despite the fact that ALI will not approve 2B and a UCC
change cannot be made without ALI’s approval, I believe that
there is a good chance that legislators will receive 2B in 1999.

Copyright (c) Cem Kaner, 1999. 15

Summary of Objections to 2B: Mass-Market

• No accountability for known defects.

• Makes warranty disclaimers too easy

• Eliminates applicability of key consumer protection laws

• Limits express warranties

• Limits your uses of the software

• Limits transfer (such as resale or gift of used software)

• Lets the publisher choose state/country’s law and forum

• No duty to protect your privacy

• Unreasonable electronic commerce rules
– handling of message “receipt”, online fraud, and online

error

• No pre-sale or time-of-sale disclosure of the contract terms

Copyright (c) Cem Kaner, 1999. 16

Braucher / Linzer Resolution (ALI)

At its Annual Meeting, in May, 1998, the American Law Institute passed the
following resolution (available at www.ali.org):

• “The current draft of proposed UCC Article 2B has not reached an
acceptable balance in its provisions concerning assent to standard
form records and should be returned to the Drafting Committee for
fundamental revision of the several related sections governing assent.”

The authors of the ALI resolution (Braucher and Linzer) wrote in their
supporting memo:

• “The Draft reflects a persistent bias in favor of those who draft
standard forms, most commonly licensors. It would validate practices
that involve post-purchase presentation of terms in both business and
consumer transactions (using "shrink-wrap" and "clickwrap"),
undermining the development of competition in contingent terms, such
as warranties and remedies. It would also allow imposition of terms
outside the range of reasonable expectations and permit routine
contractual restrictions on uses of information traditionally protected
by federal intellectual property law. A fundamental change of
approach is needed.”

Copyright (c) Cem Kaner, 1999. 17

Summary of Objections to 2B: Larger Business

• Eliminates the perfect tender rule (cancellation for obvious
defects that are found right away)

• Makes it harder to cancel a contract for “material breach”

• Lets publisher say you can never cancel the contract

• Transfer rules inflate costs of mergers and acquisitions

• Makes it risky to try an evaluation copy (publisher immunized
from liability for defects that you could have found during
evaluation)

• Allows self-help (shutdown of your software without a court
order)

Copyright (c) Cem Kaner, 1999. 18

Objections to 2B: Independent Developers / Authors

• Lets publishers ban reverse engineering

• Gives big customers stricter warranties from small vendors

• Subjects consultants to mixed or uncertain law

• Reduces publishers’ duty to actively market a work

• Makes it easier to refuse payment for competently written,
contracted-for articles

• Makes it easier to refuse payment for ideas submitted under
contract

• Lets publishers breach their writers’ transfer restrictions

Copyright (c) Cem Kaner, 1999. 19

Ban On Reverse Engineering

What’s the problem? Well, here’s why my colleagues and I have
reverse engineered.

Þ Personal education.

Þ Understand and work around (or fix) limitations and defects in tools that I
was using..

Þ Understand and work around (or fix) defects in third-party products.

Þ Make my product compatible with (able to work with) another product.

Þ Make my product compatible with (able to share data with) another
product.

Þ To learn the principles that guided a competitor's design.

Þ Determine whether another company had stolen and reused some of my
company's source code.

Þ Determine whether a product is capable of living up to its advertised
claims.

Copyright (c) Cem Kaner, 1999. 20

Perlman Amendment (NCCUSL)

“If a court as a matter of law finds the contract or any
term of the contract to have been unconscionable or
contrary to public policies relating to innovation,
competition, and free expression at the time it was made,
the court may refuse to enforce the contract or it may
enforce the remainder of the contract without the
impermissible term as to avoid any unconscionable or
otherwise impermissible result.”

Corresponding 2B change

“If a contract term violates a fundamental public policy,
the court may refuse to enforce [it]. . . to the extent that
the interest in enforcement is clearly outweighed by a
public policy against enforcement of that term.”

Copyright (c) Cem Kaner, 1999. 21

Growing Opposition to Article 2B
Here are some of the organizations that have recently asked that 2B be
tabled or cancelled or that have raised fundamental criticisms of Article 2B:

§ Magazine Publishers of America (www.2BGuide.com/docs/v9-
98.pdf)

§ Motion Picture Association of America
(www.2BGuide.com/docs/v9-98.pdf and
www.2BGuide.com/docs/mpaa1198.html)

§ National Association of Broadcasters
(www.2BGuide.com/docs/v9-98.pdf)

§ National Cable Television Association
(www.2BGuide.com/docs/v9-98.pdf)

§ National Consumer League (www.cptech.org/ucc/sign-on.html)

§ National Music Publishers Association (unpublished)

§ National Writers Union (www.nwu.org/pic/ucc1009a.htm)

§ Newspaper Association of America
(www.2BGuide.com/docs/v9-98.pdf)

§ Recording Industry Association of America
(www.2BGuide.com/docs/v9-98.pdf and
www.2BGuide.com/docs/riaa1098.html)

§ Sacramento Area Quality Association (unpublished)

§ Society for Information Management
(www.2BGuide.com/docs/simltr1098.html)

§ software-test-discuss (this is the Net’s largest e-mail discussion
forum on software quality control)

§ Special Libraries Association
(www.arl.org/info/letters/libltr.html and
www.arl.org/info/letters/Wright_ALI_letter.html)

§ United States Public Interest Research Group
(www.cptech.org/ucc/sign-on.html).

§ fifty intellectual property law professors
(www.2BGuide.com/docs/1198ml.html)

§ American Association of Law Libraries
(www.arl.org/info/letters/libltr.html and
www.arl.org/info/letters/Wright_ALI_letter.html)

§ American Library Association
(www.arl.org/info/letters/libltr.html and
www.arl.org/info/letters/Wright_ALI_letter.html)

§ American Society of Media Photographers
(www.nwu.org/pic/uccasmp.htm)

§ Association for Computing Machinery
(www.acm.org/usacm/copyright/usacm-ucc2b-1098.html)

§ Association of Research Libraries
(www.arl.org/info/letters/libltr.html and
www.arl.org/info/letters/Wright_ALI_letter.html)

§ Consumer Federation of America (www.cptech.org/ucc/sign-
on.html)

§ Consumer Project on Technology (Ralph Nader)
(www.cptech.org/ucc/sign-on.html)

§ Consumers Union (www.2BGuide.com/docs/cu1098.html)

§ Independent Computer Consultants Association (unpublished)

§ Institute for Electrical & Electronics Engineers (IEEE)
submitted specific criticisms of 2B
(www.ieee.org/usab/FORUM/POLICY/98feb23.html) which
have not been resolved in the ways requested. The IEEE
suggested in its most recent letter
(www.ieee.org/usab/FORUM/POLICY/98oct09.html) that if
these issues were not satisfactorily resolved, it too would
recommend tabling.

Copyright (c) Cem Kaner, 1999. 22

Software Lemon Laws

By overreaching, the industry is costing itself goodwill and
credibility. We are risking a backlash:

• 2B has been expensive

• More press coverage of 2B than any other part of UCC

• Microsoft trial

Y2K provides one of several opportunities for dissatisfied
customers (and consumer advocates) to demand greater
accountability of software vendors.

• Not all demands will take into account the difficulties of
developing software in this industry.

I have seen several proposals. None of these are (yet) draft
legislation. I am REPORTING these, NOT ENDORSING
them.

Copyright (c) Cem Kaner, 1999. 23

Software Lemon Laws

Cluster 1: Licensing model
• Theme: software should be developed by professionals and

craftspeople who are licensed by the state.

• Analogy is to the building of a house. Individuals should be
held liable (as are architects and plumbers). Vendors can be
held liable for defects caused by their employees / contractors.

• Predicted as fallout from Y2K by Dick Bender.

• Concerns:
– Licensed professionals are subject to malpractice suits.

– Malpractice involves failure to exercise the skill, knowledge
and diligence of a reasonably prudent, skilled professional.

– Do we KNOW what the reasonable standards of the
industry are? Could this create a malpractice lottery?.

Copyright (c) Cem Kaner, 1999. 24

Software Lemon Laws

Cluster 2: Consumer protection model
• Theme: contract terms must be disclosed and some unfair

terms are forbidden.

• Special rules for known defects.

• Special incentives to disclose defects.

• Strict application of deceptive trade practices statutes.

• All vendor claims become warranties.

• Free support for actual defects (known or unknown).

• Defects give rise to entitlement to refund or free upgrades.

• Limited reimbursement for consequences of defects.

Copyright (c) Cem Kaner, 1999. 25

Software Lemon Laws

Cluster 3: Punitive model
• Theme: It’s their fault. They should pay for the consequences.

– On proof that publisher / reseller knew or should have
known that a given defect existed, or on proof that a defect
was caused by a development practice was unreasonably
unsound---> Publisher / vendor accountable to customer
for refund plus some portion of other losses.

– On proof of a false or deceptive claim (product falsely
claimed to provide benefits, meet a standard, be
compatible with something else, have other characteristics
or attributes) then easy-to-bring class action for
reimbursement or partial refund or slightly harder class
action for triple damages. Lawsuits always OK in local
courts.

Copyright (c) Cem Kaner, 1999. 26

Other Y2K Fallout

• Extensive study of software liability by legal profession.

• Many cases fail because they involve only a breach of contract
(and the contract comes with no warranties, etc.)

• Y2K and other recent suits are teaching lawyers:
– New ways to demand assurances, statements that can

later be used as evidence of fraud or deceptive practices
– New ways to apply deceptive practice laws to contractual

statements, packaging, etc.

– New ways to prove that vendors’ software-related claims
were fraudulent.

• Very few current cases along these lines are getting anywhere,
but people are in training. Where there is serious injustice,
some way, eventually, people will figure out how to fight it.

Copyright (c) Cem Kaner, 1999. 27

Web Sites

Article 2B
• www.law.upenn.edu/bll/ulc/ulc.htm

Kaner:
• www.badsoftware.com

Kunze:
• www.2bguide.com

NCCUSL
• www.nccusl.org

Copyright (c) Cem Kaner, 1999. 28

What Can You Do?

• Get organizations that you belong to to write letters to
NCCUSL / ALI asking for termination of 2B. These
letters from the industry are impressive.

• Attend NCCUSL meeting in late July, in Denver. Details,
see www.nccusl.org.

• Write your state’s NCCUSL members (e-mail me for
addresses. kaner@kaner.com)

• Write your local legislators and protest 2B

• Write the heads of ALI and NCCUSL

• Write op-eds, or get press involved.

• Help me plan for an opposition campaign. I need advice,
help.

1

1

Facing the Future in Testing Commerical Software:

Improving the Dev/Test Cycle

Roger Sherman

2

Definitions
(commercial software)

• Bug (1): any controversial issue that arises from
the use of a product

• Bug (2): any issue that might generate a product
support call

• A Bug Report is a proposed unit of labor
formalized in the bug database which must be
addressed (resolved) before product release

2

3

Definitions
(commercial software)

• Subclasses of bugs:
– Defect: any unintended behavior of the product

– Fault: a defect in the code (may or may not be
observable through program execution)

– Failure: a defect observed during program execution

• Testability: the likelihood that a fault will become
a failure through program execution
– Product testability will be a key theme

4

Definitions
(commercial software)

• Testing effectiveness
– Testing goal: all bugs are known before release

– Effectiveness = were all bugs known?

• Testing efficiency
– How much labor did it take?

– Number of formalized bugs is the biggest
variable

3

5

Test strategy issues

• You can’t test everything

• You can attempt to test anything anytime, but…
– Test too early and you generate excessive bug reports

– Test too late and you slip RTM or ship bugs you can’t
fix in time

• Automated testing (running the app) is relatively
easy -- automated verification (finding the bugs) is
really hard

6

Where we can go from here

• Recognize that code (in its various forms) is
a database of information

• Build tools that can serve and analyze data
from these models of the code

• Build standard automation and verification
tools that can run on the code or models of
the code

4

7

Method

• Gather the Test Managers of the largest projects
at Microsoft

• What factors “overwhelm” testing?

• What are the key obstacles to testing efficiency?

• Where are the biggest potential “wins”?

• Look for tools and research opportunities which
address these problems

8

The Microsoft Test Manager’s
Top Five Countdown

Biggest opportunities for increasing
the efficiency of the dev/test cycle

5

9

V. Improve automation of component and
integration testing

• Essence of the problem:

• Developers now snap together extremely large
programs from many pre-developed components

• This creates integration bugs

• We do not have an equally efficient test strategy/tools
for component integration

• Blocking issue: no standard automation interface
in components for automated testing and
verification

10

V. Improve automation of component and
integration testing

• Possible solutions:

− Monkeys combined with standard automation
interfaces

6

11

IV. Executing the right tests
at the right time

• Smart testing is a “when-driven” activity
– A story…

– A moral...

– Data based tools are needed -- gut feel doesn’t
work

12

IV. Executing the right tests
at the right time

• Same problem, bigger scale: when have we
really hit code complete?
– Test Manager: do I test now, or wait 4 weeks

until they are really done?

– Test Manager: do I test now, or use the next 4
weeks to substantially increase my test
automation database?

– Test Manager: what parts are ready for test,
which ones are not?

7

13

IV. Executing the right tests
at the right time

• We use crude code metrics for these
decisions now
– Churn data tells us which areas are incomplete,

high risk (at project end)

– KLOC growth trend indicates whether
development is writing features or killing bugs

14

IV. Executing the right tests
at the right time

• Possible solutions:
– Orthogonal Defect Classification (ODC) from

IBM

– Better code churn analysis

– Any data which categorizes how code is being
changed by product area

8

15

III. Improve automation tools used for
platform & configuration testing

• The proliferation of platform/configs now
required is stressing the capacity of our test
organizations:

• Operating systems
(including supported earlier
versions)

• Languages
• Different SKU’s

• QFE’s
• Service Packs
• Prior version

interoperability

16

III. Improve automation tools used for
platform & configuration testing

• What are the blocking problems?
– Record/playback tools are not necessarily

cross-platform

– Record/playback tools may not even work on
the same platform!

– The verification problem
• Automatic verification may be invalid on a different

platform/config

• Different platforms may require different tests

9

17

III. Improve automation tools used for
platform & configuration testing

• Possible solutions?
– Better visually based verification tools

– Standardized automation interfaces built into
code or OS

– Automation built on models of the code

– Analysis of code vulnerability

18

II. Increase the rate Development can
diagnose and fix bugs found by Testing

• Improving fix rates could provide a more stable
code base, which increases the efficiency of both
dev and test

• Testing efficiency is also function of the number
of active bugs

• Most groups “carry” one month or more worth
of active bugs

10

19

II. Increase the rate Development can
diagnose and fix bugs found by Testing

• Possible solutions:
• Better debugger and tracing tools

• Automatic code instrumentation

• Stronger types

20

I. Reduce the quantity of bugs
released to Testing

• Labor cost of a bug is 10 times higher if Testing finds
it, than if Dev finds and fixes before check-in

• Key goal: improve the visibility of bugs in the code
prior to check-in

• Optimizing the find-fix cycle before check-in is a huge
win in terms of total project labor costs

• The developer’s desktop is where test automation has
the highest payback

11

21

I. Reduce the quantity of bugs
released to Testing

• What we do today:
– Check-in/Sniff tests (high leverage)

– Build Verification Tests (almost as high)

– Ask Developers to walk their code through the
debugger before check-in (tedious, and not
done very often)

22

I. Reduce the quantity of bugs
released to Testing

• Possible solutions:
– Better source code analysis tools

– Better automated unit testing tools for
developers

12

23

The Agenda for improving the
Dev/Test cycle

in commercial software

1. Reduce the quantity of bugs released to Testing.

2. Increase the rate at which Development can diagnose and fix bugs

found by Testing.

3. Improve automation used for platform and configuration testing.

4. Execute the right tests at the right time.

5. Improve automation of component and integration testing.

Facing the Future: Usability Aspects of Quality
Jakob Nielsen, Ph.D.
Nielsen Norman Group

www.useit.com and www.NNgroup.com

Do you go to more than one search
directory on a regular basis?

81% Yes
19% No

How do you decide which portal or search
directory to use?

54% Easy navigation
21% Fast downloads
13% Brand name content
6% It was an icon on my desktop
4% A friend recommended it
1% Saw an ad on TV

Survey of 1,032 MSNBC readers, January 1999
http://www.msnbc.com/modules/surveys/portal.asp#survey

Factors Driving Repeat Visitors To Their
Favorite Websites

75% High Quality Content
66% Ease of Use
58% Quick to Download
54% Updated Frequently
14% Coupons and Incentives
13% Favorite Brands
12% Cutting Edge Technology
12% Games
11% Purchasing Capabilities
10% Customizable Content
10% Chat and BBS
6% Other

Sources Used for Web Addresses

57% Search Engine
38% E-mail Messages
35% Other Websites
28% Word of Mouth
25% Magazine Ads
14% TV Commercials
11% Periodical Articles
11% Vendor Catalogs
9% Newspaper Ads
7% Banner Ads
2% Radio Ads

Forrester survey of 8,600 Web households, January 1999
http://www.webreference.com/new/990125.html#survey

Additional Reading

My recommended list of websites about usability: http://www.useit.com/hotlist
My recommended list of books about usability: http://www.useit.com/books
Textbook: Jakob Nielsen: Usability Engineering, Academic Press, 1994. ISBN 0-12-518406-9

Reports about the usability of e-commerce and employment sites: http://www.goodreports.com
Unfortunately these reports are rather expensive (but enter the discount code “useituseit” on the online order form to
save $100), so I can only recommend them for people who are in fact going to build an e-commerce site or a
recruiting/HR subsite. But such readers will easily save at least a week's work in collecting usability information
about specific design elements that work and don't work when doing commerce on the Web, so the report is worth it
for people who are actively working on e-commerce projects. Both reports are a series of usability reports on “top”
sites. Despite the sites being very famous, their usability problems are legion!

1

1

New Models for Test
Development

Brian Marick
Reliable Software Technologies

marick@rstcorp.com
www.rstcorp.com/marick/

Copyright © 1999 by Reliable Software Technologies. All rights reserved.
Some images copyright www.arttoday.com

2

My Goals

• Convince you of the harmful
effects of piggyback models

• Describe a model useful to testers
• Requirements justification

–see paper for explicit requirements

2

3

Step 1: Destroy Old Models
(Build Requirements for a New One)

• There is no such thing as unit
testing

• There is no such thing as
integration testing

4

A Typical Development Model

Requirements

Specification

Architectural
Design

Detailed
Design

Code

3

5

Tack On Some Testing

Requirements

Specification

Architectural
Design

Detailed
Design

Code

Unit Testing

Integration
Testing

System Testing

Acceptance
Testing

6

That’s a Bit Unfair

Requirements

Specification

Architectural
Design

Detailed
Design

Code

Unit Test Execution

Integration Test Execution

System Test Execution

Acceptance Test Execution

Unit Test Design

Integration Test Design

System Test Design

Acceptance Test Design

4

7

Defining
My Pictures

Interface

A Unit

Interface Interface

Interface Interface

Interface Interface

A Collection of Integrated Units
(“Subsystem”)

8

Unit Test Execution

Interface

5

9

Unit Test Execution

Interface

Stub

10

Unit Test Execution

Interface

Stub

Driver

6

11

Unit Test Execution?

Interface Interface

Same path

Same inputs

12

More Test Execution

Requirements

Specification

Architectural
Design

Detailed
Design

Code

Unit Test Design Unit Test Execution

Integration Test Execution
Integration Test Design

System Test Execution

Acceptance Test Execution

System Test Design

Acceptance Test Design

Unit Test Execution

Unit Test Execution

Integration Test Execution

7

13

Eliminate Artificial Distinctions

Requirements

Specification

Architectural
Design

Detailed
Design

Code

Unit Test Design Test Execution

Test Execution
Integration Test Design

Test Execution

Acceptance Test Execution

System Test Design

Acceptance Test Design

14

Downward Arrows

Requirements

Specification

Architectural
Design

Detailed
Design

Code

Unit Test Design Test Execution

Test Execution
Integration Test Design

Test Execution

Acceptance Test Execution

System Test Design

Acceptance Test Design

8

15

How Might This Happen?

Inter
face

16

Downward Arrows

Requirements

Specification

Architectural
Design

Detailed
Design

Code

Test Execution

Test Execution

Test Execution

Acceptance Test Execution

Some Test Design

Some Test Design

Some Test Design

Some Test Design

9

17Step 1 Summary:
Trapped by Models

Requirements

Specification

Architectural
Design

Detailed
Design

Code

Unit Testing

Integration
Testing

System Testing

Acceptance
Testing

18

The Consequences

• Information does not flow to
where it can be most efficiently
used

• Decisions are locked in
prematurely
–“we signed off on that already”

• Money is wasted

10

19

Step 2: Sketch a Model
(Hint at New Requirements)

• Project documents are a source of
information
–but do not drive testing

• The project schedule drives the
testing process

• See paper for requirement
descriptions

20

What Is Our Job?

11

21

 COMM

XARG

What Tells Us About Handoffs?

Partner
Release

Code
Complete

XML
Extensions

22

Building a Test Plan
(Working Backwards)

• What has changed?
• Who might be damaged?

 MM

XML
Extensions

• What tests are required?
–when are they best executed?
–what resources (tools, people) are

required?

• (Integrate with other handoff plans)

12

23

 COMM

The XML Plan

Partner
Release

Code
Complete

XML
Extensions

Design Exec

Tooling

Design Exec

Tooling

Testing approach
for XML extensions

24

 COMM

Regression Testing

Partner
Release

Code
Complete

XML
Extensions

Design Exec

Tooling Exec

Approach to handling
future change

Testing approach
for XML extensions

Design Exec

Tooling

13

25

 COMM

Decoupling from Documents (1)

Testing approach
for XML extensions

Design Exec

ToolingRequirements

Specification

Designs

26

Improved approach
for XML extensions

 COMM

Decoupling from Documents (2)

Testing approach
for XML extensions

Design Exec

Tooling

Design Exec

Tooling Exec

Completed Specification

Revised Requirements

14

27

 COMM

Who Believes Documents, Anyway?

Design Exec

Tooling

Design Exec

Tooling Exec

Testing approach
for XML extensions

28

 COMM

Testing approach
for XML extensions

Design Exec

Tooling

Continuous Learning

What we’ve learned by
running tests

Design Exec

Tooling Exec

15

29

Facing the Future:
Requirements for Models

• Test planning driven by handoffs
–change and risk

• Test design that draws from all
available sources
–with reduced dependence on order

• Test execution informed by cost
tradeoffs

• Regression testing driven by
predicted change

Copyright 1999 Reliable Software Technologies. All Rights Reserved.

New Models for Test Development

Brian Marick
Reliable Software Technologies

marick@rstcorp.com
http://www.rstcorp.com/marick/

A software testing model summarizes how you should think about test development. It
tells you how to plan the testing effort, what purpose tests serve, when they’re created,
and what sources of information you use to create them. A good model guides your
thinking; a bad one warps it.

I claim that most software testing models are bad ones.

They’re bad because they’re mere embellishments on software development models.
People think hard and argue at length about how to do software development. They
invent a model. Then they add testing as an afterthought.

A testing model has to be driven by development – after all, we’re testing their work. But
when the testing model is an afterthought, it’s driven in the wrong way. It connects to
development activities in the places that are easiest to describe, not those that give testing
the most leverage. It builds upon what developers ought to do, not upon what they always
do even when they’re not following the rules. It lumps together activities that have no
essential connection and separates others that belong together. It suffers from all the
flaws of hasty thinking.

The result is ineffective and (especially) inefficient testing. Ineffective testing misses
bugs. Inefficient testing wastes money.

In this paper, I’ll do two things. First, I’ll attempt to demolish a bad model, the quite
popular “V model”. In the process, I hope to banish the phrases “unit testing” and
“integration testing” from our vocabularies. Second, I’ll describe a model I think is better.
But my primary purpose is not to claim I have the right model – it’s too early for that –
but to describe important requirements for test models that will replace mine. Those
requirements are summarized at the end of the paper.

What’s wrong with the V model?
I will use the V model as my example of a bad model. I use it because it’s the most
familiar.

New Models for Test Development Version 1.0 of 04/01/99

2

A typical version of the V model begins by describing software development as
following the stages shown here:

That’s the age-old waterfall model. As a development model, it has a lot of problems.
Those don’t concern us here – although it is indicative of the state of testing models that a
development model so widely disparaged is the basis for our most common testing
model. My criticisms also apply to testing models that are embellishments on better
development models, such as the spiral model [Boehm88].

Testing activities are added to the model as follows:

Requirements

Specification

Architectural
Design

Detailed Design

Code

Requirements

Specification

Architectural
Design

Detailed Design

Code

Unit testing

Integration testing

System testing

Acceptance testing

New Models for Test Development Version 1.0 of 04/01/99

3

Unit testing checks whether code meets the detailed design. Integration testing checks
whether previously tested components fit together. System testing checks if the fully
integrated product meets the specification. And acceptance testing checks whether the
product meets the final user requirements.

To be fair, users of the V model will often separate test design from test implementation.
The test design is done when the appropriate development document is ready. That looks
like this:

This model, with its appealing symmetry, has led many people astray. I’ll concentrate on
the confusion caused at the unit and integration levels.

Here, I show a picture of a unit and of an aggregation of units, which I will call a
subsystem.

Interface

Requirements

Specification

Architectural
Design

Detailed Design

Code

Unit test execution

Integration test execution

System test
execution

Acceptance test execution

Unit test design

Integration test design

System test design

Acceptance test design

New Models for Test Development Version 1.0 of 04/01/99

4

There’s always some dispute over how big a unit should be (a function? a class? a
collection of related classes?) but that doesn’t affect my argument. For my purposes, a
unit is the smallest chunk of code that the developers can stand to talk about as an
independent entity.

The V model says that someone should first test each unit. When all the subsystem’s
units are tested, they should be aggregated and the subsystem tested to see if it works as a
whole.

So how do we test the unit? We look at its interface as
specified in the detailed design, or at the code, or at
both, pick inputs that satisfy some test design criteria,
feed those inputs to the interface, then check the results
for correctness. Because the unit usually can’t be
executed in isolation, we have to surround it with stubs
and drivers, as shown at the right. The arrow represents
the execution trace of a test.

That’s what most people mean when they say “unit testing”.

I think that approach is sometimes a bad idea.
The same inputs can often be delivered to the
unit through the subsystem, which thus acts as
both stub and driver. That looks like the picture
to the right.

The decision about which approach to take is a
matter of weighing tradeoffs. How much would
the stubs cost? How likely are they to be
maintained? How likely are failures to be
masked by the subsystem? How difficult would
debugging through the subsystem be? If tests
aren’t run until integration, some bugs will be
found later. How does the estimated cost of that compare to the cost of stubs and drivers?
And so forth.

The V model precludes these questions. They don’t make sense. Unit tests get executed
when units are done. Integration tests get executed when subsystems are integrated. End
of story. It used to be surprising and disheartening to me how often people simply
wouldn’t think about the tradeoffs – they were trapped by their model.

Therefore, a useful model must allow testers to consider the possible savings of
deferring test execution.

My unit

Stub

Driver

 My unit

New Models for Test Development Version 1.0 of 04/01/99

5

A test designed to find bugs in a particular unit might be best run with the unit in
isolation, surrounded by unit-specific stubs and drivers. Or it might be tested as part as
the subsystem – along with tests designed to find integration problems. Or, since a
subsystem will itself need stubs and drivers to emulate connections to other subsystems,
it might sometimes make sense to defer both unit and integration tests until the whole
system is at least partly integrated. At that point, the tester is executing unit, integration,
and system tests through the product’s external interface. Again, the purpose is to
minimize total lifecycle cost, balancing cost of testing against cost of delayed bug
discovery. The distinction between “unit”, “integration”, and “system” tests begins to
break down. In effect, you have this picture:1

It would be better to label each box on the right “execution of appropriate tests” and be
done with it.

What of the left side? Consider system test design, an activity driven by the specification.
Suppose that you knew that two units in a particular subsystem, working in conjunction,
implemented a particular statement in the specification. Why not test that specification
statement just after the subsystem was integrated, at the same time as tests derived from
the design? If the statement’s implementation depends on nothing outside the subsystem,
why wait until the whole system is available? Wouldn’t finding the bugs earlier be
cheaper?

In the previous diagram, we had arrows pointing upward (effectively, later in time). It can
also make sense to have arrows pointing downward (earlier in time):

1 I’m leaving acceptance test execution alone. It’s usually done by a customer. Since it’s an activity of a
different group, I exclude it from this discussion.

Requirements

Specification

Architectural
Design

Detailed Design

Code

Some unit test execution

Some integration and unit
test execution

System test execution, with
some unit and integration tests

Acceptance test execution

Unit test design

Integration test design

System test design

Acceptance test design

New Models for Test Development Version 1.0 of 04/01/99

6

In that case, the boxes on the left might be better labeled “Whatever test design can be
done with the information available at this point”.

Therefore, when test design is derived from a description of a component of the
system, the model must allow such tests to be executed before the component is fully
assembled.

I have to admit my picture is awfully ugly – all those arrows going every which way. I
have two comments about that:

1. We are not in the business of producing beauty. We’re in the business of finding as
many serious bugs as possible as cheaply as possible.

2. The ugliness is, in part, a consequence of assuming that the order in which developers
produce system description documents, and the relationships among those documents,
is the mighty oak tree about which the slender vine of testing twines. If we adopt a
different organizing principle, things get a bit more pleasing. But they’re still
complicated, because we’re working in a complicated field.

The V model fails because it divides system development into phases with firm
boundaries between them. It discourages people from carrying testing information across
those boundaries. Some tests are executed earlier than makes economic sense. Others are
executed later than makes sense.

Moreover, it discourages you from combining information from different levels of system
description. For example, organizations sometimes develop a fixation on “signing off” on
test designs. The specification leads to the system test design. That’s reviewed and signed
off. From that point on, it’s done. It’s not revised unless the specification is. If
information relevant to those tests is uncovered later – if, for example, the architectural
design reveals that some tests are redundant – well, that’s too bad. Or, if the detailed
design reveals an internal boundary that could easily be incorporated into existing system
tests, that’s tough: separate unit tests need to be written.

Requirements

Specification

Architectural
Design

Detailed Design

Code

Appropriate
Test execution

Acceptance test execution

Unit test design

Integration test design

System test design

Acceptance test design

Appropriate
Test execution

Appropriate test execution

New Models for Test Development Version 1.0 of 04/01/99

7

Therefore, the model must allow individual tests to be designed using information
combined from various sources.

And further, the model must allow tests to be redesigned as new sources of
information appear.

A different model
Let’s step back for a second. What is our job?

There are times when some person or group of people hands some code to other people
and says, “Hope you like it.” That happens when the whole project puts bits on a CD and
gives them to customers. It also happens within a project:

• One development team says to other teams, “We’ve finished the XML enhancements
to the COMM library. The source is now in the master repository; the executable
library is now in the build environment. The XARG team should now be unblocked –
go for it!”

• One programmer checks in a bug fix and sends out email saying, “I fixed the bug in
allocAttList. Sorry about that.” The other programmers who earlier stumbled over
that code can now proceed.

In all cases, we have people handing code to other people, possibly causing them
damage. Testers intervene in this process. Before the handoff, testers execute the code,
find bugs (the damage), and ask the question, “Do you really want to hand this off?” In
response, the handoff may be deferred until bugs are fixed.

This act is fundamental to testing, regardless of the other things you may do. If you don’t
execute the code to uncover possible damage, you’re not a tester.

Our test models should be built around the essential fact of our lives: code handoffs.

Therefore, a test model should force a testing reaction to every code handoff in the
project.

I’ll use the XML-enhanced COMM library as an example. That’s a handoff from one
team to the rest of the project. Who could be damaged?

• It might immediately damage the XARG team, who will be using those XML
enhancements in their code.

• It might later damage the marketing people, who will be giving a demonstration of
the “partner release” version of the product at a trade show. XML support is an
important part of their sales pitch.

• Still later, it might damage a partner who adopts our product.

We immediately have some interesting test planning questions. The simple thing to do
would be to test the XML enhancements completely at the time of handoff. (By
“completely,” I mean “design as many tests for them as you ever will.”) But maybe some
XML features aren’t required by the XARG team, so it makes sense to test them through
the integrated partner release system. That means moving some of the XML-inspired
testing to a later handoff. Or we might move it later for less satisfying reasons, such as

New Models for Test Development Version 1.0 of 04/01/99

8

that other testing tasks must take precedence in the near term. The XARG team will have
to resign itself to stumbling over XML bugs for a while.

Our testing plan might be represented by a testing schedule that annotates the
development timeline:

Based on our understanding of the change, we’ve committed to doing some testing
around the time the XML extensions are handed off. Test design and test support work
precedes test execution. Other XML testing has been deferred to the project-wide “Code
Complete” milestone, which is when all of the subsystems are integrated together and the
whole product is stabilized to create the version for the trade show.

For clarity, two things aren’t shown at the Code Complete milestone:

• There’s a great deal of other test execution (and design and tooling) that happens
there. It was deferred from other handoffs of subsystems other than COMM.
Moreover, there are tests for the milestone’s specific dangers. For example, there
might be a set of tests that runs through the marketer’s demo script, including all
deviations she might inadvertently make. The goal is that she will not stand in front of
an audience of one thousand and be the first person to ever try a particular sequence
of inputs.

• Some of the first handoff XML tests will be re-executed at the Code Complete
milestone.

My point is that test planning is made up of hard decisions about staffing, machine
resources, allocation of time to test design, the amount of test support code to produce,
which tests should be automated, and so forth. All those hard decisions should be driven
by information about what’s new in individual handoffs. If there were only one handoff,
you’d work your way backwards from it:

1. Analyze risks. Who could be damaged by this change, and in what ways?

2. Decide on a test approach that addresses the specific risks.

 COMM

Partner
Release

Code
Complete

XML
Extensions

Testing approach
for XML extensions

Design Exec

Tooling
Design Exec

Tooling

New Models for Test Development Version 1.0 of 04/01/99

9

3. Estimate the test design and implementation cost and schedule.

4. At the appropriate point in the project schedule, put the plan into action:

A. Begin designing tests…

B. … while also designing and creating any test support code…

C. … and quite likely executing some tests before all have been designed.

Since there’s more than one handoff, there’s a potentially complex interplay between the
planning driven by each handoff. Staffing has to be balanced. Test support code and tools
have to be shared among tasks. You must consider to what extent tests designed for
earlier handoffs will need to be re-executed on later ones.2 And so forth.

That sounds complicated. It sounds like there’s too much to keep track of, too much that
could be overlooked. It may seem as if I’m asking you to perform the thinking process
required by an IEEE 829 [IEEE98] Test Plan for each handoff, then merge all those
thoughts into one test plan that spreads handoff-specific testing tasks across the project.

Yes and no. Thinking takes time. Too much planning can lead to diminishing returns. At
some point, you need to stop planning and start acting. For example, you cannot write –
or even think of – an elaborate test plan for each bug fix, even though a bug fix is a
handoff.

But bug fixes are a fact of life. The overall project test plan should address them. It
should insist that you have a default procedure for all bug fixes. That procedure should
include a build verification (“smoke test”) suite that’s run against each proposed fix.
Effort should be devoted to thinking through what makes a good suite. Too often, build
verification suites are slapped together haphazardly.

To be realistic, a model must allow some rote behavior (“do the following things for any
handoff of type X”) while encouraging just enough examination of what’s special about
particular handoffs. The smaller the risk of the handoff, the more rote the behavior.

A model that is explicit about the fundamental realities of testing simply must work better
than a model that ignores them, that abstracts away all the real complexity of your job. As
another example, there’s the matter of project documentation.

I haven’t mentioned requirements, specification, or design documents yet. Instead, the
discussion has been driven by a list of changes in a handoff. What’s the role of those
documents? They’re used like this:

2 Tests should be re-executed on a later handoff if the changes made as a part of that handoff are likely to
cause bugs that the re-executed tests would find. Predicting which tests have value when re-executed is an
interesting and tough problem. It’s nowhere near as simple as “repeat them all” – the economics of that
strategy aren’t good. See [Marick98].

New Models for Test Development Version 1.0 of 04/01/99

10

Documents guide how you react to a handoff’s changes. If you had a good requirements
document, it would be a description, perhaps indirect, of the problem the product solves.
That would help you analyze risk. A good specification would describe the system’s
behavior. That would help you convert your test approach into specific tests. A good
architectural design would help you understand the ramifications of a change: what other
parts of the system might be affected? What tests need to be re-executed?

I don’t see good documents very often. A requirements document is likely to be a
marketing feature checklist. A specification is user documentation, delivered after the
code is done. Designs don’t exist.

That’s OK. By concentrating on the list of changes in a handoff, I’ve decoupled the
testing process from the software design process. If the XML additions to COMM are
poorly described, I’ll design the best tests I can with what I know. If, later in the project,
the XML-relevant user documentation becomes available, I’ll add more testing effort to a
later handoff. If the marketing requirements change – as they so often do – I’ll add or
remove testing effort later. All that looks like this:

 COMM

Testing approach
for XML extensions

Design Exec

ToolingRequirements

Specification

Designs

 COMM

Testing approach
for XML extensions

Design Exec

Tooling
Design Exec

Tooling

Completed Specification

Improved approach
for XML extensions

Revised Requirements

New Models for Test Development Version 1.0 of 04/01/99

11

Therefore, the test effort may be degraded by poor or late project documentation,
but it should not be blocked entirely.

A savvy tester doesn’t trust the documentation anyway. After all, the whole point of
testing is that people make mistakes. Well, didn’t people write those documents?

Since “official” documents are weak, the test model must explicitly encourage the use
of sources of information other than project documentation during test design.

Testers should talk to developers, users, marketers, technical writers, and anyone else
who can give clues about better tests. Testers should attempt to immerse themselves in
the culture that builds up around any technology. For example, I would expect testers
working with XML to stay current with the World Wide Web Consortium’s XML links
(http://www.w3.org/XML/) and other XML sites and mailing lists, even including quirky
ones like Dave Winer’s DaveNet / Scripting News (http://www.scripting.com/). These
should not be “side channels,” unacknowledged sources of information. They should be
sources that are planned and scheduled.

The executing tests are themselves a useful source of information. Good testers read bug
reports carefully because they teach about weaknesses in the system. In particular, they
often give a feel for the implications of architectural decisions that the official
architectural design cannot. The act of executing tests should yield at least a trickle of
new test ideas; it’s a poor model that doesn’t take that into account.

Therefore, the test model must include feedback loops so that test design takes into
account what’s learned by running tests.

The real complexity in our jobs is that all planning is done under conditions of
uncertainty and ignorance. The code isn’t the only thing that changes. Schedules slip.
New milestones are added for new features. Features are cut from the release. During
development, everyone – marketers, developers, and testers – comes to understand better
what the product is really for. Given all that, how can the first version of the test plan
possibly be right?

Therefore, the model must require the test planner to take explicit, accountable
action in response to dropped handoffs, new handoffs, and changes to the contents
of handoffs.

Summary
The V model is fatally flawed, as is any model that:

1. ignores the fact that software is developed in a series of handoffs, where each handoff
changes the behavior of the previous handoff,

2. relies on the existence, accuracy, completeness, and timeliness of development
documentation,

3. asserts a test is designed from a single document, without being modified by later or
earlier documents, or

4. asserts that tests derived from a single document are all executed together.

New Models for Test Development Version 1.0 of 04/01/99

12

I have sketched – but not elaborated – a replacement model. It organizes the testing effort
around code handoffs or milestones. It takes explicit account of the economics of testing:
that the goal of test design is to discover inputs that will find bugs, and that the goal of
test implementation is to deliver those inputs in any way that minimizes lifecycle costs.
The model assumes imperfect and changing information about the product. Testing a
product is a learning process.

In the past, I haven’t thought much about models. I ostensibly used the V model. I built
my plans according to it, but seemed to spend a lot of my time wrestling with issues that
the model didn’t address. For other issues, the model got in my way, so I worked around
it.

I hope that thinking explicitly about requirements will be as useful for developing a
testing model as it is when developing a product. I hope that I can elaborate on the model
presented in this paper to the point that it provides as much explicit guidance as the V
model seems to.

Acknowledgements
James Bach first made me realize that test plans have to take handoffs into account. Noel
Nyman and Johanna Rothman made helpful comments on a draft. Kamesh Pemmaraju
and Carol Stollmeyer do not let me get away with hand-waving explanations. They want
to know how ideas will work, in detail, in real life, on real projects. I sense they have
only begun to force me to think things through. I look forward to it.

References
[Boehm88]

Barry W. Boehm, “A Spiral Model of Software Development and Enhancement,”
IEEE Computer, May, 1988.

[IEEE98]
"IEEE Standard for Software Test Documentation," IEEE Std 829-1998, The
Institute of Electrical and Electronics Engineers, 1998.

[Marick98]
Brian Marick, “When Should a Test be Automated?” Proceedings of
International Quality Week, May, 1998.
ftp://ftp.rstcorp.com/pub/papers/automate.pdf

New Models for Test Development Version 1.0 of 04/01/99

13

A checklist of model requirements
These requirements are grouped according to testing activity. They were presented in a
different order in the text.

A test model should:

1. force a testing reaction to every code handoff in the project.

2. require the test planner to take explicit, accountable action in response to dropped
handoffs, new handoffs, and changes to the contents of handoffs.

3. explicitly encourage the use of sources of information other than project
documentation during test design.

4. allow the test effort to be degraded by poor or late project documentation, but prevent
it from being blocked entirely.

5. allow individual tests to be designed using information combined from various
sources.

6. allow tests to be redesigned as new sources of information appear.

7. include feedback loops so that test design takes into account what’s learned by
running tests.

8. allow testers to consider the possible savings of deferring test execution.

9. allow tests of a component to be executed before the component is fully assembled.

The Mavin Copyright 1998, Boris Beizer

Page 1 of 4

The Mavin
Some lessons on predicting the end of testing.

A poem with apologies to Edgar Allan Poe
Copyright 1998, Boris Beizer

Once upon a midnight dreary as I tested, lone and weary
Copious quaint and curious cases previously untested for —
While I nodded, nearly napping, suddenly there came a tapping,
As of someone gently rapping, rapping at my office door—
“It’s a manager,” I muttered, “harping at my office door—

Only this and nothing more.”

I distinctly still remember it was in the bleak December:
As each case’s twisted member left its tracks about the store.
Eagerly I wished the daylight; and to vindicate my foresight
That this software would prove upright. And for testing? Nothing more.
For the project’s culmination meant for testing, no encore.

Meant for testing, no encore.

Then the scurrilous screen saver like a silent semiquaver
Pulsed a message to consider “YOU ARE WRONG: IT’S EVERMORE!”
So that now, to still the beating of my heart I stood repeating
“It’s a manager entreating entrance at my office door—
Some foul manager commanding closure at my office door —

This is it and nothing more.”

Presently resolve grew stronger; hesitating then no longer,
“Sir” I said, “Or Madam, truly your forgiveness I implore;
But the fact is I was napping, and so gently you came rapping,
And so faintly you came tapping, tapping at my office door,
That I scarce was sure I heard you” — here I opened wide the door—

Vacant corridor and no more.

Deep along that hallway peering, long I stood there, wondering, fearing,
Doubting, dreaming dreams no mortal ever dared to dream before;
But the silence was unbroken, and the stillness gave no token,
And the only word there spoken was my whispered words, “Yet more?”
This I whispered, and an echo rumbled back the words, “Yet more!”

Merely this and nothing more.

The Mavin Copyright 1998, Boris Beizer

Page 2 of 4

Back into the chamber turning, and my soul within me churning;
And just then I heard a beeping louder than the tap before.
“Surely” said I, “surely that is something at a window’s orifice;
Let me see then, what thereat is, and this mystery explore—
Let my heart be still a moment while this mystery explore —

Must be email and no more!”

Open then, I flung that window, maximized and then, oh, oh—
From therein erupts a Mavin, black-cloaked he, and furthermore
Through my desktop he came stomping; “What”, I shuddered, “was this thing?”
Glowing, growing, and expanding, it materialized with a roar.
What’s this digital Djinni wanting? I knew not what it forebore.

I’ve got troubles now galore!

His black suit, adroitly drafted, by expensive tailors crafted.
This consultant was no blockhead, with such clothes superior.
If I win him o’er with flattery, and beguile with triviality,
He’ll return to virtuality, and then trouble me no more.
“Tell me Mavin what your name is? Are you from a distant shore?”

Quoth the Mavin, “Evermore.”

Much I marveled this iconic spirit wrought by dark arithmetic,
The result of surplus double-click and too full a monitor.
For we cannot help agreeing that no living human being
Ever yet was stressed with seeing spirit Mavins unasked-for.
Vibrant, virtual Mavin planting feet so firm upon the floor,

With a name like “Evermore?”

I’m so lucky, I smiled smugly, consultations given freely —
He will answer my big question: “Tell me Mavin, I implore—
How much longer must this testing, of this software that I’m wresting?
When’s the ending? Am I besting? I’m dead tired and footsore;
I’ve no rest nor compensation. Look how much I’ve done before.

Tell me, Mavin, what’s the score?”

But that mavin, standing stolidly, mocked my agony, he spoke only
That one word, that word absurd, as if that word was all his lore.
Nothing further had he uttered, nor my query had he suffered:
Just one lone word, uncluttered, for his rapt inquisitor.
So I stridently demanded, “Tell me Mavin, what’s the score?”

Quoth the Mavin: “Evermore!”

The Mavin Copyright 1998, Boris Beizer

Page 3 of 4

Startled by the stillness broken by reply so curtly spoken,
“Doubtless,” said I, “what he mutters, is his only stock in store.
Just another transient hireling, cryptic words is all he’s blustering,
That subverts our accomplishing what we now are sweating o’er.
On the morrow he will leave me, like the tide upon the shore.

“Thin advice; inferior.”

But this Mavin was intriguing, and despite his measly offering,
Merely started, not yet parted, was this just progenitor?
Deeper wisdom still unshown? From this icon imp unknown
Might we harvest thoughts new-mown? Yet for me, he will mentor.
Surely there must be addenda; further insights lay in store

Than that scanty “Evermore.”

Once again, I begged abjectly, “How much testing? Spare my agony,
One-word statements are no help now; this release must out the door.
Will a thousand cases stress it? Will a million just requite it?
Would a billion overpress it? Tell me now or quit the floor!
We must stop upon the morrow, or displease our creditor.”

Yet again, just “Evermore.”

So I sat in silence, staring at this somber sprite whose glaring
Gave no comfort or compassion, nor my quietus restore.
He had forfeited all amity. And I damned his dubious pedigree
Bought by artifices binary. “All my pleadings he’ll ignore.
He’s no help or ministration, this cantankerous counselor,
 With his chant of ‘Evermore.’”

“Prophet!” said I, “thing of evil! — Prophet still if sham or devil!
Whether Satan sent, or whether wrought by errant semaphore;
Tell this soul with anguish wearied; ease the pain that I have suffered;
The whole place with tests is littered — Are there bugs yet to explore?
How much better must this stuff be? When’s the ending of this chore?”

Quoth the Mavin, “Evermore.”

“Let that word denote our parting, foolish fiend!” I shrieked upstarting—
“Back to virtual space return ye; quit my screen for ever more!”
But the monster just laughed darkly. So uncaring of the injury,
I dispatched him to eternity— pulled the plug and dumped the core.
“Virtual demons cannot plague me — just pull the plug” is what I swore.

Pull the plug and peace restore.

The Mavin Copyright 1998, Boris Beizer

Page 4 of 4

Oh wretched fate that e’er I tried it. The result was just the opposite.
There’s no system balm or tonic to restore my world of yore.
On my screen he squats sardonic; in my registry demonic;
And every hour on the hour’s tick, blinks a message I can’t ignore;
The pale blue screen of death is blinking, blinking, blinking “EVERMORE!”

Blue screens blinking “EVERMORE!”

So when angry bosses fret thee, rant and rave around the scenery,
To your science counters violence, and premature release implore;
When the pressure’s overwhelming, ‘cause the end you’re not foretelling,
When he screams that “Were not selling!”, tell him what you knew before:
Think upon my fractious Mavin, smile and tell him “Evermore!”

Smile and tell him “Evermore.”

Copyright, 1998, Boris Beizer
Reproduction of this poem or any part thereof without the written permission of the author is
forbidden.

1

Automating Syntax Testing:Automating Syntax Testing:
The Case of a Real-Time SimulationThe Case of a Real-Time Simulation
ToolTool

APPLIED DYNAMICS
INTERNATIONALADI

Dr. Selim AissiDr. Selim Aissi
Wendi HummelWendi Hummel

Systems Quality AssuranceSystems Quality Assurance

Applied Dynamics International
Ann Arbor, Michigan

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

GoalGoal

To automate the fault-detection
process in a Hardware-In-the-
Loop (HIL), Real-Time
Simulation (RTS) tool by using a
Record/Replay testing tool
along with established testing
methodologies.

2

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Application Under TestApplication Under Test
Description

SIMsystem may be used to:
– model a complex dynamic system to test an embedded controller, or,

– model the controller, or,

– model both.

SIMsystem executing Plant Model on an actual Controller

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Application Under TestApplication Under Test
Description

• SIMsystem Software:
– Advantage IDE:

• Supports the migration of non-real-time development to real-time HIL
execution

• Accepts models created using the popular graphical programming packages,
such as Simulink, SystemBuild, ACSL, and EASY5

– Interactive Run-Time Software:
• Provides graphical monitoring and control capabilities

• SIMsystem Hardware:
– Compute engines (currently, PowerPC 604 microprocessor)

– I/O devices
– Parallel Intelligent Resource (PIR)

• Operates the I/O in parallel with model execution without
 cluttering VMEbus traffic

3

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Application Under TestApplication Under Test
Description

• The ADvantage Integrated Development
Environment (IDE) is a graphical interface layered
on top of ADI’s SIMsystem and AD RTS products.

• ADvantage IDE is a software tool that allows users
to configure real-time simulations.

• ADvantage automatically configures the system
and builds the files necessary for real-time
simulations.

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Application Under TestApplication Under Test
Features

• Eliminates the need for programming the
processor communication, system functions,
and I/O device programming

• Process-oriented approach

• Building-block methodology

• Simple I/O connectivity

• Project-level documentation

• Able to reuse models

4

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Application Under TestApplication Under Test

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Application Under TestApplication Under Test
Some (Safety-Critical) Customers

• United Defense (The Crusader Project)

• Cummins Engine Company (Diesel Engine Controller)

• Boeing North American (Space Systems)

• Hughes Space and Communications (Satellite Control
Systems)

• Rolls-Royce Military Aero Engines, Ltd. (Jet Engine
Simulator)

• GEC Marconi Radar and Defense Systems Ltd.
(Missile Systems Simulation)

5

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Application Under TestApplication Under Test
Testing Strategy

• Uncouple semantic checks from syntactic checks

• Automate the testing process as much as possible

• Continuously maintain the test scripts

• Test the ADvantage IDE features separately
• Implement established testing methodologies,

such as Syntax Testing

ADvantage IDE is used to configure and
build the necessary files to run a real-time
simulation.

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Syntax TestingSyntax Testing

Analysis
• Syntax testing uses a model of the

formally defined syntax of the inputs
to a component.

• The Syntax is represented as a set
of rules, each of which defines the
possible ways of generation of a
symbol in terms of sequences of
other symbols.

6

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Syntax TestingSyntax Testing

Design

• Test cases with valid and invalid syntax are designed from
the syntax definitions of the inputs to the component.

• Valid syntax test cases are designed to execute options
that are derived from rules. Although additional rules
may be applied where appropriate, the following must
be included:

– When a selection is made, an option is derived
for each alternative by replacing the selection
with that alternative.

– When an iteration is made, at least two options
are derived: one with the minimum number of
iterated symbols, and the other with more than
the minimum number of repetitions.

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Syntax TestingSyntax Testing

Design - Continued

• Test cases may exercise any number of options. For each
test case the following must be identified:

– The input(s) to the component (specific syntax)
– The option(s) exercised
– The expected outcome of the test case (new window,

specific output, etc.)

– Create a checklist of (generic) mutations that can be applied
to rules or parts of rules to generate a part of the invalid
input,

– Then, apply this checklist to the syntax in order to identify
specific mutations of the invalid input, each of which
employs at least one (generic) mutation

– Finally, test cases are designed to execute those specific
mutations

• Invalid syntax test cases are designed as follows:

7

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Syntax TestingSyntax Testing

Design - Continued

• For each test case the following must be
identified:

– The input(s) to the component

– The generic mutations used

– The syntax element(s) to which the mutations
are applied

– The expected outcome of the test case (error
message, new window, tool “crash”, etc.)

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Syntax TestingSyntax Testing

Coverage

• There are no formal test coverage measures
defined for syntax testing.

• Any measures of coverage would be based on
the rules used for generating valid syntax inputs
and the checklist for generating test cases with
invalid syntax.

• The rules nand the checklist are NOT definitive:
therefore any syntax test coverage measure
based on a particular set will be specific to that
set of rules and checklist.

8

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Syntax TestingSyntax Testing

Assumptions

Every testing methodology/technique is
based upon some assumptions.

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Syntax TestingSyntax Testing

Assumptions - Continued

* A.T. Acree, et al. Mutation Analysis. Technical Report GIT-ICS-79/08, September 79.
** R.A. DeMillo, et al. Hints on test data selection: Help for the practicing programmer. IEEE Computer, 11(4), April 78.

– The Competent Programmer Hypothesis: Competent
programmers tend to write programs that are “close” to
being correct. In other words, a program written by a
competent programmer may be incorrect, but it will
differ from a correct version only by a few faults.*

– The Coupling Effect: A test data set that detects all
simple faults in a program is so sensitive that it will also
detect more complex faults. In other words, complex
faults are coupled to simple faults. The coupling effect
cannot be proved, but it has been demonstrated
experimentally and supported probabilistically.**

• Basic Assumptions for Mutation Analysis:

9

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Syntax TestingSyntax Testing

Assumptions - Continued

• Bug Assumptions :

– Bad (Incomplete or Inconsistent) Syntax
– Lexical (Alphabet) Problems
– False Acceptance or Rejections of Syntax
– Syntax/Semantics Mismatches

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Applying Syntax Testing to theApplying Syntax Testing to the
Application Under TestApplication Under Test

Testing the “Logical Device Parameter” :

• Value represents the value of the selected
application parameter.

• The Value type is dependent on the application
parameter selected.

• Valid type: float

• Wrong values may cause invalid results at
simulation run-time.

10

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Applying Syntax Testing to theApplying Syntax Testing to the
Application Under TestApplication Under Test

Questions
• Does the ADvantage IDE:

– Accept all valid inputs for Value?
– Reject all invalid inputs for Value?
– Provide the user with useful messages when

input values are invalid?

– Have the necessary error-handling implemented
to not crash the real-time simulation environment
when invalid inputs are entered?

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Applying Syntax Testing to theApplying Syntax Testing to the
Application Under TestApplication Under Test

11

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Applying Syntax Testing to theApplying Syntax Testing to the
Application Under TestApplication Under Test

Example Railroad Diagram

VALUE = real_constant ;

sign_opt digits . digits exponent_opts

digits

real_constant:

VALUE:

digits:

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Applying Syntax Testing to theApplying Syntax Testing to the
Application Under TestApplication Under Test

Mutation Table: Test Cases with Valid Inputs

Test Case Input Value
 1 3e2

2 +2e+5
3 -6e-7
4 6e-2
5 1234567890e-3
6 0e0
7 1e1
8 2e2
9 3e3
10 4e4
11 5e5
12 6e6
13 7e7
14 8e8
15 9e9

12

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Applying Syntax Testing to theApplying Syntax Testing to the
Application Under TestApplication Under Test

Mutation Table: Test Cases with Invalid Inputs

Test Case Input Value
 1 xe0

2 0x0
3 0ex
4 x0e0
5 +xe0
6 ee0
7 +e0
8 000
9 0+0
10 0ee
11 0e+
12 e0e0
13 +ee0
14 ++e0
15 e0

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Applying Syntax Testing to theApplying Syntax Testing to the
Application Under TestApplication Under Test

Mutation Table: Test Cases with Invalid Inputs - Continued

Test Case Input Value
 16 00

17 0e
18 y0e0
19 0ye0
20 0ey0
21 0e0y
22 y+0e0
23 +y0e0
24 +0yeo

13

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Applying Syntax Testing to theApplying Syntax Testing to the
Application Under TestApplication Under Test

Sample TSL Script

while (getline val < “float_valid.txt ”)
{

set_window (“Edit Logical Device Parameters”, 5);
edit_set (“Value:_0”, val);
button_press (“Apply”);
edit_get_block (“Value:_1”, 0, 0, 0, 15, info);
edit_get_block (“Value:_1”, 1, 4, 1, 20, apply);
if (info == “>>>Information:”)

if (apply == “Changes applied.”)
tl_step (“PASS”, 0, val);

else
tl_step (“FAIL”, 1, val);

else
tl_step (“FAIL”, 1, val);

}
close (“float_valid.txt”);

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Applying Syntax Testing to theApplying Syntax Testing to the
Application Under TestApplication Under Test

Sample TSL Script - Continued

while (getline val < “float_invalid.txt ”)
{

set_window (“Edit Logical Device Parameters”, 5);
edit_set (“Value:_0”, val);
button_press (“Apply”);
edit_get_block (“Value:_1”, 0, 0, 0, 15, info);
edit_get_block (“Value:_1”, 1, 4, 1, 20, apply);
if (info == “>>>Information:”)

if (apply == “Changes applied.”)
tl_step (“FAIL”, 1, val);

else
tl_step (“PASS”, 0, val);

else
tl_step (“PASS”, 0, val);

}
close (“float_invalid.txt”);

14

Introduction

Application
Under Test

Syntax Testing

Applying Syntax
Testing to the

Application
Under Test

Conclusion

APPLIED DYNAMICS
INTERNATIONALADI

Concluding RemarksConcluding Remarks

• Use of a Record/Replay tool to implement a formal
testing methodology (versus “Monkey Testing”)

• Bug rate of the Syntax Testing technique as
implemented was 5.5 “defect-categories” per hour of
testing

• A reusable test suite

• An automated process for syntax regression testing

Thank you.Thank you.

Dr. Selim AissiDr. Selim Aissi
Wendi HummelWendi Hummel

Systems Quality Assurance
Applied Dynamics International

Ann Arbor, Michigan

APPLIED DYNAMICS
INTERNATIONALADI

TCBeans Test Case TCBeans Test Case
Tool KitTool Kit
 & &
GOTCHA Model Based GOTCHA Model Based
Automatic Software TestingAutomatic Software Testing

March 1999March 1999
© Copyright IBM Haifa Research Lab 1999. All rights reserved.© Copyright IBM Haifa Research Lab 1999. All rights reserved.

IBM Haifa Research Laboratory
www.haifa.il.ibm.com
Kenneth Nagin (nagin@il.ibm.com)
Alan Hartman (alan_hartman@vnet.ibm.com)

aa

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

AgendaAgenda

Objectives & History
TCBeans Test Case Tool Kit
GOTCHA Model Based Automatic
Testing
Future Work
Case Studies:

Hardware test
Software test

1-2

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

ObjectivesObjectives
Function Test

APIs and Protocols
Java, C, C++ applications

Promote Reuse
Learn from Hardware Test Experience
Support testing methodologies

Rule Based
Modeling

Increase coverage
Automate non-creative tasks

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

HistoryHistory
Hardware

CDTG Methodology in HRL/IBM - 1994
Murφ - public domain model checker
1992-1996
GOTCHA combines Murφ technology with
CDTG methodology - 1998

Software
Java Distributed API Tester - 1997

Java->C->PCI device
TCBeans/GOTCHA - 1998

3-4

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

Component Based Testing ArchitectureComponent Based Testing Architecture
 TCBeans Tool Kit TCBeans Tool Kit

Test Case:
JavaBean
Runnable Serializable Java Class

Test Case Assembly
Runtime Customization
Simplified Test Execution
Simplified Test Administration

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

Component Based Testing ArchitectureComponent Based Testing Architecture
 TCBeans Test Case TCBeans Test Case
Reuse via class inheritance

runtime interaction
time
repetition

Formalized Expected Results
Processing

invariant
post condition
assertion

Versioning

5-6

TCBeans Software Test Tool KitTCBeans Software Test Tool Kit

TC

TCSequential

T
C

B
ea

ns
 T

oo
l K

it

AnApplicationBaseTester

AnApplication Test
Suite

A
pp

lic
at

io
n

T
es

t D
riv

er
Log

Class Class
uses

Class

extends

legend

TCGui

TCSequentialGui

AnApplication Test
SuiteAnApplication Test

Suite AnApplicationSequential

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

TCBeans Software Test ToolkitTCBeans Software Test Toolkit
A Use Case ScenarioA Use Case Scenario
Tester creates AnApplicationTester which extends TC
Tester adds properties shared by all tests
Tester overrides TC's invariant()
Tester creates a suite of test cases extending
AnApplicationTester, overriding run() and postCondition()
Tester adds test names to TCSequential's TCNames property
Tester alters shared properties and specialized properties
Tester saves current version
Tester runs TCSequential and examines results
Lots of bugs found Tester celebrates

7-8

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

Model Based Automatic TestingModel Based Automatic Testing
 GOTCHA Testing Methodology GOTCHA Testing Methodology
Input: functional specification
Produce model with GOTCHA compiler
Generate abstract test case suite

Sequences of rules and states (assertions and post
conditions)

Run tests
Benefits:

100% coverage of model
Early Defect Prevention

Inconsistencies
Ambiguity
Incompleteness

TCBeans/GOTCHA Software Testing Methodology

Functional
Specification

GOTCHA
Engine

GOTCHA
Abstract Test

SuiteGOTCHA
Behavior

Model

Early Defect
Discovery:

Inconsistency
Ambiguity

Incompleteness

TCBeans
Test

Object(s)

100%
Model

Coverage

Test Design

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

9-10

GOTCHA
Abstract Test

Suite

TCBeans
GOTCHA
Factory

Application
Under Test

Test
Results

TCBeans/GOTCHA Software Testing Methodology
Test Execution

TCBeans
Test

Object(s)

Start/Stop Test
Customize Test

Objects
Monitor Results

Defect
Discovery/Resolution

Model Adjustment

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

The GOTCHA Definition LanguageThe GOTCHA Definition LanguageThe GOTCHA Definition LanguageThe GOTCHA Definition Language

Used to define a finite state machine
States
Transitions
Start/Final
Invariant

p1 p2

p1 p2

p1 p2

p1 p2

p1 p2

p1 p2

p1 p2p1 p2

p1 p2

11-12

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

GOTCHA Suite GenerationGOTCHA Suite Generation
Input -

GOTCHA definition language model
A coverage model - projected state/transition
A definition of start and final states for tests

Output
A test suite guaranteed to cover all coverable tasks
A list of reachable but uncoverable tasks

Test
An execution path from a start state to a final state

Byproduct
Violated invariance encountered

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

Model Based Automatic Testing Model Based Automatic Testing
 TCBeans GOTCHA Test Case Factory TCBeans GOTCHA Test Case Factory
JavaBeans Test Case Component
Input: GOTCHA abstract test suite (text)
Output: concrete test case execution + results

no additional source files
no explicit compile and link phase
100% coverage of model

Target and Expected object (JavaBeans)
rules = target method invocation
states = expected property setting

Process
parse test suite
execute
compare Target and Expected properties

Interactive customization with BDK

13-14

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

Model Based Automatic TestingModel Based Automatic Testing
A Use Case ScenarioA Use Case Scenario
 Tester reviews functional specification
Tester codes a behavior model in GOTCHA
Tester uncovers defects in specification
Tester runs GOTCHA to create abstract test suite
Tester codes a Java class (JavaBeans)

wrapper methods to application methods
wrapper properties to application state variables
static properties for interactive customization

Tester runs TCBeans GOTCHA Test Case Factory
Tester customizes Target properties
Tester runs test, uncovers lots of bugs, celebrates
Analyses structural coverage and adjust GOTCHA model

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

TCBeans Software Test Tool KitTCBeans Software Test Tool Kit

TC

TCSequential TCBatch TCStateTransition

TCGotchaFactory

T
C

B
ea

ns
 T

oo
l K

it

JphoneTestTCGotcha

JphoneTest

A
pp

lic
at

io
n

T
es

t D
riv

er

Log

Class Class
uses

Class

extends

legend

15-16

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

Future Future

Distributed testing support
Concurrent testing support
Better imbedded BDK support
Interactive Method Invocation
Strengthen GOTCHA ties and support

Software test mission
Object Oriented programming, e.g. Java like

Data Domain modeling/testing
Formalize test results reports

UML browser for results and GOTCHA test suite
Coverage analysis
Additional ease of use features

GOTCHA Hardware Test StudyGOTCHA Hardware Test Study

Tests

0

50

100

150

200

250

300

350

T
ra

ns
iti

on
s

ST Hand Tests

GOTCHA Transition Tests

Reachable Transitions

Cumulative Transition Coverage

17-18

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

Case StudyCase Study

 HOD V4.0 Macro (on going)
Defects:

2 x Severity 1
9 x Severity 2 (3 from previous release)
6 x Severity 3
Many due to Specification Review

JavaPhone to JavaPhone model (constrained)
Defects:

9 x Severity 2
10 x Severity 3

IBM Research Laboratory in Haifa
Matam, Haifa 31905, Israel
Tel 972-4-8296211
Fax 972-4-855070
www.haifa.il.ibm.com

TCBeans/GOTCHA Software Test Tool Kit
Quality Week 1999

© Copyright IBM Haifa Research Lab 1999. All rights reserved.

Kenneth Nagin (nagin@il.ibm.com)
Alan Hartman (alan_hartman@vnet.ibm.com)

March 1999

What is the Tool Kit:

The TCBeans Software Test Tool Kit is a framework designed to assist testers in developing,
executing and organizing function tests directed against Application Program Interfaces (APIs)
and software protocols written in Java, C or C++ . Test time is saved because the tool kit
supports reuse of many common testing functions. Test quality and complexity is enhanced
because the tool kit supports a systematic approach to test suite generation. The systematic
approach, in turn, yields higher function and code coverage, uncovering more defects early on in
the software development cycle. Testing is more interesting since non-creative tasks associated
with testing are automated, shielding against the high attrition rate associated with testing
personnel.

Why invest in another test tool:
Tools for testing a particular application are often developed on an ad hoc basic. Each project
develops its own tools and framework to solve its particular testing needs. Usually a tool
begins as a simple interpreter that can execute a limited set of APIs. The test case commands
are submitted interactively or by way of a batch text file. With time, the test tool becomes more
complicated as it tries to solve more and more problems, e.g. concurrent and parallel testing.
However the primary focus of the project is not the tester so resources are scarce and often
inadequate to satisfy all the testing requirements. This ad hoc approach to test tool
development is expensive. It is preferable to develop a framework that could be used by many
test organizations to amortize the cost and create a more powerful, general-purpose tool set.

Test tools do exist in the market. However these tools are either extremely expensive or not
intended for testing APIs and protocols. Automatic Test Suite generators like Teradyne’s
TestMaster1 start at $50000 + $20000 for instruction. Less expensive record and replay test

TCBeans/GOTCHA Software Test Tool Kit Page 1 of 10

1 TestMaster see http:/www.teradyne.com/sst/

tools like Mercury Interactive’s WinRunner2 are designed to assist in testing Graphic User
Interfaces, not APIs or protocols.

There are two reasons to support an API, even when an application’s current market
requirement does not include a programming interface. The first is directly related to the testing
of the application, and the second relates to its future market requirements. Most present day
applications contain a lot of function, supported by a large code base. The functions interact
with themselves and the outside world. The manual approach to testing simply can not exercise
the complex behavior inherent in the function interactions or cover many code paths beyond
those of the main function paths. Furthermore, a good API extends the utility and life span of
an application, since it allows the application to be used as a component in other applications.
In both cases, a programming solution is required, meaning that the application must support an
API.

How does it work:
We present a novel approach to software testing by treating a test case as a software component that
can be reused, customized and assembled off-line during code development, or dynamically at run
time. Specifically, we treat a test case as a JavaBeans3 component which can be customized using a
Bean Development Kit (BDK)4 or during actual testing by loading the test cases within the tool kit’s
run time testing framework which supports the functions expressed in a BDK. Reusability is gained
primarily through the mechanism of class inheritance. Basic functionality shared by most test cases is
supported in a super class JavaBeans test case which testers extend and specialize for their own
special test environment.

We automate software testing by exploiting the characteristics of JavaBeans to bridge the gap
between an abstract test suite and concrete test execution. Typically an abstract test suite is a text file
describing a set of test cases. The test cases describe the procedure to exercise a software application
being tested. The test case procedure may simply be a list of execution statements or in some cases
the execution statements are accompanied by clauses to determine the correctness of the execution.
The abstract test suite may be generated manually, or automatically using an automatic test suite
generator, e.g. GOTCHA 5. In either case, the abstract test suite must be translated into object code
in order to actually execute the test. Typically the text is parsed into source code and recompiled for
execution. Alternatively, specialized parsers are designed for the specific software application being
tested. The parser examines the test suite and executes the test against the software application.
However, we exploit the characteristics of JavaBeans to create a general-purpose parser that directly
executes the test case procedures and determines the correctness of the execution.

What is GOTCHA?
GOTCHA is the tool kit’s engine for generating an abstract test suite for a finite state machine
(FSM) driven by a coverage model. The finite state machine is described in a high level

TCBeans/GOTCHA Software Test Tool Kit Page 2 of 10

5 GOTCHA Generation of Test Cases for Hardware Architectures, see
/afs/haifa.ibm.com/u11/hartman/public/gotcha_release1.2KN.htm, http://www.leda.fr/genevieve.htm

4 BDK see http://www.javasoft.com/beans/software/bdk_download.html. Most of the leading
Java Interactive Development Environments (IDEs) support their own BDK. Some leading
commercial Java IDEs are IBM’s Visual Age for Java, Symantec’s Visual Cafe, Borland’s
Jbuilder, Microsoft’s Visual J++, etc.

3 JavaBeans see http://www.javasoft.com/beans/index.html

2 WinRunner see http:/www.merc-int.com/products/winrunguide.html

language for modeling concrete systems. Such systems may be hardware architectures or
components, software systems, communication protocols, or other complex systems and
processes. A test case is a sequence of stimuli for the model. The test suites generated by
GOTCHA guarantee 100% coverage of the coverage model specified by the user. The
GOTCHA prototype was developed for hardware architecture models but we have exploited it
for modeling and testing software systems. The coverage models currently supported by
GOTCHA are projected FSM state and transition coverage.

The GOTCHA tool uses a variant of the hardware verification methodology introduced by R. C.
Go, C. Han Yang, M. A. Horowitz and D. L. Dill6 . This methodology contains four basic
phases: (1) describing the processor implementation control as a Finite State Machine, (2)
deriving an abstract test suite guaranteeing coverage of the FSM model using methods from
formal verification, (3) automatic translation of the covering tours to test vectors, (4) translating
the test vector to executable tests.

The use of GOTCHA in the context of automated software testing is slightly different than its
hardware counterpart. In phase 1, the behavior of a software application is described by the
software functional specification and other user requirement documentation. In the hardware
context, the processor implementation is described in a hardware definition language like VHDL
or Verilog. The software tester translates the specification into a FSM model by coding in the
GOTCHA definition language, a Pascal like derivation of the Murφ7 Description Language. In
the hardware context, the VHDL is translated automatically into the Murφ Description
Language with an automated extraction of the control signals. The software model builder
constrains the size of the test suite by specifying which state variables must be covered. The
size of the FSM being modeled is controlled by the level of abstraction used in the manual
modeling process. In phases 2 and 3, the GOTCHA tool generates the abstract test suite
insuring that all desired states and/or state transitions are covered. The test generation
algorithms used by GOTCHA are different from those used by Dill’s abstract suite generator
and provide for a larger range of user defined constraints on the test suite. The final phase which
is only briefly discussed in the original hardware verification methodology is the subject of the
TCBeans GOTCHA Automatic Software Test Factory (see below).

GOTCHA modeling can begin as soon as a functional specification is prepared. Our experience
shows that the analysis required to generate a model uncovers defects in the specification that
escape the usual review process. Specifically, specification defects related to ambiguity,
inconsistency and incompleteness are discovered due to the systematic analysis required when
building the GOTCHA model. We also note that several GOTCHA models may be built at
varying levels of abstraction and specialization. A more detailed model implies a larger FSM to
be explored, stretching the limits of the underlying formal verification technology. Like wise,
several specialized GOTCHA models can be designed each intended to explore specific aspects
of the application being tested. In the hardware context, only a single model is built
automatically extracting the control FSM from the hardware description. This can easily lead to
state explosion problems. The ease with which more detailed or more specialized GOTCHA
models are generated and deployed is exploited to make the test more responsive. In the initial

TCBeans/GOTCHA Software Test Tool Kit Page 3 of 10

7 “The Murφ Verification System”, David L. Dill:. CAV 1996: 390-393

6 “Architecture Validation for Processors“ in ACM Isca 1995 by R. C. Ho, C. Han Yang, M.A.
Horowitz, D. L. Dill

stages of test, the software being tested is unstable, i.e. more serious defects are discovered.
These defects impede testing since they prevent the exercise of other code and function near the
defective areas. Specialized models and GOTCHA test constraints can be exploited to avoid the
defect path and allow testing to continue. As the test progresses, defects are fixed and more
code paths may be explored. Testers can respond by deploying more detailed models, and
increasing code and function coverage as the application matures.

The GOTCHA test suite may contain a multitude of tests that cover the application’s complex
behavior. The tester creates a JavaBean test object which maps the GOTCHA test suite to the
application being tested. The tool kit supports an automatic test function called TCBeans
GOTCHA Automatic Software Test Factory (see below) which executes the GOTCHA abstract
test suite against the JavaBean test object. Once the application is ready for test, the whole test
suite can be run automatically or the tester can select particular tests to run.

A frequently used metric for the quality of a test suite is to gauge how much of the code and/or
paths through the code are covered by the test suite. Hardware studies8 have shown that FSM
state and transition coverage achieves high levels of branch and statement coverage of hardware
definition languages. We still need to verify whether similar results can be achieved in software
testing. However, we have already seen that the test suites generated exercise paths through the
application under test that would typically be ignored by a less systematic approach.

Why Java?
Test cases, test objects, and the tool kit are coded in the Java programming language. Ideally the same
test code can run on all target machines. The Java programming language is extremely portable since
it runs on all systems that support a Java Virtual Machine and most major computer vendors support
Java. When the application being tested is written in C or C++ code, Java provides a standardized
procedure for accessing the C or C++ code called native implementation. This means that the native
portion of the JavaBeans test objects may have to be ported between different platforms.

What is a TCBeans Test Case?
A TCBeans Test Case is a JavaBeans component that extends the Runnable class and implements
Serializable. We exploit the JavaBean properties to simplify reuse, customization, run time
interaction, test execution, test administration, and test assembly:

• Reuse: Test case reuse is gained primarily through the mechanism of class inheritance. Basic
functionality shared by most test cases is supported in a super class which testers extend and
specialize for their own special test environment. The super class, TCBeans test case, supports the
following functionality, which may be reused by its subclasses. (note: The test case’s associated
GUI (see below) supports run time interactive with the supported functions)

• It can start itself running as a thread.

• It can stop itself from running upon command or based on some wait time property.

• It can iterate the number of runs per start.

• It can notify to the outside when it completes and the results of its execution. The tool
kit supports central logging to write the results.

TCBeans/GOTCHA Software Test Tool Kit Page 4 of 10

8 “A Study in Coverage Driven Test Generation”, M. Benjamin, D. Geist, A. Hartman, G. Mas,
R. Smeets, Y. Wolfsthal, September 1998, submitted for publication.

• Three methods are supported that formalize the test process and promote reusability.
They are intended to be overridden by a subject subclass:

• run(): The run() method is invoked as a thread. The user’s subclass inserts test logic
here, e.g. it invokes methods belonging to the object under test or changes the state of the
object under test in some way.

• postCondition(): The postCondition() method is invoked when the run() method
completes. The user’s subclass inserts test verification logic here, e.g. it determines
whether the state of the object under test is as expected. The postCondition() determines
the success or failure of the test performed by the run() method.

• invariant(): The invariant() method is invoked prior to invoking the run() method and
after the run() method completes. The user’s subclass inserts test verification logic here
that should always be true for the object under test regardless of any particular run()
method testing logic. Invariance promotes reuse within a particular test suite.

• It can load and instantiate versions of itself, other test cases or resources that the test
cases requires. The test cases may be in their raw class form, serialized form, or wrapped
in visual components created within other BDK environments. JavaBeans test cases
created within other BDK environments are usually housed within some other visual
JavaBean component, e.g. Frame, and are not directly accessible so a Wrapper function
is required to point to the subject JavaBean. The java.beans package is exploited to
achieve interactive loading and instantiation of a JavaBeans Test Case.

• It can save and restore versions of itself, other test cases or resources to and from the
file system. This is referred to as Java Serialization.

� Test case customization: TCBeans test case properties, i.e. variables, may be modified prior to
testing or during testing. Prior to testing, the properties may be customized interactively using a
commercial Java BDK or simply by extending the test case class and altering the properties.
During actual testing, the properties may be modified programmatically since properties are
expressed as public members (public setter and getter methods). Or they may be modified
interactively with a run time testing framework, which supports the functions expressed in a BDK.
Since a test case is serializable a particular version can be saved and reloaded from a host file
system.

• Run time interaction: TCBeans test cases are non-visual JavaBeans components however
testers need to interact with the test cases during testing. Thus, a test case has a Graphic
User Interface (GUI) with which it is associated. The GUI must support customization of a
test case’s properties and the ability to activate its methods. Reuse is supported by the
following innovations:

• JavaBeans Test Case properties and test case resources may be customized using
the BDK’s property sheet supported by the tool kit. This means that a test case
writer need not create special GUI components in order to customize itself and
associated resources. Rather test cases express their public variables using
JavaBeans property design patterns and they automatically receive interactive
customization support from the tool kit.

Note: BDKs are commonly used to customize JavaBeans prior to execution. The
customized JavaBeans are then shipped and executed in its “frozen” version. In

TCBeans/GOTCHA Software Test Tool Kit Page 5 of 10

addition, BDKs are primarily used to support visual components, e.g. windows, buttons,
etc.. However, we extend this common practice since the tool kit is a testing run time
environment whose purpose is to customize non-visual components, i.e. JavaBeans Test
Cases.
• Methods belonging to a TCBeans test case and associated resources may be deduced

and invoked using functions supported by the tool kit. This means that a tester need
not create special GUI components in order to invoke its methods, rather it declares
the methods as public and the tool kit supports a mechanism with which the tester
interacts with the methods and their parameters during testing. The Java reflection
feature enables the framework to support the method interaction.

The TCBeans test case super class supports a public method that invokes the GUI
associated with the test case. The method deduces the name of the GUI class by
requiring that its associate GUI follow the design pattern that the GUI’s name is the
TCBeans test case name appended with the string “Gui”. The method invokes the GUI
class that follows the design pattern. If none exist it invokes its super class based on the
same criteria. It continues searching for a match until one is found. Of course the
framework includes such a GUI for the TCBeans test case super class.

• Test Execution: TCBeans test case execution is simplified since JavaBeans are simply Java
classes, and these classes can by dynamically loaded from the file system using a Java class loader,
a common Java function.

• Test Administration: Test administration is simplified since TCBeans test cases are individual
Java files. The test cases can be managed organized and archived like any standard file. Also
JavaDoc9 provides a simplified and standardized documentation facility that can be used to easily
document the test cases which compromise a test suite.

• TCBeans Test Case Assembly: Test cases are often assembled into groups. The test cases may
directly associated with each, e.g. a step in a series of processes. Or they may be independent
members of a test suite. In either case it required to assemble the test cases together. Two
subclasses of the JavaBeans Test Case are introduced to facilitate test case assembly:

• Sequential: The Sequential class supports running a vector of TCBeans test cases
sequentially, i.e. one completes before the next starts.
• Concurrent: The Concurrent class supports running a vector of TCBeans test cases
concurrently, i.e. they all start together.

Both classes provide mechanisms to manipulate the subject vector, e.g. add or remove test
cases.

What is the TCBeans GOTCHA Automatic Software Test Factory?
The TCBeans Automatic Software Test Factory is a component in the tool kit which extends the
functionality of the TCBeans test case. It bridges the gap between the GOTCHA abstract test suite
and the JavaBeans test objects created by the tester. GOTCHA generates an abstract test suite that is
a text file describing a set of test cases. The test cases describe the assertions (input/stimuli), called
rules, that exercise the application being tested followed by post conditions which express the state of
the abstract software model after a series of assertions.

TCBeans test objects are Java classes that publicize their variables as properties. These properties are
mapped to the abstract test suite post condition state variables. The TCBeans test object methods are

TCBeans/GOTCHA Software Test Tool Kit Page 6 of 10

9 JavaDoc see http://www.javasoft.com/products/jdk/javadoc/index.html

mapped to the abstract test suite assertions. The methods exercise the application being tested and the
properties express the application’s state.

The factory parses the abstract test suite by translating the assertion statements and post conditions to
JavaBeans test objects’ methods and property settings, i.e. assertion statement -> method and post
condition -> property setting. The objects’ methods are invoked in the order prescribed by the abstract
test suite. The objects’ property settings are compared against the abstract test suite’s post
conditions. If the post conditions and property settings are equivalent the test succeeded otherwise it
fails. It is worth noting that there is no explicit compile and link phase between parsing the abstract
test suite and executing the test. This means that there are no additional class files to administer.

Examples:
The examples below illustrate how the tool kit is exploited to build a test suite. TC is the super
class of all test cases in the tool kit. It provides common function shared by most test cases,
e.g. interactive starting and stopping of itself, centralized reporting to a log, etc. Another class
frequently used is TCSequential. TCSequential extends TC and supports a property called
TCNames which may be customized, online or offline, to reference the class names of test cases
in a test suite. TCSequential runs the test cases listed in TCNames sequentially and accumulates
their results.

AnApplication Test Suite

TCBeans Software Test Tool Kit

TC

TCSequential

T
C

B
ea

ns
 T

oo
l K

it

AnApplicationBaseTester

AnApplication Test
Suite

A
pp

lic
at

io
n

T
es

t D
riv

er

Log

Class Class
uses

Class

extends

legend

TCGui

TCSequentialGui

AnApplication Test
SuiteAnApplication Test

Suite AnApplicationSequential

1) Manual Test Suite Development with TCBeans Tool Set:

TCBeans/GOTCHA Software Test Tool Kit Page 7 of 10

In the figure AnApplication Test Suite we illustrate how a tester reuses the TCBeans Software
Test Tool Kit to manually create a test suite. We describe the test driver for an example
application, AnApplication. The AnApplication test suite contains a set of methods that invoke
AnApplication functions. AnApplicationBaseTester extends TC. AnApplicationBaseTester
contains functions and properties common to all of the AnApplication test suite. Most
importantly it overrides the TC’s invarient() method with application verification logic common
to all of the test suite. The rest of the test suite extends AnApplicationBaseTester. Each test
overrides TC’s run() and postCondition() to reflect its particular test logic. The test suite is
assembled into the AnApplicationSequential which extends TCSequential by customizing
TCNames with names of the AnApplication Test Suite.

TCGotchaFactory Usage

TCBeans Software Test Tool Kit

TC

TCSequential TCBatch TCStateTransition

TCGotchaFactory

T
C

B
ea

ns
 T

oo
l K

it

JphoneTestTCGotcha

JphoneTest

A
pp

lic
at

io
n

T
es

t D
riv

er

Log

Class Class
uses

Class

extends

legend

2) Automatic Software Test with TCBeans GOTCHA Factory:
In the figure TCGotchaFactory Usage we illustrate how a tester reuses the TCBeans Software
Test Tool Kit to create an automatic software test driver for a GOTCHA test suite. We
describe the actual test driver for the IBM’s JavaPhone10. The JavaPhone test driver consists of
only two classes, JavaPhoneTest and JavaPhoneTestGotcha. The rest of the classes are
provided by the tool kit, i.e. reused. The important point here is that the tester writes only code
that is specific to the application being tested. The reporting mechanism, the graphic user
interface, etc. are all provided by the tool kit.

TCBeans/GOTCHA Software Test Tool Kit Page 8 of 10

10JavaPhone see http://www.haifa.il.ibm.com/javbro.htm

The class JavaPhoneTest contains a set of methods that invoke JavaPhone functions and a set of
properties that reflect the JavaPhone current state. JavaPhoneTestGotcha extends
TCGotchaFactory. It is only a few lines of code which instruct TCGotchaFactory to focus on
JavaPhoneTest as its test object. TCGotchaFactory understands the special format of the
GOTCHA abstract test suite and executes it against its test object, e.g. JavaPhoneTest.
TCGotchaFactory extends TCBatch and references TCSequential and TCStateTransition.
TCBatch parses any text file and executes it methods against a specified test case.
TCSequential runs a set of test cases in sequence and accumulates their results.
TCStateTransition executes methods, sets properties and compares objects. TC is the super
class of all the above TC* classes.

Conclusion:
The TCBeans Software Test Tool Kit exploits JavaBeans and GOTCHA to assist testers in
developing, executing and organizing function tests directed against Application Program
Interfaces (APIs) and software protocols written in Java, C or C++ . The tool kit’s component
architecture expressed as JavaBeans components save test development time by supporting
reuse of many common testing functions. GOTCHA FSM modeling building and simulation
yield high quality test suites, that cover the complex behavior of the application being tested.
In addition, GOTCHA automates non-creative testing tasks, and thus makes testing more
interesting.

TCBeans/GOTCHA Software Test Tool Kit Page 9 of 10

1

Test Process Automation Lags
Design Automation

System Definition

•Analyze Application
•Determine Required
Tests

•Analyze Application
•Determine Required
Tests

Test Design

•Capture/edit
behavior with Call
Flow Diagram

•Capture/edit
behavior with Call
Flow Diagram

Software Design

New Features/
Bug Fixes

•Manually develop or
capture test scripts

•Manually develop or
capture test scripts

Test Implementation

•Automatic Code
Generation

•Automatic Code
Generation

Software
Implementation

Test and Trial

•Automated Test
Execution

•Automated Test
ExecutionCall Flow

Diagram

Test
Spec

Automated Process

Manual Process

 Req’t
Spec

Product Development Life Cycle

Define Design Implement Test and
Trial

QA Field Test

Test Cycle

Features

Design Code Execute

Test Development Process Squeezed by
Rapid Change and Shrinking Market Window

Feature 1

Feature 2

Feature 3

Feature n

Result:
1. Difficult to keep pace with new features/changes, making test the bottleneck
2. Little time for testing feature interaction until late in process, extending the
 time required for QA and field trials

Rapid change
made possible
by design auto-
mation

Shrinking Mkt
Windows from
Increased
Competition

2

•Analyze Application
•Determine Required
Tests

•Analyze Application
•Determine Required
Tests

Test Design

•Manually develop or
capture test scripts

•Manually develop or
capture test scripts

Test Implementation
Test
Spec

• Icon driven programming of
parameterized functions

• Paramaterized functions
• Icon selected cut and paste
• Cut and paste reuseable

functions

• Behavioral Description
Languages with path
generation tools to
define scenarios

• Description of
Use Cases to be tested

A Gap Exists Between Automation
Approaches For Test Design and Test

Implementation

High level description
of behavior with complex
behavioral description
language

Definition of a single call
flow paths using basic
call flow icons

Closing the Automation Gap

High level description
of behavior with complex
behavioral description
language

Definition of a single call
flow path using basic
call flow icons

Behavioral Description using
re-useable call flow objects with
imbedded test execution code
and test descriptions

Automated path path
generation thru the call flow
diagram that concatenates the
test code and documentation

3

Implementing an Automation
Solution

• Define a set re-useable objects
• Define approach for defining the connection of

the objects
• Define methodology/algorithm for generating

optimal test paths
• Define test output formats

Requirements for Re-useable
Objects

• Re-useable across applications

• User can configure without low level coding

• Understandable by non-programmers

• Should be easy to map to icons used by App
Builder Tools

4

Re-useable Call Flow Objects Must Describe
Application Behavior at User Interface

Call Flow Object Description
1. Prompt-Response play a greeting and receive a response
2. Play Voice play an audio file
3. Place Call make a phone call
4. Record Voice save voice data in a file
5. Go On-Hook disconnect the call
6. Go Off-Hook prepare to accept incoming calls
7. Send Tones send MF or DTMF tones
8. Receive Tones receive MF or DTMF tones
9. Wait For Hangup wait for call to be disconnected
10. Wait For Call wait for an incoming call
11. Wait For Energy wait for energy on line
12. Wait for Silence wait for silence on line
13. Recognize Speech compare speech data with a vocab
14. Reject Call reject incoming call on the line
15. Transfer Call transfer a call to another number
16. Error default error handler
17. Stop Channel stop communications on the channel
18. Send Fax send a fax
19. Receive Fax receive a fax

Specialized Test Call Flow Objects
May Be Required

• Dialing ahead of prompts
• Measurement of response time
• Capture and processing of performance data
• Importing database information
• Verification of screen pops

5

Contents of a Call Flow Object

• Code for executing action on target test
execution system or systems
– Must be parameterized to allow programming of different

digits, voice prompts, telephony parameters, phone lines, etc.
– Includes error handling routines

• Input parameter definition
• Test description for documentation purposes

Specifying the Connection of Call
Flow Objects

• Best case, integrate with App Builder tool
directly.

• At minimum, non programmer must be able to
easily create a new description from a design call
flow diagram

• Must be able to specify conditional branching
depending on various data values

• Support of hierarchical call flows enables greater
re-use and more readable descriptions

6

Application View Test View

An Application View Is Required for Easy Mapping to
Design Call Flow Diagram

Call Flow Descriptions Need to Handle
Data Dependencies

Main Menu

1 2 3 4 5 6 7,9,# 2,3,4,5,6
unprompted

R S CR PO RS AF

Main Menu
If message in mailbox:(To listen to your messages, press 1.)
If Send= 1 or 2: (To send a message, press 2.)
To check receipt, press 3.
To change your personal options, press 4.
If Restart = Y: (To restart this session, press 5.)
If Application Access= Y:(For applications, press 6.)
To disconnect, press *.

0*8

You have
pressed an
incorrect

key

Your
mailbox

number is
 [xxxx)

Goodbye

Disconnect

Path thru call flow diagram depends on
 data values

7

Hierarchy is Required for
Modeling Complex Call Flows

• Allows problem to be
decomposed to modular
components

• Work can be distributed and
done in parallel

• Facilitates re-use of sub call
flows across platforms

• Changes to sub-call flows used
multiple times are made in one
place

Sub Call Flows

Main Menu

1 2 3 4 5 6 7,9,# 2,3,4,5,6
unprompted

R S CR PO RS AF

Main Menu
If message in mailbox:(To listen to your messages, press 1.)
If Send= 1 or 2: (To send a message, press 2.)
To check receipt, press 3.
To change your personal options, press 4.
If Restart = Y: (To restart this session, press 5.)
If Application Access= Y:(For applications, press 6.)
To disconnect, press *.

0*8

You have
pressed an
incorrect

key

Your
mailbox

number is
 [xxxx)

Goodbye

Disconnect

Test Generation Requirements

• Touch all parts(data and call flow objects) at least
once

• Test for response to negative behavior
• Verify that illegal conditions can’t occur

8

Test Generation Methods

• Manually Determine data and call flow paths
required to achieve test requirements
– Construct each path separately with call flow objects and

automatically generate test code for path

• Use path generator tool to find paths thru the call
flow diagram and automatically create tests

Path Generation Tools Can Provide
Significant Advantages

• Advantages
– Automatically create paths to cover all objects
– Rapidly respond to changes in call flow
– Lower skill level required to design tests
– Can be directed to generate large test sets for problem parts of

the call flow

• Key Issues:
– Are machine generated paths valid scenarios?

• Do they reflect actual operational scenarios?
• Do they adequately test error conditions?

– Once tests are created, should users be able to manually edit
the low level code, or forced to only make changes to re-
useable objects?

9

Test Documentation Requirements

• Test scripts that are generated should be self
documenting
– eliminates error prone separate step of creating

documentation

• Need graphical representation of each test path
– Overall sequencing of call flow objects
– Relative sequencing of call flow actions occurring on each test

channel

Call Flow
Object

 Object
Properties

Call Flow
Object

 Object
Properties

Integrated Solution for Automated
Telephony Test Generation

Data Tables

Graphical
Editor

Path
Generator

Test
Scheduling

Call Flow
Object

 Object
Properties

Call data used across
multiple objects

Re-useable
Call Flow objects

Test Execution

Test
Documentation

Test
Scripts

Automated Test Generation for Computer Telephony Systems

Brian C. Miller
Teradyne Software and System Test
44 Simon Street, Nashua, NH 03060

miller.brian@teradyne.com

Introduction

Significant progress has been made in automating the front-
end application design process and back-end test execution for
today’s Computer Telephony applications. Sophisticated
application builder tools coupled with configurable Interactive
Voice Response (IVR) platforms allow end users, integrators,
VARs or dealers to build sophisticated IVR applications.
Robust automated test execution systems can automatically
emulate protocols and voice to greatly increase the
thoroughness and repeatability of functional test, load testing,
regression testing and in-service monitoring1. Despite the
automation in design and execution, the process for designing
and implementing tests is still mostly manual and largely
unchanged from what was done a decade ago. What’s
missing is an automated test generation process that
integrates the upfront call flow descriptions of the App
Builders with the back-end automated test execution
environments. This paper will examine the issues with the
current process and discuss the requirements for an automated
approach.

Current Design and Test Process

Design Process

Figure 1 illustrates a typical development process for a
Computer Telephony system. Today, most Computer
Telephony systems are defined in some form of Call Flow
diagram. This is done with either a graphical drawing tool, or
the graphical editor of an application builder toolset. Once the
definition is complete, the application builder can be used to
graphically design the system and then automatically generate
code. The system can then be exhaustively tested from both a
functional and a stress perspective using a variety of available
automated test execution environments2.

Test Process

While this design process is highly automated, the test process is
still mostly a manual process. Tests are developed by a
laborious process of first analyzing a call flow diagram of the
system design to determine what tests are required. The tests
are then manually implemented, reviewed and debugged in low
level scripting languages, requiring skilled programmers with
both programming and telephony test experience. This process

Figure 1: Test Process Automation Lags Design Process Automation

System Definition

•Analyze Application
•Determine Required
Tests

•Analyze Application
•Determine Required
Tests

Test Design

•Capture/edit
behavior with Call
Flow Diagram

•Capture/edit
behavior with Call
Flow Diagram

Software Design

New Features/
Bug Fixes

•Manually develop or
capture test scripts

•Manually develop or
capture test scripts

Test Implementation

•Automatic Code
Generation

•Automatic Code
Generation

Software
Implementation

Test and Trial

•Automated Test
Execution

•Automated Test
ExecutionCall Flow

Diagram

Test
Spec

Automated Process

Manual Process

 Req’t
Spec

is repeated every time the application is updated or changed.
At the end of the process there is no explicit measure of the test
thoroughness. This can result in long field test cycles or worse,
problems found by customers.

Test is becoming the bottleneck

Features are released incrementally during the design process
(Figure 2). The tests for each feature require a separate design
and coding process. The time available for this process is being
squeezed from two directions:

• Application builder tools make it possible for new
features to be added or changed quickly, making it
difficult for the manual driven test process to keep up
and creating a bottleneck.

• Market pressure is reducing the time for creating tests
and increasing the need for new features. These
features are implemented rapidly using automated
application builder tools.

Also, because of the time required to develop feature tests, little
testing of feature interaction is done until late in the process.
Problems found at this phase can be the result of a inaccurate
requirement, poor design or an implementation error (Figure 1).
Changes in the requirements require changes to the existing
tests, further squeezing the process.

behavioral modeling tools that can either find paths through
the model, or validate specific use cases4. The languages for
these tools are complex and require skilled programmers to
implement.

There are several different approaches being used for
automating the test implementation. All are based on having
a set of re-useable test functions that are linked together to
implement the actions of a single call path.

At the simplest level, the functions are re-used by cutting and

Product Development Life Cycle

Define Design Implement Test and
Trial

QA Field Test

Test Cycle

Features

Design Code Execute

Feature 1

Feature 2

Feature 3

Feature n

Result:
1. Difficult to keep pace with new features/changes, making test the bottleneck
2. Little time for testing feature interaction until late in process, extending the
 time required for QA and field trials

Rapid change
made possible
by design auto-
mation

Shrinking Mkt
Windows from
Increased
Competition

•Analyze Application
•Determine Required
Tests

•Analyze Application
•Determine Required
Tests

Test Design

•Manually develop or
capture test scripts

•Manually develop or
capture test scripts

Test Implementation
Test
Spec

• Icon driven programming of
parameterized functions

• Paramaterized functions
• Icon selected cut and paste
• Cut and paste reuseable

functions

• Behavioral Description
Languages with path
generation tools to
define scenarios

• Description of
Use Cases to be tested

High level description
of behavior with complex
behavioral description
language

Definition of a single call
flow paths using basic
call flow icons

Figure 3: A gap exists between the current automation tools
used for test design and test implementation

Available Test Automation

Today there is a gap between automation tools used for test
design and those used for test implementation. There are test
design tools that model an application's behavior and then
automatically find test paths through the model3. Test
implementation tools automate the creation of test scripts for a
single call flow path, once it is defined. There is a gap in that
the tools defining the test paths don't easily implement the code
for those tests. In most cases, the link is a Test Specification
defining the test paths that need to be implemented (Figure 3).

The test design tools are sophisticated general-purpose

pasting them into a new program using either an editor or
clicking on an icon that automatically pastes the code. The
script code is then hand edited to tweak it for new
applications.

A more sophisticated approach involves having
parameterized functions that can be customized by
modifying parameter values. This reduces the need for
modifying low level code and allows for a more general-
purpose library of functions.

Implementing an Integrated Approach for Test Design and
Implementation

The gap between test design and test implementation tools
can be filled by developing a set of re-useable call flow
objects that can be used by the test design tools to model the
behavior of the application and automatically find the test
paths. By concatenating test execution code embedded in
each re-useable object, the path generators in these test
design tools can automatically implement the tests for each
path found.

Figure 2: Rapid change and shrinking market windows are
squeezing the Test Development Process

To implement this kind of integrated approach, careful
consideration should be given in defining the following:

• A set of re-useable objects

• A means of connecting the re-useable objects
to represent the call flow

• A methodology or algorithm for generating
optimal test paths

• An output format suitable for debug and
documentation

The remainder of this paper will discuss the requirements for
each of the above implementation steps.

Defining Reuseable Objects

What objects are required?

The first step in implementing an automated test generation
solution is defining a set of re-useable objects that can be
used to describe the behavior of a Computer Telephony
application from a user interface perspective. The goal is to
have a set of objects that a non-programmer can use to
describe the application behavior. A starting point is found
in the building blocks used by the design team's application
builder tool. Unfortunately, depending on the tool, there
could be 100's of building blocks. Many of these are
operations internal to the design that an end user would not
see (i.e., connect to database, string operations, file
operations, etc.). Figure 4 illustrates a list of objects that

would be needed to model at typical CT application at the
interface level.

In defining the library of re-useable objects, you should
consider whether the objects are defined from an application
perspective or a test perspective. The application
perspective is the same view a designer uses with an
application builder tool. The test perspective is a mirror
image of the application view, looking into the application
from the tester. Test engineers use this perspective to think
about what the tester is doing instead of how the application
is reacting. As an example, a "Place Call" object in an
application perspective (which causes the application to dial
a number) is the equivalent of a "Receive Call" object in the
test perspective, which causes the tester to receive an
incoming call. The advantage of the applications
perspective is that enables a direct mapping to the design
call flow diagram and facilitates easier interaction with
design engineers. The disadvantage is that it is an inside out
view of the tests that are run, adding complexity to the test
problem.

In addition to defining a set of call flow objects that can
represent the application behavior, it may be necessary to
develop additional specialized test objects. As an example,
you may want to verify that the application responds
properly when an end user dials ahead of the prompts. This
could require some form of "listen and respond" object that
sends digits a specified time after the prompt begins. It may
also be necessary to develop objects that can capture and log
various response data.

Many applications are set up to have data dependent call
flows. For example, an investment firm may want to have
different customer call flows based account type or balance.
An insurance company may want to route DNIS numbers
from a disaster area directly to an agent. Testing these
applications requires an object that enables data to be
specified or imported.

It may also be necessary to define objects that represent
screen pops. Some applications have parallel processes that
route a call to an agent while at the same time looking up an
account balance in a database and popping it on the screen
of a designated agent.

Implementing the Re-useable Objects

Once the objects are defined, the first step in implementing
them is to develop the code for executing the object action
on the target test execution system. To make the object as
general purpose as possible, this code should be
parameterized to allow for broad re-use. Some of the
parameters include digits to be dialed/received, voice
prompts, telephony parameters and phone lines used. The
code for the objects should also include default error
handling routines.

The objects also require a means of inputting the parameter
values. Ideally, this should be done graphically with text
boxes, buttons, or pull downs to enable use by non-
programmers. Finally, there should be a means of providing

C a l l F lo w O b je c t D e s c r ip tio n

1. Prom pt-R esponse p lay a greeting and rece ive a response

2. P lay V o ice p lay an aud io f ile

3 . P lace C all m ake a phone call

4 . Record V o ice save vo ice data in a f ile

5 . G o O n-Hook d isconnect the call

6 . G o O ff-Hook prepare to accept incom ing calls

7 . Send Tones send MF or D TMF tones

8. Rece ive T ones rece ive MF or D TMF tones

9. W ait For Hangup wait fo r call to be d isconnected

10. W ait For Call wait fo r an incom ing call

11 . W ait For Energy wait fo r energy on line

12. W ait fo r S ilence wait fo r s ilence on line

13. Recognize S peech com pare speech data with a vocab

14. Re jec t Call re jec t incom ing call on the line

15. Transfer Call transfer a call to another num ber

16. Error default e rror hand ler

17. S top C hanne l s top com m unications on the channe l

18. Send Fax send a fax

19. Rece ive F ax rece ive a fax

Figure 4: Re-useable Call Flow objects must describe the
behavior of a Computer Telephony application at the user
interface

specific test comments for documentation purposes.

Creating the Call Flow Diagram

Once the call flow objects are defined and implemented, there
needs to be a method of connecting them together to model the
application behavior in the form of a call flow diagram. The
ideal solution would be to import a call flow diagram directly
from the chosen application builder tool. Unfortunately, there
are no graphical interface standards for call flow diagrams to
facilitate this. Also, since there is not a dominant supplier in
this area, there are no third party solutions for integrating a
call flow diagram of any application builder tool with any test
design tool. Lacking the above, the best approach is to make
it possible for a non-programmer to create a new call flow
diagram that can easily be mapped to the design call flow
diagram. To do this, it must be possible to enter the call flow
diagram from the same application perspective used by the
application builder tools (Figure 5).

In order to support data dependent call flows, the call flow
diagram must be able to represent conditional branching
dependent on data values. Figure 6 shows a call flow diagram

of a voicemail system where the main menu prompt and the
call flow path will vary depending on the data values defined
in the table. For example, a caller with "application access"
turned off would not hear the "press 6 for applications"
prompt. If the 6 digit were then pressed, the caller would be
routed to an error message.

Finally, being able to specify hierarchical call flows enables a
modular approach to test. Figure 6 illustrates a series of sub-
call flow diagrams that get branched to from the main menu.
Drawing all of these on a single flat call flow diagram would
be hard to organize and even more difficult to read. Using
hierarchy, the application can be decomposed to modular
elements that can then be worked on in parallel. Additionally,
having re-useable sub call flows allows the work to be
leveraged across multiple platforms. If the sub call flow
changes, the change can be implemented across all instances
of the sub call flow with a single edit.

Figure 5: An application view is required for easy mapping to the design call flow diagram.

Application View Test View

Main Menu

1 2 3 4 5 6 7,9,# 2,3,4,5,6
unprompted

R S CR PO RS AF

Main Menu
If message in mailbox:(To listen to your messages, press 1.)
If Send= 1 or 2: (To send a message, press 2.)
To check receipt, press 3.
To change your personal options, press 4.
If Restart = Y: (To restart this session, press 5.)
If Application Access= Y:(For applications, press 6.)
To disconnect, press *.

0*8

You have
pressed an
incorrect

key

Your
mailbox

number is
 [xxxx)

Goodbye

Disconnect

Path thru call flow diagram depends on
 data values

Figure 6: Call Flow descriptions must support data dependencies and hierarchy

Test Generation Requirements

After the call flow diagram is entered, the next step is to
define an optimal set of test paths through the diagram. At a
minimum, these test paths should accomplish the following:

• Touch all elements of the call flow diagram(data and call
flow objects) at least once.

• Test for response to negative behavior.

• Verify that illegal conditions can't occur.

Achieving the above can be done either manually or
automatically. In a manual approach, each path is separately
constructed with the call flow objects and the code from each
object is assembled to create a test script. Alternatively, using
the path generation capability of a test design tool can
automatically create the test paths. This approach offers
several advantages:

• Automatically create test paths that cover all objects.
This is particularly important on large, complex call
flows. Manually analyzing dozens of pages of call flows
to determine the optimal set of test paths is tedious, time
consuming and error prone.

• Rapid response to changes in the call flow diagram.
Instead of editing low-level test scripts, tests are modified

or added by editing the call flow diagram and using the
path generator to rapidly create new tests. This has the
greatest impact on new applications with volatile
requirements, or in competitive situations where new
features are frequently added.

• Lower skill levels required to design tests. By reusing
debugged call flow objects, non-technical people can
enter diagrams for test engineers.

The key issue in the using an automated path generator is to
have the test paths be relevant applications scenarios. Having
100's or 1000's of tests on a part of the call flow happening
1% of the time may add nothing to quality and just decrease
throughput. In some of the path generation tools, the relative
likelihood of each path can be specified so that the distribution
of paths created is consistent with the operational behavior of
the application.

A philosophical issue to consider is whether or not to let test
programmers debug test scripts by hand editing the script code
after it is generated instead of making the necessary changes
to the code embedded in the template. The problem with
tweaking the generated code instead of the code in the call
flow objects is that the test program becomes disconnected
from the original call flow diagram. If new features are added
to the call flow diagram, the tests that are automatically

References

1 Knowland, D., Life-Cycle Testing For Call Center Quality,
CTI Management Magazine, December 1998

2 Gladstone, S., Testing Computer Telephony Systems and
Networks, Flatiron Publishing, New York, 1994, ISBN 0-
936648-57-0

3 Beizer, B., Black Box Testing, ,John Wiley & Sons, New
York, 1995. ISBN 0-471-12094-4

4 Clarke, J., "Automated Test Generation from a Behavioral
Model", Proceedings of the Software Quality Week 1998
Conference, 1998

generated will have the same problems that were previously
fixed. The best approach is to edit the generated code until the
script works, back annotate the changes into the call flow
objects, and then re-generate the test. This way, the necessary
changes are permanently captured in the call flow object.

Test Documentation

Ideally, the documentation for the test scripts should
automatically be generated as a separate output whenever new
test scripts are generated. This can be accomplished by
having the generation tool concatenate test descriptions
annotated on each call flow object as it creates each path
through the call flow diagram. This eliminates having an error
prone separate step of documenting the scripts after they are
generated. It also assures that the documentation is always in
sync with the test scripts

While debugging scripts it is also helpful to have a graphical
display that shows the sequence of events on each channel for
each test script. This sequence-based view simplifies review
of the test scripts with other test or development engineers.

Summary

Figure 7 summarizes the components of an automated solution
discussed in this paper. The first step is to create a library of
re-useable call flow objects that define the actions at the
application’s user interface. These objects contain the code for
executing the action on the target test execution environment.
The objects are connected using a graphical editor to link the
call flow objects together in the form of a call flow diagram.
As the objects are placed, they are edited with comments
describing the test action. Separate tables for data effecting
the path through the call flow diagram must then be
developed. Once the call flow diagram is completed, the test
generator of an automated test design tool can be used to find
paths through the call flow diagram. As each path is found,
the test execution code and test comments are concatenated
together to automatically create test scripts and
documentation.

Implementing this approach can have a significant impact on
the overall product development process by:

• Reducing the time and skill level required to
develop comprehensive test scripts

• Allowing tests for feature changes or additions to
be developed in minutes

• Increasing the quality level by automatically
generating comprehensive end to end tests across
the entire call flow diagram.

These benefits must be weighed against the cost developing or
purchasing such a system.

Call Flow
Object

 Object
Properties

Call Flow
Object

 Object
Properties

Data Tables

Graphical
Editor

Path
Generator

Test
Scheduling

Call Flow
Object

 Object
Properties

Call data used across
multiple objects

Re-useable
Call Flow objects

Test Execution

Test
Documentation

Test
Scripts

Figure 7: Example of an integrated solution for automated
Computer Telephony test generation

Combining Methods for the Analysis

of a Fault-Tolerant System

Bettina Buth, Jan Peleska, Hui Shi

BISS { Bremen University

Overview

� Background
� Approach: Abstraction { Algebraic Transformation

{ Model Checking { Generic Theories {

Liveness Induction { Analysis of Cycles

� Future Plans

Quality Week'99 BISS { Bremen University

Background 1

International Space Station {

FTC Structure:

FML FML FML FML

AVI AVI AVI AVI

MIL-BUS

ASS ASS ASS ASS

Application Application Application Application

Basis: � occam code/pseudocode
� diagrams of data ow via channels
� informal description

Quality Week'99 BISS { Bremen University

Background 2

Goals

Veri�cation Goal Veri�cation Method

deadlock freedom CSP: generic theories - abstrac-
tion - model checking - algebraic
laws - compositional theory

livelock freedom as for deadlock analysis + de-
pendency analysis

absence of bottlenecks stochastic petri nets

correct implementation of
Byzantine Protocol and failure
detection

abstraction - model checking -
compositional proof theory

correct implementation of appli-
cation services

veri�cation using Hoare Logic

\most non-deterministic admis-
sible software/hardware integra-
tion is correct"

Hardware-In-The-Loop-Testing

Quality Week'99 BISS { Bremen University

Background { Goals 3

Deadlock Analysis :
\Whenever the system reaches a stable state where all com-

munications are blocked, all processes reading from interface

channels are ready for input."

Livelock Analysis :
\The system will never engage in an unbounded sequence of

internal communications without visible communications on the

interface."

Assumption :
Environment always accepts outputs and sometimes yields in-

puts.

Quality Week'99 BISS { Bremen University

Approach 4

Combining Methods

� Basic Techniques:
� Abstraction of occam code
� Algebraic Transformations
� Generic Theories
� Model Checking using FDR2

� Composition of Results:
� Compositional Proof Theory
� Liveness Induction
� Analysis of Cycles, e.g. using Fault Tree

Methods

Quality Week'99 BISS { Bremen University

Approach 5

Abstract Interpretation of occam Code:

� sequential code not inuencing communication

behaviour is deleted,
� channel protocols are reduced to minimal set of

values,
� occam IF condition THEN P ELSE Q may be replaced by

CSP if-construct or internal choice,
� abstract interpretation is compositional:

If A(P), A(Q) are valid abstract interpretations of P and Q

and consistent with respect to interface I , then A(P) k
I

A(Q)

is a valid abstract interpretation of P k
I

Q.

Quality Week'99 BISS { Bremen University

Approach 6

Model Checking

Tool Support: FDR

(Failures Divergence Re�nement)

� Prerequisite: Finite State Space

� Problem: State Space �nite, but too large

� Solution: reduce problem by
� algebraic transformation
� generic theories and abstraction/re�nement
� other methods like analysis of cycles

Quality Week'99 BISS { Bremen University

Approach 7

Generic Theories

Idea : use knowledge about special processes for
� further abstraction
� combination of results

process types
� CHAOS(X) = u x:X @ x ! CHAOS(X) u STOP

� RUN(X) = [] x:X @ x ! RUN(X)

� YIELD(X) = u x:X @ x ! YIELD(X)

� pipes and generalized pipes
� bu�ers
� multiplexer/concentrator
� cycles with capacity

Quality Week'99 BISS { Bremen University

Approach 8

Analyzing Cycles: Dependency Analysis

P0 P1

P2P3

dev.data.output

from.dev

to.dev

(1)

cmd

(3)

(2)

(4) (5)
set.pcf

from.intr.handler(6)

ftc.clock.event

� investigate relevance of cycles in G
SYS is livelock free if any cycle is either
� not possible in the CSP abstraction; i.e if one

edge does not depend on its predecessor in the
cycle,

� possible in the CSP process, but additional infor-
mation in the occam code allows to exclude this
situation.

Quality Week'99 BISS { Bremen University

Summary 9

Experiences: deadlock vs livelock

� abstraction with more details e.g. timer events
� failure-divergence model produces larger state space

) further decomposition
� new techniques for combining results

� liveness induction
� dependency analysis

Future Work:

� Tools supporting abstraction
(for occam or other languages)

� support for cycle detection
� support for load analysis
� more generic theories

Quality Week'99 BISS { Bremen University

Combining Methods for the Analysis of

a Fault-Tolerant System

Bettina Buth
�

Jan Peleska
y

Hui Shi
z

1 Introduction

The acceptance of Formal Methods in industries essentially depends on their
scalability, i.e. their applicability in large scale realistic industrial projects. An
important aspect is the availability of suitable tools, but from our experience
this is but one aspect. The diverse nature of system components and the tech-
niques used in the di�erent steps of the development process require the use
of a combination of methods for the development as well as for the analysis of
these components. In this paper we report experiences in using a combination
of methods for the analysis of a large software system, namely the fault-tolerant
data management system for the International Space Station (ISS). It was nec-
essary to use these methods in order to break down the respective tasks into
manageable sub-tasks.

The project started in 1995 when JP Software-Consulting (now Veri�ed Sys-
tems International) in collaboration with the Bremen Institute for Safe System
(BISS) were contracted by Daimler-Benz Aerospace (DASA) to perform an anal-
ysis of a fault-tolerant data management system for the ISS. Up to now various
aspects of the system correctness have been investigated:

� freedom of deadlock (see for example Buth et al. [2]),

� freedom of livelock ([3]),

� correct implementation of voting algorithms used for majority-based de-
cision making,

� correct implementation of the Byzantine Agreement Protocol used to reach
agreement between correctly operating system components ([18]),

� performance properties depending on clock rates([19]),

� Hardware-In-The-Loop tests for the overall system.

�BISS, Bremen Institute for Safe Systems, Email bb@informatik.uni-bremen.de
yVeri�ed Systems International, Bremen, Email jp@informatik.uni-bremen.de
zUniversity of Bremen, Email shi@informatik.uni-bremen.de

1

Di�erent approaches were employed for these analysis tasks. These comprise
abstraction of the occam code to CSP processes and reasoning about these ab-
stractions, Hoare-style program veri�cation for sequential code, and the use of
stochastic Petri nets for the throughput analysis.

Whereas the results presented in Buth et.al. [2, 3] relate to deadlock resp.
livelock analysis from a more theoretical point of view, this article focuses on
the description how we overcame the essential problems of size and complexity
of a realistic large-scale system by employing a combination of methods for the
analysis. Due to the con�dential nature of the material unfortunately it is not
possible in this framework to make available details of the original code or our
speci�cations (these are available only in the internal reports [4, 5]).

2 Technical Background: The Fault Tolerant

Computer

The software to be analyzed is part of a fault tolerant computer to be used in
the International Space Station (ISS) to control space station assembly, reboost
operations for ight control, and data management for experiments carried out
in the space station. In the following we will describe the system architecture
and the goal of the analysis as well as the starting point for the veri�cation.

2.1 FTC Architecture

The overall architecture consists of up to four communicating lanes, each pro-
viding services for the applications. Each of these lanes is structured into an
application services layer (ASS), a fault management layer (FML), and the avion-
ics interface (AVI). The ASS resides on the application layer board and contains
table driven services for the application software and the operating system. The
AVI is in charge of the MIL Bus protocol handling according to prede�ned tim-
ing slot allocations. These are de�ned in an input/output table. The function
of FML is twofold: First, it provides the interface between ASS and AVI of one
lane, transferring messages from AVI to ASS and vice versa. Second, it performs
the data transfer between lanes thus allowing communication between the fault
management layers of all lanes. This communication is the basis for error de-
tection, error correction, lane isolation (in the case of an unrecoverable error),
and lane reintegration. In each lane, the application layer plus ASS runs on
a customized Matra board using a SPARC CPU. Both FML and AVI reside on
separate transputer boards. The lanes communicate only at FML level using the
transputer links. Each FML uses up to three links for communication with the
other lanes, and one link (link 0) for communication with AVI. Data transfer
with ASS is performed using a VME interface. See Figure 1 for the architecture
of a full four-lane system.

Error detection is essentially based on a two round Byzantine distribution
schema [12] where data are communicated between FMLs and voted using var-
ious specialized voters. The aim is to ensure that (1) all ASS instances of

2

FML FML FML FML

AVI AVI AVI AVI

MIL-BUS

ASS ASS ASS ASS

Application Application Application Application

Figure 1: FTC Architecture

non-faulty lanes get identical messages from FML, (2) all AVI instances of non-
faulty lanes get identical messages from FML, (3) for data calculated by all lanes
(congruent source messages) all non-faulty lanes get the correct(ed) message, (4)
for data calculated by one lane (single source messages) all non-faulty lanes get
the correct(ed) message if the originator is not faulty. The implemented design
allows detection of one Byzantine or deterministic fault in a four-lane system
and recognition of a deterministic fault in a three-lane system.

2.2 Goals of Communication Behavior Analysis

Both FML and AVI software are implemented in occam [11], consisting of systems
of processes running concurrently and communicating via internal channels and
partly using shared memory to exchange data without the additional commu-
nication overhead. The software is structured hierarchically: larger processes,
each consisting of several subprocesses, implement di�erent parts of the respec-
tive functionality and communicate the computation results to the other main
processes. In addition to the usual aspects of functional correctness and tim-
ing, a concurrent architecture of software adds the new problem of potential
blocking. It must be guaranteed that the software does provide its services to
the adjacent components of the overall system. Blocking can be due to two
causes: either the system does not work at all because components mutually
wait for results, or it does only work internally without communicating with its
environment. The �rst situation is called a deadlock, the second a livelock. Our
essential task for the analysis of the communication behavior was to show that
neither deadlock nor livelock situations can occur in the implementation of AVI
and FML. The �rst step of the analysis was to �nd out what actually had to be
checked with this respect.

For the deadlock analysis we have to check whether any of the communicat-

3

ing system of processes that forms the software continuously blocks the com-
munication with the environment. Precisely speaking, the following veri�cation
goal had to be investigated:

In an environment that always accepts outputs from the system but
may or may not refuse to provide inputs, the following assertion
holds: Whenever the system reaches a stable state where all inter-
nal communications are blocked, the system will always accept new
input from the environment.

In high level concurrent programming languages, such as occam it is con-
ventional for communication channels between two processes to be concealed
from the environment. This can potentially cause a form of divergence known
as livelock.

The objective of our livelock analysis is to investigate occurrence of inter-
nal divergence only. A CSP (or occam) system X is called livelock free with
respect to interface channels c1; c2; : : : ; cn , if the system will never engage in an
unbounded sequence of (internal) communications without interleaved (visible)
communications on the interface c1; c2; : : : ; cn . This property is as important
as the absence of deadlocks since it ensures the interaction of the system with
its environment.

2.3 The Basis for the Analysis

The material provided as basis for the analysis consisted of

� a printed version of pseudo code for AVI,

� electronical �les of the �nal implementation of FML and AVI (in the latter
case for re-veri�cation),

� diagrams depicting the overall architecture and communication behavior
of individual processes,

� general information about the system requirements and technical details
of the system,

� verbal communication with the system engineers.

3 Veri�cation Approach

The general idea for the analysis of communication properties of occam programs
as proposed here is to exploit the fact that occam channel communication can
easily be modeled in CSP. For CSP a wide range of theories and suitable tools
like theorem provers and model checkers are available. The basic idea for both
deadlock and livelock analysis performed in this project is to use model checking
and the tool FDR [9]. After manually abstracting the occam programs to CSP

4

processes the systems still is too large for a direct approach using FDR. Thus it
is necessary to decompose the task and use other techniques for combining the
results to obtain an overall result for the full system. Some of these techniques
are tool supported, others currently are only performed unassisted.

For real-time applications, periodic internal events such as time-scheduled
interrupts cannot cause divergence as long as their period is long enough to
allow for other activities in between. These events may cause cycles of internal
communications which are intended and not to be considered as livelock, because
their occurrence is guarded by time intervals where other communication events
are possible. To reect this properly in an untimed CSP model, we regard these
channels as part of the interface for the purpose of livelock analysis.

The mathematical proof theory of CSP allows to verify properties of CSP
speci�cations by means of logic reasoning. The CSP language, its mathematical
foundations and its possible applications have been thoroughly investigated since
the late sixties (see [10, 9, 8]). For the veri�cation goal described above we apply
various veri�cation techniques. They can roughly be divided into those which
are applied to basic components, namely

� Model checking is used for the mechanized veri�cation of small-sized CSP
components,

� Abstract Interpretation is applied to \lift" occam process components to
CSP components reecting the essential aspects of the process communica-
tion behavior while abstracting from details irrelevant for the veri�cation
goal,

� Generic theories increase the e�ciency of analysis: process instances of a
generic class inherit the class properties, which means that it is only nec-
essary to show that concrete processes are instances of a suitable generic
process,

� Algebraic reasoning is applied to transform CSP process speci�cations into
equivalent ones better suited for the model checker.

and those which are used for combining the results about the basic compo-
nents:

� The compositional proof theory of CSP is applied in connection with re�ne-
ment properties to derive global properties of the complete system from
the local properties established for the isolated components,

� A special form of cycle analysis is used on the data ow diagrams to show
that cycles in the communication can not induce an in�nite backlog as
cause of a livelock,

� A dependency analysis similar to fault tree methods is applied in order to
reduce the number of cycles to be investigated for livelock analysis,

5

� Liveness induction provides a suitable means of extending the system step-
by-step and making use of local livelock freedom results of the component
processes.

3.1 Model Checking and Re�nement

The speci�cation language CSP (Communicating Sequential Processes) is associ-
ated with a formal method allowing to verify properties of parallel systems. (See
Hoare [10] and the recent book by Roscoe [17] for more details). CSP processes
proceed by engaging in communications. Processes may be composed by opera-
tors which require synchronization on some communications. This, rather than
assignments to shared state variables, is the fundamental means of interaction
between agents. The theory of CSP has classically been based on mathemati-
cal models remote from the language itself. These models have been based on
observable behaviors of processes such as traces, failures and divergences. The
semantics of a CSP process can be given in three models:

� In the trace model a process is represented by the set of �nite sequences
of communications it can perform,

� In the failures model a process is represented by its set of traces as above
and also by its refusals { a set of communications it can refuse after a
sequence of communications,

� The failures-divergence model extends the failures model with the diver-
gences of a process { the traces during or after which the process can
perform an in�nite sequence of consecutive internal actions or otherwise
show chaotic behavior.

FDR (Failures-Divergence Re�nement) is a model-checking tool for state ma-
chines, with foundations in the theory of concurrency based upon CSP. Its main
method for establishing whether a property P holds for a CSP process system
SYS is to investigate re�nement properties: SYS is compared to a speci�cation
process SPEC for which P is known to be valid. The comparison is performed
in one of the semantic models of CSP which is known to preserve property P
under re�nement. The main ideas behind FDR are presented in [15].

Every CSP speci�cation consisting of �nite-state processes with �nite-value
channels can be translated into a �nite transition graph representation. This
graph contains all the semantic information of the original CSP speci�cation.
As a consequence, every property of the speci�cation { as, for example, livelock
freedom or more speci�c re�nement properties{ can be veri�ed by exhaustive
analysis of the transition graph. Moreover, such an analysis can be mechanized.
The FDR tool provides this mechanization and has been used for all model
checking results about the abstract interpretations described in this document.

The notion of re�nement is a particularly useful concept in many forms of
engineering activity. If we can establish a relation between components of a
system which captures the fact that one satis�es at least the same conditions

6

as another, then we may replace a worse component by a better one without
degrading the properties of the system. Re�nement relations can be de�ned for
systems described in CSP in several ways, depending on the semantic model of
the language which is used.

3.2 Abstract Interpretation

For the analysis of deadlock or livelock freedom it is unnecessary to inspect
every detail of the occam code, since only a subset of the statements of this
code inuences the communication behavior. It is therefore possible to generate
a CSP speci�cation which represents an abstract version of the original occam
process P and shows only that amount of detail which is relevant for its com-
munication behavior. In general, we call such a CSP speci�cation A(P) a valid
abstract interpretation for a property p of the corresponding occam process P ,
if

Whenever A(P) has property p this implies that P has property p
as well.

If a valid abstract interpretation A(P) is available, we only need to analyze
A(P) instead of P . In our case this means: If A(P) is free of deadlock resp.
livelock, the same must hold for P .

The basic approach to construct valid abstract interpretations for deadlock
and livelock freedom uses four techniques in the translation from occam to CSP:

1. Every sequential algorithm whose results do not inuence communication
behavior is deleted.

2. Each occam channel protocol is reduced to the set of values inuencing
the communication behavior in a distinctive way.

3. Every occam IF-construct IF condition THEN P ELSE Qmay be replaced
by the equivalent if-construct in CSP or by the internal choice operator of
CSP yielding P uQ .

4. If valid abstractions A(P), A(Q) for two processes P and Q are available
and these interpretations use the same abstractions on their communica-
tion interface I , then A(P) k

I
A(Q) is a valid abstract interpretation of P

and Q operating in parallel. Using this technique, larger abstractions can
be build from existing ones.

Figure 2 provides an overview about the relationship between occam and
CSP constructs.

3.3 Generic Theories

Generic theories in CSP provide theorems about generic classes of processes.
Such process classes are parameterized over number, names, and data types

7

occam-construct CSP-construct
IF THEN ELSE u or if then else
PAR (PRIPAR) jjj or jj
ALT (PRIALT) []
WHILE P = � � � ! P or P = if b then � � � else SKIP
c?x c or c?x
c!a c or c!a
SEQ ; or !

Figure 2: Abstraction Table

of channels or process parameters acting as \software switches" controlling the
process behavior. Process instances of a generic class are created by providing
speci�c values for each generic parameter. A generic theory provides properties
valid for each process instance of the associated class; in general, the property
is instantiated analogously to the corresponding instance process.

Thus it is useful to identify general classes of processes and investigate their
properties independently from a speci�c analysis goal. During abstraction and
combination of results (see below) the use of instances of generic theories allows
us to reduce the veri�cation task in various ways. One aspect is to use these
instances directly as abstractions if they lead to smaller state spaces for model
checking. Another is the combination of results from smaller components in
connection with general theorems about the combination of various types of
generic processes. In both cases it is necessary to make sure that the concrete
process is a re�nement of the instance of the generic theory.

Some classes of generic processes identi�ed during the analysis of AVI and
FML are the following:

� CHAOS(X) = u x:X @ x ! CHAOS(X) u STOP

Instances of CHAOS(X) may o�er or refuse any event from the event set X.

� RUN(X) = [] x:X @ x ! RUN(X)

Instances of RUN(X) always accept any event from set X.

� YIELD(X) = u x:X @ x ! YIELD(X)

For a set of events X YIELD(X) will always provide at least one element
of X. Note that this does not exclude that one or more events are never
o�ered.

� pipes
consist of several processes which transfer input from their predecessor to
their successor in a serial way.

� bu�ers
store data up to a certain capacity and allow to retrieve these data in �rst
in-�rst out order.

8

� multiplexer/concentrator
accept inputs and provide outputs on several channels with the constraint
that there always is a maximum number of outputs after which the mul-
tiplexer can not refuse a new input.

� generalized pipes
process information in a series of processes each of which accepts additional
inputs.

� cycles with capacity
guarantee that an output can only be delayed by a maximum number of
internal cycles depending on the number of inputs.

3.4 Algebraic Reasoning

CSP possesses a rich proof theory which provides algebraic laws for the transfor-
mation of CSP processes into equivalent ones. Speci�cally, deadlock and livelock
freedom are preserved under application of these laws. Algebraic manipulations
are useful to simplify process terms and reduce the state spaces of processes
before starting the model checking process. This is often useful for abstractions
of occam processes where several di�erent cases in alternatives are collapsed into
one CSP case.

3.5 Compositional Proof Theory

Real-world systems such as AVI and FML usually consist of a number of processes
communicating with each other and the environment. Each of these may again
comprise several subprocesses. Since in general it is not feasible to deal with
the full system as a whole, one of the crucial points is how to compose the
analysis results achieved for the individual subprocesses and processes. Here,
CSP provides useful support with its compositional proof theory, which was used
for the analysis of FML and AVI in various ways.

The strongest way of exploiting compositionality is by using theorems which
allow to reduce the overall obligation to obligations just involving components
of the system. A simple example is the following:

Let SYS = P Q be a system of two processes P and Q which
run concurrently without any synchronization. Then SYS is free of
deadlocks whenever P and Q are free of deadlock individually.

Another way of exploiting compositionality is to refer to an essential property
of re�nement in connection with operators for the composition of processes
(preservation of re�nement):

If Pi vFD Qi for i : 0 : : n and ! is an n-ary operator,
then !(P0; : : : ;Pn) vFD !(Q0; : : : ;Qn) holds.

9

This allows to proceed as follows for livelock analysis: If livelock freedom of
!(Q0; : : : ;Qn) can not be established because of the problem size, �nd sim-
pler processes P0; : : : ;Pn such that Pi v Qi for each i 2 f1; : : : ;ng and
!(P0; : : : ;Pn) is livelock free. If this property can be established, composi-
tionality combined with re�nement imply the livelock freedom of !(Q0; : : : ;Qn)
as well. Note that this approach is also possible for deadlock analysis and other
properties.

In connection with generic theories, compositionality can also be used to
reduce the veri�cation task. The idea is to establish theorems about the com-
position of instances of generic theories and use these whenever a system is
built accordingly. In that case the remaining task for the concrete system is to
show that the component processes are instances, i.e. in CSP re�nements of the
generic processes.

3.6 Cycle Analysis

In this section we will present some results to prove that the FML of each isolated
lane ful�lls the deadlock freedom veri�cation goal stated in Section 2.2. The
main result is stated in the following theorem:

Theorem 1 In every context which never blocks outputs on transputer links,
outputs to the ASS layer and outputs to the AVI layer, the following property
holds:

Whenever the FML system reaches a stable state where no communications
are possible, all processes reading from vital channels are ready for input on
these channels.

Here, vital channels means all input channels where data from the environ-
ment should always be processed.

The proof of this theorem is based on the observation that FML consists of
two types of processes which di�er in their behavior regarding channel input:

� Unconditional Input: The process will always accept a new input on
the channel, possibly after a bounded number of non-blocking internal
communications. The acceptance of a new input does not depend on
successful outputs to other channels prior to the next input. Unconditional
input is provided whenever the corresponding process abstraction behaves
as RUN on the input channel.

� Bounded Conditional Input: Provided that the environment will not

block process outputs, the process will always accept a new input on the
channel, possibly after a bounded number of non-blocking internal and ex-
ternal communications. This type of input behavior is guaranteed when-
ever the corresponding abstraction behaves asMUXOUT (max ; IN ;OUT)
on its input channels IN and output channels OUT .

Additionally it is possible to reduce the overall system of processes by ap-
plication of two lemmata (see Buth et.al. [2] for a more detailed description

10

of these lemmata and their application) which do not contribute to a potential
deadlock behavior of the whole system. After this reduction of the proof obliga-
tion the proof proceeds by analyzing the remaining processes individually and
their communication behavior with special emphasis on communication cycles.

Control

ASS

Context

Manager

Mode

Interfaces

Link

InDist2Voter[0..3]

ToInDist[6]

ToInDist[5]

InDist2OutDistDistributor

Input

ASS

Interface

Voter

Distributor

Output

status.voting.error

FromOutDist[5]

I2

LinkOutError[4]

FromOutDist[4]

LinkOutError[0..3]

FromOutDist[0..3]

LinkInError[4]

Transputer Links

Transputer Links

ToInDist[0..3]
LinkInError[0..3]

ToInDist[4]

Voter2OutDist[0..3]

Context.recovery

Context.control

Figure 3: Data ow graph for deadlock analysis in Theorem 1

Proof sketch of Theorem 1.
The two preceding lemmas can be applied to conclude that the remaining chan-
nels and processes that are still to be analyzed with respect to deadlock freedom
are the ones depicted in Figure 3, where unconditional input is depicted by a
dashed arrow and bounded conditional input is marked by a solid arrow, labeled
by the channel name.

Analysis of the data ow diagram and the process behaviors regarding chan-
nel input shows that every cycle in the diagram contains at least one channel
where the corresponding reader process provides unconditional input. Further-
more, every process provides at least bounded conditional input. As a conse-
quence, a blocking situation on a cycle can never occur, as long as a process
is still willing to output. Therefore a stable state without active communica-
tions implies that all the processes shown in Figure 3 are waiting for new inputs.
These input channels include the set on vital channels. This completes the proof
sketch of Theorem 1 (detailed proofs can be found in [4]).
2

11

3.7 Liveness Induction

Another result which we applied during the FML analysis was developed by
Roscoe (detailed in [7]). It allows to derive livelock freedom of a collection of
triple-disjoint communicating processes:

De�nition 1 (Triple-Disjoint Process System) A system of processes is
called triple-disjoint, if no communication requires the participation of more
than two processes.

Theorem 2 Suppose V = hP1; : : : ;Pn i is a triple-disjoint system of non-divergent
processes such that for every Pi in V

Pin(
S

j<i (�(Pi) \ �(Pj)))

is divergence-free. Then

(P1 k : : : kPn)nH where H = (
S

j 6=i (�(Pi) \ �(Pj)))

is also divergence-free.
2

In the above theorem �(Pi) (1 � i � n) denotes the alphabet of Pi . Informally
speaking, this theorem states that if no process Pi in the system can perform
an in�nite sequence of communications with Pj (for all j � i), then the system
is livelock free with respect to its incoming and outgoing channels.

Theorem 2 is useful in many cases, but �nding an order on the processes of
a parallel system may be very ine�ective. An FML lane consists of 8 processes
which have a complicated communication behavior. Consequently, it is very
di�cult to arrange them in a proper order for applying the theorem. One could
try a large number of combinations (in our application at worst 8!); there are 7
proof obligations for each combination.

For this reason we have developed a new technique, liveness induction, which
can be used to verify livelock freedom at the channel level. To verify that process
P is livelock free with respect to channels of interface I , the induction is based
on a set L of channels, inductively de�ned by

1. The interface I is contained in L.

2. If c1; : : : ; cn are channels in L and there exist a channel d which is not an
interface channel and

the number of communications via channel d is bounded by a function
depending on the number of communications via channels c1; : : : ; dn ,

then d is contained in L, too.

3. No other channel is in L.

Liveness induction is now applied according to the rules of the following theorem
(see Peleska et.al. [14]):

12

Theorem 3 Let P1; : : : ;Pn form a triple-disjoint system of concurrent pro-
cesses, such that each Pi is livelock free with respect to its local interface Ii =df

�(Pi)� Li , where Li is the set of its internal channels. Then (P1 k : : : kPn) is
non-divergent with respect to global interface I �

Sn

i=1 Ii , if L =df

Sn

i=1 Ii can
be inductively constructed according to the rules given above.
2

This theorem can be proved by induction on the number of processes involved
based on the compositionality of bounding functions. If communications on
channel c2 is bounded by communications on c1 with bounding function f1,
and communications on c3 is bounded by communications on c2 with bounding
function f2, then communications on c3 is bounded by communications on c1
with f1 � f2 as a bounding function.

Liveness induction was used for the proof of FML in the following way: After
showing the livelock freedom of each top-level process of FML we treat all the
processes except the process Link Interface as a single process, say REST.Then
SYS = hREST;A(Link Interface)i is a triple-disjoint system. The following
assertion can be proved using FDR:

A(Link Interface)n(�(A(Link Interface)) \ �(REST)) is free of livelock

If we can show that REST is livelock free, then the whole system is livelock free,
too, using Theorem 2.

The next veri�cation target is to show the livelock freedom of REST, which
is reached by liveness induction using Theorem 3. At the beginning, L contains
all channels in the interface of REST, such as ToInDist [0::6]. Then, all channels
bounded by the channels in L are contained in L. In this way, we show that all
channels involved in the communications of REST are contained in L.

Note that liveness induction is a forward analysis for livelock freedom, and
contrasts with the approach described in the next section.

3.8 Dependency Analysis

Whereas the software structure of FML allowed to use the repeated abstraction
by using generic processes multiplexer/concentrator and livelock induction, the
complex communication behavior of AVI required a di�erent approach. It turned
out that there are three obstacles:

� even some of the main processes are too complex to be veri�ed using
model-checking directly;

� it is not possible to decompose the task into subtasks based on the com-
positional theory since the communication behavior turns out to be too
complex;

� for the same reason no further abstraction is possible.

13

This combination of problems prevents the applicability of liveness induction as
presented in the previous section. As an alternative a special form of depen-
dency analysis was used for investigating cycles in the communication graph of
processes which could not be checked using FDR directly due to the size of the
state space. This analysis is a backwards analysis that determines all possi-
ble chains of communication events that may lead to a speci�c communication.
The analysis technique is derived from tree analysis techniques as the Fault
Tree Analysis (for the use of Fault Tree Analysis in software applications see for
example Lyu [13]).

Consider a set of processes P1; : : : ;Pn which have been proved to be free of
livelock individually. Let SYS = P1 k : : : kPn be a net of these processes with
internal synchronization communications L. The communication graph of SYS
displays the channels and the direction of communication between the processes
Pi ; i 2 f1; : : : ;ng. If this graph for SYS contains cycles it is not necessarily the
case that these cycles can actually occur. If this is the case for all cycles SYS is
livelock free. For the analysis of AVI there are two reasons that a cycle can not
actually occur:

� the CSP processes involved do not produce traces that correspond to the
cycle; this is for example the case if one of the communications does not
depend on its predecessor in the cycle,

� the cycle is possible in the CSP process, but additional information derived
from the occam code allow to exclude the occurrence of this situation.

For the analysis of AVI most of the cycles could be invalidated due to the �rst
cause. The approach is illustrated in the following using a small example from
AVI.

The structure of module BC (broadcast unit) of AVI is presented in the
communication graph of Figure 4. The individual processes Pi, i 2 f0; : : : ; 3g
can easily be checked for livelock freedom using FDR, i.e. it is guaranteed that
no non-terminating internal communications can occur within the Pi. Each
of these processes is itself a system of several subprocesses, which are denoted
Pi1; : : : ;Pini

. In order to ensure that the whole BC module is free of livelock it
su�ces to prove that none of the cycles in the graph can actually occur1.

Regard for example the cycle involving P0 and P1. A livelock situation can
only occur if output cmd directly depends on the events c stat, real.reset.01,
or real.reset.02 and vice versa. But this is not the case as code inspection
of the CSP abstraction shows: the output of cmd only depends on the external
input to dev. In order to prove this it is necessary to trace the preceding
communications leading to the output through the internal subprocesses of P0.

This type of analysis can be performed systematically for all cycles. In
general it is only necessary to �nd one edge in a cycle that does not depend
on its predecessors. This breaks a cycle and makes it uncritical with respect
to livelock. The analysis itself is documented using techniques gleaned from

1This does not guarantee a fair treatment of the inputs; such a property has to be proved

using di�erent means.

14

P0 P1

P2P3

dev.data.output

from.dev

to.dev

(1)

cmd

(3)

(2)

(4) (5)
set.pcf

from.intr.han

(1) c.stat, real.reset.01, real.reset.02

(2) autosync.on, reset.autoframing

(3) autoframing.intr.error, EOM.ctrl, start.timeout

(4) reset.intr.handler, kill.pending.EOM.intr

(5) int.request.err, spurious.intr, reset.timeout, eos.channel

(6) EOM.intr.req, FTC.clock.intr.req.chan, kill.pending.ftc.clock.intr

(6)

ftc.clock.event

Figure 4: BC communication graph

fault-tree analysis. For each relevant communication it is traced by which other
communications, resp. sequence of communications it can be triggered. The
following notations are used:

For channels ch1; : : : chn and process P

ch1
P

 �ch2

denotes that in P an output ch1 is produced if beforehand an input
on channel ch2 did occur.

ch1

P

 � ch2
: : :

P

 � chn

means that an output on channel ch1 is only possible after any of
the inputs chi ; i 2 f2; : : : ;ng.

As an example the dependencies of event kill pending EOM intr from P1

to P2 are presented here:

kill pending EOM intr

P12

 � start timeout.1

15

P31

 � ftc clock event

P22a

 � from intr handler OK

P12

 � start timeout.2

P33

 � (P33loop after enabled) start subframe timer

P31

 � ftc clock event

P22a

 � from intr handler OK

Note that it is necessary to trace the communications through several sub-
processes not only of process P1 and P2 but also of process P3. Furthermore, it
is essential that the dependency analysis is complete, i.e. that every sequence of
communication leading to the event under consideration are investigated. This
means that in the example above start timeout.1 and start timeout.2 are
the inputs to process P1 which can cause an output of kill pending EOM intr.

In the case of BC and other units of the AVI this kind of analysis was used to
ensure that most of the cycles in the communication graphs do not occur and to
identify critical cycle situations as well. For AVI all the latter situations could
be excluded due to further reasoning based on the original code.

4 Conclusion

4.1 Summary

The main obstacle for the analysis of deadlock or livelock freedom or other
properties of realistic industrial systems is their size and complexity. Without
suitable approaches for splitting the task into manageable subtasks the attempt
of using formal methods and related tools in this area is futile. For our project it
proved to be necessary to use a combination of techniques in order to decompose
the goal appropriately. These techniques comprise

� abstraction of occam code to CSP,

� use of the compositional proof theory of CSP,

� abstraction to process instances of generic theories,

� model checking (for su�ciently small subprocesses),

� liveness induction

� dependency analysis

Figure 5 gives an overview of the methods used for the communication be-
havior analysis as well as the other veri�cation and test goals for the FTC

system.

16

Veri�cation Goal Veri�cation Method

deadlock freedom CSP: generic theories - abstraction - model
checking - algebraic laws - compositional
theory- cycle analysis - liveness induction

livelock freedom as for deadlock analysis plus dependency
analysis

absence of bottlenecks stochastic petri nets

correct implementation of Byzan-
tine Protocol and failure detection

abstraction - model checking - composi-
tional proof theory

correct implementation of applica-
tion services

veri�cation using Hoare Logic

\most non-deterministic admissi-
ble software/hardware integration
is correct"

Hardware-In-The-Loop-Testing

Figure 5: Goals of FTC Analysis

4.2 Some Experiences

Starting point for the livelock analysis for both AVI and FML were the abstrac-
tions that had been used in the deadlock analysis (see Buth et.al. [4]). Due to
the hierarchical architecture of both components the freedom of livelock for each
of the main processes was tried to be established �rst. During this phase some
adjustments in the abstractions were necessary to eliminate non-determinism
and formalize the new proof obligations. One example is the explicit introduc-
tion of timer processes in order to avoid divergence through timer dependent
events. These did not pose any problems for the deadlock analysis.

During this �rst step it became soon obvious that for the subprocesses of
both FML and AVI it was not feasible to use model-checking directly, even in
cases where it was possible for the deadlock analysis. On the one hand this is
due to the changes in the abstraction which enlarge the state space, on the other
hand the problem arises since the states themselves are larger. The reason for
this is that livelock analysis uses the failure-divergence model of CSP, while the
deadlock analysis could be performed within the failures model. The internal
representation of the states has to contain the additional information about the
divergence sets and thus is larger. In some cases it was thus not possible to
derive even the results for the main processes of FML and AVI. Additionally
it was necessary to �nd a suitable approach of combining the results from the
livelock analysis of the main processes to obtain a result for the two units as a
whole.

In general two di�erent approaches are possible in this situation:

� further abstraction and exploitation of the theorems for preserving the
results under re�nement,

� further decomposition of components, separate analysis for each basic unit,
and derivation of properties for the combined units.

17

While the �rst proved to be a suitable way of dealing with the main processes
of FML the complex communication behavior of AVI made it necessary to pursue
the second approach. In both cases it was necessary to employ suitable means
for combining the results for the overall unit.

4.3 Future Work

While there is tool support for model checking, namely the system FDR, the
other techniques had to be applied manually. Future work will comprise the
search and if necessary development of tools supporting these tasks.

One useful tool would be one that interactively guides the abstraction pro-
cess, not only for occam programs but for other compatible languages as well.
In order to gain more con�dence in the abstraction process, it will be neces-
sary to theoretically justify the preservance of speci�cation properties by the
abstraction steps. The idea is to classify abstractions with respect to livelock,
deadlock, and general safety properties. This will allow to reach a basis for the
other methods in a systematic and even tool supported way.

Another aspect of abstraction is the use of generic theories. Here it will be
necessary to look for more generic patterns and their speci�c properties. Some
such patterns like bu�er, systolic arrays, and multiplexer could be found in the
software of our project, others will be found during other case studies. Again it
will be useful to classify these theories with respect to their speci�c properties
in order to develop heuristics for their application in the context of abstractions.
Furthermore, it will be necessary to prove the properties for the generic theories
in a formal way. We would like to employ tools like HOL, Isabelle, or PVS for
this task. Some work in this direction can for example be found in Buth et
al. [1].

Additional abstraction methods for abstracting from irrelevant details can
be used for certain veri�cation obligations that are not covered by re�nement
relations. During the veri�cation of the Byzantine Agreement Protocol imple-
mentation we have developed several such abstraction methods. For example,
data abstraction, which abstracts a process from concrete data information of
communications, is proved to be useful for protocol veri�cations, where some
of the properties of message distributions can be veri�ed without the data in-
formation of messages. For di�erent applications di�erent abstraction methods
have been or will be developed, which together with compositional theories and
generic theories will form a framework for our future activities in this area.

Tool support is also feasible for the dependency analysis. A rough idea is to
use an approach with three phases:

� in the �rst phase the graph is build from the abstraction, i.e. the CSP
processes;

� in the second phase all cycles are marked;

� in the third phase the cycles are investigated with respect to the depen-
dencies of their constituent edges.

18

This kind of backwards cycle analysis could be complemented by a forward
analysis for determining the bounds of the communication load of the cycles.
This could help or replace the livelock induction process. Tools for these tasks
might be found with groups working with graph transformation systems or in
the area of graph theory in general.

References

[1] Buth, B., Cardell-Oliver, R., Peleska, J.: Combining tools for the veri�-
cation of fault-tolerant systems. In Berghammer, R., Buth, B., Peleska, J.
(eds.), Tools for Software Development and Veri�cation, volume 1 of BISS
Monographs. Shaker-Verlag, 1998.

[2] Buth, B., Kouvaras, M., Peleska, J., Shi, H.: Deadlock analysis for a fault-
tolerant system. In Johnson, M. (ed.), Algebraic Methodology and Software
Technology. Proceedings of the 6th International Conference, AMAST'97,
number 1349 in LNCS, pages 60{75. Springer, December 1997.

[3] Buth, B., Peleska, J., Shi, H.: Combining Methods for the livelock analysis
of a fault-tolerant system. In Haeberer, A.M. (ed.), em Algebraic Methodol-
ogy and Software Technology. Proceedings of the 7th International Confer-
ence, AMAST'98, number 1548 in LNCS, pages 124{139. Springer, January
1999.

[4] Buth, B., Peleska, J.: Daimler-Benz Aerospace { Project DMS-R, FTC
Development { Veri�cation of Avionics Interface AVI. Technical Report,
JP Software-Consulting, (1996).

[5] Buth, B., Peleska, J., Shi, H.: Daimler-Benz Aerospace { Project DMS-
R, FTC Development { Fault Management Layer (FML): Veri�cation of
Deadlock Freedom. Technical Report, JP Software-Consulting, (1996).

[6] Daimler-Benz Aerospace: DMS-R FTC Detailed Design Document Volume
3 (FML Software)

[7] Dathi, N.: Deadlock and Deaklock-Freedom, Oxford University, D. Phil
Thesis,1990.

[8] Davies, J.: Speci�cation and Proof in Real-Time CSP. Cambridge Univer-
sity Press (1993).

[9] Formal Systemes: Failures Divergence Re�nement FDR2 Preliminary Man-
ual. Formal Systems (Europe) Lts (1995).

[10] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inter-
national (1985).

[11] inmos ltd. occam 2 Reference Manual. Series in Computer Science, Prentice
Hall International, 1988.

19

[12] Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem, In:
ACM Transactions on Programming Languages and Systems, Vol.4, Nr. 3,
(1982)

[13] Lyu, M. R. (ed.): Handbook of Software Reliability Engineering, IEEE Com-
puter Society Press, Computing McGraw-Hill

[14] Peleska, J., Shi, H.: Daimler-Benz Aerospace { Project DMS-R, FTC De-
velopment { Fault Management Layer (FML): Veri�cation of Livelock Free-
dom. Technical Report, JP Software-Consulting, (1998).

[15] Roscoe, A. W.: Model-Checking CSP. In: A Classical Mind, Eassys in
Honour of C.A.R. Hoare. Prentice-Hall Internationaal (1994).

[16] Roscoe, A. W.: CSP and determinism in security modelling. In: IEEE
Symposium of Security and Privacy, (1995).

[17] Roscoe, A. W.: The Theory and Practice of Concurrency Prentice-Hall
International (1997).

[18] Shi, H., Peleska, J.: Daimler-Benz Aerospace { Project DMS-R, FTC
Development { Fault Management Layer (FML): Veri�cation of Byzan-
tine Agreement Protocol Implementation. Technical Report, JP Software-
Consulting, (1998).

[19] Twele,L., Schlinglo�, H., Szczerbicka,H.: Performability Analysis of an
Avionics-Interface. In: Proc. IEEE Conf. on Systems, Man and Cyber-
netics; San Diego, N.J., pp. 499-504, (Oct. 1998)

20

1

1 © 1999, Semantic Designs, Inc. QW’99

Lowering Maintenance Costs
by Code Clone Removal

Ira Baxter, A. Yahin, L. Moura, M. Sant’Anna

May 26, 1999

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW’99)

2 © 1999, Semantic Designs, Inc. QW’99

Code Clones in Software Systems

• Fact: ~10% of a large application system is cloned code!
– Exact copies: caused by inlined code and lazy programmers

• [Lague97] 6-7% function copies 15M SLOC across 6 releases, 3 years

– Near misses: “copy-n-hack” mode (good and bad reuse)

s=s-n;

p->queue->length= // adjust queue size

p->queue->length+k;

…

s=s-n;

p->queue->length= // adjust queue size

p->queue->length+k;

Sample Exact Clones

s=s-n;

p->queue->length= // adjust queue size

p->queue->length+k;

…

qp=p->queue; // get queue pointer

s=s-n;

qp->length= // adjust queue size

qp->length+k;

Sample Near-Miss Clones

• Managing such clones could provide significant savings

2

3 © 1999, Semantic Designs, Inc. QW’99

Managing Clones…

• Problems with clones
– A fixed bug in one code block often missed in its clone

• Organization pays TWICE to fix: dollars, time
• Different fixes --> TWO code blocks that are even less clone-like
• Cost in customer perception is worse than twice!

– A clone is often a hint at a missed domain abstraction
• Capture as procedure can clarify code and reduce errors
• Can be used to enhance design and train new programmers

• Significant savings possible by managing clones
• Locate exact clones for repair: [Lague97] ≥2000 chances over 6 releases
• Eliminate clones
• Annual cost savings ~~ amount of removed code

4 © 1999, Semantic Designs, Inc. QW’99

Goal: Remove Clones from a System

Original System with code clones DeCloned System with automatic names

// sort array A
for (I=1,I<10,I++)
 for (j=i,j>1,J--)
 if (A[j]>A[j-1])
 swap(A[I],A[J]);

for (I=1, I<2*Q, I++)
for (I1=i, I1>1, I1--)
// exchange if less
if (K[I1] > K[I1-1])
 swap(K[I], K[I1]);

// sort my data
for (z=1,z<1000,z++)
 for (j=i,j>1,J--)
if (D[j]>D[j-1])
 swap(D[z],
 D[J]);

// sort array A
Clone27(I,10,j,A);

Clone27(I,2*Q,I1,K);

// sort my data
Clone27(z,1000,j,D);

#define
Clone27(a,b,c,d)\
for (a=1,a<b,a++)\
 for (c=a,c>1,c--)\
 if (d[c]>d[c-1])\
 swap(d[a],d[c]);

for (a=1,a<b,a++)
 for (c=a,c>1,c--)
 if (d[c]>d[c-1])
 swap(d[a],d[c]);

Skeleton of detected clones

... code block 1 ...

... code block 2 ...

... code block 3 ...

... code block 4 ...

... code block 1 ...

... code block 2 ...

... code block 3 ...

... code block 4 ...

3

5 © 1999, Semantic Designs, Inc. QW’99

Basic Steps to Manage Clones

• Comparing every “fragment” to every other “fragment”
– Problem: Approximating semantic idea of “same” in practice
– Problem: Defining “fragment”: line, block, procedure, …
– Problem: Ignoring accidental properties of fragment

 (text properties: spacing, comments, …)
– Problem: Composing matching fragments into larger fragments
– Problem: Overlapping clone fragments
– Problem: Detecting Near Misses
– Problem: Very expensive!

• Discovering the commonality between clones
• Name that clone!
• Replacing clone instances with equivalent abbreviation

6 © 1999, Semantic Designs, Inc. QW’99

Basic Clone Detection is Expensive!
N^2 Line Comparisons for 106 SLOC is 1012 steps!

F1
F2
F3
F4

…

FN

F1
F2
F3
F4

…

FN

Comparing every fragment to every other fragment of a system

4

7 © 1999, Semantic Designs, Inc. QW’99

Standard Trick: Use Hashing to Control Costs

• Compute Hash Code for each value to compare
• Put values into bins according to hash codes
• Compare only values in the same bins (F1, F4)

• N*(N/(# buckets)) Comparisons with 106 SLOC, 105 buckets = 107 steps

F1
F2
F3
F4

…

FN

F3
F91
...

F28
F52
...

F71
F15
...

F1
F4
...

... ...
F2
...

Hash Function

Hash Bins

8 © 1999, Semantic Designs, Inc. QW’99

Clone Detection in Text Files: Problems
• Confused by blanks, comments, line breaks, strings (relatively easily fixed)
• Can’t detect clones that don’t start/end on line boundaries (“C” language)
• Can’t detect clones involving commutative operators (a+b vs. b+a)
• Confused by identical identifiers distinguished by language (local variables)
• Extremely difficult to detect “near misses”
• No support for managing clones after detection

… HashCode CloneSize

 s=s-k; 6254 ~

p->queue->length= // adjust queue size 12834 ~

p->queue->length+k; 83291 ~

…

{ s=s-n; 72824 ~

 // Inline for speed: 60225 ~

 p->queue->length=n+p->queue->length; 40029 ~

};

5

9 © 1999, Semantic Designs, Inc. QW’99

Idea: Use Compiler Abstract Syntax Trees (AST)
to avoid Lexical problems

s=s-k;

p->queue->length=

 // adjust queue size

p->queue->length+k;
=

p queue

length->

->

p queue

length->

->

+

k

;

=

s

;

s

-

k

Source Text

AST

Compiler-style “parse”

10 © 1999, Semantic Designs, Inc. QW’99

AST Hash Codes

s=s-k;

p->queue->length=

 // adjust queue size

p->queue->length+k;

=

p queue

length->

->

p queue

length->

->

+

k

;

=

s

;

s

-

k

7272 963 963

1754 1754

22921 22921

1844
1844

78

7723

1243

78

85

85

862

1230

34251

47372HashCode

Compute Hash for Tree
by combining Hash values
of subtrees.
Compute bottom up for speed.

6

11 © 1999, Semantic Designs, Inc. QW’99

Exact Clone Detection using AST Hash Codes

=

;

=

s

;

-

7723

1243

78
85

862

1230

34251

47372HashCode

=

;

=

s

;

-

7723

1243

78
85

862

1230

34251

47372HashCode

Same Hash Value!

12 © 1999, Semantic Designs, Inc. QW’99

Exact Clone Detection on ASTs/DAGs
1. Parse Source files into Abstract SyntaxTrees (DAGs)
2. For each subtree, hash into a bucket
3. For each subtree i:

If node i marked as subclone, mark i‘s children as subclones
If node i marked as clone, done with i
For each subtree j≠i in same bucket as i

if EqualTrees(i,j) // can stop on clone children having same clone master
Mark i as (master) clone of i; mark j as clone of i
Mark children(i), children(j) as subclones

4. For each subtree i:
if node(i) marked as clone and node(i) not marked as subclone
Print “Node “,i,” is a clone”, Node(i)

Improvements over Source Line method:
Language parser automatically ignores blanks, comments, linebreaks
Language name resolution (DAG) not confused by identical identifiers
DAG version can unify near-misses written using different names
Can be extended to handle near-misses as parameters
Can be extended to handle simple commutative operations
Can be extended to account to type information

7

13 © 1999, Semantic Designs, Inc. QW’99

 Basic Near-Miss Clone Detection Algorithm

Clones=∅
For each subtree i:

If mass(i)>=MassThreshold
Then hash i to bucket

For each subtree i and j in the same bucket
If CompareTree(i,j) > SimilarityThreshold
Then { For each subtree s of I

If IsMember(Clones,s)
Then RemoveClonePair(Clones,s)

For each subtree s of j
If IsMember(Clones,s)
Then RemoveClonePair(Clones,s)

AddClonePair(Clones,i,j)
 }

• Comparing for exact matches doesn’t work!
• Define Similarity = 2 S / (2S + L + R)

– S = number of shared nodes
– L = number of non-shared nodes held in left subtree
– R = number of non-shared nodes held in right subtree

• Define hashing function to ignore small subtrees (e.g., identifiers, expressions, …)

14 © 1999, Semantic Designs, Inc. QW’99

ASTs with different hash codes?

• Can be clones, but won’t be detected by previous scheme
• Solution: Check parents of clones pairs for similarity

call

;

=

s

;

+

7723

1243

78
85

202

1230

9172

=

;

=

s

;

-

7723

1243

78
85

862

1230

34251

HashCode 47372

1. Already identified as clone pair

2. Decide if parents are clones
by testing for Similarity.
Suppress subclones.

HashCode 21622

8

15 © 1999, Semantic Designs, Inc. QW’99

Sample COBOL Clones
 Similarity = .99178082191781
 from 35179 to 35204 file = example.cbl

 9700-OUTPUT-REPORT-TOTALS.
 MOVE CURRENT-COLLEGE-ID
 TO REPORT-CODE1 REPORT-CODE2 REPORT-CODE3.
 SET EDIT-ERROR-LITERAL-INDEX TO 1.
 SET DISTRICT-COUNT-ROW-INDEX TO 1.
 PERFORM 9710-OUTPUT-TOTALS1
 UNTIL EDIT-ERROR-LITERAL-INDEX > 30.
 PERFORM 9720-OUTPUT-TOTALS2.
 PERFORM 9730-OUTPUT-TOTALS3.

 9710-OUTPUT-TOTALS1.
 MOVE REPORT-SUM1 TO TOTALS-ID1.
 MOVE ELEMENT-NUMBER (EDIT-ERROR-LITERAL-INDEX)
 TO DED-NUMBER.
 MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 1)
 TO EXCEPT-COUNT.
 MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 2)
 TO UNKNOWN-COUNT.
 MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 3)
 TO REASON-COUNT.
 MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 4)
 TO GRP3-COUNT.
 WRITE REPORT-TOTALS-RECORD1.
 SET EDIT-ERROR-LITERAL-INDEX UP BY 1.
 SET DISTRICT-COUNT-ROW-INDEX UP BY 1.

 from 15368 to 15393 file = example.cbl

 9700-OUTPUT-REPORT-TOTALS.
 MOVE HOLD-DISTRICT-ID
 TO REPORT-CODE1 REPORT-CODE2 REPORT-CODE3.
 SET EDIT-ERROR-LITERAL-INDEX TO 1.
 SET DISTRICT-COUNT-ROW-INDEX TO 1.
 PERFORM 9710-OUTPUT-TOTALS1
 UNTIL EDIT-ERROR-LITERAL-INDEX > 17.
 PERFORM 9720-OUTPUT-TOTALS2.
 PERFORM 9730-OUTPUT-TOTALS3.

 9710-OUTPUT-TOTALS1.
 MOVE REPORT-SUM1 TO TOTALS-ID1.
 MOVE ELEMENT-NUMBER (EDIT-ERROR-LITERAL-INDEX)
 TO DED-NUMBER.
 MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 1)
 TO EXCEPT-COUNT.
 MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 2)
 TO UNKNOWN-COUNT.
 MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 3)
 TO REASON-COUNT.
 MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 4)
 TO GRP3-COUNT.
 WRITE REPORT-TOTALS-RECORD1.
 SET EDIT-ERROR-LITERAL-INDEX UP BY 1.
 SET DISTRICT-COUNT-ROW-INDEX UP BY 1.

#2 ==> 30
 ==> 17

#1
==> CURRENT-COLLEGE-ID
==> HOLD-DISTRICT-ID

#1

#2

Report by College-ID Report by District-ID

16 © 1999, Semantic Designs, Inc. QW’99

The generated COPYLIB

 9700-OUTPUT-REPORT-TOTALS .
 MOVE PARAMETER-1
 TO REPORT-CODE1 REPORT-CODE2 REPORT-CODE3 .
 SET EDIT-ERROR-LITERAL-INDEX TO 1 .
 SET DISTRICT-COUNT-ROW-INDEX TO 1 .
 PERFORM 9710-OUTPUT-TOTALS1
 UNTIL EDIT-ERROR-LITERAL-INDEX > PARAMETER-2 .
 PERFORM 9720-OUTPUT-TOTALS2 .
 PERFORM 9730-OUTPUT-TOTALS3 .
 9710-OUTPUT-TOTALS1 .
 MOVE REPORT-SUM1 TO TOTALS-ID1 .
 MOVE ELEMENT-NUMBER (EDIT-ERROR-LITERAL-INDEX)
 TO DED-NUMBER .
 MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 1)
 TO EXCEPT-COUNT .
 MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 2)
 TO UNKNOWN-COUNT .
 MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 3)
 TO REASON-COUNT .
 MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX 4)
 TO GRP3-COUNT .
 WRITE REPORT-TOTALS-RECORD1 .
 SET EDIT-ERROR-LITERAL-INDEX UP BY 1 .
 SET DISTRICT-COUNT-ROW-INDEX UP BY 1 .

9

17 © 1999, Semantic Designs, Inc. QW’99

Source file change
 MOVE DISTRICT-INT-CNT (11)
 TO INT-CNT-OUT-B.
 WRITE PRINT-RECORD-2 FROM INTEGRITY-ERROR-B
 AFTER ADVANCING 2 LINES.
 MOVE DISTRICT-INT-CNT (12)
 TO INT-CNT-OUT-C.
 WRITE PRINT-RECORD-2 FROM INTEGRITY-ERROR-C
 AFTER ADVANCING 2 LINES.

9700-OUTPUT-REPORT-TOTALS.
 MOVE HOLD-DISTRICT-ID
 TO REPORT-CODE1, REPORT-CODE2, REPORT-CODE3.
 SET EDIT-ERROR-LITERAL-INDEX TO 1.
 SET DISTRICT-COUNT-ROW-INDEX TO 1.
 PERFORM 9710-OUTPUT-TOTALS1
 UNTIL EDIT-ERROR-LITERAL-INDEX > 17.
 PERFORM 9720-OUTPUT-TOTALS2.
 PERFORM 9730-OUTPUT-TOTALS3.

9710-OUTPUT-TOTALS1.
 MOVE REPORT-SUM1 TO TOTALS-ID1.
 MOVE ELEMENT-NUMBER (EDIT-ERROR-LITERAL-INDEX)
 TO DED-NUMBER.
 MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX, 1)
 TO EXCEPT-COUNT.
 MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX, 2)
 TO UNKNOWN-COUNT.
 MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX, 3)
 TO REASON-COUNT.
 MOVE DISTRICT-COUNT (DISTRICT-COUNT-ROW-INDEX, 4)
 TO GRP3-COUNT.
 WRITE REPORT-TOTALS-RECORD1.
 SET EDIT-ERROR-LITERAL-INDEX UP BY 1.
 SET DISTRICT-COUNT-ROW-INDEX UP BY 1.

9720-OUTPUT-TOTALS2.
 MOVE REPORT-SUM2 TO TOTALS-ID2.
 MOVE DISTRICT-INT-CNT (1)
 TO INTEGRITY-ERROR-COUNT.
 MOVE ’01’ TO INTEGRITY-ERROR-CODE.
 WRITE REPORT-TOTALS-RECORD2.
 MOVE REPORT-SUM2 TO TOTALS-ID2.
 MOVE DISTRICT-INT-CNT (2)
 TO INTEGRITY-ERROR-COUNT.
 MOVE ’02’ TO INTEGRITY-ERROR-CODE.

 MOVE DISTRICT-INT-CNT (11)
 TO INT-CNT-OUT-B.
 WRITE PRINT-RECORD-2 FROM INTEGRITY-ERROR-B
 AFTER ADVANCING 2 LINES.
 MOVE DISTRICT-INT-CNT (12)
 TO INT-CNT-OUT-C.
 WRITE PRINT-RECORD-2 FROM INTEGRITY-ERROR-C
 AFTER ADVANCING 2 LINES.

 COPY CDR_clone10
 REPLACING PARAMETER-1
 BY == HOLD-DISTRICT-ID ==
 PARAMETER-2
 BY == 17 ==

9720-OUTPUT-TOTALS2.
 MOVE REPORT-SUM2 TO TOTALS-ID2.
 MOVE DISTRICT-INT-CNT (1)
 TO INTEGRITY-ERROR-COUNT.
 MOVE ’01’ TO INTEGRITY-ERROR-CODE.
 WRITE REPORT-TOTALS-RECORD2.
 MOVE REPORT-SUM2 TO TOTALS-ID2.
 MOVE DISTRICT-INT-CNT (2)
 TO INTEGRITY-ERROR-COUNT.
 MOVE ’02’ TO INTEGRITY-ERROR-CODE.

18 © 1999, Semantic Designs, Inc. QW’99

Detector Engineering
• Parsing

– YACC/Lex disappointing: grammar ambiguities --> hacking
– Use Tomita (GLR) parsing style
– Handle ambiguities in parsing by choosing canonical form
– Capture lexical information: spacing, comments, formats
– Preprocessor Directives

• Programmers program in C+preprocessor, not C!
• Add “Structured Preprocessor” directives to grammar

– accepts those that fit well into structure of language
– expand/fix those few directives that don’t fit

• AST scale: 1M SLOC in 2 Gb RAM
– Implement in PARLANSE, parallel programming language

• 8 way SMP Windows N/T --> Linear speedup in detection time

10

19 © 1999, Semantic Designs, Inc. QW’99

Clone Detection/Removal Statistics

Application

Process
Control

PARLANSE
Compiler

CCC
Registration

SLC
Insurance

SAPV
Insurance

SAPV+SLC

Language

C

C

COBOL85

PROGRESS

PROGRESS

PROGRESS

SLOC

427921

42413

77631

356413

132656

489069

Removable
SLOC (est.)

54346
12.7%

4133
9.7%

15500
20.0%

58783
16.5%

16251
12.3%

105644
21.6%

Removed
SLOC

N.A.
(pre removal

 capability for C 6/98)

2568
6.0%

15734
20.3%

N.A. (not yet
 performed 2/99)

N.A. (not yet
 performed 2/99)

N.A. (not yet
 performed 2/99)

20 © 1999, Semantic Designs, Inc. QW’99

Conclusions
• Can detect code clones on 1M SLOC scale using ASTs

– Algorithms: Basic, Sequence detection, Generalization
– Scale requires hashing, tuples, parallelization
– 1Gb RAM, 40 minutes CPU
– Languages 2/99: C/C++, COBOL/2, Fortran95, Java, PROGRESS, Pascal
– Confirm other work: 5-20% code redundancy

• Clone removal is practical on-scale!
– Requires special parsers to allow regeneration of lexical information
– Language-specific function abstraction is hard: dataflow analyses
– Interactive mode to choose abstraction method and name
– Tool for C,C++ exists 2/99, COBOL/2 by 5/99

• Other languages OK: need syntax, abstraction proposers

– Demo copy downloadable from www.semdesigns.com

• Clone Removal can lead to significant maintenance savings

1

Lowering Maintenance Costs by Code Clone Removal
Ira D. Baxter1 Andrew Yahin1

Leonardo Moura2 Marcelo Sant’Anna2

1 Semantic Designs
12636 Research Blvd. Suite C214

78759-220 Austin Texas
512 250 1018

{idbaxter, ayahin}@semdesigns.com
http://www.semdesigns.com

2 Departamento de Informática
Pontifícia Universidade Católica

 Do Rio de Janeiro
R. Marquês de São Vicente, 225
22453-900 Rio de Janeiro, Brazil

+55 21 529 9396
{moura, draco}@les.inf.puc-rio.br

Keywords
Software maintenance, clone detection, software
evaluation, Design Maintenance System

Abstract

A commonly used method for enhancing an application
program is to copy ("clone") an existing fragment of the
code and customize the copy. Existing research suggests
that a considerable fraction (5-20%) of the source code of
large-scale computer programs is redundant cloned code.
Such clones increase the cost of maintaining code, by
raising the bulk of the code that maintainers must keep up
to date. This paper shows how a tool, CloneDR, can
automatically detect and replace fragments and their clones
by their shared abstraction in the form of a procedure or a
macro, preserving the program function. Removal of all
code clones by their abstraction promises decreased
software maintenance costs of possibly the same magnitude
as the reduction. Additional benefits accrue from having
code that is easier to explain because some of the code
fragments have been identified directly as useful
abstractions, and the early discovery of relatively common
errors that occur in the code cloning process.

The method uses a language grammar as a parameter to
achieve language-independent detection of clones despite
spacing, comment and name changes. The paper sketches
how the CloneDR harnesses these ideas, and provides
statistics on redundancy levels in large, real C and COBOL
programs of significant scale and shows actual code size
reductions for these cases. It outlines some of the additional
obstacles to actual clone removal (such as scale, disabled
abstractions, preserving comments, etc.). Finally, the paper
shows how manual inspection of the detected clones can
sometimes lead to the discover y of latent software bugs.

1 Introduction

Data from previous work [Lague97, Baker95] suggests
that a considerable fraction (5-10%) of the source of large
computer programs is duplicated code. Programmers
routinely perform ad hoc code reuse by brute-force copying

code fragments that implement actions similar to their
current need, and performing a cursory (often empty!)
customization of the copied code to the new context.

The act of copying indicates the programmer’s intent to
reuse the implementation of some abstraction. The act of
pasting is breaking the software engineering principle of
encapsulation. What the programmer should do is to
declare and invoke the abstraction, but this is often not
done, even though the language already offers suitable
abstraction tools, such as macros or procedures. Often, the
programmer doesn’t quite know what the abstraction is,
and so he clones and edits. Regardless of the reason,
cloning is commonplace and unlikely to disappear via fiat.

The part of the cloned code that is unchanged is
redundant. Detection and replacement of such redundant
code by subroutine calls, in-lined procedure calls, macros,
or other equivalent shorthand that effect the same result,
promises decreased software maintenance costs
corresponding to the reduction in code size. Much of
present software engineering is focused on finding small-
percentage process gains. Mechanical clone detection and
removal offers the potential for a relatively easy, annually
recurring 10% savings or better.

We define an idiom as a program fragment that
implements a recognizable concept (data structure or
computation). A clone is a program fragment that identical
to another fragment. A near miss clone is a fragment,
which is nearly identical to another. Clones usually occur
when an idiom is copied and optionally edited, producing
exact or near-miss clones.

Previous clone detection work was limited to detection
of either exact textual matches, or near misses only on
complete function bodies. This paper presents practical
methods, using abstract syntax trees (ASTs), for detecting
exact and near miss clones for arbitrary fragments of
program source code. The method uses a variation of the
well-known compiler method for detecting common sub-
expressions [Aho85], which determines exact tree matches
essentially by hashing. A number of adjustments are
needed to detect clones in the face of commutative

2

operands, near misses, and statement sequences. .It also
presents methods for constructing abstractions and
removing the redundancy from the source using
conventional transformational methods.

A tool, CloneDR, using these detection techniques has
been applied to large programs in a number of real
programming languages, and exhibits similar detected
levels of duplication found by previous work. Unlike
previous work, this tool is also capable of removing the
code clones.

We additionally suggest that clone detection could also
be useful in producing more structured code, as well as
discovering domain concepts and their idiomatic
implementations.

Section 2 discusses the causes of clones. Section 3
discusses why we chose AST-based clone detection.
Section 4 describes the basic AST clone detection
algorithm. Section 5 builds on the basic method to detect
clone sequences. Section 6 discusses detection of near-
miss clones generalized from previously discovered clones.
Section 7 considers how abstractions for clones can be
constructed. Section 8 discusses the problems of
engineering a clone detector/remover for scale. Section 9
reports the results of applying the clone detector to running
software systems, and analyzes the results. Section 10
discusses the relation between clones and domain concepts.
Section 11 reports possible future work. Section 12
describes related work.

2 Why Do Clones Occur?

Software clones appear for a variety of reasons:
• Code reuse by copying pre-existing idioms
• Coding styles
• Instantiations of definitional computations
• Failure to identify/use abstract data types
• Performance enhancement
• Accidents

State of the art software design has structured design
processes, and formal reuse methods. Legacy code (and,
alas, far too much of new code) is constructed by less-
structured means. In particular, a considerable amount of
code is or was produced by ad hoc reuse of existing code.
A programmer intent on implementing new functionality
find some code idiom that performs a computation nearly
identical to the one desired, copies the idiom wholesale and
then modifies it in place. The availability of screen editors
with “copy” and “paste” functions hasten the ubiquity of
this event.

In large systems, this method may even become a
standard way to produce variant modules. When building
device drivers for operating systems, much of the code is
boilerplate, and only the part of the driver dealing with the
device hardware needs to change. In such a context, it is

commonplace for a device driver author to copy entirely an
existing, well-known, trusted driver and simply modify it.
While this is actually good reuse practice, it exacerbates the
maintenance problem of fixing a bug found in the “trusted”
driver by replicating its code (and reusing its bugs) over
many new drivers.

Sometimes a “style” for coding a regularly needed code
fragment will arise, such as error reporting or user interface
displays. The fragment will purposely be copied to
maintain the style. To the extent that the fragment consists
only of parameters this is good practice. Often, however,
the fragment unnecessarily contains considerably more
knowledge of some program data structure, etc. A
required adjustment to the style must then be copied to
every instance.

It is also the case that many repeated computations
(payroll tax, queue insertion, data structure access) are
simple to the point of being definitional. As a
consequence, even when copying is not used, a
programmer may use a mental macro to write essentially
the same code each time a definitional operation needs to
be carried out. If the mental operation is frequent, he may
even develop a regular style for coding it. Mental macros
produce near-miss clones: the code is almost the same
ignoring irrelevant order and variable names.

Some clones are in fact complete duplicates of
functions intended for use on another data structure
instance of the same type; we have found many systems
with poor copies of insertion sort on different arrays
scattered around the code. Such clones are an indication
that the data type operation should have been supported by
reusing a library function rather than pasting a copy.

Some clones exist for justifiable performance reasons.
Systems with tight time constraints are often hand-
optimized by replicating frequent computations, especially
when a compiler does not offer in-lining of arbitrary
expressions or computations.

Lastly, there are occasional code fragments that are just
accidentally identical (false positive clones), but in fact are
not clones. When investigated fully, such apparent clones
just are not intended to carry out the same computation.
Fortunately, as size goes up, the number of accidents of this
type drops off dramatically.

Ignoring accidental clones, the presence of clones in
code unnecessarily increases the mass of the code. This
forces programmers to inspect more code than necessary,
and consequently increases the cost of software
maintenance. One could replace such clones by
invocations of clone abstractions once the clones can be
found, with potentially great savings.

3

3 Clone Detection using Abstract Syntax Trees

The basic problem in clone detection is the discovery of
code fragments that compute the “same” result. To do this,
we must first fragment the program in parts we are willing
to compare, and then determine if fragment pairs are
equivalent. Since determining even if single fragment halts
is generally impossible, we cannot in general determine
that two arbitrary program fragments halt under the same
circumstance, and thus it is impossible in theory to decide
that they compute identical results. Since false negatives
are acceptable (as engineers we have no choice), deep
semantic analysis conservatively bounded by time limits
could be used for equivalence detection. However,
considerable infrastructure may be required—in the form of
semantic definitions, theorem provers, etc. In practice, we
are willing to give up detecting complete semantic
equivalence because many clones come about due to copy-
and-paste editing processes, which can be detected more
easily.

Simpler definitions of code equivalence may suffice if
too many false positives are not produced. This suggests
clone detection by more syntactic methods. One can go as
far as comparing source lines. Source line equality
assumes that the cloning process introduced no changes in
identifiers, comments, spacing, or other non-semantic
changes, and thus limits clone detection to exact matches.
Consequently, it fails to detect near-miss clones. Closer to
full semantics but still a practical possibility would be to
compare program representations in which control and data
flows are explicit.

Semantic Designs is building transformational tools
(DMS) to help modify large software systems [Baxter97].
Such tools typically parse source programs into ASTs as a
first step before transformation. Because DMS produces
ASTs for arbitrary grammars easily, we chose to
investigate comparing syntax trees. This had the
immediate advantage of directly avoiding confusing but
uninteresting changes at the lexical level.

As a first step in the clone detection process, the source
code is parsed and an AST is produced for it. After that,
three main algorithms are applied to find clones. The Basic
Clone detection algorithm detects sub-tree clones; this is
purely syntactic. The Sequence Clone Detection algorithm,
is concerned with the detection of variable-size sequences
of sub-tree clones, and is used essentially to detect
statement and declaration sequence clones; sequence
detection is a weak but practical concession to program
semantic equivalence. The Clone Generalization algorithm
looks for more complex near-miss clones by attempting to
generalize combinations of already-detected clones.

Clones resulting from all three algorithms are
candidates for removal by abstraction, and can be
prettyprinted. This clone set is passed to a language

specific abstractor algorithm whose job is to propose the
appropriate language abstraction, and actually remove the
clones.

4 Finding Sub-tree Clones

In principle, finding sub-tree clones is easy: compare
every subtree to every other sub-tree for equality. In
practice, several problems arise: near-miss clone detection,
sub-clones, and scale. Near misses we handle by
comparing tress for similarity rather than exact equality.
The sub-clone problem is that we wish to recognize
maximally large clones, so clone subtrees of detected
clones need to be eliminated as reportable clones.

To determine if two trees are clones, rather than
comparing trees for exact equality, we compare instead for
similarity, using a few parameters. The similarity threshold
parameter allows the user to specify how similar two sub-
trees should be. The similarity between two sub-trees is
computed by the following formula:

Similarity = 2 x S / (2 x S + L + R)
where:

S = number of shared nodes from root
L = number of different nodes in sub-tree 1
R = number of different nodes in sub-tree 2

A mass threshold parameter specifies the minimum sub-
tree mass (number of nodes) value to be considered, so that
small fragments of code (e.g., subexpressions) are rejected
as potential clones.

The scale problem is much harder. For an AST of N
nodes, comparing all pairs of trees is O(N^3), and,
empirically, a large software system of M lines of code has
N=4*M AST nodes (if we consider comparing sequences
of trees, the process is O(N^4)!). For N=106 SLOC, this is
on the order of 1024 units of work, which is prohibitively
large.

We tackle this problem by hashing trees to equivalence
classes, and compare class members as possible clones.
The approach is based on the tree matching technique for
building DAGs for expressions in compiler construction
[Aho86], which allows the straightforward detection of
exact sub-tree clones. If we hash sub-trees to B buckets,
then only those trees in the same bucket need be compared,
cutting the number of comparisons by a factor of B. We
choose a B of approximately the same order as N; in
practice, B=10% N means little additional space at great
savings in terms of computation. We have found that the
cost of comparing individual trees averages much closer to
a constant, as most trees that differ do so at the subtree root,
rather than O(N), and so hashing allows this computation to
occur in practice in time O(N).

This approach works well for finding exact clones.
When locating near-miss clones, hashing on complete
subtrees fails precisely because a good hashing function

4

includes all elements of the tree, and thus sorts trees with
minor differences into different buckets. We solved this
problem by choosing an artificially bad hash function. This
function must characterized in such a way that the main
properties one wants to find on near-miss clones are
preserved. As we described in Section 2, near miss clones
are usually created by copy and paste procedures followed
by small modifications. These modifications usually
generate small changes to the shape of the tree associated
with the copied piece of code. Therefore, this kind of near-
miss clone often has only some small sub-trees which
differ. Based on this observation, a hash function that
ignores small sub-trees is a good choice. We have
successfully used a hash function that ignores only the
identifier names (leaves in the tree). Thus our hashing
function puts trees which are similar modulo identifiers into
the same hash bins for comparison.

We combine these ideas to give the Basic Clone
detection algorithm in Figure 1. This algorithm is
straightforward. In Step 2, the hash codes for each sub-tree
are computed to place them in the respective hash bucket.
This step ignores small subtrees, thus implementing the
mass threshold in a way that further reduces the number of
comparisons required considerably, as the vast majority of
trees are small. After that, every pair of sub-trees located
in the same hash bucket is compared; if the similarity
between them is above the specified threshold, the pair is
added to the clone list, and all respective sub-clones are
removed.

1. Clones=∅
2. For each subtree i:

If mass(i)>=MassThreshold
Then hash i to bucket

3. For each subtree i and j in the same bucket
If CompareTree(i,j) > SimilarityThreshold

Then { For each subtree s of i
 If IsMember(Clones,s)
 Then RemoveClonePair(Clones,s)
For each subtree s of j
 If IsMember(Clones,s)
 Then RemoveClonePair(Clones,s)
AddClonePair(Clones,i,j)

 }

Figure 1 - Basic Subtree Clone Detection Algorithm

By enumerating the trees from leaves upward, the mass
threshold test can be implemented very cheaply. The
parents of all subtrees with sufficient mass also have
sufficient mass.

An enhancementm enables the detection of similar trees
containing commutative operators such as add (“+”). This
will detect re-ordered operands in “mental macros”; in
reused-code, it is rare for a programmer to swap operands
while editing. Implementing this requires merely that such
tree node types be identified as commutative, that the
hashing function produces identical values on commutative
trees, and that the similarity function tries all child
orderings on commutative subtrees.

5. Finding Clone Sequences

The preceding section shows how to detect clones as
trees, and is purely syntax driven. In practice, we are
interested in code clones that have some semantic notion of
sequencing involved, such as sequences of declarations or
statements. In this section, we show how to detect
statement sequence clones in ASTs using the Basic
Algorithm as a foundation.

Such sequences show up in ASTs not as arbitrary trees,
but rather as right- or left-leaning trees with some kind of
identical sequencing operator as root. Sequences of sub-
trees appear in an AST as a consequence of grammar rules
which accept sequences of zero or more syntactic
constructs. These sequence rules are typically expressed by
the use of left or right recursive rules. When a parser
generator produces parsers that automatically generate
AST, it is common, as in our case, that the trees have a left-
leaning shape. Consider Figure 2, which shows a pair of
short sequences of statements along with their
corresponding trees. Note that the left-leaning tree reverses
the order of the statements because of the order in which
the parse reductions are done as determined by the
controlling grammar rule. In this example, nodes labeled
with a ”;” are sequence nodes for statements belonging to a
compound statement. Because a generic clone detector has
no idea which tree node types constitute sequence nodes,
these nodes must be explicitly identified to the clone
detector.

void f ()
{
 x=0;
 a=1;
 b=2;
 c=3;
 w=4;
}

void g ()
{
 y=2;
 a=1;
 b=2;
 c=3;
 i=5;
}

=

4

;

;

;

;

;

w

=

3c

=

2b

=

1a

=

0x

=

5

;

;

;

;

;

i

=

3c

=

2b

=

1a

=

2y

Figure 2 – Example of clone sequence

Such sequences of sub-trees are not strictly trees, and
consequently require a special treatment. In Figure 2, the
Basic Algorithm finds three clones corresponding to the

5

assignment statements for variables a, b and c. But, it is
unable to detect the clone sequence, because it is not a
single sub-tree, but rather a sequence of sub-trees. The
sequence detection algorithm copes with this problem by
comparing each pair of sub-trees containing sequence
nodes, looking for maximum length sequences that
void f ()
{
 x=0;
 if (d>1)
 {
 y=1;
 z=2;
 }
 else
 {
 h=2;
 z=1;
 y=3;
 }
}

The program has three sequences.
List Structure:
1. {x=0; if(d>1) … }

 hashcodes = 675, 3004

2. {y=1; z= 2;}

 hashcodes = 1020,755

3. {h=2; z=1; y=3;}
 hashcodes = 786, 756, 704

Figure 3 – List structure example

encompasses previously detected clones. Short sequences
(especially those of length one) are not interesting sequence
clones. A minimum-sequence length threshold parameter
controls the minimum acceptable size of a sequence.

To find sequence clones, we build a list structure where
each list is associated with a sequence in the program, and
stores the hash codes of each sub-tree element of the
associated sequence. Figure 3 shows an example of the list
structure that is built. This list structure allows us to
compute the hash code of any particular subsequence very
quickly.

1. Build the list structures describing sequences
2. For k = MinimumSequenceLengthThreshold

 to MaximumSequenceLength
3. Place all subsequences of length k

into buckets according to subsequence hash
4. For each subsequence i and j in same bucket

If CompareSequences (i,j,k) >
 SimilarityThreshold
Then { RemoveSequenceSubclonesOf(clones,i,j,k)
 AddSequenceClonePair(Clones,i,j,k)
 }

Figure 4 – Sequence detection algorithm

Figure 4 gives the Sequence Clone Detection algorithm.
This algorithm compares each pair of sub-trees containing
sequence nodes looking for the maximum length of
possible sequencing that encompasses a clone. Whereas
the Basic algorithm finds three clones in Figure 2, the
sequence detection algorithm finds the sequence of length 3
comprising the assignments for variables a, b and c as a
single clone. Following the requirement that larger clones
subsume smaller ones, detecting this sequence immediately
invalidates the clone status of the atomic statements found
as clones by the Basic Algorithm.

A weakness of this scheme is that it does not does not
have a method for detecting near miss sequence clones in
which the sequences are of unequal length. This causes the
algorithm to miss clones in which statements have been
inserted or deleted. We don’t know how common this
situation is.

6. Generalizing clones

After finding exact and near-miss clones, we use
another method (Figure 5) to detect more complex near-
miss clones. The method consists of visiting the parents of
the already-detected clones to check if the parents are near
miss clones too. We also delete subsumed clones.

A significant advantage of this method is that any near-
miss clones must be assembled from some set of exact sub-
clones, and therefore no near-miss clones will be missed.

1. ClonesToGeneralize=Clones
2. While ClonesToGeneralize≠∅
3. Remove clone(i,j) from ClonesToGeneralize
4. If CompareClones(ParentOf(i), ParentOf(j))

 > SimilarityThreshold
 Then {

RemoveClonePair(Clones,i,j)
AddClonePair(Clones,

 ParentOf(i), ParentOf(j))
AddClonePair(ClonesToGeneralize,
 ParentOf(i),ParentOf(j))
 }

5. End While

Figure 5 – Detecting more complex clones

A similar generalization algorithm is needed to test the
parents of detected sequence clones. The details have been
omitted for space. The final detected clone set is the union
of generalization algorithm for both subtree clones and
sequence clones.

Statistically, most clones occur only in pairs, and a
pairwise clone detector is adequate. In practice, we
sometimes find a skewed distribution, in which some
clones occur many times. Even if the final detected set has
few multiply-occurring clones, the intermediate detection
process often finds many small clones that are identical.
This can have serious scale space consequences, as K
identical blocks of code can produce O(K^2) clone pairs.
The CloneDR tool actually keeps sets of similar clones
rather than just pairs to avoid this problem.

7 Constructing Abstractions

After all clones are detected, with a suitable
prettyprinter, one can display the detected clones and a
language-independent skeletal macro from the abstraction
tree that is shared by both subtrees of each pair of clones.
The skeletal macro is simply the subtree the clones have in
common, with parameters where the abstraction differs
from the clone instance. Figure 6 shows an example of a
near miss sequence clone detected by the CloneDR tool in

6

an industrial control application. Figure 7 shows the
skeletal macro generated by the clone detector for the
clones in Figure 6, and the argument values that need to be
bound to the abstraction parameters.

For languages such as C, trivial syntax modifications
can almost always turn the skeletal macro into legal C
preprocessor directives (Figure 8a). The detector applied to
“C” programs will find clones in any subtree, both code
and data; macro abstractions can be proposed in both
places. The constructed macro can be given a (gensym’d)
name, placed into a “ABSTRACTIONS.H” file along with
other clone macro abstractions, and the clone site code
replaced by a macro invocation with suitable parameters.
The original source file must be modified to INCLUDE the
“ABSTRACTIONS.H” file.

Complications sometimes arise in real languages when
forming abstractions. For C, macros can abstract almost
every clone, but a macro argument that would contain a
comma is expressly forbidden by the language. While this

seems unusual, it is possible to detect near-miss clones in C
function argument lists, which would can in turn cause the
proposal of a C macro is whose argument would be itself a
C argument list, which would contain the forbidden
comma. In this case, the abstractor must reject a C macro
as a viable abstraction. If an abstraction cannot be formed,
then a detected clone simply cannot be removed. This type
of problem sometimes prevents the CloneDR from
achieving the removal of all the clones it can detect.

A language may offer several forms of abstraction. For
C, this includes:
• Macros
• TYPEDEFs (only for exact clones)
• INCLUDE files (only for exact clones)
• Function calls

Each language abstraction type will have rules about
where it can be legally used, and software engineers will
have heuristics about whether it should be used. Macros
may be used to abstract clones in the middle of a STRUCT
definition, but a TYPEDEF would be better. For each
language, the CloneDR tool implements abstraction-
forming critics which can deny the formation of a particular
type of abstraction.

Macros are useful as abstractions, but sometimes
function abstractions are better, because of a desire to save
space in the compiled program, an organizational desire to
avoid macros, or the need to debug in clearly defined
contexts. Forming function abstractions is considerably
more complex than forming macro abstractions, because
function bodies usually have different lexical scopes than
the clone body expects. For each small data item outside

--------------------MACRO-------------------
Db_err error;
Bool fail;
if (db_get_int (DB_CF_VAC_GROUP_REGEN_IV,
 & error))
{
 vac_regen_group_ob ();
 return (0);
}
db_put_ts (#0 , TRUE , & error);
db_put_int (#1 , VAC_REGEN , & error);
CALL (fac_n2 ());
alm_activate (#2 , ALM_DONT_BLOCK ,

 ALM_DONT_ACK , 60 , MDP_NULL ,
 MDP_NULL);

return (1);

--------------- MACRO BINDINGS --------------
#2 = ALM_VAC_P5_REGENING ,
 ALM_VAC_P4_REGENING
#0 = DB_VAC_OI_P5_CRYO_REGEN_IN_PROG_TSV ,
 DB_VAC_OI_P4_CRYO_REGEN_IN_PROG_TSV
#1 = DB_VAC_CRYO_P5_STATE_IV ,
 DB_VAC_CRYO_P4_STATE_IV

--

Figure 7 – A Skeletal Macro Abstraction

--------------------- CLONE ---------------------
 Similarity = 0.929411764705882
 From 13407 To 13424

Db_err error;
Bool fail;
if (db_get_int (DB_CF_VAC_GROUP_REGEN_IV ,

 & error))
{
 vac_regen_group_ob ();
 return (0);
}
db_put_ts (DB_VAC_OI_P5_CRYO_REGEN_IN_PROG_TSV ,

 TRUE , & error);
db_put_int (DB_VAC_CRYO_P5_STATE_IV , VAC_REGEN ,

 & error);
CALL (fac_n2 ());
alm_activate (ALM_VAC_P5_REGENING ,

ALM_DONT_BLOCK , ALM_DONT_ACK ,
60 , MDP_NULL , MDP_NULL);

return (1)

 From 13208 To 13225

Db_err error;
Bool fail;
if (db_get_int (DB_CF_VAC_GROUP_REGEN_IV,
 & error))
{
 vac_regen_group_ob ();
 return (0);
}
db_put_ts (DB_VAC_OI_P4_CRYO_REGEN_IN_PROG_TSV ,
 TRUE , & error);
db_put_int (DB_VAC_CRYO_P4_STATE_IV , VAC_REGEN ,

 & error);
CALL (fac_n2 ());
alm_activate (ALM_VAC_P4_REGENING ,

ALM_DONT_BLOCK , ALM_DONT_ACK ,
60 , MDP_NULL , MDP_NULL);

return (1)

Figure 6 – Sequence clones found (from Application)

7

the scope of the clone body, which is only read in the clone
body, the value of that data item is computed at the
abstraction invocation site and passed to a value parameter
to the abstraction. For each data item outside the scope of
the clone body which is large or updated, a reference to that
value can be formed at the abstraction invocation site and
passed as an additional “lexical-access” parameter to the
function. Returns inside the clone scope must be handled
carefully. Control transfers outside the scope of the clone
prevent formation of the function abstraction.
Implementing such lexical-access parameters requires
control and data flow analysis procedures which are beyond
the scope of this paper. The detected clone of Figure 7,
removed as a function abstraction, would appear as in
Figure 8b.

The mechanism to produce function abstractions is
about the same order of complexity as the clone detector.
We are actively implementing this facility now.

8 Clone Remover Engineering

To build a practical clone detector and remover one
must address other several issues:
• Parsing and building the AST
• Preprocessor directives
• PrettyPrinting with Fidelity
• Interactive Decloning
• Industrial scale source codes

Parsing the program suite of interest requires a parser
for the language dialect of interest. While this is nominally
an easy task, in practice one must acquire a tested grammar
for the dialect of the language at hand. Often for legacy
codes, the dialect is unique and the developing organization
will need to build their own parser. Worse, legacy systems
often have a number of languages and a parser is needed
for each. Standard tools such as Lex and Yacc are rather a
disappointment for this purpose, as they deal poorly with
lexical hiccups and language ambiguities. In addition, the
parser must accurately capture lexical information such as
spacing, comments, and number formats, to allow later
regeneration of the modified program text in nearly its
original form.

In our Design Maintenance System™ (DMS™) tool
[Baxter97] we use a variation of a Tomita-style parser
[Tomita91], that can parse ambiguous grammars (such as
C++) with impunity, cutting the time to develop a usable
parser significantly. (We can presently parse/clone detect
in C/C++, COBOL/2, Java, Fortran77/90/95 and
PROGRESS). .In particular, we use the parsing algorithm
of [Wagner97], which also conveniently builds the parse
tree. However, when using a Tomita-style parser, special
nodes called Symbol nodes, representing ambiguous parses,
must be taken into account in the clone detection algorithm.
We ignore ambiguous sub-trees by choosing a canonical
son based on grammar rule number. Lexical formatting
information is captured by DMS.

#macro CDRM297(CDR0,CDR1,CDR2)\
Db_err error;\
Bool fail;\
if (db_get_int (DB_CF_VAC_GROUP_REGEN_IV,\
 & error))\
{\
 vac_regen_group_ob ();\
 return (0);\
}\
db_put_ts (CDR0 , TRUE , & error);\
db_put_int (CDR1 , VAC_REGEN , & error);\
CALL (fac_n2 ());\
alm_activate (CDR2 , ALM_DONT_BLOCK ,\

 ALM_DONT_ACK , 60 , MDP_NULL ,\
 MDP_NULL);\

return (1)

. . .

Former Line 13208
CDRM297(DB_VAC_OI_P4_CRYO_REGEN_IN_PROG_TSV,
 DB_VAC_CRYO_P4_STATE_IV
 ALM_VAC_P4_REGENING)

. . .

Former Line 13407
CDRM297(DB_VAC_OI_P5_CRYO_REGEN_IN_PROG_TSV,
 DB_VAC_CRYO_P5_STATE_IV,
 ALM_VAC_P5_REGENING)

Figure 8a – C Macro Abstraction and Invocations

int CDRFN316(int CDR0, CYRO_STATE* CDR1,int CDR2)
{ Db_err error;
 Bool fail;
 if (db_get_int (DB_CF_VAC_GROUP_REGEN_IV,
 & error))
 {
 vac_regen_group_ob ();
 return (0);
 }
 db_put_ts (CDR0 , TRUE , & error);
 db_put_int (CDR1 , VAC_REGEN , & error);
 CALL (fac_n2 ());
 alm_activate (CDR2 , ALM_DONT_BLOCK ,

 ALM_DONT_ACK , 60 , MDP_NULL ,
 MDP_NULL);

 return (1)
}

. . .

Former Line 13208
 return
CDRFN316(DB_VAC_OI_P4_CRYO_REGEN_IN_PROG_TSV,
 &DB_VAC_CRYO_P4_STATE_IV
 ALM_VAC_P4_REGENING)

. . .

Former Line 13407
CDRFN316(DB_VAC_OI_P5_CRYO_REGEN_IN_PROG_TSV,
 &DB_VAC_CRYO_P5_STATE_IV,
 ALM_VAC_P5_REGENING)

Figure 8b – C Function Abstraction and Invocations

8

Preprocessor directives always complicate processing
source files. For C, we use a combination of means:

• Added preprocessor directives to the language
syntax, effectively extending the language to
include well-structured directives;

• Built a custom preprocessor to pass well-structured
directives to the parser, and expand the rest.

• Read INCLUDE files to get macro and type
definitions. When detecting clones in the presence
of INCLUDE files, the included text must be
treated as part of the include file, not part of the
including file.

Removing clones requires the original program be
modified; modulo complex analyses such as dataflow, this
is relatively easy given an AST. But the modified program
must be regenerated, preserving spacing, comments and
lexical formatting where given by the original program, and
prettyprinting newly generated code. In order to reproduce
the program, each program fragment must also be able to
identify the file from which it originally came, so that a
corresponding set of files are accurately reproduced. For
DMS, we use a TeX-like layout language to describe how
to do prettyprinting, and integrate all these information
sources.

One defect of purely automated clone removal is that
the abstractions get poor names (Figures 8a and 8b), as the
tool has no clue as to the abstraction purpose. A related
problem has to do with how to abstract a clone if multiple
abstractions are possible, or indeed even whether to
abstract every possible abstraction. Our CloneDR tool will
carry out batch decloning, under the assumption that
maintainers will rename the clones during later
maintenance, but we also decided that an interactive mode
is necessary. In such a mode, the CloneDR presents each
detected abstraction to an engineer, and allows him to
choose the dispositioning method (or reject it), and name
the abstraction and its parameters. (This is a little easier
than it might seem, as the abstractions usually represent
some useful application concept.) We implement
abstraction critics that eliminate formation and interactive
proposal of a particular type of abstraction type if it would
be illegal or inappropriate.

Program scale is a problem for any clone detection
scheme. The CloneDR can presently handle about 1
MSLOC code in 1GB RAM. We believe one can perform
clone detection on some 10 million lines in 2Gb with
careful design and one tree node per processor cache line.
A disk-based implementation could handle larger size, but
batch performance is likely to be much worse because one
would replace RAM-based hash bucket access and tree
walking times with disk I/O times. A reasonable
alternative might be to batch declone once, and then
incrementally compute the hash codes and do clone
detection for changed modules.

As the computation demand is severe, we have
implemented CloneDR in PARLANSE, Semantic Design’s
parallel programming language for symmetric
multiprocessors. We achieve a linear speedup on an 8-way
200 Mhz Pentium Pro. With this speedup, it takes some 40
minutes to parse and detect the clones in 350KSLOC.
Batch clone removal after detection takes negligable time.

9 Clone Detection Applied

In this section, we discuss various statistics reported by
the clone detector when applied to real, working programs
of scale. First, we discuss an industrial process control
application coded in C. Then we discuss comparative
numbers across several programming languages.

The clone detector was applied to the source code for a
industrial process-control system having approximately 400
KSLOC of C code. The system was created 7 years ago by
reusing and modifying a then 3-year-old code of a system
with similar functionality. 15 programmers presently
maintain it. The programmers who did the port were not
those who developed the original system. The software is
partitioned into subsystems according to function.

Figure 9 shows the percentage of cloned code in 19
different subsystems, computed as the ratio of redundant
SLOC and subsystem SLOC. Three subsystems have
approximately 28% cloned code. Subsystem 15 was
created by cloning device driver code capable of handling
one I/O port to allow handling of a second port. Done under
schedule pressure, it was already known to be highly
redundant. We observe that schedule pressure continuously
prevented this redundancy from ever being fixed, and the
clone tool could do this automatically. Subsystem 16 is
code that services a number of devices and was created
similarly to subsystem 15, as confirmed by the developers.
The average clone percentage is 12.7% for all subsystems.

If software maintenance costs were distributed evenly
across source, this suggests 12% savings in maintenance
costs. In practice, some systems are more troublesome than
others. Subsystem 2 was difficult to maintain and accounts
for a large percentage of defects written against the system.
A reduction in code here could have disproportionate
savings in costs.

Clone percentages

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

subsystems

Series1

Figure 9 – Clone percentages

9

An interesting question is how often code is copied, and
how much is copied. Figure 10 shows the number of times
that clones of various sizes (SLOC) were found. The three
largest subsystems are represented in this graph. Clone
sizes larger than 25 are rare and are therefore not shown.
However, within subsystem 15 an unexpected clone of size
497 was found; it seems common to find a few very large
clones. We conclude that most clones are relatively small
in size, on the order of 10 SLOC. This isn’t very
surprising, given that a clone is often the implementation of
some application abstraction.

Clone size against Number of Occurrences

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Clone Size

Series1

Series2

Series3

Figure 10 – Clone size against number of occurrences

One hopes that as a system matures, it becomes better
organized. Figure 11 shows the changes in percentage of
clones for four fairly volatile subsystems over four releases
with a periodicity of approximately 6 months. Three of the
four subsystems show a steady improvement in clone
density, but one shows a sharp increase. All could clearly
use a clone removal pass.

Clone Percentage Over Time

0

5

10

15

20

25

30

1 2 3 4

Subsystem over time

Series1

Series2

Series3

Series4

Figure 11 – Clone percentage over time

We had hypothesized that larger files might have larger
clone percentages, because of opportunity and complexity.
Figure 12 compares clone percentage with subsystem size
in KSLOC. Although the 3 largest files have the largest
number of clones, no pattern is recognizable. We conclude

that clone ratios are relatively independent of (sub)system
size: “Clones happen”.

Size against Clone Percentage

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

KSLOC

Series1

Figure 12 – Size against clone percentage

We draw the following conclusions from the data:
1. Higher percentages of cloned code were found in

newer subsystems, which might be expected to be freer
of clones because they are closer to a clean, original
design. However, it appears that cloning is used to get
the code to work, the code is released as soon as it is
working, and then improved as it stabilizes. [Lague97]
also found this.

2. We examined the clones in the code for subsystems
having higher clone percentages. Many clones were
separate functions performing identical operations on
different data types or devices having left versus right
symmetry. This appears to have been a stylistic
choice, perhaps made in the interests of apparent
modularity or clarity (although the cost of maintaining
all those copies argues against actual modularity). It is
interesting to notice that subsystems having a greater
degree of this stylistic copying are also the subsystems
which change most infrequently, largely low-level
utility programs (data access, data initialization, etc).
This supports finding 1) in that utility code is often
stable, therefore rarely modified and therefore not
‘cleaned up’.

3. There is no correlation between subsystem size and
clone percentage. One might expect to have more
clones in larger subsystem because of the conceptual
complexity of grasping the entire subsystem. It
appears that deadline pressures, similarities in
functionality, and programmer style have more effect
on clone density than code size.

We have seen various clone detection statistics for a single
large application program in a single language. We now
consider detection and removal statistics for programs in
several languages. Figure 12 shows several applications,
the PARLANSE Compiler source, a statewide community
college course registration program, and two related
insurance applications from the same vendor, SLC and

10

SAPV, written in very different programming languages.

Application Lang-
uage

SLOC Est.

RSLOC

Actual

RSLOC

P0 Compiler C 42413 4133

9.7%

2568

6.0%

CCC
Registration

COB-
OL85

77631 15500

20.0%

15734

20.3%

SLC PROG-
RESS

356413 58783

16.5%

na

SAPV PROG-
RESS

132656 16251

12.3%

na

SAPV+SLC PROG-
RESS

489069 105644

21.6%

na

Figure 12 – Detection/Removal across Languages

The table shows program sizes, estimated removable
source lines of code based purely on clone detection, and
actual removed source lines of code after abstraction by
macro for C, and by COPY LIB for COBOL (we do not
have clone abstraction running for PROGRESS just yet).
The removed source line count varies from the estimated
because the estimator uses the skeleton macro, and the
actual abstraction usually requires some extra source code
overhead for macro declaration and vertical whitespace
gaps.

All the programs show a significant volume of
removable clones. We think this makes a clear economic
case for clone removal. The COBOL application has a high
rate of redundancy because the data declarations for several
modules have a clearly-copied large table of school
districts, which would clearly be better as a COPYLIB.
The insurance applications individually seem to have
typical redundancy numbers by themselves, but are quite
high when combined. In fact, SAPV was derived from
SLC, and although they are separate products, they have
considerable redundancy. The vendor organization owning
these products would do well to remove clones across both
systems and combine them under a single configuration
manager.

We do not have numbers for Actual Removal for
abstraction by function yet. We expect them to be a little
lower than the macro abstraction numbers, due to more
restrictions on applicability.

10 Clones as Domain Concepts

We believe that a clone detector tool can be of great
value for a domain analyst capturing domain concepts from

the source code of similar systems. A key issue in domain
analysis is the need to understand commonalities in
concepts and implementations across families of software
systems. As defined earlier, idioms are program fragments
that implement specific concepts in a given application
domain. It is reasonable to believe that some of the clones
found in a system are realizations of these concepts,
precisely because they are in repeated demand for carrying
out the application. Such understanding can be used as an
interesting starting point for the abstraction of domain
concepts from source code [DeBaud97].

A domain-analysis process step might include running a
clone analysis for each of several similar systems, followed
by interviews with domain specialists. During these
interviews, the cloned code is shown and the specialists are
asked to provide possible abstractions motivating such
implementations. The results would be domain concepts
and their abstract implementations as generalized from the
clone instances. The tool presented in this paper represents
a step forward in the development of auxiliary tools for the
hard task of finding commonalties in similar systems.

device.mode = MOVE_ABS;
device_xf.position = (int) db_get_int(

DB_XFER_ARM_LOAD_IV, &dbstat);
move_swap (& device_xf);
data = (char *) & device_xf;
data_size = sizeof(Msg_device_move);
msg_send((Process_id) DI_DEVICE_XCR,

data ,(Uint16) data_size,
MSG_NO_FLAGS ,
MSG_XCR_DEVICE_XFER_MOVE);

printf("Xfer Arm rotated to load \n");

Figure 13 - A domain idiom found by clone detection

An example of a clone representing a domain idiom is
shown in Figure 13. These seven lines were repeated eight
times within one source file. Here the control system is
commanding an arm, which transfers product through the
system, to move to the load position, a basic command for
that device.

The fact that clones are often implementations of
domain concepts can, remarkably, used to find bugs in
programs being decloned. We have observed that when a
parameterized abstraction is being formed, what is often of
interest are the parameters themselves. Given an
abstraction, one can often spot bad argument values
directly; such failings are much harder to see in the clone
code. More importantly, a poorly modified clone usually
has abstractions with spurious extra parameters, or
parameters with obviously incorrect values. We found a
number of bugs in rarely-used error reporting logic in our
PARLANSE compiler when we investigated abstraction
invocations with unusual arguments.

11

11 Future Work

The CloneDR tool presently implements clone
abstraction by macro. The most obvious next step is to
automate the removal of detected clones using function
abstractions, and we are completing that for COBOL/2.
An interactive user interface is being implemented. We
expect to implement macro abstraction for PROGRESS,
and declone the SAPV and SLC systems using the
interactive process.

The present model for Clone removal is a batch
process, but this is a fairly expensive proposition, not so
much for the computers but rather for the engineer who
interactively must choose sensible names for several
thousand clones in a 1MSLOC system. A friendlier
method might integrate the clone remover into the software
check-in process to eliminate clones as they arise.

There are a number of improvements one could make to
the clone detector itself, the use of DAGs and/or dataflow
graphs instead of trees and operations.

The algorithms we presented here will work more
effectively on DAGs, with no change, than on trees. For
DMS, we plan to convert identifiers in tree leaves into
cross-links to the syntactic construct defining that
identifier, forming DAGs from the parse trees. This has the
advantage of preventing false-positive exact clones using
accidentally the same textual name, but which actually
refer to different identifiers according to the language
scoping rules (Near miss clones that are parameterized by
these non-identical names will still get found). Type
information could be used to prevent detection of
accidental clones, as many such clones use different types
in their computation. In practice, we presently see few
false positives, so the incremental value of adding this is
unclear. For DMS, it will essentially be free, so it won’t
hurt us to try it.

What one would often like is the identification of two
blocks of code that were cloned, and then patched
differently. If the patch is the replacement of one language
construct by another, our detector will find it. If the patch
is the insertion of new code in the middle of a clone,
forming a “split clone”, our present detector will not be
able to find the entire clone, but can identify the preceding
and following fragments as clones. It would be convenient
if the detector identified such split clones, as they are often
an indication that a clone was defective, and only one
instance was fixed.

A program representation in which control and data
flows are explicit would allow a more semantic-oriented
clone detector that would be insensitive to variable names
and statement ordering. In particular, this would detect, as
monoliths, clones that have been split by irrelevant
insertions. It would also not be fooled by reordered data
declarations or shuffled statements that achieve the same

effect. For DMS, we will construct such representations,
and so should be able to build more sophisticated detectors
in the future.

12 Related Work

Neural nets have been proposed for clone detection
[Barson95]. This requires training, performs poorly in the
face of complex lexical differences that occur in real
languages and programs, and does not scale to millions of
lines of code. We think this path is a definite dead end.

A fast string-based method, DUP, for detecting exact
clones and simple near-miss clones, was considered by
[Baker95], who reported 13-20% clones, for a large
application (1M SLOC). When producing clones,
programmers often change white spacing (blanks, tabs,
newlines) and comments, which will disable recognition
based purely on strings. A simple lexical processor can
overcome this particular problem. DUP actually compares
strings of lexemes rather than strings of characters to
combat this problem.

Their lexeme-based algorithm seems easy to implement
and operates nicely on scale. On a positive note, it apears
that DUP should be able to detect sequence clones., but has
some shortcomings. First, it fails to detect clones which
differ by other than a trivial substitution of one lexeme for
an identifier. Second, based on the description, we believe
that such a detector will also falsely detect nonsensical
clones, such as the lexeme sequence frequently found in C
programs at the end of a function: “}; int SomeName(“
Furthermore, DUP’s matching process cannot detect exact
clones with commutative operators. An easy way to cure
these problems is to take the language syntax into account,
as we do. Our detector finds clones, which differ in
complex language constructs, such as expressions or
statements. In any case, more sophisticated clone detection,
using name resolution, cannot be accomplished without
parsing and applying deeper knowledge of the language
scoping rules. [Johnson94] applies similar methods.

The method used by [Lague97] apparently parses the
program text, and then computes a hash code for function
bodies by forming a vector of predefined software metrics
(e.g. SLOC, Halstead, etc). While this can be used for
recognizing function clones, it appears to make the hashing
function unnecessarily complicated without necessarily
providing a good hash function. Implementing and running
the clone detection process is not likely to be nearly as fast
as a straightforward implementation like ours, which is
important for the scale in which clone detection is
interesting. It also has the defect that it appears to allow
many false positives, which would require an engineers’s
attention to eliminate; we think this is bad for the engineer
and defeats much of the purpose of an automated tool.
(The CloneDR seems to produce very few false positives).
We remark that comparing just function bodies, however,

12

cuts the volume of comparisons required, so perhaps this is
not a problem if one wants to limit clone detection to just
function bodies. Furthermore, it is limited to language
constructs on which all the metrics apply, hinting at the
reason it operates only on function bodies. Such a scheme
probably would be ineffective for detecting data declaration
clones (which could be removed in “C” by using
TYPEDEFs). If a wide variety of metrics were used, it
would be likely parsing is necessary to support one of
them, and our scheme could be used directly instead. If
parsing is not required, then lexical differences may
damage clone detection ability as already suggested.
Finally, one has to augment simple hashing schemes to
reasonably detect near misses, or sequence clones. Our
method will detect cloned expressions, statement
sequences, data declarations, etc., anything which has a
syntactic structure in a language.

Neither Baker nor Lague have actually achieved the
promise of clone detection: the removal of the clones; we
have done this via macros and are actively pursuing
function abstraction. The CloneDR is the only clone
detection program that uses parallelism to achieve its goal,
and may be the only compiler-like tool anywhere to
achieve good speedups on commodity hardware. Finally,
the CloneDR applies easily to multiple languages, by virtue
of being parameterized by the language grammar, and
using the robust parsers for industrial languages encoded
for DMS, such as C, C++, COBOL and FORTRAN.

Conclusions

A practical method for detecting near-miss and
sequence clones on scale has been presented. The approach
is based on variations of methods for compiler common-
subexpression elimination using hashing. The method is
straightforward to implement, using standard parsing
technology, detects clones in arbitrary language constructs,
and computes macros that allow removal of the clones
without affecting the operation of the program.

We have applied the method to a number of real
application programs in different programming languages,
all of moderate to large scale, and confirmed previous
estimates of clone density of 7-15%, suggesting there is a
“manual” software engineering process “redundancy”
constant. We offer evidence that organizations that have
multiple related products will see even higher redundancy
rates, and can therefore obtain correspondingly a larger
benefit by clone removal. Automated methods can detect
and remove such clones, lowering the value of this
constant, at concomitant savings in software engineering or
maintenance costs. Clone detection tools also have good
potential for aiding domain analysis.

A commercial tool for carrying out Clone Detection and
Removal, the CloneDR, is being prepared for market.

References

[Aho86] Alfred Aho, Ravi Sethi and Jeffrey Ullman,
Compilers, Principles, Techniques and Tools,
Addison-Wesley 1986.

[Baker95] Brenda Baker, On Finding Duplication and
Near-Duplication in Large Software Systems,
Working Conference on Reverse Engineering
1995, IEEE.

[Barson95] P. Barson, N. Davey, S. Field, R. Frank,
D.S.W. Tansley, Dynamic Competitive Learning
Applied to the Clone Detection Problem,
Proceedings of International Workshop on
Applications of Neural Networks to
Telecommunications 2, 0-8058-2084-1, Lawrence
Erlbaum, Mahwah, NJ 1995

[Baxter97] Ira Baxter and Christopher Pidgeon, Software
Change through Design Maintenance,
International Conference on Software
Maintenance, 1997, IEEE.

[DeBaud97] Jean-Marc DeBaud, DARE: Domain-
Aumented ReEngineering, Working Conference
on Reverse Engineering, 1997, IEEE.

[Kontoginnis96] K. Kontogiannis, R. DeMori, E. Merlo, M.
Galler, and M. Bernstein, Pattern Matching for
Clone and Concept Detection, Journal of
Automated Software Engineering 3, 77-108, 1996,
Kluwer Academic Publishers, Norwell,
Massachusetts

[Johnson94] J.H. Johnson, Substring Matching for Clone
Detection and Change tracking, Proceedings of the
International Conference on Software
Maintenance 1994, IEEE.

 [Johnson96] H. Johnson, Navigating the Textual
Redundancy Web in Legacy Source, Proceedings
of CASCON '96, Toronto, Ontario, November
1996.

[Lague97] B. Lague, D. Proulx, E. Merlo, J. Mayrand, J.
Hudepohl, Assessing the Benefits of Incorporating
Function Clone Detection in a Development
Process, International Conference on Software
Maintenance 1997, IEEE.

[Tomita91] Generalized LR Parsing, Masaru Tomita ed.,
1991, Kluwer Academic Publishers, Norwell,
Massachusetts.

[Wagner97] Tim Wagner and Susan Graham, Incremental
Analysis of Real Programming Languages,
Proceedings 1997 SIGPLAN Conference on
Programming Language Design and
Implementation, June 1997, ACM

$XWRPDWHG�6RIWZDUH�,QVWDOODWLRQ�7HVWLQJ �

Automated Software
Installation Testing

Christopher Agruss
Alexei Tcherkassov

Autodesk Incorporated

Quality Week, May 1999

The infinitesimal defect

”Little bugs have littler bugs,

upon their backs to bite 'em,

and the littler bugs have littler bugs,

and so ad infinitum.”

Verse from "There ain't no bugs on me”

-traditional children's song

$XWRPDWHG�6RIWZDUH�,QVWDOODWLRQ�7HVWLQJ �

Introduction

✔Installers make a strong first impression

✔Manual installer testing can be tedious

✔Scope of this talk
– Which aspects of installation testing lend

themselves best to automated methods?

– Appendixes for general installer testing
checklists, tools, and other references

Overview

✔Meta-automation and the installer

✔Establishing machine base states

✔Designing the automated system

✔Selecting the appropriate tools

✔Verifying the results

✔Testing the uninstaller

$XWRPDWHG�6RIWZDUH�,QVWDOODWLRQ�7HVWLQJ �

Installer testing as meta-
automation
✔Installers have built-in automated tests

– Can you think of any examples?

✔One purpose of your test code is to verify
the assumptions of the installer’s own
automated script

Establishing machine base states

✔Return the machine’s disk to a base state
– Reformat hard disk

– Install operating system

– Create base image

✔How often do you need to restore the full
base state?

✔See paper for Disk Imaging tool list in
Appendix B

$XWRPDWHG�6RIWZDUH�,QVWDOODWLRQ�7HVWLQJ �

Select a tool to drive the installer

✔Define the scope of your testing
– responsible only for the end results?

– need to test the user interface?

✔Does your installer have a silent option?

✔Two options to consider
– use the installer’s built-in scripting capability

– use an industrial strength UI test driver

Designing automated tests via
flow diagrams
✔Begin with a diagram for the installer

✔Superimpose an automation wrapper

✔Add any intervention tests needed

✔Include as much detail as possible

✔Review the design, then begin
implementation

$XWRPDWHG�6RIWZDUH�,QVWDOODWLRQ�7HVWLQJ �

Sample installer flow diagram

Previous
Installation
Detected?

Run setup.exe

Yes

No

Select Destination Path

Choose Instal lat ion Options

Reboot from
Installer?

Installation
Complete

Yes

No

Begin Install ing

Run any remaining instal ler tasks

Quit setup.exe, and Reboot Manually

Installer diagram with automated
test wrapper

Launch automated
installation tests

Exit Automated
Testing

Run setup.exe

Establish all base states & baselines

Verify diffs from baselines against
expected changes

Previous
Installation
Detected?

Yes

No

Select Destination Path

Choose Instal lat ion Options

Reboot from
Installer?

Yes

No

Begin Install ing

Run any remaining instal ler tasks

Quit setup.exe, and Reboot Manually

$XWRPDWHG�6RIWZDUH�,QVWDOODWLRQ�7HVWLQJ �

Installer diagram with automation
wrapper and intervention tests

Launch automated
installation tests

Exit Automated
Testing

Run setup.exe

Establish all base states & baselines

Verify diffs from baselines against
expected changes

Previous
Installation
Detected?

Yes

No

Select Destination Path

Choose Instal lat ion Options

Reboot from
Installer?

Yes

No

Begin Install ing

Run any remaining instal ler tasks

Quit setup.exe, and Reboot Manually

0RYH EDFN 	 PRGLI\ RSWLRQV

5HGXFH WKH IUHH GLVN VSDFH

9HULI\ GLVN VSDFH UHTXLUHPHQWV
EHIRUH WHPS ILOHV DUH UHPRYHG

The master/slave configuration

✔Different types of distributed testing

✔Pros
– makes full use of available machines

– facilitates the reboot process

✔Cons
– heavy dependency on the master machine

– if the master gets stuck, the slaves cease

$XWRPDWHG�6RIWZDUH�,QVWDOODWLRQ�7HVWLQJ �

Verifying the results

✔System diffs, before and after installing
– verify changes to the system registry

– verify file changes against disk spec

– use the disk spec as your Oracle

✔If you’re including UI testing
– backward navigation

– canceling installations

✔Does the program start up afterwards?

Computing disk space
requirements
✔Sources of error

– file systems, updated files, hard coded values

✔Computation procedure
– record purported disk space requirements

– capture baseline free disk space

– for each flavor of installation, note disk space at
the end

– quit installer, restart, and record free disk space

– subtract baselines from each measure

$XWRPDWHG�6RIWZDUH�,QVWDOODWLRQ�7HVWLQJ �

Testing the uninstaller

✔Uninstaller as a big Undo operation

✔Automation tips

✔What files do not get uninstalled?

✔Should you reboot?

✔Shared components, and the refcount

✔Generic testing libraries, for automatically
verifying uninstallations

Conclusions and future directions

✔Automated installation testing is feasible,
especially with a good design

✔Our implementation is only the tip of the
iceberg

✔Future directions
– network installations

– installations over the web

– installer compatibility testing

$XWRPDWHG�6RIWZDUH�,QVWDOODWLRQ�7HVWLQJ �

References

✔"Install Risk Catalog", personal
communication from James Bach, 1999

✔"Specific Installer Issues", personal
communication from Noel Nyman, 1999

✔"Installer Testing", by Pete Schneider:
– http://www.data-dimensions.com/newsletters/testnet/docs/installertest.htm

Acknowledgements

✔Special thanks to the people who reviewed
this paper, and provided ideas:
– Noel Nyman

– Bret Pettichord

– Johanna Rothman

✔Also, thanks to people at Autodesk who
supported this project
– Michael Lapinskas

– Gary McEwan

Automated Software Installation Testing

Christopher Agruss & Alexei Tcherkassov
Autodesk Inc.

International Quality Week, 1999

"Little bugs have littler bugs,
upon their backs to bite 'em,

and the littler bugs have littler bugs,
and so ad infinitum."

 [verse from "There ain't no bugs on me," trad. children's song]

Abstract
Testing software installation is a relatively constrained and repetitive task that lends
itself well to automated methods. One of the prime advantages in doing this is that the
installer tests can be run in parallel against an array of different machine
configurations, minimizing the repetitive tedium of manual testing. A well-crafted
automated system can verify many aspects of an installation, including: the accuracy
of the purported disk space requirements, confirming that the expected files are written
to disk, and checking that the program can be launched successfully afterwards. With
a modular design, many of these same routines can be used to verify uninstallation of
the software as well. After describing our experience with creating such a system, we'll
also discuss some readily available freeware, shareware, and commercial tools that we
found helpful for automating installation testing.

Introduction
A user's first encounter with a new software program is typically with its installer. Consequently, your
installer needs to be of the highest possible quality, in order to be confident about the customer's initial
experience with your software. One way to verify the quality of your installer is to design a smart balance
of manual and automated tests that can be run across a range of different machine configurations. In
theory, this improves the likelihood that important defects will be found and fixed before the installer
arrives in your customer's hands.

One of the authors was managing a release testing effort some years ago, and toward the end of the last
day of testing he asked someone to run one more installation, to make sure that it worked on a particular
machine configuration. The person's response was, "Alright, I'll run this last one, but if you ask me to run
any more installation tests, I quit!"

One bothersome attribute of installer testing is that it can take an awfully long time to run a single
testcase, especially for larger software packages. Multiply this by the number of machine configurations
that you need to cover, and the time required for testing becomes daunting. This is one of the primary
reasons that automated installer testing is so appealing.

The goal of this paper is not to provide a comprehensive approach to installation testing, but rather to
identify which aspects of it are best suited to automated methods. Still, it would be silly to build the
automation list without having a clear idea of the full extent of the testing required. Some friends (James
Bach and Noel Nyman) generously shared with us their installer testing notes, which I've reproduced in
Appendixes C & D. Also, for an introduction to installation testing in general, please see Pete Schneider's
online article, listed in the References section at the end of this paper.

Our paper is based largely on recent experience with automating installation tests for Autodesk's
programs, and describes some of the thought process we went through in designing our tests. As such, the
examples we'll use are from doing installations on Windows platforms. The topics we'll cover include:
establishing machine base states; designing the automated system via flow diagrams; selecting the
appropriate tools; implementing distributed tests; and verifying the results. Briefly, we'll also cover some
issues with automated testing of the complementary operation, uninstallation, but this will receive
relatively little attention here. Automated testing of uninstallation is closely tied with the concepts in this
paper, but there are enough issues unique to uninstallation to warrant a separate paper on the subject.

Installer testing as meta-automation
In a manner of speaking, a software installer is already an automated testing routine in its own right. Most
installers follow a script, which determines how it writes files to disk, configures your system settings, and
makes any other changes necessary so that you can run the software being installed. On top of this, many
installers do some type of checking to verify that the machine being used is compatible with the new
software, that it has enough free disk space, and the like.

In this light, automated installer testing takes the form of meta-automation. For example, the installer
checks whether you have sufficient disk space to install successfully, but your automated routines (meta-
automation) might test whether the installer is checking for the correct amount of disk space. If the
installer is checking whether you have at least 1,000,000 bytes of free space, but you really need 1,000,001
bytes, an automated test could flag this as a defect.

When designing this meta-automation, its vital that you understand fully the assumptions of the installer's
own script. For instance, the installer's disk space checking logic might intentionally be assuming that the
file format for the disk being used is FAT; if so, then by design it will overestimate the amount of free
space needed for an NTFS or FAT32 disk. Knowing this, you could then design your installer tests to only
flag underestimation errors, and to ignore overestimation errors, within reasonable limits.

Another aspect of installer testing as meta-automation is that your suite of tests can span a series of related
tasks, much broader than simply running the installer. For example, your test suite might include setting a
machine base state, running an installation, rebooting, launching the program, and then running the
uninstaller. Along the way, it will probably be verifying a variety of critical items too. Before diving into
further examples, let's first take a look at some ideas for setting up machines in your installation testing
lab.

Establishing machine base states
Establishing a baseline machine state is a fundamental first step for any installation testing. Disk imaging
programs such as Ghost and IC3 (please see Appendix B for specific tool references) are widely used now
to return a machine's disk to a base state. You'll probably need an array of machine base state images,
depending on how many configurations you need to test. One way to approach this is to have one image
for every combination of operating system and disk file format that you plan to test.

If you've never done this before, you could start by reformatting a machine's disk drive to the most
commonly used file format, and follow that by freshly installing the most commonly used version of the
operating system. Create the image for that base state, and then move on to create images for the other file
formats and operating system versions that you need to test.

Ideally, you should assemble some dedicated lab machines for installation testing, so that they can be set
to the base state when needed, without interrupting other activities. Imaging and restoring an array of
machines is commonly automated, and will reap you time savings, regardless of whether you'll be doing
manual or automated installer testing.

At some point, you'll need to answer the question of whether to restore your baseline images in between
each installation testcase, or whether it is valid to do it less often? If your uninstall program is reasonably
free of defects, then one alternative is to only reset to the full base state when receiving a new build. If this
is the case, you should be able to rely on the uninstallation program to restore your base state; if not, then
you have probably found an important defect in your uninstaller.

To answer that question more fully, you could make this your first testcase: does running the installer
followed by running the uninstaller truly return the machine to the base state? If that test is successful, we
would suggest an expanded follow-up test: does running the installer, followed by launching the program
to run some tests, followed by running the uninstaller also return your machine to the base state? The
answers to these questions will help you determine how often you need to restore the machine base state
from the image file.

Selecting a testing tool to drive the installer
The next decision you're faced with is how to drive your automated installer tests. One option is to use the
installer's own scripting capability, if it has one built in. For example, InstallShield provides a command
line switch for recording a given installation, allowing subsequent playback in "silent" mode. For details
on this method, please refer to Appendix A. One advantage of using the silent install is that it doesn't
require purchasing a test tool to drive your installer's UI; in so doing it will also save you the expense of
writing test code to drive that UI. Another advantage is that the tests may run faster than if you drive them
through a UI testing tool.

On the other hand, there are many advantages to using an industrial strength UI testing tool, such as
SilkTest (www.segue.com) or VisualTest (www.rational.com). To begin with, a good tool will provide a
recovery system in case you wind up in an error condition. Moreover, these tools already have extensive
testing libraries, helping you to verify the results in an automated manner.

Of course, if you want your automated installation tests to include some cases that cover your installer's
user interface, then you'll need to use a UI tool. For example, if you wish to automate the testing of
navigating backwards in the Installer, or of canceling at various stages, then you'll need a UI tool.

Designing the automated tests via flow diagrams
To design the flow of the tests, we recommend beginning with a simple flow diagram of your installer's
behavior. The behavior of most installers is constrained enough to allow them to be diagrammed without
difficulty. Please consider the simplified example of a flow diagram for a generic installer, shown below in
Figure 1.

This initial flow diagram then becomes the template on top of which you can superimpose the flow of your
automated tests. In doing this, be sure to indicate on the diagram the points where you will verify the test
results. For example, Figure 2 expands on the previous diagram, by placing the installer within an
automated test wrapper (shown in blue italics). Notice that in Figure 2, all the test-related items occur
before the installer is launched, and after it has completed; if this is acceptable for your testing purposes,
then it might suffice to use the installer's own scripting capability to drive it during your automated
routines.

The final diagram, Figure 3, is based on the previous ones, but has some testing-related items (shown in
bold magenta) added in the midst of the installation procedure. To drive your installer through these types
of intervention tests, you'll need a UI testing tool. In this example, one of the checkpoints we've included
is for disk space calculations at the end of the installation process, before quitting the installer, in order to
get a direct reading about how much space was required for the temporary files used.

Previous
Installation
Detected?

Run setup.exe

Yes

No

Select Destination Path

Choose Installation Options

Reboot from
Installer?

Installation
Complete

Yes

No

Begin Installing

Run any remaining installer tasks

Quit setup.exe, and Reboot Manually

Figure 1: Flow diagram for the Installer alone

Launch automated
installation tests

Exit Automated
Testing

Run setup.exe

Establish all base states & baselines

Verify diffs from baselines against
expected changes

Previous
Installation
Detected?

Yes

No

Select Destination Path

Choose Installation Options

Reboot from
Installer?

Yes

No

Begin Installing

Run any remaining installer tasks

Quit setup.exe, and Reboot Manually

Figure 2: Flow diagram for the Installer, with an automated test wrapper, indicated by blue italics

Launch automated
installation tests

Exit Automated
Testing

Run setup.exe

Establish all base states & baselines

Verify diffs from baselines against
expected changes

Previous
Installation
Detected?

Yes

No

Select Destination Path

Choose Installation Options

Reboot from
Installer?

Yes

No

Begin Installing

Run any remaining installer tasks

Quit setup.exe, and Reboot Manually

Move back & modify options

Reduce the free disk space

Verify disk space requirements
before temp files are removed

Figure 3: Flow diagram for the Installer, with test wrapper, plus "intervention" tests in bold Magenta

As mentioned earlier, these examples of flow diagrams above are vastly oversimplified. When expanding
them into more realistic versions, here are some things to consider adding. If this is not the first release of
the software being installed, be sure to include different logical paths, depending on whether a previous
version of the program is installed. Similarly, be sure to include paths for re-installing the same version
on top of itself, and for installing a full version on top of a compact version.

Before actually translating your flow diagram into test routines, check that your design is flexible. For
example, the same routine you use to verify that the correct files are written to disk during an installation
can also be used to verify that those same files are removed after running the uninstaller. The same goes
for changes to the registry. A little planning like this can save you major rewrites later on.

When your diagrams are complete, they should make the task of automating the process more
straightforward. If the diagrams contain sufficient detail, we're often able to translate them directly into
automated testing code.

Some advantages of a Master/Slave configuration
We recommend using a master/slave configuration, in which one master machine drives the tests on
multiple slave machines. This is one example of a distributed testing environment, though there are many
other ways to distribute tests. Some test driving tools include master/slave functionality via an agent
running on the slave machine.

This method affords a number of benefits: it allows you to trigger installations simultaneously on as many
machines as you have available; it consolidates all the result logging easily into a single file; and, it makes
rebooting easier. With respect to the ease of rebooting, the master/slave approach allows for simplified
flow control after the reboot has completed. To accomplish the same thing using a single machine, it
becomes a challenge picking up the flow of events after a reboot; it's possible to do, but is more
complicated. In contrast, with a master machine controlling the slave, the master simply needs to wait
until the slave finishes rebooting, and then continues with the next routine in the test suite.

For some tips on how to restart a machine using the 4test automation environment, please see Mr. Cluey's
Kludge Page: www.ultranet.com/%7Edanil/Cluey/shutdown.html

Tangentially, one aspect of automating the rebooting process to consider is how you will log the machine
back onto the network after a reboot. One easy solution for this on Windows machines is to use
Microsoft's free program TweakUI, which makes it easy to manipulate the appropriate registry settings, so
that your machine can log itself onto the network automatically. Another alternative is to use a UI test
driver to watch for the login dialog, and then to feed it a username and password. One drawback to the
latter method is that the password becomes available to anyone who views your test code.

Verifying the results of an installation
Clearly, one of the fundamental things you'll want to verify is that the installer writes the expected files to
disk. The number of files written typically grows with the size and complexity of the program being
installed. Further, the specific files required often change during the project's life cycle, creating the
potential for lots of maintenance work on your verification routines.

One way to minimize this problem is to create data driven tests, which read the list of files to be verified
from an external table. This has two advantages. Firstly, it's often easier to maintain a table, using a
spreadsheet program, than to edit hard coded lists of files inside a test routine. Secondly, you might be
able to get the developers of your installer program to maintain the list for you. Installer programs for
major software companies are commonly written based on something called the disk specification (or disk
spec), which lists all the files that are supposed to be installed. A more sophisticated approach would be to
imbue your verification routines with enough intelligence to parse the disk spec, and to determine on that
basis which files to verify on disk.

You could begin by simply verifying that the expected files exist in the correct location after installing,
and that they don't exist after uninstalling. Following on that, you may want to develop routines to verify
deeper levels of complexity, such as: is the file the correct version; can a newer version be installed over
an older one; is an older version prevented from replacing a newer one ; and so on.

If you're testing on Windows, you'll probably need to verify changes to the system registry after installing;
this can be automated without much difficulty. Many commercial testing tools allow you to test for
specific expected changes to the registry. There are also some free tools (described in Appendix D) that
will report these changes.

Another test you should consider automating is checking how well the installer behaves if you cancel an
installation in the middle. You could design your automated routines to include one cancel operation at
every step of the way. The expected behavior is usually that everything the installer has done up to that
point is completely undone.

Computing disk space requirements
Closely associated with the disk spec is the related issue of how much disk space is required for a given
installation. Fortunately, this is one aspect of installation testing that can be automated handily. Some test
tools provide a library function that will report the current free disk space, which makes these
computations especially easy.

Ordinarily the installer will check that there is sufficient free disk space, and then will either prevent the
installation if there isn't enough space, or else will warn you first that you don't have enough. The amount
of space required is typically the sum of the permanent disk space needed, plus short-term storage space
for temporary files that are used during the installation. The total disk space needed is often hard coded
into the installer by the developer, and even if it is accurate to start with, it is subject to error as soon as
the disk spec changes. Another source of inaccuracy is the file system in use. For example, what's
sufficient space for NTFS or FAT32 may not be enough for a disk using FAT.

When automating tests for disk space requirements, we use the test tool's ability to capture the free disk
space at strategic points in time. Here's the basic scheme we've implemented:
ü Record the amount of the space the installer claims that it needs for the various types of installation
ü Capture the baseline free space before launching the installer
ü Run each type of installation (beginning with the Typical default option), recording the free disk

space after installing, but while the installer is still running
ü Quit the installer (don't choose a restart option), and record disk space after that, which will reflect

temp files that were deleted on quitting
ü Restart, and allow any final setup to occur during the boot process, then record the final amount of

free disk space
ü Subtract the baseline from each of the subsequent measures, to see how much space was actually

required at each step of the way.

The method above will give you direct information about how accurate your installer's disk space
requirements are. As a follow-up to the procedure above, we sometimes use the tool named Stress
(described in Appendix D) to create low disk space conditions. It can create files of any size you choose,
to consume disk space, thus helping to test your installer's error handling when it finds itself running low
on available space.

Testing the Uninstaller
A fundamental uninstallation issue is that some popular installers (such as InstallShield) will only
uninstall the last operation run, even if the last operation was a small addition to a large existing
installation. In this sense, the uninstaller resembles an undo function. Knowing this, its relatively

straightforward to automate tests for the uninstaller. One approach is to simply follow each installation
test with its equal and opposite uninstallation.

However, before uninstalling a given installation, you'll probably want to launch the installed program at
least once, to confirm that it was basically installed successfully. One side effect of this is that launching a
program will often introduce some configuration files that will not be removed by a subsequent
uninstallation. For these cases, you could write a garbage collection routine to delete the user files prior to
the next automated installation.

As with many installations, it's usually safest to reboot after running the uninstaller. Some uninstallers
prompt with a suggested reboot at the end, and others don't. Our experience is that uninstalling DLLs,
without an immediate reboot, may lead to system instability. As testers, we're obliged to check the
behavior with and without a reboot, but for the purposes of automated testing, we recommend a routine
reboot after uninstalling.

Conclusions and Future Directions
To summarize, we've found it worthwhile to automate some aspects of installation testing. By using the
techniques described above, we've been able to reduce the amount of manual drudgery normally involved
with testing installers. We've also been able to get more rigorous results from these tests, by paying special
attention to the automated verification routines.

As we worked through some of the issues presented in this paper, we realized that we'd only scratched the
surface, with respect to the many other dimensions of installer testing that would be useful to automate.

Some future directions include:
• Network installations
• Installations over the web
• Generic installer test drivers
• Installation and uninstallation of 3 rd party software

To give one example of the latter topic, 3rd party software, consider the impact of installing shared DLLs
on Windows platforms. As you may have noticed if you've run many uninstallations for different
programs, you will sometimes receive an alert to confirm that you want to uninstall a shared DLL.

In a nutshell, a counter (refcount) is incremented in the system registry when you install a program that
installs a shared DLL. If you later uninstall that program, then the counter is decremented, but the DLL
won't be uninstalled if the counter indicates that some other program that uses the DLL is still installed.
However, if the program you're uninstalling is the last one using the DLL, then you'll get the alert
message asking whether you really want to remove the DLL.

This is a more complex aspect of installation testing, because it requires you to install two or more
programs that share a component (or else to artificially manipulate the refcount in the registry), and then
to observe the behavior during uninstallation. We have not tried to automate the testing of this area, but
we don't think it would be terribly difficult. We also believe it would be worthwhile, given the apparent
growth in the use of shared components.

In closing, we wish you success with your installer testing, and hope that you find something analogous to
Newton's third law to be true for your products: for every installation, there is an equal and opposite
uninstallation.

Acknowledgements
The authors wish to thank all those who contributed information for this paper, especially Noel Nyman,
James Bach, and Johanna Rothman. Additional thanks to all the other good folks from the Los Altos
Workshop on Software Testing (LAWST), including Brian Lawrence, Cem Kaner, Bret Pettichord,
Melora Svoboda, and Brian Marick, for the stimulating conversations from which some of these ideas
emerged.

References
"Install Risk Catalog", personal communication from James Bach, 1999
"Specific Installer Issues", personal communication from Noel Nyman, 1999
"When Should a Test Be Automated?", by Brian Marick, Quality Week, May 1998
"Installer Testing", by Pete Schneider:
http://www.data-dimensions.com/newsletters/testnet/docs/installertest.htm

Appendixes

Contents
Appendix A: Instructions for using InstallShield's silent install
Appendix B: Some tools that help with installer testing
Appendix C: Installer risk checklist, by James Bach
Appendix D: Specific installer issues, by Noel Nyman

Appendix A: Instructions for using InstallShield's silent install
From InstallShield's (www.installshield.com) documentation:

InstallShield Silent - InstallShield Silent and silent installations are supported only on 32-bit platforms.

InstallShield Silent allows automated electronic software distribution, also known as silent installation.
With InstallShield Silent, there is no need for a user to monitor the installation and provide input via
dialog boxes. An InstallShield Silent installation runs on its own, without human intervention. You must
launch InstallShield Silent with the SETUP.EXE -s command line parameter. To comply with Windows
95 logo requirements, a silent installation must create a response file in which the default installation
options are selected.

You can run your setup with the SETUP.EXE -r parameter to select installation options and automatically
record the InstallShield Silent Response File, or you can create your own from scratch. To view a real
world example of a response file, refer to the SETUP.ISS file located on InstallShield3 distribution disk
one. In addition, a description of the response file format is provided in the Create the Response File
topic.

Steps to Create a Silent Installation
Follow the steps below to create a silent installation :
1) Create the Setup Program
2) Create the Response File
3) Play Back the Silent Installation

Appendix B: Some tools that help with installer testing

Tools that track changes during installations
Because so much of an installer's work is writing files to disk, it’s invaluable to have a tool that will take
snapshots of your disk before and after an install. More to the point, this tool should also be capable of
reporting the differences before and after the install. There are a number of such tools that we've come
across, but the good news is that many of them are free. The best of these will also report changes to the
system registry.

InCtrl 3 lets you track system changes made by Windows installation programs. One of the authors used
this tool last year, and likes it. It tracks file additions and deletions, changes made to ini files and changes
to the Registry. InCtrl 3 handles long filenames. This utility is easy to use, but reporting could be more
customizable. A free demo is available for download from http://www.zdnet.com/swlib/

Analyzer, from Veritest, comes recommended from several sources. Veritest is the independent test lab
for Windows Logo compliance. Using this tool may also help testers/vendors/customers who have no
interest in the Logo, but do need to test an installer. Download for free from:
http://www.veritest.com/mslogos/nt98/analyzer.htm

Disk imaging tools
InfoWorld compared the top commercial disk-imaging packages toward the end of 1998, and you can read
their review, together with the ratings, on the following page:
http://www.infoworld.com/cgi-bin/displayTC.pl?/981116comp.htm

Their top two picks among the competition were:
ImageCast IC3 - http://www.innovativesoftware.com/imagecast/home.htm
FlashClone - http://www.suredata.com

Other miscellaneous tools that help with installer testing
The Stress utility (STRESS.EXE) lets you allocate system resources to see how your application behaves
under low-resource conditions. You can allocate resources such as global memory, User and GDI heap
memory, file handles, and disk space. This handy tool is produced by Microsoft and can be found on every
Visual C++ disc.

TweakUI is a Windows control panel, which has a component that allows you to automatically log a
machine onto the network after a reboot. TweakUI is a component of Power Toys from Microsoft Press,
available for free from:
http://mspress.microsoft.com/reslink/nt40/toolbox/tools/tweakui.htm

SilkTest is the UI test driver we use. It has a range of built-in libraries we use for installation testing,
including capturing the amount of free disk space, checking specific registry settings, and reporting on
whether specific files are located where you expect them to be. For more information, please see Segue's
site:
http://www.segue.com

For additional testing tools of all sorts, please see Brian Marick's Corner:
http://www.stlabs.com/marick/faqs/tools.htm

Appendix C: Install Risk Catalog
Courtesy of James Bach

Capability
Installer lacks modern, expected features

no uninstall
no custom install
no partial install ("add")
no upgrade install

Wrong files installed
temporary files not cleaned up
old files not cleaned up after upgrade
unneeded file installed
needed file not installed
correct file installed in the wrong place

Wrong INI settings/registry settings
Wrong autoexec/config settings
Files clobbered

older file replaces newer file
user data file clobbered during upgrade

Reliability
Intermittent failure
Fault tolerance/recoverability

Can't back up
Can't abort
No clean up after abort
Mishandled read error
Mishandled disk full error

Compatibility
Installer does not function on certain platforms
Other apps clobbered
HW not properly configured
HW clobbered for other apps
HW not set for installed app
Screen saver disrupts install
No detection of incompatible apps

apps currently executing
apps currently installed

Efficiency
Excessive temporary storage required by install process

Usability
Installer silently replaces or modifies critical files or parameters
Install process is too slow
Install process requires constant user monitoring
Install process is confusing
UI is unorthodox
UI is easily misused
Messages and instructions are confusing
Mistakes during install process readily cause loss of effort

Appendix D: Specific installer issues
Courtesy of Noel Nyman

Notes on issues I'd test for, based on bugs I've seen
There are several Windows app installer programs around. InstallShield (http://www.installshield.com/)
and Wise (http://www.glbs.com/) may be the best known, but there are others, too. Those vendors have
already worked out a lot of the bugs and issues that you'll have to deal with if you roll-your-own installer.
They also present a familiar interface to the user, if you use one of the popular programs. Consider the
licensing fees well spent.

To use commercial installers, you create a script (source code) that supplies parameters to drive the
installer. Then it "compiles" the final .exe and support items you need, and probably creates the archive(s)
as well. You can make even an excellent installer look bad by creating funky scripts. Treat the installer
scripts with the same tester skepticism that you'd use for any other source your developers create. If you
find that developers have bypassed main features of the installer or replaced some with their own "better"
items, probe very deeply about the benefits and possible problems. If a feature is so popular or necessary
that this vendor spent its own development/test time to create it, is it really something that should be
quickly discarded or ignored?

Use the most current version of the installer. If that vendor has done their job well, they've included items
that will work seamlessly with the current and next version(s) of Windows. Take advantage of their
efforts. The older version you may still have won't be as smart.

A good installer fails elegantly in environments where it isn't intended to be run. For 32-bit Windows that
usually means that the installer starts out life as a 16-bit app, just so it can use its own message to tell the
user that they aren't going to successfully install on Windows 3.x. There are several implications of that.
The most significant is that the installer's 16-bit .exe will expand/create a 32-bit version to do the "real"
work, then transfer control to that 32-bit installer.

The 32-bit app stuff is usually created/copied/expanded into a temporary folder. Most systems have a
folder named TEMP that Windows knows about and can point to. Good installers ask Windows what this
folder is named, where it is, and use that info to store and run their 32-bit incarnations. Several tester
issues come to mind:
ü Does Windows really have a vector to a temp folder? It usually does, but clever or ignorant-but-

experimental users can manage to remove that information from the OS.
ü Is the name the "expected" TEMP or TMP or something else?
ü Long file names may fool some older versions of even commercial installation programs.
ü Is there a folder named TEMP that's NOT the "temp" folder? If so, the installer may use it, regardless

of what Windows says.
ü Is the temp folder known to Windows missing? Perhaps the user has removed it as part of a search-

and-destroy mission to recover more hard drive space. The installer should handle this gracefully,
even if that means failing with an appropriate message.

ü Is the temp folder on a drive other than C :? That's legal and cool. Windows will tell you both drive
and folder name, but the installer may use only the folder name and ignore the drive designation.

ü Does the user have adequate permissions to the temp folder? If they don't, there's not much you can
do about it, but failing elegantly and documenting the requirements in a ReadMe would be polite.

ü Even more polite, don't put the ReadMe in the archive that the installer expands. A ReadMe about
installer issues is useless if the user has to install the product to read the file.

If you need to attach a debugger to the installation process, you'll need to do it after the 16-bit part passes
control to the 32-bit part. I've seen "bug free" installers fail when the user's 16-bit process has been

munged by something that may have happened weeks before. Usually the installer just "fails to start." The
16-bit VDM (Virtual DOS Machine) is damaged and nothing will run in it, but the user doesn't realize
that since most apps these days are 32-bit and don't run in the VDM. A simple solution is to reboot. In NT
you can also use TaskMan to kill all the ntvdm processes. It might be a good idea to replicate this problem
during testing to see if your installer aborts after it leaves bits of itself in the system.

Make sure the installer cleans up after itself. All it's files and folders in the temp folder should be gone
when the installer closes. If they aren't, assume it's your bug first. One irate vendor reported an NT4 bug
because their installer could not delete its temporary folder on NT4. The same installer worked as
expected on Win95. Turned out the installer was not closing its handle to the folder after deleting all the
files. NT is quite righteous about not letting a process delete resources when other processes have handles
open to them. You could say the "bug" was in Win95 for deleting the folder while the handle was open,
although that level of security was beyond its design parameters.

More general items about installers once they get going:
ü Test all the "Back" options that let users back up and change options. It's easy to create installer

scripts that mess up the backtrace paths or ignore the users' changes.
ü Many apps need to register DLLs with Windows and the use RegSvr32.exe to do that. Most Windows

installations have this .exe in the system path. But a few will not. Your installer should either be
prepared to use its own copy of the .exe or tell the user explicitly why it's failing and what they need
to do to fix the problem.

ü Test on "virgin" machines. There are many reasons, but one sometimes overlooked is that you've
probably been testing early versions of the app before a real installer was available. To do that you
manually put things on the system or hacked the registry. Your uninstaller may not remove all that
stuff. With it already in place, you won't find the bugs when your installer fails to install the same
stuff. Programs like Ghost and Disk Image can archive images of "virgin" systems and "install" them
more quickly than actually reinstalling Windows and other apps every time. You can also use them to
recreate several OSs, versions and file systems on the same machine.

ü Antivirus programs can interfere with your installer in ways that may not be obvious or detectable by
the installer. So, it may report success when your app was not actually or completely installed. There
are probably too many AV programs to be able to detect them all, but warnings to users are good.

ü Use the Windows file versioning system on your own app's files and to determine if anything you
intend to replace is really older than your current versions. Using time-date stamps, files sizes, or
even CRCs is unreliable.

ü Refcount what you should, don't refcount what you shouldn't.
ü Ask if it's OK to change existing associations to your app's file extensions. Don't just assume the user

wants your app to take over all .xyz files. Check even unrelated extensions to be sure their
associations are still correct after your app is installed. Those tricky developers may have accidentally
added an extension your app doesn't use to the associations list in the install script.

ü If you have special support for other apps, perhaps Microsoft Word and WordPerfect, don't install that
support or natter at the user about not having Word if they don't have it installed. Make sure you can
accurately identify the presence/absence of those apps.

ü Make sure you get the right number of program groups on all OSs, they're in the expected place(s)
and the right things are in them.

ü Make sure the user can't deselect incompatible options in your installer. If you have optional parts X,
Y and Z, but part Y needs part X, the user should not be able to uncheck X and check Y.

ü Try installing on a system that has an earlier version of the development environment your developers
are using now. If your app is compiled with RealCoolC++ V7.3, install RealCoolC++ V6.x on your
test machine, then install your app. The installer may find older libraries, misinterpret the versions,
and not replace them with newer items, breaking some of your app's functions.

ü Try installing with various permissions, unsuccessful logins, etc. Remember that in some
environments users may have limited "personal" disk space and your installer program may not have
enough room to expand itself and install your app. Users who have their own folders or drives may be

able to install your app but not fonts or other system resources because they're restricted from those
parts of the machine.

ü Not all machines have floppy drives. Not all machines have hard drives. Not all "hard" drives are
fixed. Some disk and CD-ROM drives do not have letters assigned to them. Some drive letters are
assigned to network resources. Different users on a given machine may have their "personal" space on
any combination of those drives. Your installer should do the right thing...succeed or fail with an
appropriate message...in all cases.

ü Consider supporting the Zero Administration Workstation (ZAW) program so enterprises who are
using it have an incentive to buy your product over the competition. You may need a separate installer
to work in the ZAW environment.

ü If your suite is made up of several stand alone apps A, B and C, make sure the user can install any
combination (perhaps A and C) then install other parts (B) successfully later.

ü Try reinstalling over an existing installation of your app.

Have an uninstaller and test it:
ü Rerun your "win diff" procedure after uninstall and make sure you remove everything. There are

some design decisions here. Should you remove all your private registry items or keep it to retain
preferences in case the user reinstalls? Should you unregister your CLSIDs? Probably, but what if
they're used by other apps from you or companion vendors?

ü Did you add plug-ins or other items to other apps (Word, browser)? How do you remove them?
Should you? If you do add plug-ins, try updating that app (Word, browser) to a (newer) version that
doesn't have your plug-in, then uninstall. Do you trash that app trying to remove the no-longer-
existing plug in?

End of Appendixes for Automated Installation Testing

1

1

A Web-based System
Testing Repository Model

Fan Yang , Trung Nguyen & Anant Adiga

Sequent Computer Systems, Inc.

2

Overview

• Systems Test Model

• Activities and Challenges

• Requirement Analysis

• Environment and Tools

• Phases and Modules

• Process Flow

• Implementation

• Summary

2

3

Customer
Usage

Testing

System Usage Testing

Integration Testing

Product Functional/Regression Proofing

System Testing Pyramid

System Testing

Development Engineering Proofing

Product Unit/Model Testing

4

Systems Test Model

• System Testing consists of
– Integration Testing: configuration,

compatibility and installation/de-installation

– System Usage Testing: volume/load, stress,
availability, recovery, stability and
maximum/minimum

– Customer Usage Testing: simulation of
customer operation profiles

3

5

Activities and Challenges
• System Testing activities include

– Test Plan Generation

– Resource Allocation

– Test Case Execution

• Challenges
– Knowledge transfer

– Automation of test plan generation

– Test execution

– Efficiency of resource allocation

6

Requirement Analysis

• Automation: system test plan generation,
test case manipulation, requirement tracing
and test case execution

• Query: for various information and for
different views

• Lab resource management: equipment flow
and inventory, hardware configurations

• Web-based application

4

7

Environment and Tools
• Existing Environment: disparate data sets

from multiple applications

• Limitations of tools in the market:
– Portability

– Customization levels

– Coverage of Systems Test requirements

– Costs

• Development environment and tools: web-
based three-tier client/server model

8

System
Test

Database

Web
ServerBrowser

Client

SQL*Net

Three-Tier Client/Server Model

5

9

TPM

TCM

ADMIN

DBQ

RSM

TCE TRG

System
Test

Database

Project Phases and Modules

Phase I

Phase II

Phase III

10

Phases and Modules

• Phase I:
– Test Plan Manager (TPM): a module that

generates system test plan automatically.

– Test Case Manager (TCM): a module that
generates generic test cases.

– Administration (ADMIN): a module that provides
administration tools for System.

6

11

Phases and Modules (Con.)

• Phase II:
– Resource Manager (RSM): a module that control

resource flow and allocation

– Database Query (DBQ): a module that provides
varies query mechanism

• Phase III:
– Test Case Execution (TCE): a module that

integrates test cases, test hardness and lab.

– Test Report Generator (TRG): a module that
generates test report prototype after each release.

12

Process Flow

• Project creation process - in ADMIN

• Test plan generation Process - in TPM

• Generic test case manipulation process - in
TCM

• Resource allocation process - in RSM

• Query interface - in DBQ

• Test case execution model - in TCE

• Test report generator - in TRG

7

13

Create Project Header

Create Project Team

Input ProductsInput Requirements

Project Ready for TPM

Project Creation Process

14

System
Test

Database

Temp
Test

Cases

GENERATE:Developer’s Test Cases

BUILD: Builder’s Test Plan

Test Plan Generation Process

8

15

System
Test

Database

Temp
Test

Cases

VIEW,INSERT,MODIFY,DELETE

Test Case Validation Process

Generic Test Case Manipulate Process

16

Resource
Usage &
Status

Idle
Resource

Pool

VIEW,INSERT,MODIFY,DELETE,
ALLOCATION,DE-ALLOCATION

Allocate Resources

Resource Allocation Process

9

17

System
Test

Database

Query by Project

Query by Product

Query by Configuration

Query by Category

Query by Requirements

T
P
L

V
i
e
w

E
n
g
i
n
e
e
r

V
i
e
w

E
x
t
e
r
n
a
l

V
i
e
w

Query Interface

18

Test
Cases

Scripts
with

Harness

Lab
Resource

User Interface

Down Load Test Suite

Testing Surface

Test Case Execution Model

10

19

System
Test

Database

Test Report

Mailbug Statistics

Resource Utilization

Test Result Analysis

Test Report Generator

20

Implementation

• Process: plan, design, implement and test

• Fully implemented Phase I with module:
TPM, TCM and ADMIN

• Design method: database, web interface,
top-to-down functional module and detailed
functions

• Testing phase: Alpha for functional test and
Beta in a real release

11

21

Summary

• Phase I completed successfully and in
production.

• Enhancement requirements were generated
for Phase II and Phase III

• Primary objective has been achieved with:
– Test Plan generation cycle time reduction

– Limited resources

– Limited time frame

22

Definitions
• Test Case Developer: responsible for developing

test case that fulfills testing requirements.

• Test Plan Builder: duty to build the final system test
plan based on individual test plans.

• Test Case Validate Process: a process that changes
a test case status from ‘NEW’ to ‘VALID’

• Idle Resource Pool: contains current available
resources.

• System Components: hardware resources used to
build a specific system configuration.

12

23

Definitions (Con.)
• Query for information : query System Testing

Database (STDB) for information on project, product,
configuration, category and requirement.

• Query for views: query System Testing Database
(STDB) through different roles - Technical Project
Leader (TPL), Internal Engineer and External
Engineer.

• Components of Test Case automation database:
Test Cases, Test Scripts with Test Harness and Lab
Resource.

24

Definitions (Con.)
• User Interface: web-based test case driven

environment.

• Testing Surfaces: a testing environment that consists
of hardware and software.

• Mailbug Statistics: metrics for mailbug types,
severity, histograms.

• Resource Utilization: metrics of resource flow,
allocation and reference.

• Test Result Analysis: metrics of test status for pass,
fail, delete, etc.

1

A Web-based System Testing Repository Model

Fan Yang, Trung Nguyen & Anant Adiga
Sequent Computer Systems, Inc.

15450 SW Koll Parkway
MS=DES 2-798

Beaverton, OR 97007
Fax: (503) 578-3228

Abstract

This paper describes the design and implementation of a web-based-automated System
Test repository model.

Traditionally, the test automation process is focused on the automating of test scenarios
under test harnesses. However, looking at the entire testing process, the automation of
test scenarios itself is only one element of a testing process. There are many other
important elements. Elements that can significantly impact this process, and yet are often
overlooked are the generation of test plans, test case generation, resource management
and test report creation.

This paper describes the details of this web-based System Testing model through the
design, implementation, and testing for the first phase that consists of a Test Plan
Manager, Test Case Manger, and Administration modules. It also describes the future
elements for the next phases, consisting of the Resource Manager, Database Query, Test
Case Execution, and Test Report Generator modules.

Also included in this paper are the details of a feasibility study and benefit analysis for
this model. It describes the strategy employed to overcome problems of complexity in the
requirements, budget limitations, and the challenge of reducing testing cycles in order to
meet the Time-To-Market (TTM) pressures.

1 Introduction

This paper will cover the analysis of the system test work tasks, and the design of the
system test repository model that is currently being developed at Sequent.

1.1 Systems Test at Sequent

The Systems Test group at Sequent is part of Sequent’s World Wide Engineering and
is responsible for all the system level testing for Sequent. System level testing
consists of Integration testing, System Usage testing, and Customer Usage testing
with the test level of involvement increasing as shown in Figure 1.

2

• Integration testing consists of installation/de-installation testing, configuration
testing and compatibility testing.

• System usage testing consists of volume/load testing, stress testing, system
migration testing, maximum/minimum system configuration testing, performance
testing, recovery testing, SW/HW fault insertion testing and interoperability
testing.

• Customer Usage testing focuses on simulating customer operation profiles.

To effectively conduct the Integration tests, it requires a thorough understanding of
the usage of the products under test. For System Usage tests, it requires a broad
knowledge of all components of the system (HW, FW and SW). Lastly, for Customer
Usage tests, it requires an understanding of some specific customer’s environment,
which includes system configurations and application usage patterns.

Figure 1. Product Engineering and Systems Test Responsibility Pyramid

From our analysis, tasks performed in Systems Test are divided into unique
processes. These processes are test plan generation that includes test plan generation,
resource assignment and allocation (utilizing system configurations and system test
engineers), and test case execution.

2 Analysis Phase

Product Regression Testing

Integration Testing

Customer
Usage

Testing

System Usage
Testing

Systems Test
Responsibility

Product
Engineering

Responsibility Product Functional Testing

Product Unit/Model Testing

3

In the analysis phase, we wanted to know what are the requirements for the model. Once
they were established, we did a search to find if any current tools exist that would meet
the requirements for the model.

2.1 System Test Requirements Analysis

We started the project by gathering the requirements in a brain storming session
among managers, project leaders, and senior engineers in Systems Test. There were
several main goals that were deemed mandatory for the product model:

• It should be able to capture the knowledge and expertise that a system test
engineer has developed over the years in a form that can be transferred
effectively to a new system test engineer. The test plan and test case
generation depends largely on the expertise and skill sets of on individual test
engineer that often take a long time to develop.

• It should be able to automate production of test plan and test case generation
to reduce the time to produce the documents required for testing.

• It should be able to quickly select test cases for a specific product or system
for regression testing.

• The model should increase testing efficiency and reduce redundancy at the
same time. This goal was set in an effort to reduce the testing back-end
schedule by creating a smaller number of better test cases to execute. This is
important in situations where there are SW development delays and the ship
date is fixed. The burden is always on systems testing to compress its work
tasks. This can be expensive and frustrating to most test engineers.

• The model should be able to automate test setup and test case execution.
• The model should automate resource assignment and allocation to efficiently

handle Systems Test capital spending.

2.2 Existing Tool Analysis

A common thread running through the requirement analysis was a need for an
integrated data source. We needed to determine if there was an existing product that
was based on a common data source that would meet our requirements.

What was found was that information generated, like test cases and test plans, were
driven by formats dictated by the application used to generate it. This generated
disparate data sets from multiple applications. The problems to acquire and access a
central data set for generating accurate and useful information were apparent.

• These disparate data sets did not lend themselves easily to any kind of
postmortem or decision making for any future System Test Plan.

• End users would not be aware of the availability of historical data or its
existence. The test engineers would not have visibility of previous
documents; for example, test cases or test scripts.

4

• The data generated by these multiple applications were not thoroughly
documented; the real content and meaning of those data were seldom
understood

This also hampered the efficiency in which System Testing could:

• Conduct Root cause Analysis
• Define test harnesses
• Streamline Hardware testing process with Software test process
• Maintain an integrated data resource

2.3 Limitation of Applications/Tools in the Market

During our search for a third party product that would meet our requirements, we
studied several products of which one product closely matched our requirements.
However, there were some major constraints that prevented us from using it.

• Limited portability to the Sequent platform. Other hardware would add to initial
project cost plus the costs of its maintenance, administration and any future
upgrades.

• Costly porting both in terms of time and budget to the Sequent platform.
• Customization levels that were too restrictive to meet our needs. This was

basically because of the complicated nature of testing configurations we use in
Systems Test.

• Not Web enabled. Being web-based was not first considered a requirement, but
was later seen as an advantage to being part of the store model.

• Built around a proprietary SQL database.
• Not targeted on entire System Testing integrated automation as our requirements

but focused on single point of a specific test harness for test case execution.

3 Development

3.1 Development Environment and Tools Selection

We chose a three-tier model as our project development environment as shown in
Figure 2. In this model, we configured the database server on an NT machine. The
database was created on a Dynix/ptx system. The end users access the application
from the web-browser. This model provides a flexible application and database
maintenance ability and good data throughput.

5

Figure 2. Three-Tier Client/Server Model

We selected the Oracle database server and its set of development tools for development
and deployment of this project. Key factors that contributed to this decision were the
availability of in-house systems and human resources, the expertise levels of in-house
engineers, time frame and budget restrictions. Other factors that were also considered
were:

• Oracle Products are strongly supported on Sequent computer systems; for customers
and in-house IS usage.

• The product met the requirements for data backup/restore and data import/export
tools.

• The web-based features of the Oracle Products lend strong support to the Repository
Model.

3.2 Partitioning the Module Design and Project Phases

A significant number of requirements were collected and organized under several
major functional and operational categories. The next step was to convert these
components from the model into software modules that to be developed in three
phases. Table 1 shows the Software Modules defined for this project based on the
requirement analysis. The phase notation covering the project phase scope for
modules is shown in Figure 3.

Requirement Software Module
Automation
Automating system test plan generation Test Plan Manager (TPM) – Phase I
Managing and manipulating test cases Test Case Manager (TCM) – Phase I
Tracing from test cases to release requirements Administrator (ADMIN) – Phase I
Supporting GUI interface (web-base)

General query and resource management
Querying database with different roles Resource Manager (RSM) – Phase II
Querying system configurations Database Query (DBQ) – Phase II
Automating lab resource management
Accessing hardware configurations

Test execution automation
Driving the test case execution Test Case Execution (TCE) – Phase III
Generating test report Test Report Generator(TRG) – Phase III
Keeping history of test case execution and mailbug records

Web
Server Database

& Server

CLIENT

Browse SQL*Net

6

Constructing the uniformity of test harnesses
Controlling elements using configuration control mechanism

Table 1. Requirement and Software Modules

Figure 3. Project Phases and Modules

3.3 Module Design Detail

The next section will cover each of the module design details.

3.3.1 Test Plan Manager (TPM)

This module implements the functionality of generating a system test plan.
Traditionally, we manually create a system test plan by referring to the previous plans
and extract proper test scenarios for the new test plan. There are several major
disadvantages of using this method:

• Easy to make a mistake.
• Takes significant amounts of time to read through previous plans.
• Difficult to keep consistent test case names from release to release.
• Hard to keep track of the coverage of products and configurations.
• Hard to map requirements to test cases.

TCM

TPM

ADMIN

DBQ

RSM

TCE TRG

System
Test

Database

Phase I

Phase III

Phase II

7

At a minimum we require the Test Plan Manager (TPM) to address and resolve the
above drawbacks. In this module, we define two roles for test plan generation: Test
Case Developer and Test Plan Builder.

Test Case Developer (Developer) – is responsible to generate the test cases that fulfill
testing system requirements by utilizing existing test cases or creating new test cases.
Test Plan Builder (Builder) – is responsible to build the final system test plan based
on the Test Case Developer’s test cases from requirements.

The process to generate the system test plan for a specific software release bundle is:
Step 1. Developers create the test cases based on system requirements from the
generic database tables.
Step 2. The test cases are stored in temporary tables in the database.
Step 3. Builder builds the final test plan from the temporary tables in the database.
Step 4. Repeat from Step 1 to Step 3 as necessary. The Figure 4 shows the test plan
generation process.

Figure 4. Test Plan Generation Process

3.3.2 Test Case Manager (TCM)

How are the System Test Cases re-used from release to release? How are the data
shared among the projects? How are the new test case data captured? In the
traditional way, we re-use the test case data only if the test scenarios are still valid in
the current release. Most of them have to be re-written and different names are
typically used in each release. To overcome the drawback of the traditional method
and answer the above questions, we define a set of seed test cases in System Testing
as the Generic Test Cases.

Generic Test Case – a test case that contains only generic and core test scenarios and
can be re-used from release to release.
The Test Case Manager (TCM) is designed to generate the Generic Test Cases. It
provides a flexible environment for engineers in Systems Test department as well as
external engineering groups to view the data in the System Test Database. The new

GENERATE: Developer’s Test Cases

BUILD: Builder’s Test Plan

Temp
Test

Cases

System
Test

Database

8

test case scenarios and ideas can be captured into the database independently of any
release or project.

The test case developers can VIEW, INSERT, MODIFY and DELETE the test cases
in generic database tables. Any newly inserted test cases need to be validated through
the Validate Process before being marked as ‘VALID’ test cases in generic database
tables. The Validate Process is defined in section 3.3.3.2. The process that
manipulates generic test cases is shown in Figure 5.

Figure 5. Generic Test Case Generation Process

3.3.3 Administration (ADMIN)

This module provides administration tools to manage the System Test Database. The
database administrator can manage the database tables through these tools without
going through SQL command lines. It also provides a direct method for a Builder to
create a new project. We also defined the test case validation process for the TCM
(Test Case Manager) here.

3.3.3.1 Process to Create a New Project

We define the process flow to create a new project as shown in Figure 6. The
procedures are:

Step 1. Create the project header. This includes the project name and date.
Step 2. Create the project team. The Builder assigns the team members and grants
the members different access privileges.
Step 3. Input the requirement tracking numbers for this release. The requirement
tracking number is associated with a test case during the test plan GENERATE stage
in the TPM (Test Plan Manager).
Step 4. Input the list of products and possible hardware configurations for the project.
The list of products is used in the TPM (Test Plan Manager) module to associate each
test case with targeted products.

VIEW,INSERT,MODIFY,DELET

Test Case Validation Process

New Test
Cases

Generic
Test

Cases

9

Figure 6. Project Creation Process

3.3.3.2 Process to Validate Test Case

New test case can be inserted using either the TPM (Test Plan Manager) or the TCM
(Test Case Manager), and it is necessary to guarantee that these test cases are valid.
We define a process called Test Case Validation to validate a new test case and a Test
Case Validation Team which is responsible for executing the Test Case Validation
Process.

Test Case Validation Process - A process that validates a test case to change its state
from ‘NEW’ to ‘VALID’.
Test Case Validation Team (TCVT) – A team that is responsible for executing the
Test Case Validation Process. TCVT consists of senior level engineers in the
Systems Test Department who meet on a monthly basis to review all new test cases
and existing generic test cases. TCVT votes to Enable a new test case for changing
the state to ‘VALID’ or Disable an existing one. TCVT also has the privilege to
modify a new test case to fit into the requirements for a generic test case.

3.3.4 Resource Manager (RSM)

The System Test lab provides the complete system environment for testing and
usually supports several projects/releases simultaneously. The equipment is shared
among the projects/releases and with external groups. The equipment in the System
Test lab also rotates out periodically.

In order to manage these dynamic resources, we have used several different tools,
such as a spreadsheet, word document, etc in managing the Systems Test lab.
However, we found it was necessary to centralize this kind of information; otherwise

Create Project Header

Input Requirements

Create Project Team

Input Products

Project Ready for TPM

10

it was not easy to provide the accessibility within either the internal group or external
groups in such a manual process.

To improve this process, we developed the Resource Manager (RSM) module to
manage System Test lab resources dynamically. Without an automated method to
manage the lab equipment, it is very difficult to implement full test case automation
and allocate resources automatically.

In this model, we define a Resource Allocation Process as shown in Figure 7. The
procedure is listed below:

Step 1. Query the Idle Resource Pool that contains the currently available resources.
The query is based on these criteria:

System components – this can be the major components of a system. For
example, number of quad, size of memory, number of disks, communication cards
etc. A limited system configuration is checked, such as 4 processors for a quad,
minimum memory requirement for the 4 quad systems.

Equipment – this is the request for a piece of equipment like one GB of
memory, five disks, etc.
Step 2. If the resource request can be satisfied from the Idle Resource Pool, remove
the resources from the Idle Resource Pool and grant the resources. Exit. Else,
continue on to Step 3.
Step 3. Compare the priorities of the requesting project and existing projects that hold
the resources. Allocate the resources based on the project priorities. The request may
be inserted into the Resource Waiting Queue, a queue that contains waiting resources,
if the priority is lower than any current projects.

Figure 7. Resource Allocation Process

3.3.5 Database Query (DBQ)

The query mechanisms provided by the TPM (Test Plan Manager) and TCM (Test
Case Manager) are not sufficient to satisfy different database query requirements.

VIEW,INSERT,MODIFY,DELETE,
ALLOCATE, DE-ALLOCATE

Allocate Resources

Idle
Resource

Pool

Resource
Usage &
Status

11

Therefore, we need to develop the DBQ (Database Query) module to provide various
interfaces for accessing the database information. We establish the query methods
under these categories:

Project – Query is based on a specific project. The user can access a specified
project or release information, e.g. test plan, lab resources, system configurations, etc.

Product – Query is based on a specified product. The user can access the test cases
based on both product and project/release. It provides a very convenient way for a
product group to access the test cases in Systems Test plan that cover a specific
product.

Configuration – Query based on system configuration gives a reference to the
previous test case execution environment. A configuration specified by components
is also accessible from this interface.

Category – Query by Systems Test category combined with project/release creates a
user interface to access the database information from different perspective.

Requirement - Query by requirement provides a way to extract the test cases
associated with a specific requirement within the project/release.

We also define several database access layers by the user’s Role. The Role consists
of:

TPL (Technical Project Leader) – The role that is able to oversee the entire database
information, such as team member’s privileges, other user’s access views, etc.

Engineer – The role that is for System Testing engineers to have a complete view of
the data in the database for the purpose of test case development.

External – The role that is for anybody outside of the Systems Test group who need
to access extracted System Test Database data without being exposed to many details.

Each Role has a different view interface. Combined with the database query
mechanisms, we are able to provide a flexible user interface to access database data
as shown in Figure 8.

12

Figure 8. Query Interface

3.3.6 Test Case Execution (TCE)

Traditional test case automation is typically limited to automating the test procedures.
The scripts and programs are developed to reach this goal. There are some well-
known test harnesses that provide the test automation environment and tool kits for
test automation, e.g. eTET/dTET, Performix, QA Partner, etc. How completed a test
case can be automated is a traditional focal point. In general understanding, a fully
automated test case means every procedure in the test case is programmable and a
test case can be executed by submitting a single command. In reality, only a small
portion of test cases can be automated to this degree. In Systems Test, the majority of
test cases involve manual procedures, such as fault insertion, availability or
installation tests. Besides, how long a fully automated test case survive is
questionable [5]. We believe a fully automated test suite should be an integration of
the Test Plan, Test Resources and Test Procedures. A test case cannot be called
fully automated if it lacks any of these three elements. Therefore, we focus our
system test case automation on how to integrate these three elements together.

We designed the test case execution model as show in Figure 9 in order to meet the
goal of fully implementing the test case automation based on the above factors.

Query by Category

Query by Configuration

Query by Product

Query by Project

T
P
L

V
i
e
w

E
n
g
i
n
e
e
r

V
i
e
w

E
x
t
e
r
n
a
l

V
i
e
w

Query by Requirement

System
Test

Database

13

Figure 9. Test Case Execution Model

In this model, the Test Cases in the test plan, the Test Procedures implemented by
scripts or programs under test harnesses, and the Lab Resources are integrated into
one package. This package is downloaded onto the Test Target, a testing
environment consisting of system hardware and software. A test case is executed on
the Test Target.

3.3.7 Test Report Generator (TRG)

A System Test Report usually is a summary of testing methods, results and problems
encountered during the testing phases of a release/project. It is important to list
accurate data and document the significant experiences in the Testing Report as a
reference for later releases/projects. Writing the System Test Report is very time-
consuming and requires a lot of work to collect the statistic data and recount the
project experiences. What kind of mailbugs were found during the testing phases?
What did we ‘learn’ from each test case execution? How do we know a test case is

User Interface

Down Load Test Suites

Test
Cases

Test
Scripts

with Test
Harness

Lab
Resource

Test Target

14

‘good’? What do we gain for planning the current release by reading the previous
System Testing Reports? The Test Report Generator attempts to answer the above
questions. We design the Test Report Generator (TRG) to not only reduce the time of
generating the report, but also to provide a useful and active reference for future
releases/projects. The Test Report Generator (TRG) module consists of these major
aspects:

Mailbug Statistics – statistic metrics of mailbug for the release/project. The typical
examples are: types of mailbugs, histogram of number of mailbugs and date, ratio of
Critical/Serious mailbugs and Normal/Low mailbugs, etc.
Resource Utilization – metrics of resource utilization. The information on system
configuration and resource allocation is very useful for later releases/projects. The
metrics give the resource overview for the release/project.
Test Result Analysis - metrics of test results for test status; for example, PASS,
FAIL, etc. The metrics also give the overview of the test cases and mailbugs
resulting from these test cases.

Besides the above information, the Test Report Generator (TRG) module also
provides other information to the Test Report, such as product information,
requirements, testing cycles, and so on. Figure 10 shows these aspects and their
relationships.

Figure 10. Test Report Generator

4 Implementation

4.1 Implementation Process

Implementation of this project was extremely challenging due to the following major
factors:
• Extensive project requirements made the project have multiple and complicated

goals.
• Tight project budget and time frame control the project under a very restricted

scope.

Mailbug Statistics

Test Report
Resource Utilization

Test Result Analysis

Product
release
data

15

• Limited project resources do not allow the project to move on in parallel in order
to cut down development time.

In order to cope with the above problems, we have divided the implementation of
entire project into three Phases as previously mentioned. Two to three modules are
developed in each Phase. We planned each phase for a six-month period followed by
complete Beta testing in a real-life product release project.

In each phase, we follow the complete product development cycle as:

1. Plan – initial research and writing of a plan document.
2. Design – a detailed functional specification is defined.
3. Implement – the code is developed.
4. Test – complete Alpha and Beta testing is conducted.

4.2 Phase I Implementation

As described in Section 3 above, in Phase I, we implemented the TPM (Test Plan
Manager), TCM (Test Case Manager) and ADMIN (Administration) modules.

In the plan phase, we did the research on third-party products and investigation of our
current environment. Formal planning documentation was written in this phase. The
self-training of new technologies was also started in this time period. These areas are
Oracle Application Web Server, Web programming, PL*SQL programming with
Web, etc. Due to the tight budget and time schedule, we found in-house self-training
was very efficient in reaching our goal.

The Detailed Functional Specification was written in the design phase. In this phase,
we designed the process flow, functional modules for the TPM (Test Plan Manager),
TCM (Test Case Manager) and ADMIN (Administration) as web-based user
interfaces. The Detailed Functional Specification also contained the interface and
pseudo code for each function designed.

In order to work more efficiently in developing the source code, we started the
programming in the order of database manipulation, web-interface, functional module
and detailed functions. We also built two databases for development and testing on
different systems. During the implementation, we referenced a lot of PL*SQL
examples from the books listed in the References, web sites for Java scripts and user
interfaces. We found that on-line Web pages were very useful references for
developing applications like this one.

We provided the testing team with an Alpha phase functional testing plan. The
testing team consisted of 5 engineers, Technical Project Leaders and manager with
different user-level roles. Major test conducted were functional tests, recovery tests

16

and stress tests that simulated the real-life environment. After the bug fixes for Alpha
testing, this system was used in a major release project in Systems Test as a Beta test.

5 Summary

Phase I of this project has completed successfully. The product (STDB) is being
utilized by the Systems Test engineers to develop test scenarios and test plan for the
next major software system release. We have recorded a handful of enhancement
requests to be implemented in phase II and III of this project. Phase II will focus on
implementing the database query and resources management. A small team will be
formed in the next three months to start working on requirement definitions and
detailed specifications. Phase III is not scheduled at this time due to the limited
resources.

Looking back, we believe that we have achieved the primary objectives of this project
(phase I implementation) with the lowest investment. The primary objective of this
project again is to capture the knowledge and expertise of system test engineers and
store it in a database management system that is easily accessible from anywhere
within the company through a web based interface. The Systems Test group is able to
generate faster, more effective test cases and test plans to support system releases.
Now, with this new tool, we can have sophisticated test plans (with many test cases)
generated in a couple of days instead of the couple of weeks that it previously took.

References

[1] Rick Greenwald, Using ORACLE Web Application Server 3, Que Corporation, 1997, ISBN: 0-7897-
0822-1.

[2] Scott Urman, ORACLE 8 PL/SQL Programming, McGraw-Hill, 1997, ISBN: 0-07-882305-6.

[3] Dynamic Information Systems, LLC, ORACLE Web Application Server Handbook, McGraw-Hill,
1998, ISBN: 0-07-882215-7.

[4] Marty Hall, CORE Web Programming, Prentice Hall PTR, ISBN: 0-13-625666-X.

[5]Brian Marick, When Should a Test Be Automated? The Eleven International Software Quality Week,
1998.

Test Automation of a GUI WEB Based
Application: An Experience Developing

Reusable Automated Testing

Frances Medina

Andrew Van Kraanen

GUI WEB Application

• Client/Server

• WEB server and interfaces are UNIX based

• Netscape WEB browser

• Frames

• Multiple windows can be opened

• One of the window dynamically displays
information coming from interfaces to the
server

Challenge

To get a test automation tool compatible with
our WEB application

Strategy

• Start automating simple tests until a tool
compatible with our application was
available
– GUI objects content verification

– window traversal

WEB Automation Test Tool

• SilkTest tool from Segue

• Was tested with our WEB application
before purchasing it

• Different test methodology

Test Methodology

• Data driven

• Operational Profile describing the various
operations (scenarios) the system will
perform in the field.

• Testing Scenarios including combinations
of factors and values affecting a WEB
window/user interface.

Event Arrives or Clears

Operational Test Scenario

A New Window is
opened

User Performs an
Action

Initial conditions and
Subscription

Window is opened Idle

Window displays
new information

Window displays
new informationWindow is closed

Automation of the Operational
Test Scenario

Record/Playback
JAVA/CGI

JAVA/CGI
Record/Playback

MAIN PROGRAM

User Actions
•Select a Link
•Click on a
Button

User Actions
•Select a Link
•Click on a
Button

InitialConditions2

InitialConditions1

Events
Events

DATA FILES

Automation Test ArchitectureAutomation Test Architecture
Operational ScenarioOperational Scenario

GUI Web
Automation
Tool

System X
XGUI Server

XGUI
(Web Server)

Network
Element
Manager
(EMC/EMS)

Network
Element
Simulators

Capture and Playback
GUI User Actions

Pre - Conditions
Trigger Alarms
or Events

Results

Data filesData files

Generate ScenariosGenerate Scenarios

WEB Browser

SilkTest 4Test scripts

(CGI, JAVA)

NE Access Scenario

Maintenance
Window

Subnetwork
Status

Window

NE Access
Window

TOP
Window

Network
Element
Access

Command

Network
Element
Access

Response

This is repeated for hundreds of commands

Automation with SilkTest

• Data driven testcases

• Use of verification files

• Multiple cases per command

• Recording/Playback

Automation with SilkTest

• test(Command, Case, Mode)
– Command : createCrossConnect

– Case : STS1-case

– Mode : [init|verify]

• Base run with option “init”

• verify run with option “verify”

• Input File I<Command>

• Verify File V<Command>

NEACCESS Interaction

InputInput
FileFile

BROWSERBROWSER

HTMLHTML
XGXG

SYSTEMSYSTEM
XX

EMSEMS
SimulatorSimulator

G2G2

CMIS/CMIS/
CMIPCMIP

SILKSILK
AGENTAGENT

SILKSILK

VerificationVerification
FileFile

AppletApplet

HTMLHTML

EMCad
Q3ad

SRd

Results

• Several test scenarios have been automated
and used for different software releases,
including Y2K regression testing

• Multiple commands have been automated
and tests have been running for several days

Lessons Learned

• Know your WEB application well before purchasing
any tool

• Come with an scenario that could be automated

• Before purchasing any tool, ask the vendor to test
drive the tool with your application and at least try
to automate a test scenario

• When using an automation tool, come with small
and realistic goals about what will be automated

• There is a learning curve associated with the use of
any tool. There is no such thing as a plug and play
and the problem is solved.

Lessons Learned

• Do not rely only on the capture and playback of the
tool for the automation. Use it just when needed.

• In order to use automation tools a programming
background is recommended

• Programming might be involved in order to create a
robust automation script

• Tools are not perfect. There is software development
involved on the creation of those tools.

• There is not an immediate benefit when purchasing
an automation tool.

Lessons Learned

• Some time need to be invested: knowing the tool,
coming with the right methodology to automate and
developing the programs or script to implement the
test automation.

• Automation is very useful and can be reused from
release to release as long as good planning and
analysis of the application under test is done.

1

Test Automation of a GUI WEB Based Application: An
Experience Developing Reusable Automated Testing

Abstract

The GUI Interface for our application is making use of a Web Browser (Netscape). The user of this
application is exposed to several WEB windows which some of them dynamically display information to
the end user; others are used for provisioning or to send request or action to a server or to equipment.
Several scenarios are tested for this application; submitting information in forms, dynamic changing applets
triggered by an external event, clicking buttons, html links etc. To be able to tests all those scenarios for
each release would be very time consuming. A commercially available tool was purchased to do the GUI
automation. Then the question was what and how to automate, such that the test automation could be used
for different software releases. This presentation shares our experience with web automation tools,
methodology used in our testing and improvements made by using test automation tools.

1. Introduction

The information contained in this source is from purely practical experience while trying
to come with a solution for GUI regression test automation in our project.

Three years ago, when we joined the project in which we are currently working, we were
hired with the goal of automating regression tests. By that time the application to be
tested was in the initial development stage and the GUI WEB windows of this application
were continually changing. By that time there were not many commercially available
tools for GUI test automation. And the few available could not satisfy our testing needs.

Most of the tools available supported Motif based GUI and our application was WEB
based. Most of the WEB windows were implemented with frames and at that time the test
automation tools did not handle frames very well. Also, one peculiarity of this GUI WEB
application is that it contains a WEB window, which is dynamically updated. When we
tried a test tool to work with that window, either one of the following happened: the
application died or all the transactions happening on that window were slowed down.

Given all the limitations at that time, it was decided to limit the scope of the test
automation to just GUI object content verification and what we call in our project
acceptance testing1, until a more reliable tool was available to accomplish the goal of
GUI regression test automation.

2. High Level Description of the Acceptance Test for our WEB GUI Application

A typical scenario in our GUI WEB application can be described as follows:
• On a WEB browser, the user opens the location of the application
• The user logs in

1 Acceptance Testing involves the certification of a newly delivered system or function(s) to insure that it
meets minimum criteria for testing. Acceptance testing is done at the beginning of each new delivery.

2

• If the log in succeeds, the user gets the top window from the application and from
there he or she selects to open a menu

• From the menu, he or she decides to open a window which will dynamically display
information

• Before that window is opened, the user has to choose or subscribe to items for which
he or she will receive information on the dynamic window

• When the subscription is submitted the dynamic window is open.

Figure 1: Typical Acceptance Test Scenario

The WEB window that is opened contains text, HTML links, a JAVA applet and links
that are dynamically displayed on the WEB.

Figure 2: Objects to be verified on a WEB Window

When the window is opened the following can be verified: the content as specified in the
requirements and link functionality. Some of the links open a new window but the
original window remains open. The links that are dynamically displayed are triggered due
to external events. For testing purposes, those events are generated making use of an in
house developed simulator. To verify the dynamic links a remote shell command is sent
to the simulator and then the output displayed is verified at the window.

Open WEB
Application
Location

Login Top Window
Is Opened

Open Menu
Subscribe

Window is
opened

Window under Test

Java Applet Text

Link1 Link2 Link3..

Links dynamically
displayed

3

Whenever a new software delivery was received, the above scenario was run making use
of a beta version of an automation test tool. Then we learned about a new tool.

3. WEB Automation Test Tool

When we learned about the existence of that tool, we call the vendors to test drive the
tool. We were allowed to test the tool for two weeks with our application. We were
satisfied the way the tool behaves with our application. We started with the simple test
that we were using with the previous tool. We found out that the tool handled frames very
well and the transactions (play back) performed on the WEB, were not slowed down,
even when the dynamically updated window was opened.

What we like the most about the tool was the object oriented functions available to do
programming. Those object-oriented functions combined with the tool record/playback
made the tests more robust. The tool also contains excellent I/O functions, excellent
string manipulation, good error recovery and an easy to use on-line help.

4. New Scope for Test Automation

After seeing the potential of the tool, it was decided to increase the scope of the test
automation. Then the question was what and how to automate. Two approaches were
taken to start building an automated regression test package.

For the first approach, there were some test scenarios developed for us by other
organization. Those scenarios were operational profiles describing various operations that
the application will perform in the field. Those testing scenarios include combination of
factors and values affecting the WEB user interface. Those factors and values were
generated based on Software Reliability Engineering Test (SRET)2. A typical scenario
might look as follows:

1) A window is opened with random initial conditions – Verify the WEB GUI content
and the initial conditions

2) A random event is generated to change the state of the window – Verify the new state
of the window because of the new state

3) The GUI WEB user performs a random action (like to click on a link) – Verify the
expected output due to the user action

2 The description of SRET is out of the scope of this paper, but several references are available describing
this method. A good reference: Lyu Michael (Editor), Handbook of Software Reliability Engineering,
McGraw Hill, 1996.

4

Figure 3: Operational Test Scenario

Data files are created containing initial conditions, events and user actions. A main
program (using the tool programming language) is created for the window under test.
That main program performs the GUI content verification. Then it randomly selects from
the data files the initial conditions, events and user actions. The initial conditions and
events might be generated externally by remotely executing commands on the simulator.
The verification of the initial conditions and events is performed via case statements
available in the programming tool. User actions3 are playback functions originally
recorded from the application. Those user actions might be the click on a link or
submitting an HTML form. Verification is performed to the result of the user action.
Verifications performed on the window under test might consist on the following: a
change on JAVA applet, acknowledgement text due to an event or user action, the display
of a new object on the window or the opening of a new window. Different programming
functions in the program are called to clean up all the conditions and put the window
under test in its initial state. Then on the initial state new randomly generated conditions,
events and user actions can be done either on the previously opened window or in a new
WEB window.

3 User actions can be initial conditions or events also.

A New
Window is
opened

User Performs
an Action

Event Arrives or
ClearsInitial

conditions and
Subscription

Window is
opened

Idle

Window
displays new
information

Window
displays new
information

Window is
closed

5

Figure 4: Automation of the Operational Test Scenario

That automation approach has been very useful for several WEB windows of our
application. But there is a particular window, which is like a menu, which contains
hundreds of commands (links). Each of those commands generates a different HTML
form and when this form is submitted, a new window containing a JAVA applet with the
result of the submitted command is opened. In other words there were a hundreds links to
select from, a hundred different HTML forms with different fields to be filled in and
hundreds of JAVA applets to verify. A typical Scenario will be accessing the following
GUI screens (web pages):

1. Top Window
2. Maintenance Window
3. Subnet Status Window
4. NE Access Window
5. NE Access Element Command Window
6. NE Access Element Response Window
7. Steps 4,5,6 will be repeated for all NE Access commands

Record/Playback
JAVA/CGI

JAVA/CGI

DATA FILES

Record/Playback

MAIN PROGRAM

User Actions
• Select a

Link
• Click on a

Button

Initial Conditions N
•

InitialConditions2

•
InitialConditions1
•

Events
•

6

Figure 5: Network Element Access Commands Scenario

To automate that window, an input file is defined for each command. That input file
contains all the parameters needed to fill out the form when the command (link) is
selected. There is one verification file per command with an entry for each test case. The
test scripts used to verify the commands are data driven. The main part of the test scripts
is parsing the information from the data files. The data is then used to execute the test
cases. The first time the test case is executed, it is done with “init” option. This option
creates the output verification file. After that, the test cases are run with the verify option.
Then the output is compared with what is stored in the result files.

Figure 6: Automation of Network Element Access Commands Scenario (Initialization Part)

Form for the
Command

JAVA Applet
Response of the
Command

Input File
I<Command>

Verification
File
V<Command>

Base Run
Creation
VerificationFile

T OP
Window

Maintenance
Window

Subnet Status
Window

NE Access
Window

Network
Element
Access
Command

Network
Element
Access
Response

1 2 3

456

7

Figure 7: Automation of Network Element Access Commands Scenario (Verification Part)

5. Test Environment

The hardware environment for the test automation tool was a Toshiba TECRA 700
Laptop, 48 Mbytes.

The software environment consists of the following: Windows NT 4.0 service pack 2,
SilkTest automation tool version 2.0.14, and WEB browser Netscape 3.05.

6. Architecture

The following diagram shows the architecture of the automation test:

4 That was the version originally used for the automation, but the latest version is SilkTest Release 2.1.4
5 Porting is being done to work with WEB browser 4.06

Form for the
Command

JAVA Applet
Response of the
Command

Input File
I<Command>

Verification
File
V<Command>

Second Run
Compare response
with data from
Verification File

8

GUI Web
Automation
Tool

System X
(XGUI Server)

XGUI
(Web Server)

Element
Management
Controller

(EMC/EMS)

Network
Element
Simulators

Capture and Playback
GUI User Actions

Pre - Conditions
Trigger Alarms
or Events

Results

Data filesData files

Generate ScenariosGenerate Scenarios

WEB Browser

Figure 8: Automation Test Architecture

The WEB automation tool, the WEB browser, the data and results file resides on the
laptop. The WEB server resides on a UNIX based workstation. The GUI server, the
element management controller and the simulator resides on different HP UX machines.

The programs to perform the WEB test automation are written in 4TEST language, which
is the language provided on SilkTest. To remotely execute shell scripts for initial
conditions or events on UNIX based machines, CGI/PERL scripts and a small JAVA
program was written. The program is executed as a DOS command via a 4TEST function
available on SilkTest tool.

7. Results

The scenario-based automation has been used in 4 different application releases,
including Y2K regression test for one of the releases. The advantage of using random
combination of conditions, events and user actions is that multiple scenarios are created
and generated via the test tool and verified at the same time. From the results obtained
from the tool, we could determine not only the test that fails and passes but also the
execution time for each test. By learning more about the tool, we have found a way of
running regression tests on the Network Access Commands Window for more than
twelve hours.

8. Lessons Learned

9

The following items summarized the lessons that we learned while getting the right
automation tool and later while using the tool:

• Know your WEB application well before purchasing any tool
• Come with an scenario that could be automated
• Before purchasing any tool, ask the vendor to test drive the tool with your application

and at least try to automate a test scenario
• When using an automation tool, come with small and realistic goals about what will

be automated
• There is a learning curve associated with the use of any tool. There is no such thing as

a plug and play and the problem is solved.
• Do not rely only on the capture and playback of the tool for the automation. Use it

just when needed.
• In order to use automation tools a programming background is recommended
• Programming might be involved in order to create a robust automation script
• Tools are not perfect. There is software development involved on the creation of

those tools.
• There is not an immediate benefit when purchasing an automation tool. Some time

need to be invested: knowing the tool, coming with the right methodology to
automate and developing the programs or script to implement the test automation.

• Automation is very useful and can be reused from release to release as long as good
planning and analysis of the application under test is done.

9. Future Plans

Plans to continue automation efforts initiated in our project might be summarized as
follows:

• Related with hardware, more powerful PCs should be purchased and have them
dedicated for running SilkTest regression tests only.

• Although the scenarios automated have been re-used from release to release, there is
always room from improvement in terms of getting new methodologies to automate
new or existent tests. Maybe using object oriented analysis.

• A long term future plan is to study the possibility on how to interface the test
automation with other tools

10. Acknowledgments

The author wants to acknowledge Teh-Hsin Wu for supporting the automation efforts in
our project and supporting the presentation of this paper. Also wants to acknowledge the
support and cooperation of co-worker and co-author Andrew Van Kraanen. The author
also wants to acknowledge Tushar Sha and Ralph Catron for sharing information related
with test automation tools.

Quality Week ‘99
May 24-28, 1999 1

 Approaches to Testin gApproaches to Testin g
ComponentizationComponentization

in the Windowsin the Windows ®® CE CE

Patrick CopelandPatrick Copeland
Quality Assurance ManagerQuality Assurance Manager
Windows CE Product UnitWindows CE Product Unit

Microsoft CorporationMicrosoft Corporation

™

AgendaAgenda

�� What’s Componentization?What’s Componentization?
�� Component ModelComponent Model
�� Our ApproachOur Approach

Quality Week ‘99
May 24-28, 1999 2

Part 1: What’sPart 1: What’s
Componentization?Componentization?

�� OverviewOverview
�� ComponentizableComponentizable Modules Modules
�� Creating Custom ConfigurationsCreating Custom Configurations
�� Build BasicsBuild Basics
�� SamplesSamples

OverviewOverview

�� Allows OS to adapt to different devicesAllows OS to adapt to different devices
�� OS divided into Modules (EXE/DLL)OS divided into Modules (EXE/DLL)
�� Module can be divided into manyModule can be divided into many

componentscomponents
�� A component is a LIB file.A component is a LIB file.
�� Allows replacing of componentsAllows replacing of components
�� Enables OEM’s to make the tradeoffsEnables OEM’s to make the tradeoffs

Quality Week ‘99
May 24-28, 1999 3

ComponentizableComponentizable Modules Modules

�� GWE (35 components)GWE (35 components)
zz Messages, GDI, Window Manager,Messages, GDI, Window Manager,

Dialog Manager, Message Beeps, etc.Dialog Manager, Message Beeps, etc.

�� File System (7 components)File System (7 components)
zz ROM FS, RAM FS, Registry, Dbase, etc.ROM FS, RAM FS, Registry, Dbase, etc.

�� CoreDLL (10 components)CoreDLL (10 components)
zz Kernel/Win32 thunks, Serial API, etc.Kernel/Win32 thunks, Serial API, etc.

Creating CustomCreating Custom
ConfigurationsConfigurations
�� Two Stage Process:Two Stage Process:

zz SYSGENSYSGEN
zz compiles system modules and filtercompiles system modules and filter

headersheaders
z creates a collection of about 150 LIBs

that contain 1,500 functions

zz BUILDBUILD
z creates one platform configuration or

binary that is ROMable from the user
selected components

Quality Week ‘99
May 24-28, 1999 4

Build BasicsBuild Basics

Number of Number of
ComponentsComponents

Possible ConfigurationsPossible Configurations

SampleSample
ConfigsConfigs

SamplesSamples

�� MinkernMinkern : Kernel + : Kernel + FilesystemFilesystem
zz No DisplayNo Display
zz 150K -> 250K150K -> 250K

�� MinCommMinComm : + Comm stacks + COM: + Comm stacks + COM
zz Focus only on NetworkingFocus only on Networking
zz 250K -> 500K250K -> 500K

�� MinGdiMinGdi : + User input + GDI: + User input + GDI
zz 350K ->750K350K ->750K

��

Quality Week ‘99
May 24-28, 1999 5

Part Two: Component ModelPart Two: Component Model
BasicsBasics

�� Component DefinitionComponent Definition
�� Object Oriented IdealsObject Oriented Ideals
�� RealityReality

Component DefinitionComponent Definition

AA
ComponentComponent

ImportsImportsExportsExports

New Import Types:New Import Types:

••Hard – absolutelyHard – absolutely
requiredrequired

••Soft – onlySoft – only
required if usedrequired if used
explicitlyexplicitly

“ let the world
know what
functions are
supported ”

“ tell the world
what a
component
needs to run ”

At this basic level, similar to the desktop DLL model.
Except for…

Quality Week ‘99
May 24-28, 1999 6

Component DefinitionComponent Definition

AA
ComponentComponent

An example…

// Code from Component A

F1() {

}

F6() {

}

 ExportsExports
ImportsImports

H2();

H3();

H2();

Hard - Hard - F1 absolutely
requires H2 and H3, and
F6 absolutely requires
H2.

#soft

S4();

#soft_end

Soft - Soft - (F1) requires
(S4) as a soft
dependency. If A is
included as a
component, we don’ t
need to resolve S4. F1
will gracefully handle
the error.

Component ConnectionsComponent Connections

AA
ComponentComponent

BB
ComponentComponent

Function callsFunction calls
ResourcesResources

DirectDirect

MemoryMemory
Critical SectionsCritical Sections

IndirectIndirect

Shared ResourcesShared Resources

Quality Week ‘99
May 24-28, 1999 7

Object Oriented IdealsObject Oriented Ideals

Layer 2Layer 2

Layer 1Layer 1 AA BB CC

AA BB CCBCBCACACABAB

Layer nLayer n XX11 XX22 XX33 XX44 XX55 XX66 XX77 XXmm

Assumed TestedAssumed Tested

Assumed TestedAssumed Tested

Assumed TestedAssumed Tested

Realit yRealit y

Base

Draw

Region

Pal

DIB

DC

blt2

blt

rast2

rast

J fonts

TT

DrawText

Pal nat Pal min

16 Bit Graphics
Dx

Direct Draw

Print

winmgr

User

Component

External Dependency

Component
With unknown
dependencies

Relies upon

Legend

Component

Exclusive OR

Quality Week ‘99
May 24-28, 1999 8

Part Three: Our ApproachPart Three: Our Approach

�� Test ClassificationTest Classification
�� Component ConnectionsComponent Connections
�� Test Code GroupsTest Code Groups

Test ClassificationTest Classification

SmallestSmallest LargestLargestCoverage of TestCoverage of Test

AtomsAtoms MonolithsMonoliths??

Quality Week ‘99
May 24-28, 1999 9

Test ClassificationTest Classification

SmallestSmallest LargestLargestCoverage of TestCoverage of Test

AtomsAtoms MonolithsMonolithsCompositesComposites

Test SelectionTest Selection
AtomsAtoms

MonolithsMonoliths

AA

BB

AA
BB
CC

AA
CC

IndividualIndividual
tests thattests that

require therequire the
presents ofpresents of

specificspecific
componentscomponents

ConfigurationConfiguration

AA

CC
DD
EE
FF
......

S
el

ec
tio

n
T

oo
ls

S
el

ec
tio

n
T

oo
ls

CompositesComposites

AA
CC

AA++

Quality Week ‘99
May 24-28, 1999 10

™

1

Testing Windows CE 3.0
Real-Time Kernel

Sergio Cherskov
Windows CE Base OS QA Lead

Software Quality Week 1999

2

Testing Windows CE 3.0
Real-Time Kernel

• Windows CE 3.0 Design Goals

• Interrupt Processing in Windows CE 3.0

• Interrupt Response Latency

• Measuring Real-Time Performance

Windows CE 3.0 Design Goals

• Improve on real-time capabilities

• Nested interrupts

• More priority levels

• Finer (1ms) timing/scheduling resolution

• Priority inversion handling

• Bounded interrupt latencies

3

Interrupt Processing in
Windows CE 3.0

• Interrupt Service Routines (ISR)
– implemented in the OAL by OEM

– fast, just return interrupt identifier

• Interrupt Service Threads (IST)
– blocks on event, signaled by kernel

– workhorse, does I/O, processes data

– signals end of interrupt to the OS

Interrupt Processing in
Windows CE 3.0

Kernel ComponentsKernel Components Device DriverDevice Driver

InterruptInterrupt
ServiceService
ThreadThread

PDDPDD
RoutinesRoutines

InterruptInterrupt
Service RoutineService Routine

OALOAL
RoutinesRoutines

ExceptionException
HandlerHandler

HardwareHardware

InterruptInterrupt
Support HandlerSupport Handler

4

Interrupt Response Latency

• ISR Latency
– ISR in progress finish time + kernel ISR time +

sum of other hi-pri ISR execution times

– time spent in kernel ISR processing is bounded

• IST Latency
– all ISRs in progress + kernel IST time + all

higher priority ISTs in progress

– time spent in kernel IST processing is bounded

Interrupt Response Latency

BOUNDED BOUNDED

ISR
ends

ISR
beginsISR

latency
IST

latency

KERNEL
ISR in

progress

Other
higher
priority
ISRs

Other
ISRs KERNEL

Higher
priority
ISTs

IST
begins

Hardware
interrupt
occurs

ISR
executes

5

Measuring Real-Time
Performance

• Kernel Functionality Testing

• IntrTime -- Interrupt Response Latency

• MRTT -- External Interrupt Response

• CeBench -- Scheduler Performance

Kernel Functionality Testing

• Concentrated on functionality versus real-
time performance

• Also tests compilers, linkers, loaders,
processor families, hardware platforms

• Build Verification Tests

• Full Win32 kernel API functionality testing

• Windows CE Core OS Lab

6

IntrTime -- Measuring
Interrupt Response Latency

• Runs on all hardware platforms

• Requires modifications to OAL code

• Works by stealing every n-th tick from
system timer

• run-time parameters
– cache sync,

– ISR rate and number of interrupts captured,

– idle threads, output redirection to file

IntrTime -- Measuring
Interrupt Response Latency

Nth tick
SYSINTR_TIMING

ISR
begins

ISR
ends

IST
begins

System clock
timer

generates
interrupt

ISR
latency

IST
latency

High-resolution
counter value

7

MRTT -- Measuring
External Interrupt Response

• Measurements are done external to the
hardware under test

• National Instruments PC-TIO-10 card
– 2 sets of 5 timers, 1 hi resolution (5MHz)

– 2 sets of 8 I/O pins, 1 can generate interrupt

• Same card used on both sides

• Improvements (PCI card for HARP testing)

MRTT -- Measuring
External Interrupt Response

High
speed

counter #2

High
speed

counter #1

CE/PC under test Measurement
Workstation

gate

gate source

source

5MHz

Interrupt inGenerate
interrupt

ISR out

IST out

8

CeBench -- Measuring
Scheduler Performance

• No OAL changes, runs on all HW platforms

• Uses QueryPerformanceCounter()

• Critical Sections, Interlocked API’s

• Event, Mutex, Semaphore, Voluntary Yield

• PSL API call overhead

• Cache Sync, intra & inter process

• writing markers for hardware verification

CeBench -- Measuring
Scheduler Performance

. Thread
1

. Thread
2

A B C D E F G H I J K

WaitForSingleObject(1)
SetEvent(2)
FlushCache_2

WaitForSingleObject(TEST_EV)
QPC2

J
B
C

D
I

SetEvent(1)
WaitForSingleEvent(2)
FlushCache_1

QPC1
SetEvent(TEST_EV)
POST1

A
E
F

G
H
K

Thread 1
(lo pri)

Thread2
(hi pri)

Process 1 Process 1 or 2

9

Testing Windows CE 3.0 Real-Time Kernel Software Quality Week 1999

Copyright 1999 Microsoft, All rights reserved. Page 1 of 10

Testing Windows CE 3.0 Real-Time Kernel

Sergio Cherskov
Windows CE Base OS QA Lead

Testing Windows CE 3.0 Real-Time Kernel Software Quality Week 1999

Copyright 1999 Microsoft, All rights reserved. Page 2 of 10

Table of contents

Windows CE 3.0 Design Goals .. 3
Interrupt processing in Windows CE 3.0 .. 3
Measuring Real-Time performance .. 5

Kernel functionality testing... 5
Interrupt Response Latency Measurements .. 6
External Interrupt Response Measurements.. 7
Scheduler Performance Timing .. 9

Table of figures

Figure 1: Windows CE Interrupt Processing .. 3
Figure 2: Windows CE Interrupt Processing Timeline ... 4
Figure 3: IntrTime Timing Diagram ... 6
Figure 4: IntrTime command line parameters... 7
Figure 5: External interrupt latency setup... 8
Figure 6: CeBench command line parameters .. 9
Figure 7: CeBench example test output .. 10
Figure 8: CeBench example test execution path ... 10

Testing Windows CE 3.0 Real-Time Kernel Software Quality Week 1999

Copyright 1999 Microsoft, All rights reserved. Page 3 of 10

Abstract:

Presenting the testing procedures and goals that were used to test and verify real-time kernel during
development of Microsoft Windows CE 3.0 operating system. Presentation details the methods used to test
and validate kernel real-time performance.

Windows CE 3.0 Design Goals

Windows CE 3.0 is the latest Microsoft operating system, destined for the embedded 32-bit market,
encompassing a wide range of possible devices. It runs on a number of processors from different families
(currently: ARM, MIPS, PowerPC, SH, x86), and is scalable from a bare-bones kernel-only configuration,
to a full-fledged portable companion OS. Windows CE 3.0 is fully multithreaded, supporting up to 32
processes, protected paged virtual memory, 256 priority levels, using round-robin preemptive scheduling.

One of the design goals for the Microsoft Windows CE 3.0 operating system was improving on real-time
capabilities and approaching the standard response times as seen in the embedded microprocessor industry.
This includes support for the nested interrupts, expanded number of thread priorities, better control of
timing and scheduling, handling priority inversion, and guaranteed bounded interrupt latencies.

Interrupt processing in Windows CE 3.0

The modularity and layered approach of Windows CE 3.0 operating system can be clearly observed during
the processing of the hardware interrupt. Real time designs use hardware interrupts as a way to ensure that
external events are rapidly accepted and processed by the operating system. Within Windows CE, using
layered approach, a thin OEM Adaptation Layer (OAL) and kernel share the responsibility of interrupt
delivery and event dispatching to the rest of the system.

Figure 1: Windows CE Interrupt Processing

Device Driver/App CodeKernel Components

Interrupt Service
Thread (IST)

PDD Routines

Exception
Handler

Interrupt
Support Handler

OAL
Routines

Interrupt Service
Routine (ISR)

H a r d w a r e

Testing Windows CE 3.0 Real-Time Kernel Software Quality Week 1999

Copyright 1999 Microsoft, All rights reserved. Page 4 of 10

The processing is split into two distinct parts: an interrupt service routine (ISR) and an interrupt service
thread (IST). Each hardware interrupt request line (IRQ) is mapped to corresponding ISR. When
interrupts are enabled and a hardware interrupt occurs, the kernel will merely look up registered ISR and
transfer further execution to it. The ISR itself, the kernel-mode portion of interrupt processing, is kept as
short as possible.

ISR is expected to return either the generic interrupt identifier value SYSINTR_NOP that indicates no
further processing, or a specific value that directs the kernel to set an event that is associated with the
interrupt service thread (IST). If an IST was indeed created and associated with that event, the kernel now
schedules the thread. It is the IST code where the bulk of the processing specific to the device that
generated the hardware interrupt is expected to take place. Upon finishing, IST calls InterruptDone()
function that performs any hardware actions necessary to enable the next interrupt from the device.

Figure 2: Windows CE Interrupt Processing Timeline

Interrupt Service Routine (ISR) latency is defined as the amount of time that elapses from the moment that
an external hardware interrupt occurs and is recognized by the processor, to the moment that the kernel-
mode routine that services it begins executing. This time is comprised of several parts: a) time spent in the
kernel, b) the duration of an ISR in progress at the time the interrupt arrives and c) the sum of the durations
of all higher priority ISRs that arrive before this ISR starts.

Similarly, Interrupt Service Thread (IST) latency is defined as the amount of time that elapses from the
moment that the ISR code returns to kernel, until the user-mode thread that actually processes device data
is scheduled and begins executing. Since the IST’s themselves can be interrupted by one or more of same
or higher priority interrupts, we try to exclude this time from the overall IST latency, which can range from
0 to the duration of the longest ISR in the system. This is also true of higher priority ISTs, which will then
be scheduled before this one. The rest of the time is spent in the kernel which has to finish any Kernel Call
(Kcall) that may have been in progress when signaling ISR occurred, schedule IST, and switch CPU
context to the proper process space that contains IST code.

Windows CE 3.0 significant improvement over the previous versions is bounded kernel interrupt service
processing times for threads locked in memory, where no paging of virtual memory occurs. As the ISR

bounded bounded

ISR
ends

ISR
begins

ISR
latency

IST
latency

kernel
ISR in

progress

Other
higher
priority

ISRs

Other
ISRs kernel

Higher
priority

ISTs

IST
begins

Hardware
interrupt
occurs

ISR
executes

Testing Windows CE 3.0 Real-Time Kernel Software Quality Week 1999

Copyright 1999 Microsoft, All rights reserved. Page 5 of 10

code is linked in the kernel at the time an image is built, this is not a problem. For the IST, locking of the
thread code in memory is easily accomplished by moving and compiling the IST into a separate dynamic-
load library (DLL) file and using the LoadDriver() API. Unlike LoadLibrary() API that merely loads the
DLL into memory, LoadDriver() API also locks the code pages.

It is important to note that the Original Equipment Manufacturers (OEMs) are creating a custom version of
Windows CE operating system for each specific hardware platform and operating environment. While
Microsoft has shortened the time spent during kernel processing it is ultimately up to OEM to take
advantage of the given platform and optimize the system design for the best interrupt response times.

Measuring Real-Time performance

In order to perform an accurate assessment of Windows CE 3.0 kernel updates, test and measure real-time
performance, and validate kernel functionality, a number of test suites have been developed, using quite a
different approaches. At the very base is the kernel functionality testing, which we will just briefly touch in
this presentation and concentrate on real-time measurements.

Kernel functionality testing

The suite of tests that will be discussed later will concentrate more on the real-time performance aspect of
the kernel, and timing of the various events that take place in such multi-tasked environment. However, the
kernel exposes a number of Win32 APIs that also need to be verified and tested. Priority levels,
synchronization objects, thread and process creation/deletion have all to be confirmed and verified to work
for all possible configurations of the Windows CE system, on all processors. In addition, every processor
carries with it a set of tools – compilers, linkers, loaders – that need to be taken into account during testing.
The wide variety of hardware platforms that Windows CE runs on, makes this task even a bigger challenge.

Kernel build verification suite of tests goes through the list of APIs and kernel features and assures that the
basic functionality of the kernel is intact, regardless of the changes that are constantly done underneath, be
it code revisions, new compilers, new tools or new hardware reference platforms.

Full kernel functionality testing is used to exercise all of kernel API’s and validate the correctness of the
kernel implementation without regard as to the real-time components of such operations. This would
involve for example calling an API to, say, create thread, and verifying that the thread is indeed created,
that is runs on given priority, that the parameter passed during the API call is forwarded to the thread, etc.
The tests do not necessarily care how fast the task was done or if the task was time bounded. The real-time
aspects are evaluated with a separate set of tools.

This testing is quite involved with a number of test suites being run daily in Microsoft’s Windows CE Core
OS automated testing Lab. New tests are still being created and added to the rooster, as new features and
kernel modifications take place. For the example of tests and test harnesses used to run them, please take a
look at Device Drivers Test Kit (DDTK) that routinely accompanies the MS Platform Builder.

MS Platform Builder is a main vehicle for distribution of Windows CE, containing all the necessary tools,
libraries and object files to successfully create a customized version of Windows CE to fit the requirements
of a given hardware platform. The tools include cross-compilers, assemblers, remote debugging tools,
code generators, operating system loaders, ROM image building tools, sample device drivers, sample
application code and documentation.

Testing Windows CE 3.0 Real-Time Kernel Software Quality Week 1999

Copyright 1999 Microsoft, All rights reserved. Page 6 of 10

Interrupt Response Latency Measurements

The measurements of ISR and IST latencies described earlier have been combined in IntrTime test tool that
is freely available in source code and also distributed with MS Platform Builder. The measurements are
done using the system clock timer in an effort to make it available to all hardware platforms that Windows
CE runs on, since some of them do not provide for a separate available unused timer.

Under normal circumstances, system clock interrupts the kernel in regular intervals. The associated system
timer ISR then processes the tick and returns either SYSINTR_NOP directing kernel to just ignore the tick,
or SYSINTR_RESCHED to wake up scheduler.

IntrTime test tool does the latency measurements by ‘stealing’ every nth tick of the system clock (defaults to
every 5th system tick) and signaling a special SYSINTR_TIMING interrupt identifier event. The IntrTime
application’s main thread waits on the SYSINTR_TIMING interrupt event, thus becoming the IST. ISR
and IST measurements are derived from time-stamps i.e. the counter values of the high-resolution timer
since the last system tick.

Figure 3: IntrTime Timing Diagram

In order to provide these values, a modification of the OAL is required and OEM exports a special function
PerfCountSinceTick() via the KernelIoControl() IOCTL_HAL_INTRTIME. The IOCTL call returns a

Nth tick
SYSINTR_TIMING

N-1 tick
SYSINTR_RESCHED

N+1 tick
SYSINTR_RESCHED

ISR
begins

ISR
ends

IST
begins

System clock
timer generates

interrupt

ISR
latency

IST
latency

High-resolution
counter value

Testing Windows CE 3.0 Real-Time Kernel Software Quality Week 1999

Copyright 1999 Microsoft, All rights reserved. Page 7 of 10

pointer to the function that will be called (in Kmode) directly from the application to minimize overhead.
This same IOCTL call is also used to start and stop system tick from returning a SYSINTR_TIMING
interrupt identifier and to return the stored start and end of ISR response times.

Because it requires special modifications to the OAL only, but not the kernel, IntrTime could be easily
adapted and should run on any of the sample platforms and configs. As a special note, it is recommended
that the OEMIdle function be set not to reprogram the timer during IntrTime measurements.

Figure 4: IntrTime command line parameters

The IntrTime command line parameters allow for introduction of number of variations where the IST can
be set to run on various priorities, cache flushed after each interrupt or not, change ISR rate and number of
interrupts captured, or print/output to file the collected results. IntrTime can also create one or more idle
threads running in the background, which affect the IST latencies by allowing the kernel to be in a non-
preemptible kernel call that must finish before the IST is run.
.

External Interrupt Response Measurements

For quick assessment of the day-to-day real-time performance of the system, interrupt timing analysis tool
(IntrTime.exe) is quite enough to determine the ISR and IST interrupt latencies. This convenient method
works across all supported processors but relies on the timer on the device itself that may affect the
measurements.

Thus, a more elaborate setup has been used to accurately measure ISR and IST latencies. Two machines
have been set up: a workstation that generates an external interrupt and measures the time it takes to receive
acknowledgements from ISR and IST routines, and device-under-test that receives the external interrupt
and toggles output lines when ISR and IST routines are reached. Testing is performed under various stress
levels, running anywhere from one to hundreds of threads of varying priorities on the test device.

The Windows NT 4.0 workstation, equipped with a National Instruments PC-TIO-10 digital I/O
timer/counter card, is used to generate interrupts and time responses, and a CE/PC equipped with an
identical card to respond to those interrupts. The NT software takes advantage of the driver library
supplied by National Instruments, while the CE software is written completely by Microsoft.

Usage: intrtime [options]
Options:
 -p num Priority of the IST (default 0 ; highest)
 -ni no idle priority thread (default: idle priority thread
spins)
 -ncs no CacheSync() call (default: flush cache after each
interrupt)
 -i0 no idle thread (same as -ni)
 -i1 Run idle thread type 1
 -i2 Run idle thread type 2
 -i3 Run idle thread type 3
 -i4 Run idle thread type 4
 -sp Starts a secondary process
 -t num SYSINTR_TIMING interval (default 5)
 -n num number of interrupts (default 10)
 -all print all data (default: print summary only)
 -o file output to file (default: output to debug)

Testing Windows CE 3.0 Real-Time Kernel Software Quality Week 1999

Copyright 1999 Microsoft, All rights reserved. Page 8 of 10

Figure 5: External interrupt latency setup

The theory of operation is quite simple: the PC-TIO-10 card has two sets of 5 timers, each set containing
one timer that provides 200ns resolution, rest of them being 1us granularity. In addition, it contains two
sets of 8 digital I/O lines, again each set providing one line that can be used to interrupt on edge or level
triggering. One output line from the NT machine is wired both to the external interrupt pin of the CE/PC
and back to the timers on the NT’s card. As NT machine asserts one of its output lines, it generates an
interrupt on CE/PC and starts ISR and IST timers on NT card. The ISR on the CE/PC merely
acknowledges the receipt of the interrupt by asserting an output line on the card (which stops the ISR timer
on NT side), and notifies the kernel to schedule the IST. When the IST starts running, it asserts a different
output line, stopping the second timer on the NT side.

At this point, the NT machine can read the values on the timer counters, to determine the intervals between
an interrupt being generated and CE/PC’s responses. As soon as the NT machine has read the counter
values, it issues another interrupt which CE/PC uses to bring all output lines to the ‘standby’ state, ready
for another cycle.

Preliminary results gathered using above measurements confirm the accuracy of the intrtime testing results.
Currently under development are somewhat less stringent versions of the setup above that allow for the
greater utilization of the available Lab hardware. In one version, a workstation is replaced with a CE/PC
and the intermediate circuitry duplicated. This allows us to have automated Lab setup utilizing both
CE/PC’s as active participants in measurements, generating and responding to interrupts at the same time.
Also being investigated is the single CE/PC solution, where the lines are looped back to the CE/PC itself.

As mentioned before, Windows CE 3.0 supports not only x86 family of processors, but also a number of
other processor families. The kernel development and testing of such processors is done on Hitachi D9000
reference platform (commonly called ODO) which does not provide either ISA or PCI interface. Work is
also under way to port the external hardware verification test to D9000 based processors, by utilizing the
available I/O lines of one of its serial ports (DCD as interrupt source, RTS and DTR for ISR/IST response).

Long-term, the replacement is sought for the current National Instruments ISA based card used for
measurements, as Microsoft’s next generation Windows CE Hardware Reference Platform (HARP) is PCI
based. The greater variety of cards used, on several development platforms would further reinforce and

High speed
counter #2

High speed
counter #1

CE/PC under test
using NI PC-TIO-10

timing I/O board

Measurement Workstation
using NI PC-TIO-10

timing I/O board

gate

gate source

source

5MHz

Interrupt inGenerate
interrupt

ISR out

IST out

Testing Windows CE 3.0 Real-Time Kernel Software Quality Week 1999

Copyright 1999 Microsoft, All rights reserved. Page 9 of 10

verify the validity of Windows CE 3.0 real-time kernel implementation. For further information on
Microsoft Hardware Reference platforms please visit our Web site at:
http://www.microsoft.com/windowsce/Embedded/resources/refplat/default.asp .

Scheduler Performance Timing

Scheduler performance timing tests (CeBench.exe) are focused on measuring the time required to perform
basic kernel operations (see below).

Figure 6: CeBench command line parameters

The bulk of the testing consists of timing the kernel synchronization objects: critical section, event,
semaphore, mutex and voluntary yield. It also contains test measurements of PSL API call overhead.

As with IntrTime measurements, QueryPerformanceCounter() (QPC) function call has been used to obtain
timing information. In addition, at every timing point where QPC() is invoked, user can specify that a write
of specific “marker” value is performed to the virtual address. This hardware verification feature is enabled
by providing the virtual address on the command line at the time when CeBench is started. Markers
written at the virtual address can then be monitored by analyzer, independently timed by external device
and results used to double-check the QPC() timing accuracy. The setup similar to the external
measurements of interrupt latency can be used for this purpose.

Please note that QPC() function call to get time stamps does not come for free. The frequency of the
counter at particular platform and the overhead of calling this function has to be taken into account when
analyzing the results. Care has been exercised to provide for proper exclusions of the measuring overhead
in the final timing numbers. The QPC() call is looped for a number of iterations before every test and the
average is subtracted from the final result.

In cases where the operation takes a very small time to complete, the overhead of the QPC() function call
becomes significant. In those cases, the operation is looped for a fixed number of iterations per sample
(IPS), clear indication of which is provided with every test, and the result is then averaged. A special sub-
marker value is provided for these cases if hardware verification was enabled. A side effect of this looping
is that the cache can not be flushed between each iteration of the operation. For other tests where the IPS is
equal to 1, test is run twice, once with and once without cache flush for each iteration.

Usage: cebench [options]
Options:
 -all Run all tests (default: run only those specified by -t option)
 -t num ID of test to run (need separate -t for each test)
 -n num Number of samples per test (default = 100)
 -m addr Virtual address to write marker values to (default = <none>)
 -list List test ID's with descriptions
 -v Verbose : show all measurements
 -o file Output to CSV file (default: output only to debug)

CeBench -list
TestId 0 : CriticalSections
TestId 1 : Event set-wakeup
TestId 2 : Semaphore release-acquire
TestId 3 : Mutex
TestId 4 : Voluntary yield
TestId 5 : PSL API call overhead
TestId 6 : Interlocked API's (decrement, increment, testexchange, exchange)

Testing Windows CE 3.0 Real-Time Kernel Software Quality Week 1999

Copyright 1999 Microsoft, All rights reserved. Page 10 of 10

Figure 7: CeBench example test output

In the example of the test number 1.00 whose output is shown above, the operation was timing of the intra-
process event synchronization object. The number of Iterations Per Sample (IPS) was one; Cache Sync
(CS) was not done after each run; Inter-Process status (IP) shows that second process was not used (both
threads were in the same process). The maximum, minimum and average results for 100 operations
(default, if nothing is specified on the command line) are given in microseconds.

. Thread
1

. Thread
2

A B C D E F G H I J K

Figure 8: CeBench example test execution path

The basic suite of tests and the overall layout of the CeBench program allow for easy additions of new
testing cases and measurements, augmenting the implementation for particular kernel function that might
be of special interest to various customers.

===
| 1.00 | IP = NO | CS = NO | 1 IPS

Event intra-process :
Time from SetEvent() in one thread to a blocked WaitForSingleObject()
waking in another thread in the same process.

| Max Time = 10.057 us
| Min Time = 5.867 us
| Avg Time = 6.823 us
===

WaitForSingleObject(1)
SetEvent(2)
FlushCache_2

WaitForSingleObject(TEST_EV)
QPC2

J
B
C

D
I

SetEvent(1)
WaitForSingleEvent(2)
FlushCache_1

QPC1
SetEvent(TEST_EV)
POST1

A
E
F

G
H
K

Thread 1
(lo pri)

Thread2
(hi pri)

Process 1 Process 1 or 2

1

An Automated Inspection Tool
For A Graphical Specification
and Programming Language

Steve Toeppe

Scott Ranville

Ford Research Laboratory

Ford Motor Company

Graphical Programming Tool
Description

• Matlab Simulink and Stateflow Graphical Specification
and Analysis Tool Utilized

• Stateflow is Similar to Unified Modeling Language Harel
Statecharts

• Simulink is a Block Diagram Modeling Tool Similar to
Labview, Matrixx, Beacon, MGA and other Control
System Modeling Tools

• Graphical Languages Have Syntax Rules With Subtle
Impacts If Improperly Used

• Syntax Checking Tools Are Needed

2

Graphical Modeling Examples

Process Description
• Iterative Development Process Intended To

Support Maintenance and New Feature
Development

• Experimental Stages Critical For Algorithm
Validation

• Physical Dynamics Must Be Considered

• Simulation Used For Algorithm Validation and
Implementation Verification

• Software Verification Expected Results Based
Upon Algorithm Validation Experiments

• Graphical Models Used For User Documentation

3

Ford System V Process
User

Requirements

System
Requirements

System
Architecture

System
Design
Model

Preparation

Model
Validation

Software
Architecture

Software
Design

Software
Coding

Software
Unit Testing

Software
Integration

Testing

System
Integration

Testing

System
Verification

Style Guideline
• Context Diagram Interfaces and Scheduling

• Subsystem Hierarchy and Interconnections

• Subsystem Notation Usage

• Scheduling Syntax

• Signal Connectivity

• Individual Block Usage

• Stateflow Diagram Syntax

• Software Design Information

• Documentation
• Naming Conventions

4

General Test Categories
CONTEXT SUBSYSTEM NAME CHECK FOR UNNECESSARY SIGNAL NAMES

CONTEXT DIAGRAM FIRST SUBSYSTEM NAME CHECK SWITCH VARIABLE NAMES GO TO A SWITCH

CONTEXT DIAGRAM INPUT AND OUTPUT WIRING MERGE BLOCK RULES

CONTEXT DIAGRAM SCHEDULING INPUTS VECTOR SIGNAL PROPAGATION AND NAMING

EXECUTION CONTEXT DIAGRAM FORMAT VECTOR SIGNAL TERMINATION AND SOURCES

EXECUTION CONTEXT SUBSYSTEM/TRIGGER NAMES VERIFY VECTOR SIGNAL IS NAMED WITH ATTRIBUTE

EXECUTION CONTEXT TRIGGER

EXECUTION CONTEXT DOES NOT REQUIRE MATLAB® SCHEDULER STATE CHART CONSISTENCY CHECKS

SIMULINK® BLOCK CONSISTENCY CHECKS CHECK EACH STATE CHART FOR A DEFAULT PATH FOR FLOW

CONTROL

PORT TO SIGNAL COMPARE CHECK FOR UNGUARDED PATH AS DEFAULT AND INVOCATION OF

SF CLOCKWISE RULE

INITIALIZATION OF DATA STORE, DELAY BLOCKS, ETC VERIFY THAT STATE CHART IS TRIGGERED WITH A FUNCTION

CALL

VERIFY SAMPLED BLOCKS USE INHERITED SAMPLE TIMES CHECK FOR FLOW LOGIC CLASSIFICATIONS INTO ACCEPTABLE

PATTERNS

CHECK FOR APPROPRIATE USAGE OF MULTIPORT SWITCH BLOCK AND

STANDARD SWITCH BLOCK

CHECK FOR RECURSION SF CONSTRUCTS

CHECK FOR NON STATEFLOW™ DIAGRAM GENERATED SWITCH

CONTROLS

CHECK FOR ACTION ONLY AT END OF CLASSIFIED PATTERN

CHECK FOR CONSTANT EXPRESSIONS IN DIALOG BOXES CHECK FOR VALID COMPOUND CONDITIONALS

SUBSYSTEM CONSISTENCY CHECKS CHECK FOR PROPER TYPES FOR “==”.
PROPERLY TRIGGERED SUBSYSTEM CHECK WHILE/FOR LOOPS FOR TERMINATION

SUBSYSTEM HELD/NOT HELD OUTPUT CHECK FOR UNSTRUCTURED LOOPS

UNWIRED PORTS AND SUBSYSTEM PORTS CHECK FOR VALID MULTIWAY BRANCH

IDENTIFY ANY NON MASKED SUBSYSTEMS DELETE CHECK

VERIFY THAT MASKED SUBSYSTEMS HAVE SOMETHING THAT WILL

TRANSFORM INPUTS TO OUTPUTS

VERIFY EVENTS ARE LOCAL OR FUNCTION CALLS

CHECK FOR PROPER MASKED SUBSYSTEM ENTRIES VERIFY BROADCAST RULES

CHECK FOR LABELED BLOCKS INSTEAD OF MASKED BLOCKS VERIFY STATE HIERARCHY RULES

VERIFY CORRECT PREFIX ON SUBSYSTEM NAMES VERIFY STATEFLOW™ EVENT WIRING RULES

DETECT VIRTUAL SUBSYSTEM WITH ONLY ANNOTATIONS OR TEXT

MASK

VERIFY STATEFLOW™ INPUT AND OUTPUT DATA WIRING RULES

DATA CONSISTENCY CHECKS CHECK FOR WRITE TO WORKSPACE FROM SF
DATA DICTIONARY TYPE VS USAGE CHECK FOR DATA TRANSFORMATION IN STATEFLOW™ DIAGRAMS

PROPER VIEW OF CALIBRATION PARAMETERS CHECK FOR ML OPERATION IN STATEFLOW™ DIAGRAM

VERIFY CALIBRATION PARAMETERS IN MODEL VS DATA DICTIONARY

(CHECK DIMENSIONS)
CHECK FOR SF KEYWORDS

CHECK FOR UNNECESSARY DATA STORES STATE MACHINE DATA FLOW RULES

TRIGGER/EVENT CONSISTENCY CHECKS EVENT BROADCAST CHECK

VERIFY TRIGGERS ARE FUNCTION CALL TRIGGERS (HANDLE

EXCEPTIONS)
CHECK MODEL FOR UNIQUE NAMES WHEN NOT CONSIDERING

CASE

VERIFY DO_<P_SPEC_NAME> AND TRIG_<HIERARCHY_NAME> ARE

CORRECTLY NAMED

VERIFY STATEFLOW™ DIAGRAM FLOW DIAGRAMS DO NOT USE

EVENT “/”.
UNIQUE CSPEC NAMES AND EVENT SIGNAL NAMES WITHIN FEATURE VERIFY STATEFLOW™ DIAGRAM DOES NOT INVOKE ANY C

LIBRARY UTILITIES OR USE C CODE

VERIFY DO_<> ENDS IN A PSPEC SOFTWARE DESIGN CONSISTENCY CHECKS

VERIFY TRIG_<> ENDS IN A STATEFLOW™ DIAGRAM CHECK FOR VECTORIZATION

UNIQUE APPLICATION SIGNAL NAMES WITHIN FEATURE FUNCTION NAME RULES

SIGNAL WIRING CONSISTENCY CHECKS FILE NAME RULES

CHECK IF TAGS ARE LOCAL DOCUMENTATION CONSISTENCY CHECKS

CHECK FOR MATCHING GOTO AND FROM TAGS VERIFY CORRECT FONT ATTRIBUTES

CHECK SIGNAL NAME PROPAGATION Check For Unneeded Drop Shadows in Annotations

Consistency Checker Usage
Scenario

• Current Practice: Manual Inspection of Several
Thousand Points of Review Per Model

• Future Practice: Automatic Inspection of 10 to 20
Thousand Points of Review Per Model

• Modeler Interactively Corrects All Anomalies

• Modeler Presents Anomaly Report at Inspection

• Anomaly Report is Put Under Configuration
Management With Model, C Code and Test
Vectors/Results

5

Tool Operation
• Extract Model Structural Connectivity and

Information Content

• Analyze Structural Information to Verify Selected
Style Guideline Conformance Checks

• Report Results Via Browser and Reports

• Rerun Selective Checks During Corrective
Modeling

• Save/Restore Results and Analysis Session

• GUI Based Model Selection, Configuration and
Filtering

• HTML Report Generation Provided

Anomaly Example

• Browser Indicates List Of All Anomalies Organized
By Failure or Model Location

• Hot Links Permit Model To Be Opened and Anomaly
To Be Highlighted

6

Analysis Methods
• Extract Data Flow and Control Connectivity By

Traversing Directed Graphs Representation

• Establish Call Tree Relationships

• Conduct Control Flow Pattern Matching

• Detect and Analyze Loops

• Directed Graphs Can Be Modeled Within The
Matlab Workspace

• Recursive m-Scripts Permit Graph Traversal

• Utilize Extensive Information Links Provided Via
Matlab Handles For Graphical Objects, Data
Elements and GUI Components

Analysis Methods
• Intermediate Representations Used To Manage

Information For Analysis

• Multidimensional Linkages Between
Representations Are Required To Correlate Data

• Directed Graphs and Search Methods Used

• Data Flow Connectivity Used For Data
Dependencies

• Call Trees Used To Establish Execution
Sequences Used For Tracing Enabled Data Flow

• Depth First Search Algorithms Used To Traverse
Model and Directed Graphs

7

Intermediate Representations
*

+ /

A B C D

Y=(A+B) * (C/D)

Parsed Equation

L

F

J
G

H

I

K M

N

output = F(a,d,e)
a = G(b,c)
d = J(h,f)
h = K(i)
e = L(f)
c = I()
i = N()
f = M()

a

b

c

d
e

ffh

i

Data Flow Dependencies

Stateflow
Loop

Stateflow
Function Call

Simulink
Subsystem

Simulink or Stateflow
Inport Parameters

Simulink or Stateflow
Outport Parameters

Stateflow
 Inlining

Simulink
Library
Call

CALL Tree

+ /

A B C D
+ /

A B C D

Combined
Control Flow,
Call Tree and
Data Flow Graphs

D1

D3

D2

Default

Null

SA.entry

SB.entry

SC.entry

Null

Null

Null

Null

Null

J2

J3

J4

J1

Control Flow Graph
With State Transitions

Anomaly Detection Methods
• Extract Intermediate Representation of Some

Connectivity or Topology of Interest

• Associate the Relevant Model Information With the
Intermediate Representation

• Detect Valid Control Flow Patterns and Collapse
Into a Hierarchy of Representations

• Cross Couple Different Intermediate
Representations

• Search the Multidimensional Intermediate
Representation for a Specific Topology or
Connectivity Pattern of Interest

• Check If Special Conditions Associated With the
Pattern of Interest Exist

• Report Results

8

Loop Pattern Detection and Analysis Example

• Need To Detect Illegal Loop Patterns and Determine If Exit Is
Possible

• Must Handle Loops Within Loops

• Testing Must Be Bounded For Practical Considerations

• Pattern Detection Utilizes Pattern Collapsing Algorithm To
Simplify Analysis

• Steps:
– Traverse Control Flow Models and Detect Loop Patterns

– Detect Entry/Exits

– Collapse Patterns To Simplify For Pattern Matching

– Determine If Basic Pattern Is Valid

– Trace Exit Predicate Equation Variables

– Determine If Equations Are Activated By Loop Actions

– Report Status

Sample Loop Structures

a

if A/
action1action3

legal

b

action2

from outside
of loopfrom outside

of loop

a

if A/
action1action3

illegal
(two entries to loop)

b

action2

from outside
of loop

from outside
of loop

a

if A/
action1action3

illegal
(two exits from loop)

b

action2

from outside
of loop

out of loop

if B

a

if A/
action3

legal

b

c

from outside
of loop

action1

action2

action4

d

a

if A/
action3

illegal (terminating node
can not be part of loop)

b

c

from outside
of loop

action1

action2

a

if A/
action1

action4

legal

b c

if B/
action2

default
action

action3

Note :
action1, action2, default

action, OR action 3
must effect A

from outside
of loop

Legal Illegal

Legal Legal

Illegal

Illegal

9

Pattern Detection/Collapsing

• Perform Graph Classification To Detect
Fundamental Loops

• Collapse To Simpler Form

• Reapply Classification/Collapsing Until
Fundamental Pattern Are Validated

c1

a

action1

last

d

action 2

if B1

b2

b1

if A

c2

if B2
...

if Bn

AND

OR

Collapses to

last

a

d

action 2 if compound predicate such
as A & (B1 | B2 | Bn)

action1

arbitrary
combination of
ANDs and ORs

Pattern Collapsing Example

b1

a

action 1

bn

c

action 2

if A

if B1

Collapses to

b

a

c

action 2
if A

if B/
action1b2

if B2

if B(n-1)

...

a

c

...
if Andefault

action
if A2 if A1

a

b

...
if Andefault

action
if A2 if A1

OR

c

action

Graphical Compound AND
Collapsed To Single AND

Graphical OR Example

10

Future Work
• Complete Development of Tool At Tarragon

Embedded Technology Ltd

• Conduct Acceptance Testing and Introduce Into
Production Usage

• Develop Additional Suite Of Tests For Plant
Models, Software Design and Specification
Anomaly Analysis

• Establish As A Commercial Product

• Integrate With Automatic Code Generation and
Automatic Unit Test Tools

Conclusion
• Graphical Based Modeling Languages Require Syntax

Checking

• Automated Syntax Checking Is Required Due to Large
Number of Items of Interest

• CASE/CACSD Tools Should Provide an Open
Interface With Analysis Capabilities

• Intermediate Representations Reduce The Complexity
of Analysis and Information Management

• Automation is Critical For Quality Improvement Within
Resource Constrained Organizations

Page 1 of 16

An Automated Inspection Tool For A Graphical Specification and Programming Language

Steve Toeppe, Ford Research Laboratory, Ford Motor Company, Dearborn, MI
Scott Ranville, Ford Research Laboratory, Ford Motor Company, Dearborn, MI

Abstract

Graphical programming and specification languages are becoming increasingly popular. The
graphical languages are generally developed by a specific vendor and lack any rigorous conformance
to independent standards. A large organization needs to standardize language usage regardless if it is
textual or graphical. Commercial products exist to support coding standard compliance of textual
languages. However, graphical languages generally lack such tools. Ford Motor Company has
adopted a graphical language for powertrain control development specifications and design. An
internal style standard has been developed and an automated consistency checker tool has been
developed that is used to verify that the graphical models conform to over 250 style standard rules.
The consistency checker tool is used as an automated inspection tool and is integrated into the
development process. The tool provides a significant coverage and productivity improvement over
manual inspection methods. This paper discusses the style construct standards, consistency checker
tool features and some of the general analysis methods used by the tool.

1 Development Environment, Process and Style

Ford Motor Company has developed a control system and software development process that utilizes
the graphical modeling languages provided by Matlab®1 Simulink® and Stateflow™ [1, 2, 4]. The
graphical modeling languages serve as the primary means of requirements and design specification
capture. The graphical specifications support multiple uses including analysis, simulation, design,
coding, testing and documentation. The multiple use approach requires that models are prepared with
uniform syntax and style. A style standard has been developed that is used to constrain the rich
notational capabilities of Simulink® and Stateflow™. The usage of the consistency checker has been
factored into the process. Tool requirements have been established based upon usage scenarios.

1.1 Graphical Programming Tool Description

Matlab® Simulink® is a traditional block diagram tool popular with control systems engineers. The
block diagrams have numerous similarities to traditional data flow diagrams popular in CASE tools.
Simulink® also provides significant simulation capability that is particularly useful for control
systems development. Stateflow™ supports (with some notational variation) the popular Harel
statechart notation [3, 5] that is also part of the Unified Modeling Language (UML) standard [7].
Simulink® and Stateflow™ are tightly integrated. The diagrams in Figure 1 to Figure 3 provide
examples of graphical models currently prepared at Ford Motor Company.

A complete powertrain control application may involve 5000 to 10000 diagrams that are “wired”
together with control flow (event triggers) and data flow connections. A typical model contains a
context diagram that defines external interfaces. Then there are multiple levels of hierarchy to

1MATLAB, Simulink and Handle Graphics are registered trademarks and Stateflow is a trademark of The MathWorks,
Inc.

Page 2 of 16

organize the model. The first level of hierarchy separates the model into single rate tasks. All
subsequent lower layers of the hierarchy are added to properly manage the complexity of the model.

Figure 1 represents a hierarchy level that has control and data flow representations. The three input
ports (2, 3 & 4) are each individual function call triggers used to start the Stateflow™ diagram
(“tsegre_timer_control”). The Stateflow™ diagram is expanded in Figure 2. The Stateflow™
diagram has two output function call triggers used to start individual process specifications located
within the “tsegre_timer” subsystem. The values in rectangular boxes represent constants. The input
port 1 serves as a data value and output port 1 serves as a data value. The Stateflow™ diagram
(Figure 2) represents a 2 state statemachine. Each state has a default transition (noted by large dot).
The overall Stateflow™ diagram also has a default transition. Transitions can occur whenever the
Stateflow™ diagram is activated or called by one of the input function call triggers.

Figure 1 Control and pSpec Combination

Figure 2 State Machine Example Figure 3 pSpec Example

Page 3 of 16

The Stateflow™ examples in Figure 4 to Figure 6 illustrate some typical control logic that does not
involve states. Figure 4 illustrates a straight line action segment that does not involve predicate logic.
Figure 5 illustrates “If Then Else” logic. The top most node or junction is the decision point where
the predicate equation is evaluated. The flows emanating from the decision junction to the
terminating junction provide the actions. Figure 6 illustrates a more complex “IF Then Else” logic
involving a “graphical OR” in the predicate equation. It is important to note that some flows do not
have action statements. Flows that do not have action statements can in many cases be collapsed into
predicate equations.

Figure 4 Straight Line
 Action Segment

Figure 5 "If Then Else"
Control Flow Logic

Figure 6 Graphical Or Inside
"IF Then Else" Control Flow

Graphical programming languages intended for embedded control systems are made up of a few
major components. Algorithmic operators are used to capture mathematical equations. Control flow
operators are used to capture predicate equation logic to permit alternate algorithms to be executed
for a given operating condition. A third design operator is used to control rates of execution for
particular algorithms.

The algorithmic operators provide all of the standard algebraic blocks and a number of special
purpose blocks that are oriented towards control system design. Some examples of the special
purpose blocks include the following:

• Lookup Tables
• Logic
• Matrix Math
• Trigonometric
• Saturation
• Switch
• Memory
• Delay

The control flow operations support flow chart control operations and state machine control
operations. The notation is made up of a few basic symbols that can be combined in numerous ways
to create a rich notational capability. An action language also provides numerous textual operations
that can be used to specify predicate logic or action sequences.

Page 4 of 16

The design operators permit specification of execution rates for many blocks to create a “multi-rate”
model. Most Matlab® Simulink® applications use multi-rate modeling. However, the Ford style
minimizes the usage of multi-rate modeling in order to establish a closer mapping to the production
software task behavior. The software task execution behavior is established with Stateflow™ diagram
schedule models.

1.2 Process Description

The development process [6] is a production development process for Ford Motor Company
powertrain (engine/transmission) controllers. The development process has numerous steps following
the “V” system/software process as shown in Figure 7. The Matlab® Simulink®/Stateflow™
diagrams support the system requirements through software design steps of the process. The models
are prepared in a specific style dictated by an internally developed Computer Aided Control System
Design (CACSD) style guideline. The guideline specifies specific graphic modeling or graphical
programming rules and guidelines.

The CACSD development process calls for several major steps that are then broken down into
numerous smaller steps. The primary process steps are as follows:

• System Architecture
• System Design
• Model Preparation
• Model Validation
• Software Architecture

• Software Design
• Software Coding
• Software Unit Testing
• Software Integration Testing
• System Integration Testing

1.3 Style Guideline

The CACSD style guideline ensure that consistent, easily understood graphical specification and
programming models are prepared that also permit automation to be applied. The primary objective is
readability. The models serve as documentation for a large base of users who are not directly
involved with software engineering and may not have a software background. However, it is assumed
that they can understand a traditional engineering block diagram. The models must be easily
prepared, completely specify the desired software behavior and be capable of simulation and analysis.
This is critical to fully leverage the models for all phases of development.

The CACSD style addresses the following major areas:

• Context Diagram Interfaces and Scheduling
• Subsystem Hierarchy and Interconnections
• Subsystem Notation Usage
• Scheduling Syntax
• Signal Connectivity
• Individual Block Usage
• Stateflow™ Diagram Syntax
• Software Design Information
• Documentation

Page 5 of 16

User
Requirements

System
Requirements

System
Architecture

System
Design
Model

Preparation

Model
Validation

Software
Architecture

Software
Design

Software
Coding

Software
Unit Testing

Software
Integration

Testing

System
Integration

Testing

System
Verification

Figure 7 System "V" Development Process

1.4 Consistency Checker Usage Scenario

The CACSD process calls for a graphical model inspection as part of the model validation process
prior to software design. The inspectors review the models conformance to the style and algorithmic
content. Manual style guide inspection methods require significant time to complete. The consistency
checker tool automates the style review process to enable the inspectors to focus more on the
algorithmic portion of the inspection.

The modeler uses the tool to determine what style guideline inconsistencies are present in the
graphical model. An interactive browser with hot links back to the model permits each anomaly to be
easily inspected. The modeler must correct each anomaly or establish a justification for the anomaly.
Once all of the anomalies are corrected or justified, the user can print out a report that is presented at
the inspection and placed under configuration management. The style portion of the inspection is
limited to reviewing the consistency checker report and reviewing the more subjective issues
associated with the style standard.

Page 6 of 16

A significant portion of the powertrain controller algorithm development is maintenance with
incremental modifications. When a small change has been made to a model that has been previously
validated as style compliant, the consistency checker tool is then only applied to the portions of the
model that have changed.

2 Tool Operation

The Consistency Checker general principles of operation include the following basic categories of
operation:

• Extract model structural connectivity and information content
• Analyze structural information to verify selected style guideline conformance checks
• Report results via browser and reports
• Rerun selective checks during corrective modeling
• Save/Restore results and analysis session

It is necessary for the tool to traverse the entire graphical model to obtain the relevant information.
Some checks require extensive information from many subsystems while other checks derive the
necessary information from within a single subsystem. The tool extracts the information with an
efficient and organized approach. Since it is necessary to rerun single selected checks, the tool is able
to handle small scale extraction as well as large scale extraction.

The tool analyzes the structural information to verify that the checks have either passed or failed.
There are three major approaches to the analysis. The first approach is to fully extract all information
and then perform the analysis. The second approach is to perform the analysis on the fly during the
information extraction phase. A third hybrid approach is a combination of the first two. The tool
extracts core information that may be needed by several checks. Once enough core information has
been extracted, specific rules are checked.

After the tool has analyzed the information, it reports any failures. Since the number of problems can
be high, it is necessary to manage the information with a browser or report. The tool supports
printout, textual file dump, HTML, and workspace dump reporting. Once failures have been
identified, it is necessary to resolve the problems. In order to quickly determine if a correction is
satisfactory, it is possible to rerun a selected test. This permits problems to be eliminated one by one.
In some cases, it is necessary to only partially complete the correction of problems and finish the
effort at a later point in time. A save and restore feature is provided to address this usage.

Numerous feasibility experiments have been conducted to determine if it is possible to extract the
necessary information to implement the checks. The Mathworks provide extensive capability to
extract information at all levels of the model including Simulink® and Stateflow™. The commands
“get_param” and “sf” provide access to all required information. However, some information is not
always directly accessible and may require several steps to obtain the desired information.

The consistency checker supports the checks listed in Table 1. There are over 250 individual specific
checks that are contained within the sub-components of the checks in Table 1. Major categories of
checks are identified in bolded text.

Page 7 of 16

The “Context Subsystem Name” checks are intended to verify that the top level context diagram
conforms to specific naming, wiring and triggering conventions. The naming conventions are
intended to ensure that top level signal, subsystems and triggers are named in a uniform manner. This
aids understandability, system integration and subsequent automation.

The “Execution Context Diagram Format” checks are intended to verify that the execution context
diagrams are properly formatted, triggered and scheduled. The execution context diagram contains
one or more virtual subsystems that each represent a single rate subsystem hierarchy (or possibly
tasks/ISRs). Each subsystem should only have one function call trigger or a vector of triggers
entering on the left side of the subsystem block. The function call trigger should trace to either a
Stateflow™ diagram or a triggered subsystem. If a vector of triggers is defined, the consistency
checker will verify that all triggers have the same destination subsystem. The intent is that a
subsystem can be called from multiple sources, but the calls must constitute a single entry. Special
cases exist for Stateflow™ diagrams. This suite of checks is intended to ensure that the modeling
style is consistent with legacy task schedules, independent of the Simulink® multi-rate scheduler and
presented in a uniform manner.

The “Simulink® Block Consistency Checks” are intended to verify that the individual Simulink®
blocks are properly configured and used appropriately per the style guide. Issues regarding naming
conventions, initialization, switch usage and expressions are checked.

The “Subsystem Consistency Checks” are intended to verify that Simulink® subsystem diagrams
are properly named, configured, scheduled and wired. The subsystem scheduling checks are intended
to determine if the Matlab® multi-rate scheduler is involved with block execution order. It is desired
to keep all rate based scheduling under the control of the modeler specified Stateflow™ diagrams.
Several checks are intended to determine if the subsystems are actually configured or wired to
produce a result. The check will not determine that the result is correct, it only determines that
something will happen.

The “Data Consistency Checks” are intended to verify that the data definitions and memory usage
are consistent with external definitions. The checks will interact with the data dictionary that contains
all data definitions. Some of the checks are concerned with calibration data definitions and
declaration rights. Other checks are concerned with verifying consistent usage of data and data type
matching between model components.

The “Trigger/Event Consistency Checks” are intended to verify that subsystem triggers are
properly wired, named and configured. Proper naming is critical to understandability of calling
hierarchies. Name uniqueness is checked. Wiring and routing checks ensure that scheduling will
behave per the defined rules in the style guide.

The “Signal Wiring Consistency Checks” are intended to verify signal wiring is properly named,
configured, routed and utilized. Several checks are in place to determine if all signals are used or
have a proper termination. Name propagation rules are checked. Connectivity is verified on
Simulink® virtual connectors (Goto/From) tags.

Page 8 of 16

CONTEXT SUBSYSTEM NAME CHECK FOR UNNECESSARY SIGNAL NAMES

CONTEXT DIAGRAM FIRST SUBSYSTEM NAME CHECK SWITCH VARIABLE NAMES GO TO A SWITCH

CONTEXT DIAGRAM INPUT AND OUTPUT WIRING MERGE BLOCK RULES

CONTEXT DIAGRAM SCHEDULING INPUTS VECTOR SIGNAL PROPAGATION AND NAMING

EXECUTION CONTEXT DIAGRAM FORMAT VECTOR SIGNAL TERMINATION AND SOURCES

EXECUTION CONTEXT SUBSYSTEM/TRIGGER NAMES VERIFY VECTOR SIGNAL IS NAMED WITH ATTRIBUTE

EXECUTION CONTEXT TRIGGER

EXECUTION CONTEXT DOES NOT REQUIRE MATLAB® SCHEDULER STATE CHART CONSISTENCY CHECKS

SIMULINK® BLOCK CONSISTENCY CHECKS CHECK EACH STATE CHART FOR A DEFAULT PATH FOR FLOW

CONTROL

PORT TO SIGNAL COMPARE CHECK FOR UNGUARDED PATH AS DEFAULT AND INVOCATION OF

SF CLOCKWISE RULE

INITIALIZATION OF DATA STORE, DELAY BLOCKS, ETC VERIFY THAT STATE CHART IS TRIGGERED WITH A FUNCTION

CALL

VERIFY SAMPLED BLOCKS USE INHERITED SAMPLE TIMES CHECK FOR FLOW LOGIC CLASSIFICATIONS INTO ACCEPTABLE

PATTERNS

CHECK FOR APPROPRIATE USAGE OF MULTIPORT SWITCH BLOCK AND

STANDARD SWITCH BLOCK

CHECK FOR RECURSION SF CONSTRUCTS

CHECK FOR NON STATEFLOW™ DIAGRAM GENERATED SWITCH

CONTROLS

CHECK FOR ACTION ONLY AT END OF CLASSIFIED PATTERN

CHECK FOR CONSTANT EXPRESSIONS IN DIALOG BOXES CHECK FOR VALID COMPOUND CONDITIONALS

SUBSYSTEM CONSISTENCY CHECKS CHECK FOR PROPER TYPES FOR “==”.
PROPERLY TRIGGERED SUBSYSTEM CHECK WHILE/FOR LOOPS FOR TERMINATION

SUBSYSTEM HELD/NOT HELD OUTPUT CHECK FOR UNSTRUCTURED LOOPS

UNWIRED PORTS AND SUBSYSTEM PORTS CHECK FOR VALID MULTIWAY BRANCH

IDENTIFY ANY NON MASKED SUBSYSTEMS DELETE CHECK

VERIFY THAT MASKED SUBSYSTEMS HAVE SOMETHING THAT WILL

TRANSFORM INPUTS TO OUTPUTS

VERIFY EVENTS ARE LOCAL OR FUNCTION CALLS

CHECK FOR PROPER MASKED SUBSYSTEM ENTRIES VERIFY BROADCAST RULES

CHECK FOR LABELED BLOCKS INSTEAD OF MASKED BLOCKS VERIFY STATE HIERARCHY RULES

VERIFY CORRECT PREFIX ON SUBSYSTEM NAMES VERIFY STATEFLOW™ EVENT WIRING RULES

DETECT VIRTUAL SUBSYSTEM WITH ONLY ANNOTATIONS OR TEXT

MASK

VERIFY STATEFLOW™ INPUT AND OUTPUT DATA WIRING RULES

DATA CONSISTENCY CHECKS CHECK FOR WRITE TO WORKSPACE FROM SF
DATA DICTIONARY TYPE VS USAGE CHECK FOR DATA TRANSFORMATION IN STATEFLOW™ DIAGRAMS

PROPER VIEW OF CALIBRATION PARAMETERS CHECK FOR ML OPERATION IN STATEFLOW™ DIAGRAM

VERIFY CALIBRATION PARAMETERS IN MODEL VS DATA DICTIONARY

(CHECK DIMENSIONS)
CHECK FOR SF KEYWORDS

CHECK FOR UNNECESSARY DATA STORES STATE MACHINE DATA FLOW RULES

TRIGGER/EVENT CONSISTENCY CHECKS EVENT BROADCAST CHECK

VERIFY TRIGGERS ARE FUNCTION CALL TRIGGERS (HANDLE

EXCEPTIONS)
CHECK MODEL FOR UNIQUE NAMES WHEN NOT CONSIDERING

CASE

VERIFY DO_<P_SPEC_NAME> AND TRIG_<HIERARCHY_NAME> ARE

CORRECTLY NAMED

VERIFY STATEFLOW™ DIAGRAM FLOW DIAGRAMS DO NOT USE

EVENT “/”.
UNIQUE CSPEC NAMES AND EVENT SIGNAL NAMES WITHIN FEATURE VERIFY STATEFLOW™ DIAGRAM DOES NOT INVOKE ANY C

LIBRARY UTILITIES OR USE C CODE

VERIFY DO_<> ENDS IN A PSPEC SOFTWARE DESIGN CONSISTENCY CHECKS

VERIFY TRIG_<> ENDS IN A STATEFLOW™ DIAGRAM CHECK FOR VECTORIZATION

UNIQUE APPLICATION SIGNAL NAMES WITHIN FEATURE FUNCTION NAME RULES

SIGNAL WIRING CONSISTENCY CHECKS FILE NAME RULES

CHECK IF TAGS ARE LOCAL DOCUMENTATION CONSISTENCY CHECKS

CHECK FOR MATCHING GOTO AND FROM TAGS VERIFY CORRECT FONT ATTRIBUTES

CHECK SIGNAL NAME PROPAGATION Check For Unneeded Drop Shadows in Annotations

Table 1 Consistency Checker Checks

The “Stateflow™ diagram Consistency Checks” are intended to verify a number of rules relating to
Stateflow™ . Numerous issues regarding control flow are addressed. Control flow patterns are
checked to determine if they are valid. Checks on loop usage are provided.

Page 9 of 16

The “Software Design Consistency Checks” are intended to verify software design and automatic
code generation information is properly formatted.

The “Documentation Consistency Checks” are intended to verify that select issues important to
documentation generation are properly setup. Checks for proper font attributes and unneeded drop
shadows are provided.

The graphical user interface for the consistency checker is shown in Figure 8. The expanding
hierarchy of information illustrates a problem involving signal names. Each error has a hot link
directly to the Matlab® model that has the offending anomaly. When the error is selected, the
Matlab® diagram blocks involved are highlighted. The next /previous keys permit rapid traversal
through all errors.

Figure 8 Consistency Checker Browser Figure 9 Example of Anomaly Error and Highlight

The GUI shown in Figure 8 is the primary consistency checker browser. The use of expandable
hierarchies permits information to be easily viewed and hidden when not required. The anomoly
highlighted in Figure 9 shows a mismatch between a port name and its associated signal flow. In this
case, the signal flow name does not exactly match the port name. The highlighted anomaly in the
model is displayed simply by double clicking on the browser line of interest. Additional details are
available for each error via a details popup dialog. Additional check/rule information is available via
HTML help files.

The consistency checker is configurable to permit specific checks or model segments to be disabled.
All operations are available via application programmer interfaces (api), thus enabling automated
regression testing and large batch jobs.

3 Analysis Methods

The Matlab® Simulink® and Stateflow™ products have open application programmer interfaces that
permit access to all modeling information. The signal flow connectivity internal representation can be
viewed as a special directed graph. It is possible to traverse the model based upon signal flow

Page 10 of 16

connectivity within Simulink®. Most of the signal flows correspond to data flow. However, trigger
signals provide control flow scheduling. The Stateflow™ diagram control flow and state-machine
internal representation can also be viewed as a special directed graph.

Matlab® provides numerous diagram interrogation methods that typically operate on one diagram
object at a time. However, most of the consistency checks require the analysis of large diagram
objects that are made up of elemental objects. It is therefore necessary to establish data structures for
the large objects. The Matlab® workspace environment supports a wide variety of array, vector and
structure data elements and manipulation methods. The use of the Matlab® utilities and data
representations simplify the analysis efforts. The use of directed graphs is particularly useful for
representing the state-machine representations captured in Stateflow™. Directed graphs can be
represented as adjacency matrixes or as sparse connectivity matrixes within the Matlab® workspace.

Data flow analysis is critical for establishing data flow dependencies between algorithms and
between algorithms and control flow logic. Loop analysis algorithms require data flow detection in
order to determine the data dependencies between loop actions and loop termination logic. With the
Ford style guideline, data flow traversal occurs primarily within the Simulink® block diagrams. The
connectivity from input ports, transformational blocks and output ports can be easily established with
a succession of calls that traverses each path and branch.

Diagram traversal is easily accomplished with recursive m-scripts. Matlab® permits controlled levels
of recursion to be supported. Provided the problem is properly partitioned and bounded, it is possible
to use recursive techniques for data flow and control flow traversal.

b

a

action

a if/action

action

a

if A = #1 /
action1

b

if A = #2 /
action2

default
action

Figure 10 Straight Line
Action Sequence

Figure 11 Simple Loop Figure 12 OR Switch

The examples in Figure 10 to Figure 12 illustrate basic control representations found within
Stateflow™. Many more variations are possible. Figure 10 illustrates a straight line action that does
not have any branching. While it does not contain control flow, it is fundamental to the control flow
representations. Figure 11 illustrates a simple loop with a loop action and an exit action. Figure 12
illustrates an “OR Switch” which is analogous to a “C” switch statement (assuming “if” logic
involves “A” in each flow).

Page 11 of 16

4 Anomaly Detection Methods

Detection of anomalies varies from simple to complex. The simple checks generally involve testing
for the occurrence of some condition associated with specific blocks or notations. The simple check
generally involves the following steps:

• Find all occurrences of the specific block of interest
• Check if special condition associated with block is present
• Report results

A simple example requires that the names associated with subsystem port names need to match the
signal flow names. This check is performed by finding all subsystem ports within the model. Then
the associated signal flow is matched to the port. Finally, the name of the port and the signal flow are
compared. If they do not match, an error is reported.

Several of the checks are complex. They generally involve looking for some topological connectivity
pattern that may be coupled with numerous special cases and then determining if an invalid usage
scenario has resulted. The topological connectivity patterns can include any or all of the following:

• Data flow connectivity between blocks
• Control flow graphs
• Call trees
• Hierarchical organization

The complex checks generally involve some or all of the following steps:

• Extract intermediate representation of some connectivity or topology of interest
• Associate the relevant model information with the intermediate representation
• Detect valid control flow patterns and collapse into a hierarchy of representations
• Cross couple different intermediate representations
• Search the multidimensional intermediate representation for a specific topology or

connectivity pattern of interest
• Check if special conditions associated with the pattern of interest exist
• Report results

A complex check example is a check that determines if a loop has only a single entry node and single
exit node. The style does not permit loops with multiple entry or exit nodes. The examples in Figure
13 through Figure 18 illustrate various loop scenarios that are possible using Stateflow™.

The loops illustrated in Figure 13, Figure 16 and Figure 18 illustrate style guide compliant (valid)
loops of various types. The loops in Figure 13 and Figure 18 illustrate loops with a common single
entry node and single exit node. The loop in Figure 16 illustrates a case where the exit node is a
different node than the entry node. The loops in Figure 14, Figure 15 and Figure 17 are illegal due
to entry or exit path violations. Figure 14 illustrates two entry points to the loop. Figure 15 has two
exit points from the loop. Figure 17 lacks an exit. Figure 18 illustrates a legal case where a “If Then
Else” pattern resides within the loop.

Page 12 of 16

a

if A/
action1action3

legal

b

action2

from outside
of loopfrom outside

of loop

a

if A/
action1action3

illegal
(two entries to loop)

b

action2

from outside
of loop

from outside
of loop

a

if A/
action1action3

illegal
(two exits from loop)

b

action2

from outside
of loop

out of loop

if B

Figure 13 Legal Loop
 Representation

Figure 14 Illegal Loop:
2 Entries

Figure 15 Illegal Loop: 2 Exits

a

if A/
action3

legal

b

c

from outside
of loop

action1

action2

action4

d

a

if A/
action3

illegal (terminating node
can not be part of loop)

b

c

from outside
of loop

action1

action2

a

if A/
action1

action4

legal

b c

if B/
action2

default
action

action3

from outside
of loop

Figure 16 Standard Legal
Loop With Internal Pattern

Figure 17 Illegal Loop
Due To No Terminating
Node

Figure 18 Legal Loop With
Internal Logic and Action Pattern

A second complex check example is a check that determines if the variables used in the control logic
associated with a loop can be changed or updated directly or indirectly by the loop. The intent of the
check is to determine if the loop has any potential of exiting. This requires that the loop variable is
updated either within the loop or in a function called by the loop. If neither case is true, then there is
an error. The check is performed by first detecting the presence of a loop. Once a loop has been
detected it is necessary to determine if the loop has any loop variables. Once the loop variables have
been detected, it is necessary to determine if the loop variables are written by the loop directly or
indirectly. This check does not prove that an exit is possible. It only detects when it is impossible to
have an exit due to no loop variable writes.

Page 13 of 16

The two complex loop checks have several common components. It is necessary to extract the control
flows, detect loops and determine entry/exit. The model information structures are arranged so that
they may be reused by these two checks. Additional information is needed for the loop variable
update check.

The two complex loop checks can be implemented by extracting the control flow logic from
Stateflow™ and setting up a directed graph representation. An exhaustive search of all paths with a
coloring stage can be used to detect a loop. It is assumed that the total size of the control logic is
containable due to previous partitioning. Once a loop has been detected, it is necessary to determine
the entry and exit transitions. This can be accomplished by searching for an inbound or outbound
flow.

The base of common information is established prior to additional information extraction or
checking. The common base of loop information extraction is enough to permit the entry/exit check
to be performed. Each valid loop is checked. If there is one and only one inbound and outbound
flow, then the loop is valid. A missing inbound flow indicates dead control logic. A missing
outbound flow indicates an infinite loop has been specified. Multiple inbound or outbound flows may
result in intended system behavior, but they represent poor design and present maintenance and
testing problems.

In the case of the loop variable check, additional information is needed in addition to the common
loop information. Once the outbound flow is detected, the predicate equation associated with the
transition can be parsed out. The variables within the predicate equation are then identified. The
action portions of the loop are searched to determine if any assignment statements exist using the
variables associated with the loop. The action portion can also include triggering additional
processing external to the loop. The external processing sequence also needs to be analyzed in a
similar manner. The case of the external processing (via a function call trigger) requires further
analysis that may require extraction of data flow relationships and additional control flow
relationships. This is potentially an unbounded problem. In order to remain practical in the tool usage
and execution time, a limit is placed on the extent that a search is made. If the problem is not solvable
within a bounded search, an advisory is raised indicating that the check failure may have occurred
and further engineering analysis is warranted.

An additional complication associated with the loop checking occurs when loops are within loops and
there is “If Then Else” logic embedded within the loop. In order to solve this issue, it is necessary to
detect control logic patterns that are valid. Once a pattern is detected, it is possible to either ignore it
or collapse it during analysis and checking. There are also additional style checks that require control
flow logic to be classifiable to valid patterns as listed below:

• IF – THEN
• IF – THEN – ELSEIF
• Compound Conditionals (AND/OR Groups)
• Multiway Branch
• While Loop
• Do While
• For Loop

Page 14 of 16

In order to combine the valid pattern check and the complication of the loop check, it is necessary to
perform a graph classification prior to the analysis steps. This involves a search for fundamental
patterns that can be collapsed into larger patterns. Conceptually this is shown in Figure 19. Graphical
“AND” and “OR” cases can be collapsed into simple predicate equations. A compound “AND”
example is illustrated in Figure 20.

c1

a

action1

last

d

action 2

if B1

b2

b1

if A

c2

if B2
...

if Bn

AND

OR

Collapses to

last

a

d

action 2 if compound predicate such
as A & (B1 | B2 | Bn)

action1

arbitrary
combination of
ANDs and ORs

Figure 19 Control Collapsing

The primary complication for the graphical AND construct is to distinguish it from an embedded if
construct. The embedded if construct is an if-then-else construct with another if-then-else construct
on the true path of the original if-then-else construct. If there is a series of embedded ifs, but the
default action on all these is the same, then it is an illegal construct, because it should have been a
graphical AND construct with a single default path.

A complication to identifying these topologies is when legs of different patterns merge together. This
merging may occur because each segment has common actions, and this is easier for the modeler to
maintain. Another complication is that, almost to an arbitrary degree, any construct can be embedded
within any leg of another construct. The tool needs to handle this complexity.

One approach to the issue of constructs embedded in other constructs is to identify some legal, self-
contained construct, and “eliminate” it from the control flow. This elimination, or collapsing of the
control flow, will make the overall flow diagram smaller and easier to analyze.

Page 15 of 16

b1

a

action 1

bn

c

action 2

if A

if B1

Collapses to

b

a

c

action 2
if A

if B/
action1b2

if B2

if B(n-1)

...

a

c

...
if Andefault

action
if A2 if A1

a

b

...
if Andefault

action
if A2 if A1

OR

c

action

Figure 20 Graphical Compound And Collapsed
To Single And Predicate Equation

Figure 21 Graphical OR

The graphical OR, as shown in Figure 21, is one of the more complicated constructs, because it must
be distinguished from a multi-way branch and not mistakenly flagged as a violation. If there are
actions on the conditional legs of the construct, then it is a multi-way switch construct and not a
graphical OR. However, if there is a single common action for all the condition legs, then it is a
graphical OR construct.

5 Future Work

The tool is being developed by Tarragon Embedded Technology Ltd2 with extensive requirements
preparation, acceptance checking and validation at Ford Motor Company. During the preparation of
the acceptance check cases, several special case situations occurred that required refinement of the
CACSD style guideline. The refinements require further analysis to determine how they fit into the
inspection process. Extensive checking is underway to demonstrate that the tool has adequate
robustness for production product development application.

In order to minimize life cycle product costs, it is generally preferred to use commercial off the shelf
(COTS) products at Ford Motor Company. An effort is underway to establish the consistency
checker as a commercial product. This would permit a COTS solution to emerge that can satisfy the
needs of other Matlab® Simulink®/Stateflow™ applications. Ford Motor Company is also
advocating uniformity of Matlab® graphical programming styles and processes within the
automotive industry. Efforts are underway with The Mathworks, several major automotive OEMs
and Tier 1 suppliers to establish uniform styles and methods.

2 Tarragon Embedded Technology Ltd
Cambridge United Kingdom
44 1223 323336

Page 16 of 16

The first suite of checks for the consistency checker were intended for the graphical programming
style. Additional check specifications are under development for physical plant modeling
(engine/transmission physics), specification/design anomalies and detailed software design
consistency.

6 Conclusion

A highly automated inspection process will improve the overall productivity of a software
engineering organization. The productivity improvements will be achieved in reduced time to detect
and correct style violation, thus permitting increased focus on algorithmic review. In order to
automate an inspection process it is necessary to have a well defined style and specification capture
method. If CASE or CACSD tools are used, an open interface is essential to automation. Matlab®
Simulink® and Stateflow™ provide a very flexible environment for analysis and development. The
development of consistency checker checks have been built up entirely upon the Matlab® script
language and “Handle Graphics®”.

The consistency checker provides an automated suite of checks that check the graphical programming
style guide compliance. The checks are implemented to support reuse of common information
interrogation methods. The information is presented to the user in multiple formats to suite the
process steps and user needs.

In order to develop the check algorithms, it is necessary to establish analysis and detection methods.
Directed graph intermediate representations are useful for control, data flow and state machine
behavior analysis.

References

1. Butts, K., “An Application of Integrated CASE/CACSD To Automotive Powertrain Systems”
Computer-Aided Control System Design, 1996. Proceedings of the 1996 IEEE International
Symposium on, Pages 339-345

2. Toeppe, S., Butts, K., Ranville, S. “Specification and Testing of Automotive Powertrain Control
System Software Using CACSD Tools” 1998. Proceedings of the 17th AIAA/IEEE/SAE Digital
Avionics System Conference.

3. Harel, D., “Statecharts: A Visual Formalism for Complex Systems”, Science of Computer
Programming 8,m 1987 Pages 231-274

4. Hatley, D and Pirbhai, I., “Strategies For Real Time System Specification”, Dorset House
Publishing 1988

5. Stateflow™ Users Guide, Version 1, The MathWorks., 1997
6. Butts, K,. et.al., "Automotive Powertrain Control Development Using CACSD", Perspectives in

Control: New Concepts and Applications, Tariq Samad (ed.), IEEE Press, To be Published in
1999.

7. Jim Rumbaugh, Ivar Jacobson, and Grady Booch, Unified Modeling Language Reference
Manual, Addison Wesley, December 1997

1

Advanced AutomatedAdvanced Automated
Testing ArchitecturesTesting Architectures

John Kent M.John Kent M.ScSc..
CISS LtdCISS Ltd

29 Abbey Rd29 Abbey Rd

WokingWoking

Surrey GU21 4PQSurrey GU21 4PQ

Tel: 01483 768992Tel: 01483 768992

Email: john_Email: john_kentkent@@compuservecompuserve.com.com

Web:Web:
http://http://ourworldourworld..compuservecompuserve.com/homepages/john_.com/homepages/john_kentkent

© CISS Ltd 1999

OverviewOverview

© CISS Ltd 1999

■■ The Promise of Test AutomationThe Promise of Test Automation

■■ Where Are We Now?Where Are We Now?

■■ How Did We Get Here?How Did We Get Here?

■■ Current Automated Test MethodsCurrent Automated Test Methods

■■ Reasons For New ApproachesReasons For New Approaches

■■ Advanced ArchitecturesAdvanced Architectures

■■ CISS’sCISS’s Test Automation Architecture Test Automation Architecture

2

■■ Large numbers of automatedLarge numbers of automated
teststests

■■ Tests to run unattendedTests to run unattended

■■ Moving manual testing toMoving manual testing to
more complex test scenariosmore complex test scenarios

The Promise of TestThe Promise of Test
AutomationAutomation

Use Automated Testing to increaseUse Automated Testing to increase
‘‘ testedness’testedness’ of the system of the system

© CISS Ltd 1999

■■ The Promise of Automation notThe Promise of Automation not
fulfilled for mostfulfilled for most

■■ Lack of progress blamed on toolsLack of progress blamed on tools

■■ Lack of progress blamed on approachLack of progress blamed on approach

■■ Tes Tes automation community realisingautomation community realising
that the architecture is the problem.that the architecture is the problem.

Where Are WeWhere Are We
Now?Now?

© CISS Ltd 1999

3

■■ Mainframe Automated TestMainframe Automated Test
Tools: terminal/processorTools: terminal/processor
conversationsconversations

■■ Automated Testing of PCs andAutomated Testing of PCs and
GUIs: complex user/softwareGUIs: complex user/software
interactioninteraction

■■ New Tools are Script-BasedNew Tools are Script-Based

How Did We GetHow Did We Get
Here?Here?

© CISS Ltd 1999

■■ Record/PlaybackRecord/Playback

■■ Test TranslationTest Translation

■■ Data-DrivenData-Driven

Automated TestAutomated Test
Creation MethodsCreation Methods

© CISS Ltd 1999

4

Paradigm Lost:Paradigm Lost:
Record/PlaybackRecord/Playback

■■ Recording does not workRecording does not work

■■ It producesIt produces unmaintainable unmaintainable code code

■■ We are interested in what We are interested in what maymay
happen, not what happen, not what hashas happened happened

■■ An automated test should be anAn automated test should be an
interactioninteraction between the test tool between the test tool
and System Under Test(SUT)and System Under Test(SUT)

© CISS Ltd 1999

Add customer
“Bloggs”

Create an order
for product X

Test TranslationTest Translation

© CISS Ltd 1999

Manual Test Procedures

5

Manual Test Procedures

Add customer
“Bloggs”

Create an order
for product X

Translated
into test

tool
language

Automated Test Code

Menuitem

”customer”

Type(“Bloggs”)

.....

Menuitem

”Order”

Test TranslationTest Translation

© CISS Ltd 1999

Disadvantages:Disadvantages:
■■ Test data is hard-codedTest data is hard-coded

■■ Test Procedure: test program ratio =1:1Test Procedure: test program ratio =1:1

■■ Many test programs to maintainMany test programs to maintain

■■ Many test programs to testMany test programs to test

■■ The more tests, the more test programsThe more tests, the more test programs
to maintain and testto maintain and test

Test TranslationTest Translation

© CISS Ltd 1999

6

■■ Automation not fulfilling its promiseAutomation not fulfilling its promise

■■ Current architectures not deliveringCurrent architectures not delivering

■■ Scripts are really programsScripts are really programs

■■ Automated tests must be testedAutomated tests must be tested

■■ Importance of maintenanceImportance of maintenance

Reasons For NewReasons For New
ApproachesApproaches

© CISS Ltd 1999

 Enter HamletEnter Hamlet

 To be or not to be-that is the question;To be or not to be-that is the question;

 Whether ‘tis nobler in the mind toWhether ‘tis nobler in the mind to
suffer.....suffer.....

 if (audience looks bored)if (audience looks bored) {{

 Drop trousersDrop trousers
}}

Myth:Myth:
“Automated tests are “Automated tests are scripts”scripts”

© CISS Ltd 1999

7

■■ Automated Test programs cannot beAutomated Test programs cannot be
sequential instruction listssequential instruction lists

■■ Tests must expect the unexpectedTests must expect the unexpected

■■ They have conditional processingThey have conditional processing
and loopsand loops

■■ Automated tests are Automated tests are programsprograms

Scripts are reallyScripts are really
programsprograms

© CISS Ltd 1999

■■ DevelopedDeveloped

■■ MaintainedMaintained

■■ TestedTested

Automated Tests areAutomated Tests are
ProgramsPrograms

Automated testing is Automated testing is softwaresoftware
engineeringengineering..

Test code must be:Test code must be:

© CISS Ltd 1999

8

■■ Test ProgramTest Program - the part of an - the part of an
automated test written in the testautomated test written in the test
tool language (e.g. Test BASIC,tool language (e.g. Test BASIC,
TSL, SQA BASIC)TSL, SQA BASIC)

■■ ScriptScript - a list of actions to be - a list of actions to be
performed in order to exercise aperformed in order to exercise a
test. Usually written using a wordtest. Usually written using a word
processor spreadsheet or testprocessor spreadsheet or test
management toolmanagement tool

Re-definition Of TermsRe-definition Of Terms

© CISS Ltd 1999

■■ The System Under Test (SUT)The System Under Test (SUT)

■■ The Automated Tests themselvesThe Automated Tests themselves

Testing Test ProgramsTesting Test Programs
When running automated tests weWhen running automated tests we

are testing two things:are testing two things:

© CISS Ltd 1999

9

So Far:So Far:
■■ Automated Tests are Automated Tests are programsprograms

■■ Automated Testing is softwareAutomated Testing is software
engineeringengineering

■■ Tests must be Tests must be maintainedmaintained

■■ Tests must be Tests must be testedtested

■■ Test Translation method meansTest Translation method means
many tests to maintain and testmany tests to maintain and test

© CISS Ltd 1999

■■ RatiosRatios

■■ Test: Test ProgramTest: Test Program

■■ SUT Screen/window: test programSUT Screen/window: test program

■■ UI Object-to-Object Reference RatioUI Object-to-Object Reference Ratio

■■ Test Procedure: Test ProgramTest Procedure: Test Program

■■ Not always comparing like with likeNot always comparing like with like

■■ Also measures testabilityAlso measures testability

MeasuringMeasuring
MaintainabilityMaintainability

© CISS Ltd 1999

10

AdvancedAdvanced
ArchitecturesArchitectures

■■ Basic Data drivenBasic Data driven

■■ Framework BasedFramework Based

■■ Advanced Data Driven (withAdvanced Data Driven (with
Navigation/Actions)Navigation/Actions)

© CISS Ltd 1999

TestsTests

 “Bloggs”,
“John”

DataData
FileFile

Test ProgramsTest Programs

Navigates to
screen/window
and inputs data

© CISS Ltd 1999

Basic Data-DrivenBasic Data-Driven

11

TestTest

Test ProgramsTest Programs

Interaction

Cust_Add”Bloggs”,
“John”

 Add_Polcy
“Motor”,”10005678”

© CISS Ltd 1999

FrameworkFramework

Cust_Add Module

InfrastructureInfrastructure

Add customer
“Bloggs”

InterfaceInterface
ModulesModules

DataData
FileFile

Test ProgramsTest Programs

Interaction
Drivers, Library
functions, Etc..

© CISS Ltd 1999

Advanced Data-DrivenAdvanced Data-Driven

12

CUST ADD Smith John Perregren 29 Abbey Rd

ORDER ADD Widget Green 2inch

CUST UPDATE Smith Jon 30 Abbey Rd

CUST CHECK Smith Jon Perregren

CUST ADD B;loggs Jonhansen CUST-01

■■ Business Object LevelBusiness Object Level

■■ Screen/window LevelScreen/window Level

■■ WrappersWrappers

© CISS Ltd 1999

Advanced Data-DrivenAdvanced Data-Driven
■■ Actions in Test DataActions in Test Data

■■ Navigation in Test DataNavigation in Test Data

■■ Business tasks are automatedBusiness tasks are automated

■■ Tests specified at businessTests specified at business
language levellanguage level

■■ End-users can understandEnd-users can understand

■■ Object-to-Object Reference ratioObject-to-Object Reference ratio
reducedreduced

© CISS Ltd 1999

Business Object LevelBusiness Object Level

13

■■ Screen/windows are ‘wrapped’Screen/windows are ‘wrapped’
by test programsby test programs

■■ Test Program: Screen/windowTest Program: Screen/window
ratio = 1:1ratio = 1:1

■■ Object-to-Object Reference ratioObject-to-Object Reference ratio
of 1:1 or 1:2of 1:1 or 1:2

© CISS Ltd 1999

Screen/Window LevelScreen/Window Level

CISS’sCISS’s Automated Automated
Test ArchitectureTest Architecture

■■ Screen/window level data-drivenScreen/window level data-driven

■■ Screen/window to test program ratioScreen/window to test program ratio
of 1:1 - screen/window is wrappedof 1:1 - screen/window is wrapped

■■ Object-to-ObjectObject-to-Object ref ref = 1:1 or 1:2 = 1:1 or 1:2

■■ All navigation and actions in dataAll navigation and actions in data

■■ Each Class of UI object is wrapped byEach Class of UI object is wrapped by
one functionone function

© CISS Ltd 1999

14

CISS’sCISS’s Automated Automated
Test ArchitectureTest Architecture

■■ CISS’s TestDevCISS’s TestDev tool for test tool for test
management, test data managementmanagement, test data management
and test code generationand test code generation

■■ Implemented in TSL, Test BASIC,Implemented in TSL, Test BASIC,
SQA BASIC, SQA BASIC, AutoTesterAutoTester

■■ For AS/400, VB and For AS/400, VB and PowerBuilderPowerBuilder
SUTsSUTs

© CISS Ltd 1999

Test DataTest Data

© CISS Ltd 1999

#Screen IMOM00 =>IMACS/400 Main Menu

TEST TESTSTEP AUTOSTEP RUND
ATE

ACTIONKEY TESTACTION DFMOPT

B L=2

IMOM00 POLGIT01 1 1 ENTER 21

#Screen IMOM21 =>Underwriting Maintenance ===>

TEST TESTSTEP AUTOSTEP RUND
ATE

ACTIONKEY TESTACTION DFMOPT

B L=2

IMOM21 POLGIT01 1 2 ENTER 2

#Screen IMPL02 =>Register New Policy Renewal/
New Policy

Policy No.

TEST TESTSTEP AUTOSTEP RUND
ATE

ACTIONKEY TESTACTION DFOPTN PLPLNO

B L=1 B L=7

IMPL02 POLGIT01 1 3 Enter N

IMPL02 POLGIT01 1 4 Enter

IMPL02 POLGIT01 1 5 SHIFT+F2

15

How It WorksHow It Works

■■ Driver reads first line of dataDriver reads first line of data

■■ Passes data to test program forPasses data to test program for
the specified screen/windowthe specified screen/window

■■ Test program plays actionsTest program plays actions

■■ Driver reads next lineDriver reads next line

■■ …..etc.…..etc.

■■ Navigation in dataNavigation in data
© CISS Ltd 1999

Architectural StructuresArchitectural Structures

© CISS Ltd 1999

InfrastructureInfrastructure

Customer, “J”
“Bloggs”

Screen/Screen/
windowwindow
wrapperwrapper

DataData
FileFile

Test ProgramsTest Programs

Interaction
Drivers, Library
functions, Etc..

© CISS Ltd 1999

16

Edit-Box ‘Surname’, Data

Edit-Box ‘Forenames’, Data

Button ‘&Update’, Data

Screen/windowScreen/window
wrapperwrapper

EDIT BOX FUNCTIONEDIT BOX FUNCTION

BUTTON FUNCTIONBUTTON FUNCTION

Architectural StructuresArchitectural Structures

© CISS Ltd 1999

Test ProgramTest Program
GenerationGeneration

■■ UI object Wrappers for each objectUI object Wrappers for each object
typetype

■■ Screen/window descriptions used toScreen/window descriptions used to
generate test programs (screengenerate test programs (screen
wrappers)wrappers)

■■ Close to 100% testClose to 100% test

■■ Generates TSL, Test BASIC,Generates TSL, Test BASIC,
AutoTesterAutoTester, SQA BASIC, SQA BASIC

© CISS Ltd 1999

17

SUT ModelSUT Model
■■ Screen/window Descriptions loadedScreen/window Descriptions loaded

intointo TestDev TestDev from source code or from source code or
design documentdesign document

■■ Descriptions used to generate testDescriptions used to generate test
programsprograms

■■ Descriptions used to generate testDescriptions used to generate test
data layoutdata layout

■■ Gives model of the systemGives model of the system
© CISS Ltd 1999

Test Object Re-useTest Object Re-use
■■ Business object level architectureBusiness object level architecture

tests are at business language leveltests are at business language level

■■ Screen/window level architectureScreen/window level architecture
tests at lower leveltests at lower level

■■ TemplatesTemplates of business tasks reused in of business tasks reused in
teststests

■■ Not OO re-use at the moment - noNot OO re-use at the moment - no
inheritanceinheritance

© CISS Ltd 1999

18

Other FeaturesOther Features
■■ Library functionsLibrary functions

■■ ChecksChecks

■■ Key translationKey translation

■■ Recovery and error trappingRecovery and error trapping

■■ Reporting routinesReporting routines

■■ Performance monitoringPerformance monitoring

■■ Test data management supportTest data management support

© CISS Ltd 1999

The Advantages OfThe Advantages Of
Advanced ArchitecturesAdvanced Architectures

■■ Tests specified by test analystsTests specified by test analysts
in data filesin data files

■■ Object-to-Object ratio reducedObject-to-Object ratio reduced

■■ Reduced maintenanceReduced maintenance

■■ Reduced testing of testsReduced testing of tests

■■ Infrastructure components canInfrastructure components can
be used to test other systemsbe used to test other systems

© CISS Ltd 1999

19

ConclusionConclusion
■■ Wrappers for screen/windows andWrappers for screen/windows and

wrappers for each type of UI object -wrappers for each type of UI object -
wrappers within wrapperswrappers within wrappers

■■ Gives Object-to-Object ReferenceGives Object-to-Object Reference
ratio= 1:1ratio= 1:1

■■ Screen/window level architecturesScreen/window level architectures
mean test program generationmean test program generation

■■ Generation is from SUT modelGeneration is from SUT model

© CISS Ltd 1999

Advanced Automated Testing Architectures ©CISS Ltd 1

Advanced Automated Testing Architectures

John Kent M.Sc.
Email: john_kent@compuserve.com

29 Abbey Road
Horsell
Woking

Surrey GU21 4PQ
Tel +44 1483 768 992

Abstract
Many organisations have encountered difficulties when attempting to create realistic
automated tests using modern, script-based automated testing tools. As a consequence,
the way these tools are used has begun to change and more effective automation
architectures are beginning to be developed. Test automation is now often data-driven
with actions and navigation in the test data. Test programs are wrappers for either
business level or screen/window level objects. This paper reviews progress in this field
and offers an architectural approach that may indicate future directions. The
architecture is based upon screen/window level wrappers and UI object wrappers which
allow for test program generation from models of the system under test.

The Promise of Test Automation
Automated testers are in a fortunate position in that they can have their tests running overnight
while they are at home with their feet up, having a beer. Automated testers work when they are
not at work. That is a productivity level which no one else can match and a great reason for
being in this exciting area of software development. A large number of tests that used to have
to be painstakingly done manually at a snail’s pace and probably involving many testers, can
now be done by an automated tester whilst he or she is at home sound asleep.

This is the promise of automation: greatly increased productivity during test execution.
Software is becoming so complex that the cost of adequately testing every release of a product
manually is becoming prohibitive for many development organisations. Good software is
extremely expensive to create and testing it ‘fully’ could cost just as much again. Because
testing does not have a visible deliverable in the way that development does, this is a cost that
many organisations are not prepared to meet. What is needed to help test our software properly
is a great increase in tester’s productivity. The industry needs software to do the repetitive,
boring test execution tasks and the vendors have not been shy in supplying the basic tools to do
this.

Advanced Automated Testing Architectures ©CISS Ltd 2

Where Are We Now?
It is often a good idea to ask “where are we?” and “how did we get here?” Let’s do that here for
automated testing.

Has the promise of test automation been fulfilled? Unfortunately, no. The promised increased in testing
productivity has been attained only by very few of those who have taken up the challenge of automated
testing. This has been for a variety of reasons. Test automation is a very young branch of computing
and it is easy to get it wrong. Automated test tools are sometimes believed to offer ‘testing at the press
of a button’ and in extreme cases they are even thought of as a way to squeeze testing schedules even
further. These are complete misconceptions which have not always been discouraged by the tool
vendors. Many people feel that this lack of success has been due to use of the wrong tools and there has
been a lot of noise about tool evaluation in the testing community. But surely we can’t all be using the
wrong tools, can we?

Automated testing can give real benefits but it involves an up-front and ongoing investment and the
software development industry is slowly coming to realise this. Rather than simply a way of squeezing
testing, automated testing should be seen as a way to do more thorough testing1.

Many of the problems with automated testing are primarily due to the approach adopted rather than the
fault of any particular tool1.

The test automation community is coming to realise that the structure or architecture of the automated
test programs and data has a major influence on the success or otherwise of an automation project1, 2, 3.
Building automated tests with certain structures (or the lack of them) is doomed to failure within the
resource constraints of most software projects. This paper explains why certain approaches don’t work
and describes the new architectures and the key factors in building an advanced architecture.

How Did We Get Here?

Automated Testing of Mainframe Systems
Tools for automated testing of user interfaces were first built for text-based, mainframe systems and
were called ‘Capture/Playback’ (or ‘Record/Playback’) because recordings of each screen were captured
when the user pressed the Enter key (or a function, ‘F’ key). These could then be used to play the data
back into the system in order to retest the software. In a mainframe system, the user communicates with
the processor (and thus the software to be tested) only when he or she presses Enter or a function key.
In between each press of the Enter key, data can be input into the terminal but it is not sent to the
processor until the function key is pressed. Thus the mainframe text-based automated tools did not
actually record user actions, they recorded terminal/processor conversations. The tests were recordings
of what was sent to the processor on pressing the Enter key and what was sent back by the software
under test.

These tools were ‘true’ record and playback – as we will see later tools were not. The better tools
would stop the test on a difference between the current run and the recording and allow you to accept
the changes or record some more screens so that you could, for example, change incorrect reference
data. Other tools would simply terminate the test run when a difference was found.

Although some of these tools were quite basic, they could be made to work, and work well. The author
was involved in a test project on a mainframe system at an insurance company in the late 1980’s where
recordings of over 100,000 screens were successfully used to find bugs during regression testing.

Advanced Automated Testing Architectures ©CISS Ltd 3

Automated Testing On PCs
With the introduction of PCs and then GUIs, the user/software interaction became much more complex.
With PCs, each user has his or her own processor rather than having to share one processor with many
others, as with mainframes. This means that on PCs the user/software interaction is much closer. For
example, in a GUI the application software is invoked not just when the user presses Enter—a GUI
system can respond to any key press or mouse click or even just putting the mouse over a particular part
of a window. GUI software is said to be event-driven because the application responds to a variety of
user actions including mouse clicks, mouse movements and key presses—i.e. it is driven by user created
events. Because of this closer user/software interaction, automated test tools could no-longer simply
play-back the text on a screen; rather, they needed to be able to play-back the users’ actions. The only
way to do this is to have a list of actions which are performed on the SUT (System Under Test). These
lists were called Scripts and thus the tools became script-based.

How Scripted Tools Work
Scripts contain actions such as Type ‘Smith’ in the surname text box and Click the OK button. In Visual
Test, for example, a script might look like this:

 Play "Smith"
 WButtonClick("&OK")

You can record scripts with most of the test tools on the market. You set the test tool into record mode
and then perform actions on the SUT. The recording will consist of a list of your actions.

These scripts are actually written in programming languages and you can write scripts manually as well
—this is often called Scripting but perhaps ought to be called programming, because that is what it
really is—more on this later.

Object Identification
Early on it became apparent that the tools needed to ‘understand’ the objects in the user interfaces
(called controls in Windows—e.g. text boxes and list boxes) and to be able to interact with them quite
closely. Selecting an item in a drop-down combo could be recorded as a series of mouse clicks:

Play "{Click 211, 55, Left}"
Sleep(7.168)
Play "{Click 184, 134, Left}"

but this is not very helpful or maintainable. It is better to have something like:

WComboItemClk("@1", "Mr")

which means select the item “Mr” in the combo box identified by the symbolic name "@1". It is
equally important that the automation tools can retrieve data from these controls as well as input it.

The tool vendors have spent a lot of their time improving what some of them call ‘object recording’ like
this. The automated test tool you use should include a library of functions you can call from the test
tool’s programming language which will interact with the objects in the system you are testing; for
example, PowerBuilder’s Data Windows or non-standard Visual Basic controls. The tool vendors have
to produce these libraries for any new, non-standard controls. Some tools have generic functions which
interact with non-standard controls but this functionality is often limited.

Advanced Automated Testing Architectures ©CISS Ltd 4

Automated Test Methods
Because these tools come with their own programming languages, they can be used in a variety of ways
and that is what this paper is really about—how do you use the tools for the best results?

Paradigm Lost: Record/Playback
Automated testing tools are often called ‘Capture/Playback’ or ‘Record/Playback’. It sounds great
doesn’t it? I’ve heard it a thousand times: “…all you have to do is simply record your tests and replay
them whenever you like.” It is a sad fact that this is not the whole truth. Record and playback looks
great as well, but it only really does what is it is supposed to do in one situation: the tool vendor’s sales
demo. It is the ideal sales feature—you will see a great demonstration of a robot doing the work a
highly paid technician used to do. It’s simple and you don’t need expertise to do it.

There is a growing body of opinion in the test automation community that recognises that it is not
practical to create automated tests by simply recording them with script-based tools2, 3, 4, 5, 6. Recording
does not work for a number of reasons, the most important of which is that re-runnable tests must cope
with what may happen, not simply what has happened. For example, one of the objectives of running
tests against a system is to find errors that were not there before. The automated tests must have code
that recognises errors and this must be programmed into them. A test cannot simply be a recording
played back into the SUT; rather it is an interaction between the test tool and the SUT. You can use
recording as a way of helping to create automated tests but you will have to take them and modify them
by programming. Record/Playback tools are not really Record/Playback at all, they are
Program/Playback tools.

Recording also produces unmaintainable scripts that consist of a long list of references to objects on
your user interface. For example, I recorded typing the above sentence with Visual Test and this is what
the recording looks like:

CurrentWindow = WFndWndC("Microsoft Word - QW99Pap.rtf", "OpusApp", FIND_AND_MAX,
Timeout)
Play "{Click 538, 0, Left}"
Sleep(2.374)
Play "{ENTER}Recording also pr"
Play "oduces i{BS}unmaintaai{BS}{BS}inable scripts"
Play " that"
Play " "
Play "consist of a long list of references to objects on you ue{BS}ser interface"
Play "."

The ‘{BS}’s are where I have typed a backspace. I’ll try to play this back (it should type the next line)
and see what I get:

Recording also produces unmaintainable scripts that consist of a long list of references to objects on
your user interface.

Brilliant, so it works. So now I’ll underline the word unmaintainable here and italicise it by selecting it
with the mouse and clicking the Underline and Italics buttons. This is what I get when recording with
Visual Test:

Play "{BtnDown 409, 136, Left}"
Sleep(5.232)
Play "{BtnUp 513, 137, Left}"
Sleep(2.106)
Play "{Click 302, 53, Left}"
Play "{Click 320, 53, Left}"

Advanced Automated Testing Architectures ©CISS Ltd 5

I tried to replay this and eventually, after some editing of the script got it to work. I had to remove the
first sleep statement in order ensure that the word was selected and of course I took the underline and
italics off in order to return to the initial state. It worked after editing, but look at this script. Not only is
it unpleasant code, it is also unmaintainable (well, at least very difficult to maintain) because it contains
XY co-ordinates which makes it almost impossible to identify what it is doing and to which controls.
More importantly for re-running this, the SUT—in this case Word 97—has to be exactly the same state
as when I recorded. That means the document should be open with the word unmaintainable in exactly
the same place. Whilst this is not impossible, it is rather difficult and would be even more so in the
middle of a large automated test. What is needed is a different approach here. For example, it may be
better to select the word using the ‘Find’ dialog box (Edit|Find menu item) in order to test the Underline
and Italics buttons.

Another reason that record/Playback does not work is that the script can easily get out of sequence with
the SUT. The script may need to wait for a window to appear—if it doesn’t appear in time the script
may just carry on clicking and keying anywhere. ‘Wait’ conditions may need to be programmed into
the script.

If an error is encountered during a test run it is likely that the whole test schedule will come to a stop. It
is indeed ironic that, although the objective of automated testing is to find bugs, if the SUT behaves in
an unexpected way—i.e. there are bugs—then these automated tests will not work.

Finally, with Record/Playback you end up with data hard-coded into your test program … which we
know from software engineering is not a good approach to building software6.

Record/Playback may be OK for knocking together short, simple demonstrations but for large, real-life
automated regression tests it is a non-starter. On the old, text-based mainframe tools it was possible to
create replayable tests by recording hours of user input from more than one terminal. Try recording just
one hour of input with one of the modern GUI script-based tools and see how well it replays. Without
knowing anything about your system I can guarantee that it will not run all the way through. Another
enlightening exercise is to try to fix the recorded script in order to see what you would have to do get it
to replay correctly and how long it would take you.

Disadvantages of Record/Playback (script-based tools):
• Does not work for realistic tests

• Tests need to expect the unexpected

• Replays can get out of sequence with SUT

• Recordings cannot recover from an error

• Scripts are unmaintainable jumble of object references

• Test data is hard-coded

Test Translation
Once you accept that Record/Playback is primarily a sales gimmick for script-based automation tools,
you have to accept that you will need to do some programming in order to create automated tests. You
may use Recording as a starting point for these programs (to give you the basic object references), but
no more than this.

Advanced Automated Testing Architectures ©CISS Ltd 6

An alternative approach to Record/Playback is to ‘translate’ manual test procedures into automated test
scripts written in the test tool’s scripting language. Each step in a manual test procedure is the basis for
one or more automated test scripts. This is the approach that many automated testers originally took, is
still widely used, and is about as advanced as most test tool vendors get in their understanding of
automated testing. The ‘Test Translation’ method can work but it has some fundamental limitations. It
ultimately can become a victim of its own success in that the more tests that are automated, the more
programming and maintenance that has to be done. If you have 50 windows in the GUI system you are
testing, you may wish to create 500 tests for a system test. So now the development group have 50
programs to maintain and you have 500. Say that you get to be very good at automated testing; you
may create 1000 automated tests. When you wish to test the next release of the system, the
development group still has about 50 programs to maintain but now you have 1000.

The ‘Test Translation’ method leads to large numbers of automated test scripts which have test data
hard-coded into them. You wouldn’t hard-code data into programs so why hard-code test data into
automated tests? Automated test scripts need to be developed, maintained and tested in exactly the
same way as any other software. Thus the Test Translation method becomes a victim of its own success.
In the example above you would be testing a system with 50 programs using 1000 programs which
would require maintaining and testing (more on this later).

Disadvantages of the Test Translation method:
• Test data is hard-coded

• Script to test procedure ratio is 1:1 or worse—the more tests, the more scripts to maintain

• Many test programs (scripts) to maintain

• Many test programs (scripts) to test

A Note on Horses
Well, not really horses but horses for courses. Microsoft have used the test translation method to good
effect for some time. This is due to many factors but there are perhaps three major ones. First they
have a great deal of resources to throw at testing and have developer-to-tester ratios7 of about 1:1.
Second, they have an iterative development life cycle7, repeating tests many times, and so it is more
cost effective to use Test Translation than to do manual testing. Third, and perhaps more importantly,
they are testing different types of applications from most of the rest of us. Most testers in corporations
are employed to test database systems. Testing an insurance database for example, requires a very
different approach from that used for testing a Word Processor. The main factor governing insurance
database system testing is that lots of test data is required which is used in Time Travel tests because
these systems manipulate data over time. This Time Travel involves—resetting the business date for
different parts of the system test. It is very different from testing the functionality of a software product
such as a word processor.

Generally the testing world needs a better way to automate tests than this.

Reasons For New Approaches:
I have listed some of the reasons for taking a new approach above; but there are more, so I will list them
all here:

Automation Not Fulfilling Its Promise
As we have seen, lots of organisations buy automated testing tools, but the number of those who have
benefited from them is low and the number who have used them to fulfil the promise of automation—

Advanced Automated Testing Architectures ©CISS Ltd 7

large automated tests—is even lower. Any new approach to automated testing must provide the
facilities to be able to:

• Run large numbers of repeatable tests

• Run those tests unattended

As I mentioned above, when re-running a test you must cope with what may happen, not simply what
happened when you ran the test the last time. Many testers build automated scripts in a way that is in
conflict with what they are trying to achieve. They are looking for unexpected behaviour in a system,
i.e. bugs, and yet they build automated tests that will stop (or worse) when something unexpected
actually happens. This means that an automated test script could stop at any point and the tester cannot
rely on it completing. One of the greatest benefits of automated testing will be lost—that is, having
your system tested while you are at home tucked up in bed. One of the primary objectives of automated
testing should be to create automated tests that can be run unattended. When your automated test finds
that the SUT has behaved in an unexpected way, it should be able to recover. Recovery means getting
the system back to the starting state (closing all the children of an MDI window for example) and then
continuing with the next test.

Testing The Tests
When a new release of a system is handed to the test team and the automated tests are run against it, two
things are being tested. Of course the SUT is under test as you would expect but, importantly for us
here, the automated tests themselves are also being tested. In the real world most failures in automated
tests are due to bugs in the test code or test data—not in the system being tested. There is no way
around this; it is a fundamental fact about automated testing. We as automated testers need to embrace
this fact rather than ignore it, hoping it will go away. Automated tests need to be built in a way that
takes this fundamental truth into account. A major problem with the Test Translation approach is that
the more tests you have, the more tests you have to test.

This is so important that we’ll summarise it here:

When you run automated tests against a new release of a system you are testing:
• The system under test

• The automated tests themselves

The Importance of Maintenance
Automated testing is a bit like trying to hit a moving target. The target, the SUT, keeps changing.
There are changes between subsequent releases as well as changes during the development of a release.
This is another fundamental fact about automated testing that we need to embrace6. Automated tests
need to be light on their feet so that they can be changed quickly in order to cope with their constantly
changing target.

Object-to-Object Reference Ratios

The key factor in the maintenance of automated tests is the number of times the they refer to an
individual object on the user interface. The more references you have to User Interface (UI) objects,
such as test boxes and combo boxes in Windows, the higher your maintenance burden (and incidentally
your ‘testing the tests’ burden). This is the Object-to-Object Reference Ratio—the object to the number
of times it is referenced in the test automation.

Record/playback may have references to an individual object many times as the user interacts with that
object, thus its Object-to-Object Reference Ratio is one to many. Test Translation also scores low here
because the test scripts are based upon the tests themselves and an individual user interface object may
be referred to by many tests. With either of these methods increasing the number of tests your

Advanced Automated Testing Architectures ©CISS Ltd 8

automation performs is likely to make the Object-to-Object Reference Ratio more unfavourable. In the
example given above, where the number of tests is increased from 500 to a 1000 the Object-to-Object
Reference Ratio could, if all of the tests use that UI object, go from 1:500 to 1:1000.

An advanced approach tries to minimise the number of times an object or control on the user interface is
referenced in the automated tests—bringing the Object-to-Object Reference Ratio as close to 1:1 as
possible, thus minimising maintenance and testing of the tests.

Scripts Are Really Programs
The term script is rather unfortunate. Automated test scripts are really programs3, 5, 6. A script is a list
of step-by-step instructions for something, but automated test scripts need to contain conditional
processing (if statements and loops—do whiles etc.). An actor in a play has a script which is a list of
sequential instructions. There aren’t any plays where the script says “if the audience look bored skip to
Act 3.” In a play, one scene follows another, whereas an automated test should make decisions which
are dependent upon the behaviour of the system being tested. The test cannot simply be a recording
played back into the system, rather it is an interaction between the test tool and the SUT. The SUT may
behave differently on the next test perhaps due to an error or a change and the script should generally be
able to handle new responses from the system. Thus automated test scripts are really programs and
have to be developed and maintained in the same way as any other software.

Once you accept that automated test are really programs, you, as testers, should not have difficulty with
the idea that they need to be tested. You will know that the more you test your automated tests, the
more confident you can be that they will work under all possible conditions.

Redefining terms:
• Test Program—the software part of an automated test, usually written in the test tool language

(e.g. Test BASIC, TSL, SQA BASIC).

• Script—a list of sequential actions to be performed in order to exercise a test. Often written
using a spreadsheet, word processor or test management tool.

A Software Engineering Approach To Test Automation
Test automation has been sent down some blind alleys by the Record/Playback paradigm, encouraged
along by the idea that automated tests can be ‘scripts’. Test automation is a software development
process and should conform to the disciplines of software engineering. The part of the automated tests
written in the so-called scripting languages provided by these tools are really programs and must be
developed, maintained and tested in the same way as any other software.

We need to take a software engineering approach to test automation. We certainly will not improve
things if we start writing test programs from scratch each time we want to automate the testing of a new
system. No, we should be taking what we already have and improving on it. We need a structured
approach that aims to get the Object-to-Object Reference Ratio as close to 1:1 as possible. We should
also have a library of functions that plug into the test automation in the same way that C++ developers
get Microsoft Foundation Classes.

Advanced Architectures
In recent years a number of test automation architectures3, 4, 5, 6, 8, 10, 11, 12, 13 have been proposed. The
whole thrust of advanced automation techniques has been to move the creation of automated tests to
higher levels of abstraction. These architectures allow test analysts to specify tests without having to
know anything about the automated test tool and how it interacts with the SUT UI objects. The test
programs deal with the low-level interaction—the test analyst uses symbolic names for objects used in
the tests. Advanced architectures also move the Object-to-Object Reference Ratio closer to 1:1 than

Advanced Automated Testing Architectures ©CISS Ltd 9

with standard architectures by referencing objects in test programs rather than in the tests themselves.

An advanced automated test script architecture should provide:
• An Object-to-Object Reference Ratio as close to 1:1 as possible.

• A test program structure that promotes easy maintenance.

• A test program structure that is easy to test (testing the tests).

• Ability to recover from unexpected conditions.

• Basic infrastructure components.

• Tests specified at higher level of abstraction—using symbolic UI object names.

Framework Based Architectures
One way to improve upon the Test Translation Architecture is to use a Framework Architecture. In a
Framework6, 8, 9—called The Functional Decomposition Method by Zambelich3—system functionality is
automated by functions held in the test library. Tests can then be created by calling these functions
from a test program which passes parameters to them. The functions can automate low- or high-level
tasks. They can be business task based—for example, Add_Cust(“Smith”, “John”)—or system
screen/window based—for example, OpenFile(“xxx.doc”). These functions act as wrappers around
what they are automating. ‘Wrapper’ is an Object Oriented term which is used loosely here to mean a
module that handles all the interaction with the thing it ‘wraps’ around. Thus the Add_Cust function is
a wrapper for the process of adding a customer to your SUT. Similarly the Open_File function is a
wrapper for the open file dialog box. Individual objects on the open dialog box are only accessed by the
Open_File function. The tests themselves do not actually interact directly with the object only with the
function.

Data-Driven Architectures
An architectural feature that has been around for a while is that of data-driven tests where the test data
is held in a separate file which is read and interpreted by the automated test code. A data-driven
architecture reduces the burden of maintenance and ‘testing the tests’ because functions are repeatedly
used to interface with the SUT; thus the Object-to-Object Reference Ratio is closer to 1:1 than with Test
Translation methods.

In early data-driven Architectures all of the navigation was handled in test programs. The test programs
would navigate to a screen, read the first line of data, input it, read the second line of data and input it
and so on until all of the data had been input. The program might then go to another screen, open up
another file and do the same thing. Thus the test data was just that—data. The sequence of actions was
governed by the test program.

Data Driven Architectures With Navigation Extracted From The Test Programs
The next step in the development of an automated testing architecture was to remove the navigation
from the test code and move it , or at least some of it, to the test data3, 4, 5, 10, 11, 12, 13. The test programs
are instructed what to do by the test data in the same way a manual tester is by a test procedure
document. This means that it is possible to put behaviour into a test data file. Thus test data files can
control the behaviour of the SUT and navigate around it as well as simply providing data to be input.
Zambelich calls this Totally Data-Driven Automated Testing3.

With this approach the test programs are no longer tests at all; rather they are wrappers that interface the
tests to the system under test. The test data becomes the test script in that it is a list of instructions that
drive the software.

Advanced Automated Testing Architectures ©CISS Ltd 10

This is really a combination of basic data-driven and framework architectures. The tasks are automated
by wrappers that have parameters—test data—passed to them, only this time the test data is held in files
rather than in a test program. As with framework based architectures this can be done at the business
object level—for example, Buwalda’s ActionWords10 and Ottensooser’s Data Independent Test
Scripts13—or the screen/window level, as in the author’s approach4, 5 which will be discussed in depth
below.

Business Object Level Architectures
In Business Object Level Architectures, business tasks are automated. Test data for an automated test of
this type might look like:

Create_Cust “Smith”, “John”, …
Create_Account “Smith”, “John”, “Cheque”,….
Debit_Account “Smith”, “John”, “$1000”,….

Thus much of the navigation is in the test data. As you can see from the above example, test data in
Business Object Level Architectures is at the business language level and therefore understandable by
end users which is a great advantage10. This approach also gives a lower Object-to-Object Reference
Ratio than for Test Translation because the UI objects are only referenced on a per business task basis.

Screen/Window Level Architectures
Figure 1 shows the Screen/window Level Architecture approach. In this architecture there is one test
program that deals with each screen/window in the system—it acts as a wrapper for that
screen/window—it handles all of the input and output (getting values) from it. The test data is held in a
separate text file and is passed to each test program as it is needed. Thus the navigation is in the test
data. This structure gives a ratio of Window-to-test program of 1:1, and thus also an Object-to-Object
Reference Ratio of 1:1, so if a change is made to a window in the SUT, only one program needs to be
changed and tested.

__

Advanced Automated Testing Architectures ©CISS Ltd 11

 Automated Test Code
Window 1 Program

DRIVER Window2 Program

Reads a line from data Window… Program
file and selects the
correct Program for Stock_Item Program
the current window.

TEST DATA FILE Actions played into SUT

STOCK, IM-STOCK00, 02, This is the Stock Item Window
STOCK, IM-STOCK01, 01, This is the

Fig. 1 Data-driven tests: One test program per window in the SUT in this case.

Advanced Automated Testing Architectures ©CISS Ltd 12

An Advanced Automated Test Architecture
The author has been developing automated test architectures since 1992 for both GUI and textbased
SUTs using script-based automation tools. The author has developed a tool called TestDev which is used
to implement this architecture and incorporates test management, system modelling and test code
generation facilities (more on this later). The architecture incorporates all the advanced architectural
features we have discussed so far.

• Object-to-Object Reference Ratio is 1:1 or 1:2—minimising maintenance and testing

• Completely data-driven including all navigation

• All test and user actions are in the test data

• It takes the Window/screen-level approach

• Each class of UI object is ‘wrapped’ in just one (or sometimes two) functions

• It has infrastructure components; e.g. recovery, etc.

This architecture is implementation-independent—i.e. it can be implemented with any script-based test
tool.

Architectural Overview

The Data
The data needed for each test is held in a comma-separated file created using Excel spreadsheets.
Figure 2 shows an example of part of an Excel spreadsheet with test data for an actual test carried out
recently on a textbased AS/400 system. Although this example is for a textbased system, automated
tests of GUI systems have been done using the same principles of this architecture but implemented in
slightly different way.

#Screen IMOM00 =>IMACS/400 Main Menu

TEST TESTSTEP AUTOSTEP RUND
ATE

ACTIONKEY TESTACTION DFMOPT

B L=2

IMOM00 POLGIT01 1 1 ENTER 21

#Screen IMOM21 =>Underwriting Maintenance ===>

TEST TESTSTEP AUTOSTEP RUND
ATE

ACTIONKEY TESTACTION DFMOPT

B L=2

IMOM21 POLGIT01 1 2 ENTER 2

#Screen IMPL02 =>Register New Policy Renewal/
New Policy

Policy No.

TEST TESTSTEP AUTOSTEP RUND
ATE

ACTIONKEY TESTACTION DFOPTN PLPLNO

B L=1 B L=7

IMPL02 POLGIT01 1 3 Enter N

IMPL02 POLGIT01 1 4 Enter

IMPL02 POLGIT01 1 5 SHIFT+F2

Fig. 2 Data-driven tests: EXCEL spreadsheet Test data for a textbased system.

The lines in the spreadsheet that start with ‘#’ are comments and ignored by the automation program’s

Advanced Automated Testing Architectures ©CISS Ltd 13

outlines. All other lines are actual test data and instructions. The comments in this case are screen
descriptions which have three lines. The first line in the screen description has the screen name and the
field labels on the AS/400 screens to be tested. The second screen comment line contains the internal
AS/400 program names of the fields (e.g. “DFMOPT”, “PLPLNO” and “TESTSTEP”). The third line
contains B or O for each field meaning “Both input and output” or “Output only” for each field. This
line also has the maximum length of the field (e.g. “L=7” means length is 7 characters maximum). The
comment line’s only function is to give information on each screen to the person creating the test data.

The first seven columns of the actual test data are standard. Column 1 contains the name of the AS/400
screen to which that particular line applies. Columns 2, 3 and 4 contain the test name, test step number
and automation step number. Column 6 contains the ActionKey—this is the function key that is to be
pressed after all of the data for that line has been keyed in or checked. For example “ENTER” or “F3”.
Column 7 contains the TestAction which can be set to perform actions like ‘CHECK’ which checks the
values in the spreadsheet against values on the screen.

How The Test Automation Works
This data is read by a driver program which calls the test program for the screen named in column 1 of
that line of the data. It passes all of the data to this program which completes its tasks and returns
processing to the driver. The driver then repeats the process for each line of test data (see Fig. 1 for an
overview of this process). So, for the data in Fig. 2, the driver will read the first line and call the test
program IMOM00 (in this case the test program has the same name as the screen it tests) which deals
with the IMOM00 screen—the main menu of the SUT. The IMOM00 test program keys ‘21’ into the
DFMOPT fields, presses Enter (the ActionKey) and returns control to the driver. The driver reads the
next line of data and calls the test program specified in that line—IMOM21 and so on. Thus, it can be
seen that there will be one test program for each screen in the system (this is a slight simplification for
the sake of clarity—it’s one program per logical screen).

Architectural Structures
Each test program is a wrapper for the screen it tests. It contains all the information it needs on each UI
object in the screen/window so that it can do the tasks required of it, such as input test data and check
values. Thus the Object-to-Object Reference Ratio is the ideal 1:1.

When a test program runs it does not actually input test data or check data values itself; rather, it calls
functions that deal with each type of UI (see fig. 3), These functions are object wrappers for each class
of UI object. There will, for example, be one function for text boxes that will handle all of the test data
input into all text boxes in the SUT.

Thus there are wrappers within wrappers. Wrappers at the screen/window level—the test programs
which use wrappers for each type of user interface object—the functions for that object class.

In the large AS/400 test that the test data example is taken from there were only four functions that input
or checked test data values—two for each of the user interface object types:

• 2 functions for text fields

• 2 functions for Subfile fields (AS/400s version of scrollable list boxes)

For the whole of a large regression test lasting of over 60 hours of automated testing, there were only
four functions actually inputting the test data and getting screen values.

Advanced Automated Testing Architectures ©CISS Ltd 14

Fig. 3 Test programs call functions for each UI object class.

UI Object Wrappers
The behaviour of UI objects—text boxes, combo boxes, etc.—is well understood because development
build the system using these components. Thus generic wrappers for these objects can be built based
upon their behaviour. Functionality can be built to get and set their properties and initiate their
methods—i.e. do things to an object that a user might do.

The Object-to-Object Reference is still determined by the test programs because they contain the
references to each individual object (each instance), but the program code that actually interacts with
those objects is held in the function that deals with that object class. Because the input of test data and
the checking of results is handled by one (or maybe two) functions per UI class—e.g. one function
inputs data into all of the Windows text boxes in the system—a high level of confidence can be attained
in these functions. They are repeatedly used and thus tested.

Test Program Generation
A screen/window level approach has been chosen for this architecture because it offers one major

TEST PROGRAM

EDIT-BOX FUNCTIONEdit-Box ‘Surname’, Data

Edit-Box ‘Forenames’, Data

Button ‘&Update’, Data
BUTTON FUNCTION

Advanced Automated Testing Architectures ©CISS Ltd 15

advantage over the business object level architecture. Because the behaviour of the UI objects within a
system are defined and known and the behaviour of the screens or windows can be defined, it is possible
to generate the test programs for each screen/window from descriptions of those screens. The TestDev
tool is used to generate the test programs. It does not actually run the tests itself; it generates test code
for the chosen automation tool. Currently it has been used to generate Test BASIC(MS-Test and Visual
Test), TSL (WinRunner) SQA BASIC (SQA Robot) and Autotester Outlines. The generators are
constantly being improved and TestDev is now close to generating 100% of the test code and in some
cases actually 100%. Some manual programming effort has been necessary in order to cope with
unpredictable system behaviour. This unpredictable behaviour is usually in the area of system
generated keys (see the section on Key Translation below).

The basic architectural components can be used to test many different types of system; only the actual
screen/window programs must be generated for each SUT, but this generation can be based upon
descriptions of the SUT that can come from the system’s source code, or from automatic inspection of
the actual running executable. Alternatively, these descriptions can be derived from system design
documents in order to start building test automation for a system that has not yet been delivered. In the
AS/400 example, the test programs were generated from the AS/400 screen definition files (DDSs).

Actions At The User Interface Level
Another reason for choosing the screen/window level for this architecture is that all of the UI objects
(and therefore their methods) that a user can access on a screen or window can be made available to a
tester when creating the automated test data and actions. This includes selecting any button or menu
item available. Business Object Level automated testers believe that this level of detail at the test
creation stage is too much of an overhead and impossible to automate, but if your test programs are
generated from the SUT it need not cost you anything to have access to any object in the SUT. The
benefit of having all of the possible UI objects available to the test analyst at the test data creation stage
is that it gives them complete freedom to perform any action on the system. With the Business Object
Level only the business tasks that have been automated can be performed.

Automation Is Based Upon A Model of The System
The screen/window descriptions provide a model of the system which is used not only to generate the
test programs, but also to create the spreadsheet format for test data creation. The screen descriptions in
the test data in figure 2 were generated from AS/400 source files (DDSs) downloaded onto a PC. The
TestDev tool provides system modelling and test program generation facilities as well as test
management and test data management. It has functionality which loads the screen/window
descriptions, generates the test programs for each screen/window and generates the test data spreadsheet
format for each screen/window.

The automated tests (the test data) are based upon test procedures which are documented within the
TestDev database in the same way that manual tests might be. The test procedures consist of test steps
and the automated test data for each test step is contain in a series of ‘AutoSteps’ (see col. 4 in fig. 2).

Test Object Re-use.
One of the great advantages of the Business Object Level Architectures is that the test data is created at
the business language level and therefore understandable by end users. The architecture we are
describing here is built at a lower level—the screen/window level—and so the actions in the test data
are at this low level. You can see from figure 2 that the actions in this real test data are at the screen
level and quite detailed. This provides the advantage that all of the UI objects—and therefore the
possible user actions—are available for the tester to specify in the test data but it also means that the test
data cannot be specified at the business language level.

Some facilities have been provided in the TestDev tool so that tests can be re-used. Basic business tasks

Advanced Automated Testing Architectures ©CISS Ltd 16

are automated and the test data is saved off as test objects or Templates which can then be used to create
tests. This is not re-use in the Object Oriented sense at all—there is no inheritance here; it is really just
copying but it currently serves its purpose of allowing a test analyst to create tests by stringing together
business level test objects. One of the more important tasks for the future is to build true inheritance
into test objects thereby allowing us to build tests at higher and higher levels.

Other Features of The Architecture
Because each component of the architecture has a standard structure, it is relatively easy to include lots
of additional test facilities in it. As structured architectures such as this one mature, they start to
become very feature rich in terms of test automation features. A good source for information on such
features is provided by Bach in Useful Features of a Test Automation System14. Here’s a list of some of
the standard features currently included in this test automation architecture:

Checks
It is not enough to test a system by simply inputting data. A test consists of input and output—checks
against expected values. This is especially true in test automation where inputting data to a system is
often much easier than getting output from it. This can be done using the ‘CHECK’ TestAction where a
screen value is checked against a value in the test data. In figure 4, below, the test automation will
check that the risk class field contains the value ‘APL’ and the Underwriting Year field contains ‘98’.

#Screen IMPL02 =>Register New Policy Risk Class Underwriting
Year

TEST TESTST
EP

AUTOSTE
P

RUNDATE ACTIONKE
Y

TESTACTION RISKCL UWYEAR

B L=3 B L=2

IMPL02 POLGIT01 1 23 F3 CHECK APL 98

Fig. 4 A Check in test data.

Having the expected values for a test in the test data is a much better way to do things than having them
hidden in some ‘check file’, as is suggested by many tool vendors’ user manuals. The standard
automated check functionality provided by many tools does not lend itself to easy maintenance and is
similar to hard-coding the test data.

Key Translation
The architecture can cope with system-generated fields. This usually applies to key fields—for example
Policy Number or Customer Number—where the SUT generates a value for them. While writing tests,
a test analyst may wish to create a business object (e.g. a Policy or Customer entry) and then later in the
test refer to it for some reason. If a business object uses a generated key, the test analyst has no way to
of knowing in advance what the value will be. These values can, however, be represented using
symbolic names. The names are specified in the test data and, once set, can be used later in the tests.
The test programs save the symbolic name and its system generated value—looking it up when-ever it is
used in the test data. This is known as Key Translation and is extremely useful for some SUTs.

Recovery
Automated tests should, as much as possible, be built in a fault-tolerant manner so that they can run
unattended. If the system behaves in an unexpected way, the test programs should be able to recover
and continue. Recovery functionality provides a means of dropping a test and getting the SUT back to a
known base state so that the next test can be run—e.g. closing all the children of an MDI window. It is
used whenever the automated test programs discover that they are in the wrong place—i.e. that the
wrong screen/window is displayed and the SUT is in an unexpected state.

In this architecture the SUT is checked at the beginning of every test program in order to ensure that the

Advanced Automated Testing Architectures ©CISS Ltd 17

screen/window displayed is the appropriate one for the test program. If it is not, recovery is invoked.

Reporting
Large automated tests can generate massive report logs especially if you use the vendor supplied logs
which detail events at a very low level. The generated test programs within the architecture described
above report events in a way that allows the tester to view results at different levels of detail. The
resultant reports can be tied back to the test procedures on the TestDev database. If any AutoSteps
within a test step fails then the test step itself fails.

Performance Measures
Because the architecture is screen/window-based it is relatively easy to incorporate performance
measuring functionality in the generator so that a standard set of measures can be applied to each SUT
action.

Test Data Management Support
TestDev provides support for the test data spreadsheet creation process in the form of EXCEL macros.
These provide facilities to:

• Copy screen layouts into test data spreadsheets
• Copy Templates for test object ‘re-use’
• Roll dates forward (much used recently in Y2K projects)
• Scan data for specified values
• Scan data for occurrences of specified fields

Once you have overcome the major problems of automated testing and actually build and run large
automated tests you find different problems. Test data management becomes more important as the
failures in the automated tests tend to be related to incorrect test data.

Implementation of The Architecture For GUI Systems
The test data examples given (see figures 2 and 4) are from a text-based system. Most of the actions in
this case are specified in the ActionKey field. There is only one ActionKey column per screen in the
spreadsheets because the possible user actions for a textbased system of this sort are essentially at the
screen/window level—i.e. pressing Enter or function keys. For GUIs this will not do, as we need to set
actions for each object on a window, and therefore the implementation of the architecture is different in
terms of test data creation though the fundamental principles remain the same.

Conclusion
Test automation is in its infancy and there is a long way to go before we can say that most organisations
benefit from it. Although the tool vendors have delivered some helpful new features over the past few
years the main problem has been due to the wrong architectural approach when implementing a test
automation tool. Test automation needs to be recognised for what it is—a software engineering
activity—and well understood software engineering principles apply just as much to the creation of
automated tests as to the system under test. Once advanced architectures are fully understood, realistic,
large-scale automation will gain wider acceptance.

Test automation is already moving away from simple ‘scripting’ towards using the test tools to create
wrappers for the objects on the user interfaces under test. Test actions have been moved out of the test
program code and into the test data. Along with this the actual tests themselves are being specified at a
higher level.

This main thesis of this paper has been that architectures that create wrappers at the screen/window level
can allow for test program generation to be used to create most of the actual test program code. This can
be done because the behaviour of UI objects is well defined and the automation functionality required

Advanced Automated Testing Architectures ©CISS Ltd 18

can be provided in a wrapper for each class of UI object. The generation is based upon a model of the
system which can be derived from source files such as screen or window definitions.

Another advantage of building automation architectures at the screen/window level is that all of the UI
objects and possible user actions can be made available to the test analyst at test data creation time.
Although this also means that the actions are not at the business object level, test creation can be moved
up to this level using test object re-use facilities. This is not yet fully provided for. Once this level is
reached, automated test creation will be very similar to the creation of manual test procedures except
that the format and names of the user interface objects will be derived from the system model.

The key to the effective implementation of new architectures is to them base on a model of the system
to be tested. The model can then be used both to generate the object wrappers (the test programs) and as
a basis for specifying the test procedures in a format that the automation programs understand. These
models can be created from the definitions of the system’s user interfaces or can based upon function
specifications if the system is still under development..

References
1. Bach, James: Test Automation Snake Oil—http://www.stlabs.com/

2. Paul Gerrard: Automated Testing: Past, Present and Future—Presentation at EuroStar’98.

3. Zambelich, Keith: Totally Data-Driven Automated Testing http://www.sqa-test.com/

4. Kent, John: Overcoming the Problems of Automated GUI Testing. Presentations to STAR 1994 and
British Computer Society SIGST Dec 1993.

5. Kent, John: An Automated Testing Architecture. Presentation to the British Computer Society SIGST
July 1997.

6. Kaner, Cem: Improving the Maintainability of Automated Test Suites—Quality Week 1997

7. Cusmano, Michael A. and Selby, Richard W. Microsoft Secrets: how the World’s Most Powerful
Software Company Creates Technology, Shapes Markets and Manages People. Harper Collins 1997

8. Arnold Thomas, R.II: Building an Automation Framework with Rational Visual Test—ST Labs
Report 1997

9. Arnold Thomas, R.II: Software Testing with Visual Test 4.0—IDG Books 1997

10. Buwalda, Hans Testing with Action Words—From Automating Software Testing (Chapter 22)—
Addison Wesley Longman (to be published 1999)

11. Pettichord, Brett: Success with Test Automation, Proceedings of the Ninth International Quality
Week (Software Research) 1996.
http://www.io.com/~wazmo/succpap.htm

12. Thomson, Jim: Business Object Scenarios: a fifth-generation approach to automated testing—From
Automating Software Testing (Chapter 22)—Addison Wesley Longman (to be published 1999)

13. Ottensooser, Avner: Data Independent Test Scripts—paper presented at STAR 1997.

14. Bach, James: Useful Features of a Test Automation System—printed in Thomas Arnold’s Software
Testing with Visual Test 4.0—IDG Books. Also http://www.stlabs.com/

Contents

• Introduction
• Background
• The Framework of MACT
• A Queue Class Example
• Test Cases Generated from MACT
• Data Flow Testing
• Test Cases Selected Based on Data Flow Testing
• Data Flow Testing Employed in MACT
• Other Functions of MACT
• Conclusions

A State-Based Testing Approach
Providing Data Flow Coverage in

Object-Oriented Class Testing

Bor-Yuan Tsai*, Simon Stobart,
Norman Parrington and Ian Mitchell

School of Computing, Engineering and Technology
University of Sunderland, UK

E-mail: {cs0byt, cs0sst, cs0npa, cs0imi}@isis.sunderland.ac.uk

*Also of Department of Information Management,
Tamsui Oxford University College, Taiwan

A Novel Class Testing Approach

A Functional Testing Technique + A Structural Testing Technique

State-Based Testing Data Flow Testing

State Machines Occurrences of Data

Implementation State Machines

Test Case Trees
Ó Ð Ô

 Test Messages Test Oracles Data Occurrences
Ô Ó Ð

State-Based Coverage Data Flow Coverage

Introduction I

1. Test Case Tree Generation

2. Test Message Generation
All Possible Adequate Test Massages Test Messages Selected Based

on Data Flow Analysis
(1) Difficulty
(2) Inadequate
(3) Ambiguous

3. Data Flow Techniques Used in
MACT
(1) Code Optimization
(2) Anomaly Detection

4. Test Driver Generation

5. Test Result Inspection

Introduction II

Functions of MACT:

Background

State-Based Testing examines the state values.

State Machines define the set of states and transitions.

Implementation State M achines reveal the behaviours
of the implemented class.

Data Flow Testing exercises paths from definitions to uses
of data members.

Test Cases create a starting state, transitions and the
expected next state.

Test M essages are sent to test the objects.

Design State Machine Implemented Class

Generate
Implementation
State Machine

Build Test
Case Tree

Produce
Test Driver

Test Messages

Implementation State Machine

Function Names
Diagram

Compile
and Run

Test

Test Driver

Program Code

Inspect
Test result

Test Result File

Test Oracle
Tree

Test Report File

Error Message

Generate
Test Cases

Test Case Tree

Test Result
Test Result

The components of the automated class testing framework (MACT)

Generate
Def-Use

Information

Test Case Tree

Computing
Def-Use

Paths

Data Flow
Coverage Report

Def-Use Info

Data Anomaly

The Framework of the MACT Tool

const int Size = 5;
class queue{
protected: char Q[Size]; // bounded array

int f, r; // Front/Rear index of queue
int count; // a counter of the array

public: queue(void); // default constructor
void is_empty(void);
int add(char); // add data to the queue
char del_data();//delete data from the queue
void sizes(void);// get the size of the queue
~queue(void); // destructor

};
queue::queue(void){

r = -1; f = 0;
count = 0;
for (int i = 0; i < Size; i++){
 Q[i] = ' ';}

}
int queue::add(char data){

if (count == Size){
 cout << "Not room for adding new data to stack\n";
 return (0);}
r++;
if(r==Size){
 r=0;}
Q[r] = data;
count++;
return (1); }

char queue::del_data(){
char data;
if (count == 0){
 cout << "can't delete data from an empty stack\n";
 return('0');}
data = Q[f];
f++;
if(f==Size){
 f=0;}
count--;
return (data);

}
void queue::is_empty(){

if (count == 0)
 cout<<"The queue is empty\n";
else
 cout<<"The queue is non-empty\n";

}
void queue::sizes(){

cout << "the size of the queue :" << count << "\n";
return;

}
queue::~queue(){

cout << "\nfinishing the class test\n";
}

The implemented C++ code of the queue class

T h e i m p l e m e n t a t i o n s t a te m a c h i n e o f t h e c l a s s q u e u e i s d e f in e d w i t h f i n i te s e ts I S M = (V , F , S , T) w h e r e
V = { c h a r Q , in t f , r , c o u n t}
F = { q u e u e () , i s _ e m p ty (v o id) , a d d (c h a r) , d e le _ d a t a (v o id) , s i z e s (v o i d) , ~ q u e u e ()}
S = { (E m p t y , c o u n t= 0) , (N o t F u l l , 0 < c o u n t < 5) , (F u l l , c o u n t = 5)}
T = { S 0 , q u e u e () , E m p t y , (c o u n t= 0) ; { [c o u n t , r , f , Q] }

E m p t y , i s _ e m p ty () , E m p t y , (c o u n t = 0) , { < c o u n t> }
E m p t y , s iz e s () , E m p t y , (c o u n t = 0) , { [c o u n t] }
E m p t y , a d d (d a t a) , N o t F u l l , (0 < c o u n t < 5) , { < c o u n t , r > , [r + + , r = 0 , Q [r] = d a ta , c o u n t + +] }
N o t F u l l , i s _ e m p ty () , N o t F u l l , (0 < c o u n t < 5) , { < c o u n t > }
N o t F u l l , s iz e s () ,N o t F u l l , (0 < c o u n t < 5) , { [c o u n t] }
N o t F u l l , a d d (d a t a) , N o t F u l l , (0 < c o u n t < 5) , { < c o u n t , r > , [r + + , r = 0 , Q [r] = d a ta , c o u n t + +] }
N o t F u l l , a d d (d a t a) , F u l l , (c o u n t= 5) , { < c o u n t , r > [r + + , r = 0 , Q [r] = d a ta , c o u n t + +] }
N o t F u l l , d e l_ d a ta () ,N o t F u l l , (0 < c o u n t < 5) , { < c o u n t , f > , [d a ta = Q [f] , f + + , f = 0 , c o u n t - -] }
N o t F u l l , d e l_ d a ta () , E m p t y , (c o u n t = 0) , { < c o u n t , f > , [d a ta = Q [f] , f + + , f = 0 , c o u n t - -] }
F u l l , i s _ e m p ty () , F u l l , (c o u n t= 5) , { < c o u n t> }
F u l l , s iz e s () , F u l l , (c o u n t = 5) , { [c o u n t] }
F u l l , d e l_ d a ta () ,N o t F u l l , (0 < c o u n t < 5) , { < c o u n t > , [d a ta = Q [f] , f + + , c o u n t - -] }
E m p t y |N o t F u l l |F u l l , ~ q u e u e () , S t , (Ø) , { Ø }

 }

T r a n s i t i o n N a m e s F u n c t io n N a m e s
c h e c k s i z e is _ e m p ty () | s i z e ()

A n I m p le m e n ta t i o n S ta te m a c h in e o f t h e q u e u e C la s s

d e le te o n e
N o t F u l l

a d d o n e
E m p ty

d e le te o n e

a d d o n e

d e le te o n e

a d d o n e

c h e c k s i z e

c h e c k s i z e

c h e c k si z e

F u l l

q u e u e () ;

is _ e m p ty () ;

a d d (c h a r) ;

d e l_ d a ta (in t) ;

s iz e s () ;

~ q u e u e ()

 [count=0], Que.is_empty(), [count=0].
 [count=0], Que.sizes(), [count=0].
 [count=0], Que.add(), [0<count<5], <Que.add(),...,Que.add()>,

[0<count<5], Que.sizes(), [0<count<5].
 [count=0], <Que.add(),...,Que.add()>, [0<count<5], Que.del_data(),

[0<count<5].
 [count=0], Que.add(), [0<count<5], Que.del_data(), [count=0].
 [count=0], <Que.add(),...,Que.add>, [0<count<5], Que.add(), [count=5],

Que.sizes, [count=5].
 :
 [0<count<5], Que.add(), [0<count<5], Que.add(),[count=5],

Que.is_empty(), [count=5].
 [0<count<5], Que.add(), [0<count<5], <Que.del_data(),…,Que.del_data()>,

[0<count<5].
 [0<count<5], <Que.add(),...,Que.add()>, [0<count<5], Que.add(),

[count=5].
 [count=5], Que.del_data(), [0<count<5].

:

Test cases of the Que object

:
Que.add();
Que.sizes();
Que.add();
Que.del_data();
Que.add();

:
Que.del_data();
Que.add();
Que.sizes();
Que.add();

:
Que.sizes();
Que.is_empty();

:

A test message file
for the Que object

del_
data()

0<coun
t<size

pu(count),
cu(f,Q), cu_d(f),

pu_d(f), cu-
d(count)

del_
data()

0<coun
t<size

pu(count),
cu(f,Q), cu_d(f),

pu_d(f), cu-
d(count)

is_e
mpty

()

count =
size

p(count) sizes() count =
size

c(count)

add() count =
size

pu(count), cu-
d(r), pu-d(r),

cu(r), d(Q), cu-
d(count)

is_e
mpty

()

0<coun
t<size

p(count) add() 0<coun
t<size

pu(count), cu-
d(r), pu-d(r),

cu(r), d(Q), cu-
d(count)

sizes() 0<coun
t<size

c(count) del_
data()

count =
0

pu(count),
cu(f,Q), cu_d(f),

pu_d(f), cu-
d(count)

add() 0<coun
t<size

pu(count), cu-
d(r), pu-d(r),

cu(r), d(Q), cu-
d(count)

sizes() count =
0

c(count) is_e
mpty

()

count =
0

p(count)

d(r,f,count,Q)queue
()

count =
0

1

1

2

2

1

1 3 1 2

1 1 1

0

A Tree Contains the Test Messages, Test Oracles, and Data
Member Def-Use Information of the queue Class.

Note:
count=0 (Empty state)
0<count<size (NotFull)
count=size(Full state)

Data-members
def and used in
this incoming
function

next[]

Incoming arc
(function) name
of the current
state

Current
State (state

values)

funct_name state_name

pr
e

def_use

loop

The structure of a node

Data Flow Testing Criteria

Each instance of a variable in a program is classified as a
definition or a use.
A use of a variable is C-use or P-use.

if (x > 0) {x = y + 10;}
The Global Definition and Global Use

dcu(v,i) = { j | v ∈ c-use(j) }

dpu(v,i) = { j | v ∈ p-use(j) }

A data flow anomaly occurs when something unreasonable
is done with data in a path (i.e. double defined, undefined or
unused).

4

def(r)

int queue::add(char data){
1. if (count == Size){

 cout << "Not room for new \n";
 return (0);
}

2. r++;
3. if(r==Size){
4 r=0;}
5. Q[r] = data;
6. count++;
7. return (1);
}

t

1

p-use(count)

2

c-use(r)
def(r)

3

p-use(r)

5
c-use(r), def(Q)

6
c-use(count)
def(count)

s

The C++ code add() member function on the left and its directed flow graph on
the right. Nodes in the graph represent statements in the function; start and
terminate nodes are added for analysis.

Data
members

count f r Q

definition
queue(),
add(),

del_data()

queue(),
del_data()

queue(),
add()

queue(),
add()

c-use
add(),
sizes(),

del_data()
del_data() add() del_data()

p-use
add(),

del_data(),
is_empty()

del_data() add()

Definitions and uses of count, f, r, Q in class
Que; only called functions are listed

The def, c-use and p-use information associated
with called functions
Function
Names definition computation-use predication-use

queue() {count, f, r, Q}

add() {r, Q, count} {r, count} {count}

is_empty() {count}

sizes() {count}

del_data() {f, count} {f, Q, count} {count}

The maximum du-paths across only two member
functions with respect to every data member are

N×(Md×(Mcu+Mpu)) ⇒ 2N×M2. In this queue
example, there are 3×(3+3)+2×(1+1)+2×(1+1)+2×(1+0)=28
Difficulty: N! sequences of function calls

Inadequate Test Cases,
queue()→del_data()→add()

Infeasible Test Paths,
queue()→add()→del_data()→del_data()

d(r,f,count,Q), cu(count). // constructor, empty, sizes(), empty.

d(r,f,count,Q), pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), pu(count),cu(f,Q), cu-d(f), pu-d(f), cu-d(count).
// constructor, empty, add(), notfull, del_data(),empty.

d(r,f,count,Q), pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count),…,
pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), pu(count),cu(f,Q), cu-d(f), pu-d(f), cu-d(count), pu(count).

// constructor, empty, add(), notfull, add(), notfull, ...,add(), notfull, del_data(), notfull ,
is_empty(), notfull.

:
d(r,f,count,Q), pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), …,
pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), pu(count),cu(f,Q), cu-d(f), pu-d(f), cu-d(count), cu(count).

// constructor, empty, add(), notfull, add(), notfull, ..., add(),full , del_data(), notfull,
sizes(), notfull.

: Note: d(x): x is defined
: cu(x): x used for computation

pu(x): x used in predicate
cu-d(x): cu(x) and then d(x)
pu-d(x): pu(x) and then d(x)

Data members definition-use pairs in the queue Class

The def-use information of data members
generated by MACT

Code Optimisation: f defined in del_data() has not been used.

An anomaly of Q occurs in the queue() → add()

Functions
Data Members queue() add() del_data()

r def(r) cu-d(r), pu-d(r), cu(r)

f def(f) cu(f), cu-d(f), pu-d(f)

count def(count) pu(count), cu-d(count) pu(count), cu-d(count)

Q def(Q1,…,Q5) d(Q1) cu(Q1)

The du paths with respect to each data member in queue

Note: The arcs emerging from table show the defined data member could be used in
succeeding functions

// file name: testdriv.cpp
#include <iostream.h>
#include "queue.h"
#include "amt.h"

class Queue : public amt {};
void main(void) {
fstream outfile;
outfile.open(" result.txt", ios::out);
if (!outfile){
cerr <<"Cannot open test result file\n";
abort ();
}
Queue Que;

:
Que.add('z');
outfile<<" add()\t"<<Que. amt()<<'\n';
Que.add('y');
outfile<<" add()\t"<<Que. amt()<<'\n';
Que.del_data();
outfile<<" del_data ()\t"<<Que. amt()<<'\n';
Que.is_empty();

:
}

// File name: amt.h
// An abstract class and amt() shows
// state value
class amt : public queue{
public:
 void amt(){
 cout<<count<<'\n';
 }
};

// File name: queue.h
// The class under test, called queue,
// shows in Figure 3
const int Size = 5;
class queue{
protected: char Q[Size];

:
}

// Test Message file
add('z)
add(y)
del_data()
is_empty()

:

An example of test driver program

Test message
file-1

Test message
file-2

Que.add(a) Que.add(a)

Que.add(b) Que.add(b)

Que.add(c) Que.del_data(1)

Que.add(d) Que.del_data(1)

Que.add(e) Que.del_data(1)

Que.del_data(1) :

: :

Test Message files

Test result via test
message file-1

Test result via test
message file-2

Function
name

Value of
Count

Function
name

Value of
Count

add() 1 add() 1
add() 2 add() 2
add() 3 del_data() 1
add() 4 del_data() 0
add() 5 del_data() -1

del_data() 4 : :
: : :

Test Result files

Error found in the test result file-1 Error found in the test result file-2
Function

name
Value of
Count

Ok/Error Function name Value of
Count

Ok/Error

add() 1 Ok add() 1 Ok
add() 2 Ok add() 2 Ok
add() 3 Ok del_data()t 1 Ok
add() 4 Ok del_data() 0 Ok
add() 5 Ok del_data() 0 Error

del_data() 4 Ok : : :
: : : : : :

The Test Reports of the queue Class

Conclusions

The steps of object oriented class
testing are:

(1) Intra-method and inter-method
levels: Data-flow Testing.

(2) Intra-class level: State-based
Testing + Data Flow Testing.

1

A State-Based Testing Approach Providing Data Flow Coverage in
Object-Oriented Class Testing

Bor-Yuan Tsai*, Simon Stobart, Norman Parrington, and Ian Mitchell
School of Computing, Engineering and Technology

University of Sunderland,
St. Peter's Way, Sunderland SR6 0DD UK

Tel: +44 191 5153201
E-mail: {cs0byt, cs0sst, cs0npa, cs0imi}@isis.sunderland.ac.uk

*Also of Department of Information Management,
Tamsui Oxford University College,

32 Jen-Lee Street, Taipei County 251, Taiwan

Abstract

A novel Object-Oriented class testing approach, proposed in this paper, combines functional
with structural testing techniques. Based on state-based testing, test cases generated from the
MACT (Method for Automatic Class Testing) tool can be used to execute functional testing. The
definition-use information of data members, occur in public member functions of a class under
test, is generated from MACT to facilitate data flow analysis. Testers can compute definition-use
path with the information in order to ensure that the class is also satisfied with data flow coverage
at intra-class level. The discussion with a queue class example to reveal that using a hybrid
testing technique benefits class testing.

1 Introduction

Most computer applications can be tested in one of two ways: (1) functional (black-box)
testing, and (2) structural (white-box) testing. The supporters of structural testing argue that
functional techniques may not provide sufficient coverage of the code. Their opponents contend
that structural approaches do not consider the requirements of specifications at all, since test cases
are entirely generated from the implementation [1] [2] [3].

The new class testing approach for Object-Oriented classes, discussed in this paper, is
adopted by MACT [4] [5] [6] [7]. In which the test case tree, created from the state machine of a
class under test, is used to produce test messages for functional testing as well as the intra-class
definition-use information for structural testing. In functional testing, each class is tested as a
unit based on state-based testing techniques, to verify the behaviour of an object, such as state
changes. Data flow techniques are used to perform this structural testing that enables us to detect
whether every data variable (data member, or parameter in public methods) has been defined
prior to being used, and whether all defined data variables have been used in the class.

The functional testing approach in MACT needs a (an implementation) state machine as a
specification. Following the state machine, the test case tree generator builds a threaded mutli-
way tree. After tracing the tree (also called test case tree), all possible test cases are generated.
The tree completely duplicates the behaviour of the state machine of the class under test and it
comprises all possible expected states of all transitions of the class [3] [7] [8]. Therefore the tree
is also used as a test oracle, with which the test results are inspected by the test result inspector of
MACT. Eventually, the pass/error messages generated by the MACT tool show whether the class
under test is satisfied with the state-based coverage.

In the MACT tool, the various associations of data members with definitions and uses across
the public methods in the class are taken into account, in order to compute intra-class definition-

2

use pairs. The definition-use information across public functions is examined whether or not any
data anomalies exist in the sequence public methods called by clients. Inter-method definition-
use pairs can also be computed by MACT, if the interaction of private and public functions can be
described as a sub-state machine and embedded in the super state machine that the public
methods are depicted in. However this is excluded from this paper. In data flow coverage, other
pairs of definition-use (e.g. parameters, alias and local variables) also need to be concerned in the
class under test. At the intra-class level, however, only the occurrences of data members within
all possible sequences of function calls, which can be executed by the class under test, are
considered.

The framework of MACT is illustrated in section three. A queue class example and the
technique of test case generation are introduced in section four and five respectively. The
concept of data flow testing and the approach of MACT, which is used as a structural test tool,
are described in section six and seven. In which the queue example is also used to show how the
definition and usage of data members are generated by MACT. The rest functions of MACT are
briefly discussed in section eight. Following that is our future work and conclusions.

2. Background

The main point of state-based testing [9] [10] [11] is to examine the values, which have been
stored in the object at a particular time. Those particular values represent the state of the object.
State-based testing also validates the interactions that occur between the transitions and the state
of an object. The changing states rely on the values that are changed by the transition. After
executing a transition, it validates the final state that has been achieved by the object.

A state machine defines the set of states and transitions, and depicts the dynamic behaviour
and the state changes of an object. Therefore the state machine can be used as an aid in state-
based testing [12]. Programmers refer to the state machine of a class as a specification to code an
implemented class, and the expected results are the requirements that should be followed.
Therefore the states of the implementation object should be the same as the states that are shown
in the state machine. Nevertheless, a transition name in the state machine could be different from
its member function name in the implemented class. If any differences exist, then it is necessary
to use an implementation state machine to reveal the behaviour and state changes of the
implemented class.

Data flow testing techniques [13] [14] [15] are based on data flow analysis, and require that
the test data (cases) exercise paths from definitions to uses. These techniques are also code-based
testing techniques, and they can be used in code optimisation, anomaly detection, and test data
(cases) generation [2] [15]. Extending the techniques to test object-oriented classes, the test cases
can be classified into intra-method, inter-method and intra-class three categories [2] [16]. Intra-
class testing examines the definition-use paths of the class's variables which across public
methods when they are called in various sequences.

Object-oriented classes are usually designed as an independent small (sub) system. They
respond to service requested from outside. If a whole class is tested as a unit, then it can be
similarly performed as an application system test. Systems can be tested using unit (intra-
method), integration (inter-method), and system (intra-class) testing techniques. The state-based
testing technique covers the entire object rather than just individual methods and so is much more
appropriate for testing objects. The test cases generated with state-based testing methods will be
used to execute intra-class testing.

A test case can create a starting state, the expected action causing transition to the next state,
and the expected next state [17]. The test cases considered in this paper are defined for class
testing by sending messages to objects and estimating the results. The test message generator in

3

MACT only produces the expected messages using state machines. Those messages are directly
sent to the object class under test.

3 The Framework of MACT

Based on the new object-oriented class testing approach, an automatic object-oriented class
test tool, called MACT, is built. Which consists of five components: Test Case Tree Generator,
Test Message Generator, Test Driver Generator, Test Result Inspector and Def-Use Info
Generator. The first four are used to achieve state-based testing, and the last is a mechanism for
data flow testing. The framework of MACT is shown in Figure 1.

Design State Machine Implemented Class

Generate
Implementation
State Machine

Build Test
Case Tree

Produce
Test Driver

Test Messages

Implementation State Machine

Function Names
Diagram

Compile
and Run

Test

Test Driver

Program Code

Inspect
Test result

Test Result File

Test Oracle
Tree

Test Report File

Error Message

Generate
Test Cases

Test Case Tree

Test Result
Test Result

Figure 1 The components of the automated class testing framework (MACT)

Generate
Def-Use

Information

Test Case Tree

Computing
Def-Use

Paths

Data Flow
Coverage Report

Def-Use Info

Data Anomaly

Designing test cases for a unit test, testers usually require the specification and source code
of the unit [18]. Programmers follow the specification (e.g. state machine) to implement the
program code of the class. Testers also need to review the specification and implementation of
the class to design test cases, in order to test the implemented class with the test messages
directly. Therefore, the implementation state machine (e.g. in Figure 4) may be required in
MACT. The test case tree generator can generate various test case trees according to the various
implementation state machines. Traversing the test case tree, test messages for the class under
test are automatically produced by the test message generator of MACT. The test driver
generator in MACT receives test messages and generates a C++ main() format function as a test
driver in a C++ program code. The class under test is included as a user-defined class and test
messages are listed in the main() function. An example of the test driver is illustrated in Figure
12. In a driver, a test result file is declared as an output file, in order to record the test result
(state) values while the program is executing. The tree also contains test oracles, which are based
on state-based testing, consists of function names and state information. Hence the test results are
inspected by the test result inspector, which parses the test result records (containing messages
and resultant states of the messages) one by one using the test oracle tree. The def-use info
generator also traverses the same tree, which contains the occurrences of data members in each
member function, to produce definition-use information. This intra-class level information
facilitates computing definition-use paths and detecting data anomaly.

4

4 Example: A Queue Class

Assume a circular bounded queue class that can only store five units of data. An object of
the queue has six state spaces, which are the empty state, contains 1 unit, contains 2 units, ... , to
the full state. The state of the queue object is defined by the value of the count data member. We
can classify the states into Empty, NotFull, and Full sub-states. The Que object is at the start
(Empty) state when it is defined and the constructor function sets its count to 0. Moreover the
state of Que will change to NotFull, when a piece of data is added into it, and addone transition is
executed. The behaviour of Que is depicted with the state machine in Figure 2. In which the
transition checksize does not cause any state change. When Que is at the NotFull, add and
del_data methods (transitions) may not cause any state change until count = 5 or count = 0.

deleteone

Figure 2 The Design State Machine of the queue

NotFull
addone

Empty

deleteone

addone

deleteone

addone

checksize
checksize

checksize

Full

Suppose the queue class has f, r, count and Q[SIZE] four data members. The Q can only
contain five units of data, and queue has a constructor, a destructor and four public member
functions. The C++ code template of queue is given in Figure 3.

const int Size = 5;
class queue{
protected: char Q[Size]; // bounded array

int f, r; // Front/Rear index of queue
int count; // a counter of the array

public: queue(void); // default constructor
void is_empty(void);
int add(char); // add data to the queue
char del_data();//delete data from the queue
void sizes(void);// get the size of the queue
~queue(void); // destructor

};
queue::queue(void){

r = -1; f = 0;
count = 0;
for (int i = 0; i < Size; i++){
 Q[i] = ' ';}

}
int queue::add(char data){

if (count == Size){
 cout << "Not room for adding new data to stack\n";
 return (0);}
r++;
if(r==Size){
 r=0;}
Q[r] = data;
count++;
return (1); }

char queue::del_data(){
char data;
if (count == 0){
 cout << "can't delete data from an empty stack\n";
 return('0');}
data = Q[f];
f++;
if(f==Size){
 f=0;}
count--;
return (data);

}
void queue::is_empty(){

if (count == 0)
 cout<<"The queue is empty\n";
else
 cout<<"The queue is non-empty\n";

}
void queue::sizes(){

cout << "the size of the queue :" << count << "\n";
return;

}
queue::~queue(){

cout << "\nfinishing the class test\n";
}

Figure 3 The implemented C++ code of the queue class

5

4.1 Implementation State Machine of the queue Class

The chechsize transition in Figure 2 is performed by the is_empty() or size() functions in the
implemented class, see Figure 3. Moreover, the detailed information of transitions and member
functions, in which data members are accessed, are required to facilitate data flow analysis.
Hence an implementation state machine of the queue is illustrated in Figure 4 to display the
information of implemented class code and the behaviour of the object class.

The design state machine (Figure 2) is encapsulated as a class. The attached member
functions show the possible messages, which can be sent to the objects by invoking these member
functions declared inside the class. The table following the oval diagram describes the mapping
between transitions and member functions. Function names with the | symbol in the table means
OR.

The implementation state machine of the class queue is defined with finite sets ISM = (V, F, S, T) where
V = {char Q, int f, r, count}
F = {queue(), is_empty(void), add(char), dele_data(void), sizes(void), ~queue()}
S = {(Empty, count=0), (NotFull , 0<count<5), (Full, count =5)}
T = { S0, queue(), Empty, (count=0); {[count, r, f, Q]}

Empty, is_empty(), Empty, (count=0), {<count>}
Empty, sizes(), Empty, (count=0), {[count]}
Empty, add(data), NotFull, (0<count<5), {<count, r>, [r++, r=0, Q[r]=data, count++]}
NotFull, is_empty(), NotFull, (0<count<5), {<count>}
NotFull, sizes(),NotFull, (0<count<5), {[count]}
NotFull, add(data), NotFull, (0<count<5), {<count, r>, [r++, r=0, Q[r]=data, count++]}
NotFull, add(data), Full, (count=5), {<count, r> [r++, r=0, Q[r]=data, count++]}
NotFull, del_data(),NotFull, (0<count<5), {<count, f>, [data=Q[f], f++, f=0, count--]}
NotFull, del_data(), Empty, (count=0), {<count, f>, [data=Q[f], f++, f=0, count--]}
Full, is_empty(), Full, (count=5), {<count>}
Full, sizes(), Full, (count=5), {[count]}
Full, del_data(),NotFull, (0<count<5), {<count>, [data=Q[f], f++, count--]}
Empty|NotFull |Full, ~queue(), St, (Ø), {Ø}

 }

Transition Names Function Names
checksize is_empty() | size()

Figure 4 An Implementation State machine of the queue Class

deleteone NotFull

addone
Empty

deleteone

addone

deleteone

addone

checksize

checksize

checksize

Full

queue();

is_empty();

add(char);

del_data(int);

sizes();

~queue()

In the implementation state machine, V is a set of data members declared in queue and the
parameters of the member functions; F implies a set of member functions declared in queue. S is
a set of all states which an object of queue has, and T is a set of all transitions between states, and
each element of T is a quintuplet = {current, function, result, predication, data access}. Where

6

current, result ∈ S, are states having a transition outgoes and incomes respectively. Function ∈
F, which triggers the transition from current to result. The predication causes state change and it
is the post/pre-condition of the current/next transition. A set of <predication use> and/or
[definition or computation use], bracketed within {} in Figure 4, indicates the data access of the
data members in the functions. For instance, the <count, r> exposes the count and r are used at
condition statements (predication use), and, [r++, r=0, Q[r]=data, count++] indicates that the r,
Q and count are defined in the add() function, as well as the values of r and count are referenced∗.

The state change of an object is determined by the execution of the next member function at
the current state. The current state value is the pre-condition/post-condition of the next member
function/previous member function will be/has been executed. For example the Que object is at
Empty state when count = 0 is true. This is unsatisfied with the pre-condition of del_data()
member function, so that the del_data() function cannot be triggered when the object is at the
Empty state. The transition "Empty, add(data), NotFull, (0<count<5)" described in Figure 4 is
Empty and NotFull as a current state and a result state respectively. This transition occurs when
an object is at the Empty, pre-condition (count=0) is true, and the member function add() is
called. When the add() function is executed and count++ is performed, then the state changes to
NotFull. Hence, the pre-condition of this transition is count=0 and its post-condition is
0<count<5.

4.2. The test case tree of the queue class

del_
data()

0<coun
t<size

pu(count),
cu(f,Q), cu_d(f),

pu_d(f), cu-
d(count)

del_
data()

0<coun
t<size

pu(count),
cu(f,Q), cu_d(f),

pu_d(f), cu-
d(count)

is_e
mpty

()

count =
size

p(count) sizes() count =
size

c(count)

add() count =
size

pu(count), cu-
d(r), pu-d(r),

cu(r), d(Q), cu-
d(count)

is_e
mpty

()

0<coun
t<size

p(count) add() 0<coun
t<size

pu(count), cu-
d(r), pu-d(r),

cu(r), d(Q), cu-
d(count)

sizes() 0<coun
t<size

c(count) del_
data()

count =
0

pu(count),
cu(f,Q), cu_d(f),

pu_d(f), cu-
d(count)

add() 0<coun
t<size

pu(count), cu-
d(r), pu-d(r),

cu(r), d(Q), cu-
d(count)

sizes() count =
0

c(count) is_e
mpty

()

count =
0

p(count)

d(r,f,count,Q)queue
()

count =
0

1

1

2

2

1

1 3 1 2

1 1 1

0

Figure 5 A Tree Contains the Test Messages, Test Oracles, and Data Member Def-Use Information of the queue Class.

Note:
count=0 (Empty state)
0<count<size (NotFull)
count=size(Full state)

Data-members
def and used in
this incoming
function

next[]

Incoming arc
(function) name
of the current
state

Current
State (state

values)

funct_name state_name

pr
e

def_use

loop

The structure of a node

Following the implementation state machine in Figure 4 and based on state-based testing, the
test case tree generator (see Appendix A) of MACT produced the threaded multi-way tree in

∗ In C or C++, int x; is a definition statement and x=10; is an assignment statement. However, in data
flow testing, the definition of a variable x, when it is at the left side of an assignment (e.g., x=10). The
value of x is referenced, when it is at the right side of an assignment (e.g. y=x+10;)

7

Figure 5. The tree completely duplicates the graph of the state machine. The pointers and the
threads in the tree can simulate any cyclic links in the state machine. Each (circular) path is a
sequence of test cases. The core of MACT is the threaded multi-way tree, which simulates the
behaviour of a state machine. Even more complicated state machines (featuring hierarchies,
concurrency, and nested states) can also be represented by this approach [7]. The structure of
each tree node is shown at right up corner in Figure 5.

5 Possible test cases of queue generated from MACT

After tracing the tree in Figure 5 with Que, the test cases of Que are produced by loops in the
tree from the root node and shown in Figure 6. The condition in bold square brackets followed
by messages is a pre-condition. The state value (post-condition) within bold square brackets
following the messages means the expected resultant state, after the messages being executed.
For the sake of simplicity, repeatedly executing a member function is represented with
“Oue.f(),...,Oue.f()” form, and messages in a pair of arrow brackets represent the state is still at
same after executing the messages. The test message generator (its algorithm shows in [5])
traverses the tree from the root node down to the leaves. A generated message file, consists of a
sequences of function calls, for Que is produced, see Figure 7.

 [count=0], Que.is_empty(), [count=0].
 [count=0], Que.sizes(), [count=0].
 [count=0], Que.add(), [0<count<5], <Que.add(),...,Que.add()>,

[0<count<5], Que.sizes(), [0<count<5].
 [count=0], <Que.add(),...,Que.add()>, [0<count<5], Que.del_data(),

[0<count<5].
 [count=0], Que.add(), [0<count<5], Que.del_data(), [count=0].
 [count=0], <Que.add(),...,Que.add>, [0<count<5], Que.add(), [count=5],

Que.sizes, [count=5].
 :
 [0<count<5], Que.add(), [0<count<5], Que.add(),[count=5],

Que.is_empty(), [count=5].
 [0<count<5], Que.add(), [0<count<5], <Que.del_data(),…,Que.del_data()>,

[0<count<5].
 [0<count<5], <Que.add(),...,Que.add()>, [0<count<5], Que.add(),

[count=5].
 [count=5], Que.del_data(), [0<count<5].

:

Figure 6 Test cases of the Que object

:
Que.add();
Que.sizes();
Que.add();
Que.del_data();
Que.add();

:
Que.del_data();
Que.add();
Que.sizes();
Que.add();

:
Que.sizes();
Que.is_empty();

:

Figure 7 A test message
file for the Que object

6 Test cases of queue generated based on data-flow criteria

A class is a basic unit of testing in an object-oriented program, and most of this test work has
centred on black-box approaches. Harrold [2] developed a class control flow graph to connect all
methods in the class, and adapted Pande's [19] data flow analysis algorithm to compute the data
flow information required for data flow testing. Hong [20] demonstrated the Class State Machine
(CSM), extended from Finite State Machine, to specify the behaviour of classes. The CSM was
then transformed into a Class Flow Graph to show data flows of the state machine. Eventually,
selected intra-class test cases using data flow testing techniques.

Harrold [2] and Hong [20] describe that intra-class def-use information can guide testers in
the selection of sequences of methods (function calls). In the following, the queue class is used
as example to discuss the difficulty of generating intra-class test cases for the Que based on data
flow testing techniques. Moreover, the selection of sequences of function calls, which satisfy

8

certain data flow coverage criteria, may also contain some unnecessary (ambiguous) method
sequences. Testers need to filter them by referencing the functionality of the class.

6.1 Overview of Data Flow Testing Criteria

Data flow testing techniques need directed flow graphs to facilitate the computation of def-
use pair information, the selection of test cases, and the detection of anomalies within the
program under test. The indication of anomalies may include: (1) defining a variable twice with
no intervening use, (2) referencing a variable that is undefined, and (3) not referencing the
variables that are defined [1] [21].

Based on data flow testing, each instance of a variable in a program is classified as a
definition or a use. A definition of a variable is that a variable is assigned a value. A use of a
variable is that the value of the variable is used (referenced). Uses of a variable are further
divided into two classes as either computation uses (c-use) or predicate uses (p-use) [22]. A c-
use occurs when the value of a variable is used in a computation or output statement, and a p-use
occurs when the value is used in a condition (predicate) statement. For instance, the if (x > 0) {x
= y + 10;} statement contains p-use of x and c-use of y, followed by a def of x.

The du path of each data member is from its definition to every use that is reached by the
definition. Let i be any member function and v any variable such that v ∈ def(i). Hence, dcu(v,i)
is the set of all functions j such that v ∈ c-use(j), and in this path there is a def-clear sub-path with
respect to v from i to j. The dpu(v,i) indicates the set of all functions j such that v ∈ p-use(j) and
in this path there is a def-clear sub-path with respect to v from i to j.

Data members in a class are also global variables. In data flow testing at intra-class lever, a
global use (c-use or p-use) of a data member x if and only if the definition of the x preceding its
use does not occurs within the same member function. Otherwise, it is a local use. A global
definition of a data member x, if and only if the last definition of the x occurs in a member
function i, and there is a def-clear path with respect to the x from the i to another member
function j. In the function j, there is a global use of the x [23].

The criteria of testing-path-selection are based on data flow, and focus on variables to be
defined and used. When executing a test case, the test case is said to exercise a def-use (sub) path
if the (sub) path is traversed. Therefore, tracing the flow of data members among member
functions in the class rather local variables within an individual function is concerned in this
paper. Some data flow testing concepts criteria can be referenced in [2] [14] [15] [22].

6.2 Def-use information in the queue example

Selecting intra-class test cases, the interest is only the data members in the public member
functions of queue. In this example, moreover, each element in the data member Q array will be
dealt with individually.

For simplicity of def-use presentation in each member function of queue, each code
statement is a unit, in which the definition and/or use of data members occur. For example, in the
data flow graph of add() function (see Figure 8), the p-use(count) and c-use(r) at the node 1 and
2 cause concerned as to whether or not the count and r, used in this function, have been properly
defined in the preceding functions. Moreover, we also need to examine if the defined count and
Q, def(count) and def(Q), will be able to be used in the succeeding functions.

9

4

def(r)

int que::add(char data){
1. if (count == Size){

 cout << "Not room for new \n";
 return (0);
}

2. r++;
3. if(r==Size){
4 r=0;}
5. Q[r] = data;
6. count++;
7. return (1);
}

t

1

p-use(count)

2

c-use(r)
def(r)

3

p-use(r)

5
c-use(r), def(Q)

6
c-use(count)
def(count)

s

Figure 8 The C++ code add() member function on the left and its directed flow graph on
the right. Nodes in the graph represent statements in the function; start and
terminate nodes are added for analysis.

As in Figure 8 the bold def and use of data members should be computed, and also the non-
bold data members. The dpu(r, 2)={3}, and dcu(r, 4)={5} have formed sub paths within the
add(), and the definition of the r at statements 2 or 4 could be either used in the succeeding
functions. Figure 9 illustrates the intra-class definition-use information of data members in
queue.

functions (queue(), is_empty(), add(), del_data(), sizes()).

global_defs (queue(), [count, f, Q, r]). global_defs (del_data(), [f, count]).
global_cuses (queue(), []). global_cuses (del_data(), [Q, f, count]).
global_puses (queue(), []). global_puses (del_data(), [count]).

global_defs (is_empty(), []). global_defs (sizes(), []).
global_cuses (is_empty(), []). global_cuses (sizes(), [count]).
global_puses (is_empty(), [count]). global_puses (sizes(), []).

global_defs (add(), [r, Q, count]).
global_cuses (add(), [r, count]).
global_puses (add(), [count]).

Figure 9 Global definition-use information of data members within queue

The definitions and uses of the data members among the functions of queue are shown in
Table 1. The test cases can be generated to cover associations between definitions and uses of
each data member from the table, based on du-path criteria. The arcs in Table 1 show that some
pairs of sequence methods are used for intra-class testing. For example, du-paths with respect to
the count are in queue()→add(), add()→add(), add()→del_data(), and del_data()→is_empty().
There are d-cu paths of the r in queue()→add(), and add()→add(). A d-cu path of Q and f exists
in add()→del_data() and del_data()→del_data() respectively, Furthermore, a sequence of
messages queue()→add()→add()→del_data()→del_data() which has all defs coverage, can be
established. It is time-consuming work to compute this sequence.

10

Function
Names definition computation-use predication-use

queue() {count, f, r, Q}

add() {r, Q, count} {r, count} {count}

is_empty() {count}

sizes() {count}

del_data() {f, count} {f, Q, count} {count}

Table 1 The def, c-use and p-use information associated with functions

6.3 Generating Data Flow Test Cases

It is difficult to discover all possible test cases to achieve all defs, all uses, or all du-paths.
For example, a class has N data members (denoted V1, V2, …, Vn) and M public member
functions, in each of which every data member is defined (denoted Md), computation used
(denoted Mcu), and predicate used (denoted Mpu). Then the maximum du-paths across only two
member functions with respect to every data member are V1×(Md

 ×(Mcu+Mpu)) + V2×(Md

×(Mcu+Mpu)) + … +Vn×(Md
 ×(Mcu+Mpu)) ⇒ N×(Md×(Mcu+Mpu)) ⇒ 2N×M2. In this queue

example, there are 3×(3+3)+2×(1+1)+2×(1+1)+2×(1+0)=28 du-paths within two member
functions in the sets with respect to data member, count, r, f and Q individually. Additionally, a
pair of ordered functions may not only contain a data member. Such that count and r two data
members occur in the queue()→add() test path. Selecting a test case, the du pairs of all possible
data members in each test case ought to be considered.

6.4 The Complexity of Data Flow Criteria for Test Case Selection

Weyuker [24] [25] proposed that all du-paths require an exponential number of test cases in
the worst case. If d is the number of (two way) decisions in the program, then the all uses data
flow criterion requires O(d2) test cases, and all du-paths requires O(2d) in the worst case. For
example, suppose a program (procedure) comprises a sequence of d IF-THEN-ELSE statements,
and each of them defines and uses a variable x. All-du-paths may, then, require 2d test paths.
However, this is simply the worst case and in practice both criteria would require only at most d
+ 1 test cases [24]. That means many test cases of the worst case are not necessary.

In a class, each method has to be tested individually. Each class will then have N associated
test cases when there are N methods in the class. Nevertheless, to check the validity of calling
sequences within the class, such as intra class coupling, N methods implies the order N! test cases
[26]. In those cases there could be some redundant sub sequences. For instance, the first element
of the Q is defined in the first add() function (called Fadd1), and the element is referenced in the
first del_data() function (called Fdel1). There can be several member functions with different
performance orders in the interval of Fadd1 and Fdel1. Such as add()→del_data();
add()→is_empty()→del_data(); add()→ … →del_data(); and each of the test cases has a du-path
with respect to Q[0] .

The result, found by Bieman in [27], shows that 80% of the procedures need to be tested by
ten or fewer complete paths to satisfy all du-paths criteria. However, it is a tedious task to find
the redundant test cases.

11

6.5 Inadequate and Ambiguous Test Cases

Test cases can be produced following the du-paths. Some of the paths could be inadequate.
For example in the queue, a queue()→del_data()→add() can achieve the du-paths with respect to
count, f, r, and Q. However, it is unreasonable to perform the del_data() member function
following the constructor, queue(). In addition, there is a du-path of the count and r data
members in queue()→add(), but a double definition anomaly occurs on Q. If we avoid the
ambiguous test cases, then some of data members may not be tested, such as the queue()→add()
which is needed to test count and r.

6.6 Feasible and Infeasible Test Paths

An infeasible path is that no input data exists which can cause such a path to be executed.
However, a path is feasible if there are some input data, which will cause the path to be traversed
during execution. The sequence methods calls from outside of the class under test can be
specification infeasible or implementation infeasible. Infeasible sequence methods (subpaths)
should not (or cannot) be executed according to the specification. For example,
queue()→del_data() sequence should not be required in the specification, and an infeasible
implementation is such as queue()→add()→del_data()→del_data() sequence. Because queue
cannot accept the second delete data message from the client object when its state value is zero
(i.e. count == 0).

Harrold [2] and Hong [20] demonstrated their techniques are also useful for determining
which sequences of methods should be executed to test a class, and pointed out error sequences
with examples that need not be run. However, they did not discuss the technique to select
infeasible sequences from N!. In fact, Weyuker [25] found that the non-executable (infeasible)
path problem was the primary practical difficulty in using the all du-paths criterion, because there
are many infeasible paths to contend with the criterion. In automatically generating sequences of
calling methods to satisfy data flow criteria, the problem of generating infeasible sequences is
impossible to avoid [28].

To gain all possible useful test cases, we need to remove redundant paths and to eliminate
the infeasible (such as inadequate, ambiguous, or non-executive) test cases from the generated
intra-class level test cases based on data flow testing criteria. However, in practice, it is not an
easy task to detect them from N! test cases.

7 Data Flow Testing Approach in MACT

At the different point of view, if we already have test cases for all possible feasible paths of
the class. We, then, use data flow analysis technique to detect whether or not these feasible
sequences violate data flow criteria. On this assumption, intra-class test cases are generated by
MACT based on state-based testing technique, and then the sequence paths within these test cases
are analysed with data flow criteria to conclude whether these test cases are satisfied with data
flow coverage.

The data flow testing approach of MACT is to firstly generate a test case tree of the class,
which is derived from the design (or implementation) state machine. This is the same as the
discussion in section 4.2. Secondly, by tracing the tree, intra-class definition-use information of
data members can be produced for data flow testing. Finally, the def-use information of the data
members is analysed to detect whether or not the class under test is satisfied with data flow
coverage.

12

7.1 Generating Def-Use Information from MACT

Reviewing the implementation state machine, we then fill the occurrences of data members
into the def-use field of the respective node in the test case tree, while the test case tree generator
is executing. After the test case tress of the queue contains def-use information is produced, see
Figure 5. Each node of the tree has the function name, current state value (name), and def-use
information of data members. Based on the tree, we are

(1) to identify definitions and uses of each data member in the transition of the
implementation state machine;

(2) to review these definitions, uses, and the sequences of test messages (generated by the
MACT) to compute the sequences of definition-use pairs; and

(3) to analyse the information of these definition-use pairs to show what kinds of the data
flow criteria those test messages can achieve and if any anomaly occurs.

The test case paths (see Figure 10), generated by tracing the tree, are used to detect whether
they cover def-use paths. For example, the "constructor, Empty, sizes(), Empty" test case has a
sequence of member functions, queue()→sizes(), and we can analyse the def-use information to
find if the def-use path with respect to data members occur in this test case, and thus detect if data
anomalies exist.

7.2 Computing DU Paths

The def-use information of data members in each member functions of the several test cases,
generated by the MACT, is given in Figure 10.

d(r,f,count,Q), cu(count). // constructor, empty, sizes(), empty.

d(r,f,count,Q), pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), pu(count),cu(f,Q), cu-d(f), pu-d(f), cu-d(count).
// constructor, empty, add(), notfull , del_data(),empty.

d(r,f,count,Q), pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count),…,
pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), pu(count),cu(f,Q), cu-d(f), pu-d(f), cu-d(count), pu(count).

// constructor, empty, add(), notfull , add(), notfull , ...,add(), notfull, del_data(), notfull,
is_empty(), notfull.

:
d(r,f,count,Q), pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), …,
pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), pu(count),cu(f,Q), cu-d(f), pu-d(f), cu-d(count), cu(count).

// constructor, empty, add(), notfull , add(), notfull , ..., add(),full , del_data(), notfull ,
sizes(), notfull.

: Note: d(x): x is defined
: cu(x): x used for computation

pu(x): x used in predicate
cu-d(x): cu(x) and then d(x)
pu-d(x): pu(x) and then d(x)

Figure 10 Data members definition-use pairs in the queue Class

The definition-use of the data members in the "queue(), Empty, add(), NotFull , del_data(),
Empty" is shown as an expression in Figure 10. For the sake of explanation, the expression has
been divided into four rows with different data members and they are shown in Table 2. In the
first row, for example, the du paths can be computed with respect to the data member r. The r is
defined in the queue() and add() functions, and then is used in the add() function. This shows no
anomaly occurred on the r in this test case.

13

Functions
Data Members queue() add() del_data()

r def(r) cu-d(r), pu-d(r), cu(r)

f def(f) cu(f), cu-d(f), pu-d(f)

count def(count) pu(count), cu-d(count) pu(count), cu-d(count)

Q def(Q1,…,Q5) d(Q1) cu(Q1)

Table 2 The du paths with respect to each data member in queue

Note: The arcs emerging from table show the defined data member could be used in
succeeding functions

7.3 Code Optimisation

There are several du paths with respect to f and count in the second and third rows, and the
last definition of count and f in this case is not against the du path criteria. Because the count and
f are global definitions in the del_data(), they may be used in the succeeding messages, such as
is_empty(), sizes(), or del_data(). However, if the all test cases generated from the test case tree
(see Figure 10) are carefully reviewed, we can find out the last defined f will never be used. The
sequence member functions following the del_data(), in which a definition of the f occurs, do not
reference the defined f, except another following del_data(). The following del_data() references
the f defined in the previous del_data(), will define the f again. This shows that the last defined f
within the last del_dat() function in every sequence test case does not be used. That del_dat() has
a "not referencing the variable that are defined" anomaly.

The f data member is used as an index when the front element in the Q[SIZE] array is
removed. The last defined f can only be used in the sizes(), is_empty() or ~queue() functions. In
the Que, the count is used to reply to the messages of the sizes() and is_empty() methods.
However, the count can be replaced with f and r. By calculating f and r, the result can indicate
whether the Que is at the empty, not-full or full state, even show how many units of data exist in
the Que. This is a code optimisation problem and will not be discussed further in this paper.

7.4 Anomaly Detection

An anomaly of data member Q occurs in the queue()→add() test case is found in the last row
of Table 2. In fact, programmers are used to initialise variables as they are defined in the
constructors of a class. In this case, it is necessary to initialise the count, r and f, but it is not
necessary to empty the Q in the queue(). The test cases generated based on state-based testing
could not detect this kind of anomaly.

Moreover, theses anomaly problem, the Q has double definition and the last defined f may
not be referenced, can never be detected in the intra/inter method testing. Because intra-method
testing is performed to test each function in the class individually and inter-method testing is
executed to test a function together with other functions (in the same class) that are called directly
or indirectly.

8 Other Functions of MACT

8.1 Test Driver Generator of MACT

The test message generator writes the function names into a test message file, which is part
of the test driver. The test driver generator in MACT reviews the message file, and then

14

generates a C++ main() function as a test driver. The driver will include the class under test, and
then test the class with the messages. After executing the test driver, the test results can be
recorded into a test result file.

The class, queue, under test is included in the program as a user-defined class (e.g. #include
"queue.h") [29], and it is inherited by a subclass called Queue. Moreover, an additional member
function, called amt(), is declared in the subclass in order to access the state values (the type is
private) stored in data member count, which is also inherited from the queue class. Obviously,
the amt () can be declared as a friend function. Therefore, the implemented queue class (from the
developers) is insulated from change and will not be modified at all.

A test result file is declared as an output file in this main function (test driver), so that it
records the result of each test message execution. The driver is to store the test result of each
message into the test result file, while the program is executing.

Test messages are embedded in the main function in the test driver example (see Figure 12).
Alternatively, a test message file, containing those test messages, can be declared as an input file
in the main function, and each test message is accessed as an input record, while the file is read.
Test message files are ASCII text type files and each test message is stored in the files as a string.
Therefore, a program code generator is utilised to read the test message file as an input file, and
then produces the source code of a test driver program.

A test driver program, in which a class under test is included and a test message file and a
test result file are declared, can be manually/automatically produced by a program editor or a
program source code generator. If a source code generator can play as a test driver generator. A
complete C++ test driver program can be automatically built by answering the prompts asked by
the generator, see Figure 11. The prompts may ask to enter the names of (1) a class under test
(e.g. queue.h in Figure 12), (2) a test message file, (3) a test result file, and (4) a function to reveal
state value, e.g. amt() in Figure 12.

Test Driver Generator

A test driver (C++
code) program

Test driver
pattern

The name
of a class
under test

The name of an
abstract class or

external function to
reveal state values

A test
message file

name

A test result
file name

Figure 11 Possible requirement to generate test driver in MACT

Of course, the class under test and the function to show state values should be developed at
first. The class is stored as a user-defined class with '.h' sub-program name in proper directory,
such as 'c:\borlandc\include\' sub-directory in Borland C++∗. Then, the class is included in the
generated test driver program and the function (friend function) is linked as an external function
[29] with the program.

∗ Borland C++ for Windows, Version 5.0, Borland International, Inc.

15

Another way is that the function can be defined in an abstract class [29], which may also be
stored with '.h' sub-program name in 'c:\borlandc\include\' sub-directory. In order that the class
can be included and inherited by the test driver program and subclass in the test driver program
respectively, see Figure 12. In which, the right hand side program is a test driver program
example. The parts high lighted in grey are inlayed when testers enter proper names in response
to the prompts of the test driver generator. The rest parts without high light is the test driver
pattern, see Figure 11.

// file name: testdriv.cpp
#include <iostream.h>
#include "queue.h"
#include "amt.h"

class Queue : public amt {};
void main(void) {
fstream outfile;
outfile.open(" result.txt", ios::out);
if (!outfile){
cerr <<"Cannot open test result file\n";
abort ();
}
Queue Que;

:
Que.add('z');
outfile<<" add()\t"<<Que. amt()<<'\n';
Que.add('y');
outfile<<" add()\t"<<Que. amt()<<'\n';
Que.del_data();
outfile<<" del_data ()\t"<<Que. amt()<<'\n';
Que.is_empty();

:
}

// File name: amt.h
// An abstract class and amt() shows
// state value
class amt : public queue{
public:
 void amt(){
 cout<<count<<'\n';
 }
};

// File name: queue.h
// The class under test, called queue,
// shows in Figure 3
const int Size = 5;
class queue{
protected: char Q[Size];

:
}

// Test Message file
add('z)
add(y)
del_data()
is_empty()

:

Figure 12 The example of test driver generation.

The diagrams from left top to down in Figure 12 are the class under test that is stored with
queue.h file name, an abstract class which inherits the class under test and contains a function to
show state value, and the test message file respectively.

8.2 Test result inspector

The test result inspector in MACT will parse the test result records (the messages and the
resultant states of the messages) one by one using the test oracles in the tree. The oracles of
queue (Figure 5) contain the expected state for each expected message. The inspector opens the
test result file as an input file, and it can sequentially read each record, and then compare the
function name and state value in the record with the oracles in the tree. If the state value in a
record mismatches the expected state value in the tree, then an error is deemed to have occurred.
The algorithm of inspecting the test result file is given in Figure 13.

16

STEP 0 set root to current
STEP 1 while not end of test_result file
STEP 2 read the test_result record and store data to funct and state two variables
STEP 3 if all children nodes of the current node have been traced go to STEP 5
STEP 4 if a child node’s funct_name = funct and state is satisfied with its state condition
 then the test_result record is correct;
 assign the child node’s pre to current and
 go STEP 6
 else go to STEP 3
STEP 5 print “this test result record is in error”
STEP 6 go to STEP 1

Figure 13 The algorithm to inspect the test results with the oracle tree

For example, when the first record (function name = "add()", and count = "1") of the test
result file has been read at STEP 2. The inspector, at STEP 3, will look for a child node of the root
(it is also the current node at the moment) in Figure 5 which contains the add() function name
and its state condition is satisfied with the state value (count = 1). The middle child node of the
root matches the requirement. Therefore, the current node moves to the middle node of the root
when the statements in STEP 4 have been executed.

Following the above algorithm, the Test Result Inspector can detect errors when state values
in the result file cannot be matched with the state conditions in the oracle tree. For example, if
count = 6 after executing an add() function, then an error message should be reported by the
inspector. Because the state value 6 will not be satisfied with any state condition in the oracle
tree, see Figure 5. If the inspector can not respond this with an error message, then the error
existed in the Que. That intends the Que may not have ability to handle the over flow problem, or
the count data member in the Que may be accumulated improperly.

9 Future Work and Conclusions

The core of MACT is a threaded multi-way tree (test case tree) which simulates the
behaviour of a state machine. Test cases can be generated from the tree, which contains the test
oracle of the class under test. A key feature of the test case generator is its ability to generate test
cases even when the state machine has circular references (see Figure 5). More complicated state
machines (featuring hierarchies, concurrency, and nested states) can also be represented by this
approach [7], and provides a topic for future study. The def-use information of each data member
in the test case tree nodes can be listed in a data file by the same test message generator
(discussed in section 5.) Using stacks to automatically detect the data anomaly is another topic.
Moreover, it is also worth studying if this du path information can support test data selection for
the test cases, generated from MACT.

The MACT tool can generate all possible intra-class test cases has been discussed, and we
have also followed data-flow criteria to compute the du paths with respect to the data members in
the intra-class test cases. In order to insure the class under test is satisfied with data-flow
coverage. We suggest that the steps of object oriented class testing are:

(1) The data-flow testing is employed at intra-method and inter-method levels.

(2) At intra-class level, each class is tested as a unit with test cases based on state-based
criteria.

(3) The definitions and references of the data members within the sequences of test cases
need to be computed and detected.

References

1. Beizer, Boris "Software Testing Techniques," Van Nostrand Reinhold, 1990.

17

2. Harrold, Mary J. and Rothermel, G. "Performing Data Flow Testing on Classes," 2nd ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Dec. 1994, 154-163.

3. Siegel, Shel 1996, "Object Oriented Software Testing-A Hierarchical Approach," John Wiley
& Sons, Inc. 1996.

4. Tsai, Bor-Yuan; Stobart, Simon and Parrington, Norman; “A Method for Automatic Class
Testing Object-Oriented Programs Using A State-Based Testing Method,” 5th European
Conference Software Testing Analysis and Review 1997, (EuroSTAR '97,) Edinburgh, UK,
403-415.

5. Tsai, Bor-Yuan; Stobart, Simon; Parrington, Norman and Mitchell, Ian "An automatic Test
Case Generator Derived from State-Based Testing," 5th Asia-Pacific Software Engineering
Conference 1998, (APSEC '98,) Taipei, Taiwan, 270-277.

6. Tsai, Bor-Yuan; Stobart, Simon; Parrington, Norman and Mitchell, Ian "A Hybrid Object-
Oriented Class Testing Method - Based on State-Based and Data-Flow Testing," accepted for
inclusion in 7th Annual International Conference on Software Quality Management (SQM
'99), March, 1999, Southampton UK.

7. Tsai, Bor-Yuan; Stobart, Simon; Parrington, Norman and Mitchell, Ian "Automated Class
Testing Using Threaded Multi-way Trees to Represent the Behaviour of State Machine," to
appear at Special Volume on Software Reliability, Testing, and Maturity, Annals of Software
Engineering, Vol. 8, 1999.

8. Tsai, Bor-Yuan; Stobart, Simon; Parrington, Norman and Mitchell, Ian "Performing State-
based Testing and Data-flow Testing on Object-Oriented Classes," accepted for inclusion in
The 15th International Conference on Advanced Science and Technology (ICAST '99), April,
1999, Argonne, Illinois

9. Chow, T. S. "Testing software design modeled by finite state machines", IEEE Transactions
on Software Engineering SE-4(3): 1978, 178-187.

10. Turner, C. D. and Robson D. J. "A Suite of Tools for the State-Based Testing of Object-
Oriented Programs," Tech. Report: TR-14/92, U. of Durham 1992.

11. Binder, R. V. "State-based testing", Object Magazine, July-Aug 1995, 75-78.

12. Turner, C. D. and Robson, D. J. “The State-based Testing of Object-Oriented Programs,”
Conference on Software Maintenance 1993, 302-310.

13. Harrold, Mary J. and Soffa, Mary L. "Interprocedural Data Flow Testing," 3rd Testing,
Analysis and Verification SYMP (SIGSUFT89), 1989, 158-167.

14. Laski, J. and Korel, B. "A Data Flow Oriented Program Testing Strategy," IEEE Transactions
on Software Engineering, SE-9(3), May 1983, 347-354.

15. Rapps, S. and Weyuker, E. J. "Selecting Software Test Data Using Data Flow Information,"
IEEE Transactions on Software Engineering, SE-11 (4), April 1985, 367-375.

16. Tsai, Bor-Yuan; Stobart, Simon; Parrington, Norman and Mitchell, Ian "Selecting Intra-class
Test Cases Based on State-Based Testing and Data Flow Testing Methods," Occasional
Paper, CIS-4-98, School of CIS, University of Sunderland, UK, 1998.

17. Kit, Edward "Software Testing in the Real World," Addison-Wesley, 1995.

18. Myers, Glenford J. "The Art of Software Testing," John Wiley & Sons, 1979.

19. Pande, H., Landi, W. and Ryder, B. "Interprocedural def-use associations for C systems with
single level pointers," IEEE Transactions on Software Engineering, 20(5); 1994, 385-403.

20. Hong, H. S., Kwon, Y. R. and Cha, S. D. "Testing of Object-Oriented Programs Based on
Finite State Machines," Asia-Pacific Software Engineering Conference '95, Australia, Dec.
1995, 234-241.

18

21. Spillner, Andreas "Control Flow and Data Flow Oriented Integration Testing Methods",
Software Testing, Verification and Reliability, Vol. 2, 1992, 83-98.

22. Frankl, Phyllis G. and Weyuker, Elaine J. "An Applicable Family of Data Flow Testing
Criteria," IEEE Transactions on Software Engineering, 14(10), 1988, 1483-1498.

23. Rapps, S. and Weyuker, Elaine J. "Data Flow Analysis Techniques for Test Data Selection,"
6th International Conference on Software Engineering, 1982, pp 272-78.

24. Weyuker, Elaine J. "The Complexity of Data Flow Criteria for Test Data Selection,"
Information Processing Letters, 19(2), 1984, 103-109.

25. Weyuker, Elaine J. "The Cost of Data Flow Testing: An Empirical Study," IEEE
Transactions on Software Engineering, 16(2), February 1990, 121-128.

26. Duncan, I. and Doake, J. 'The Use of OO Design Metrics to Indicate Adequate Testing and
Maintenance Costs," TR-9801, Dept. of Computer Science, Anglia Polytechnic University,
UK, 1998

27. Bieman, J. M., Schultz, J. L.: "Estimating the Number of Test Cases Required to Satisfy the
All-du-paths," TAV3-SIGSOFT '89, 1989, 179-186.

28. Parrish, A. S., Borie, R. B. and Cordes, D.W.: 'Automated Flow Graph-Based Testing of
Object-Oriented Software Modules,' Journal of Systems and Software, 1993, 23, 95-109.

29. Lafore, Robert " Object-Oriented Programming in C++," Waite Group Press, ISBN:
157169160X, 1998.

30. Tsai, Bor-Yuan; Stobart, Simon; Parrington, Norman "An automatic Test Case Generator
Derived from State-Based Testing," Occasional Paper, CIS-1-98, School of CIS, University
of Sunderland, UK, 1998.

Appendix A

Step 1 Create a pointer queue which can temporarily store tree nodes
Step 2 Create the head node of the tree
Step 3 Add the head node into the queue
Step 4 While not stop building the tree
Step 5 Create a new node and fill the required information in each field
Step 6 While the new node is not a child of the first node in queue
Step 7 Delete the first node from the queue
Step 8 Link the new node as a child of the first node in the queue
Step 9 If the state_name of a node in the queue is the same as the new node’s
Step 10 the pre of the new node threads to the node in the queue
Step 11 Add the new node into the queue

This algorithm can build test case trees, such as a tree illustrated in Figure 5. A complete
C++ program, coded following the algorithm, is shown in [30].

1

A Software Engineering View of
Data Quality

Mónica Bobrowski
Universidad de Buenos Aires

Joint Work with
Martina Marré and Daniel Yankelevich

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Outline
• Motivation
• The Data Quality Problem
• What is Data Quality?
• Software Engineering and Data Quality

Measuring Data Quality
Testing Data Quality
Data Quality in the Software Development

Conclusions and Future Work

2

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Which one is my name?
• Mónica Bobrowski
• Monca Bobrowski
• Mónica Bobrowsky
• Mónica Bobrovsky
• Mónica Brobrovsky
• Mónica Bobrosky
• Mónica Bovrosky
• etc.

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

The client point of view

I could not sign for a new
house because I was found
in Fidelitas records as not
trustable. Of course it
wasn’t me!! I’ve put a
lawsuit against them. They
made me lose a lot of
money!

3

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

The company point of view

We are having troubles
with our people
identification system.
We are loosing our
clients confidence and
we are loosing lots of
money too!

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

The Data Quality Problem

• Even with good software systems (and
marketing staff) we can get bad results
Organizations cannot use their systems
because of the data
Economic impact of poor quality data
Bad data is a problem that has to be

4

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

What is Data Quality?

• Quality: a relative concept
• Data attributes:

– Accuracy
– Timeliness
– Usability, etc.

• Quality Data does not necessarily mean

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Software Engineering and Data
Quality

• “The system works perfectly. Of course, if
wrong data is being loaded, what can the

• Poor system design may lead to bad data

Software engineering has to deal with data
quality problems!!!

5

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Software Engineering and Data
Quality

• Software Engineering has been dealing for
long with quality problems

Product and Process Quality

How can we deal with data quality

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Data Quality in Software
Engineering

• Measuring Data Quality
• Testing Data Quality
• Data Quality in the Software Development

We want to use existing techniques!!!

6

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Measuring Data Quality

• “If you can’t measure it, you can’t manage

Value of the information
How and what to improve

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Measuring Data Quality

• Identify interesting attributes (dimensions,
Wang, Strong and Lee, 1997)

Use existing techniques (e.g., GQM,

Measure the quality of the data instance and

7

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Testing Data Quality

• “Data is not a problem for software

System testing concentrates on system

But systems may use data generated by

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Testing Data Quality

• Verify data quality independently of the
systems that may use it

– Complete validation of all data
Statistical indicators
Testing techniques to define and execute test

8

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Using Known Software Testing
Techniques

• Define testing criteria based on quality

Notion of coverage
Construct test cases
Need for an Oracle

≈ Structural Testing?

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality 16

Data Quality in the Software
Development Process

• We have functional and non-functional
requirements in traditional software

We define them at the early stages of the
development process, and verify them

Data Quality Requirements are Non-
functional Requirements

9

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Data Quality Requirements

• Define them at the early stages of the
development process
Using formal notations
Incorporate them to the final product
Verify them using:
– Data Quality Metrics
– Data Testing

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Conclusions and Future Work

• Organizations need quality data in order to

Some data quality dimensions may be
incorporated to software systems
Software engineering is able to contribute to

10

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Conclusions and Future Work
• Research program:

– Define a set of metrics (what and how to

Define data testing criteria based on dimensions
Define data quality requirements as non-
functional requirements

• Empirical Validation is Mandatory!!!

1

A Software Engineering View of Data Quality

Mónica Bobrowski, Martina Marré, Daniel Yankelevich

Departamento de Computación, FCEyN, Universidad de Buenos Aires, Argentina

{monicab,martina,dany}@dc.uba.ar

Abstract

Thirty years ago, software was not considered a concrete value. Everyone agreed on its
importance, but it was not considered as a good or possession. Nowadays, software is
part of the balance of an organization. Data is slowly following the same process. The
information owned by an organization is an important part of its assets. Information can
be used as a competitive advantage. However, data has long been underestimated by the
software community. Usually, methods and techniques apply to software (including data
schemata), but the data itself has often been considered as an external problem.
Validation and verification techniques usually assume that data is provided by an
external agent and concentrate only on software.

In this work, we present different issues related to data quality from a software
engineering point of view. We propose three main streams that should be analyzed: data
quality metrics, data testing, and data quality requirements in the software development
process. We point out the main problems and opportunities in each of them.

Keywords: Software Quality, Data Quality, Software Engineering.

1. Introduction
Thirty years ago, the software owned by an organization was not considered a concrete value. Everyone
agreed on the importance of software, on its virtual value, but it was not considered as a good, as a
possession. In those days, the value of software was defined by its cost.

Nowadays, software is part of the balance of an organization, it contributes to its value, and for almost every
software project the ROI is calculated. Data is slowly following the same process. In fact, people is now
talking about “the value of information.” Many organizations want to possess information. Managers know
that having the right information at the right time may lead them to obtain great benefits. Moreover,
organizations have information that may help them to improve their work, make decisions, and increase their
profits. This information is usually stored in large databases accessed via software applications. However, it is
not enough to have good applications; an organization needs good data in order to achieve its goals.

Now, how could an organization know that it has the right information at the right time? How could an
organization evaluate its information? That is a matter of data quality. In fact, the quality of information is
crucial when determining its usefulness. When quality is not achieved, information is not used, or leads to
incorrect decisions, and even loss. As it is known, “decisions are no better than the data on which they are
based” [Red98]. But, what does information quality mean?

In recent years, researchers have been studying data quality problems from the perspective of the data
generation processes [SLW97, SLW97, WW96]. They have identified problems in data, and tried to associate
them with problems in the process that lead to this data. The underlying idea is that improving the process

2

may lead to an improvement in data.

In [Red96], Redman gives a deep introduction to DQ issues. He points out many aspects of data quality:
definition, management, policies, experiences, requirements, measurements, etc. Although his approach
differs from ours (it is mainly statistical, and concentrate on the data generation process), his book offers clear
examples, motivations, definitions, and useful tips.

Data quality problems are well known to practitioners. In fact, many failures of software are not due to poor
quality of the systems, but to inconsistencies or other problems in data. The quality of data has a great impact
on the usefulness and overall quality of software systems.

However, the mainstream of Software Engineering ignored data quality issues up to day. Validation and
verification techniques exist and have been used for software processes and products, but few has been done
related to data. The only concern for computer engineers regarding data quality has been the extraction of data
for data warehouses. In the context of Data Warehousing, an European project investigated quality and in
particular the requirements on data needed to implement a data warehouse [JV97].

In our view, software engineers must take into account data quality issues in the design, validation, and
implementation of software systems. Moreover, standard techniques can and should be applied to these
problems. In this paper, we present different issues related to data quality from a software engineering point
of view. We point out three main streams that should be analyzed and the main problems and opportunities in
each of them. These themes are:

• Data quality metrics

Measuring the quality of the information will help us to know its value, and also its pitfalls. We will be able to
know how valuable our information is, and also what we need to improve in order to increase quality.
Moreover, measuring quality would clarify the goals of a quality improvement strategy or process. We agree
with the well-known proverb: "if you can’t measure it, you can’t manage it."

• Data quality and testing

Usually, testers and engineers assume that the data (in a production environment) is correct, and test the
system considering its behavior. However, as we have said, this is not the case in the real world. When a new
system is incorporated to an existing environment, the data it uses must be analyzed to understand its
usefulness. Moreover, an old system may be using corrupted data. We believe that the verification of a
system must include the verification of the data it works on. Besides, we believe that many testing techniques
can be adapted in order to be used to test data.

• Data quality in the software development process

The dimensions in which data quality is analyzed (for instance consistency, accuracy) can be considered data
quality requirements for a project, and can be assessed from the beginning of the software development
process in the same way that we have functional and non-functional requirements. In fact, they are a particular
sort of non-functional requirements. So, we want to deal with them from the beginning of the process, and
incorporate them to our specification, our design, and our system implementation. In this case, our system
should give us a warning when the data is in close or already in a “bad quality” situation with respect to our
requirements. And hence we can prevent our system from entering such a situation.
In Section 2 we discuss what data quality means. In Section 3 we describe typical data quality problems.
Section 4 presents data quality metrics: why, what, and how to measure. Section 5 is devoted to data testing.
Section 6 points out why data quality requirements should be incorporated to the software development
process. In section 7 we present our conclusions and future work.

2. What is Data Quality?
 It is difficult to give a universal definition of what quality means. When we talk about quality we do not
always refer to the same concept. We will try to exemplify this issue. Suppose that you are planning a trip to a
foreign country. You have to choose an airline to fly. Which one do you prefer? Of course, you will prefer the
airline that offers the best quality. But, what does quality mean? You want to arrive in time, you want
comfortable seats, you want a helpful crew, you want a quiet trip, and you want low prices. These attributes

3

(punctuality, comfort, helpfulness, peace, low prices) constitute your notion of quality in this particular
context. Even in the trip situation, someone else may not be concerned about the price, but be very worried
about the meals served. So his notion of “airline quality” is different from yours. It may differ not only in the
attributes taken into account; the relevance of each item may be different. Moreover, you could have different
notions of “airline quality” for different trips.

 This example shows that quality is not an absolute concept. The word quality by itself has not a unique
connotation. We have to make assumptions on which aspects apply on a particular situation. In the case of
data quality, we may want to take into account only specific attributes with some specific relevance,
depending on the particular context we are analyzing. In our view, the quality of data in the context of
software systems is related to the benefits that it might give to an organization.

 As we have said, the quality of data depends on several aspects. Therefore, in order to obtain an accurate
measure of the quality of data, one have to choose which attributes to consider, and how much each one
contributes to the quality as a whole. In what follows, we present several attributes that we think may
determine the quality of our data. These attributes or dimensions have been taken from [WW96, SLW97]
following the point of view of the value of the data, i.e., our pragmatic view of data quality.

 We present an informal definition for each of the attributes considered. This selection is not exhaustive, but is
representative enough for our purposes.

 Completeness Every fact of the real world is represented. It is possible to consider two different aspects of
completeness: first, certain values may not be present at the time; second, certain attributes
cannot be stored.

 Relevance Every piece of information stored is important in order to get a representation of the real
world.

 Reliability The data stored is trustable, i.e., it can be taken as true information.

 Amount of data The number of facts stored.

 Consistency There is no contradiction between the data stored.

 Correctness Every set of data stored represents a real world situation.

 Timeliness Data is updated in time; update frequency is adequate.

 Precision Data is stored with the precision required to characterize it.

 Unambiguous Each piece of data has a unique meaning.

 Accuracy Each piece of data stored is related to a real world datum in a precise way.

 Objectivity Data is objective, i.e., it does not depend on the judgment, interpretation, or evaluation of
people.

 Conciseness The real world is represented with the minimum information required for the goal it is used
for.

 Usefulness The stored information is applicable for the organization.

 Usability The stored information is usable by the organization.

 Notice that dimensions may be related to others. For example, the amount of data may be important only in
conjunction with correctness (lot of incorrect data has no sense, and even may damage the organization),
usability (inefficient access to data due to the size of the database is worthless), and so on. In some way, these
attributes complement each other.

4

3. The Data Quality Problem
- I can´t use this application. Look, I know that wells in this field are at most 3000 feet, and the
depth of this well in the system is 4500! This system is useless.

- The system works perfectly. Of course, if wrong data is being loaded, what can the computer
do?

- I don´t know. I just say that it is not good for me. It makes me loose more time looking for
data than before.

- It is not our problem. The system works, we detect wrong data when it is loaded –and in the
cases YOU specified-. It is a problem of the users: you should tell them to use it right.

This dialog, at least in spirit, happened in many places many times. Data quality problems are real problems
in most information systems. With different degrees of criticality and deepness, these problems are being
treated in many organizations. In most cases, in an ad-hoc way.

For instance, let us consider mailing lists. How many times do you usually receive a brochure for a
conference? How many combinations of first, second, and last name have you seen your name on envelopes?
This simple example shows how expensive data quality errors can be: mailing can be quite expensive, and
using a faulty list, a mailing campaign can be many times more expensive. Moreover, the lost caused by
wrong advertising goes long beyond the cost of mailing: customers and potential customers do not trust
someone that is not even capable of keep his/her data right. The image of the organization suffers offering and
using wrong data.

However, the particular case of names (and, mainly, occidental names) has been extensively studied and
many heuristics have been proposed for the problem of determining whether two names correspond to the
same person (in general, in the presence of more data, like date of birth, addresses, etc.). Commercial products
and algorithms are available to attack (not to solve) this problem. Even though, this particular problem is
cause of misuse of systems in several different contexts.

For instance, criminal identification systems determine if a person has criminal records. This information is
used, for example, by judges (to decide whether the person has to be punished, and how), and by
organizations (to decide whether to hire him). These systems are critical because, in some sense, our future
may depend on the quality of the data and the procedures used to recover it. Although a high quality
application is used to access the data, the identification is based on several attributes, and sophisticated
algorithms are used to match them, it turns out that wrong conclusions can be obtained when bad quality data
is present in the system. It has been found that 50-80% of computerized criminal records in the U.S. were
found to be inaccurate, incomplete, or ambiguous [Tay98]. This poor quality data may imply send people to
jail or not to hire them.

Data quality problems are not only related to pattern matching of persons or organizations. Such problems
arise in many different contexts, and the consequences can be disastrous. The cultural change imposed by the
use of computers in many different environments, only makes the problem worse. In fact, people trust
computers and utilize them as the main source of data: digital information is used minute by minute to take
important decisions that affect people lives.

Recently, data warehouse and data mining projects exposed many data quality problems in big enterprises.
When the information collected was analyzed or was checked for integrity, some “hidden” problems were
detected. For instance, data from different sources was detected to be inconsistent in data warehousing.

The usual (implicit or explicit) position of software professionals facing data quality issues is that “this is not
our problem. ” Somehow, information professionals are not responsible of dealing with information.

On the other hand, we have two ideas that contradict that belief. First, some data quality issues are caused by
poor design of software systems. In particular, the effect of poor interface design on data quality is direct. For
instance, in many cases users of a complex interface with mandatory values have the tendency to choose a
random value. If there is a list of values available, users choose the first of the list or the default value.

For example, by studying last year information the managers of a hospital discovered that most of the patients
suffered from hemorrhoids. The resources of the next year were assigned on this basis. The number of beds,

5

nurses, and other resources needed were determined using this information. However, it came out that
“hemorrhoids” was the default choice at the check-in application, and clerks selected it because it was
difficult to look for the correct choice. This bad data -due to a poor interface design- had terrible
consequences on the hospital finances [Tay98].

Another way in which poor design may affect the quality of the data is by failing in a complete analysis of
business rules or by not taking into account data quality issues during the requirements analysis phase. In fact,
if data quality is a risk, the design of the system must take measures to minimize that risk.

A rule of thumb [Orr98] proposes to improve data quality by increasing the use of the data. Data that is not
used cannot be maintained. We agree with this rule. However, several times it has been used to illustrate that
problems in the quality of information are not caused by poor design. This is not true. The process of creating
and using data must be subsumed in the design of the system. The data flow, the organization of the
processes, and the overall design must be created with this data life cycle in mind [Red96]. Not to do so is a
modeling and design fault. During the analysis phase, the processes that are automated must be analyzed not
only for efficiency: data quality is also a driver when designing the processes and the use of the applications.

The second idea is that many data quality problems can be prevented and deal with by using standard
software engineering techniques – adequately adapted or revisited. For instance, configuration management
techniques could be used to solve problems with out-of-date data or versioning of information. Standard
metric definition techniques could be used to define useful data quality metrics. These ideas are addressed in
more detail in the following sections of this work.

4. Measuring Data Quality
 The first step to improve data quality and to define methods and techniques is to understand what “good
quality” and “bad quality” is. Hence, we need to measure data quality to be able to know how valuable the
information is, and how to improve it. Measuring the quality of the information will help us to know its value,
and also its pitfalls. We will be able to know how valuable our information is, and also what we need to
improve in order to increase quality. Moreover, measuring quality would clarify the goals of a quality
improvement strategy or process. We agree with the well-known proverb: "if you can’t measure it, you can’t
manage it”. In fact, it is not possible to make serious empirical analysis of techniques or strategies if there is
no agreement on how the results will be evaluated.

 We propose to measure information quality using metrics defined using traditional software engineering
techniques. Metrics have been deeply studied in software engineering [FP97], so we want to take advantage
of it.

 In [BMY98] we present a framework for defining and using data quality metrics. The outcome of this work is
a suitable set of metrics that establish a starting point for a systematic analysis of data quality. We identify the
attributes we want to measure, and obtain a set of metrics and techniques to calculate them. This is a starting
point for a systematic analysis of data quality, that may lead to improve the quality of the data in an
organization.

We base our work on the GQM methodology [BR88]. GQM is a framework for the definition of metrics.
GQM is based on the assumption that in order to measure in a useful way, an organization must:

• specify goals,

• characterize them by means of questions pointing their relevant attributes,

• give measurements that may answer these questions.

We have chosen this framework because it is a top down approach that provides guidelines to define metrics,
without a priori knowledge of the specific measures. There are other approaches for metric definition, e.g.,
[BBL76, MRW77]. We have chosen GQM because of its simplicity, its adequacy to our problem, and
because it is well known and proven in software engineering applications [Van98].

Following GQM, we first are able to state which dimensions characterize our notion of data quality. Then, we
can ask questions characterizing each dimension, without giving a precise (formal) definition -that is

6

sometimes impossible-, only focusing on their relevant characteristics from our point of view. Finally, we
give metrics (some objective, some others based on people appreciation) to answer these questions, giving us
a more precise valuation of the quality of our data.

 We cannot measure data and ignore how it is organized. Certain quality characteristics are related to the
organization of data, i.e., to the data model, and not to data itself. The data model might affect some data
quality attributes, since it defines the way data is accessed and maintained. We want to identify and measure
those attributes too, and complement measures of data with information on how it is organized. As a
consequence, we defined two kinds of metrics: set of data metrics, and data model metrics.

Once we have defined our data quality metrics (i.e., what and how to measure) we want to use them. We can
simply take our relational database, identify the dimensions we are interested in, choose the appropriate
metrics and techniques depending on specific considerations, apply them, and analyze the results. This is a
useful approach, specially when the system is already in production, the database is implemented, there is a
lot of data loaded, and we want to have a picture of the current situation in order to decide what to improve.
We may even add information about the quality of the data to the meta model, as part of its definition. This
way it may be easier to check and evaluate the quality of the data at a certain point. In [JV97], this approach is
followed in the data warehouse case.

Once we have measured the quality of our data with respect to the chosen dimensions, we can decide whether
or not our current data satisfies our quality expectations. Moreover, we will know in which dimension it fails
(although we do not know why), with respect to which specific aspect, and we have a measure of the
“badness.” So we can concentrate our efforts in solving that particular problem, and we can decide if it is
convenient to do so - may be data is not so bad, and the solving effort is worthless.

This procedure only deals with measuring the quality of data at certain points, and can help in deciding which
corrective or preventive actions to implement. In order to reach and maintain high levels of data quality, it has
to be part of a broader plan, that takes into account all the aspects of data quality in the organization (see
[Red96]).

Another approach is to see the dimensions we are interested in as data quality requirements (see Section 6).
These requirements can be assessed from the beginning of the software development process, in the same way
that we have functional and non-functional requirements. So, we want to deal with them from the beginning,
and incorporate them to our specification, our design, and our system implementation. In this case, our system
should give us a warning when the data is in close or already in a “bad quality” situation with respect to our
requirements. And hence we can prevent our system from entering such a situation. Metrics may be used here
to establish the requirements and check them at different stages of the software development process.

5. Testing and Data Quality
Software systems were often analyzed as if they start from scratch. Only recently the idea of using COTS is
being incorporated in formal description of the development process. This is even stronger in the case of the
data used by these systems. The idea of testing a system concentrates on testing its functionalities: never the
data that it is supposed to work with – even if it makes assumptions on what is the state of the data. The
phrase “garbage in/garbage out” only expresses the idea of “data is not a problem of software systems.”

If a system is started from scratch, some of these assumptions can be accepted. However, in the daily practice
of our profession, most systems are incorporated on top of existing systems or collaborating with existing
systems. Many projects use data generated by other systems, in many cases by systems that are not operative
anymore.

In our view, it is important to check whether the data satisfies the requirements of the system or, in other
words, that the quality of data reaches the minimum level required for the system to work properly. This
activity can be done before the system is developed (in order to take corrective measures or include extra
components during the development), before installing the system (in order to check how it will work and to
prevent problems during its use) or, independently of any system, just to measure the quality of the data.

This verification can be done in three different ways:

• Complete validation of all data.

7

• Statistical indicators of mean, variance, intervals, etc.; or random selection with an associated confidence.

• Use testing techniques to define and execute test cases.

The first way is clear: validate the whole data, using automatic and manual verification. This is not equivalent
to clean the database or files, because the cost of repairing a data error can be many times greater than the cost
of detecting it. However, in most cases complete validation is unfeasible. In this extent, it is not different of
complete validation of programs [How76]: in many cases the domain of programs are finite and could, in
theory, be validated for all inputs. Even though, complete verification is not done, because it is too expensive,
too complex, or unnecessary. Only the thought of checking a 2,000,000 registries database to see if any
customer has changed his address is scaring.

It is important to discuss the difference between the last two options. There are testing techniques based on
statistics, and the activity of testing is strongly related to statistical analysis. However, there is a subtle
difference between taking values that describe distribution of data on one hand, and choosing particular cases
that satisfy particular criteria on the other. When we propose testing as a technique to validate data quality, we
think that it is possible to define testing criteria for data quality based on the quality dimensions of interest.
In some cases, it might be even possible to define the notion of coverage, and to construct test cases to satisfy
a particular coverage criteria [My79].

For example, suppose that we are interested in measuring how accurate our data is with respect to time
(timeliness). Let us assume that we know which attributes are time dependent. If we have a way to know if
specific values are outdated, we may define a test over the data to estimate the number of records that are
outdated. Hence, in order to implement these testing activities we need to use a selection criterion (to reduce
the number of test cases to be evaluated) and an oracle (to know if specific values are outdated). We believe
that in this case, the selection criterion should use the specific information about timeliness of data, improving
the results obtained by using sampling. Testing for other qualities should use different information to select
data.

Data testing has the flavor of structural testing –because the structure of data will probably play a basic role in
defining the criteria- and aspects of functional testing. The type of coverage used to check data quality will be
fundamental to create new testing techniques –or adapt existing techniques for new goals. A lot of work must
be done to define adequate notions, and those notions must be validated by empirical data (and, possibly, by
high quality data!) before proposing concrete techniques. However, it is clear that testing, as presented in this
section, has many advantages over statistical analysis. One of the advantages is that we do not need to define
the rules that guarantee that a particular piece of data is of high quality explicitly: for each case we can
determine whether the output passes or fails the test. The only difficulty is to choose the right tests. But we
know how to do that to test programs: the same ideas should apply here.

6. Data Quality in the Software Development Process
The requirements of a software system are usually divided in two groups: functional requirements and non-
functional requirements. Functional requirements include the services the system is expected to provide, while
non-functional requirements place constraints on the way those services must be provided [Som94]. Examples
of non-functional requirements are programming languages (“the system must be implemented using C++”),
performance (“the expected response time is 2 seconds”), standards (“the development process must be ISO
compliant”), interoperability (“the system must communicate with the accounting system”). Moreover, non-
functional requirements may be classified according to the kind of constraints they impose. So, we have
process requirements (constrain the development process), product requirements (constrain the final product),
and external requirements [Som94].

Besides, when describing non-functional requirements at early stages of the software development process,
we assume that they should be verifiable, that is, we want to be able to decide whether the system
architecture, the design, the implementation, the process model, etc., satisfy them.

As mentioned in previous sections, we claim that data quality issues are non-functional requirements that may
be incorporated into the software development process. In fact, we may add a fourth kind of requirements:
data requirements. These requirements must be placed at requirements and specification time, and they will
constrain the following steps of the development process. In this way, we the system constructed will satisfy

8

the expected levels of data quality, and we may be able to verify these data quality requirements in the
system.

Very often, system developers claim that their job do not consist in understanding what the systems they
develop are used for, neither the context in which the systems will be used. They just build systems that meet
the requirements of the users; the users have to ensure the quality of the data in the databases [Orr98].
According to our view, if data quality requirements are formulated together with other non-functional
requirements, the developer has to guarantee that those requirements are met, and consequently, that the
expected levels of data quality are achieved and maintained. Of course, it is not always possible to have an a-
priori knowledge of all the aspects regarding data quality, but at least a subset should be available. And the
analyst is responsible for asking and obtaining this information.

Users have expected levels of data quality in mind. In fact, they obviously want data in the systems to be
used, and this alone constitutes a requirement. Sometimes they have more specific demands, concerning
accuracy, timeliness, security, accessibility, etc., of data. These requirements are functional by no means,
since they are not related to the services the system provides. However, they are related to how the services
will be implemented. For example, if a requirement is placed on the security of the data so that certain data is
not accessible to every one, the system must comply with this security requirement in order to satisfy the user
expectations. Hence, data quality requirements are non-functional requirements. To include data quality
requirements from the beginning of the development process may help to improve the quality of the data
during system usage, because the system will be designed to take care of the quality of the data according to
the user needs.

Moreover, in information systems the expectations on data quality can be even stronger than the expectations
on a particular functionality or operation that the system may perform.

Existent approaches consider data to be independent from the applications that use it [Red96]. This is
essentially true. Organizations have information that may be used by many systems, although the data has
entity by itself. However, systems are build to use this data in agreement with the rules and needs of the
organization. Thus, they have to preserve the consistency of the data, make it accessible, extract useful
information, maintain its quality, etc. It follows that applications must take care of data quality. And, as we
already know from software development models, it is better to have them in mind from the beginning. It is
always more expensive to modify existent systems in order to deal with the quality of the data, to preserve it,
or improve it. It is cheaper to include them at the starting point of the development process and verify them at
each stage, including the final implementation.

In order to have verifiable requirements, we would rather use formal notations that may allow us to use
automatic tools to perform verification of requirements. As opposed to other requirement languages, a
language for data quality specification should be decidable and quite simple.

Data quality requirements may be formulated in terms of data quality dimensions [SLW97]. Different
requirements may be placed over the same set of data and data model. Hence, we want to be able to decide
whether a set of requirements is sound. Moreover, we may place different requirements over different subsets
of data.

There are other approaches that deal with requirements on the data at early stages of the software
development process [Red96]. However, they do not follow a software engineering approach. In fact, they do
not incorporate them as part of standard software development processes; they do not look for a formal,
simple, and verifiable notation to describe data quality requirements; they do not apply traditional software
engineering techniques to data quality problems.

Strong, Lee, and Wang [SLW97] describe common existing problems with data. They identify their source,
the dimensions affected, and the impact on the organization. They propose general solutions to these
problems, for instance, as guidelines to the process development and management. They do not formalize the
expected data quality levels, and cannot verify if they are achieved. This analysis can be done when the
problems are detected, and the experience could be used in future developments.

Redman [Red96] proposes to understand the customer needs prior to the software development. He translates
user requirements into technical requirements written in natural language. Some of these requirements are
formulated in terms of specific conditions over certain data (for example, “the new address must be in the

9

system within two weeks”). He determines which dimensions are affected by each requirement. To do this, he
uses an impact matrix, where the impact of each requirement is rated as “high”, “medium”, or “low”. It is
hard to verify if the technical requirements really correspond to the user requirements, since they are both
informal. Also, it is difficult to verify if the technical requirements are satisfied. Moreover, with such a
limited scale, it is hard to determine the desired quality levels precisely, and consequently, to verify their
achievement.

7. Conclusions and Future Work
Problems in the quality of information are real problems in almost all organizations that use large databases.
In this work we have discussed the characteristics of the data quality problem, in particular related to other
quality topics usually considered in the software engineering field. Moreover, we have proposed three specific
lines in which particular techniques could have a direct impact on how organizations deal with these
problems.

This work presents more problems than solutions, it is just a particular point of view to attack data quality
problems. In order to obtain concrete results, more work must be done in each of the three themes proposed.
In particular, empirical validation is mandatory to check the adequacy of the methods and techniques
proposed. Actually, this work can be used as a research agenda, and the lines presented are the basis of our
research program on data quality.

The start point of this research program is the definition of metrics for data quality. Without a clear
knowledge of what and how to measure, it is difficult to attack the underlying problems or to define objective
experiments to check improvement after the use of new techniques [BMY98]. A particular issue related to this
point is the value of data. At some point in our program, we would like to have a notion of value of
information (in the sense of dollar value or market value), probably related to its use.

Data testing and the incorporation of data quality in the software development process are both issues that
must be investigated before defining practical techniques.

One of the main conclusions of this work is that software engineers cannot ignore data quality in the day to
day practice, and that many among the best practices of the field can be adapted to work with data quality.

Acknowledgements
This research was partially supported by the ANPCyT under ARTE Project grant PIC 11-00000-01856, and
the ANPCyT under grant PIC 11-00000-0594.

References
[BR88] Basili, V.R., Rombach, H.D.: The TAME Project: Towards Improvement-Oriented Software
Environments, IEEE Transactions on Software Engineering, vol. 14, no. 6, June 1988.

[BMY98] Bobrowski, M., Marré, M., Yankelevich, D.: Measuring Data Quality, submitted for publication.

[BBL76] Boehm, W., Brown, J.R., Lipow, M.: Quantitative Evaluation of Software Quality, Proceedings of
the Second International Conference on Software Engineering, 1976.

[FP97] Fenton, N.E., Pfleeger, S.L.: Software Metrics - A Rigorous & Practical Approach, 2nd edition ITP
Press, 1997.

[How76] Howden W. E.: Reliability of the Path Analysis Testing Strategy, IEEE Transactions on Software
Engineering, vol. 2, 1976.

[JV97] Jarke M., Vassiliou Y.: Data Warehouse Quality: A Review of the DWQ Project, Proceedings of the
Conference on Information Quality, MIT, Boston, October 1997.

[MRW77] McCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality, Rome Air Development
Center, RADC TR-77-369, 1977.

10

[My79] Myers G. J., The Art of Software Testing, Wiley, New York, 1979.

[Orr98] Orr, K.: Data Quality and Systems Theory, Communications of the ACM, Vol. 41, No. 2, pp. 66-71,
Feb. 1998.

[Red96] Redman, T.: Data Quality for the Information Age, Artech House, 1996.

[Red98] Redman, T.: The Impact of Poor Data Quality on the Typical Enterprise, Communications of the
ACM, Vol. 41, No. 2, pp. 79-82, Feb. 1998.

[SLW97] Strong, D., Lee, Y., Wang, R.: Data Quality in Context, Communications of the ACM, Vol. 40, No.
5, May, 1997.

[SLW97] Strong, D., Lee, Y., Wang, R.: 10 Potholes in the Road of Information Quality, IEEE Computer,
August 1997.

[Som94] Sommerville, I.: Software Engineering, Addison-Wesley, 1994.

[Tay98] Tayi, G.K.: Research Seminar on Data Quality Management, Universidad de Buenos Aires, July
22th, 1998.

[Van98] Van Latum F., Van Solingen R., Oivo M., Hoisi B., Rombach D., and Ruhe G.: Adopting GQM-
Based Measurement in an Industrial Environment, IEEE Software, pp. 78-86, January-February 1998.

[WW96] Wand, Y., Wang, R.: Anchoring Data Quality Dimensions in Ontological Foundations,
Communications of the ACM, Vol. 39, No. 11, November, 1996.

1

Graham Thompson

Minimizing Testing while
Maximizing Failure Detection

InCert Software Corporation
201 Broadway
Cambridge, MA 02139
617 621 8080

VP of Marketing
 VP Development
Direct of Product

Vice President of Marketing

Agenda

■ The Y2K Problem……again!!!!

■ Testing Lessons Learned from Y2K

■ The New Science of Failure
Management

■ Looking beyond Y2K

■ Summary

BEHAVIOR

Y2K PROCESS

FAILURE

2

Y2K Remediation

■ Fixing Date Issue is Simple

■ Finding them is Not!

■ Making a Single Change is Simple

■ Making Thousands of Changes is Not!

■ Understand Impact within a Program is Simple

■ Understand Impact across the Enterprise is Not!

Program->Impacted Fields

Program

Year2000 Field

Copybook

File or Database

3

Fields ->Copybooks ->Programs

Program Year2000 Field Copybook File or Database

Synonyms within a Program

Program Year2000 Field Copybook File or Database

4

Relationships to the Synonyms

Program Year2000 Field Copybook File or Database

Synonyms through Program Calls

Program Year2000 Field Copybook File or Database

5

Relationships to Files/Databases

Program Year2000 Field Copybook File or Database

Relationships to other Programs

Program Year2000 Field Copybook File or Database

6

Relationships to Fields

Program Year2000 Field Copybook File or Database

Relationships through Calls, Databases/Files
and Synonyms

Program Year2000 Field Copybook File or Database

7

Program Data Structures

START-DTE (A8)

Group Assignments and Comparisons

MOVE TO

8

Program Calls

CALL XYZ (,)

PROGRAM XYZ ()

File and Database Manipulation

)

READ ()

WRITE (

9

File Mapping
WRITE DDNAME ()

JOB STEP
DDNAME

DATASET

JOB STEPJOB STEPJOB STEP

DDNAME
DDNAMEDDNAMEDDNAME

DATASETDATASETPROGRAM
DDNAMEDDNAMEINTERNAL

DDNAME

READ DDNAME ()

PROGRAM
INTERNAL
DDNAME

JOB STEPJOB STEP

Plus O
n-lin

e

Real World Impact

DATARECORD

COUNTS

DATARECORD

DESCR-FM-F85
DATARECORD

SUPER-ZA-F97
DATARECORD

CAUSE-MESSAGE

DATARECORD

MESSAGES

DATARECORD

RCR

DATARECORD

ACCUMULATORS

DATARECORD

GENINTRF-FMT2-SEGMENT
DATARECORD

TRIGGERS

DATARECORD

PREV-HOLD-AREAS

DATARECORD

ALPHA-TABLE

DATARECORD

TABLE-D-CONVERT

DATARECORD

SAVE-DOC-ID

DATARECORD

GENINTRF-FMT3-SEGMENT

DATARECORD

SAVE-SCHEDULE-CERT-DEP

DATARECORD

SCH-CERT-DEP-TABLE-RED

DATARECORD

ADA-DATE-TABLE

DATARECORD

ALPHA-TBL
DATARECORD

SERVED-SERVING-TBL

DATARECORD

SUPER-ZC-F80
DATARECORD

GENINERR-RECORD

DATARECORD

GENINTRF-FMT14-SEGMENT

DATARECORD

SAVE-ICAN

DATARECORD

DATE-WORK-AREA
DATARECORD

GENERATED-FMT3-SEGMENT

DATARECORD

SAVE-INV-CUST-ACCT-NUM

DATARECORD

GENERATED-FMT2-SEGMENT

DATARECORD

GENERATED-FMT1-SEGMENT

DATARECORD

GENINTRF-RECORD

DATARECORD

GENINTRF-FMT1-SEGMENT

DATARECORD

SUPER-ZA-F84

DATARECORD

WORK-SCHEDULE-CERT-DEP

DATARECORD

WORK-SCHEDULE-CERT-DEP-VPY
DATARECORD

ADAMINT-CONSTANTS

DATARECORD

GENERATED-REC

DATARECORD

GENERATED-FROM-INPUT

DATARECORD

TRANS-SEQ-NUMBER-VPY

PROGRAM

DF473

FIELD

IN-COUNT

FIELD

OUT-COUNT

FIELD

DATA-STRING-CNT

FIELD

TOT-BATCHES-TRANS-CNT

FIELD

TOT-BATCHES-GEN-CNT

FIELD

TOT-ERR-BATCHES-CNT

FIELD

SUB

FIELD

SUB1

FIELD

COMPLETE-RCD

FIELD

SUB2

FIELD

SUB3

FIELD

SUB4

FIELD

SUB5

FIELD

MLS-SEQ-NUM

FIELD

VARIABLE-W

FIELD

TOT-NET-AMOUNT

FIELD

CHK-PT

FIELD

RC

FIELD

JULIAN-DATE-3-FLAG

FIELD

JULIAN-DATE-2-FLAG

FIELD

JULIAN-DATE-1-FLAG

FIELD

SCHED-CERT-FLAG

FIELD

SCHED-CERT-BUILT

FIELD

TRAILER-RECFIELD

DOC-NUMBER

FIELD

DOC-SUFFIX

FIELD

TRANS-CODE

FIELD

TC-STATUS-CODE

FIELD

AMT

FIELD

EFF-DATE

FIELD

EFF-DATE-MM

FIELD

EFF-DATE-DD

FIELD

EFF-DATE-YY

FIELD

FMT1-FIL-R1

FIELD

DOC-REF-METER-NUM

FIELD

LINE-COUNT

FIELD

AMT-QTR-1

FIELD

AMT-QTR-2

FIELD

AMT-QTR-3

FIELD

AMT-QTR-4

FIELD

ALLOTTEE

FIELD

ALLOT-LVL-AFC

FIELD

FMT1-FIL-R2

FIELD

INPUT-RGN-DIST

FIELD

INPUT-AGY

FIELD

INPUT-RGN

FIELD

FMT1-FIL-R3

FIELD

FMT2-FIL-R1FIELD

ALPHA-7

FIELD

ALPHA-8

FIELD

ALPHA-9

FIELD

ALPHA-10

FIELD

ALPHA-11

FIELD

ALPHA-12

FIELD

ALPHA-13

FIELD

ALPHA-14

FIELD

ALPHA-15

FIELD

ALPHA-16

FIELD

ALPHA-17

FIELD

ALPHA-18

FIELD

ALPHA-19

FIELD

ALPHA-20

FIELD

ALPHA-21

FIELD

ALPHA-22

FIELD

ALPHA-23

FIELD

ALPHA-24

FIELD

ALPHA-25

FIELD

ALPHA-26

FIELD

ALPHA-27

FIELD

ALPHA-28

FIELD

ALPHA-29

FIELD

ALPHA-30FIELD

HOLD-JUL-DATE

FIELD

HOLD-JUL-DATE-YY

FIELD

HOLD-JUL-DATE-DD

FIELD

HOLD-GREG-DATE

FIELD

HOLD-GREG-DATE-MO

FIELD

HOLD-GREG-DATE-DAY

FIELD

HOLD-GREG-DATE-YR

FIELD

HOLD-YEAR

FIELD

00-YR

FIELD

HOLD-YR

FIELD

SAVE-JUL-DATE

FIELD

SAVE-JUL-YR

FIELD

SAVE-JUL-DAY

FIELD

SAVE-GREG-DATE

FIELD

SAVE-GREG-MO

FIELD

SAVE-GREG-DAY

FIELD

SAVE-GREG-YR

FIELD

END-MO-DATE-SAVE

FIELD

END-YY-SAVE

FIELD

END-DD-SAVE

FIELD

PREV-AGY-RGN-DIST

FIELD

PREV-INPUT-RGN-DIST

FIELD

PREV-VENDOR-TYPE

FIELD

PREV-VENDOR-SSNFIELD

END-MO-DATE-YY

FIELD

END-MO-DATE-DD

FIELD

SCHED-CERT

FIELD

NUMERIC-CAUSE

FIELD

CAUSE-TEXT

FIELD

PROG-ID

FIELD

ADA-OPEN

FIELD

ADA-FD008001

FIELD

ADA-LV008401

FIELD

ADA-RV008401

FIELD

ADA-FD008501

FIELD

ADA-FD009701

FIELD

ABEND-DF473

FIELD

ABEND1-DF473

FIELD

ABEND2-DF473

FIELD

ABEND3-DF473

FIELD

ABEND3-INTERFACE

FIELD

ABEND4-DF473

FIELD

ABEND4-AGY-RGN-DIST

FIELD

ABEND5-DF473

FIELD

ABEND5-TRANS-NUM

FIELD

ABEND6-DF473

FIELD

MSG-INVALID-INTERFACE-3

FIELD

INVALID-INTERFACE-2A

FIELD

MSG-INVALID-INTERFACE-2

FIELD

INVALID-INTERFACE-CODE

FIELD

INVALID-INTERFACE-1A

FIELD

MSG-INVALID-INTERFACE-1

FIELD

MSG-INT-TABLE

FIELD

MSG-EOF

FIELD

NO-RECORD-ON-DATE-TABLE

FIELD

MSG-STOP-DF473

FIELD

MSG-ERROR-CNT

FIELD

MSG-GENERATED-CNT

FIELD

MSG-XMITTED-CNT

FIELD

MSG-COMPUTED-CNT

FIELD

MSG-ABNORM-EOJ

FIELD

MSG-NORM-EOJ

FIELD

MSG-DF473-PURPOSE

FIELD

MSG-START-DF473

FIELD

MSG-AST

FIELD

SCHED-NUM

FIELD

JULIAN-DATE-3

FIELD

JULIAN-DATE-2

FIELD

JULIAN-DATE-1

FIELD

WS-JULIAN-DATE

FIELD

SAVE-INPUT-RGN

FIELD

SCHED-TYPE

FIELD

SUFFIX

FIELD

FISCAL-YR

FIELD

DOC-ID-1-2

FIELD

POS-6-9

FIELD

POS-1-5

FIELD

POS-1-9

FIELD

PREV-INV-CUST-ACCT

FIELD

PREV-LINE-COUNT

FIELD

PREV-INTERFACE-CODE

FIELD

PREV-TRANS-NUM

FIELD

PREV-FIS-YR

FIELD

PREV-EFF-DATE

FIELD

DUP-SCHED-NUM-6

FIELD

DUP-SCHED-NUM-6-7

FIELD

DUP-SCHED-NUM-3-5

FIELD

DUP-INP-RGN

FIELD

DUP-WORK-SCHED-TYPE

FIELD

DUPLICATE-SCHED-CERT-DEP

FIELD

ALPHA-D

FIELD

JULIAN-D

FIELD

TABD-DATA

FIELD

TABLE-D-ENTRY

FIELD

FILLER

FIELD

TABLE-D-DATA

FIELD

ALPHA-CHAR

FIELD

ALPHA-36

FIELD

ALPHA-35

FIELD

ALPHA-34

FIELD

ALPHA-33

FIELD

ALPHA-32

FIELD

ALPHA-31

FIELD

COMPUTATION-DATE

FIELD

STAT-DATA-2

FIELD

STAT-DATA-1

FIELD

ENERGY-CONV-CODE2

FIELD

ENERGY-CONV-CODE1

FIELD

SCHEDULE-TYPE

FIELD

TRAVEL-DATE

FIELD

VENDOR-SSN

FIELD

VEND-TYPE

FIELD

INV-CUST-ACCT-NUM

FIELD

FMT2-FIL-R3

FIELD

CFWD-AMT

FIELD

FMT2-FIL-R2

FIELD

PRIOR-FY-AMT

FIELD

AMOUNT-QTR4

FIELD

AMOUNT-QTR3

FIELD

AMOUNT-QTR2

FIELD

AMOUNT-QTR1

FIELD

LINE-CNT

FIELD

PREV-REC-TRAILER

FIELD

BAD-TRANS

FIELD

GOOD-TRANS

FIELD

CURRENT-MONTH-10

FIELD

MONTH-EQUAL-10

FIELD

ERROR-SWITCH-SET

FIELD

ERROR-SWITCH

FIELD

INPUT-EOF

FIELD

END-OF-FILE

FIELD

VALID-GREG-DATE

FIELD

INVALID-GREG-DATE

FIELD

GREG-DATE-VALIDATION

FIELD

VALID-JULIAN-DATE

FIELD

INVALID-JULIAN-DATE

FIELD

JULIAN-DATE-VALIDATION

FIELD

INVALID-AGENCY

FIELD

VALID-AGENCY

FIELD

AGENCY-ON-T01

FIELD

TRAILER-RECORD

FIELD

ABEND6-SEQ-NUM

FIELD

TERMS-PERCENT

FIELD

EXCL-DISC-AMT

FIELD

REASON-CODE

FIELD

FACILITY-TYPE

FIELD

FACILITY-LOCATION

FIELD

IOTV-NUMBERFIELD

ENERGY-CONV-CODE

FIELD

STAT-DATAS

FIELD

STAT-DATA

FIELD

COMPUTATION-DATE-YY

FIELD

COMPUTATION-DATE-MM

FIELD

COMPUTATION-DATE-DDFIELD

INP-RGN

FIELD

POS-6-7

FIELD

POSI-6

FIELD

POSI-7

FIELD

WORK-SCHED-TYPE-VPY

FIELD

INP-RGN-VPYFIELD

MSG-PROGRAMMER-INFO-2

FIELD

DF473

FIELD

ADAOPEN

FIELD

ADACLOSE

FIELD

ADASNAP

FIELD

OPENMODE

FIELD

GOOD-TRANS-CODES-FPY-MLS

FIELD

FPY-MLS-TRANS-CODE

FIELD

BYTE-6-A-P

FIELD

A-P

FIELD

SS-MATCH

FIELD

SCD-SW

FIELD

FIRST-DETAIL

FIELD

LAST-REC-TRAILER

FIELD

INVALID-INTERFACE-TRIG

FIELD

80-CHAR-PART

FIELD

INTERFACE-CODE

FIELD

POS-1

FIELD

POS-2

FIELD

POS-3

FIELD

AGY-RGN-DIST

FIELD

AGY-CODE

FIELD

RGN-DIST

FIELD

TRANSMISSION-NUMBER

FIELD

JULIAN-DATE

FIELD

TRANS-SEQ-NOFIELD

WAREHOUSE-DATE

FIELD

TERMS-DAY

FIELD

TERMS-NET

FIELD

TRANSFER-RGN-DIST

FIELD

STATUS-FLAG

FIELD

SCHEDULE-CERT-DEP

FIELD

CROSS-REGION-CODE

FIELD

ORIG-SCH-PREFIX

FIELD

PRIOR-YEAR-FLAG

FIELD

IMP-FUND-CASHIER

FIELD

FMT3-FILLER-R1

FIELD

AGREE-NUM

FIELD

BILL-NUM

FIELD

COLL-CORRECT-FLAG

FIELD

COLL-ADV-MISC-FLAG

FIELD

FMT14-FIL-R1FIELD

DUP-SCHED-NUM-7

FIELD

TRANSMISSION-NUM

FIELD

ENERGY-CONV-CODES

FIELD

WAREHOUSE-DATE-YY

FIELD

WAREHOUSE-DATE-MM

FIELD

WAREHOUSE-DATE-DD

FIELD

WK-DISPLAY-COUNT

FIELD

WK-CURRENT-DATE

FIELD

WK-C-DATE-MM

FIELD

WK-C-DATE-DD

FIELD

WK-C-DATE-YY

FIELD

WK-CURRENT-TIME

FIELD

WK-CURRENT-HHMMFIELD

SCHED-NUM-6

FIELD

SCHED-NUM-7

FIELD

WORK-SCHED-TYPE

FIELD

SCHEDULE-TYPE-VPY

FIELD

WS-JULIAN-DATE-VPY

FIELD

SCHED-NUM-VPY

FIELD

TRANS-SEQ-NUM-1

FIELD

TRANS-SEQ-NUM-2

FIELD

ICAN-1-5

FIELD

ICAN-1-THRU-5

FIELD

ICAN-1

FIELD

ICAN-2

FIELD

ICAN-3

FIELD

ICAN-4

FIELD

ICAN-5

FIELD

TBL-ID-ZCFIELD

INVALID-INTERFACE-3A

FIELD

MSG-ERR-NO-SCHED

FIELD

MSG-PROGRAMMER-INFO-1

FIELD

RCANAL

FIELD

FD008001

FIELD

LV008401

FIELD

RV008401

FIELD

FD008501

FIELD

FD009701

FIELD

PREV-RECORD-TRAILER

FIELD

SEQ-NUM

FIELD

APPROP-CODE

FIELD

APPROP-CODE-LIM

FIELD

ALLOT-FUND-CNTL

FIELD

ALLOT-LEVEL-IND

FIELD

PROG-ELEM

FIELD

COST-CNTR

FIELD

OBJ-CLASS

FIELD

PUBLIC-GOVT-IND

FIELD

SYS-DATA

FIELD

DOC-ID

FIELD

DOC-TYPE

FIELD

FIS-YRFIELD

FMT14-FIL-R2

FIELD

SCHEDULE-NUM

FIELD

FMT14-FIL-R3

FIELD

ERROR-CODE

FIELD

FMT14-FIL-R4

FIELD

ALPHA-1

FIELD

ALPHA-2

FIELD

ALPHA-3

FIELD

ALPHA-4

FIELD

ALPHA-5

FIELD

ALPHAFIELD

JULDATE

FIELD

JULIAN-YR

FIELD

JULIAN-DAY

FIELD

GREGDATE

FIELD

CURR-MO

FIELD

CURR-DAY

FIELD

CURR-YR

FIELD

HOLD-SCHEDULE-CERT-DEP

FIELD

HOLD-INPUT-RGN-DIST

FIELD

HOLD-SCHED-NUM-7

FIELD

HOLD-JULIAN-DATE-3

FIELD

HOLD-JULIAN-

FIELD

HOLDFIELD

AGY-RGN-DIST-ZC

FIELD

AGY-CODE-ZC

FIELD

RGN-DIST-ZC

FIELD

RCD-TYPE-ZA

FIELD

FIS-YEAR-ZA

FIELD

PROCESS-MO-ZA

FIELD

BEG-MO-DATE-ZA

FIELD

END-MO-DATE-ZA

FIELD

RCD-TYPE-ADA

FIELD

FIS-YEAR-ADA

FIELD

PROCESS-MO-ADA

FIELD

BEG-MO-DATE

FIELD

END-M

10

Lessons Learned from Y2K Testing?

■ Warp Testing

■ Code Coverage

■ Regression
Management

The Alternative Approach

Warp Testing

■ Common Dates

■ Industry Dates

■ Instrument Dates

Today 12/31/1999

1/1/2000

2/29/2000

9/9/1999

1/4/2000

1/31/2000 1/1/2001

11

■ Linear Date Aging

■ Semantic Date Aging

■ Business Rule Aging

■ Date Classes
■ Holidays - Payday - Special

Aging Your Data

Friday Saturday Sunday Monday

“ + 3 years”

Friday Saturday Sunday Monday

LinearPay Date Hire Date

Friday Saturday Sunday Monday

Settlement DateTrade Date

Thursday

Settlement Rule

Year 2000 Testing Coverage

■ Need to test the very code that has changed

■ Need to test the very code impacted by the changes

■ Need to regression test the code that runs in
production

■ Need to minimize the data to achieve the coverage

■ Need to repeat testing for each warp date

12

Why testing will not find all failures

■ Warp testing only tests identified dates

FAILURE WILL

OCCUR

Test Optimization - Typical Scenario

 Test (25%)

 Changed (20%)

Production (33%)

Total Application (100%)

?

13

Test Optimization - Scenario 2

 Test (75%)

 Changed (20%)

Production (33%)

Total Application (100%)

Test Optimization - The Goal

 Test

 Changed (20%)

Production (33%)

Total Application (100%)

14

Testing Changed and Impacted Code

Before Binary After Binary Untested Changed

Testing Code Exercised in Production

 Production Test
 Untested
Production

15

Eliminating Unnecessary Testing

 Production Test
 Tested

Not in Production

Streamlined

Minimize Testing while Maximizing Results...

 Full Regression

16

Test Optimization

x
Code

Coverage

100%

Resources

Key Lessons Learned
■ The Process
■ The Testing

■ Test Regression Suites
■ Suite Coverage determined by Warp Date
■ Need to Accumulate Suite Coverage
■ Total Coverage
■ Test vs Production

■ The Results
■ Fixes
■ Comparisons

Interest =
Interest_Rate * (Today_Date - Deposit Date)

17

Audit your Year 2000 testing process

■ Determine the levels of:
■ Total Code Coverage

■ Changed and Impacted Code Coverage

■ Did you operate the 28 year rule?

■ What results comparisons took place?

■ What data inspection techniques were used?

■ Do you have more work to complete here?

Failure Management

■ Failure Today

■ Recognizing Failure

■ Failure Recovery

18

Failure Today

■ IDC Survey Commissioned by InCert Software

■ Over 170 responses from Fortune 2000 Companies

■ 60% Management - 40% Technical

■ All Large MVS Mainframe Shops

■ Survey at www.rresults.com/recover

Number of Failures Today (12 Months)

None 5%
1-4 21%
5-10 15%
11-25 14%
>25 44%

Source: IDC

19

Recover Time from Failure

Mean Recovery Hours
Minimum 2
Maximum 16
Average 5

Highest
Maxim

um w
as 1

20 Hours

Source: IDC

Available Batch Window

Source: IDC

< 1 hour 8%
1-2 Hours 50%
3-4 Hours 26%
> 4 Hours 15%

20

Increased Failures due Y2K

More Than 37%
Same 39%
Less Than 24%
Source: IDC

Cost of Application Downtime

■ Average Cost of Application Downtime was
$70,000 per hour

■ 42% of Organizations have cost of over $5M
per annum from Application Downtime

■ 14% of Organizations have cost of over $2.5M
per annum from Application Downtime

■ 15% of Organizations have cost of over $1.5M
per annum from Application Downtime

21

Returned to Test Environment

■ 76% having read the dump (native or with Abend-
AID) returned to the test environment

■ ? What proportion of the 5 hours was replicating
the problem in the test environment?

■ Provide business card for full survey

15.02.11 JOB09249 IEA995I SYMPTOM DUMP OUTPUT

USER COMPLETION CODE=1022

TIME=15.02.11 SEQ=00629 CPU=0000 ASID=001F

PSW AT TIME OF ERROR 078D1000 00007754 ILC 2 INTC 0D

ACTIVE LOAD MODULE ADDRESS=00006C80 OFFSET=00000AD4

NAME=ABEND1

DATA AT PSW 0000774E - 00181610 0A0D18EF 54E0F1

F4

GPR 0-3 80000000 800003FE 00007234 000023FE

GPR 4-7 00006DAC 00007244 00006D20 0000BFB0

GPR 8-11 000070D0 00007344 00006C80 00006C80

GPR 12-15 00007100 00006EC8 500072D8 500075F4

END OF SYMPTOM DUMP

15.02.11 JOB09249 IEF450I AYERSK STEP - ABEND=S000 U1022 REASON=00000000

TIME=15.02.11

15.02.11 JOB09249 IEF404I AYERSK - ENDED - TIME=15.02.11

Recognizing Failure

■ The Dump

■ The Phone Call!

■ Sampling

■ New Code Exercised

■ Software Behavior Triggers

22

Y2K Failure Example

Pension_Multiple =
Emp_Retirement - Emp_First

60

IF Pension_Multiple =< 2/3

THEN Pension = Pension_Multiple * Emp_Salary

ELSE Pension = 2/3 * Emp_Salary

Emp_First = 80 Emp_Retirement = 00 Emp_Salary = 50,000

Pension_Multiple =
00 - 80

60
= -1.33

Pension = -1.33 * 50,000 = 66,666

Failure Recovery

■ Failure Manifestations

■ Debugging Crashes

■ Fixing Data Corruption

23

Job Dependencies

Failures in Parallel and Series

24

Finding the Root Cause

Source of
originating

data corruption

Need For Dynamic Failure Management

■ Dynamic tracing of statement execution

■ Trigger writing of traces:
■ Abends

■ Abnormal behavior

■ Negative value in unsigned field

■ Data trigger rules

■ Requires light weight - no overhead
implementation

25

Agents

Instrumented
Application

Binary

Agents
LM

Binary Instrumentation

Report

Application
Binary

L 6,324(0,13)
MVC 236(4,13),28(10)
LA 1,4094(0,14)
LA 1,4094(0,1)
LA 1,4094(0,1)
L 2,98(0,1)
BASSM 2,2
LR 4,1
OI 8(4),2
TM 440(13),128
L 11,56(0,12)
BC 8,1562(0,11)
OI 8(4),8
 :
BC 7,1918(0,11)
OI 8(2),64
ST 1,324(0,13)
LR 6,1
MVC 4032(170,9),0(6)
LR 6,2
BC 15,2000(0,11)
LR 6,2
OI 8(6),128
CLI 201(4),16
BC 8,1952(0,11)

Instrumentation

Initialization

Displacement Fixup

Register Transfer

Original

Agent Insertion

Instrumentation
110001100011110 1001

100111010101 1010100

01101 10001000111 10

101100001101011 1010

011010 11000011

Analysis

26

Binary Instrumentation for Failure Management

■ Create a circular buffer of executed blocks

■ At point of crash can walk developer back from point
of failure to the root cause of failure

■ Complement failure management tools (Abend-AID)

■ Negate the need to replicate failure in a test
environment

■ Expedites the recovery process and reduce application
downtime

la 2,16(11)
lr 4,2

l 2,156(9)
bc 6,34(11)

oi 4,64(12)

st 4,106(5)
ar 5,2
bcr 7,3

l 5,8(12)
st 5,48(13)

1

2

3 4

5

... 1 2 4 5

IGYTCARA 1751 write print-record from i-f-hdr-ln-21.
IGYTCARA 1534 perform 1240-compute-summary.
IGYTCARA 1536 close print-file.
IGYTCARA 917 perform 1200-print-i-f-data.
IGYTCARA 918 display " ".
IGYTCARA 921 stop run.

IGYTCARA 1751 write print-record from i-f-hdr-ln-21.
IGYTCARA 1534 perform 1240-compute-summary.
IGYTCARA 1536 close print-file.
IGYTCARA 917 perform 1200-print-i-f-data.
IGYTCARA 918 display " ".
IGYTCARA 921 stop run.

Dynamic Failure Management
■ At each program block, record the progress of

program execution.

27

Data Failure Recovery

■ Detecting the source of Failure

■ Detecting the propagation of
corrupt data

WRITE DDNAME ()

JOB STEP DDNAME
DATASET

JOB STEPJOB STEPJOB STEP

DDNAME
DDNAMEDDNAMEDDNAME

DATASETDATASETPROGRAM
DDNAMEDDNAMEINTERNAL

DDNAME

READ DDNAME ()

PROGRAM
INTERNAL
DDNAME

JOB STEPJOB STEP

28

Failure Contingency Planning

■ Plan for Failure

■ Plan for Failure Detection

■ Plan for Failure Recovery

Looking Beyond Y2K
■ Disciplines are being added for Y2K

■ Infrastructures are being built

■ Build on this investment to reap the rewards
well beyond 2000

■ Make the process repeatable

■ Capture metrics where you can

■ Make Fault Management
an going task

29

Summary

■ Testing can not be perfect

■ Testing without coverage increases the risk

■ Organizations should plan for failure

■ New tools are required for dynamic failure
recovery

Provide busin
ess ca

rd

for F
ailure M

anagement R
ese

arch

$��)UDQN�$FNHUPDQ

0HDVXULQJ�)DXOW�'HQVLW\�LQ�WKH�5HDO�:RUOG �

�������,QVWLWXWH)RU =HUR 'HIHFW 6RIWZDUH

0HDVXULQJ�)DXOW�'HQVLW\�LQ0HDVXULQJ�)DXOW�'HQVLW\�LQ
WKH�5HDO�:RUOGWKH�5HDO�:RUOG

$��)UDQN�$��)UDQN�$FNHUPDQ$FNHUPDQ

D�I�D�I�DFNHUPDQDFNHUPDQ##L]GVZL]GVZ��RUJRUJ

,QVWLWXWH�)RU�=HUR�'HIHFW�6RIWZDUH,QVWLWXWH�)RU�=HUR�'HIHFW�6RIWZDUH

&KHULH�&KHULH�0F.LQQH\0F.LQQH\

PFNLQQH\PFNLQQH\#DGREH�#DGREH�FRPFRP

$GREH�6\VWHPV$GREH�6\VWHPV

�������,QVWLWXWH)RU =HUR 'HIHFW 6RIWZDUH �

$XGLHQFHV�DQG�3XUSRVHV$XGLHQFHV�DQG�3XUSRVHV

�� 6RIWZDUH�'HYHORSPHQW�0DQDJHUV6RIWZDUH�'HYHORSPHQW�0DQDJHUV

±± 0RWLYDWH�WR�XVH�IDXOW�GHQVLW\0RWLYDWH�WR�XVH�IDXOW�GHQVLW\

±± ,QIRUPDWLRQ�RQ�FKDOOHQJHV�DQG�VROXWLRQV,QIRUPDWLRQ�RQ�FKDOOHQJHV�DQG�VROXWLRQV

�� 6RIWZDUH�'HYHORSPHQW�7RRO�9HQGRUV6RIWZDUH�'HYHORSPHQW�7RRO�9HQGRUV

±± 0RWLYDWH�WR�GHYHORS�&276�IDXOW�GHQVLW\0RWLYDWH�WR�GHYHORS�&276�IDXOW�GHQVLW\

PHDVXUHPHQW�WRROVPHDVXUHPHQW�WRROV

$��)UDQN�$FNHUPDQ

0HDVXULQJ�)DXOW�'HQVLW\�LQ�WKH�5HDO�:RUOG �

�������,QVWLWXWH)RU =HUR 'HIHFW 6RIWZDUH �

$JHQGD$JHQGD

$���7KH�,PSRUWDQFH�RI�)DXOW�'HQVLW\$���7KH�,PSRUWDQFH�RI�)DXOW�'HQVLW\

%���$�&DVH�6WXG\%���$�&DVH�6WXG\

&���:LVK�/LVW&���:LVK�/LVW

�������,QVWLWXWH)RU =HUR 'HIHFW 6RIWZDUH �

$��)DXOW�'HQVLW\�IRU�6RIWZDUH$��)DXOW�'HQVLW\�IRU�6RIWZDUH
4XDOLW\�0DQDJHPHQW4XDOLW\�0DQDJHPHQW

�� 7HUPV7HUPV

±± VRIWZDUH�IDLOXUHV��SUREOHP�UHSRUWV�VRIWZDUH�IDLOXUHV��SUREOHP�UHSRUWV�

±± VRIWZDUH�IDXOWVVRIWZDUH�IDXOWV

±± IDXOW�GHQVLW\IDXOW�GHQVLW\

�� 5HODWLRQVKLS�EHWZHHQ�IDXOW�GHQVLW\�DQG5HODWLRQVKLS�EHWZHHQ�IDXOW�GHQVLW\�DQG

IDLOXUH�UDWHIDLOXUH�UDWH

$��)UDQN�$FNHUPDQ

0HDVXULQJ�)DXOW�'HQVLW\�LQ�WKH�5HDO�:RUOG �

�������,QVWLWXWH)RU =HUR 'HIHFW 6RIWZDUH �

$��)DXOW�'HQVLW\�IRU�6RIWZDUH$��)DXOW�'HQVLW\�IRU�6RIWZDUH
4XDOLW\�0DQDJHPHQW��4XDOLW\�0DQDJHPHQW�� FRQWFRQW��

��)DXOWV�WUDQVODWH�WR�IDLOXUHV�YLD�XVDJH)DXOWV�WUDQVODWH�WR�IDLOXUHV�YLD�XVDJH

�� 2SHUDWLRQDO�SURILOHV�QRW�XVHG2SHUDWLRQDO�SURILOHV�QRW�XVHG

�� ([SHFWHG�IDXOW�GHQVLW\([SHFWHG�IDXOW�GHQVLW\

�� 8VLQJ�IDXOW�GHQVLW\�WR�PDQDJH�V\VWHP8VLQJ�IDXOW�GHQVLW\�WR�PDQDJH�V\VWHP

WHVW�WHVW�

�������,QVWLWXWH)RU =HUR 'HIHFW 6RIWZDUH �

%��&DVH�6WXG\%��&DVH�6WXG\

�� 7KH�SURGXFW�7KH�SURGXFW�

±± PDMRU�FRPPHUFLDO�SURGXFW�RQ�8QL[��:LQGRZVPDMRU�FRPPHUFLDO�SURGXFW�RQ�8QL[��:LQGRZV

DQG�0DFLQWRVKDQG�0DFLQWRVK

±± JOREDOO\�GLVWULEXWHG��JOREDOO\�GLVWULEXWHG��8LV�8LV�LQ�D�YDULHW\�RILQ�D�YDULHW\�RI

ODQJXDJHVODQJXDJHV

±± QHZ�UHOHDVHV�HYHU\�IRXU�RU�ILYH�PRQWKVQHZ�UHOHDVHV�HYHU\�IRXU�RU�ILYH�PRQWKV

±± &RGH�EDVH�RI�PLOOLRQ��OLQHV&RGH�EDVH�RI�PLOOLRQ��OLQHV

±± &�DQG�&���SUHGRPLQDWH��EXW�PRUH�WKDQ���&�DQG�&���SUHGRPLQDWH��EXW�PRUH�WKDQ���

GLIIHUHQW�W\SHV�RI�ILOHVGLIIHUHQW�W\SHV�RI�ILOHV

±± &OHDU&DVH&OHDU&DVH�DQG��DQG�9DQWLYH9DQWLYH

$��)UDQN�$FNHUPDQ

0HDVXULQJ�)DXOW�'HQVLW\�LQ�WKH�5HDO�:RUOG �

�������,QVWLWXWH)RU =HUR 'HIHFW 6RIWZDUH �

%��&DVH�6WXG\��%��&DVH�6WXG\��FRQWFRQW��

�� :DQW�IDXOW�GHQVLW\�IRU:DQW�IDXOW�GHQVLW\�IRU

±± UHWLUHG�UHOHDVHVUHWLUHG�UHOHDVHV

±± FXUUHQWO\�ILHOGHG�UHOHDVHVFXUUHQWO\�ILHOGHG�UHOHDVHV

±± WKH�UHOHDVH�FXUUHQWO\�LQ�V\VWHP�WHVWWKH�UHOHDVH�FXUUHQWO\�LQ�V\VWHP�WHVW

�� &DOFXODWH�&DOFXODWH�
1XPEHU�3UREOHPV1XPEHU�3UREOHPV
��

1XPEHU�&RGH�&KDQJHV1XPEHU�&RGH�&KDQJHV

�� 8VH�RI�UHOLDELOLW\�PRGHOV8VH�RI�UHOLDELOLW\�PRGHOV

�������,QVWLWXWH)RU =HUR 'HIHFW 6RIWZDUH �

%��&DVH�6WXG\��%��&DVH�6WXG\��FRQWFRQW��

�� &RXQWLQJ�FRGH�FKDQJHV&RXQWLQJ�FRGH�FKDQJHV

±± SUREOHPV�ZLWK�HOLPLQDWLQJ�FRPPHQWVSUREOHPV�ZLWK�HOLPLQDWLQJ�FRPPHQWV

±± SUREOHPV�ZLWK�IRUPDWWLQJ�FKDQJHVSUREOHPV�ZLWK�IRUPDWWLQJ�FKDQJHV

±± SUREOHPV�ZLWK�SUREOHPV�ZLWK�diffdiff ��³FKDQJHV´³FKDQJHV´

±± ZHLJKWLQJ�DGGV�DQG�GHOHWHVZHLJKWLQJ�DGGV�DQG�GHOHWHV

±± ZHLJKWLQJ�GLIIHUHQW�W\SHV�RI�VRXUFHZHLJKWLQJ�GLIIHUHQW�W\SHV�RI�VRXUFH

±± ILQGLQJ�WKH�ILOHVILQGLQJ�WKH�ILOHV

$��)UDQN�$FNHUPDQ

0HDVXULQJ�)DXOW�'HQVLW\�LQ�WKH�5HDO�:RUOG �

�������,QVWLWXWH)RU =HUR 'HIHFW 6RIWZDUH �

&��:LVK�/LVW&��:LVK�/LVW

�� 6XSSRUW�IRU�3URMHFW�:RUN�LWHPV�LQ�WKH�&06XSSRUW�IRU�3URMHFW�:RUN�LWHPV�LQ�WKH�&0

V\VWHP�V\VWHP�

±± 3URGXFW3URGXFW

±± 'HYHORSHU'HYHORSHU

±± 7\SH7\SH

±± 'DWHV'DWHV

±± 6XEV\WHP6XEV\WHP

±±)LOHV)LOHV

±± 3UREOHPV�IL[HG3UREOHPV�IL[HG

�� $FFXPXODWH�FKDQJH�FRXQWV�LQFUHPHQWDOO\$FFXPXODWH�FKDQJH�FRXQWV�LQFUHPHQWDOO\

�������,QVWLWXWH)RU =HUR 'HIHFW 6RIWZDUH ��

&��:LVK�/LVW��&��:LVK�/LVW��FRQWFRQW��

�� &RXQWLQJ�FKDQJHV&RXQWLQJ�FKDQJHV

±± EHWZHHQ�WZR�ILOH�YHUVLRQVEHWZHHQ�WZR�ILOH�YHUVLRQV

±± SDUVH�IRU�VWDWHPHQWV�LQ�FDQRQLFDO�IRUPSDUVH�IRU�VWDWHPHQWV�LQ�FDQRQLFDO�IRUP

±± SURFHVVLQJ�GHWHUPLQHG�E\�ILOH�DWWULEXWHVSURFHVVLQJ�GHWHUPLQHG�E\�ILOH�DWWULEXWHV

±± XVHU�FRQWURO�RYHU�QHZ�YHUVLRQ�FKDQJHVXVHU�FRQWURO�RYHU�QHZ�YHUVLRQ�FKDQJHV

��)DXOW�'HQVLW\�5HSRUW�8VHU�,QWHUIDFH�)DXOW�'HQVLW\�5HSRUW�8VHU�,QWHUIDFH�

±± SUREOHP�GDWD�E\�PRQWKSUREOHP�GDWD�E\�PRQWK

±± XVDJH�GDWD�E\�PRQWKXVDJH�GDWD�E\�PRQWK

Page 1 of 9

Measuring Fault Density in the Real World

A. Frank Ackerman
a.f.ackerman@izdsw.org

Institute For Zero Defect Software
Holmdel, NJ

732-264-2671

and

Cherie McKinney
mckinney@adobe.com

Adobe Systems
San Jose, CA
408-536-6240

Acknowledgments
The work reported on here is largely the result of on-going quality improvement efforts
at Adobe Systems Inc. The intellectual concepts and techniques draw mainly from the
work of John Musa [R1] and other software reliability researchers [R2]

1. Purpose
This paper is addressed to software development managers in medium to large
development organizations (10 to 100+ software developers) that develop "versioned"
products or a family of similar products.

The purposes of the paper are:

a) to motivate development managers to routinely determine, analyze, and
utilize fault density data to improve customer satisfaction,

b) to describe our experience in establishing procedures for determining product
fault density of a large commercial software product, and

c) to propose capabilities for source management tools that will simplify the
routine collection of fault density data at several levels of detail.

2. Definitions
software failure - any specific instance in which a software product fails to meet
customer expectations. Some percentage of observed failures are reported to the
product supplier and are eventually registered as problem reports, trouble reports, or
some other term. Usually there is a weeding out process that tries to identify repeated
reports for the same failure so that only unique failures are logged. Unique failures are
often categorized as "enhancement requests" if the problem results from a capability
not included in the product requirements, or as a "bug." Bugs are often further
classified by three or four levels of severity in term of their effect on customers'
operations.

software fault - the source code (including resource files) changes that are made to
eliminate a reported failure. All faults are defects that are placed in the product during

Page 2 of 9

the software development process. They are all caused by human error during this
process.

fault density - Since software faults are the result of human error during the
development process the number of faults that can be expected is directly related to the
extent of that process. The number of changes made to the source base is the most
often used measure of development process extent. The most common measure is
New/Changed Lines of Code (NCLC). So fault density is then

(number of faults)/NCLC
A better measure is discussed below in section 7.

3. References
[R1] Musa, John D., Software Reliability Measurement, Prediction, Application, New

York, McGraw-Hill Book Company.

[R2] Lyu, Michael (editor), Software Reliability Engineering Handbook, New York,
McGraw-Hill Book Company.

4. Introduction
One of the software development manager's major concerns is customer satisfaction.
A number of factors influence customer satisfaction and many of them cannot be
influenced by development management. But one factor, the number of unique failures
experienced by customers during the software's lifetime, is usually directly related to
the fault density of the delivered software. It is almost certain that the kinds of software
we are considering here will have a non-zero fault density. The subject of this paper,
then, is the measurement and use of software product fault density to improve
customer satisfaction. We discuss

5. Fault Density and Problem Reports

6. Measuring Fault Density for a Large Commercial Software Product

7. Proposed Capabilities for New Tools for Determining Fault Density

5. Fault Density and Problem Reports
An approximate, a priori mathematical relationship between fault density and expected
problem reports is described in [R1]. This mathematical model may not apply exactly to
the execution environment faced by may software products, but it provides a useful
initial estimate that can be improved over time if the relationship between its predicted
failures and observed failures remains fairly stable. Typically, for commercial products
the number of acceptable problem reports is a fairly broad range, for example 30 to 60,
500 to 700, and so forth depending on the size and importance of the product, so
mathematical exactness is not required. It is usually understood that at least a few
customer problem reports can be expected, but that there is also a tolerance range
beyond which the number of problem reports will eventually adversely affect the
development organization's bottom line.

Page 3 of 9

In small development organizations variations in the capabilities of individual
developers overwhelms statistics so quality management is largely a question of hiring
and retaining the right people, and the hands-on management of details. In larger
development organizations organizational and personal experience is generally
sufficient for guiding management if the development and business environment is
static. In such a static situation the energy and money required to establish more
rational and quantitative methods can often be better spent elsewhere. But there are
few static situations in today's business environment, and achieving and maintaining
high levels of customer satisfaction is essential for survival. In today's business
environment the methods discussed here provide a competitive edge for early adopters.
In the future they will become a competitive necessity.

It is important to realize that the number of problems reported for a software product
depends on the usage of that product. Thus, if a product receives very little use few
problems will be reported, if it is used by lots of different people for a few years many
more problems will be reported.

Strictly speaking, the number of problems reported for a delivered software product will
depend not only on the overall amount of usage, but on the statistical distribution of that
usage across the features and capabilities of the product. This distribution is called an
operational profile [R2]. The development and use of operational profiles is important
for the more precise measurement and prediction of problem reports but in many
commercial situations the assumption that usage patterns with respect to triggering
failures (with the creation of certain data set conditions) is reasonably constant from
release to release, even though most of the problems reported will be for new rather
than old features. In any case, development management has very little influence on
customer usage patterns and fault density thus becomes one of the key factors related
to customer satisfaction that is under the direct control of management.

Two fault density measures are important: (1) the fault density of the product when it is
initially delivered for system level testing (as opposed to unit or developer level testing),
and (2) the fault density when it is released for general customer use.

The process of software development, especially in the design and construction phase,
has changed very little over the last five decades of pell-mell industry growth and
usually results in a delivered fault density that is closer to 1 fault per 100 NCLC than to
1 fault per 1000 NCLC. The release of software with fault density of 1 per 100 usually
results in an unacceptable number of problem reports and so in most organizations
system level testing is used to move the released fault density close to 1 per 1000, or
even better. Fault density, then, is a key factor not only in determining customer
satisfaction, but also in the cost-effective management of system test. Since typically
the system test schedule is equal to the design and development schedule, and often
takes as much as 50% of the total development budget, the on-going, routine use of
fault density provides, for perhaps a 1% increase in development cost, a significant
opportunity for a cost/benefit approach to managing the system test effort.

Page 4 of 9

6. Measuring Fault Density for a Large Commercial Software
Product

Our purpose in this section is to describe the challenges we faced and the procedures
we used to determine fault density on a large commercial software project with current
tools. In the next section we propose new tool capabilities that could make fault density
determination not only easy and routine, but also provide this key measure for individual
subsystems and developers.

The product we measured has the pertinent characteristics listed in the following.

• It is a major commercial product that is available on Unix , Windows, and
MacIntosh platforms.

• It is a globally distributed product that provides user interfaces in several
different western and eastern languages.

• The product has a multi-year, multi-owner history with subsystems that were
developed both internally and externally.

• There is a major release of the product about every six months and at any
given time there are three or four versions in various stages of development.

• The code base is more than a million lines distributed over more than five
hundred directories and eight thousand files.

• The predominate languages in the code base are C and C++ but substantial
use is made of many other languages and tools (assembly, yacc, etc.) and
substantial use is made of resource files that are processed by a number of
different support tools.

• The code base in maintained in ClearCase from the Rational Software
Corporation and the problem reporting system is from the Vantive
Corporation.

Conceptually, measuring the fault density in such a product is quite simple. One just
needs to know (1) the total number of faults in the product, and (2) the size of the
product. In real life, with the tools available in most commercial development
organizations, this is not a trivial task. In the next two subsections we described how
we obtained these two values.

6.1. Counting the total number of faults

We counted faults simply by counting the number of bugs reported against the product
by the development organization from the start of system test, and by customers from
the release date onward. This approach overstates the number of faults slightly since it
sometimes happens that correcting one failure also corrects another [R1], but the
difference is small enough in our case to be ignored. To obtain this count from a
problem reporting data base problem records must have fields for:

• date problem reported,

• who reported the problem (development organization or customer),

Page 5 of 9

• the products the problem applies to, and

• whether or not this is a duplicate report.

In the type of environment we are considering development managers typically need to
know:

∗ the fault density of retired releases,

∗ the fault density of currently fielded releases, and

∗ the fault density of releases currently in system test.

Assuming that the product size has been determined, to determine the fault density of a
retired release that has seen extensive use one needs to know only the total number of
problems reported against the product.

For currently fielded releases most of the organization reported bugs are known at the
time of release but the number of customer reported bugs will continue to grow
significantly as the product is used. Since it is usually important for management to
have a good estimate of the fault density of recently released products before the
products currently in system test are released, an estimate needs to be made of the
total life-time number of bugs of recently released products. Such an estimate can be
provided by a software reliability model (we used the Logarithmic Model in [R1])
provided one can estimate product usage. The most accurate measure of software
usage is total execution time (adjusted for processors of varying speed) but in many
commercial applications it is quite impossible to get a reasonable estimate of execution
time. We found that simply taking, month-by-month, the cumulative number of installed
system months (estimated by monthly product shipments) gave us a well-behaved
software reliability model.

A key question during system test is: How many more faults can be expected to be
uncovered and corrected before the product is shipped? If we know the number of
Problem Reports logged by system test so far, the size of the product, and the average
fault density in recently released products then we can make a reasonable estimate of
the number of bugs that still need to be found and corrected before the product will
have a fault density at least as good as recent releases. This allows a rational,
quantitative approach to managing resources during system test and provides important
information for a cost/benefit analysis of releasing early.

6.2. Determining the size of the product

Initially we determined the fault density of a recently released product. Our biggest
challenge was determining the size of the product. To do that we needed:

a) to determine the ClearCase view of the base product, i.e., what development
started with,

b) to determine the ClearCase view of the product at the time it was released,

c) to determine which subtrees were relevant since in our case a single
ClearCase view was used for a number of development purposes,

Page 6 of 9

d) to determine the relevant directories and the relevant files within the relevant
subtrees,

e) to determine our unit of size for each type of file,

f) to determine how we would recognize new and changed units,

g) to determine how we would track files from the base view to the release view,
and

h) to determine how we would get a single composite NCLC from separate
deleted and add counts.

Since ours was an exploratory project in which the major objective was to establish the
cost/effectiveness of fault density measurement for managing quality, we sought the
most expedient resolution to each of the above issues that would provide what we felt
was reasonable data.

Items (a) and (b) were resolved by consulting one of the lead development managers
and having him select the ClearCase views most suitable for our purposes. This
manager also selected the relevant subtrees in these views for item (c).

A further constraint on our effort was that we wanted to place as little burden as
possible on the development staff, who were deep in the throes of producing the next
release. Thus we choose not to try to collect all the build specifications (i.e.,
makefiles) for the base and released product and to determine the content of each
product from these specifications. The build process for this product was exceedingly
complex. Taking this approach would have added a week or two of additional effort and
would have required guidance from the buildmeisters.

To resolve item (d), within the selected subtrees the relevant files were selected by
using obvious file extensions (like .c, .C, .cpp, etc.), manually examining other likely
looking files relevance, and excluding certain obvious files (those whose names
contained strings like "TEST" or "JUNK"). All of the relevant ClearCase directories were
explicitly designated in an indented input structure for a tool that was developed to "pull"
copies of product files from ClearCase to the counting directories. The files to be pulled
from each directory were designated by file extensions. Altogether we used
approximately thirty different file extensions.

Resolving item (e), the size unit, was non-trivial. The most common unit reported in the
software engineering literature is non-commentary source lines. But we had thirty
different types of files with a number of different ways of syntactically identifying
comments, and in at least a few cases a fully correct program for recognizing and
removing comments would be non-trivial. Furthermore, a spot check of some of the
files revealed that block comments were not used extensively so we settled on using
non-blank lines as our size unit. The ideal unit would be source statements. This is
discussed below in section 7.

Resolving item (f), recognizing new and deleted units, also gave us pause. Developers
often reformat source code to ensure conformance with a standard or to enhance
maintainability (i.e., to reduce the probability of error in making subsequent
modifications). Extensive reformatting had been done on many of the source files in

Page 7 of 9

this product. To address this we chose the simple expedient of removing all spaces
from all source lines. This would not eliminate counting as a change a reformatting
that, say, moved a brace from one line of C code to another, but it did address a
number of other re-formatting changes. Thus, for us a "line of code" was any non-blank
line of source with all spaces removed.

The standard Unix diff program was selected to determine the difference between a
base file and release file. diff produces output that describes how an old version can
be changed into a new version by deleting, adding, and changing blocks of lines.
However, the exact methods used by diff to distinguish between these three cases
was not know to us, so we choose to consider any of the blocks reported by diff as
changed as a deletion followed by an add. This choice was captured in scripts we
wrote that provided a count of lines deleted and lines added for each file that had both
a base and a release version. All the lines in base files that did not appear in the
release view were counted as deleted lines and all the lines in release files that did not
appear in the base view were counted as added lines. We built a number of Perl and
C-shell scripts to perform many of the detailed tasks just described, but since this was
an initial, exploratory effort, we executed all of our scripts manually and verified our
results as we went though our million-line-plus code base subsystem by subsystem.

Resolving item (g), tracking files from the base to the release view, was complicated by
the fact that sometimes the name (especially the full pathname) of the file would
change. To counter this we added the capability to our tools to fetch and use the
ClearCase file database ID to distinguish between new files and those whose names
had been changed.

The net result of the above was that for each subsystem we obtained the number of old
lines deleted and the number of "new" lines added. But to resolve item (h), we need to
decide whether or not these two values were equivalent from the perspective of fault
density. Since the faults in the release would occur much more often in the added lines
than in the deleted lines we answered this question in the negative. We chose, then, to
again consult our lead development manager who decided to weight the delete count
by 0.25. Thus a file with 100 deleted lines and 100 added lines would receive a NCLC
count of 125.

Since we were dealing with a multi-language product with a large number of displays a
significant percentage of the code base was resource files that were constructed by
special development tools from tables that were less complex, and thus much less
prone to human error than code. Weights for various groups of these files were again
selected by our lead development manager. Thus, if the example just given was a
resource source file that was in a group that had a weight of 0.2, then the final
contribution of this file to the release size would be 25 NCLC.

As we mentioned, the effort just described was first applied to a previously released,
but still current version. Much of our effort involved developing the Perl and C-shell
scripts and the detailed procedural instructions for their use. A couple of person-
months was therefore expended to obtain our first release code count. The procedures
and tools we developed were then applied to the product being tested by another
software engineer. It took her about two weeks to make the count for the this product.

Page 8 of 9

By writing a master program to invoke the various scripts, and with specific points for
user verification and intervention, we estimate that we would be able to make a count
for future versions in two or three days. Similarly, the tools and procedures for this
product could be move to other products in this organization with similar characteristics
in a week or two. However, a much more cost effective approach would be to embed
the required data collection and calculation machinery directly into the source
management and problem tracking systems and then to develop procedures that would
require very little effort to obtain the current fault density estimate for any release.
Some of the tool capabilities that would make this possible are described in the next
section.

7. Proposed Capabilities for New Tools for Determining Fault
Density

Although the capabilities of individual software development management tools has
improved in recent years, not much improvement has been made in the integration of
these tools. To easily obtain and effectively use fault density data the tools for problem
tracking, source code management, and project management need to be integrated.
One way to do this is would be via Project Work Item (PWI) entities.

A PWI would contain the following information:

• Product name

• Responsible developer

• Type (New Capability, Fixes, Assigned Problems, Unassigned Problems)

• Tracking dates

• Subsystems modified

• Files (by subsystem) modified and new, deleted, and changed statement
counts

• Problems fixed (for PWIs of type Fixes)

A product (version of a system or application) would be exactly a union of New
Capability or Fixes PWIs, which would drive the automated product "make" procedures.
All changes to the source repositories would be made under the aegis of a PWI and the
file change statistics would be updated whenever a change was made.

The major effort involved in determining fault density, i.e., determining the code change
counts, would thus be performed automatically and would be available continuously.
(New techniques for making such counts are discussed below.)

The other two pieces of information that are needed for determining fault density for
shipped products, namely, total monthly usage and total monthly problems over ten or
more months could be obtained from the problem tracking system and elsewhere. We
envision that PWIs would be maintained on the source code management system, and
that this system would have a user interface for entering usage and problem counts and
obtaining current product fault density values.

Page 9 of 9

The use of PWIs would allow fault density to be estimated for individual subsystems
and individual developers. Extensions to the PWI concept, in conjunction with other
data collections tools, could support other useful product management functions such
as test coverage and test progress tracking.

New tools should be developed to replace the NCLC count defined in section 5. Such
tools should have the following attributes:

a) they should count statements rather than lines,

b) counts should be given separately for new, deleted, and changed statements,

c) they should work at the file level, not the program level, i.e., counts should be
made just by examining the old and new version of a file,

d) the way in which each file was processed would be determined by the file
extension (or some other syntactical attribute of the file name, or a file
attribute maintained in the source management system),

e) changes in the way a statement was formatted would not be counted as a
change, i.e., statements would be put in a canonical form before they were
compared, and

f) the criteria for deciding whether a statement was new or changed could be
externally controlled.

Clearly, different counting programs would be necessary for different programming
languages, or at least different syntax tables would be required for different languages.
Counting changed lines of specified types in a text file would be special case.

The current situation is that each software development organization that wants to use
fault density measures for quality management must develop its own ad hoc solutions
to the problems we have just described. Many such local solutions have been
developed. We hope that some of the source code management system vendors will
see this problem as a business opportunity, and offer products that would make fault
density measurement routine. As we discussed in section 5, fault density is an essential
measure for managing software quality and improving customer satisfaction.

1

5/26/99 RS

A Tester’s Top 10 ListA Tester’s Top 10 List

5/26/99 RS

Number 10 - MetricsNumber 10 - Metrics

“You can’t control what you can’t measure”

● What to measure?
● Defects
● Testing Progress

?

2

5/26/99 RS

Tracking DefectsTracking Defects

Defect Status

0

10

20

30

40

50

60

70

80

12/2 12/3 12/4 12/7 12/8 12/9 12/10 12/11 12/1 4 12/15 12/16 12/17 12/18

Time

#
 o

f
D

e
fe

c
ts

#of New Defects

Total # Defects Open

Total # Defects Closed

5/26/99 RS

Testing ProgressTesting Progress

Test Case Status

0

20

40

60

80

100

120

140

160

1
2
/2

/9
8

1
2
/3

/9
8

1
2
/4

/9
8

1
2
/5

/9
8

1
2
/6

/9
8

1
2
/7

/9
8

1
2
/8

/9
8

1
2
/9

/9
8

1
2
/1

0
/9

8

1
2
/1

1
/9

8

1
2
/1

2
/9

8

1
2
/1

3
/9

8

1
2
/1

4
/9

8

1
2
/1

5
/9

8

1
2
/1

6
/9

8

1
2
/1

7
/9

8

1
2
/1

8
/9

8

Time

#
 o

f
T

e
s

t
C

a
s

e
s

Total # Testcases planned

Total # Testcases run

Total # Testcases Passed

3

5/26/99 RS

Number 9 – Involve Testers EarlyNumber 9 – Involve Testers Early

“The early tester gets the bug”
● Do Bring Testers in Early to Develop Test

Plans Based on Architecture and

● Catch Bugs During the Reviews/inspections
● Do Not Wait Until Testing Starts to Start the

5/26/99 RS

Number 8 – Development TestingNumber 8 – Development Testing

“Developers test the code;
Testers code the test”
● Unit Test
● Integration Test

4

5/26/99 RS

Number 7 - System BuildsNumber 7 - System Builds

“To build or not to build”
● Build Numbers
 {dev/test} {release #}-{incrementing#}
● Build report

● List of Defect Fixes in the Build

5/26/99 RS

Build ReportBuild Report

M Y S Y S B U I L D R E P O R T

B u i l d N u m b e r : d e v 2 . 0 - 1 4 3
T o t a l : 4 M R s i n c l u d e d i n t h i s l i s t .
T h i s d a t a i s u p d a t e d - W e d O c t 7 0 1 : 1 4 : 0 9 E D T 1 9 9 8

D e f e c t S e v e r i t y S u b m i t
D a t e

C r e a t e D a t e S y s t e m D e v e l o p e r A b s t r a c t

 9 8 1 5 8 0 3
1 0 / 0 6 / 9 8 0 6 / 0 7 / 9 8 m y s y s D e v 1

S o f t k e y b o a r d s h o u l d b e a v a i l a b l e
f o r a l l a p p l i c a t i o n s

9 8 3 0 5 2 3
1 0 / 0 6 / 9 8 0 9 / 2 5 / 9 8 m y s y s D e v 2 p e c u l i a r c h a r a c t e r s s h o w u p o n

s c r e e n
9 8 3 1 5 3 3

1 0 / 0 6 / 9 8 1 0 / 0 6 / 9 8 m y s y s D e v 2
p r o d u c t e v o l u t i o n s u p p o r t t h r u
b o o t f i l e s

9 8 3 1 5 9 3
1 0 / 0 6 / 9 8 1 0 / 0 6 / 9 8 m y s y s

D e v 3 u p d a t e b u i l d s c r i p t s

5

5/26/99 RS

Number 6 – Deliveries and PackagingNumber 6 – Deliveries and Packaging

“Bugs are delivered in all sizes and packages”

● How do you want the software delivered to

● How do you want it packaged?
● What is the easiest way to install it?
● Can you back it out , if it is garbage?

5/26/99 RS

Number 5 – Test EnvironmentsNumber 5 – Test Environments

“Save the environment”
• An Isolated Separate Environment
• Resembles, As Closely As Possible,

• Is Under Change Control.
• Controlled by the Testing Organization

6

5/26/99 RS

Number 4 – Quality Gates; Entrance/ExitNumber 4 – Quality Gates; Entrance/Exit

“Watch out when you open the gates!”
● Agree Upon Before Testing Starts
● Tells Testers When They Can Officially Start

and When They Have Completed
● Puts the Pressure on the Developers to

Meet the Criteria or Test Rejects the

5/26/99 RS

Number 3 – Test PlanningNumber 3 – Test Planning

“If you fail to plan you are planning to fail”
● Planing Is Crucial to the Success of

● Use a Template
● Review the Plan
● Don’t Forget to Plan the Environment

7

5/26/99 RS

Number 2 – Status MeetingsNumber 2 – Status Meetings

“Oh NO, More Meetings!”
● Attendees:

• Development – 1 Rep From Each Development

• Testers
• Project Management

● Agenda:
• Defect Tracking Status and Fix Delivery Status
• Test Case Progress
• Issues and Action Items

5/26/99 RS

Number 1 – Configuration ManagementNumber 1 – Configuration Management

“Go Configure “
● CM = The Overall Process for Management

of the Source Code, Defects and Software

● Change Control
● One of the Early Decisions a Project Must

● Tie Defects and Source Code Changes

● Agree on a Defect Life Cycle

8

5/26/99 RS

Create

Assign Submit

Dev/test

Review
Board

Defect Life Cycle

Close

Dev
Development

Build

System Test
Build

In Dev
Test

Pass
Dev test

In

System
Test

Pass
System

Test

Dev

Test

5/26/99 RS

ConclusionConclusion

● Use This Top 10 List to Help Your Project

● What About Process?
● From These 10 Key Factors of Success You

● Testing Process
● Configuration Management Process

1

RCS 03/31/99

A TESTERS’ TOP 10 LIST

R. C. Silacci
Lucent Technologies Inc.

Abstract

System testing is a vital component of the service/product development cycle at any company. The current
competitive environment requires our project teams to deliver higher quality products faster while meeting
or exceeding customer expectations. In an effort to meet this challenge, more and more pressure is being
put upon the testing effort. From practical experiences in testing many Telecommunication systems a
testers top 10 list has been compiled. This list contains the top 10 factors that will make testing a product
successful and will make a testers work life easier. The paper discusses these top 10 items as the key
factors of success. The following is the Top 10 List:

Number 10 - Metrics

“You can’t control what you can’t measure”

The two basic metrics a tester has to track are the defects and the testing progress.
Defects reports should be generated daily and contain the following data:

• Defect id number
• Defect severity
• Defect Status (open, being worked, fixed, tested)
• Who created it
• Who is assigned to fix it
• An abstract of the defect
• Date it is due to be fixed and delivered to system testing

Defects should also be plotted on a graph so that the defect backlog can be managed. See figure 10-1.

Defect Status

0

10

20

30

40

50

60

70

80

12/2 12/3 12/4 12/7 12/8 12/9 12/10 12/11 12/1 4 12/15 12/16 12/17 12/18

Time

o

f
D

ef
ec

ts

#of New Defects

Total # Defects Open

Total # Defects Closed

2

RCS 03/31/99

Fig 10-1

Test Progress reports should be generated daily and contain the following information:
• Number of test cases planned for a particular functional area
• Number of test cases executed
• Number of test cases passed
• Number of test cases failed
• Number of test cases blocked
• Number of test cases deferred

Test progress should be plotted on a graph to manage the execution of test cases. See Figure 10-2

Figure 10-2

Number 9 – Involve Testers early in Reviews/Inspections

“The early tester gets the bug”

 Testers should be involved as early as possible in the project so that they can understand the architecture,
requirements and design of the project. Reviews are critical to any projects success. The testers must be

Test Case Status

0

20

40

60

80

100

120

140

160

12
/2

/9
8

12
/3

/9
8

12
/4

/9
8

12
/5

/9
8

12
/6

/9
8

12
/7

/9
8

12
/8

/9
8

12
/9

/9
8

12
/10

/9
8

12
/11

/9
8

12
/12

/9
8

12
/13

/9
8

12
/14

/9
8

12
/15

/9
8

12
/16

/9
8

12
/17

/9
8

12
/18

/9
8

Time

o

f
T

es
t

C
as

es

Total # Testcases planned

Total # Testcases run

Total # Testcases Passed

3

RCS 03/31/99

involved in requirements and design reviews in order to build their test plans and develop their test cases.
Do not wait to bring testers in just in time to perform testing.

Number 8 – Development Testing

“Developers test the code; Testers code the test”

 Make development responsible for Unit and Integration testing. Integration testing, in this sense, means
integrating the units together and making sure the interfaces between the units work correctly.

Number 7 - System Builds

“To build or not to build”

Builds whether development or test should be numbered and uniquely identified. A scheme one can use is
{dev/test}.{release #}.{incrementing number}. A build report can be produced from the list of the defect
fixes going into the build. This helps developers and testers know what is in the build. Development builds
can occur daily, if desired, while test builds can occur at a frequency determined by the testing
organization. Once the defects have been verified in the development build, a test build can occur. The
development build should be tested by the development organization via a unit and Integration
development test.

Number 6 – Deliveries and Packaging

“Bugs are delivered in all sizes and packages”

Software deliveries refer to how software is being delivered to testing. Is it delivered as binaries, source
code or a list of defect fixes to build? This depends on the following circumstances:

• One or many development locations. In this case, the testing organization may want to receive
binaries from each location.

• Large or small project. In a large project, each module could be compiled separately and binaries
delivered to system test. In a small project, just source code or a list of defect fixes may be
delivered.

• Third party deliveries – If an outside party is delivering software, make sure it is binary so that
they are responsible for the compiling and integrity of the software.

Packaging refers to how deliveries into and out of system test are bound together. Examples are install
shields, compressed (zip) files, binary, self-extracting files, etc. Testers must know how to extract and
install these files and bring up the system. The same goes for customers.

Number 5 – Test Environments

“Save the environment”

This is obvious, but it takes preparation and thought to configure a suitable test environment. A few basic
requirements for a test environment are as follows:
• An isolated, separate environment
• Resembles, as closely as possible, production.
• Is under change control.
• Controlled by the testing organization

4

RCS 03/31/99

Number 4 – Quality Gates, a.k.a., Entrance/Exit Criteria

“Watch out when you open the gates!”

Entrance /exit criteria is critical in controlling the quality of the deliveries testing receives. This should be
developed and agreed upon before testing starts. This tells testers when they can officially start and when
they have completed. The following are examples of entrance criteria:

1. Supporting documentation in the form of Functional Requirements, Methods and Procedures,
User Manuals, for the delivered software must be baselined and made public. The SIT Plan
documents must be reviewed and base lined. This includes the completion of a document
review with team members from all asset teams and BA systems.

2. Release notes must accompany all deliveries into System Test. Release notes contain a list of
know problems, what has been fixed and any start up or shut down procedures.

3. The source code for all deliverable executables must be under Source Code Control. *

4. All development Unit Tests and Integration tests must be executed and completed before
delivery to System test. *

5. All known unresolved defects (severity 3s) resulting from the above tests (5) must be
documented and made available to the Test Team. *

6. No severity one or two defects exist out of previous tests (5). *

7. Any Environmental changes such as setting or changing of Environment variables must be
noted and made public via release notes to the SIT Team.

8. The delivered code must be properly packaged according to packaging specifications. *

9. The Test Team must have access to a process or system for recording and tracking defects.

10. System installation must be complete with a proven startup and shutdown capability. *

11. The Test Environment must remain stable after installation of software.

12. The Testing Environment is separate from any development, demo or production
environment, so as not to introduce contentions for resources. This includes servers, clients,
networks and databases.

13. Any tools that are required for executing tests must be up to date in terms of version number
and must be accessible by the Test team from within the Test Environment.

14. Connectivity to external systems must be available and have been tested.

 That is, Lab-to-lab connections have been verified. *

15. Network for client/server connections has been verified. *

16. The Test Support team (i.e., Application Developers/Testers, etc.) has been identified and is
available to provide support.

17. ALL approved exceptions to the above criteria are fully documented and communicated as
such by management to testers.

* - Failure to meet anyone of these criteria will result in rejection of the software back to
development and a severity 1 MR generated.

5

RCS 03/31/99

The following are three categories in which the systems can be certified when time is a factor. It
allows management to understand completely the condition of the systems when making
deliverable decisions. When time is not a factor, the ultimate goal is to target Green for the
certification status.

A. Green

1. All test cases for the software shall be executed.
2. The software shall pass at least 90% of test cases.
3. The software shall have no defects with severity of 1 or 2.
4. The software shall have no more than one severity 3 defect for every five- (5) test cases.

5. All known problems are documented in the release letter sent to the Customer.

B. Yellow

1. All high priority test cases for the software shall be executed.
2. The software shall pass at least 90% of the high priority test cases.
3. The software shall have no severity 1 defects.
4. The software shall have no more than one severity 2 defect for every fifty (50) test cases
5. No limit to number of severity 3 defects. Work arounds will be provided where possible.

6. All known problems are documented in the release letter sent to the Customer.

C. Red

1. The conditions for Yellow in B are not met.

2. All known problems are documented in the release letter sent to the Customer.

Number 3 – Test Planning

“If you fail to plan you are planning to fail”
A Test plan is crucial to the success of testing. In developing a test plan, a template is invaluable. The IEEE
standard on test case documentation is a good one to follow and perhaps add to. It is important that
development and requirements personnel are involved in the test plan review. In the test plan a high level
“1 liner” for each test case should be included to give and idea of the type of test cases being developed.

Number 2 – Status Meetings

“Oh no, more meetings!”

Test Status meetings are crucial to controlling the testing effort and understanding the progress or lack
thereof.
Attendees:

• Development – 1 rep from each development area.
• Testers
• Project Management

Agenda:
• Defect tracking status and fix delivery status.
• Test case progress
• Issues and action items.

The best way to run the meeting is to prepare a matrix of the defects, which would look like figure 2.

6

RCS 03/31/99

Defect ID Status Severity Orig Assigned
to

Date
Due

Abstract

Y2k980158 Created 2 Don Diego 1/1/2000 Contents of Y2K Readme file is empty
Y2k980159 Assigned 1 Don Juan 1/1/1999 Daylight savings time doesn’t work in

2000

Figure 2

This should be updated daily and be available at least 1 hour before the meeting so that everyone can
review it. The web is a convenient mechanism for providing this. The facilitator should go through the
newly created defects and assign a developer and a due date. For the assigned defects, check any overdue
fix deliveries.

Test case progress can be tracked by updating daily the graph in Figure 10.2. A matrix of test case number,
description of the test cases and its status should also be produced daily. To take it one step further, if a test
case fails the defect that caused the failure should be shown on a test case matrix.

 An issues list or action item list should be available to review. This meeting should occur daily during the
critical part of the testing cycle.

Number 1 – Configuration Management

“Go Configure “

Configuration Management is the overall process and management of the source code, defects and software
builds. It starts with a source code control system and for best results, one that is tied to defect tracking.
That is, the source code can’t be changed unless there is an accompanying defect that institutes that change.
The status of these defects and their appropriate fixes are tracked throughout the development and testing
cycles. One of the first things a project must do is to decide what statuses they want to use to track defects
and their fixes. Typical sets of statuses follow:

• created
• assigned
• submitted for testing
• in development testing
• out of development testing
• in system testing
• out of system testing
• Delivered to customer.

The build process can be built around these statuses. For example, a development build would take the
defect from submitted to development tested. Once development passes it, the status would change to
passed development testing.
The system test build would bring it to system testing. When it passes system test, it would go to “passed
system test“. See figure 1 below.

7

RCS 03/31/99

Figure 1.
Conclusion

There are obviously more than 10 key factors of success, but the factors presented here based on the
experience of the author. The bottom line is how these key factors are all tied together. The answer is
process! Two processes to be exact. One is a Testing Process that includes all phases of testing including
walk-throughs/inspections, development testing, system testing and performance testing. The second one is
a Configuration Management Process that includes change control, defect status and tracking, build
processes, etc. These 10 key factors of success can be packaged in these two processes to produce quality
improvements by prevention as well as detection of defects. The 10 factors would map as follows:

Process Key Success Factors
Testing 2, 3, 4, 5, 8, 9, 10
Configuration Management 1, 6, 7, 10

The payoff is to develop processes that contain these factors of success.

Create

Assign

Submit

In Dev
Test

Pass
Dev
test

In System
Test

Pass
System

Test

Developer/Tester

Developer

Review
Board

Tester

Defect Life Cycle

Close

Development
Build

System Test
Build

Dev
Test

1

Lockheed Martin

How to Build a 20-Year Successful
Independent Verification and

Validation (IV&V) Program for the
Next Millennium

Jon Hagar and Lisa Boden
Lockheed Martin Astronautics Company

Mail Stop H0512
P.O. Box 179

Denver, CO 80201
303-977-1625

fax 303-977-1472
jon.d.hagar@lmco.com and lisa.m.boden@lmco.com

Lockheed Martin

Topics

• What is IV&V?
• When is IV&V beneficial?
• What are the key elements of a successful

IV&V?
• What are the experiences from a history of

IV&V on a variety of projects?

2

Lockheed Martin

IV&V Tested Products

Apo g e e

Perig e e

Inclination

Park Orbit

 Deployment

Rocket Mo to r

Reac tion Contro l

Payload

Mission Requirements Vehicle Characteristics

Software
 Code
 Documentation
 Load/Uplink Products

Lockheed Martin

Three Tenants of IV&V

• Verification
∗ Check lifecycle products for consistency
∗ Unit level testing for coverage
∗ Requirements to Design to Code to Load Products

• Scientific Validation
∗ Analysis and modeling of algorithms

• Hardware Based Validation Testing
∗ Test software in realistic environment

3

Lockheed Martin

Multiple Levels of IV&V

Development
Products

Requirements

Design

Implementation

Executable
Program

Scientific
Simulation
Tools

Design-based
Simulation
Tools

Hardware &
Digital
Simulation
Test
Systems

Test
Reports

C
om

pa
re

 R
es

ul
ts

Lockheed Martin

Standard Sample Tools
 Activity Tool Function Benefit
Verification AdaTest by IPL Coverage Measurement of

test

Scientific Validation Booster Utility
Program

3-degrees of
freedom simulation
in Matlab

Assessment of
data values testing

Validation Test Environment Execution of
software supported
by Web tools

Assessment of
software
realistically

4

Lockheed Martin

One Possible Lab Configuration

SSL = SGI Computer Running Real-Time
 Closed Simulation Models
C/O = Check Out Computer Station

INT E R F AC E

O P E R AT IO NAL
LO AD M E DIA

AVIO NIC S
S IM ULAT O R

INT E R IAL
MO DE L

V }

O P E R AT IO NAL LO AD DE VIC E

T AR G E T C O MP UT E R
(

S O F T W AR E UNDE R T E S T
(

F R O M S S L

C O NT R O L
C O NS O LE

In t e rfa c e C /O

In t e rfa c e

T O S S L

DIS C R E T E S
C O M MANDS

S E Q UE NC ING

T E S T
S E T

O T HE R S IDE O F
DUAL S T R ING S YS

F R O M S S L

Lockheed Martin

Experiences
• Full testing with hardware in loop is better than review
• Test to find errors

∗ Negative Testing
∗ Break the software - try a lot of different “hammers”

• Full life cycle testing - from unit up to full system level
Testing

• Must have:
∗ People - training and diverse skills
∗ Process - defined, repeatable, documented, measured, and managed
∗ Tools and Techniques - manual and then automated if costs are returned
∗ Management - schedules, planning, budgets, supervision, and communication
∗ Continuous Improvement - of all of the above with small measurable steps

5

Lockheed Martin

Data Results

• Over 1600 Errors Found By IV&V
– Customer found some of these to impact

mission

• Most Errors Found Early in Lifecycle

20%

80%

Code/Require
ment Impact
Documenation

75%

25% Found Before
1st Use
Found in O&M

Errors included: configuration
management problems, code
standards violations, incorrect data
parameters, logic faults in the code,
design faults, and incorrect
requirements

• Problems found by inspection, test, and analysis using both manual and
 automated approaches

- equally distributed in Verification, Validation, and Scientific Validation

30%

70%

IIVV Found
Errors
Total Errors

Lockheed Martin

Lessons Learned

• Define scope of work and exchange of data/products
∗ Configuration manage all products

• Good customer interface and relationships
• Work and rework schedules - planning of new testing is

recurring
• Work communications - developer, testers, management,

customer, and engineers
• Databases - error report, product configuration

management, traceability, and tests

6

Lockheed Martin

Lessons Learned

• Interface problems are the hardest to find and most
common that remain

• Automation of tests - good if you get your development
costs back

• Staff - have mix of experienced, new, and diversely skilled
• Criticality of software dictates the strictness of testing

∗ Requirements, standards, coverage, analysis, modeling, inspection, etc.

• Modeling and analysis of test inputs, environment and
outputs is important

Lockheed Martin

When to Consider IV&V

• One of many approaches that can find errors
• Benefit when involves high risk, “ultra-reliable”, safety

related, large cost factor, regulation
∗ Aircraft, Medical, Nuclear, Space, etc.

• Can be used when there is no customer acceptance test
• Added cost can be justified by removed errors for critical

applications

1

How to Build a 20-Year Successful Independent Verification and Validation
(IV&V) Program for the Next Millennium

Jon Hagar and Lisa Boden
Lockheed Martin Astronautics Company

Mail Stop H0512
P.O. Box 179

Denver, CO 80201
303-977-1625

fax 303-977-1472
lisa.boden@lmco.com and jon.d.hagar@lmco.com

Abstract: : IV&V is common on many critical software government programs. IV&V can save missions
and improve the product quality when done right. Done right means that there must be a balance of
people with the right skills, management, as well as processes aimed at verification of each life cycle step,
validation with simulation/analysis tools, and a hardware based test facility. Automation of testing and
IV&V helps to reduce cost, but automation is only part of a complete program. While IV&V is not for
every software program (because of redundancies), high risk projects where there are critical cost or safety
factors can benefit from some level of IV&V.

Keywords: IV&V, Verification, Validation, Hardware-based Test Environment

Introduction
Lockheed Martin started supporting Independent Verification and Validation (IV&V) programs in 1979.
Projects supported have included both booster and spacecraft vehicles. A 1991 report from an Air Force
review concluded that one Denver area IV&V program had found errors that would have impacted
mission performance of the subject software. Errors found by IV&V tend to be more numerous during
preliminary development efforts, though review of data shows that some errors have continued to be found
by IV&V well into operations and maintenance efforts.

This paper examines some of the lessons learned from almost 20 years of testing and how these will carry
the programs forward in the next millennium, with the following considerations:

1. What is IV&V?
2. When is IV&V beneficial?
3. What are the key elements of a successful IV&V?
4. What are the experiences from a history of IV&V on a variety of projects?

What is IV&V and What Are We Testing?

In Denver, Lockheed Martin’s IV&V approach involves different levels of testing and analysis. IV&V
testing concepts originated in Air Force programs wishing to achieve reliable software. In our IV&V,
Verification is defined as the iterative process of determining whether the product of each step of the life
cycle fulfills all of the requirements levied by the previous step. Validation is defined as the evaluation,
integration, and test activities carried out at the system level, to ensure that the final developed system
"works" [Wallace 89]. The need for IV&V sometimes is questioned. NASA studies have concluded that
its effectiveness can be low [McGarry 82]. However, our experience leads us to conclude that IV&V can
be successful and effective, where effectiveness is defined as the ability to find errors, if the testing of
software is conducted from a user and/or system perspective to assess attributes such as function,
performance, usability, quality, and reliability. This systems view of the software test process allows the
consideration of all classes of errors that can be practically detected in software. These errors or faults, as
defined by [Howden 91], include programming, deductive (e.g., translation from design to code), and
abstraction errors. To accomplish this, software evaluation must be done both at a Verification as well as
a Validation, level by engineers skilled in more than just the software disciplines.

The software-systems we are using IV&V on have the following characteristics: real-time; booster flight
control; minimal human intervention possible; embedded within the system it controls, and numerically
intensive calculations of such critical items as, trajectories, flight dynamics, vehicle body characteristics,
and orbital targets. The development programs usually are small consisting of less than 50,000 source
lines of code in two separate computer systems, yet these programs are critical to the control and success
of the entire flight system. An example mission profile is depicted in Figure 1.

M is s io n
R e q u ir e m e n ts

A p o g e e

P e ri g e e

In c l in a t io n

P a rk O rb i t

 D e p l o y m e n t

V e h ic le
C h a r a c te r is tic s

R o c k e t M o to r

R e a c tio n C o n tr o l

P a y lo a d

Figure 1 - Complex Software Requirements

Our test approach spans from the software unit level to integrated hardware and software (a system).
Additionally, we have issues of configuration control, change management, documentation, and business
management. In all of the test activities, we use a variety of supporting software tools and metrics. The
goal of our IV&V is to show that the flight software is ready for use and the chance of catastrophic
mission loss due to software is minimized. The software under test is the guidance, navigation and
control software of the system, and so test programs that involve the fully integrated system are not
possible. For example, we cannot fly the software in a "beta" test on an actual system to see if it will work
in real use.

Three Main Process Elements of our IV&V Process and Tools
Our product area's testing tools address various levels of abstraction (Figure 2) of the software-system. In
our approach, the lowest testing level is structural verification testing conducted with a digital simulation
and/or hardware system. At this level, verification testing is done to ensure that executable programs
implement such things as requirements, design information, and software standards. This testing is done
at a module level with small segments of the code being executed in isolation from the rest of the system.
A tool executes code in a simulator to support analysis of individual equations and simple logic structure.
The comparison and review of results at this low verification level uses models constructed to replicate the
code unit and an automated comparison tool (Adatest by IPL) to reduce human interaction. Results
information is captured in a Web based test procedure tool/system [Hagar et al] as well as a requirement
traceability tool, RTM by Marconi. This process is still human intensive and additional modeling
techniques such as Tvec by Tvec Technologies, are being explored in some Lockheed Martin areas.
.

3

Development
Products

Requirements

Design

Implementation

Executable
Program

Scientific
Simulation
Tools

Design-based
Simulation
Tools

Hardware &
Digital
Simulation
Test
Systems

Test
Reports

C
om

pa
re

 R
es

ul
ts

2.2-1 Figure -- Tested Products

The next level of testing involves what we call scientific validation, which demonstrates requirements
compliance using scientific-simulation tools. These simulations are done in both a holistic fashion and on
an individual functional basis. For example, a simulation may model the entire boost profile of a launch
rocket with a full 6-degrees of freedom simulation, while another simulation may model the specifics of
how a rocket thrust vector control is required to work. This allows system evaluation starting from a
microscopic level up to a macroscopic level.

At the system level, software is tested with actual hardware in the loop. An extensive real-time,
continuous, digital-simulation modeling and feedback system of computers is used to test the software in a
realistic environment. Testing in a realistic environment means testing the software as a "black box",
with the same interfaces, inputs, and outputs as an actual flight system. In the test bed, the computer is
surrounded with a first level of electrically-equivalent hardware interfaces. Signals are input into the test
bed to simulate the performance of the system and hardware interfaces. Since the test system runs in real
time, there is no way to speed-up or slow-down the system. We call this level real-time Validation, since
it is primarily concerned with testing the integrated end product against “system” requirements.

Numerous tools support the tiers described above, and many of these tools are simulation-models based on
requirements, design information, or the computer architecture. The tools are stand-alone and often
custom-built software programs that execute on separate platforms from the software under test. These
tools take data that could be the input to the system under test, and produce expected outputs. The tool
and simulation outputs can then be compared to the results generated by the actual software being tested.
Some of the tools simulate individual equations or logic sequences, while other tools simulate aspects of
the entire system. Scientific simulation-based tools provide success criteria or analysis capability that
allow engineers to judge the success of the software under test without relying entirely on human
judgment.

Overall, this approach and tool set has been successful in taking input from the development products,
performing IV&V and generating test results. An important part of our IV&V culture is to look for
improvements in our testing processes and tools for both time and cost savings. Recent improvements

have included the use of unit level COTS automation, tools like RTM instead of custom built tools, peer
based inspections, reusable assets with tools like Matlab, and Web-based technologies (See Table 1).

Table 1 - Sample of Standard Tools

 Activity Tool Function Benefit
Verification AdaTest by IPL Coverage Measurement of test
Scientific Validation Booster Utility Program 3-degrees of freedom

simulation in Matlab
Assessment of data values

Validation Real-time closed loop hardware
test bed

Execution of software
supported by Web Tools

Assessment of software
realistically

Key Element: Hardware-Based Lab Testing with Real-Time Closed-Loop Simulation

The hardware-based test bed (lab) is the primary validation test facility for our IV&V, and it is integrated
with the verification and scientific validation efforts. The lab is used to execute full and partial mission
runs, up to eight hours long, designed to validate mission requirements. It provides a certified (the lab
itself has been tested) test bed environment for validation of flight load products under simulated real-time
conditions using avionics hardware and software simulators. The lab’s flight hardware and avionics
simulator interfaces with an Silicon Graphics (SG) computer, which simulates the mission environment
and vehicle subsystems including propulsion, mass properties, and flight controls hardware. This
provides real-time, closed-loop inputs to the test bed. Thus, the lab provides the capability to perform
simulated full-mission runs from pre-launch or pre-deployment through spacecraft release and booster
deactivation.

The lab consists of a two sub labs: Guidance and Control Lab (GCL) and a Scientific Simulation Lab
(SSL). The GCL is made up of flight-prototype hardware and custom-built avionics simulators. The SSL
consists of support equipment, such as a SG computer and real-time data linkages. The GCL avionics
simulator is used to emulate flight hardware not available in the test bed. Also residing in the GCL is the
Checkout Station (COS), which has the capability of issuing uplink commands to the computers, as well
as recording downlink telemetry and checkout status of the airborne system. The two areas work together
to provide a realistic environment for the flight software. The SSL is used to simulate rotational and
translational dynamics of the vehicle. The SSL/GCL combination is then used to make real-time 6
Degree-of-Freedom (DOF) trajectory runs, with the added capability to create restart images along the
way. The SSL/GCL test bed is functionally shown in the lab Validation Concept.

5

INTERFACE

OPERATIONAL
LOAD MEDIA

AVIONICS
SIMULATOR

INTERIAL
MODEL

V }

OPERATIONAL LOAD DEVICE

TARGET COMPUTER
(

SOFTWARE UNDER TEST
(

FROM SSL

CONTROL
CONSOLE

Interface C/O

Interface

 TO SSL

 DISCRETES
 COMMANDS
SEQUENCING

TEST
SET

OTHER SIDE OF
DUAL STRING SYS

 FROM SSL

NOTE:
- IIVV BUILD (ALL OTHERS GFP)

Figure 3 Real-time Hardware-based Validation Concept
When to consider IV&V

IV&V is not right for every program. Comprehensive, fully independent, IV&V is justified when the risk
from software failure is high. Risk can be from cost or safety factors. IV&V must also be considered from
the view point of the customer and management. If customers and management are willing to do active
engineering with software, where other people can provide “outside eyes” of independence, then less
rigorous IV&V may be acceptable. IV&V certainly can find errors, but if the cost of the errors being
found do not offset the cost of the IV&V, then benefits can be questioned. IV&V can be considered in
medical, air safety, nuclear, space, government, or other high risk software programs.

There are now companies and IV&V centers like NASA’s IV&V center[ref] that can provide resources
and expertise on IV&V. While not for everyone, these centers can provide knowledge bases even to more
standard test approaches.

Experience and Data Found Over a 20 Year Life Cycle

IV&V is common on many critical software DOD programs, but there are different levels of IV&V. The
range is from review, audit, and/or inspection to full and complete test programs with hardware-in-the-
loop test beds. The latter seem better at finding errors and improving products, but represent a cost factor
that can be equal to the cost of developer-based testing.

IV&V should be focused on negative testing, in which finding errors is the goal. It should do this by
having all levels of testing (unit to full software qualification), multiple tools (simulations, instrumentor,
oracles, etc.), and knowledgeable people. IV&V should be viewed as serving in place of the customer
performing detailed acceptance testing as defined in ISO 9001.

The keys to exercising a successful IV&V program are tools, people, knowledge about the test domain,
defining processes with metrics, and an interest in improving each of these. While other papers that we
have written, addressed tools, people, and process, we would like to note here that continous improvement

efforts have contributed both to IV&V success and longevity. Our IV&V area with the support of the
customer, has continuously and in small affordable steps upgraded tools, people, and processes in line
with Softare Engineering Institute concepts. Trade studies and upgrade plans were prepared at many
points along the line of improvement. We have moved from large mainframes to micro computers and
workstations and from custom-built tools to commercial products and new languages. Test processes and
tool improvement is measured and evaluated against planned expectations. Not every improvement or
tool has been successful, but we learn from our failures as well as successes.

Another experience we have found is that test automation works but up front costs and risk issues must be
considered. During automation efforts, we first established what our manual processes were. If a manual
process was repeated often enough to justify the cost of automation, then we budgeted development effort
to test tools. The trade off point between manual and automation was basically to calculate the total cost
of manual efforts and then do the same for automated efforts. If automation had less cost and time or
there was some major technical advantage, then we would elect to automate. Automation costs include
the up front effort to buy, integrate, and then set up tests. It is important to note that not everything we do
is automated, but when repetition or some risk factor— like the chance for human error, indicated
automation is viable, we develop it using a software development plan, just like any software effort.

Data From IV&V Detected Errors

Over the years, we have found that IV&V finds the most errors and results in the best products when done
with full testing and analysis. Part-time or review/audit types of IV&V, which we have done, are not as
comprehensive and have missed critical errors. They provide some level of product improvement, and so
their costs may be worthwhile, but to obtain the higher levels of error detection, the program must spend
the money for full IV&V testing and analysis. Quality is not free, but the lack of quality can cost in the
long run too. It is a trade off that must be considered during program planning by management and
customers. To do this, we consider the following statistics from the IV&V problem report database:

• Over 1600 error reports have been filed by IV&V in one area, the number represented about 60% of all
errors found by IV&V since many error were reported informally (outside of the tracking database via
memos or meeting action items) on pre-release engineering products to save costs by analyzing products
while they were still under development. This was an important cost reduction factor.

• 30 percent of all software problems were found by IV&V on products we test.

• 20 percent of IV&V defined problems resulted in code or requirement changes, and included errors that
could have resulted in degraded mission performance.

• An Air Force review estimated that at least one mission over the last twenty years had been impacted by
IV&V, which more than paid for the costs of IV&V.

• Over 80 percent of problems found by IV&V are in documentation. While not impacting code, finding
these kinds of errors can reduce maintenance costs and help in process improvement related to concepts
such as the Capability Maturity Model and ISO.

• The kinds of IV&V logic errors found include: configuration management problems, code standards
violations, incorrect data parameters, logic faults in the code, design faults, and incorrect requirements that
impact the design and code. These are equally distributed over the remaining 20 percent of error reports.

• Over 75 percent of the total errors were found during initial development. However, after almost 17 years
of operations and maintenance on one program, some 30 error reports were filed during a major system

7

upgrade. Two of these reports impacted flight products. As the software matured, the shift in problem
reports was from code and requirement errors to documentation problems.

• Problems are found by inspection, test, and analysis using both manual and automated approaches.
Problems are equally distributed for the verification, validation, and scientific validation areas

Lessons Learned

The following represent some of the main lessons learned by the IV&V program during the past twenty years of
testing:

• The IV&V team should be involved at the earliest possible time in the software development cycle. For
established programs, the developer should provide extensive technical information and documentation of
the system design.

• ·The IV&V scope must be established and agreed to by all involved parties. Scope would include statement
of work, reporting structure, interface requirements for formal deliveries and support, and final deliverable
software procedures.

• It is best and most independent if a separate budget controlled by the IV&V contractor is established so that
changes in scope and deliverable products can be negotiated.

• Establish a customer for the IV&V effort external to the software development group. In order for the
IV&V effort to have an influence on the software design, findings and recommendations should be reported
to an interested third party with organizational responsibility for the software development group.

• A formal data exchange list should be created between the developer and the IV&V organization, along
with a format to control interchange of documentation and products.

• Establish combined schedules for all tasks and maintain active review and notification of schedule impacts.

• Accomplish active planning for all tasks including review of schedules, metrics (trending and projection),
and deliveries.

• Establish a forum for exchange of technical and schedule information on a regular basis. Weekly seems to
work best.

• There should be an independent development of a requirements traceability matrix to ensure all
requirements are testable and to track changes and requirement closures.

• Complete configuration management of all delivered products should be implemented by the IV&V team
(know what you are testing).

• Increasingly with the aging of a project, a primary focus of testing should be to validate the interfaces
between software and hardware elements. Compatibility problems are hard to find and often remain even
after extensive testing and IV&V. Good interface definition helps, but systems of any complexity hide
interface problems.

• There is a hidden cost associated with using reuse and heritage software. Typically, the requirements
documentation and the interfaces can have problems that complicate their use.

• The cost and time to develop the test software, process, and tools can often be underestimated. This can
result in failure of these types of efforts. Also part of the cost, that is often overlooked is the training of
people to do the work.

• For critical or safety related code, it’s important that no lines of code exist for which there is no
corresponding requirements information or objective evaluation criteria (design level). A requirement that
only states what to do and is not clear is also incomplete. To develop tests and test requirements, it is
important that the software requirement be stated in such a way that a test or IV&V engineer can infer how
the code is supposed to function.

· If present, it is important that software quality assurance group be staffed with personnel who are experts in
software development engineering, since they need to make decisions about the validity of tests, tools,
processes, and IV&V efforts.

· Establish a common problem reporting and tracking database with formal use and access procedures
between all users.

Summary
IV&V has contributed to mission success within the Lockheed Martin Denver Astronautics group, but we
have found that IV&V has to be done correctly. A good working relationship with the developer and
customer has to be maintained. IV&V had to define a plan that used methods, tools, and techniques to
test the products and find errors. Once the IV&V plans were defined, these had to be managed and
controlled to produce results. This includes obtaining and training the technical staff to do the job right.
And, finally, over time the plans and associated elements had to be optimized to ever improve technical
and budget performance. The role of independence in testing may be changing but we should not forget
some of the lessons learned for IV&V.

References
D. Wallace and R. Fujii, “Software Verification and Validation: An Overview,” IEEE Software, May
1989

F. McGarry and G. Page, “Performance Evaluation of an Independent Software Verification and
Integration Process,: Tech. Report SEL 81-110, NASA Goddard Space Flight Center, Greenbelt, MD.,
Sept. 1982.

W. Howden, “Program Testing versus Proofs of Correctness,” Journal of Software Testing Verification
and Reliability, Vol 1, Issue No. 1, 1991.

M. Deutsch and R. Willis, “Chapter 2: Overview of the Book”, Software Quality Engineering A Total
Technical and Managerment Approach, Prentice Hall, Inc. 1988, p33.

Hagar, Burba, Wittekind, and Bell, “World Wide Web Based Tools to Support Testing”, 1997 Qual Week.

InterWorld Confidential - Do Not Duplicate

eCommerce Benchmarking

Methodology and Criteria

eCommerce Benchmarking

Methodology and Criteria

Steve Rabin
Chief Technologist
InterWorld Corp.

InterWorld Confidential - Do Not Duplicate

Commerce Server Benchmarking Issues

l simultaneous connections is misleading
l depends on size/type of documents being delivered

l what does pages/second mean?
l determine the total data rate and the number of

transactions/second the server can process

l understand units of commerce work
l loading modules
l building templates
l round trips (ie. database)
l transaction types

InterWorld Confidential - Do Not Duplicate

eCommerce Testing

¥ Quality
¤ Unit Test - thread safety, code coverage
¤ Smoke Test - quick validation
¤ BVT - build validation test
¤ Full Functional Test
¤ Regression Test - consistent functionality
¤ Load Test - high availability
¤ Benchmark - by Platform
¤ Installation Test - by Platform

¥ Automated Tools
¥ Repeatability

¤ Consistent and Isolated Environment

¥ Metrics
¤ Measure real world scenarios
¤ Load test specific subsystems

InterWorld Confidential - Do Not Duplicate

Performance & Stability Testing

¤ Simultaneous Users: Concurrent usage
testing. Threaded commerce software guards
against serialized resources. However, that
requires careful management of common
services to avoid deadlock.

¤ Transactions per second: Stress testing for
peak performance. Turnaway capabilities
based on estimated peak availability.

¤ Server Sizing: Memory? Connections? CPUs?
¤ Database Sizing: Capacity planning using

sample data. Foot-print per user. Trigger
threshold notices.

¤ Real-world Simulations: Server log analysis?
Classify types of transactions. Example:
Search versus Orders?

InterWorld Confidential - Do Not Duplicate

Top Commerce Site Performance

 Site HomePage Delivery Availability
Rate

 (seconds) (percent)
Amazon 4.9 99.4
Barnes & Noble 7.3 99.2
Dell 8.3 99.1
Gateway 6.4 86.7
Lands End 9.0 91.5
Toys R Us 5.7 98.1
Business 40 index 9.2 97.5

InterWorld Confidential - Do Not Duplicate

Procedure for Site Sizing and Characterization

1. Collect site characterizations and
performance/load requirements.

2. Translate these requirements to server
throughput requirements.

3. Perform virtual or actual benchmark

InterWorld Confidential - Do Not Duplicate

revenue/period: user input
avg$/order: user input
visitors placing an order: user input
pages/visitor: user input
pages/order: user input
pages/day: user input
order ratio (peak hour): user input
pages/peak hour: user input
dynamic to static pages: user input

browsers to buyers user input/calculated

transactions/second: calculated
pages/second: calculated
server/CPU config: calculated

Site and Load Characterization

InterWorld Confidential - Do Not Duplicate

Site/Load Comparisons

Base Line Site 1
Hits/day: 10,000,000 14,000,000

Orders/day: 600 (4,000) 2,500

Visitors/day: 70,000 (650,000) 75,000

App Servers: 24 (NT)

Conversion Ratio: 1-1.5% 0.97%

Avg. pages/visit: 6-8 11

Avg. order size: $190.00 NA

Concurrent visitors: 1200 2500

peak business: 12PM-5PM 5PM-10PM
 (50-60%) (62%)

InterWorld Confidential - Do Not Duplicate

Scenario 1: Search to Buy Ratio Static to Dynamic Pages
 99 : 1 1 : 99

 5 : 95
10 : 90

Scenario 2: Search to Buy Ratio Static to Dynamic Pages
 95 : 5 1 : 99

 5 : 95
10 : 90

Scenario 3: Search to Browse to Buy Ratio Static to Dynamic Pages
 60 : 39 : 1 1 : 99

 5 : 95
10 : 90

Scenario 4: Search to Browse to Buy Ratio Static to Dynamic Pages
 50 : 45 : 5 1 : 99

 5 : 95
10 : 90

Benchmark Configurations

InterWorld Confidential - Do Not Duplicate

¥Home Page Transaction
¥Product Page Transaction
¥Section List Transaction
¥Shopping Basket Transaction
¥Buy Transaction
¥User Registration Transaction
¥Search Transaction
¥Check Status Transaction

 eCommerce Benchmark Transactions

Static and Dynamic Units of Work - Simple and Complex Transactions

InterWorld Confidential - Do Not Duplicate

Transaction Type Percent Frequency
(bookseller)

¥ Search on product characteristics (e.g. title
43%)

¥ Display particular product 32%
¥ View Homepage 10%
¥ Display Shopping Cart Contents 8%
¥ Add Item to Shopping Cart 5%
¥ Buy a product 1%
¥ Register new user .3%
¥ Display order .3%
¥ Error .3%

InterWorld Confidential - Do Not Duplicate

Home Page
Search
Basket
Order Process

OP1 = ObjBuilder, OrderProcess initialize
OP2 = " " verifyOrderDialog
OP3 = " " verifyBillingDialog
OP4 = " " verifyShippingDialog
OP5 = " " setShippingMethodDialog
OP6 = " " confirmationDialog
OP7 = " " paymentMethodDialog
OP8 = " " orderCompleteDialog
OP9 = " " deleteOrder

Benchmark Scripts
(Search-Buy)

InterWorld Confidential - Do Not Duplicate

Home Page
Section List
Product Page
Basket
Order Process

OP1 = ObjBuilder, OrderProcess initialize
OP2 = " " verifyOrderDialog
OP3 = " " verifyBillingDialog
OP4 = " " verifyShippingDialog
OP5 = " " setShippingMethodDialog
OP6 = " " confirmationDialog
OP7 = " " paymentMethodDialog
OP8 = " " orderCompleteDialog
OP9 = " " deleteOrder

Benchmark Scripts
(Browse-Buy)

InterWorld Confidential - Do Not Duplicate

Home Page
Section List
Search
Product Page
Basket
Order Process

OP1 = ObjBuilder, OrderProcess initialize
OP2 = " " verifyOrderDialog
OP3 = " " verifyBillingDialog
OP4 = " " verifyShippingDialog
OP5 = " " setShippingMethodDialog
OP6 = " " confirmationDialog
OP7 = " " paymentMethodDialog
OP8 = " " orderCompleteDialog
OP9 = " " deleteOrder

Benchmark Scripts
(Search-Browse-Buy)

InterWorld Confidential - Do Not Duplicate

The Math

¥ TotalThroughput =
 WebBrokerEfficiency *

(ThoughputPS1 + ThroughputPS2 + … + ThroughputPSn)

¥ WebBrokerEfficiency =
 F(number of process servers, network bandwidth, network latency)

¥ Throughput PS1 = (ThroughputPS1browsing *
BrowsingPercent)+

 (ThroughputPS1shopping *
ShoppingPercent)+

 (ThroughputPS1purchasing *
PurchasingPercent)

InterWorld Confidential - Do Not Duplicate

 Sample Configuration

Web
Browser

Process
Server

WebBroker

Watch
Dog

Process
Server

Watch
Dog

HTTP
Server

Watch
Dog

Search
Server

RDB RDB

Local
Director

Local
Director

hot link two local
directories for redundancy

WebBroker

WebBroker

Watch
Dog

Watch
Dog

hashed value of session ID
owned by the process server
and stored in non-persistent
cookie

Process
Server

Watch
Dog

Watch
Dog

used for
serving static

content

InterWorld Confidential - Do Not Duplicate

TCP/IP network

Browser
(LoadRunner)r

Web Broker
HTTP Server

Search
Server

Process
Server

Sun Benchmark Configuration

 Ultra Enterprise 2

Database
Server

Ultra
 Enterprise 2

Process
Server

Ultra
 Enterprise 2

InterWorld Confidential - Do Not Duplicate

 Sun Ultra Enterprise 2 - Oracle, 266 MHz, 1 CPU, 512 RAM

Test 1 – Order Process
Transactions Average

Response (sec)
Test
Duration (sec)

Transactions/
Second

CPU (%)/
Memory Usage

5,017 NA 296 16.9 90% - 70MB

Benchmark Results - Order Process Transaction

InterWorld Confidential - Do Not Duplicate

Benchmark Results - End to End

search to browse to buy- 65 : 39 : 1
static to dynamic pages- 5 : 95
100 virtual users

Sun Ultra Enterprise 2 - Oracle, 1 APS: 266 MHz, 1 CPU, 512 RAM

Number of Transactions- 4502 static- 225, dynamic- 4277
Duration in Seconds- 900 15 minutes

Transactions/Second- 5.1

InterWorld Confidential - Do Not Duplicate

 near linear scaling

Benchmark Results - CPU Utilization

search to browse to buy- 65 : 39 : 1
static to dynamic pages- 5 : 95

 Sun Ultra Enterprise 2 - Oracle, 266 MHz, 1 CPU, 512 RAM

APS CPU Load Scaling
(100 virtual users)

0

20

40

60

80

100

1 2

C
PU

 %

APS

InterWorld Confidential - Do Not Duplicate

 near linear scaling

Benchmark Results - Response Time Scaling

search to browse to buy- 65 : 39 : 1
static to dynamic pages- 5 : 95

 Sun Ultra Enterprise 2 - Oracle, 266 MHz, 1 CPU, 512 RAM

APS Response Time Scaling
(50 virtual users)

0

10

20

30

40

50

60

1 2

Ti
m

e
(s

ec
) # APS

InterWorld Confidential - Do Not Duplicate

 near linear scaling

Benchmark Results - Memory Utilization

search to browse to buy- 65 : 39 : 1
static to dynamic pages- 5 : 95

 Sun Ultra Enterprise 2 - Oracle, 266 MHz, 1 CPU, 512 RAM

Memory Utilization
(application process server)

0
50

100
150

200
250
300
350

1 2 3 4 5

Virtual Users (X20)

M
em

or
y

(M
B

)

1 APS

2 APS

InterWorld Confidential - Do Not Duplicate

Database Server - Memory Utilization

 Sun Ultra Enterprise 2 - Oracle, 266 MHz, 1 CPU, 512 RAM

CPU Memory
20% 78Mb

CPU Memory
38% 140Mb

CPU Memory
55% 230Mb

Test 1 - Basket Operations (view, select, insert, remove, delete)
100 virtual users, 2 APS

Test 2 - Order Process - 100 virtual users, 2 APS

Test 3 - Search - 100 virtual users, 2 APS

InterWorld Confidential - Do Not Duplicate

O p e r a t i n g S y s t e m : S o l a r i s
N u m b e r o f C P U ' s : 2
M e m o r y : 1 . 4 G B R A M

E l e m e n t 1 u s e r l o a d 5 u s e r l o a d 1 0 u s e r l o a d 2 0 u s e r l o a d 5 0 u s e r l o a d
H o m e P a g e 4 . 8 4 2 3 . 2 5 3 4 . 7 4 3 7 . 0 5

C a t a l o g L i s t 2 . 4 7 2 . 4 3 2 . 4 9 2 . 1 8 3 . 0 1

S e c t i o n L i s t - C a c h e d 3 . 3 2 1 2 . 7 3 1 7 . 2 6 2 0 . 4 4 2 2 . 2 6

C a t P r o d u c t - C a c h e d 3 . 9 7 1 3 . 6 2 1 8 . 9 2 6 . 4 9 6 . 4 0

S e c t i o n P a g e - C a c h e d 0 . 1 9 0 . 9 4 2 . 0 7 4 . 7 0 7 . 9 0

P r o d u c t P a g e - C a c h e d 0 . 1 9 0 . 9 5 1 . 8 5 2 . 5 7 . 8 4

B a s k e t (I W X) 2 . 1 8 4 . 3 3 4 . 3 1 4 . 2 9 4 . 5 0

B a s k e t S t e p s 1 . 4 1 2 . 0 7 2 . 0 7 2 . 0 7 1 . 8 8

O r d e r P r o c e s s (t o t a l s)
- I n i t i a l S t e p
- V e r i f y O r d e r
- V e r i f y B i l l i n g
- V e r i f y S h i p p i n g
- S h i p p i n g M e t h o d
- C o n f i r m a t i o n
- P a y m e n t M e t h o d
- O r d e r C o m p l e t e
- D e l e t e O r d e r

0 . 0 4 0 . 1 4 0 . 1 0

O b j e c t B u i l d e r
- N O O P p r o c e s s
- S t a t i c T e m p l a t e
- S t a t i c T e m p l a t e +

D a t a b a s e a c c e s s
S e a r c h 0 . 0 9 0 . 4 7 0 . 9 3 3 . 3 5

C a t e g o r y S e a r c h 0 . 0 9 0 . 4 7 1 . 0 0 1 . 9 6

C u s t o m e r R e g i s t r a t i o n

M i x 8 5 % t o 1 5 %

M i x 9 5 % t o 5 %

U n i t s = D y n a m i c P a g e s / s e c (t r a n s a c t i o n s / s e c)

Results vary based on
site customizations

Use benchmarks as a guide.
Your mileage may vary!

InterWorld Confidential - Do Not Duplicate

Web Site Performance Q&A

¥ Do customers experience consistently good
performance from your web site?

¥ How does your web site compare to your competitors
or to industry benchmarks?

¥ Do customers in certain cities have more trouble with
performance than from other cities?

¥ How does your site deal with heavy traffic and/or peak
load periods?

¥ How reliable is your site in terms of connections
refused, connection time outs and page time outs?

¥ Are certain pages consistently slow?
¥ Should geographic mirroring be considered for your

site?

InterWorld Confidential - Do Not Duplicate

Benchmark and Performance Technology Assessment

Site Characteristics
•Determine customer value of each feature
•Remove non-essential steps
•Dynamic page analysis
•Turn off features (based on peak load scenarios)
•Remove or disable personalized pages (peak loadscenarios)
•load characterization, site characterization

Assessment
•Determine customer expectations and evaluate the impact
•Who are you selling to and what do they expect to see next?
•Does the current infrastructure support the future?
•Cost and benefit analysis of new features vs. performance

Simulate Real World Load
•Number of users
•Types of transactions
•Database access
•Legacy connection(s)
•Network/infrastructure issues

InterWorld Confidential - Do Not Duplicate

Hardware Redundancy

¤ Separate ISPs: Are you using two separate
ISPs to handle the unlikely event that one ISP
is down?

¤ Mirrored Site: Does your organization have a
system to automatically reroute traffic to a
mirrored site?

¤ Multiple Commerce Servers: Do you have
multiple Internet commerce servers? [Cisco
has LocalDirector]

¤ Redundant Disk Drives: Is transaction
information stored on multiple drives? RAID
arrays?

¤ Dirty Power: Do you have a uninterruptible
power system for the commerce server?
How long can you go without power?

InterWorld Confidential - Do Not Duplicate

Contingency Planning

¤ Contingency Plan Preparation: Do you have
a documented contingency plan?

¤ Contingency Plan Testing: Do you test your
contingency plan on a periodic basis?
Do you employ a stress testing product
that simulates disastrous or overload
conditions in order to prevent them?

¤ Penetration Testing: Did you perform
penetration testing of your commerce
server before publicly announcing it's
availability?

InterWorld Confidential - Do Not Duplicate

Comments or Questions

1

Usability Analysis inUsability Analysis in
E-Commerce SystemsE-Commerce Systems
Quality Week ‘99 Track PresentationQuality Week ‘99 Track Presentation

Federico I. Pacquing, Jr.Federico I. Pacquing, Jr.
Director, Enterprise Support SystemsDirector, Enterprise Support Systems
PhotoDisc, Inc - Seattle, WAPhotoDisc, Inc - Seattle, WA

• Overview/Background
• Analysis -
 “What is the Problem”
• Design -
 “What is Usability”
• Implementation -
 “How do you practically

get Usability??
• Test -
 “What were the results?”
• Maintenance -
 “Where do we go from

here?”

2

Personal Background
• DOD QA and Process

Improvement Manager
• General Manager QA of an e-

commerce company
• Currently tasked with the

development, test and delivery
of enterprise systems for
PhotoDisc

Company Background
•Publisher of High Resolution Digital Photography
•Collection of 75,000 unique images
•Recently merged with Getty Images (GETY)
•E-Commerce enabled at www.photodisc.com

Project Background
• Consolidated results of four

Seattle-based e-commerce
companies

• Practical Applications of “Text
book” approaches

• Oldest Implementation is 12
months old, newest is 4.

• Varying degrees of success
(though there are more positive
aspects than negative)

3

Analysis -
“What is the Problem”
• Unique issues with Usability
• Importance of Usability

Usability isn’t...
• ...a “fuzzy marketing” function

where “clueless” users sit around a
table and needlessly criticize
developer’s work…

• ...a thoroughly understood and well-
represented software development
activity…

• …something that can easily be sold
to executive management…

Usability Analysis (UA) is a systematic approach used to
gauge the efficiency and effectiveness of a system or product

from the perspective of the end-user.

4

The Problem...
• Frustration among end-

users
• Loss of Customers/

Revenue
• Increased Customer Service

and Technical Support Calls

Resulting from...
• Inadequate “Requirements definition”
• Poor “review process”
• Improper implementation of initial requirements and design

Design -
“What is Usability”
• Text Book definitions
• “High level” look at

activities

5

“User-Based Usability”
(Category I)
• Requirements Analysis
• User Profile Analysis
• User Context Analysis
• Alpha and Beta Groups

Design-Based Evaluations
(Category II)
• Design Guidance
• Heuristic Evaluation

6

Product/System
Evaluation Methods

(Category III)
• Heuristic Inspection
• Usability Lab Experimentation
• Performance Measurement Method
• User Subjective Assessment
• Model Based Assessment
• Supportive Evaluation

Implementation -
“How do you practically get

Usability?”

7

Program Buyoff and
Setup

(Phase I)
• Find an Expert
• Initial Data
• The Business Case
• The Internal Champion

Initial Activities
(Phase II)
• Initial Programs
• Team Building

8

Growth
(Phase III)
• The Organization
• Integration with Current

Processes

Full Program Implementation
(Phase IV)
• Expanding the Scope
• Automate/Formalize the Process
• Metrics

9

Test -
“What were the results?”
• What went right
• What went wrong

• Current Projects
• Future Expansions
• What I’d do differently

Maintenance -
“Where do we go from here?”

10

Usability Analysis in E-Commerce SystemsUsability Analysis in E-Commerce Systems
Quality Week ‘99 Track PresentationQuality Week ‘99 Track Presentation

Federico I. Pacquing, Jr.Federico I. Pacquing, Jr.
Freddy.Pacquing@PhotoDisc.comFreddy.Pacquing@PhotoDisc.com

(206) 695-3466(206) 695-3466

Quality Week ’99 Track Paper
Federico I. Pacquing, Jr.

Director, Enterprise Support Systems
MSCS, BSCS, CQE

PhotoDisc, Inc, Seattle, WA
Freddy.Pacquing@PhotoDisc.com

Usability Analysis in E-Commerce Systems

Abstract

Usability Analysis (UA) is a systematic approach used to gauge the efficiency and
effectiveness of a system or product from the perspective of the end-user. While this
paper and presentation will briefly discuss and help clarify what usability is, the true
purpose is slightly more unique. Its primary focus is to describe from a practical
perspective exactly how a Usability Analysis program can be implemented and integrated
into a technical Quality Assurance process, what the benefits are to an e-commerce
company and most importantly – how to sell it to executive management.

The information included in this paper was obtained from personal interaction with 4
Seattle-based e-commerce companies (most of which have asked to remain “unnamed”
due to the proprietary nature of the processes and results). The methods and practices
represent a “best of breed” approach to UA implementation.

This paper is organized and follows the logical flow of the specific phases typical to a
software development lifecycle. An analysis of the problem set is included, as well as
those tools necessary to “design” a proper UA program. Specific implementation tasks
are listed, as well as brief results obtained after initial program implementation.

Prior to the implementation of a formal Usability Analysis Program, PhotoDisc was
frequently criticized both internally and externally for not developing the “right product”
or developing a product that was technologically superior, but incorporated a substandard
“user experience”. Our company came to the realization that in the end most e-
commerce ventures develop a store – and that our goal was to provide the user a shopping
experience on-par with Sax Fifth Avenue …not K-Mart.

ANALYSIS – “What is the Problem”

The Problem
Twelve months ago I had only a vague idea of what “usability” was.

If you had described the activities and processes involved with a typical usability
program, I would have thought it a waste of valuable development and quality assurance
dollars. What benefits could be gleaned by spending 5 hours watching tape after tape of

“clueless users” fumble around a perfectly good e-commerce site? Or, worse still, sitting
in a cramped room staring at mockups of user interfaces imagining what “could happen”
even before it’s coded?

Common test practices like test automation, code coverage, and even complexity analysis
these, I could discuss and see the obvious benefits. Code and design reviews were a
necessary evil, and development methodologies and concepts such as SEI CMM, RUP, or
Object Oriented design were quite clear and obviously necessary (well, maybe not the
SEI CMM). However, what were the benefits of evaluating the “user-friendliness” of a
web site to any degree of depth?

And I was not alone. The implementation of a Usability Analysis Program is often
overlooked in the development of a system, site, or product. I have found that this
oversight can have an incredible impact on a product’s success – or lack thereof.

To put it succinctly, usability is the study and analysis of products with respect to ease of
use, operating procedures, and user experience. While development can gain many
advantages from the implementation of this process, a larger benefit can be derived by
other organizations (such as Customer Service, Technical Support, or Marketing). In one
instance, marketing was able to produce prototypes and receive almost immediate
customer feedback on changes to the product line or concepts. In another instance, over
25% of the calls received from a Customer Service department were asking procedural
questions about our product due to poor usability.

But though these and other
benefits can be realized from
a properly designed and
customized Usability
Analysis program, I found
that “selling” the process is
even harder than promoting
the benefits of a typical QA
program. The concept of a
Marketing Department
running focus groups is
something companies are
typically able to comprehend.
The idea of a Quality

Assurance group running a similar appearing function is many-times alien to upper-
management and perceived as an unneeded expense and more importantly the loss of
valuable time.

What is Usability?
So what is Usability? Usability Programs are used to help define consumer requirements
and refine our product base. Web Application usability is complex, combining concepts
from Technology, Marketing, Software Testing/Analysis and Cognitive Psychology.

However, the mastering of this concept has given our company an undeniable
competitive edge in a fast growing and aggressive market.

The fundamental questions the Usability Analysis (UA) program answers are “Who are
our customers?” “What are their buying, shopping and web surfing habits?” and most
importantly, “How can our company capitalize on these behaviors?” This program
specifically provides feedback for the development, marketing and the strategic
placement of our systems. The Usability Analysis Program also furnishes technical
evidence of site and product performance, timing and general “user-friendly”
measurements and metrics. The power of this program comes from its ability to quantify
the vague, user and customer related aspects of our products. The following section
describes specific examples of activities and results seen in designing a typical usability
program.

DESIGN – “What is Usability”

Type of Activities
To design a proper UA program, it is necessary to understand the various activities that
are typically associated with it. Usability activities vary dramatically, in terms of
effectiveness, resources, and overall purpose. Further, I have divided the activities into
three categories based on similarity of function. Specific examples of the effectiveness
of each will be discussed in the implementation section of this presentation. The
intention of this section is to briefly provide a background of UA and provide a common
frame of reference and set of terminology.

Category 1 – “User-Based Usability”
This stage consists of a strict analysis of the main user groups. In this category, the
various target user groups’ tasks, working environments, and overall requirements are
analyzed. The statistics and profiles of the targeted consumer groups can be garnered
from a company’s marketing or business development groups (there should be a target
audience for a set of goods or services or you have bigger problems than the lack of a
Usability process!). Furthermore, in this area, usability and acceptability goals also are
specified and design constraints identified.

It is important to the success of a venture to understand thoroughly the customer and his
habits. This in spirit is the same type of activity that Analysts and QA professionals
strive to accomplish – a complete analysis, with documentation, of the specific and exact
requirements that need to be implemented. In this case, however, the UA activity focuses
on the requirements and workflow as pertaining to the interface or the web.

Usability Context Analysis
This technique elicits detailed information about a product and its users. It also allows
for an in-depth look at the product’s uses from which a usability evaluation plan is
derived. Stakeholders attend a facilitated meeting to fill in a questionnaire about a

product, what user group it will be used by, and how it will be employed. Context
Analysis should be performed as early as possible in the design of a product and before
evaluation work begins. The results of Context Analysis can be referred to and updated
throughout a product’s development.

Deliverables can include a Product Report (a description of the product in a standard
format), a completed Context of Use questionnaire, and/or a Context of Evaluation
document (a summary list of those factors in the questionnaire considered important for
the usability of the product).

Alpha and Beta Groups

In my experience, Alpha and Beta testing in the e-commerce field has been under-
utilized. True, these forms of testing provide Quality Assurance with valuable feedback
on the technical validity of the site. It also provides marketing with the answers to “how
does the audience respond to the product”. However, in most e-commerce companies,
formal UA processes and procedures are not used to analyze the user’s patterns, problems
or profiles.

For this discussion, consider Alpha groups as those groups developed using corporate
personnel (both technical and non-technical) evaluating initial deployments and
approving product prototypes. Beta groups, comprised of “Friends of the Company” or
external personnel, can be created that mirror target audiences. Both user groups are
surveyed, questioned and are allowed a “first look” at products and services.

Though typically the purpose of these groups in e-commerce is –

1) To provide feedback to the development and marketing organizations

2) “Shake out” defects prior to launch SQA has not find due to being “too close” to the
project, or due to the sheer number of unique browser, platform and ISP
configurations available

- Two additional and equally important intentions of properly architected Alpha and Beta
groups should be to –

3) Allow a thorough analysis of the usability of the site

4) Provide feedback on the user.

Category 2 – “Design-based Evaluations”
This group of activities deals with concept development, testing and initial evaluation of
a product’s flow and implementation. In this category, simulation and prototyping
methods are used to generate potentially high-level solutions and to test their feasibility.

Design Guidance
The method of Design Guidance classifies the application according to a number of key
characteristics. These characteristics assist in defining the design. Furthermore, they
help establish the main usability goals (in essence, this is a key requirement-gathering
phase for UA activities).

Typically, design guidance activities provide direction on overall appearance, interface
styles, dialogue structure, navigation and user support. The method is used as a reference
guide to check points and ideas in relation to the current interface design and an
evaluation against organizational design criteria. These organizational criteria can be
contained in design guidelines and standards.

A design guidance session consists of internal Usability or QA personnel evaluating the
potential design of a product or site. If referencing back to the typical development and

QA lifecycle, it would map directly to
standard design reviews of a program’s
architecture, data schema or program
flow.

The deliverables from design guidance
activities can include standard guidance
on interface design, questions regarding
workflow, task oriented procedures and
a site design guide.

Heuristic Evaluation

Heuristic evaluation can be a powerful
tool in the UA assessment of an e-
commerce system. A Heuristic
Evaluation can be applied to

specifications, or more commonly, to user interface examples that can be assessed by a
panel of “experts”. This form of evaluation is applied to paper prototypes, running
prototypes or different versions of a current production system.

But what exactly is a “Heuristic Evaluation”? Well, according to the dictionary, a
heuristic is something that relates “to exploratory problem-solving techniques that utilize
self-educating techniques (as the evaluation of feedback) to improve performance.” Or,
in plain English (and specifically for our discussion), a Heuristic is a predefined set
“performance” criteria used to measure a potential product’s usability. Examples would
include flexibility and efficiency of use, consistency and standards, and help available. A
Heuristic evaluation is therefore an evaluation of the product against performance criteria
(typically a “walkthrough” or review process).

Applying Heuristic Evaluation to any system or prototype results in a detailed list of
potential problems users are expected to encounter when using the application.

Problems are rated for severity and/or safety criticality – in essence, an evaluation of the
risk involved with each problem. It is possible to extract the total number of problems
that might be found in a system by extrapolating from the count of actual problems found
in an application. Using this method gives quick and relatively inexpensive feedback to
designers and business groups for user interface improvement, site performance and
consumer experience. The process also allows stakeholders in the User Interface to
comment on the system development in an open and accessible forum.

Deliverables from Heuristic Evaluations can include a list of problems identified by
expert or user observation rated by severity.

Category 3 – “Product/System Evaluation Methods”
This category of activities deal with both the consolidation and rationalization of user
requirements. Critical to a properly designed UA Program, evaluations of the product
functions and features (based on the user context and the tasks that to be performed),
methods of interaction, hardware interfaces, user documentation needed, and required
user support. Plans for implementing the user requirements and defining how usability is
built and developed into a system is crucial.

Heuristic Inspection
A Heuristic inspection can be applied to specifications, or to UI examples assessed by a
panel of users. Like Heuristic Evaluations, a Heuristic inspection is usually applied to
paper prototypes, coded prototypes and different versions of a production system.
Deviations from Heuristic Evaluation will be stressed and examples from different case

studies will be given. It is important to note that
while Heuristic Evaluations are typically
internally based, Heuristic Inspections are
external – based on actual user feedback. The
cost/benefits of the possible solutions to
different user groups can also be analyzed.
.
Usability Lab Experimentation
Lab experimentation activities are the
cornerstone of the Usability Analysis program –
and those activities most typically associated
with Usability. Using specifically developed
questionnaires and select users from our target
consumer groups, a UA group can conduct
controlled experiments within a tightly
controlled environment. A room or location can
be allocated for this activity and be fully utilized.
The power of this type of experimentation is that
it allows companies to test the performance and
user experience, and to gain immediate feedback
on new product prototypes, UI changes, design

issues and even customer concerns and suggestions.

Performance Measurement Method
This technique enables a detailed analysis of the workflow and patterns of actual target
users. In this technique, the real world working environment and the product under
development are simulated as closely as possible. Users undertake real work tasks while
observers make notes, timings are taken, and video/audio recordings made. These
observations are subsequently analyzed in detail. Usability metrics for site efficiency,
effectiveness, problems encountered, and overall productivity are produced. User-based
evaluation can be used whenever a working product either a high quality prototype or
fully released product - is available.

A potential deliverable can include a report, which incorporates a problem list and
associated severity ratings, and recommendations for improvement. This report may also
include usability metrics for user effectiveness, efficiency, productive period and
satisfaction.

User Subjective Assessment

This is a method for analyzing the subjective opinions of users with practical experience
of using a software product or service. These informed users complete a standard
psychometric questionnaire. After receiving the questionnaire, their answers are
analyzed with the aid of computer programs (to provide statistical consolidation of all
feedback – manual methods can be tedious and can lead to inaccuracies). This User-
based evaluation can be used to provide feedback at any stage of design.

Key outputs from this process can include a report which encapsulates the following
measurements: global subjective measurements, perceived inefficiency, affect
(likeability), control, learnability, helpfulness. Furthermore, an assessment of how these
results compare with historical results for similar systems can be inferred (or deduced
from a database of past results). Detailed analysis of how answers to individual questions
differed from the norm may also be included.

Model Based Assessment (prototyping)
This method supports the evaluation of a prototype system, an associated task, workflow
requirement or description. A simple test procedure evaluates and produces a list of
ranked problems associated with a product. The Model Based Assessment can be applied
early in the design process. This UA method can be seen as an alternative to more
extensive trials, which commonly take place when a more completed product is to be
evaluated prior to release.

Supportive Evaluation

The Supportive Evaluation is an activity that utilizes participatory workshops in which
users examine prototypes and provide feedback in a structured manner. Scenarios and

exercises are used to create a more realistic context and simulate the hands-on
experience. Product workflow management and integration aspects are also addressed.

IMPLEMENTATION – “How do you practically get Usability?”

Though the previously mentioned techniques and activities are critical to the
understanding of a properly constructed UA program, the most important part of any new
program is its implementation (for without the program buy-off and realization, complete
knowledge of the tools and activities are futile). The following is a “best of breed”
approach used in 4 Seattle-based e-commerce companies (most of which have asked to
remain “unnamed” due to the proprietary nature of the processes and results). Though
this presentation and method is e-commerce-centric, many of the concepts and methods
relate to other industries and market segments.

Phased Approach
Unless your CFO is remarkably different than mine and every other I’ve encountered,
he’ll “flinch” at a proposed 5-15% increase in operating or development expenditure
during any given quarter (if not laugh – or glare - you out of his office). Therefore, I’ve
found that to effectively “sell” the program a “phased” approach is best for
implementation. From a financial perspective the concept of a phase UA program is
important – from the program’s success, it is critical. In many instances, UA programs
are even more difficult to sell than traditional QA Programs. QA results are easily
quantified – for instance, the amount of code covered is “measurable” and simple to
understand in concept. Test Automation scripts can be seen and their results are Boolean.
However, most executive managers are reluctant to spend money on programs with little
perceived short-term benefit to the bottom line. The solid usability program proponent’s
challenge is therefore to tie in it into either a direct reduction of cost (due to an
elimination of operating inefficiencies) or a marked increase in revenue inflow.

Phase I – Program Buyoff and Setup
Phase I is critical to the success of a corporate UA program, and often the most difficult.
The criticality of creating a business case that ties directly into the corporate financials
and the “politicking” necessary to launch the program can make it questionable as to
whether its worth spending the time. However, rest assured that after the analysis of user
statistics and initial research the benefits will become clear.

Find an Expert
Finding an expert in the field of usability to mentor or teach was critical to the success of
each of the programs studied. Either an industry leader who was able to provide valuable
feedback on our plans, or an acadamian who is well versed in the theory of usability was
crucial for an understanding of what how to quickly implement a UA program.

In the case of PhotoDisc, we developed relationships with a number of universities that
have programs in usability in one form or another. The UA program utilized their skill,
knowledge and facilities to help us define our process, procedures and questions. These

universities included the University of Washington, Central Washington University and
Seattle University.

Analysis of and Gathering of Initial Data
Most successful e-commerce companies track user activity using one method or another

This data can be used by marketing
organizations to track specific
behaviors, or Quality Assurance groups
to develop specific test cases (i.e.,
browser compatibility tests, platform,
ISP, or connection rate statistics). It
can also be used to identify problems
with e-commerce site usability.

The above chart demonstrates an
example of concerns that were found
during an initial analysis of PhotoDisc’s
e-commerce statistics early this year. It

was discovered that a startling number of potential customers left during a specific step of
the purchase process. A full 17% of customers, for unknown reasons, left the site after
choosing product and price but prior to completing the transaction. If even a small
percentage of these customers were leaving due to usability issues, the team theorized
that the cost associated with the problem would justify initial limited expenditures.

Another source of potential data is to “piggy-back” on Technical Beta tests.
Questionnaires can be issued and informal analysis of user actions can be completed with
minimal resources and impact on the schedule. This method has been effective to gather
informal or ad-hoc information that can verify other sources of data. For instance, in the
above example, to help verify that it truly was a usability issue that was causing the sharp
decrease in user activity during the purchase step, informal UA activities were instituted.

A Heuristic inspection
demonstrated that there were
fundamental flaws in the design
and implementation of the
purchase procedure. What was
thought as intuitive to the UI
designers was too complex to
allow for proper completion of
the task (in this case, buying the
product). To complete this
Heuristic inspection, a total of
10 man-hours were necessary
for setup by QA personnel.
Added to this total, 10 Heuristic
inspectors (who received 30

minutes of training) spent 2 hours in a Heuristic review session. In essence, to solve a

0
10
20
30
40
50
60
70
80
90

100

Visit

Search
Select
Purchase
Complete

Ideal

Actual

Phases Completed

Purchase Path – When Customers Leave

critical problem to the profitability of the site cost approximately 35 man-hours – a
potential Return on Investment (ROI) of magnitude proportions.

The Business Case – “SHOW ME THE MONEY”

The creation of the business case to create a formal UA process was critical to the success
of the project. From a financial perspective, it was key to effectively tie the program and
it’s benefits to the corporate bottom line. Though informal tactics and activities provide a
limited ROI, the importance of creating a formalized UA program with the associated
budget and resources was critical to get it effectively integrated into the rest of the
development and QA processes. In essence, the best way to achieve project “buy-in” was
to tie it, and to demonstrate that it made good business sense.

The obvious first step was to outline the phases of the project, the financial investment
and return. To accomplish this, the creation of a budget and list of expenditures was in
order. Personnel (added or reallocated), computers, video equipment, and even facilities
should be included to demonstrate the total combined cost of an organization’s UA
program. In many instances, starting off with a limited budget and scope proves to be an
easier sell than attempting to promote the benefits of a full-blown UA program. For
equipment alone, the price tag to set up a single small room can equal $40,000 or more.
When adding manpower requirements to run and administrate simple UA sessions, the
cost can skyrocket. In the end, a limited win is better than no win at all.

Tying the project results to the financial baseline can be tricky. It is possible to use data
from an initial analysis (mentioned above) and extrapolate potential paybacks.
Furthermore, it is also helpful to use industry data from your research to provide

executive management with a
typical historical “payback” that
others in the industry or market
have achieved. This tactic
needs to be closely monitored
and the correlation made as
close as possible to your
specific market segment.

Find an Internal Champion
Finding a champion within the
business community within
your company who will provide
support for the program is
extremely important. I knew

that in order to develop a successful program I would not only need the financial buyoff,
but the “intellectual” buyoff from management on the fundamental need for the UA
program. This champion needed an understanding of what the customer would need as
well as a basic idea on how sites were technically implemented. In one case, this person
was the Vice President of Marketing. In another, it was the CFO.

Phase II – Initial Activities

Initial Programs
Choosing the initial programs to demonstrate the power of the UA is a vital step. If
you’re able to achieve buyoff of the implementation of the program, many individuals

within the company may still be skeptical.
Therefore, it is important that the first initial
programs are both high visibility and low risk.

Two specific activities initially implemented
were the Heuristic Inspection and a simple
model based assessment. Though these
activities do not provide as much “bang for
your buck” as a more requirements based
analysis technique, they are both highly
visible. A Heuristic Inspection can
incorporate many company people – including
program skeptics. A Model-Based
Assessment can incorporate key users, the
review of which can be seen by business
executives. Both are highly interactive and
dynamic activities, uncovering basic flaws in
site and product execution. Furthermore, both
activities have a tendency to be relatively
inexpensive.

The cost, in terms of manpower, for a simple Heuristic Inspection has already been
addressed. In fact, in this instance, no additional computer or equipment resources were
needed to accomplish the task. Assuming that a working HTML prototype exists with
limited functionality, a Model-based Assessment is also inexpensive. The only additional
resource recommended would be a borrowed video camera and tripod to document the
sessions for future analysis (and as a selling point for program expansion.)

Team Building – Profile of a UA Team
The profile of the perfect usability professional is difficult to determine. Likewise, the
skills necessary for an ideal team is also problematic to exactly determine. Due to its
very nature, the skills needed for proper UA include cognitive and behavioral
psychology, statistics, User interface theory and design, simple coding knowledge and
knowledge of hardware, networks and platforms (to name a few). Administration skills
are needed, as well as group facilitation. All these skill sets are required (in some
combination) to properly run and organize a UA program. The dilemma, of course, is to
meet all these requirements and still stay within budget.

To overcome this dilemma, there are many alternatives. For an initial implementation of
a UA program, I managed the process myself and included a QA Tester as the project
lead. To help facilitate and run the program, we hired an intern (with a background in
cognitive psychology) and a temporary person for the administration work (usability

programs tend to be extremely paper and scheduling intensive). This staff arrangement
provided the basic necessary skill sets necessary for the initial UA program activities.

Phase III - Growth
The maturation and growth phases of a program are often times difficult to manage
effectively. A maturing UA program is no different – the ability to gauge the program’s
effectiveness and control the growth and expansion in scope is difficult to anticipate even
under the best of circumstances. There are two areas that are necessary to consider
during this phase: Who should control the group and program long-term, and how the
process is integrated with the development, quality assurance and business processes.

The Organization
One key danger is that due to its very nature, UA groups and programs can have a
tendency to align more toward UI design groups, marketing or business development
organizations, or even pure engineering rather than QA. For instance, due to the
criticality of the data gathered, there is a strong “business twist” to the group. Also, the
interface-intensive activities lend it to be very appealing for UI design groups to control
the organization. However, it has been my experience that keeping UA activities within
the scope of a QA group is critical to the program’s success.

The reasons for the tight integration between UA and QA are many and varied. The chief
rationale is that both UA and QA are evaluation-based activities (from a test-centric
perspective, not process-centric). In essence, the goal of a properly designed and
implemented UA program is to ensure that all interface, procedural and customer
centered activities are evaluated and reported in a controlled and centralized manner. The
goal of QA is essentially to do the exact same function for the technical aspects of the
system, site or product. The synergism between the two specific groups can be a
valuable tool in the successful implementation of cross-organizational “usability”.

Integration with the Current Process
Integration with the current Business, QA and Development processes is key for the long-
term viability of the program. An integrated UA set of procedures will help foster a
change in organizational culture and allow for a more complete and thorough
development of sites and products. The customer-centric processes and procedures add
benefits in a variety of areas – even if a minimal amount of usability errors are located.
Other functions can add value to the UA process or receive value from it. This areas or
activities include competitor analysis, user profiling, and surveying.

Incorporating UA into current processes is relatively simple – if you have your current
processes formalized and documented (if this is not the case, then again, you have bigger
problems than the lack of a Usability program). Integration into an ad-hoc procedure is
near-to impossible. The first step to integrate UA into your organizational processes
would be to document exactly what your UA processes are. Included in the
documentation would be the different activities associated with various phases of your
lifecycle, the pre- and post-conditions of each activity, the deliverables from the activity,
and the interaction with the diverse parties (Marketing department, UI Designers,

Developers). The next critical step would be to provide the exact workflow for a given
project, as well as provide project or program management with the tools they need to
insert the activities into their formal project planning (i.e., schedule and resource
estimations). Finally, providing the cross activity infrastructure needed (as seen in the
next section) such as the tools needed to track the information, a common defect severity
scale (integrated with the QA scale) and the triage and fix procedures is critical to long-
term success.

Phase IV – Full Program Implementation
Full program implementation is the obvious goal for the entire phased approach. If the
previous phases have been implemented correctly, the business case for UA expansion
should be relatively simple. If properly accomplished, the former phases would have
enough “wins” and revenue-making examples to justify the additional expenditure.

Expanding the Scope
If not previously accomplished, the scope of the UA program should be expanded in this
phase from a limited subset of projects to the entire product line or series of sites. It is
beneficial to begin with a simple set of products – it allows for a controlled and structured
approach to UA with a limited pool of resources. However, once complete buy-in is
achieved, it is important to integrate the UA process and activities into all new and even
legacy projects.

For instance, at PhotoDisc, the obvious place to begin the UA processes was with our
front-end e-commerce systems. The benefits of UA could easily be seen, were highly

visible to executive
management, and had a high
impact on both customer and
revenue. This also allowed for
an “easy win” for the program.
Later, when the scope
expanded, other systems such as
financials, HR-Systems and the
call-center were added. The
focus of UA in these cases was
not to make a significant
revenue impact – it was to
reduce the operating
inefficiency through improved
internal user usability. One key

example is that, due to UA processes in the development of a single application, call-
center response time improved by 30%.

Metrics
A strong metrics program associated with UA is important for a variety of reasons. The
tracking and reporting of UA metrics can assist in the “sale” of the program, and also
provide a valuable resource for the improvement of the program long-term. Standard

severity levels, and associated defect rates should be measured. In essence, a typical
software test-like metrics should be measured, recorded and reported against to maximize
the investment in time and resources.

Automate Process
In order to become more efficient, it is necessary at some point to partially automate the
process. Programs which track the different information associated with UA are
available off-the-shelf, however in our research we discovered that it was necessary to
create a custom database application to consolidate and analyze the data. Project-based
results were kept in a repository that tied to our automated test, project, process and
defect control applications. This automation consolidation allowed for a tighter
integration and level of operational efficiency.

TEST – “What were the Results?”

Post-implementation Statistics
The results of the implementation of UA within each of the companies is proprietary,
however, it is possible to share some brief “high level” outcomes.

Positive Results
§ One implementation improved profitability across the e-commerce site by an

estimated 2% within 2 weeks.
§ Another activity caused a decrease in Technical Support calls by 25%.
§ At PhotoDisc, a simple heuristic evaluation and correction of key defects freed up 20-

hours of work per week for a key financial analyst.
§ A heuristic evaluation allowed for an improvement in search efficiency by 25%.
§ Finally, a Model Based Assessment allowed for a more effective redesign and

“rethinking” of a $250,000 e-commerce initiative

These are just a small subset of examples on how UA improved e-commerce corporate-
wide. There are many more instances. In fact, for PhotoDisc, a 5% estimated
improvement in site performance and a 10% increase in operating efficiency could be
attributed to UA’s effect. There were, however, some negative results that were
associated with the implementations.

Not-so-Positive Results
§ In one UA implementation, a project was delayed by 2 weeks due to UA

involvement.
§ In another, an increase in expenditure by 5% of the annual budget was attributed to

UA.
§ One site experienced a decrease in search effectiveness by 3%, and a decrease in sales

by 2%.
§ In one instance, Technical Support calls increased by 5% due to a change requested

by a Heuristic Inspection.

Summary
Though there were a few “glitches” in each of the implementation, this program was seen
to provide a real and tangible benefit to e-commerce companies. Usability Analysis
activities were found to be versatile enough to “fit in” to any organizational structure or

budget constraint. Once the practical constraints
and problems were identified and controlled, the
UA program was definitely able to provide a
positive ROI.

In summary, UA programs provide valuable
feedback to development, marketing and
business executives to help them make informed,
strategic decisions based on facts – not on
assumptions.

BIBLIOGRAPHY/SUGGESTED READING

While the following books/articles are not
specifically noted in this paper, I found them to
be instrumental in my understanding of the
issues relating to usability and/or
implementation or procedural concepts and
suggest their reading.

§ Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall.
§ Card, S. K., Moran, T. P., and Newell, A. (1983). The Psychology of Human-

Computer Interaction, Lawrence Erlbaum Associates
§ Flemming, Jennifer. Web Navigation: Designing the User Experience. O'Reilly &

Associates
§ Forsythe, Chris. Human Factors and Web Development. Lawrence Erlbaum Assoc
§ Nielsen, J. (1993). Usability Engineering. Academic Press.
§ Rubin, Jeffrey. Handbook of Usability Testing : How to Plan, Design, and Conduct

Effective Tests. Wiley Technical Communication Library
§ Spool, Jared M. (1998). Web Site Usability : A Designer's Guide (The Morgan

Kaufmann Series in Interactive Technologies). Morgan Kaufman Publishers.

ABOUT PHOTODISC, INC.

A pioneer in its field, PhotoDisc, Inc. was the one of the first publishers of high-
resolution digital photography on CD-ROM and online. The company’s image collection
is available to creative professionals in the advertising, graphic design, marketing
communications, and web and multimedia design markets.

PhotoDisc’s constantly refreshed 75,000-image collection is available in its entirety for
search, purchase and download on the company’s award winning web site located at
www.photodisc.com . As well, 32,000+ of those images are available on more than 175
thematic CD-ROMs. CD-ROMs are available on the company’s website, and worldwide
through the company’s catalogs and at major software retailers.

Founded in 1991, the company pioneered the royalty-free licensing model for stock-
photography. Using technology to enable hassle-free, rapid-access image licensing,
PhotoDisc has become a valuable resource for deadline driven creative professionals.
Working with more than 100 noted photographers from around the world, the company
carefully selects compelling images to add to the PhotoDisc collection. Each photograph
selected must meet the company’s high standards for exceptional technical and artistic
quality. Advanced drum scanning technology is used to digitize the images, which are
then color-corrected and color-managed throughout the production process to closely
match each original both digitally and in print. The resulting PhotoDisc images are high
resolution, 24-bit color, and ready for use with all popular desktop publishing software,
graphics programs and multimedia applications.

The company's products are available from its 9 offices (London, Paris, New York,
Hamburg, Tokyo, Stockholm, Dubai, Sydney, Seattle) as well as worldwide through its
website (www.photodisc.com) and distributors in the European Community, Asia, Latin
America, Canada and the Middle East. Recently merged into Getty Images, a NASDAQ-
traded company (GETY), PhotoDisc joins Tony Stone Images, Hulton Getty, Gamma-
Liaison, Energy Film Library and Allsport to provide a full range of creative content
solutions to graphics, multimedia, web and publishing professionals around the globe.

Investigating Test E�ectiveness on

Object-Oriented Software

- A Case Study

M. H. Kao, M. H. Tang and M. H. Chen

Computer Science Department

University at Albany

State University of New York

SUNY at Albany

Quality Week, May 27, 1999 1

Outline

� Object-Oriented Pitfalls

� Traditional testing techniques

� State-based testing

� Empirical studies

� Object-Oriented Metrics

� Conclusions and Future Work

Quality Week, May 27, 1999 2

Object-Oriented Pitfalls - Inheritance

A subclass may re-de�ne its inherited func-

tions and other functions may or may not

be a�ected by the re-de�ned functions.

Class foo f

int local var;
...

int f1() f return 1; g

int f2() f return 1/f1(); g

g

Class foo child :: Public foo f

// child class of foo

int f1() f return 0; g

g

Quality Week, May 27, 1999 3

Object-Oriented Pitfalls

An object may be bound to di�erent classes

during the run time.

// beginning of function foo
...

P1 p;

P2 c;
...

return (c.f1()/p.f1());

// end of function foo

Quality Week, May 27, 1999 4

Traditional Testing Techniques

Are traditional testing techniques for the

imperative programs adequate for testing

object-oriented programs?

� Black-Box Testing

{ Program speci�cation

{ Operational pro�le

� White-Box Testing

{ Statement coverage

{ Branch coverage

{ Data-Flow coverage

{ Path coverage

Quality Week, May 27, 1999 5

Class Testing Strategies

� Testing inheritance

� Testing polymorphism

� Function dependence class testing

� State-based testing

� Sequence testing

� Data-Flow testing

Quality Week, May 27, 1999 6

Empirical Studies

Applications:

1. System A - GUI

2. System B - Data logging system

3. System C - Network communication

program

Faults

� Type I: Object-oriented faults

� Type II: Object management faults

� Type III: Traditional faults

Quality Week, May 27, 1999 7

Empirical Studies

System A System B System C

Lines of code 5.6k 21.3k 16.0k

Number of classes 20 45 27

Number of known faults 35 80 85

Type I faults 5 15 10

Type II faults 6 13 7

Type III faults 24 52 68

OO faults(%) 31% 35% 20%

Quality Week, May 27, 1999 8

Functional Testing

A B C

Number of test cases 100 403 326

Number of faults detected 17 42 52

Type I faults detected 1 4 5

Type II faults detected 1 6 3

Type III faults detected 15 32 44

Total faults detected(%) 48% 52% 61%

Total OO faults detected(%) 18% 35% 47%

Quality Week, May 27, 1999 9

Testing Strategies

Strategy I:

1. functional testing

2. statement testing

3. decision testing

Strategy II:

1. functional testing

2. state-based testing

Empirical Studies 10

Data Analysis

Strategy code-based state-based

System A B C A B C

Coverage Statement All-states

NOT 46 55 52 21 37 38

Type I 0 1 0 1 3 2

Type II 1 1 1 0 2 1

Type III 5 6 4 4 8 10

CU 92% 91% 92% 87% 95% 90%

IC 8% 9% 8% 13% 5% 10%

Coverage Decision All-transitions

NOT 23 41 33 43 79 75

Type I 0 1 1 1 2 0

Type II 1 1 0 2 1 1

Type III 1 6 5 4 6 8

CU 89% 89% 92% 89% 88% 85%

IC 11% 11% 8% 11% 12% 15%

Quality Week, May 27, 1999 11

Data Analysis - Summary

System A B C

Strategy I II I II I II

NOT 69 64 96 116 85 113

OO faults 2 4 4 8 2 4

OO fault 22% 44% 22% 44% 22% 44%

Total faults 8 12 16 22 11 22

Total fault 44% 66% 42% 58% 33% 67%

Quality Week, May 27, 1999 12

Data Analysis

0.00

2.00

4.00

6.00

8.00

10.00

OO faults

System A System B System C

state−based
code−based

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

System A System B System C

OO fault detection ratio (%)

22%

44%

22%

44%

22%

44%

code−based
state−based

Quality Week, May 27, 1999 13

Data Analysis

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

Faults

System A System B System C

code−based
state−based

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

System A System B System C

Fault detection ratio (%)

code−based

state−based

44%

66%

42%

58%

33%

67%

Quality Week, May 27, 1999 14

Object-Oriented Metrics

WMC : Weighted methods per class

DIT : Depth of inheritance tree of a class

NOC : Number of children

CBO : Coupling between objects

Quality Week, May 27, 1999 15

CK Metrics - System A

WMC

DIT
NOC

CBO

OO Faults

Total Faults

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Quality Week, May 27, 1999 16

CK Metrics - System B

WMC

DIT

NOC

CBO

OO Faults

Total Faults

0.00

5.00

10.00

15.00

20.00

25.00

Quality Week, May 27, 1999 17

CK Metrics - System C

WMC

DIT

NOC

CBO

OO Faults

Total Faults

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Quality Week, May 27, 1999 18

CK Metrics

WMC DIT NOC COB

MEANsysA 11.85 1.25 0.2 1.65

MEANsysB 6.81 1.54 0.71 3.29

MEANsysC 10.38 0.9 0.24 1.17

Type A 28% 37% 57% 16%

Type B 36% 27% 7% 49%

Type OO 50% 39% 14% 83%

Quality Week, May 27, 1999 19

Conclusions and Future Work

In our study:

� Code-based and State-based testing

strategies are not reliable w.r.t. OO

faults.

� CK metrics are not good predictors

of fault-prone classes.

Future Work:

� Developing an object-oriented test-

ing strategy

� Identify new design metrics for object-

oriented programs

Quality Week, May 27, 1999 20

Investigating Test E�ectiveness on Object-Oriented

Software - A Case Study

Ming-Hung Kao and Mei-Huei Tang and Mei-Hwa Chen
Computer Science Department

SUNY at Albany
Albany, NY 12222

(kao, meitang, mhc)@cs.albany.edu

Abstract

We present a case study that investigates the e�ectiveness of traditional testing techniques
as well as existing state-based testing strategy on detecting faults in object-oriented pro-
grams. In this study, we applied a black-box approach, functional testing and two white-box
approaches on which statement and decision coverage criteria were used in test case selection
and as a guideline for determining test adequacy. To apply the state-based testing strategy
on object-oriented programs instead of on each class individually, we introduce two coverage
criteria: all-states and all-transitions. For each execution of a test case, the visited states and
the transitions to enter these states for each class are recorded. New test cases are designed
to traverse the uncovered states and transitions. These testing techniques were applied to
three industrial systems with sizes ranging from 5.6k to 21.3k LOC. The investigation began
with classifying faults found in these three systems over the past three years. Based on their
relevance to the object-oriented features, the faults are classi�ed into three types where type
I is strongly related to the object-oriented features such as inheritance and polymorphism;
type II is related to object management, and type III is the type of faults that can be found
in the non-object-oriented software as well. After applying these testing techniques to the
faulty systems, we observed that the majority of type I and type II faults still remained in
the systems. This result implies the likelihood that traditional testing techniques are not
adequate for detecting object-oriented faults and the state-based testing is not good enough
to address OO faults. Furthermore, we investigate the feasibility of using existing OO met-
rics to estimate the percentage of OO faults in a given system. Our results show that three
out of the four CK metrics we used might not be su�cient as predictors of fault-prone and
OO fault-prone classes. Our observations suggest that other metrics, that can capture the
dynamic behavior of the program and the scenarios on which the instances of the classes are
referenced, might be better indicators for the fault-prone and OO fault-prone classes.

1

Keywords: statement testing, decision testing, state based testing, object-oriented metrics.

1 Introduction

Object-oriented programming has been increasingly adopted for software development. OO
features such as information hiding, encapsulation, inheritance, polymorphism and dynamic
binding facilitate reuse and component-based development. As a consequence of the emerging
use of OO techniques, testing object-oriented software has become a critical issue.
Although much work has been proposed at the class level on OO testing, very few studies

are concerned with the program level. Thus, practitioners often question whether traditional
testing techniques that are designed to test imperative programs can be applied in the object-
oriented paradigm. In this paper we present a case study to address this issue. We obtained
three industrial object-oriented systems ranging from 5.6K to 21.3k to be used in our study.
These three systems have been used by many manufacturing companies for a number of
years. They were tested using a functional testing in the system test phase and released to
the customers. In addition, we obtained the test reports and trouble reports of these systems
which record all the faults detected in functional testing as well as those reported by the
customers over the past three years.
We �rst conducted a fault analysis on these faults and classi�ed them into three di�erent

categories, where Type I faults are those introduced by the object-oriented features, such as
inheritance and polymorphism; Type II faults are encountered in object management and
type III are the traditional faults such as missing statements. Type I and Type II faults are
considered OO faults, since they are strongly related to objects and object-oriented features;
while Type III faults are considered non-OO faults they can also be found in traditional non-
OO programs. The �rst investigation is to identify how reliable functional testing is with
respect to these three types of faults. We observed that this testing technique is much more
sensitive to non-OO faults than to OO faults. The second is to investigate if, by applying a
stronger testing technique on the systems after functional testing, this phenomenon can be
changed. Two strategies were used to enhance the testing process: Strategy I using statement
and decision testing; Strategy II applying the state based testing. The results show that with
strategy I the majority of OO faults still remained undetected, with less than half of the total
faults detected. While with Strategy II two-thirds of the total faults and 44% of OO faults
were detected. These results suggest that neither strategy is adequate for testing object-
oriented programs and further research on developing a new strategy to take OO features
into account is necessary.
Furthermore, we measure the CK metrics of the three systems aiming at identifying a

correlation between these metrics and the distribution of each type of fault, so that, based
on the structure and the complexity of the system, one can allocate test resources more
e�ectively. However, the results from our study show that among the four CK metrics we
used, only NOC can be useful for identifying fault-prone modules, the others can not be used
as indicators. To this end, further research into the identi�cation of new metrics is essential.
The remainder of this paper is organized as follows: in Section 2 we give a description of

2

the systems used in this study. The results obtained from the fault analysis are presented
in Section 3. Section 4 describes the experiments conducted in this study and Section 5
presents the CK metrics of the systems. Our conclusions and the direction of future research
appear in Section 6.

2 Descriptions of the Applications

The study was conducted on three industrial applications that were tested using tradition
functional testing techniques in the system test. A description of these applications and the
details of this study are presented in the following sections.

The applications that were used in this empirical study are subsystems of an HMI (Hu-
man Machine Interface) software which is a fully networked Supervisory Control and Data
Acquisition system. This software is based on client-server architecture consisting of servers
and clients. Servers are responsible for the collection and distribution of data. Clients con-
nect into servers and have full access to the collected data for viewing and control actions.
This software, which consists of more than 200 subsystems and 3 million lines of code, has
been used by many manufacturing companies for several years. These subsystems are briey
described below.
Although each subsystem selected plays a di�erent role in the system and performs dif-

ferent functionality, they share some similar characteristics that meet with our selection
criteria. All the subsystems are implemented using C++ and possess certain object-oriented
features such as encapsulation, inheritance and polymorphism.
System A is a user interface-oriented program that allows customers to con�gure the basic

product operations and device communications. It consists of 20 classes that de�ne 256
new, re-de�ned or virtual functions; its complexity is approximately 5,600 lines of code.
System B is a real time data logging process that collects data as needed and logs data into
the database based on the user con�guration. This system de�nes 46 classes and 353 new,
re-de�ned or virtual functions and with its complexity approximately 21,300 lines of code.
System C is a communication-oriented program that acts as a router and not only delivers
message between processes within the same host but also forwards messages to other hosts.
This system de�nes 27 classes and 293 new, re-de�ned or virtual functions and contains
approximately 16,000 lines of code. Among these three systems, Systems A and B were
designed and implemented in a certain object-oriented methodology, whereas System C was
ported from an older operating system and partially redesigned and enhanced to support
the new requirements under a new environment.
In Table 1 we summarized the results obtained from the analysis of these three systems.

The table lists the sizes of the systems in thousands of lines of code and the number of classes
de�ned in the systems. The total number of known faults with their distributions in the
three fault types is presented and the percentages of type I and type II faults over the total
known faults are also included. We observed that among the total faults found, one third of
the faults in Systems A and B are OO faults and in System C about one �fth of these faults

3

System A System B System C
Lines of code 5.6k 21.3k 16.0k
Number of classes 20 45 27

Number of known faults 35 80 85
Type I faults 5 15 10
Type II faults 6 13 7
Type III faults 24 52 68
OO faults(%) 31% 35% 20%

Table 1: Summary of the faults in the three systems.

are of this type. The detailed design metrics of these systems are presented in Section 5.

3 Fault Analysis

We analyzed the trouble reports of these systems recorded for the past three years and
classi�ed the faults found in the system test and the maintenance phases along with a few
new faults that were detected in our experiments. The classi�cation scheme was based on
the nature of these faults and their relevance to the object-orientation. Below we describe
the detailed classi�cation of these types among which Type I and Type II are OO faults and
Type III faults are non-OO.
Type I: Object-oriented faults that are strongly related to the OO features and are intro-
duced by these features such as inheritance and polymorphism. This type of fault can be
further divided into two sub-categories: inheritance faults and polymorphism faults. A typi-
cal inheritance fault occurs when a derived class modi�es the data members of the base class,
which in turn changes the behavior of the base class and then causes the fault. In other
words, the derived class changes the environment of the base class which causes the faults
encountered in either the derived class or the base class. Polymorphism faults are the faults
encountered in the OO program when an object can be bound to di�erent classes during the
runtime. For instance, if there are X possible bindings of an object which sends a service
request and Y possible bindings of the other object which provides the service, then totally
there are X x Y di�erent combinations of bindings during the runtime. If some of them are
not tested during a system test phase, then a failure, caused by a polymorphism fault, might
occur.

Type II: The object management faults that are related to object management such as object
copying, dangling reference, object memory usage faults and etc. A typical object copying
fault would be encountered, if the implementation of the method for the copying of an ob-
ject is either the duplication of the original object or the generation of a reference to the

4

System A System B System C
Number of test cases 100 403 326
Number of faults detected 17 42 52
Type I faults detected 1 4 5
Type II faults detected 1 6 3
Type III faults detected 15 32 44
Total faults detected(%) 48% 52% 61%
Total OO faults detected(%) 18% 35% 47%

Table 2: Results of the functional testing.

original object. If the copied method is used incorrectly, some unexpected faults or memory
corruption will occur. The dangling reference object fault means that an object, say \object
A," tries to reference another object, \object B," which was destroyed by a third object,
\object C." The object memory usage fault normally refers to the situation where an object
allocates the memory during the runtime and does not free up the memory. when is is no
longer needed.

Type III: The traditional types of faults that are not related to objects. They fall into the
fault classi�cation of traditional software [10].

In Table 1 we summarized the results obtained from the analysis of these three systems.
The upper half of the table lists the sizes of the systems in thousands lines of code and
the number of classes de�ned in the systems. The total number of known faults and their
distributions in the three faults types is presented with the percentages of type I and type
II faults to the total known faults also included. We observed that among the total faults
found, one third of the faults in Systems A and B are OO faults and in System C , these
faults types comprise about one �fth of the total faults.
Table 2 shows the results of the functional testing which were the data recorded in the test

documents obtained from the company that developed the systems and from our analysis.
The data we obtained includes total number of test cases used and total number of faults
detected during the functional testing phase. In addition, we listed the number of faults
detected for each fault type, the percentages of the total faults detected and total OO faults
detected against the total number of known faults in the systems. We observed that in
functional testing 48% to 61% of faults were detected, while only 18% to 47% of OO faults
were detected, i.e., 53% to 82% of OO faults remained in the systems when the systems were
delivered. This analysis suggests that traditional functional testing is less sensitive to the
OO faults than the non-OO faults.

5

4 Description of the Experiments

The objective of these experiments is to investigate the fault detectability of traditional code
based testing strategy and the existing state based testing strategy. Two experiments were
conducted in parallel, in which each applied one testing strategy. Strategy I is a code-based
testing using statement and decision coverage criteria to design test cases. The state-based
testing was adopted as strategy II in which we de�ne all-states and all-transitions coverage
criteria to perform the state-based testing at program level. For each execution of the
program, the visited states and executed transitions in the state diagram are recorded. Test
cases are designed to exercise the unvisited states and transitions of the classes. This testing,
unlike the existing state testing [2, 4, 5, 6, 7, 11], is not performed at the class level. Thus,
there is no need for test stubs and test drivers. Both strategies were applied after the
functional testing; therefore, the version of the systems we used in these experiments is
the one released which still contains the faults reported by the customers as well as those
detected in these experiments.

4.1 Code-based testing

In this experiment, two commercial tools, Visual PureCoverage from Rational Software Cor-
poration and DeepCover from Reliable Software Technologies, are used to measure the state-
ment and the decision coverage, respectively.
The steps of these experiments are described below; at each step we intended to reach

100% of the target coverage criterion, whereas with the existence of infeasible paths we tried
to obtain the maximum possible coverage.

Step 1: using Visual PureCoverage to re-execute the test cases used in the functional testing
to measure the cumulative statement coverage.

Step 2: Constructing test cases to execute all the uncovered feasible statements.

Step 3: Using DeepCover to re-execute the test cases used at Step 1 and 2 to measure the
cumulative decision coverage.

Step 4: Constructing test cases to execute all the uncovered feasible decisions.

Faults that were found at Step 2 and Step 3 were corrected; among them, a few were not
yet reported by the customers, i.e., these faults were not recorded in the trouble reports. The
corrected programs were re-executed using the previous test cases to measure the cumulative
coverage.

4.2 State-based testing

To perform state-based testing, we �rst create a state diagram for each class based on its
speci�cation. Each state diagram is maintained using a state list indicated by the state

6

Strategy code-based state-based

System A B C A B C

Coverage criterion Statement All-states
Number of test cases 46 55 52 21 37 38
Number of detected Type I faults 0 1 0 1 3 2
Number of detected Type II faults 1 1 1 0 2 1
Number of detected Type III faults 5 6 4 4 8 10
Cumulative coverage achieved 92% 91% 92% 87% 95% 90%
Infeasible coverage 8% 9% 8% 13% 5% 10%
Coverage criterion Decision All-transitions
Number of test cases 23 41 33 43 79 75
Number of detected Type I faults 0 1 1 1 2 0
Number of detected Type II faults 1 1 0 2 1 1
Number of detected Type III faults 1 6 5 4 6 8
Cumulative coverage achieved 89% 89% 92% 89% 88% 85%
Infeasible coverage 11% 11% 8% 11% 12% 15%

Table 3: Summary of the two experiments.

id and each state is associated with a transition list that records a list of ordered pairs in
which a transition id and the id of the destination state are maintained. We introduce two
coverage criteria-all-states and all-transitions- to observe which states and which transitions
have been executed under some tests. To keep track of the all-states and the all-transitions
coverage, a state checker subroutine is instrumented to each member function in each class,
so that, when the state of the object is changed and a transition is �red, the state and the
transition list can be updated. In addition, the state checker is inserted into the program
right after each statement that explicitly changes the value of a data member of an object.
The steps of the experiment are described in the following.

Step 1: Re-executing test cases used in the functional testing to identify which states and
which transitions have been traversed.

Step 2: Creating new test cases to traverse all the uncovered feasible states.

Step 3: Creating new test cases to traverse all the uncovered feasible transitions.

4.3 Data analysis

Data obtained from this case study are presented in Table 3, where the numbers of test
cases used to ful�ll the requirement of every coverage criterion, the numbers of faults detected
for each fault type, the cumulative coverage achieved and the percentage of infeasible paths
for the three systems using three di�erent strategies are presented. The results obtained from

7

System System A System B System C
Strategy I II I II I II
Number of test cases 69 64 96 116 85 113
Number of detected OO faults 2 4 4 8 2 4
Number of detected faults 8 12 16 22 11 22

OO fault detection ratio (%) 22% 44% 22% 44% 22% 44%
Total fault detection ratio(%) 44% 66% 42% 58% 33% 67%

Table 4: The fault detection ratios of the two strategies.

each strategy are summarized in Table 3 and For all three systems the code based strategy,
Strategy I, detected 22% OO faults and the state based strategy, Strategy II detected 44%
of OO faults. Therefore, the strength of detecting OO faults can be compared as 1 : 2, i.e.,
the state-based is two times more e�ective than the code-based strategy. However, neither
of them detected half of the OO faults. Figure 1 and 2 depict these results.
The second comparison was based on the total fault detection ratio, which is the total

number of detected faults, including all three types, against the total number of faults
remaining in the systems after the functional testing prior to these experiments. The code
based strategy detected 33% to 44% of faults; the state based detected 58% to 67% of faults.
We observed that for all three systems, the state-based strategy detected more faults than
the code-based, yet only up to 67% of faults were detected. These results are depicted in
Figure 3 and 4.

5 Object-Oriented Metrics

It is often desirable that the fault-prone modules and the types of residential faults can
be estimated based on some quantitative measurement of a given system. Object-oriented
metrics are developed to realize the structure and the characteristic of object-oriented pro-
grams. Some metrics, such as CK metrics [3], have been proven empirically to be useful for
the prediction of fault-prone modules [1].
In this study, we measured the CK metrics of the three systems, described in Section 2,

and analyzed their distributions in the systems.

5.1 CK metrics

The object-oriented metrics proposed by Chidamber and Kemerer [3] are described in the
following.

Weighted methods per class (WMC): This measures the complexity of an individual
class. Two di�erent weighting functions are considered: WMC1 uses the nominal

8

0.00

2.00

4.00

6.00

8.00

10.00

OO faults

System A System B System C

state−based
code−based

Figure 1: Summary of the OO faults detected.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

System A System B System C

OO fault detection ratio (%)

22%

44%

22%

44%

22%

44%

code−based
state−based

Figure 2: Summary of the OO fault detection ratios.

9

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

Faults

System A System B System C

code−based
state−based

Figure 3: Summary of the total faults detected.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

System A System B System C

Fault detection ratio (%)

code−based

state−based

44%

66%

42%

58%

33%

67%

Figure 4: Summary of the total fault detection ratios.

10

weight of 1 for each function, and hence measures the number of functions, WMC uses
a weighting function which is 1 for functions accessible to other modules, 0 for private
functions. In this study, we adopted the �rst approach to simplify the factors. In
another word, we consider all methods of a class to be equally complex.

Depth of inheritance tree of a class (DIT): It is de�ned as the length of the longest
path of inheritance ending at the current module. Intuitively, the deeper the inheri-
tance tree for a class, the harder it might be to predict its behavior due to the inter-
action between the inherited features and new features.

Number of children (NOC): It represents the number of classes that inherit directly
from the current class. Moderate values of this measure indicate scope for reuse;
however, high values may indicate an inappropriate abstraction in the design. Fur-
thermore, a class with large number of children has to provide more generic service to
all the children in various contexts and must be more exible. We believe that this
tends to introduce more complexity into this class.

Coupling between objects (CBO): This provides the number of other modules that are
coupled to the current module either as a client or a supplier. A class is coupled to an-
other one if it uses its member functions and/or instance variables. Excessive coupling
indicates weakness of module encapsulation and may inhibit reuse. The assumption
behind this metrics is that highly coupled classes tend to introduce more faults caused
by inter-class activities.

5.2 Analysis

In �gure 5-7 we list the four metrics measured, OO faults and total faults detected in each
class, for the three systems. The results obtained from the analysis of the CK metrics
on the three systems are presented in Table 5. The three mean values: MEANsysA,
MEANsysB and MEANsysC, are the average of each metric measured from the three
systems, respectively. For WMC, DIT and COB, Type A denotes the percentage of classes,
over the total number of classes, with metrics greater than the mean, which are faulty. Type
B, on the other hand, is those classes that have metrics less than the average, yet contain
faults. For OO faults, we compute Type OO which is the percentage of classes, over the
total classes that contain OO faults, which have metrics less than the average of the system.
For NOC, on the contrary, Type A are the classes with an NOC value which is less than the
average. Type OO classes have a greater than average NOC value.
Type A classes follow the statement suggested in [1], whereas, Type B classes are those

which would be overlooked if these metrics were used as the predictors of fault-prone classes.
We noticed that up to 49% of classes would be overlooked if COB is used, 36% and 27%
would be overlooked if WMC and DIT are used. Only NOC can be a good indicator for our
system. For OO faults, 50%, 39% and 83% of classes would be overlooked if WMC, DIT and
COB are used. Only 13.9% would be overlooked if NOC is used.

11

WMC DIT NOC COB
MEANsysA 11.85 1.25 0.2 1.65
MEANsysB 6.81 1.54 0.71 3.29
MEANsysC 10.38 0.9 0.24 1.17
Type A 28% 37% 57% 16%
Type B 36% 27% 7% 49%
Type OO 50% 39% 14% 83%

Table 5: Summary of the CK metrics analysis.

Therefore, based on our study, we observe that it is necessary to identify other metrics
with which these metrics can be used as indicators for the fault-prone classes and for the
OO fault-prone classes.

5.3 Discussion

In [1] shows that WMC is related to the number of faults reported for the class. In general,
the larger the WMC, the larger the probability of fault detection. However, we observe that
36% of the classes are faulty yet have low WMC values. This scenario can be explained by
the following two observations:

1. The complexity of the method is not considered. For example, a method with 1000
lines of code is likely to introduce more faults than a method with 100 lines of code.

2. The dynamic behavior is not considered. For example, a class which is used more
frequently than the other classes tends to have more faults reported than the other
classes.

On the other hand, by examining the class level type I fault distribution in our study,
we failed to identify any single metric that is strongly related to the probability of type I
fault detection This observation can be explained by considering the scenario under which
this type of fault was introduced. Since the type I faults are caused by OO features such as
inheritance and polymorphism (dynamic binding), we feel that not only the DIT, but also
the following information, contribute to the probability of type I fault detection:

1. The number of child classes, including those who inherit directly and indirectly from
the current module. The existing NOC metric reects only the number of direct
descendants for each class. Therefore, the additional complexity introduced by indirect
descendants is not considered.

2. The function dependency relationship between the inherited methods and the new/rede�ned
methods in child classes. A method is function dependent on another method if this

12

WMC

DIT
NOC

CBO

OO Faults

Total Faults

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Figure 5: Summary of the CK metrics for System A.

13

WMC

DIT

NOC

CBO

OO Faults

Total Faults

0.00

5.00

10.00

15.00

20.00

25.00

Figure 6: Summary of the CK metrics for System B.

14

WMC

DIT

NOC

CBO

OO Faults

Total Faults

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Figure 7: Summary of the CK metrics for System C.

15

method uses any data which is de�ned/modi�ed by another method. The motivation
behind this factor is that when a data member, which is used by the inherited methods,
is modi�ed by the new or rede�ned method, new faults tend to be introduced into the
inherited methods.

For type II faults, we also can not relate any of the CK metrics to the distribution of this
type of fault. This observation can be explained by considering the causes of the type II
faults. The type II faults are the object management faults which might be caused by dan-
gling object reference and object copying. We observe that a class with more object/memory
allocating activities tends to introduce more type II faults. Therefore, the number of ob-
ject/memory allocating statements within a class should be taken into account. Furthermore,
we feel that a complicated copy/assign operator of a class tends to introduce more type II
faults than the default or simple one. Therefore, the complexity of the copy/assign operator
implementation of a class should be also considered.
To summarize what we observed, we think that the existing CK metrics are not su�cient

to identify the fault-prone classes with OO faults. For this purpose, other metrics are needed
which take into account (1)the dynamic behavior of the program; (2) the scenarios that the
instances of the classes are referenced in the program.

6 Conclusions and Future Work

We have shown what types of faults are likely to be encountered in object-oriented pro-
grams. The results of our empirical study suggest that traditional testing techniques, such
as functional testing and white-box approaches that utilize the statement and decision cover-
age criteria, are not adequate for detecting object-oriented faults. Although the state-based
testing performs better than the code-based strategy, the results are still insigni�cant, par-
ticularly, in detecting OO faults. Therefore, to have con�dence in testing object-oriented
programs, there is a need to develop an object-oriented testing technique that takes object-
oriented features into account and is reliable with respect to OO faults. Moreover, we applied
four CK metrics on the three industrial systems and we observed that three out of the four
metrics we selected can not be used as fault-prone indicators for our systems.
Much work remains to be done in this research area. We are currently investigating new

design metrics which can be applied to identify OO fault-prone modules in object-oriented
programs. It is expected that such metrics can be used to select and prioritize e�ective
testing techniques, so that most faults can be detected with an a�ordable cost.

References

[1] Victor R. Basili, Lionel C. Briand, and Walcilio L. Melo. A validation of object-
oriented design metrics as quality indicators. IEEE Transactions on Software Engi-
neering, 22(10):751{761, October 1996.

16

[2] R. V. Binder. The free approach to object-oriented testing - an overview. In
http://www.rbsc.com/pages/Free.html.

[3] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476{493, June 1994.

[4] J. Gao, D. Kung, P. Hsia, Y. Toyoshima, and C. Chen. Object state testing for object-
oriented programs. In Proceedings of the 19th Annual International Computer Software
& Applicaitons Conference, 1995.

[5] D. M. Ho�man and P. A. Strooper. A case study in class testing. In CASCON'93, 1993.

[6] D. M. Ho�man and P. A. Strooper. The testgraphs methodology: automated testing of
collection classes. Journal of Object-Oriented Programming, 8(7):35{41, 1995.

[7] D. Kung, N. Suchak, J. Gao, P. Hsia, and Y. Toyoshima. On object state testing.
In Proceedings of the 17th Annual International Computer Software & Applicaitons
Conference, 1993.

[8] B. Meyer. Object-Oriented Software Construction. Prentice Hall, New York, 1988.

[9] S. Siegel. Object-Oriented Software Testing - A Hierarchical Approach. John Wiley &
Sons, Inc., New York, 1996.

[10] IEEE Computer Society. Ieee 1044 - standard classi�cation for software errors, faults
and failures. IEEE Computer Society, 1994.

[11] C. D. Turner and D. J. Robson. The state-based testing of object-oriented programs.
In Proceedings of the Conference on Software Maintenance, pages 302{310, 1993.

[12] B. F. Webster. Pitfalls of Object-Oriented Development. M&T Books, New York, 1995.

17

1

1

An Industrial Case Study of Quantitative Management for
Object Oriented Software Testing

Glen Xia, Deloitte Consulting

May, 1999

2

Content

•Company & Project Background
• Implementation Process
• Test Planning
Ø
Ø Estimating defects numbers
Ø The novel approach

• Test Monitoring, Tracking
• Defects Causal Analysis
• Process Improvement Initiatives
 Summary and Conclusions

2

3

• Large Australian insurance and financial

The project was to replace the legacy
products administration systems
OO Insurance Framework was purchased
Project consists of 10 releases
The information reported here is from one release

50-75 people was on the project
About 30K man hours were consumed
45K SLOC were modified and added

•

Company & Project Background

4

The Implementation Process

Use Case
Model

Identify
Component

Responsibilities

Use Case -
Component

Matrix

Component
Responsibilit

ies

Component
Design

Design
Document

Design Review

Coding

Design Test
Cases

Code

Code Review &
Inspection

Unit Testing
Component
Integration

TestingTest Cases

Migration

System
Under Test

System Testing

3

5

The Implementation Process - Use Cases
Components Matrix

Use case/Components C001 C002 C003 C004

UC1000 x x

UC1001 x x

UC2000 x

UC2001 x

UC2002 x

UC2003 x x

UC2005 x x x

UC3001 x

UC3002 x x

6

The Implementation Process - Interaction

credit clerk credit order credit orderscredit customer

system boundary

1: create new
2: customer ok?

4: credit amount

5: amount of orders

tim
e

6: order information

7: credit limit

3: raised credits

8: order registered

In
te

ra
ct

io
n

bl
oc

k
1

In
te

ra
ct

io
n

bl
oc

k
2

4

7

Test Planning - Estimating Testing Effort

Using high level effort distribution among major
development phases (Top down)
 Estimating the number of test cases required

Use Case Type Estimated Number of Test Case Required

Simple 10

Medium 14

Complex 20

8

Test Planning - Estimating Defects Numbers

Inspection Defects

Te
st

in
g

D
ef

ec
ts

0 50 100 150

0
10

20

30

40

50

60

C06001

C03002

U06002

C03012

Testing_defects = 0.346 * Inspection_defects

5

9

New Approach - Estimating Development

0 10 20 30

0
20

0
40

0
60

0
Effort Hours

Number of Responsibilities

Effort_hours=21.2*No.of.Responsibilities

10

Responsibilities

D
ef

ec
ts

.N
um

be
r

0 10 20 30

0
10

20

30

40

50

60

C03002

C11001

C06022
C03012

C09004 Defects=1.3466*Responsibilities

6

11

Defects Monitoring, Tracking and Status

0

10

20

30

40

50

60

70

3/10
/97

21

/11
/97

5/12
/97

19

/12
/97

2/01
/98

16

/01
/98

30

/01
/98

13

/02
/98

27

/02
/98

13

/03
/98

27

/03
/98

10

/04
/98

24

/04
/98

8/05

/98

22

/05
/98

5/06
/98

19

/06
/98

3/07
/98

17

/07
/98

Week ending

N
um

be
r

of
 d

ef
ec

ts

Detected
Fixed

12

Defects Monitoring, Tracking and Status

0

100

200

300

400

500

600

700

3/1
0/9

7
17/10

/97

31/10
/97

14/11
/97

28/11
/97

12/12
/97

26/12

/97

9/0

1/9
8
23/01

/98

6/0

2/9
8
20/02

/98

6/0

3/9
8
20/03

/98

3/0

4/9
8
17/04

/98

1/0

5/9
8
15/05

/98

29/05
/98

12/06

/98

26/06
/98

10/07

/98

24/07
/98

Week ending

N
um

be
r

of
 d

ef
ec

ts

Cumulative_detected

Cumulative_fixed
Open

7

13

Defects Monitoring, Tracking and Status

Critical
14%

Enhancement
1%

Major
49%

Minor
36%

14

Defects Causal Analysis-Where Defects Were

Development
51%

Parameterization
12%

Requirements
37%

De velopment
Parameterization
Requirements

8

15

Defects Causal Analysis - Distribution among

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00% 50.00%

Algorithm

Assignment

Build/Package/Merge

Checking

Documentation

Function

Interface

Other

Pe
rc

en
ta

ge

Defect Types

Incorrect
Missing

16

• The functional defects are dominant and most
defects were introduced in the development
phases. The possible causes are as follows:
– The requirements are not clear, not detailed enough

Lacking of communication between developers and
requirements modellers
Poor design and ineffective design review processes
Inadequate and ineffective functional unit testing and
component integration testing

9

17

• Allocate more time to enable unit testing and
component integration testing
Testers were required to be involved in component
integration testing around use cases by providing
use case test cases and to be responsible for

• Quantitative tracking the effectiveness of
development and verification processes by using

10

19

Summary and Conclusions

• Use case driven approach makes it possible to
estimate project effort and defects number
accurately and reliably
Use case driven approach makes project progress
tracking simpler and more effective
The approach developed in estimating project
effort and defects number using the number of
added responsibility is found to be accurate and
easy to use, however external validations are

20

Summary and Conclusions

• The analysis and visualization techniques
presented here are pragmatic but useful
Orthogonal defects classification schema is
practically useful
Quantitative test management is not only essential
but is also possible

The Twelfth International Software Quality Week Page 1 of 14
An Industrial Case Study of Quantitative Management for Object Oriented Software Testing

An Industrial Case Study of Quantitative Management for
Object Oriented Software Testing

Glen Xia
Deloitte Consulting

225 George Street, Sydney, Australia 2000
Email: glen_xia@deloitte.com.au

Abstract

In this paper, we will report our experience in managing the testing aspect of a large object oriented software
development project through quantitative analysis. The novel approach, we developed in estimating
development effort and the number of defects will be presented. We will demonstrate the analysis and
visualization techniques used in tracking, monitoring and controlling the testing process. Finally, the process
improvement initiatives, based on the Orthogonal Defects Classification (ODC), will also be reported.

1. Introduction

Software testing has becoming a mainstream software development and maintainenece activity in
recent years. Effectively managing the testing aspect of a project is essential for any software
project to be successful, as testing related activities normally consume 35-50% of the project
budget [2]. The proportion of testing cost is growing with the rapid increase of utilizing
components based software development approach, implementing package based enterprise
solutions and rapid application development. There is a stronger than ever requirement for
software testing methodologies, testing processes, formalized test planning, tracking and
monitoring mechanisms to effectively control the process and to achieve cost effectiveness.

Object oriented technology has been perceived by many people as the better way, than the
conventional development approach to achieving higher reusability, higher development
productivity, better product maintainability and quality. It may still be debatable if the perception
is true or not. Nevertheless, it is certain that object oriented technology is becoming the major
software development paradigm, and as a software testing professional, we will be required to
test more and more object oriented software systems. While there are a number of inherent
difficulties associated with testing object-oriented systems as reported by many authors [3,4], we
found that object oriented development process does lend us useful mechanisms for effectively
estimating and planing testing effort, tracking, monitoring and controlling testing processes.

In this paper, we will report our experience obtained in managing the testing aspect of a large
object oriented software implementation project. We will introduce our approach in estimating
and planning testing resource requirement and the method we developed in estimating the
number of defects at different stages of software development processes. The measures and
visulization techniques we used in tracking, monitoring and controlling the testing processes will
also be presented. Finally we will report our experience in devising and driving process
improvement initiatives by utilizing defects causal analysis techniques and Orthogonal Defects
Classification (ODC) scheme [1]. The paper will be concluded by summarizing the important

The Twelfth International Software Quality Week Page 2 of 14
An Industrial Case Study of Quantitative Management for Object Oriented Software Testing

lessons learned from the project and proposing plans to improve our capability in managing
object oriented testing.

2. Background

2.1 The Company
The company is a large insurance and financial service organization operating in Australia. The
key markets in which the company operates are reinsurance, corporate insurance, personal
general insurance, business insurance, accident compensation, collective investments,
superannuation, life insurance, savings, and loans and wholesale funds management. It has been
providing these services using a variety of disparate software systems which had a high
maintenance cost, were inflexible and had a high product time-to-market. In order to maintain
and increase market share in an increasingly competitive market, the company decided to replace
the systems using up to date technology. An object-oriented insurance software framework
(workbench) was purchased. However, substantial work was required to develop new
components, to modify and enhance the existing ones, in order to tailor the system to align with
the Company business practices, the Australian insurance market, and Australian legislative
compliance.

2.2 The Project
The project consisted of four main teams—requirements, development, testing and deployment.
The total team size was between 50 -70 members at any time during the implementation phase.
An Object-Oriented Development Process was followed and several leading OO consultants
were brought in to set up the process, to train the project managers and the team members.

2.3 The Development Process
Overall, the project followed the Use Case Driven and Architecture-centric, iterative and
incremental approach. It includes Requirements Modelling, Design, Implementation, and System
testing. Figure 1 is an overview of the software development processes we followed.

1. Requirements Modelling: It involves eliciting and documenting requirements and
requirements walkthroughs. The deliverables produced in this phase include a set of use cases
and specifications for user interfaces and reports. For detailed description, please refer to [5].

2. Design: The design phase starts with translating use cases into responsibilities of each
component of the system. The deliverables of design phase is the use case and component
matrix with responsibilities identified and a set of interaction diagrams (one use case has at
least one interaction diagram associated with it). Table 1 and Figure 2 provide examples of a
use case component matrix and an interaction diagram.

3. Implementation: Implementation phase involves detailed design, design review, coding,
code review and inspections, unit testing and component integration testing.

4. System Testing: In this phase, scenario testing and full system integration testing are carried
out.

The Twelfth International Software Quality Week Page 3 of 14
An Industrial Case Study of Quantitative Management for Object Oriented Software Testing

Figure 1: Overall Software Development Processes

Use Case
Model

Identify
Component

Responsibilities

Use Case -
Component

Matrix

Component
Responsibilit

ies

Component
Design

Design
Document

Design Review

Coding

Design Test
Cases

Code

Code Review &
Inspection

Unit Testing
Component
Integration

TestingTest Cases

Migration

System
Under Test

System Testing

Table 1 : Example of Use Case and Compnent Matrix

Use case/Components C001 C002 C003 C004

UC1000 x x

UC1001 x x

UC2000 x

UC2001 x

UC2002 x

UC2003 x x

UC2005 x x x

UC3001 x

UC3002 x x

The Twelfth International Software Quality Week Page 4 of 14
An Industrial Case Study of Quantitative Management for Object Oriented Software Testing

Figure 2: Example of Interaction Diagram

credit clerk credit order credit orderscredit customer

system boundary

1: create new
2: customer ok?

4: credit amount

5: amount of orders

tim
e

6: order information

7: credit limit

3: raised credits

8: order registered

In
te

ra
ct

io
n

bl
oc

k
1

In
te

ra
ct

io
n

bl
oc

k
2

3. Test Planning

Test planning is critical for any software project to be successful [2]. Without plan, we do not
know what we are going to do, how we are going to do it, how long it will take, how many testers
required and how much it is going to cost us. However, to have a realistic and achievable plan is
still very challenging for most of us. This is mainly due to the fact that testing effort and the
number of defects to be detected are difficult to be estimated accurately and reliably, as software
testing is still an immature software engineering discipline, no codified knowledge is available.
Collaborative effort within the software testing community is required to establish and validate
the techniques and to share experiences obtained. Test planning involves estimating testing effort
required and the number of defects to be detected. The former is useful for staffing purpose and
the latter is important to determine when it is ready to stop testing.

The Twelfth International Software Quality Week Page 5 of 14
An Industrial Case Study of Quantitative Management for Object Oriented Software Testing

3.1 Estimating testing effort
We estimate our testing effort using both top down and bottom up approach. The top down
approach is based on the high-level effort distribution among major development phases. In our
project, the following distribution as illustrated in Figure 3 was identified.

Figure 3: Effort Distribution among Major Development Phases

20%

60%

20%

Requirements Modelling
Design + Implementation
Testing

The bottom up approach is based on the estimate of the number of test cases required and the
average time required to design, executes a test case. For our project, the number of test cases is
estimated using the following parameters as shown in Table 2 and 2 hours is used as an average
effort for designing and executing a test case.

Table 2 : Estimating number of test cases required

Use Case Type Estimated Number of Test Case Required

Simple 10

Medium 14

Complex 20

3.2 Estimating the number of defects
The number of defects was estimated using the following two approaches:

1. Using the estimated defects rate and the number of Source Lines of Codes (SLOC) modified
and added to the system

2. Using the number of defects captured in design reviews and code inspections as the basis for
estimating the number of defects to be detected in system testing phases. Figure 4
demonstrates the relation we used.

The Twelfth International Software Quality Week Page 6 of 14
An Industrial Case Study of Quantitative Management for Object Oriented Software Testing

Figure 4: Relationship between the Number of Defects Captured in Reviews and Inspections and the Number
of Defects Found in System Testing

Inspection Defects

Te
st

in
g

D
ef

ec
ts

0 50 100 150

0
10

20

30

40

50

60

C06001

C03002

U06002

C03012

Testing_defects = 0.346 * Inspection_defects

It is clear that the number of defects to be found in system testing can be estimated by the number
of defects captured in reviews and inspection. For our project, for every three defects found in
reviews and inspections, we expect one defect will be found in system testing. Please note that
from process improvement perspective, we expect the line will be flatter each time, that is: we
expect more defects are found in reviews and inspections, and less will be found in system
testing phase. On average, it only took 0.5-1 hour to fix a defect found in reviews and
inspections, whereas, it took 15 hours for fixing that found in system testing stage.

3.3 The novel approach
Both Line of Code (LOC) and Function Points Analysis (FPA) have long been used as predictors
for estimating development effort and defects number, however with limited success. Although,
it is still arguable if they can be used in OO context, we found some inherent difficulties
associated with these two methods. Estimation based on LOC requires the LOC as the input,
however, in reality this will only be available at the late stage of the project, where estimation is
not so critical. For methods based on FPA, FPA counting is very subjective and not so visible
therefore project tracking based on FPA is very difficult. For use case driven approach, we found
the number of responsibilities identified in the design stage is a good predictor for development
effort and for the number of defects to be found in system testing stage. It also makes project
progress tracking very easy by simply comparing the actual number of responsibilities
implemented and tested versus the planned ones. However, it is important to be aware that to
maintain the uniform granularity is important for this measure to be useful.

The Twelfth International Software Quality Week Page 7 of 14
An Industrial Case Study of Quantitative Management for Object Oriented Software Testing

3.3.1 Predicting component development effort
Strong correlation has been found between the number of responsibilities assigned to the
component and the development effort required. The prediction accuracy is found to be better
than that of using the LOC as the predictor. The accuracy can be improved when the number of
collaborators is also considered, alone with the number of added responsibilities. The
collaborator is the component, which provides assistance for the component under consideration
to fulfil the responsibilities assigned.

Figure 5: Component Development Effort Prediction Using the Number of Added Responsibilities

0 10 20 30

0
20

0
40

0
60

0

3.3.2 Predicting the number of defects associated with each component
The number of defects can be predicted using the number of responsibilities associated with the
components. For most components, the prediction tends to be reasonably accurate. However,
some outliers are also found. Further investigation needs to be carried out in terms of what it is
the case. For example for component C06002 and C03012 illustrated in Figure 6, these are the
two components which subjected many changes and many developers have actually touched
them. It indicates that proper design is needed to minimise the changes required. For component
C11001, it is a utility component and all the responsibilities are very simple.

Effort Hours

No of Responsibilities

Effort_hours=21.2*No.of.Responsibilit

The Twelfth International Software Quality Week Page 8 of 14
An Industrial Case Study of Quantitative Management for Object Oriented Software Testing

Figure 6: Predicting Number of Defects Using the Number of Added Responsibilities Assigned to the
Component

Responsibilities

D
ef

ec
ts

.N
um

be
r

0 10 20 30

0
10

20

30

40

50

60

C03002

C11001

C06022
C03012

C09004 Defects=1.3466*Responsibilities

4. Defects Monitoring, Tracking and Status Reporting

In this section, we present the visualization techniques we employed to track testing progress and
defects status.

Figure 7: Weekly Number Defects Detected versus Fixed

0

10

20

30

40

50

60

70

3/10
/97

21/11/97

5/12

/97

19/12/97

2/01

/98

16/01/98

30/01/98

13/02/98

27/02/98

13/03/98

27/03/98

10/04/98

24/04/98

8/05

/98

22/05/98

5/06

/98

19/06/98

3/07

/98

17/07/98

Week ending

N
um

be
r

of
 d

ef
ec

ts

Detected
Fixed

The Twelfth International Software Quality Week Page 9 of 14
An Industrial Case Study of Quantitative Management for Object Oriented Software Testing

The number of defects and their status are monitored on regular basis, therefore, test progress can
be tracked and the status of testing can be evaluated.

Figure 8 : Accumated Defects Detected, Fixed Over Time

0

100

200

300

400

500

600

700

3/10
/97

17/10/97

31/10/97

14/11/97

28/11/97

12/12/97

26/12/97

9/01

/98

23/01/98

6/02

/98

20/02/98

6/03

/98

20/03/98

3/04

/98

17/04/98

1/05

/98

15/05/98

29/05/98

12/06/98

26/06/98

10/07/98

24/07/98

Week ending

N
um

be
r

of
 d

ef
ec

ts

Cumulative_detected

Cumulative_fixed
Open

The accumulated defects can be used to analyse where the test progress is, how many more
defects need to be detected and fixed, before the system can go on live with confidence. The
release decision was made on the basis of the estimated defect number and the defects trend
analysis.

4.1 Distribution of defects in each severity category
Figure 9: Defects Distribution in Severity

Critical
14%

Enhancement
1%

Major
49%

Minor
36%

The severity of a defect was classified based on the assessment of potential impact it may cause
on business functionality. The majority of defects detected in system testing stage are either

The Twelfth International Software Quality Week Page 10 of 14
An Industrial Case Study of Quantitative Management for Object Oriented Software Testing

Critical or Major in nature. Although, there is no clear correlation between the severity of the
defect and the effort required fixing it, it is important to track them as it was one of the
acceptance criteria that all critical and major defects need to be fixed before the system can be
accepted.

5. Defects Causal Analysis and Process Improvement

As demonstrated in Figure 8, we captured 600 defects in the system testing stage for one
particular release under investigation. The rework still consumed 30% of whole development
effort, although we invested substantial time in design reviews and code inspections (12% of
development effort). There were certainly needs to improve the development process to minimise
the introduction of defects in the first place, and to maximise early defects detection
effectiveness. To improve the process, we need to understand where we have problem, such that
we can design mechanisms to improve it.

Figure 10 shows the source of defects. The majority of the defects were actually introduced in the
development (design and implementation) phase.

Figure 10: Where Were Defects Introduced?

Development
51%

Parameterization
12%

Requirements
37%

Development
Parameterization
Requirements

To understand why the defects were introduced and why they were not captured in the
development phase, we analysed the nature of the defects. The Orthogonal Defects Classification
(ODC) schema was used to assist us to understand the nature of the defects, in order to take right
corrective actions. Figure 11 and Figure 12 below demonstrate the distribution of defects in each
defect type. It is clear that incorrect and missing functionalities are the major defect types.

The Twelfth International Software Quality Week Page 11 of 14
An Industrial Case Study of Quantitative Management for Object Oriented Software Testing

Figure 11: Defects Type Profile

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00% 50.00%

Algorithm

Assignment

Build/Package/Merge

Checking

Documentation

Function

Interface

Other

Pe
rc

en
ta

ge

Defect Types

Incorrect
Missing

Figure 12 : Distribution of Defects in Each Defect Type

Algorithm
6%

Other
2%

Interface
3%

Function
46%

Documentation
1%

Checking
8%

Build/Package/Merge
8%

Assignment
26% Algorithm

Assignment
Build/Package/Merge

Checking
Documentation
Function
Interface
Other

5.1 Defects Causal Analysis

5.1.1 Requirements modelling
As analysed above, 37% of defects were injected from requirements modelling phases. Most of
them are associated with either missing or incorrect functions. There are substantial number of

The Twelfth International Software Quality Week Page 12 of 14
An Industrial Case Study of Quantitative Management for Object Oriented Software Testing

defects are assignment type in nature, especially those associated with dates (effective date, etc),
which reflect that the requirements were not detailed or clear enough for implementation.
Configuration management was poor and circumstances such as how to handle abnormal input
(error messages, etc) were not specified in requirements. Details for calculation were also not
given in some circumstances, which made it difficult to implement and test.

Figure 13: Distribution of Defects Injected from Requirements Modelling Phase

Other
3% Algorithm

3%

Assignment
21%

Build/Package/Merge
15%

Checking
6% Documentation

3%

Function
49%

Algorithm
Assignment
Build/Package/Merge

Checking
Documentation
Functi on
Interface
Other

5.1.2 Development
The dominant type of defects is function type (incorrect). This was mainly due to:

1. Poor requirements quality

2. Poor design process

3. Ineffective design review

4. Inadequate and ineffective component integration testing

Substantial number of defects is associated with assigning wrong number to certain parameters.
This reflects the fact that the developers interpret requirements themselves rather than checking
with requirement modellers. This also reflects the fact that the design review was not as effective
as we expected, due to inadequate number of people who were familiar with the system. The
substantial number of checking type of errors point to the areas of unit testing, where the
developers have to do some negative testings. The most important problem identified is
inadequate functional unit or component integration testing, where most incorrect or missed
functionalities should be detected.

The Twelfth International Software Quality Week Page 13 of 14
An Industrial Case Study of Quantitative Management for Object Oriented Software Testing

Figure 14: Distribution of Defects Injected from Development Phases

Checking
8%

Assignment
36%

Algorithm
8%

Other
2% Interface

6%

Function
36%

Build/Package/Merge
4%

Algorithm
Assignment
Build/Package/Merge

Checking
Documentation
Functi on
Interface
Other

5.2 Process Improvement Initiatives
In order to reduce the number of defects escaped from the development phase, the following
process improvement initiatives were taken:

1. Allocate more time for developers to conduct functional unit testing and
component integration testing. For each use case, a use case owner was
assigned to be responsible for carrying out functional testing whenever the
code is ready to do it. The system testers were required to work closely with
the developers by providing use case test cases and to be responsible for
signing off use case testing.

2. Improve communications between requirement modellers, developers and
testers. For each use case, a contacting person in each team was appointed and
“use case” teams were formed. These who work in the same use case team
will be involved in reviews at different phases of the project.

3. Track the effectiveness of development and verification processes by
capturing defects information, such as: where the defects injected and captured
the defect type and defect mode. The objective is to monitor and track the
defects pattern, such that timely feedback can be provided. For more
information, please refer to [1].

The Twelfth International Software Quality Week Page 14 of 14
An Industrial Case Study of Quantitative Management for Object Oriented Software Testing

Figure 15: Expected Change of Defects Patterns over Time

0
5
10
15
20
25
30
35
40
45

Design review Code review Function test System test
Verification activities

P
er

ce
nt

ag
e

Function
Assignment
Interface
Timing

6. Conclusions

In this paper, we reported our experience in managing the testing aspect of a large object oriented
software development project through quantitative analysis. We found that the use case driven
approach lend us opportunities to estimate, track, monitor and control the process effectively.
The novel approach, we developed in estimating development effort and the number of defects is
easy to use. However, theoretical investigation and external validations from other sites are
required. We also reported the analysis and visualization techniques used, which are parametric
and are found to be very useful. The defects causal analysis based on ODC are practical and easy
to use. The effectiveness of the process improvement initiatives will be evaluated.

7. Acknowledgments

I would like to thank Tony Batten, David Cliff and Robert Burnelek for support and
encouragement. Assistance from Stephan Meyn, Philip Haynes and Alex Jouravlev is also
acknowledged.

8. References

1. R. Chillarege (1996). Orthogonal Defect Classification, in Handbook of Software Reliability
Engineering (M. R. Lyu, Editor), pp 359-400, McGraw-Hill.

2. E. Kit (1995). Software Testing in the Real Work –improving the process, Addison-Wssley.

3. I. Jacobson, M. Christerson. P. Jonsson and G. Overgaard (1992). Object-Oriented Software
Engineering – A Use Case Driven Approach, Addison-Wesley.

The Twelfth International Software Quality Week Page 15 of 14
An Industrial Case Study of Quantitative Management for Object Oriented Software Testing

4. S. Siegel (1996). Object Oriented Software Testing – A Hierarchical Approach, John Wiley
& Sons, INC.

5. J. Tassopoulos and G. Xia (1998). Process Improvement to Overcome Use Case Weaknesses:
An Experience Report, OOPSLA'98 Pre-Addendum, pp. 58 – 69, Vancouver, British
Columbia, October 18 - 22, 1998.

1

Developing Load and Performance
Requirements

For Web Sites
By

Leon A. Slota
Neoglyphics Media Corporation

Figure 1: Example Load and Performance

“Response time for the web site will be less than 0.75 seconds for simple web pages
and less than 2.5 seconds for data driven pages, not counting internet delays
(i.e. measured on the LAN attached to the server).”

“At 260,000 customers, each one visiting the site every other month on average for
ten minutes, with everyone visiting within the same 15 hour window of time …
then we have something less than 50 customers who might be on-line at any
given time. It is unlikely, then, that we will get more than a few page views per

2

• The maximum number of simultaneous users the site

The maximum response times for the types of
transactions or pages on the site.
The maximum error rate allowed at peak load.

Figure 3: Development Situations.

• New Site, new market. Neither the organization nor anyone else has a site that
does what the proposed site will do and the market in which it will function is

New Site, existing market. An organization is developing a site to enter and
existing market on the internet. However, it doesn’t currently work in that market

New site, existing function. An organization is replacing a current function with a

Replacement site. An organization is replacing an existing site with a new site.

3

Figure 4: Sources of Information on Load

• The organization’s existing business processes.

Industry research and data.

Competitive or comparable web sites.

The organization’s existing web site.

Table1: Sources of Information for

Information Source New site,
new market

New site
existing function

New Site
existing market

Replacement
site

Existing business process X X X
Industry research X X X X
Competitive sites X X
Existing site X

4

 Table 2: Number of Simultaneous

Not-Simultaneous Simultaneous
2,000 per day 14
4,042 per hour 34
6,252 per hour 68
8,287 per hour 89

Table 3: Average Internet Response Time, March 15 to
(source Keynote.com).

5 Fastest Sites Overall Average Slowest site

3.75 seconds 8.00 seconds 21.42 seconds

5

Figure 5: Weekly Performance from Keynote.com.

Table 4: Rate of Web Page Download Failures

% of Failures % of Time Outs Total failures
Best in Class 1.31 1.92 3.23
Industry Average 2.15 3.03 5.18

6

Figure 6: Sample from Access Log.

198.69.241.2 [26/Jan/1999:07:25:05 0500] "POST /servlet/com.servlet.SearchServlet HTTP/1.0" 302 221
198.69.241.2 [26/Jan/1999:07:25:25 0500] "POST /servlet/com.servlet.SearchServlet HTTP/1.0" 302 221
198.69.241.2 [26/Jan/1999:07:25:28 0500] "GET /catalogs/searchresults.jhtml HTTP/1.0" 200 22786
141.185.72.145 [26/Jan/1999:07:25:38 0500] "GET / HTTP/1.0" 302 205
141.185.72.145 [26/Jan/1999:07:25:38 0500] "GET /splash.jhtml HTTP/1.0" 200 15526
198.69.241.2 [26/Jan/1999:07:25:51 0500] "GET /catalogs/acrosgroup.jhtml HTTP/1.0" 200 18179

Table 5: Users Per Second.

Time Users
8:30:19 89
8:19:50 84
8:54:49 84
8:22:15 83
8:20:25 81
8:36:44 80
8:23:20 79
8:39:04 78
8:22:45 77
8:30:54 76
8:51:54 75
8:44:54 74
8:45:29 73
8:29:45 71
8:37:19 71
8:37:54 69
8:48:59 69
8:19:15 68
8:35:34 68
8:29:44 67

7

Table 6: Simultaneous Users 5 – 9 AM.

Hour Log Records Minimum Maximum Mean
5 AM 3601 2 34 14.58
6 AM 3580 3 68 24.52
7 AM 3600 12 73 30.07
8 AM 3591 4 89 35.25

Figure 7: Formula for Load Requirement.

 Future Sales/Users * Current Load
Future Load = ---
 Current Sales/Users

8

Table 7: Page Hits
Page Hits Transaction
/ 21628 home
/splash.jhtml; 15182 splash
/servlet/com.servlet.SearchServlet; 11832 search
/servlet/com.servlet.CatalogServletImpl; 11099 catalog
/catalogs/searchresults.jhtml; 9256 search
/dhtml.jhtml; 8098 home
/catalogs/fcatgroup.jhtml; 6748 catalogs
/catalogs/fcathiertabndhtml.jhtml; 6495 catalogs
/ndhtml.jhtml; 4275 home
/catalogs/fcathier.jhtml; 3847 catalogs
/catalogs/ncatgroup.jhtml; 3111 catalogs
/Login/; 2522 login
/catalogs/proxy.jhtml; 2491 catalogs
/ordering/shopping-cart.jhtml; 2487 orders
/catalogs/root.jhtml; 2438 catalogs
/servlet/com.servlet.ShoppingCartServlet; 2371 orders
/catalogs/; 2206 catalogs
/; 2060 home
/catalogs/acrosgroup.jhtml; 2007 catalogs
/servlet/com.servlet.LoginServlet; 1955 login
/ordering/rapidorder.jhtml; 1805 orders
/catalogs/chemgroup.jhtml; 1692 catalogs
/personal.jhtml; 1450 personal
/catalogs/fcat.jhtml; 1397 catalogs
/catalogs/powersearch.jhtml; 1387 search
/servlet/com.servlet.RefererServlet; 1193 referer
/Login/register.jhtml; 968 login
/servlet/com.servlet.OrderPlacementServlet; 956 orders
/ordering/; 909 orders
/servlet/UserAdmin; 871 admin

Table 8: Transaction Frequency

Transaction Hits % of Hits
catalogs 57490 36.43
home 36061 22.85
splash 15186 9.62
search 11832 7.50
orders 11601 7.35
login 7902 5.01
support 3728 2.36
about 2296 1.45
admin 2224 1.41
supplier 1741 1.10
personal 1450 0.92
referrer 1193 0.76
register 1157 0.73
whatsnew 1145 0.73
help 896 0.57
sitemap 804 0.51
hotlist 661 0.42
template 228 0.14
error 223 0.14
ttracker 2 0.00

'HYHORSLQJ�/RDG�DQG�3HUIRUPDQFH�5HTXLUHPHQWV
)RU�:HE�6LWHV

%\

/HRQ�$��6ORWD
1HRJO\SKLFV�0HGLD�&RUSRUDWLRQ

,QWURGXFWLRQ

3HUIRUPDQFH� DQG� UHOLDELOLW\� KDYH� EHFRPH� VRPH� RI� WKH� PRVW� LPSRUWDQW
FRQVLGHUDWLRQV�LQ�ZHE�VLWH�GHYHORSPHQW���:HE�GHYHORSHUV�DQG�FOLHQWV�ERWK�NQRZ
WKDW�ZKHQ� ORQJ�ZDLWV�RU� WKH�VLWH�EHLQJ�GRZQ�IUXVWUDWHV�XVHUV��RSSRUWXQLWLHV� IRU
VDOHV� DQG� EXLOGLQJ� FXVWRPHU� OR\DOW\� DUH� ORVW�� � $QG� LW¶V� QRW� MXVW� D� WKHRUHWLFDO
SUREOHP�� H[DPSOHV� RI� VLWHV� EXFNOLQJ� XQGHU� ORDG� DUH� HDV\� WR� ILQG�� 7KH� UHDG\
DYDLODELOLW\�RI�DOWHUQDWLYHV�SURYLGHG�E\�FRPSHWLWRUV�PDNHV�WKLV�HYHQ�PRUH�FULWLFDO
LQ�WKH�ZHE�GHYHORSPHQW�ZRUOG�

7KH�ZD\�WR�DYRLG�WKHVH�SUREOHPV�LV�WR�GHYHORS�D�ZRUNDEOH�VHW�RI�ORDG�DQG
SHUIRUPDQFH� UHTXLUHPHQWV�� ,W¶V� ZLGHO\� DFFHSWHG� WKDW� SHUIRUPDQFH� DQG� ORDG
FDSDFLW\�PXVW�EH� WHVWHG�� �%XW� WHVWLQJ� LV� FRPSDULQJ�ZKDW� LV� WR�ZKDW� VKRXOG�EH�
DQG�WKH�PRUH�GLIILFXOW�WDVN��LQ�RXU�H[SHULHQFH��KDV�SURYHG�WR�EH�GHFLGLQJ�KRZ�IDVW
LW�VKRXOG�EH�DQG�KRZ�PDQ\�XVHUV�LW�VKRXOG�EH�DEOH�WR�VXSSRUW�VR�ZKHQ�LW�FRPHV
WLPH�WR�GR�WKH�WHVWLQJ��ZH¶OO�NQRZ�LI�WKH�VLWH�KDV�SDVVHG�WKHP�

,Q� UDUH� FDVHV�� WKH� FOLHQW� ZLOO� NQRZ� ZKDW� WKHLU� SHUIRUPDQFH� DQG� ORDG
UHTXLUHPHQWV�DUH���)LJXUH���LV�DQ�H[DPSOH�IURP�DQ�5)3�

)LJXUH����([DPSOH�/RDG�DQG�3HUIRUPDQFH�5HTXLUHPHQW
³5HVSRQVH�WLPH�IRU� WKH�ZHE�VLWH�ZLOO�EH� OHVV� WKDQ������VHFRQGV� IRU�VLPSOH�ZHE
SDJHV� DQG� OHVV� WKDQ� ���� VHFRQGV� IRU� GDWD� GULYHQ� SDJHV�� QRW� FRXQWLQJ� LQWHUQHW
GHOD\V��L�H��PHDVXUHG�RQ�WKH�/$1�DWWDFKHG�WR�WKH�VHUYHU��´

³$W���������FXVWRPHUV��HDFK�RQH�YLVLWLQJ�WKH�VLWH�HYHU\�RWKHU�PRQWK�RQ�DYHUDJH
IRU�WHQ�PLQXWHV��ZLWK�HYHU\RQH�YLVLWLQJ�ZLWKLQ�WKH�VDPH����KRXU�ZLQGRZ�RI�WLPH
«�WKHQ�ZH�KDYH�VRPHWKLQJ�OHVV�WKDQ����FXVWRPHUV�ZKR�PLJKW�EH�RQ�OLQH�DW�DQ\
JLYHQ�WLPH���,W�LV�XQOLNHO\��WKHQ��WKDW�ZH�ZLOO�JHW�PRUH�WKDQ�D�IHZ�SDJH�YLHZV�SHU
VHFRQG��VD\�����DW�SHDN�WLPH�´

7KLV�LV�DERXW�DV�JRRG�DV�LW�JHWV�DQG�WKHUH�DUH�VRPH�REYLRXV�IODZV�LQ�ORJLF�KHUH�

7\SLFDOO\��FOLHQWV�GRQ¶W�NQRZ�KRZ�IDVW� WKH\�ZDQW� WKHLU�VLWH�WR�ZRUN��H[FHSW� WKDW
WKH\�ZDQW� LW� WR�EH� IDVW��RU�KRZ�PDQ\�XVHUV� WKH\�ZDQW� WR� VXSSRUW� �H[FHSW� WKDW
WKH\�ZDQW�WR�VXSSRUW�DOO�RI�WKHP�����6R�ZH¶YH�IRXQG�WKDW�LW¶V�RIWHQ�XS�WR�XV�DV�WKH
H[SHUWV�WR�KHOS�WKHP�GHYHORS�DSSURSULDWH�SHUIRUPDQFH�DQG�ORDG�FULWHULD�DQG��RI
FRXUVH��VHHN�WKHLU�DSSURYDO�IRU�RXU�WRUWXUHG�FDOFXODWLRQV�

2Q�WKH�EURDG�OHYHO��PXFK�RI�ZKDW�,�KDYH�WR�VD\�DERXW�WKH�SURFHVV�RI�GRLQJ�WKLV�LV
FRPPRQ�VHQVH�DQG�LV�SUREDEO\�NQRZQ�WR�PDQ\�RI�\RX���7KHUH�LV�FHUWDLQO\�PXFK
WKDW�,�GRQ¶W�NQRZ���7KLV�LV�SDUWO\�EHFDXVH�HYHU\�VLWXDWLRQ�LV�XQLTXH�LQ�VRPH�ZD\V
DQG�GHILHV�WKH�DSSOLFDWLRQ�RI�VWULFW�IRUPXODV���2QH�RI�WKH�PRVW� LPSRUWDQW�WKLQJV

,¶YH� OHDUQHG� LV� WKHUH� DUH�PDQ\�ZD\V� WR� GR� D� JRRG� MRE� RI� GHYHORSLQJ� ORDG� DQG
SHUIRUPDQFH�FULWHULD��DQG�ZKDW�IROORZV�DUH�VXJJHVWLRQV�DERXW�VRPH�RI�WKH�NLQGV
RI�LQIRUPDWLRQ�DQG�DQDO\VLV�ZKLFK�PLJKW�EH�KHOSIXO�LQ�FHUWDLQ�FRPPRQ�VLWXDWLRQV�

&RPSRQHQWV�RI�ORDG�DQG�SHUIRUPDQFH�UHTXLUHPHQWV

$OWKRXJK� WKHVH�PLJKW� YDU\�ZLWK� WKH� V\VWHP�EHLQJ� GHYHORSHG�� ,¶YH� IRXQG� WKUHH
PLQLPXP�FRPSRQHQWV�RI� ORDG�DQG�SHUIRUPDQFH� UHTXLUHPHQWV� OLVWHG� LQ�)LJXUH��
PRVW�XVHIXO�

)LJXUH����0LQLPXP�/RDG�DQG�3HUIRUPDQFH�5HTXLUHPHQWV
�� 7KH�PD[LPXP�QXPEHU�RI�VLPXOWDQHRXV�XVHUV�WKH�VLWH�KDV�WR�VXSSRUW�

�� 7KH�PD[LPXP�UHVSRQVH�WLPHV�IRU�WKH�W\SHV�RI�WUDQVDFWLRQV�RU�SDJHV�RQ�WKH
VLWH�

�� 7KH�PD[LPXP�HUURU�UDWH�DOORZHG�DW�SHDN�ORDG�

,I� WKH� ORQJHVW� UHVSRQVH� WLPHV� DQG� KLJKHVW� HUURU� UDWHV� DUH� ZLWKLQ� UHTXLUHG
WROHUDQFHV�DW�WKH�PD[LPXP�ORDG��WKHQ�WKH\�ZLOO�PRVW�OLNHO\�EH�ZLWKLQ�WROHUDQFH�DW
ORZHU�ORDGV���,W¶V�KDUG�WR�LPDJLQH�D�VLWH�WKDW¶V�GHVLJQHG�WR�SHUIRUP�ZHOO�XQGHU�WKH
PRVW�VWUHVVIXO�FRQGLWLRQV�QRW�SHUIRUPLQJ�ZHOO�XQGHU�DYHUDJH�FRQGLWLRQV�

$OWKRXJK�WKHVH�WKUHH�VHHP�EDVLF��\RX�PLJKW�DOVR�ZDQW�WR�VSHFLI\�UHVSRQVH�WLPHV
DQG�HUURU�UDWHV�DW�DQ�DYHUDJH�ORDG���7KHVH�GHWHUPLQH�KRZ�WKH�VLWH�ZLOO�SHUIRUP
PRVW�RI�WKH�WLPH�

6WUHVV�UHTXLUHPHQWV�IRU�UXQQLQJ�ODUJH� ORDGV�RYHU� ORQJ�SHULRGV�RI� WLPH�PLJKW�EH
XVHIXO�� �7HVWV�RI� VWUHVV� UHTXLUHPHQWV�DUH�DLPHG�DW� ILQGLQJ� LVVXHV�ZLWK� VWRUDJH�
PHPRU\��DQG�TXHXHV�WKDW�PLJKW�UXQ�RXW�RI�VSDFH�RU�FRQQHFWLRQV�RYHU�WLPH�

3DVW��3UHVHQW��DQG�)XWXUH

$ERYH�� ,�GHQLHG�DQ\� FODLP� WR�XQLYHUVDOLW\� IRU� WKLV�SDSHU�� ,�ZLOO�� KRZHYHU�� FODLP
WKDW� WKH� EDVLF� PHWKRG� WR� HPSOR\� LQ� GHYHORSLQJ� ORDG� DQG� SHUIRUPDQFH
UHTXLUHPHQWV� LV� XQLYHUVDOO\� DSSOLFDEOH�� PRVWO\� EHFDXVH� LW¶V� VR� EURDG� DQG
ZLGHVSUHDG� LQ� HYHU\� NLQG� RI� EXVLQHVV� DQG� DFDGHPLF� DQDO\VLV�� � 7KLV� LV� WKDW� WKH
SDVW� DQG� SUHVHQW� DUH� \RXU� JXLGHV� WR� WKH� IXWXUH�� � 7KH� PRUH� \RX� NQRZ� DERXW
FXUUHQW�EXVLQHVV�SUDFWLFHV�DQG�YROXPHV��RU�WKRVH�RI�WKH�LQGXVWU\�WKH�EHWWHU�\RX¶OO
EH�DEOH�WR�SUHGLFW�ZKDW�WKH\�ZLOO�EH�LQ�WKH�IXWXUH���6HH�WROG�\RX�LW�ZDV�JRLQJ�WR
EH�SUHWW\�PXFK�FRPPRQ�VHQVH�

)RU�WKH�ORDG�DQG�SHUIRUPDQFH�UHTXLUHPHQWV�RI�ZHE�VLWHV��ZKDW�ZH�NQRZ�DERXW
FXUUHQW�VDOHV��YROXPHV��DQG�SURFHVVHV��SOXV�ZKDW�ZH�NQRZ�DERXW� IXWXUH�JRDOV�
ZLOO�WHOO�XV�D�ORW�DERXW�ZKDW�YROXPHV�DQG�SHUIRUPDQFH�ZH�QHHG�WR�VXSSRUW�LQ�WKH
IXWXUH���7KLV�SDSHU�LV�DERXW�WKH�NLQGV�RI�LQIRUPDWLRQ�DERXW�WKH�SDVW�DQG�SUHVHQW
WKDW� FDQ�EH�XVHG� WR�GHYHORS� ORDG� DQG�SHUIRUPDQFH� UHTXLUHPHQWV� LQ�ZHE� VLWHV�
7KH�NLQGV�RI�DYDLODEOH�LQIRUPDWLRQ�ZLOO�EH�GLIIHUHQW�GHSHQGLQJ�RQ�WKH�VLWXDWLRQ�

%HIRUH�ZH�JHW�DQ\�IXUWKHU��WKHUH�DUH�D�FRXSOH�FDYHDWV�DERXW�WKH�DFFXUDF\�RI�WKLV
NLQG�RI�IRUHFDVWLQJ�

• ,WV�XVHIXOQHVV�GHSHQGV�LQ�SDUW�RQ�KRZ�VLPLODU�WKH�WZR�WKLQJV�ZH¶UH�WU\LQJ�WR
FRPSDUH� DUH�� � ,I� WKH� SODQ� LV� WR� WXUQ� DQ� H[LVWLQJ�PDUNHWLQJ� VLWH� LQWR� DQ� H�
FRPPHUFH�VLWH��WKHQ�WKHUH¶V�OLWWOH�SRLQW�LQ�XVLQJ�WKH�FXUUHQW�VLWH¶V�XVDJH�UDWHV
WR� IRUHFDVW� WKH� QHZ� VLWH¶V� XVDJH� UDWHV� EHFDXVH� WKHLU� IXQFWLRQV� DUH� WRR
GLIIHUHQW���+RZHYHU��WKH�YROXPH�RI�D�WUDGLWLRQDO�FDOO�FHQWHU�FRXOG�EH�XVHG�WR
IRUHFDVW�YROXPH�IRU�DQ� ,QWHUQHW� UHSODFHPHQW�EHFDXVH� WKH� IXQFWLRQV�DUH� WKH
VDPH�

• $FFXUDF\�GHSHQGV�LQ�SDUW�RQ�KRZ�FRQVLVWHQW�XQGHUO\LQJ�FRQGLWLRQV�DUH�IURP
WLPH�WR�WLPH���7KH�VWDWH�RI�WKH�HFRQRP\�REYLRXVO\�DIIHFWV�GLVSRVDEOH�LQFRPH
DQG� VDOHV�� � ,I� WKLV� FKDQJHV��SURMHFWLRQV� DUH� OLNHO\� WR� EH�ZURQJ�� � 7KH� VDPH
PLJKW� EH� WUXH� RI� FKDQJHV� LQ� WHFKQRORJ\�� � 6R�� LW¶V� EHVW� WR� NHHS� WKH� WLPH
KRUL]RQV� VKRUW�� SHUKDSV� LQVLGH� �� \HDUV�� � 7KLV� GRHVQ¶W� VHHP� XQUHDVRQDEOH
JLYHQ� WKDW� UHWDLO� VWRUH� GLVSOD\V�� FDWDORJ� OD\RXWV�� DQG� QRZ�ZHE� VLWH� GHVLJQV
FKDQJH�ZLWKLQ�PXFK�VKRUWHU�SHULRGV�RI�WLPH�

,Q�VXP��WKH�EDVLF�IRUPXOD�IRU�GHYHORSLQJ�ORDG�DQG�SHUIRUPDQFH�UHTXLUHPHQWV�LV�

&XUUHQW�RU�3DVW� ORDG�SHUIRUPDQFH���IXWXUH�JRDOV� � IRUHFDVW�RI� IXWXUH� ORDG�DQG
SHUIRUPDQFH�

*HQHUDO�6LWXDWLRQV�DQG�6RXUFHV�RI�,QIRUPDWLRQ

'HSHQGLQJ�RQ�WKH�VLWXDWLRQ��WKHUH�ZLOO�EH�GLIIHUHQW�VRXUFHV�RI�LQIRUPDWLRQ�RQ�WKH
SUHVHQW�DQG�SDVW�� � 3UHVXPDEO\�� WKHUH�ZLOO� DOZD\V�EH� VRPH�VWDWHPHQW�RI� IXWXUH
JRDOV��EXW� LW�PLJKW�QRW�EH� LQ� WKH� IRUP�RI� ORDG�DQG�SHUIRUPDQFH�QXPEHUV� IRU�D
ZHE�VLWH��EXW�LQ�PRUH�JHQHUDO�EXVLQHVV�WHUPV�WKDW�QHHG�WR�EH�WUDQVODWHG���,Q�IDFW�
LW¶V�EHWWHU� WKDW�JRDOV�DUH�VWDWHG� LQ�EXVLQHVV� WHUPV�� VLQFH�ZKDWHYHU� VLWH� LV�EHLQJ
EXLOG�VKRXOG�VHUYH�VRPH�EXVLQHVV�SXUSRVH�DQG�KDYH�JRDOV�OLNH�HYHU\�RWKHU�DVSHFW
RI�DQ�RUJDQL]DWLRQ�

)LJXUH���VKRZV�WKH�WKUHH�FRPPRQ�VLWXDWLRQV�LQ�ZKLFK�QHZ�ZHE�VLWH�GHYHORSPHQW
WDNHV�SODFH�

)LJXUH����'HYHORSPHQW�6LWXDWLRQV�
�� 1HZ�6LWH��QHZ�PDUNHW�� �1HLWKHU� WKH�RUJDQL]DWLRQ�QRU� DQ\RQH�HOVH�KDV�D

VLWH�WKDW�GRHV�ZKDW�WKH�SURSRVHG�VLWH�ZLOO�GR�DQG�WKH�PDUNHW�LQ�ZKLFK�LW�ZLOO
IXQFWLRQ�LV�QHZ�WR�WKH�LQWHUQHW����,�WULHG�WR�WKLQN�RI�D�PDUNHW�WKDW�GRHVQ¶W�H[LVW
RQ�WKH�LQWHUQHW�� �,I� ,�FRXOG�,¶G�EH�ZRUNLQJ�RQ�JHWWLQJ� LQWR� LW�DQG�QRW�WDONLQJ
KHUH��� � +RZHYHU�� WKH� SRLQW� LV� WKDW� WKHUH� ZLOO� EH� OLWWOH� RU� QR� LQWHUQDO
RUJDQL]DWLRQDO�RU�H[WHUQDO�PDUNHW�LQIRUPDWLRQ�RQ�ZKLFK�WR�GUDZ�

�� 1HZ�6LWH��H[LVWLQJ�PDUNHW�� �$Q�RUJDQL]DWLRQ� LV�GHYHORSLQJ�D�VLWH� WR�HQWHU
DQG� H[LVWLQJ�PDUNHW� RQ� WKH� LQWHUQHW�� +RZHYHU�� LW� GRHVQ¶W� FXUUHQWO\� ZRUN� LQ
WKDW�PDUNHW�HLWKHU�RQOLQH�RI�RIIOLQH�

�� 1HZ�VLWH��H[LVWLQJ�IXQFWLRQ���$Q�RUJDQL]DWLRQ�LV�UHSODFLQJ�D�FXUUHQW�IXQFWLRQ
ZLWK�D�ZHE�VLWH�WR�SHUIRUP�LW�

�� 5HSODFHPHQW�VLWH���$Q�RUJDQL]DWLRQ�LV�UHSODFLQJ�DQ�H[LVWLQJ�VLWH�ZLWK�D�QHZ
VLWH�

7KH�PDLQ�VRXUFHV�IRU�GDWD�RQ�FXUUHQW�DQG�SDVW�YROXPH�DQG�SHUIRUPDQFH�DUH�

)LJXUH����6RXUFHV�RI�,QIRUPDWLRQ�RQ�/RDG�DQG�3HUIRUPDQFH�
�� 7KH�RUJDQL]DWLRQ¶V�H[LVWLQJ�EXVLQHVV�SURFHVVHV�

�� ,QGXVWU\�UHVHDUFK�DQG�GDWD�

�� &RPSHWLWLYH�RU�FRPSDUDEOH�ZHE�VLWHV�

�� 7KH�RUJDQL]DWLRQ¶V�H[LVWLQJ�ZHE�VLWH�

7DEOH� �� EHORZ� GHWDLOV� KRZ� WKH� W\SH� RI� GDWD� DYDLODEOH� GLIIHUV� DFFRUGLQJ� WR� WKH
VLWXDWLRQ�LQ�ZKLFK�WKH�VLWH�LV�EHLQJ�FRQVWUXFWHG�

7DEOH���6RXUFHV�RI�,QIRUPDWLRQ�IRU�5HTXLUHPHQWV
,QIRUPDWLRQ�6RXUFH 1HZ�VLWH�

QHZ�PDUNHW
1HZ�VLWH
H[LVWLQJ�IXQFWLRQ

1HZ�6LWH
H[LVWLQJ�PDUNHW

5HSODFHPHQW
VLWH

([LVWLQJ�EXVLQHVV�SURFHVV ; ; ;
,QGXVWU\�UHVHDUFK ; ; ; ;
&RPSHWLWLYH�VLWHV ; ;
([LVWLQJ�VLWH ;

$V� IDU� DV� LQIRUPDWLRQ� RQ� IXWXUH� JRDOV��PRVW� RUJDQL]DWLRQV�ZLOO� KDYH� D� EXVLQHVV
SODQ� RU� D� VHW� RI� JRDOV� IRU� WKH� VLWH� WKDW� FDQ�EH�XVHG� WR� KHOS� IRUHFDVW� ORDG� DQG
SHUIRUPDQFH�� 7KLV� LQIRUPDWLRQ� FDQ� WDNH� WKH� IRUP� RI� VDOHV� GROODUV�� RQOLQH
FXVWRPHUV��SHUFHQWDJHV�RI�H[LVWLQJ�VDOHV�RU�YROXPHV� WKDW�VKRXOG�EH� WUDQVIHUUHG
WR�WKH�ZHE�VLWH��RU�GHFUHDVHV�LQ�FXVWRPHU�UHVSRQVH�WLPH�

7KHVH�DUH�XVHIXO� IRU�PHDVXULQJ� WKH�VXFFHVV�RI� WKH�VLWH�DW� IXOILOOLQJ� LWV� LQWHQGHG
RUJDQL]DWLRQDO� IXQFWLRQ�� � %XW�� WKH\�KDYH� WR� EH� WUDQVODWHG� LQWR� UHTXLUHPHQWV� IRU
ORDG�DQG�SHUIRUPDQFH�WKDW�FDQ�EH�PHDVXUHG�RQ�WKH�ZHE�VLWH�E\�DXWRPDWHG�WRROV
VR�WKDW�LWV�UHDGLQHVV�WR�PHHW�WKRVH�EXVLQHVV�JRDOV�FDQ�EH�WHVWHG���)RU�ORDG��WKLV
PHDVXUH� LV� WKH� QXPEHU� RI� VLPXOWDQHRXV� XVHUV� WKH� VLWH� FDQ� VXSSRUW�� DQG� IRU
SHUIRUPDQFH� WKH� UHVSRQVH� WLPHV� IRU� KWPO� UHTXHVWV�� � � $XWRPDWHG� WRROV�� OLNH
0HUFXU\� ,QWHUDFWLYH¶V� /RDG5XQQHU� WKDW�ZH�XVH� DW�1HRJO\SKLFV�� DUH� GHVLJQHG� WR
JHQHUDWH�VXFK�ORDGV�DQG�PHDVXUH�UHVSRQVH�WLPHV�

7KH� EXVLQHVV� SODQ� ZLOO� DOVR� VXJJHVW� KRZ� LPSRUWDQW� ORDG� DQG� SHUIRUPDQFH
UHTXLUHPHQWV� DUH� UHODWLYH� WR� RWKHU� FRQVLGHUDWLRQV�� � �)RU� D� QHZ� VLWH� LQ� D� QHZ
PDUNHW�� LW� PLJKW� EH� PRUH� LPSRUWDQW� WR� JHW� RXW� WKHUH� ILUVW� DQG� WR� SURYH� WKH
FRQFHSW�WKDQ�WR�SURYLGH�EHVW� LQ�FODVV�VSHHG�DQG�VXSSRUW���������VLPXOWDQHRXV
XVHUV���,Q�UHSODFLQJ�DQ�H[LVWLQJ�VLWH��HIILFLHQFLHV�LQ�EDFN�RIILFH�V\VWHPV�LQWHJUDWLRQ
ZKLFK� UHGXFH� RYHUKHDG� FRPSDUHG� WR� WKH� FXUUHQW� VLWH� PLJKW� EH� D� EHWWHU
LQYHVWPHQW�WKDQ�KDOYLQJ�LW¶V�UHVSRQVH�WLPH�RU�GRXEOLQJ�LW¶V�FDSDFLW\��2Q�WKH�RWKHU
KDQG�� UHVSRQVLYHQHVV� PD\� EH� DQ� LPSRUWDQW� SDUW� RI� D� FRPSDQ\¶V� VWUDWHJ\� IRU
EHDWLQJ�WKH�WDU�RXW�RI�D�FRPSHWLWRU�ZKRVH�VLWH�VKRZV�SUREOHPV�LQ�WKLV�DUHD��1H[W
OLQH�� QR� ZDLWLQJ� GUDZV� DV� PXFK� RI� D� FURZG� RQ� WKH� QHW� DV� LW� GRHV� DW� WKH
VXSHUPDUNHW�� �+RZHYHU�� LQ�HYHU\�FDVH��\RX�GR�ZDQW�WR�EH�VXUH�WKDW�\RXU�VLWH¶V
SHUIRUPDQFH�GRHVQ¶W�LPSHGH�LWV�DELOLW\�WR�VHUYH�LWV�XOWLPDWH�EXVLQHVV�SXUSRVH�

7KH�IROORZLQJ�VHFWLRQV�VXJJHVW�KRZ�WR�GR�WKLV� LQ�WKH�YDULRXV�VLWXDWLRQV�RXWOLQHV
DERYH�

1HZ�6LWH��1HZ�0DUNHW

'HYHORSLQJ�D�QHZ�PDUNHW�LV�LQKHUHQWO\�XQFHUWDLQ�DQG�ULVN\��DQG�WKH�LQIRUPDWLRQ
WKDW�FDQ�EH�XVHG�WR�KHOS�GHYHORS�ORDG�DQG�SHUIRUPDQFH�UHTXLUHPHQWV�FDQ¶W�KHOS
EXW� EH� XQFHUWDLQ� WRR�� � $QG�PD\EH� MXVW� WDNLQJ� \RXU� EHVW� JXHVV� LV� DV� JRRG� DV
DQ\WKLQJ�HOVH�LQ�WKLV�VLWXDWLRQ�

6WLOO��VRPH�XVHIXO�LQIRUPDWLRQ�RQ�ORDG�VKRXOG�EH�LQ�WKH�EXVLQHVV�SODQ�DQG�,QWHUQHW
LQGXVWU\� UHVHDUFK�FDQ�SURYLGH�VRPH�RQ�SHUIRUPDQFH��6LQFH� WKH�PDUNHW� LV�QHZ�
WKHUH� ZRXOGQ¶W� EH� DQ\� GLUHFWO\� FRPSDUDEOH� FRPSHWLWLYH� VLWHV�� KRZHYHU�� WKHUH
PLJKW�EH�VRPH�VLWHV�WKDW�SHUIRUP�VLPLODU�IXQFWLRQV�RU�VHUYH�VLPLODU�XVHUV�ZKHUH

\RX�FRXOG�JR�WR�JHW�VRPH�FRPSDUDWLYH�LQIRUPDWLRQ��)RU�H[DPSOH��D�VKRSSLQJ�FDUW
LV�SUHWW\�PXFK�WKH�VDPH�ZKHUHYHU�LW�PD\�EH�DQG�ZKDWHYHU�JRHV�LQ�LW�

/RDG�5HTXLUHPHQWV

$V�LQ�PRVW�FDVHV��VDOHV�RU�VHUYLFH�JRDOV�FDQ�EH�D�VWDUWLQJ�SRLQW�IRU�VHWWLQJ�ORDG
UHTXLUHPHQWV��EXW�HYHQWXDOO\�PXVW�EH�H[SUHVVHG�LQ�WHUPV�RI�VLPXOWDQHRXV�XVHUV�
,I�WKH�VDOHV�JRDO�LV���������D�PRQWK�DQG�SURMHFWHG�VDOHV�SHU�RUGHU�DUH���������
ZDV�DYHUDJH�RUGHU�LQ�6KRS�RUJ�VWXG\���WKDW�PHDQV�����RUGHUV�D�PRQWK��6LQFH�WKH
RQO\� ����� RI� YLVLWRUV� WR� ZHE� VLWHV� DFWXDOO\� EX\� �6WDWH� RI� 2QOLQH� 5HWDLOLQJ�
6KRS�RUJ��� ZH� FDQ� H[SHFW� WKH� VLWH� WR� KDYH� WR� KRVW� ������ YLVLWRUV� D� PRQWK� WR
JHQHUDWH�WKH�VDOHV�WDUJHW���7KLV�FDQ�EH�EURNHQ�GRZQ�LQWR�YLVLWRUV�SHU�ZHHN��GD\�
RU�KRXU�� �7KH�QXPEHU�RI�SHRSOH�ZKR�ZLOO�EH�RQ�WKH�VLWH�VLPXOWDQHRXVO\��DW� WKH
VDPH�VHFRQG��ZLOO�EH�PXFK�VPDOOHU���7KH�ILJXUHV�LQ�7DEOH���WKDW�DUH�GUDZQ�IURP
VHYHUDO� VLWHV� VKRZ� WKDW� WKH� QXPEHU� RI� VLPXOWDQHRXV� XVHUV� FDQ� EH� GHFHSWLYHO\
VPDOO�� � ,W� ZRXOG� EH� QLFH� WR� NQRZ� LI� WKHUH¶V� VRPH� VWDQGDUG� UDWLR� IRU� SDUWLFXODU
VLWHV��EXW�WKDW¶V�UHVHDUFK�IRU�DQRWKHU�SDSHU�

7DEOH����1XPEHU�RI�6LPXOWDQHRXV�8VHUV�
1RW�6LPXOWDQHRXV 6LPXOWDQHRXV
������SHU�GD\ ��
������SHU�KRXU ��
������SHU�KRXU ��
������SHU�KRXU ��

3HUIRUPDQFH�5HTXLUHPHQWV

)RU�SHUIRUPDQFH�UHTXLUHPHQWV�WKHUH�LV�D�JRRG�GHDO�RI�LQGXVWU\�GDWD�WR�GUDZ�RQ
ZKLFK�LV�JHWWLQJ�EHWWHU�DOO�WKH�WLPH��7KLV�ZLOO�EHFRPH�HYHQ�PRUH�XVHIXO�DV�EHWWHU
VWDQGDUGL]HG�PHDVXUHV�RI�,QWHUQHW�FRPPHUFH�DUH�GHYHORSHG�

2QH�JRRG�VRXUFH�IRU�EURDG�GDWD�RQ�SHUIRUPDQFH�LV�.H\QRWH��ZZZ�NH\QRWH�FRP��
7KHLU�YHU\� LQWHUHVWLQJ�UHSRUWV�VKRZ�ZKDW�NLQG�RI�SHUIRUPDQFH� LV� UHDOO\�SRVVLEOH
RQ� WKH� QHW� EHFDXVH� RQH� RI� WKH� JRDOV� RI� WKH� VHUYLFH� LV� WR� VKRZ� KRZ� ,QWHUQHW
SHUIRUPDQFH�� DV� RSSRVHG� WR� VHUYHU� SHUIRUPDQFH�� DIIHFWV� WKH� GHOLYHU\� RI
LQIRUPDWLRQ� WR� HQG�XVHUV�� � 7DEOH� �� LV� DGDSWHG� IURP� .H\QRWH¶V� %XVLQHVV� ��
,QWHUQHW�3HUIRUPDQFH�5HSRUW�IRU���������

7DEOH����$YHUDJH�,QWHUQHW�5HVSRQVH�7LPH��0DUFK����WR����������
��)DVWHVW�6LWHV 2YHUDOO�$YHUDJH 6ORZHVW�VLWH

�����VHFRQGV �����VHFRQGV ������VHFRQGV

7KH� IDVWHVW�VLWHV�GRZQORDGHG� WKHLU�KRPH�SDJHV� LQ�DQ�DYHUDJH�RI������VHFRQGV
DQG�WKH�DYHUDJH�GRZQORDG�WLPH�IRU�WKH�HQWLUH�VDPSOH�RI�VLWHV�ZDV���VHFRQGV��6R
6R�� LI�\RX�ZDQWHG�\RXU�KRPHSDJH�WR�GRZQORDG�ZLWK� WKH�EHVW� LQ�FODVV�� LW�ZRXOG
KDYH�WR�UHVSRQG�LQ�DERXW���VHFRQGV�

)LJXUH����:HHNO\�3HUIRUPDQFH�IURP�.H\QRWH�FRP�

2QH�RI�WKH�SUREOHPV�ZLWK�WKLV�NLQG�RI�LQIRUPDWLRQ�LV�WKDW�LW�GRHV�LQFOXGH�,QWHUQHW
RYHUKHDG�LQ�WKH�PHDVXUHV�WKDW�ZLOO�YDU\�IURP�WLPH�WR�WLPH��DV�WKH�JUDSK�VKRZV�
,I�\RX¶YH�VHW�D�JRDO�RI�GHOLYHULQJ�WKH�KRPH�SDJH�LQ�DERXW���VHFRQGV��ZKHQ�\RX
WHVW�WR�YHULI\�LW��WKH�VWDWH�RI�,QWHUQHW�SHUIRUPDQFH�PD\�EH�EDG�HQRXJK�WR�PDNH�LW
IDLO�

7KHUH�DUH�VRPH�ZD\V�WR�DOORZ�IRU�WKLV�YDULDWLRQ��<RX�FRXOG�GR�PXOWLSOH�UXQV�RYHU
VHYHUDO� GD\V� WR� FRUUHFW� IRU� SHDNV� DQG� YDOOH\V� LQ� ,QWHUQHW� SHUIRUPDQFH� DQG
DYHUDJH� WKH� UHVXOWV�� �<RX�FRXOG�DOVR�QRWH�KRZ� WKH� ,QWHUQHW�SHUIRUPDQFH�ZKHQ
\RX�UDQ�WKH�WHVW�YDULHG�IURP�DYHUDJH�SHUIRUPDQFH�DQG�FRUUHFW�WKH�UHVXOWV�IRU�WKH
GLIIHUHQFH�

$QRWKHU�SUREOHP�LV�WKDW�WKH�.H\QRWH�LQGH[�XVHV�RQO\�KRPH�SDJHV�LQ�FRQVWUXFWLQJ
LWV�LQGH[���7KLV�LV�SHUIHFWO\�ILQH�IRU�ORRNLQJ�DW�YDULDWLRQV�LQ�LQWHUQHW�SHUIRUPDQFH

RYHU� WLPH��EXW�PXFK� OHVV�XVHIXO� IRU�VHWWLQJ�SHUIRUPDQFH�VWDQGDUGV�EHFDXVH�ZH
FDQ¶W� WHOO� WR� ZKDW� H[WHQW� WKH� .H\QRWH� VDPSOH� ZLOO� PDWFK� RXU� RZQ� SDJHV�� 7KH
KRPH�SDJHV�.H\VWRQH�XVHV�PLJKW�GR�PRUH�WKDQ�VHUYH�WH[W�DQG�LPDJHV��EXW�ZH
GRQ¶W�NQRZ�ZKLFK�DQG�WR�ZKDW�H[WHQW�� �6R�LI�RXU�VLWH�XVHV�G\QDPLF�KWPO��UHDGV
DQG�ZULWHV�GDWDEDVHV��RU�UXQV�EDFNJURXQG�DSSOLFDWLRQV��WKHQ�UHVSRQVH�WLPH�IRU�D
VDPSOH�SDJH�LV�QRW�D�VWDQGDUG�WKHVH�SDJHV�ZLOO�PHHW�RQ�D�FRQVLVWHQW�EDVLV���:H
KDYH� WR� FRQVLGHU� ZKDW� IXQFWLRQ� SDJHV� SHUIRUP� LQ� VHWWLQJ� SHUIRUPDQFH
UHTXLUHPHQWV���7KLV�LVQ¶W�SRVVLEOH�XVLQJ�LQGXVWU\�GDWD�OLNH�WKLV�

6WLOO�LW�VKRZV��URXJKO\��ZKDW�JRRG�DQG�EDG�SHUIRUPDQFH�LV�RQ�WKH�ZHE�

(UURU�5DWHV

6RPH� LQIRUPDWLRQ�RQ�HUURU� UDWHV� FRPSLOHG�E\� ,QYHUVH�1HWZRUN�7HFKQRORJ\�KDV
EHHQ� SXEOLVKHG� RQ� ,QWHUQHW� :RUOG¶V� 6WDWLVWLFV� 7RROER[� VLWH
�KWWS���ZZZ�LZ�FRP�GDLO\�VWDWV��������������GRZQORDGV�KWPO�����7DEOH���EHORZ
VXPPDUL]HV�WKLV�LQIRUPDWLRQ�

7DEOH����5DWH�RI�:HE�3DJH�'RZQORDG�)DLOXUHV
��RI�)DLOXUHV ��RI�7LPH�2XWV 7RWDO�IDLOXUHV

%HVW�LQ�&ODVV ���� ���� ����
,QGXVWU\�$YHUDJH ���� ���� ����

7KH�EHVW�SHUIRUPLQJ�VLWH�OLVWHG�KDG�FRPELQHG�HUURU�UDWHV�RI�DERXW�������DQG�WKH
LQGXVWU\� DYHUDJH� LV� DERXW� ������� � 7KHVH� DUH� LQWHQGHG� WR� PHDVXUH� ,63
SHUIRUPDQFH��VR�WKH\�DUH�SUREDEO\�QRW�GLUHFWO\�DSSOLFDEOH�WR�WKH�HUURU�UDWHV�\RX
VKRXOG�H[SHFW�IURP�WKH�ZHE�VLWH�DORQH��%XW��WKH\�DUH�FHUWDLQO\�DQ�XSSHU�ERXQGDU\
IRU�WKH�QXPEHU�RI�HUURUV�\RX�ZRXOG�ZDQW�WR�JHQHUDWH�DW�\RXU�PD[LPXP�ORDG�

7KHUH�DUH�RWKHU�RUJDQL]DWLRQV�WKDW�FRPSLOH�DQG�VHOO�SHUIRUPDQFH�GDWD�WKDW¶V�PRUH
VSHFLILFDOO\�WDUJHWHG���)RU�H[DPSOH��$FWLYH0HGLD��ZZZ�DFWLYHPHGLD�FRP��RIIHUV�D
UHSRUW� RQ� WKH� WRS� ���� (�FRPPHUFH� ZHE� VLWHV� WKDW� LQFOXGHV� LQIRUPDWLRQ� RQ
SHUIRUPDQFH�� �2WKHUV�DUH�0HGLD�0HWUL[� ,QF�� �www.mediametrix.com)�� ,QWHUQHW�FRP¶V
&\EHU$WODV� DQG� 6WDWV� 7RROER[� �www.internet.com��� � +RZHYHU�� WKHVH� DOO� KHDYLO\
HPSKDVL]H�UHVHDUFK�RQ�WKH�EXVLQHVV�DQG�PDUNHWLQJ�HQG�RI�WKH�ZHE��6WLOO��LW�PLJKW
EH� ZRUWK� WKH� FRVW� WR� DFTXLUH� UHVHDUFK� WKDW� DGGUHVVHV� ORDG� DQG� SHUIRUPDQFH
LVVXHV��0RUH�DQG�PRUH�RI�WKLV�LQIRUPDWLRQ�ZLOO�PDNH�LW�LQWR�WKH�SXEOLF�GRPDLQ�LQ
WKH� IXWXUH�� �7KH�PRUH� WKH�UHVHDUFK� LV�EURNHQ�GRZQ� LQWR� WKH� W\SHV�RI� IXQFWLRQV
WKDW� \RXU� VLWH� GRHV�� WKH� EHWWHU� WKH� SHUIRUPDQFH� UHTXLUHPHQWV� \RX� FDQ� H[WUDFW
IURP�LW�

,I�\RX¶UH�EUHDNLQJ�QHZ�JURXQG�RQ�WKH�ZHE��WKH�LQIRUPDWLRQ�LVQ¶W�ZHOO�WDUJHWHG�RU
YROXPLQRXV�

1HZ�6LWH��([LVWLQJ�)XQFWLRQ�RU�([LVWLQJ�0DUNHW

,I� WKH� RUJDQL]DWLRQ� LV� WDNLQJ� DQ� H[LVWLQJ� RIIOLQH� IXQFWLRQ� WR� WKH� ZHE�� WKHQ� WKH
YROXPHV� RI� WKDW� IXQFWLRQ� FDQ� EH� XVHG� WR� GHYHORS� ORDG� SURMHFWLRQV�� � � ,I� D
WUDGLWLRQDO� FDOO� FHQWHU� WDNHV� DQ� DYHUDJH� RI� ������ FDOOV� D� GD\� DQG� \RX�ZDQW� WR
PRYH�WKDW�IXQFWLRQ�RQ�OLQH��WKHQ�LW¶V�DYHUDJH�SURMHFWHG�ORDG�ZRXOG�EH�EDVHG�RQ
������XVHUV�SHU�GD\���<RX�ZRXOG�DOVR�OLNHO\�NQRZ�DERXW�SHDN�GHPDQG�WLPHV��RU
WKH�QXPEHU�RI�SHRSOH�RQ�WKH�SKRQHV�DQG�ZDLWLQJ�LQ�WKH�TXHXH�DW�WKH�VDPH�WLPH�
6R� \RX� FRXOG� SODQ� IRU� SHDN� XVDJH� DQG� NQRZ� KRZ� PDQ\� VLPXOWDQHRXV� XVHUV
\RX¶YH� KDG� WR� VHUYLFH� XVLQJ� WKH� WUDGLWLRQDO� V\VWHP�� 7KHVH� DUH� JRRG� JXLGHV� WR
PD[LPXP�VLPXOWDQHRXV�XVHUV�IRU�WKH�ZHE�VLWH���0DLO�RUGHU�FDWDORJV�RU�KHOS�GHVNV
ZRXOG�KDYH�WKH�VDPH�FKDUDFWHULVWLFV���+RZHYHU��\RX�ZRXOG�DOVR�QHHG�WR�SODQ�IRU
QHZ�XVHUV�VLQFH�UHVHDUFK�VKRZV�WKDW�ZKHQ�D�EXVLQHVV�PRYHV�RQ�OLQH��LW�GRHVQ¶W
MXVW�WUDQVIHU�XVHUV�IURP�LW¶V�RIIOLQH�HTXLYDOHQW��EXW�DOVR�DWWUDFWV�D�QHZ�SRSXODWLRQ
RI�XVHUV�

6LQFH�EDVLF�EXVLQHVV� IXQFWLRQV� DUH� VLPLODU� DFURVV� RUJDQL]DWLRQV�� WKHUH�PLJKW� EH
FRPSDUDEOH�VLWHV�RQOLQH�WKDW�\RX�FRXOG�EHQFKPDUN���7KLV�FDQ�EH�GRQH�HDVLO\�ZLWK
DXWRPDWHG�WHVW�WRROV�RU�\RX�FRXOG�FRQWUDFW�ZLWK�DQ�RUJDQL]DWLRQ�OLNH�.H\QRWH�WR
UXQ� WKH� EHQFKPDUNV�� � ,I� \RX¶UH� JRLQJ� WR� GR� WKLV� \RXUVHOI�� PDNH� VXUH� \RXU
EHQFKPDUN�WUDQVDFWLRQV�GR�QRW�DIIHFW�WKH�SHUIRUPDQFH�RI�WKH�VLWH�RU�GLVUXSW�LW�E\
SODFLQJ�IDOVH�RUGHUV�IRU�JRRGV�RU�VHUYLFHV�

2QH� RI� WKH� XQFHUWDLQWLHV� RI� EHQFKPDUNLQJ� FRPSHWLWLYH� VLWHV� LV� WKDW� \RX� ZRQ¶W
NQRZ�ZKDW� WKH� ORDG�RQ� WKH� VLWH�ZDV�ZKHQ� WKH� UHVSRQVH� WLPH�ZHUH�PHDVXUHG�
<RX�FDQ�FRQWURO�IRU�WKLV�VRPHZKDW�E\�WDNLQJ�VHYHUDO�PHDVXUHPHQWV�RQ�GLIIHUHQW
GD\V�DQG�WLPHV�

5HSODFHPHQW�6LWH

/RDG� DQG� SHUIRUPDQFH� UHTXLUHPHQWV� IRU� D� UHSODFHPHQW� VLWH� DUH� PRUH� IXQ� WR
GHYHORS�WKDQ�WKH�RWKHU�FDVHV�EHFDXVH�WKHUH¶V�D�ORW�RI�LQWHUHVWLQJ�DQDO\VLV�\RX�FDQ
GR�IRU�WKH�H[LVWLQJ�VLWH����7KH�GDWD� LQ�WKH�DFFHVV� ORJV�WHOO�\RX�HYHU\WKLQJ�DERXW
WKH�ORDG�WKDW�VLWH�VXVWDLQHG�DQG�\RX�FDQ�EHQFKPDUN�LW�LQ�D�YHU\�FRQWUROOHG�ZD\�WR
OHDUQ�DERXW�DFFHVV�WLPHV���2I�FRXUVH��ZH�VWLOO�QHHG�WR�GHYHORS�HVWLPDWHV�IRU�WKH

JURZWK�RI�VLWH�WUDIILF��EXW�WKHVH�WRR�FDQ�EH�EDVHG��LQ�SDUW��RQ�WKH�JURZWK�LQ�WKH
H[LVWLQJ�VLWH�RYHU�LWV�OLIH�VSDQ�

7KHUH� DUH� PDQ\� WRROV� IRU� DQDO\]LQJ� ORJ� ILOHV�� � 7KHUH¶V� D� XVHIXO�� EXW� SUREDEO\
VRPHZKDW�RXW�RI�GDWH�OLVW�LQ�D�JRRG�ERRN�RQ�ORJ�DQDO\VLV�:HE�6LWH�6WDWV�E\�5LFN
6WRXW����0RVW�RI�WKHVH�WRROV�DUH�JHDUHG�WRZDUG�D�PDUNHWLQJ�DXGLHQFH�DQG�ZLOO�QRW�
IRU�H[DPSOH��EUHDN�WKH�GDWD�GRZQ�E\�WKH�VHFRQG�

,�SUHIHU�WR�H[WUDFW�ZKDW�,�QHHG�IURP�WKH�UDZ�ORJV�ZLWK�D�VHG�VFULSW�DQG�WKHQ�UHDG
WKH�GDWD�LQWR�D�VWDQGDUG�VWDWLVWLFDO�DQDO\VLV�SDFNDJH���7KHVH�ZLOO�VOLFH��GLFH��DQG
ILOWHU� WKH�GDWD�DQ\�ZD\�\RX�FDQ� WKLQN�RI�� �$OVR�� ,�KDYH� WKH�FRPIRUW�RI�NQRZLQJ
H[DFWO\�ZKDW¶V� LQ�P\�GDWD�VHW�DQG�H[DFWO\�KRZ� LW¶V�EHLQJ�KDQGOHG�DQG�FRXQWHG�
<RX�FDQ�DOVR�VHW�XS�EDWFK�MREV�WKDW�ZLOO�UXQ�WKH�DQDO\VLV�DXWRPDWLFDOO\�RQFH�\RX
JHW�LW�GHILQHG�

/RDG

7KH� DFFHVV� ORJV� IURP� WKH� H[LVWLQJ� VLWH� FRQWDLQ� DOO� WKH� LQIRUPDWLRQ� QHHGHG� WR
GHWHUPLQH�WKH�PD[LPXP�QXPEHU�RI�VLPXOWDQHRXV�XVHUV��)LJXUH���VKRZV�D�VHFWLRQ
IURP�DQ�DFFHVV�ORJ�

)LJXUH����6DPSOH�IURP�$FFHVV�/RJ�
198.69.241.2 [26/Jan/1999:07:25:05 0500] "POST /servlet/com.servlet.SearchServlet
HTTP/1.0" 302 221
198.69.241.2 [26/Jan/1999:07:25:25 0500] "POST /servlet/com.servlet.SearchServlet
HTTP/1.0" 302 221
198.69.241.2 [26/Jan/1999:07:25:28 0500] "GET /catalogs/searchresults.jhtml HTTP/1.0" 200
22786
141.185.72.145 [26/Jan/1999:07:25:38 0500] "GET / HTTP/1.0" 302 205
141.185.72.145 [26/Jan/1999:07:25:38 0500] "GET /splash.jhtml HTTP/1.0" 200 15526
198.69.241.2 [26/Jan/1999:07:25:51 0500] "GET /catalogs/acrosgroup.jhtml HTTP/1.0" 200
18179
207.31.232.160 [26/Jan/1999:07:25:56 0500] "GET /support/flit.jhtml HTTP/1.1" 200 8879

(DFK�OLQH�LV�D�UHTXHVW�WR�WKH�VHUYHU�WKDW�UHFRUGV�WKH�,3�DGGUHVV�RI�WKH�UHTXHVWHU�
WKH�WLPH�WKH�UHTXHVW�ZDV�PDGH��DQG�ZKDW�ILOH�ZDV�UHTXHVWHG���$FWXDOO\��LW�UHFRUGV
PRUH� LQIRUPDWLRQ�� EXW� WKLV� LV� DOO� ZH� QHHG� IRU� RXU� SXUSRVHV�� 6LQFH� WKH� WLPH� LV
UHFRUGHG�WR�WKH�VHFRQG�� LW¶V� MXVW�D�PDWWHU�RI�FRXQWLQJ�WKH�QXPEHU�RI�XQLTXH�,3
DGGUHVVHV� WKDW�PDGH� UHTXHVWV� GXULQJ� HDFK� VHFRQG�� DQG� WKHQ� ILQGLQJ�ZKDW� WKH
PD[LPXP� YDOXH� LV�� � 7DEOH� �� VKRZV� WKH� UDZ� YDOXHV� IRU� QXPEHU� RI� XVHUV� SHU
VHFRQG�DQG�7DEOH���WKH�PLQLPXP��PD[LPXP��DQG�DYHUDJH�VLPXOWDQHRXV�XVHUV�DW
WKH�EXVLHVW�WLPH�RI�WKH�GD\�IRU�D�VDPSOH�VLWH��$V�PHQWLRQHG�DERYH��LW�PD\�DOVR�EH
XVHIXO�WR�ILQG�WKH�DYHUDJH�YDOXH� ���

7DEOH����8VHUV�3HU�6HFRQG�
7LPH 8VHUV

������� ��
������� ��
������� ��
������� ��
������� ��
������� ��
������� ��
������� ��
������� ��
������� ��
������� ��
������� ��
������� ��
������� ��
������� ��
������� ��
������� ��
������� ��
������� ��
������� ��

7DEOH����6LPXOWDQHRXV�8VHUV���±���$0�
+RXU /RJ�5HFRUGV 0LQLPXP 0D[LPXP 0HDQ
��$0 ���� � �� �����
��$0 ���� � �� �����
��$0 ���� �� �� �����
��$0 ���� � �� �����

)RU�VRPH�VLWHV�� WKHUH�PD\�EH�PXOWLSOH�VHUYHUV�� �7KH�PRVW�FRPPRQ�VLWXDWLRQ�RI
WKLV� W\SH� LV�KDYLQJ�ERWK�D�VHFXUHG�DQG�XQVHFXUHG�VHUYHU��EXW� WKHUH�PD\�EH�DQ
LPDJH� VHUYHU� RU� PXOWLSOH� YLUWXDO� VLWHV�� ,Q� WKLV� FDVH�� DOO� WKH� ORJV� QHHG� WR� EH
FRPELQHG�DQG�DOO�RI� WKHP�KDYH�WR�EH�UHFRUGLQJ�,3�DGGUHVVHV� LQ�WKH�VDPH�ZD\�
WKDW� LV� UHVROYLQJ� WKHP� LQWR�QDPHV�RU�QRW�� �2WKHUZLVH�� WKH� VDPH�XVHU� FRXOG� EH
FRXQWHG�DV���XVHUV�EHFDXVH�WKH�,3�DGGUHVV�LV�EHLQJ�UHFRUGHG�GLIIHUHQWO\�

,I�WKH�ORJV�DUH�YHU\�ODUJH��LW�PLJKW�EH�HDVLHU�WR�VHOHFW�D�SHDN�SHULRG�DV�WKH�GDWD
IRU� WKH� PD[LPXP� YDOXH�� DV� ZDV� GRQH� LQ� 7DEOH� ��� DQG� DQ� DYHUDJH� SHULRG� RU
UDQGRP�VDPSOH�RI�UHFRUGV�DV�WKH�GDWD�IRU�WKH�DYHUDJH�YDOXH�

7KLV�DQDO\VLV�SURGXFHV�WKH�ORDG�QXPEHUV�IRU�WKH�H[LVWLQJ�VLWH��ZKLFK�VWLOO�QHHG�WR
EH�DGMXVWHG� IRU�JURZWK�� � ,I� ORJV�DUH�DYDLODEOH� IURP�VRPH� WLPH� LQ� WKH�SDVW�� WKH
JURZWK�UDWH�RI� WKH�H[LVWLQJ�VLWH�FDQ�EH�GHWHUPLQHG�DQG� WKHQ�SURMHFWHG� LQWR� WKH
IXWXUH�� � 7KLV� NLQG� RI� IRUHFDVWLQJ� FDQ� EH� GRQH� YHU\� ULJRURXVO\� XVLQJ� YDULRXV
PHWKRGV� RI� WLPH� VHULHV� DQDO\VLV�� � +RZHYHU�� LQ� PRVW� FDVHV�� VXFK� ULJRU� LVQ¶W

QHFHVVDU\�VLQFH�ZH¶UH� LQWHUHVWHG�PDLQO\� LQ�SODQQLQJ�IRU�WKH�SHDN� ORDG��VR�ZKHQ
WKDW�RFFXUV�DQG�KRZ�IDVW�WKH�VLWH�JURZV��WKH�VKDSH�RI�JURZWK��LV�XQLPSRUWDQW�DV
ORQJ�DV�ZH�NQRZ�ZKDW�WKH�ORDG�JRDO� LV�� � �$V�FDXWLRQHG�EHIRUH�� WKH�DFFXUDF\�RI
WKHVH�SURMHFWLRQV�GLPLQLVKHV�WKH�IDUWKHU�RXW�WKH�IRUHFDVW�JRHV�

,I� WKH�EXVLQHVV�SODQ�VHWV�FHUWDLQ�JRDOV� IRU�RQOLQH�FXVWRPHUV�RU�VDOHV�� WKHVH�FDQ
DOVR� EH� XVHG� DORQJ� ZLWK� WKH� FXUUHQW� FXVWRPHUV� RU� VDOHV� DQG� FXUUHQW� ORDG� WR
HVWLPDWH�WKH�ORDG�UHTXLUHPHQW�WKDW�ZRXOG�EH�QHFHVVDU\�WR�VXSSRUW� WKRVH�JRDOV�
7KH�IRUPXOD�LV�VKRZQ�LQ�)LJXUH���

)LJXUH����)RUPXOD�IRU�/RDG�5HTXLUHPHQW�
�������������������������)XWXUH�6DOHV�8VHUV��&XUUHQW�/RDG
)XWXUH�/RDG��� ���
����������������������������������&XUUHQW�6DOHV�8VHUV

+DYLQJ�GDWD�IURP�DQ�H[LVWLQJ�VLWH�LV�D�ELJ�DGYDQWDJH�DQG�PDNHV�HVWLPDWLQJ�ORDG
UHTXLUHPHQWV�PXFK�PRUH�FHUWDLQ�

�3HUIRUPDQFH

([LVWLQJ� VLWHV� FDQ� SURYLGH� D� EDVHOLQH� IURP� ZKLFK� WR� HVWLPDWH� SHUIRUPDQFH
UHTXLUHPHQWV��2QH�VWUDLJKWIRUZDUG�ZD\� WR�GR� WKLV� LV� WR�EHQFKPDUN� WKH�H[LVWLQJ
VLWH�� 7KLV� EXLOGV� D� SHUIRUPDQFH� SURILOH� WKDW� KLJKOLJKWV� SUREOHP� DUHDV� DQG�� IRU
DUHDV�WKDW�DUH�SHUIRUPLQJ�ZHOO��VHWV�WKH�SHUIRUPDQFH�UHTXLUHPHQW�IRU�WKH�UHYLVHG
YHUVLRQ� RI� WKH� VLWH�� � &KDQJHV� DLPHG� DW� HQKDQFLQJ� UHVSRQVH� WLPH� LQ� WKH
UHSODFHPHQW�VLWH�FDQ�EH�FKHFNHG�DJDLQVW� WKH�ROG�YHUVLRQ� WR�VHH� LI� WKH\�DFWXDOO\
DFFRPSOLVK�WKDW�JRDO�

%HQFKPDUNLQJ� DQ� H[LVWLQJ� VLWH� DOVR� DOORZV� XV� WR� LQWHOOLJHQWO\� DQDO\]H� GLIIHUHQW
W\SHV� RI� WUDQVDFWLRQV� WKDW� XVH� GLIIHUHQW� WHFKQRORJLHV� WKDW� PLJKW� DIIHFW
SHUIRUPDQFH�� �)RU� H[DPSOH�� VRPH� SDJHV�PD\� XVH� G\QDPLF� KWPO�� GR� GDWDEDVH
TXHULHV�� OLQN� WR� OHJDF\� V\VWHPV�� RU� VHDUFK� FDWDORJV�� � 7KHVH� PLJKW� DOO� UHO\� RQ
GLIIHUHQW� WHFKQRORJLHV� WR�GR�ZKDW� WKH\�GR�VR�SHUIRUPDQFH�VWDQGDUGV�VKRXOG�EH
GLIIHUHQW�� � 7UDQVDFWLRQV� RU� SDJHV� WKDW� DUH� FULWLFDO� WR� FXVWRPHU� VDWLVIDFWLRQ� RU
FORVLQJ�VDOHV� FDQ�DOVR�EH� WLPHG� WR�PDNH� VXUH� WKHLU�SHUIRUPDQFH� LVQ¶W� LQKLELWLQJ
WKHLU�IXQFWLRQ�

7R� WLPH� WUDQVDFWLRQV� DFFXUDWHO\� ZH� QHHG� D� WUDQVDFWLRQ� SURILOH� ZKLFK� OLVWV� WKH
NLQGV�RI�WUDQVDFWLRQV�WKH�VLWH�SHUIRUPV�DQG�KRZ�RIWHQ�WKH\�DUH�SHUIRUPHG���7KH
DFFHVV�ORJ�UHFRUG�RI�SDJH�UHTXHVWV�LV�WKH�VRXUFH�IRU�WKLV�LQIRUPDWLRQ���+RZHYHU�
WKH�IUHTXHQF\�RI�UHTXHVWV�IRU�VSHFLILF�SDJHV�PD\�QRW�EH�GHILQH�WKH�WUDQVDFWLRQV
ZHOO� HQRXJK�� VLQFH� D� WUDQVDFWLRQ�PD\� WDNH� VHYHUDO� SDJH� UHTXHVWV� WR� FRPSOHWH�

6R�\RX�KDYH�WR�GR�VRPH�KDQG�FRGLQJ�DQG�JURXS�WKH�SDJH�UHTXHVWV�WRJHWKHU�LQWR
WUDQVDFWLRQV�

7DEOH���LV�D�IUHTXHQF\�WDEOH�RI�SDJH�UHTXHVWV�IURP�DQ�DFFHVV�ORJ�

7DEOH����3DJH�+LWV
3DJH +LWV 7UDQVDFWLRQ
� ����� KRPH
�VSODVK�MKWPO� ����� VSODVK
�VHUYOHW�FRP�VHUYOHW�6HDUFK6HUYOHW� ����� VHDUFK
�VHUYOHW�FRP�VHUYOHW�&DWDORJ6HUYOHW,PSO� ����� FDWDORJ
�FDWDORJV�VHDUFKUHVXOWV�MKWPO� ���� VHDUFK
�GKWPO�MKWPO� ���� KRPH
�FDWDORJV�IFDWJURXS�MKWPO� ���� FDWDORJV
�FDWDORJV�IFDWKLHUWDEQGKWPO�MKWPO� ���� FDWDORJV
�QGKWPO�MKWPO� ���� KRPH
�FDWDORJV�IFDWKLHU�MKWPO� ���� FDWDORJV
�FDWDORJV�QFDWJURXS�MKWPO� ���� FDWDORJV
�/RJLQ�� ���� ORJLQ
�FDWDORJV�SUR[\�MKWPO� ���� FDWDORJV
�RUGHULQJ�VKRSSLQJ�FDUW�MKWPO� ���� RUGHUV
�FDWDORJV�URRW�MKWPO� ���� FDWDORJV
�VHUYOHW�FRP�VHUYOHW�6KRSSLQJ&DUW6HUYOHW� ���� RUGHUV
�FDWDORJV�� ���� FDWDORJV
�� ���� KRPH
�FDWDORJV�DFURVJURXS�MKWPO� ���� FDWDORJV
�VHUYOHW�FRP�VHUYOHW�/RJLQ6HUYOHW� ���� ORJLQ
�RUGHULQJ�UDSLGRUGHU�MKWPO� ���� RUGHUV
�FDWDORJV�FKHPJURXS�MKWPO� ���� FDWDORJV
�SHUVRQDO�MKWPO� ���� SHUVRQDO
�FDWDORJV�IFDW�MKWPO� ���� FDWDORJV
�FDWDORJV�SRZHUVHDUFK�MKWPO� ���� VHDUFK
�VHUYOHW�FRP�VHUYOHW�5HIHUHU6HUYOHW� ���� UHIHUHU
�/RJLQ�UHJLVWHU�MKWPO� ��� ORJLQ
�VHUYOHW�FRP�VHUYOHW�2UGHU3ODFHPHQW6HUYOHW� ��� RUGHUV
�RUGHULQJ�� ��� RUGHUV
�VHUYOHW�8VHU$GPLQ� ��� DGPLQ

$�UHTXHVW�IRU�D�ILOH�LQ�WKH��FDWDORJV��GLUHFWRU\�JHQHUDOO\�PHDQV�D�WKDW�WKH�FDWDORJ
LV� EHLQJ� YLHZHG� E\� WKH� XVHU�� 6R� DOO� WKRVH� UHTXHVWV� EHFRPH� SDUW� RI� D� FDWDORJ
EURZVH�WUDQVDFWLRQ��7KH�H[FHSWLRQ�LV�WKH�VHDUFK�IXQFWLRQ��ZKRVH�DSSOLFDWLRQV�DQG
SDJHV�DUH�DOVR�ORFDWHG�LQ�WKH�FDWDORJV��GLUHFWRU\��7KHVH�SDJH�KLWV�FRQVWLWXWH�SDUW
RI�WKH�VHDUFK�IXQFWLRQ�

2QFH� DOO� WKH� SDJHV� DUH� FDWHJRUL]HG� LQWR� WUDQVDFWLRQV�� WKH� IUHTXHQF\� RI
WUDQVDFWLRQV�FDQ�EH�GHWHUPLQHG���7DEOH���LV�D�VDPSOH�WUDQVDFWLRQ�IUHTXHQF\�WDEOH�

7DEOH����7UDQVDFWLRQ�)UHTXHQF\
7UDQVDFWLRQ +LWV ��RI�+LWV
FDWDORJV ����� �����
KRPH ����� �����
VSODVK ����� ����
VHDUFK ����� ����
RUGHUV ����� ����
ORJLQ ���� ����
VXSSRUW ���� ����
DERXW ���� ����
DGPLQ ���� ����
VXSSOLHU ���� ����
SHUVRQDO ���� ����
UHIHUUHU ���� ����
UHJLVWHU ���� ����
ZKDWVQHZ ���� ����
KHOS ��� ����
VLWHPDS ��� ����
KRWOLVW ��� ����
WHPSODWH ��� ����
HUURU ��� ����
WWUDFNHU � ����

7KH�WUDQVDFWLRQ�SURILOH�GHWHUPLQHV�KRZ�PDQ\�RI�HDFK�W\SH�RI�WUDQVDFWLRQ�\RX�VHW
XS�XVLQJ�\RXU� DXWRPDWHG� WHVW� WRRO�� � 6R�� WKH� EHQFKPDUNV� \RX� U� X� Q�ZLOO�PLUURU
SDWWHUQV� RI� XVHU� EHKDYLRU� DQG�ZKHQ� \RX� LQFUHDVH� WKH�QXPEHU� RI� WHVW� XVHUV� WR
FKHFN�ORDG��\RX�ZRQ¶W�GLVWRUW�WKRVH�SDWWHUQV�

,I�WKH�UHVXOWV�VKRZ�QXPEHUV�WKDW�\RX�VXVSHFW�PLJKW�EH�D�SUREOHP��\RX�FDQ�FKHFN
WKHP� DJDLQVW� DYDLODEOH� LQGXVWU\� SHUIRUPDQFH� GDWD� RU� EHQFKPDUN� VLPLODU
WUDQVDFWLRQV�RQ�RWKHU�VLWHV��,I�WKH�VLWH�FROOHFWV�XVHU�IHHGEDFN��WKHQ�WKHUH�PD\�EH
LQIRUPDWLRQ� RQ� DUHDV� RI� WKH� VLWH� WKDW� DUH� SDUWLFXODUO\� VORZ�� ZKLFK� \RX� FDQ
FRUUHODWH�ZLWK� WKH� WUDQVDFWLRQ� UHVSRQVHV�� 7KH� FRQFOXVLRQV� GUDZQ� IRUP� WKLV�ZLOO
KHOS�JXLGH�WKH�VLWH�UHYLVLRQ�LQWR�DUHDV�ZKLFK�QHHG�DWWHQWLRQ�DQG�PDNH�VXUH�WKDW
RWKHU�DUHDV�SHUIRUP�DV�ZHOO�DV�WKH\�GLG�EHIRUH�

$VVXPLQJ�VLPLODU�WUDQVDFWLRQV�DUH�LPSOHPHQWHG�RQ�WKH�QHZ�VLWH��WKH�EHQFKPDUNV
FDQ�EH�XVHG�WR�VHH�LI�WKH�SHUIRUPDQFH�RI�VORZ�WUDQVDFWLRQV�KDV�LPSURYHG�DQG�WR
UHJUHVVLRQ�WHVW�RWKHUV�� �7KH�ROG�DXWRPDWHG�VFULSWV�PLJKW�QRW�ZRUN�EHFDXVH�WKH
SDJHV�DQG�REMHFWV�RQ�WKH�SDJHV�SUREDEO\�FKDQJHG���%XW�PRVW�RI�WKH�WUDQVDFWLRQV�
OLNH� ORJJLQJ� LQ�� VHDUFKLQJ�� EURZVLQJ�� DQG� EX\LQJ� VKRXOG� EH� WKH� VDPH� LI� WKH
UHGHVLJQHG�VLWH�GRHV�WKH�VDPH�WKLQJV�WKH�ROG�RQH�GLG�

&RQFOXVLRQ

7R�KDYH�GHFHQW��WHVWDEOH�ORDG�DQG�SHUIRUPDQFH�UHTXLUHPHQWV�ZH�KDYH�WR�DW�OHDVW
ILOO� LQ� WKH� WKUHH� EDVLF� EODQNV� RI� PD[LPXP� ORDG�� PD[LPXP� UHVSRQVH� WLPH�� DQG
PD[LPXP� HUURU� UDWH�� � 7KH� EDVLF� PHWKRG� IRU� GRLQJ� WKLV� LV� WR� JHW� DV� PXFK
LQIRUPDWLRQ� RQ� FXUUHQW� ORDG� DQG� SHUIRUPDQFH� DV� SRVVLEOH� DQG� FRPELQH� LW� ZLWK
IXWXUH�JRDOV�WR�IRUHFDVW�WKH�UHTXLUHPHQWV��'HSHQGLQJ�RQ�WKH�VLWXDWLRQ��ZKLFK�FDQ
UDQJH�IURP�D�EUDQG�QHZ�VLWH�WR�D�UHSODFHPHQW�IRU�DQ�H[LVWLQJ�RQH��WKH�TXDQWLW\
DQG� TXDOLW\� RI� DYDLODEOH� GDWD� ZLOO� YDU\�� ,¶YH� WULHG� WR� VXJJHVW� VRPH� VRXUFHV� RI
LQIRUPDWLRQ� DQG� PHWKRGV� WKDW� DQ\RQH� PLJKW� ILQG� XVHIXO� LQ� WDFNOLQJ� WKLV� WDVN�
+RZHYHU��,¶P�VXUH�WKDW�WKH�NQRZOHGJH�DQG�H[SHULHQFH�\RX�EULQJ�WR�WKH�WDVN�ZLOO
VXJJHVW�RWKHU�VRXUFHV�DQG�PHWKRGV�WKDW�ZLOO�HQKDQFH�WKH�VHW�RI�WRROV�ZH�KDYH�WR
GHDO�ZLWK�GHYHORSLQJ�ORDG�DQG�SHUIRUPDQFH�UHTXLUHPHQWV�

1

Are you ready to release?Are you ready to release?

Agenda

�� Complexity of Java environmentsComplexity of Java environments
�� Complexity of testing JavaComplexity of testing Java
�� Develop for testabilityDevelop for testability

2

What is Java software, anyhow?

�� Where does it fit on the Windows desktop?Where does it fit on the Windows desktop?
�� What’s an Applet and how is it deployed?What’s an Applet and how is it deployed?
�� What’s an Application?What’s an Application?
�� What is Java software made of?What is Java software made of?

Java’s Promise

�� It is used in many different placesIt is used in many different places
� Java Applets -- in browsers, applet-viewer
� Java Applications -- Sun and Microsoft VMs
� Java Runtime Environment (from Sun)

3

�� It is used in many different placesIt is used in many different places
� Java Applets -- in browsers, applet-viewer
� Java Applications -- Sun and Microsoft VMs
� Java Runtime Environment (from Sun)

Java’s Reality

Navigator, Explorer, Applet Viewer

4

Java Apps - programs on the desktop

�� Several possible environments.Several possible environments.
�� Each application is likely to be deployed in just oneEach application is likely to be deployed in just one

(or maybe two) environments on Windows(or maybe two) environments on Windows

Host OS

Microsoft
“J”VM

Sun
JVM

Sun
JRE

Java
Application

Web Server

Applets - Web apps running in a browser

�� Many pieces to this configurationMany pieces to this configuration
�� Before testing, know the target environmentsBefore testing, know the target environments
�� Regression testing is necessaryRegression testing is necessary

Host OS

Applet viewer

Sun’s
JVM

Applet

MSIE

Microsoft’s
JVM

Applet

Navigator

Netscape’s
JVM

Applet

Browsers

Sun’s
“Java Plugin”

Applet

5

Typical Internet Application Structure

Browser

E-Commerce
Clearinghouse

Commerce
Application

Commerce
Server

Business
Logic

Middle Tier
(JDBC...) Server

Web Pages
Forms

.

Web
Server

Data Base
Server

Web Pages
Forms

Custom Logic

Web
Server

Know this
for your
own application!

Typical E-Commerce Application Structure

6

Java software -- what it’s made of ?

�� GUI toolkit, drawing softwareGUI toolkit, drawing software
�� Foundation Class choices:Foundation Class choices:

� Custom classes
� Sun’s JFC / Swing
� Symantec Café
� MS AFC
� MS WFC

� Abstract Windowing Toolkit
underneath other display classes

Host OS

Java Virtual Machine

Native Display software
(“AWT Peer Classes”)

Foundation
Class Lib AWT

2nd-gen
Java
App

1st-gen
Java
App

Java software -- what it’s made of ?

Host OS

Java Virtual Machine

Native Display software
(“AWT Peer Classes”)

Foundation
Class Lib AWT

2nd-gen
Java
App

1st-gen
Java
App

Java Development Kit version
(1.0.3, 1.1.6, etc)

Java Virtual Machine version
(1.0.3, 1.1.6, Microsoft, etc)

Host Environment

7

Java software -- what you have to know!

Host OS

Java Virtual Machine

Native Display software
(“AWT Peer Classes”)

Foundation
Class Lib AWT

2nd-gen
Java
App

1st-gen
Java
App

Before beginning a testing project, get
some answers about the software

•Application? Applet?

•What Foundation Class set?

•Any custom display classes? (What
development IDE?)

•What JDK version ?

•What deployment browsers (applets)?

•What OS platforms?

Internet Time

January-$18$5<

February March

June

January

April May

SeptemberJuly

October

August

DecemberNovember

SeptemberJuly

October

August

DecemberNovember

<($5

8

Agenda

�� Complexity of Java environmentsComplexity of Java environments
�� Complexity of testing JavaComplexity of testing Java
�� Develop for testabilityDevelop for testability

Recall what you have to communicate...

�� RequirementsRequirements
�� Test Plan andTest Plan and

coveragecoverage
�� Test ScriptsTest Scripts

�� Defects - includingDefects - including
state, priority, systemstate, priority, system
configconfig., etc.., etc.

�� Regression resultsRegression results

9

To effectively test Web Apps, you MUST

�� Be able to tell how far we had tested against the Be able to tell how far we had tested against the currentcurrent
system system requirementsrequirements in the test plan in the test plan

�� Check for Check for reliability reliability automatically with each new buildautomatically with each new build

�� Create test scripts for new functionality Create test scripts for new functionality quickly and easilyquickly and easily

�� Make test scripts on one iteration and Make test scripts on one iteration and keep usingkeep using them on them on
all of themall of them

�� Use one set of test scripts for Use one set of test scripts for all configurationsall configurations

�� Load testLoad test with confidence and ease with confidence and ease before deployingbefore deploying

�� Communicate Communicate the results andthe results and share share the test assets andthe test assets and
metricsmetrics

Steps in Functional Regressions Testing

2. Run tests Video Clip

OK

Find

 Run script

View results

Report
defects

Iterate

1. Create test scripts

Select requirement

Record actions

 Insert validation

 Edit script
(optional)

10

Track dynamic requirements

�� Understand the requirements toUnderstand the requirements to
create the testcreate the test

�� Report coverage againstReport coverage against
currentcurrent requirements requirements
�Where do results still apply?

�� Track and documentTrack and document

Video Clip

OK

Find

Report
defects

 Run script

View results

Iterate

� Object recording required to make test scripts robust
�When application changes
� Across configurations

Track System-Under-Test Changes

�� Objects can change inObjects can change in
� Appearance
� Content
� Location
� Timing

11

Web Content Requires Object Testing

Object-oriented
recording does it
right, based on
W3C Document
Object Model.

Object-oriented
recording does it
right, based on
W3C Document
Object Model.

Can not record
targets
Can not record
targets

Server generates
unique target for
every transaction

Server generates
unique target for
every transaction

Must have
persistent link
names and let
server use real
targets at runtime

Must have
persistent link
names and let
server use real
targets at runtime

Object Testing on Java

Object properties are
stateful at runtime
Object properties are
stateful at runtime

Accurate, reliable
navigation on Java
objects (even tabs,
trees, …)

Accurate, reliable
navigation on Java
objects (even tabs,
trees, …)

Lots of data, even
hidden (e.g. in Sun
Swing JTables)

Lots of data, even
hidden (e.g. in Sun
Swing JTables)

12

PerformancePerformancePerformance

Test All Dimensions of Quality

ReliabilityReliabilityReliability

FunctionalityFunctionalityFunctionality

Agenda

�� Complexity of Java environmentsComplexity of Java environments
�� Complexity of testing JavaComplexity of testing Java
�� Develop for testabilityDevelop for testability

13

�� Naming of Java objects: Naming of Java objects: flattenflatten out the subdivision out the subdivision
hierarchyhierarchy; do not depend on inheritance; do not depend on inheritance
� E.g. “JavaPanel; JavaIndex=11” include Label & PushButton

Developing Java to enhance testability

Developing Java to enhance testability

�� Give the Java Give the Java objects namesobjects names; set the ; set the namename member member
variable -- optional -- increases testability byvariable -- optional -- increases testability by
allowing object recognition by name.allowing object recognition by name.
� For example, in AWT:
RUGHU%XWWRQ�QDPH� �³�3ODFH�2UGHU´�

�… in JFC:
RUGHU%XWWRQ�DFFHVVLEOH1DPH� �³3ODFH�2UGHU´�

14

Developing Java to enhance testability

�� Derive your custom Java object classes fromDerive your custom Java object classes from
standard JFC / AWT classes -- a good GUI testingstandard JFC / AWT classes -- a good GUI testing
tool recognizes the object as an instance of thetool recognizes the object as an instance of the
standard objectstandard object from which it is derived from which it is derived

�� Put testability information into public memberPut testability information into public member
variables in your Java objects -- a good GUI testingvariables in your Java objects -- a good GUI testing
tool sees these public members as tool sees these public members as objectobject
propertiesproperties..

Are you ready to release?Are you ready to release?

1

A Finmeccanica Company

Page 1

Authors: L.Lattanzi, M. Musmeci

Quality Week ‘99 May 24-28 San Francisco, Ca

A Finmeccanica Company

Overview of a Global Navigation Satellite Augmentation System

Processing and
Monitoring & Control Centre

Network of Navigation Message Up-link Stations

GPS/GLONASS
Constellations

Geo-stationary
Satellites

Network of Reference stations over the served geographical region

GPS
Constellation

Aviation Users
Maritime Users

Land Mobile Users

Nav. Message Broadcast

2

A Finmeccanica Company

Page 3

Approach to Safety Critical S/W Systems
For Critical Real-Time S/W with high level of
automation, the size, the complexity and the required
effort necessarily increase.

How to approach ?

Am I Safe?

A Finmeccanica Company

Page 4

I’m Safe!
Overall Management

Complexity,
size, effort

Integrity,
Continuity

A rigorous process, from specifications to final deployment
and maintenance, becomes mandatory to guarantee the

required level of safety in accordance with applicable
certification requirements. This goal has to be achieved

Approach to Safety Critical S/W Systems

3

A Finmeccanica Company

Methodology
Dependability and Safety issues have to be considered

in all their aspects and in all phases of the project.

The goals of RAMS activities are:
• to demonstrate that reliability, availability,
 maintainability, and safety targets are met;
• to identify all technical risks;
• to define risks reduction and control measures;

RAMS main assessments:
• Qualitative Requirements (for integrity and continuity);
• Quantitative Requirements;

A Finmeccanica Company

S y s t e m D e s i g n

F u n c t i o n a l A n a ly s is

S / W C r i t i c a l i t y
A n a l y s i s

R A M S R e q u i r e m e n t s
a p p o r t i o n m e n t

Q u a l i t a t i v e R A M S
A s s e s s m e n t (S E E A , S F T A ,

Im p a c t o f o p e r a t i o n a l
c o m m a n d s o n s a f e t y)

Q u a n t i t a t i v e R A M S
A s s e s s m e n t

(R A M S m o d e l s)

M i n im is a t i o n o f s in g l e p o in t
f a i lu r e

C r i t i c a l i t e m s l i s t

E l im i n a t i o n a n d
M i n im is a t i o n o f c r i t i c a l

is s u e s

R A M S r e p o r t i n g

O b j e c t i v e s
a c h ie v e d ?

E n d

− S C A
− In i t i a l c r i t i c a l i t e m s l is t

− S E E A
− S F T A
− A n a l y s i s o f i m p a c t o f

o p e r a t i o n s a n d c o m m a n d s o n
s a f e t y

− R A M S m o d e l l in g a n d
c a lc u la t i o n

− In i t i a l d e p e n d a b i l i t y
r e c o m m e n d a t i o n s s t a t u s lo g .

− S a f e t y c r i t i c a l I t e m s l is t

− S a f e t y r e c o m m e n d a t i o n s
s t a t u s l o g .

− R A M S r e p o r t s

I t e r a t i v e p r o c e s s M a i n o u t p u t d a t a

y e s

n o

In i t i a l R A M S P l a n

RAMS Process

4

A Finmeccanica Company

Page 7

Mitigation Techniques

The Mitigation Technique (MT’s) are possible course
of actions with the goal of removing, or at least to reduce,
the criticality level of a system or part of it.
There are different techniques for each phase of the
software life cycle and for each specific activity;
A possible classification is the following:

• General guidelines and methodologies;
• S/W Specification and Design techniques;
• S/W Development techniques;
• S/W AIV techniques;

A Finmeccanica Company

Page 8

Examples of Mitigation Techniques on
S/W Specifications and Design

• Constraints on S/W Engineering methodology;
• Design and Functional Redundancy (diversification);
• Consistency Check (safety monitoring);
• Partitioning (isolation of critical functions);
• Constraints on used S/W COTS and re-used S/W;
• Prototyping and Simulation;
• Specific Operational Procedures;

5

A Finmeccanica Company

Page 9

Compute
A

Com pute
A

Check
 if

A = A

Inputs

A

A

Output

Alarm

Software
Diversification

Safety
monitoring

A

Operational Procedures

A Finmeccanica Company

• Code structure verification coverage;
• Representative AIV Environment (real S/W instead
 of simulator or stubs, real platform, real scenario);
• Constraints on AIV tools (simulators, emulators,
 use of COTS test tools);
• Operational Procedure (OP’s) verification and
 validation (operator checks, alarms acknowledgement,
 tests of OP’s while testing S/W);

Examples of Mitigation Techniques on AIV

COTS

Code structure

Representative AIV environment
Operational Procedures

V&V
Constraints on

AIV COTS

6

A Finmeccanica Company

Page 11

Software Verification
To detect and report errors that may have been introduced
during S/W development process:
1) Reviews and Analysis Activities

• Technical and Management reviews;
• Walkthrough and Inspections;
• Reporting;

2) Audits to S/W development team;

• Through the whole S/W life cycle and system

4) Testing Activities
• Compare expected and actual results;
• Demonstrate the absence of unacceptable errors;

A Finmeccanica Company

Page 12

Management Issues

The management is fundamental in both making decisions
and in monitoring the project progress.

There two main branches:

1)- Trade-off analysis in making decisions;
2)- Risk Management activities for the whole S/W life cycle;

7

A Finmeccanica Company

Page 13

Trade-off analysis in making decisions

The objective is to select the “best” solution to meet the
safety requirements while controlling the growing
complexity and corresponding costs/resources.
The selection is driven by two needs:

• Improve the reliability and robustness of the system;
• Keep under control the cost increase, affected
 performance and increased size of the system itself;

Certification Req’s
Safety Req’s

RAMS results Req’s
MT’s Benefits

Available Budget
Available Resources

Feasible Performances
MT’s Drawbacks

A Finmeccanica Company

Risk Management:

 Risk is a measure of the probability and
consequence of not achieving a defined program goal.

 Risk Management is a systematic approach to
support program management in the optimisation of
program resources with the purpose to identify, assess,
reduce, prioritise, control, document and communicate the
risks involved in a program with reference to cost, schedule

Risk Definition

Risk Management goal

8

A Finmeccanica Company

Page 15

The Risk Management Process includes the following

1) Definition of the Risk Management Policy;
2) Identification and Assessment of the Risks;
3) Reduction of the Risks and/or their Acceptance;
4) Monitoring, Communication and Acceptance
 of the Risks.

Risk Management process

Although there is a logical flow
in the process, Risk Management
is an iterative process with considerable
interaction and feedback among the process elements.

A Finmeccanica Company

Conclusions
For Safety critical S/W systems some of the normal
engineering practices have to be improved, expanded
and constrained by certification and safety requirements.
The Management is in charge to adopt specific
mitigation techniques and to set-up risk management
process, by means of a complex trade-off between
cost issues and technical needs, without compromising
on the quality and timeliness of the project.
In doing this exercise the already gained experience and
the already consolidated company standards have to be
followed to the maximum possible extension.

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 1 of 23

1. The Challenge of Safety Critical Developments

There are projects where safety critical real-time software is a strategic issue.
Automated systems like auto-pilots, fly by wire, breaking systems, speed control systems
are dramatically increasing in size and complexity. It is therefore becoming more and more
necessary to develop them using a rigorous process from specification to final system
deployment. With this level of complexity only developers who master such a process can
be expected to develop systems which will guarantee the required level of safety in
accordance with certification requirements.

In addition, the formal process allows to control costs and personnel resources.
Then the real challenge for the project leaders will be to increase the productivity of their
development team without compromising on the quality and timeliness of their project.

1.1 Principles of a Global Navigation Satellite System

GPS and/or GLONASS, when used in an autonomous way, cannot cope with the
very strong integrity requirements of civilian aviation users, and the availability and
accuracy of these systems are not high enough for some of the more critical flight phases.
The civilian aviation authorities requirements have therefore presently given a boost to
three programs with the aim of making up for these shortcomings, namely the systems
WAAS (Wide Area Augmentation System) in the USA, EGNOS (European Geostationary
Navigation Overlay System) in Europe and MSAS (Multi-functional transport Satellite-
Based Augmentation System) in Japan. Each of these three systems, which are all
compatible and inter-operable, consists of the following main elements:
• A ground network of "Reference Stations" for observing the GPS and/or the

GLONASS constellations;
• A Processing Facility/ ies to collect these data and to compute the correction and to

perform the augmentation (this is the kernel of the system where ad-hoc algorithms are
used to compute the navigation message);

• A Ground Network of "up-link stations" for the navigation message up-link to the
Geostationary satellites;

• The Geostationary satellites in charge to broadcast the GPS-like navigation message
containing the integrity-related information and additional corrections received from
the observation network;

A civil aviation user, maritime or land-mobile user, is able, by means of a
compatible reception equipment, to receive the navigation message with high level of
accuracy, continuity, integrity and availability requirements.

These systems then will provide a regional wide-area augmentation of the current
standard positioning systems service (GPS and GLONASS) to the levels required for
Category 1 precision approach for civil aviation.

In the rest of this paper the generic navigation system, when used as an application
example, will be called GNSS (Global Navigation Satellite System).

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 2 of 23

GEO synchronous
Satellites

Space
Segment

GNSS
User

Segment

Space
Segment

GNSS
Ground

Segment

GNSS

Reference
Stations

Network of

GPS Constellation

Reference Station

GNSS Wide
Area Network

GLONASS Constellation
(optional)

()
GEO synchronous
Satellites

GPS
GLONASS (optional)

()

Reference Station Reference Station

Processing
Monitoring and
Control
Centers

Network of
Navigation
Message
Up-link
Stations

Figure 1.1-1: Navigation Satellite Augmentation System

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 3 of 23

2. RAMS Methodology
Dependability and Safety are inherent characteristics of any system, this is even

more true for a safety critical system.

Dependability and Safety issues have to be considered in all their aspects, in all
phases of the project. To ensure a successful mission, the objectives of Reliability
Availability Maintainability Safety (RAMS) activities are:

• to demonstrate that reliability, availability, maintainability, and safety targets
are met,

• to identify all technical risks,
• to define risks reduction and control measures.

This is a continuous and iterative process which has to be reiterated through the
design, development and integration/validation processes. The RAMS process can be seen
as the result of two branches: the qualitative assessment and the quantitative assessment.
The objectives of them are described here below.

The aim of the qualitative assessment is to support the design (e.g. supporting
software classification) and to justify the compliance with the qualitative requirements
such as: in a GNSS system there must be no single software failure leading to loss of:

• system integrity (considered as a catastrophic event),
• system continuity (considered as a critical event),

The quantitative assessment has two essential objectives :
• to ensure compliance with the quantitative requirements,
• to identify and focus on the critical items for the RAMS parameters.

The main objective of RAMS analyses which have to be performed on the system
is to ensure that both quantitative and qualitative requirements are met.

The various techniques used are shortly discussed in order to have an overview of
the various steps which lead to the identification and isolation of the most critical S/W
components within a system. The following flow-chart summarises the overall RAMS
process, highlighting the main activities and the related outputs.

Definitions
Integrity : the assurance that all functions of a system perform wit hin operational limits. Integrity is the

ability of the navigation system to provide timely warnings to users when the system should
not be used for navigation. The integrity risk is the probability of an undetected failure which
will result in the loss of the specified accuracy

Continuity : the ability of the navigation system to provide its service without interruption during an
operation. More specifically, continuity of (service of) a system is the probability that the
system will be available for the duration of a phase of operation, assuming that the system was
available at the beginning of that phase of operation.

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 4 of 23

System Design

Functional Analysis

S/W Criticality
Analysis

RAMS Requirements
apportionment

Qualitative RAMS
Assessment (SEEA, SFTA,

Impact of operational
commands on safety)

Quantitative RAMS
Assessment

(RAMS models H/W only)

Minimisation of single point
failure

Critical items list

Elimination and
Minimisation of critical

issues

RAMS reporting

Objectives
achieved ?

End

− SCA
− Initial critical items list

− SEEA
− SFTA
− Analysis of impact of

operations and commands on
safety

− RAMS modelling and
calculation (H/W only)

− Initial dependability
recommendations

− Safety critical Items list

− Safety recommendations
− Identification of Mitigation

Techniques

− RAMS reports

Iterative process Main output data

yes

no

- Initial RAMS Plan

Figure 2-1: RAMS Process

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 5 of 23

2.1 S/W Criticality Analysis

The standard normally used when a software package is to be certified for usage
related to safety critical airborne application is the RTCA DO178-B. According to this
standard all the S/W components are classified in one of the following categories:

Level A : S/W whose anomalous behaviour, as shown by the sy stem safety assessment
process, would cause or contribute to a failure of system function resulting in a
catastrophic failure condition for the aircraft.

Level B: S/W whose anomalous behaviour, as shown by the system safety assessment
process, would cause or contribute to a failure of system function resulting in a
hazardous/severe-major failure condition for the aircraft.

Level C : S/W whose anomalous behaviour, as shown by the system safety assessment
process, would cause or contribute to a failure of system function resulting in a
major failure condition for the aircraft.

Level D : S/W whose anomalous behaviour, as shown by the system safety assessment
process, would cause or contribute to a failure of system function resulting in a
minor failure condition for the aircraft.

Level E : S/W whose anomalous behaviour, as shown by the system safety assessment
process, would cause or contribute to a failure of system function with no effect
on aircraft operational capability or pilot workload.

In the context of a GNSS project the above failure conditions can be categorised as follows

Failure Condition (DO178B) Meaning within the project
Catastrophic Loss of integrity of the Navigation System
Hazardous/Severe-Major Loss of continuity of the Navigation System
Major Continuity risk is exceeded
Minor Loss of system budget margins for continuity
No Effects Services Accuracy, Availability, Continuity, Integrity

performed with reduction of margins

In order to obtain the proper classification for each S/W component a Software
Criticality Analysis (SCA) is performed. The resulting S/W classification has a major
influence on the development process.

The SCA is a joint activity between the disciplines of product assurance,
engineering and operations. Specialist of these three disciplines work together to optimise
the design and to improve safety and reliability of the system.

The categorisation applies to S/W components “involved” in critical functions. The
categorisation scheme is Configuration Item (CI) oriented, i.e. each S/W component
identified in the product tree is analysed.

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 6 of 23

Definition: for a given system design a S/W component p is involved in a function F if and only if any
failure of p may result in a failure of F or in a degradation of the implemented failure tolerance for F. A S/W
failure is defined as inability of a S/W component p to perform its required function within specified limits.

If the anomalous behaviour of a S/W component contributes to more than one
failure condition, then the most severe failure condition category of that component
determines the S/W level for that S/W component.

Initially, the system safety assessment process determines the software level(s)
appropriate to the software components without regard to the system design. Only the
impact of failure, both loss of function and malfunction, is addressed when making this
determination.

There are various architectural strategies, which during the evolution of the system
design may result in the S/W level(s) being revised.

2.2 System Architectural Considerations

If the system safety assessment process determines that the system architecture
precludes anomalous behaviour of the S/W from contributing to the most severe failure
conditions of a system, then the S/W level is determined by the most severe category of the
remaining failure conditions to which the anomalous behaviour of the S/W can contribute.

The system safety assessment process considers the architectural design decisions
like partitioning, multiple-version dissimilar software or safety monitoring to determine
whether they affect S/W level or S/W functionality. Those architectural design decisions
will be discussed in more details in para. 3.2.2

2.3 Software Error Effects Analysis (SEEA)

The purpose of the S/W Error Effects Analysis (SEEA) is to evaluate S/W
components for potential impacts of S/W failure modes on other design elements, on
interfacing components or on functions of the S/W component, especially those that are
critical. The major objective of the SEEA is to evaluate the design for error propagation
and error effects.

The analysis outcome will be recommendations to the design team in order to
minimise the effects of S/W errors and help reducing the probability of failures
propagation.

Compared to the SCA which is top-down analysis which considers the S/W
components as black-boxes, the SEEA is an additional in-depth analysis that goes in much
more details analysing the actual S/W design objects in a bottom-up approach starting with
the assumed failure modes of the lowest objects, determining the effects on higher level
components which in turn may result in failure modes to be considered for these higher
level objects.

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 7 of 23

2.4 Software Fault Tree Analysis (SFTA)

Fault tree analysis (FTA) is a static deductive failure analysis which provides a
method for determining causes of a predefined top-level event (usually a state that is
critical from a safety or reliability point of view). The Software fault Tree Analysis
(SFTA) has the objective to investigate the S/W design for possible causes of assumed
unacceptable states of the S/W product.

The purpose of SFTA is to support and complete the SEEA with respect to failure
combinations of design elements.

The basic procedure for the SFTA is to assume that a S/W fault has occurred in the
S/W product and then to analyse backward the S/W design to determine a set of events as
possible causes. It is important to understand that a fault tree is not a model of all possible
causes of system failures. The choice of the top events is important for the final result of
the analysis. If it is too generic the analysis becomes unmanageable; if it is too specific
then the analysis fails in providing a sufficiently broad view of the S/W system. The fault
tree has to be carefully tailored to the chosen top events which correspond to some
particular S/W failure modes.

Basis for SFTA is the architectural design and its analysis as performed in the
SEEA. The top events must be chosen to support the objective of the SFTA to investigate
on critical combinations of failure modes identified in the SEEA for terminal objects.

2.5 Software Verification Process

The purpose of the Software Verification process is to detect and report errors that
may have been introduced during the software development process.

Software Verification is an integral process performed concurrently with the
software development processes throughout the software life cycle.

The verification activities consist of:
• Reviews and analysis activities, Technical reviews, Walkthrough, SW inspections
• Audits
• Traceability
• Testing activities

 Review and analysis activities are basically performed on all products of the S/W Life
Cycle:

• Users Requirements Document
• Software Requirements Document
• Architectural - / Detailed Design Document
• Source Code
• Integration process
• Test Cases, Procedures and Results
• Transfer phase and Maintenance

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 8 of 23

2.5.1 Software Reviews and Analysis

Each development process (e.g. SW Requirements Development Process) can be seen as
two concurrent subprocesses:

• a process that creates the life cycle documents/data

• and the Review & Analysis process that verifies the created life cycle data for
correctness, for adherence to standards, etc.

Life Cycle
Data

Review
Results

Life Cycle
Data

Input
Data

Checklists

Life Cycle Data
Production

Review & Analysis
of Life Cycle Data

 Fig. 2.5.1-1 Structure of Development Processes

One distinction between reviews and a analysis is that analysis provide repeatable
evidence of correctness and reviews provide a qualitative assessment of correctness.

• A review consists of an inspection of an output of a process guided by a checklist or
similar aid.

• An analysis examines in detail the functionality, performance, traceability and
safety implications of a software components, and its relationship to the
components within the airborne system or equipment.

Reviews and analyses are thoroughly applied to the results of each software
development process and software verification process. The SW verification process is
performed on all SW levels but the verification methods are tailored to take into account
the assigned SW Category.

2.5.2 Tests

Testing is the process of exercising or evaluating a system or system component, by
manual or automated means, to:

• confirm that it satisfies specified requirements
• identify differences between expected and actual results
• demonstrate with a high degree of confidence that errors which could lead to

unacceptable failure conditions have been removed.
• demonstrate the correct functioning of the S/W together with the operational

procedures in the real environment

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 9 of 23

2.5.3 Independence

For A and B S/W levels independence is required by the imposed standard. The degree of
independence can vary depending upon the criticality of the performed function. The
degree of independence can range from subcontracting the whole verification process for a
specific S/W application to a third party to having the verification process implemented by
different teams from the same organisation, provided independence is demonstrated.

2.6 Tools selection

When talking about the verification process of a complex system the need for using
some automatic tool often arises. In a project governed by a standard like the DO-178B the
decision of using a tool and its selection process have to be carefully planned.

When a verification tool is going to be used it is important to make a careful
assessment of the tool's accuracy, both in terms of its function and its output.

Whilst the process of determining that a tool performs its intended function with the
required degree of accuracy may appear to be one that most people could approach with a
high degree of confidence, there are some subtleties related to tool performance that may
cause unforeseen problems.

It is very important to correctly evaluate the tools functionalities in order to make
sure that they actually cover the projects needs. This implies that one of the first processes
associated with tool selection should be an assessment of the project objectives, defined in
the applicable standard, that are intended to be implemented by using the tool compared
with the vendor’s description of the tool’s functionalities to establish the level of coverage.

Whilst the principle stated above may appear to be an obvious one, the task of
comparing the vendor’s description of the tool’s functionalities against the project
objectives can, sometimes, be very difficult if the objectives are not readily understood.

Several vendors supply tools with additional verification functions for which no
standard definition exists. These functions are often given names that have generally
accepted engineering interpretations but which have no industry standard definition. If a
tool is equipped with functions for which there is no standard definition it is unwise to
make assumptions about the way in which the function has been implemented. Making
such assumptions can lead to two main problems, incorrect interpretation of the tool's
output and inadequate supporting procedures for the tool. The interpretation of a tool's
output is, necessarily, based upon the user's understanding of the tool's function. If an
incorrect assumption has been made about the tool's function the interpretation of its output
will be equally flawed. If the output of the tool is being used for a function that requires
certification credit this error can have a serious effect on the certification programme.

Another common mistake which can be done when choosing a tool is believing that
buying a tool replaces the need to understand how to perform the function the tool has been
bought to do. Basically thinking that buying a tool also buys a process is a very risky
assumption which can seriously jeopardise the activity.

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 10 of 23

3. Mitigation Techniques

Some of the possible course of actions useful to reduce the criticality level will be
presented. Design and/or development diversification, introduction of consistency checks
and “ad-hoc” operational procedures are some examples of what could be done bearing in
mind that the right balance between robustness and simplicity of the S/W has to be
achieved.

3.1 Why and how to adopt mitigation techniques

After the criticality level identification of a given S/W system or of a component of
it, the next step is represented by the adoption of specific mitigation techniques aimed to
the reduction of the risk associated to the S/W element. The mitigation techniques can be
also adopted with the sole aim to control the criticality and to isolate the potential risk.
This can be the only feasible solution for the specific case where it is impossible to
completely remove the risk itself.

It is important to underline that the Safety Analysis and the Risk Assessment
process outputs may indicate, in addition to the allocation of the S/W levels to each S/W
element, the acceptable failure levels for each identified hazard and for each S/W element.
It can be the case that for some specific S/W element a Major failure can be accepted if
limited by means of barriers to keep the effects of the faults on the rest of the system under
pre-defined thresholds.

3.2 What are the possible techniques

3.2.1 General techniques and guidelines

As first set of mitigation techniques we can identify general guidelines and
methodologies to be adopted with different emphasis on a case by case basis, they can be
summarised by the following list:

1. Applicable Certification requirements and standards
2. Skill and experience of the involved S/W Team
3. Documentation requirements for all the S/W phases
4. Requirements full-traceability through the whole S/W life cycle

For each of these general guideline a brief description is given in the following pages.

Applicable Certification requirements and standards

This approach is adopted each time there is a specific exigency to follow an already
define standard for certification purposes. This constraints is usually imposed by the

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 11 of 23

customer or by the final user of the S/W system or by a third part acting as certification
authority for specific application. For this reason the only degree of freedom, in adopting
the mitigation techniques stated in the standard, is represented by the identification of the
S/W system components for which the standard, or its specific requirements, have to be
followed. This exercise can also identify different levels of applicability of the standard
itself (e.g. see the S/W levels defined in the DO178B). Each S/W component shall be then
associated to a specific level of applicability and to a corresponding "severity" in
respecting the standard requirements.

Skill and experience of the involved S/W Team

This is more a mandatory requirement, rather than a guideline, for the team
responsible for the safety critical S/W design and development. This requirement includes,
obviously, also the Management and QA/PA teams. At least the key persons of the
involved team have to be already skilled and trained on the adopted standards and on the
safety system development, even if on different areas of application.

Documentation requirements for all the S/W phases

The documentation requirements, even if usually already defined in the adopted
standards, have to be carefully managed in order to provide the right level of
documentation of the S/W and avoiding, at the same time, a proliferation of documents that
can vanish the effort spent in the direction of a complete description and traceability. In
addition to the basic S/W documentation, we consider the periodic reporting one of the key
elements in the documentation requirements. The periodic reports are the best mean to
monitor the progress of the S/W project, they provide evidence on the actual progress and
allow to compare it with the predicted/scheduled one. The periodicity of the reporting
activities can be tuned depending on the specific peculiarity of the project. A good practice
is to adapt the reporting periodicity to the different phases, reducing the reported period
when the phase is considered more critical wrt the overall project.

Full-traceability of the Requirements through the whole S/W life cycle

The full traceability of the S/W requirements through the whole S/W life cycle is
fundamental. It must be possible to trace each top level requirement (i.e. the user
requirement) through the S/W architecture and the test related activities, this traceability
can become complex for large S/W systems in which the architecture foresees the
breakdown in different hierarchical levels and the tests are performed at different levels
corresponding to different steps of a progressive integration and validation. The
traceability also allows to allocate requirements to the Software, to the Hardware and
partially to the operational procedures to be followed in using the Software/Hardware. This
will allow a full verification of the requirements involving, for each of them, the right
component/s and test case/s.

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 12 of 23

3.2.2 Techniques for Specifications and Design

In the frame of the Software specification and design activities, several mitigation
techniques can be adopted for safety related S/W components:

1. Constraints on S/W Engineering methodology;
2. Design diversification;
3. Functional redundancy (S/W diversification);
4. Consistency checks functions (safety monitoring);
5. Partitioning of the S/W functions;
6. Constraints on used S/W COTS;
7. Constraints on re-used S/W;
8. Prototyping (to better understand the S/W requirements and to mitigate the

development and technical risks, specifically the MMI aspects are a good example
for prototyping activities);

9. Specific operational procedures and requirements;

Constraints on S/W Engineering methodology

The design of the safety critical Software has to be performed with specific
constraints also on the used Computer Aided Software Engineering (CASE) methodology
and corresponding tool. The exigency to have a total visibility of the software structure and
a fully predictable behaviour of the software can limit the use of more recent CASE
methodology, as the object oriented one.

Design diversification

This is one of the most important decision to be taken in implementing the
mitigation techniques during the software design. Some specific system components or
software module can be diversified and designed, starting from common specifications,
with different architectural solutions in two or more ways in order to minimise the risk of
common failures due to the adopted design solution.

In a GNSS system, the reference stations, in charge to collect the GPS, are a good
example of system elements to be diversified with different "stations types". The
specifications can be common but the design and the development has to be in charge to
different companies using different computers, software operating systems and
programming languages. This solution allow to minimise the risk of common failures in
the different designs.

The aim of diversification is to fight against common mode failures. Two different cases needs to
be considered for a GNSS project:

• common mode failures leading to non integrity
• common mode failure leading to non continuity.

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 13 of 23

Diversification for integrity
In case of equipment for which common mode failure potentially leads to non integrity, the
following diversification rules can be applied:

1. They can use the same hosts platform.
2. They can use the same analysis method and tool.
3. They can use the same design method and tool.
4. They can use the same programming language.
5. They cannot use the same algorithm.
6. They cannot use the same OS and libraries.
7. They cannot use the same CPU.

It is important to highlight that these two last items only applies if the two equipments are
potentially using the same set of data. The diversification required in algorithms needs to
be expressed in specification of algorithms documents. The rationale is that the main driver
here is the algorithms but item 6 and 7 are to protect from bugs or flaws which are data
dependent (Ex. Pentium floating point operator error).

Diversification for continuity
In case of equipments for which common mode failure potentially leads to non continuity,
the following diversification rules can be applied:

1. They can use the same hosts platform
2. They can use the same analysis method and tool
3. They can use the same design method and tool
4. They can use the same programming language
5. They cannot use the same algorithm
6. They cannot use the same OS or libraries.
7. They can use the same CPU

Item 7 is there because it is considered that a potential simultaneous failure of all CPU of a
given type leading to a stop of all computers using this CPU type is impossible. Here again
the main driver is the algorithms but item 6 is there to protect against year 2000 or GPS
time roll-over problems.

Functional redundancy (S/W diversification)

The diversification can also be restricted to the S/W without involving the
Hardware in which the software is installed: In this case we speak about functional
redundancy. From this point of view it can be considered a sub-case of the design
diversification. The functional redundancy is introduced when the software function is
considered critical and the other mitigation techniques are not considered enough to reduce
the safety risk. The software function is then at least duplicated (this is the typical case) in
order to obtain two pieces of software performing the same task. In particular cases, in
which the software uses complex algorithms, the design diversification can imply the use
of software performing the same task but using different algorithms. A cross check of the
outputs provides evidence of consistency and correctness of the computed data while, in
case of failure of one of the software algorithm, the other algorithm is assumed to be not
affected by the same bug.

In a GNSS System the functional diversification can be adopted in the processing
of the reference station data (inside the Processing facilities) and in the preparation of the

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 14 of 23

mission performance monitoring data to be provided to the ATC domain (inside the M&C
facility).

Consistency checks functions (safety monitoring)

The adoption of the software diversification requires the introduction of a check
function in charge of comparing the outputs of the diversified software in order to detected
any deviation and discrepancy. The consistency check function can also be adopted for
other purposes, independently by the diversification adoption. In specific case could be
useful to check input and/or output data in order to detect any inconsistency when it may
have impacts on safety. This check function can be a workaround for all the cases in which
it is not possible to totally remove the risk. In this specific case can be enough to alert the
data "consumer" about the possible data inconsistency without stopping the software. This
notification in term of "do not use data" can be sufficient for transient periods without
major safety impacts and impacting only the continuity requirements.

Partitioning

The partitioning is a technique for providing isolation, between functionally
independent software components, to contain and isolate faults and potential safety risks.
The partitioning can force the software designer to isolate a specific software function even
if it could take benefit in sharing resources and common services with other software
functions. The partitioning is then resulting on a cost increase and for this reason it has to
be adopted with special care. The partitioning is usually more adopted for hardware
resources when they are totally allocated to critical functions avoiding concurrency and
potential overlapping of failures coming from other functions. As an additional major
benefit, coming from the adoption of partitioning, it has to be mentioned the verification
effort that can be reduced and optimised in focusing on the most severe failure condition
category associated with each partitioned component.

A GNSS System can adopt the partitioning especially for the communication
software and hardware for which dedicated and isolated resource can be foreseen for the
Front-End Equipment in each Ground Segment Facility.

Another example of partitioning can be found inside the M&C Facility. The
functions in charge to the Ground Segment M&C and to the Mission Performance
Monitoring control have to be totally de-coupled and using separated computers.

Constraints on used S/W COTS

The use of Commercial Off The Shelf (COTS) software in implementing specific
function is a good practice in order to reduce the development cost when the market offers
already developed software for which only a customisation is required. Typical examples
are the Relational Data Base Management System and the Simulation software. This cost
reduction can not be achieved if the criticality of the function to be implemented imposes
specific constraints on the test, verification and maintenance tasks. The requirement of the
total source code coverage can not be met in case of use of S/W COTS. In some specific

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 15 of 23

cases the S/W COTS can be selected, if available, with special pre-requisite like the
already granted certification and qualification as for the S/W system to be developed.

In a GNSS application the use of S/W COTS can be adopted in different ways
depending on the safety level allocated to each S/W component. A typical example is the
software code to be developed for the Reference Stations, it should be developed with
Real-Time oriented coding language like the "ADA" language and with specific compilers
already used in other safety critical project. The Ground Segment M&C software, usually
more relaxed for Real-time performance requirements and safety levels, can be developed
in C language code on UNIX/OS environment and largely using S/W COTS for RDBMS
and communications services.

Constraints on re-used S/W

Another constraint, in addition to the S/W COTS use, is the restriction in re-using
software already developed on a previous project. The re-use of S/W is obviously a benefit
for cost and time saving. It may represent also a risk reduction when the re-used software
has been already tested and verified with the same level of severity required for the target
software system. Another constraints on the re-use of software is the availability of the
expertise related to the performed development, this can not be always feasible (i.e. the
company or the team is no more available). When these pre-requisite are not met the re-use
of software can not be allowed: the re-used software has to be managed and submitted to
the same requirements as for the software developed from scratch.

Prototyping

The prototyping activities are a fundamental technique to start working, in advance,
with the most critical software functions. This activity will allow to identify problems as
early as possible in order to minimise the risks deriving by potential specifications and/or
design errors. The prototyping activity represent an additional cost that has to be spent only
when a benefit is identified in term of risk mitigation.

In a GNSS application the prototyping activities can be performed for several and
different issues. Ad-hoc facilities can be foreseen for the prototyping and simulation
purposes, they are mainly oriented to the processing algorithms used for the navigation
message and they can be used also for the tests and validation of the system upgrades. In
addition there are specific prototyping activities that can be introduced in order to support
the Man Machine Interface (MMI) definition mainly for the Ground Segment M&C and
Mission Performance Monitoring functions. These prototyping activities can be performed
in order to better understand the MMI requirements and to mitigate the development and
technical risks anticipating potential problems for the S/W operability. One aspect which
require specific attention is the verification of the correct integration of operational safety
procedures adopted and the S/W system.

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 16 of 23

3.2.3 Techniques for Development

During the development of safety related S/W components the constraints and the
requirements are those coming from the previous specification and design phase. Some
additional specific indication can be given in the frame of the development environment
itself. In particular the coding language choice could be limited in case of safety critical
S/W development. This limitation directly implies corresponding limitation on the
compiler and debugger and in general on the development environment. Other more
detailed requirements are defined in the coding standards adopted for the specific project
(e.g. limitation of the set of language constructs that can be used).

In a GNSS application, depending on the different allocated S/W levels, the
appropriate programming language must be selected. The standards used for the
development of the safety critical software (like DO-178B) recommend or require the use
of a language which is well-defined, has validated tools, enables modular programming,
has strong checking properties and is clearly readable. For the most critical S/W
components, the use of ADA is strongly encouraged because it has properties which make
it a natural choice for the development of safety critical systems.

3.2.4 Techniques for Assembling, Integrating and Verification (AIV)

In the frame of the Software AIV activities, these are the main mitigation
techniques that can be adopted in doing assembling, integration and verification of safety
related S/W components:

1. Code structure verification coverage
2. Representative AIV environment
3. Constraints on AIV tools
4. Operational Procedures verification

Test Coverage of software structure

Depending upon the S/W criticality level different requirements are imposed for the
level of structure coverage to be reached. It can vary from the simple statement coverage
(every statement in the code is invoked at least once), to the decision coverage (every point
of entry and exit in the program is invoked at least once and every decision in the program
takes on all possible outcomes at least once) to, for the most safety critical software, the
very hard modified condition/decision coverage. In this case every point of entry and exit
in the program is invoked at least once and every decision in the program takes on all
possible outcomes at least once, and each condition in a decision is shown to
independently affect that decision outcome.

Due to the heavy workload required for this task automatic COTS tools are usually
used, in order to speedup the test activities and to have a better confidence on the results.

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 17 of 23

Representative AIV environment

One of the fundamental requirements in performing AIV activities for safety related
S/W systems is the set-up of the related integration and validation environment with
special care for the following aspects aimed to obtaining a test environment as
representative as possible:

• extensive use of real data, when possible, rather than simulated for the test
scenarios. This is true in particular for the system interfaces with the external
world;

• respect of the timing as for the real environment;
• use of real S/W components rather than stubbed interfaces;
• use of the real target H/W platform with the real resource margins and operational

constraints;
• execution of tests covering the whole fault tree identified during the system analysis

(i.e. considering the whole system with S/W, H/W, operators and the environment).

Specific needs in performing AIV could require "accelerated" tests for all the cases
for which the time interval to be investigated covers very long periods (e.g. stress tests for
low probability events).

Constraints on AIV tools

The use of AIV simulators, emulators and specific tests tools is largely encouraged
for the safety related S/W. The selection and the use of these tools, usually based on S/W
COTS, has to be managed with the same approach as for the developed S/W. For safety
critical S/W it could be the case that the use of S/W COTS test tools is forbidden or
constrained. These restrictions are aimed at avoiding the introduction of not controlled
elements in the AIV environment potentially source of wrong and/or misleading data.

Operational Procedures verification

The final system robustness and capability to correctly react to failures and events
potentially impacting the safety is verified only when the S/W is totally integrated with the
H/W and operated in the real environment and following the defined operational
procedures. This implies the need to anticipate as much as possible, in the AIV
environment, the use of the operational procedures as defined for the final system in order
to anticipate potential conflicts. It has to be underlined that for specific cases the
operational procedure could be the only implemented barrier for the safety impacts; this is
true for all the cases in which the S/W role has been limited to the failure detection and
notification while the operator decision is fundamental for the failure recovery actions.

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 18 of 23

4. Management Issues

The Management role is fundamental in both making decisions and in monitoring
the project progress. There are two main branches:

1. Trade-off Analysis
2. Risk Management

4.1 Trade-off Analysis

The process with which the Management can make the best decision is based on
specific trade-offs performed comparing benefit and drawbacks for each potential solution
in adopting a safety risk mitigation technique

In the previous paragraph the main mitigation techniques have been discussed. The
management role is fundamental in deciding which techniques have to be adopted on a
S/W project selecting case by case the "best" solution for the different phases/activities and
components of the system. The selection of the "best" solution depends upon the results of
a complex trade-off between two fundamental drivers:

• Improve the reliability and robustness of the S/W system or part of it;
• Keep under control the corresponding cost increase, the affected performances and the

growing complexity;

As far as the general techniques and guidelines are concerned, there are not specific
trade-offs to be performed because they are usually driven by "imposed" requirements and
as consequence they have to be adopted as mandatory directives. The management role is,
for these general techniques, focused on implementing the requirements in a direction that
allows the maximum re-use of the already defined in-house standards and procedures. This
approach is fundamental in order to gain the maximum benefit from already consolidated
skills available in the company in charge of S/W system development. This "compromise",
between imposed requirements and in-house procedures, can be adopted only in the cases
for which flexibility exists in implementing the requirements without changing their
objectives.

4.1.1 Design and software diversification

The adoption of the functional redundancy, by means of deliberate duplication of
functions to improve reliability, provides a mean to avoid common-mode failure(s) while
presents a series of drawbacks. In general it is a common practice in hardware design, in
some case this technique could be also suitable to reach the same objectives with software,
unfortunately this is not always true. As diversity is attempting to avoid common-mode
failures (in particular with hardware equipment's), with software this will only work with
different implementations (SW diversification).

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 19 of 23

This is a list of drawbacks deriving by the adoption of SW diversification:

1. Costs drawbacks;
Costs are to be expected to increase by ratio of N times while the advantages of
diversification could turn out to be very little, as discussed under technical aspects
below.
Costs will increase for:
• development of diversified versions;
• verification and validation of diversified versions (on top of those activities already

required for each version);
• maintenance and operations of diversified versions;
Any activity not duplicated (i.e. aimed to reduce the costs of this diversification) could
potentially contribute to common-mode error(s), practically vanishing all the effort
spent.

2. Technical drawbacks;

Software design diversity attempts to avoid common-mode failures, therefore to
increase the reliability of the software. Against this positive objective we have the
following drawbacks:

• Any shared software specification can lead to common-cause failures;
• It could be impossible to avoid shared specifications for particular cases (e.g.

complex software algorithms);
• The added complexity of providing fault tolerance in this fashion may itself cause

failures. So redundancy, designed to increase reliability, may in fact decrease
safety;

• Although different algorithms could be used by the diversified versions this may
not help if the problem resides in the handling of difficult (abnormal) input cases ,
or logic;

• If the same software requirement specifications are used, then design diversity
could be effective only against coding errors (and only a limited set of those
errors). Experiences with fault-tolerant techniques based on software redundancy
have shown that programmers often make the same mistake. Therefore
independently coded software doesn't necessarily fail independently;

• Most of the hazards in real time software systems are caused by timing problems.
Redundancy will not be of any help in this case;

• Redundancy appears to be most effective against random failures and less effective
against design errors. It is applied to software which -of course - has only design
errors. There is not an easy way to determine how different two software designs
are in their failure behaviour;

• Most of the safety problem stem from misunderstandings on system requirements
(and the required operation of the software). Any redundancy, then, will simply
duplicate these misunderstandings;

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 20 of 23

4.1.2 Partitioning

The partitioning, as said in the paragraph 3, is another technique aimed to increase
the reliability of the system. The following are drawbacks in implementing it:

1 Costs drawbacks;
The following are reasons for cost increase in adopting partitioning:
• the need for additional dedicated H/W resource/s for the "isolated" safety critical

S/W function;
• the lost of cost optimisation usually coming from shared S/W common libraries

(additional effort in development and AIV);

2 Technical drawbacks;
The main technical drawback of the partitioning technique is the increase of S/W
complexity due to the increase of the number of internal interfaces;

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 21 of 23

The following table summaries the trade-off between benefits and drawbacks in adopting
the different mitigation techniques:

Mitigation
Technique

Benefit Drawbacks Comment

Design and software
diversification

• Increase of system
and/or S/W
reliability;

• Cost increase of a factor N on the
specific diversified component;

• Increase of complexity;
• Potential impacts on

performances;

To be adopted only locally and for well
isolated system components.

Consistency checks
functions

• Increase of S/W
reliability;

• Additional cost for the check
function development/test;

• Impacts on performance;

A good compromise between cost and
benefits. It can be used with or without
diversification.

Partitioning of the
S/W functions

• Isolation of safety
related components;

• AIV activities
facilitated;

• Additional cost for resource/s
dedicated to the isolated
functions;

• Loss of optimisation in common
resources;

A very good technique, even if it lessens
the optimisation, because it does not
introduce additional complexity and
functionality's.

Constraints on used
S/W COTS or re-used
S/W

• Detailed knowledge
of all the S/W
developed from
scratch;

• Independence from
COTS providers if
they are not adopted;

• Complete S/W
documentation for
all the S/W
developed from
scratch;

• Cost increase due to
development of S/W from
scratch instead of S/W COTS
usage;

• Loss of the gained experience in
case of no re-use of S/W
previously developed for other
similar project;

The S/W COTS adoption has to be
performed only for well know products
with proven quality.
The re-use of already developed S/W has
to be encouraged only for the case in
which no major differences exit between
the actual and previous system;

Prototyping and
Simulation

• Risk reduction;
• Speed-up the

Requirements
assessment;

• Allows to perform
accelerated tests;

• Cost for prototypes specification,
development, test and use;

• Requires to anticipated S/W
development;

• Not real world but simulated
one;

Strongly encouraged for the MMI
application and complex processing
algorithms prototyping;
To be adopted carefully for simulation
activities in the frame of system analysis
and design due to the impossibility to
reproduce 100% the real world;

Specific operational
procedures and
requirements

• Reduce tasks and
functions in charge
to the S/W;

• S/W simplification;
• Clearly isolate the

decisions in charge
to the S/W from the
ones in charge to the
operator;

• Increase the probability of
human errors;

• Need to identify in advance all
the required operational
procedures;

Strongly recommended for all the cases
in which the system operators have a key
role in the system operational
environment and in particular in solving
problems and failures.
Moreover on a GNSS system the
operational procedures have to be
harmonised and constrained by the
Aviation Authorities Rules due to the
direct interface with ATC domain.

Table 4.1-1: Summary of Mitigation Techniques

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 22 of 23

4.2 Risk Management

Risk is a measure of the probability and consequence of not achieving a defined
program goal. Risk involves also the notion of uncertainty due to a lack of predictability
and control over the events.

Risk is introduced by a potential problem situation on a program with unwanted
consequence on cost, schedule and technical performance including safety and
dependability.

Risk Management is a systematic approach to support program management in the
optimisation of program resources with the purpose to identify, assess, reduce, prioritise,
control, document and communicate the risks involved in a program with reference to cost,
schedule and performance. Risk Management is not a separate program office activity
assigned to a risk management department, but is one aspect of the technical management
program.

Risk Management is an iterative process to be applied during the whole life cycle of
the program in order to reflect its evolution and to verify the implementation of the risk
reduction actions.

The Risk Management Process includes the steps defined below:
1. Definition of the Risk Management Policy;
2. Identification and Assessment of the Risks;
3. Reduction of the Risks and/or their Acceptance;
4. Monitoring, Communication and Acceptance of the Risks.

Although there is a logical flow in the process elements defined above, Risk
Management is an iterative process with considerable interaction and feedback among the
process elements. Initial risk assessment activities may be expanded or re-examined based
on the outcome of subsequent activities to define effective risk control measures.

The monitoring of performance may suggest that initial assumptions or data were
inadequate and need to be updated or rethought.

Quality Week ’99 May 24-28, 1999 San Francisco, Ca

Safety Critical S/W Development for a Satellite Based Navigation System Page 23 of 23

5. Conclusions

For Safety critical S/W systems some of the normal engineering practices have to
be improved, expanded and constrained by certification and safety requirements. The
Management is in charge to adopt specific mitigation techniques and to set-up risk
management process, by means of a complex trade-off between cost issues and technical
needs, without compromising on the quality and timeliness of the project. In doing this
exercise the already gained experience and the already consolidated company standards
have to be followed to the maximum possible extension.

It is then necessary to adopt a very careful and pragmatic approach to avoid that the
introduction of functionality’s specifically devoted to increase the system robustness,
actually ends up with a far too complex, difficult to test and to operate S/W system. The
winning blend will be the result of a trade off between the different needs.

It is important to point out that the previous experience we had in our company was
in the development of S/W for space applications and this was a very useful starting point.
The existence, within the company, of a well defined and correctly managed S/W
development process is a must. The skills needed to successfully face the challenge of
meeting the requirements applicable to a safety critical system, is therefore a very valuable
company asset which needs the right level of consideration from the company
management. The objective is that the acquired know-how be capitalized on future
projects.

1

Page 1V T T E L E C T R O N I C SMatias Vierimaa

Matias Vierimaa / VTT Electronics

Improving DSP Software Process from Testing

Page 2V T T E L E C T R O N I C SMatias Vierimaa

World's largest manufacturer of mobile phones

Market leader in wireless data products and

Product portfolio covering all main standards and
consumer segments worldwide

Over 100 million phones produced to date

 is a leading founder in industry initiatives:

NOKIA MOBILE PHONES
Number 1 in Wireless Handsets

2

Page 3V T T E L E C T R O N I C SMatias Vierimaa

VTT Electronics

Staff: 291 Employees
Turnover: FIM 129 million

TECHNICAL RESEARCH CENTER OF FINLAND

Technology transfer
Applied research

based on industrial needs
Development of new
products for industry

Research fields:
• Microelectronics
• Electronic Circuits
 and Systems

• Embedded Software
• Optical Electronics

Page 4V T T E L E C T R O N I C SMatias Vierimaa

Industrial Consumer Business
• Volume products with many hard implementation limits
• National and international system standards, new features
DSP Software Development
• Based heavily on source code from previous generations
• Implementation mostly in assembly, some C-language
• Background of DSP designers in signal processing, software

engineering practices not widely known

3

Page 5V T T E L E C T R O N I C SMatias Vierimaa

Why process
improvement?

• High quality software process increases efficiency, quality and

• Importance of DSP software has grown
– Size of software has increased
– Software engineering practices are just emerging

• We need to know:
– How good the current process/product is ?
– What are the strong points and weaknesses of current practices ?
– What should be improved ? How we should improve ?

Page 6V T T E L E C T R O N I C SMatias Vierimaa

Pr2imer

• Pr2imer = Practical Process improvement
for embedded real-time software

• Pr2imer is a systematic and practical
approach which uses the best practices
in the production of embedded SW.

• Fully integrates software process
analysis, modelling, improvement
and measurement techniques into the
TQM based process development of
embedded software.

• Pr2imer has been used in several projects
with several companies with good results

4

Page 7V T T E L E C T R O N I C SMatias Vierimaa

Analysis of current
practices

Page 8V T T E L E C T R O N I C SMatias Vierimaa

Analysis results

Focused interviews and questionnaires
• 75% of projects covered
• 25% of DSP designers answered
Analysis of DSP software development practices
• Several improvement areas identified in testing

– unit testing, software integration testing, regression testing

• Several improvement areas affecting testing
– Specification management
– Design and implementation practices
– Inspections

5

Page 9V T T E L E C T R O N I C SMatias Vierimaa

Definition of goals

Page 10V T T E L E C T R O N I C SMatias Vierimaa

Goals definition

Brainstorming session was arranged
• Goals were set based on analysis
• Several improvement proposals based on goals
High level goals were set to
• Improve software documentation and inspections
• Improve the efficiency and quality of testing
• Improve evolutive aspects of software development including

regression testing

6

Page 11V T T E L E C T R O N I C SMatias Vierimaa

Plan for improvement
steps

Page 12V T T E L E C T R O N I C SMatias Vierimaa

DSP Characteristics
That Affect Testing

• Interfaces - DSP software is related to several components of
mobile phone, on both hardware and software side.

• Optimisation - DSP code has tight limits for both memory
consumption and execution speed.

• Low level implementation - Due to tight requirements, the DSP
code has been largely implemented with assembly language.

• Code reuse - Currently projects usually base their work on code
developed in earlier projects, code not designed to be reused

• Dependency on hardware - DSP software testing requires
hardware, but this is typically not available in early phases of

7

Page 13V T T E L E C T R O N I C SMatias Vierimaa

Improvement actions

Software engineering practices taken into use
• More control to interface specifications
• Scattered documentation was collected under version

• Unit test documentation stored together with module
implementation and design

• Inspections were improved to contain focus areas
• Stepwise software integration instead of “big-bang” integration
• Testing viewpoint - testability, naming practices

Page 14V T T E L E C T R O N I C SMatias Vierimaa

Piloting and use in
product development

8

Page 15V T T E L E C T R O N I C SMatias Vierimaa

Piloting

Piloting background
• Piloting was done in four product development projects
• Schedule of product development projects affected which actions

• Positive feedback from new documentation and inspection
practices - some measurements already available

• Testing improvements still on-going, early results promising
• Base for continuous improvement has been set

Page 16V T T E L E C T R O N I C SMatias Vierimaa

Lessons learnt

Key success factors for piloting
• Based on needs originating from the pilot project’s designers
• Correct timing (synchronized schedules with pilot projects)
• Training for the new methods and tools to be piloted
• Regular follow-up sessions with the pilot project members

• Software engineering practices can be used in DSP development
• Testing is improved by improving processes that affect testing
• Pilot project resources/schedule changes ==> Piloting delays
• Limited scope of improvements better than too many at one time
• Long duration needed to measure impacts of actions

1

Improving DSP software engineering processes from testing viewpoint

Matias Vierimaa
VTT Electronics
P.O.BOX 1100

FIN-90571 OULU
Finland

Matias.Vierimaa@vtt.fi
Telephone +358 8 551 2444

Fax +358 8 551 2320

Minna Mäkäräinen, Atte Kinnula
Nokia Mobile Phones

P.O.BOX 50
FIN-90571 OULU

Finland
Atte.Kinnula@nmp.nokia.com

Minna.Makarainen@nmp.nokia.com

Keywords: DSP software, software process improvement, software testing, Pr2imer

Biographies:
M.Sc. Matias Vierimaa works at VTT Electronics, one of the largest European R&D organizations focusing
on electronics. Since beginning of 1996, he has been research scientist of embedded software at VTT
Electronics. He has written several publications on software process improvement. Mr. Vierimaa has
worked in several process improvement projects with both industrial and research partners.

Phil.Lic. Minna Mäkäräinen works at Nokia Mobile phones (NMP) as a senior research engineer. She has
worked on the area of software process improvement, with the special emphasis on software change
management and maintenance issues. Currently she is doing research on distributed software architectures
and mobile code.

M.Sc. Atte Kinnula is senior research engineer at Nokia Mobile Phones (NMP), the world’s largest
producer of mobile phones and a leading company in telecommunications industry. Since joining the
company in 1993 Mr. Kinnula has worked on the area of software process improvement and quality
management. From 1997 to August 1998 Mr. Kinnula was the manager of the NMP’s global Software
Process Improvement Program and is now working on his Ph.D.

2

Abstract
This paper presents the efforts to improve the DSP (Digital Signal Processing) software testing at Nokia
Mobile Phones, Ltd (henceforth NMP). We describe the improvement approach used, together with the
intermediate results and give a brief overview of the improvement actions initiated. The focus of this article
is on the key issues that affect the testing of DSP software and indicate where and how in the DSP software
engineering process the testing issues should be taken into account.

Digital Signal Processing is the application of mathematical operations to discrete-time signals. Signals are
represented digitally as sequences of samples that are obtained from the physical analog signals. DSP is
central to the operation of modern telecommunication systems, such as modems or digital cellular
telephones. [1]

The efforts invested in the development of digital signal processing software are increasing significantly,
especially in telecommunication applications. Design of optimised mathematical algorithms has dominated
research and product development, but as the size of software is increasing, a need for improved
engineering practices for DSP software has emerged. At NMP the Pr2imer improvement approach has been
used to guide the DSP software process improvement activities [2].

1. Introduction
This paper is based on several process improvement projects conducted at the DSP department at NMP
R&D. Aim of these projects has been to increase DSP software development quality and efficiency. The
projects have been joint efforts between the NMP and VTT Electronics.

NMP is the world's largest manufacturer of digital cellular phones. The company started out in 1987 with
some 250 persons in two sites, both in Finland. As a result of subsequent exponential growth it has been
growing rapidly and currently has over 12.000 employees and R&D sites all over the world.

VTT Electronics is a leading research center in Finland. Its R&D services are used by the electronics,
telecommunications, process automation, mechanical engineering, and instrumentation industries. VTT
Electronics offers contract research and development for industrial clients, design, development, and
prototyping of electronic products, and consultancy in methods and process development and technology
transfer.

The focus of this paper is the improvement of the DSP software testing process. The paper includes
description of the overall improvement approach, describes the results of analysis of the testing process and
issues that affect testing. We will also describe the key improvement areas and the actions initiated to
improve the situation. This paper serves as an example how to conduct DSP software process improvement
and captures experiences which we think are useful for organisations facing similar challenges.

2. Background
The importance of software as a value adding element and as a means to provide features and services to
the user has been rapidly increasing throughout the 1990's. Today it can be said that software is a major
factor, if not the deciding factor in the cellular phone markets. The majority of the R&D effort is, as of
today, in software.

The importance of software was realised in NMP early on. Ever since the company started expanding
beyond the first R&D site, there has been a dedicated ownership for 'global', i.e. company-wide software
technology issues, processes included. Activities to improve processes have been ongoing since late 1980's
and the R&D sites started introducing the ISO 9000 quality approach in early 1990's. All main R&D sites
are currently ISO 9000 certified. Those that do not have only recently been established or acquired and are
in process of getting one.

3

The NMP software development has been divided into different software development units within each
R&D site. The reason for this is historical and stems from the fact that the importance of software over
hardware has been a gradual change. Hence the software development has been divided according to the
hardware platforms where the software is embedded to. The bulk of the software resides in Main Controller
Unit (MCU). This is also the area where the growth of software started earliest and has been traditionally
considered as the software of the cellular phone. It is also the furthest away from the hardware dependency
and today it can be justifiably argued whether some parts of it is 'embedded' software as such any more.
The MCU software provides the functionality and takes care of e.g. user interface, network interface and so
forth. It is usually implemented with either C or object-oriented language.

The other major software part is the software for Digital Signal Processing (DSP) purposes. This part of the
software has been very hardware-dependent, has been traditionally programmed with low-level (assembly)
language, and the volume (code-wise) has only recently started to grow. However, the growth in this area is
accelerating and the implementation is moving towards higher-level languages. Subsequently in a past few
years the visibility and impact of the DSP software has increased to the point where it is considered a major
factor of its own right.

Since the MCU software has been the main focus for NMP software effort, it is understandable that in the
past the improvement activities have also been focusing on the MCU software development rather than
DSP software. The need to improve the DSP software processes has only recently been realised. As a result
the two areas are at very different levels as far as practices and processes are concerned.

When the case for DSP software process improvement became obvious it was decided that the differences
between these two areas were sufficiently different to warrant two separate improvement programs, the
other which was already ongoing for MCU software, and another to be initiated for DSP software. The
differences were in the degree of process understanding, the product itself and in the fact that the DSP
software development organisation was independent from MCU software organisation. For these reasons,
at that point the merging or aligning of the two improvement programs would have been a major effort both
organisationally and process-wise and the added value was in doubt because the differences in process
maturity would still have required two distinctive set of improvement activities.

Despite of this the general policies for process improvement apply to both programs. These policies state
that the process assets are owned globally by a nominated process owner, but the responsibility for process
improvement and support activities is local, i.e. resides at the R&D site level. Furthermore the approach
gives local level a freedom of choice as to what kind of process improvement methodology is being used or
applied. Although the NMP has chosen the Capability Maturity Model for Software (henceforth SW-
CMM) as a common metric for process maturity, it does not require the use of SW-CMM as a method for
guiding improvement actions. In fact the NMP uses a portfolio approach e.g. for assessing software
processes. The philosophy behind this is that certain methods are more suited to different situations than
others; for instance for software development units that have no prior exposure to or experience in process
improvement full-scale CBA-IPI assessment may be too heavy and the results discouraging rather than
encouraging. In such cases a less formal method that has a higher probability for buy-in is needed to
establish a positive loop for process improvement.

3. Pr2imer method
VTT Electronics has used Pr2imer [3] (Practical Process Improvement for Embedded Real-time software)
service package with good results with several customers. It is available in several tailorable versions for
different purposes. It is used to improve the processes in developing embedded systems applications.
Pr2imer framework has four phases (analysis of the current practices, definition of goals for improved
practices, plan for process improvement steps, and piloting and use in product development).

Pr2imer represents a practical and systematic approach for improving the quality of the software
engineering process. It fully integrates software process analysis, modelling, improvement and
measurement techniques in order to meet the critical quality requirements for the development of embedded

4

systems. Pr2imer addresses software process quality improvement by supporting the following tasks (figure
1): [3]

1. Quantitative and/or qualitative analysis of current software engineering practices
2. Definition of measurable goals for improving those practices
3. Planning of successive and practical process improvement steps
4. Piloting and trial use of the improved practices in product development projects.

 4 PILOT
 OPERATION 1 CURRENT
 AND STATE
 COMMISSIONING ANALYSIS

 Product
 Development

 3 PLAN FOR 2 DEFINITION
 DEVELOPMENT OF
 MEASURES TARGET
 STATE

Figure 1. Pr2imer method [3]

The first phase of the Pr2imer method is current state analysis. In our case it was carried out by using
focused interviews. Several key persons of the DSP software development were interviewed and a
questionnaire was sent to DSP designers in each of the NMP R&D sites.

In the second phase of the Pr2imer method the target state is defined. In our case a brainstorming session
was used to identify process improvement candidates. Improvement suggestions were reviewed and later
divided to practical improvement areas. Testing was identified as one of the key improvement areas.
Improvement goals were set and decided to be tracked with metrics. The measurements were agreed to be
defined with the Goal/Question/Metrics (GQM) software quality measurement paradigm [4].

In the third phase, stepwise software process improvement actions were planned; each improvement area
including testing was divided into more practical and easily understandable actions. Improvement actions
are described in chapter 6. Improving only the testing process itself was considered to be insufficient, as
some of the problems in testing stem from other parts of the engineering process and can be best tackled
there. For this reason, other improvements that had an impact to testing are also described in this paper.

The pilot operation and commissioning is the fourth phase of the Pr2imer method. This crucial phase
includes the piloting of improved practices in real projects. If the results from a piloting phase indicate
improvement, the revised practices can be institutionalised within the organisation. Measurement of
improvements is important in order to understand the impacts of the changes.

5

4. Pr2imer step 1: Analysis of current practices
In the first Pr2imer step, analysis of current practices was done. The improvement areas for the DSP
software engineering were identified by using focused interviews and questionnaires. The focus of the
interviews was the entire DSP software development process, which resulted in a wide scope of
improvement areas. The coverage of the interviews was 3/4 of the projects (1/4 of the designers) from the
R&D site responsible for piloting improvement actions. Approximately 40% of the DSP designers
answered to the questionnaire. As a result, the strengths and weaknesses of the current process became
known. Pr2imer step 1 structure is described in figure 2:

Figure 2: Pr2imer step 1 "Analysis of current practices"

The analysis of the interview and survey results was done using the qualitative analysis. Several strengths
and improvement areas were identified as a result of the analysis. The level of detail varied a lot; some
identified improvements allowed immediate implementation while others would have required launching
an extensive improvement project.

The following improvement areas were recognised to have an impact on testing :
• Specification management. Specifications did not have clear responsibilities, change control needed

improvement.
• Design and implementation quality. Some of the documents were not up-to-date at end of project,

documents were carried over from previous projects, but they were not designed to be reusable.
Documentation was scattered to several places.

• Inspection practices. Current practices were good in DSP specific issues, but needed improvement in
quality aspects such as maintainability and testability.

• Testing practices. Especially unit tests and testing support needed improvement. The following testing
related problems were identified:
• No common unit testing procedures. The unit testing procedures were found to be very person

dependent. Sharing of best practices and creation of common tools and procedures for unit testing
were considered to make unit testing more systematic and efficient. Guidelines and tool support
were also needed for unit testing.

• The separation between software and hardware integration testing was not clear enough
• Lack of regression testing support. The evolutive nature of the DSP software development

emphasises the role of software regression testing. More guidelines and tool support for
automating regression test case management and result analysis was sought.

6

5. Pr2imer step 2: Definition of goals for new practices
In the second step of the Pr2imer improvement cycle the goals for DSP software development were defined
by using a brainstorming technique. The figure 3 below describes the step 2:

DEFINITION
OF GOALS
FOR NEW
PRACTICES

 definition
 of qoals
 and target
process

description of
methods and
tools

GQM

Brainstorming

Team-work

THE MODEL OF
THE NEW PROCESS/
SUBPROCESS

GOALS

DESCRIPTION OF THE NEW
PROCESS/SUBPROCESS,
METHODS AND TOOLS

Figure 3: Pr2imer step 2 "Definition of goals for new practices"

As a result of the brainstorming session, several improvement areas with improvement goals were
identified and proposals of improvement actions were defined. The higher level improvement goals related
to testing were agreed to be:
• Improve software documentation and inspections
• Improve the efficiency and quality of testing
• Improve evolutive aspects of software development including regression testing

The testing goal for improving the testing process was set to improve the efficiency and quality by focusing
both on processes that have largest impact on testing and to testing processes themselves. The following
testing related improvement actions were also proposed during the brainstorming session.
• New inspection practices including focus areas and code walkthroughs
• New documentation practices to unit testing including unit test inspections
• Improvement of the DSP SW integration testing
• Improvement of regression testing
• Identification of issues that affect testing
• Error data analysis

The software designers opinion was that the DSP code inspections were useful and necessary, but
inefficient. Time was wasted in the inspection meetings to read and analyse the material, since the
preparation time used by the participants had not been sufficient. There was also a tendency to focus to
certain elements of DSP software development such as optimisation, often neglecting other elements of
quality. A better coverage of different quality aspects would be ensured by defining focus areas. Code
walkthroughs were suggested as a practice to complement code inspections. Such walkthroughs would
require less people to analyse the code, and it would allow the reviewed pieces of the source code to be
examined to be smaller. Code walkthroughs could be arranged for work products under development, and
code inspections would be used to inspect completed work products.

7

Several improvements in documentation were proposed. The problems identified in the unit testing
documentation were decided to be tackled by putting more emphasis on the unit testing practices. The aim
was to provide general rules for unit test documentation and unit test inspections that would then guide the
projects and designers towards more coherent unit testing practices. Code walkthroughs would be used in
detailed examination of the source code, and the source code inspections would concentrate more on
inspecting the unit test plans and results. Inspection of unit test documentation would also force the
designers to document their unit tests.

The DSP integration testing was very time consuming. The process needed restructuring and better support.
Also, means for stepwise integration should be studied, since the current 'big-bang' integration of all
product components was found to be problematic.

The errors found in various testing phases were already recorded by the DSP SW projects, but the data was
not analysed for improvement purposes. The error data could provide valuable information about the root
causes of the errors, how the errors could be avoided in the future, etc.

There was no support for regression testing in DSP SW development. The possibilities for automating
regression testing tasks especially during integration testing were recommended to be studied. Besides
improving the processes directly related to testing, testing issues should be addressed and emphasised as an
important quality factor thorough all project lifecycle phases. Testing issues should be included in all
working instructions and guidelines.

6. Pr2imer step 3: Plan for process improvement steps
Pr2imer step 2 identified improvement areas and proposed improvement actions. Testing practices were
further examined with additional interviews in the beginning of step 3. The interviews were arranged with
the experienced testing experts. Our goal was to identify main issues affecting testing and current practices
related to testing for more details. Two interview sessions were arranged and the total of six designers were
interviewed. Following section describes the results of the interviews.

DSP Characteristics That Affect Testing

Although testing the DSP software is in many ways similar to "standard" embedded software testing, there
are also certain DSP software -specific characteristics that have an impact on testing. The following list
includes issues specially related to DSP software testing:

§ Interfaces – DSP software is related to several components of mobile phone, on both hardware and
software side. For this reason the requirements for the DSP software are extremely volatile, especially
in a concurrent development environment. Software/hardware interfaces may change during product
development project, thus making the testing more difficult.

§ Optimisation – DSP code has tight limits for both memory consumption and execution speed.
Significant degree of optimisation is needed to meet these requirements. Optimisation often has
negative effect to the quality of documentation.

§ Low level implementation – Due to the memory and speed requirements, the DSP code has been
largely implemented with assembly language. This limits the number of potential testing environments,
and sets additional requirements to code documentation to improve understandability. However, as
DSP processors are becoming faster, it is possible to use more and more C-code in software.

§ Code reuse - Currently projects usually base their work on code that has been developed in earlier
projects, and change it to meet the requirements of the new product. Although the code is reused, it is
not often designed to be reusable, which creates additional problems for testing.

8

§ Dependency on hardware – DSP software testing requires hardware, but this is typically not available
in early phases of testing as the hardware is being developed concurrently with the software. This may
result to a situation where some units of the software has to be initially integrated without proper unit
testing.

Defined improvement steps

Earlier on during current state analysis, current state of testing processes was identified, and its strengths
and weaknesses were known. As a result of brainstorming session, improvement goals and proposals had
been defined. Additional interviews gave further detail about the issues that affected the testing most. In
Pr2imer step 3 (see figure 4 below), the stepwise improvement actions and schedule for improvements was
defined with more detail.

 PLAN FOR
 PROCESS
IMPROVEMENT
 STEPS

GQM

improvement
 framework

 definition of
 metrics and a
 measurement plan

MEASUREMENT
PLAN

IMPROVEMENT
PLAN

definition of
 improvement
 steps and
 schedule

Figure 4: Pr2imer step 3 "Plan for process improvement steps"

The results from previous steps indicated that DSP specific issues were at reasonable level, but general
software engineering procedures and software engineering "best practices" were not widely used. Main
improvements were therefore set to improve those elements. Several process improvement goals were set
as already described. To meet the goals, stepwise improvement actions were defined. This section describes
the actions that had an impact on testing, including improvement actions in specification management,
design and implementation, inspections and testing itself.

One of the improvement actions was improved control of interface management specifications. As the
interface specifications require co-operation with the group working on the other side of the interface, this
issue cannot be solved by improving DSP software practices alone. Therefore, experienced resources were
selected to improve interface specification documents. Each interface was given a responsible person who
in turn would take care of co-operation between the different groups and also to guarantee that the
interfaces in his control are stable and available as early as possible.

Quality issues in design and implementation were seen as one of the most important improvement areas.
Due to amount of work required, a separate project which provided necessary effort and commissioning for
the improvement actions was started [2]. Its main goal was to support documentation reusability. New tools
and methods for documentation were selected. Previously scattered documentation was collected and put

9

under version management. Unit test documents including test plans, data and results were stored together
with design and implementation of the module.

 Low level implementation and optimisation at late stage of project made the code documents hard to read.
Testing viewpoint was seldom considered during implementation. Focus was set to describe all the modules
at design level. Code quality issues such as testability issues and naming practices were studied and taken
into use.

Defects found during the inspections cost less than defects found during the testing. The DSP designers
considered current inspection practices to be at adequate level, but inspections were heavily focused on
functionality and optimisation. This led to over-emphasis of hardware resource optimisations (memory,
speed, power) based on reading assembly source code line-by-line. Certain quality elements, such as
testability or maintainability were often neglected. Inspection methods [5] were studied to improve current
inspection practices. As a result, several focus areas including testability were defined. In order to assure
that no aspect has been overlooked, each focus area has a specific checklists which provide consistent
acceptance criteria.

In testing processes itself, improvements were set to unit testing, software integration testing and regression
testing. Improvements in unit testing were focused in process and documentation, although some changes
were also done to testing tools. Improvements included better visibility of test results including test
parameters and data. This can be achieved by storing testing documentation into defined location, as in our
case, under version management tool. The unit test procedures and guidelines needed to be improved to
make unit testing more systematic and efficient. New documentation process included also unit testing
documentation.

Hardware dependency and changes in interfaces limit the unit testing coverage. This lead to situation where
integration of software modules was done in one single step. To divide integration into smaller steps,
instructions for stepwise software integration were defined. Software integration testing was set to test
module interfaces and functionality as much as possible without the need for hardware. Meetings with
testing experts from previous projects were proposed to ensure necessary knowledge transfer.

Regression testing improvements were designed to better match the evolutive aspects of DSP software
development. Main goal of these improvements was to create an environment which would support
regression testing. During schedule planning, it became clear that improving the regression testing would
require significant resources which were not then available. Therefore, improvements were limited to
creating regression testing instructions for DSP designers.

Error data analysis was proposed to improve testing. If more information about the causes of errors, and
their origin would be available, it would be possible to identify likely problems before testing phase in
future projects.

Measurements were also defined to follow improvement actions using GQM approach. GQM
measurements were defined with interviews of experienced DSP experts. Measurement goals included
reliability, documentation reusability and inspection efficiency. For example, following measurements were
defined for each defect/error:
• Phase when found
• Detection activity
• Origin
• Severity
• Status

Measurements were defined for each testing phase and test cases. In addition to those measurements, we
also measured project effort to find out how much effort is used to different tasks of project including
specifications, design, implementation and testing. Our goal was continuous improvement based on
measurements and improvement actions already initiated.

10

7. Pr2imer step 4: Pilot operation and commissioning
Pr2imer step 4, piloting, is described shortly in this paper, because measurements in pilot projects are still
on-going. For example, data from testing measurements are not yet available. However, results of the
improvement actions with some measurements and expected impacts can be described.

Piloting of improvements was done in several product development projects. As these projects were in
different phase of their life-cycle, we divided the piloting of improvement actions between the projects.
Projects that were on-going piloted only those improvement actions that had an effect to their work. Some
preliminary measurements were collected from the pilot projects as baseline data.

Several improvement goals with many improvement actions led to situation were we had to define
priorities. As piloting was done in product development projects with tight schedules and limited resources,
process improvement actions had to be limited in size and planned carefully with project managers. Some
of the improvement actions originally planned were too optimistic and heavy to implement during project
work and therefore they were delayed or limited in scale. However, we were able to achieve several
improvements even with fewer resources than planned. Following figure 5 describes the piloting phase:

 field
testing

step by step

GQM

 USE IN
 PRODUCT
DEVELOPMENT

ADOPTION OF THE
NEW PRACTICES

METRIC INFORMATION
TO CONTROL PROCESS

 process
 execution
 according to
 the plans

 observing
 the results

PILOTING
See figure 5: Primer step 4 "Pilot operation and commissioning"

From testing viewpoint, results of the improvements in documentation process and inspection practices
were the most significant. Results of the improvements included new methods and tools for documentation.
Our goal is to store all documentation from software process under version control thus achieving better
reusability. As a consequence, the availability of project documentation including unit test documentation
was improved. Following measurements regarding documentation availability were done in the middle of a
pilot project, figures will be further improved as the pilot project matures:
• Implementation, 68% available in PCMS (end of previous project 70%)
• Test results, 43 % available in PCMS (end of previous project 0%)
• Test data 55% available in PCMS, (end of previous project 0%)

New inspection practices based on focus areas have been well-received by the pilot project. The feedback
has been positive. New checklists and roles used in inspections create efficiency and discipline to
inspections. Code walkthroughs as proposed by step 2 have not been widely used, however. With enhanced
inspection practices and new focus areas, we expect to find more defects already during the inspections.
Following efficiency measurements have been made:

11

Table 1. Example measurements of specification inspections [2]
Metric In pilot project In reference project

Hours/Defect 2,7 4,6
Hours/Participant 2,6 Not measured
Hours/Document 16,4 Not measured
Average number of participants 6 6

Improved efficiency of inspections should indicate that less errors will be found during testing. We expect
that measurements indicate further improvements as the pilot project matures. Better availability of test
data and results yield for better testing baseline in forthcoming projects when they inherit the work done in
previous project. True impact of improvements can only be measured in forthcoming projects, but we
already expect significant rise in reusability of testing documentation thus making the schedule of testing
shorter and effort smaller in forthcoming projects.

Improvements in interface management have been on-going in several projects. Defined responsibilities
and interface stability have been improved. Moreover, importance of interface specifications is known, and
interfaces are discussed with different groups with necessary detail.

Unit testing is considered to be an important part of module documentation, and as our measurements
indicated, its visibility has increased. Unit test inspections assure that unit tests are properly done and that
unit test documentation is an integral part of module documentation thus allowing forthcoming projects
receive all documentation and results related to a module. Measurements for unit test efficiency are
currently being defined with more detail.

Stepwise software integration practices are currently used instead of "big-bang" integration approach.
Software integration tests cover the interfaces of the modules and functionality of the software. Although it
is not possible to test everything due to hardware dependency, more and more software functionality can be
tested during this phase. Testing measurements have not been collected, so impacts of the software
integration testing improvements cannot be measured yet, but new practices should nevertheless improve
the overall testing.

New work instructions for unit testing, software integration testing and regression testing give better
support for DSP designers during testing. Work instructions alone cannot guarantee that they are actually
used, therefore quality control in testing and proper training of all process changes must be conducted.

8. Conclusions
This paper has identified several issues that affect DSP software testing indicating how DSP software
process can be systematically improved from the testing viewpoint. We have also demonstrated, how it is
possible to improve DSP software testing, by using existing software engineering "best practices", taking
into consideration DSP specific issues and not forgetting practical needs of the pilot project.

The work we have described has shown how the DSP software process can be improved using systematic
approach. We hope that our experiences are beneficial to other companies facing similar challenges. The
strengths and improvement areas in organisations may be different, but our work could provide example
how to improve DSP software processes in general.

We would like to thank all people who participated to work described here in Nokia Mobila Phones and
VTT Electronics. Special thanks for Hannu Honka and Juho Näsi for reviewing the paper.

12

9. References
[1] Marven C., "Ewers G. "A simple approach to Digital Signal Processing", Texas Instruments, 1994.
[2] Vierimaa, M., Kaikkonen T., Oivo M., Moberg M. "Experiences of practical process improvement",
Embedded Systems Programming Europe, Miller Freeman, November 1998, Volume 2, No 13.
[3] Karjalainen J., Mäkäräinen M., Komi-Sirviö S., Seppänen V., “Practical process improvement for
embedded real-time software”, Quality Engineering, 1996, Vol. 8, no 4, pp. 565-573.
[4] Basili V., Caldiera G., Rombach D. "Goal Question Metric Paradigm". In John J. Marciniak, editor,
Encyclopedia of Software Engineering, volume 1, pp. 528-532. John Wiley & Sons, 1994.
[5] Gilb T., Graham D. "Software Inspection", Addison-Wesley Publishing Co, Reading, MA, 1993.

1

Lockheed Martin

Industrial Experiences in
Establishing Laboratories and
Software Models to Effectively

Execute Software Test

Jon D. Hagar
Lockheed Martin - Denver

jon.d.hagar@lmco.com

Lockheed Martin

Topics
• Problem statement

• Definition of a lab

• How to establish one

• Definition of software models

• How do labs support testing

• Experiences and types of errors found

• Lessons Learned

2

Lockheed Martin

A Problem - Testing Environments

Test Computer

Test
Inputs

Expected Outputs

• How We Test Is Not Always How The
Software Gets Used

Lockheed Martin

The Real World

• Computers are connected to the real world
– hardware, software, time effects and process can be unknown

Computer
Where the
Software Runs

Other
HW

External Process (s)

Real
World

3

Lockheed Martin

Modeling Offers Some Help

• In many cases a test lab must be established with other
computers that run models

Test Computer

Inputs

Expected Output

Second
Computer

Test Labs

• Lockheed Martin has for years tested complex software to high
levels of reliability by creating test environments (labs)

A Lab is a collection of computers and software supporting
test of the software

Test Tools, Analysis, Procedures, Test Staff, Metrics
Philosophy: “Fly what you test” and “Test like you fly”

4

Lockheed Martin

How to establish a lab

• Test labs range from single PCs to full hardware “mock ups”
Define and allocate resources

– People to develop/run the lab
– Computer, hardware, and software to support lab development
– Time and schedule (AKA money)
– Test process and supporting management

• Successful and cost effective testing using good labs lead to
higher CMM levels and ISO certification

– Controlled facilities, integrated with development, process driven,
managed and measured, defect removal based, optimized

Lockheed Martin

Labs have limitations

• Not all hardware, e.g., global telecom networks or rocket
Not the real environment, e.g., space, 1000s of users or net

Not the real use process
yes use-case help, but the real users do things
unexpected by test plans, spec, use-cases, procedures,
inputs, and timing/sequencing

Modeling can improve the capabilities of a lab

5

Lockheed Martin

Definition of what software models

• General Categories: Discrete and Continuous
– Simulations -- RDD100 Matlab, Simulink, MatrixX - limited time

Continuous -- functions in real time (like the real thing)

– Complex and custom built
• Range

 “testers” mental model <-> software tool based <-> hardware-software tool based

 use-cases
 simulations
 CASE tools
 Special built equipment

Lockheed Martin

Models to support testing
• Allow automation of defined test process

6D closed loop simulation of launch vehicle
Simulation of hundreds of network system inputs (or users)
Simulation of hardware

Allow generation of inputs
Run hundreds of monte carlo simulations of code (e.g., guidance) to find input
conditions for execution in full test lab

Generation of OO or SA model based inputs

Requirement based for qualification or acceptance testing like ISO/IEEE requires

Risk: Certification and proof that models represent reality becomes a big problem
But the testing of the test tools often helps test the product (iterative problem)

6

Lockheed Martin

Multiple Levels of Modeling
Possible

Development
Products

Requirements

Design

Implementation

Executable
Program

Scientific
Simulation
Tools

Design-based
Simulation
Tools

Hardware &
Digital
Simulation
Test
Systems

Test
Reports

C
om

pa
re

 R
es

ul
ts

Lockheed Martin

Sample Lab Configuration

INT E R F AC E

O P E R AT IO NAL
LO AD M E DIA

AVIO NIC S
S IM ULAT O R

INT E R IAL
MO DE L

V }

O P E R AT IO NAL LO AD DE VIC E

T AR G E T C O MP UT E R
(

S O F T W AR E UNDE R T E S T
(

F R O M S S L

C O NT R O L
C O NS O LE

In t e rfa c e C /O

In t e rfa c e

T O S S L

DIS C R E T E S
C O M MANDS

S E Q UE NC ING

T E S T
S E T

O T HE R S IDE O F
DUAL S T R ING S YS

F R O M S S L

SSL = SGI Computer Running Real-Time
 Closed Simulation Models
C/O = Check Out Computer Station

Models Running
Models

Interfaces - either
hardware or software

7

Lockheed Martin

Experience and types of error found

• Programming errors - good to use tools such as battlemap, STW,
IPL products, SAW, T, or logic analyzers are in use
Design errors - logic or software interaction problems
Requirement/functional error - missing, incomplete, poor
wording, and wrong
Interface/compatibility errors
– Lab testing is done at integrated product level (qual/acceptance test)

• Lab and Lab Results Benefit for Peer Review - Total
independence of testers not necessary, but can have some benefit
Labs and Models can produce large amounts of data
– Save it
– Analyze it
– Automate when feasible

Lockheed Martin

Lessons Learned

• Labs cost money (and more if not done right)
Labs are a major test tool in knowing when you are ready to deliver
Models can support testing but they are “real”

Errors in models/labs hide real product errors
Errors in models/labs can create “wild goose” chases

Have trained people to create and run the lab

Use commercial products and open architecture
Have a process, find complementary tools for repetitive or risky parts
Change is given, plan for it in hardware and software

Be driven by plans and procedures
Do realistic complete mission or use-case testing

8

Lockheed Martin

Summary

• Testing in many cases requires a lab
Modeling can directly support labs
– Simulate that which is hard to create

Many levels of sophistication

1

Industrial Experiences in Establishing Laboratories and Software Models to
Effectively Execute Software Test

Jon Hagar

Lockheed Martin Astronautics Company

Mail Stop H0512

P.O. Box 179

Denver, CO 80201

303-977-1625

fax 303-977-1472

jon.d.hagar@lmco.com

Keywords: Integrated Test Lab Environment, Test Tools, Software Modeling to Support Test

Introduction

In recent years, there has been more interest in software testing accomplished with models as well
as creating test environments and tools to realistically test the software. There has also been an
increase in the number and types of support programs or tools available from commercial
suppliers. ISO and IEEE standards require testing in realistic environments. Developers create
software-based systems that must function in real-time environments, function directly with
complex hardware systems, or add high risk/critical functions for their users. These types of
systems tend to require the highest levels of quality, test, and reliability. Organizations within
Lockheed Martin have many years of experience creating test facilities for these types of systems,
as well as models to help define, run, and analyze tests.

Examples of the kinds of critical/high risk systems where models are used with a laboratory to do
testing include: automotive sub-systems, nuclear and power system applications, aerospace
avionics, medical devices, telecommunications, and factory or industrial-based systems. These
systems share many characteristics and can all involve large financial consequences when they fail.
Additionally, many practices, such as “beta testing”, and concepts associated with “shrink wrap”
development are not appropriate for these systems. And, many of these systems have regulatory
agencies that have compliance standards, as well as issues with things such as Y2K. This paper
reports on the creation of a test system that directly supports testing and releases of software
under these constraints. Topics include:

1. An important feature of any test program is the environment in which testing is conducted.
Having a dedicated test lab with software models can be an important part of successful and
cost effective testing..

2. Modeling can increase the effectively of test labs by providing “missing” data in the form of
inputs, supporting simulation, or output analysis. Modeling of the software can be an
important tool in software testing. But what is modeling? What are the kinds of modeling?
What tools can be used to implement models? Do models have to be executable?

2

3. The test environment and support tools must be developed, just like the software itself. This
is vital for success and must happen prior to the test cycle. We examine how to set up the
processes and a lab to achieve higher Software Engineering Institutes (SEI) CMM levels.

4. Given that a main goal of testing is to expose errors, the areas of software risk and types of
errors must be considered in selecting tools, modeling, and test environments. Types of
errors that are found when using models/test environments are presented.

5. Many tools have limitations in an integrated test environment, and this must be factored into
planning and a test development (both tools and tests) effort to be successful. The limitations
of models/test environments must also be considered.

To be successful, test environment (i.e., the lab) construction includes the hardware, software,
support techniques, time, management, and people. And each of these must be planned,
developed, implemented and controlled. This presentation outlines Lockheed Martin’s 20 years of
lab set up and modeling to support software testing.

Problem: Software Test Environments

Most testers, after they have gotten some experience, find that software errors leading to
failures still occur even after they have done a good job testing. This can occur for a
variety of reasons, one of which is that the software gets used differently from how the
test engineer planned during test definition. This occurs because:

1) Hardware configuration can be different;

2) Users do things that the software test plan did not cover;

3) Inputs/outputs related to external sources are not what was tested; and

4) States and conditions that the software is in, are different than expected.

Test computer

External
Inputs

Expected Output

Software Under Test Load In Computer
Figure 1 - Basic Test Environment

All of these come down to the point that the real world is different from the test
environment. Companies doing testing of software usually establish test computer systems
(test environments) in which they can run their software. These are often in laboratories
that have the software under test installed on a target computer (Figure 1) where inputs

3

can be fed in the system and outputs obtained. This is the most basic test environment.
But computer environments can vary widely from the laboratory to the real world.
Testers must concern themselves with the nature of the test environment because if the
fidelity of the environment is not sufficient, testing will not be complete and
comprehensive. Consequently it is possible that failures will be missed.

The test environment should mirror the “real world” as closely as possible (Figure 2). For
some software test plans this may not be a big problem. The users or customer’s
environment and system may be well understood, or the tester (you or me) may be testing
on the actual system where the software will run. These cases make testing easier, but
many other software applications will run in the real world where the computer on which
the software is running interfaces to hardware or external processes that the test lab did
not or cannot fully replicate.

Computer
Where your
Software Lives

Other
HW

External Prcoess (s)

Real
World

Figure 2: The world that software lives in

“Murphy’s Law” reminds us that the real world is filled with stress cases that can: put the
software into unknown hardware; have bizarre inputs from users; and have time effects
that impact the software. All to often these expose errors that lead to system faults or even
failures. Some programmers call these “features” or say “Garbage In/Garbage out”
(GIGO) which does not need to be handled. While managers will cling to statements like
“the software requirements or use-cases never indicated that we would function under
these conditions”, and while that may be true or offer some protection, it can hurt business
when customers are unhappy, it costs money, takes time, and leads to rework.

Testing for any complex piece of software will never exercise all possible use cases,
processes, user inputs and/or hardware configuration. This fact is accepted by most of us,
but can lead some organizations to avoid doing anything but minimal test efforts. But, as

4

software users become more savvy and competition continues, most companies cannot
afford to have software that fails.

Test Environments (Labs) Supported by Modeling

A partial solution to the problem of test environment fidelity exists in using models of the real
world to handle many of the input, environment, and output limitations of labs.

Test Computer

Inputs

Expected Output

Second
Computer

Figure 3 Test Environment with second Computer/Software in the loop

A simple kind of model exists in test lab when we connect or include a second computer
to the computer with the software under test (Figure 3). This second computer can be
used to simulate aspects or all of the external world that the test computer “sees”.

Variations of this concept exist. The second computer and its modeling software can be
used in:

• a closed or open loop simulation of the world, including time considerations;

• prior to test execution as a generator of inputs to the system under test

• a pre-execution test oracle; or;

• after the fact judge of software results.

It is possible to have two programs running in the same computer, one being the program
under test, and the other being a modeling/simulation program. This approach is possible
in many systems, though care must be taken on how the two programs interact with each
other, since in the “field”, the test programs and models are usually not installed on the
actual system. This is basically what some Graphical User Interface (GUI) test tools do.
For us, simulation modeling programs include capture/playback systems where a tester

5

uses a test tool to capture the inputs and system responses for later playback and checks
during subsequent testing. Software Test Works (STW) and Mercury’s Xrunner are
examples. However, while useful in many settings, these are only one kind of tool that
can be thought of as doing modeling. Users of these tools must factor in set up costs,
maintenance, need of programming, and limited domain (GUI systems). Additionally, the
tester must form “mental models” or in some other way judge the creation and results of
the first capture playback test. This paper does not discuss this kind of
modeling/simulation any further, but does deal with how we use other kinds of models in
our test environments.

Creating a Lab

Many companies, Lockheed Martin included, have for years developed software and
hardware test environments. A lab in our definition is a collection of computers,
support/interfaced hardware, and software that allows realistic testing of the software we
produce. The test labs can include special equipment that aids in the definition, exception,
and analysis of test results. This can include specialized computers with test points,
probes, oscilloscopes, input devices, and data gathering tools/recorders. Our test labs
typically have specially trained staff and test procedures to aid in the test process. The
labs are used to run the testing, having both the inputs to drive the software and facilities
to record results.

While great cost and care may go into creating a lab, we have found over the years that most
laboratories have limitations that impact how the software is tested. This impact can include
testing the software in an unrealistic way that leads us to miss errors. For example, it is not
possible for the lab to have outer space conditions in 1Gravity, or a 1000 different network nodes,
or users where the test environment has only one or two in the test loop. Also, some test labs do
not have every piece of hardware in existence or interfaces may vary from site to site and system-
to-system. And, the real processes, time factors, and uses of the software are never fully known.
Good requirements and interface documents help. Techniques like use-cases and detailed
understanding of the system lead to much better testing. But it is not possible to fully know the
future, so every lab has limitations, which means software errors get missed due to the labs
limitations.

In creating a lab, we consider how the software we are going to test is to be used. We try
to recreate the full world that the software will see in the test lab. Test labs range from a
single standalone PC or computer board, up to multi-node networks with huge amounts of
hardware and software. We have even duplicated hardware to the point of having miles of
connecting cable looped on the floor to simulate long line hardware connects because of
signal or timing concerns. But in creating a lab, care must be taken because everything
costs money.

A tester must consider the resources for a lab to support testing. Each lab resource
translates to money - an ultimate commodity which is usually in short supply. What many
software program managers underestimate is the cost of developing a test program and
associated lab. This development can be a very large percentage of the total project cost.
Hence many efforts are forgotten or minimized on budget, so testers get the “short end of

6

the stick”. Testers must always trade the need for a “right sized” or even “perfect lab”
against cost.

In the global competitive world, many companies are realizing they must be “better faster
cheaper” to be competitive. Concepts in standardization like the CMM and ISO address
test issues. ISO requires that we have processes which are documented and followed.
ISO 9001 requires acceptance (in a lab possibly) and field testing because of recognized
limits of labs. Lockheed Martin is ISO certified and recently completed assessment at SEI
Level 3 successfully, in part, because our standardized processes of having test
environments.

Modeling

Testers and managers must be enlightened and allocate the resources and associated money.
When money for critical items is not possible or other limitations of the test lab occur, one
technique that has been used successfully is modeling. This is where a model simulates something
that is “too costly” to bring directly into a lab. While modeling may be “cheaper and faster” than
the real thing, modeling must be planned and developed, because it still consumes resources too.

Lockheed Martin has used modeling for each aspect of the test problem (inputs,
environment, and output) to address the limits of our labs, while still meeting budget
limitations and support ISO and CMM improvement initiatives. We have models that aid
in test input generation and definition. We have models that run as part of the test
environment. And finally we have models that aid in analysis or prediction of outputs,
thus helping to determine correctness.

We classify models into a couple of basic groups. One group is discrete in that they tend
to treat time and events as a quantized element. The other group, we call, continuous in
that they tend to function more with time as an integral element of their function. Discrete
models can run faster than real time, while continuous models usually run in real time or
run by calculating time at each step of the model, so that they can run independently of
time. Time effects, while less critical to some software, have impacts on all software to
some degree, so its effect in modeling in many cases cannot be ignored.

Models come with differing capabilities. Simple models need not be executable (meaning
able to run on a computer, change state, or do some computation). The simplest models
are the ones a tester forms mentally about the software. More sophisticated techniques
exist in the form of techniques such as use-cases, state diagrams, or data flows, where
models take on some defined and standard form. Some of these can even become
executable in more advanced CASE and programming tools.

Commercial tools such as RDD-100, MatLab, MatrixX, SimuLink, and even capture-playback
tools fit into the discrete-executable modeling category. While the tools are vastly different in
their use and nature in testing, they each allow the tester to model some aspect of the system.
Tools like RDD-100 and Simulink allow systems engineers and testers to model sequences of
events and actions that the software will see. And tools like Matlab and MatrixX allow engineers
to calculate mathematical functions that the software will implement. While each of these tools
has many other features and uses in testing and engineering, Lockheed Martin has successfully
used aspects of these tools in software test modeling.

7

Testers and analysts have successfully used these tools and modeling to do the following
kinds of things in Lockheed Martin in support test labs:

• Allow automation of defined test processes in a test lab environment

– 6d closed loop simulation of launch vehicle

– Simulation of hundreds of network system inputs (or users)

– Simulation of hardware that can/does not exist, e.g. ordinance, safety or
hazardous events, hardware items that had not been created

• allow generation of inputs

– Run hundreds of Monte-Carlo simulations of code (e.g. guidance) to find input
sensitivities for execution in a full test lab

– Generation of random or statistically meaningful inputs

– Generation of object oriented, data driven, or structured analysis model-based
inputs to test path coverage

• allow generation and/or assessment of outputs

– Requirement based for qualification or acceptance testing like ISO/IEEE
requires

– Design based for verification

– System based for validation

While we have been successful in using models created from these tools, the limitations of
modeling must be acknowledged. If the model and use-case of the model fails to
represent reality, muany of the test results may be invalid. The validation of the tools,
models, and test lab must be demonstrated before testing can be considered complete and
accurate. Test models and environments have indicated software errors/faults when none
were present. This created a “wild goose” chase scenario for testers and developers. On
the other hand, test models and environments have hidden or missed problems that then
surfaced in the real world. Each of these two cases can end up costing time and money.
Thus, a key to the lab and modeling is the certification/validation of the models and lab
components. Certification means that the lab and models are tested as being faithful
representations of the system. Once a lab and supporting models have been shown or
tested and valid, they must be maintained under configuration control, and updated as the
actual system changes. If this does not happen, then testing can be invalid.

The best solution to the test lab validation is to view this effort as an iterative problem.
You cannot fully test the test lab without the software and system under test. And you
cannot fully test the products until the test lab is complete. So the “test a little” and
“develop a little” spiral and parallel life cycle model seems to work well. This is where

8

testers generate their test plans, models, designs, inputs, environments, and outputs in
parallel with the software developers. The developers share early versions of the software
with testers and testing provides ongoing feedback to developers. Each set of product
gets iteratively improved until sufficient confidence is reached that products can be
released.

Lockheed Martin’s experience is that release of a product is dependent on the level of risk
the software posses. For example, human safety software gets much more testing/iteration
than non-critical ground database software. Schedule determines release as well as when
there is a decrease in the error detection trend rate for both the modeling/test environment
and the products under test. Trend rates are typical plotted over time and as the curve
“flattens”, releases can be considered in line with schedules. These processes are
documented in project software development plans and schedule documents, thus
supporting the needs of concepts like CMM and ISO.

Experience

A proof of validity for any test method or tools is this: does it find errors. While modeling
has aspects of the disproved N-version programming, having multiple versions/aspects of
a software program has demonstrated usefulness to testers because it help find
errors/failures in software, as well as showing that the software works (meets
requirements either written or expected by the user). The test lab environment supported
by a model has worked for years at Lockheed Martin. We have successfully qualified
software for launch vehicles, spacecraft, and ground systems with database, transitional
and GUI systems. The test labs have supported testing from the unit/debug level up to full
system acceptance. The types of errors found include:

• Programming and data errors - sometimes requires “structural” analysis capabilities such as
instrumenter tools (Battlemap, STW, IPL products) or hardware probes (T, SAW,), as well as detailed
I/O results

• Design errors - fundamental logic or software interaction problems - example: conflicts between two
software components

• Requirement/functional error - system behavior did not “fly” mission

• Interface/compatibility errors - user interfaces, hardware I/O, incompatibility between components,
time/sequence related

Another experience is, that lab environments benefit programs because the labs are
operated by people independent of the developers. These “lab rats” help provide a
different set of eyes to assist in analysis of products during inspections and peer-reviews,
as well as during the test processes. Boris Beizer [email communications] has observed
that the need for tester independence that once was a “religious requirement” in some
organizations, has been fading in recent years. However, as the success of inspections and
peer review at finding errors has shown, a key is the second set of eyes and perspectives.
The test lab people seem to provide this quite well for us. It is true they don’t need to be
“religiously” separated from developers, but they still represent some level of
independence.

9

We find models to be very good (even necessary) in supporting testing, but both the
models and test labs tend to generate large amounts of results data. While automation is
not for everyone all the time, if you are automating labs with models, consider having an
integrated and interoperable system of automated tools. Having models that interchange
data with each other and the lab can be a big benefit. Having models that can read and
process lab data with minimal effort improves test products, since without automation a
tester can get buried under data.

Another consideration during lab and model set up, is to allow for hardware and software
upgrades of tools lab equipment and models. Technology changes, so upgrade and
migration paths should be part of any long term plans. Company resources must be
allocated over time or dead end systems tend to result.

Finally, a most important point, automation is good, but it can also be a curse. Having plans,
processes, people, and good management are all necessary before automation. Also, not every
test needs to be automated or to have a full lab with automated models built for it. Consider
having the right tools for the job and do not expect automation to solve every problem. There are
many problems that labs and models cannot solve. In fact, as detailed earlier, they create and
introduce their own problems.

Closing considerations

Over the years, Lockheed Martin has built many labs. When done right, test labs have
been major players in successful deliveries of software based systems, and is a major item
of review before delivery or shipment of systems. If lab results were not sufficient,
Lockheed Martin has been known to delay programs.

Because labs represent major resources, ways to reuse them should be a major
consideration. Reuse can be practiced at different levels. For example, whole labs can be
reused on new projects. Or, models can be reused between common elements of different
programs that require different labs due to hardware or system differences. Reuse can
even include procedures, processes, and people on different efforts.

Reuse can be enhanced by the use of commercial tools and products. Custom built
features may often be necessary but these can become dead ends. Whereas commercial
tools have large use bases, and can be more open ended because many different people
know how to use them. Commercial products are not an instant solution and most require
some level of engineering and integration to work. But they have advantages like
maintenance by the vendor, vendor support, and commercial libraries of related
information. Do not expect commercials to solve all problems and remember large
amounts of effort may still be needed to make them functional.

Finally, and most importantly, make the testing realistic and based on an organized plan.
The automation using the lab and models can be major elements of the plan, but they are
only parts - not the whole, and not the first thing testers should work on. To be
successful, one must have all the elements of a good test plan and organization in
association with labs and models.

10

Page 1

Using Quality to Drive Product Development Processes

© 1999 Johanna Rothman

1

Using Quality to Drive Product
Development Processes

Johanna Rothman
Rothman Consulting Group, Inc.

781-641-4046
jr@jrothman.com

www.jrothman.com

2

Why develop products?

w Make money
w Trial balloons
w Rest of the world changed
w Whatever the reason, there are quality requirements

Page 2

Using Quality to Drive Product Development Processes

© 1999 Johanna Rothman

3

Possible project quality goals

¥ Minimize time to market
¥ Maximize feature set
¥ Minimize defects
¥ Each project has a top priority

w Address other two goals within that context

4Different projects require
different processes

¥ Different processes leverage different outcomes

Page 3

Using Quality to Drive Product Development Processes

© 1999 Johanna Rothman

5Shifting project goals inhibit
project success: SmartStore

¥ Developers wanted to fix previous releaseÕs
defects

¥ Management wanted to ship in eight months
¥ Inadequate project manager

6SmartStoreÕs processes never
changed

¥ Project goals changed
w Specific feature set with low defects
w Time to market
w Performance

¥ Difficult for technical staff to keep up
w Some people did not change what they did
w Some felt jerked around
w Some were completely confused

Page 4

Using Quality to Drive Product Development Processes

© 1999 Johanna Rothman

7

SmartStore shipped, but...

¥ Shipped four months late
¥ Fewer features
¥ No performance improvement

8

SmartStoreÕs lessons

¥ Product development process not sufficiently
flexible

¥ Inadequate project manager
w Unable to explain how shifting goals hurts progress
w Unable to focus work

¥ Project ManagerÕs role
w Define goals
w Focus the project
w Work to accomplish the goals

Page 5

Using Quality to Drive Product Development Processes

© 1999 Johanna Rothman

9

How to determine primary goal

¥ It is 3 weeks before the ship date. The defect
count is higher than developers prefer, the last
features is not quite implemented.

¥ Ship anyway: Time to market
¥ Ship when features is complete: Feature set
¥ Ship when defects are fixed: Low defects
¥ The other two goals are also important

10

SmartStoreÕs goals

¥ Predominant goal: Time to Market
w Specific feature set
w Low defects

Page 6

Using Quality to Drive Product Development Processes

© 1999 Johanna Rothman

11

Project steps

¥ Clarify project priorities
w Use MooreÕs marketing model

¥ Choose a process based on your quality
requirements

¥ Set milestone criteria

12Quality Perceptions over
Product Lifetime

* Medium pressure for features may not mean new features. It
means the promised features must be in the product and working.

Market
Pressure

Intro-
duction

Early
Adopters

Main-
stream

Late
Majority

Skeptics

Time to
Market

High High Medium Low Low

Feature
Set

Low Medium Low Medium* Medium

Low
Defects

Medium Low High High High

Page 7

Using Quality to Drive Product Development Processes

© 1999 Johanna Rothman

13Processes, Strengths, Quality
Priorities

Project Lifecycle Lifecycle strengths and
necessary conditions to
make the process work

First
Priority

Secondary
Priorities

Project
Culture
[5]

LifecycleÕs
prognosis for
Success

Waterfall: A serial lifecycle
that in its pure form does not
consider feedback. I have
only met waterfall projects
that consider feedback.

Known and agreed-upon
requirements
Well understood system
architecture
Requirements stable over
project
Development team stable over
project

Features Low
defects
Time to
market

Routine Many successful
waterfall projects
incorporate
feedback.

Spiral
Staged-delivery, Evolutionary
delivery

Risk management Features Low
defects
Time to
market

Steering successful

Evolutionary prototyping
Design-to-schedule
(frequently used in concurrent
engineering)

Rapidly changing
requirements or incompletely
known requirements

Time to
market

Low
defects
Features

Steering successful

Code and Fix (not
recommended, but many
organizations use it. [3])

Unplanned projects Time to
market

Features
Low
Defects

Variable Does not generally
meet any of the
desired priorities

14

Time to market example

¥ Messenger had a history of missing all project
goals

¥ New project: Make a specific time to market
w Some more features
w Few enough defects for a usable product

¥ Used a design-to-schedule process
w Elements of concurrent engineering

Page 8

Using Quality to Drive Product Development Processes

© 1999 Johanna Rothman

15MessengerÕs Beta and Release
Criteria

Beta Criteria Release Criteria
1. All code compiles and

builds for all platforms.
2. All developer tests must

pass.
3. All beta customer tests run

and pass.
4. All current bugs are

entered into the bug-
tracking system.

5. First draft documentation is
available and shippable.

6. The code is frozen.
7. Technical support is ready.
8. Less than 36 open high

priority bugs.

1. All code compiles and builds for all
platforms.

2. Zero high priority bugs.
3. Document all open bugs in release notes

with workarounds.
4. All planned SQA tests run, > 90 percent

pass.
5. Number of open bugs decreasing for last

three weeks.
6. All Beta site reports obtained and

evaluation documented.
7. Reliability criterion.
8. Final draft documentation available.
9. A working demo runs on previous release.
10. Performance criterion.
11. At least two Beta site references.

16

Messenger results

¥ Project met Beta and Release Criteria
¥ Shipped on time
¥ Almost all features (all required features)
¥ Users only found two of the open defects

Page 9

Using Quality to Drive Product Development Processes

© 1999 Johanna Rothman

17

Feature set example

¥ ExtendIt had a history of missing dates and
taking forever to complete functionality

¥ Inadequate change processes to cope with
lengthy development schedules

¥ New project: Get specific set of features to market
w Time to market close secondary consideration
w Low defects not as important as the other two

¥ Used a quarterly staged-delivery process
w Each release decomposed into several projects
w Each project divided into series of staged deliveries
w Each project tested against Beta and Release criteria

18ExtendItÕs Beta and Release
Criteria

Beta Criteria Release Criteria
1. Components 1, 2, 3 must be usable by Beta

customers.
2. All code compiles and builds for all

platforms.
3. All system tests must run, >90% pass.
4. System tests for Components 1, 2, 3 must

run and pass.
5. First draft documentation is available and

shippable.
6. The code is frozen.
7. Technical support is ready to support Beta.
8. For each major component, zero major

bugs, and fewer than 30 minor bugs.

1. Components 1, 2, 3, must be complete.
2. All code compiles and builds for all

platforms.
3. All system tests must run, >98% pass.
4. System tests for Components 1, 2, 3

must run and pass.
5. Final draft documentation is available

and shippable.
6. The code is frozen.
7. Technical support is ready to support

Release Product.
8. For each major component, zero major

bugs, and fewer than 20 minor bugs.
9. At least three Beta site references.

Page 10

Using Quality to Drive Product Development Processes

© 1999 Johanna Rothman

19

ExtendIt results

¥ Project met all milestones
¥ Components 1, 2, 3 shipped
¥ Developers not burnt out

20

Low defect example

¥ ViewIt already successful focusing on time to
market or feature sets

¥ New project: Get improved accuracy and system
performance
w Time to market
w Feature set

¥ Used a concurrent design-to-schedule process
w Included iteration cycle for requirements changes
w Stringent development process

§ Review code and unit tests
§ Two-stage build process

Page 11

Using Quality to Drive Product Development Processes

© 1999 Johanna Rothman

21

ViewItÕs Release Criteria

¥ All unit tests executed and passed.
¥ All code reviews complete, no outstanding issues.
¥ All system tests executed, >98% pass.
¥ Successful generation of executable images for all

appropriate platforms.
¥ Code is completely frozen.
¥ Documentation review is complete.
¥ There are zero showstopper bugs.
¥ There are zero major bugs, and no more than 10

minor bugs.
¥ The product is ready to ship on July 1.

22

ViewItÕs Results

¥ Project shipped, meeting all release criteria
¥ Won a quality award
¥ Other teams started to use the review and build

processes

Page 12

Using Quality to Drive Product Development Processes

© 1999 Johanna Rothman

23

Summary

¥ Quality is what customers value
w Low defects AND
w Time to market AND
w Feature set

¥ Balance all aspects of quality for your project
¥ Create Release criteria, trading off each aspect of

quality
¥ Choose a product development process to

provide leverage for your project
w Subprojects may need different processes

J. Rothman, Using Quality to Drive Product Development Processes 1

Using Quality to Drive Product Development Processes
© 1998 Johanna Rothman

Abstract

Companies create a variety of products, and different releases of those products, for many reasons. These range from
market-testing trial balloons disguised as Ôbeta testsÕ to releases forced by incompatible changes in operating
systems. Some have many changes, some have few. Some can tolerate fairly glaring defects, others have to
extremely reliable. Some are built on very speculative financial grounds, where others protect lucrative franchises.

The goals for quality, schedule, and features for a project are intimately related to the reasons for creating the release
in the first place. Since the definition of quality is determined by the goals youÕre trying to achieve, you can't use a
cookie cutter approach to the project management process in software development.

In my experience, each project has one, and only one, of these goals as its top priority, and then addresses the other
two goals within that context. This prioritization determines the tradeoffs the project manager will make during the
project, and should help the project manager determine the product development process to use in developing the
product.

Different product development processes provide unequal leverage for the three possible top priorities of the software
product development. This paper uses concrete examples to illustrate how to choose the quality priorities for a
project. Once the priorities are set, it illustrates how to choose the appropriate product development process.

Define this project's quality

Every project has its own goals. To determine the appropriate product development process for a project, you must
first define and understand your project goals. The end goal in almost any project is to make money, either by
selling the product or by serving an internal need, such as IT projects or internal tools. Choose the goal, which fits
with the rest of the business objectives of the larger project. For example, if the goal is a time-to-market driven beta-
balloon, then there are no "customers" at all Ð yet. But there is a business imperative to have "at least these features
by this date."

The three possible project goals for any given software project are [2]:

• Minimize time to market, by delivering the release as soon as possible.

• Maximize customer satisfaction, by delivering a fixed set of features, whether demanded by existing customers
or believed to be required to grab the hearts and minds of potential customers

• Minimize number of known and shipped defects

In my experience, a project can have one and only one of these goals as its top priority. The manager must address
the other two goals within that context. If the manager accepts and understands this prioritization, she can actively
decide to shape the development process to achieve the goal. As the project proceeds, she can make tradeoffs
consistent with the priorities. If the manager refuses to accept that only one of these goals can be paramount, the
project is likely to not make any of its goals.

When you start a project, you have to pick one of these three3. as the predominant goal of the release. Choose which
aspect of quality is most valuable to your customers, whether they exist or are represented by the company. The
other two goals are traded off within the context of the primary goal.

This is an example of what happens when a project does not have one primary goal for a specific release:

SmartStore product developers worked on a major software release. The organization consisted of:

3 Note that cost of development is explicitly not stated in these goals. In general, the acts taken to decrease the cost
of development increase the cost of quality (overall quality): the organization simply cannot generate a product
within the time/feature/defect constraints if they are not sufficiently funded. Reducing development cost without
changing the time/feature/defect constrains generally extends the development cycle, and/or increases defects, and/or
reduces the features in the product. [1]

J. Rothman, Using Quality to Drive Product Development Processes 2

q A product development group who believed that the most important thing to do in any release is to fix the
bugs reported in the last one.

q A management team that wanted (a) something to ship in about eight months for market reasons, and (b) a
list of new features, and (c) some performance improvements.

q A project manager who did not understand how to set project goals, nor how to track progress, or how to
communicate project goals adequately.

SmartStore planned an eight calendar month time period from start to delivery. No one specified any explicit
release criteria, but development was working towards a specific feature set with low defects (to maximize
customer satisfaction). A month or so before the planned ship date, SmartStore's managers realized the project
would not make the ship date with both the features and low defects. At this point, management chose to focus
the release goals on time to marketÑthey would be content with any set of features that the development group
could complete in the next 6 weeks (to minimize time to market). They decided to drop some features from the
project and they made a new plan and schedule. The schedule was not terrible, it just did not take into account
that the product developers needed to change how they worked.

Management then started measuring how well the project team met the new schedule. About two weeks before
the new ship date, it was clear to everyone the project would not make the new ship date with any of the
features completed (the feature freeze had been slushy and the product developers pushed into Beta anyway).
Since they were now going to miss the second planned ship date, with fewer features and more defects,
management said "We can't make the features we want in the time we want, so let's get the performance we
want" (to minimize customer-visible defects). Performance had been an implicit development goal, but had
never been a focus of the project. The project goals were briefly changed to focus on product performance.

After only two weeks of working towards product performance, the SQA Manager realized they might never ship
a product. The SQA Manager chose specific product goals (a certain smaller set of features, moderate defect
levels including performance no worse than the previous release, and an aggressive time to market) and
formulated measurable release criteria. The project was complete when the release criteria were satisfied.

With all these goal changes, some members of the development team were unaffected, some felt jerked around
by the apparent lack of management focus, and some were so utterly confused, they were unable to make
progress. Even though the professed project goals changed, the product development activities did not change
Throughout the entire process, the product developers spent most of their time fixing bugs to make a (lower
priority) market ship target.

All of the management gyrations made the project even later because the project manager was busy trying to
figure out how to accommodate what management wanted in the current development process.

The project manager was unable to adequately track what was really going on in the project, because he was
confused by the lack of a single project focus. Since no one asked the technical staff if they were capable of
meeting the new goals, the technical staff ignored the new goals. They continued working on reducing the
inventory of defects in the existing product.

The product finally shipped about four months late, without some of the planned features, without the
performance, and with more defects than originally hoped and planned. The lack of management focus during a
critical phase of the project (when everyone realized the estimates were inadequate) allowed some of the technical
staff to drift, some to focus on the new goals, and some to remain focused on the original goals. In the end, no
one at SmartStore was happy with the release.

SmartStore's product development process was not flexible enough to accommodate the shifting goals, and the
project manager was not capable of explaining to the organization how the shifting goals would prevent the project's
success. If you've ever found yourself in the dilemma of shifting project goals, then consider how you focus your
project goals on low defects, time to market, or features4

4 An honestly designed project has two priority thresholds: the absolute bottom line and everything else. This paper
is about the second threshold. For example, even if time-to-market is king, if installing the candidate release wipes
the hard drive of 25% of the people who test it, unless the people in charge are clueless, the product will not ship.
Why? Because the organization is smarter than shipping a product that will decrease its market share. In the same
way, there is an absolute limit to features. A release has to have something new, even if there is just a requirement
not to wipe disk drives. It might be a very minimal requirement, but it exists.

J. Rothman, Using Quality to Drive Product Development Processes 3

Some people are not easily convinced that there is only one top priority. Here is a check you can use to verify that
choice: If it is three weeks before the scheduled ship date, and the defect count is higher than the developers prefer,
and the last feature is not quite implemented, what does management choose to do? If management chooses to ship
anyway, then time to market is the top priority. If management chooses to ship as soon as that feature is installed,
then customer satisfaction through features is the top priority. If management chooses to hold shipment in order to
fix the defects, then low defects is the primary definition of quality.

Note that the primary goal does not exclude a secondary goal from being extremely important. In the case of
SmartStore, the top priority was time to market, with a specific feature set as a very close second. Low defects were
only important if the features didn't work at all.

If the management and the project manager had established these priorities at the start, the project manager would
have had a clear goal to communicate to the developers, and a clear idea of how to measure the progress of the
developers. With those, he could have brought the effort to completion on schedule.

When you are asked to manage a project with unclear priorities, your first job is to get clear priorities. You have to
make it clear to your management that thereÕs no plan without them. If your management is hopelessly confused,
you have to create them yourself (perhaps with other people on the project). It is better to manage the project with
priorities you create than with none at all.

When the priorities are unclear, you have to ask more questionsÑwhen someone proposes to change the overall
project priorities, the product itself shifts, and product shipment is at risk. No process can eliminate the impact of
shifting priorities, but an appropriate process may help prevent priorities from shifting. If there is no way to prevent
a shift, a conscious approach to the importance of priorities can help you minimize the impact.

One way to choose the right quality priorities for a project is to use Geoffrey MooreÕs high-tech marketing model [4]
to understand the market imperatives. Table 1 provides a view, based on his model, of the interaction between the
definition of quality and the product lifetime. For more information, see [6]. The users (and potential users) have
different perceptions of product quality over the lifetime of a product. The chart shows how the three possible
priorities are sorted for different classes of users. As a product evolves, it moves from one target user group to
another, and (in the model) the priorities shift accordingly.

Table 1: Quality Perceptions over Product Lifetime

Product Life/
Market
Pressure

Introduction
(Enthusiasts)

Early Adopters
(Visionaries)

Mainstream
(Pragmatists)

Late Majority
(Conservatives)

Skeptics
(Laggards)

Time to Market High High Medium Low Low

Features Low Medium Low Medium* Medium

Low Defects Medium Low High High High

* Medium pressure for features does not mean pressure for new features. It means that the promised features must be
in the product and must be working.

Choose a process based on your quality requirements

There are several well-known product development processes. Within an overall product development process, there
are a number of techniques that can be used, such as cleanroom and concurrent engineering. See [3] for more
explanation about product development processes. Different processes and techniques have varying effectiveness in
terms of the goals of time to market, feature richness, or defect control. The following table is a comparison of
process development processes and techniques, their strengths, and their product quality priorities.

J. Rothman, Using Quality to Drive Product Development Processes 4

Table 2: Processes, their Strengths, and Quality Priority5

Product Development
Process

Process strengths and
necessary conditions to
make the process work

First
Priority

Secondary
Priorities

Project
Culture
[5]

Process's
prognosis for
Success

Waterfall: A serial
process that in its pure
form does not consider
feedback. I have only
met waterfall projects
that consider feedback.

Known and agreed-upon
requirements
Well understood system
architecture
Requirements stable over
project
Development team stable
over project

Features Low defects
Time to
market

Routine Many successful
waterfall projects
incorporate
feedback.

Spiral
Staged-delivery,
Evolutionary delivery

Risk management Features Low defects
Time to
market

Steering successful

Evolutionary
prototyping
Design-to-schedule
(frequently used in
concurrent engineering)

Rapidly changing
requirements or incompletely
known requirements

Time to
market

Low defects
Features

Steering successful

Code and Fix (not a
recommended product
development process,
but many organizations
use it. [3])

Unplanned projects Time to
market

Features
Low Defects

Variable Does not
generally meet
any of the desired
product criteria

Product development
techniques
Cleanroom Known customer

requirements
Development team capable of
maintaining reviews during
project

Features Low defects
Time to
market

Routine Successful when
the project
maintains the
work style

Concurrent Engineering Most requirements are
known, but not all
Risk management by
bringing in cross-functional
team

Time to
Market

Features
Low Defects

Steering successful

When you decide on your first priority of quality, you can then deliberately choose the most appropriate product
development process to support that definition of quality. Sometimes you choose a combination of processes to
meet the mix of quality attributes needed for this product at this time. In essence, you tailor the development
process to produce the kind of quality that matches the overall business requirements.

If you are called upon to plan a project with unclear requirements, or other high-risk components, consider a spiral
process to manage the requirements risk. To meet an aggressive time to market goal, consider concurrent
engineering to make sure the whole company is ready for product shipment. To meet a specific time to market goal
with low defects, consider a staged delivery process.

In the case of SmartStore, the project's criteria for success were unclear. If the project manager had realized that a
specific set of features was necessary, but that time to market was critical, the project manager could have

5 No process is appropriate for a first priority of Ôlow defects.Õ In reality, does anyone ever say, ÔWe donÕt care what
is in it or when it is, so long as it has no more than X defects?Õ Perhaps they do say, ÔThe goal of this release is the
reduce the defect list to size X. Here is a list of desired features to be included if time permits while stomping on
defects. Any delivery date in the range of X to Y is acceptable. Y is an absolute limit so long as the defect list has
shrunk by at least Z. If not, then all of you will need new jobs and your replacements will plan another attempt.

J. Rothman, Using Quality to Drive Product Development Processes 5

communicated these priorities to the development team. SmartStore was in the Early Adopter phase of their market.
As a result, time to market was much more important than low defects. If the project manager had realized that time
to market was the first priority with a certain set of features, and low enough defects to use those features, the product
development process would have reflected those priorities6. And, then when management wanted to shift priorities,
it would have been easier to explain the effects of changing the project goals.

This next case is an example of an organization choosing their definition of quality for their product in their
marketplace, and then explicitly setting Beta and Release criteria to know when those goals were attained.

Example of process based on time to market

Messenger had a history of problems in the product development. All their previous projects were late, there were
too many defects for the products to be sufficiently useful, and some necessary features were missing. Even at the
start of this project, the Messenger organization was constantly in "catch-up" mode, trying to fix the deficiencies in
previous releases. This project started as the others had, with vague project goals, and creeping requirements. Once
the first project milestone was missed, the parent company changed management, including the project manager.
New business and project management staff was brought in.

Messenger had an overriding goal: to make a specific time to market. They had a small number of customers, and
were trying to break into the mainstream of the market. They had to have enough features in the product so that their
potential customers could use the product and few enough bugs so that the product was mostly usable.

Messenger technical staff decided not to repeat the past. They worked with the project manager to define the value
this project had for their current and future customers. They decided time to market was critical, with a small set of
features. They built a project plan based on a design-to-schedule process, with elements of concurrent engineering.
They divided the work into a set of relatively independent pieces of software. The technical staff worked in parallel
on the different pieces. The plan called out specific times at which they would integrate the changes.

Messenger's Beta ship and Release ship criteria were different because they used a design-to-schedule process. They
developed the requirements, designed the architecture, and worked on features in priority order. That is, the highest
priority feature was designed, implemented, debugged, and integrated first. The next highest priority feature was
designed, implemented, debugged, and integrated second. This repeated for all the features before the release date.
(Implement features until you run out of time.) Messenger was able to work on a number of features concurrently,
because the staff worked in parallel. Since all the necessary features were implemented in parallel, they were sure they
would make their release date.

Table 3: Messenger's Beta and Release Criteria

Beta Criteria Release Criteria
1. All code compiles and builds for all

platforms.
2. All developer tests must pass.
3. All beta customer must run and pass.
4. All current bugs are entered into the

bug-tracking system.
5. First draft documentation is available

and shippable.
6. The code is frozen. (Debugging had

stopped long enough to create a stable
build and verify the Beta customers
could use the product.)

7. Technical support training plan is in
place, and the people are in place.

8. Less than 36 open high priority bugs.

1. All code compiles and builds for all platforms.
2. Zero high priority bugs.
3. Document all open bugs in release notes with

workarounds.
4. All planned SQA tests run, > 90 percent pass.
5. Number of open bugs decreasing for last three

weeks.
6. All Beta site reports obtained and evaluation

documented.
7. Reliability criterion.
8. Final draft documentation available, complete and

submitted to corporate organization.
9. A working demo runs on previous release.
10. Performance criterion.
11. At least two Beta site references.

This project met the Beta and Release criteria. The product shipped on time, with almost all the features, and very
few user-visible defects. The users found only 2 of the open defects, and were able to work around those problems.

J. Rothman, Using Quality to Drive Product Development Processes 6

The users did not find other defects. Messenger met their quality goals with this design-to-schedule (and goal
specification) process.

Example of process based on features

ExtendIt had problems in their previous projects: all their projects took much longer to complete than they expected
and the projects were still missing major pieces of functionality. Since the projects took too long to complete, users
started changing their requirements, frequently just before the release shipped. ExtendIt did not have change
management processes that allowed them to deal with requirements changesÑthe only thing they knew how to do
was hold the release to put the changes in. This led to even longer project schedules. It was common to have to
wait for up to two years for a complete feature.

ExtendIt had an overriding goal: get a certain set of features to market. If each feature was not complete, the product
would not be shipped. Time to market was a close secondary considerationÑtheir market was growing, and they
wanted to increase market share. This product had a significant number of pre-existing customers, and was firmly
entrenched in the mainstream of their market.

ExtendIt went to a quarterly staged-delivery process called a Release Train. The product manager decomposed each
release into several projects. Then, the product manager divided each project into a series of staged deliveries. The
project manager worked with others to define the requirements for the release and with the developers to define the
architecture. Then, the developers built and tested the components in parallel. This process reduced schedule risk by
fixing the architecture at the outset and choosing an architecture built from components that could be developed in
parallel.

As each component was integrated into the system, the system was tested to verify that it met the absolute ship
criteria. If it failed the test, Project Management directed the developers to back out the feature or to wait for the next
release cycle. Only projects that could meet their release criteria were allowed on the train.

ExtendIt ran short Beta test cycles. This is an example of Beta and Release criteria from a recent release:

Table 4: ExtendIt's Beta and Release Criteria

Beta Criteria Release Criteria
1. Components 1, 2, 3 must be usable by Beta

customers.
2. All code compiles and builds for all

platforms.
3. All system tests must run, >90% pass.
4. System tests for Components 1, 2, 3 must

run and pass.
5. First draft documentation is available and

shippable to customers.
6. The code is frozen.
7. Technical support is ready to support Beta.
8. For each major component, zero major

bugs, and less than 30 minor bugs.

1. Components 1, 2, 3, must be complete.
2. All code compiles and builds for all platforms.
3. All system tests must run, >98% pass.
4. System tests for Components 1, 2, 3 must run

and pass.
5. Final draft documentation is available and

shippable to customers.
6. The code is frozen.
7. Technical support is ready to support Release

Product.
8. For each major component, zero major bugs,

and less than 20 minor bugs.
9. At least three Beta site references.

ExtendIt's Beta and Ship criteria were very similar. The criteria are similar because the components had to be close
to complete to make a meaningful Beta program. ExtendIt used a staged delivery process with elements of
concurrent engineering, to get the required components and the company ready for the release.

ExtendIt's release was successful: the project met all its milestones; components 1, 2, and 3 shipped; and the
developers were not too tired to go onto the next project. The customers were amazed that they had complete
components, amazed enough so that product sales improved.

Example of process based on low defects

ViewIt did not have customer-viewable problems in their projects. ViewIt's products frequently met their customers'
perceptions of value, in all of time to market, feature set, and defects. ViewIt now needed to produce a next-
generation machine vision application with very little downtime and high accuracy. They needed to emphasize low
defects in this follow-on release. The customer had a previous version of the product, and was not willing to use

J. Rothman, Using Quality to Drive Product Development Processes 7

software with more defects than the previous release. ViewIt's next priority was time to market, since the software
was promised on a very early delivery schedule to the initial customer.

ViewIt chose a concurrent design-to-schedule process. They could predict that some changes in the requirements
were inevitable, so they modified this process to include an iteration cycle so that they could absorb these changes
and control their impact. They involved representatives across the company from the start of the project, not just to
verify product features, but to make sure everyone would be ready to for product shipment.

To ensure that the code would meet the defect metrics, the development team designed, implemented, and enforced a
more stringent development process than that used on other projects in ViewIt:

1. All code and unit tests had to be reviewed before it was merged into the project branch.

2. All code went through a two-stage build process. The first stage accepted the code, created a product
build, and ran a minimum acceptance test. If the acceptance test passed, the code was "promoted" to
the accepted area.

These project rules were different from other ViewIt projects, because other projects did not have the same urgency of
low defects and time to market.

In addition to the new process, the ViewIt project team created these product shipment criteria:
1. All unit tests executed and passed.
2. All code reviews complete, no outstanding issues.
3. All system tests executed, >98% pass.
4. Successful generation of executable images for all appropriate platforms.
5. Code is completely frozen.
6. Documentation review is complete.
7. There are zero showstopper bugs.
8. There are zero major bugs, and no more than 10 minor bugs.
9. The product is ready to ship on July 1.

These defect-focused criteria refer to low defects as a primary definition of quality. The bug numbers were chosen
based on other products, and the assumption that the severity of each the existing defects would be assessed. The
ship date is still very important, which is why it was part of the ship criteria. (There was no formal Beta period for
this product.)

ViewIt's process was successful for this project. The project won a quality award from their largest customer. In
addition to project success, some other project teams took on the review and two-stage build processes this team
had found so successful.

Summary

Product quality is what the customers value [5]. The commercial success of a release depends on satisfying the
requirements in the three quality areas discussed in this paper. Your job is to try to predict how marketplace (defined
by existing customers, potential customers, magazine reviewers, etc.) will use these three criteria to evaluate your
product, and then choose goals consistent with their expectations. All parts of your plan, including development
processes, beta tests, documentation and training requirements, should be chosen to reflect your goals for these three
criteria.

Those values should drive the project plan and the product development process. Additionally, creating and using
Beta and Release criteria allow the project team to test their assumptions and progress as the project unfolds.

Here are the steps I use to determine the product development process for a given project:

1. Decide what aspect of quality is most valuable to the customers: time to market, features, or low defects for
the entire project. Decide what else the customers value.

2. Create a balanced scorecard, indicating the trade-off levels of the three aspects of quality: time to market,
feature set, and low defects.

3. Expand the scorecard into beta and ship criteria to test your assumptions all the way through the project.

4. Choose a product development process that meets what the marketplace values. Don't be afraid to use
different processes on different subprojects.

J. Rothman, Using Quality to Drive Product Development Processes 8

One of this paper's reviewers offered an analogy about "typical" and "unique" aspects of the project.
"Typical" means you've done a project like this before, you understand well how to do it, and you've
succeeded at it. "Unique" means that you don't really understand it, and you may not know how to do it at
all, never mind doing it well.

When you plan the project: is this mostly a typical or unique project? Are there subprojects that are mostly
unique or mostly typical? Many projects are mostly typical with some unique aspects. Can you organize
to separate the two, and then use different planning and development approaches for the sub-projects you
create that way?

Choose a product development process to provide the leverage you need to the product your customers want to buy
at this time.

Acknowledgements

The following reviewers made valuable contributions to this paper: Marsha Browne, James Bullock, Benson
Margulies, Steve Smith, Dan Starr, Jerry Weinberg.

References
1. Crosby, Philip, Quality is Free. McGraw Hill, New York. 1980.

2. Grady, Robert. Practical Software Metrics for Project Management and Process Improvement. Englewood
Cliffs, NJ: Prentice Hall, 1992.

3. McConnell, Steve. Rapid Development. Microsoft Press. Redmond, WA. 1996.

4. Moore, Geoffrey. Inside the Tornado, New York: Harper Collins, 1995.

5. Rothman, Johanna. "Defining and Managing Project Focus" , American Programmer (February 1998).

6. Weinberg, Gerald M. Quality Software Management, vol. 1. , New York: Dorset House Publishing, 1992.

Page 1

Douglas Hoffman Copyright © 1999, SQM, LLC. 1

Test Automation Architectures:
Planning for Test Automation

Copyright © 1999, Software Quality Methods, LLC. No part of these graphic overhead slides may
be reproduced, or used in any form by any electronic or mechanical duplication, or stored in a

computer system, without written permission of the author.

Douglas Hoffman
Software Quality Methods, LLC.

24646 Heather Heights Place
Saratoga, California 95070-9710

Phone 408-741-4830

Quality Week ‘99

Douglas Hoffman Copyright © 1999, SQM, LLC. 2

Test Automation
is not just machines running tests!

Page 2

Douglas Hoffman Copyright © 1999, SQM, LLC. 3

Test Automation Architecture

through reporting results

From selecting what to test

Douglas Hoffman Copyright © 1999, SQM, LLC. 4

Manual Software Tests

• Person initiates each test case

Person must interact with the test, SUT, or the
environment during the test case

Person is required to act in order that analysis of
test results takes place

Person summarizes and reports results

Page 3

Douglas Hoffman Copyright © 1999, SQM, LLC. 5

Automated Software Tests
• Able to run two or more specified test cases

Able to run a subset of all the automated test cases
No intervention needed after launching tests
Automatically sets-up and/or records relevant test

Captures relevant results
Compares actual with expected results
Reports analysis of pass/fail

Douglas Hoffman Copyright © 1999, SQM, LLC. 6

Levels of Automation

• Fully automated software testing

Semi-automated software testing

Manual software testing

Page 4

Douglas Hoffman Copyright © 1999, SQM, LLC. 7

Key Automation Factors

• Components of SUT
• Important features and capabilities

Access to inputs and results
Form of inputs and results

Douglas Hoffman Copyright © 1999, SQM, LLC. 8

Simple Testing Model
(Black Box)

System Under
TestTest Inputs Test Results

Page 5

Douglas Hoffman Copyright © 1999, SQM, LLC. 9

System Under
Test

Test Inputs

Precondition Data

Precondition
Program State

Environmental
Inputs

Test Results

Postcondition Data

Postcondition
Program State

Environmental
Results

Expanded Testing Model
(Black Box)

Douglas Hoffman Copyright © 1999, SQM, LLC. 10

Test Oracles

Page 6

Douglas Hoffman Copyright © 1999, SQM, LLC. 11

Testing Model With Oracle
Test Results

Postcondition Data

Postcondition
Program State

Environmental
Results

Test Oracle

System Under
Test

Test Inputs

Precondition Data

Precondition
Program State

Environmental
Inputs

Test Results

Postcondition Data

Postcondition
Program State

Environmental
Results

Douglas Hoffman Copyright © 1999, SQM, LLC. 12

Architecting Automation

• Model for SUT and environment

• Break down software testing problem

Decide on location(s) of automation

Decide on level(s) of automation

Describe automation architecture

Page 7

Douglas Hoffman Copyright © 1999, SQM, LLC. 13

A Model For SUT

System Under Test

User GUI

Douglas Hoffman Copyright © 1999, SQM, LLC. 14

Break Down The Testing Problem

System Under Test

User GUI

Page 8

Douglas Hoffman Copyright © 1999, SQM, LLC. 15

Location and Level for
Automated Testing

• Availability of inputs and results

Ease of automation

Practicality of Oracle creation and use

Priorities for testing

Douglas Hoffman Copyright © 1999, SQM, LLC. 16

Automated Test Sequencing
• Testware version and configuration management

Select the subset of test cases to run

Set-up and/or record environment

Run test exercises

Monitor test activities

Capture relevant results

Compare actual with expected results

Report analysis of pass/fail

Page 9

Douglas Hoffman Copyright © 1999, SQM, LLC. 17

An Automated Software Testing
Process Model

Tester Test List

Automation
Engine

Data
Set

Testware

SUT
Test

Results

ϕ

κ

λ

µ

µ

ν

µν

ο

οπθ

Douglas Hoffman Copyright © 1999, SQM, LLC. 18

Automation Process

• List the sequence of automated events

Identify elements of each event

Decide on location(s) of events

Determine flow control mechanisms

Design automation mechanisms

Page 10

Douglas Hoffman Copyright © 1999, SQM, LLC. 19

Conclusions

• Architecture design begins with

Break down testing problem
Model the testing process
Design the automation architecture

Copyright 1999, Software Quality Methods, LLC.

Test Automation Architectures:
Planning for Test Automation

Douglas Hoffman
Software Quality Methods, LLC.

24646 Heather Heights Place
Saratoga, California 95070-9710

Phone 408-741-4830
Fax 408-867-4550

doug.hoffman@acm.org

Keywords: Automated Testing, Test Oracles, Automation Architecture, Test Models

Abstract

Designing a practical test automation architecture provides a solid foundation for a successful
automation effort. This paper describes key elements of automated testing that need to be
considered, models for testing that can be used for designing a test automation architecture, and
considerations for successfully combining the elements to form an automated test environment.

The paper first develops a general framework for discussion of software testing and test
automation. This includes a definition of test automation, a model for software tests, and a
discussion of test oracles. The remainder of the paper focuses on using the framework to plan for
a test automation architecture that addresses the requirements for the specific software under test
(SUT).

Introduction

Many managers, especially those outside of software quality, have a simplistic view of test
automation. Test Automation is more than a set of tests run to generate apparent results. It
includes designing testware, implementing automated test cases, and monitoring and interpreting
a broad range of results. Automation by simply running test cases without human interaction
doesn’t provide interesting test exercises. We must know how the SUT reacts before the exercise
can become a useful test. In fact, automating the running of tests generates data much more
quickly than manual testing, and therefore there is more data to sift through before knowing how
the SUT responded during the tests. This requires more time from testers and can result in less
effective tests. Elements besides the SUT output can also be directly effected by the SUT, and
these need to be evaluated in automated tests as well.

Prerequisites for effective test automation include several factors beyond having test cases and
automated mechanisms for running them. Organization for the test cases is needed so we can
select and understand what test run, When problems are encountered we need to be able to run
selected subsets or start in the middle of the tests. Automated test execution is what most testers
think of when thinking about test automation. But, test results need to be captured and expected

Test Automation Architectures International Quality Week 1999

Copyright 1999, Software Quality Methods, LLC. Page 2

outcomes compared. To automate capture and comparison the data has to be machine readable,
which is somewhat difficult for many classes of results including GUI displays, screen
navigation, and program states. Automated comparison of results is highly dependent on the
form of information being compared. Filters often need to be made to compensate for expected
differences.

Test automation can only be successful when we keep in mind that testware in general, and
particularly automated testware, is easily made obsolete by changes in the SUT and environment.
The architecture must take into consideration that changes will occur and be designed to
minimize the impact of such changes.

A Definition of Automated Software Tests

Manual testing can be described as a situation where a person initiates each test, interacts with it,
and interprets, analyzes, and reports the results. Software testing is automated when there is a
mechanism for tester-free running of test cases. I generally call test cases automated when all of
the following elements are present. If one or more elements are absent I consider the tests semi-
automated. (Which is often the most cost-effective.)

• Ability to run two or more specified test cases
• Ability to run a subset of all the automated test cases
• No intervention is needed after launching the tests
• Automatically sets-up and/or records the relevant test environment parameters
• Runs the test cases
• Captures the relevant results
• Compares actual with expected results and flags differences
• Analyzes and reports pass/fail for each test case and for the test run

Key Factors in Automated Testing

The first step in planning for test automation is to identify and understand some key factors about
the SUT: Identify what software is to be tested, its specific components and features we want to
test, and the environment surrounding the SUT. These factors are critical to the automation
architecture. Additionally, understand the existing and available testware elements and tools for
testing and test automation in the SUT’s environment.

Although sometimes obvious, it is often enlightening to formally describe what is it we want to
test and distinguish it from all other elements in the system. It is also important to identify what
things we think are outside the scope of our automation or we don’t intend to test. Several related
applications and utilities with different interfaces may comprise the SUT, possibly even running
in different environments. Early decisions on which components to include, which to exclude,
and which features are most important can put definitive boundaries on the automation tasks and
substantially reduce their complexity.

After the SUT elements are identified the environment and interfaces must be considered. For
large or complex SUTs there are often multiple environments to consider and the core programs

Test Automation Architectures International Quality Week 1999

Copyright 1999, Software Quality Methods, LLC. Page 3

to be tested may have several GUI and API interfaces. The immediate technical environment is
important to automation because it provides the facilities and constraints on the most practical
approaches. Multi-tasking, process communications, pipes, standard comparison utilities, etc.,
mold the mechanics of the test automation. Tools and utilities may be unique to one environment
or they may be available across platforms. Many tools and utilities that are available in multiple
environments have incompatible interfaces, which can make porting of automated test cases as
difficult as using different tools in the different environments.

The form of the data for input and results capture is also important. Inputs and results may be
keystrokes, data communication messages, pictures, sounds, digital device inputs or outputs,
display information, etc. Comparison of binary data is different from characters, and sometimes
the data has both syntactic and semantic components that must be dealt with. (e.g., In a data base
search, the order of record retrieval may vary but the same records should match the search
criteria and the contents of each record should be the same. Another program’s output may be
postscript listing, which can change substantially without changing the final printed form.)
Utilities may run in different operating modes or systems from the core application. Creating a
unified test automation architecture is difficult when the SUT needs to be tested in multiple
incompatible systems environments. Depending on the requirements in a given situation, a
unified architecture may be most effective for the automated testing system or it may be
advantageous to employ multiple tools and mechanisms for the different environments.

It is not necessary to have one automation architecture that covers all the components. Testing
can succeed when the tester and automation tools perform a useful test and draw proper
conclusions based on the results. Automation is valuable to augment the tester by performing
tasks that are tedious or impossible for a human or are more cost effective to automate. Different
types of tests are run at different times and not all related tests have to be run at one time. There
is little advantage in a unified automation architecture when there are substantially different
products or environments and very little common testware across them. Two simple automation
engines are often easier to create and support than one overly complex one.

The scope of the planned automation tasks also depends on the existing and available testware
elements and tools. The testware elements include all of the software, documentation, test cases,
data, programs, and associated procedures needed for all the test activities. The tools include
operating system utilities, SCM, test selection and control programs, comparison routines, etc.,
that are employed to do the testing and automation. Although availability and current use of
automated tools does not necessitate that automation be based on them, it is common for an
automation architecture to have a requirement to include existing testware. (But, if the existing
testware and tools were really effective we would not need to develop a new automation
architecture.) Whether to constrain possible architectures by demanding inclusion of existing
testware should be carefully considered, as it is always possible to continue to use existing
automated tests as they are without compromising more effective automation architectures.
Frequently the most cost-effective way of dealing with legacy tests is by gradually phasing them
out as they require updating.

Two areas of test automation require special attention. Results capture can be a huge task when
you realize the world of possible results from running software. The actual results of running a

Test Automation Architectures International Quality Week 1999

Copyright 1999, Software Quality Methods, LLC. Page 4

test are much more than viewing information on the screen. System environment variables,
memory and file contents, program status, messages, etc., may all be impacted by the correct
running of a program. Since we are looking for errors, we must include all the things that the
program could possibly impact – a much larger set of things we need to check as ‘results.’

Results interpretation is a second area that can spell trouble for an automation effort. We need to
identify those things we are going to verify as ‘the results’ and we need to have an oracle to tell
us what those results should be.1,2 For manual testing we look at the displays, investigate internal
variables and program states, and satisfy ourselves that the test passed or failed. For automated
testing we must program the automation tools to perform the same task. Manually, the tester
decides the sequence of tests and investigations, and it varies based upon the data they find.
There may be one test, but there may be several ‘correct’ results from it, and there are a large
number of ways an error would manifest itself. In an automated test environment we must plan
the verification of results so that we know when the test passed and when it doesn’t. That means
identifying all important indications of errors and systematically checking them after every test.

A Model of Testing

Software testing involves more than feeding inputs to a program and observing results. Software
today also has states and interacts with stored data and the computer environment. Figure 1
models the inputs and results for some software. Such a model is important in test automation
because it provides categories to identify the inputs and results that must be monitored and
manipulated during automated testing. For even a simple automated test that feeds inputs to the
SUT, the automated test should verify the expected direct results and the postcondition program
state to be sure the SUT did the right thing and ended in the correct program state. If the program
isn’t supposed to change the system environment or any data sets, then some verification should
be performed to confirm the correct environment and data values after the test. (These are
particularly difficult to do in many systems and extraordinarily important. Manual testers see
these types of problems as “program hangs after completion,” “user no longer has correct
permissions,” or “data corruption from unknown source” errors. When we automate tests we
must ensure that such problems are detected of we risk incorrectly passing software that
obviously doesn’t work.

Test Automation Architectures International Quality Week 1999

Copyright 1999, Software Quality Methods, LLC. Page 5

System Under
Test

Test Inputs

Precondition Data

Precondition
Program State

Environmental
Inputs

Test Results

Postcondition Data

Postcondition
Program State

Environmental
Results

Figure 1: Expanded Testing Model

Software Test Oracles

Test oracles are the mechanisms for generation of expected results so we have something to
compare with the SUT responses. For manual testing the oracle is most often the human running
the tests. With automation of tests it becomes necessary to automatically generate the expected
results in a computer compatible form, and then have the computer system compare actual with
expected results3.

A tester can interpret system behaviors such as GUI navigation and can also perform diverse
functions like arithmetic computations, string concatenation, or data base interrogations. Humans
know that many factors such as dates and times change and can factor that in when generating or
comparing results. The human oracle is so capable that they are often unaware that they are
continually modeling program behavior and comparing results.

However, human oracles are not perfect for test automation and some kind of computer based
oracle has to be used to fully automate software testing. A human is sometimes slower than
computers for generation of expected results. The computer can flash screens faster than a
human can capture the images, and volumes of data can be generated much faster than a human
can interpret and compare it. Humans are also limited in our view of program behavior. We can’t
observe system internal data or program states, sometimes lose concentration and therefore miss
things, and are easily “trained” to overlook errors by seeing a repeated pattern even when it isn’t
there.

Architecting Test Automation

To this point in this paper the factors and models have been generic; they apply for any SUT.
But, it is not true that any single automation mechanism today fits all situations for SUT. The
SUT itself plays a major role in the architecture of the test engine. Assuming that good test cases
exist, automation of SUT testing involves specific input values being fed and corresponding

Test Automation Architectures International Quality Week 1999

Copyright 1999, Software Quality Methods, LLC. Page 6

results checked through the SUT’s interfaces. The process I use for deciding upon the
architecture for test automation is derived from models and analysis from the key factors.
Models for the specific SUT are used to identify interfaces with the environment and to split the
testing into smaller components. Once the SUT and environments are understood, the best places
and mechanisms for automation can be selected. From this information an architecture can be
articulated that provides the best solution to the automation requirements.

Understanding the SUT for automation requires more than evaluating the inputs, processes, and
outputs. Each of the eight input and output sections in the Testing Model must be identified in
the SUT. Software can effect data values in memory, stored in databases, and program internal
states. There are also side effects to program execution such as resource utilization (disk space,
printers, system variables, system environment). Programs can interfere with one another,
consume all of a resource, change the system state, etc. Manual testing factors in most of these
effects because a human observes more than just the SUT. Test automation needs to account for
these results from running the SUT. This is most easily done by modeling the SUT and
identifying the various interface points. Figure 2 is an illustration of a simple model for some
SUT. A model such as this for the specific SUT for which the automated test environment is
intended is used for several things.

Figure 2: A Model For SUT

System Under Test

User GUI

Functional
Engine

API Data
Set

Remote GUI User

Given the model, we might split the testing problem into several smaller problems. The majority
of functions performed by a program might be tested through a public or private API.
Automating tests run through a programming interface is usually easier and more reliable than
through a GUI. A GUI front-end can then be tested independently of the program functions. This
means that functional testing is done with programs that can directly feed and retrieve values
through the API. GUI testing becomes an exercise to see that values typed into fields are fed into
the back-end correctly, that values passed from the back-end are displayed correctly, and display
windows are traversed based on the rules for GUI navigation. Figure 3 illustrates a splitting of
the testing problem for the SUT modeled in Figure 2.

Test Automation Architectures International Quality Week 1999

Copyright 1999, Software Quality Methods, LLC. Page 7

Figure 3: Splitting the Testing Problem

System Under Test

User GUI

Functional
Engine

API Data
Set

Remote GUI User

An automation architecture needs to include the SUT, test running, monitoring tools, program
inputs, program outputs, stored data, program state, environment characteristics, results capture,
results comparison, outcome analysis, and results reporting. Each factor is interconnected, but all
are necessary for test automation to be effective.

Automated Test Architecture Descriptions

We have now collected the information needed to describe the architecture. This is the step in the
process where “a miracle occurs.” Alternatives are weighed based on the requirements and
available information. Factors such as the availability and accessibility of inputs and results, the
availability or ease of creation of tools, stability of the SUT, availability and practicality of
oracles, testing priorities, and resource availability must be weighed with the technical
requirements. The result should be a practical, cost effective automation architecture.

There are two parts to the description of the automation architecture. The first is a structural
description that shows the elements and connections between them. Like a data flow diagram,
information can be displayed and its control and movement depicted. An example of a structure
diagram is shown in Figure 4. The second part of the description is the sequence or flow of
events. What event starts what process, and when. This second part explains the process for the
automated test sequence. A typical sequence is shown below. Not all steps need to be automated.
There is always a cost tradeoff to be considered. Each step must be done, but the cost of
automating them may be prohibitive for some of the activities.

Test Automation Architectures International Quality Week 1999

Copyright 1999, Software Quality Methods, LLC. Page 8

Figure 4: An Automated Process Model

Tester Test List

Automation
Engine

Data
Set

Testware

SUT
Test

Results

ϕ

κ

λ

µ ν

µ

µ

ν

ο

οπ θ

Flow of events

1. Testware version control and configuration management
2. Selecting the subset of test cases to run
3. Set-up and/or record environmental variables
4. Run the test exercises
5. Monitor test activities
6. Capture relevant results
7. Compare actual with expected results
8. Report analysis of pass/fail

Note that the two descriptive elements may be combined into a powerful description of the
automation environment. By labeling the structure diagram with the event numbers we can
depict which elements perform what tasks in time sequence.

Conclusion

Test automation is much more than computers launching test programs. An automation
architecture includes many factors that need to be understood and addressed before automating
testing. It begins with understanding test requirements, the SUT, and the test environment. Using
modeling we can understand and analyze the testing and automation problems. This information
can then be applied to describe a test automation environment using structural diagrams and
event sequences.

1 Douglas Hoffman, “A Taxonomy for Test Oracles,” Proceedings of 11th International Quality Week, May, 1998
2 Douglas Hoffman, “Heuristic Test Oracles,” Software Test & Quality Engineering, V1, I2, March/April 1999
3 Cem Kaner and Douglas Hoffman, “Thoughts on Oracles and Software Test Automation,” Proceedings of 12th

International Quality Week, May, 1999

Alan Ark and Sarah Ackroyd

Euro: An Automated Solution to Currency
Conversion 1

4/28/99

Euro: An Automated Solution to
Currency Conversion

Alan Ark and Sarah Ackroyd

Thomson Financial Services

Boston MA 02210

4/28/99

Euro Conversion: Participating
(IN) EMU Currencies

• Austrian Schillings

• Belgian Francs

• Dutch Guilders

• Finnish Markka

• French Francs

• German Marks

• Irish Punt

• Italian Lira

• Luxembourg Francs

• Portugese Escudo

• Spanish Pesetas

2

Alan Ark and Sarah Ackroyd

Euro: An Automated Solution to Currency
Conversion 2

4/28/99

Euro Conversion :
Non Participating Currencies

• Non-EMU currencies:
British Pounds
Danish Kroner
Greek Drachmas
Sweedish Krona

• Non-EU currencies:
Icelandic Krona
Norwegian Kroner
Swiss Francs

3

4/28/99

Euro Conversion:
Impact on First Call

• First Call is a leading source of real time broker
research, earnings estimates and corporate news

4

Alan Ark and Sarah Ackroyd

Euro: An Automated Solution to Currency
Conversion 3

4/28/99

Euro Conversion: Test Plan

• Scope
– Specification

• Approach
– Two types of data verifications

• Resources
– Limited

• Schedule
– Very limited

5

4/28/99

Euro Conversion: Test Execution

• Verifying currency descriptors
– Select country, currency

– From country_currency_table

– Where country=‘Austria’

– Before : |Austria | Shilling |

– After: |Austria | Euro |

6

Alan Ark and Sarah Ackroyd

Euro: An Automated Solution to Currency
Conversion 4

4/28/99

Euro Conversion: Test Execution
• Verifying quantitative data

– Select e.company, e.broker e.year, e.cur_eps,
e.prv_eps

– From earnings_table e, country_currency_table
cur, company_country_table com

– Where com.company=e.company
and cur.country=com.country
and com.country=‘Austria’

– Before |BMW| ML | 1998 | 2000 | 1500 |

– After |BMW| ML | 1998 | 1000 | 750 |
7

4/28/99

Euro Conversion:
An Automated Solution

• Quantity of data

• Limited time

• Variable data

• Variable participation

8

Alan Ark and Sarah Ackroyd

Euro: An Automated Solution to Currency
Conversion 5

4/28/99

Identified Goals of Automation

• Test cases should be data driven

9

• Results should be persistent

• Conversion factors should not be
hard coded

4/28/99

Why Perl?

• Strong text processing capability

• Use system calls for SQL queries

• Nice looping constructs make this a
natural choice

• Easy to pass command line switches to
the script

10

Alan Ark and Sarah Ackroyd

Euro: An Automated Solution to Currency
Conversion 6

4/28/99

Pseudocode of Script Work

Getopts – default to all euro ‘IN’ countries

Get currency conversion factors

Work on LOOKUP tables

Work on COMPLEX tables

Log info about the entire conversion

11

4/28/99

Pseudocode of Lookup Tables

Foreach LOOKUP TABLE

Create and execute SQL query sending results to a file

Use results file to extract table information

Foreach FIELD

Decide how to handle this field in the table

Compare field with expected result

Log error as needed

END of FIELD loop

Log info about the conversion for this table

END of LOOKUP TABLE loop

12

Alan Ark and Sarah Ackroyd

Euro: An Automated Solution to Currency
Conversion 7

4/28/99

Lookup Table Template

select g.country, s.currency

from currency_table s, country_table g

where g.c_code=s.c_code

13

and (

or g.cnty_code='CBE’

...

or g.cnty_code='CPO'

or g.cnty_code='CSP')

g.cnty_code='CAS'

4/28/99

Pseudocode of Complex Tables
Foreach COMPLEX TABLE

 Foreach COUNTRY

 Create and execute SQL queries sending results to files

 Use results file to get information about the tables

Foreach FIELD

 Decide how to handle this field in the table

 Compare field with expected result

 Log error as needed

END of FIELD loop

 Log info about the conversion for this table and country

END of COUNTRY and COMPLEX TABLE loop

14

Alan Ark and Sarah Ackroyd

Euro: An Automated Solution to Currency
Conversion 8

4/28/99

Complex Table Template
select e.company, e.broker, e.year, e.cur_eps, e.cur_div,

e.cur_pbt, e.cur_pe,e.cur_yld, e.prv_eps, e.prv_div,
e.prv_pbt, e.prv_pe, e.prv_yld

from earnings_table e, country_table g, currency_table s,

where g.company =e.company

and s.cnty_code=g.cnty

and g.cnty=’XXX'
order by e.company, e.broker, e.year

15

4/28/99

Post-conversion SQL Query
select e.company, e.broker, e.year, e.cur_eps, e.cur_div,

e.cur_pbt, e.cur_pe,e.cur_yld, e.prv_eps, e.prv_div,
e.prv_pbt, e.prv_pe, e.prv_yld

from earnings_table e, country_table g, currency_table s,

where g.company =e.company

and s.cnty_code=g.cnty

and g.cnty=‘CAS’
order by e.company, e.broker, e.year

16

Alan Ark and Sarah Ackroyd

Euro: An Automated Solution to Currency
Conversion 9

4/28/99

Pre-conversion SQL Query
select e.company, e.broker, e.year, e.cur_eps, e.cur_div,

e.cur_pbt, e.cur_pe,e.cur_yld, e.prv_eps, e.prv_div,
e.prv_pbt, e.prv_pe, e.prv_yld

from ORIGINAL_ earnings_table e, country_table g,
currency_table s,

where g.company =e.company

and s.cnty_code=g.cnty

and g.cnty=‘CAS’
order by e.company, e.broker, e.year

17

4/28/99

Running the SQL Query

sql -number_format $db_info
< $input_file
> $output_file

system (“sql -f8f16.6 tools::euro_db
< earnings_tbl_cas.in
> earnings_tbl_cas.out “);

18

Alan Ark and Sarah Ackroyd

Euro: An Automated Solution to Currency
Conversion 10

4/28/99

Results From Query
INGRES TERMINAL MONITOR -- Copyright (c) 1981, 1992 Ingres Corporation

INGRES SCO Unix SysV Version 6.4/04 (sco.us5/00) login Wed Jan 6 15:05:18 1999

Continue

* * * * * * * * * * * /* SQL startup file */

select e.company, e.broker, e.year, e.cur_eps, e.cur_div, e.cur_pbt, e.cur_pe,e.cur_yld,
e.prv_eps, e.prv_div, e.prv_pbt, e.prv_pe, e.prv_yld

from earnings_table e, country_table g, currency_table s

where g.company =e.company

and s.cnty_code=g.cnty

and g.cnty=’CAS'

order by e.company, e.broker, e.year

Executing

company |broker|year |cur_eps |cur_div |cur_pbt |cur_pe |cur_yld |prv_eps
|prv_div |prv_pbt |prv_pe |prv_yld |

+-------------+------+------+------+-------------+-------------+-------------+-------------+-------------
+-------------+-------------+-------------+-------------+-------------+

| 1621700|26 | 1995| 246| 240| -5555555| 1681| 579| -5555555|
-5555555| -5555555| 1684| 578|

19

4/28/99

Excerpt From a Log File
Running the queries now for earnings_tbl in cas at Thu Jan 7 10:39:50 1999

--

!!! e.prv_div for cas on row 702 . - company : 1661700 year:1996

Old value: 100 factor: 10 expected new: 10 new: 76

!!! Extra row+++ e.prv_div for cas on row 9023 .

EXPECTED: company : 9573170 year:1996 GOT: company : 9554678 year:1998

+++ Number of rows in earnings_tbl.cas.out Expected 9476, processed 9477

+++ Row mismatch

+++ Number of errors in earnings_tbl.cas.out: 0

+++ Number of zeros in earnings_tbl.cas.out: 4

+++ Number of elems checked in earnings_tbl.cas.out: 47380

...

============================

Total number of errors in conversion: 35059

Total number of elems in conversion: 2818738

Total number of zeros in conversion: 14242

Off by two or less: 0 Off by more: 35059

+++ Time is now Thu Jan 7 13:47:22 1999

20

Alan Ark and Sarah Ackroyd

Euro: An Automated Solution to Currency
Conversion 11

4/28/99

Implementation Results
• Design and implementation completed in

less than 140 hours

• SQL query templates contain needed info
about each table

• Results are in persistent files

• No data is hardcoded

• Optional command line switches for
country choice

21

4/28/99

Empirical Results

• Able to verify the conversion process before
the actual conversion went live

• Information in tables accessed by customers
most often could be verified in less than 3
hours

22

Alan Ark and Sarah Ackroyd

Euro: An Automated Solution to Currency
Conversion 12

4/28/99

What About Maintenance?

23

• Actual table names (both lookup and
complex)

• Calls to database API

• Behavior of significant fields

• Behavior of logical NULLS

• Specific calculations that needed to be done
for yields and price to earnings ratio

4/28/99

Runtime Results

• Two dry runs were successful - only
rounding differences in less than 0.05% of
the data points

• Successfully QA’ed the conversion process

• Successfully QA’ed the developer’s
conversion program via black box testing

24

Alan Ark and Sarah Ackroyd

Euro: An Automated Solution to Currency
Conversion 13

4/28/99

Wins

25

• Identified rounding errors caused by C's
handling of floating point numbers

• Identified an error in the equation being used
by development

• Ran on autopilot while the QA engineers
worked on other projects

• Identified and fixed any issues prior to the live
conversion

4/28/99

Conclusions

26

• Value of teamwork and communication in
action

• Automation saved the day

• Value of perl for QA tasks

• Now have a robust, tested, portable, reusable
currency conversion process and infrastructure
to QA future currency conversions

An Automated Testing
Environment to Support

Operational Profiles of Software
Intensive Systems

Robert S. Oshana
Raytheon Systems Company

oshana@cyberramp.net

2

Agenda

u Introduction
u Conducting a statistical

experiment
u Markov Models
u Test Environment
u Conclusions

3

An unbounded process

u Software testing is an unbounded

– you can never know with total certainty
whether the software:

» contains no faults
» will never fail

u Any testing process is a form of
sampling. Most of this sampling today

4

Problems with coverage testing
u Many errors occur in software despite

complete coverage testing.
– Many sources of failures are design errors
– Failures found when executing s/w under

the right usage scenarios
– Failures defined by usage, not code
– Executing a line of code does not mean

that it is correct

5

u Some execution failures will occur
frequently, others infrequently.

u Coverage testing likely to find the
infrequent as well as frequent failure.

u If the goal of testing is to maximize the
MTTF a strategy that concentrates on
the failures that occur frequently is more
effective than one that has equal
probability of finding high/low failures.

Maximize the MTTF

6

Another focus on testing
u Test the S/W the way the users use it.

– Allows development of tests without having
to wait for the code to be complete.

– Find failures that impact the user most.
– Provide maximum quality for the testing

– Focus on quality from the users point of

7

Find the high frequency faults

u Some failures occur more than others.
u Users determine which faults occur and

u Locate high frequency faults early (from
a users point of view).

u Reliability increases when high
frequency faults are eliminated early
–– Reliability is determined by the user !!Reliability is determined by the user !!

8

Can we do this statistically?

u When a population is too large for
exhaustive study (software systems) a
statistically correct sample must be
drawn as a basis for inferences about

u Treat testing as an engineering problem
to be solved by statistical methods

9

Components of a statistical
experiment

uu PopulationPopulation: the set of items in which we
wish to make a statement.

uu StrataStrata: useful subsets of the population.
uu SampleSample: subset of the population

actually used in the experiment.
uu InferenceInference: process of estimating

population statistics based on results of

10

Sampling a population

Usage
population

stratum
1 2

3

11

Parallel between a classical statistical
design and statistical software testing

12

Binomial Experiments (and how they
relate to software testing)

u Two outcomes (true or false)
– Software tests either pass or fail

u Identical trials
– Outcomes of the trials must be consistent

(by testers and evaluators)

u Common setting
– Same version of software must be used in

each test case (a new version marks the
beginning of a new experiment)

13

u Trials are independent
– Each software test should be independent of

u Probability of success is the same in all

– The pass/fail criteria does not change from test

Binomial Experiments (and how they
relate to software testing)

14

Stochastic software

u Software use is stochastic. S/W has
many different uses for different
missions starting with different initial
conditions and different input data.

15

state 1

state 2

state 3

state 4

A,p(A)

B,p(B)

C,p(C)

D,p(D)

B,p(B)

C,p(C)

D,p(D)

Markov chain

E,p(E)

F,p(F)

invocation termintate

1. arcs1. arcs
2. states2. states
3. probabilities3. probabilities

16

Properties of Markov Chains

u Time homogeneous: Probabilities on
the arcs do not change with time

u Finite state: Finite number of states
represented in the model

u Discrete parameter: The state transition
probabilities are discrete

17

u State diagram is a common and familiar

u Graph theoretic modeling techniques

u Mathematical analysis available
u Sequences look more like typical use
u Generalizes well

Advantages of Markov Chains

18

The Statistical Testing Process
Operational Usage Modeling

Model Analysis and Validation

Test Planning

Testing

Product and Process Measurement

Software certification

19

u Software systems may have multiple
users or classes of users that need to

u Different modes of operation are
considered as well in different usage

u A finite state model of software usage is
developed based on the operational
states of the software system.

Developing Usage Profiles

20

Special purpose models

u Usage models represent conditions
under which S/W is used.

u In general, expected usage conditions

u Other usage conditions may be of

21

u Models for special purposes
– Hazardous usage conditions for safety

critical software
– Malicious usage conditions for special

security requirements.

u Usage should be characterized in
whatever terms are important in the

Special purpose models

22

u Approach 1: Uninformed approach
– assign uniform probability distribution

across the exit arcs for each state.

u Approach 2: Informed approach
– used when some actual user sequences

are available (prototype, prior version, etc).

u Approach 3: Intended approach
– sequences obtained by hypothesizing runs

of the S/W by a careful and reasonable

Define the usage probabilities

23

Conduct the statistical test

u Execute tests until required acceptance
goals are reached or until enough
failures are seen to warrant stopping.

u Determine what is an acceptable and
unacceptable outcome for each test.
– acceptable means the S/W is ready to use.
– unacceptable requires determining the

– should testing be stopped?

24

state 1

state 2

state 3

state 41/7

1/36/7

1

1/3

1/3

3/4 1/4

Using the model to drive
testing

25

A test case is any traversal of

state 1

state 2

state 3

state 4

A,p(A)

B,p(B)

C,p(C)

D,p(D)

B,p(B)

C,p(C)

D,p(D)

Invocation
X

state 1
B

state 2
C

state 4
F

terminate

X,p(X)

One test script
A combinationA combination
of these forms theof these forms the
User FunctionUser Function

Random test cases basedRandom test cases based
on state transitions that areon state transitions that are
randomly selected from therandomly selected from the
usage distributionusage distribution

26

STE Software Hierarchy

Operator test code
(User Function)

Operator interface

Labview
(virtual instruments)

Station
specific STE
S/W

Common
STE S/W Debugger

Solaris Operating System

Sun Workstation

Hardware
(or H/W
Emulation)

VxWorks OS

Single Board Computer

Sun to VME I/F
Ethernet

27

Oracle

Software
under test

Control/
log S/W

Test
results
file

* input
messages

* expected
output
messages

Oracle 1

Oracle 3

Oracle 2

System
engineering
model

SRS

Did the message occur?

Is the data right?

User
functions

28

Automating the Testing Process
Software Test StationTest

Sequences

Expected
Results

Output
Data/
Results

Oracle

Usage
Models

Crafted
Test

Cases

Script
 SW

Software
Under Test

Control

Data

Control and
Sequencing of
Script

Test
Data/

Results

Modeling
tool

Modeling
tool

Output Data/
Responses

Output Data/
Responses

Certification team

29

Data

Defects/Kloc for CSCI types

0

1

2

3

4

5

Control
CSCI

Algorithm
CSCI

Algorithm/C
ontrol CSCI

CSCI type

D
ef

ec
ts

/K
lo

c

Defects/Kloc

30

Coverage

u Minimal covering set of the model
produced statement coverage approaching

u Full statistical test sequence (1000+) tests
achieved coverage in the mid 90% range.
– 8 - 12 hour test execution time

u Some error paths were tested separately

31

theoretic discrimination

0

0.005

0.01

0.015

0.02

0.025

0.03
1 3 5 7 9 11 13 15

sequence

D Series1

Stopping Criteria

less likely that new less likely that new
information will be gainedinformation will be gained
by further testing!by further testing!

32

static
analysis

fully specified
and compiled
code

* code inspection
* correctness
 verification
* tools (lint)

unit
test ?

unit test

* code coverage
* oracle compare

run time
code
analysis

yes

no operational
profiles

statistical
testing with
usage models

* leak detectors
* instrumentation

* field
 data

function
theoretic
sequence
enumeration

testing
oracle

and usage
model creation

function
mapping
rules

Model for testing
test grammar

33

Conclusion

u Statistical testing transforms the testing
process from a craft to an engineering

u Automated testing environment
supports the statistical testing approach

u Works well in conjunction with other

1

An Automated Testing Environment to support Operational Profiles of
Software Intensive Systems

Robert S. Oshana
Raytheon Systems Company

oshana@raytheon.com
(972)344-7083

Abstract:

Raytheon Systems Company is a defense electronics company that has been actively
engaged in a software process improvement effort at the organizational and program
levels for over a decade. The company uses the Software Engineering Institute’s (SEI)
Capability Maturity Model (CMM) as a basis for their improvement efforts and has been
formally assessed at level 3 (defined).

The project is a real-time embedded software application using a heterogeneous computer
architecture consisting of the two fundamental computing environments;

• PowerPC single board computer (SBC) using Ada for embedded command and
control,

• Digital signal processors (DSP) using the C programming language for a primarily
signal processing algorithm based application. There are significant real-time
constraints within the signal processing application.

The program follows a tailored version of DoD-STD-2167A and MIL-STD-498
documentation standards. The project is built upon an Integrated Product Team (IPT)
structure. There is a fully defined software development process as well as system
engineering and hardware development processes.

Our testing approach is based on the concepts of software testing based on statistical
principles. The statistical testing approach to software treats the software like a statistical
experiment. A statistical subset of all possible software uses is first generated.
Performance on this subset is used to form conclusions about operational performance
based on the usage model developed. The expected operational use is represented in a
usage model of the software. Test cases are then randomly generated from the usage
model. These tests are executed in an operational environment. Failures are interpreted
according to mathematical and statistical models.

This paper will focus on the successes and issues associated with developing a statistical
testing environment for an industrial software project. The paper will also describe how
both statistical testing based on software models and traditional testing based on unit and
other functional tests can be combined into an effective approach to testing large software
intensive systems.

2

A STATISTICAL EXPERIMENT
One approach to software testing is to treat the testing process like a statistical

experiment. There are several components of a statistical experiment (Figure 1);

1. The population which is the set of items that we are attempting to make a statement
about.

2. The strata which are the useful subsets of the population.
3. The sample which is the subset of the population actually used in the experiment.
4. The inference which is the process of estimating the population statistics based on the

results from the sample.

Usage
population

stratum
1 2

3

samples from the
population

reliability
inference

usage sample

Figure 1. Sampling a population

Software use can be characterized as being stochastic. A stochastic process is a
random process or experiment that takes place in stages. The outcome of any preceding
experiment does not affect subsequent experiments. Stochastic processes can be used to
model system state as a function of time. Short term or long term behavior can be studied
using stochastic processes. The type of model we will use to model software behavior is
the Markov chain. A Markov chain encodes the input domain as a set of states which
represent usage history of the software from the users point of view. Arcs are used to
connect the states and represent the transitions caused by the various stimuli to the
system. These stimuli can be generated from hardware, human interface, other software,
and so on. Finally, transition probabilities are assigned to the arcs and represent how a
typical user is likely to apply stimuli to the system. A Markov chain of this type is a
discrete time, finite state machine. A model of this sort can be represented as a directed
graph (Figure 2) or a transition matrix (Figure 3).

state 1

state 2

state 3

state 4

A,p(A)

B,q(B)

C,p(C)

D,q(D)

B,p(B)

C,p(C)

D,q(D)

3

Figure 2. A Markov chain in directed graph format

state 1

state 2

state 3

state 41/7

1/36/7

1

1/3

1/3

3/4 1/4

 A Markov chain in digraph format

T =
0

0

0

0

1/7

0

1/3

3/4

0

1

1/3

0

6/7

0

1/3

1/4

state 1 state 2 state 3 state 4

state 1

state 2

state 3

state 4

all rows
sum to 1

 A Markov chain in transition matrix format

Figure 3 Transition matrix and digraph form of a Markov chain

The common properties of Markov chains are;

1. time homogeneous; this means the probabilities on the arcs do not change with time.
2. finite state; this means the model has only a finite number of states.
3. discrete parameter; the state transition probabilities are discrete and not continuous.

Markov chains offer several advantages to modeling software systems:

1. The state diagram form is a common and familiar tool for modeling.
2. There are graph theoretic modeling techniques available.
3. Mathematical analysis is available for these models.
4. The models generalize well and sequences through the model can be made to look

more like typical use of the software system.

There are several steps for developing Markov models for software systems;

1. Develop the usage profiles
2. Define the usage probabilities
3. Conduct the statistical test
4. Analyze the results and update the models as necessary

4

DEVELOPING THE USAGE PROFILES
Software systems can have multiple users or classes of users. Each of these

classes of users can potentially use the system differently. The first step in developing
usage models is to determine what requires testing. This is referred to as stratifying the
input domain. There are two types of stratification; user level stratification and usage
level stratification. User stratification refers to who or what can stimulate the system.
Usage stratification refers to what the system can do under test. In other words, user level
forces you to think about all the various types of users and how they can use the system
(which may be different) and usage level refers to all the functionality that the system is
capable of providing.

Different modes of operation are also considered when developing a stratification
plan. A finite state machine of software usage is developed based on the operational
states of the software system. The test developer must understand what the software is
intended to do and how it is to be used. No knowledge about how the software is
designed or constructed is required to do this. Each usage condition should have a model
that represents conditions under which the software is used. In general, the expected
usage is modeled but other usage conditions may also be of interest. Usage should be
characterized in whatever terms are important in the testing context. For example, if it is
very important to test for special purposes such as a hazardous condition or malicious
use, a model should be constructed representing this scenario.

DEFINE THE USAGE PROBABILITIES
Once the user and usage models have been developed the arc probabilities are

assigned. These probability estimates are based on;

1. user data collected from existing systems
2. talking to or observing the user or users
3. prototyping and/or trial analysis
4. domain experts

 There are three approaches to defining the usage probabilities;

1. Uninformed approach. In the uninformed approach uniform probabilities are
assigned across the exit arcs for each state. This approach maximizes the “entropy”
which is a measure of statistical uncertainty. The higher the entropy, the less
representative the test sequences are to the model itself. This approach is useful when
no other information is available.

2. Informed approach. The informed approach is used when some actual user sequences

are available (from prototypes, prior versions, etc.). These estimates are driven
primarily from field data. This is the best approach to use if data is available.

3. Intended approach. The next best approach after the informed approach is the

intended approach. In this approach, test sequences are obtained by hypothesizing

5

runs of the software by the various user and usage types. Data to support this
approach comes from user data and domain experts.

CONDUCT THE STATISTICAL TEST
Once the usage models have been created and the probabilities have been

assigned, the next step is to conduct the experiment. Tests are conducted using a form of
Monte Carlo simulation. In this approach, random numbers are generated and used to
traverse the model of the software. Using this type of simulation, statistical integrity is
preserved. A random path through the software, driven by the usage model, arc
probabilities, and the random numbers generated create a statistical experiment on the
software. There are tools available to generate test scripts using these techniques. These
tools also generate a wealth of statistical data and visual aids to help the testing
organization establish reliability estimates and other stopping criteria.

Tests are executed until the required acceptance goals or stopping criteria are
established (Figure 4). The testing organization needs to determine what is acceptable
and unacceptable for each test executed. Acceptable means the software is ready for use.
Unacceptable requires the software to be re-worked. Testing of this sort on software must
be a controlled experiment. In order to use the statistical data available when running
such an experiment, the same version of software must be used in each of the test cases.
A new version of software marks the beginning of a new experiment. The outcomes of
the trials must also be consistent. When analyzing the results of each test, pass/fail
criteria must be used consistently by the testers and evaluators. Automated pass/fail
evaluation (sometimes called oracles) will help make the pass/fail criteria more
consistent. The testing organization must also be explicit to ensure experimental
integrity.

theoretic discrimination

0

0.005

0.01

0.015

0.02

0.025

0.03

1 3 5 7 9 11 13 15

sequence

D Series1

Figure 4. Theoretic discrimination used to determine stopping criteria

There are situations where pure statistical testing cannot be done. Other forms of
non-statistical testing may be included because they are required by the customer,
required by the contract for the product, or required by law. There are ways, using
statistical testing tools, to generate tests scripts that produce the fastest coverage of a
given usage model in order to achieve a level of coverage type testing. One effective
technique is to perform both non-statistical tests (such as coverage tests) as well as
statistical tests in the testing program. If the non-statistical tests are performed prior to
the statistical tests, the statistics generated by the statistical testing process will still be

6

valid. Performing non-statistical tests after statistical tests may invalidate the reliability
estimates of the software.

Our program has developed an automated testing environment (Figure 5) that uses
statistically generated test scripts based on user and usage profiles [1] as well as other
operational profiles [2] to drive the testing effort.

T est Environment

Software Test Station

Statistical
test script
generation

Test
Sequences

Automated
test
generation
interface

Test Results
Verification

Expected
Results

Output Data/
Results

Oracle

Usage
Models

Crafted
Test

Cases

Script
 SW Test Support

Software

Software
Under Test

Control

Data

Control and
Sequencing of
Script

Test
Data/

Results

Modeling
tool

Output Data/
Responses

Output Data/
Responses

Test team

Figure 5. Testing environment automating the execution of statistically generated
test scripts

The software components used in the test environment consisted of the following
main components (Figure 6);

• Operator test software; also referred to as the “user function”. There was a different
user function for each of the usage models developed for the software. These
programs were written in “C” and generated the message sequences that drove the
software under test for each of the test scripts generated from the usage model,

• Labview interface; This software was composed of a number of different Labview
“virtual instruments” used to provide an interface to the operator executing the tests,

• Station specific Special Test Equipment (STE) software; this software provides the
low level functionality required by each of the different software test stations,

• Common STE software; this software was the Application Programming Interface
(API) to the rest of the software. It provided capabilities to watch for certain events
occurring in the software under test, log those results, and provide information to the
user function software and Labview virtual instruments.

7

Operator test code
(User Function)

Operator interface

Labview
(virtual instruments)

Station
specific STE
S/W

Common
STE S/W Debugger

Solaris Operating System

Sun Workstation

Hardware
(or H/W
Emulation)

VxWorks OS

Single Board Computer

Sun to VME I/F
Ethernet

Figure 6. Software components for the testing environment

Once the test has been executed and the input and output events logged in an output file,
the data is parsed into several different oracle files (Figure 7). Each of these oracle files
was used for a different pass/fail criteria. “Generic” oracles were used to slice the data in
such a way as to determine if the proper high level sequencing of the test was performed
correctly. Other oracles were used to slice the data to determine other pass/fail criteria
such as;

• Does the data reflect the expected outputs as determined by the system engineering
model(s)?,

• Does the raw output data match the expected outputs defined in the algorithm
document?,

• Does the output message sequence match what was expected in the Software
Requirements Document?

Software
under test

Control/
log S/W

Test
results
file

* input
messages

* expected
output
messages

Oracle 1

Oracle 3

Oracle 2

System
engineering
model

SRS

Algorithm
Document

Did the message occur?

Is the data right?

User
functions

Figure 7. Testing Environment Oracle

TESTING AT THE PROGRAM LEVEL
Software testing at the program level was performed using various levels of

statistical testing supplemented with unit and functional testing where required as well as
operational profiles testing techniques. Unit and function testing was generally
performed for the algorithmic portions of the software. This software involved the more
mathematically based functions, with strict real time constraints. Various implementation
and optimization strategies were performed to effectively map the algorithms to the
processor for optimal real-time performance. We developed an effective model for
certification of algorithmically intensive software that included a formal code inspection
and correctness verification phase, an optional level of unit and function testing (based on

8

the nature of the algorithms) which included both static and run time analysis, an
operational profile phase using real data collected from various user environments, and a
final statistical testing phase using usage models developed for different user and usage
stratifications (Figure 8).

static
analysis

fully specified
and compiled
code

* code inspection
* correctness
 verification
* tools (lint)

unit
test ?

unit test

* code coverage
* oracle compare

run time
code
analysis

yes

no operational
profiles

statistical
testing with
usage models

* leak detectors
* instrumentation

* field
 data

function
theoretic
sequence
enumeration

testing
oracletest grammar

and usage
model creation

function
mapping
rules

Figure 8. Testing model

LIMITATIONS TO MODELING
There are limitations to modeling software systems that must be understood in

order to properly analyze the statistics generated when using statistical techniques such as
the ones discussed in this paper. The quote “All models are wrong, but some are useful”
has some truth to it. The main point to remember when modeling any type of system
using any technique is that all modeling approaches lack, to some extent, the naturalness
for representative power. The Markov approach has limitations in handling some of the
common issues such as counting and concurrency. But there are ways of getting around
some of these issues but it may result in state explosion (larger models). Also, the more
abstract the model is, the less confident one should be in the predicted reliability
generated by the tools. If one is careful not to blindly accept the statistics without proper
analysis, then the statistical techniques discussed in this paper can be very useful in any
testing organization and help lead to higher quality software products.

References

1. Musa, John D. “Operational Profiles in Software Reliability Engineering”, IEEE Software, March 1993

2. Walton, G.H., J.H.Poore, and C.J.Trammel. “Statistical Testing of Software Based on a Usage

Model”, Software Practice and Experience, January 1993.

Page 1

David W. Carman
Principal Automation Architect

Software Quality Assurance
dcarman@telcordia.com

Copyright 1999 Telcordia Technologies.
Used by permission only.

(YHQW�%DVHG�7HVW�*HQHUDWLRQ
IRU�'LVWULEXWHG�6\VWHPV

Event-Based Test Generation for Distributed Systems -- 2

Motivating the Testing Challenge
“Testing in the Internet Age”

y Distributed, reusable business objects
– Connected objects and applications in heterogeneous and distributed

computing environments
– Open systems with component architectures

y Development paradigms evolving toward application frameworks
– Increased development productivity from reuse

– More and more commercial examples

y Pressures on testing integrated systems
– Increased overall system complexity

– Numerous deployable configurations
– Time to market

Page 2

Event-Based Test Generation for Distributed Systems -- 3

Motivating the Testing Challenge
“Testing a New Product Line”

y New Product Line
– Family of packet-switched

multimedia conferencing
systems

y Open Architecture
– Multiple vendors with diverse

computing platforms

– Hardware and protocols still under development in the research laboratories
– Multiple network topologies defined by different standards committees

y Multimedia Interfaces
– Mixed media (audio, video, data) interfaces

– Real-time performance requirements

Call
Agent

Trunk
Gateway

Network
Monitor

Billing

TCP/IP
Router

PSTN LAN

Speech
Terminal

MGCP
Terminal

MGCP
Terminal

MGCP
Terminal

Speech
Terminal

Packet Network

Event-Based Test Generation for Distributed Systems -- 4

Developing a Testing Strategy
“Beyond Limitations of Classic Approach”

y Limitations of classic manual design and scripting approach

– Total testing effort is proportional to the number of test cases

– Features divided among a group of people and documents

– Functional and load tests executed independently with different tools

Page 3

Event-Based Test Generation for Distributed Systems -- 5

Developing a Testing Strategy
“Experimented with Model-Based Testing Approach”

y Initially, many issues were raised by model-based testing
approach

– Each commercial test generation tool has different modeling paradigms
with advantages and disadvantages. Should more than one test generation
tool be used together?

– The scope of the model changed over time which required several complete
re-designs.

– It was difficult to reuse models. Starting from a “blank page” was best.

Event-Based Test Generation for Distributed Systems -- 6

Developing a Testing Strategy
“ Refined Model-Based Testing into a Verification Framework”

y A new testing strategy called Verification Frameworks
– Inspired by application frameworks and model-based testing technologies

y A verification framework should be . . .

– a component architecture built with object-oriented technologies.

– an integrated approach for both test design automation and test execution
automation.

– a convenient system for building modular, reusable test designs and scripts.

Page 4

Event-Based Test Generation for Distributed Systems -- 7

Implementing the Test Strategy
“Event Verification Engine”

y Event Verification Engine: A verification
framework for event-driven distributed systems

y Key features:
– Rule-based description of device and interface

behaviors

– Flexible and scalable support for many networked
devices

– Tests designed for any number of simultaneous inputs
and outputs

– Tests reusable across diverse test environments

Config.
Data Rules

Test
Spec.

Event
Verification

Engine

Test
Scripts

Test Streams

Event-Based Test Generation for Distributed Systems -- 8

Event Verification Engine
“Automatically Generated Test Streams”

y A test stream is . . .
– composed of steps with multiple actions (events) and results (states) per step.

– both a specification and an implementation, like a single test case.

– contains both explicit and implicit test cases.

– is multi-threaded with synchronization capabilities.

– has deterministic expected results.

(The Connection Factory © 1997, 1998)

Instrument A

Instrument B

“An orchestral score for testing”

Page 5

Event-Based Test Generation for Distributed Systems -- 9

Event Verification Engine
“Automatically Generated Test Specifications”

Threads

S
te

ps
y Each thread describes interactions for a single “device.”
y Test cases are explicitly defined by a sequence of steps within a

single thread.

A Generated Test Stream Specification

Event-Based Test Generation for Distributed Systems -- 10

Event Verification Engine
“Automatically Generated Test Specifications”

Test
Case

y Many more test cases are implicitly defined that span multiple
threads and events.

y Defects were found by these implicit test cases
– Called phone started ringing when off-hook with the busy signal.

A Generated Test Stream Specification

Page 6

Event-Based Test Generation for Distributed Systems -- 11

Event Verification Engine
“Automatically Generated Test Scripts”

y Portability Objective
– Independence from any one execution tool or scripting language

– Test scripts quickly portable to different distributed test environment
configurations and different systems under test

y Approach
– Events are defined at multiple levels of detail

(hierarchies of abstraction)

– Event maps relate specifications and implementations

– Event maps are execution tool specific

DialDigits
Æ Ring

 Notify

DialNum(A,B)

 Create

Connection(A)

 Create

Connection(B)

 Modify

Connection(A)

User

Application

Event-Based Test Generation for Distributed Systems -- 12

Event Verification En gine
“Automatically Generated Test Scripts””

Environment
Config

Model
Parms

Generation
Engine

Script
Writer

Execution
Engine

2

Execution
Engine

1

Execution
Engine

N

System
Under
Test

1

2

N

Rules

Multi-
Threaded

Test Spec

Test
Scripts

Page 7

Event-Based Test Generation for Distributed Systems -- 13

Portable Test Cases
“Reuse Between Environments”

Call Processor

CA

LAN

TGW SS7G

Trunk SS7

Call Processor

CA

LAN

RGW1

RGW2

TGW

P1

P2

P3

P4

P5

SS7G

SSP STP

Trunk SS7

Call Processor

CA1

CA2

PSTN

LAN

Sim B

Sim A

Sim C

PSTN

RGW1

RGW2

LAN/PSTN

Test
Scripts

Test
Scripts

Test
Scripts

LANLAN

Test
Spec.

RealSimulated
Progression of Test Environments

Event-Based Test Generation for Distributed Systems -- 14

Portable Test Cases
“Reuse Between Systems”

Call
Agent

Trunk
Gateway

Network
Monitor

Billing

TCP/IP
Router

PSTN LAN

Speech
Terminal

MGCP
Terminal

MGCP
Terminal

MGCP
Terminal

Speech
Terminal

Packet Network

H.323
Terminal

H.323
Terminal

H.323
MCU

H.323
Gateway

SCN LAN

Speech
Terminal

H.322
Terminal

MGCP
Terminal

H.320
Terminal

V.70
Terminal

Packet Network

H.323
Gatekeeper

N-ISDN

H.323 MGCP

 Two Multimedia Conferencing Systems

Test
Spec.

Test
Scripts

Test
Scripts

Page 8

Event-Based Test Generation for Distributed Systems -- 15

Our Experiences
“Lessons Learned”

y Correctness and completeness emphasized
– Extended definition of test coverage
– Software Reliability Engineering (SRE) and “When to stop testing?”

y Integration into software development process
– Requirements traceability

– Test plan review
– Tracking test cases and defects

y Maintenance and finding defects
– Changes localized to new events and rules
– Runtime failures more complex to debug than traditional approach

y Race conditions
– Non-deterministic events were automatically detected during design and

avoided during execution

Event-Based Test Generation for Distributed Systems -- 16

Meeting the Testing Challenge
“Testing in the Internet Age”

y Integrated test automation strategy using a verification framework
– Framework approach for testing systems with reusable component

architectures
– Test specifications and implementations generated simultaneously early in

the development lifecycle

y Built a verification framework called the Event Verification Engine
– Generated tests for a family of event-driven distributed systems
– Combined functional and load testing objectives into the same tests

y Test streams and portable test cases
– Reusable multi-threaded test specifications and implementations

1

05/99 SAS Institute, Inc 1

2SWLPXP�/HYHO�RI�7HVW�DXWRPDWLRQ�IRU2SWLPXP�/HYHO�RI�7HVW�DXWRPDWLRQ�IRU

0XOWL�3ODWIRUP�&OLHQW�6HUYHU�6RIWZDUH0XOWL�3ODWIRUP�&OLHQW�6HUYHU�6RIWZDUH

+HHVXQ�+HHVXQ�3DUN��3DUN��3K3K�'�'

6$6�,QVWLWXWH��,QF6$6�,QVWLWXWH��,QF

VDVKVSVDVKVS##VDVVDV�FRP�FRP

05/99 SAS Institute, Inc 2

7HVW�$XWRPDWLRQ�IRU�&OLHQW�6HUYHU7HVW�$XWRPDWLRQ�IRU�&OLHQW�6HUYHU

❂❂ &RVW�RI�7HVW�$XWRPDWLRQ&RVW�RI�7HVW�$XWRPDWLRQ

❂❂ &RVW�RI�0DLQWHQDQFH&RVW�RI�0DLQWHQDQFH

❂❂ 7HVW�3RUWDELOLW\7HVW�3RUWDELOLW\

❂❂ /HYHO�RI�7HVW�$XWRPDWLRQ/HYHO�RI�7HVW�$XWRPDWLRQ

❂❂ 'HIHFW�5HSURGXFWLRQ�DQG�'HEXJJLQJ'HIHFW�5HSURGXFWLRQ�DQG�'HEXJJLQJ

2

05/99 SAS Institute, Inc 3

&OLHQW�6HUYHU�6HUYLFH�LQ�6$6&OLHQW�6HUYHU�6HUYLFH�LQ�6$6

❂❂ 6$6�6+$5(6$6�6+$5(

�����'DWD�%DVH�0DQDJHPHQW�����'DWD�%DVH�0DQDJHPHQW

❂❂ 6$6�&211(&76$6�&211(&7

�����5HPRWH�&RPSXWLQJ�6HUYLFH�����5HPRWH�&RPSXWLQJ�6HUYLFH

�����)LOH�7UDQVIHU�6HUYLFH�����)LOH�7UDQVIHU�6HUYLFH

�����5HPRWH�/LEUDU\�6HUYLFH�����5HPRWH�/LEUDU\�6HUYLFH

❂❂ 6$6�6$6�,QWU1HW,QWU1HW

05/99 SAS Institute, Inc 4

9HUVLRQ���7HVW�(QYLURQPHQW9HUVLRQ���7HVW�(QYLURQPHQW

❂❂ 0XOWLSOH�3ODWIRUPV0XOWLSOH�3ODWIRUPV

❂❂ 0XOWLSOH�$FFHVV�0HWKRGV0XOWLSOH�$FFHVV�0HWKRGV

 ���096��;06��$33&��7&3����096��;06��$33&��7&3�

 ���&06��,8&9��$33&��7&3����&06��,8&9��$33&��7&3�

 ���9$;��'(&1(7��7&3����9$;��'(&1(7��7&3�

 ���81,;��7&3��$33&����81,;��7&3��$33&�

 ���3&��7&3��1(7%,26��$33&����3&��7&3��1(7%,26��$33&�

3

05/99 SAS Institute, Inc 5

9HUVLRQ���7HVW�6WUDWHJ\9HUVLRQ���7HVW�6WUDWHJ\

❂❂ 3ULRULWL]DWLRQ�RI�WHVW�FRPELQDWLRQV3ULRULWL]DWLRQ�RI�WHVW�FRPELQDWLRQV

 ��,QVWDOODWLRQ�%DVH��,QVWDOODWLRQ�%DVH

 ��0DUNHWLQJ���7HFK�6XSSRUW���7UHQG��0DUNHWLQJ���7HFK�6XSSRUW���7UHQG

❂❂ 6HOHFWLRQ�RI�WHVW�FDVHV�IRU�HDFK�FRPELQDWLRQ6HOHFWLRQ�RI�WHVW�FDVHV�IRU�HDFK�FRPELQDWLRQ

 ����65(7�3ULQFLSOH65(7�3ULQFLSOH

❂❂)XOO�WHVW�DXWRPDWLRQ)XOO�WHVW�DXWRPDWLRQ

 ����8VH�RI�6$6�&211(&78VH�RI�6$6�&211(&7

05/99 SAS Institute, Inc 6

7HVW�3RUWDELOLW\7HVW�3RUWDELOLW\

❂❂ 6KRXOG�KDQGOH�KRVW�DQG�DFFHVV�PHWKRG6KRXOG�KDQGOH�KRVW�DQG�DFFHVV�PHWKRG

GLIIHUHQFHVGLIIHUHQFHV

❂❂ ([WHQVLYH�XVH�RI�6$6�PDFURV([WHQVLYH�XVH�RI�6$6�PDFURV

 ��VDV�VDV���V\VSDUP�PYVV\VSDUP�PYV�K�[��K�[�WFSWFS

 �	�	VYUQDPHVYUQDPH VKDUH� VKDUH�

 ��OLEQDPH�P\OLE�OLEQDPH�P\OLE�VHUYHU 	VHUYHU 	VYUQDPHVYUQDPH��

4

05/99 SAS Institute, Inc 7

V 6 S H A R E T est A utom atio n
S erver H os t C li en t H os t

D river H os t

4

3

21

1) S ign o n to S erv e r H o s t an d B ring Up a S H A R E S erv er .

2) S ign o n to C lien t H o st an d r em o te su b m i t S H A R E tes t co d e.

3) S H A R E tes t ru n s fro m C l ien t H o s t to S er v er H o st.

4) S top th e S erv er an d d o w n lo ad th e S erv er l og.

5) T est co mple tes o n C l ien t H o st .

5

05/99 SAS Institute, Inc 8

9HUVLRQ���7HVW�$XWRPDWLRQ�6FKHPH9HUVLRQ���7HVW�$XWRPDWLRQ�6FKHPH

 Server Host

 TEST
 (SYSPARM)
 Driver Host

3

4
1 2

5

1 Sign on to server host
and bring up share
server

2 Sign on to client host
and remote submit
share test code

3 Share test runs from
client host to server
host

4 Stop the server and
download the server
log

5 Test finishes on client
host

Client Host

5

05/99 SAS Institute, Inc 9

9HUVLRQ���7HVW�3URFHVV�5HYLHZ9HUVLRQ���7HVW�3URFHVV�5HYLHZ

❂❂ 0DMRU�DFKLHYHPHQW�LQ�FOLHQW�VHUYHU�WHVW0DMRU�DFKLHYHPHQW�LQ�FOLHQW�VHUYHU�WHVW

DXWRPDWLRQDXWRPDWLRQ

❂❂ &DQ�UXQ�DQ\�FOLHQW�VHUYHU�FRPELQDWLRQ�LQ�IXOO\&DQ�UXQ�DQ\�FOLHQW�VHUYHU�FRPELQDWLRQ�LQ�IXOO\

DXWRPDWHG�PDQQHUDXWRPDWHG�PDQQHU

❂❂ 7HVW�VHWXS�RYHUKHDG�LV�IDLUO\�KLJK7HVW�VHWXS�RYHUKHDG�LV�IDLUO\�KLJK

❂❂ 'HIHFW�UHSURGXFWLRQ�LQ�LVRODWLRQ�ZDV�QRW�HDV\'HIHFW�UHSURGXFWLRQ�LQ�LVRODWLRQ�ZDV�QRW�HDV\

05/99 SAS Institute, Inc 10

9HUVLRQ���D�1HZ�&KDOOHQJH9HUVLRQ���D�1HZ�&KDOOHQJH

❂❂ ´��WHVW�DXWRPDWLRQ�DOZD\V�EUHDNV�GRZQ�DW´��WHVW�DXWRPDWLRQ�DOZD\V�EUHDNV�GRZQ�DW

VRPH�SRLQW�µVRPH�SRLQW�µ

 ��YHU\�YXOQHUDEOH�WR�YHUVLRQ�FKDQJH��YHU\�YXOQHUDEOH�WR�YHUVLRQ�FKDQJH

❂❂ 0LQLPL]H�WHVW�VHWXS�RYHUKHDG0LQLPL]H�WHVW�VHWXS�RYHUKHDG

❂❂ 1HHG�D�WRRO�WR�UXQ�WHVWV�HDVLO\�LQ�LQWHUDFWLYH1HHG�D�WRRO�WR�UXQ�WHVWV�HDVLO\�LQ�LQWHUDFWLYH

PRGH�VR�WKDW�GHYHORSHUV�FDQ�UHSURGXFHPRGH�VR�WKDW�GHYHORSHUV�FDQ�UHSURGXFH

GHIHFWV�E\�WKHPVHOYHVGHIHFWV�E\�WKHPVHOYHV

6

05/99 SAS Institute, Inc 11

V7 SHARE Test Automation
Server Host Client Host

Driver Host

3

2

1) Bring up SHARE Server on Server Host (manually or with script).

2) Submit the test directly to the Client Host.

3) SHARE test runs from Client Host to Server Host.

4) Test completes on Client Host and results are moved to Driver Host.

4

1

05/99 SAS Institute, Inc 12

9��7HVW�$XWRPDWLRQ�6FKHPH9��7HVW�$XWRPDWLRQ�6FKHPH

 Server Host

 Driver Host

3

1

2

4

1 Bring up share server
on server host (with
script or manually)

2 Submit the test
directly to client host.

3 Share test runs from
client host to server
host

4 Test finishes on client
host and results are
moved to driver host

Client Host
 TEST
 (SYSPARM)

7

05/99 SAS Institute, Inc 13

&KDQJHV�LQ�9��WHVW�SURFHVV&KDQJHV�LQ�9��WHVW�SURFHVV

❂❂ /RQJ�UXQQLQJ�VHUYHU/RQJ�UXQQLQJ�VHUYHU

❂❂ 1R�ORQJHU�FROOHFWV�VHUYHU�ORJ1R�ORQJHU�FROOHFWV�VHUYHU�ORJ

❂❂ 8VH�RI�VDPH�WHVWV�ZLWK�QHZ�PDFUR�GHILQLWLRQ8VH�RI�VDPH�WHVWV�ZLWK�QHZ�PDFUR�GHILQLWLRQ

❂❂ 1R�ORQJHU�XVH�6$6�&RQQHFW��UHPRWH�VHVVLRQ1R�ORQJHU�XVH�6$6�&RQQHFW��UHPRWH�VHVVLRQ

RQ�FOLHQW�VLGH�IRU�VLQJOH�XVHU�WHVWRQ�FOLHQW�VLGH�IRU�VLQJOH�XVHU�WHVW

05/99 SAS Institute, Inc 14

7HVW�3URFHVV�,PSURYHPHQW7HVW�3URFHVV�,PSURYHPHQW

❂❂ /HYHO�RI�DXWRPDWLRQ�LV�ORZHU/HYHO�RI�DXWRPDWLRQ�LV�ORZHU

❂❂ 0RUH�WHVW�WKURXJKSXW0RUH�WHVW�WKURXJKSXW

❂❂ 0DLQWHQDQFH�RI�VHUYHU�LV�QRW�H[SHQVLYH0DLQWHQDQFH�RI�VHUYHU�LV�QRW�H[SHQVLYH

❂❂ 6HUYHU�JHWV�PRUH�VWUHVV�WHVW6HUYHU�JHWV�PRUH�VWUHVV�WHVW

❂❂ +DQGOLQJ�RI�VHUYHU�ORJ+DQGOLQJ�RI�VHUYHU�ORJ

8

05/99 SAS Institute, Inc 15

5XQQLQJ�DXWRPDWHG�WHVWV�LQWHUDFWLYHO\5XQQLQJ�DXWRPDWHG�WHVWV�LQWHUDFWLYHO\

❂❂ 'HIHFW�UHSURGXFWLRQ�EHFRPHV�PRUH�GLIILFXOW'HIHFW�UHSURGXFWLRQ�EHFRPHV�PRUH�GLIILFXOW

DV�WKH�DXWRPDWLRQ�OHYHO��JURZVDV�WKH�DXWRPDWLRQ�OHYHO��JURZV

❂❂ 'HYHORSHUV�GR�QRW�ZDQW�WR�OHDUQ�WHVW'HYHORSHUV�GR�QRW�ZDQW�WR�OHDUQ�WHVW

DXWRPDWLRQ�VFKHPH�RU�ORJLFDXWRPDWLRQ�VFKHPH�RU�ORJLF

❂❂ 4XLFN�DQG�HDV\�ZD\�WR�UHSURGXFH�GHIHFWV4XLFN�DQG�HDV\�ZD\�WR�UHSURGXFH�GHIHFWV

❂❂ ��VKUVYUVKUVYU��DQG����DQG��VKUXVHU�VKUXVHU���PDFUR��PDFUR

❂❂ 5XQ�DQ\�WHVW�LQWHUDFWLYHO\�RQ�DQ\�KRVW5XQ�DQ\�WHVW�LQWHUDFWLYHO\�RQ�DQ\�KRVW

05/99 SAS Institute, Inc 16

&RQFOXVLRQ&RQFOXVLRQ

❂❂ 6RIWZDUH�WHVWLQJ�LV�´FUDIWVPDQVKLSµ6RIWZDUH�WHVWLQJ�LV�´FUDIWVPDQVKLSµ

❂❂ 8QGHUVWDQGLQJ�\RXU�WHVW�SURFHVV�LV�PRVW8QGHUVWDQGLQJ�\RXU�WHVW�SURFHVV�LV�PRVW

LPSRUWDQWLPSRUWDQW

❂❂)XOO�WHVW�DXWRPDWLRQ�PD\�QRW�SURGXFH)XOO�WHVW�DXWRPDWLRQ�PD\�QRW�SURGXFH

PD[LPXP�WKURXJKSXWPD[LPXP�WKURXJKSXW

❂❂ %H�UHDG\��WR�UXQ�DXWRPDWHG�WHVWV�LQWHUDFWLYHO\%H�UHDG\��WR�UXQ�DXWRPDWHG�WHVWV�LQWHUDFWLYHO\

1

Optimum Level of Test Automation for Multi-Platform Client/Server
Software

Heesun Park, Ph.D
SAS Institute, Inc.
Cary, North Carolina

 Sashsp@sas.com

Abstract

 This paper is based on our testing experience of two major releases (version 6 and
version 7) of the multi-platform client/server software, SAS/SHARE product which is
the database management system for SAS users. It describes our test automation
strategy for version 6 and identifies the achievements and weaknesses of our approach
and explains how we improve our test process. The test process improvement effort for
version 7 includes reduction of test automation level, use of macros that facilitate
interactive execution of automated tests. It examines the different levels of test
automation in client/server environment and presents how to achieve the optimum level
that produces the maximum test throughput.

Introduction

 Software test techniques and methodologies are developed and presented for
applications in any software development process. But more often than not, these
generalized techniques may not be the best fit for your specific software development and
testing environment. Since software projects have different goals, designs and
architectures, these software characteristics should be carefully considered in establishing
test strategy. Client/server software is no exception and presents a unique challenge due
to the number of combinations that we need to cover. Testing strategy for client/server
software inevitably includes test automation. For successful test automation, one should
consider many factors such as cost of test automation and maintenance, test portability,
level of test automation, and the ability to run automated test interactively for defect
reproduction and debugging. This paper shows our evolutionary path to test process
improvement in client/server test automation at SAS Institute.

Background

 The SAS system started out as statistical analysis software on MVS in mid 1970’s.
With major rewrite for portability in mid 1980’s, it became an information delivery and
application development software which runs on all major platforms including
mainframes, UNIX machines and PCs. Currently, the SAS system is the leader in data
warehousing, data mining and decision support server arenas. There are many factors that

2

contribute to the success and the expansion of the system. They include the portability of
the application on multiple platforms, seamless client/server support on all platforms and
capability of extracting data from many relational database management systems.
 Application portability gives users freedom to choose hardware without losing their
investment in application development. Also, the portable tests, which are SAS
applications, allow testers to cover huge number of client and server combinations in a
reasonable time frame.
 As for the client and server support, we provide file transfer, remote computing, and
remote library service capability with the SAS/CONNECT product and multi-user
database management support with SAS/SHARE.
 Another key ingredient to the success of the SAS system lies in its basic data storage
format. From the beginning, SAS system used a “table” format for its data storage, which
later became the de facto standard for all contemporary relational database systems.

 In this paper, we will concentrate on test automation strategy for SAS/SHARE
product, which is supported on all client/server platform combinations.

Version 6 Test Strategy

 SAS Version 6 represents the first portable system targeted for multiple platforms.
The last release of version 6 system was supported on 11 platforms including MVS,
CMS, VAX, SUN, HP, IBM RS6000, OS2, WIN95 and WINNT. Client and server
combinations for SAS/SHARE product were supported on all platform combinations and
in many cases with multiple access methods on one platform. For example, on MVS, we
support four different access methods: Cross Memory Services (XMS) for clients on the
same CPU, Advanced Program to Program Communication (APPC) protocol for clients
on IBM SNA networks, VTAM Logical Unit 0 (LU0) protocol for MVS mainframe
network clients, and the TCP/IP access method for clients on UNIX and PCs. Roughly,
we have more than 250 client and server combinations to cover and it is impractical to
cover each and every combination with full test suites.

 Our test strategy focuses on prioritization of test combinations, selection of test cases to
run on each combination and full test automation, to provide maximum coverage with
minimum risk in a reasonable time frame.
 As for the prioritization of combinations, we consider inputs from marketing, technical
support and development groups. In most cases, it is not difficult to identify major and
important combinations since we clearly experience the proliferation of UNIX boxes and
PCs.
 Selection of test cases to run on each combination becomes very important since we
may have to resort to a small subset due to our test resource constraints. I used principles
introduced in SRE (Software Reliability Engineering) test method by John Musa [1]. In
short, we came up with most likely “operational profile” or the scenario that users may
use most often and selected test cases that covered this scenario. Later, this subset was
used as a maintenance test suite.

3

 Test automation for client/server environment is a unique challenge by itself. SAS has
very sophisticated homegrown test tool that you can use to submit test tables in a fully
automated manner to a single host. Our test automation effort focused on the test
programs themselves. Our objective was to run the test tables for any client and server
combination from the driver host. A test program should be able to determine client and
server hosts dynamically from the command line input, run the test case accordingly,
collect server log and client log for comparison with a benchmark. This client and server
test automation logic will be explained in detail shortly.

Test Portability

 It is worthwhile to mention our portable test structures. It is not uncommon that we
have host specific environments and access method specific options in any client and
server combination. For instance, server name may vary by access method or security
options may differ by operating system. It is very clear that we cannot afford multiple
copies of the same test solely because of host differences. We made our tests fully
portable by utilizing the SAS macro facility extensively. Like other macro languages,
SAS macro facility is basically a text substitution tool with some conditional statement
capability. The SAS system also provides a sysparm option (it reminds me of good old
MVS JCL) that you can use to pass in any character string that can be accessed within the
SAS system. We exploit this option and pass in client, server, access method and other
host specific information as a sysparm value and process this information, converting the
single sysparm value into multiple global macro variables which are available throughout
the SAS session. The portable tests are written with macro variables whenever necessary.
These macro variables are resolved dynamically before test execution. Here is an
example:
1) sysparm is specified with SAS invocation
 sas –sysparm mvs#h8x$tcp –autoexec shrauto

 2) specified macro, shrauto, is called automatically and generates macro variables by
parsing the sysparm value:
 &server_node = sdcmvs
 &client_node= vivaldi.unx.sas.com (for h8x, or HP, machine)
 &server_name=share1
 &access_method=tcp
 3) portable tests use these macro variables
 options comamid=&access_method;
 libname mylib server= &server_node..&server_name;

 All our portable tests are developed on our base development machine, which is HP
UNIX, and get ported to all platforms on a weekly basis.

4

Version 6 Test Automation Scheme

 As mentioned earlier, our objective was to run our test tables on any client/server
combination from a driver host in a fully automated manner. We achieved this goal by
using our own SAS/CONNECT product as a vehicle to connect (signon) to client and
server hosts as depicted in Figure 1.

 Figure 1. Version 6 test automation scheme

 As the test begins execution on a driver host, it connects to the server host, brings up a
SHARE server, connects to the client host and brings up a remote SAS session on the
host. SHARE tests are remote submitted from the driver host to the client host and test
results are returned to the driver host. At the end of the test, the server is stopped and its
log is downloaded to the driver host for comparison.

 This process was a major achievement in test automation for the client/server
environment covering multiple platforms and their combinations.

 Towards the end of the version 6 test cycle, we were able to run our test suites nightly
in a fully automated fashion. When everything went well it produced fairly high level of
test output. Version 6 was shipped slightly behind the schedule.

Version 7 a New Challenge

 In his paper on test automation, Pettichord [2] appropriately pointed out that, “test
automation always breaks down at some point”. I totally agree. Test automation scheme

Server Host

 TEST
 (SYSPARM)
 Driver Host

3

4
1 2

5

1 Sign on to server host
and bring up share
server

2 Sign on to client host
and remote submit
share test code

3 Share test runs from
client host to server
host

4 Stop the server and
download the server
log

5 Test finishes on client
host

Client Host

5

is known to be vulnerable to product or version changes but ironically it is not that easy
to predict the problems until you face them.

 During version 7 development, we have experienced a great deal of frustration with our
test automation process since our SAS/CONNECT product itself is under development
for version 7 and fails time to time. Another drawback of this process is extremely high
overhead for test set up such as signon, signoff, uploads of test information and
downloads of server logs, etc. It is really handy for nightly cron jobs but rather painful to
use during the day. We also notice that it requires some amount of rework when we try to
recreate a problem in isolation without the SAS/CONNECT environment in the picture
for developers.

Version 7 Test Automation Scheme

 As an alternative, I have proposed and implemented a new SHARE server testing
strategy using "Long Running Server". This strategy includes the following changes and
advantages:

• A SHARE server needs to be brought up by hand or by a separate step on target
host machine. To make this chore simple, I wrote a macro, %shrsvr, which will
bring up server on any host. This SHARE server does not get stopped on every
test. It stays up (long running) for at least the whole table. It eliminates the server
manipulation overhead (signon to host, bring server up, bring down server, get
server log for each test).

• For single user tests, which account for more than 90% of the entire SHARE test
suite, we do not need to use a SAS/CONNECT remote session any more and all
tests run directly to the long running SHARE server. We still use the same test
suites without any changes in test source or benchmarks by blanking connect
related macros in the test with a new autoexec macro.

• Another change is that we no longer collect and compare server logs for each test
any more. A rationale behind this decision is that if anything goes wrong on
server, it should surface on the client side in one way or another. When that
happens, we check out the server log manually. We also save a lot of overhead
involving server log manipulation.

• One may point out that we lose a level of test automation that we enjoy since we
have to bring up a SHARE server separately (not in the test program itself). To
some extent, this is true. But it is rather easy to provide one more activity in the
script that runs the regularly scheduled batch jobs. For nightly cron jobs, we bring
up a long running server from a separate test table that houses the server program
before we run the test table that contains single user tests. For multi-user SHARE
tests, we still take advantage of the long running server and use SAS/CONNECT
remote sessions for multiple clients.

6

Figure 2 below shows our new version 7 test automation scheme:

 Figure 2. Version 7 test automation scheme

 Notice that after the long running SHARE server comes up on a server host, test cases
are directly sent to the client host for execution. This change eliminates the lengthy
signon and signoff process that we used for version 6 and reduces the test execution time
very significantly. Also, server logs are no longer collected for comparison.

Test Process Improvement by De-automation

 We have noticed drastic improvement in test efficiency. For example, our level 2 test
table that houses about 100 tests used to take 3 hours to complete with version 6 process,
but with our new version 7 test automation scheme it took less than 25 minutes. This is
one good example of increasing test output by reducing the level of test automation.

 Our version 6 defect analysis [3] indicates that we got more than the expected number
of defects from our tech support group and beta sites where they stress tested the version
6 SHARE product in a user environment. I have to acknowledge that version 6 SHARE
server did not get much stress test since server’s life cycle was very short. With the “long
running server” strategy on version 7, the SHARE server runs longer and definitely runs
under a stressed environment, which gives us a better idea on server survivability and
“failure intensity”[1].

 One big hidden cost of test automation lies in the fact that as the level of test
automation grows, it becomes increasingly difficult to reproduce the defects in isolation.
Defect description by testers gets lengthy and time consuming, and sometimes it is not
well received by developers because it looks more complicated than it should. According
to my experience, most developers are very reluctant to learn a test automation scheme or

 Server Host

 Driver Host

3

1

2

4

1 Bring up share server
on server host (with
script or manually)

2 Submit the test
directly to client host

3 Share test runs from
client host to server
host

4 Test finishes on client
host and results are
moved to driver host

Client Host
TEST

 (SYSPARM)

7

anything related to that subject. From the developers’ point of view, recreating the defect
in a simple and reliable manner is most important in debugging and fixing the defects
quickly. To save both the testers’ and developers’ time in defect description and defect
reproduction, it is very important to have a tool that allows one to run automated test
cases interactively in isolation.

Running Automated Tests Interactively

As mentioned above, one of the shortfalls of test automation is the difficulty of defect
reproduction in isolation. I believe good test automation strategy in general and
especially for client/server software should include tools that facilitate interactive running
of automated tests. During the version 7 cycle, I proposed and implemented two macros
that make testers’ and developers’ job much easier.
 The first macro is %shrsvr macro, which brings up a SHARE server on any host. By
default, it brings up the same server that is used by automated tests. The second macro,
%shruser, is for client side. On any client host, it provides all necessary test set up based
on current environment and macro parameters and includes the test case that we want to
run interactively. For example, if our automated test, sqltest, fails from UNIX client to
MVS SHARE server during the batch test, we can easily recreate the same problem
interactively as follows:
 - Bring up sas session on MVS and issue : %shrsvr;
 - Bring up sas session on unix and issue : %shruser(snode=mvs, test=sqltest);

 With version 7, we have more test combinations due to our backward compatibility
support. In other words, we have to touch combinations such as server on version 6 and
client on version 7 and vice versa. It is very obvious that full test automation on these
combinations is not a good investment at all [2] considering the maintenance costs
involved. As an alternative, we developed very comprehensive mega tests that contain
coverage for all major functions and features and ran them interactively with the macros
mentioned above on cross host and cross version combinations. This process gave us
comfortable level of coverage on a vast number of combinations.

Icing on the Testing Cake

 These two macros were very well received by both developers and testers and
contributed heavily in strengthening developer / tester relations. At the end of the version
7 cycle, one of our developers sent us following comments:

“… I want to give kudos to SHARE testers. … those testing macros made testing, and
more importantly debugging, almost a breeze. “

 Our successful test organization and teamwork was very well depicted by Langston
[4], in her award winning paper “How to have a perfect ‘T’ party”.

8

Conclusion

 Each and every software development and testing environment is different and has
unique characteristics. In most cases, general test guidelines may not be directly
applicable since software testing is more of a craftsmanship [5] rather than an industrial
production. The same principle applies to test automation of multi-platform client/server
software. Consequently, it is very important to understand the effects and implications of
different levels of test automation for a given environment. My experience described in
this paper is one good example of increasing the test throughput by reducing the level of
test automation and the use of a macro facility that supplements the shortcomings of test
automation in a client/server environment.

References

[1] J. Musa, “More Reliable, Faster, Cheaper Testing through Software Reliability
Engineering – Overview “, Testing Computer Software conference, Washington, D.C.,
June 1998
[2] B. Pettichord, “Success with Test Automation”, Quality Week’1996 conference,
San Francisco, CA., May 1996
[3] H. Park, “611 IDB Defect Analysis”, SAS Internal Testing News Letter, Cary,
NC., 4th Quarter, 1995
[4] B. Langston, “How to have a perfect ‘T’ Party”, STAR’98 East conference,
Orlando, FL., May 1998
[5] P. Jorgensen, “Software Testing : A Craftsman’s Approach”, CRC Press, 1995

1

May 26, 1999 © Huey-Der Chu 1999 QW’99

Automating Client/Server Testing
in the Real World

Speaker: Huey-Der Joseph Chu
 Institute of National Defense

 National Defense Management College

 Email: jchu@casq.org

 URL:http://www.casq.org/jchu/

May 26, 1999 © Huey-Der Chu 1999 QW’99

Automating Client/Server Testing
in the Real World

■ Outline
– Introduction

– Mobile Agents

– The Architecture of VISITOR

– A General Structure of Agents

– Automated Test Execution Through VISITOR

– Conclusion

2

May 26, 1999 © Huey-Der Chu 1999 QW’99

Introduction

■ Current testing tools
– Capture/Playback paradigm

• emulate a multi-user environment

• testing on client sites

– two-tier client/server applications
• in the real world

– multi-tier client/server applications

– testing for middleware or on server sites

May 26, 1999 © Huey-Der Chu 1999 QW’99

Introduction

■ VISITOR
– a flexible infrastructure for mobile agent

computing

– likes visitors
• move around one site to another for their particular

goals

■ A simple 3-tier banking application
– with an integrated test environment

3

May 26, 1999 © Huey-Der Chu 1999 QW’99

Mobile Agents

■ An Agent
– an object that is autonomous enough to act

independently

– receive requests from external sources

– help users perform some tasks

May 26, 1999 © Huey-Der Chu 1999 QW’99

Mobile Agents

■ Mobile Agents
– a computer object that can move through a

computer network under its own control,
• migrating from host to host

• interacting with other agents and resources
– to satisfy requests made by its clients.

– Move around on behalf of their users seeking
out, filtering and forwarding information or
even doing business in their own name

4

May 26, 1999 © Huey-Der Chu 1999 QW’99

Mobile Agents

■ Mobile Agents

Migra teLaunch

Migra teG o H o m e

Resul ts

Resul ts

Compu t ing

Compu t ing

Compu t ing

Resul ts

C l ien t

Server

Server
Server

May 26, 1999 © Huey-Der Chu 1999 QW’99

Mobile Agents

■ Java Applet

B row ser

HTML

Applet
L oad

requ est

W eb
S erv er

C lien t

5

May 26, 1999 © Huey-Der Chu 1999 QW’99

VISITOR

■ The architecture of VISITOR

In tern e t

A g en t
S erv er

A g en t
S erv er

A g en t
C lien t

S ecu rity
S erv er

co m m u n ica tio n

N etw o rk C lass Serve r

R eceiv in g
A gen ts

M ob ile
A gen ts

A g en t S erv er

A g en t B ro k er

S erv ice
A g en ts

reg iste r req ues t

co m m u n ica tio n

N etw o rk C lass Serve r

A g en t C lien t

O b jec tsA g en ts to
lau n ch

 R M I

 L au n ch

May 26, 1999 © Huey-Der Chu 1999 QW’99

VISITOR

■ VISITOR
– supports flexible communication and co-

operation between agents and local agents

– provides some services through agent broker

– combines with the Java RMI
• launches tasks out

• sends the results back

6

May 26, 1999 © Huey-Der Chu 1999 QW’99

General Structure

■ Receiving Agents

A gen t S e rv er

R ece iv ing A g en t

L is te rn er

R o u ter

T ran sm issio n

C o m m u n ica tion

N etw o rk C lass
S erve r

L ay ers o f a R ece iv ing A g en t

May 26, 1999 © Huey-Der Chu 1999 QW’99

General Structure

■ Network Class Server
N etw o rk

C lass S erv e r
N e tw o rk

C lass L oad er

L au nch

R equ est

L o ca l C lass L ib .

re tr iev e

R em o te C lass L ib .

C lass

N etw o rk

re tr iev e

D y nam ic C lass L o ad ing

7

May 26, 1999 © Huey-Der Chu 1999 QW’99

General Structure

■ Communication between Agents
– KQML

– example:

■ (evaluate :sender kbase :receiver agent

■ :language KQML :ontology agent

■ :content (tell-resource :type address

■ :name AB :value mis.ndmc.edu.tw:5001))

May 26, 1999 © Huey-Der Chu 1999 QW’99

Automated Test Execution

■ A simple banking application

C lien t 1

C lien t 2

C lien t 3

A pp lication
S erver
(R M I)

check
ba lance

dep osit

w ithd raw

R em ote
O b jec t

D atabase
S erver

(m S Q L)

passw ord
type

custom er

ba lance

8

May 26, 1999 © Huey-Der Chu 1999 QW’99

Automated Test Execution

A utom ated T es t E x ecu tion T h rou gh a M ob ile A gen t

C lien t 1

C lien t 2

C lien t 3

A pp licat ion
S erver
(R M I)

ch ec k
b a lan c e

d ep o s it

w i th d ra w

R e m o te
O b jec t

D atabase
S erver

(m S Q L)

p assw o rd
ty p e

cu s to m e r

b a lan c e

T es t R esu lts
V a l id a to r

T es t
 E x ecu tio n

T es t D a ta
 G e n era to r

T es t D r iv e r

th e te st d r iv e r lau n c h ed b y m o b i le a g e n t (R M I)

 ¡́

 ¡́

 ¡́

th e te st resu l t
 b ac k b y
 m o b i le

ag en t
 (R M I)

 th e p a th s trac e
 f i le b a ck

T es te r

May 26, 1999 © Huey-Der Chu 1999 QW’99

Automated Test Execution

9

May 26, 1999 © Huey-Der Chu 1999 QW’99

Automated Test Execution

■ The Test Driver is launched to remote client
sites

■ Testing tools are dynamically loaded by
Network Class Server

■ Run the test on the client site

■ The test result will be sent back

May 26, 1999 © Huey-Der Chu 1999 QW’99

Conclusion

■ The real world operating environment
– across multiple platforms

– middleware and server site testing

■ The application with mobile agents
– the interaction can be inspected

– the test can be run on multiple clients across
different platforms

■ MOST site: http://www.casq.org/most/

Automating Client/Server Testing in the Real World

Huey-Der Chu

Department of Information Management
National Defense Management College

ChungHo, Taipei 23500, TAIWAN
jchu@mis.ndmc.edu.tw

Abstract

 This paper applies mobile agents to automated test execution across multiple platforms. A test
driver can be launched by a mobile agent to remote client sites to run the tests. During the testing,
the mobile agent will use the Network Class Server to dynamically load the classes relevant to this
test. The test result on each client site will be sent back by the mobile agent. The mobile agent
roams across different platforms and finally it arrives at the application server site to bring back the
trace file for inspecting the interaction behaviour among clients. This work can really let the tests
run on multiple client sites across different platforms.

Keywords: Mobile Agents, Automated Test Execution, 3-Tier Client/Server Applications

1 Introduction

 Current testing tools with capture/playback paradigm have some limitations for client/server
applications [8,9]. The common one is a lack of consideration of the real world operating
environment across multiple platforms. These testing tools emulate a multi-user environment and
ends at the client site but are not designed to test the server, therefore, their products may not
provide a way to test the effect of multiple users of the software. Moreover, these testing tools
focus on two-tier client/server applications. However, the Gartner Group found 80% were planning
for multi-tier (at least three-tier) client/server applications [8]. For client/server applications, some
test scripts for middleware can be very hard to capture/playback automatically [9], for example, the
communication mechanism between clients and servers uses technology like an RPC protocol that
current capture/playback tools cannot effectively capture.

 This paper introduces a flexible infrastructure for mobile agent computing: VISITOR [2], which
can support flexible communication and co-operation between mobile agents and local agents
which may provide some services through the agent broker. Furthermore, combining with the Java
Remote Method Invocation (RMI), mobile agents can make use of distributed objects to
accomplish such tasks as sending the results back to the home machine. These local agents are like
offices which receive visitors and provide some services to them, while the mobile agents are like
visitors which move around one office to another for their particular goals.

 Based on VISITOR, a simple three-tier banking application with an integrated test environment
has been implemented, which is big enough to address middleware testing issues such as Java RMI
and JDBC. The test driver is launched by a mobile agent to remote client sites to run the tests.
During the testing, the mobile agent will use the Network Class Server to dynamically load the
classes relevant to this test such as the Test Data Generator and Test Results Validator. The test
result on each client site will be sent back by the mobile agent. The mobile agent roams across
different platforms and finally it arrives at the application server site to bring back the trace file for

inspecting the interaction behavior among clients. The application of VISITOR to automated test
execution can let the tests really run on multiple client sites across different platforms.

 Firstly, in this paper, the concept of mobile agents is introduced; secondly, the framework of
VISITOR is proposed; thirdly, the application of VISITOR to the automated test execution is
described; fourthly, the concept of automated test execution through mobile agents across multiple
platforms is illustrated on a three-tier client/server application with Java RMI and JDBC and
finally, summarizes the work and offers suggestions for further study.

2 Mobile Agents

 An agent is an object that is autonomous enough to act independently even when the user or
application that created it is not available to provide guidance and handle error. Agents can receive
requests from external sources, such as other agents, but each individual agent decides whether or
not to comply with external requests. In the computer world, an agent is a computer program whose
purpose is to help a user perform some tasks (or set of tasks) [6]. To achieve this aim, it maintains a
persistent state and can communicate with its owner, other agents and the environment in general.
Agents can do routine work for users or assist them with complicated tasks. In addition, they can
mediate between incompatible programs and thus generate new, modular and problem-oriented
solutions thus saving work.

 Mobile agents [1,3] provide a new alternative paradigm for distributed object computing on the
WWW. A mobile agent is a computer object that can move through a computer network under its
own control, migrating from host to host and interacting with other agents and resources in order to
satisfy requests made by its clients. They may move around on behalf of their users seeking out,
filtering and forwarding information or even doing business in their own name. Possible
applications for mobile agents include information retrieval, data-mining, network management,
electronic commerce, mobile computing, remote control and monitor, etc. Therefore, mobile agents
show a way to think about solving software problems in a networked environment that fits more
naturally with the real world.

 The concept of mobile agents is in contrast to the concept of Java Applets. In the latter case, a
program is downloaded from remote computers to execute locally, while in the former, a program is
sent to remote machines to execute remotely, When mobile agents execute remotely, there may not
be any transactions in the home machine. The advantages of mobile agents are [3]: firstly, they
offer an effective paradigm for distributed applications, particularly in partially connected
computing; secondly, they can provide a pervasive, open, generalized framework for the
development and personalization of network services; thirdly, they move the programmer away
from the rigid client/server model to the more flexible peer-to-peer model in which programs
communicate as peers and act as either clients or servers depending on their current needs and
fourthly, they allow ad-hoc, on-the-fly applications that represent what would be an unreasonable
investment of time if a code had to be installed on each network site rather than dynamically
dispatched.

 Nowadays, there are already some frameworks for mobile agents, such as the Aglet and the Java-
to-go. They all support dispatching a segment of code to remote machines to execute, however,
they do not give proper support to the co-operation between mobile agents and services in remote
machines. This next section introduces a flexible infrastructure for mobile agent computing:
VISITOR [2], which can support flexible communication and co-operation between mobile agents
and local agents which may provide some services through the agent broker. Furthermore,

combining with the Java Remote Method Invocation (RMI), mobile agents can make use of
distributed objects to accomplish such tasks as sending the results back to the home machine.
VISITOR shows a paradigm for service-providers to provide services and for service-clients to get
services in a networked environment that fits more naturally with the real world.

 The application of VISITOR to software testing, Mobile Testing Agent [5], has been implemented
and can be downloaded at the MObile Software Testing (MOST) wesite
(http://www.casq.org/most/) constructed and maintained by Huey-Der Chu 1998.

3 The Architecture of VISITOR

The architecture of the VISITOR is shown as in Figure 1 which consists of a network of agent
servers, agent clients and a security server.

 These components communicate with one another based on Java sockets. Agent servers are
destinations which mobile agents want to visit. Agent Servers are also the hosts which
accommodate mobile agents and provide services to them. Agent Clients are applications which
launch mobile agents to the agent servers for accomplishing their particular tasks. In this
framework, the agent servers are like offices which receive visitors and provide some services to
them, while the mobile agents are like visitors which move around one office to another for their
particular goals.

3.1 Agent servers

 In each agent-server, there are five types of components: The Agent Broker (AB), service agents,
the receiving agent, mobile agents and the network class server.

 An AB is a stockbroker among agents. All other agents have to be registered with the AB. The AB
keeps them as resources. When an agent is created, it sends a message to the AB to register its
existence and address. When an agent A wants to communicate with another agent B, A first
transmits a message to the AB to ask B's address. The AB would acknowledge with B's address if B
exists. When B first receives A's message, it also need to ask the AB for A's address. Afterwards, A

Internet

Agen t
Server

Agen t
Server

Agen t
Cl ient

Secur i ty
Server

commun ica t ion

Network Class Server

Rece iv ing
Agents

Mob i le
Agents

Agent Server

Agent Broker

Serv ice
Agents

register request

commun ica t ion

Network Class Server

Agent C l ien t

Objec tsAgents to
launch

 RMI

 Launch

F igure 1 : The arch i tec ture o f VISITOR

and B would communicate with each other directly.

 Furthermore, if an agent, for example a service agent, could provide some service, it would send
the AB a message to register that service. When some agent, for example a new coming mobile
agent wants the service, it would request the AB. If the service has been registered, the AB would
return the agent's address that can provide that service. Then, they would dialogue directly as
normal.

 Service agents provide services for other agents. When they are created, they would register the
service with the AB which they can provide. The services they can provide are various, from
general information services (e.g. databases) to particular commercial services (e.g. purchasing
some CD at the lowest price).

 It is the receiving agent that is responsible for receiving and instantiating coming mobile agents. It
also creates execution environments and forks a thread for the agent run. There is only one
receiving agent in each agent-server. For the structure of the receiving agent, see section 4.1.

 Mobile agents come from remote agent clients. When they arrive, the receiving agent creates the
execution environment for them and they would register with the AB. Together with main classes, a
knowledge base which include initial information is sent. The receiving agent will save this
knowledge as a specific file. A mobile agent will run in a separate thread to accomplish its tasks. It
can also make use of services which are provided by execution environments or service agents. For
the structure of mobile agents, see section 4.2.

 The Network Class Server listens to the network. If there is a request for loading a class from this
machine, it is responsible for finding, loading and sending the class to the destination. When a
mobile agent is launched, only the main class is sent. the auxiliary classes are loaded on demand
from the home machine or the previous machine, where a network class server is set up.

3.2 Agent clients

 Agent clients design and launch mobile agents for accomplishing their particular tasks. The clients
may be located in an agent-server or in a separate machine. For the latter, a network class server has
to be set up for remote class loading. In the case where there is no network class server set up, the
agent launcher has to send all class of the agent, or the class loader would fail.

 Arriving at remote agent servers, mobile agents can execute home transactions by the Java RMI.
For example, when a mobile agent retrieves information in remote agent servers, it can make use of
the RMI to display the result on the home machine simultaneously.

 The picture above characterises a flexible agent-oriented method of constructing client
applications, producing a new paradigm for distributing computing.

3.3 Security server

 The security Server is listening to the network. When clients want to launch a mobile agent for
accomplishing their particular tasks, they have to register with the security server to gain a key,
which the mobile agent will bring with it. The agent servers will check the key to see whether or
not it is valid. If the key is valid, the process will continue, if not the server will send back an error
message to the client.

4 A General Structure of Agents

 The static structure of an agent is designed following the Java Agent Template (JAT). An agent
consists of three parts: a message handler, a resource manager and a knowledge base. The message
handler sends and receives Knowledge Query and Manipulation Language (KQML) messages by
the communication interface Comminterface. The message handler is also responsible for message
processing.

 The resource manager is responsible for managing resources which the agent possesses. There are
five types of resources: Languages, interpreters, classes, files and addresses in the JAT.

 The knowledge base includes the initial information of agents and the information about the
services which it can provide. When the agent moves from one machine to another, the information
in the knowledge base will move along.

 An agent executes within a AgentContext which is the execution environment of the agent. Agents
could make use of services in the agent-server by the ContextInterface which is implemented by the
AgentContext. When an agent arrives at a new agent-server, the receiving agent will initiate the
agent with the knowledge base, which is sent with the underlying agent. When an agent leaves the
machine, it will clean up the environment. The initiate and cleanup methods are provided by the
AgentInterface.

Dynamically, an agent is a thread. When an agent moves to a new agent-server, a new thread is
created, on which the agent is running.

4.1 Structure of the Receiving Agents

The receiving agent inherits from a general agent but the receiving agent has its specific functions
in VISITOR. The layers of a receiving agent are as shown in Figure 2.

 When the receiving agent starts up, it forks a thread to execute the Router, which in turn forks a
thread to execute the Listener. Based on Java Sockets and severSockets, the Transmission layer
provides semantics of the agent-packet transmission. The Listener is monitoring the network to see
if a new packet is coming. If so, the Listener makes use of the methods provided by the
Transmission layer to receive the packet and pass it to the Router. The Router unpacks the packet

A gent Server

Rece iv ing A gent

L is terner

Rou te r

T ransmiss ion

C o m m u n i c a t i o n

Network C lass
Server

F igure 2 : Layers o f a Receiv ing A gent

and instantiates the coming agent first, then checks if the underlying machine is the destination of
the agent. If not, the Router would rout the agent to the correct machine. If it is true, the Router
would initiate the agent, create its execution environment and pass it to the receiving agent. The
receiving agent forks a new thread to execute the new coming agent.

 It is the Network Class Server (NCS) that implements the dynamic class loading. The principle of
dynamic class loading is shown as in Figure 3.

 The NCS is listening on the network, when a Network Class Loader (NCL) asks for classes it will
find, load and transport the classes. The NCS not only can load classes from the local class library
but can also load classes from a remote class
library.

 The layer structure of a NCS is as shown in Figure 4. Like the agent-server, it is also based on
Java Sockets and serverSockets.

 In the context of VISITOR, when the Router in the agent server instantiates a coming mobile
agent, it will load the classes relevant to the agent dynamically.

4.2 Communication between Agents

 Agents communicate with each other using the KQML [7], which is a high-level language
intended for the run-time exchange of knowledge between intelligent systems.
 Logically the KQML message consists of three layers: the content layer, the message layer, and
the communication layer. The content layer includes the actual content of the message in the

N e t w o r k
Class Server

N e t w o r k
Class Loader

Launch

Reques t

Local C lass L ib .

ret r ieve

Remote C lass L ib .

C lass

N e t w o r k

retr ieve

F igure 3 : Dynamic C lass Load ing

Network C lass Server

L is tener Transmiss ion

Socket and Server Socket

F igure 4 : The Layers o f Network C lass Server

programs' own knowledge representation of the message. KQML can carry expressions encoded in
any representation language such as the Knowledge Interchange Format (KIF), the KQML or even
ASCII strings.

 The communication layer encodes a set of message features which describe the lower level
communication parameters, such as the identity of the sender and recipient, and a unique identity
associated with the communication.

 It is the message layer that is used to encode a message that one application would like to transmit
to another. The message layer forms the core of the KQML and determines the kinds of interaction
one can have with a KQML-speaking agent. A primary function of the message is to identify the
protocol to deliver the message and to supply a speech act or performative which the sender
attaches to the content (such as an assertion, a query, a command or any of a set of known
performatives). In addition, since the content may be opaque to the KQML-peaking agent, this
layer also includes optical features which describe the content language, the ontology it assumes
and some type of description of the content such as a descriptor naming a topic with the ontology.

 Syntactically, a KQML message is a ASCII string called a performative, which consists of a
performative's name and a list of its parameters. A parameter is represented as keyword/value pair.
The keyword, that is the parameter name must begin with a colon and must precede the
corresponding parameter value.

 Here is an example of a KQML message, which is used as an initial message in our framework:

 (evaluate :sender kbase :receiver agent
 :language KQML :ontology agent
 :content (tell-resource :type address
 :name AB :value mis.ndmc.edu.tw:5001))

 In this message, the KQML performative is the evaluate, the content is (tell-resource :type address
:name AB :value mis.ndmc.edu.tw:5001), another KQML message which tells the agent that the
AB's address is mis.ndmc.edu.tw:5001, the ontology assumed is agent, the receiver and sender of
the message are agent and kbase respectively, and the content is written in the language KQML.

 The value of the content keyword is content level, the values of :sender and :receiver belong to
communication level, and the performative's name (evaluate) with :language and :ontology form
message layer.

 When an agent ClientA moves to an agent-server, it would transmit a message like the following
to the AB for telling its existence:

 (evaluate :sender ClientA
 content (tell-resource :type address :name ClientA
 :value mis.ndmc.edu.tw:54100)
 ontology agent :receiver AB :language KQML)

 Suppose that there was already another agent ClientB which sent the following message to the AB
when it started up.

 (evaluate :sender ClientB
 :content (tell-resource :type address :name ClientB
 :value mis.ndmc.edu.tw:54103)
 :ontology agent :receiver AB :language KQML)

 When the agent ClientA wants to communicate with the ClientB, it would first send the following
message to AB:

 (evaluate :sender ClientA
 :content (ask-resource :type address :name ClientB)
 :ontology agent:receiver AB :language KQML)

The AB would answer with the message below:

 (evaluate :sender AB
 :content (tell-resource :type address
 :value mis.ndmc.edu.tw:54103 :name ClientB)
 :ontology agent :receiver AB :language KQML)

After that, the ClientA would dialogue with ClientB directly.

5 Automated Test Execution Through VISITOR

5.1 A Simple Banking Application

 A banking application is an embedded software system which is commonly seen inside or outside
banks to drive the machine hardware and to communicate with the bank's central banking database.
This application accepts customers requests and produces cash, account information, database
updates and so on. In this Section, a Simple Banking Application (SBA) will be designed as a 3-tier
client/server application as shown in Figure 5.

 Within a banking enterprise, more specifically a corporate and distributed database collection for
the personal data of customers, the balance status of customers, the password data and account type

Figure 5: Three- t ier System Structure

Cl ient 1

Cl ient 2

Cl ient 3

App l ica t ion
Server
(RMI)

check
balance

deposi t

w i thdraw

Remote
Object

Da tabase
Server

(m S Q L)

password
type

customer

balance

data. The corporation seeks to assimilate their data sources into one virtual data store and access it
through a common interface.

 There are four business activities at this application: check balance, deposit money, withdraw
money and print the statement. This standard transaction will accept customer requests (checking,
depositing, withdrawing and printing) after the customer has input the account id, the account type
and the correct password on the Client site. SBA will retrieve the balance from the database on the
Database Server site, process the request on the Application Server site and save the balance back
to the database. It also will produce the balance or print a banking statement to the customer. It has
been implemented with an integrated test environment using Java RMI and JDBC [4].

5.2 The Application with VISITOR

 The application of VISITOR to the automated test execution on the banking application is as
shown in Figure 6.

 The test driver sets up the test execution environment for the banking application, initiating the
Test Data Generator to generate an input unit, sending it to the Test Execution to execute the
application and getting the product unit and delivering it to the Test Results Validator. The test
driver is launched by a mobile agent to remote client sites to run the tests. During the testing, the
mobile agent will use the network class server to dynamically load the classes relevant to this test
such as the Test Data Generator and the Test Results Validator. The test result (pass/fail) on each
client site will be sent back by the mobile agent with Java RMI. The mobile agent roams across
different platforms and finally it arrives at the application server site to bring back the paths trace
file for inspecting the testing order.

 This framework has been implemented with the Java Agent Template (JAT) and the Java Remote
Method Invocation (RMI). The JAT provides a fully functional template for constructing agents

Figure 6 : Au tomated Tes t Execu t ion Through a Mob i le Agent

Cl ient 1

Cl ient 2

Cl ient 3

App l i ca t ion
Server
(RMI)

check
ba lance

depos i t

w i thd raw

Remote
Objec t

Da tabase
Server

(m S Q L)

password
type

cus tomer

ba lance

Test Resul ts
Va l ida tor

Test
 Execut ion

Test Data
 Generator

Test Dr iver

the test dr iver launched by mobi le agent (RMI)

 ¡´

 ¡´

 ¡´

the test resul t
 back by
 mobi le
agent

 (RMI)

 the paths t race
 f i le back

Tester

which communicate peer-to-peer with a community of other agents distributed over the Internet.
However, JAT agents are not migratory but rather have a static existence on a single host. As an
improvement, the Java RMI is used to let JAT agents dynamically migrate to foreign hosts in this
implementation. As a result of the Java RMI not currently working effectively well on the Netscape
Browser currently, the implementation of MTA (Mobile Testing Agent), the name of a mobile agent
for the automated testing in this implementation, is not available with Java Applet, but with stand-
alone style. It can be downloaded at the MObile Software Testing (MOST) web site
(http://www.casq.org/most/) which is under the web site for Chinese Association for Software
Quality (CASQ) constructed and maintained by Huey-Der Chu 1998.

6. Conclusion

 Current testing tools with a capture/playback paradigm have some limitations for client/server
applications. These tools emulate a multi-user environment and ends at the client site but are not
designed to test the server. A mobile agent is a computer object that can roam over the Internet
under its own control, migrating from host to host and interacting with other agents and resources
in order to satisfy requests made by its clients. Based on the concept of mobile agents, the test
driver can be launched by a mobile agent to remote client sites to run the tests and the paths trace
file on the server side can also be sent back to the user for inspecting the test ordering. This concept
has been implemented on a 3-tier banking client/server application with Java RMI and JDBC. It is
completely different from current automated testing tools. The major advantages of this approach
are the interaction behaviours between clients and server can be recorded in a paths tracer file
which can be inspected and the tests can be really run on multiple clients across different platforms.

References

1. Chen, J., “A flexible framework for mobile agent systems,”. Available at
http://www.casq.org/most/chen.ps .

2. Chen, J., Greenwood, S. and Chu, H., “VISITOR: A Java-based Infrastructure for Mobile Agent
Computing,” Proc. in 10th International Conference on Software Engineering and Knowledge
Engineering (SEKE’98), June 18-20, 1998, San Francisco, USA.

3. Chess, D., Harrison, C. and Kershenbaum, A., “Mobile agents: Are they a good idea?” Lecture
Notes in Computer Science 1222, 25-45.

4. Chu, H., Distributed Testing: Towards Quality Programming in the Automated Testing of
Distributed Applications, Europe Arts, Science & Culture Publishing C. Ltd., Feb. 1999, ISBN
1-902409-07-8.

5. Chu, H., Dobson, J.E., Chen, J. and Greenwood, S., “The Application of Mobile Agents to
Software Testing,” Proc. in 15th International Conference and Exposition on Testing Computer
Software (TCS’98), June 8-12, 1998, Washington, D.C., USA.

6. Lingnau, A. and Drobnik, O., “An HTTP-based infrastructure for mobile agents,” Available at
http://www.w3.org/pub/Conferences/WWW4/ .

7. Mayfield, J., Labrou, Y. and Finin, T., “Evaluation of KQML as an agent communication
language,” Available at http://www.cs.umbc.edu/lait/papers/kqml-eval.ps .

8. Mooney, K. and Chadwick, D., “Overcoming the Challenges of Testing Client/Server
Applications,” Available at
http://www.rational.com/support/techpapers/challenges/ .

9. Quinn, S.R. and Sitaram, M., “Shrink-wrapped and custom tools ease the testing of client/server
applications,” Byte, Sept. 1996, 97-102.

ATRs (Atomic Requirements) Used Throughout Development Lifecycle

May 1999

Copyright © 1999 Hanania Salzer

1

May 1999 Quality Week '99, San Jose, CA 1

ATRs (Atomic Requirements)
Used Throughout

Development Lifecycle

Hanania Salzer
RTS Software Ltd., Israel

May 1999 Quality Week '99, San Jose, CA 2

Definition of ATRs

• Well formed requirements
– Abstract, unambiguous, traceable,

validatable (testable)

• Indivisible, elementary
– Test result: clear pass or fail

• Not only client requirements
– Also (and mostly) technical design

ATRs (Atomic Requirements) Used Throughout Development Lifecycle

May 1999

Copyright © 1999 Hanania Salzer

2

May 1999 Quality Week '99, San Jose, CA 3

ATR Example

• Non-atomic Requirement:
– After the customer has removed the

magnetic card, a slip is printed with the
transaction details.

• ATRs:
– After the customer has removed the

magnetic card, a slip is printed.
– The transaction details are printed on the

slip.

May 1999 Quality Week '99, San Jose, CA 4

ATRs Associated with
Software Components

ATRs (Atomic Requirements) Used Throughout Development Lifecycle

May 1999

Copyright © 1999 Hanania Salzer

3

May 1999 Quality Week '99, San Jose, CA 5

Properties of ATRs

• Most ATRs are at the level of detailed
design; originate from designers

• Easier to achieve unambiguity
• Less vulnerable to subjective phrasing and

to errors in grammar and vocabulary
• Easy communicating with another person
• Explicitly associated with a software

component

May 1999 Quality Week '99, San Jose, CA 6

Documenting Software
Design, Tests

• The primary specification of a software
component (such as a program, an event, a

window, a stored procedure) is a list of ATRs
• List of ATRs provides permanent

documentation
• Scope of test implies list of ATRs
• Tester must document new ATRs

ATRs (Atomic Requirements) Used Throughout Development Lifecycle

May 1999

Copyright © 1999 Hanania Salzer

4

May 1999 Quality Week '99, San Jose, CA 7

Documenting Standards

• Standard is expressed as a list of ATRs
• Only ATRs where a programmer may

err

• Concatenated to software component’s
specific ATRs

• Single point of maintenance

May 1999 Quality Week '99, San Jose, CA 8

Standard (Example)

• Dates and time of the day are
displayed in the user’s time zone

• Dates and time of the day are
recorded in the database as GMT

ATRs (Atomic Requirements) Used Throughout Development Lifecycle

May 1999

Copyright © 1999 Hanania Salzer

5

May 1999 Quality Week '99, San Jose, CA 9

Standard

May 1999 Quality Week '99, San Jose, CA 10

The Programming Phase

• ATRs make meaningful internal
documentation

• ATRs can be copied-and-pasted from
design into source code comment

• Programmers can add new ATRs
• ATRs make testing by a programmer --

unbiased

ATRs (Atomic Requirements) Used Throughout Development Lifecycle

May 1999

Copyright © 1999 Hanania Salzer

6

May 1999 Quality Week '99, San Jose, CA 11

Controlling Work

• Determine ATRs’ priority, a priori:
– For programming, for testing
– Controversy is avoided

• Express progress in terms of software
functionality:
– During programming, during testing

May 1999 Quality Week '99, San Jose, CA 12

Functional Coverage vs.
Depth of Test

• Scope of test implies list of ATRs
• Modify implied list of ATRs
• Test coverage:

– Functional: list of ATRs
– Semi-quantitative: number of ATRs

• Each ATR has its own depth of test
• Two dimensions of control

ATRs (Atomic Requirements) Used Throughout Development Lifecycle

May 1999

Copyright © 1999 Hanania Salzer

7

May 1999 Quality Week '99, San Jose, CA 13

The Maintenance Phase

• Translate bug reports to ATRs

• Bug = Behavior deviation from ATRs
• Enhancement = Expectation for new

ATRs

• Discuss one ATR at a time

May 1999 Quality Week '99, San Jose, CA 14

Implementation in a Hostile
Atmosphere

• Communicating does not require the
other party to acknowledge ATRs

• ATRs fit into most document formats
(formal and informal)

• Useful for fragmentary documentation
• Testers can document their

understanding of the software

ATRs (Atomic Requirements) Used Throughout Development Lifecycle

May 1999

Copyright © 1999 Hanania Salzer

8

May 1999 Quality Week '99, San Jose, CA 15

Education

• Some schools teach programming as a
series of puzzles, emphasizing the
“how” over the “what”

• Young students can easily build an
attitude of segregation between
requirements and coding

May 1999 Quality Week '99, San Jose, CA 16

CASE and
Test Automation Tools

• A prototype tool implements much of
what has been described
– Integrates design, test management and

maintenance

• Test automation may find in ATRs a
relatively stable base to solve the
moving target problem

ATRs (Atomic Requirements) Used Throughout Development Lifecycle

May 1999

Copyright © 1999 Hanania Salzer

9

May 1999 Quality Week '99, San Jose, CA 17

Conclusion: New Concepts

• ATRs provide the means to test exactly
what the programmer must implement

• Standards are lists of ATRs inherited by
specific designs

• Functional coverage of tests is
segregated from the "depth" of the test

Copyright © 1999 Hanania Salzer 1 ATRs (Atomic Requirements)
Used Throughout Development Lifecycle

ATRs (Atomic Requirements)
Used Throughout Development Lifecycle

 Hanania Salzer , RTS Software Ltd., Israel

Abstract

 Atomic requirements (ATRs) are indivisible “well-formed requirements” (ANSI/IEEE-
Std-1233-1996) that enable control over software design, test planning, and work
management with an ease and accuracy not previously attainable. The use of ATRs is

described in various phases of the software development lifecycle. New concepts are
introduced:

• ATRs provide the means to test exactly what the programmer must implement.

• Standards are lists of ATRs inherited by specific designs.

• Functional coverage of tests is segregated from the “depth” of the test.

 The presentation’s nucleus is the notion of the atomic requirement (ATR), which, by

itself, may not be new nor seem promising. During its use in over a decade, many
benefits have become visible.

• A reduction has been noted in the number of potential misunderstandings

between client and analyst, designer and programmer, designer and tester, etc.

• A list of ATRs can be used to communicate exactly the same detailed design to
programmers and to testers.

• Development and testing work can be controlled on the basis of the ATRs'
significance.

• Implementation of ATRs is very simple. In fact, a person can enjoy the benefits

even without the cooperation of the organization where he or she works.

• ATRs can be applied to any format of design or test documents.

• ATRs are less vulnerable to language difficulties experienced by developers

whose mother tongue is different from the one they have to use for software
documentation.

• Organizations (small and large) that maintain legacy software, which is now too

large to be comprehended, can incrementally document fragments of knowledge
using ATRs. Similarly, testing teams that are provided with insufficient
documentation of the software functionality can fill in the gaps with ATRs.

• Providers of CASE and test automation tools should consider using ATRs as the
combining link between functional design and testing.

Copyright © 1999 Hanania Salzer 2 ATRs (Atomic Requirements)
Used Throughout Development Lifecycle

The presentation has two parts: a definition of ATRs (atomic requirements), and a
description of their usefulness for achieving some of the developers’ and testers’
basic goals. ATRs seem to have properties that make them considerably more
effective than non-atomic requirements in a large span of software development
activities.

Some of the people who have been exposed to the notion of “atomic” in the context
of requirements have found it hard to comprehend this concept. This resistance can be
contributed to the (justified) desire to cover all functionality with requirements: a
single atomic requirement seems to cover very little. But later in this presentation it
will become clear that the collection of ATRs for a software component does cover
all functionality, and probably does it better than a bunch of its non-atomic cousins
do.

The presentation extrapolates personal experience into suggested practices and into
further potential benefits.

Definition of ATRs

Atomic requirements are, primarily, “well-formed requirements” à la ANSI/IEEE
Standard 1233-1996. “Well-formed requirements” are abstract, unambiguous,
traceable and validatable (testable). In addition to all these, atomic requirements
(ATRs) are also the result of splitting higher level requirements into elementary, or
indivisible, requirements.

Consider, for example, this non-atomic requirement for a teller machine:
 R11: After the customer has removed the magnetic card, a slip

is printed with the transaction details.

The requirement should be split into two ATRs:
 R11-a : After the customer has removed the magnetic card, a
slip is printed.
 R11-b : The transaction details are printed on the slip.

 Typically, an ATR is implemented by a few lines of code in a single software unit.
Very few ATRs target much more code in several software units. Hence, an ATR is
always associated with a software component.

Properties of ATRs

ATRs use non-formal language. We have developed guidelines for phrasing them.
Programmers, designers, testers and technical writers get formal training in correctly
phrasing ATRs.

Every ATR deals with only a single functionality. Therefore, it is considerably easier
to achieve unambiguity with an ATR than with a non-atomic requirement. For the
same reason, moreover, one can test each ATR independently.

Copyright © 1999 Hanania Salzer 3 ATRs (Atomic Requirements)
Used Throughout Development Lifecycle

 When software is tested for compliance with a well-formed ATR, the result is always
a clear pass or fail. In contrast, the result of testing for a non-atomic requirement may
be partial success (or partial failure).

ATRs are less vulnerable to subjective phrasing (something that only the writer can
understand.)

When ATRs are written in a foreign language, their intelligibility is less affected by
errors in grammar and vocabulary.

A person can write ATRs when communicating with another person, without the need
for the other party to understand ATRs, or even to know that what they are reading is
an ATR. In fact, the two parties enjoy a better level of understanding than when
documenting non-atomic requirements.

 ATRs are explicitly associated with a software component, be it a software unit, or an
integration of several of them. Hence, the location of any bugs targeted by an ATR
becomes self-evident.

 A list of ATRs can serve as the “work orders” both for programming and testing.

Client vs. Non-client Requirements

 Many use the term “requirement” to denote only the requirements that originate from
a client or user. This presentation uses the term in a much broader sense. Our
requirements cover everything that the software must accomplish, regardless of
“whose idea it was.”

 Think what is required of a subroutine; something the client is neither aware of, nor is
likely to understand. What values the subroutine should return in different conditions,
what data should be updated in the database, and what should be displayed in a
window field are three examples. Designers create these kinds of requirements. In
fact, the requirements that designers add largely outnumber the clients’ requirements.
Therefore, it is immaterial which ATRs have been requested by the client, and which
the designers have added.

ATRs’ Target Bugs

At the time of coding, the programmer views an ATR as an instruction for what the
software must do. (“Purchase date must not be in the future.”) At the time of testing,
the same programmer views the ATR as a question. (“Can the purchase date be in the
future?”) A good question is necessary if one is to expect a useful answer.

A non-atomic requirement asks several questions simultaneously. When we look at a
non-atomic requirement, we may see only some of the “questions” in it, and overlook
the rest. This can happen to programmers as they write code according to a non-
atomic requirement, or as they test according to the same non-atomic requirement.
The first results in a bug. The second results in the test not looking for the bug.

Copyright © 1999 Hanania Salzer 4 ATRs (Atomic Requirements)
Used Throughout Development Lifecycle

Documenting Software Design and Tests

 The main part of a software component’s design is the list of ATRs that you, the
programmer, must implement. After programming is completed, keep the ATRs as
permanent documentation of the software’s detailed functionality.

The functionality of any software component, no matter how small and insignificant
it is, can be defined as a list of ATRs. The result is that designers and programmers
are educated to understand the difference between functional and technical (e.g.,
structured English) thinking. They start understanding that “requirements” refer to the
complete functionality of any software component, not only to user defined
requirements.

 You define the scope of a test by the software components included. Since every
software component has a set of ATRs associated with it, the scope of the test implies
the list of ATRs to be tested. You can refine the scope by removing ATRs from the
test.

 If you are an independent tester, and you want to test for an ATR that is not part of
the documented design, you are looking for trouble. The programmer was probably
not aware of it. You may want to document the new ATR in the design document,
and communicate it to the developers.

Documenting Standards

 Standards are, in fact, requirements that must be implemented in many software
components. They are documented in the form of ATR lists that provide a single
point of maintenance.

What ATRs to Include in a Standard

 Assume a project that is developing an application that prints several reports. As a
designer in the project, you could include the following ATR in your project’s
standard:

 Standard for Reports
 R21: When there is no data for a report – print a message on
the first page.
 R22: At the bottom of the last page there is a message
indicating the end of the report.

 Other projects may have different standards.

 The list of two ATRs in this standard has several purposes. The list communicates to
designers not to repeat the two ATRs in the individual reports’ designs. It also
communicates to developers what functionality to develop. To testers it
communicates what to test for.

Copyright © 1999 Hanania Salzer 5 ATRs (Atomic Requirements)
Used Throughout Development Lifecycle

 However, any requirements already covered by tools used by your developers do not
need standards. For example, if the application is to run under an operating system
such as MS Windows, where the user can choose the date’s display format, you
would not include the following requirement in your standard: “Dates are printed in
the format of dd-Mmm-yyyy.” You do not want to write standards for the developers
of a shrink-wrapped infrastructure tool, which you or your clients have purchased,
even though the infrastructure may have bugs. Restrict the list only to requirements
that the programmers have control over, and therefore, in which they have the chance
to err.

How to Use the ATRs in Standards

 The design of any software component, therefore, is a list of specific ATRs as well as
pointers to standards.

 In the above example (“Standard for Reports”), you need to specify all ATRs that are
specific for a particular report, and state that it must follow the standards for reports.
That being said, you have implied that R21 and R22 apply to the report. The
programmer writes code for the report according to its specific ATRs, and according
to the above two ATRs that originate from the standard.

 The programmer applies both the specific ATRs and the ATRs that originate from
standards. Correspondingly, the tester uses the same two sources of ATRs (specific
and standard) as the developer.

What if the Standard Changes?

 Standards may change: ATRs can be added, removed or replaced. For example, the
project could decide to replace R22 with a different ATR:

 R22: The number of lines printed in the report is indicated
at the bottom of its last page.

 All these changes are easily implemented at a single point, namely in the standard. By
knowing where the standard is referenced, and by knowing the configuration of the
software, it can be determined what part of the software needs modification in order
to comply with the new standard, and what part needs to be re-tested according to the
new ATRs.

The Programming Phase
Internal Documentation

 Programmers need to document programs, usually by comment lines among the lines
of the source code. If this documentation results in the same information that an
average programmer would anyway deduce from the code, then the documentation is
of no real value. Instead, it should provide information that cannot be coded, that is,
the functional meaning of what the code lines accomplish.

Copyright © 1999 Hanania Salzer 6 ATRs (Atomic Requirements)
Used Throughout Development Lifecycle

 For example, in a service call dispatching application, the following comment line is
really redundant:

 emplyee_type_manager := “M”
 . . .
 /*--*/
 /* When the employee type code is “M,” display an
 /* error message.
 /*--*/
 if employee_type = emplyee_type_manager
 then
 call error_message (a, b)
 endif.

 However, the following comment tells a future reader of the code what business
functionality it implements:

 /*--*/
 /* A manager cannot be dispatched to a call.
 /*--*/

 This comment line is, in fact, an ATR.

 You may be writing program specifications for programmers. The most important
part of a unit’s specifications is the list of ATRs. The programmer simply copies and
pastes the ATRs into the source code, which then serve as internal documentation.

 But that is not all. Programmers usually continue to elaborate the design with
functionality that was not in the specifications they received. This new functionality
must be documented in the very same way. Therefore, the programmer too must have
the skills to phrase good ATRs. The skill to phrase good ATRs results in more
meaningful (functional) comments among the lines of code.

Objectivity of Testing

 There is a belief that programmers are usually biased when they test programs written
by themselves. When the programmer writes code according to ATRs, they have to
test the program against the same ATRs.

 You do not want to fool yourself, therefore you write down all ATRs. Since the list of
ATRs provides a 100% functional coverage of the program, you only need to follow
the list, and test the program against each and every ATR. The result is a complete
functional coverage of the test. The test is not carried out against a subjective
interpretation of a complex narrative, but against ATRs that cannot be interpreted
much further, hence they may be considered objective for all practical purposes.

 Ensuring that all ATRs have been tested is a process that is not biased by the
familiarity of the programmer with the code. The efficiency of the test for each ATR
is covered elsewhere in this presentation.

Copyright © 1999 Hanania Salzer 7 ATRs (Atomic Requirements)
Used Throughout Development Lifecycle

Controlling Work

The task of developing a software component includes drawing up a list of ATRs.
The list form makes it convenient for the involved parties to agree a priori on the
relative significance of each ATR, and even on the exclusion of some of them. When
time is limited, the list can be prioritized, and the risk can be taken that the ATRs at
the end of the list will never be implemented.

It is the very nature of ATRs’ that makes them so convenient to prioritize. First, they
are maintained in the form of lists. Second, the lists are associated with software
components thus handling them is streamlined with handling the natural tasks of
writing programs one by one. Third, and probably most important, whereas a non-
atomic requirement may include components with different levels of significance,
there is no ambiguity in associating a single level of significance (or priority, if you
wish) with an indivisible requirement.

Furthermore, frequently, the functionality that has the lowest significance to the
application is a complex one, and has a high appeal to the programmer because of the
challenge that it offers. By drawing up a list of ATRs, you are able to explicitly state
that a certain ATR should be implemented only when all other ATRs are already in.

When significance is defined (or at least approved) by management, not
implementing nice-to-have ATRs is acceptable. A priori agreement reduces the
chances of an after-the-fact conflict. Note that instead of defining priorities as lists of
software components, ATRs help to define them in terms of functionality.

Similarly, the tester can get an a priori agreement with management on what
functionality will be placed at the bottom of the testing list, or what functionality will
be knowingly left untested.

The progress of the development stage can be measured in the same way as progress
of testing: How many ATRs have been implemented? How many ATRs have passed
the test and how many have failed? For how many ATRs do we not know the results
because they have not been included in the test? This counting of ATRs is only a
semi-quantitative measure, because the cost to implement different ATRs is largely
variable. The same information can be provided also as a list of ATRs. Thus we can
produce reports such as “functionality that the software successfully implements,”
“functionality that we know the software has failed to implement” and “functionality
that we have no information about.” Both the quantitative and the descriptive reports
describe the software’s quality.

Avoiding Controversy

When a team leader agrees with a programmer on the list of ATRs, it is easy to tell
whether a flaw in the program is the result of non-compliance with a certain ATR or a
flaw in the ATRs themselves (frequently, it is a missing ATR.)

The result is clarity of responsibility and the avoidance of misunderstandings.

Copyright © 1999 Hanania Salzer 8 ATRs (Atomic Requirements)
Used Throughout Development Lifecycle

Functional Coverage vs. Depth of Test

Testers use the list of ATRs to control one dimension of a test – its functional
coverage. Testers also have the freedom to control another dimension – the “depth” to
which each ATR is being tested.

Scope of Test Implies List of ATRs

You can define the scope of a test by listing the software components included in it,
be it a single software unit or a chunk of an application. Knowing that each software
component is associated with a list of ATRs, the list of software components implies
a list of ATRs. The software must be tested for compliance with all of the implied
ATRs in order for the test to achieve 100% functional coverage.

Functional Coverage

What ATRs to include in a test, and what not, may depend on a number of reasons.
For example, you could include in one test only performance related ATRs. In
another test you may want to verify only ATRs related to a bug that has been fixed,
and a few more that are most likely to be affected by the fix. Yet in another test, you
simply pick ATRs of the highest significance to the upcoming release, and (what a
shame!) not test at all for the rest of the ATRs.

In order to get a full functional coverage, you must test for all ATRs, even if it means
splitting the ATRs among several tests.

You can express the dimension of functional coverage in a number of ways,
depending on what you are looking for. It can be the number of ATRs included in a
test, as compared to the total number of ATRs in the application under test.
Alternatively, it can be the number of ATRs already tested at a certain point of time,
as compared to the same total number of ATRs in the application or as compared to
the number of ATRs included in the test. This way or that, the number and the
proportion are objective parameters of the functionality covered by the test.
(Admittedly, the measures are, at the most, semi-quantitative.)

Depth of Test

 You can chose to make just the right amount of test, less than that, or overkill the test.
Testing too little or too much could be the result of lack of knowledge in testing
theory. Testing too little could also be the result of a decision to save time, and pay
with the lack of knowledge about the software’s quality. I call the amount of test per a
single ATR the depth of its test. An ATR can be tested to the correct depth, to not
deep enough, or to an excessive depth. By the way, the shallowest test for an ATR is
not to test for it at all.

The testing for each ATR is independent of the testing for all other ATRs. Hence,
testers can vary the testing “depth” of each individual ATR.

 The method for testing for an ATR is out of this presentation’s scope.

Copyright © 1999 Hanania Salzer 9 ATRs (Atomic Requirements)
Used Throughout Development Lifecycle

Two Dimensions of Control

This approach provides you with control over two independent dimensions of your
tests. One dimension is the functional coverage, which is controlled by the number of
ATRs selected for a test, or the total number of ATRs tested for, in a series of tests.
The second dimension is the depth of test, which is controlled by the effort put into
testing a certain ATR.

The segregation between these two dimensions provides you with additional control
over the use of your resources. A frequent source of frustration results from the
conflict between what should be tested and the resources available for the test. You
know that you must cut off corners (or even more than that) and the question is what
to cut. There is a wealth of good literature to help answer the question. In addition,
you want to control what functionality to test more, and what to test less, on an ATR
by ATR basis. Thus, understanding the segregation between the two dimensions –
coverage and depth – endows the decision-making process with a very fine
granularity.

The Maintenance Phase

 During the maintenance phase of software development reports are provided of bugs,
or what users believe are bugs. This is the phase in the software’s lifecycle when
communication with the client could be more problematic. ATRs might help.

Analyzing Bug Reports

 An undesired symptom implies a requirement with which the software does not
comply. This requirement can be expressed as one or more ATRs.

 As a minimum, users report undesired symptoms by describing the software’s actual
behavior, and remarking that this behavior is unacceptable. A more useful bug report
also includes what the user expects the software should have done. Before you rush to
fix the bug, write down the ATRs that you think the user has assumed. If you can,
communicate the ATRs to the user or to a business matter expert, and ask for a
confirmation. This simple process may prevent you from having to fix a non-existent
bug, from partially fixing the bug, or from having to fix the bug only to implement
another bug. The user may be thinking of one specific situation, but by
communicating your understanding in the form of ATRs, both of you may realize the
more general case, and come up with more comprehensive ATRs.

 If the bug report indicates that the user has an incorrect understanding of how the
software should behave, send them the relevant ATRs. Although an example could be
useful to illustrate the abstract ATR, it should not replace it in the explanation.

Bugs vs. Enhancements

 The difference between a reported bug and a request for enhancement may be the
subject of dispute with the customer. ATRs can provide insight to help solve this kind
of dispute.

Copyright © 1999 Hanania Salzer 10 ATRs (Atomic Requirements)
Used Throughout Development Lifecycle

 A customer complains. There is no question that the software does not behave as the
customer expects it to behave. As a developer, you are interested in segregating
between two extreme cases: one when functionality is missing, and the other when
the customer assumes the existence of functionality. In the first case, the ATR can be
found in the software design. This means that the customer expects a functionality
that the software should have implemented. Because the software does not behave
according to the documented requirements, the symptom is attributed to a software
bug. In the second case, the ATR is a new one. This means that the customer expects
new functionality that the software was not expected to have implemented. Hence it
is assumed the customer is requesting an enhancement. True, the lack of the ATR
may be the result of a bug in the original requirements.

Discussing Requirements

 Errors in requirements are considerably easier to spot in ATRs than in non-atomic
requirements. That is why ATRs are found to be a useful format in communicating
among parties that cannot meet directly, for example, when corresponding with a
remote customer who requests an enhancement.

 We have often experienced virtually endless transatlantic telephone conversations
that yielded definitions that still did not seem to satisfy everybody. But when prior to
making the telephone call we sent over ATRs, communication was ablaze, and both
parties expressed confidence that the other party had understood them.

Implementation in a Hostile Atmosphere

 Individuals and teams who do not get management support for process improvement
can enjoy the benefits of using ATRs without inducing conflicts with other parts of
their organization. This is because they can write ATRs into any document type
mandated by their organization without damaging its structure. They can humbly
write useful ATRs even in non-formal documents.

ATRs in any Document Type

 ATRs can be used in many different document types, including, but not restricted to,
requirements specifications, functional specifications, technical specifications and
even physical data models. You can write ATRs into most formats of design
document without disturbing the document’s structure, and still enjoy the above-
described benefits.

 Indeed, you can also enjoy the benefits of ATRs in informal documents. End users,
business experts and IS professionals alike appreciate the clarity in which ATRs
express the intentions of the writer. For that reason, handwritten instructions given to
programmers, minutes of meetings and plain letters are among my favorite places to
use ATRs.

Copyright © 1999 Hanania Salzer 11 ATRs (Atomic Requirements)
Used Throughout Development Lifecycle

Testers with Insufficient Documentation

 Even when you need to test an application with insufficient documentation, ATRs
may come to the rescue. Document your understanding of how the software should
work, by writing ATRs. Write bullet lists of ATRs, grouping them in a way most
convenient for you (by windows, by the order you plan to test them, or whatever.)

 Request the developers to approve the ATRs before the tests start. Every ATR they
will correct is likely to save you one more false alarm.

 Finally, test against these ATRs, and use them to report anomalies.

Education

 My personal wish is that schools will oblige students not only to learn how to “write
programs”, but also to learn how to write requirements in the form of ATRs (which
are not to be confused with structured English.) This would contribute to the
education of future generations of the software development work force and teach
them how to comprehend the difference between the “what” and “how” notions.

CASE and Test Automation Tools

 A prototype tool has been developed and is in use by several companies. The tool
implements the use of ATRs, as described above. It captures the software’s design as
a hierarchy of software components and the associated ATRs. It depicts standards as
a list of ATRs, with the lists being linked to software components.

 Testers use the tool to design tests for a desired functional coverage. The tool also
supports multiple, concurrent versions of the software’s design. This is necessary to
simultaneously support the versions in production, under test and in development. It
supports multiple, concurrent, different versions of the software’s testing and
maintenance. Maintenance means, in this context, capture and resolution of user
complaints (bugs) and user requested enhancements.

 The approach is so simple and robust that an application’s ATRs, which have been
recorded by a word processor, could be conveniently migrated into the tool.

 Toolmakers may want to use the concepts described here to develop interface
between non-formal-language, functional design, CASE tools and automated testing
tools.

 Test suite maintenance is reported to be one of the largest ongoing expenses of test
automation. In addition to the already described benefits, a testing tool that supports
ATRs may help streamline test suite maintenance in view of software changes from
version to version. Test tools’ scripts are at the same abstraction level as the code
they test. Both stem from the requirements. ATRs, in contrast, are themselves the
requirements. Consequently they have the potential of providing a relatively stable
“Archimedes Fulcrum.” In addition, ATRs also have the necessary fine granularity to
address every single feature of the software under test.

1

©Teradyne Inc. All rights reserved, 1999Slide 1 Rev 04-99

Use-Cases Are Not Requirements

Steve Meyer Larry Apfelbaum

Teradyne SST
larry@sst.teradyne.com

603 879-3555

AT&T
sameyer@att.com

513-629-7321

©Teradyne Inc. All rights reserved, 1999Slide 2 Rev 04-99

What is a Requirement?

• Webster:
– “something required: something wanted or needed”

• IEEE*:
– 1) a software capability needed by a user to solve a

problem or achieve an objective;
– 2) a condition or capability that must be met or

possessed by a system or a component in order to
satisfy a contract, specification standard or other
formally imposed documentation.”

*Source: Dorfman M, and Thayer R. Standards, Guidelines and Examples of System and Software Requirements Engineering. Washington D.C. IEEE 1990

2

©Teradyne Inc. All rights reserved, 1999Slide 3 Rev 04-99

What is a Use Case

Figure 1 Use Case Diagram for Business Trip

 Setup Business Trip

Reserve Airline Ticket Reserve Rental Car Reserve Lodging

<<extends>>
<<extends>>

<<extends>>

©Teradyne Inc. All rights reserved, 1999Slide 4 Rev 04-99

Understanding the Cost of
Uncovered Requirements

• Requirement volatility can cause significant
overruns and/or delays in test/project completion

• Requirements that have not been verified can
result in missed market windows, or lower then
expected profit margins

• Inaccurate or incomplete tracking of requirements
leads to uncertain test quality
– Complexity of project and limited time may limit test to nominal

conditions only

– No explicit way of measuring test completeness

3

©Teradyne Inc. All rights reserved, 1999Slide 5 Rev 04-99

Relative Cost to Fix an Error

Phase in Which Found Cost Ratio
Requirements 1

Design 3-6
Coding 10

Development Testing 15-40
Acceptance Testing 30-70

Operation 40-1000

Source: Gause & Weinberg [references data from Boehm]

©Teradyne Inc. All rights reserved, 1999Slide 6 Rev 04-99

The Compounding Effect of Defects

Requirements Functional Design Code
Correctly defined
requirements

Correctly defined
functional description

Correctly designed
specifications

Correctly coded
software

Incorrectly defined
requirements: missing,
misunderstood, ignored,
outdated, unneeded,
unspoken (assumed)

Erroneous functional
specs based on
incorrectly defined
requirements

Design errors based
on incorrectly defined
requirements

Coding errors based
on incorrectly defined
requirements

Incorrectly defined
functional specs

Design errors based
on incorrectly defined
functional specs

Coding errors based
on incorrectly defined
functional specs

Design errors Coding errors based
on design errors
Coding errors

Even good work on a faulty base will result in a defective product

Source: A. Davis. Software Requirements; J. Taft, Nationsbank

4

©Teradyne Inc. All rights reserved, 1999Slide 7 Rev 04-99

Cumulative Effects on a Multi-Stage
Process

Scenario Stage-> Requirements Functional Design Code
All Stages
at 90%

% Work Done
Correctly

90% 90% 90% 90%

Correct Cumulative
Defect %

90% 81% 73% 66%

All Stages
at 85%

% Work Done
Correctly

85% 85% 85% 85%

Correct Cumulative
Defect %

85% 72% 61% 52%

At an 85% quality level almost half of the code
delivered will be defective!

©Teradyne Inc. All rights reserved, 1999Slide 8 Rev 04-99

What Use Cases Lack

Sequence and flow of operations

Frequency and arrival rate information
of individual Use Cases

Use cases often describe only best case
and limited exception information

How the system(s) are used , or could be
used

5

©Teradyne Inc. All rights reserved, 1999Slide 9 Rev 04-99

A Finite State Machine is Composed
of States and Transitions

•

• Transitions define actions that move the system from
the current state to a new state

• Transitions can be based on specific stimuli and/or
previous actions

• Text descriptions of user actions can also be associated
with transitions

• Use cases are built by concatenating the descriptions
from a sequence of transitions through a diagram

•

•

•

Transition

A B

Current
State

Next
State

©Teradyne Inc. All rights reserved, 1999Slide 10 Rev 04-99

System Development Process

Requirements
� Use Cases
� Business Rules
� UI Descriptions
� Domain Object Model
� Data Dictionary

Information Sources
� Production Application
� Historical Documentation
� Knowledge Experts

Automated
Testing

Analysis,
Design and

Implementation

Operational
Profiles and
Performance

Analysis

Generated
• Test Documentation
• Executable Tests

State
Machine
Models

6

©Teradyne Inc. All rights reserved, 1999Slide 11 Rev 04-99

VoiceMail Model Example

©Teradyne Inc. All rights reserved, 1999Slide 12 Rev 04-99

Each Requirement can be Defined
in Terms of Model Objects

Requirement timeout_transfer :
On a busy line, the system shall transfer a caller to
the attendant after the specified timeout period

 Becomes:
timeout_transfer = Busy && (Timeout -> Attendant)

-> is an ‘is followed by’ operator

7

©Teradyne Inc. All rights reserved, 1999Slide 13 Rev 04-99

Each Path Defines a Test / Use Scenario

Use Scenario

©Teradyne Inc. All rights reserved, 1999Slide 14 Rev 04-99

Each Path Automatically Creates
Test Documentation & Scripts

/* START TEST*/
/*Define Line protocol*/
/*Start App*/
' Initialize Line
'$Include "subs.sbl"
Sub Main
if declareProtocol () then goto TelError
/*Generate incoming call*/
digits = get_first_extension ()
if seizeLine () then goto TelError
' got dial tone, now dial in
if dial (digits) then goto TelError
/*Normal call w/attendant and Voicemail*/
/*Generate Call to this line*/
/*Make line Busy*/
if makeBusy (12) then goto TelError
if expectBusy () then goto TelError
/*No Answer..*/
/*Verify Menu Prompt*/
if expectVoice ("Thank you for calling") then goto TelError
/*Delay for timeout transfer to attendant*/
Pause timeout_delay
/*Cannot have same number as line,*/
/*Attendant == 0 means none specified*/
/*Verify Attendant Message*/
if expectVoice ("Hello can I help you") then goto TelError
/*Caller disconnects*/
if disconnect () then goto TelError
End Sub
' END TEST

Description for Path: 6
 1. Setup protocol.
 2. Initiates a call.
 3. Generate busy signal on line 12.
 4. Verify pre-recorded answering prompt.
 5. Initiate a delay of 10 seconds.
 6. Verify recorded message for attendant
 7. Caller Disconnect. Verify dialtone.

Path Probability : 0.0002075487

8

©Teradyne Inc. All rights reserved, 1999Slide 15 Rev 04-99

Requirements vs. Test Matrix
Report

3

1

2

1

0

2

3

0

1

1

2 3 2 3 3 0 1

©Teradyne Inc. All rights reserved, 1999Slide 16 Rev 04-99

A Behavioral Model Facilitates an
Integrated Design and Test Process

System
Req’s Desired

Behavior
of System

Define
Implementation

and Code

Generate
Test Plan
& Scripts

Decompose
into Design
Structure

Add Test
Strategy &
 Execution

Verify Actual
System

Behavior

System Engineering

Design EngineeringTest Engineering

R
E
Q
U
I
R
E
M
E
N
T
S

Simulation
Verification

9

©Teradyne Inc. All rights reserved, 1999Slide 17 Rev 04-99

Benefits of Model Based Requirements

– Provides early detection of errors in requirements

– Significantly improves test coverage of requirements

– Provides an easy method of documenting covered
requirements by tests

– Manual testing can be error prone and not reproducible

– Given a change to the requirements, it is easier to adapt
model and then automatically re-generate the test
scripts than to manually change all the test scripts.

– Facilitates test suite management as the model can be
base-lined for a particular release

Use Cases are Not Requirements 1

AT&T and Teradyne Software & System Test

Use-Cases Are Not Requirements

Date: March 19, 1999

From: Steve Meyer
 AT&T

E-mail sameyer@att.com

Larry Apfelbaum
 Teradyne Software & System Test

E-mail larry@sst.teradyne.com

ABSTRACT : Use Cases are Not Requirements
Much work has been done in recent years to improve the process used to develop software.
Increasingly, use of object oriented methodologies have become standard. One aspect
common to many of them is the increased emphasis on Requirements Modeling. Capturing
requirements accurately is essential to developing correct software. A currently popular Object
Oriented method for requirements capture has been use cases, use scenarios or Use Case
Requirements Modeling. A use case is a mechanism where an engineer can describe a
specific scenario for the system, illustrating one or more key characteristics of its business
functionality and processes. Use scenarios provide a valuable means for a team to review the
proposed business solutions under a limited number of specific conditions. It is a
communications tool valuable in the specification, analysis, development and testing of a
system. Although a Use case approach is very effective at capturing business functionality, they
are somewhat lacking in capturing usage and behavior characteristics of the system.

Outline

1. Introduction 2
2. What are use cases? 2
3. What are requirements 3
4. What use cases lack 6
5. Fitting behavioral modeling into the development process 7
6. Use of models 7
7. Conclusions 11

Use Cases are Not Requirements 2

1. Introduction
Most systems can have very large numbers of potential usage scenarios. It is not practical for
designers or system engineers to explicitly describe all usage scenarios for all Use Cases. These
scenarios often only implicitly define the actual behavioral requirements of the system. To
completely define the requirements illustrated by a usage scenario one must explicitly enumerate
each possible sequence of actions. As the number of requirements becomes large, manual
specification of all possible usage scenarios becomes increasingly difficult and the possibility of
missing, incomplete or ambiguous behavior increases.
At a minimum Uses Case Requirements Modeling provides use scenarios which describe the
business functionality to be captured as a set of enumerated steps. This may include some
pre/post conditions and some exception processing alternatives. Ivar Jacobson's Requirements
Model consists of: Use Case Model, Domain Object Model and Interface Descriptions. A
thorough approach to Use Case Requirements Modeling can include:

• Uses Cases described via a well defined template
• Use Case diagrams to illustrate high-level use case relationships
• Domain Object Model depicting objects in the business domain and their attributes
• Interface diagrams, Business Rules, User Interface Descriptions

At best, Use cases fail to provide information that could greatly enhance subsequent steps in the
development process. An approach of using behavioral modeling is an opportunity to further
"nail-down" requirements in a way that can provide continuity from System Engineering through
test.

This paper presents a methodology where a behavioral model describing the systems actions can
augment use cases as a compact means of describing them. In addition a process of overlaying
the systems requirements onto this model will provide a very efficient mechanism for
determining when any arbitrary use scenario generated by the behavioral model has covered any
of the specified requirements. Benefits of this approach include easy analysis of behavior, rapid
response to changes in specifications of requirements; tests generation correlated to requirements
as well as automated generation of requirements based tests.

2. What Are Use Cases?
Use Case Requirements Modeling is one of the first steps in an Object Oriented approach to
systems development. Independent of the subsequent analysis and design methodology used, Use
Cases provide a superior method for communicating the business functionality to be developed.
Traditional thinking maintains requirements describe the "what" is required, whereas subsequent
development steps translate from the "what" to the "how". In spite of improvements in
requirement specifications this thinking has led to a gap between requirements and behavior.
Use Cases describe requirements for a developer’s translation; from a function but not usage
point of view. They lack the ability to portray the business needs from a behavioral or user
perspective. Behavioral modeling techniques and tools are now available and sufficiently mature
that can bridge this gap between function and behavior. One such behavioral approach models
requirements in terms of states and transitions between states. Use Case requirements can now be
extended with behavioral modeling to add context and organization. A sort of middleware
between the What and the How.

Use Cases are Not Requirements 3

2.1 Use Case Descriptions
A Use Case is a specific way an actor [a person, or process] uses the solution/system by
performing some part of the functionality. A use case specifies the interaction between the
actor(s) and the solution/system and describes the functionality to be performed. Typically these
descriptions consist of an enumerated set of steps that are needed to be performed for the
functionality to reach a successful conclusion. Pre/post conditions and limited exception
conditions are often included. Frequency and arrival rate information is almost never included.

2.2 Use Case Diagrams
Use case diagrams are often used to capture relationships between use cases. Certain modeling
conventions can be used to further define use case relationships. A well-structured diagram with
well-focused use cases is valuable for adding clarity to large models. Following are a couple of
trivial examples:

2.3 Additional Supporting Documentation
Other documentation commonly employed to support Use Cases include: the domain Object
model, interaction diagrams, business rules and user interface specifications. Each adds a level
of detail to support development efforts by providing information relevant to the problem
domain.

3. What are Requirements
I think it would be safe to say that, "The customer wants a solution (system) that meets functional
requirements." There may often be constraints in terms of response time or other concerns but it
is the requirements that describe the intent. Webster’s defines a requirement as “something
required: something wanted or needed”. Within the engineering discipline the definition [IEEE
729, Dorfman & Thayer1] has focused more on the reasons why we have them: ”1) a software

Figure 1 Use Case Diagram for Business Trip

 Setup Business Trip

Reserve Airline Ticket Reserve Rental Car Reserve Lodging

<<extends>>
<<extends>>

<<extends>>

Figure 2 Use Case Diagram for Print System

Print

Display Office
Generate Report

<<uses>>
<<uses>>

Use Cases are Not Requirements 4

capability needed by a user to solve a problem or achieve an objective; 2) a condition or
capability that must be met or possessed by a system or a component in order to satisfy a
contract, specification standard or other formally imposed documentation.” The objective of the
requirements phase in a development project is to be able to communicate the needs of the users
of a system to the entire team. To accomplish this we need to first verify that the requirements
are correct then as the various part of the development team work on the project we need a means
to correlate the results back to the requirements themselves.
A key aspect of a software requirement specification is to describe what the software is to do
without describing how it is to do it. Davis2 has defined it as a two phased process, problem
analysis and product description. In problem analysis the team will interview people who
understand the problem and it’s constraints until they have a thorough understanding of the
problem. Next in the product description phase the team uses this understanding to define the
external behavior of a product that will solve the problem. The solution may not be complete but
the issues around the tradeoffs made should all be defined and understood. In addition to
describing what is desired it is often just as important to define what is not. Defining the
behavior a system should not exhibit is also important in communicating clearly the problem to
be addressed.
Many engineers would rather define how they think something should be built rather than focus
on what the customer cares about. The answer to the how question is best covered in separate
phases known as a functional and design specifications.

3.1 Why are Requirements Important
It is very important to define the requirements accurately, and unambiguously. There have been
many studies documenting the cost of repairing a defect, all define a clear escalation of the cost
as the development process progresses. An example of this is shown in Table 1, it is from Gause
& Weinberg3 and references data from a Boehm4 study of 63 software projects from leading
corporations (IBM, GTE, TRW).

Phase in Which Found Cost Ratio
Requirements 1

Design 3-6
Coding 10

Development Testing 15-40
Acceptance Testing 30-70

Operation 40-1000

Table 1 Relative Cost to Fix an Error

It should be obvious to anyone that the business impact of detecting and repairing defects at the
requirement stage is immense. The escalation in cost is due to two primary factors, 1) the delay
from when the defect was introduced until it was detected and, 2) the cost of the rework involved
to repair the defect. The delay is introduced because the detection process, also known as testing,
verification or review, is based on determining a difference from the article under test and an
oracle, a source of truth. The problem feeds on itself if the basis for the validation is also flawed.
If the information used to drive a stage of the process is flawed then even if the process works
perfectly, the output will also be flawed. Given that each stage of the development process is not
perfect what we have is a larger and larger proportion of defects. Table 25 describes the
compounding affects of defects.

Use Cases are Not Requirements 5

Requirements Functional Design Code
Correctly defined
requirements

Correctly defined
functional description

Correctly designed
specifications

Correctly coded
software

Incorrectly defined
requirements: missing,
misunderstood, ignored,
outdated, unneeded,
unspoken (assumed)

Erroneous functional
specs based on
incorrectly defined
requirements

Design errors based on
incorrectly defined
requirements

Coding errors based on
incorrectly defined
requirements

Incorrectly defined
functional specs

Design errors based on
incorrectly defined
functional specs

Coding errors based on
incorrectly defined
functional specs

Design errors Coding errors based on
design errors

Coding errors

Table 2. Compounding Effect of Defects, even good work on a faulty base will result in a defective product

This is analogous to the problems encountered in determining the yield of a multi-stage
manufacturing process. Using a formula of:

Qualityof this stage = Qualityof previous stage * % DefectLevelof this stage

a simple analysis of the problem as shown in Table 3, results in some scary conclusions. Even
scarier than the mathematical analysis is the consistency of the conclusion to many real life
situations.

Scenario Stage-> Requirements Functional Design Code
All Stages at 90% % Work Done Correctly 90% 90% 90% 90%

Correct Cumulative Defect % 90% 81% 73% 66%

All Stages at 85% % Work Done Correctly 85% 85% 85% 85%

Correct Cumulative Defect % 85% 72% 61% 52%

Table 3. Cumulative Effects on a Multi-stage Process, at an 85% quality level almost half of the code
delivered will be defective

3.2 Characteristics of Good Requirements
The primary goal of good requirements is an effective communications mechanism. Customers
will have their expectations met and the entire development team can discuss all aspects of the
product in terms that relate directly to the customer goals. In particular the work done in the
system-testing phase can be directly tied to the needs of the customer. An additional long-term
value of the requirements spec is the ability to quickly understand the affects of changes made to
the system as it evolves.

This paper is focused on some of the issues related to creating a robust description of a system’s
behavior. For most modern systems there is an infinite number of potential scenarios that can be
defined for a system. Clearly an engineer/analyst cannot define this many scenarios, a common
substitute is a long text description of the system combined with some use cases. These tomes
are often too large for effectively communicating the desired behavior of a system and lack an
effective means of helping the engineers analyze the specification. The use cases do aid the
engineer by providing a clear description of a use scenario. A problem with this approach is the
lack of a standard mechanism to generalize the example used in the use scenario to the robust
model needed to communicate the system to engineers.

Use Cases are Not Requirements 6

4. What Use Cases Lack
Some things Use Cases lack in describing the requirements are described below. An example of
a good use case diagram and the problems described is shown in Figure 3.

1. Sequence and flow of operations. Although Use Case diagrams can illustrate some of the
relationships between individual Use Cases, they do not convey sequence and flow of
related operational usage. In a large model detailing to this level of behavior becomes
increasingly difficult. Besides requirements traceability this is one of the biggest benefits
of behavioral modeling. It gives the engineer an opportunity to describe requirements
from a usage standpoint.

2. Frequency and arrival rate information of individual Use Cases. Such information can
be used for performance engineering of a system and help define load test scenarios. This
type of information is easily portrayed in a state transition model, not so easily captured
with Use Cases. Once sequence and flow is effectively modeled annotating frequency
information can enhance the graphical representation. This information can be valuable
for performance and load testing

3. Use cases often describe only best case (successful completion of operation) and limited
exception information. Visualizing and modeling many exception conditions can be a
large task. This is more easily undertaken using state machine techniques.

4. How the system(s) are used, or could be used. An improved process can be realized if
the actual requirements are separated from the discrete descriptions of individual use
cases. Following paths through a behavioral model has proven to be a very effective
approach to understanding how requirements might be used with in a "System"
framework. This modeling gives the engineers a chance to further nail-down requirements
and how they behave.

NP
Applications

NM
Applications

Delete Order

Describe Order

Describe
Hierarchy

Update Order
Query List

Query Order List

Notify

Subscribe

Unsubscribe

Create Order

Update
Order Information

Update Layout

extends

extends

extends

uses

uses

uses

uses

Figure 3 Simplified - High Level Use Case Model [Ehrlich 19986]. Where is -- 1. Sequence and Flow, 2.
Frequency and Arrival Rate, 3. Only Best Case, 4. How the system(s) are used?

It is not always evident how various Use Cases interact within a developed solution. Systems
engineers can use models to further refine the relationships between Use Cases at a high level.

Use Cases are Not Requirements 7

This is useful in confirming the Use Case framework used to describe the feature functionality of
the solution. [Meyer May 19987]

5. Fitting Behavioral Modeling into the Development Process
 This discussion will focus on the "State machine models" box as the piece inserted into the
development process (see Figure 4). The premise here is modeling work is appropriate for both
system engineers and test engineers. There are also implications the system engineers models
could be useful for the analysis, design and implementation teams. As the application progresses
to integration and system test, executable test scripts will have been produced to exercise the
applications behavior.[Meyer Jan 19998]

5.1 System Engineers Model
The focus of the system engineers modeling work is to further nail-down requirements by
describing them with state/transition methodology. This description should provide organization
and sequence information and requirements traceability.

5.2 Test Engineers Model
Test engineers can take the system engineers state-machine behavioral models and extend them.
Calculating paths through these extended models exposes a great amount of complex behavior
that needs testing. Taken a step further these paths become tests.

6. Use of Models

�

Requirements
� Use Cases
� Business Rules
� UI Descriptions
� Domain Object Model
� Data Dictionary

State
Machine
Models

Analysis,
Design and
Implementation

Generated
� Test Documentation
� Executable Tests

Automated
Testing

Operational
Profiles and
Performance
Analysis

Information Sources
� Production Application
� Historical Documentation
� Knowledge Experts

Figure 4 System Development Process, a step has been added to develop state models

Use Cases are Not Requirements 8

The use of models to define behavior is not new, it has been used in both development and test
processes.9,10 The recent popularity of Object Oriented Analysis and Design techniques have
increased the deployment of model based techniques across the software development
community.

We have developed a technique where a behavioral model of a system can be used to replace the
sets of use cases used to describe a system’s requirements. The model provides a means of
generating use scenarios when needed. Each path through the model is equivalent to a unique
use scenario. By exploring different paths, including potential loops, error conditions etc. a more
robust understanding of the system can be developed. Furthermore, as the system is changed the
graphical view of the model makes communicating the impact of a change much easier.

6.1 Building a Model
Modeling is not new, engineers always build and use models. The ‘model’ may only exist for a
short time and live on a napkin or remain in the mind of the engineer; it is not always preserved
in a reusable form. This model of behavior is analyzed when one creates requirements, writes a
use case, designs code, or develops a test plan; an engineer must understand the basic operations
and actions of the system. The means used to implement the behavior is not required until design
and/or implementation begins. Modeling at the behavioral level is straightforward and can
contain information from specifications, use case diagrams, sequence diagrams and flowcharts.

This approach is based on the concept of a state machine (see Figure 5) where the transactions,
represented by arrows in the diagram, correspond to the actions (transitions in the state machine),
while icons in a variety of shapes represent the states. State machines are an established modeling
approach and have been extended11 to provide a more powerful means of describing complex
systems. Actions that can occur during the use of the system are defined by adding arrows and or
states to the basic diagram. The actions that “could” occur also imply that that there may be
more than one possible action at a specific point in the process. Most modeling techniques
support the idea that there are multiple potential “next” actions. Some of these actions can only
occur if certain conditions exist in the system, this information can be added to the basic model
by associating a rule or condition with each action. In our approach these are included as
predicate expressions on the transitions. An effective modeling technique allows an engineer
[analyst or other specifier] to unambiguously define these alternative sequences and any rules
associated with them. Another modeling technique we utilize is hierarchical models, where a
state can be replaced by a ‘call’ to another model that defines the behavior within the state, this
approach is also referred to as ‘super-states’. Hierarchical models allow complex behavior to be
decomposed into simpler lower level models.

• Transitions define actions that move the system from the current state to a new state
• Transitions can be based on specific stimuli and/or previous actions
• Text descriptions of user actions can also be associated with transitions
• Use cases are built by concatenating the descriptions from a sequence of transitions through a

diagram

Current Next

Transition
in/out

A B

Figure 5. A Finite State Machine is Composed of States and Transitions

Use Cases are Not Requirements 9

Developing a specification in the form of a model is a very effective means of:
1) discovering defects in the system (many are made visible by the modeling effort alone),
2) rapidly defining the basis for use scenarios of the system, and
3) preserving this investment for future releases or other similar systems.

Furthermore, the process of developing a model is best done in a measured series of small
incremental steps. This incremental building approach allows the core functionality to be
defined, evaluated and understood before all of the secondary features are added. This also
allows a larger team to be applied to the problem. They can divide up the more detailed
specifications (typically in lower level models), and integrate the work into the larger model.

Once a model has been developed, even if it is a partial model, use scenarios can be developed by
finding paths. A path is a sequence of events or actions that traverse through the model defining
an actual use scenario of the system. Each element in a path, a transition or state, can have some
text associated with it. Concatenating all of the text found on the path elements will provide us
with a textual description of the entire use scenario. This process can be repeated for another
path, which defines another use scenario, and validates another sequence of actions. Many
methods can be used to select paths, each with its own distinct objectives and advantages.
Operational profiles, reliability/criticality data, and coverage all provide different tradeoffs to the
type of scenarios and the resulting coverage. A primary advantage of this type of structured
definition of the behavior is that automated tools can be used to help in the analysis. This
approach also allows an engineer or analyst to see potential secondary paths that may exist. The
benefits of having this complete view of all of the potential behaviors at any point in the flow
will allow a more complete analysis as well as make updates and changes easier to insert.

Figure 6 Voicemail Model Example. A model can show a use case in the context of the overall
system functionality. This example illustrates a use scenario where after the greeting is played
on a busy line a caller will be transferred to the attendant after a timeout period.

Use Scenario

Use Cases are Not Requirements 10

6.2 Overlaying Requirements on the Model

At this point we can define a behavioral requirement in terms of model objects. If a system must
provide a specific behavior as one of its requirements it can be expressed in terms of the objects
in the model. For example in Figure 6 we define a voicemail system. If a requirement
specification included “Requirement timeout_transfer : On a busy line, the system shall transfer a
caller to the attendant after the specified timeout period” we could define this by linking the
requirements to the elements of the model [block arrows in Figure 6] with an expression like:

“ timeout_transfer = Busy && (Timeout -> Attendant)”

The -> operator is defined as “is immediately followed in a sequence by”, the operands
are the objects in the model diagram [Busy and Timeout are events, Attendant is a state
(actually a superstate)]. This expression now provides us with a versatile mechanism for
understanding when any path is verifying the requirement. Any path where timeout_transfer
evaluates to true is one that verifies the requirement. This model and expression based approach
now allows other portions of the model to change without affecting this requirement, and as new
paths are generated they can all be evaluated to see which of them verify a requirement.

The graphical model can also be processed by an automated test generation tool to
produce not only test plans and scripts but a detailed document describing how each requirement
was covered in the resulting set of tests. As the tests are created and later executed a team can
track the project's completeness and the product's consistency with the requirements. A sample of
a report from an automated test process with the requirements tracking integrated into it is shown
in Figure 7.

Another benefit occurs when changes are introduced, if a new feature is added, an incremental
edit is made to the model and then paths can be regenerated to confirm that the old requirements

Figure 7 Tests vs. Requirements Report – This allows the engineer to determine which tests
are redundant as well as which requirements are not yet covered. In addition, tests that
are not adding new requirements can be dropped to optimize test execution time.

3

1

2

1

0

2

3

0

1

1

2 3 2 3 3 0 1

Use Cases are Not Requirements 11

are still covered. If the changes originate with the requirements, they can be added as new
requirement expressions and then the model can be analyzed to see if the requirement is already
covered by the existing functionality or new behaviors must be added.
A second type of analysis, similar to the requirement can also be performed on a model. If there
are requirements that the system not allow certain behaviors to occur, they too can be expressed
as expressions and verified. For example, in a system there may be relationships that should not
be violated, sometimes referred to as invariants, these can also be verified using an expression.
The expression, similar to the ones used for specifying requirements, is evaluated during the path
generation process; if at any time it becomes false, we have uncovered a design flaw in the
system.

7. Conclusions

An approach where a system’s behavioral requirements are used to incrementally develop a
behavioral model can provide a team with significant advantages. It can be used to thoroughly
describe application behavior from specifications or models and automate the creation of use
cases as well as test programs. A path generation tool can be used to extract directly executable
tests.12

Benefits include:
• Provides early detection of incomplete or inconsistent requirements.
• Significantly improves test coverage of requirements.
• Provides an easy method of documenting covered requirements by tests
• Manual testing can be error prone and not always reproducible
• Given a change to the requirements, it is easier to adapt model and then automatically re-

generate the test scripts than to manually change all the test scripts.
• Facilitates test suite management as the model can be base-lined for a particular release

[Meyer Jan 99]

System
Req’s

Desired
Behavior
of System

Define
Implementation

and Code

Generate
Test Plan
& Scripts

Decompose
into Design
Structure

Add Test
Strategy &
 Execution

Verify Actual
System

Behavior

System Engineering

Design EngineeringTest Engineering

R
E
Q
U
I
R
E
M
E
N
T
S

Simulation
Verification

Figure 8 The System Behavior is the reference for all later stages. Requirements
defined based on the system level model will carry forward into the test.

Use Cases are Not Requirements 12

Furthermore if the requirements of the system are integrated as expressions, the system can also
automatically track the progress and completeness of the team. This system level behavioral
model can serve as a reference for the systems engineering as well as the development and test
phases of product development, see Figure 8.

Benefits of this approach include easy analysis of behavior, rapid response to changes in
specifications of requirements, tests generation correlated to requirements as well as automated
generation of requirements based tests. This system provides an organization with an efficient,
reusable mechanism to both maintain a suite of tests and respond to feature or requirements
changes during the product development cycle.

References

1 Dorfman M, and Thayer R. Standards, Guidelines and Examples of System and Software
Requirements Engineering. Washington D.C. IEEE 1990
2 A. Davis, Software Requirements Objects Functions and States, New Jersey, Prentice Hall,
1993
3 D. Gause & G. Weinberg, Exploring Requirements – Quality Before Design, New York, Dorset
House Publishing, 1989
4 B. Boehm, Software Engineering Economics, Prentice Hall, New Jersey, 1981
5 J. Taft, “Implementing the ‘V-Model’ Quality Framework, Software Testing Analysis &
Review West, 1997
6 W. Ehrlich, "Facility Component System", Use Case Diagram, 1998
7 S. Meyer, " Foundation Architecture Evaluation Results - Release 7.0 , Test Case Generation
Tools ", AT&T Internal Memorandum, 1997
8 S. Meyer, "TestMaster Pilot Update", AT&T Internal Memorandum, 1999
9 Beizer, B., Black Box Testing, New York, John Wiley & Sons, 1995. ISBN 0-471-12094-4
10 L. Apfelbaum. Doyle, J., “Model Based Testing”, Proceedings of the Software Quality Week
1997 Conference, 1997.
11 D. Harel, “Statecharts: A Visual Formalism for Complex Systems”, Science of Computer
Programming 8, 1987
12 J. Clarke, “Automated Test Generation from a Behavioral Model”, Proceedings of the
Software Quality Week 1998 Conference, 1998

12th ANNUAL INTERNATIONAL SOFTWARE QUALITY WEEK99 CONFERENCE

1

12th International Software Quality Week12th International Software Quality Week

Testing for Y2K Readiness:Testing for Y2K Readiness:
A Case StudyA Case Study

Jim Williams, CQAJim Williams, CQA

CableData, Inc.CableData, Inc.
jim_williams@uscs.comjim_williams@uscs.com

May 27th, 1999May 27th, 1999

SQW 99

Jim Williams # 2

Y2K Readiness
Disclosure Act :S 2392

■ This document is a Year 2000 Readiness
Disclosure as defined under the Year 2000
Information and Readiness Disclosure Act of
1998. All obligations of CableData with respect to
its systems and services are described solely in
written agreements between CableData and its
customers. This document does not constitute any
express or implied representation or warranty by
CableData or any amendment, interpretation or
other modification of any agreement between
CableData and any party.

12th ANNUAL INTERNATIONAL SOFTWARE QUALITY WEEK99 CONFERENCE

2

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 3

IntroductionIntroduction

■■ International CompanyInternational Company
–– Produce Software for Ordering, Tracking,Produce Software for Ordering, Tracking,

Supporting, Billing, and otherwise processingSupporting, Billing, and otherwise processing
Cable TV & Telephony.Cable TV & Telephony.

■■ For these kinds of Applications, the FCCFor these kinds of Applications, the FCC
has mandated that Y2K readiness is criticalhas mandated that Y2K readiness is critical
- interruptions of services would have a- interruptions of services would have a
very high impact.very high impact.

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 4

Introduction…Introduction…

■■ Applications Under Test (AUT)Applications Under Test (AUT)
–– Two Products on separate platforms.Two Products on separate platforms.

»» 150 applications on a UNIX Server150 applications on a UNIX Server

»» 110 applications on a Tandem Computer110 applications on a Tandem Computer

■■ Both sets of Applications are accessibleBoth sets of Applications are accessible
from PC’s -- Work-stations that connect viafrom PC’s -- Work-stations that connect via
on-board Terminal Emulator.on-board Terminal Emulator.

■■ Each product has its own SQL Database. Each product has its own SQL Database.

12th ANNUAL INTERNATIONAL SOFTWARE QUALITY WEEK99 CONFERENCE

3

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 5

Introduction….Introduction….

■■ The total number of lines of code is inThe total number of lines of code is in
excess of several million.excess of several million.

■■ Almost all of the applications produceAlmost all of the applications produce
results that are seen as responses on theresults that are seen as responses on the
PC’sPC’s

■■ Automated Testing is used for everyAutomated Testing is used for every
Release during the Regression TestingRelease during the Regression Testing
Phase.Phase.

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 6

The Y2K ChallengeThe Y2K Challenge

■■ An Early and Absolute Deadline to meet...An Early and Absolute Deadline to meet...
–– Our Software allows Customers to do AnnualOur Software allows Customers to do Annual

Billing.Billing.

–– We needed to be Y2K Ready by mid 1998, soWe needed to be Y2K Ready by mid 1998, so
our software could be implemented throughoutour software could be implemented throughout
our Customer base by year’s end.our Customer base by year’s end.

–– Enhance current Automated Scripts to coverEnhance current Automated Scripts to cover
Y2K Releases, with an acceptable level of PathY2K Releases, with an acceptable level of Path
Coverage.Coverage.

12th ANNUAL INTERNATIONAL SOFTWARE QUALITY WEEK99 CONFERENCE

4

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 7

Data-Aging Method UsedData-Aging Method Used

■■ Critical testing dates were determinedCritical testing dates were determined
–– 09/09/1999 - Four nines (sometimes 9/9/99)09/09/1999 - Four nines (sometimes 9/9/99)

–– 12/31/1999 - The Day in Question12/31/1999 - The Day in Question

–– 01/01/2000 - The first Day after01/01/2000 - The first Day after

–– 02/29/2000 - Yes, a Leap Year!02/29/2000 - Yes, a Leap Year!

–– 03/01/2000 - The Day after the Leap Year03/01/2000 - The Day after the Leap Year

–– 12/31/2000 - 366th Day of the Year12/31/2000 - 366th Day of the Year

–– 01/01/2001 - The first Day of a Normal Year01/01/2001 - The first Day of a Normal Year

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 8

Data-Aging Method Used...Data-Aging Method Used...

■■ We tested two additional dates - just to seeWe tested two additional dates - just to see
what would happen with our AUT…what would happen with our AUT…
–– 01/01/2037 - UNIX OS Dates OK.01/01/2037 - UNIX OS Dates OK.

–– 01/19/2038.03:14:07 to be exact...01/19/2038.03:14:07 to be exact...
UNIX OS Dates are not OK.UNIX OS Dates are not OK.

■■ This test is for the time when the 64-bitThis test is for the time when the 64-bit
UNIX long-integer date, the number ofUNIX long-integer date, the number of
seconds since 01/01/1970, “turns over”.seconds since 01/01/1970, “turns over”.

12th ANNUAL INTERNATIONAL SOFTWARE QUALITY WEEK99 CONFERENCE

5

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 9

Y2K Test Methodology...Y2K Test Methodology...

■■ Aging the DataAging the Data
–– Because of the nature of our data, we haveBecause of the nature of our data, we have

dates stored in the past, present and future.dates stored in the past, present and future.

–– We needed a tool that could age all of the datesWe needed a tool that could age all of the dates
the same number of units, therefore keeping thethe same number of units, therefore keeping the
database in sync.database in sync.

–– Platform specific tools were developed thatPlatform specific tools were developed that
allowed us to age our data to the desired dateallowed us to age our data to the desired date
under test.under test.

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 10

Y2K Test Methodology...Y2K Test Methodology...

■■ Our Tests scripts were developed to test aOur Tests scripts were developed to test a
range of Dates for the Date in question.range of Dates for the Date in question.
–– For most features of the AUT, we tested currentFor most features of the AUT, we tested current

date, one day, one week, one month and sixdate, one day, one week, one month and six
months in the past and same units of time in themonths in the past and same units of time in the
future.future.

–– This method systematically allowed us to testThis method systematically allowed us to test
both past and future dates from our base date.both past and future dates from our base date.

12th ANNUAL INTERNATIONAL SOFTWARE QUALITY WEEK99 CONFERENCE

6

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 11

Y2K Test Methodology...Y2K Test Methodology...

■■ Our AUT uses Dates in two ways..Our AUT uses Dates in two ways..
–– Dates used in Calculations - Ages, Amounts,Dates used in Calculations - Ages, Amounts,

Periods of Time, Expiration, Interest, Taxes andPeriods of Time, Expiration, Interest, Taxes and
Prorates.Prorates.

–– Dates used Operationally - Sorting, Searching,Dates used Operationally - Sorting, Searching,
Qualifying, Ranges, Reporting and TimeQualifying, Ranges, Reporting and Time
stamps for License Validation.stamps for License Validation.

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 12

The Test ScriptsThe Test Scripts

■■ The test scripts are many in number andThe test scripts are many in number and
very complex.very complex.
–– UNIX used over 22,000 test scripts.UNIX used over 22,000 test scripts.

»» 280,000 screen captures.280,000 screen captures.

–– Tandem used over 18,000 test scriptsTandem used over 18,000 test scripts
»» 124,000 screen captures124,000 screen captures

■■ The scripts varied in length from 50 lines,The scripts varied in length from 50 lines,
up to 12,000 lines for more complex tests.up to 12,000 lines for more complex tests.

12th ANNUAL INTERNATIONAL SOFTWARE QUALITY WEEK99 CONFERENCE

7

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 13

The Test Scripts...The Test Scripts...

■■ Most of the test scripts were “constructed”Most of the test scripts were “constructed”
from pieces that were engineered to fitfrom pieces that were engineered to fit
together, using the tree-oriented method oftogether, using the tree-oriented method of
test script generation.test script generation.

■■ These scripts were verified and validated byThese scripts were verified and validated by
using a “Path Coverage” tool, obtaining anusing a “Path Coverage” tool, obtaining an
average Path Coverage of 80% for theaverage Path Coverage of 80% for the
AUT.AUT.

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 14

The Test Scripts...The Test Scripts...

■■ In some cases “masking” was used to allowIn some cases “masking” was used to allow
the differing engine, to skip overthe differing engine, to skip over
unimportant differences and not report themunimportant differences and not report them
as a difference.as a difference.

■■ Even though this was a lot of work, it savedEven though this was a lot of work, it saved
hundreds of hours of unnecessary work ashundreds of hours of unnecessary work as
we repeated the same tests for each Y2Kwe repeated the same tests for each Y2K
date.date.

12th ANNUAL INTERNATIONAL SOFTWARE QUALITY WEEK99 CONFERENCE

8

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 15

Running the TestsRunning the Tests

■■ The Tests were run from a cluster of twelveThe Tests were run from a cluster of twelve
PC’s, with an average of eight being usedPC’s, with an average of eight being used
12 hours a day 6 days a week.12 hours a day 6 days a week.

■■ UNIX suite of Tests took about 7 Days toUNIX suite of Tests took about 7 Days to
run to completion.run to completion.

■■ Tandem suite of Tests took about 10 DaysTandem suite of Tests took about 10 Days
to execute.to execute.

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 16

Running the Tests…Running the Tests…

■■ Each Test suite was run a minimum of 14Each Test suite was run a minimum of 14
times per platform.times per platform.
–– Once for each Date before remediation and atOnce for each Date before remediation and at

least once after the AUT had gone throughleast once after the AUT had gone through
remediation.remediation.

■■ Remember, however, there is significantRemember, however, there is significant
rework time when a test uncovers one orrework time when a test uncovers one or
more differences.more differences.

12th ANNUAL INTERNATIONAL SOFTWARE QUALITY WEEK99 CONFERENCE

9

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 17

Running the Tests…Running the Tests…

■■ Our estimate of re-work was an additionalOur estimate of re-work was an additional
20% overall.20% overall.

■■ We averaged seven resources on the Y2KWe averaged seven resources on the Y2K
Automated Test Team for approximatelyAutomated Test Team for approximately
two years.two years.
–– One year to enhance and debug Test scripts.One year to enhance and debug Test scripts.

–– One year to run and re-run the Test scripts.One year to run and re-run the Test scripts.

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 18

Test ResultsTest Results

■■ We checked out our Test results as a suiteWe checked out our Test results as a suite
of Tests would finish.of Tests would finish.

■■ Results were verified at three levels…Results were verified at three levels…
–– PC Screen CapturesPC Screen Captures

–– SQL Table LevelSQL Table Level

–– AUT Performance levelAUT Performance level

■■ All three were compared against a knownAll three were compared against a known
baseline for that product and release.baseline for that product and release.

12th ANNUAL INTERNATIONAL SOFTWARE QUALITY WEEK99 CONFERENCE

10

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 19

Test Results...Test Results...

■■ The results of our Y2K remediation effortsThe results of our Y2K remediation efforts
were very, very good.were very, very good.

■■ We had no major problems and only a fewWe had no major problems and only a few
minor problems were detected that neededminor problems were detected that needed
additional remediation.additional remediation.

■■ Some collateral defects were found, in someSome collateral defects were found, in some
cases related to Dates and Times, but notcases related to Dates and Times, but not
critical for Y2K reasons.critical for Y2K reasons.

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 20

Test Results...Test Results...

■■ The vast majority of Y2K changes wereThe vast majority of Y2K changes were
confirmed without difficulty.confirmed without difficulty.

■■ All Y2K defects were very obvious andAll Y2K defects were very obvious and
easy to detect.easy to detect.

■■ Overall, we found close to 100 defects thatOverall, we found close to 100 defects that
were Y2K related.were Y2K related.

■■ All of our Data, Tests Scripts and TestAll of our Data, Tests Scripts and Test
Results are Documented and Archived.Results are Documented and Archived.

12th ANNUAL INTERNATIONAL SOFTWARE QUALITY WEEK99 CONFERENCE

11

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 21

The Benefits of this EffortThe Benefits of this Effort

■■ Allowed QC more time for testing perAllowed QC more time for testing per
Release and Product -- seven passes forRelease and Product -- seven passes for
Y2K versus two or three during a normalY2K versus two or three during a normal
Test Cycle.Test Cycle.

■■ Improved our Level of Test Automation.Improved our Level of Test Automation.

■■ Because of the Remediation Efforts...Because of the Remediation Efforts...
–– Number of lines of source code went down.Number of lines of source code went down.

–– Level of Cyclomatic Complexity decreased.Level of Cyclomatic Complexity decreased.

SQW 99 The statements contained herein are being designated as year 2000 readiness
 disclosures under the Year 2000 Information and Readiness Disclosure Act. Jim Williams # 22

In ConclusionIn Conclusion

■■ We have a very high confidence that ourWe have a very high confidence that our
systems will sail through the Y2K transitionsystems will sail through the Y2K transition
without difficulty, making it very easy forwithout difficulty, making it very easy for
our Customers to start the next Millenniumour Customers to start the next Millennium
with the utmost confidence in our Software.with the utmost confidence in our Software.

■■ Without Test Automation, we would still beWithout Test Automation, we would still be
testing our first passes for Y2K...testing our first passes for Y2K...

Testing for Y2K Readiness: A Case Study

NOTE: The statements contained herein are being designated as year 2000 readiness disclosures
under the Year 2000 Information and Readiness Disclosure Act.

Page 1

 by

Jim Williams, CQA
CableData, Inc
March 24, 1999

ABSTRACT: Automated testing methods are used to confirm Y2K
Readiness for a complex, multi-module, multi-platform application
under test (AUT). The 2-year effort resulted in some 40,000 test
scripts and slightly over 400,000 saved comparison images.
Excellent payback from test mechanization and highly enhanced
confidence in the AUT are the results.

Note : This document is a Year 2000 Readiness Disclosure as defined under the
Year 2000 Information and Readiness Disclosure Act of 1998. All obligations of
CableData with respect to its systems and services are described solely in written
agreements between CableData and its customers. This document does not
constitute any express or implied representation or warranty by CableData or any
amendment, interpretation or other modification of any agreement between
CableData and any party

 INTRODUCTION

The application under test (AUT) is operated by CableData, Inc., an
international corporation and primarily includes software for ordering,
tracking, billing, and otherwise processing cable TV and telephony
technical and financial information. The systems under test include a
wide range of applications, from customer billing and associated
business management to controllers and line-feed electronics, plus some
cell-phone support systems. Obviously, for these kinds of applications
the FCC has mandated that Y2K readiness is critical -- interruptions of
service and other potential problems have very high economic impact to
CableData's customers’ business.

There are about 150 applications that run under UNIX on IBM RS/6000
machines, and about 110 applications that run on a Tandem computer.
The total number of lines of code is in excess of several million --
i.e., something over 2500 KLOC. Both sets of applications are
accessible from PCs -- work-stations that connect to the RS/6000 or
Tandem computer clusters via on-board terminal emulators. Almost all
of the applications produce results that are seen as responses on the
PCs.

 Y2K TEST METHODOLOGY

The main method used for Y2K readiness testing is the conventional
date-aging method: the application is tried with time-intervals that
vary in length over a series of dates before, near, just after, and
much later than 31 December 1999.

To get results in this way, it is necessary to "age the database". We
developed special software just for this purpose that helps maintain a
coherent database of information, aged to the desired date that the Y2K
tests are actually run against.

Testing for Y2K Readiness: A Case Study

NOTE: The statements contained herein are being designated as year 2000 readiness disclosures
under the Year 2000 Information and Readiness Disclosure Act.

Page 2

SQL relational databases are used in both products, so a special tool
was used to verify and validate all SQL activity to a known baseline
after each suite of tests had been run.

Some of the software that is used in the system has to be Y2K readiness
checked first. This is done to make sure that any defects or anomalies
that are found in the specific AUT tests are caused by fixable errors,
rather than by errors in vendor supplied code such as databases,
operating systems, system utilities, etc.

The date changes that were used include the following nine dates:

 09/09/1999 Four nines (sometimes 9/9/99)!

 12/31/1999 THE date in question!

 01/01/2000 The day after THE date in question.

 02/29/2000 Yes, a leap year!

 03/01/2000 The day after leap year.

 12/31/2000 The 366 th day of the year.

 01/01/2001 The first day of next year.

We tested two additional dates – just to see what would happen:

 01/01/2037 UNIX Dates OK.

 01/19/2038.03:14:07 to be exact…UNIX Dates not OK.

Note that the UNIX dates are included in the testing to attempt
toconclude that the systems are OK, for the time when the 64-bit UNIX
long-integer date, the number of seconds since 1 January 1970 "turns
over".

Our AUT uses dates in two ways: firstly, dates that are used in
calculations such as ages, amount, periods of time, expiration,
interest, taxes and prorates; secondly, dates used operationally such
as sorting, searching, qualifying ranges, reporting and time stamps for
license validation.

Our test scripts were developed to test a range of dates for the date
in question. For most features in our AUT, we created a test function
that would test current date, one day, one week, one month and six
months in the past. The same units of time were tested into the
future. This method allowed us to systematically test both past and
future dates from our base date.

 THE TEST SCRIPTS

The test scripts are many in number and very complex. They were only
partially generated manually. Most of them were "constructed" from
pieces that were engineered to be put together. This is a kind of

Testing for Y2K Readiness: A Case Study

NOTE: The statements contained herein are being designated as year 2000 readiness disclosures
under the Year 2000 Information and Readiness Disclosure Act.

Page 3

tree-oriented test script generation that we were able to use with
great success.

All automated testing scripts were validated using a “Path Coverage”
tool, obtaining an average Path Coverage of 80%.

For the RS/6000 AIX testing, we used a total of 22,000 test scripts
that resulted in a set of 280,000 different "screen shot" images that
were used as the basis for comparison. In some cases, we had to
program the differencing engine to ignore unimportant differences. Even
though this was a lot of work at the outset, it saved hundreds of hours
of unnecessary work as we ran the tests.

On the Tandem side we have a total of approximately 18,000 scripts and
about 124,000 screen images. As with the AIX testing we used some
special processing to make the job of comparison easier.

The scripts varied in length from 50-60 lines (some of the simplest
tests) to over 12,000 lines (the most complex tests).

About 40% of the tests -- mostly the smaller ones -- were generated by
hand, but the 60% that were mechanically generated probably account for
80%+ of the total volume of tests.

 RUNNING THE TESTS

The tests were run from a cluster of 12 PCs. Typically, we would run
tests for 12 hours a day, six days a week. Even though we had 12
machines to drive the tests, on average we used as few as four and only
infrequently had to use all 12 machines. A good estimate is that we
used about eight of the 12 PCs for each set of test runs.

The UNIX side suite of tests took about seven days to run to
completion, and the Tandem side tests took just under ten days to
execute.

Each test suite has been run a total of fourteen (14) times for each
platform. This is based on seven executions of the suite: one each for
the above-defined dates before Y2K modifications, and the corresponding
seven executions for the AUTs after they had been modified.

Remember, however, that there is significant rework time when a test
uncovers one or more Y2K deficiencies. We estimate that this accounts
for an additional 20% overall.

We have had as many as 13 people on the test team, but the average has
been about seven for the approximately two years it has taken to
enhance, debug, run and re-run the tests.

 RESULTS AND RECOMMENDATIONS

As a pattern of practice, we check our test logs and reports as a suite
of tests finishes. The output that is verified is broken out into
three categories: PC Screen Captures or Bit Maps, SQL Table Level
differing and AUT Performance Levels. All three were compared to a
known baseline for that product and release.

Testing for Y2K Readiness: A Case Study

NOTE: The statements contained herein are being designated as year 2000 readiness disclosures
under the Year 2000 Information and Readiness Disclosure Act.

Page 4

Our results have been very, very good so far. We have had no major
problems and only a few minor problems detected due to the Y2K
remediation efforts.

We did find some collateral defects -- in some cases, related to dates
and times – but these were not critical for Y2K reasons. The vast
majority of the Y2K changes we made were confirmed without difficulty.

Overall, we found and fixed approximately 100 of these Y2K
"discoveries".

All of our databases, test scripts and test results are documented and
archived.

There were a number of unexpected benefits from the remediation effort.
Our suite of test scripts improved from the knowledge learned. More
time was given for QC to test each release and product. Normally, we
would have between two and three passes during the regression test
cycle, but with the added Y2K passes, we had a minimum of seven passes.
Another side benefit from the remediation was that the number of lines
of source code went down and the level of cyclomatic complexity
decreased, which should make the source code easier to maintain and
test.

In conclusion, we have very high confidence that our systems will sail
through the Y2K transitions without difficulty, making it very easy for
our customers to start the next millennium with the utmost confidence
in our software.

I know that without Automated Testing, we would not be done, but would
still be testing our first pass for Y2K.

(c) Andreas Ulrich et al., Siemens AG, Munich, Germany 1/14

Test Architectures for Testing

Distributed Systems

Andreas Ulrich, Peter Zimmerer, Gunther Chrobok-Diening

Siemens AG, ZT SE 1, 81739 München, Germany

andreas.ulrich@mchp.siemens.de

12th International Software Quality Week 1999

San Jose, 27 May 1999

(c) Andreas Ulrich et al., Siemens AG, Munich, Germany 2/14

Presentation Outline

1. Introduction

2. Specification-based test method

3. Challenges in testing distributed systems

4. A global tester for testing distributed systems

5. Two types of distributed testers

6. A tool for testing and monitoring distributed systems

7. Conclusions

(c) Andreas Ulrich et al., Siemens AG, Munich, Germany 3/14

Introduction

Assumptions

Distributed system DS = collection of communicating components

ℑ = M1 || … || Mk

E.g. implemented on a middleware platform Corba, DCOM or Java RMI or

proprietary implementations

Testing goal

to test a DS against its functional specification (conformance test)

Focus: integration testing of DS; requires a grey-box testing approach

Test object in practice

telecommunication switching software developed at Siemens ICN

(c) Andreas Ulrich et al., Siemens AG, Munich, Germany 4/14

Specification-based test method

The behavior of the distributed system DS is given in a specification

e.g. (typically) communicating state machines (SDL, UML state charts)

Example: ℑ = A |[a, c]| B

A possible global action sequence the distributed system may perform:

σ = a.b.c.e.b.d.a.b.e.d.a.b.d.e

Note: any interleaving sequence {e.b.d, b.e.d, b.d.e} may occur!

0

1

2

a

c

d

0

1

a e

A B

b

c

a

c

(c) Andreas Ulrich et al., Siemens AG, Munich, Germany 5/14

Specification-based test method (cont.)

Test architecture

the concurrent system: Tester || System Under Test (SUT)

In case of integration testing :

The tester observes/controls all external and internal interactions of the SUT.

Test run

The tester implements a test case to test the SUT

Test run = a (concurrent) execution path through Tester || SUT

Test oracle

A test was successful (pass) if the SUT performs correctly all execution

sequences described in the specification (acceptance test).

(c) Andreas Ulrich et al., Siemens AG, Munich, Germany 6/14

Challenges in testing distributed systems

The main challenges are

� true concurrency between components of the DS

� other types of non-determinism in the DS

� absence of a global clock

� unobservable messages exchanged between components

Non-determinism as the main challenge

� due to interleaving of concurrent actions of the SUT

� within a component of the SUT

� due to race conditions within the SUT

� An appropriate test architecture needs to address non-determinism

in a DS to obtain a deterministic test run !

(c) Andreas Ulrich et al., Siemens AG, Munich, Germany 7/14

A global tester for testing distributed systems

Test architecture TG || SUT

The global tester implements an acyclic machine of a global test case, e.g.

� Concurrency is not respected!

SUTℑ

A B

TG

d b a c e

pass

fail fail
a

fail
b

fail
c

fail
b

fail

d

fail
ea

TG

TG || SUT

(c) Andreas Ulrich et al., Siemens AG, Munich, Germany 8/14

Two types of distributed testers

Distributed tester with synchronization events

Tester itself is distributed; test coordination procedure required (TCP)

Each tester component 1TD1, 1TD2 implements a partial test case derived from

the global test case and augmented with synchronization events:
1TD2 implements 1σ11 = sync.b.sync.sync.b.d.sync
1TD2 implements 1σ12 = a.sync.sync.c.sync.e.sync.a

� Concurrency is respected, but complicated TCP needed!

SUTℑ

A B

1TD

1TD1
1TD2

d b c a e

sync

(1TD1 |[sync]| 1TD2) || SUT

(c) Andreas Ulrich et al., Siemens AG, Munich, Germany 9/14

Two types of distributed testers (cont.)

Distributed tester with redundant observation of internal actions

� Tester represents an inverted image of the architecture of the SUT.

Test cases for tester components:
2TD2 implements 2σ11 = a.b.c.b.d.a
2TD2 implements 2σ12 = a.c.e.a

� Most simplest solution; concurrency is respected!

SUTℑ

A B

2TD

2TD1
2TD2

d b a c e

(2TD1 || 2TD2) || SUT

(c) Andreas Ulrich et al., Siemens AG, Munich, Germany 10/14

A tool for testing and monitoring DS

Test and Monitoring Tool (TMT)

� a first prototype tool to support in-house integration testing

� implemented in Java, JDK 1.2

� more than 210 class files and 60,000 lines of source code

� developed in cooperation with the Information and Communication Net-

works Division and the R&D Software and Engineering Department

Features of TMT

� resembles a distributed tester with redundant observation of actions

� provides different views on the distributed system under test

� allows user interactions to control a test run

� provides filter and other mechanisms to reduce the amount of data

� supports DS implemented in C++ or Java

(c) Andreas Ulrich et al., Siemens AG, Munich, Germany 11/14

A tool for testing and monitoring DS (cont.)

The main window of TMT

(c) Andreas Ulrich et al., Siemens AG, Munich, Germany 12/14

A tool for testing and monitoring DS (cont.)

Different views on the SUT provided with TMT

(c) Andreas Ulrich et al., Siemens AG, Munich, Germany 13/14

A tool for testing and monitoring DS (cont.)

Assessment of test runs with TMT

� Assessment is done in the TMT main component.

� It is based on dependencies between test events.

(c) Andreas Ulrich et al., Siemens AG, Munich, Germany 14/14

Conclusions

� Testing distributed systems must be conducted such that a

deterministic test run is achieved.

� Concurrency between test events must be respected during test

execution and for the assessment of the test run.

� Race conditions and non-determinism in a SUT component may still

exist.

� Testing distributed systems needs to be assisted by a distributed

tester .

� A distributed tester with redundant observation of internal interactions

of the SUT seems to be most appropriate.

1

Test Architectures for Testing Distributed
Systems

Andreas W. Ulrich, Peter Zimmerer, Gunther Chrobok-Diening
Siemens AG, ZT SE 1, 81739 München, Germany

{andreas.ulrich, peter.zimmerer, gunther.chrobok-diening}@mchp.siemens.de

Abstract
This paper suggests two test architectures for testing distributed, concurrent systems: a global
tester that has total control over the distributed system under test (SUT) and, more interest-
ingly, a distributed tester comprising several concurrent tester components. The test architec-
tures rely on a grey-box testing approach that allows to observe internal interactions of the
SUT by the tester. In order to realize distributed testers, the correct global view on the behavior
of the SUT must be maintained by the tester. This can be achieved if coordination procedures
are established between the concurrent tester components. Coordination between tester com-
ponents can be implemented by means of redundant observation of internal interactions within
the SUT or by means of using synchronization events between tester components. First con-
cepts of a distributed tester are realized in a prototype of a test and monitoring tool used for in-
house testing, monitoring, and analyzing distributed systems within Siemens. The project is
conducted in Siemens’ R&D Software and Engineering Department in charge of its Informa-
tion and Communication Networks Division.

Keywords
Test architectures, distributed systems, concurrency, specification-based testing, monitoring.

1 INTRODUCTION

Distributed software systems have gained increasing importance in recent years. Such applica-
tions are not just client/server systems, but more and more complex systems consisting of a
number of independent components running concurrently on different machines on top of a
communication network. Today distributed systems are implemented using middleware tech-
nologies, such as Microsoft/COM, OMG/CORBA, or Java RMI. But there exists also a number
of proprietary solutions to distributed systems, e.g. implementations of a H.323 video confer-
encing protocol and others.

Designing, implementing, and validating such complex distributed systems requires a deep
understanding of the communication taking place and the order of communication messages

2

exchanged between the individual components to avoid deadlocks or livelocks during runtime.
This applies in particular to the testing of these systems.

We assume in our discussion that a distributed system consists of a collection of compo-
nents, each of them realizing a sequential flow of execution. Each component has an interface
that defines its incoming and outgoing messages. Testing distributed systems usually follows
the steps of single component tests, integration tests of components, and finally the system test.
Especially, the integration tests is mainly aggravated by the following properties of distributed
applications:

• true concurrency between components,
• race conditions and other types of non-determinism
• absence of a global clock, and
• message exchanges between components that are unobservable by a tester.

We assume that a test architecture for distributed systems consists of the following basic ele-
ments:

• the system under test (SUT), i.e. the executable implementation of the distributed software
system to be tested,

• the tester that implements a test case and also assesses the results of a test run,
• points of control and observation (PCOs) and pure observation points (POs) between tester

and SUT, and
• possibly test coordination procedures which coordinate the activities between different

tester components.

The paper defines requirements to the test architecture that need to be matched to support the
execution of test runs and their correct assessment afterwards. These requirements address the
SUT, which must be prepared in a suitable way to perform a test run. Requirements in this cat-
egory are referred commonly to rules of “design for testability”. Further requirements are
suited to design testers that correctly assess the results of a test run. Note that our discussion is
confined for the testing of functional aspects. We do not consider quality-of-service and perfor-
mance aspects which are also relevant for distributed systems as discussed in [8].

As a result, two principal test architectures are presented: aglobal testerthat observes and
controls all distributed components of a SUT in a central manner, and adistributed testerthat
consists of a number of distributed, concurrent tester components, each of them collecting only
partial information about the execution progress in components of the SUT. Especially, a dis-
tributed tester is of interest since it makes better use of system resources than the global tester
that can be a performance bottleneck during a test run.

Assuming a grey-box testing approach and the right choice of PCOs and POs between tester
and SUT, we show that also a distributed tester works correctly and brings up the expected
result. The PCOs and POs must be provided in the implementation of the SUT to allow the
tester to observe necessary information for assessing a test run. A common means for this pur-
pose is the insertion of software probes into the SUT.

3

The considerations to the design of test architectures helped implement a prototype of aTest
and Monitoring Tool(TMT) for testing distributed systems. This tool makes the concurrent
flow of messages in a SUT visible and allows to compare the results of two test runs in order to
detect differences in the execution order of messages in the SUT. The tool supports an on-line
mode that displays message exchange in the SUT at run time and an off-line mode for post-
mortem analysis. TMT provides different views on the concurrent system that focus on the
hierarchical structure between components of the SUT, on the temporal order of messages
exchanged between components, or on a detailed view of the contents of transmitted messages.
Moreover, a TMT user is able to control the execution of the SUT interactively.

The paper is organized as follows. In Section 2 we introduce some basic notions as well as
an example which are used in the following discussion. Section 3 describes the proposed test
architectures. Section 4 presents the prototype of TMT that implements a distributed test archi-
tecture. Finally, Section 5 summarizes the presentation.

2 PRELIMINARIES

2.1 Basic Notations
We suppose a specification of a distributed system as a parallel composition� = M1 ||� || Mk
of interacting components. Each component realizes a certain function of the distributed sys-
tem, e.g. in the form of a client and/or server. It is described by a sequential automaton (labeled
transition system, LTS). Components communicate with each other solely via interaction
points. The communication pattern used is synchronous communication and non-blocking
send based on interleaving semantics. Transmitting messages and their receipt through interac-
tion points are referred toactions.

Definition 1. A labeled transition system(LTS or machinefor short)M is defined by a quadru-
ple (S, A,�, s0), whereS is a finite set of states;A is a finite set of actions (the alphabet);��

S� A � S is a transition relation; ands0� S is the initial state.

To distinguish the different kinds of communication, we denote all inputs and outputs of the
distributed system implementation from/to the environment asexternal(reactive system), anal-
ogously all inputs and outputs belonging to the inter-component communication asinternal.
Events appearing only inside a module are not considered.

Consider the simple system� = A ||B whose LTSs are given in Figure 1. Under the assump-
tion that actionsa and c in each component synchronize, removal of parallel operator || by
applying interleaved-based semantics rules yields the composite machineC� representing the
global behavior of the distributed system�.

4

Figure 1. Example system� = A || B and its composite machineC�.

The composite machineC� describes all possible sequences of actions the distributed system
is allowed to perform, e.g. the system� may perform the following sequences:

� = a.b.c.e.b.d, � = a.e.b.d, 	 = a.b.d.e.a.b.cand so on.

During testing the system we have to show that the implemented system (SUT) follows the
behavior described in its specification (specification-based testing approach). This testing con-
cept is more formally defined in the following Section.

2.2 The Testing Goal
The testing goal within this specification-based testing approach is to show conformance
between the specification of the distributed system and its specification, i.e. the SUT of the
implementation obeys the requirements given in the (functional) specification, it implements
the specification. To show conformance a formal model of the specification must be provided
and the same formal model must be assumed for the SUT. We assume the formal model of a
system of communicating machines as presented in the previous Section is used as a specifica-
tion model as well it is imposed on the behavior of the SUT.

Conformance between SUT and specification can now be established formally.

Definition 2. Given the specification of a distributed system� as a composite machineC�. An
implementationSUT� of � conforms to its specification iffSUT� exposes the same set of
action sequencesSeq(SUT�) as are described inC�, i.e.Seq(SUT�)
 Seq(C�).

This definition states that the implementation at least needs to implement all possible action
sequences of the composite machine defining the global behavior of the distributed system�.
But it may implement more functionality.

To test a SUT for Definition 2, an acceptance test is appropriate. This test defines test cases
that cover all transitions of the composite machine at least once. Such test cases are referred to
a transition tour through a machine. Note that the definition includes also the internal events of
a distributed system in order to assure that the communication between the components of the
SUT works. This test is essential in the integration test of a distributed system, and a test archi-
tecture supporting this grey-box testing approach is required.

A composite machine is however not the best model to derive acceptance tests since it is
usually too huge to be computed due to the state explosion phenomenon caused by interleav-
ing. In [1] it was shown that a composite machine is not needed as a basis model for an accep-

0

1

2

a

b

d

0

1

a e

A B

c

c

01 11 21

00 10 20

ae e e
b

b

d

d

C�

c

5

tance test even if the same degree of test (fault) coverage should be maintained. Instead it is
sufficient to derive acceptance tests from a reduced partial-order based model, calledMazurk-
iewicz Trace Machine(MTM), a model commonly used in partial-order verification tech-
niques.

Possible test cases of our example are the following sequences:

�1 = a.b.c.b.d.e.a, �2 = a.b.c.b.e.d.a, �3 = a.b.c.e.b.d.a.

All three sequences can be equally employed in a test run. They possess the same fault detec-
tion capability [1]. They differ only in different orders of the interleaving actionsb, d ande.

2.3 Challenges in Testing Distributed Systems
There are many challenges in testing distributed systems. One problem is the generation of
appropriate test cases to test distributed systems sufficiently with a certain degree of test or
fault coverage. Test case generation is in particular aggravated by the state explosion problem
that occurs when the global system behavior is being analyzed. However, this problem in not
discussed further in this paper.

Another challenge of testing distributed systems one is faced in the test execution phase is
the intrinsic non-determinism of a distributed system under test. There exist three types of non-
determinism in distributed systems:

1. non-determinism due to interleaving of concurrent actions of the SUT,
2. non-determinism within a component of the SUT, and
3. non-determinism due to race conditions within the SUT.

The first type of non-determinism refers to the fact that concurrent actions of a distributed sys-
tem are independent from each other. Consequently, their occurrence within a global time of
the system cannot be predicted. The actionb, d ande from the example system in Figure 1 are
such concurrent actions.

The second type refers to the fact that a tester may be not able to observe all actions going
on within a component of a distributed system. Due to this limited observation the behavior of
the component appears to be non-deterministic to the tester.

Finally, the third type of non-determinism occurs in the global behavior of the SUT. A typi-
cal example of a race condition is the receipt of two concurrent messages by a component of
the distributed system. The further behavior of the system depends now on the order, in which
the concurrent messages are received (e.g. concurrent write access to a shared variable, fol-
lowed by a read of this variable).

The complete observation of the internal communication (grey-box test method) is required
to observed the correct execution of internal actions within the SUT, but also to enforce a deter-
ministic test run. By observing the internal communication of the SUT by means of acontrol-
ler according to [4], the SUT is forced to follow a certain execution order defined by a test case
that is implemented in the tester. To (partially) omit the control of internal observation, it must
be proved whether this does not lead to a non-deterministic behavior of the SUT.

6

The first type of non-determinism can be avoided if the tester itself is implemented as a dis-
tributed system. See Section 3.2 for this discussion. Furthermore, if the analysis of the system
specification shows that the 2nd and 3rd type of non-determinism cannot appear, then instant
replay techniques to assure a deterministic behavior can be safely omitted and the tester only
needs to observe the internal actions of the SUT via POs.

3 TEST ARCHITECTURES FORTESTING DISTRIBUTED SYSTEMS

3.1 The Global Tester
In this Section, we describe possible test architectures which can be employed for the test of
distributed systems. We first start with the simplest model, theglobal tester, which entirely
simulates the environment of the STU during test run. The global tester centrally collects infor-
mation of the distributed SUT, and derives the test verdict. Thereafter we extend the simple
model such that the tester itself represents a distributed system.

A global tester is always implemented as a sequential machineTG. The tester runs in paral-
lel with the distributed system observing and controlling if necessary all external and internal
actions of the SUT (grey-box test):

TG || SUT.

After starting the test run the tester executes the events of the test sequence� step by step. This
leads to a rendezvous or multi-rendezvous communication between the tester and the SUT. The
tester participates in the execution of a test event and records it together with the components
of the SUT participating in this test event.

The global tester performs an action sequence derived from the composite machine of the
distributed system as a test case. This action sequence contains a certain, assumed interleaving
order of concurrent events. This assumed interleaving order must be validated to exist in the
SUT during the test run. However since the interleaving sequence consists of concurrent test
events with no causal dependency between them, the action sequence assumed in the global
tester is only observed by chance during a test run.

For example, possible interleaving action sequences of our system� = A || B of Section 2
that can be used to describe a global tester are the following three sequences:

�1 = a.b.c.b.d.e.a, �2 = a.b.c.b.e.d.a, �3 = a.b.c.e.b.d.a.

In these sequences the actionsb, d ande are interleaved meaning that they may occur in any of
the three possible orders during a test run. Thus, in practice it may be possible that a global
tester implements�1 as the test case, but observes only sequences of�2 or �3 in a test run. The
test verdictfail might be assigned to such a test run, although the SUT obeys the specification.

To prevent this situation from happening, the global tester needs to control the execution of
internal events of the SUT (PCOs also for internal actions of the SUT). This behavior can be
achieved ifinstant replay techniquesare applied to guarantee adeterministic test run[3]. The
instant replay technique defines measures to include software probes in the SUT that allow the
tester to control the subsequent behavior of the SUT.

7

The global tester itself is modeled as an acyclic machineTG = (ST, ACCT, �T, ST0) with
|�|+1 states. The transitions inTG are determined by the sequence of actions� = a1.a2.� .an
used as the test case:

ST0 –a1� ST1, ST1 –a2� ST2,�, STn-1 –an� STn

For assigning the test verdict, a verdict label is attached to each state:passto the final state and
fail to all other states. If the tester reaches the final state after correctly executing�, the test
verdictpassis assigned to the test run. In all other cases the test run results in afail verdict. The
tester may not reach the final state in cases that a desired component is not able to participate in
a certain test event; the test architecture including the tester and the SUT deadlocks in this case.

Figure 2 shows the global tester to test the systemSUT� = A || B. Note again that the tester
has access to the internal actions of the SUT. The model of the global tester implementing�1
as the test case is given in Figure 3.

Figure 2. The global testerTG for systemSUT� = A || B.

Figure 3. Global Tester of the systemSUT� = A || B.

The advantage of the global tester approach is its simplicity. Due to its global view on the dis-
tributed system under test it can register the processed test events directly, with no further com-
putations, as a unique sequence which preserves the correct causal dependencies between the
actions of the SUT. A severe drawback of the global tester is however that it requires strict con-
trol over the execution of concurrent test events. This control might heavily intervene in the
original behavior of the SUT. The question is whether there are other options to realize a test
architecture that takes attention to the concurrency of test events.

3.2 Distributed Testers
3.2.1 General Characteristics
A distributed tester is characterized by the following properties:

SUT�

A B

TG

d b a c e

pass

fail fail
a

fail
b

fail
c

fail
b

fail

d

fail
ea

TG

8

• It consists of several concurrently operating tester components which process together, but
independently aglobal test case(TC). The tester can be described by the same model as the
SUT, e. g. as a set of communicating machines.

• Each tester component executes apartial test case(PTC). A PTC is projection of the global
test case TC which comprises only those events which can observed at the PCOs and POs
assigned to the particular tester component. The causal dependencies between the test
events of a PTC are determined by the global TC.

• Each tester component observes a subset of the set of all PCOs and POs. PCOs exist for the
external actions of the SUT, whereas POs are imposed on internal actions of the SUT. Their
selection is a decision taken by the designer of the test architecture.

• The behavior of the tester components is controlled by aTest Coordination Procedure
(TCP).

The general issue in distributed tester design is that the tester may assign a successful verdict to
a test run although the SUT contains faults. This is possible because there is no global view on
the SUT if a distributed tester is used. This problem can be tackled by a TCP between the dis-
tributed tester components, either by introducing synchronization events into the partial test
cases of tester components or by the use of redundant PCOs/POs to observe internal events of
the SUT simultaneously by several tester components. For example, if a component of the SUT
sends a message to another component, one tester component observes the send event of this
communication, whereas another tester component observes the resulting receive event.

We can describe a distributed testerTD by means of a set of concurrent tester components

TD = TD1 || TD2 ||� || TDn

which are controlled by a TCP. Each tester component processes a sequential PTC via an acy-
clic machine that may be supplemented with synchronization events. We further assume the
same markings offail andpassto assign a test verdict as discussed for the global tester.

In a test run the distributed system (TD1 ||TD2 ||� ||TDn) ||SUTis executed. The tester com-
ponents and the SUT participate in the respective test events and transfer from one local state
to the next. If a test event or synchronization event of a TCP cannot be executed, the whole test
architecture deadlocks. Only if all tester components reach their final state, the verdictpassis
assigned to the test run.

3.2.2 Distributed Testers with Synchronization Events
A common distributed test architecture that is often used in testing distributed telecommunica-
tion systems uses synchronization events to implement a TCP. We discuss this type of distrib-
uted testers first.

We develop a distributed tester1TD for the example system in Figure 1 and assume two
tester components:1TD1 observes the actionsb andd of the SUT, while1TD2 tests the actions
a, c ande. Additionally, the tester components exchange the synchronization eventsync. Fig-
ure 4 shows this test architecture.

9

Figure 4. Test architecture of the distributed tester1TD with synchronization eventsync.

The derivation of test cases for the tester components is done as a projection of test events
observable by the particular tester component from the global test case. Let us assume the glo-
bal test case�1 = a.b.c.b.d.e.ais used. The projected partial test cases for the two tester compo-
nents are the following:

1
�11 = b.b.dfor tester component1TD1 and

1
�12 = a.c.e.a. for tester component1TD2.

These sequences must be supplemented with synchronization events. Synchronization events
are always included when the control goes over from one tester component to the other. Conse-
quently, the tester components run the following partial test cases:

1
�11’ = sync.b.sync.sync.b.d.sync

1
�12’ = a.sync.sync.c.sync.e.sync.a

Note that the synchronization events are indispensable for assuring the correct global view on
the SUT. If, for instance, the first appearance of actionb in componentA of the SUT follows
actionc, a distributed tester without a test coordination procedure would not detect this fault.

Assuming that a tester component is assigned to each component of the SUT, the distributed
tester can fully exploit the concurrency among test events. For example, total order of the inter-
leaving actionsb, d ande is not important for assessing a test run. Any test run is correct if only
the causal dependencyb befored is assured. Actione can interleave at any time instant (within
the constraints of thesyncevents).

Thus, the distributed tester does not need to control the execution of the test case entirely.
Each tester component can run independently its partial test case. Only coordination between
the tester components is necessary to guarantee the correct global view on the SUT. As a con-
sequence, it is possible to replace the PCOs for the internal actions of the SUT to mere POs,
thus controlling the behavior of the SUT only via the external actions of the SUT. Control over
internal actions might be still required however in the case of the existence of race conditions
or internal non-determinism. See Section 2.3 for this discussion.

SUT�

A B

1TD

1TD1
1TD2

d b c a e

sync

10

3.2.3 Distributed Testers with Redundant Observation of Internal Actions
The insertion of synchronization events is not the only possibility to realize coordination
among tester components. Another and a more elegant option is the redundant observation of
internal actions of the SUT by several tester components. This type of distributed test architec-
ture is again discussed using the example from Section 2. It consists of two tester components

2TD = 2TD1 || 2TD2.

Each tester component controls and/or observes all interactions of a single component of the
SUT. Thus, the tester represents an inverted image of the SUT. Figure 5 shows the test architec-
ture of tester2TD.

Figure 5. Test architecture of the distributed tester2TD.

Partial test cases for the tester components are derived in the same manner as already described
for the first type of distributed testers in Section 3.2.2. Using the global test case�1 =
a.b.c.b.d.e.aagain as the basis for the derivation of partial test cases, the tester components
2TD1 and2TD2 need to implement the following partial test cases:

�
�11 = a.b.c.b.d.afor tester component2TD1 and
�
�12 = a.c.e.afor tester component2TD2.

Since both tester components observe the internal actions of the SUT, they coordinate each
other to maintain the correct global view on the system. A practical solution to implement the
redundant observation of internal communication is that in case of message passing, a tester
component observes the send event of the message, whereas another tester component
observes the receive event of this message. The causal dependency between the send and the
receive event for the same communication action (message passing) can be assumed. This is
the way how an in-house prototype of a test and monitoring tool works (see Section 4).

Note that also here concurrency within the SUT is greatly supported if a tester component is
provided for each component of the SUT. The advantage of the second distributed test architec-
ture is that no additional synchronization events are needed to coordinate the tester compo-
nents. The renunciation of PCOs for internal actions of the SUT is possible if no other types of
non-determinism exist in the SUT. See Section 2.3 for this discussion.

SUT�

A B

2TD

2TD1
2TD2

d b a c e

11

3.3 Test Cases for Distributed Test Architectures
This Section finally emphasizes the need of an appropriate description of test cases for distrib-
uted systems tested by means of a distributed tester. As discussed above, test cases described as
sequences of test events are not very suitable since they do not respect the concurrency that
exists among interleaving events. Hence, a notation of test cases is required that respects con-
currency of test events. Such a notation should use a partial-order approach to make concurrent
test event explicit. A standard notation for this purpose that has been in use for several years to
describe (concurrent) system requirements of distributed telecommunication systems is the
Message Sequence Chart(MSC) representation [9].

Using a representation similar to a MSC, the global test case for the example system in Fig-
ure 1 can be represented as depicted in Figure 6.

Figure 6. A concurrent global test case of system� = A || B.

The concurrent global test case depicts the direct causal dependencies between test events. It
does not assume a certain global order of all events, instead concurrent events are represented
independently from each other. It can be easily seen that all three global action sequences�1,
�2 and�3 that are contained in the composite machine of the example system in Figure 1 are
still preserved in the concurrent test case [6]. In the diagram of Figure 6 the time axis is
assumed to run from left to right.

4 A TOOL FORTESTING AND MONITORING DISTRIBUTED SYSTEMS

4.1 Overview
In order to support clients within the Siemens Corporation, we are currently developing atest
and monitoring tool(TMT) to support testing, monitoring and analyzing distributed applica-
tions. A first prototype of TMT was implemented in Java JDK 1.2 in more than 210 classes and
60,000 lines of code. The prototype can be applied to distributed systems implemented in C++
on UNIX or Windows NT platforms or to distributed systems in Java. The prototype was
developed within the R&D Software and Engineering Department of Siemens as a contract
work of its Information and Communication Networks Division. Figure 7 shows the main win-
dow of TMT prototype.

a

b

c

b d

e

a

s
t
a
r
t

e
n
d

12

Figure 7. Main Panel of TMT.

The main panel shows the list of recorded test events observed from the SUT. The events are
listed in an ascending temporal order of their receipt by the tester. Since the time stamps are
generated locally, i.e., on the local machines where components of the distributed system are
running during the test, the received sequential order of test events might not reflect the correct
causal dependencies between the events if the accuracy of local clock synchronization is insuf-
ficient. This is however not a drawback since TMT considers only the causal dependency of
test events for functional testing. The values of the time stamps matter only in case of perfor-
mance tests that is not focus of this paper.

Further functions of the main panel of TMT include buttons to open different view charts of
the SUT in the upper part of the window and VCR-like buttons to scroll through the event list.

4.2 Operation Modes of TMT
The TMT prototype supports two operation modes: on-line and off-line mode. In the on-line
mode, TMT collects and displays all test events during the test run. Test events are produced
from an instrumented source code of the SUT and refer to interaction events within compo-
nents of the SUT or between SUT and environment. Thus, TMT realizes a global tester.

The off-line mode, on the other hand, allows to record partial information of a test run in
distributed tester components. The tester components produce local files containing the
observed test events during the test run. These local files are read by TMT after the test run has
finished. The local information of test event sequences are merged within TMT according to
the time stamp values of the test events. In this scenario, TMT realizes a distributed tester. The
distributed tester components allow currently only to write observed test events to a file, but do
not perform an assessment of the (partially observed) test run. This functionality is still central-
ized within the main tool of TMT.

13

Since the tester components do not use test coordination procedures between them, the
observed test events must be issued redundantly by the SUT as discussed in Section 3.2.3. This
is entirely in the responsibility of the developer of the distributed system to provide a SUT that
is sufficiently instrumented to produce the desired test events.

4.3 The Test Library
TMT realizes a monitor tool and a distributed tester based on a redundant observation of inter-
nal interactions of the SUT. To generate the distributed tester components for a specific SUT
with a set of communicating system components, a test library is provided that contains func-
tion calls to record test events by the tester. This test library resides on the machine where a
component of the SUT is running. Connection between the tester and the SUT is established in
such a way that the source code of the SUT is augmented with additional function calls of the
test library in cases where interactions between components of the SUT will occur.

The test library does not allow in its current version to perform also the assessment of a test
run. This functionality is entirely moved to the central main part of TMT (see Figure 7). The
tester components implemented in the test library only allow to record the observed test events
in a file or to send them directly to the TMT main component. The advantage of this approach
is that the test library is generic for a large variety of implementations of distributed systems.
Since the augmentation of the SUT is done in its source code, implementations in C++ and
Java are currently supported by the test library only.

4.4 The Sequence Chart View of TMT
This view shows the execution process of interactions within a distributed system under test in
a Sequence Chart Viewthat is similar to a MSC graph. The test events received from the SUT
are ordered according to their causal dependencies. Each sequential component is represented
as a separate line within this view. Different icons in this view denote different interaction
events (send, receipt of messages, creation of a new component and so on). See next Figure.

Figure 8. Sequence chart view of TMT.

Other views provided with TMT are

• a Hierarchical Viewon the structure of the SUT that depicts the composition of the SUT in
components and sub-components, and

14

• a Detailed Viewto show details on received test events, e.g. certain parameter values.

4.5 Interactive Mode of TMT
TMT allows the generation of special interactive test events that help the tester control the sub-
sequent execution of interactions in the SUT. At the moment this test event requires a manual
interaction with the user of TMT. For this purpose a windows pops up that requires user inputs
(see Figure 9). The further execution of the test architecture waits until this desired user inter-
action was performed. In this way, control over the behavior of the SUT can be achieved by
TMT. This control is necessary to avoid non-determinism and to assure a deterministic test run
(see Section 2.3).

Figure 9. User interaction pop-up window of TMT.

4.6 Assessing Test Runs
An important feature of TMT is its ability to compare test runs with test cases or other test
cases obtained in previous test runs. This assessment is, unlike the discussion in Section 3.2, is
performed centralized in the main component of TMT to allow more flexibility of TMT for
different test runs.

The implemented feature of assessing test runs takes into consideration the possible concur-
rency among the observed test events in order to correctly assign the test verdict. For example,
although the two sequence chart views in Figure 10 look different, the test events in these
views still obey the same causal dependencies. Thus, both test event sequences are considered
to be equivalent by TMT, and the test verdict assigned to this test run ispass.

15

Figure 10.Two similar test runs.

5 CONCLUSIONS

In this paper we have suggested different architectures for the test of distributed systems. Two
principle test architectures have been considered: a global and a distributed tester. The global
tester is a sequential module which observes and controls all actions of the SUTs at its PCOs,
whereas the distributed tester consists of several concurrent tester components which observe a
partial behavior of the SUT only, but supports concurrency within the SUT. The latter must
provide test coordination procedures to assure a correct and consistent global view on the SUT.

A prototype implementation TMT of a distributed tester was also presented. The current
version of this prototype allows to monitor distributed applications and to assess a recorded test
run according to a test case derived from a specification or recorded from a reference test run
done before. This test assessment does not compare the test events of a recorded global test
sequence in a sequential way, one after the other, but exploits the causal dependencies between
test events to avoid misinterpretation caused by interleaving concurrent events.

6 ACKNOWLEDGMENT

The authors wish to thank all colleagues within Siemens who have participated in the TMT
project. Special thanks in particular to Kai Tödter, ZT SE 2, and Klaus Berg, ZT SE 1, who
designed the TMT architecture. Many thanks also to Michael Kälbling, Anja Hentschel, ZT SE
5, and Jürgen Schmitz-Foster, ZT SE 2, who implemented most of the TMT features, as well as
to Sylvia Jell, ZT SE 2, who was responsible for the test library implementation of TMT. Last
but not least, we thank Dietmar Lehmann, ICN WN ES D 42, and Erwin Reyzl, ZT SE 2, who
helped funding and organizing the project.

16

7 REFERENCES

[1] A. Petrenko, A. Ulrich, V. Chapenko:Using partial-orders for detecting faults in concur-
rent systems; Proceedings of the IFIP 11th International Workshop on Testing of Com-
municating Systems (IWTCS'98), Russia, 1998.

[2] Sidhu, D. P.; Leung, T. K.:Formal methods for protocol testing: a detailed study;IEEE
Trans. on Software Eng. 15 (1989) 4, 413–426.

[3] K. C. Tai, R. H. Carver:Testing of distributed programs; in A. Zomaya (ed.):Handbook
of Parallel and Distributed Computing; McGraw Hill; 1995; pp. 956-979.

[4] K. C. Tai, R. H. Carver, E. E. Obaid:Debugging concurrent Ada programs by determin-
istic execution; IEEE Transactions on Software Engineering, vol. 17, no. 1 (Jan. 1991);
pp. 45-63.

[5] A. Ulrich, S. T. Chanson:An approach to testing distributed software systems; 15th
PSTV 1995; Warsaw, Poland; pp. 107-122; 1995.

[6] A. Ulrich, H. König: Specification-based testing of concurrent systems; IFIP Joint Int’l
Conference on Formal Description Techniques, and Protocol Specification, Testing, and
Verification (FORTE/PSTV’97); Osaka, Japan; Nov. 18-21, 1997.

[7] A. Ulrich: Testfallableitung und Testrealisierung in verteilten Systmen; Dissertation (in
German), University of Magdeburg; Shaker Verlag, 1998.

[8] T. Walter, I. Schieferdecker, J. Grabowski:Test architectures for distributed systems:
state of the art and beyond; Proceedings of the IFIP 11th International Workshop on
Testing of Communicating Systems (IWTCS'98), Russia, 1998.

[9] Z.120:Message Sequence Chart (MSC); ITU-T, Geneva, April 1996.

8 BIOGRAPHIES

Andreas received the M.Sc. degree (Diplomingenieur) in Computer Sciences from the Univer-
sity of Magdeburg, Germany, in 1992 and his Ph.D. degree (Doktoringenieur) from the same
university in 1998. In 1998 he joined the Corporate Technology Division, the research and
development center at Siemens AG, in Munich, Germany. His research interests include test
architectures for distributed and concurrent systems, test case generation and specification-
based testing, and formal specification techniques. He is an active participant at international
conferences such as PSTV, FORTE, IWTCS and others.

Peter studied Computer Science at the University of Stuttgart, Germany and received his
M.Sc. degree (Diplominformatiker) in 1991. He then joined the Siemens AG, Corporate Tech-
nology, and has been working in the field of software testing for object-oriented (C++, Java),
distributed, and component-based software. He is co-author of several international conference
publications, e.g. at EuroStar, Conference on Testing Computer Software and Software Quality
Week.

Gunther is with Siemens AG, Corporate Technology in Munich, Germany. His current inter-
ests are testing distributed systems, component-based and object-oriented software. Gunther
started his career in 1992 at DLR, the German Aerospace Center. He holds a M.Sc. degree in
Applied Mathematics from the University of Kaiserslautern and a M.Sc. degree in Meteorol-
ogy from the University of Hannover.

1

Genetic Algorithm with Cluster Analysis for Software
Testing

Methods and Examples from Testing Real-Time Systems

Michael O'Sullivan, Siegfried Vössner and Joachim Wegener

Stanford University, USA DaimlerChrysler, Germany

Evolutionary Algorithms

Principles

◆◆ "Survival of the Fittest" solutions

◆◆ Reproduction, Mutation, Crossover ...

Recombination of solutions

Selection

Population of candidate solutions

2

A GA @ Work
To allow a graphical representation of the distribution of the individuals in parameter space and to show
clustering, a three dimensional fitness function ()f x y z, , is chosen :

() () () ()
() () ()()
() () ()()
() () ()()222

222

222

8.08.08.0100

141.08.0141.0100

3.03.08.0100

9.0

8.0

7.0

100sin100sin100sin1.0,,

−+−+−−

−+−+−−

−+−+−−

+

+

+=

zyx

zyx

zyx

e

e

e

zyxzyxf

The objective is to optimize this function in the range x, y, z [0,1]. Among a lot of local optima there are
three "main" optima, which we calculate in order to make sure our analysis technique works :

optimum x y z f (x,y,z)
1 0.801 0.299 0.299 0.797
2 0.141 0.801 0.141 0.897
3 0.801 0.801 0.801 0.998

0
0.2

0.4
0.6

0.8
1x

0
0.2

0.4
0.6

0.8 1
y

0

0.2

0.4

0.6

0.8

1

f(x,y)

0
0.2

0.4
0.6

0.8
1x

0
0.2

0.4
0.6

0.8 1
y

Fitness Function (for z = 0.2).

3

CLUSTER ANALYSIS

Gsel
generations

va n ish ing
o f c lu s ters

gro w ing
o f c lu s ters

generations

gro w ing
o f c lu s ters

va n ish ing
o f c lu s tersfit

ne
ss

fit
ne

ss

Gsel

1

dm indseld

check-d istance

ξξ = n
n

C

C

*

4

Cluster-Tree for gen_0399.dat
n = 70, d = 8.366600

d / 1 d / 2 d / 3 d / 4 d / 5 d / 6 d / 7 d / 8 d / 9 d / 10

Colortable - fitness

(min = 7160.000 - avg = 9105.333 - max = 9459.000)

min maxavg

CLUSTER 1.80 (29-Jan-1998) - (c) 1995-1998 GOL (Genetic Optimization Laboratory)

1 1 1 1 1 1 1 1 1 1

2 2

2 2 2 2 3 3

3 3 3 3 4 4

Cluster Diagram

Sub-
Problems

Performance Evaluation
BubbleSort ()
{
 int sorted = FALSE;
 int temp, lastindex, index, i;

 for (i = 0; i < NUMELEMS-1; i++) {
 sorted = TRUE;
 for (index = 1; index < NUMELEMS-1; index++) {
 if (index > NUMELEMS-i)
 break;
 if (array [index] > array [index + 1]) {
 Exchange(&array[index], &array[index+1]);
 sorted = FALSE;
 }
 }
 if (sorted)
 break;
 }
 return;
} /* BubbleSort */

Initial Population

Result(s)

SelectionMutation GA

Recombination
Crossover

Cluster
Analysis

Fitness Value
=Execution Time

Optimization of Execution Times of Algorithms

5

/**/
/* Testobject: is line covered by rectangle */
/* t_answer isline(rectangle, line): */
/**/
t_answer isline (struct Rectangle rectangle, struct Line line)
{

 /* Compute corner points of the rectangle */
 rec.p1.x = rectangle.rect_p.x;
 rec.p1.y = rectangle.rect_p.y;

 rec.p2.x = rec.p1.x + rectangle.width;
 rec.p2.y = rec.p1.y;

 rec.p3.x = rec.p1.x;
 rec.p3.y = rec.p1.y + rectangle.heigth;

 rec.p4.x = rec.p1.x + rectangle.width;
 rec.p4.y = rec.p1.y + rectangle.heigth;

 /* Compute determinant for the line and the 4 sides: */
 for (i= 0; i <= 3; i++) {
 if (i == 0) {
 p1x = rec.p1.x;
 p1y = rec.p1.y;
 p2x = rec.p2.x;
 p2y = rec.p2.y;
 }
 else if (i == 1) {
 p1x = rec.p1.x;
 p1y = rec.p1.y;
 p2x = rec.p3.x;
 p2y = rec.p3.y;
 }
 else if (i == 2) {
 p1x = rec.p2.x;
 p1y = rec.p2.y;
 p2x = rec.p4.x;
 p2y = rec.p4.y;
 }
 else /* (i == 3) */ {
 p1x = rec.p3.x;
 p1y = rec.p3.y;
 p2x = rec.p4.x;
 p2y = rec.p4.y;
 }

 /* Compute the determinant of both lines */
 det = (((line.p2.x - line.p1.x) * (-p2y + p1y))
 -((-p2x + p1x) * (line.p2.y - line.p1.y)));

 if (det != 0) {
 /* lines cross in one point */
 m = (((p1x - line.p1.x) * (-p2y + p1y))
 -((-p2x + p1x) * (p1y - line.p1.y))) / det;

 n = (((line.p2.x - line.p1.x) * (p1y - line.p1.y))
 -((p1x - line.p1.x) * (line.p2.y - line.p1.y))) / det;

 /* is point on the rectangle? */
 if ((m >= 0) && (m <= 1) && (n >= 0) && (n <= 1))
 return yes; /* line is covered by rectangle */
 }
 }

 /* there is no intersection between the given line and all sides
 of the rectangles! Is line on the rectangles border or
 entirely within? */
 if ((rec.p1.x <= line.p1.x) && (line.p1.x <= rec.p2.x)
 &&(rec.p1.y <= line.p1.y) && (line.p1.y <= rec.p3.y))
 return yes; /* line is on or within rectangle */
 else
 return no; /* line is not covered by rectangle */
} /* isline */

SCREENW IDTH=1280

P ll x P ll

W IDTH

P2(P2x,P2y)

P1(P1x,P1y)

x

y

ISLINE.C

Fitness Landscape of ISLINE

ma x =
984

Rect-
ang le

P2

10 20 30 40 500

10

20

30

40

50

P2x

P1= fixed

P2y

Screen dimensions: [0-50, 0-50] pixel Line - P1x: 20
Rectangle ll corner: [20, 20] Line - P1y: 50
Rectangle widh: 10
Rectangle height: 10

10

20

30

40

50

900
920
940
960
980

1000

10
20

30
40

50
P2x

P2y

CPU
cycles

6

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Global maximum for ISLINE
fitness = 984

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 80 0 1000 1200

Rectangle:
bottom-left corner = (297, 415),
width = 95, height = 197

Line:
start = (297, 967),
end = 945, 388)

Fitness Evolution from GOAL
(20 individuals, 225 generations)

200

300

400

500

600

700

800

900

1000

1100

0 50 100 150 200

Generation

F
itn

es
s

OBJmax

OBJavg

OBJmin

Finding the Global Optimum

fitness evolution

200

300

400

500

600

700

800

900

1000

1100

0 5 10 15 20

generation

fi
tn

e
ss

OBJmin

OBJavg
OBJmax

Fitness Evolution

200

300

400

500

600

700

800

900

1000

1100

0 5 10 15 20

Generation

F
itn

es
s

OBJmax

OBJavg

OBJmin

fitness functions from RECFIT

950

960

970

980

990

1000

0 10 20 30 40 50 60 70 80 90 100

generations

fit
ne

ss

Fitness

Exponential

S-curve

Linear exponential

Linear S-curve

Finding the Local Optima

7

C
luster-T

ree for gen_0008.trs
n = 8, d

 = 2.828427

d / 1
d / 2

d / 4
d / 8

d / 16
d / 32

d / 64
d / 128

d / 256
d / 512

C
olorta

ble - fitnes
s

(m
in = 274.000 - avg = 891.049 - m

a
x = 977.000)

m
in

m
ax

avg

C
LU

S
TE

R
 1.8

0
 (2

9-Ja
n-1

998
) - (c) 1

995
-19

99 G
O

L (G
enetic O

ptim
iza

tion Lab
oratory)

1
1

1
1

1
1

1
1

1
12

2

2
3

3
4

4
5

2
2

2
2

3

5
6

3
3

3
3

4

7
4

8
5

4
4

4
5

6
9

6
5

5
5

6

78
1011

7
6

6

12
8

7

13

9
14

9
8

7
6

7

10
15

10
9

8
7

8

11
16

11
10

9
8

9

1213
17

12
11

10

14
18

13
12

11
9

10

151617
19

14

2
18

20
15

0 10 20 30 40 50
930

940

950

960

970

980

990

Generations

F
itn

es
s

Run 1
Run 2
Run 3
Run 4

Run 5
Run 6
Run 7

Run 8
Run 9

Run 10
Run 11
Run 12

Run 13

Finding Local Optima of ISLINE

8

13 Local Optima of ISLINE (1/2)

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 971

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 955

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 977

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 966

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 971

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 971

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 957

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 984

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 957

13 Local Optima of ISLINE (2/2)

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 977

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 977

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 959

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 966

9

971, 955,
977, 966,
971, 971,
957, 984,
957, 977,
977, 959,

966.

"Global"
Optimum

Fitness Evaluations:

Individuals:

Generations:

Optima:

Fitness:

20

225

4500

1

984

100

20

15000

13

Local
Optima

Global versus Local

Conclusion and Future Work

• Experiments show:
– Evolutionary Testing is important
– Cluster Analysis Adds valuable Info

• Local Optima
• Search Space Structure

• Convergence Measure / Termination

• To be done:
– GA Parameters
– Search Space Coverage
– Other Usage of Cluster Analysis

Corresponding Author: Siegfried Voessner, Dept. of Engineering Economic Systems and Operations
Research, Stanford University, Stanford CA-94305-4023, voessner@leland.stanford.edu.

Genetic Algorithm with Cluster Analysis for Software
Testing

Methods and Examples from Testing Real-Time Systems

Michael O'Sullivan, Siegfried Vössner and Joachim Wegener*

Stanford University, USA - DaimlerChrysler, Germany*

Abstract

Testing is one of the most complex and time-consuming activities within the development of embedded
systems. Usually, embedded systems have to fulfil real-time requirements, and correct system functionality
depends on both their logical correctness and their temporal correctness. An investigation of existing
testing approaches shows a lack of support for testing temporal system behavior. With genetic algorithms,
input situations that result in extreme temporal behavior may be identified automatically. This procedure is
called evolutionary testing.

Evolutionary testing is an iterative testing procedure based on the use of genetic algorithms, which
approximates the best-case and worst-case execution times of the system under test within several
generations. The test is regarded as a discontinuous, nonlinear, optimization problem, with the input
domain of the test object as search space, sets of test data as decision variables, and execution times as
objective values.

Standard evolutionary testing finds input situations with the best-case and worst-case execution times.
However the development and analysis of complex systems benefits from information about the entire
input domain. We have therefore extended evolutionary testing with a technique based on cluster analysis.
This technique examines the distribution of the individuals of a generation in the search space. Individuals
usually form clusters in the search space after several iterations. These clusters provide information about
the structure of the entire search space — something that might be unknown if the source code of the test
object is too complicated to be analyzed or not available (e.g. in case of black-box testing). Cluster analysis
provides additional information about local optima in order to detect several performance leaks within one
test run. This is a good basis for optimizing the program code. Furthermore, cluster analysis gives
information about the convergence state of the optimization run. This aids in forming a reliable termination
criterion. The use of cluster analysis will be illustrated with a case study.

1 Introduction

The development of real-time systems is an essential industrial activity. The correct system functionality of
real-time systems depends on their logical correctness as well as on their temporal correctness. In practice,

- 2 -

dynamic testing is the most important analytical method for assuring the quality of real-time systems.
Dynamic testing is the only method that examines the run-time behavior of systems, based on an execution
in the application environment. Testing is aimed at finding errors in the systems and giving confidence in
their correct behavior by executing the test object with selected inputs. Often more than 50 % of the overall
development budget for embedded software is spent on testing.

Most existing test methods focus on testing for logical correctness as they are not specialized in the
examination of temporal correctness, which is also essential to real-time systems. For this reason, existing
test procedures must be supplemented by new methods, which concentrate on determining whether the
system violates its specified timing constraints. This work tries to fill the gap by giving support to testing
temporal behavior. A temporal error is normally caused because outputs are produced too early, or the
computation of the outputs takes too long.

The tester must therefore find the input situations with the longest or shortest execution times, in order to
check whether they produce a temporal error. It is virtually impossible to find such inputs by analyzing and
testing the temporal behavior of complex systems manually. However, if the search for such inputs is
interpreted as a problem of optimization, genetic algorithms can be used to automatically find the inputs
with the longest or shortest execution times. This automatic search for accurate test data by means of
genetic algorithms is called evolutionary testing.

Evolutionary testing examines the temporal behavior of a system as a discontinuous, nonlinear,
optimization problem, with the input domain of the system under test as search space, sets of test data as
decision variables, and execution times as objective values. Evolutionary testing is an iterative testing
procedure based on genetic algorithms. Unlike classical optimization techniques, genetic algorithms use the
principles of an apparently very powerful optimization tool — biological evolution. They imitate
fundamental principles like selection, recombination and mutation. The concept is to evolve successive
generations of increasingly better combinations of those parameters which significantly effect the overall
performance of a design. Starting with a selection of good samples, the genetic algorithm achieves the
optimum solution by the random exchange of information between these increasingly fit samples
(recombination) and the introduction of a probability of independent random change (mutation). The
adaptation of the genetic algorithm is achieved by selection and reinsertion procedures since these are
based on fitness values that permit an assessment of the performance of the samples.

The main objective of evolutionary testing is finding test data with execution times that violate the timing
constraints specified. However with cluster analysis, evolutionary testing becomes an important analytical
tool as well. By locating regions within the input domain that produce extreme execution times, the tester
uncovers the structure of the input domain — something entirely unknown if the source code of the test
object is too complicated to be analyzed or not available. Examining this structure can lead to
improvements in the temporal behavior of the system. Local optima also exist within the clusters, these are
important as test data when improving the system and may be found using short test runs. Further, cluster
analysis adds information about the convergence state of the optimization run. This aids in forming a
reliable termination criterion for evolutionary testing. When no timing violations are detected, deciding
when evolutionary testing is complete is an important step.

The first section of our paper gives an overview of the current state of testing real-time systems in practice.
The second section deals with evolutionary testing and describes how it is applied to examine the temporal
behavior of real-time systems. The third section introduces cluster analysis and a strategy for detecting
local optima. The fourth section examines evolutionary testing with cluster analysis applied to a simple
example. After some concluding remarks the paper closes with a short outlook on future work.

- 3 -

2 Testing Real-Time Systems

Testing is one of the most complex and time-consuming activities within the development of real-time
systems [Heath, 1991]. It typically consumes 50 % of the overall development effort and budget since
embedded systems are much more difficult to test than conventional software systems. The examination of
additional requirements like timeliness, simultaneity, and predictability make the test costly. In addition,
testing is complicated by technical characteristics like the development in host-target environments, the
strong connection with the system environment, the frequent use of parallelism, distribution and fault-
tolerance mechanisms as well as the utilization of simulators.

Nevertheless, systematic testing is an inevitable part of the verification and validation process for software-
based systems. Testing is the only method that allows a thorough examination of the test object’s run-time
behavior in the actual application environment. Dynamic aspects like the duration of computations, the
memory actually needed during program execution, or the synchronization of parallel processes are
especially important for the correct functioning of real-time systems.

Real-time systems must be tested for compliance with their functional specification and their timing
constraints. An investigation of existing software test methods shows that a number of proven functional
and structural test methods are available for examining logical correctness. For functional tests, test cases
are derived from the requirements specification. A functional test procedure, for example, is the
classification-tree method [Grochtmann and Grimm, 1993], which has already been used with success for
the functional test of different real-time systems from various application fields [Grochtmann and Wegener,
1995]. When using structure-oriented test methods, test cases are determined on the basis of the program
code. The aim of the test is to obtain a high coverage according to the selected test criterion, e.g. statement
or branch coverage. An important principal disadvantage of structural testing is that the tester cannot check
whether all specified requirements have been implemented into the system. Additionally, the tester must
take into account that an instrumentation of the test object to monitor program execution may change the
run-time characteristics of the program. Probe effects, i.e. deviations from the real system behavior are
possible. Furthermore, the program under test may no longer fit into the target machine if the code is
expanded to monitor execution [Hennell et al., 1987]. Schütz [1993] discusses suggestions how probe
effects can be avoided.

For examining temporal correctness there are no specialized test methods available which are suited for
industrial use [Wegener and Grochtmann, 1998]. For this reason, we have developed and examined a new
approach for testing temporal behavior which is based on the use of genetic algorithms, namely
evolutionary testing.

3 Evolutionary Testing

The major objective of testing is to find errors. Real-time systems are tested for logical correctness by
standard testing techniques such as the classification-tree method. A common definition of a real-time
system is that it must deliver the result within a specified time interval and this adds an extra dimension to
the validation of such systems, namely that their temporal correctness must be checked.

The temporal behavior of real-time systems is defective when input situations exist in such a manner that
their computation violates the specified timing constraints. In general, this means that outputs are produced
too early or their computation takes too long. The task of the tester therefore is to find the input situations
with the shortest or longest execution times to check whether they produce a temporal error. This search for

- 4 -

the shortest and longest execution times can be regarded as an optimization problem to which genetic
algorithms seem an appropriate solution.

3.1 A Short Introduction to Genetic Algorithms

Genetic algorithms [Goldberg, 1989] represent a class of adaptive search techniques and procedures based
on the processes of natural genetics and Darwin’s theory of biological evolution. They are characterized by
an iterative procedure and work in parallel on a number of potential solutions, the population of
individuals. In every individual, permissible solution values for the variables of the optimization problem
are coded.

The fundamental concept of genetic algorithms is to evolve successive generations of increasingly better
combinations of those parameters which significantly effect the overall performance of a design. Starting
with a selection of good individuals, the evolutionary algorithm achieves the optimum solution by the
random exchange of information between these increasingly fit samples (recombination) and the
introduction of a probability of independent random change (mutation). The adaptation of the genetic
algorithm is achieved by the selection and reinsertion procedures used because these are based on fitness.
The selection procedures control which individuals are selected for reproduction depending on the
individuals’ fitness values. The reinsertion strategy determines how many and which individuals are taken
from the parent and the offspring population to form the next generation. The fitness-value is a numerical
value that expresses the performance of an individual with regard to the current optimum so that different
designs may be compared. The notion of fitness is fundamental to the application of genetic algorithms; the
degree of success in using them may depend critically on the definition of a fitness that changes neither too
rapidly nor too slowly with the design parameters.

Figure 1 shows the principle of a genetic algorithm. First, a set population of candidate solutions is
generated, usually at random. Each individual in the population is evaluated by calculating its fitness.
Usually, this will result in a spread of solutions ranging in fitness from "very poor" to "mediocre". The
remainder of the algorithm is iterated until a stopping condition is fulfilled. Stopping conditions can be
based on the number of iterations, the fitness function value or convergence measures discussed later.
Iteration starts with selecting individuals from the current ("parent") population n according to a pre-
defined selection strategy - giving "better" individuals a higher chance to be selected. These individuals are
recombined to produce new solutions in an analogous way to biological reproduction. Recombination
algorithms are many and varied. In addition, mutation is applied to introduce the variety required to cover a
larger search space. The new individuals form the "offspring" generation n+1 and are evaluated for their
fitness also. Before the loop starts from the beginning, generation n+1 becomes the "parent" generation
from which members are being selected for the next generation n+2.

Genetic algorithms are particularly suited to problems involving large numbers of variables and complex
input domains. Even for nonlinear and large search spaces of unknown structure, genetic algorithms have
been used successfully. Since genetic algorithms search from a population of points rather than from a
single point, the probability of getting stuck at local optima is significantly reduced compared with more
traditional optimization techniques, like gradient based techniques. The use of mutation and subpopulations
can further reduce the chance of getting stuck in local optima [Sthamer, 1996].

- 5 -

"Survival of the Fittest" solutions

Reproduction, Mutation, Crossover ...

Recombination of solutions

Selection

Population of candidate solutions

Figure 1. Principle of Genetic Optimization

Genetic algorithms have been successfully applied to various testing problems. Several papers deal with
structural testing (e.g. [Jones et al., 1998] and [Roper, 1997]), others concentrate on test case generation
based on formal specifications [Jones et al., 1995], the testing of APIs [Boden and Martino, 1996], and
testing for robustness [Schultz et al., 1993]. Wegener et al. [1997] offer a brief survey on applications of
evolutionary testing.

3.2 Application of Genetic Algorithms to Testing Temporal Behavior

In this work which is based on [O'Sullivan, Voessner, Wegener 1998], a genetic algorithm with cluster
analysis is used for testing the temporal correctness of real-time systems by finding the set of input
parameters that cause the worst execution times of an algorithm. The problem can be stated as an
optimization problem. Where the time it takes to execute the algorithm is the objective function value. In
practical applications there are many local optima in these problems. Since the computational effort is
relatively high, we would like to find as many of them as possible.

Figure 2 illustrates how our framework proceeds: The initial population is generated at random. Each
individual of the population represents a test datum with which the test object is executed. For every test
datum the execution time is measured. The execution time determines the fitness of the respective
individual or test datum. If one searches for the worst-case execution time, test data with long execution
times obtain high fitness values. If one searches for the best-case execution time, individuals with short
execution times obtain high fitness values. Afterwards, members of the population are selected with regard
to its individual's fitness and subjected to combination and mutation to generate a new population. First, it
is checked that the generated test data are in the input domain of the test object. Then the individuals of the
new generation are also evaluated and combined with the previous generation to form a new population
according to the survival procedures laid down. From here, this process repeats itself, starting with
selection, until a given stopping condition is reached or a temporal error is detected.

Cluster Analysis, in the outer loop drawn in Figure 2, is used to analyze the distribution of individuals in
the current population providing information about local optima, the structure of the search space, and the
state of convergence. This information can be used to break the problem down in smaller, more easily
tractable sub-problems (decomposition) and/or as a reliable termination criterion.

- 6 -

3.3 Experimental Setup

The experiments presented in this paper were done on SUN Ultra I Sparc workstations. We used Quantify
3.1 [Rational Software 1998], a commercial package to determine the execution time of the algorithm and
GOAL [Voessner and Braunstingl 1998] for the genetic algorithm part.

Sub-
Problems

Performance Evaluation
BubbleSort ()
{
 int sorted = FALSE;
 int temp, lastindex, index, i;

 for (i = 0; i < NUMELEMS-1; i++) {
 sorted = TRUE;
 for (index = 1; index < NUMELEMS-1; index++) {
 if (index > NUMELEMS-i)
 break;
 if (array [index] > array [index + 1]) {
 Exchange(&array[index], &array[index+1]);
 sorted = FALSE;
 }
 }
 if (sorted)
 break;
 }
 return;
} /* BubbleSort */

Initial Population

Result(s)

SelectionMutation GA

Recombination
Crossover

Cluster
Analysis

Fitness Value
=Execution Time

Figure 2. Evolutionary Testing of Temporal Behavior

4 Cluster Analysis

Cluster analysis for genetic algorithm output is a technique developed [Vössner and Braunstingl 1996a] to
provide more information about the population of individuals at a given generation of a genetic algorithm
(GA). Selecting an appropriate generation from a GA run and applying cluster analysis provides
considerable information about the behavior of the fitness values over the search space. Additionally, using
cluster analysis on the population from the most recent generation produced by a GA helps determine if the
GA should terminate.

4.1 Analyzing a Generation

To simplify cluster analysis for a generation, all parameter intervals are normalized to the range 0 ≤
parameter ≤ 1, so that the parameter space, formerly a hyper rectangle, is now a hyper cube (with unit edge
length and volume). In this normalized parameter space, the distance ijd between two individuals i and j is

taken with the Euclidean metric and calculated for all individuals. Doing this yields a symmetric distance
matrix (nn ×) where jiij dd = for nji ,,1, K= (see Figure 3).

- 7 -

Point 1 2 3 4 ... n-1 N
1 0 d12 d13 d14 ... d1 n-1 d1n

2 0 d23 d24 ... d2 n-1 d2n

3 0 d34 ... d3 n-1 d3n

4 0 ... d4 n-1 d4n

... 0 d...n-1 d...n

n-1 0 dn-1 n

N 0

Figure 3. Symmetric Distance Matrix

Clusters of individuals are defined using the distance matrix. The distances of all individuals are compared
with a particular threshold value checkd (also called the check distance). If the distance between two
individuals is smaller than checkd , they lie in the same cluster.

Clusters identified by this algorithm may have arbitrary shapes, which is especially useful if the fitness
function has an asymmetric gradient around a local optimum. Suppose the optimum is the highest point of
a narrow ridge. Then the individuals will accumulate along this ridge, forming a longish, thin cluster.

The clustering algorithm is summarized in the following pseudo code and depicted in Figure 4, where we
define a cluster to consist of at least 2 individuals (solution points). Given any two individuals i and j, if
the distance between them checkij dd < , then they should be members of the same cluster.

There are three cases:

1. If they do not belong to a cluster yet, they form a new one.

2. If only one of the two individuals already belongs to a cluster, the other one joins this cluster.

3. If both individuals are members of different clusters, these clusters are combined thus forming a single
one.

4.2 Forming a Cluster Diagram

The clusters for a specific check distance are very dependent on that threshold value. Observing the
clusters as the check distance changes provides complete information about the clustering of individuals in
a generation. Decreasing the check distance by discrete factors, starting from the hypercube’s space
diagonal 0d (where exactly one cluster is found) down to a distance where no clusters exist, and
performing the cluster analysis described above for each check distance forms a cluster diagram (see Figure
5).

- 8 -

Figure 4. Detection of clusters in the unit square

The results of the different cluster analyses, ordered by decreasing check distance (d/1, d/2, d/4, …), are
arranged in the cluster diagram, where each circle represents a cluster, and the connection from one cluster
to the next outward cluster(s) shows how clusters split with decreasing check distance.

The diagram (Figure 5), generated by CLUSTER [Vössner and O'Sullivan 1998a] shows the number of
clusters, their sizes, history of origin and the average fitness of the corresponding individuals. The numbers
within the circles identify them, while the size of the circles is proportional to the number of individuals
forming that cluster. The shading of a cluster indicates the average fitness of the individuals within it. One
of the shades is labeled with “avg” in the fitness scale at the bottom of the diagram. If a cluster number is
underlined, the average fitness of its elements is greater or equal to the average fitness of all individuals.
We call such a cluster “outstanding.”

4.3 Detecting local optima

Using cluster analysis, finding local optima in a GA search space is a relatively simple procedure, one that
should take a less CPU time on average than finding the global optimum. Initially the appropriate
generation must be selected from a previous GA run. The clusters found by analyzing this generation are
regions that are likely to contain local optima. By taking each of these clusters in turn, sampling an initial
population from the cluster and running a new GA, the local optima may be refined from the cluster.

- 9 -

Cluster-Tree for gen_0047.dat
n = 70, d = 8.366600

d / 1 d / 2 d / 3 d / 4 d / 5 d / 6 d / 7 d / 8 d / 9 d / 10

Colortable - fitness

(min = 6099.000 - avg = 7812.880 - max = 8464.000)

min maxavg

CLUSTER 1.80 (29-Jan-1998) - (c) 1995-1998 GOL (Genetic Optimization Laboratory)

1 1 1 1 1 1 1 1 1 1

2 2 2

2 2 2 2 2 3 3 3

4 4

4 5 5

3

Figure 5. Example Cluster Diagram

Selecting a generation. By taking note of the average fitness of the population throughout the initial GA
run, an appropriate generation for cluster analysis is selected. The average fitness of all generations of a
GA run yields function shapes similar to the ones shown in Figure 6.

- 10 -

Figure 6. Selection of a Generation for Cluster Analysis

When the individuals are distributed randomly, as in the initial population, no definitive clusters have
formed. As the GA proceeds, individuals start moving towards areas of higher fitness, more clusters
appear, and the average fitness increases rapidly. Then the individuals begin congregating into one or more
optima. As the initial clusters start to disappear or split, the average fitness grows more slowly.

The following heuristic has turned out to be very useful for determining an appropriate generation to begin
cluster analysis - at least for all our optimization problems. We recommend selecting the population selG ,

which comes closest to the point of inflection respectively, to the point of maximum curvature of the curves
shown in Figure 6.

For further analysis it is necessary to determine a proper check distance. On one hand as much local optima
as possible should be detected - on the other hand the number of clusters to be examined should be as small
as possible. That means if the check distance is too big a cluster may not even mark a local optimum, and if
the distance is too small a cluster indicating a local optimum could disintegrate into a lot of smaller ones.
We found that the quotient ξ of the number of "outstanding" clusters *

Cn and the number of all clusters Cn

has in general a shape similar to Figure 7 (CC nn /*=ξ).

Figure 7. Normalized Number of Outstanding Clusters versus Check Distance

This figure shows the general shape of ξ versus check distance. The diagram starts at distance d which is
the diagonal of the hyper cube and decreases until the smallest possible check distance dmin is reached,
where no more clusters can be found.

- 11 -

The shape of ξ can be explained by the following consideration: During a GA run the density of individuals
increases in regions where the fitness function has high values - which is generally known. If we are
looking at the shape of ξ of a generation we first find exactly one outstanding cluster, containing all
individuals (1=ξ). Then the total number of clusters nC grows faster than the number of outstanding ones

(*
Cn). The ratio ξ goes down. Reducing the check distance further, clusters of low density and fitness start

to disappear first. Therefore ξ starts growing again. From that point on outstanding clusters, marking areas
of possible local optima, start to disappear too. That makes it reasonable to choose the check distance dsel
where ξ has a minimum:

[]ξmin=seld

Searching the clusters. If the original GA run has a small population size, the clusters discovered during
the analysis may not be informative. However this run may terminate after few generations, only long
enough for clusters to begin to form. The GA run starting from each cluster may have a small to medium
population size as the search is only in the neighborhood of the cluster. This run should also converge
quickly as the population moves toward the local optimum. By keeping the GA run with a large population
short and using multiple GA runs with small populations and quick convergence, experiments have found
local optima using considerably less fitness evaluations per optimum than required to find the global
optimum.

4.4 Checking for convergence

When a GA has converged to a global maximum, then the individuals in the population have clustered on
one or more points with the same fitness value. By looking at the cluster analysis of the most recent
generation, one can determine if this has taken place. If the clusters split suddenly from one cluster into
several clusters that even exist at small check distances then the population has clustered around several
points. If the fitness of these clusters is almost identical, then all these points have the same fitness value.
Both of these conditions may be ascertained by examining the cluster diagram (see Figure 8) of the
generation, or automatically by checking the size and fitness of the clusters.

This criterion may be less useful with small populations as there are not enough individuals to provide
informative clusters. The larger the population the better the information provided by cluster analysis.

- 12 -

Cluster-Tree for gen_0399.dat
n = 70, d = 8.366600

d / 1 d / 2 d / 3 d / 4 d / 5 d / 6 d / 7 d / 8 d / 9 d / 10

Colortable - fitness

(min = 7160.000 - avg = 9105.333 - max = 9459.000)

min maxavg

CLUSTER 1.80 (29-Jan-1998) - (c) 1995-1998 GOL (Genetic Optimization Laboratory)

1 1 1 1 1 1 1 1 1 1

2 2

2 2 2 2 3 3

3 3 3 3 4 4

Figure 8. Cluster Diagram for a Convergent Generation

5 The isline Experiment

While incorporating cluster analysis into the existing evolutionary testing procedures, experiments were
performed on several algorithms. We examine the findings for the isline algorithm, a simple graphical
algorithm with 8 input parameters.

The isline algorithm checks if a line is covered by a rectangle. The rectangle consists of one point, the
bottom-left corner (PII), and the two lengths, the rectangle width (WIDTH) and height (HEIGHT). A start
(P1) and an end point (P2) define the line (see Figure 9). With these inputs, isline checks to see if any part
of the line is covered by the rectangle. Both the rectangle and the line are contained within a bounding
rectangle, i.e., the coordinates of the rectangle corners and the start and end of the line lie within the
bounding rectangle.

SCREENWIDTH=1280

Pllx Pll

WIDTH

P2(P2x,P2y)

P1(P1x,P1y)

x

y

Figure 9. The isline Algorithm

- 13 -

5.1 Analysis of isline

By carefully examining the isline code one sees that the worst case performance occurs when the start of
the line has the same x-coordinate as the bottom-left corner of the rectangle. Using a bounding rectangle
with the bottom-left corner at (0, 0) and width and height both 51 (i.e., the x- and y-coordinates are in the
range [0, 50]) a rectangle was placed with a bottom-left corner at (20, 20) and width and height both 10.
Setting the start of line at (20, 50) the end of the line was allowed to vary throughout the bounding
rectangle. Using the rectangle and the various lines as input to isline, Figure 10 shows the variation in
fitness values (i.e., the number of CPU cycles used by isline) as the end point ranges throughout the
bounding rectangle.

max=
984

Rect-
angle P2

10 20 30 40 500

10

20

30

40

50

P2x

P1= fixed

P2y

Screen dimensions: [0-50, 0-50] pixel Line - P1x: 20
Rectangle ll corner: [20, 20] Line - P1y: 50
Rectangle widh: 10
Rectangle height: 10

10

20

30
40
50

900
920
940
960
980

1000

10
20

30
40

50
P2x

P2y

CPU
cycles

Figure 10. CPU Cycles Used by isline

Figure 10 shows that even when the only difference between solutions is the end point of the line there are
large areas in the search space with the same fitness value (called “fitness plateaus”). By varying the
placement and size of the rectangle and/or the placement of the start of the line similar fitness function
surfaces may be generated. The configuration of the rectangle and the line (with respect to each other) are
the important factors that determine the execution time of isline. The same configuration may be repeated
multiple times with different inputs, so the search region contains a multitude of local and global optima
(see Figure 11), dependent on the size and position of the bounding rectangle.

5.2 Finding the optima for isline

As the maximum fitness value for isline is known and attained, there are no problems with termination
criteria for evolutionary testing with isline. However, cluster analysis may be used to isolate local optima.
The global optimum of isline was found running GOAL [Vössner and Braunstingl 1998] with 20
individuals for 225 generations (i.e.: 4500 fitness evaluations). The global optimum and the fitness
evolution curve for this run are shown in Figure 12.

- 14 -

0

100

200

300

400

500
600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Figure 11. Set of Global Optima for isline

The GA run to find the global optimum used a population size too small to provide informative clusters. By
running GOAL with 100 individuals for 20 generations, clusters are formed and CPU time is conserved
(2000 fitness evaluations). This gave the fitness evolution curve in Figure 13.

Global maximum for ISLINE
fitness = 984

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200

Rectangle:
bottom-left corner = (297, 415),
width = 95, height = 197

Line:
start = (297, 967),
end = 945, 388)

Fitness Evolution from GOAL
(20 individuals, 225 generations)

200

300

400

500

600

700

800

900

1000

1100

0 50 100 150 200
Generation

Fi
tn

es
s

OBJmax
OBJavg
OBJmin

Figure 12. Finding the Global Optimum for isline (20 individuals, 225 generations)

The appropriate generation was selected by using RECFIT [Vössner and O'Sullivan 1998b] to find a
function that approximated the fitness evolution curve, Figure 14 shows the results of the four different
functions (exponential, S-curve, linear exponential and linear S-curve) compared with the fitness evolution
curve.

- 15 -

fitness evolution

200

300

400

500

600

700

800

900

1000

1100

0 5 10 15 20

generation
fit

ne
ss

OBJmin
OBJavg
OBJmax

Fitness Evolution

200

300

400

500

600

700

800

900

1000

1100

0 5 10 15 20

Generation

Fi
tn

es
s

OBJmax
OBJavg
OBJmin

Figure 13. Fitness Evolution from GOAL (100 individuals, 20 generations)

fitness functions from RECFIT

950

960

970

980

990

1000

0 10 20 30 40 50 60 70 80 90 100

generations

fit
ne

ss

Fitness
Exponential
S-curve
Linear exponential
Linear S-curve

Figure 14. Comparison of Functions from RECFIT with the Fitness Evolution Curve

The best fit was provided by the linear S-curve. Using this function approximation the best generation for
cluster analysis was shown to be generation 8. The cluster analysis of this generation gave the cluster tree
in Figure 15.

Looking at this cluster tree shows that there are several areas that contain local optima. The 4th level of the
cluster tree (highlighted) has a large number of clusters, but the check-distance (the distance defining if two
points form a cluster) is large enough so the clusters are not too exclusive. There are 13 outstanding clusters
(circled), each of which may be an area where a local optimum may reside. Looking at each of the 13
clusters in turn, the individuals from the cluster form the initial population, i.e., initially the GA searches
only in the neighborhood of the cluster, and GOAL was used with 20 individuals for 50 generations (1000
fitness evaluations). The fitness evolution curves are shown in Figure 16.

- 16 -

Cluster-Tree for gen_0008.trs
n = 8, d = 2.82 8427

d / 1 d / 2 d / 4 d / 8 d / 16 d / 32 d / 64 d / 128 d / 256 d / 512

Colortable - fitness

(m i n = 274.000 - a vg = 891.049 - m a x = 977.000)

min maxavg

CLU STER 1 .8 0 (2 9- Jan - 1 99 8) - (c) 1 99 5 -1 9 99 GOL (G enetic Op timization Lab or ato ry)

1 1 1 1 1 1 1 1 1 1

2

2

2 3

3 4

4 5 2 2 2 2 3

5 6 3 3 3 3 4

7 4

8 5 4 4 4 5

6 9 6 5 5 5 6

7

8 10

11 7 6 6

12 8 7

13

9 14 9 8 7 6 7

10 15 10 9 8 7 8

11 16 11 10 9 8 9

12

13 17 12 11 10

14 18 13 12 11 9 10

15

16

17 19 14

2 18 20 15

Figure 15. Cluster Tree for Generation 8

- 17 -

Local optima for isline were found by each of these runs and these optima are shown in Figure 17.

0 10 20 30 40 50
930

940

950

960

970

980

990

Generations

Fi
tn

es
s

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10
Run 11
Run 12
Run 13

Figure 16. Fitness Evolution Curves for the Clusters

5.3 Conclusions

The experiments with isline show the value of cluster analysis in temporal testing. Finding the initial global
optimum required 4500 fitness evaluations. However, finding 13 local optima required only (2000 + 13 ×
1000 =) 15000 fitness evaluations (see Figure 18), an average of less than 1200 fitness evaluations per local
optimum. The local optima provide important information about the behavior of the fitness function over
the search space. Several of the optima have the same fitness value, despite very different input parameters.
However, by graphically examining the input it can be seen that the configuration of the rectangle and the
line are the same for these local optima. This indicates that the configuration of the input parameters, not
the actual values, determine the performance of isline, a conclusion also suggested by the analysis of the
isline algorithm alone.

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 971

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 955

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 977

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 966

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 971

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 971

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 957

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 984

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 957

- 18 -

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 977

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 977

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 959

0

100
200

300
400

500
600

700
800

900
1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

fitness = 966

Figure 17. Local Optima (Configurations) for isline

971, 955,
977, 966,
971, 971,
957, 984,
957, 977,
977, 959,

966.

"Global"
Optimum

Fitness Evaluations:

Individuals:

Generations:

Optima:

Fitness:

20

225

4500

1

984

100

20

15000

13

Local
Optima

Figure 18. Global versus Local Optima for isline

6 Conclusion and Future Work

The correct functioning of real-time systems depends critically on their temporal correctness. Testing is the
most important analytical method for the quality assurance of such systems. An investigation of existing
testing approaches showed a lack of support for testing the temporal behavior. Therefore, existing test
procedures must be supplemented by new methods and tools. In various experiments evolutionary testing
has been successfully applied to search the worst-case and best-case execution times of real-time programs
in order to check whether they violate their specified timing constraints.

Further improvements are possible through the combination of evolutionary testing with cluster analysis.
First of all, cluster analysis provides additional information about local optima in order to detect several
performance leaks within one test run. It gives information about the temporal structure of the entire search
space. This is a good basis for optimizing the program code of real-time systems. Cluster analysis also aids
in forming a reliable termination criterion. The clusters provide detailed information about the convergence

- 19 -

state of the evolutionary test. A test that has converged to one or more optima should be terminated because
the probability of finding even better solutions is small.

Evolutionary testing shows considerable promise in testing and validating the temporal correctness of real-
time systems and further research work in this area should prove fruitful. More work is needed to find the
most appropriate parameters for the underlying genetic algorithms. Complementary to cluster analysis the
degree of coverage (e.g. branch coverage) achieved during evolutionary testing and the observation of the
program paths executed could be an interesting aspect for deciding when to stop the test. Additionally,
further studies should focus on the question how cluster analysis information can be used to react to
stagnations with appropriate changes of the search strategy.

- 20 -

References

Boden, E.B., and Martino, G.F. (1996). Testing Software Using Order-Based Genetic Algorithms.
Proceedings of Genetic Programming ’96, pp. 461 - 466, July 1996, Stanford University, USA.

Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, USA.

Jones, B.F., Eyres, D.E., and Sthamer, H.-H. (1998). A Strategy for using Genetic Algorithms to Automate
Branch and Fault-based Testing. The Computer Journal. Vol. 41, No. 2, pp. 98 - 107.

Jones, B.F., Sthamer, H.-H., Yang, X., Eyres, D.E. (1995). The Automatic Generation of Software Test
Data Sets using Adaptive Search Techniques. Proceedings of Software Quality Management ’95, pp. 435 -
444 Seville, Spain.

O'Sullivan, M., Vössner, S., and Wegener, J. (1998). Testing Temporal Correctness of Real-Time Systems -
A New Approach Using Genetic Algorithms and Cluster Analysis. in 6th. European International Conference
on Software Testing, Analysis & Review - EuroSTAR'98, Munich, Germany.

Rational Software. (1998). Quantify 3.1. Rational Software, Lexington MA, USA.

Roper, M. (1997). Computer Aided Software Testing using Genetic Algorithms. Proceedings of Quality
Week ’97, 27 - 30 May 1997, San Francisco, USA.

Schultz, A.C., Grefenstette, J.J., and De Jong, K.A. (1993). Test and Evaluation by Genetic Algorithms.
IEEE Expert. Vol. 8, No. 5, pp. 9 - 14.

Sthamer, H.-H. (1996). The Automatic Generation of Software Test Data Using Genetic Algorithms. PhD
Thesis, Department of Electronics and Information Technology, University of Glamorgan, Wales, UK.

Vössner, S. and Braunstingl, R. (1998). G.O.A.L (Genetic Optimization Algorithm). Genetic Optimization
Lab, Stanford University, USA.

Vössner, S. and O’Sullivan, M. (1998). CLUSTER (Cluster Analysis Package for Genetic Algorithms).
Genetic Optimization Lab, Stanford University, CA, USA.

Wegener, J., Grochtmann, M., and Jones, B. (1997). Testing Temporal Correctness of Real-Time Systems
by Means of Genetic Algorithms. Proceedings of Quality Week ’97, 27 - 30 May 1997, San Francisco,
USA.

Valley Forge Consulting, Inc., 1999

Valley Forge Consulting, Inc., 1999

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

Slide 1

Slide 2

In-Process Validation and Improvement
Of Test-Case Effectiveness

Yuri Chernak, consultant

Presentation Outline
§ Why evaluate test cases?
§ Test suite evaluation tasks (Verification &Validation)
§ Overview of related sources
§ A new metric – Test-Case Effectiveness (TCE)
§ An approach to Test-Case Effectiveness improvement
§ The steps of the improvement framework
§ Case study
§ Conclusion

e-mail: ychernak @ idt.net

Valley Forge Consulting, Inc., 1999

Valley Forge Consulting, Inc., 1999

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

Slide 3

Slide 4

A Test Suite Verification Task

Why Evaluate Test Cases?
§ Test-case specifications are the main deliverable of the formal test
 process
§ Written test cases benefit both – project management and testers
§ The quality of test cases determines testers’ productivity in finding
 defects
§ Design of test cases requires project resources and testers’ skills
§ Test suite evaluation can help us ensure the quality of this
 deliverable before it is used in testing
§ Evaluation = Verification & Validation (IEEE Std.1012)

A project team needs to ensure that the test
suite used in testing was sufficiently effective

§ The objective of verification is to ensure that test-case specifications
 satisfy the imposed requirements
§ Verification of test cases should be performed at the end of the test
 design phase
§ Common verification techniques:

§ Reviews or inspections of test-case specifications
§ Traceability Matrix – can be used to ensure test suite
 completeness, i.e., that all business rules are covered
 by test cases

Verification alone cannot guarantee that test
cases will be sufficiently effective

Valley Forge Consulting, Inc., 1999

Valley Forge Consulting, Inc., 1999

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

Slide 5

Slide 6

A Test Suite Validation Task

In-process validation provides feedback on the test
process before a system is released into production

§ The objective of validation is to conclude whether a test suite was
 sufficiently effective in finding defects
§ Validation of test cases should be performed at the end of the test
 execution cycle (in-process validation)
§ If TCE is not sufficient, a test suite should be revised and improved
 and then executed again. As a result, testers should find more defects

The ODC Concept

Other validation techniques should be developed
in order to provide testers with choices which

best apply to their projects

§ Orthogonal Defect Classification (ODC), developed at IBM, was the first
 in- process validation technique
§ ODC uses a defect model as a process signature (baseline vs. actual).
 The major components of the defect model are defect type and defect trigger
§ The defect type signature is used to analyze the development process.
 The defect trigger signature is used to validate the effectiveness of testing
§ ODC requires a stable and repeatable project profile (development process,
 project team, etc.) in order to build and re-use a baseline process signature
§ ODC may not be reliable when the defect injection factor varies from project
 to project

Valley Forge Consulting, Inc., 1999

Valley Forge Consulting, Inc., 1999

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

Slide 7

Slide 8

The Test-Case Effectiveness (TCE) Metric

Test-Case Effectiveness Metric:
TCE = Ntc / Ntot * 100%

§ In order to perform validation objectively, we need a metric to measure
 test-case effectiveness
§ Our assumption is – the more defects test cases find, the more effective
 they are. However, when we are testing, a number of defects are always
 missed by test cases and found as a side effect
§ The proposed metric – TCE is the ratio of defects found by test cases to
 the total number of defects reported by testers during the test cycle
§ In our experience, a TCE metric of 75% is an acceptable level for business
 applications

TCE Metric vs. DRE Metric

TCE – is used for in-process validation
DRE – is used for post-release validation

§ What they have in common –
§ Both metrics are used for validation
§ Both metrics can have various baseline values depending
 on the application type

§ What is different –
§ TCE validates a test suite from the current test cycle
 perspective and can benefit the same project
§ DRE validates an entire test process from the production
 perspective and can benefit future projects

Valley Forge Consulting, Inc., 1999

Valley Forge Consulting, Inc., 1999

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

Slide 9

Slide 10

IBM’s Defect Prevention Process

Definition
“Test Escapes – are software product defects that a
particular test failed to find but which were found in
a later test or by a customer” [R.G. Mays, et.al.]

§ Is a technique based on causal analysis of defects
§ Can be used to improve both the development and test processes
§ Allows test process improvement based on the causal analysis of
 test escapes

Our Approach to TCE Improvement

Definition
“Test-Case Escapes – are software defects that a given
suite of test cases failed to find but which were found as
a side effect in the same test cycle” [Y. Chernak]

§ Defects missed by test cases are a manifestation of a deficiency in
 the test process
§ Such defects are an important source of information that can be
 used to improve the effectiveness of test cases

Valley Forge Consulting, Inc., 1999

Valley Forge Consulting, Inc., 1999

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

Slide 11

Slide 12

Test-Case Escapes vs. Test Escapes

Test Escapes

Test-Case
 Escapes

Defects Found
 by Test Cases

Defects Missed
by Testing

Product Defects

Defect Prevention
Focus

TCE FocusDefects Missed
by Test Cases

Defect
Triggers ODC Focus

The Steps of the TCE Improvement
Framework

Causal analysis of test-case escapes is a key activity
in the improvement framework

Step 1. Understand and document the test process
Step 2. Make assumptions about the factors affecting TCE
Step 3. Gather defect data and perform causal analysis of
 test-case escapes
Step 4. Identify the main factors
Step 5. Implement corrective actions

Valley Forge Consulting, Inc., 1999

Valley Forge Consulting, Inc., 1999

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

Slide 13

Slide 14

Step 1: Understand and Document
the Test Process

A number of factors in all but the last of these
phases could determine the TCE in a test cycle

Test
Planning

Test
Design

Test Preparation
and Execution

Test Evaluation
and Improvement

Project Life Cycle Production

Step 2: Make Assumptions

The factors of the Test Planning and Test Design phases are
common causes of insufficient test-case effectiveness

Test Design Phase Factors

Test Execution
Phase Factors

TCE

Incomplete
Test Design

Incorrect Test
Specifications

Incomplete
Test Suite

Incomplete
Functional

Specifications

Test
Execution
Problems

Test Planning
Phase Factors

Incorrect
Functional

Specifications

The factors are grouped by
test process phases where
they originate

A common test process definition:

Valley Forge Consulting, Inc., 1999

Valley Forge Consulting, Inc., 1999

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

Slide 15

Slide 16

Step 3: Gather Defect Data and Perform Causal Analysis

The purpose of causal analysis of defects is to understand
why a test suite missed each test-case escape

Test-Case Escape

Does a
Business Rule

Exist?

Specification
Correct?

Incomplete
Test Suite

Incomplete
Functional

Specification

YES

YES NO

Is the Test
Specification
Complete?

Incorrect
Test

Specification

NO
Incomplete

Test
Design

YES

NO

Test
Execution
Problems

Does a
Test Specification

Exist?

NO

Incorrect
Functional

Specification

Is the Business
Rule Correct?

YES

YES

NO Is the Test

Step 4: Identify the Main Factors

N
um

be
r o

f T
es

t-C
as

e
E

sc
ap

es

C a u s e s1 2 3 4 5 6

“V i t a l f e w ”

The purpose of this step is to identify those “vital few” factors that
are responsible for the majority of defects missed by test cases

Valley Forge Consulting, Inc., 1999

Valley Forge Consulting, Inc., 1999

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

Slide 17

Slide 18

Case Study: The Project Description

Step 5: Implement Corrective Actions

After a correction, testers should re-test a
system and find more defects

Factors Affecting TCE Examples of Corrective Actions
Incomplete or incorrect
functional specifications
Incomplete test suite

Incomplete test design

Incorrect test-case
specifications
Test execution problems

Inspections and re-work of functional
specifications
Use a traceability matrix to ensure test
suite completeness
Training of testers, use of checklists or
templates, etc. Revision of specifications
Inspections and re-work of test-case
specifications
Training of testers, use of a test
execution procedure, etc.

The project team implemented a formal test
process with its focus on functional testing

§ A banking application for external clients
§ A Client/Server architecture
§ Front-end – Windows NT, VB, VC++
§ Back-end – Unix/Sybase, Mainframe/DB2
§ A project team – 10 developers, 3 testers
§ PVCS-based defect tracking system

Valley Forge Consulting, Inc., 1999

Valley Forge Consulting, Inc., 1999

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

Slide 19

Slide 20

Case Study: Causal Analysis of Test-Case Escapes

Case Study: Evaluation of Test-Case
Effectiveness

The project team decided to perform
the TCE improvement task

 At the end of the test execution cycle:
§ 112 defects were found by test cases
§ 71 defects were found as a side effect (test-case escapes)
§ The actual TCE was 61% vs. the acceptable level – 75%

The main two factors were:
§ Incomplete test design
§ Incomplete functional specifications

Distribution of Test-Case Escapes

0
5

10
15
20
25
30
35

1 2 3 4 5 6

Causes

N
o

of
 T

es
t-

C
as

e
E

sc
ap

es

The project team analyzed the
causes of the test -case
escapes

A Pareto chart was used to
identify the main factors

Valley Forge Consulting, Inc., 1999

Valley Forge Consulting, Inc., 1999

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW99)

24-28 May 1999, San Jose, Silicon Valley, California USA

Slide 21

Slide 22

Case Study: Process Correction and System Re-testing

After two months in production:
DRE = 91%

§ The project team reviewed, corrected, and completed functional
 specifications
§ Testers created additional test-case specifications to completely cover
 business rules
§ Testers revised existing specifications
§ The system was re-tested using the revised test suite
§ Testers found and reported 48 additional defects
§ During the first two months in production users reported 23 defects,
 none of them critical

Conclusion
§ For complex systems, test cases can be a critical success factor for
 effective testing
§ If test cases are not sufficiently effective, there is a high risk that testing
 will not be effective either, hence, in-process validation of TCE is an
 important task
§ In the presentation we proposed a new metric for in-process TCE
 validation and a framework for TCE improvement
§ The framework consists of five steps and is based on causal analysis of
 test-case escapes
§ A case study illustrated how the proposed approach can be implemented
 in software projects

In-Process Validation and Improvement of Test-Case Effectiveness

Yuri Chernak, consultant
Valley Forge Consulting, Inc.

e-mail: ychernak@idt.net

1. INTRODUCTION

Why evaluate test cases?

In critical software projects, management must focus on reducing the risk of releasing a
system with quality not acceptable to users. This risk can be managed through software
testing, which is used to find and remove software defects prior to production. Formal
test methodology defines a number of test types, including the function test that is most
responsible for the ultimate system quality. The function test, as defined by G. Myers [1],
focuses on a system’s functionality and is performed by testers with the objective of
finding defects. Implementation of the function test as a formal test process allows us to
better cope with the functional complexity of the software applications being tested. In a
formal test process, test plan documents and test-case specifications are important
deliverables [2]. The use of test cases benefits both project management and testers:

§ Management benefits. Test-case specifications allow better visibility into the test
process by providing a precise picture of what will be tested and how. In addition,
test-case specifications allow management to monitor test execution progress and to
measure testing completeness.

§ Testers’ benefits . Design and execution of test cases result in higher testers’
productivity in finding defects.

For complex systems, test cases become a critical success factor for accomplishing
effective testing. Commonly, test-case specification design is the major effort of testers
on projects that implement formal testing. In our experience, the design of test cases takes
considerably more effort than their execution. In order to justify the design effort and to
ensure the quality of this deliverable, test-case specifications should be the object of in-
process evaluation and improvement, if needed. Besides the immediate benefits for the
current project, such evaluation can help testers improve their performance in future
projects as well. Indeed, testers reuse their test-case design skills from project to project.
Hence, the evaluation of this deliverable can help them identify the weaker areas of their
skills that, being improved, will result in better test design in future projects.

On the other hand, the fact that testers used test-case specifications in testing does not
necessarily guarantee that the system was sufficiently tested. A number of other factors
also determine whether testers performed well and testing was effective. In general,
actual testing effectiveness can be evaluated only when a system is in production. Such
evaluation can certainly benefit future projects. However, if it shows that a system was

2

not sufficiently tested, this result is too late to benefit the current project. To reduce such
a risk, the project team can assess testing effectiveness in the current project by
performing in-process evaluation of test-case effectiveness. If the test cases were not
sufficiently effective, a high risk exists that the system was not sufficiently tested either.
At this point the system has not yet been released into production; therefore, it is not too
late for the project team to identify the reasons and to correct the test process.

Evaluation = Verification + Validation

In general, the purpose of evaluation is to ascertain that the work product fits the use. In
the case of software project deliverables and test cases in particular, evaluation can be
performed as a combination of verification and validation tasks [3]. According to the
IEEE dictionary of software terms [4], these terms have the following definitions:

§ Verification is the process of evaluating a
system or component to determine whether
the products of a given development phase
satisfy the conditions imposed at the start
of that phase

§ Validation is the process of evaluating a
system or component during or at the end
of the development process to determine
whether it satisfies specified requirements

Verification Task. Verification of test-case specifications should be done at the end of the
test-design phase. The objective here is to ensure that this deliverable satisfies the
imposed requirements before testers begin to use these documents in the next, test
execution, phase. Reviews or inspections are common verification activities that can be
used to evaluate test-case specifications for their correctness and completeness,
compliance with conventions, templates, or standards, etc. Traceability analysis is also a
common way to verify the whole test suite for completeness. By building a traceability
matrix or tree we can trace from the functional specifications to the corresponding test-
case specifications and ensure that all functional requirements are covered by test cases.
Verification of test cases before test execution is an important task that allows the project
team to assess the conformance of test-case specifications to their respective
requirements. However, such conformance does not mean that the test cases will
automatically be effective in finding defects. Other factors also determine whether test
cases will be effective in the test cycle. For example, functional specifications, used to
design test cases, can be incomplete or outdated; test cases can be written based on poor
test design logic; testing personnel can misunderstand test specifications, etc. Hence,
even test cases that have passed verification could have weak failure-detecting ability and
should be required to pass validation as well.

Validation Task. As we discussed, test cases are a critical success factor for achieving
testing effectiveness in critical software projects. The main requirement for test cases is
that they should be effective in finding defects. We assume if a test suite was productive
in finding defects, the system under test will likely be of high quality when released into
production and that it will satisfy the users. On the other hand, if a test suite was not
productive, there is a high risk that the system was not sufficiently tested and the users
will not be satisfied with the system quality. Hence, the main objective of test suite
validation should be to conclude whether test cases were sufficiently effective in finding

3

defects. Validation can be performed as soon as all test cases have been executed, which
is the end of the test-execution phase of the test process. At this point the system has not
yet been released into production, and if test-case effectiveness has not proved
satisfactory, it is not too late to analyze the reasons and to correct the test process. As a
result, a test suite can be revised and improved, and then executed again. This, in turn,
can help testers find additional defects and release a better software product. As it will be
illustrated by the case study in Section 5, such in-process test-case validation can be very
effective in providing management and testers with feedback on the test process during
the project life cycle.

This article describes how functional test cases can be in process validated by assessing
their effectiveness in finding defects. It also presents a framework, which can be used to
identify weak areas in testing and improve test-case effectiveness. In Section 2 we review
some related sources that discuss issues pertinent to the evaluation and improvement of
test-case effectiveness. In Section 3 we propose a new metric – Test-Case Effectiveness –
that can be used for in-process test suite validation. In Section 4 we describe a framework
for improving test-case effectiveness based on defect causal analysis. Section 5 provides
the results of the case study and illustrates how the new metric and improvement
framework can be applied in software projects. The paper concludes with Section 6.

2. RELATED WORK

Orthogonal Defect Classification

Our research was inspired by the publications of Ram Chillarege and his colleagues from
the IBM T.J.Watson Research Center [5,6]. They discussed the need for in-process
evaluation and improvement of testing, especially important for critical projects as a
means of avoiding the risk of delivering a software product of poor quality. In particular,
their focus was on validating test suite effectiveness at the end of the test execution cycle
and deciding whether a product was sufficiently tested before releasing it into production.
They proposed Orthogonal Defect Classification (ODC) – a concept for in-process
measurement and feedback to a project team on the development process. The underlying
ideas of this concept can be summarized as follows:

§ Capturing and analyzing software defect semantics can help us understand and
improve the weak areas of both a product and a process;

§ Building a defect model as a process signature and using it as a baseline for future
projects can help us identify deviations from the norm where improvement is needed;

§ The major components of a defect model are defect type and defect trigger. The
defect type specifies the actual fix of a given defect, and the defect trigger identifies
the event or condition that detected such a defect. The defect type signature indicates
the product’s stability relative to its progress through the development process. The
defect trigger signature helps us validate the effectiveness of the testing activities in
uncovering defects;

4

§ A system is qualified not sufficiently tested, if some triggers in the actual trigger
distribution of a given project have lower values than in the baseline. In this case the
test suite should be improved by creating additional test cases that target defects with
the triggers that caused a concern. Then testers should re-test the system and try to
find more defects.

ODC has evolved significantly since its inception and has been implemented by various
teams at IBM. The key to success with ODC is in a stable software process that has a
baseline signature repeatable from project to project. Under these conditions, ODC has
proven to be a valuable technique that allows project teams to reduce development cost
and to increase customer satisfaction [7].

According to ODC, test suite effectiveness can be evaluated based on the analysis of
defects found in a test cycle. By building an actual defect trigger distribution and
comparing it with the baseline, i.e. intended signature, the project team can identify the
weakness of a test suite and determine whether it needs improvement. In our opinion, this
approach may not be reliable under the following conditions. Trigger values in both
signatures, intended and actual, are determined by at least two factors – defect injection
and defect detection. If defects with some triggers were not injected in a given project,
these triggers will not be present in the actual trigger distribution, unlike the intended
signature, even if the test suite is perfect. In this example, the intended signature could
possibly mislead a project team. As a result, testers would waste resources performing
test suite improvement, re-testing a system, and trying to find defects that are simply not
present in the product. This illustrates our point that defect triggers may not directly point
to the test suite deficiencies. Apparently, the test process can be effectively evaluated by
comparing intended versus actual trigger distributions only if the defect injection factor
remains the same, which is difficult to assess in a real life situation. In general, the
development process and developers’ skills mainly determine the defect injection
characteristics. In other words, even if the software process is stable, some “human”
factors can significantly impact and invalidate the “historical” process signature:

§ The first factor that can invalidate a signature is the fact that developers always tend
to learn from their mistakes and reduce frequent defects. This could result from the
individual effort of developers or from a planned defect prevention and process
improvement task performed by the project team;

§ Another factor is personnel turnover. Hiring consultants for software projects has
become a common practice in various fields such as financial, brokerage, insurance,
etc. This frequently makes project teams very different from one project to the next,
thus, affecting the process signature.

Based on this discussion we conclude that a defect trigger distribution may not always
provide a reliable basis for test-case effectiveness validation. Therefore, other techniques
should be developed and further evaluated in order to provide testers with choices best
applicable to their projects.

5

Defect Prevention Concept

The defect prevention concept [8], also originated at IBM, suggests improving the test
process based on a causal analysis of defects, so-called test escapes, which were missed
in testing. We can further evolve this idea and state that the analysis of defects missed by
test cases can help us improve their effectiveness. This concept is essentially different
from ODC, which, in contrast, focuses on defects found by test cases. Based on our
experience with client/server projects, even if a project team implements an effective test
process and testers have a good test suite, a number of defects are typically found as a
side effect, i.e., by exercising conditions not specified by test cases. These defects can be
considered a manifestation of deficiencies in the formal test process. Therefore, their
causal analysis can help us identify the areas for test process improvement that can be
implemented before the system is released into production. However, this approach is
entirely based on the analysis of defects missed by test cases and requires that a sufficient
number of such defects be available. This fact can limit the approach applicability for
some projects. For example, testing mainframe batch systems, testers usually exercise
only those conditions that are planned in advance, and the number of defects found as a
side effect is usually very low in the test cycle. On the other hand, in the case of
client/server projects that implement formal testing, the share of such defects could be
from 20 to 50 percent, providing a valuable source of information for test suite validation
and improvement. In the following sections we discuss this approach in detail. We
propose a new metric that can be used for validation of test cases and we describe a
framework for in-process improvement of test suite effectiveness.

3. THE TEST-CASE EFFECTIVENESS METRIC

The function test is destructive; its purpose is to break systems and find defects. When a
test process is formal, testing is executed based on written test-case specifications. Hence,
an important requirement for test cases is that they should be effective in finding defects
when executed by testers. In Section 1 we discussed the benefits of in-process validation
of test-case effectiveness. In order to perform validation objectively, we need a metric to
measure the test-case effectiveness that is the key point in the validation task. When the
result of the effectiveness assessment does not meet expectations, the reasons should be
analyzed and corrected and test cases should be executed again.

When testing on-line mainframe systems and especially client/server systems, a certain
number of defects are always found as a side effect. By “side effect” we mean the
situation where a tester finds a defect by executing some steps or conditions that are not
written in a test-case specification. This can happen either accidentally or, more
frequently, when the tester gets the idea “on the fly”. Defining a metric for test-case
effectiveness, we can state that the more test cases find defects, the more effective they
are. On the other hand, if functional test cases result in finding a small number of defects,
their value comes into question. Based on this logic, we propose the metric – Test-Case
Effectiveness (TCE) – that is defined as the ratio of defects found by test cases (Ntc) to
the total number of defects (Ntot) reported by testers during the function test cycle:

6

TCE = Ntc / Ntot * 100%

In this definition, the total number of defects (Ntot) reported by testers is the sum of
defects found by executing test cases and defects found as a side effect. The TCE metric
may look similar to the Defect Removal Efficiency metric (DRE) [9], which is defined
as the ratio of defects found prior to production to the total number of reported defects.
However, the important difference is that the DRE metric has the purpose of evaluating
user satisfaction with the entire test process. It measures the test process effectiveness and
reflects a production or users’ perspective on the test process. In contrast, the proposed
TCE metric is used specifically to validate effectiveness of functional test cases, which
are just a component of the test process. The TCE metric evaluates test cases from the
test cycle perspective and provides in-process feedback to the project team on how well a
test suite worked for testers. If a project goes through a number of incremental builds, as
is common in large-scale system development, each build requires its own functional test
cases and has its own test cycle. In this situation, it is beneficial to perform test suite
validation based on the TCE metric for each build. If the result of the validation is not
satisfactory, we can identify the areas for improvement and correct the test process in the
current or next builds.

As we discussed above, the main purpose of validation is to determine whether a test
suite was sufficiently effective in the test cycle. Such a conclusion can be made by
comparing the actual TCE value, calculated for the given test cycle, with the baseline
value, selected in advance by the project team. When the actual TCE value is at the
baseline level or above, we can conclude that the test cases have been sufficiently
effective in a test cycle. In this case the project team can anticipate user satisfaction with
the system quality in production. On the other hand, the more that TCE value is below the
acceptable level, the higher the risk that the users will not be satisfied with the software
product quality. In this case the project team can implement a correction of the test
process based on the framework described in the next section. The baseline value can be
obtained by analyzing the experience of the previous successful projects that are qualified
as models for current and future projects. Apparently, the goal for test-case effectiveness
can be different for various application categories, such as commercial, military, or
business applications. Our experience with successful client/server projects delivering
business applications shows 75% to be an acceptable level of the TCE metric.

4. A FRAMEWORK FOR TEST-CASE EFFECTIVENESS IMPROVEMENT

If the result of validation of test-case effectiveness in the test cycle does not meet the
requirement, the project team should analyze the causes and identify the areas for test
process improvement. The improvement framework proposed in this paper and described
below stems from the work [8] that presents the approach to defect prevention developed
at IBM. In this work the authors reported that the defect prevention concept could be
successfully applied to software development and testing as well. The purpose of testing
is to find defects during the test cycle and to deliver a quality system acceptable for the
users. However, a number of defects are always missed in testing and reported later by

7

users during production. The causal analysis of these defects, so-called test escapes [8], is
a key activity in test process improvement. In [8] test escapes are defined as “product
defects that a particular test failed to find but which were found in a later test or by a
customer [in production]”.

In this article we focus on the evaluation of one very important component of the test
process – test cases – and apply the concept of test escapes to in-process test-case
effectiveness validation. The main purpose of documented test cases is to assist testers in
finding defects. Hence, software defects missed by test cases and found by testers as a
side effect can be considered a manifestation of deficiencies of the test process and a
given test suite in particular. Such defects are an important source of information, and
their causal analysis can help us understand and identify the main factors that reduce the
effectiveness of test cases. Based on this discussion, we can give the following definition
of “test-case escapes” that reflects the test-case perspective:

Test-Case Escapes are software defects that a given suite of
test cases failed to find but which were found as a side effect in
the same test cycle.

Analysis of test-case escapes can help us improve effectiveness of white box test cases
during unit testing and black box test cases during functional testing. In addition, the
same concept can be used to improve the formal inspection process as well. However, in
this article we are focusing on black box testing only. The in-process improvement
framework that we propose below is based on the causal analysis of test-case escapes and
consists of the following steps –

1. Understand and document the test process used by the project team,
2. Make assumptions about the factors affecting test-case effectiveness,
3. Gather defect data and perform causal analysis of test-case escapes,
4. Identify the main factors, and
5. Implement corrective actions

After these steps, the test suite should be executed again. As a result, testers should find
additional defects that justify the improvement effort. Below we discuss each of these
steps in detail.

Step 1. Understand and Document the Test Process

When a project team uses written test-case specifications and focuses on their evaluation
and improvement, this already indicates that a certain test process has been established
and followed in the project. The test process should be planned at the beginning of the
software project and documented in a test plan. Commonly, the test process is defined in
terms of the following phases – 1. Test Planning, 2. Test Design, 3. Test Preparation and
Execution, and 4. Test Evaluation and Improvement [10,11]. Each of these phases should
be planned and defined in terms of tasks and deliverables. For example, the test process
can be defined as follows:

8

§ Test Planning. In this phase, definition of the scope, objectives, and approach to
testing is the main task and a test plan document is the main deliverable;

§ Test Design. In this phase, design of test cases is the main task and test-case
specifications are the main deliverable;

§ Test Preparation and Execution. In this phase, preparation of the test environment,
executing test cases, and finding defects are necessary tasks and defect reports are the
main deliverable;

§ Test Evaluation and Improvement. In this phase, analyzing results of testing is the
main task and the test summary report is the main deliverable.

In all these phases, except for the last one, there are a number of factors that determine
the effectiveness of functional test cases in a given project. Hence, the purpose of the
following steps of the framework is identification and evaluation of these factors.

Step 2. Make Assumptions

When the test process is understood and documented, we need to analyze each phase and
identify factors that can affect test-case effectiveness.

Test Planning. The main deliverable of the Test Planning phase is a test plan document
that, among other things, defines the scope and objectives of testing. The objectives of
testing can be defined as “features to be tested” [2] that, in turn, should be identified in
functional specifications. If the functional specifications do not completely define
functional features, the test plan document will not be complete either. Hence, the test
cases will not cover completely a system’s functionality, thereby reducing their
effectiveness.

Test Design. The Test Design phase, in turn, can have other factors that can affect test-
case effectiveness. First, the test suite could be incomplete and some of the business rules
in the functional specifications could be left not covered by test cases. Secondly, test
design logic could be incomplete and some of the necessary test conditions could be
missing in test-case specifications. Writing a test-case specification, we usually begin
with understanding and analyzing the corresponding business rule that is the object of
this test. Then we think about the test logic required for testing this functional feature. In
order to identify necessary test cases, we can use test design techniques such as decision
tables, equivalence partitioning, boundary analysis, etc. [10]. If the test design logic is not
complete, some of the necessary test cases could be missing in the test-case
specifications. A common example of this situation is the lack of negative test cases in
the test specifications. We qualify a test case negative if it exercises abnormal conditions
by using either invalid data input or the wrong user action. In addition, test-case
specifications could be incorrect. This can happen either if a source document, i.e., a
corresponding functional specification, is not correct or clear, or an error is made in the
test-case specification itself.

9

All these deficiencies identified in the Test Planning and Test Design phases of the test
process will ultimately require revision of test-case specifications and their re-testing.

Test Preparation and Execution. In addition, the Test Execution phase could be a source
of other factors reducing test-case effectiveness. For example, some of the test cases can
be left not executed or can be executed incorrectly. Also, a tester could overlook defects
especially when the verification of expected results is not straightforward. However,
another tester could later find such defects as a side effect. Based on our experience, only
a small fraction of test-case escapes stems from the test execution factors. Therefore,
these factors will not likely be in the focus of the test-case effectiveness improvement
effort. We can initially qualify the causes of such defects for one common category “test
execution problems”. However, if the further analysis, described below at Step 4, shows
that the fraction of defects in this category is significant, a detailed evaluation of test
execution factors should be performed.

In general, the fact that testers find test-case escapes in addition to defects found by
executing test cases should be considered a plus, since it results in more defects being
removed from the software product before production. On the other hand, test-case
escapes, being found “by chance”, manifest the weakness of the formal test process. If
the share of test-case escapes is higher than expected, it should raise a management
concern about how many other defects are still hidden in the product. In this case a
correction of the test process and system re-testing should be performed. If additional
defects are found, this can increase management’s confidence in the software product
quality.

Figure 1. Factors Affecting Test-Case Effectiveness

The factors identified above are shown in Figure 1 in the form of the cause-effect
diagram. We grouped them by the test process phases in which they originate. However,

Test Design Phase Factors

Test Execution
Phase Factors

TCE

Incomplete
Test Design

Incorrect Test
Specifications

Incomplete
Test Suite

Incomplete
Functional

Specifications

Test
Execution
Problems

Test Planning
Phase Factors

Incorrect
Functional

Specifications

10

at this point they are just our assumptions that should be evaluated in the following steps
with the objective of identifying those factors that are mostly responsible for insufficient
test-case effectiveness.

Step 3. Gather Data and Perform Causal Analysis

To perform causal analysis of test-case escapes at the end of the test execution phase, we
need to select the defects missed by test cases. This requires that the project team use a
defect tracking system and that the testers, reporting defects, identify which defects were
found as a result of test-case execution and which defects were found as a side effect. By
definition, the latter defects should be qualified as test-case escapes. Once the test-case
escapes are identified and selected, they should be qualified by one of the factors based
on the causal analysis logic presented in Figure 2. The purpose of this analysis is to
evaluate each test-case escape and understand why the test suite missed a given defect
during the function test execution.

Figure 2. Test-Case Escape Classification Logic

We can begin the causal analysis with verification that a functional specification has a
business rule related to the given defect. If the answer is “no”, we have determined that
the cause of this test-case escape is an incomplete function specification. If the answer is
“yes”, we need to check whether the test suite has a test specification that should have
found this test-case escape. If a test-case specification does not exist, this means that the
test suite does not cover all business rules. Therefore, an incomplete test suite is the
reason why this defect was missed by test cases. If the test specification does exist, then
we need to check the defect against test cases in the specification. If none of them were
designed to catch such a defect, this indicates that the test specification is incomplete.
Indeed, all test inputs and expected results in the test-case specification can be correct.

Test-Case Escape

Does a
Business Rule

Exist?

Is the Test
Specification

Correct?

Incomplete
Test Suite

Incomplete
Functional

Specification

YES

YES NO

Is the Test
Specification
Complete?

Incorrect
Test

Specification

NO
Incomplete

Test
Design

YES

NO

Test
Execution
Problems

Does a
Test Specification

Exist?

NO

Incorrect
Functional

Specification

Is the Business
Rule Correct?

YES

YES

NO

11

However, it can specify, for example, only positive test cases. The lack of negative test
cases in test specifications is a common reason for missing defects. This is a case of
deficiency in test design that was used to derive test cases. Hence, we can qualify that the
cause of such test-case escapes is incomplete test design. On the other hand, if the test
specification has conditions related to a given defect, we need to verify that these
conditions and a corresponding expected result are correct. If the answer is “yes”, we
should qualify that test execution problems are the likely reason that this defect was
missed when the test specification was executed. If the answer is “no”, we need to
understand why the test specification is not correct. First, we should check the source
document and see if the business rule in not correct as well. If this is the case, we should
qualify that the cause of this test-case escape is incorrect functional specification.
Otherwise, the cause is incorrect test specification itself. As a result of defect causal
analysis, all test-case escapes should be classified by one of the possible causes presented
in Figure 1.

Step 4. Identify the Main Factors

When all test-case escapes are qualified by their respective causes, we need to identify
those “vital few” factors that are responsible for the majority of the defects being missed.
This can be done by building a Pareto chart (see Figure 3) and analyzing the distribution
of defects. Once identified, these factors will be in the focus of the next step –
implementation of corrective actions.

Figure 3. A Pareto Chart of Causes

N
um

be
r o

f T
es

t-C
as

e
E

sc
ap

es

Causes1 2 3 4 5 6

“Vital few”

12

Step 5. Implement Corrective Actions

After the main causes of test-case escapes have been identified, the project team should
implement corrective actions and repeat the test execution cycle. For the factors, shown
in Figure 1, corrective actions could be the following:

§ Incomplete or incorrect functional specifications – inspection and rework of
specifications

§ Incomplete test suite – use of traceability matrix to ensure complete coverage of
business rules by test cases

§ Incomplete test design – training of testers on test design; use of checklists or
templates to design test-case specifications

§ Incorrect test-case specifications – inspection and rework of specifications

§ Test execution problems – training of testers on test execution, development and use
of procedures for test execution and verification of test results, etc.

In a case when correction was required for functional specifications or test cases, the
project team should revise the test suite and execute it again. However, if correction was
required only due to the test execution problems, the same test suite can be used for re-
testing. The main objective of re-testing is finding additional defects. Finally, if
additional defects are found, this fact can justify the whole improvement effort.

5. CASE STUDY

In this section we illustrate how the proposed approach to test-case effectiveness
validation and in-process improvement was implemented in a client/server project. This
project was a banking application intended for external clients – financial institutions.
The system had a three-tier client/server architecture with a Windows NT front-end
developed with Visual Basic and Visual C++. The second tier was implemented in a Unix
environment with Oracle 7 as a database engine. The third tier was a data feed from a
mainframe COBOL/DB2 system. The project team consisted of ten developers and three
testers. Since the application was intended for external clients, software quality was of
great importance to project management. To ensure high quality for the system, the
project team implemented a formal test process with a focus on functional testing. The
development team was responsible for functional specifications and the test team was
responsible for the test plan document and test-case specifications.

Testing was performed in the designated test environment. By the end of the Test
Execution phase, testers had executed all test specifications and reported 183 defects.
Defects were managed in the PVCS-based defect tracking system. Reporting defects,
testers classified them as test-case escapes or as being found by conditions in test-case
specifications. In this test cycle testers reported 71 test-case escapes and 112 defects

13

found by test cases. Based on these numbers, the calculated TCE metric value was 61%,
which was considerably lower than the acceptable level – 75%. As a result, the project
team concluded that the system was not sufficiently tested and that a test process
correction was needed.

The project team performed the test process improvement according to the framework
described in Section 4. First, all test-case escapes were analyzed and assigned to the
causes they were missed by the test cases. After this step, the distribution of causes was
built (see Figure 4). The analysis of the distribution showed that incomplete test design
and incomplete functional specifications were the main causes why test cases missed
defects. To correct the test process, the project team began by correcting and completing
the functional specifications and reviewing them with the users. Then the existing test-
case specifications were reviewed and completed with negative test cases. In particular,
the review of test-case specifications showed that the main deficiency of the test design
was its lack of negative test cases. By definition, negative test cases focus on abnormal
workflow and are intended to break a system. However, the test suite initially used by the
testers was not sufficiently “destructive”, and a significant number of defects were found
as a side effect as opposed to being found by conditions in test cases. In addition, a
number of new test-case specifications were created to completely cover the business
rules in the revised function specifications. To verify test suite completeness, this time
the project team used a treceability matrix. This was not done in the first test cycle, and
test suite incompleteness was one of the factors that reduced test-case effectiveness (see
Figure 4).

Description of Causes:
1. Incomplete Test Design 4. Incorrect Functional Specifications
2. Incomplete Functional Specifications 5. Incorrect Test-Case Specifications
3. Incomplete Test Suite 6. Test Execution Problems

Figure 4. A Pareto Chart

Distribution of Test-Case Escapes

0
5

10
15
20
25
30
35

1 2 3 4 5 6

Causes

N
o

of
 T

es
t-

C
as

e
E

sc
ap

es

14

After these corrections, the revised test suite was executed again. As a result, the testers
found 48 additional defects that otherwise would have been released into production. At
this point the number of defects found during the test cycles had grown to 231. After two
months in production, the rate of defects, reported by users, had noticeably declined. By
the end of the second month the number of production defects was 23. The DRE metric
calculated at this time was 91%, which is 231/(231+23) = 0.91. None of the defects
reported by the users were of critical severity, and the users were fairly satisfied with the
system quality.

6. CONCLUSION

When a project team implements a formal test process, test cases are the main factor that
determines overall testing effectiveness and system quality. However, the actual quality
of a system can only be evaluated when a system is in production. Such evaluation can
definitely benefit future projects, although, if a system was not sufficiently tested, the
evaluation results are too late to benefit the current project. The project team can reduce
such a risk by performing in-process evaluation of test-case effectiveness for a given test
cycle. If the test cases were not sufficiently effective, a high risk exists that the system
was not sufficiently tested either. At this point the system has not yet been released into
production; therefore, it is not too late for the project team to identify the reasons and to
correct the test process. After a correction, testers should re-test the system and find more
defects, thereby further improving the product and increasing confidence that the users
will be satisfied with the system quality in production.

In this article we described an approach to in-process validation and improvement of test-
case effectiveness. We proposed a new metric – Test Case Effectiveness – that can be
used to validate a test suite by the end of a test cycle. In a case where the result of the
validation was not as good as expected, the project team should identify and correct
factors that reduced test-case effectiveness. The framework that can be used for this
purpose is described in the article. It is based on the ideas of the defect prevention
process [8]. We applied the concept of test escapes specifically to test-case evaluation
and defined “test-case escapes” as defects missed by test cases in testing. The framework
consists of five steps described in detail in the article. The key activity of this framework
is casual analysis of test-case escapes and identification of those “vital few” factors that
are responsible for the majority of the defects missed by test cases. Using a case study,
we illustrated how the proposed approach can be applied in software projects.

REFERENCES:
1. Glenford Myers "The Art of Software Testing", John Wiley & Sons, 1979
2. IEEE Std.829 – 1983 “Software Test Documentation”
3. IEEE Std 1012-1986 “IEEE Standard for Software Verification and Validation Plans”
4. IEEE Standard 610.12-1990 “Dictionary of Software Terms”

15

5. R. Chillarege, I.Bhandari, J.Chaar, M. Halliday, D.Moebus, B.Ray, and M. Wong
“Orthogonal Defect Classification – A Concept for In-Process Measurements”, TSE,
November 1992, pp.943 - 955

6. J. Chaar, M. Halliday, I.Bhandari, and R. Chillarege “In-Process Evaluation for
Software Inspection and Test”, TSE, November 1993, pp.1055 - 1070

7. K. Bassin, T. Kratschmer, and P. Santhanam “Evaluating Software Development
Objectively”, IEEE Software, November 1998, pp.66 - 74

8. R. Mays, C. Jones, G. Holloway, D. Studinski “Experiences with Defect Prevention”,
IBM Systems Journal, Vol.29, No.1, 1990, pp. 4 - 32

9. C. Jones “Applied Software Measurement”, McGraw-Hill, Inc., 1991
10. E. Kit "Software Testing in the Real World", Addison-Wesley Publishing Co., 1995
11. P. Goglia "Testing Client/Server Applications", QED Publishing Group, 1993

1

Diapositive 1COMMUNICATIONS & SYSTEMS GROUP

Automated test generationAutomated test generation
fromfrom

SDL/UML specificationSDL/UML specification

Alain Kerbrat,Alain Kerbrat, Iulian Ober Iulian Ober

Diapositive 2COMMUNICATIONS & SYSTEMS GROUP

Automated test generationAutomated test generation

●● BenefitsBenefits

●● correct, reproducible testscorrect, reproducible tests

●● cost effectivecost effective

●● RequirementsRequirements

●● unambiguous, tractable descriptionunambiguous, tractable description

●● clear definition of the test semanticsclear definition of the test semantics

2

Diapositive 3COMMUNICATIONS & SYSTEMS GROUP

TestComposerTestComposer principles principles
This system
also makes
the coffee

System requirements

Abstract test cases

Formal specification Test purposes

SDL/UML MSC,
GOAL

TTCN,
user specific

2

2 test case computation

1

1 test purpose generation

Diapositive 4COMMUNICATIONS & SYSTEMS GROUP

TestComposerTestComposer basics basics

●● ISO/IEC 9646: « conformance testing »ISO/IEC 9646: « conformance testing »

●● based on two research prototypes :based on two research prototypes :

●● Tveda Tveda from France -Telecom/CNETfrom France -Telecom/CNET

pragmatic test purposes generationpragmatic test purposes generation

●● TGV from TGV from IrisaIrisa//VerimagVerimag

efficient test cases generation

3

Diapositive 5COMMUNICATIONS & SYSTEMS GROUP

TestComposerTestComposer objects objects

●● SDL specificationSDL specification : : expected system’sexpected system’s behaviour behaviour

●● must be validatedmust be validated

●● Test environment specificationTest environment specification

●● Test purposeTest purpose : : functional view of the testfunctional view of the test

“What should I test ?”“What should I test ?”

●● Test caseTest case : : operational view of the testoperational view of the test

“How should I test ?”“How should I test ?”

Diapositive 6COMMUNICATIONS & SYSTEMS GROUP

[connected,
disconnected]

[connected,DisconnectReq]

[ConnectAck,DisconnectAck,Busy]

Signalling

[DataIn]

[DataOut]

Datalink

SDL specificationSDL specification

4

Diapositive 7COMMUNICATIONS & SYSTEMS GROUP

From test purpose to test caseFrom test purpose to test case

! ConReq

? ConAck

(PASS)(INC)

? busy

Cancel TAC

Start TAC

Cancel TAC

Main test sequence A tree with all possible outcomes

Diapositive 8COMMUNICATIONS & SYSTEMS GROUP

Test suite productionTest suite production

●● Test cases databaseTest cases database

●● build in a multi-session modebuild in a multi-session mode

●● Application Programming InterfaceApplication Programming Interface

●● TTCN production moduleTTCN production module

●● ISO/IEC 9646-3 compliantISO/IEC 9646-3 compliant

●● SDL type definitions translated in ASN.1SDL type definitions translated in ASN.1

5

Diapositive 9COMMUNICATIONS & SYSTEMS GROUP

TestComposerTestComposer prototype prototype usages usages

●● France Telecom/CNET : France Telecom/CNET : relevancy for the end userrelevancy for the end user

Experimentation on several low level protocolsExperimentation on several low level protocols

●● CS-Telecom : CS-Telecom : down to the test executiondown to the test execution

Two ISDN complementary services (MCID, Call Waiting)Two ISDN complementary services (MCID, Call Waiting)

●● DanetDanet,, Sema Sema Group : Group : integrated TTCN environmentintegrated TTCN environment

Edition, generation,Edition, generation, cosimulation cosimulation and execution and execution

Diapositive 10COMMUNICATIONS & SYSTEMS GROUP

Test activitiesTest activities

Tester

TestComposer

TestPlayer

2

2 test implementation

4 reports and analysis

Target machine

System Under Test
(SUT)

System requirements

1

1 test generation

Abstract test cases

3 execution and results

33

4

6

Diapositive 11COMMUNICATIONS & SYSTEMS GROUP

TestPlayerTestPlayer principles principles

4

1

3

2

0

Tester

Signals and data
structures

Target

Test
reports

Test cases

4’

1 test cases interpreter

2 declarations handler

3 communication,
encoding/decoding

4 results storage

4’ results retrieval

Tester PCO PCO

T(2)

CC(1)

CC(*)

CACK(*)

Diapositive 12COMMUNICATIONS & SYSTEMS GROUP

MSC and Test Description Language exampleMSC and Test Description Language example

2XWSXW�&&�ZLWK���YLD�J�

7LPHU6HW�8��

([SHFW�&&� ZLWK�VWDU�YLD�J�

7LPHU6HW�7��

7LPHU:DLW�7

([SHFW�&$&.� ZLWK�VWDU�YLD�J�

Tester PCO PCO

T(2)

CC(1)

CC(*)

CACK(*)

st g1 g2

9HUGLFW PASS

7

Diapositive 13COMMUNICATIONS & SYSTEMS GROUP

TestComposerTestComposer and and TestPlayer TestPlayer summary summary

++ standardized formal notations (SDL, UML, MSC)standardized formal notations (SDL, UML, MSC)

unambiguous and tractable descriptionsunambiguous and tractable descriptions

++ interactive or automated test purposes generation interactive or automated test purposes generation

covers both functional and structural coverage concernscovers both functional and structural coverage concerns

++ soundsound and and efficientefficient test cases generation test cases generation

no ambiguous interpretation of the test resultsno ambiguous interpretation of the test results

++ APIs for user specific test language and environmentAPIs for user specific test language and environment

seamless integration within customer seamless integration within customer testbedtestbed

1

Automated test generation from Sdl/Uml speci�cations

Alain Kerbrata, Iulian Oberb�

aVerilog, 150 rue Nicolas Vauquelin, BP1310, 31106 Toulouse cedex, France
Tel: (33) 5 61 19 29 39, Fax: (33) 5 61 40 84 52
e-mail: Alain.Kerbrat@verilog.fr www: http://www.verilogusa.com

bINPT-ENSEEIHT, 2 rue Camichel, 31000 Toulouse cedex, France
e-mail: Iulian.Ober@enseeiht.fr

Automated test generation from formal speci�cations presents a lot of promises, either
in cost control or test suite correctness. The telecommunications domain is a �eld where
some interesting tools begin to emerge, either prototypes or industrial strength tools.
We present TestComposer, a new industrial test generation tool. 2

TestComposer

allows the generation of conformance tests, from Sdl/Uml speci�cations. It comes with
TestPlayer, which allows to execute test cases written with the Msc language. Both
tools are part of ObjectGeode, an industrial toolset for real time systems development.

1. Introduction

Test generation is an area on which many companies are focusing in search of pro-
ductivity and quality gains. Current industrial practices include at best semi automated
test generation techniques, with all the cost and maintenance problems of an error prone
process. This process should be fully and automatically re-executable, with a complete
understanding of the relationships between speci�cation and tests, their meaning and
their execution results.
Automating the test generation requires a precise and tractable description of the sys-

tem to test. This is where using Formal Description Techniques (FDT) such as Sdl brings
most of their bene�ts. Sdl (Speci�cation and Description Language) is an international
standard [16], de�ned over the years by the International Telecommunications Union as a
common language for the speci�cation of protocol norms. From 1988, a formal de�nition
of the language semantics was added. These formally de�ned semantics allow to design
reliable tools for the simulation, code generation and test generation.
In the telecommunications �eld, the FDT based test generation has been developed

�rst by giving a concrete framework to conformance testing [1]. Conformance testing is a
necessary step to ensure the compliance of various implementations of a given protocol to
its standards. Then this approach has been formalized further in order to facilitate the
emergence of tools [18]. However, the interest into FDT based test generation tools has
been mostly academic up to the middle of the 90s.

�Iulian Ober's work is �nanced by a research grant provided by the CS (Communications and Systems)
group
2This work has been initiated and funded by France-Telecom

2

TestComposer: automated test generation for real time critical systems

The main focus of this paper is TestComposer. TestComposer [11] is a test gener-
ation tool, which allows to generate automatically test suites from Sdl/Uml speci�cation.
While designed primarily for conformance black-box tests generation, its design principles
make it applicable for grey or white box tests.

TestPlayer: a exible approach for rapid test prototyping

TestPlayer [12] is a exible toolbox for specifying, executing and getting reports
for tests written using the graphical language Msc. The actual version of TestPlayer
works for implementation coming from Sdl/Uml speci�cation. It is however designed
in a modular and open way, allowing the user to integrate its own extensions to perform
tests in his own environment. Although built as a separate tool, TestPlayer can use
TestComposer outputs, the two tools forming a complete test environment, from the
test speci�cation down to the test execution and reporting.

Structure of the paper

In section 2, we present the main features of the ObjectGeode [19] toolset.
Section 3 is devoted to the architecture and working principles of the tool TestCom-

poser. We describe the di�erent phases of the test generation process (test purposes
edition and generation, test cases generation and test suite structuring). Then we give
indications on the added value of this tool.
In section 4, we give an overview of TestPlayer. We show how it integrates with

ObjectGeode and TestComposer.

2. ObjectGeode

ObjectGeode is a development toolset for real time and safety critical systems. It
supports the joint use of Sdl, Msc and Uml.

Sdl is the Speci�cation and Description Language [16]. Sdl is a formally de�ned lan-
guage which allows to describe the architecture and the behavior of a real time
distributed system. Originally de�ned in 1984 it was given formal semantics in
1988. In 1992, object oriented concepts were introduced, especially at the archi-
tecture and behavior level. 1996 was mainly for clari�cations and strengthening of
concepts.

Msc is the Message Sequence Charts language [17]. It is used to describe runs of the
system, with a more or less abstract view of its architecture. Msc is especially
useful for the description of nominal and error handling behaviors

Uml is the Uni�ed Modeling Language. In the ObjectGeode's process, Uml is used for
the analysis phase and for the data description, through the Class Diagram, Use
Cases and Statecharts.

The combination of Sdl and Msc can be viewed as a formal extension of Uml, dedi-
cated to hard real-time and safety-critical systems [7].

3

ObjectGeode provides tools for the edition of these three languages, simulation, formal
veri�cation and C code generation. TestComposer relies heavily on ObjectGeode's
simulator, so we give some more details on this tool.

The simulator tool

Validation and veri�cation with ObjectGeode is done with the Simulator tool. The
Simulator allows to simulate the execution of the program, without having to actually
execute it in a real environment. It can be seen as a sort of abstract debugger, as it allows
to simulate the description step by step, to undo execution steps, to set break points and
to watch the contents of variables and queues. Finally, it also allows to record, visualize
as Mscs or replay some simulation sequences.
It is also more than a debugger, as it allows to perform automatic simulation, either

randomly or exhaustively, with systematic comparison of the behavior with special state
machines called observers. The simulator working principle is based on the model checking
principle. Model checking [5, 15] consists in building a model of the system under analysis
and to check the desired requirements on this model. For the simulator, the model consists
in representing the state graph of the speci�cation. Each state of this graph correspond
to a di�erent valuation of the system's variables. Each transition correspond to actions
such as inputs, outputs, assignments, which can change the content of variables. The
check itself amounts to a partial or complete exploration of the model.
The main advantages of this technique are that it can be automated and it is fast.

Furthermore, model checking allows the easy production of counterexamples, when a
property happens to be false.
The bottleneck of these techniques is the size of the state space to explore, which is

exponential in the number of parallel processes of the system. In fact, for Sdl-Uml spec-
i�cations, the size of the state space is usually in�nite, as Sdl allows unbounded process
creation, and communication channels are based on unbounded queues. However,the sim-
ulator exploration engine works \on the y", meaning that it builds this state graph on
demand, according to the transitions it needs to explore. This \lazy" technique allows to
check properties even on in�nite state graphs. It will not allow to prove these properties,
as proofs need exhaustiveness, but it is very useful for �nding errors.

3. Production of test suites with TestComposer

3.1. TestComposer basics
TestComposer working principles come from the conformance testing framework, as

de�ned in [2] and formalized in [18]. Conformance testing can be viewed as a form of
black box testing. The interactions between the tester and the System Under Test (SUT)
are messages, exchanged through Points of Control and Observation (PCO).
TestComposer is the result of the industrial transfer of two complementary research

tools, Tveda [14, 6] and Tgv [9, 4]. Tveda comes from the research laboratory France-
Telecom-Cnet, it provides for test purposes and test case generation, based on state space
exploration combined with heuristics. Tgv has been designed in the French research
laboratories Irisa and Verimag, it provides test case generation based on e�cient, on-
the-y state space exploration techniques.

4

The two prototype tools Tveda and Tgv o�er complementary aspects of the test gen-
eration process. Tveda's strengths are the analysis techniques of the formal speci�cation.
These techniques allow to derive from the speci�cation meaningful behaviors for the test,
which are referred below as test purposes. On the other side, Tgv applies powerful formal
veri�cation techniques to generate from these test purposes and the speci�cation, the test
cases which will constitute the �nal test suite.
The combination of these two tools, integrated on top of the e�cient ObjectGeode's

simulator, forms the new TestComposer tool. It comes as a replacement to the current
ObjectGeode's test generator TTCgeN.

3.2. TestComposer principles
TestComposer principles are depicted in �gure 1. TestComposer takes as inputs

a Sdl/Uml speci�cation, a speci�cation of the test environment and a possibly empty set
of user de�ned test purposes. These user de�ned test purposes can be built interactively
using the ObjectGeode's simulator, or written using Msc observers. The tool can com-
plete the set of test purposes by computation of new test purposes according to structural
coverage (arrow 1). Then the generation engine (arrow 2) is fed with each test purpose,
and produces test cases which are stored in the test case database. Finally, through the
test case database API, the test suite is build and written in a user de�ned format.

3.2.1. Sdl/Uml reference speci�cation
The Sdl/Uml speci�cation is the central item for e�cient test generation. This speci-

�cation is generally not used for the generation of the code of the Implementation Under
Test (IUT), but rather for describing what is the correct behavior of the IUT, from an
external view point. In that sense, the speci�cation may not even reect the internal
structure of the IUT.
This speci�cation must be correct with respect to the user requirements, so that it can

be used as a reference later during the tests execution. One way to ensure this correctness
is of course the use of validation and veri�cation tools.

Test architecture

The speci�cation is also used to describe the test architecture : an IUT is generally not
directly reachable, one must interpose communication layers and Service Access Points.
Furthermore, more than one tester are sometimes needed for testing distributed systems.
In order to model various test architectures, we choose to integrate its description into
the Sdl-Uml speci�cation. A complete speci�cation for test generation thus corresponds
to the description of the System Under test : the IUT embedded into its test architecture.
In example 2, the Implementation Under Test procotol is described as a Sdl block.

This block is connected to the system's environment via two channels, which bear respec-
tively the signals ConnectReq, DisconnectReq, ConnectAck, DisconnectAck, Busy

and DataIn and DataOut. These two channels will correspond to Points of Control and
Observation, when we will consider this speci�cations for test generation purposes.

5

Figure 1. Test generation process with TestComposer

6

Figure 2. Example of test architecture

Behavior description

At this level, the internal structure of the block protocol is hidden. In �gure 3, the
internal structure, as well as the behavior description of the protocol block is given. This
block is composed of two processes : Connector which handles the control of the con-
nection, and Communicator which handles the data transfer. An internal communication
route allows Connector to control Communicator work.
The behavior of Connector is simple : it starts in the Idle state; when it receives the

ConnectReq signal, a check is made to see if resources are available. This check is not
formalized, i.e. at this description level, one does not need to know how the check is per-
formed, only that an internal choice is performed. If resources are not available, Connector
answers Busy and returns to the Idle state. If resources are available, when Connector

send the signal connected to the Communicator, which can begin its work. Connector

also acknowledges the establishment of the communication by sending ConnectAck to its
environment.

3.3. Test environment speci�cation
Sdl allows to design open systems, i.e. systems whose description is in some sense

incomplete, as part of the behavior depends on its interactions with its environment.
In the example given in �gure 2, the environment and the system interact through the
channels Signalling and DataLink . However, this speci�cation does not say anything
more on what the environment does. Will it in fact issue theses messages ? How many
times ? In which order ?
To give answers to these questions, TestComposer accepts a description of the test

environment using the following means :

The output command is used to issue one signal just once from the environment to
the system.

7

Figure 3. Example of behaviour description

8

the feed command is used to describe what kind of signals the environment is ready
to send to the system at any time.

the Msc and Goal observers come generally in complement to feeds, as they are
usually used to �lter signals so they occur only under speci�c conditions. For exam-
ple, a Msc can be used to model the signals interchange of a connection protocol,
and then a Goal [3] observer to model the data transfer. By using appropriate
Msc and Goal observers combination, one can e�ectively control the simulation.

All of these are parts of the test environment speci�cation. This means in particular
thatMsc and Goal observers can be combined with testMsc and Goal test observers,
for a more e�cient or more directed test case generation.
For our little example, a possible test environment speci�cation would be :

feed Signaling ConnectReq

feed DataLink DataIn

which will send these two signals from the environment to the SUT, at any time.

3.4. Test purpose and test case
A test purpose gives a functional view of the test. It is used by TestComposer to

select in the Sdl-Uml speci�cation the corresponding behaviors, which will be combined
to build the test case. In this respect, the test case can be viewed as the operational view
of the test. In short, the test purpose stands for \What should I test ?", where the test
case answers to the \How will I test ?" question.

Test purpose description

A test purpose usually is extracted from the system's requirements. It is then formal-
ized, so it can be processed by a tool. A very frequent candidate for this is the Message
Sequence Charts (Msc) language [10]: a test purpose Msc contains the main interaction
sequence, which correspond to the functionality to test.
An informal test purpose could be \Open the connection, do one data transfer and

close the connection". A corresponding abstract, but formal test purpose would be send
ConnectReq, send DataIn, receive DataOut, send DisconnectRequest, where ConnectReq,
DataIn, ... are messages send and received by the SUT. A complete test purpose would
integrate all the intermediate events needed to ful�ll the sequence. Figure 4 shows this
kind of test purpose.
TestComposer also accepts test purposes described with theGoal language. Goal [3]

is used to describe automata which will play the role of observer during the system simu-
lation. Goal observers are used to �lter out messages and behaviors, impose a prede�ned
order on messages exchanges, evaluate stop or continue conditions depending on expres-
sions of the system's variables. In addition, Goal observers have access to all internal
elements of the speci�cation, and can also change the values of variables or the contents
of queues. So Goal observers can be used for more elaborate simulations, involving fault
injections for example.

9

Figure 4. Example of Msc test purpose

\Manual" test purpose description

The test purposes can obviously be written using the Msc and Goal editor which is
part of the ObjectGeode toolbox. When an Sdl-Uml speci�cation exists, the simulator
allows to produce the Msc test purposes more e�ciently, as it will be shown in the next
paragraphs. However, protocol norms generally use theMsc language to describe nominal
and error handling use cases. These use cases can then be straight used as test purposes.

Interactive test purpose description

When a Sdl speci�cation exists, a more e�cient way is to use the ObjectGeode simu-
lator (see section 2). The user can use the simulator to \compute" what is in his sense, an
interesting test purpose. Then the simulator can complete this test purpose by computing
all the reactions resulting from the last inputs to the system, so that the test purpose
ends in a stable testing state. Finally, the simulator saves this test purpose in the test
purposes database.

Automatic test purpose generation

In addition to user de�ned test purposes, TestComposer is able to compute test
purposes straight from the system's speci�cation. This feature allows to take the max-
imum bene�ts of the speci�cation, especially if its internal architecture maps the IUT
architecture, as this is often the case for low level protocols.

10

The principles of this feature come from a practical viewpoint, which was exempli�ed
by the tool Tveda : for telecommunication protocols, the Sdl speci�cation architecture
generally maps to the code architecture. A good test coverage at speci�cation level
translates into a almost-as-good coverage at implementation level. So the idea is to
generate a set of test purposes such that every transition of the speci�cation is covered
by at least one test purpose.
Technically, the generation of test purposes with TestComposer is done at a �ner

level, as the coverage unit chosen is the basic block, i.e. roughly the biggest sequence of
instructions without branching conditions (no decision, no join, no state change). The
computation itself is again based on the ObjectGeode simulator. We extended its state
space exploration techniques so that for each uncovered basic block during exploration, a
new test purpose is computed and saved.
In practice, the user �rst chooses in the speci�cation what are the parts to cover by

the test purpose generation, then he gives an upper percentage of coverage to reach (one
hundred per cent is usually unreachable for real speci�cations). Once the computation
�nishes (by reaching the desired percentage or by resources exhaustion), the user can
analyze the coverage results through a graphical browser, which allows to visualize the
uncovered parts. Then he can alternatively change some generation parameters, such as
the exploration mode, or use his system's knowledge to build interactively a test purpose
for the coverage of these parts.

Postamble computation

A test purpose is structured into three parts :

A test body which corresponds to the execution of the events covered by this test pur-
pose,

a preamble which leads the SUT from its starting state to the beginning of the test
body,

a postamble which gets the system back in a state where it can execute the next test
case. This kind of state can be of course the initial state of the system, but these
states usually are no more reachable after the system start. Other states of interest
are the initial stable states, i.e. the states where the system ends in, when started
with no external stimulation.

With TestComposer the postamble goal can be user de�ned in the sense that the
user can de�ne the characteristics of the state the postamble should go to. Classical ex-
amples can be getting a given process back to its initial state, or forcing the disconnection
phase of the protocol. A suitable postamble goal for our example would be the Idle

state of the Connector process. During the test purpose generation process, TestCom-
poser automatically computes a path leading to this goal. The postamble of the �gure 4
corresponds to a sequence going back to this state.

Test purposes database

The combination of interactive and automatic test purpose generation allows the user
to build a test purposes database. This database is saved in session independent �les, so

11

the user can possibly go on with the subsequent test generation phases, and come back
to add some test purposes in the database.

3.5. Test cases computation
A test purpose describes what is the aim of the test, by giving the sequence of events

leading to test success. However, to turn a test purpose into a test case, one must
add some more information, especially when dealing with real-time distributed systems.
The test case must provide all the information needed by the tester for the test correct
execution, but also additional information to provide the user with accurate data in case
of test failure. The failure of the test can come from several causes, among them : an
implementation fault, a faulty test case, a non deterministic implementation.
Let us take care of the �rst two cases.

� A implementation fault is what we are looking for. In a real time system, it corre-
sponds essentially to the following situation: a given message was expected during
a given interval of time; a wrong message was received, or the right message, but
at the wrong time. It is easy to take care of wrong messages, by considering that
any unexpected message leads to the test failure. For dealing with out-of-sequence
messages, the test case should contain timers to bound the wait for messages.

� We claim that with TestComposer test cases can not be faulty, as long as the
Sdl-Uml speci�cation reects the correct behavior of the speci�cation. This can
only be true if this speci�cation has been thoroughly simulated, best veri�ed, so
that it can be used as a trustful reference.

The last point is the most tricky one, and in fact it is what makes test generation and
writing di�cult for distributed systems.

Dealing with non determinism

Distributed and real time systems are generally non deterministic. Moreover, even a
deterministic IUT can be viewed as non deterministic when embedded in its test architec-
ture. Many test tools do not allow to handle well non determinism. They usually allow
only two test execution results : either the test succeeds, or it fails. However, several
executions of the same test can hold both results, when applied on a non deterministic
system. This makes the interpretation of test results di�cult and more time consuming,
as every test failure must �rst be analyzed to reject failures due to non determinism.
The handling of non determinism in the description of test case thus helps to reduce

greatly the test execution costs. To allow this, a test language such as Ttcn, designed
for the test of telecommunication protocols, introduces an alternate test verdict, the
Inconclusive verdict. This verdict allows to distinguish between a test failure due to an
internal choice of the SUT, and a real implementation error.
TestComposer is designed to handle correctly non determinism, both during the test

case computation and in the test case description. This is explained in the following
section.

3.5.1. From a test purpose to a test case

12

Figure 5. From a test purpose to a test case

The computation of the test case from a test purpose is done in several steps, described
in the following paragraphs.

Computation of the main path

The test purpose describes the sequence of events leading to the test success. This
sequence can be more or less abstract, i.e. there may be some events missing. In any
case, many behaviors described at the speci�cation level can match the test purpose. The
�rst task of the tool is to �nd such a matching behavior in the speci�cation. This is done
by exploration of the state graph which corresponds to all the behaviors described by the
speci�cation. The �rst one found will be the success path of the test case, i.e. the path
leading to the Pass verdict. In example 5, the main path is indicated in the test purpose,
and transposed as is in the test case, from the tester point of view (i.e. inputs to the
system besome outputs from the tester, and vice versa).

Computation of alternatives

Once a success path is found, the tool begins to compute alternatives to this paths.
These alternatives are still behaviors described in the speci�cation. They are of two
natures :

Pass alternatives When testing distributed systems, one often has to wait for two or
more messages, without any idea of the outgoing order of these messages. Even
if these messages are issued in a given order by the IUT, the use of several PCOs
and communication delays between the IUT and the tester can change the order
of messages on reception. So even if the test success path speci�es that message a
should be followed by message b, the other order can lead to the same test success.

In order to detect these situations, TestComposer explores alternatives paths
from the success path, to see if they also lead to success. These paths are explored
as long as they consist only of SUT's outputs. Loops are also computed, i.e. paths
going back to some previous step of the main path.

13

Inconclusive alternatives If an alternative to the main path does not lead to the suc-
cess, it still remains a valid sequence, as it is described in the speci�cation. So
TestComposer keeps them in the computed test case, truncated to their �rst
event, and annotated with the Inconclusive verdict.

In example 5, an Inconclusive alternative is computed, for the reception of the valid,
but not desired message Busy.

Timers setting

Several timers are introduced to handle the di�erent situations the tester must face :

\Wait for answer" timer TAC This timer is the most classical one. The tester sends
a message, then waits a bounded time for reactions. Its timeout leads to the test
failure.

\Wait for user input" timer TWAIT Protocol testing sometimes requires user in-
teraction, even in the course of an automatic test execution, as The tester does not
always have access to all the interfaces of the System Under Test. In that case,
a long range special timer is set, leaving enough time for a user to provide the
necessary inputs. Its timeout leads to the test failure.

\Wait for no answer" timer TNOAC A test sequence can lead the system in a state
where it just waits for another input, without emitting any message to the tester. In
order to detect this situation, the tester sets a speci�c timer, which timeout allows
to continue the test.

\Wait for timer expiration" timer TEMPTY The System Under Test can have its
own timers running. The timer TEMPTY is meant for the detection of the expira-
tion of these timers.

3.5.2. On the y generation
The generation engine is base on state space exploration techniques. Many test gen-

eration tools need to build the complete state space before being able to compute a test
case. The ability to work \on the y", i.e. generation of the test case during the state
space exploration is a key to e�ciency, as it allows to stop the exploration as soon as the
test case is complete

3.6. From test cases to the test suite
The test cases produced are stored into a database. This database is accessible through

an Application Programming Interface which provides access to data types and signals
de�nition, messages values, test architecture, test cases and test suite de�nitions. Then
a test suite production module can be interfaced to this API, to produce the user desired
format for its test suite.
The �rst test suite production module we implemented with this API generates a Ttcn-

mp �le. Ttcn is an international standard for the description of protocols tests, de�ned
in [1]. Existing Ttcn environments allow the de�nition and edition of test suites, as well
as the compilation and execution of the tests on real targets.

14

Figure 6. Excerpt of the Ttcn suite, with Sema Group ted editor

On the Ttcn example of �gure 6, we show the �nal test case, generated from the
�gure 4. Ttcn is a tabular notation, the indentation (denoted in the �rst column)
indicates the sequence number of the corresponding event. Each event is either a sending
(!) or reception (?) of a message, on a given PCO. Timer commands (START TAC, CANCEL

TAC) are associated to each event.
The main sequence is annotated with the temporary and �nal Pass verdicts, and in-

formation about its structure. The busy reception is indicated as an alternative to the
ConnectAck reception, and leads to the temporary Inconclusive verdict.
Finally, an informal test purpose is synthesized from the test body, allowing a human

operator to manually perform the test if necessary.

3.7. TestComposer added-value
The added value of TestComposer depends �rst on the availability of a formal spec-

i�cation of the SUT. Developing a Sdl-Uml speci�cation is a fruitful task, as it allows
to track many analysis and design errors at a early stage, just by having to formalize the
requirements, and later by using a tool such as the simulator to simulate and validate the
speci�cation behaviors. Writing and maintaining such a speci�cation is very cost e�ective,
especially when dealing with new systems. In this context, test generation as well as code
generation brings its best value.
For existing systems, where no formal speci�cation exists, the cost of setting up auto-

mated test generation must be compared to the cost of writing a test suite from scratch.

15

The speci�cation must be written, validated, the test environment must be described and
all generation parameters must be set and tuned. The complete task can take up to
twice the time needed to write the test suite, especially if we consider someone expert in
test languages and novice in speci�cation languages, as shown by the ongoing study [8].
However, this overhead is paid for only initially,furthermore, one must consider the other
bene�ts of test generation :

Link between requirements and tests The relation between tests and high-level re-
quirements is better maintained, as the Sdl-Uml speci�cation comes straight from
the high-level requirements. Then TestComposer test generation process ensures
the correctness of the test produced, and allows to trace each test back to the
speci�cation.

Easy test suites maintenance Most requirement or design changes usually imply ma-
jor rewriting of the test suites. When using automated test generation, any require-
ment or design change can be reected directly in the Sdl-Uml speci�cation, and
the new test suites are then re-generated at no cost.

Faster implementation debugging the Sdl-Uml speci�cation, once validated, can be
considered as a reference. Then TestComposer ensures that the tests generated
are correct, as long as the speci�cation is correct. It is a major improvement on
current test practices; when a test fails, the usual question is \What is wrong, the
implementation, or the test ?" As up to 15 percent of hand written test cases can
be false, this is a valid, very time consuming question. With TestComposer,
the speci�cation is the reference, and the test failure is always attributed to the
implementation.

Identifying Inconclusive verdicts from Fail verdicts is also a gain when debugging,
as an Inconclusive does not require an investigation.

4. Executing tests with TestPlayer

TestComposer requires a full Sdl- Umlspeci�cation in order to generate tests. How-
ever, it is often convenient to use directly theMsc language to describe and execute tests,
without having to bother with the full system's description.
This is where a tool such as TestPlayer brings its value. TestPlayer de�nes

an open architecture for executing conformance tests, and consists of a set of tools for
interpreting test Mscs, translating Mscs into some internal test scripting language, ex-
ecuting test scripts and examining test results. TestPlayer can take as inputs the
testMscs generated by TestComposer, or independently, testMscs provided by some
other means.
The architecture of TestPlayer described below, relies on two fundamentals: the

Msc language and an internal scripting language calledTdl (Test Description Language).
The Tdl language exists in order to provide the parts that are missing inMsc but are still
necessary to express certain test cases: variables, control structures, explicit verdicts and
an imperative language. The Tdl language is based on a set of test primitives (see [20]
for a complete description):

16

Output - sends a message to the system

Expect - generically speci�es a signal that is expected to come from the system

TimerSet, TimerReset, TimerWait - for manipulating timers

Alternative - expects one in a set of possible (generically speci�ed) responses from the
system

Verdict - explicitly gives the verdict of a test script

These primitives can be implemented in almost any language (C/C++, Tcl, Java) at
little expense, and the host language brings in variables and control structures. Within
our architecture the main host language is Tcl [13] and Tdl denotes the extended Tcl.
TestPlayer provides an open architecture for testing, based on the lightweight for-

malisms of tMsc and Tdl. It o�ers customization and power of expression su�cient to
be applicable to a large number of real systems and test cases.
Figure 7 depicts the overall architecture of TestPlayer. We distinguish between three

phases: the test preparation phase, the test execution phase and results use phase.

Test campaign preparation

When preparing a test campaign, the user must provide the test cases. A test case
may either be expressed by an Msc hand-written or generated by TestComposer or
it may be expressed directly in a Tdl script. If the former is the case, then the Msc

is translated automatically in a Tdl script, which can be modi�ed further. The Tdl
Gen tool that does this translation is provided as a part of TestPlayer. The rules for
translating an Msc into a Tdl script are quite straightforward, as Msc constructs map
almost one-to-one to Tdl primitives.
The engine that executes the Tdl scripts needs to know the data types and the signals

that will be exchanged between the tester and the system under test (SUT), in order to
be able to encode/decode and send them out to the system. Consequently, a part of the
preparation phase is dedicated to the description of the data and signal types of the sys-
tem, and to the generation of the encoding/decoding component (1) of the Tdl execution
engine. The data and signal types may be described in Sdl [16] andAsn.1 /citeZ.105, and
then the encoding/decoding component (1) is generated automatically using StubGen, a
tool provided with TestPlayer.

Test campaign execution

At execution time, the core of TestPlayer is the Tdl execution engine. The library
containing the implementation of the test primitives is the �xed part of execution en-
gine, i.e. it cannot be modi�ed or replaced. The entire conception and architecture of
TestPlayer relies on it.
The test primitives library depends on a set of customizable components. First there is

the Tcl wrapper that makes the test primitives (Output, Expect, Verdict, etc.) available
as Tcl commands in an extendedTcl interpreter. This is essential, since the Tdl scripts
generated from Mscs are Tcl programs (with calls to our primitives). As mentioned
above, the implementation of the test primitives is not depending on any host language,

17

Figure 7. TestPlayer Open Architecture

so they may be used as well from C. However, by doing so, the user misses the advantage
of having an automated translator that converts test Mscs into Tdl scripts.
Another component used by the test primitives implementation, and part of the Tdl

engine, is the Signal Encoding/Decoding component denoted by (1) on Figure 7. This
component contains call back functions for signal and data encoding/decoding/matching.
The tester communicates with the SUT using a certain protocol, and the functions con-
tained in component (1) are called to pack/unpack the signals and data to be transmit-
ted/received. Component (1) also contains the functions that match an incoming message
towards a generic message speci�cation given in an Expect or Alternative command. As
mentioned above, the Signal Encoding/Decoding component may be generated from the
SDL or ASN.1 description of the system signals and data types.
The Protocol component denoted by (2) on Figure 7 implements the protocol used

by the tester to communicate with the system under test. TestPlayer may be used to
apply tests in di�erent con�gurations, in which the tester and the SUTmay be on the same
machine or on two di�erent machines connected by a network, a serial line, etc. To achieve
such a generic architecture, the communication functionality must be kept in a separate
component in order to allow for changes in the underlying communication means. The
Protocol component (2) must provide a simple interface containing functions for opening
and closing connections, sending binary data to a connection and doing blocking reads on
a connection. Beyond this, the user is free to use whatever suitable means to implement
the communication between the tester task and the SUT (TCP/IP, some proprietary
protocol, OS IPC, etc.)
The Test Reports component (3) formats and stores the partial or �nal results of a

test in a log. We kept this functionality in a separate component because a user may
require that the results of the tests be stored in a speci�c format: a database, a log �le

18

with a proprietary format, etc. Any replacement for this component must implement a
simple interface containing the following functionality: opening/closing a log, writing a
test event to a log, writing a test verdict to a log.

Using test results

After executing a test campaign, the results of the test cases and the events that
occurred all along the campaign can be visualized. Using a specialized tool, the Results
Visualization tool, one may navigate from any event occurrence to the Tdl source line or
to theMsc construct that corresponds to it. This tool accesses the information contained
by the test log, using a replaceable component for reading the log, similar to (3).
Thus our test execution architecture is based on the interpretation of testMscs and on

the Test Description Language, and the parts describing system signals and data types,
the communication protocol between the tester and the system, and the formatting of test
results are left open and customizable. We instantiated the open components to obtain a
concrete test execution framework for testing ObjectGeode systems.

4.1. TestPlayer for ObjectGeode

TestPlayer for ObjectGeode is the complete TestPlayer framework for systems
modeled in Sdl [16] with ObjectGeode [19] and for which code is automatically gen-
erated with the ObjectGeode Sdl-C Code Generator. It is an instantiation of all the
generic components described in the previous section. The Signals Encoding/Decoding
component (1) is generated by the StubGen tool, which is able to take in input the Sdl
description of the system and extract all the necessary information. The Protocol com-
ponent (2) uses TCP/IP to communicate with the system side. The tested system being
generated automatically using the ObjectGeode SdlC Code Generator, a proxy task is
automatically added to the system. This task ensures the communication with the tester
using the same protocol as the Tdl engine component (2), and has a minimal interfer-
ence with the implementation under test. Finally, the Test Reports component (3) was
implemented so that it keeps the test results in an ASCII format test log. These results
can be visualized and used with the Results Visualization tool.

5. Conclusion

We have presented TestComposer, an automated test generation tool for confor-
mance testing. It is completed by TestPlayer, an open and exible environment for
test description and execution usingMscs. Both modules will be part of theObjectGeode

toolset during the coming year.
TestComposer allows the test designer to work on a high level Sdl/Uml speci�ca-

tion, rather than working at a low level test language. This speci�cation can be validated,
using a tool such as ObjectGeode's simulator. This allows to consider this speci�cation
as a reference. TestComposer then provides for assisted or automated test genera-
tion, dealing completely and correctly with the non deterministic nature of distributed
real-time applications.
The ability to generate test purposes based on the structural coverage of the speci-

�cation makes of TestComposer an important tool for certi�cation purposes. If we
consider a critical application, which code is generated from an Sdl-Uml speci�cation,

19

then its certi�cation requires either the certi�cation of the code generator, or a complete,
one hundred per cent functional and structural coverage of the code by the tests. As
the code generated from Sdl is structurally very close to the speci�cation itself, test
purposes generated by TestComposer are very useful to ensure coverage of the code.
Furthermore, abstract test purposes can be de�ned by the user, to provide for functional
coverage.
Last but not least, the performances of the test case generation engine allow the com-

putation of long, tricky test cases which would be hard to design by hand. Failures of
critical systems usually don't come from single errors, but mostly from the conjunction of
di�erent errors. Writing tests for this kind of \errors interaction" is hard and very time
consuming; the ability to work on-the-y brings here the possibility to explore very long
behaviours, and to generate test cases corresponding to these behaviours.
TestComposer is actually tuned for working in a Ttcn environment, together with

the Ted editor of the UK-French company Sema Group, and the Ttcn compilation
execution toolbox from the German company Danet Gmbh. However, its reliance on
standards for test purposes description, and its API to the test suite make it open to user
speci�c languages and testbeds.
The main bottleneck for the use of TestComposer is writing and validating the Sdl-

Uml speci�cation. Development processes which do not already integrate such practices
can �nd this is too heavy an investment to make in the short term. Using a light weight
approach such as TestPlayer, which in its most generic form does not require a full
Sdl-Uml speci�cation, can �t these development processes.

REFERENCES

1. ISO/IEC International Standard 9646-1/2/3. OSI-Open Systems Interconnection, Informa-
tion Technology - Open Systems Interconnection Conformance Testing Methodology and
Framework - Part 1 : General Concept - Part 2 : Abstract Test Suite Speci�cation - Part 3
: The Tree and Tabular Combined Notation (TTCN), 1992.

2. ISO/IEC International Standard 9646-1/2/3. OSI-Open Systems Interconnection, Informa-
tion Technology - Open Systems Interconnection Conformance Testing Methodology and
Framework, 1992.

3. B. Algayres, Y. Lejeune, and F. Hugonnet. GOAL: Observing SDL Behaviors with GEODE.
In SDL forum'95. Elsevier Science (North Holland), 1995.

4. Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, Claude Jard, Thierry J�eron, Alain
Kerbrat, Pierre Morel, and Laurent Mounier. Veri�cation and test generation for the SSCOP
protocol. Journal of Science of Computer Programming, Special Issue on The Application
of Formal Methods in Industry Critical Systems, To appear, 1999.

5. E. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of �nite-state concurrent
systems using temporal logic. In 10th Annual Symposium on Principles of Programming
Languages. ACM, 1983.

6. M. Clatin, R. Groz, M. Phalippou, and Richard Thummel. Two approaches linking a test
generation tool with veri�cation techniques. In A. Cavalli and S. Budkowski, editors, Pro-
ceedings of IWPTS'95 (8th Int. Workshop on Protocol Test Systems, Evry, France). INT,
sep 1995.

7. E. Cohen. Uml, Sdl, and Msc: Object-oriented and real-time combined. Distributed
Computing, 1(2):146{160, June 1998.

20

8. CS-Telecom. Experimentation of an automated test generation prototype. Technical report,
CS-Telecom, 1999.

9. L. Doldi, V. Encontre, J.-C. Fernandez, S. J�eron, T. and< Le Bricquir, N. Texier, and
M. Phalippou. Assessment of automatic generation methods of conformance test suites
in an industrial context. In B. Baumgarten, H.-J. Burkhardt, and A. Giessler, editors, IFIP
TC6 9th International Workshop on Testing of Communicating Systems. Chapman & Hall,
September 1996.

10. Jens Grabowski. Test Case Generation and Test Case Speci�cation with Message Sequence
Charts, Ph.D. Thesis. Universitat Bern, 1994.

11. A. Kerbrat, T.J�eron, and R. Groz. Automated test generation from Sdl speci�cations. In
Proceedings of SDL forum'99. Elsevier Science (North Holland), 1999.

12. I. Ober and A. Kerbrat. Test speci�cation and execution using tmscs. In Submitted to
Forte/PSTV'99, 1999.

13. John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Pub Co, 1994.
14. M. Phalippou and R. Groz. Evaluation of an empirical approach for computer-aided test

cases generation. In I. Davidson, editor, Proceedings of IWPTS'90 (3rd Int. Workshop on
Protocol Test Systems, McLean VA, USA). Corporation for Open Systems, oct 1990.

15. Jean-Pierre Queille and Joseph Sifakis. Fairness and related properties in transition systems
| a temporal logic to deal with fairness. Acta Informatica, 19:195{220, 1983.

16. ITU-T Recommendation Z-100. Speci�cation and Description Language, 1996.
17. ITU-T Recommendation Z-120. Message Sequence Charts, 1996.
18. ITU-T Recommendation Z.500. Formal methods for conformance testing, 1997.
19. VERILOG. ObjectGeode reference manuals. Technical report, VERILOG, 1996.
20. VERILOG. TestPlayer Reference Manual. Technical report, VERILOG, 1999.

1
Page 1

IQUIP
98 425 C&T 1

Test Factory (TSite®):
a next step in structured testing

Ingrid B. Ottevanger

IQUIP
98 425 C&T 2

Agenda

• Introduction
• Structured testing
• Rationale of TSite
• Characteristics
• Examples
• Conclusions
• Challenges

2
Page 2

IQUIP
98 425 C&T 3

Introduction

IQUIP Informatica B.V.
• Large test department (over 275 testers)

• Customers are most Dutch and Belgian top-200 companies
• Structured testing according to the TMap® product set
• R&D

IQUIP
98 425 C&T 4

Testing: what is it?

• Find errors

• Inform about quality and risks
• Prevent errors
• Produce reusable testware

• Improve test process

3
Page 3

IQUIP
98 425 C&T 5

Testing of information systems

• Application software
• Hardware, system

software
• System management
• Procedures, tools
• Docuware
• Training, support
• Implementation
• ...

Quality characteristics

• Functionality
• Reliability
• Usability
• Efficiency
• Maintainability
• Portability

IQUIP
98 425 C&T 6

Time needed

• 40 % find defects, analyse
and evaluate them

• 40 % prepare tests and
specify test cases

• 20 % plan and control tests

Test execution

Preparation and
specification

Planning and
control

4
Page 4

IQUIP
98 425 C&T 7

Need for structure

• What, when? Life cycle of activities
• How? Techniques
• Where, using what? Infrastructure and tools
• Who? Organisation

L

T

OI

IQUIP
98 425 C&T 8

Phases (Life cycle)

PreparationPreparation
SpecificationSpecification

ExecutionExecution

CompletionCompletion

P S C

P&C

E

Planning & ControlPlanning & Control

5
Page 5

IQUIP
98 425 C&T 9

Step 1

Test as good as possible under:
• Complexity
• Risks and priorities
• Time pressure

Solution: structured testing L

T

OI

IQUIP
98 425 C&T 10

Step 2

• Higher and higher demands
• Too much time, too much money
• Unknown test quality

• Loss of investment
• Test personnel elsewhere

• ‘Management’ of test team
• Improve test process

Solution: Test Factory

6
Page 6

IQUIP
98 425 C&T 11

TSite®

• Dedicated test organisation
• For more than one project, system or customer
• Controllable costs and time
• Continuous improvement of process quality

Synonyms:
• Test Factory
• Test Service Centre
• Test Competence Centre
• ...

IQUIP
98 425 C&T 12

What’s the difference?

• Structured test process with extra demands
– reusable
– flexible, adaptable
– ready-to-use

• And special use of
– automated testing
– infrastructure
– human resource management

L

T

OI

7
Page 7

IQUIP
98 425 C&T 13

Test automation

• Tools for all phases, e.g.
– project management
– defect repository
– coverage analysis
– reporting

• Test suite is automated system
– maintainable
– data driven
– business specialist for test cases
– tool specialist for test programs

IQUIP
98 425 C&T 14

Reusable infrastructure

• Implementation for parallel test projects
• Configuration for more than one business system
• Standards for test products
• Procedures and tools for several phases

8
Page 8

IQUIP
98 425 C&T 15

Human resource management

• Long term
• A career for personnel

– personal development within TSite
– knowledge and skills
– testing is a profession
– atmosphere at work

• Specialisations for different tools
• Training in standards and procedures

IQUIP
98 425 C&T 16

Implementation

Test
process
improve-
ment

Human
resource
manage-
ment

Dynamic
infra-
structure

Test
automation

Structured testing

9
Page 9

IQUIP
98 425 C&T 17

Prerequisites

• Structured testing
• Test maturity
• (Semi) permanent organisation
• 1 : n
• Scope
• Reusable environment, procedures, expertise
• All (most) phases of life cycle model
• Process improvement

IQUIP
98 425 C&T 18

 TSite?
• Usability labs (various)
• Test Centre (Bank and Insurance company)
• Test Service Centre (Telecom industry)
• Competence Centre Testing (Social insurance)
• Y2K Test Centre (Railways)
• Test Centre (Government)

Examples

X

X
X ?

XX /

10
Page 10

IQUIP
98 425 C&T 19

Conclusions

• Structured testing
– yes or on the way
– TSite sometimes misused

(internally as well as externally)
• Test maturity

– in varying degrees
• (Semi) permanent organisation

– depending on management support
• 1 : n

– e.g. complete organisation, one BU, one
mega project, all Y2K projects, one supplier

IQUIP
98 425 C&T 20

Conclusions (continued)

• Scope
– deliberate choice

• Reusable
– expertise sometimes not

• All (most) phases of life cycle model
– specification and execution sometimes not
– completion ‘in the crumple zone’

• Process improvement
– going concern

11
Page 11

IQUIP
98 425 C&T 21

Conclusions (general)

• All criteria work in varying combinations
• Success as a result of availability of

– expertise
– infrastructure
– resources

• Shorter total project time?
• Cheaper?
• Higher and predictable quality

IQUIP
98 425 C&T 22

Challenges

• Acquisition
• Personnel
• Bureaucracy
• Planning
• Services
• Communication and PR

12
Page 12

IQUIP
98 425 C&T 23

Test Factory (TSite®):
a next step in structured testing

Copyright © 1999 IQUIP Informatica B.V., Diemen (The Netherlands) p. 1

Test factory (TSite®):
A next step in structured testing

Dr. Ingrid B. Ottevanger

IQUIP Informatica B.V.
PO Box 263, 1110 AG Diemen, The Netherlands

Tel: +31 20 660 6600
Fax: +31 20 695 3298

E-mail: i.b.ottevanger@iquip.nl

0 Abstract
Both the increasing importance of software in today's society and the costs that are
involved in testing, confirm the need for structuring the testing process. Structured test
methods have become widely used for this purpose, e.g. TMap® (Test Management
approach to structured testing of software products). Given a structured way of testing,
organizations may still face challenges, the next level of them: how to make testing
faster, cheaper, better still.
TSite is a dedicated test organization that performs tests for more than one project,
system or customer. Emphasis is put on the process of testing (efficiency, quality) rather
than project aspects. Much attention is therefore paid to reusability, conservation of
testware, tooling, human resource management; in short, to long term aspects.

1 Introduction - When Structured Testing does not Suffice
Testers have been mainly occupied with facing the major challenge: how can we
organize the best possible test, for a large and complex information system, within the
narrow limits of time and budget.
The approach of 'structured testing' provided an answer to this problem. Key issues in
this approach are thorough planning and preparation, building a suitable test
infrastructure, developing standard test techniques and embedding the test process in the
organization. For most organizations today, this is still a goal worthwhile to achieve.
However, organizations that have already implemented structured testing successfully,
are facing a next level of challenges:
High cost
Testing claims an increasing amount of the IT budget. The productivity of programmers
increases owing to the use of advanced languages and tools, while the productivity of
testers lags behind, one of the reasons being that each test project has to be organized
from scratch.
Long lead times
Many customers demand ever smaller time frames for delivery. From a development
point of view the total project time is shortened by the application of new techniques and
methods (e.g., Rapid Application Development). The test team is expected to respond
quickly to the rapid and frequent deliveries of new releases, often under circumstances of
unclear or insufficient specifications.

Copyright © 1999 IQUIP Informatica B.V., Diemen (The Netherlands) p. 2

Unknown quality of the test
With every new project the customer has to assess how thorough and well performed
testing is being executed. Many customers do not want to bother anymore and demand a
well defined test process with a constant and predictable quality.
A Test Factory, or TSite, is an answer to the above mentioned demands.

2 TSite in Relation to Test Process Improvement

2.1 Purpose

TSite is a dedicated test organization that performs tests not just for one project but for
many different projects, different systems and different customers. It may be an
independent organization by itself or an independent part of the IT department of a larger
organization. It focuses on the test process to improve its efficiency and quality. The
goals of TSite are: cheaper, faster, better testing.
With this it is able to sell its test services at competitive prices. Such an organization we
find under different names, including test factory, test plant, test service centre, test
competence centre.
TSite is useful especially in situations in which reusability is feasible, or infrastructure or
expertise are scarce. These include:
• Maintenance testing;
• Large scale projects such as Millennium and Euro;
• Special IT environments, such as Rapid Application Development or Object

Orientation;
• As part of a 'software factory'.

2.2 Starting Conditions

The basis for TSite is a structured test approach. This means that the following four
'cornerstones' are well organized:
• In a test life cycle it is defined what activities have to be performed and when, who is

responsible and what will be the result or product.
• Standard techniques are developed to support various activities in various phases.

Examples are: techniques for determining test strategies, for specifying test cases (test
design), for reports on quality or coverage, for test management techniques etc.

• The infrastructure is built in order to create a test environment for test execution. It
consists of the hardware and software platform, the network, business applications
and all associated databases and tables, tools etc.

• An organization is defined, which includes an organizational structure, defined test
functions for personnel, training, and many procedures and tools to support
communication and secondary processes such as test management, change control,
fault report management.

So far TSite is not much different from any well organized test project. What makes it
different are the extra requirements on the test process:
• Reusability

It is not just for one project, but it must be used again and again for many more
releases to come.

• Flexibility and adaptability
It is not just for this one system or application under test. It must be able to be used
for testing other systems, with a minimum of extra effort.

Copyright © 1999 IQUIP Informatica B.V., Diemen (The Netherlands) p. 3

• Ready to go
In classical test projects preparation takes a lot of time and effort. TSite enables us to
start test execution as soon as possible.

3 Main Components of TSite
The extra requirements on the test process have specific consequences on how to
organize and implement the structured test approach. The areas that are most affected are
test automation, infrastructure and human resource management. Some typical
characteristics are given below.

3.1 Test Automation

Automation is essential in order to be able to test cheaper, faster and better. Many tools
are available to assist in various testing tasks, such as test project management, test
specification, test execution, coverage measurement, problem management etc. In TSite
the test process is progressively automated as part of a test process improvement
programme.
Of all testing tasks, test execution is the one that often gets top priority to be automated,
because it is on the critical path of IT projects. It is not surprising then that test execution
tools attract much attention. A large range of record and playback tools are available,
with increasingly attractive (graphical) user interfaces and exciting technological
possibilities. Unfortunately, these expensive tools often end up as shelfware. The reason
for this usually is that organizations have too high expectations of the tool, and that they
underestimate the knowledge and skills required to use them properly.
For a long time, organizations required that test tools should be extremely user friendly,
so that end users should be able to work with them. This suggested that end users should
be able to automate tests. The result was often poor. The first step to successful test
automation is to recognize that it takes an automation project to achieve it. It requires
automation skills and automation techniques. The technique of 'data driven testing' is
becoming widely recognized as a good approach for creating maintainable test suites, the
(record & playback) test tool providing the development environment.

3.2 Reusable and Multi-Purpose Infrastructure

In TSite we need a ready-to-use infrastructure, that has enough flexibility to be used for
different systems.
• All business applications that interact with each other are installed and configured on

the same infrastructure. Different configuration settings, including user authorization
files and shared tables, are saved to enable separate testing of individual business
applications as well as integration between selected applications. Each test has its
own initial settings saved (such as specific database contents) and is automated as
much as possible.

• Test tools are installed and configured in such a way, that different tests can make use
of them without messing up each other's results. In order to achieve this many things
can be arranged or created: standard directory structures defining where to look for
test input and where to store the output, reusable scripts for the performance of
standard activities, such as logging in on a remote server or collecting certain types of
test output, etc.

Copyright © 1999 IQUIP Informatica B.V., Diemen (The Netherlands) p. 4

• TSite maintains standards and templates for all test deliverables, such as test
strategies, test plans, test specifications, error reports. No time is wasted on inventing
new ways to carry out old things.

• When TSite is requested to test a completely new and different application, most
components can be used immediately. Procedures, templates, fault report, database,
probably do not need to be adapted. Tools can be employed very quickly, because
configuration settings and structures are ready and people are already experienced in
using them correctly and efficiently. Under adverse circumstances, however, it may
occur that a hardware platform must be changed heavily or a complete new one must
be installed.

3.3 Human Resource Management

TSite has long term interests. It does not exploit people to successfully finish this one
project on time, but it keeps in mind that it wants to stay in business for a longer period
of time. Its staff should be encouraged to stay and improve their skills. Experience and
knowledge should be preserved and shared, and applied in future projects for the
improvement of the performance of TSite.
TSite has specialists for test tools used, in order to ensure maximum advantage of each
tool.
TSite personnel is trained in all working procedures and techniques, such as developing
test strategies, participating in problem management meetings, producing reports. This
causes them to be able to start very quickly with a new test job.

4 Implementing TSite

4.1 Scope and policy

Essentially TSite is a line organization rather than a project organization. Line
management in TSite must ensure that all resources (people and machines) are used
efficiently. Test contracts must be acquired in an active way. All employees should
realize that TSite must be competitive. It should not be obligatory to use TSite for test
activities; IT projects can also organize tests themselves. However, they should not want
to do this since TSite can do it faster, better and cheaper.
One TSite works most efficiently for one type of organization (banking, insurance,
government, etc.). The support of more organizations costs more in terms of application
platform and required business knowledge. The scope may also be one of the platforms
(e.g. a TSite for mainframe applications only), test levels (e.g. functional acceptance
testing), quality characteristics (e.g. usability testing), subject matter (e.g. billing, savings
accounts, branch applications).
Although TSite is an independent organization, close communication with other parties
(system development, users) is essential to know where to focus test attention and how to
operate certain system functions.

4.2 Management of Change

The word 'TSite' and its synonyms turn out to have characteristics of a buzz-word.
Managers want a test factory in their organization, without knowing the feasibility or
realizing the consequences. The implementation of TSite must be treated as most other
fundamental organizational changes: carefully.

Copyright © 1999 IQUIP Informatica B.V., Diemen (The Netherlands) p. 5

To start with, does your organization have the right problem for this solution? Perhaps
the problem more heavily lies in uncontrolled changes of the specifications, or improper
use of tools, or testers messing up each others' test results. In many organizations the first
steps in solving problems with test processes may well involve the introduction and
optimization of an approach to structured testing. Process improvement methods can be
of help in analysing which steps to take first. When an organization has successfully
implemented structured testing, but finds out that for each project again it costs too much
time and money to set up the test organization, TSite is a suitable next step to take.
The initial phases are crucial. It is wise to start small with a pilot project. Take time to
learn. Standards and structures will change frequently in the beginning. On the other
hand, enough test work must be acquired to avoid that people run out of work after a few
months. Management commitment is essential to survive this difficult phase.
When all goes well and everything works in TSite, beware of the monster of
bureaucracy. Employees must remain alert and maintain their competitive mentalities. If
they don't, customers might look around for other test possibilities.

5 Examples of TSites
Some examples of existing test organizations are discussed here. We try to answer the
question whether they can be considered genuine TSites, i.e. whether or not they fullfil
criteria as discussed above.
Various usability labs exist, which are TSites concentrating on testing the quality
characteristic Uability. They are permanent organizations, based on structured testing,
with high test maturity, working for more than one customer, complete life cycle,
continuous process improvement.
A test centre at a large Bank started out as an organization offering infrastructure to
customers for them to perform their system tests on. Test automation was taken care of.
At its start we could not consider this centre to be a TSite, since mainly the
infrastructural component was taken care of and no test expertise was offered. Since then
it has developed into an organization more actively involved in testing activities and
focussing more on the complete life cycle. The test centre concentrates on testing
applications for the Bank's branches. It is a permanent organization, now based on
structured testing, with high test maturity.
A test service centre of a Telecom company was a TSite before knowing it. A large
acceptance test team was concerned with tests of a number of vital business applications.
However, the results were insufficient, costs were too high, and resources were employed
inefficiently, communication with the external development team was inadequate. Test
process improvement is now being applied in order to increase effectiveness and
efficiency.
The IT department of a company for social insurances has recently decided to phase out
the activities of their competence centre testing. They consider their TSite as a step to
higher system test maturity in the organization. It used to be a permanent organization,
based on structured testing, with high test maturity, working for various projects,
carrying out all phases of the testing life cycle. Now it is a facilitating department
planning and scheduling test teams. Their future is uncertain.
The Dutch Railways have been restructuring their testing framework in relation with
their Y2K testing activities. The efforts that were put into the Y2K test centre at first may
consolidate into a TSite later, although obviously attention originally was focused on
short term activities.
A test centre of a Government department simply started out as the wish to have
workplaces available elsewhere for a very small test team working on one information
system. This itself, of course, is no TSite. Because of their isolation, however, they were

Copyright © 1999 IQUIP Informatica B.V., Diemen (The Netherlands) p. 6

able to fully concentrate on structured testing in a good infrastructural environment. In
doing so test maturity in the organization now is increasing. The centre may become a
permanent one and may start to work for more than this one information system.

6 Conclusions
In general it can be concluded that the most successful TSites exist where test expertise,
infrastructure or resources (or a combination of them) are scarce. Test maturity and
structured testing are crucial in an organization for a TSite to flourish. Management
support and commitment are vital.
The scope of TSite may be small at the start but should not stay too small later.
Care should be taken that test knowledge and expertise is shared in TSite although testers
may work on different projects. At the same time it is wise to invest in knowledge of the
subject matter of business applications under test.
However hectic testing may be, the completion phase of the testing life cycle should not
be omitted. On a larger scale TSite should be aware of the threats of 'going concern'.
As yet there is evidence to be able to give a positive answer to the question of whether
testing in TSite is faster and cheaper. It should be noted, however, that to some extent the
gains on one side (dedicated testing, reusability, ready-to-use) also imply losses on the
other (more difficult communication with other parties, working according to fixed
agreements). Quality of testing definitely becomes more constant and predictable in a
TSite environment.

1

Deploying SQA in
Very Small Projects

Quality Week 99

Roger M. Records

Associate Technical Fellow

Boeing Commercial Airplanes

Jay G. Ahlbeck
Linda J. Lin
Jon S. Scharer
Margaret A. Stocking

Agenda

• What is the problem for small projects?

• What is the SQA goal for very small projects?

• What is a solution that works for very small projects?

• How is SQA deployed in very small projects?

• What does success look like for small projects?

2

What Is a Small Project?

Six to 24 Person-Months of Effort

Not Life Critical

Not Complex

SQA Deployment Challenge

SQA Body of
Knowledge Six SQA Staff

SQA Function Installed
and Practiced

Provide SQA
Installation
Training

1,200 Software
Projects

3

SQA Goal for Very Small Projects

• SQA function that can be accomplished.

• SQA activities that produce real value.

• Build quality in the software during development
(not inspect it in at project’s end).

Recommended SQA Approach

Project
• Processes

• Activities

• Deliverables

Product
Input

Produce

Input

Review by
PractitionerQuality

Requirements

SEI
Assessmen

t
2

4

3

1

Product
Requirements

Level of Quality

4

• Plan SQA activity and document in a plan
• Tailor and conduct reviews in accordance with the SQA plan

• Record observations and categorize by significance
• Report results to affected developers, process owners, and managers

Reviews
& Audits

Planning

Status
Reporting

Findings
Tracking

SQA
Plan

SQA Function

,QIUDVWUXFWXUH,QIUDVWUXFWXUH

SQA Staff

Subject
Matter
Experts
(SME)

Process &
Product

Templates and
Examples

Training
Materials

5

SQA Training Strategy

SQA Staff

SME

SQA Pilot
Project

Related
Application

Groups

Awareness
Training

Practitioner
Training

SME
Training

Selected
Early

Adopters

SQA
Installation

Introduce
S

Q
A

• M
anagem

ent
 T

raining

• S
Q

A
 F

ocal T
raining

P
lan

D
eploym

ent

• U
nit

• P
ortfolio

• P
rojects

Install
S

Q
A

• S
Q

A
 P

lanning
• Im

plem
entation training

• T
eam

 A
w

areness

Im
plem

ent
S

Q
A

• S
Q

A
 Im

plem
entation

• S
Q

A
 E

valuation

• S
Q

A
 Im

provem
ents

Just E
nough T

raining for
:

• M
anagers / Leads

• S
Q

A
 P

ractitioners
• S

taff M
em

bers

JIT

T
raining for S

Q
A

 D
eploym

ent

6

S
Q

A
 S

ubject M
atter

E
xpert S

chool

•
S

Q
A

 D
efinition

•
H

ow
 to B

ring V
alue

•
D

eploym
ent M

ethods

•
T

eaching T
echniques

S
elected

S
enior S

taff

S
Q

A
A

pprenticeship
20%

P
roject
W

ork
80%

•
S

Q
A

 Leadership
•

T
ailored M

ethods
•

C
onsulting

. . .

S
ection

R
esources

S
Q

A
 S

ubject M
atter E

xpert C
oncept

SQA Deployment Strategy
Infrastructure

Literature

Good Practices

Practitioner
Experience

Develop Body
of Knowledge

Design
Courses

Training for:
• SME
• Management
• Practitioners

BOK

Train SME’s

SME Training

Coaching & Instruction
Skills

Process & Product
Templates &

Examples

Prepared
Courses

SQA Staff of 6

30 SME’s

7

SQA Deployment Strategy
Adopt and Tailor

Literature

Good Practices

Practitioner
Experience

Develop Body
of Knowledge

Design
Courses

Training for:
• SME
• Management
• Practitioners

BOK

Train SME’s

SME Training

Conduct Pilot
Projects

Propagate to
Non-Pilot
Groups

Coaching & Instruction
Skills

Process & Product
Templates &

Examples

Prepared
Courses

SQA Staff of 6

30 SME’s

100 Pilot
Projects

250 Project
Portfolios

Practitioner
Training

Awareness
Training

Proven Processes
& Products

P
roject

M
ana ger

P
roject
S

taff

S
Q

A
Im

plem
entation

P
roject S

Q
A

Im
plem

entation
P

roject
S

Q
A

S
tatus

R
eporting

S
Q

A
Independence

R
eview

R
eporting

S
Q

A
 D

ata

S
Q

A
 Independence
R

eview
s

R
eview

 requirem
ents

R
eview

 data

P
roject
S

Q
A

P
lan

S
Q

A
 Independence for S

m
all P

rojects

8

Benefit Recognition
• Organizational
• Personal

Tailored, Validated
Practices

Decision
• Organizational
• Personal

SQA
Practices

Installed and
Used

+ + =

Accept and
agree to
support

Understand and
recognize the

benefit potential

Migrate tailored,
validated practices

from pilot effort

Definition:

To take up and practice or use as one’s own

“Adopt” Definition*

*Adapted from David Duchesneau; used with permission.

Off-the-Shelf
Capabilities

Existing
Capabilities

Augmentation
of Capabilities

Tailored SQA
Practice+ + =

Tailor / add
processes, methods
& tools as necessary

Map available
resources to

shortfalls

Map existing
practices to
SQA needs

Definition:

To customize for a specific situation

“Tailor” Description*

*Adapted from David Duchesneau; used with permission.

9

Tailored
SQA
Plan

Data

Findings TrackingFindings Tracking

Reporting

Tailored
Reviews

Metrics

Improvement Actions
Improvement

Needs

Progress

Revisions

SQA Activities

Lessons
Learned

Improvement
Planning

Process
Enhancements

Product
Enhancements

• Quality Definition
• Project’s SQA Needs

How Is SQA Deployed In Small Projects?

Adopting Proven SQA Practices, Then by:

1. Tailoring an SQA plan template or example

2. Selecting and tailoring reviews to collect required data

3. Collecting and reporting value-added data to decision makers

4. Effecting SQA improvements

Success Criteria

• Achieve Quality Goals

– SQA Function that can be accomplished

– SQA activities that produce real value

– Quality Built-In, not inspected in

• Continuous Improvement of SQA Function

10

What Out Customers Say

• “Our best training value for 1998 was the SQA Subject
Matter Expert training.”

Third Level Software Development Manager

• “You have . . . Helped us to change our fear and
apprehension of doing SQA into one of a ‘we can do this’. I
believe this is directly a result of the quality of your products,
processes and people.”

SEPG Member

• “We appreciate your common sense approach and
determination to have SQA make sense to us — and the way
we do business.”

Small Project Personnel

Page 1

Deploying SQA in Very Small Projects

Roger M. Records, Associate Technical Fellow

Jay G. Ahlbeck, Linda J. Lin,

Jon S. Scharer, Margaret A. Stocking

Boeing Commercial Airplanes

Summary

We have demonstrated that SQA can be very practical and value-added (great ROI)
in a small project environment. To deploy SQA in one or two person projects requires the
definition of an SQA function that can be implemented with minimum resource
investment, yet adding value to the small project. An infrastructure of instruction from
Subject Matter Experts, model plans, processes and reviews that can be easily tailored to
the small project needs has proven to be a feasible implementation.

1.0 What is the SQA Goal?

There are three quality goals for all software projects that are identified in the
following paragraphs. Each goal is followed by a discussion of how that goal is made
practical in a small project environment.

1.1 Goal 1: Define an effective SQA function.

There is a need to install an SQA function for the project that can be accomplished
with the resources available.

For the small project, the limited investment of resources available for SQA requires a
function that has been simplified. Simplification accomplishes two objectives: 1) Minimize
the training required to implement the function. 2) Minimize the implementation
investment. Simplification carries a challenge and a risk. The challenge for defining this
function is to create a simple function that is not trivial. The primary risk in defining the
SQA function is that it will be designed to satisfy some external criteria (such as SEI Level
2) but have no real value to practitioners. This is a formula for shelfware. It also is the
motivation for the second goal.

1.2 Goal 2: Include SQA reviews that produce value.

A value-added SQA function must be based on SQA reviews that are deemed high
leverage, resulting in real benefits for the project personnel, for their customers, and for
the project’s management.

Page 2

One way of minimizing resources required for the small project’s SQA is to constrain
the scope. The criteria for scoping the SQA function is the requirement for real value in
the reviews that are selected. The key to producing real value is to establish the correct
criteria for the SQA function. If the SQA activity doesn’t add value in the view of the
small project developer, it is not worth doing. There are two components to consider.
First, where are opportunities to add value? This is project specific, but it is not a difficult
question for most small project developers to answer, since problem areas are usually
known entities. The second component is to match an SQA activity with the real value
opportunity. The small project has very little resource to create SQA reviews to match
project needs. A workable SQA solution must provide real-valued reviews at a very low
cost. Real value for the small project can be thought of as producing reduction in
development cost or time, insuring the specified functionality is delivered, or otherwise
increasing the satisfaction of the customer.

1.3 Goal 3: Build quality in.

The responsibility for quality lies with the developer (not a special SQA group) which
requires building quality in during development, not inspecting for quality at the project’s
end.

Having an SQA function that is practical within the small project’s budget and that
still delivers real value to the project are both ambitious goals, and they are only going to
be attained with the third goal - by building quality in, not inspecting for quality at the
project’s end. Building quality in means performing quality reviews on both products and
processes as early in the development or maintenance cycle as possible. For the small
project this also carries the implication of reviews performed by the developer rather than
an external SQA group.

Recommended SQA Approach

Project
• Processes
• Activities
• Deliverables

Product
Input

Produce

Input

Review by
PractitionerQuality

Requirements

SEI
Assessment 2

4

3

1

Product
Requirements

Level of Quality

 Figure 1. Building Software Quality In

Page 3

As illustrated in Figure 1, the developer needs to know not only the product
requirements, but also the process and deliverable quality requirements for reviews to be
effective. There should be no quality surprises at the end of project for the software
practitioner since the quality requirements are known while the process is being followed
and the product is being produced. Quality reviews are performed during each phase of
the software life cycle, giving just-in-time assessment of each life cycle deliverable from
requirements specifications to design to code and test. This, in turn, helps attain the
previous two goals (practical and value-added) by producing timely findings which, when
corrected, will help project personnel avoid rework. Eliminating waste is where the real
value is produced and where the time resource for the next SQA review is generated. A
by-product of performing timely reviews is that the organization can be assessed with
higher levels of both product functionality and process maturity.

2.0 What is the Problem for Very Small Projects?

Software developers live in a world of limited resources and high productivity
demands. Everyone wants to create high quality software that functions as it was
designed and delivers features which meet all the customer’s requirements. So in this
environment of “do it well, but be sure you are on time and within budget”, what’s a
developer to do when the SQA folks come on the scene? If the developer is working on a
very small project (6 to 24 person months, not life critical, and not highly complex), it is
usually the case that any SQA activity is perceived as having little value to add to the
project. The developer (or manager) asks, “So, why try to make room on my (already

The balancing issue is the desire of software developers to produce quality products.
In a world of downsizing, most software developers want to be viewed by management as
valuable employees. In our environment of advancing technology, most practitioners also
want to be positioned for career advancement. If SQA offers potential to improve
product quality, personal performance, and increase productivity, most practitioners are
willing to consider change, but only if the change is practical.

3.0 A Proven Solution for Very Small Projects

Our proven SQA solution is based on 1) an infrastructure for small project support
and 2) a workable SQA function for the software practitioner to utilize.

3.1 SQA Function

First, consider the SQA function that can be implemented efficiently for small
projects. This function will require a minimal investment in training and minimal project
resources to install and implement.

Page 4

SQA Function

• Plan SQA activity and document in a plan
• Tailor and conduct reviews in accordance with the SQA plan
• Record observations and categorize by significance
• Report results to affected process owners and managers

Reviews
& Audits

Planning

Status
Reporting

Findings
Tracking

SQA
Plan

Figure 2. SQA Function for Small Projects

Figure 2 illustrates the four essential components for any SQA function. The
planning activity consists of creating an SQA plan that can be completed by the small
project personnel within a very short time allocation. This requires constraining the
number of reviews as well as selecting reviews that will add value. Care must be taken to
only collect data from the review that will be relevant to the small project personnel and
that will address the quality goals. In addition to performing the reviews, the processing of
review results (findings) must also be planned. A simple (but non-trivial) method of
ensuring accountability for review findings is required. Finally, reporting the results of
SQA activities must be planned to determine both the content of the reports and who the
recipients should be. In a typical small project, SQA planning is completed within 20
hours of effort.

Once the SQA Plan is produced, the reviews specified must be defined and
documented as well as performed. This requires some training for small project personnel.
This training component is addressed below in the description of the supporting SQA
infrastructure. The goal is to select and perform reviews to provide the collection of data
that ensures that quality is present in each product and is being derived from each process
used by the small project. The investment for selecting these reviews is reduced by using
off-the-shelf examples that are tailored to the project’s needs.

Processing and managing the data collected is the goal of Findings Tracking. Defects
or problems identified in the review must be corrected. Corrective actions must be taken
and a system of accounting or tracking can ensure that the problem found in the review is
resolved. Once again, the criteria of simple, but non-trivial, tracking of the findings is
important for the small project.

Page 5

Finally, the results of the data collection and processing need to be documented for
potential process improvement and to inform management that the SQA function is in
operation. Decisions need to be made describing what kind of information to report and
who to report it to. Status Reporting accomplishes this requirement.

3.2 SQA Support Infrastructure

In addition to the SQA Function, our solution for very small projects relies on a
support infrastructure that consists of 1) a small group of trained Subject Matter Experts
(SME)s, 2) a proven set of training materials and 3) examples and templates for the
processes and products related to SQA to install and deploy SQA for very small projects.

3.2.1 Training Materials

Prior to deploying SQA in an organization with many small projects, our staff of SQA
specialists defined the SQA body of knowledge for small projects, defined the SQA
function which is used in the small project environment and developed the training
materials The SMEs are recruited and given apprenticeship training.

In addition to SME training, instruction also needs to be distributed to address the
needs of various project personnel. This must include instruction for management, the
project SQA Focal and practitioners. Each student group has specific learning objectives.
As shown in Figure 3, the training is customized to meet these specific learning objectives
(just enough) and is delivered when it is needed (just in time). We usually formalize this
training/coaching agreement in a Statement of Work, which is a contract for training and
coaching services.

Training for SQA Deployment

Introduce
SQA

• Management
 Training
• SQA Focal Training

Plan
Deployment

• Unit
• Portfolio
• Projects

Install
SQA

• SQA Planning
• Implementation training
• Team Awareness

Implement
SQA

• SQA Implementation
• SQA Evaluation
• SQA improvements

Just Enough Training for:
• Managers / Leads
• SQA Practitioners
• Staff Members

JIT

Figure 3. Implementing SQA with Just-In-Time Training

Page 6

3.2.2 Examples and Templates

The second component of the infrastructure is a set of SQA templates and examples
that are available to the small project personnel through their SME coach. Since the SQA
function must be implemented with minimal resource investment, it is impractical to
invent SQA plans, procedures or reviews. The goal for small projects is to obtain the
examples and templates from the SME which are required to support the SQA activities
for the small project. With minimal coaching, the example or template is then tailored to
the project’s needs.

Examples and templates for the SQA Plan are provided to the practitioners. They
reuse most of the plan and customize the specific SQA activities and list of reviews to “fit”
their project. In a similar fashion, examples and templates of specific reviews are provided
and tailored. This enables the small project personnel to choose SQA reviews that match
their need and offer the opportunity for adding real value. Finally, processes that support
the SQA activities are selected from the set of examples and templates. These processes
are also tailored, as needed, to meet the needs of the small project. Reuse and tailoring of
plans, processes and reviews make the implementation of the SQA function cost effective.

3.2.3 SME Selection and Training

Given the constraints of budget and time, the small project personnel must have
opportunity for a limited amount of formal training to accomplish each of the four SQA
function components. A successful strategy is to minimize the formal training and
provide access to a qualified SQA coach or organizational SQA expert SME to leverage
that training into a working SQA solution. An SQA coach in our environment is a
specialist from a central organization who also delivers training. A SME is a member of
the software development organization who has received in-depth SQA training. In our
experience a small number of SMEs are required for a successful SQA deployment. While
the SMEs invest 60-160 hours to prepare for this role, the following benefits are realized:

1. This SQA expertise is made available to small project developers initially in
pilot projects in which SQA is demonstrated to have real value. During the
pilot project, the SQA function is installed for a specific application.
Participation in an SQA pilot is part of the SME training.

2. The good practices developed during the pilot projects are then propagated
to other small projects with a fraction of the training time for the SME.
The propagation is one of adopting the proven SQA practices previously
developed.

3. Becoming an SQA SME offers a new career enhancement opportunity for
proven senior software developers. Expanding their set of software skills
is a benefit for those participating. For most SMEs, this is not a bridge to a
new career, but rather an opportunity to gain a better understanding of the
complete software engineering environment.

Page 7

4.0 How is SQA Deployed in Very Small Projects?

The process for deploying SQA, shown in Figure 4, begins with the development of
an SQA Body of Knowledge (BOK), which is gleaned from SQA literature, good SQA
practices and expert experience. The BOK is the foundation for SQA course design.

Develop
Body of

Knowledge

Design
Courses

Conduct
Pilot

Projects

Literature

Good Practices

Practitioner
Experience

Propagate
to non-Pilot

Groups

SQA staff of 6

30 SMEs

100 Pilot Projects

250 Project Portfolios

Training for:
SME
Management
Practitioners

Prepared
Courses

SME Training

Practitioner
Training

Awareness
Training

Coaching &
Instructional Skills

Process & Product
Templates &

Examples

Proven
Processes
& Products

BOK

SQA Deployment Strategy

Train SMEs
Orient

Managers &
Lead

Engineers

Management
Training

Figure 4. SQA Deployment Strategy

When the need for SQA installation surfaces, the training materials previously
developed are used in a pilot with a small project. The SME participates in this first pilot
project as an instructional intern to our SQA instructor. The follow-on SQA activities are

Page 8

then lead by the SME with SQA coaches as consultants. The SQA plans, reviews and
processes that have been adopted, tailored and validated during the pilot projects are then
used for deployment in non-pilot projects within the same application group.

A prerequisite to the pilot activity is the SQA orientation for managers and lead
engineers [see Figure 4 box “Orient Managers & Lead Engineers”]. A strong commitment
from the project leadership is a necessity for SQA installation success. The manager and
project leads first need to understand the three SQA goals. But they must also support the
installation and implementation of the SQA function. This support comes in the form of
scheduling and tracking SQA activity as an integral part of project planning. One
manager, who successfully implemented an SQA function, admonished his development
team following their SQA pilot with the following: “Now you need to do this SQA.
We’re not going to let this (SQA function) sit on the shelf!” The SQA activity became a
topic for biweekly status reporting, in which the planned versus completed reviews were
reported.

Deployment of the SQA function begins [see Figure 4 box “Conduct Pilot Project’]
with a small amount of formal training (about 6-8 hours). This training is primarily
focused on understanding the SQA Process Model. Participants in the pilot project define
an area of focus for performing SQA reviews, and define the improvement goal for the
pilot. Examples and templates that relate to the project’s selected SQA pilot goals are
introduced. The SME coaches the small project personnel during the pilot project. They
tailor a plan for the SQA activity selected (based on the SQA function), and a procedure
to implement the plan. Review topics are selected based on their ability to produce real
value for the small project. These selected SQA reviews are developed in the form of
checklists tailored from the set of examples. Practitioners are given practice in performing
SQA reviews on their own SQA products and procedures.

During the pilot, the SQA function is installed within the project. All four
components are developed. Tailoring of the SQA Plan is completed, tailored SQA
reviews are performed, the findings generated during the reviews are recorded and
corrective action (when required) is taken. Reports are generated using tailored versions
of the report examples provided. Practitioners are encouraged to consider who else in
their organization might use the materials developed during this pilot. The answer to this
question may require that the attributes of the piloted materials be documented to facilitate
judgment for use in propagation. This is the first step in utilizing the SQA function in non-
pilot groups.

At the end of the project pilot the results of implementing the SQA function and
related training are evaluated. Lessons learned are captured. There are two products
from this evaluation. The instruction given may require enhancement. Change requests
are generated by the SME and given to our SQA instructional developers. In addition,
changes may be generated for the newly installed SQA function for the small project.
These would be recorded as SQA findings for the reviews completed during the pilot
project. Change requests could be written (if the small project has a Change Process in
place) or changes can be described in the findings log.

Page 9

During deployment training the practitioners are introduced to the concept of Quality-
Built-In. Building in quality represents a shift in thinking for many with experience with
“traditional” SQA methodology. The developer (initially assisted by either the SME or a
unit SQA focal) performs the reviews for small project products and processes.
Foundational to this approach is the notion that responsibility for quality belongs to the
practitioner, not to someone “from the SQA group”. This may raise a concern about the
potential conflict of interest (does a developer want to log his/her own defects?) Our
approach has been to emphasize the value of defect detection as related to the developer’s
desire to produce high quality software. Finding and logging defects early in the
development is very beneficial for small projects and contributes to reduction in re-work.

An independent review of the small project’s SQA activity is still important and is
accomplished by having an individual knowledgeable in SQA and independent from the
project’s managerial structure perform an Independence Review. As shown in Figure 5,
the Independence Review consists of inspecting the small project’s SQA Plan and
verifying compliance by looking at populated checklists, findings logs and action item
artifacts such as change requests. So, for the small project, the key question to verify
SQA independence is, “Are you performing the SQA activities called for in your SQA
Plan, and do artifacts exist to support verification?” The product of the independence
review is a report to project and organization management that gives the status of the
small project’s compliance to their SQA Plan

SQA Independence

Project
Manager

Project
Staff

SQA
Implementation

Project SQA
Implementation

Project
SQA Status
Reporting

SQA
Independence

Review
Reporting

SQA Data

SQA Independence
Reviews

Review requirementsReview data

Project
SQA
Plan

Figure 5. Independence Review for Small Projects

For readers interested in more detail regarding the deployment activity, the following
paragraphs are offered to define our approach in propagating the SQA function to non-

Page 10

pilot groups. For those who are not interested in such detail, paragraph 5.0 would be the
appropriate place to resume reading.

At the conclusion of the pilot project, the SQA artifacts and lessons learned are
shared with other small project personnel who perform similar work [see Figure 4 box
“Propagate to non-Pilot Groups]. Important artifacts include the tailored SQA Plan,
selected tailored SQA reviews, any processes documented or tailored from templates, and
pilot project status reports. The SME has an opportunity to provide SQA implementation
training for the personnel of peer projects needing an SQA function. The thrust of this
training is SQA awareness and exposure to the SQA function that has been implemented
within the pilot project. Additional training will equip peer projects to adopt the “good
practices” developed during the pilot into their project for SQA deployment. As shown in
Figure 6, validated SQA practices from the pilot are presented to a group of new
practitioners. The benefits of using these practices are enunciated for “buy-in” by the
organization and the individual practitioners. When value is recognized, the training
required to install these proven processes and products is given by the SME, with
additional mentoring and coaching as required.

“Adopt” Definition*

Benefit Recognition
• Organizational
• Personal

Tailored, Validated
Practices

Decision
• Organizational
• Personal

SQA
Practices

Installed and
Used

+ + =

Accept and
agree to
support

Understand and
recognize the

benefit potential

Migrate tailored,
validated practices

from pilot effort

Definition:

To take up and practice or use as one’s own

* Adapted from David Duchesneau, used by permission

Figure 6. Define Adoption of SQA Processes

A secondary benefit is that adoption is viewed by peer projects, not as a top down
edict from management, but as implementing what has been proven to work by other
practitioners who are working on similar applications.

Page 11

Once the SQA practices have been adopted by peer small project application groups,
the related SQA plans, reviews and reports must be revised to reflect the specific quality
concerns of the new application group. Additional tailoring of the SQA artifacts will
satisfy this requirement. The tailoring, as shown in Figure 7, consists of reusing the set of
SQA plans, reviews and documented processes.

“Tailor” Description*

Off-the-Shelf
Capabilities

Existing
Capabilities

Augmentation
of Capabilities

Tailored SQA
Practice+ + =

Tailor / add
processes, methods
& tools as necessary

Map available
resources to

shortfalls

Map existing
practices to
SQA needs

Definition:

To customize for a specific situation

* Adapted from David Duchesneau, used by permission

Figure 7. Define Tailoring Software Templates and Examples

An additional feature of the training is to use the actual project artifact (such as their
SQA plan, a current process or existing report) for the training context instead of a
hypothetical case or example. This creates more work for the instructor (in customizing
the lesson), but produces real SQA findings and even produces project value during
training activities. The students are able to see real value immediately and recognize that
SQA does apply to their computing environment.

Following the completion of several pilot projects across several functional groups, an
effort is made by a Software Engineering Process Group (SEPG) to collect the set of
“good practices” and develop a set of “best practices” for utilization as a unit standard for
performing SQA in a small project environment. Care needs to be taken to document
attributes for the good practices that can be used to determine where these practices can
be used. There is a tendency to think “bigger is better” when it come to a set of good
practices. Our experience suggests that the opposite is true. A small number of good
practices (screened by the SEPG) will be evaluated for adoption by a small project. But a
large collection of unevaluated practices will not be considered.

Page 12

5.0 What Does Success Look Like for a Very Small Project?

Successful deployment of an SQA function for small projects has two characteristics.
First, the SQA activity is performed and has real value to the practitioner. It is our
expectation that the performance of the SQA function will become a habit - a part of the
regular project routine, even after the pilot is completed and the SME is no longer on the
scene. Too often, the basic requirements of “practical” and “value-added” are ignored,
which results in SQA plans, procedures and reviews that are, in reality, shelfware. Part of
the job of the SME is to verify that the quality requirements are being met (that the small
projects are using the SQA products and processes and that the result has real value to
developers.) If either attribute is missing, modifications to the plan, the procedure or the
review checklists must be made.

The second success criteria is that continuous improvement should result. If a
product (such as an SQA Plan or a specific review) or a procedure is being used, someone
will find an opportunity for improvement. This is a certainty for the first iteration of the
product and the procedure. No one tailors a perfect product or process the first time! An
unimproved SQA function is evidence of non-use. For the small project, non-use is one of
the greatest risks. It frequently occurs in organizations which have a goal of receiving a
sought after certification (such as SEI/CMM Level 2 designation) as opposed to seeking
real value by installing their SQA function.

It should be noted that the order of performing and improving is also important. First
we need to build a habit of doing SQA activity. It is only after a review is performed
(sometimes several times) that the need for improvement is evident. When a specific
review question is consistently answered with “not applicable,” the reviewer will ask,
“Why is this question being asked? We never do this in our group!” Improvement always
follows activities that have been performed.

To ensure improvement to the SQA function, a self assessment should be performed.
The appropriate time for initial self assessment is at the end of the SQA pilot project
where the pilot’s “lessons learned” are captured. The assessment is usually a joint effort
involving the SME or SQA coach, the project manager and the practitioner(s) involved in
the pilot project. Additional assessment of the effectiveness of the SQA function may be
scheduled on a periodic basis or at the completion of a scheduled development phase or
blockpoint.

Successful deployment of SQA into small projects will continue to follow the cycle
illustrated in Figure 8. The observation should be made that a similar diagram would be
used to describe SQA for a larger project. The difference is in key words like adopt and
tailor. The small project SQA function is implemented with scaled down versions of all of
the essential components of any SQA implementation. The challenge, as described in this
paper, is to define the scaled version in a manner that preserves the quality goals.

Page 13

How Is SQA Deployed In Small Projects?
Adopting Proven SQA Practices, Then:
By: 1. Tailoring an SQA plan template or example
 2. Selecting and tailoring reviews to collect required data
 3. Collecting and reporting value-added data to decision makers
 4. Effecting SQA improvements

Tailored
SQA
Plan

Data

Findings TrackingFindings Tracking

Reporting

Tailored
Reviews

Metrics

Improvement Actions
Improvement

Needs

Progress

Revisions

SQA Activities

Lessons
Learned

Improvement
Planning

Process
Enhancements

Product
Enhancements

• Quality Definition
• Project’s SQA Needs

Figure 8. Successfully Deployed SQA Function

Our SQA SMEs continue to coach the piloted projects on an as-needed basis. Peer
projects receive the awareness training required to allow the SQA function adoption (as
suggested in Figure 4.) During this training they are asked for “buy-in” for the basic goals
of 1) adopting an SQA function which can be accomplished and 2) that brings real value
to their project. They are also instructed in the quality built-in perspective which puts
responsibility for quality (and for performing quality activities) with the small project
developer. Deployment of the SQA function continues as the piloted SQA plan and
reviews are adopted and tailored by peer groups. The SME continues to mentor and
coach as the SQA function is installed, practiced, and improved. The resource invested by
the SME is smaller for an SQA function adoption than for a pilot project, and continues to
decrease through each iteration of the cycle in Figure 8.

The final question about this approach for deploying SQA in very small projects is
“Does it work?” We have collected feedback from management as well as practitioners.
Perhaps the best answer is to let them speak for themselves.

“Our best training value for 1998 was the SQA Subject Matter Expert training”

Third Level Software Development Manager

“You have helped us to change our fear and apprehension of doing SQA into one
of a ‘We can do this.’ I believe this is a direct result of the quality of your processes

SEPG Member

Page 14

“We appreciate your common sense approach and determination to have SQA
make sense to us - and the way we do business.”

Small Projects Personnel

With this initial success, our goal will be to extend the application of the SQA
function as our customer progresses in process maturity. Most of our instruction has been
directed toward application of SQA in achieving repeatability in processes (SEI/CMM
Level 2.) As our customers gain process maturity, we will focus our instruction on
software product engineering and the associated key processes define in SEI/CMM Level
3. This will require Level 3 orientation for our SQA SMEs along with the production of
plans, procedures and reviews that will support these key processes. We are confident
that the infrastructure currently serving the needs of very small projects will be
successfully extended to meet these new requirements.

1

© Quantitative Software Management, Inc. All rights reserved. Tracking Size Estimates, Slide

®

QuantitativeSoftwareManagement®

Size Size DoesDoes Matter: Matter:
Continuous Size Estimating andContinuous Size Estimating and

TrackingTracking

byby

Mike RossMike Ross
Quantitative Software Management, Inc.Quantitative Software Management, Inc.

5013 W. Vogel Ave.5013 W. Vogel Ave.
Glendale, AZ 85302Glendale, AZ 85302

(623) 435-9863 (phone) (623) 915-3351 (fax)(623) 435-9863 (phone) (623) 915-3351 (fax)
mike_ross@qsm.commike_ross@qsm.com
http://www.qsm.comhttp://www.qsm.com

© Quantitative Software Management, Inc. All rights reserved. Tracking Size Estimates, Slide

®

QuantitativeSoftwareManagement®

The Status QuoThe Status Quo

•• Estimate the size of the system at the beginning ofEstimate the size of the system at the beginning of

•• If disaster strikes, reorganize the team, re-estimateIf disaster strikes, reorganize the team, re-estimate
the size, and re-plan the projectthe size, and re-plan the project

REACTIVE BEHAVIORREACTIVE BEHAVIOR

2

© Quantitative Software Management, Inc. All rights reserved. Tracking Size Estimates, Slide

®

QuantitativeSoftwareManagement®

What is Size?What is Size?

•• Size is a measure of Size is a measure of workwork -- the -- the physicalphysical stuff the stuff the
development team creates -- units of humandevelopment team creates -- units of human
thought / creativity expressed in some acceptedthought / creativity expressed in some accepted

–– Source statementsSource statements

–– SentencesSentences

–– Dialog elementsDialog elements

•• Size is Size is notnot synonymous with synonymous with laborlabor

•• Size is Size is notnot synonymous with synonymous with functionalityfunctionality

© Quantitative Software Management, Inc. All rights reserved. Tracking Size Estimates, Slide

®

QuantitativeSoftwareManagement®

What Do We Know About Size?What Do We Know About Size?

•• Size Drives Cost, Schedule, and ReliabilitySize Drives Cost, Schedule, and Reliability

•• Size Estimation is ProbabilisticSize Estimation is Probabilistic

•• Knowledge Increases with TimeKnowledge Increases with Time

•• Change is InevitableChange is Inevitable

•• Developers are OptimistsDevelopers are Optimists

3

© Quantitative Software Management, Inc. All rights reserved. Tracking Size Estimates, Slide

®

QuantitativeSoftwareManagement®

Estimate Periodically andEstimate Periodically and
Record the DataRecord the Data

Edit Estimate Data for ESLOC (CUM)

Start Date to End Date
Jan-96 Dec-97

Month Low Most Likely High Expected Convergence
Jan-96 45000 60000 75000 60000 0.00
Feb-96 45000 60000 75000 60000 0.00
Mar-96 45000 60000 75000 60000 0.00
Apr-96 45000 60000 75000 60000 0.00
May-96 45000 60000 75000 60000 0.00
Jun-96 53000 62000 70000 61833 43.33
Jul-96 55000 62500 70500 62583 48.33
Aug-96 56000 63000 71000 63167 50.00
Sep-96 57500 63500 72500 64000 50.00
Oct-96 58000 64000 74000 64667 46.67
Nov-96 59000 64500 76000 65500 43.33
Dec-96 60000 65000 78000 66333 40.00
Jan-97 62000 66500 81500 68250 35.00
Feb-97 65500 68000 84000 70250 38.33
Mar-97 67500 70000 86500 72333 36.67
Apr-97 70500 73000 88500 75167 40.00
May-97 72500 75000 90000 77083 41.67
Jun-97 75500 78000 91500 79833 46.67
Jul-97 78500 81000 92500 82500 53.33
Aug-97 82500 85000 93500 86000 63.33
Sep-97 86500 89000 94500 89500 73.33
Oct-97 89500 92000 95000 92083 81.67
Nov-97 91500 94000 95500 93833 86.67
Dec-97 92500 95000 96000 94750 88.33

© Quantitative Software Management, Inc. All rights reserved. Tracking Size Estimates, Slide

®

QuantitativeSoftwareManagement®

Express Estimates as RangesExpress Estimates as Ranges

•• Estimator’s Inputs:Estimator’s Inputs:
–– LOW VALUELOW VALUE: 1st percentile: 1st percentile

–– HIGH VALUEHIGH VALUE: 99th percentile: 99th percentile

–– MOST LIKELY VALUEMOST LIKELY VALUE: 50th percentile (best guess): 50th percentile (best guess)

3-point Estimate3-point Estimate

4

© Quantitative Software Management, Inc. All rights reserved. Tracking Size Estimates, Slide

®

QuantitativeSoftwareManagement®

Adjust for BiasAdjust for Bias

Expected
Low Most Likely High

=
+ × +4

6

Standard Deviation ()
High Low

σ =
−
6

© Quantitative Software Management, Inc. All rights reserved. Tracking Size Estimates, Slide

®

QuantitativeSoftwareManagement®

Look for ConvergenceLook for Convergence

•• 0% convergence = baseline uncertainty0% convergence = baseline uncertainty

•• 100% convergence = total absence of uncertainty100% convergence = total absence of uncertainty

C
H L

H Lt
t t

Baseline Baseline

= −
−
−

1

5

© Quantitative Software Management, Inc. All rights reserved. Tracking Size Estimates, Slide

®

QuantitativeSoftwareManagement®

Control the Process --Control the Process --
Traffic Light MetaphorTraffic Light Metaphor

•• Green StatusGreen Status -- no corrective action recommended -- no corrective action recommended
–– default statedefault state

•• Yellow StatusYellow Status -- determine cause, take corrective -- determine cause, take corrective

–– EXPECTED SIZE ESTIMATEEXPECTED SIZE ESTIMATE outside outside ±±1σσ oror

–– SIZE ESTIMATE CONVERGENCESIZE ESTIMATE CONVERGENCE outside outside ±±1σσ

•• Red StatusRed Status -- determine cause, take corrective -- determine cause, take corrective
action, replan project based on current estimateaction, replan project based on current estimate
–– EXPECTED SIZE ESTIMATEEXPECTED SIZE ESTIMATE outside outside ±±2σσ oror

–– SIZE ESTIMATE CONVERGENCESIZE ESTIMATE CONVERGENCE outside outside ±±2σσ

© Quantitative Software Management, Inc. All rights reserved. Tracking Size Estimates, Slide

®

QuantitativeSoftwareManagement®

Example 1: Stable SizingExample 1: Stable Sizing
Expected Size Estimate TrendExpected Size Estimate Trend

•• Within Within ±±1σσ ofof
replanreplan

•• Slope approachesSlope approaches
zerozero early early

Expected Size Estimate (Rate)

0

20

40

60

80

100S 765432

E
S

E
 (thousands)

1 4 7 10 13 16 19 22 25 *
Jan
'96

Apr Jul Oct Jan
'97

Apr Jul Oct Jan
'98

Actual

Interpolated

Plan

Green CB

Yellow CB

 S = Start

 2 = CDR

 3 = FCC

 4 = SIT

 5 = UOST

 6 = IOC

 7 = FOC

6

© Quantitative Software Management, Inc. All rights reserved. Tracking Size Estimates, Slide

®

QuantitativeSoftwareManagement®

Example 1: Stable SizingExample 1: Stable Sizing
High-Low Size Estimate ConvergenceHigh-Low Size Estimate Convergence

•• ConvergenceConvergence
within within ±1σ afterafter
replanreplan

•• MonotonicallyMonotonically
increasingincreasing

Size Estimate Convergence (Cum)

0

20

40

60

80

100

120

140S 765432

S
E

C

1 4 7 10 13 16 19 22 25 *
Jan
'96

Apr Jul Oct Jan
'97

Apr Jul Oct Jan
'98

Actual

Interpolated

Plan

Green CB

Yellow CB

 S = Start

 2 = CDR

 3 = FCC

 4 = SIT

 5 = UOST

 6 = IOC

 7 = FOC

© Quantitative Software Management, Inc. All rights reserved. Tracking Size Estimates, Slide

®

QuantitativeSoftwareManagement®

Example 2: Unstable SizingExample 2: Unstable Sizing
Expected Size Estimate TrendExpected Size Estimate Trend

•• Expected sizeExpected size
outside outside ±±1σσ ofof
replan after monthreplan after month
1313

•• Expected sizeExpected size
outside outside ±±2σσ ofof
replan after monthreplan after month
1616

•• Slope Slope increasingincreasing
from month 7from month 7
through month 21through month 21
(only 3 months(only 3 months
before delivery)before delivery)

Expected Size Estimate (Rate)

0

20

40

60

80

100S 765432

E
S

E
 (thousands)

1 4 7 10 13 16 19 22 25 *
Jan
'96

Apr Jul Oct Jan
'97

Apr Jul Oct Jan
'98

Actual

Interpolated

Plan

Green CB

Yellow CB

 S = Start

 2 = CDR

 3 = FCC

 4 = SIT

 5 = UOST

 6 = IOC

 7 = FOC

7

© Quantitative Software Management, Inc. All rights reserved. Tracking Size Estimates, Slide

®

QuantitativeSoftwareManagement®

Example 2: Unstable SizingExample 2: Unstable Sizing
High-Low Size Estimate ConvergenceHigh-Low Size Estimate Convergence

•• ConvergenceConvergence
outside outside ±2σ afterafter
month 10month 10

•• UncertaintyUncertainty
increasing afterincreasing after
month 9month 9

•• 8-month period of8-month period of
significantsignificant
uncertainty afteruncertainty after
month 9month 9

•• ConvergenceConvergence
never gets back onnever gets back on
tracktrack

Size Estimate Convergence (Cum)

0

20

40

60

80

100

120

140S 765432

S
E

C

1 4 7 10 13 16 19 22 25 *
Jan
'96

Apr Jul Oct Jan
'97

Apr Jul Oct Jan
'98

Actual

Interpolated

Plan

Green CB

Yellow CB

 S = Start

 2 = CDR

 3 = FCC

 4 = SIT

 5 = UOST

 6 = IOC

 7 = FOC

© Quantitative Software Management, Inc. All rights reserved. Tracking Size Estimates, Slide

®

QuantitativeSoftwareManagement®

Conclusion: Why Continuously UpdateConclusion: Why Continuously Update
and Track Size Estimates?and Track Size Estimates?

•• Planning and TrackingPlanning and Tracking
–– Plans are based on size estimatesPlans are based on size estimates

–– Estimated size is a key input to all software schedule/effortEstimated size is a key input to all software schedule/effort
estimating relationshipsestimating relationships

–– Estimated size uncertainty is a key input to risk computationsEstimated size uncertainty is a key input to risk computations

•• Requirements ManagementRequirements Management
–– Requirements are difficult to quantifyRequirements are difficult to quantify

–– Requirements volatility/stability is directly related to changes inRequirements volatility/stability is directly related to changes in

8

© Quantitative Software Management, Inc. All rights reserved. Tracking Size Estimates, Slide

®

QuantitativeSoftwareManagement®

RecommendationsRecommendations

•• Success is when expectations are achievedSuccess is when expectations are achieved

•• Generally unreasonable expectations (rarely poorGenerally unreasonable expectations (rarely poor
performers) lead to failureperformers) lead to failure

•• Base expectations on past performanceBase expectations on past performance

•• Guard against expectations being set too high orGuard against expectations being set too high or

•• MeasureMeasure

•• Collect dataCollect data

Size Does Matter:
Continuous Size Estimating and Tracking

Mike Ross
Quantitative Software Management, Inc.

5013 W. Vogel Ave.
Glendale, AZ 85302

(623) 435-9863 (phone) (623) 915-3351 (fax)
mike_ross@qsm.com
http://www.qsm.com

Abstract. Estimating the size of a software system is a critical development
process activity. Not only does size impact the technical solution; it also
impacts the project management solution. It is therefore insufficient to
estimate size only once, at the beginning of the project when the least is
known about the system being developed. This paper describes a quantitative
process for managing the size of software development projects through
continuous estimation. The process includes a probabilistic approach to
estimation coupled with tracking and assessment of trends to determine
whether or not stability exists. This process has direct applicability to the SEI
CMM Level 2 KPAs for Software Project Planning and Software Project
Tracking and Oversight. It also serves as a Level 4 Quantitative Process
Management tool for measuring the effectiveness of an organization’s size
estimating and requirements management processes. [3], [4], [5]

Introduction

Purpose
The purpose of this paper is to justify and describe a process for quantitatively managing
the size of software development projects through continuous estimation.

Scope
The process described in this paper applies to all software development projects. Within the
scope of the SEI CMM, this process applies to the Level 2 KPAs for Software Project
Planning and Software Project Tracking and Oversight. It also serves as a Level 4
Quantitative Process Management tool for measuring the effectiveness of an organization’s
size estimating and requirements management processes. [3], [4], [5]

2

Background

Estimating size is the heart of the software-project estimating
process.
Lawrence H. Putnam [6]

A casual glance at any software project estimating model illustrates the fundamental truth of
the above statement. It follows, and historical data bears this out, that many software
projects fail to meet cost, schedule, and reliability expectations because the actual size
ends up being much larger than expected. Why, then, do so many organizations estimate
size only once, at the beginning of the project when the least is known about the system
being developed? These same organizations tend to revisit a size estimate only if, and
more importantly when, the project is hopelessly out of control.

Intuition, Research, and Supporting Data

What is “Size”?

There are two, often-confused, notions of software size: one that
relates to work and one that relates to functionality.

The modern computing environment poses many challenges. Foremost among them is
addressing totally new technologies. Trying to figure out how big computer programs are
has challenged software engineering since its inception and is further complicated by the
aforementioned dynamic nature of technology. [1]

Analysts have traditionally sized systems written in statement-oriented procedural
languages expressed largely as text (large stacks of cards or reams of tractor-feed paper).
Current technologies now take the form of more abstract representations such as diagrams,
objects, spreadsheet cells, database queries, and Graphical User Interface (GUI) widgets.
[1]

The secret to making progress in sizing these new environments is to identify the unit of
human thought in the abstraction being used. Next, the organization must go through a
calibration process, starting with projects for which the actual size can be determined in
terms of that unit of human thought. The goal of calibration is to establish productivity as a
function of actual size, actual time, and actual effort for completed projects. This newly-
established productivity relationship can then be used to fine-tune the sizing process and to
forecast time and effort on a new project. Once the project is complete, another iteration of
the calibration process can be done. This cycle, repeated numerous times, yields sizing and
forecasting methods that exhibit a high degree of accuracy with minimal variation. [1]

3

Sizing is one of the hardest things a development organization does, and the earlier in the
life cycle it is done, the harder it is to do. [1]

Historically, statements (Source Lines of Code or SLOC) have been used for sizing
systems, sometimes with poor results due to the difficulty of making the mental leap across
the “abstraction chasm” from operational capability to programming language constructs.
SLOC, however, is an excellent measure of the “work” done by the development process
and is most effectively used in process productivity metrics. Advantages: 1) it can be
unambiguously defined for a given language; 2) measuring the size of an existing product is
automatable; 3) most of the world’s historical data contains SLOC as the sizing measure.
Disadvantages: 1) the notion of SLOC becomes ambiguous when dealing with non-textual
abstractions; 2) the measure has little meaning to the customer / end user. [1]

Function Points (FP) offer a way of narrowing the “abstraction chasm” by providing a level
of abstraction between operational capability and programming language constructs. FP is
an excellent measure of the ”functionality” or “value” produced by the development process
and is most effectively used in “bang for the buck” type metrics. Advantages: 1) the
customer / end user can likely relate to the entities being counted; 2) there are networks of
people (e.g., IFPUG) dedicated to standardizing and improving the counting process.
Disadvantages: 1) FP are limited to application domains for which their countable entities
make sense (typically mainframe business applications); 2) the process of counting the
number of FP in a finished product is not automatable, in fact many big FP shops do quick-
and-dirty estimates, using shortcuts such as “backfiring” (back-calculating FP as a function
of language and size in SLOC). [1]

A major qualifier on the use of FP in a productivity relationship is the fact that FP do not
directly relate to development process “work” and must be scaled as a function of the
programming language used. This scaling introduces an additional source of complexity
and variability in the relationship. [1]

If all this isn’t enough to complicate the selection of sizing measures, consider that many
new development methodologies employ abstractions that are neither textual nor do their
components fit within the set of FP counting entities. [1]

Size Drives Cost, Schedule, and Reliability

If you underestimate the size of your next project, common sense
says that it doesn’t matter which methodology you use, what
tools you buy, or even who you assign to the job.
Ed Yourdon

Historical data shows that increasing the size of a system will increase its cost and
schedule, and reduce its reliability at delivery (see Figure 1, Figure 2, and Figure 3). [6]

4

Effort vs Effective Size
QSM Database Subset

Effective SLOC (thousands)
1 10 100 1000

P
erson M

onths

0.1

1

10

100

1000

10000

100000

Business Systems Avg. Line Style 1 Sigma Line Style

Figure 1: Effort (Cost) Increases with Size

Time vs Effective Size
QSM Database Subset

Effective SLOC (thousands)
1 10 100 1000

M
onths

0.1

1

10

100

Business Systems Avg. Line Style 1 Sigma Line Style

Figure 2: Schedule Increases with Size

5

Reliability vs Effective Size
QSM Database Subset

Effective SLOC (thousands)
1 10 100 1000

M
TTD

 1st M
onth (D

ays)

0.01

0.1

1

10

100

Business Systems Avg. Line Style 1 Sigma Line Style

Figure 3: Reliability Decreases with Size

Size Estimation is Probabilistic

[Unfortunately, most estimates are] the most optimistic
prediction that has a non-zero probability of coming true.
Tom DeMarco [2]

Size estimation is a probabilistic problem. This can be verified by simply analyzing the
language that people use when they are asked to estimate something. Words and phrases
such as about, probably, somewhere around, and in the neighborhood of, may seem, to
some as weaseling or hedging; however, what they really indicate is the presence of
uncertainty. Far too often, the tendency is to produce an estimate that represents the best
case scenario.

Knowledge Increases with Time

In the beginning a software project is little more than a gleam
in one person’s eye. Yet his organization may need rough
estimates of the cost and schedule to fit into advanced budgets
for the next several years. As work on the concept proceeds, more
becomes known about it and more precise estimates become

6

possible.
Lawrence H. Putnam & Ware Myers [6]

Knowledge about any system being developed increases with time. Customers get more
focused about the system’s requirements. Developers get smarter about the technologies
involved. Common sense suggests that as a project approaches completion:

• The rate of change of a system’s estimated final size should approach zero.

• The uncertainty about a system’s estimated final size should approach zero.

Change is Inevitable

“The only thing constant in the universe is change.”
Unknown

A rare project experiences no requirements change or scope growth. Figure 4 illustrates
that over 60% of all projects experience at least a 10% growth in requirements. A qualitative
examination of the underlying data shows requirements growth to be perceived as a
dominant negative factor. Intuition and experience suggest that the impact of a requirement
change is inversely related to the time remaining in the schedule. In other words,
requirements changes that occur late in the project have more impact than do those
occurring early in the project.

7

Requirements Growth Distribution
QSM Database (5,000 projects)

Req Growth %
0 10 20 30 40 50 60 70 80 90 100 110

%
 P

rojects

0

10

20

30

40

50

All Completed Systems

Figure 4: Requirements Growth Distribution

Developers are Optimists

Most people are congenitally optimistic (you have to be to get out
of bed in the morning).
Ware Myers [7]

When you care a lot about the result, the quality of your
estimate approaches zero.
Tom DeMarco [2]

Members of the development team are typically the ones called upon to provide estimates
for the size of their systems. This would seem to make sense; after all, they know the most
about what’s being developed. The problem is, these same people are biased toward
optimism by having a stake in the project’s outcome. Generally, when someone is asked to
provide an estimate of an outcome for which they are directly responsible, the tendency is
to provide a best-case response.

8

Process Description

“If you don’t measure, then you’re left with only one reason to
believe that you are still in control: hysterical optimism.”
Tom DeMarco [2]

Estimate Periodically and Record the Data
A fundamental aspect to effectively managing the size of a system is to periodically re-
estimate its size and to record the results. Figure 5 shows an example of an artifact for
logging periodic size estimates.

Edit Estimate Data for ESLOC (CUM)

Start Date to End Date
Jan-96 Dec-97

Month Low Most Likely High Expected Convergence
Jan-96 45000 60000 75000 60000 0.00
Feb-96 45000 60000 75000 60000 0.00
Mar-96 45000 60000 75000 60000 0.00
Apr-96 45000 60000 75000 60000 0.00
May-96 45000 60000 75000 60000 0.00
Jun-96 53000 62000 70000 61833 43.33
Jul-96 55000 62500 70500 62583 48.33
Aug-96 56000 63000 71000 63167 50.00
Sep-96 57500 63500 72500 64000 50.00
Oct-96 58000 64000 74000 64667 46.67
Nov-96 59000 64500 76000 65500 43.33
Dec-96 60000 65000 78000 66333 40.00
Jan-97 62000 66500 81500 68250 35.00
Feb-97 65500 68000 84000 70250 38.33
Mar-97 67500 70000 86500 72333 36.67
Apr-97 70500 73000 88500 75167 40.00
May-97 72500 75000 90000 77083 41.67
Jun-97 75500 78000 91500 79833 46.67
Jul-97 78500 81000 92500 82500 53.33
Aug-97 82500 85000 93500 86000 63.33
Sep-97 86500 89000 94500 89500 73.33
Oct-97 89500 92000 95000 92083 81.67
Nov-97 91500 94000 95500 93833 86.67
Dec-97 92500 95000 96000 94750 88.33

Figure 5: Sample Data Entry Form

9

Express Estimates as Ranges
An estimate, to be of any real value, must include two components: magnitude and
uncertainty:

Magnitude quantifies the most likely (best guess) outcome. Probabilistically
speaking, this means that 50% of the time the actual outcome will be lower than the
most likely outcome and 50% of the time the actual outcome will be higher than the
most likely outcome.

Uncertainty quantifies the distribution of all possible outcomes. This can be
expressed as a low outcome and a high outcome between which 99% of all possible
outcomes will fall.

An estimate expressed in this form is hereinafter referred to as a 3-point estimate.

Adjust for Bias
Since most projects experience requirements growth, it follows that the difference between
the most likely and high values in a 3-point estimate is usually much larger than is the
difference between the most likely and low values. To dampen the effect of this high-side
bias, the notion of an expected value is introduced as follows:

Expected
Low Most Likely High

=
+ × +4

6
[6]

Viewing a 3-point estimate as defining some associated normal distribution, one standard
deviation can then be approximated by the following:

Standard Deviation ()
High Low

σ =
−
6

[6]

Ideally, the expected size estimate value would remain constant throughout the project; i.e.,
the baseline value equals final actual value. This rarely happens; however, since it is the
goal, this constancy forms the basis for the plan and variance threshold values in the
tracking methodology.

Look for Convergence
Since the uncertainty about a system’s estimated final size should approach zero, we need
to establish a way to quantify and track this decreasing uncertainty. Here we introduce the
notion of convergence. As knowledge and experience increase, uncertainty decreases;
therefore, the high size estimate and low size estimate curves should converge. For a given
elapsed calendar time t, convergence Ct is a function of the corresponding high Ht and low
Lt estimates as follows:

C
H L

H Lt
t t

Baseline Baseline

= −
−
−

1

10

Convergence in this context is represented as a percentage:

• A value of 0% (0) convergence represents the level of uncertainty contained in the
baseline 3-point estimate.

• A value of 100% (1) convergence represents the total absence of uncertainty (i.e.,
the high size estimate and the low size estimate are equal).

Note that it is possible to have negative convergence (divergence) which happens when the
current uncertainty is greater than the baseline uncertainty.

Cumulative effort (cost), cumulative code production, and cumulative defect discovery all
behave according to the cumulative form of a Rayleigh distribution [6] (sometimes referred
to in project management circles as an S curve). Uncertainty is a function of the problem-
solving process, people solve problems, and people are applied to projects in a Rayleigh-
like pattern. [6] A reasonable inference then is that, ideally, size estimate convergence
should go from 0% at the beginning of the project and approach 100% by the end of the
project according to the cumulative form of the Rayleigh function. This ideal behavior forms
the basis for the plan and variance threshold values in the tracking methodology.

Track Over Time
Tracking of periodic 3-point size estimates provides valuable comparison and trend
information. The idea is to track quantities that can easily verify expected project behavior
and have the best chance of providing early warning when the project is in trouble. As a
reasonable minimum, track expected size estimate and size estimate convergence as
functions of elapsed calendar time. Additionally, add variance thresholds to the graphs to
support the process control rules described in the next section (as exemplified by Figure 6,
Figure 7, Figure 8, and Figure 9).

Control the Process
Within the context of quantitative project management, control means comparing the
desired (planned) outcome to the measured (actual) in-process outcome and basing any
corrective action on the difference. Plan the project and take action that causes the earliest
possible convergence on what will be the final actual size value.

The following is an example implementation of a size-estimate-based control process that
uses observations from the time-based tracking curves and a traffic light metaphor with
associated rules.

Green Status—No corrective action recommended.

• The default state; i.e., the criteria for neither Yellow Status nor Red Status
have been met.

Yellow Status—Determine the cause, take corrective action.

11

• Current Expected Size Estimate is outside ±1σ of the baseline 3-point
estimate or

• Current Size Estimate Convergence is outside ±1σ of the baseline plan
Rayleigh convergence curve.

Red Status—Determine the cause, take corrective action, replan the project based
on current 3-point estimate.

• Current Expected Size Estimate is outside ±2σ of the baseline 3-point
estimate or

• Current Size Estimate Convergence is outside ±2σ of the baseline plan
Rayleigh convergence curve.

Examples of Application

Project with Stable Sizing
Figure 6 and Figure 7 illustrate the tracking of estimated size data for a project with stable
sizing. After some early requirements misunderstandings, the project was re-planned during
the fifth month. After the replan, the project experienced minor size growth that was well
within the green threshold. The bulk of this growth occurred relatively early in the project;
late changes were rare. Also, after the replan, size estimate convergence occurred close to
plan and well within the green threshold. Even with the size growth, the project still
managed to come in on time and within budget.

12

Expected Size Estimate (Rate)

0

20

40

60

80

100S 765432

E
S

E
 (thousands)

1 4 7 10 13 16 19 22 25 *
Jan
'96

Apr Jul Oct Jan
'97

Apr Jul Oct Jan
'98

Actual

Interpolated

Plan

Green CB

Yellow CB

 S = Start

 2 = CDR

 3 = FCC

 4 = SIT

 5 = UOST

 6 = IOC

 7 = FOC

Figure 6: Expected Size Estimate Trend for Project with Stable
Sizing

13

Size Estimate Convergence (Cum)

0

20

40

60

80

100

120

140S 765432

S
E

C

1 4 7 10 13 16 19 22 25 *
Jan
'96

Apr Jul Oct Jan
'97

Apr Jul Oct Jan
'98

Actual

Interpolated

Plan

Green CB

Yellow CB

 S = Start

 2 = CDR

 3 = FCC

 4 = SIT

 5 = UOST

 6 = IOC

 7 = FOC

Figure 7: High-Low Size Estimate Convergence for Project with
Stable Sizing

Project with Unstable Sizing
Figure 8 and Figure 9 illustrate the tracking of estimated size data for a project with unstable
sizing. After some early requirements misunderstandings, the project was re-planned during
the fifth month. Unfortunately, after the tenth month, some serious uncertainty began to
creep in. The project was hit with several new requirements plus it lost a substantial amount
of expected reuse benefit. Uncertainty increased as the bad news continued to roll in.
Surprisingly, no replan was done and no get-well strategy was implemented. The expected
size continued to grow, unchecked, until the customer finally initiated a code freeze and
took delivery of the system as it was. The supplier subsequently lost in a competitive bid for
the next phase of the program.

14

Expected Size Estimate (Rate)

0

20

40

60

80

100S 765432

E
S

E
 (thousands)

1 4 7 10 13 16 19 22 25 *
Jan
'96

Apr Jul Oct Jan
'97

Apr Jul Oct Jan
'98

Actual

Interpolated

Plan

Green CB

Yellow CB

 S = Start

 2 = CDR

 3 = FCC

 4 = SIT

 5 = UOST

 6 = IOC

 7 = FOC

Figure 8: Expected Size Estimate Trend for Project with
Unstable Sizing

15

Size Estimate Convergence (Cum)

0

20

40

60

80

100

120

140S 765432

S
E

C

1 4 7 10 13 16 19 22 25 *
Jan
'96

Apr Jul Oct Jan
'97

Apr Jul Oct Jan
'98

Actual

Interpolated

Plan

Green CB

Yellow CB

 S = Start

 2 = CDR

 3 = FCC

 4 = SIT

 5 = UOST

 6 = IOC

 7 = FOC

Figure 9: High-Low Size Estimate Convergence for Project with
Unstable Sizing

Conclusion
Software size is a quantity that has a profound effect on development cost, schedule, and
reliability. Quantitative management of software size is therefore necessary to ensure
adequate quantitative management of cost, schedule, and reliability. Since software size is
an estimated quantity (i.e., the final value cannot be measured) until the end of
development, one must apply quantitative management techniques to the estimates
themselves. This can be accomplished with continuous 3-point size estimation and time-
based tracking of values derived from these 3-point estimates.

Project management success means achieving expectations. Unreasonable expectations
lead to failure. Guard against expectations being too high and too low. Finally, you can’t
control what you can’t measure. [2]

16

References
[1] Butler, J. & Ross, M., T., “Making the First Cut: Sizing New Technology.” QSM

Perspectives, Fall 1997, Volume 20 Number 2, pp. 1-2, 4.

[2] Demarco, T., Controlling Software Projects: Management, Measurement, and
Estimation. New York, NY: Yourdon Press, 1982.

[3] Humphrey, W., Managing the Software Process. Reading, MA: Addison-Wesley
Publishing Co., 1989.

[4] Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V., Capability Maturity Model for
Software, Version 1.1. Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 1993.

[5] Paulk, M.C., Weber, C.V., Garcia, S.M., Chrissis, M.B., Bush, M., Key Practices of
the Capability Maturity Model, Version 1.1. Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1993.

[6] Putnam, L. & Myers, W., Measures for Excellence: Reliable Software On Time,
Within Budget. Englewood Cliffs, NJ: Yourdon Press, 1992.

[7] Putnam, L. & Myers, W., Industrial Strength Software: Effective Management
Using Measurement. Los Alamitos, CA: IEEE Computer Society Press, 1997.

17

Biography
Michael A. Ross is currently Managing Director of the Western Region Office of Quantitative
Software Management, Inc. where, for the last four years, he has served as one of QSM’s
primary consultants and analysts working with Fortune 500 companies and government
agencies in the areas of measurement, sizing, forecasting, and control.

Mr. Ross, during 17 years with Honeywell Air Transport Systems (formerly Sperry Flight
Systems), developed or managed the development of embedded software for avionics
systems installed in the Lockheed L1011-500, Boeing 757/767, Airbus A320, Douglas MD-
11, British Aerospace BAe-146, and Boeing 777 airplanes. He also co-founded the
division’s process improvement team (later to become its SEPG), served as a corporate
SEI CMM assessor, and served as the division’s focal for software project management
process improvement.

Mr. Ross did his undergraduate work at the United States Air Force Academy and Arizona
State University, receiving a Bachelor of Science in Computer Engineering. He is a member
of the IEEE, the International Function Points Users Group, the International Society of
Parametric Analysts, the Arizona Software Association, and the Phoenix area Software
Process Improvement Network.

Page 1

Software Quality Assurance
Independent Testing

“Life as a CMM Level 5 Test Organization”
May 26, 1999

John N. Romanak
Executive Director

Software Quality Assurance Independent Testing
(732) 699-8444

jromanak@telcordia.com

Copyright © 1999 Telcordia Technologies, Inc. Used by permission only.

Life as a CMM Level 5 Test Organization -

QW‘99 - Bellcore Independent Testing

Bellcore, with its long history of making innovative
telecommunications technology work, is now

Telcordia Technologies

Our name has changed, but our tradition of high
standards and exceptional performance continues.

Page 2

Life as a CMM Level 5 Test Organization -

“Quality, timeliness, cost-effectiveness”

. . . You cannot have all three

QW‘99 - Bellcore Independent Testing

Bellcore has proven otherwise!

Life as a CMM Level 5 Test Organization -

QW‘99 - Bellcore Independent Testing

Corporate Facts
• Fast Facts About Bellcore: A Wholly Owned Subsidiary of

Science Applications International Corporation (SAIC)
Bellcore is a leading provider of Communications Software,
Engineering and Consulting Services based on World-Class

Corporate Statistics
• 1998 Revenues exceeded $1 billion

Who is Bellcore?

Page 3

QW‘99 - Bellcore Independent Testing

Key Facts
•

CMM Level 3 and ISO9000 Certified
• 482 Technical Quality Engineers
• 164 Major Releases Shipped
• 214 Million Lines of Code Tested
• “Best in Class” Cumulative Field Fault results
• “Best in Class” Test Cost Efficiency results

Software Quality System Profile

Life as a CMM Level 5 Test Organization -

47.3

43.5

40.2

35.8

28.5

15.4

9.2 8.5
7.2

4.6
3.3

0

10

20

30

40

50

4Q93 2Q94 4Q94 2Q95 4Q95 2Q96 4Q96 2Q97 4Q97 2Q98 4Q98

Industry Best In Class

Fa
ul

ts
/K

FP

QW‘99 - Bellcore Independent Testing

QMO Compliance

ISO 9001 Certification (Phase I)

ISO 9001 Certification
(All Business Units)

Formation of
Independent Test
Organization (5/93)

Field Fault Density- KFP

Source:Software Systems Metrics Operations Report

Page 4

709

220

127
95

0

100

200

300

400

500

600

700

800

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec

1995
1996
1997
1998

Source: Customer Service Center Metrics Database

QW‘99 - Bellcore Independent Testing

Data for 1995, 1996 and 1997 is displayed as provided at the end of each year and not retroactively adjusted

Sev1/2 Maintenance Requests

Life as a CMM Level 5 Test Organization -

Source: Bellcore Corporate Survey

60%
65%

80%
85%

91%
95%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1992 1993 1994 1995 1996 1997

Positive Trend in Customer Satisfaction

Customer Satisfaction
QW‘99 - Bellcore Independent Testing

ISO 9001 Registered
CMM Level 3 Rating

Page 5

QW‘99 - Bellcore Independent Testing
Start the Quality Journey

June, 1989: Why start:

 “Mindset Change”

Independent Test - Clean Separation of System
Test from Design & Development

Poor Relationship

With Development

Testing Provides

Low Value

Low Test Automation

Low Customer

Satisfaction

Product Vs.Solution Focus

Life as a CMM Level 5 Test Organization -

QW‘99 - Bellcore Independent Testing
The Journey Continues

May, 1993: “Corporate Organizational Change”

 Independent Test Launched - Software Systems
 Institutionalizes Clean Separation of System
 Test from Development.

Test Management Vision Launched

• What Would the World Class Testing Organization Look Like?

• How Would the World Class Testing Organization Operate?

• What Would it be Like to be Part of the World Class

Testing Organization?

• What Would the Results Look Like?

Page 6

Life as a CMM Level 5 Test Organization -

QW‘99 - Bellcore Independent Testing
The Journey Advances

April, 1995: “Cultural Realization”:

 Management Change - Corporate Alignment

Strict Quality Discipline - QMO

• Testing is a Key Component Throughout the Process

• Early Testing is Critical to Success = “Prevention Oriented”

Life as a CMM Level 5 Test Organization -

• Alignment with Business Unit Strategies
• Test Strategies Driven by Product Life Cycle
• Tactical Implementation of Business Model Goals
• Focus on Cost Reduction, Cost Avoidance, Time-to-Market

QW‘99 - Bellcore Independent Testing

Know Your Products - Manage Them “Fundamentally” Different
SQA Testing Business Model

“Advance the Leadership”

Manage Test like a Business

Page 7

Life as a CMM Level 5 Test Organization -

QW‘99 - Bellcore Independent Testing
Strong Software Quality Assurance Structure

October, 1997: “Software Quality Assurance Alignment”

Corporate alignment of Quality Operation Center
with new President & COO

SQA Web Site

• Internal Access by Corporate Officers

• Business Operations Council Review

• Overall Quality Assessment - “Quality Conscience”

Life as a CMM Level 5 Test Organization -

The Software Systems Quality Assurance Testing Organizations,
provide independent centralized test services for Bellcore’s

Software Systems Applications.

QW‘99 - Bellcore Independent Testing

Telcordia
Technologies

 Shipped on Time

SQA Web Site - Home Page

Qual. & Oper. Center

 Metrics

Page 8

QW‘99 - Bellcore Independent Testing

10200 Software Quality Assurance Testing
Product Releases in Development - Product Status Summary

Department 10230 (J.N. Romanak - ED)

VP - GM
Business Unit

Rel # Ship Date

Y PRODUCT 1 1.1 6/30/99

Y PRODUCT 2 1.2.3 7/1/99
R PRODUCT 3 4.0 7/29/99
Y PRODUCT 4 2.2 6/30/99
Y PRODUCT 5 2.2.2 10/31/99
Y PRODUCT 6 2.3 6/30/99
G PRODUCT 7 2.4 10/31/99
G PRODUCT 8 3.1.2 9/30/99
G PRODUCT 9 4.1 10/31/99

SQA Web Site - Product Status

Life as a CMM Level 5 Test Organization -

QW‘99 - Bellcore Independent Testing
SQA Web Site - Detailed Metrics

HISTORICAL IN PROGRESS

Estimate Current
Release # 1.0 2.0 3.0 4.0
Contractual Ship date 07/29/99
Planned Ship Date 07/29/99
Actual Ship Date

RELEASE PROFILE

Assessment

Key Points

Milestones Plan Forecast Actual

Page 9

Life as a CMM Level 5 Test Organization -

 QW‘99 - Bellcore Independent Testing

• Soar with your Strengths
√ Technical Staff

• Advance the Leadership
√ “The Management”

• Dare to Soar
√ Rapid Growth

Reset the Test Management Vision - ‘98

Business Growth
↑ 204% Increase in Products Tested
↑ 267% Increase in Deployed Code
↑ 145% Increase in Major Releases Shipped

Quality Improvement
↑ 306% Increase in Test Automation
↑ 93% Improvement in Field Fault Density/KFP
↑ 81% Improvement in Field Fault Density/MLOC

Cost Efficiency
↓ 61% Decrease in Test Cost Per Line of Code

Impact to the Corporation

Life as a CMM Level 5 Test Organization -

* Field Fault Density
* Sev 1/2 Maintenance Requests
• Test Automation
• PT/MUT Test Faults
• Removal Efficiency

• Total Lines of Code Supported
• Pre-Shipment Fault Density
• Major Releases Shipped
• Product Test Fault Density
• Test Cost Efficiency

Measures of Progress - Blue Chart

QW‘99 - Bellcore Independent Testing
Proven Quality Results

Future
• Automatic Test Case Generation
• Test Coverage
• Strong Partnership with Applied Research

Page 10

Life as a CMM Level 5 Test Organization -

• Industry Leader in Quality Process and Discipline
• Strong Quality Champion and Catalyst
• SQA Testing Business Model
• Solution/Integration Testing Focus
• Industry Leader in SQA Testing Measures of Progress Results
• State of the Art Test Tools
• “Best In Class” Independent Centralized Testing Operation

“Soar with your Strengths...”

QW‘99 - Bellcore Independent Testing
Proven Strengths - Distinctive Competence Differentiators

Life as a CMM Level 5 Test Organization -

 QW‘99 - Bellcore Independent Testing

Quality Is Our Differentiator

“You can have all three”

Quality, Timeliness, Cost Effectiveness

“Life as a CMM Level 5 Test Organization”

The Differentiator

Bellcore, with its long history of making innovative
telecommunications technology work, is now

Telcordia Technologies

Our name has changed, but our tradition of high standards
and exceptional performance continues.

__

QW’99 Bellcore Paper

“Life as a CMM Level 5 Test Organization”

Introduction:

Quality, timeliness, cost-effectiveness – for years software professionals have

believed you cannot have all three. Bellcore has proven otherwise. Bellcore’s approach

to Software Quality has made us a leading provider of World-Class software. Bellcore’s

Software Development organization numbers about 3500 employees, with a portfolio of

150 operations support systems and over 110 Million Lines Of Code (MLOC).

Positioning Bellcore for SEI CMM Level Five in 1999.

Testing is needed now more than ever and testing is now more complex than

ever. Testing is not a revenue-producing activity, but rather a revenue-preserving one.

However, testing cannot be an add-on activity, after software development is complete.

It must be integrated throughout the development lifecycle in order to be cost-effective.

A more effective testing capability leads directly to increased customer satisfaction, as

systems work and work right the first time. A more efficient testing capability leads

directly to increased Quality, as test cost savings increase so does customer profitability

and satisfaction.

QW’99 Paper

Life as a CMM Level 5 Test Organization
Copyright 1999 Telcordia Technologies, Inc. Used by permission only.

2

Goals and Objectives:

• Journey through Development and Test Culture paradigm changes

• Understand how to Manage Test like a Business

• Experience what it’s like to be a Corporate Independent SQA Testing Center
aligning directly to the President of the Company

• Explore Bellcore’s sophisticated SQA Web interface for overall Software
Quality Assessment, which can be accessed by executives to view each
system’s overall quality “health” status based upon proven process and
discipline

• Proven Measures of Progress historical metrics that serve as Bellcore’s
distinctive competence differentiation in being an Industry Leader in
Independent SQA Testing operations

Meeting the Challenge for Test Excellence:

The quality of software testing is normally inconsistent, with different organizations

performing testing in different ways. Although corporate quality models can exist, with

clearly defined milestones and deliverables, the processes used to create deliverables

are not always detailed and the model is not always used by all organizations. While

many excellent test processes and knowledgeable people exist within the industry, this

knowledge is not applied consistently to achieve predictable, consistent testing

outcomes.

Key issues encountered in the Industry with its current testing environment are:

• Unclear ownership of the testing discipline in the company

• General lack of esteem in which testers are generally held compared to other
software development professionals

• Inconsistent levels of involvement of users in the test planning process, and
testers in the planning and software development efforts

QW’99 Paper

Life as a CMM Level 5 Test Organization
Copyright 1999 Telcordia Technologies, Inc. Used by permission only.

3

• Ineffective integration of software testing throughout the software
development life cycle

• Proliferation of locally controlled testing facilities and testing within the
production environment

• Lack of a centralized program to define, develop and maintain test skills.

Bellcore’s testing challenge is for a robust, mature testing practice to ensure that

corporate software quality goals are achieved consistently and predictably. This will

require a corporate-wide testing methodology, tools, training and guidance, as well as

infrastructure support for the initiative. Key goals of this practice are:

• Clear demonstration of management support for testing

• Well-defined test processes used by trained individuals

• Testing efforts that are aligned with business goals

• Testing measurements to ensure adequate test quality, performance and

accountability

• High level of quality and overall customer satisfaction for testing.

Bellcore clearly understands testing vision and software quality assurance challenges

that lie ahead. There are many similarities between software industry’s current situation

and its challenges and Bellcore’s experiences with software development. Often, testing

of software products is an afterthought - a requirement for sign-off or at best an

opportunity to find the most obvious of the software “bugs” prior to production. The

focus is typically on defect removal instead of on defect prevention. It is much more

cost effective to avoid “bugs” before coding is completed than to test, identify and

correct software anomalies after coding is completed. Bellcore’s solution for software

quality assurance testing is based on the premise that the software testers are involved

throughout the Software Development Lifecycle. From the development of software

testing strategies during the software sales process to the production implementation at

a customer site, the Testers are always valued members of the software development

team. The Testers provide important insights on the testability of the requirements, the

QW’99 Paper

Life as a CMM Level 5 Test Organization
Copyright 1999 Telcordia Technologies, Inc. Used by permission only.

4

usability of the designs, and the overall test strategy required to fully test the feature,

product or solution at hand. Since the testers typically have the most “hands-on”

experience (next to the actual customer), they bring highly valuable customer insights to

the team that will help to improve overall customer satisfaction. The involvement of the

Independent Test Staff throughout the Software Development Lifecycle will also help to

raise the overall technical expertise of the Test staff as they increase their

understanding of the product and the overall end-customer requirements and usage.

Experience Bellcore’s Journey for Test Excellence:

Bellcore has been an industry leader in testing techniques and quality assurance

applications. Bellcore has developed a unique testing program and methodology that

has led to a level of product and process interoperability that is unmatched in the

industry. Bellcore’s Software Systems Organization has received industry recognition in

two major quality arenas:

♦ In October 1996, Bellcore’s ISO 9001 Certification was expanded to include all of

Software Systems. The quality system was examined for conformance to the twenty

elements required by ISO through a random sampling across a wide spectrum of

projects. With no open non-conformities at the end of the audit, we were

recommended for immediate certification.

♦ In December 1996, Bellcore Software Systems successfully completed the Software

Engineering Institute’s Capability Maturity Model (CMM) assessment and achieved a

Level 3 rating with significant strengths noted in some key process areas at higher

levels. Only 11% of organizations assessed have been rated as Level 3 or higher.

In terms of organizational size and breadth of scope, Bellcore Software Systems

was the largest assessment ever performed.

Bellcore’s software quality journey for “Best in Class” Independent Testing began in the

1992/1993 timeframe. At that time, only 30% of our testing was automated. Testing

was viewed as providing low value and the relationship between the testing and

development organizations was poor at best.

QW’99 Paper

Life as a CMM Level 5 Test Organization
Copyright 1999 Telcordia Technologies, Inc. Used by permission only.

5

Bellcore’s approach to Independent Software Quality Assurance Testing, a clean

separation of system test from design and development, has been a key component of

this success. Bellcore's testing methodology specifies the ownership of tasks and

responsibilities and also the process of obtaining agreement and buy-in across

organizations. In addition, goals are concise and quantitative and linked to Bellcore’s

appraisal process. Bellcore's testing methodology requires that quality is everyone's

responsibility across the organization. Bellcore's methodology specifies the roles of

each organization and of each participant. Deliverables by all organizations involved in

the system development are reviewed and signed off according to the criteria set by the

team. Each test activity has roles and participants clearly identified. Bellcore’s strategy

includes methods for determining the number of staff, level of expertise and particular

job functions required for a software project/product based on where in the software

lifecycle the project/product falls. In general, Bellcore’s methodology includes 4 primary

job functions: Test Project Manager (responsible for initiatives related to the Quality

Assurance Test function), Test Manager (responsible for the overall test activities for the

product/project that his/her staff supports and the management of this staff), Lead

Tester (responsible for the technical aspects of the testing and for mentoring the testers)

and Tester (responsible for detailed test planning and execution).

It is a common behavioral characteristic of software development organizations to staff

the software testing function with under-qualified personnel. Most often, talented market

hires are directed to the software development shop before consideration is given to the

software testing organization. It is not uncommon for a Test Organization to report to the

same management as the Requirements and Development staff. This structure lends

itself to the redirection of qualified technical staff to work on systems engineering and/or

development efforts instead of software testing. The first step in the evolution of

improving software quality is to improve the quality of the test staff. The key here is

what Bellcore has done with the formation of an independent test organization, so there

is a clean separation of system test from design and development. Make it known

within the company that only “the best” will work in the Independent Testing

Organization. Make sure this Test Organization has the best equipment – not “hand me

downs” from Development. Hire highly technical, experienced people. Seed the Test

Life as a CMM Level 5 Test Organization
Copyright 1999 Telcordia Technologies, Inc. Used by permission only.

6

Organization with a handful of stars from inside and outside the company to increase

the credibility of the Test Organization and to act as role models, mentors, and trainers

for the less technical staff. Do not allow poor performers to transfer to the Independent

Testing Organization. Reward the test staff when they succeed. Make it clear that

Testing is a profession with a clear career path. Set up clear job descriptions for each

level of staff with titles that are comparable to those of the Development Organization.

Make sure the Training Organization provides clear training tracks and courses for

professional testers. Provide opportunities for the test staff to attend outside training

and Test conferences in order to raise awareness that Testing is a valuable career

choice for software professionals.

Bellcore’s experienced test managers tailor and implement comprehensive testing

solutions, while developing an overall test strategy and plan to support its Software

Systems’ Business. By following a well defined Test Strategy, we are able to implement

a corporate-wide testing methodology, tools, training and guidance. Testing efforts will

be aligned with business goals, and progress will be measured to ensure adequate test

quality, performance and accountability, with a focus on quality and overall customer

satisfaction. Bellcore’s business of software testing is based on the maturity of the

software product or solution being tested. For example, a product’s test automation

strategy will be very different for an emerging product than for an established product.

The focus of the automation strategy is cost reduction, cost avoidance, and time to

market. In addition, Bellcore’s Independent Testing operations moves the decision-

making and budget responsibilities for each product’s test function to the line manager

of the test group. The Test Manager is responsible for test cost estimation, test budget

tracking, and personnel. Also, the test manager and the individual testers are

responsible for signing the test readiness checklist and signoff sheet for each product

release. Bellcore additionally calls for key learning sessions after each phase of the

software process and the Independent Testing Organization provides valuable insights

for each of those. In addition, our Test Organization uses a full range of in-process test

metrics to manage each testing phase, and to determine areas for improvement going

forward. These metrics are produced at the product level and rolled up to the corporate

level with intermediate levels as necessary. The corporate level metrics are used to

QW’99 Paper

Life as a CMM Level 5 Test Organization
Copyright 1999 Telcordia Technologies, Inc. Used by permission only.

7

compare and contrast Bellcore’s performance against software industry trends and to

track overall progress as a company. Individual product metrics are used to determine

the items to be entered in each product’s Quality Improvement Plan and to measure the

product’s progress in achieving these planned improvements.

In addition to metrics, the Bellcore Independent Testing Organization incorporates the

use of a SQA Testing Project Manager. The Project Manager is responsible for guiding

the Independent Testing Management team in identifying key areas for improvement for

the Test Function as opposed to the individual Products, and for identifying and

implementing the steps necessary to move the Testing and overall Quality to best in

class in the industry. Bellcore has dramatically increased the number of test cases

executed per tester in its own testing organization by the effective use of test

automation. Test tools play a critical role in an organization's overall quality program.

Tools make it possible to improve the efficiency and effectiveness of the testing

process. When used prudently, test tools can increase the rate of defect discovery and

decrease test cycle times. However, successfully introducing tools into an organization

requires an overall automation program. The program must be based on (1) goals with

realistic expectations for return on investment, (2) an organizational structure with strong

management support and (3) technology built with sound software engineering

discipline. Experience has shown that automation goals should not be set uniformly

across all application teams. Goals for automating should be established based on the

following factors: application lifecycle, application life-span, relationship to critical

business work-flows, and platform strategy. Developing automated scripts at the wrong

time or for the wrong reasons can be much more expensive than manual testing.

Therefore, the automation program should be initiated with specific and realistic

expectations for the return on investment.

Metrics are critical to the successful implementation of a quality testing organization for

several reasons. First of all, metrics give all members of the team visibility into the

project as well as advance warning of problems. In addition, metrics allow the

organization to track its progress on quality improvement and celebrate success. Some

of the metrics that Bellcore uses successfully as its “yardstick” are:

Life as a CMM Level 5 Test Organization
Copyright 1999 Telcordia Technologies, Inc. Used by permission only.

8

• Field Fault Density

• Severity 1 and 2 Maintenance Requests

• Test Automation

• System Test/Multi-Unit Test Faults Ratio

• Removal Efficiency

• Pre-shipment Fault Density

• Major Releases Shipped

• Test Cost Efficiency

In addition, Bellcore has established a considerable in-process metrics program. This

program allows for the Management and Staff of the product teams to set goals and

evaluate their progress against the goals on a consistent basis. In-process metrics can

be used to determine if additional Management intervention is needed when products

fail to meet these in-process goals. Bellcore has considerable experience in

implementing and managing realistic jeopardy action plans that will guide a product

back onto schedule. Bellcore has found that this set of metrics provides valuable insight

into areas for improvement and the level of product quality.

Bellcore's testing methodology clearly states organizational testing goals, in both

subjective measures and metrics. Goals are formed “top-down” and clearly support the

overall corporate goals. Quarterly corporate test and quality goals are measured and

the corresponding graphs and charts are strategically displayed in all locations so that

each member of the product team (not only the test organization) is aware of the current

status. In particular, the test metrics of effectiveness (number of MRs found by testing,

number of MRs found in deployment, etc.) and efficiency (percent of test cases

automated tracked to the business model for automation, etc.) combine to clarify each

testing organization’s goals.

QW’99 Paper

Life as a CMM Level 5 Test Organization
Copyright 1999 Telcordia Technologies, Inc. Used by permission only.

9

Bellcore’s Proven Results:

Since implementation of our Quality Process and our Independent Software Quality

Assurance (SQA) Testing Organization, we have reduced the number of Severity 1 and

2 troubles our customers experience by 82% from 1995 to 1997, and, 51% through

1998, saving tens of millions of dollars for both our customers and ourselves, and

improving our overall customer satisfaction from 60% to 95%.

To put these results in context, from 1993 to 1998, Bellcore’s Software Systems

organization experienced the following growth in its business:

• 204% increase in products tested

• 267% increase in deployed code

• 145% increase in major releases shipped

In terms of quality improvement, Bellcore’s results are:

• 306% increase in test automation

• 93% improvement in Cumulative Field Faults/KFP

• 81% improvement in Cumulative Field Faults/MLOC

From a cost efficiency standpoint, Bellcore has achieved a 61% decrease in Test Cost

per Line of Code Tested over the same period.

Bellcore's proven testing methodology involves culture, process, discipline, and

organizational change. Bellcore acknowledges the difficulty to introduce and implement

this new process. However, this methodology will lead to institutionalizing test quality

assurance, with measurable Quality Improvement.

QW’99 Paper

Life as a CMM Level 5 Test Organization
Copyright 1999 Telcordia Technologies, Inc. Used by permission only.

10

Bellcore’s Testing Paradigm Change:

Bellcore has created a world class software development quality assurance testing

organization. We know the pitfalls and success factors, especially for an organization of

the size and complexity of Bellcore’s. We know what it takes to make such an

enormous paradigm change to where software testing is a valued part of software

development, software testers are highly critical members of the product/project team,

and where the focus shifts from error detection to error prevention. We have a proven

model for job and career satisfaction for testers and test managers that enables hiring

and retaining excellent staff in Testing.

Benefits of Bellcore’s Independent Testing Organization to the business include:

• Shortening implementation time for launching internal testing programs

• Assuring high quality results by working with a world class process

• Reducing costs of recruiting and retaining top personnel

• Directing investment to the right equipment and tools

• Giving personnel more time to focus on developing their own expertise and
capabilities

• Improved planning and budgeting

• Exceeding customers’ expectations by starting testing earlier so customers’ services
get to market on time

• Achieving “Best in Class” measurable Quality Improvement and Metrics.

In Closing:

Bellcore’s SQA Independent Testing Organization is now industry-recognized as best in

class. We have presented numerous papers describing our SQA Testing approach at

QW’99 Paper

Life as a CMM Level 5 Test Organization
Copyright 1999 Telcordia Technologies, Inc. Used by permission only.

11

industry conferences such as STAR, Software Quality week, EuroSTAR and ISSRE. In

the last 3 years, we have provided workshops on Independent SQA Testing and have

shared our success story for many large corporations.

References:

Special thanks goes to Anita Sauer, Executive Director, and Chris Spuler, Senior

Director, for their experience and insights in shaping key points in this paper.

1

 Using the Testing Maturity Model
SM to Assess and Improve

Your Software Testing Process
Ilene Burnstein, Ariya Homyen,

Taratip Suwanassart, Robert Grom,
Gary Saxena

 Computer Science Department
Illinois Institute of Technology, Chicago, IL

SM: Testing Maturity Model and TMM are service marks of Illinois Institute of Technology

Organization of the Talk

l Introduction
l TMM Level Hierarchy
l TMM Assessment Model
l Preliminary Experimental Results
l Maturity Model Integration Issues
l Summary and Future Research

2

Why Develop a Testing Maturity

l Process Quality Impacts on Product Quality
l Testing Provides Support for Quality Software
l Existing Process Improvement Models have

not Adequately Addressed Testing Issues
l A Mature Testing Process has not been

Adequately Defined

The TMM - Purpose and
Usage

l PURPOSE
-TMM can assist organizations with assessing and
improving their testing processes

l USAGE
-Assessors: identify current testing capability state

: initiate test process improvement
: improve testing capabilities

define their role in testing

3

TMM Components

l Set of Levels
-levels prescribe testing maturity hierarchy
-level structure: goals,

l Assessment Model
-assessment instrument, determines level of maturity
-assessment procedure, guides team
-team selection/training procedures
-assessment forms and tools

The TMM Level Hierarchy

Level 2: Phase Definition

Level 3: Integration

Level 4: Management and
Measurement

Level 5: Optimization/Defect
Prevention/Quality Control

Level 1: Initial

4

TMM Level 2 : Phase
Definition

l Characteristics

-Testing is phase that follows coding
-Testing is separate from debugging

l Level 2 Maturity Goals

1: Develop Testing and Debugging Goals
2: Initiate Test Planning Process

 Basic Test Tech/Methods

TMM Level 3 : Integration

l Characteristics

-Testing no longer phase following coding
-Testing is professional activity

l Level 3 Maturity Goals

1: Establish a Software Test Organization
2: Integrate Testing into SW Life Cycle
3: Control and Monitor Testing
4: Establish a Technical Training Program

5

TMM Level 4: Management
and Measurement

l Characteristics

-Definition of a testing activity broadened
l Level 4 : Maturity Goals

1: Establish Org-Wide Review Program
2: Establish Test Measurement Program
3: Software Quality Evaluation

TMM Level 5: Optimization/Defect
Prevention & Quality Control

l Characteristics

-Infrastructure, leadership in place to
evaluate, improve product, process quality

l Level 5: Maturity Goals

1: Defect Prevention
2: Quality Control
3: Test Process Optimization

6

The TMM Assessment Model:
the Questionnaire

l Used CMM, SPICE concepts for developm’t
l Questions cover respondent data, TMM

, tool use, trends
l MG questions organized by TMM levels
l Easy to complete - answers are input as “yes,

no, doesn’t apply, don’t know”
l Trial use in industry

The TMM Assessment
Procedure I

l Preparing for the Assessment
– select and train team
– select projects
– prepare organizational units
– develop assessment plan

l Conducting the Assessment
– collect data (questionnaire, interviews, etc.)

apply ranking algorithm to determine rank

7

The TMM Assessment
Procedure II

l Reporting Assessment Outputs
– test process profile
– testing strengths and weaknesses

assessment record
l Analyze Data

– identify and prioritize improvement goals
quantify improvement goals
identify possible sub-processes/ practices for

The TMM Assessment
Procedure III

l Develop Action Plans
– involve assessment team, SQA, SEPG, managers

develop action plans based on analysis of

select pilot projects
l Implement and Track Improvements

apply to pilot projects
monitor and track process
evaluate for organization-wide adaptation

8

TMM Ranking Process
1. Use Traceability Matrix, insure data integrity

for ranking
2. First rate the Maturity Subgoals- use

measure of “degree of satisfaction”
3. Then rate the Maturity Goals at each level
4. Determine Maturity Level using Maturity Goal

Satisfaction Criteria (scale is 1-5)

Assessment Support
l Tools, forms and templates

– assures assessments are consistent, repeatable
reduce subjectivity
ensure validity, usability, comparability of results

l Examples
– process profile
– team training data recording template

web-based questionnaire at: www.
supports local and distributed assessors by
storing & organizing data at central site

9

Experimental Results
l TMM questionnaire applied at 2 industrial sites

Org1 -tests household hardware items
Org 2 - develops telecom software and hardware

• helped to clarify and reorganize questions
experimented with ranking algorithm
generated example action plans

l TMM Ranking
– both rank at TMM level 1
– strengths and weaknesses vary
– evidence for practices at higher levels of TMM

TMM - CMM Integration Issues
l TMM is a type of CMM
l Based on industry feedback- CMMs in all

process domains should be integrated, and

- common concepts and vocabulary
- overlapping goals
- parallel assessments
- common training for assessors

10

Development Maturity Model
(DMM)SM Framework

l Set of DMM Principles
l DMM Architecture

naming and numbering of levels
internal structure of levels
distribution of KFAs

l DMM Construction Process
discovery, architecture, synthesis, validation

SM: Development Maturity Model and DMM are service marks of Illinois Institute of Technology

Summary and Future Research

l Need for TMM established
l Components defined for TMM version 1.0
l Trial use of TMM for test process evaluation
l Current and Future Plans
 - model validation: wider use of TMM version 1.0 in

- testers workbench
- test process reuse
- maturity model integration, TMM v 2.0

Using the Testing Maturity Model (TMM) to Assess and Improve
Your Software Testing Process

Ilene Burnstein, Ariya Homyen, Taratip Suwanassart,
Robert Grom, Gary Saxena

Computer Science Department
Illinois Institute of Technology

Chicago, IL 60616
csburnstein@minna.iit.edu

Abstract:

Our research has resulted in the development of a Testing Maturity Model (TMM)
designed to assist software organizations in assessing and improving their software testing
processes. The TMM consists of two major components, a set of maturity levels and an
assessment model. In previous work we have reported on the set of maturity levels and
maturity goals. In this paper we review the TMM level structure, and describe in detail the
recently developed TMM Assessment Model, its supporting forms and tools, preliminary
experiments with application in industry, and issues related to maturity model integration.

1.0 Introduction
Software systems are playing an increasingly important role in our society. They

have a strong impact on vital operations in for example, the business, medical, and
telecommunication domains. For this reason, it is imperative that we address quality issues
that relate to both the software development process and the software product. Our
research focuses on process. We are developing a Testing Maturity Model (TMM)
designed to assist software development organizations in evaluating, and improving their
testing processes [1-3]. Testing is applied in its broadest sense to encompass all software
quality-related activities. We believe that improving the testing process thorough
application of the TMM maturity goals will have a very positive impact on software quality,
software engineering productivity, and cycle time reduction efforts.

In previous papers we have reported on our approach to building version 1.0 of the
TMM [1,2]. We have also described the internal structure the TMM including its maturity
levels, associated maturity goals, subgoals and activities/tasks and responsibilities. In this
paper we focus on the recently developed TMM Assessment Model. We describe how the
TMM Assessment Model can assist an organization with evaluating and improving its
software testing process through use of its components: the questionnaire, the assessment
procedure, and supporting templates and tools. We also discuss preliminary experimental
results based on trial use of the TMM in industry, and issues in maturity model integration.

2.0 An Overview of the TMM
The development of version 1.0 of the TMM was guided by the work done on the

SW-CMM, a process improvement model that has received wide-spread support from the
software industry in the United States [4]. Other input sources to TMM development
include, Gelperin and Hetzel's Evolution of Testing Model [5] that describes the evolution
of the testing process in industry over a 40 year period, and the Software Testing Practices
Survey Report [6] that identifies best test practices in industry as of 1993.

The TMM is a staged process improvement model with a 5 level hierarchy of goals
that support incremental test process improvement. Version 1.0 of the TMM has two
major components [1-3]:

1. SET OF LEVELS.
There are 5 levels in the TMM that prescribe a maturity hierarchy and an

evolutionary path to test process improvement. The characteristics of each level are
described in terms of testing capability and organizational goals. Each level with the
exception of level 1 has a structure that consists of:

• A set of maturity goals. The maturity goals identify testing improvement goals
that must be addressed in order to achieve maturity at that level. In order to be placed at a
level, an organization must satisfy the maturity goals at that level. The TMM levels and
associated maturity goals are shown in figure 1.

• Supporting maturity subgoals. They define the scope, boundaries and needed
accomplishments for a particular level.

• Activities, tasks and responsibilities. (ATR) The ATRs address implementation
and organizational adaptation issues at a specific level. Activities and tasks are defined in
terms of actions that must be performed at a given level to improve testing capability; they
are linked to organizational commitments. Responsibilities are assigned for these activities
and tasks to three groups that we believe represent the key participants in the testing
process, managers, developers/testers, and users/clients.

The maturity goals at each level of the TMM are shown in figure 1. They are fully
described in previous work [1,2], and are also listed below along with a brief description
of the characteristics of an organization at each TMM level. This will introduce the reader
to the evolutionary path prescribed in the TMM for test process improvement.

Level 1: Initial

Level 2: Phase Definition

Institutionalize Basic Testing Techiques and Methods
Initiate a Test Planning Process
Develop Testing and Debugging Goals

Level 3: Integration

Controlling and Monitoring the Testing Process
Integrate Testing into the Software Life Cycle
Establish a Technical Training Program
Establish a Software Test Organization

Level 4: Management and Measurement

Software Quality Evaluation
Establish a Test Measurement Program
Establish an Organization-Wide Review Program

Level 5: Optimization/Defect Prevention & Quality Control

Test Process Optimization
Quality Control
Application of Process Data for Defect Prevention

Figure 1: The 5-Level Structure of the Testing Maturity Model

Level 1 - Initial: (No maturity goals)
At TMM level 1, testing is a chaotic process; it is ill-defined, and not distinguished

from debugging. Tests are developed in an ad hoc way after coding is done. Testing and
debugging are interleaved to get the bugs out of the software. The objective of testing is to

show the software works [1,5]. Software products are often released without quality
assurance. There is a lack of resources, tools and properly trained staff. This type of
organization would be on level 1 of the CMM.

Level 2 - Phase Definition: (Goal 1. Develop Testing and Debugging Goals, Goal 2.
Initiate a Testing Planing Process, Goal 3. Institutionalize Basic Testing Techniques and
Methods)

At level 2 of the TMM testing is separated from debugging and is defined as a phase
that follows coding. It is a planned activity, however test planning at level 2 may occur
after coding for reasons related to the immaturity of the testing process. For example, there
is the perception at level 2, that all testing is execution-based and dependent on the code,
therefore it should planned only when the code is complete.

The primary goal of testing at this level of maturity is to show that the software
meets its specifications [2,5]. Basic testing techniques and methods are in place; for
example, use of black box and white box testing strategies, and a validation cross-reference
matrix. Many quality problems at this TMM level occur because test planning occurs late in
the life cycle. In addition, defects are propagated from the requirements and design phases
into the code. There are no review programs as yet to address this important issue. Post-
code, execution-based testing is still considered the primary testing activity.

Level 3 - Integration: (Goal 1. Establish a Software Test Organization, Goal 2,
Establish a Technical Training Program, Goal 3. Integrate Testing into the Software Life
Cycle, Goal 4. Control and Monitor Testing)

At TMM level 3, testing is no longer a phase that follows coding, but is integrated
into the entire software life cycle. Organizations can build on the test planning skills they
have acquired at level 2. Unlike level 2, planning for testing at TMM level 3 begins at the
requirements phase and continues throughout the life cycle supported by a version of the V-
model [2]. Test objectives are established with respect to the requirements based on
user/client needs, and are used for test case design and success criteria. There is a test
organization and testing is recognized as a professional activity. There is a technical
training organization with a testing focus. Testing is monitored to ensure it is going
according to plan and actions can be taken if deviations occur. Basic tools support key
testing activities, and the testing process is visible in the organization. Although
organizations at this level begin to realize the important role of reviews in quality control,
there is no formal review program and reviews do not as yet take place across the life cycle.
A formal test measurement program has not yet been established to qualify process and
product attributes.

Level 4 - Management and Measurement: (Goal 1. Establish an Organization-Wide
Review Program, Goal 2. Establish a Test Measurement Program, Goal 3. Software
Quality Evaluation)

Testing at level 4 becomes a process that is measured and quantified. Reviews at
all phases of the development process are now recognized as testing/quality control
activities. They are a compliment to execution-based tests to detect defects. An extension
of the V-model as shown in Figure 2 can be used to support the implementation of this
goal [2]. Software products are tested for quality attributes such as reliability, usability,
and maintainability. Test cases from all projects are collected and recorded in a test case
database for the purpose of test case reuse and regression testing. Defects are logged and
given a severity level. Some of the deficiencies occurring in the test process are due to lack
of a defect prevention philosophy, and the porosity of automated support for the collection,
analysis and dissemination of test-related metrics.

Level 5 - Optimization/Defect Prevention/Quality Control:(Goal 1. Defect
Prevention, Goal 2. Quality Control, Goal 3. Test Process Optimization)

Because of the infrastructure that is in place through achievement of the maturity
goals at levels 1-4 of the TMM, the testing process is now said to be defined and managed;
its cost and effectiveness can be monitored. At level 5 mechanisms are in place so that
testing can be fine-tuned and continuously improved. Defect prevention and quality control
are practiced. Statistical sampling, measurements of confidence levels, trustworthiness and
reliability drive the testing process. There is an established procedure for selecting and
evaluating testing tools. Automated tools totally support the running and rerunning of test
cases. Tools also provide support for test case design, maintenance of test-related items,
and defect collection and analysis. The collection, and analysis of test-related metrics also
has tool support.

Specify
Requirements

Execute
Acceptance Test

Execute System
Test

Requirements
Review

System/Acceptance
Test Review

Specify/Design Code

System Acceptance Tests

Design Execute Integration
Tests

Design Review
Integration Test
Review/Audit

Specify/Design Code

Integration Tests

Code
Execute Unit
Tests

Code Reviews
Unit Tests
Review/Audit

Specify/Design Code

Unit Tests

Figure 2: The Extended/Modified V-Model

2. THE TMM ASSESSMENT MODEL.
In order for a process improvement model to be effective, it must include as one of

its components, a mechanism for process assessment so that an organization can evaluate
the state of its current process. We have developed the TMM Assessment Model (TMM-
AM) to fulfill this requirement. The TMM (Levels, Maturity Goals, Subgoals and ATRs)
serves as a reference model for the TMM-AM. The outputs of a TMM assessment allow
an organization to :

- determine its level of testing maturity (on a scale from 1-5)
- identify its testing process strengthens and weaknesses
- prioritize areas that need improvement

- develop action plans for test process improvement
- identify mature testing process elements that are candidates for reuse.

In the following sections we discuss the TMM-AM in detail.

3.0 The TMM Assessment Model : Development Approach
In order to support the research goals for the TMM and to provide a tool for self-

assessment of the testing process we have developed the TMM Assessment Model (TMM-
AM). Our research objectives for the TMM-AM were to: 1. provide a framework, based
on a set of principles in which software engineering practitioners could assess and evaluate
their software testing processes, 2. provide a foundation for test process improvement
through data analysis, and action planning, and, 3. contribute to the growing body of
knowledge in software process engineering.

We have used the SW-CMM and SPICE Assessment Models to guide development
of the TMM-AM [7-9]. Our goals were to have the resulting TMM-AM be Capability
Maturity Model Appraisal Framework (CAF) compliant [8] and integratable with the SW-
CMM Assessment Model, so that in the future, organizations would be able to perform
parallel assessments in multiple process areas. A set of 16 principles has been developed to
support TMM-AM design. For example, a testing process assessment model should:
1. be based on a testing maturity model as its reference model
2. support test process improvement so that an organization is able to achieve
 software product and process quality goals
3. provide a profile of an organizations' testing process capability
4. assist an organization to make decisions on where to improve its testing process
 in order to achieve testing process maturity
5. be integratable with other assessment models
6. provide high quality data, and repeatable, reliable results
7. provide visibility to the testing process.

Based on the 16 principles, the SW-CMM Assessment Model, SPICE, the CAF [7-
9], and the specific characteristics of the software testing domain, we have identified a set
of inputs and outputs, and developed a set of components for the TMM-AM which will be
described in the next sections of this article.

4.0 The TMM Assessment Model Components
The TMM-AM has three major components: 1. the assessment instrument (a

questionnaire), 2. the assessment procedure, and 3. team training and selection criteria. A
set of inputs and outputs is also prescribed for the TMM-AM. The relationship between
these items is shown in Figure 3. A discussion of the components follows.

4.1 The Assessment Procedure
The TMM-AM assessment procedure consists of a series of steps that guides an

assessment team in carrying out a testing process self-assessment. The principle goals for
the TMM assessment procedure are: 1. to ensure the assessment is executed with efficient
utilization of the organizations' resources, 2. to guide the assessment team as to who to
interview, and how to collect, organize and analyze assessment data, 3. to support the
development of a test process profile and the determination of a TMM level, and, 4. to
guide the assessors in developing action plans for test process improvement. A brief
summary of the steps in the assessment procedure follows:

Preparation: The activities called for in this step include: selecting and training the
assessment team, choosing the team leader(s), developing the assessment plan, selecting
and preparing the organizational units that are participating in the assessment. In this step

team members also prepare a statement of assessment purpose, scope, and constraints that
is used to guide the development of the assessment plan.

TMM Assessment
 Process

Testing
Maturity
Model

TMM-AM
Assessment
Procedure

TMM-AM
Training and
Team Selection
Criteria

TMM-AM
Questionnaire

Interview
Data

INPUTS OUTPUTS

Questionnaire
Data

Assessment
Plan

TMM
Level

Test Process
Profile

Test Strengths,
Weaknesses

Action Plans

Related
Documents Assessment

Record

Figure 3. The TMM Assessment Process: Components and Input/Outputs

Conducting the Assessment: In this step the team collects and records assessment
information from interviews, presentations, questionnaires, and inspection of relevant
documents. All the information collected must be protected by a confidentiality agreement.
The TMM level of the organization, which is a measure of its current testing maturity level,
is determined by analysis of the collected data and use of a ranking algorithm.

The ranking algorithm we have developed for the TMM-AM is similar to the
algorithm described in the work of Masters et. al. in their work on the Capability Maturity
Model Appraisal Framework (CAF) [8]. The TMM ranking algorithm requires first a
rating of the maturity subgoals, then the maturity goals, and finally the maturity level [10].
Our "degree of satisfaction" measure with respect to the maturity subgoals and goals is
more fine-grained then the corresponding measure in existing assessment models. We
believe that our approach provides more detailed information for identifying test process
strengths and weaknesses.

Reporting the Assessment Outputs: The TMM-AM outputs include: a process profile, a
TMM level, a statement of test process strengths and weaknesses, and the assessment
record. The assessment outputs can be delivered as a presentation, and /or a written report
(the final assessment report). The assessment team prepares the process profile which
gives an overall summary of the state of the organizations' testing process. The profile is
based on analysis of the assessment data, and results of the ranking process. The profile
can be presented in the form of a matrix that indicates maturity goals and subgoals at each
level of the TMM and their "degree of satisfaction". The profile also includes the TMM
level, a summary of test process strengths and weaknesses, as well as recommendations
for improvements.

The assessment record is also completed in this step. It is a written account of the
actual assessment that includes: names of assessment team members, assessment inputs
and outputs, actual schedules and costs, tasks performed, task durations, persons
responsible, data collected, and problems that occurred.

Analyzing the Assessment Outputs: The assessment team now uses the assessment outputs
to identify and prioritize goals for improvement. An approach to prioritization is described
in Homyen [10]. Quantitative test process improvement targets need to be established in
this phase. The targets will support the action plans that are developed in the next step.

Action Planning: In this step an action planning team develops actions plans that focus on
improvements in the high priority areas that have been identified in the previous step. The
action planning team can include assessors, software engineering process group members,
SQA staff, and/or opinion leaders chosen from the assessment participants [11]. Inputs to
action planning include the final assessment report, the process profile, and prioritized
areas for improvement. The action plan describes specific actions needed to: 1) improve
existing practices, and, 2) support the addition of missing practices, so that the organization
can move up to the next TMM level. An action plan, like all other software engineering
project plans should include: measurable goals, tasks, responsibilities, resources required,
risks and benefits, and reporting and tracking mechanisms. Action planning can be
accomplished through the convening of a workshop directed by the action planning team.
The result should be a draft of an action plan. The workshop members should also identify
pilot projects that will be implementing the new process.

Implementing Improvement: After the action plans have been developed and approved they
can be applied to pilot projects that are selected. The process improvement projects need to
be monitored and tracked to ensure task progress, and achievement of the target goals.
Favorable results with the pilot projects set the stage for organizational adaptation of the
new process.

4.2 The TMM Questionnaire
Assessment instruments are needed to: support the collection and recording of

information from an assessment, maintain a record of results, and provide information for
assessment post mortem analysis. We have selected the questionnaire as our assessment
instrument for the following reasons. Use of a questionnaire supports CAF compliance,
facilitates integration with other process assessment instruments, insures assessment
coverage of all maturity goals and subgoals for each level of the TMM, and provides a solid
framework in which to collect and store assessment data.

The TMM questionnaire consists of 8 parts which are: 1. instructions for use, 2.
respondent background, 3. organizational background, 4. maturity goal and subgoal
questions, 5. testing tool use questions, 6. testing trends questions, 7. recommendations
for questionnaire improvement, and, 8. a glossary of testing terms [3,10].

Parts 2 and 3 of the questionnaire are used to gather information about the
respondent, the organization, and the units that will be involved in the TMM assessment.
The maturity goal and subgoal questions in part 4 are organized by TMM version 1.0
levels, and include a developer/tester, manger and client/user view. The questions are
designed to determine to what extent the organization has in place mechanisms to achieve
the maturity goals, and resolve maturity issues at each TMM level. The responses are input
to the ranking algorithm that determines a TMM level. The testing tool portion of the
questionnaire records information about type and frequency of tool use. This information
can help the action planning team make recommendations for future tool usage. We added
the testing trends section to provide a perspective on how the testing process in the
organization has been evolving over the last several years. This information is useful for
the assessment team when preparing the assessment profile and the assessment record.

The recommendations component allows each respondent to give the TMM-AM developers
feedback on the clarity, completeness and usability of the questionnaire. A complete TMM
questionnaire is found in [10]. The questionnaire can also be found on the web site noted
in section 5 of this article.

4.3 Assessment Training and Team Selection Criteria
We have designed the TMM-AM with the goal of assisting an organization with

self-assessment of its testing process. This will require a trained assessment team whose
members are selected from within the organization [10]. Assessment team members should
be selected in a manner that ensures that they: understand assessment goals, have the
proper knowledge, experience, and skills to participate in an assessment, and are
committed to test process improvement . The assessment team size should be appropriate
for the purpose and scope of the assessment.

We have adapted SPICE guidelines for selecting and preparing an effective
assessment team [9]. Preparation is conducted by the assessment team leader who is
experienced in TMM assessments. Preparation includes topics such as: an overview of the
TMM, process management concepts, interviewing techniques, data collection, and data
analysis. The training activities include: team-building exercises, a walk through the
assessment process, filling out a sample questionnaire, performing data analysis and
learning to prepare final reports.

5.0 Forms, and Tools for Assessment Support
Carrying out a TMM assessment is complex task. To support the assessment team

we have developed several forms and templates as well as a tool that implements a
distributed version of the TMM questionnaire to support a TMM assessment team [10,12].
These tools are important to ensure that the assessments are performed in a consistent,
repeatable manner, to reduce assessor subjectivity, and to ensure the validity, usability and
comparability of the assessment results. Tools and forms help to collect, formalize,
process, store and retrieve assessment information thus making effective use of
organizational resources. The tools and forms we have developed include the Process
Profile and Assessment Record forms which have been described in previous sections of
this article, as well as the following:

Team Training Data Recording Template: This template allows the team leader to record
and validate team training data. This template can be used in future assessments to make
any needed improvements to the assessment training process.

Traceability Matrix: This matrix which is filled in as assessment data is collected, allows the
assessors to identify sources of data, record any problems associated with the data, and
resolve data related issues. This is to ensure the integrity of the data to be used in the
ranking algorithm and the resulting process profile.

Web-based Questionnaire: A complete version of the TMM-AM questionnaire appears at
the web site: "http:\\www.cs.iit.edu\~tmm". The web-based questionnaire was designed
so that assessment data could easily be collected from distributed sites and organized and
stored in a central data repository that could be parsed for later analysis [12]. The on-line
questionnaire was developed using an Internet HTML-based development tool. The design
allows the tool to run on multiple operating systems and collect data from users around the
world, thus providing support for test process assessment to local and global
organizations. A detailed description of tool development is given by Grom [12]. The
web-based questionnaire and links to supporting information related to the TMM is found
at the site named above. Comments and recommendations are welcomed by the authors.

6.0 Experimental Results Based on Questionnaire Usage
Software engineers from two software development organizations have evaluated

the TMM questionnaire. They also applied the TMM questionnaire to 3 development
groups in their organizations (one engineer evaluated one group, the other evaluated 2
groups). A brief background description of the engineers, organizations and groups
follows.

Organization 1 tests and evaluates household hardware items. The development
group evaluated using the TMM questionnaire consists of 4 software engineers. The group
develops office and laboratory software to support the hardware testers. These products
are for in-house use only. Engineer 1 manages this group. He holds a bachelors degree in
Computer Science and has held a full-time position at this company as a software engineer
for 6 years.

Organization 2 develops both hardware and software products for the
telecommunications industry. The groups involved in the TMM evaluations consist of 8
developers and 5 dedicated testers for Group 1, and 14 developers and 3 testers for Group
2. Group 1 develops embedded software for the control of cellular test equipment. Group
2 develops software to collect and display real-time cellular network information. The size
of the products developed ranged from 10,000 to 450,000 LOC for the two groups.
Engineer 2 holds a masters degree in Computer Science. He has worked as both a
software and hardware engineer, and is currently Manager of Data Collection Software.

The feedback we have gotten from the two engineers through this evaluation
process has enabled us to: revise and reorganize some of the TMM questions, experiment
with our ranking algorithm using actual industrial data, generate sample action plans, and
study problems of testing process improvement in real-world environments. Obtaining
and analyzing this industrial data, although on a small scale, has been very useful to our
research team.

Applying the TMM ranking algorithm to the questionnaire data from our
experiments resulted in a TMM rank of level 1 for each organization. However, the
strengths and weaknesses of each of the groups were considerably different. Organization
2 did satisfy some of the maturity goals at the higher levels of the TMM. It was ranked at
TMM level 1 because it did not satisfy the level 2 maturity goal to: "Establish Testing and
Debugging Goals". Given the quality of the existing process for Organization 2, it should
be able to reach TMM level 2 in a relatively short time period. Organization 1 did have
some testing strengths such as the presence of a Software Quality Assurance Group, but
responses to the TMM questionnaire indicated they could not satisfy any of the maturity
goals at TMM level 2.

It should be noted that a full TMM assessment was not performed by these
engineers. Data input to the TMM ranking algorithm and output to the test process profile
was based only on responses to the questionnaire. In brief, although our experimental
results look promising with regard to the usability of the TMM for test process assessment,
larger scale experiments in industry are needed to further evaluate and improve the model.

7.0 Maturity Model Integration Issues
During the period in which we have been developing the TMM we have received

feedback on our work from software engineers, software testers, mangers, and software
quality professionals from over 40 organizations located throughout the world. The
feedback was obtained through in-person discussions, phone conversations and
correspondence by e-mail [13]. Comments confirmed the need for a Testing Maturity
Model since most corespondents believed that existing process improvement models have
not sufficiently addressed the special issues relevant to testing process assessment and
improvement. An important issue for many practitioners was integration of process
improvement models which would result in: 1. a common architecture and vocabulary, 2.
common training requirements, and 3. support for performance of parallel assessments in

multiple process areas. Fulfilling these requirements would insure effective use of
organizational resources both for assessment, and process improvement efforts.

Our initial development approach was to build the TMM as a complement to the
SW-CMM. We believed that it would simplify parallel process improvement drives if both
the SW-CMM and TMM had corresponding levels and goals. However in the course of
our research we have realized that model integration issues are far more complex than
simple level correspondences. Meeting industry requirements for maturity model
integration as described in the previous paragraph required us to focus our research efforts
in a new direction. This effort has resulted in the concept of a Development Maturity
Model (DMM) [14]. The DMM concept is aimed at designers of process improvement
models in software development sub domains such as design, testing, and requirements
specification. The DMM framework is based on a set of principles which apply to all
DMMs, a model architecture common to all DMMs, a process for construction, integration,
and validation of a DMM, and a generic assessment model for DMMs. Our goal is to have
the resulting DMMs be integratable with other DMMs, and ultimately with the SW-CMM.

Our current DMM research efforts address some difficult issues in process
improvement model development and integration such as: how many levels are optimal in a
given domain, how should one assign Key Focus Areas (KFAs) to the levels, how should
designers integrate the DMM levels and features? The Software Engineering Institute has
proposed an approach to CMM integration - the Capability Maturity Model Common
Framework (CCF) [15]. We argue that their approach, which has now evolved into the
CMM-Integration Project, has not fully addressed many of the important issues described
above. The DMM Framework is now being applied to develop version 2.0 of the TMM,
as well as a DMM for the software design process. Our goal for the DMM project is to
support industry requirements for process assessment and improvement model integration.

8.0 Summary
We have been developing a Testing Maturity Model to assist organizations with

assessing and improving their software testing process. Feedback from industry
concerning the TMM shows that there is a need for a specialized test process assessment
and improvement model. This is especially relevant in light of the Y2K problems that need
to be solved.

In this paper we describe the two major components of the TMM: 1. the hierarchy
of maturity levels, and 2. the TMM Assessment Model. We begin with a discussion of the
internal structure of the levels, as well as the maturity goals for each of the five levels. We
then describe our approach to TMM Assessment Model development, assessment inputs
and outputs, our assessment procedure, and the forms and tools available to support the
assessment team. Our assessment model has unique support in the form of a web-based
questionnaire that allows distributed teams to provide assessment data to a centralized data
repository for collection, and analysis. Preliminary experimental results using the TMM
questionnaire in an industrial setting are also described. While these results are promising,
wider industrial application of the TMM is planned to help us to further evaluate its
usefulness and effectiveness for test process assessment and improvement. Our future
plans also include completion of the DMM research so that we can provide strong support
for process improvement model integration. We also plan on the development of more
intelligent tools to aid process assessment teams.

9.0 References

[1] I. Burnstein, T. Suwanassart, C.R. Carlson, "The Development of a Testing Maturity
Model", Proc. Ninth International Quality Week Conf., San Franciso, CA, May 21-24,
1996.

[2] I. Burnstein, T. Suwanassart, C. R. Carlson, "Developing A Testing Maturity Model",
Part I, CrossTalk, Journal of Defense Software Engineering, Vol. 9, #8, August, 1996, pp
21-24, Part II, Vol. 9, #9, September, 1996, pp 19-26.

[3] I. Burnstein, A. Homyen, R. Grom, C. R. Carlson, "A Model for Assessing Testing
Process Maturity", CrossTalk, Journal of Department of Defense Software Engineering,
Vol. 11, #11, November, 1998, pp. 26-30.

[4] M. Paulk, C. Weber, B. Curtis, M. Chrissis, The Capability Maturity Model:
Guidelines for Improving the Software Process, Addison-Wesley, Reading MA., 1995.

[5] D. Gelperin, B. Hetzel, "The Growth of Software Testing", CACM, Vol. 31, No. 6,
1988, pp. 687-695.

[6] J. Durant, Software Testing Practices Survey Report, Software Practices Research
Center, Technical Report, TR5-93, May 1993.

[7] D. Zubrow, W. Hayes, J. Siegel, D. Goldenson, "Maturity Questionnaire", Technical
Report, Software Engineering Institute, CMU/SEI-94-SR-7, June, 1994.

[8] S. Masters, C. Bothwell, "A CMM Appraisal Framework, Version 1.0", Technical
Report, Software Engineering Institute, CMU/SEI-95-TR-001, Feb., 1995.

[9] ISO/IECJTC1/WG10, "SPICE Products", Technical Report, Type 2, June 1995.

[10] A. Homyen, "An Assessment Model to Determine Test Process Maturity", Ph.D.
Thesis, Illinois Institute of Technology, July 1998.

[11] J. Puffer, A. Litter, "Action Planning", IEEE Software Engineering Technical Council
Newsletter, Vol. 15, Number 2, pp. 7-10, Spring, 1997.

[12] R. Grom, "Report on a TMM Assessment Support Tool", Technical Report, Illinois
Institute of Technolgy, April, 1998.

[13] I. Burnstein, private correspondence, 1997-99.

[14] G. Saxena, "A Framework for Development Maturity Models", Technical Report,
Illinois Institute of Technology, Chicago, IL, March, 1998.

[15] Software Engineering Institute (SEI), Common CMM Framework, Vol. 3, CMM
Developer Handbook. Draft E., Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 1997.

Copyright (c) 1999, Ilene Burnstein, Illinois Institute of
Technology, Chicago, IL. All rights reserved.

1

 The impact of software practitioners on software quality 1

The impact of software practitioners
 on software quality

Nathan Baddoo Dr Tracy Hall
 baddoon@sbu.ac.uk hallt@sbu.ac.uk

Centre for Systems and Software Engineering
South Bank University

103 Borough Road, London SE1 0AA
 United Kingdom

 The impact of software practitioners on software quality 2

OverviewOverview

• Introduction
• Research methodology
• Areas of investigation
• Pilot findings
• Projected work
• Conclusion

2

 The impact of software practitioners on software quality 3

IntroductionIntroduction

• Logistics

Duration
Funding body
Personnel

• Hypothesis
“The attitudes, experiences, perspective of software practitioners towards
quality impacts on the processes implemented and hence the quality of the
product”

 The impact of software practitioners on software quality 4

IntroductionIntroduction

Practitioners ProductProcess

Experiences

Characteristics

Perceptions

Views

Skills

Attitudes etc.

Procedures

Methods

Standards

Tools

etc

Usability

Maintainability

Reliability

Security

Faults

etc

Human
Aspects

Technical
AspectsContinuum

ActivityBehaviour

3

 The impact of software practitioners on software quality 5

IntroductionIntroduction

Aims and Objectives

• Understand quality views.

• Address misalignment.

• Develop implementation strategies.

 The impact of software practitioners on software quality 6

IntroductionIntroduction

Initial findings

• Existence of a practice gap.

• Evidence of misalignment.

• Existence of effective implementation strategies.

4

 The impact of software practitioners on software quality 7

MethodologyMethodology

Social science techniques.

• Structured Interviews.

• Self-administered questionnaires.

• Repertory Grid Technique.

• Parasuraman’s quality dimensions questionnaire.

 The impact of software practitioners on software quality 8

MethodologyMethodology

Scientific analytical methods.

• Statistical techniques.

5

 The impact of software practitioners on software quality 9

Current area of researchCurrent area of research

Process improvement and process assessment models.

• CMM

• SPICE

• PCMM

• PSP

 The impact of software practitioners on software quality 10

Current area of researchCurrent area of research

Process improvement and process assessment models.
Standards:

• ISO9001

• IEEE standards

• Awards

6

 The impact of software practitioners on software quality 11

Limitations to quality:

• Pressure.

• Speed of industry.

• Lack of quality culture.

• Commercial motives for certification.

• Lack of customised quality initiatives.

• Lack of motivation.

Pilot findingsPilot findings

 The impact of software practitioners on software quality 12

Projected workProjected work

• Larger research sample

• Motivation theories.

• Process theory.

• Psychological states in a job.

7

 The impact of software practitioners on software quality 13

ConclusionConclusion

“ Read my lips: no new models”
- Karl E. Wiegers, Head To Head,

 IEEE Software September/October 1998.

“By itself, a model cannot lead to good practices - it simply
provides a framework for the practices that implement it.”

- Tomoo Mastubara, Head To Head, IEEE Software September/October
1998.

The impact of software practitioners on software quality - Baddoo & Hall 1999.

1

 The impact of software practitioners on software quality

Nathan Baddoo
Centre for Systems and Software Engineering (CSSE)

South Bank University
103 Borough Road

London SE1 0AA, United Kingdom
baddoon@sbu.ac.uk

Dr Tracy Hall
Centre for Systems and Software Engineering (CSSE)

South Bank University
103 Borough Road

London SE1 0AA, United Kingdom
hallt@sbu.ac.uk

Abstract

Most software quality initiatives focus on process to achieve product improvement. We
accept the importance of this, but also believe that the human factors in the processes
have not been properly examined. Current process improvement initiatives do not
adequately address effective implementation strategies.

In this paper we examine the impact software practitioners have on product quality. We
explore the softer aspects of quality improvement, and emphasise the continuum between
the human and technical aspects of quality during the development process. We present
our preliminary findings of a project analysing the critical factors in software quality
improvement. We describe our work on developing an effective framework for the
optimisaiton of software quality improvement initiatives.

Keywords: software process improvement, process assessment, software quality, software
practitioner, quality initiative

The impact of software practitioners on software quality - Baddoo & Hall 1999.

2

1. Introduction

Over the years process assessment and improvement models have increased in
prominence [Wiegers 1998]. As a direct result, most software quality initiatives focus on
process to achieve product improvement. We accept the importance of this, but also
believe that the human factors in the processes have not been properly examined. In
particular we believe that the impact software practitioners have on product quality has
not been explored.

It is also apparent that process assessment and improvement models have not always
delivered improved software quality [Gray & Smith 1998]. In this paper we take a critical
look at some of these approaches to the development of quality software and highlight
how we feel these approaches have failed. We present preliminary findings of our current
project analysing the critical factors in software quality improvement1. In this project we
explore the softer aspects of quality improvement, and emphasise the continuum
between the human and technical aspects of quality during the development process.

We analyse the relationship between software practitioners, software quality
improvement processes and the quality of the software product. We introduce Soft
Systems Methodology [Checkland 1990] to learn about what needs to be optimised in
quality improvement initiatives. We show that the way software practitioners feel about
software quality, their views of quality initiatives, their experiences of quality initiatives
and in general their attitude towards quality, tends to influence how they, as practitioners,
behave during the implementation of quality improvement initiatives. These
improvement processes then influence the quality of the product. However, to what
extent are the effectiveness of the processes predetermined by the attitudes and actions of
the practitioner? It is the aim of this project to explore the link between practitioners’
behaviour and the effect of this behaviour on the processes. Since it is believed that
processes ultimately determine quality [Paulk et al 1995], we will analyse the indirect
link from practitioner behaviour to product quality, see figure 1.

Practitioner Process Product
Behaviour Activity

Experiences Procedures Usability
Characteristics Methods Maintainability
Perception Standards Reliability
Views Tools Security
Attitudes etc Faults
etc etc
Human Technical
Aspects Continuum Aspects

Figure 1: The PPP Quality Process Model (adapted from Hall and Wilson 1997)

1 This project is being funded for three years by EPSRC under grant number EPSRC GRL/91962

The impact of software practitioners on software quality - Baddoo & Hall 1999.

3

The paper is structured thus; In Section Two we describe the research methods adopted
for this project. In Section Three we introduce some of the existing software quality
improvement initiatives and discuss the implementation limitations of these models. In
Section Four we present findings from our pilot of this project. We summarise and
outline our future intention in Section Five.

2. Research methodology

We make extensive use of social science research methods to measure and analyse
practitioner attitude. Although it is unusual to use these methods in the study of software
engineering they are widely used and have been thoroughly validated in other disciplines.
For example, in the field of health care, the methods we describe have been successfully
applied to improve quality [Edwards & Browme 1995].

We collected attitudinal data via various social science research methods including
Repertory Grid Technique (RGT) [Fransella & Bannister 1977]. This has enabled us to
investigate the differing perceptions, views and experiences of quality that exist within
different groups of software practitioners.

In this paper we report on empirical work carried out with software developers in UK
companies. We have sampled and collected information from a cross section of
practitioners from five UK companies as a pilot to this project. The pilot study results
have led us to be particularly interested in the attitudes of project managers, developers
and senior managers. The findings of this earlier research serves as the basis of our
current work [Hall and Wilson 1997]. We are now testing these findings on a larger
sample of software companies within the UK.

The design of this project allows us to utilise a combination of evaluation techniques. We
begin by exploring concepts via social science techniques and gradually move towards
more scientific analysis. In the process we collect a combination of qualitative and
quantitative data. We believe that this combined approach ensures the quality of our
results.

3 Current quality improvement initiatives

In our previous work [Hall & Wilson 1997] we identified three key groups of
practitioners in software quality: software developers, middle managers and senior
managers. Within these groups we identify misalignment in the perception of software
quality, for example: there is a gap between what developers and senior managers think
about what constitutes effective quality initiatives. We suggest that the current quality
initiatives do not contain measures that address this issue of misalignment. We examine
some of the quality improvement initiatives in use at the moment and evaluate what can
be done to optimise their deployment.

The impact of software practitioners on software quality - Baddoo & Hall 1999.

4

3.1 Process Improvement /Assessment Models

Process improvement and assessment models exist to guide software improvement
programs [Wiegers 1998]. But how effectively are these models? What is it about these
models that inhibit effective application? We believe that the expected improvements
from using these models have not been fully realised because the models themselves have
not been properly implemented. In this section we examine a few of the well established
models currently being used in industry and some of the recent approaches to ease their
implementation.

3.1.1 The Capability Maturity Model

The Capability Maturity Model (CMM) is highly relevant to this research. This is
because we recognise that CMM has been the basis from which most other assessment
models have been derived [Gray and Smith 1998]. Hence in order to examine the
effectiveness of assessment models in getting practitioners on board the quality
improvement initiative, it is imperative to examine the one model which has been the
subject of the widest interest.

CMM is made up of clearly defined levels and detailed definitions of the key process
areas and key practices. The model, however, fails to detail how to implement those key
practices. In effect it serves as a guide to the principles and practices underlying process
maturity [Paulk et al 1995], but fails to suggest effective implementation strategies. Like
a road map it details the route to a destination, but falls short at explaining how to get
there.

3.1.2 The People Capability Maturity Model

The People Capability Maturity Model (P-CMM) [Curtis et al 1995], offers a guide to
improving the company workforce through evolutionary stages. P-CMM concentrates on
workforce activities and offers a way of integrating these with process improvement to
establish a culture of excellence. Its added advantage is that it serves both as a standard
and a guide. It is however limiting in terms of the context of this research in that, very
much like CMM, it does not specify how to implement the practices that form the
processes which in turn bring about the required maturity.

3.1.3 SPICE

The Baseline Practice Guide (Software Process Assessment Part 2: A model for process
management) defines methods for measuring the implementation and institutionalisation
of selected processes in the software development cycle, but again fails to define any
implementation strategies. SPICE harmonises existing approaches to process
improvement though hesitates to recommend specific paths for improvement. It leaves
the determination of a specific improvement path to the practicing company. We argue
that this by itself is a shortcoming of the model as it gives no direction as to how to
achieve improvement.

The impact of software practitioners on software quality - Baddoo & Hall 1999.

5

3.1.4 The Personal Software Process

The Personal Software Process (PSP) [Humphrey 1994] addresses how individual
practitioners can inject quality practices into their software development process. PSP
examines the Human Activity System (HAS) and concentrates on suggesting methods to
improve defect management and accuracy estimation. As a model, PSP focuses on these
two areas as a key to achieving personal process improvement. By addressing
individuals, PSP is unique as a process model. Its failure, however, is its unwillingness to
examine how individuals’ perspective on software quality influence the practices that
they undertake.

The process of collecting data to illuminate practitioners’ work practices may lead to the
elimination of defects and better quality software eventually. It is important to point out
though that the process of collecting data itself does not change anything. It does not, in
any way, offer suggestions as to how and why these defects are occurring. This makes the
PSP diagnostic, but wouldn’t it be better if we had a model that was prognostic?

3.2 Standards/Awards/Certification

“For standards to be relevant and useful, they must be guaranteed -to the extent possible
– to improve quality and process efficiency.”

Lin Zucconi [McConnel 1998].

Standards must also serve as an important information and knowledge base for the
personnel in a company [McConnel 1998]. They should provide practitioners with
common processes, hence working towards eliminating misalignment. However, in order
to achieve this, standards must be developed by consensus, encompassing a variety of
views, backgrounds and experiences [McConnel 1998]. Thus enabling the industry to
achieve certification at a broader level.

However, the effort required to generate a generic set of standards that take into account
the issues raised above is considerable. As a result what one finds in industry are
compromises; standards written for specific products and processes.

In the light of the above we examine some quality standards/certification/awards and
offer a critique as to where they fail in optimising quality improvement initiatives.

3.2.1 ISO Standards; e.g. ISO9001

ISO9001 provides broad guidelines to software developers on how to implement,
maintain and improve a quality system capable of ensuring high quality software, [Ince
1994]. In a way it is a prescriptive model in a way that other standards that we will
come to describe are not. It encourages companies to examine, critically, their internal

The impact of software practitioners on software quality - Baddoo & Hall 1999.

6

quality management systems. We find, however, that effective though ISO9001 may be
at addressing basic issues like configuration management, documentation control, quality
audit etc, it does not define a process of attaining the benchmarks that it measures. A
failure to address implementation issues, represents a failure to address the human
activity systems that enable successful implementation.

3.2.2 IEEE Standards

IEEE standards are not as international as ISO standards. They are very specific and
effectively address specific processes. Some may argue, however, that IEEE standards
have a US bias. Which means they fail to take into account the differences in the scale of
software development in the US compared to other countries.

“ For example, a small development group of 50 in the US may be considered a large
development group in Australia”
Val Veraart [McConnel 1998].

Hence for example, practices designed for a large scale project in one context, may be
totally inappropriate in another. Thus in tailoring IEEE standards to fit non US
companies, some of the human activity inter-play may be misconstrued or lost.

3.2.3 Awards; Baldrige – The National Quality Award (NQA)

NQA is awarded annually to US companies which excel in quality achievement and
quality management [Lizotte 1994]. The European quality award is derived from the
Baldrige criteria and thirty two countries have quality awards derived from the same
criteria [Wernham 1992]. We find, however, that the award focuses on the organisation
as a whole as opposed to software development. Even though in applying for this award
companies need to demonstrate their commitment to involving all employees in the total
quality process, the award addresses aspects like profitability and customer satisfaction
far more than it does software processes.2 This, we feel, takes away the focus required for
an extensive examination of software processes and hence fails to identify the human
factors in these processes.

Overall, we find that what standards invariably do is remind software houses of what
systems to have in place that will enable the production of high quality software, but
never describe ways for implementing quality systems. Our previous research shows the
implementation process is critical [Hall & Fenton 1997].

We also have found that standards provide little guidance on how to manage the people
involved in the production process.

Furthermore, certification, per se, does not always promote the implementation of best
practices: it serves as a benchmark which companies can use to measure themselves. This
has the effect of reducing the benefits that companies can gain. As a result companies

2 Http//www.software.org/quagmire/descriptions/baldrige.

The impact of software practitioners on software quality - Baddoo & Hall 1999.

7

may achieve certification without having adequately benefited from the measures
deployed to get there. This can occur for example, when a company concentrates on
achieving a particular maturity level without addressing the underlying processes.

"Maturity levels should be measures of improvement, and not goals of improvement …"
[Gray & Smith 1998].

Our analysis suggests that irrespective of how sophisticated and encompassing current
process improvement initiatives are, what practitioners lack from these initiatives are
effective guidelines on implementation. However, in order to address this problem, we
need to examine and understand practitioners’ attitudes, views and experiences of
software quality in general and towards quality improvement initiatives in particular.

We need to examine and understand not only the quality perspective of practitioners, but
also how they arrive at their views. We need to address the cognitive processes that
contribute to formulating specific attitudes towards quality. In the following section, we
introduce the findings of our pilot research to ascertain the views of practitioners on
software quality improvement initiatives [Hall & Wilson 1997].

4. Impediments to quality

We have identified the following areas as those that both impede and influence software
quality initiatives, from practitioners’ perspectives.

4.1 Pressure

Software practitioners are forced to compromise on quality due to the pressure brought
upon them by users on the one hand and senior managers on the other [Demarco and
Lister 1987]. We examine how this culture of “flight from excellence” [Demarco and
Lister 1987] leads to ingrained attitudes about quality initiatives. The concept of flight
from excellence explains that for software to be delivered quickly senior managers
pressurise practitioners to meet development deadlines at the expense of quality. The
market share lost to the development house, by virtue of the fall in quality standards, is
more than made up for by the increased profitability of the product. As a result, there is a
view within the software industry, and amongst writers on quality that the quality agenda
is being dictated by market forces.

In our previous work, we have identified that on the one hand software practitioners and
project managers find themselves under immense pressure to meet deadlines and on the
other hand to maintain high quality standards. Consequently they find themselves
sandwiched between the demands and wishes of users and of senior managers.

The impact of software practitioners on software quality - Baddoo & Hall 1999.

8

4.2 Speed of industry

The evolving nature of the software industry creates a situation where software
practitioners view software process improvement initiatives as a facet of that
evolutionary climate [Peat 1994]. Over the years there have been many initiatives
introduced to address the issue of software quality improvement: the most current of
which are process improvement and assessment models. We believe that, very much like
the software product, improvement initiatives evolve too fast to enable practitioners to
get used to them. Consequently, practitioners see these initiatives as an adjunct of
intellectual fashion. Here today, gone tomorrow. Such an outlook is likely to influence
practitioners' views on quality.

To overcome this, we believe that software process improvement initiatives need to be
small and slow in order to be effective. Our previous research [Hall & Wilson 1997]
confirms this fact and also reveals that practitioners are more responsive to initiatives
which are nurtured and encouraged within the company.

4.3 Culture

We identify the problems that the lack of a quality culture will inevitably introduce. For
example, we recognise the concept of the "maverick" practitioner; the individual who
perceives quality initiatives as bureaucratic, disruptive and undermining creativity
[Hovenden et al 1996]. Hovendan et al recognise that contrary to what may seem
obvious, such individuals "are of the highest calibre and central to the technical success
of the product". However without the integration of such individuals into quality
improvement initiatives, the overall initiative is bound to be disrupted by their non-
participation [Hovenden et al 1996].

On the other hand we identify the existence of the quality "enthusiast"; the individual
who recognises the validity of quality improvement initiatives and adheres religiously to
the quality models implemented in the company. However without the consolidated
approach by a software development team as a whole, we envisage the efforts of the
"enthusiast" being set back by the apathy of the "mavericks".

We have come across evidence of such misalignment in our previous work [Hall and
Wilson 1997]. We argue that to overcome such misalignment, companies must consider
more holistic quality improvement initiatives.

By developing a quality culture (for example key quality practices are instituted, software
quality guidelines are documented and formalized into the development process)
practitioners are more likely to adhere to long-term and sustainable process improvement
initiatives [Ludewig 1994]. The assertion here is that a quality culture will sustain the
individual's effort. That a company with an appropriate quality initiative in place and one
that encourages quality improvements at every stage in the development process and
within every aspect of their operation will have individuals practicing quality
improvement measures without consciously being aware of it. Hence inspite of, or

The impact of software practitioners on software quality - Baddoo & Hall 1999.

9

irrespective of, individual practitioner’s efforts towards or against quality, initiatives will
only work if the company as a whole embraces a culture of quality.

4.4 Commercial motives for certification

Work that we have done in the past [Hall and Wilson 1997] suggests that companies
embark on quality initiatives mainly for marketing purposes. Indeed we have identified
some companies that obtain quality certification for marketing reasons. In a situation like
this, we believe the whole quality improvement initiative is jeopardised as quality
improvement schemes appear to practitioners as having been thrust upon them. Hence
practitioners may resist these initiatives and weaken the coherency that is needed for
successful SPI deployment, as stated earlier.

4.5 Lack of customised quality initiatives

We have also identified that for most quality initiatives to be successful, there is a need to
tailor particular schemes to specific projects. A “blanket” approach to the application of
quality schemes usually does not achieve optimum effectiveness. Current software
process improvement initiatives tend to be too general in nature. Models like CMM are
too static and do not picture different processes for different organisations and situations
[Gray & Smith 1998].

We continue to investigate the assertion that some practitioners find such quality
improvement initiatives difficult to implement because they view them as external
standards which do not address the quality issues of their particular companies.

4.6 Motivation

A survey of software practitioners found that practitioners have motivational problems.
[Warden & Nicholson 1995].

The above survey identified four key areas where the motivational profile of practitioners
can be analysed [Warden & Nicholson 1995]. In their findings, Warden and Nicholson
identified that there is a need for some sort of interaction, correlation even, between the
“core job dimensions, the employee growth need strength, the critical psychological
states and the personal and work outcomes” of the practitioner. For example, there is a
need for some correlation between the strength of practitioners’ growth needs and the
motivational potential of their work. In a nutshell, if the core job dimensions of the
practitioner embody a combination of tasks and skills which are highly motivating, then
provided the practitioner has got matching needs for personal growth, they will be able to
achieve critical psychological states that will be reflected in the quality of the work they
produce [Warden & Nicholson 1995].

Work that we have done thus far suggests that current software quality improvement
initiatives do not adequately tailor the core processes and key practices required to
optimise quality, to any of the above motivational areas [Baddoo & Hall in progress].
Hence practitioners are involved in the implementation of practices which do not match

The impact of software practitioners on software quality - Baddoo & Hall 1999.

10

their motivational needs. This, we believe, impacts negatively on the coherence of the
whole software quality initiative.

In our current work, we continue to examine motivation theories and investigate ways of
incorporating suggested models into quality improvement initiatives. We will explore
some process theories, for example stimulus response theory and job characteristics
theory, which explain people’s motivational behaviour. However, there is a general
contention, echoed in many areas, that software practitioners have unique characteristics
[Khalil et al 1997]. As a result it will be necessary to investigate specific motivational
factors for practitioners before deciding on incorporating any specific characteristics into
process improvement initiatives.

We will also look at some of the psychological states in a job that lead to high levels of
satisfaction and quality of performance [Couger & Zawacki 1980] and suggest ways of
harnessing these into appropriate frameworks.

5. Conclusion

Our research thus far suggests that the determinants of an effective quality system are
very complex [Hall & Wilson 1997]. However, it also confirms our earlier findings that a
significant part of that complex conundrum relates to effectively managing software
practitioners. In this project we have discussed several ways by which that can be
achieved. We have examined the weaknesses in some of the current software quality
initiatives. We have also discussed what we believe are the influences and stumbling
blocks to quality practices amongst practitioners.

We do not, however, recommend the adoption of new models to combat this
shortcoming. We believe that there are sufficient SPI models and tools available at the
moment, and that for the majority of companies, the current aids are sufficient. What we
advocate and promote is a comprehensive strategy to address the implementation
shortcomings of SPI initiatives. As Tomoo Matsubara eloquently puts it:

"By itself a model cannot lead to good practice.
 It simply provides a framework for the practices that implement it"

Tomoo Matsubara [Wiegers 1998].

We re-emphasise that "how" to implement process improvement and assessment models,
is vital.

We also subscribe to the view that in order to optimise quality improvement initiatives, it
is necessary to customise and calibrate quality mechanisms to particular development
environments [Hall 1995]. However, in order to have controlled calibration and hence
improvement, companies need to understand their practitioners. Understand their views,
experiences, perspective and in general, attitudes towards quality. These attitudes, as we

The impact of software practitioners on software quality - Baddoo & Hall 1999.

11

have asserted earlier on, vary amongst practitioner groups. Thus to address this, in our
future work we will present a characterisation of the different attitudes that software
managers and developers have towards product and process quality and suggest methods
that will enable companies to understand the quality views of practitioners.

We will also develop a comprehensive set of strategies and guidelines, suggesting
methods of reducing misalignment. These can be used to effectively manage software
practitioners within the quality improvement process.

Finally, we will develop strategies and support mechanisms, based on alignment, for
companies to effectively implement software quality improvement processes.

The impact of software practitioners on software quality - Baddoo & Hall 1999.

12

References

Baddoo, N. and Hall, T. (in progress), Optimizing Software Process Improvement
Initiatives

Checkland, P. and Scholes, J. (1990), Soft Systems Methodology In Action, John Wiley &
Sons

Couger, J. D. and Zawacki, R. A. (1980), Motivating And Managing Computer
Personnel, John Wiley and Sons

Curtis, B., Hefley, W. E. and Miller, S. (1995) Maturity Model - People Capability
Maturity Model, CMU/SEI-95-MM-02

DeMarco, T. and Lister, T. (1987) Peopleware - Productive Projects And Teams, Dorset
House

Edwards, S. and Browne, M. (1995), Quality In Information Services, Library And
Information Science Research, 17

Fransella, F. & Bannister, D., Eds. (1997) A Manual For Repertory Grid Technique,
London, Academic Press

Gray, E. M. and Smith, W. L (1998) On The Limitation Of Software Process Assessment
And The Recognition Of A Required Re-orientation For Global Process Movement,
Software Quality Journal, (7), p.21-34

Hall, T. (1995) What Do Developers Really Think About Software Quality, In: Quality
Management III Vol 1, [Ross et al eds], Quality Management, Computational Mechanics
Publications, p. 359-368

Hall, T. and Wilson, D. (1997) Views Of Software Quality: A Field Report, IEE Procs On
Software Engineering, April

The impact of software practitioners on software quality - Baddoo & Hall 1999.

13

Hall, T. and Fenton, N. (1997), Implementing Effective Software Metrics Programmes,
IEEE Software, March

Hovenden, F. M., Sharp, H. C., Walker, S. D. and Woodman, M. (1996), Building
Quality Into Scientific Software, Software Quality Journal, March (5), p.25-32

Humphrey, W. S. (1994), The Personal Process In Software Engineering, Proceedings
Of The Third International Conference On The Software Process, Reston, Virginia,
October 10-11, 1994, p.69-77

Ince, D (1994), ISO 9001 And Software Quality Assurance, McGraw-Hill

Khalil, O. E. M., Zawacki, R. A., Zawacki, P. A. and Selim, A. (1997), What motivates
Egyptian IS Managers And Personnel: Some Preliminary Results, SIGCPR 97, ACM

Lizotte, R. (1994), NQA And ISO9000, Software Quality Management, Autumn (23),
p.29-33.

Ludewig, J. (1994), People Make Quality Happen (Or Don't), In: Software Quality
Concern For People: Fourth European Conference On Quality, VDF, p.11-21

McConnel, S., Moderator, (1998), Head To Head; Weighing In On Standards, IEEE
Software, November/December, p. 92-102.

Paulk, M. C., Konrad, M. D., and Graydon, A. W. (1995), CMM Versus SPICE
Architectures, submitted to IEEE TCSE Software Process Newsletter, p.7-11.

Peat, M. M. (1994), Quality - Yesterday's Fashion? In: Software Quality Management II
Vol. 1: Managing Quality Software, [Ross, M. et al 1994], Computational Mechanics
Publication.

Warden, R. and Nicholson, I. (1995), IT Quality Initiatives At Risk, Software Quality
Management, New Year (24), p.24-27.

Weigers, K. E. (1998), Head To Head: Read My Lips: No New Models!, IEEE Software,
September/October (5), p.10-13.

The impact of software practitioners on software quality - Baddoo & Hall 1999.

14

Wernham, B. (1992) Letter From America, Software Quality Management, Spring (14),
p.20-21.

The impact of software practitioners on software quality - Baddoo & Hall 1999.

15

Biographies

Nathan Baddoo

Nathan Baddoo is a Ph.D. research student in the Centre for Systems and Software
Engineering (CSSE) at South Bank University, UK. Previous research experience was an
investigation conducted at Newcastle into the deployment of CASE in systems
development in large organisations in the United Kingdom. Nathan spent a year in the
information systems department of Nissan Manufacturing UK Limited, developing
information systems.

Dr Tracy Hall

Tracy Hall is a principal lecturer and head of the Centre for Systems and Software
Engineering (CSSE) at the School of Computing and Information Systems Management
at South Bank University, UK. For the past six years she has been active in the area of
software quality and software measurement. She has numerous publications in this area.

All of the research that Tracy Hall undertakes is in direct collaboration with companies in
the software industry.

Over the last four years she has been a programme committee member of the British
Computer Society’s annual Quality Management conference. She is also an active
member of the UK think tank: the Centre for Software Reliability Council. She is the co-
editor of a book on professionalism of software practitioners, “The Responsible Software
Engineer”, Springer, 1997 and has chaired highly successful international conferences in
that area.

Deck -- Process Diversity

Copyright © 1999 Cleanroom Software
Engineering, Inc. All Rights Reserved 1

Process Diversity

How I Stopped Worrying and
Learned To Love Chaos

Michael Deck
Cleanroom Software Engineering, Inc.

Cleanroom
Software Engineering, Inc.

An SPI Story: Enthusiasm

w Desire for rapid process
improvement to address
key project risks
• requirements traceability
• control process change
• requirements stability
• documentation of project commitments

w Initial definition of a single SPI path
• formal specification of requirements
• traceability established through verification review
• process and project documentation

Deck -- Process Diversity

Copyright © 1999 Cleanroom Software
Engineering, Inc. All Rights Reserved 2

Cleanroom
Software Engineering, Inc.

SPI Story: Initial Success

w Although
• Learning curve contributed to late 1st delivery
• Significant investment of effort

w Development team enthusiastic about process!

w Initial goals mostly achieved
• Functions delivered as specified
• Highly maintainable, robust design
• Requirements discoveries through spec

process
• Reviews enabled knowledge diffusion

Cleanroom
Software Engineering, Inc.

SPI Story: Other Risks Emerge

w Basic practices
w Management buy-in
w No project is an island
w Staffing stability
w New transfers-in had

different backgrounds
w "Old timers" especially

resistant to change
w Core team not able to

enforce compliance

Deck -- Process Diversity

Copyright © 1999 Cleanroom Software
Engineering, Inc. All Rights Reserved 3

Cleanroom
Software Engineering, Inc.

SPI Story: Resolution

w Multiple simultaneous
processes
• "Basic" process for most

development
• "Advanced" process for key

components
• "Experiment" process for

prototypes and one-offs

w Additional management
w But more productive overall

Cleanroom
Software Engineering, Inc.

Lesson 1: Basic Practices

w Requirements management
w Software project planning
w Peer review
w Quality assurance
w Software configuration management
w Metrics
w Defect prevention

Deck -- Process Diversity

Copyright © 1999 Cleanroom Software
Engineering, Inc. All Rights Reserved 4

Cleanroom
Software Engineering, Inc.

Broad Consensus

w Must be universally accepted or
• lost in crunch mode
• lost in cost-cutting
• lost in staff turnover

w Identify minimum level to achieve universal
acceptance
• then strive for improvement based on results
• quantify value of new practices

w Example: defect prevention

Cleanroom
Software Engineering, Inc.

Lesson 2: Practice Selection

w Use risk analysis
• risk identification
• risk prioritization

w Work backwards from WIBNI processes, tools,
and models, e.g.
• what risk(s) does obtaining ISO certification

mitigate?
• what risk(s) does using object-oriented analysis

mitigate?

w Think about earlier problem areas
w Be honest!

Deck -- Process Diversity

Copyright © 1999 Cleanroom Software
Engineering, Inc. All Rights Reserved 5

Cleanroom
Software Engineering, Inc.

Practice Improvement

w Smaller steps
• easier to add to basic consensus of practice

w Quantitative value measurement
• less disagreement over usefulness

w Example:
• past situation: bad fix
• risk areas: SCM, defect prevention
• specific risks: current SCM tools, no reviews
• near-term: SCM tool, peer review after baseline
• success criteria: no defects due to SCM

Cleanroom
Software Engineering, Inc.

Lesson 3: Plan for Diversity

w Different projects and even components
ought to have different process standards,
e.g.
• one-off interface test doesn't have same reliability

needs as change to security kernel
• avionics software very different from accounting
• reliability, usability … all the "ilities" can be tailored

w Accommodate pilot projects for practice
improvements

Deck -- Process Diversity

Copyright © 1999 Cleanroom Software
Engineering, Inc. All Rights Reserved 6

Cleanroom
Software Engineering, Inc.

ProcessWeb Example

ID Description Basic Advanced Minimal
011 Use formal ‘B’ language

specifications for every
method

Optional Required Optional

012 Conduct ‘buddy’ review of
all code created or
changed

Required Recom-
mended

Optional

013 Conduct formal inspection
of all code created or
changed

Optional Required Optional

014 Track all labor hours spent
in review/inspection

Recom-
mended

Required Optional

Cleanroom
Software Engineering, Inc.

Diversity and...

w SEI Capability Maturity Model
• Maturity level probably defined by common subset
• Evaluate all defined processes against KPA's

w ISO-9000
• Each process must be well-defined within ISO

framework with documents and records
• Developers must be constantly aware of which

process they are using for which work effort

Deck -- Process Diversity

Copyright © 1999 Cleanroom Software
Engineering, Inc. All Rights Reserved 7

Cleanroom
Software Engineering, Inc.

Summary

w Define a universally-accepted baseline
process
w Try new practices based on risk analysis
w Evaluate results of new practices for inclusion

in baseline
w Manage process diversity to avoid chaos

Process Diversity
How I Stopped Worrying And Learned To Love Chaos

MICHAEL DECK
CLEANROOM SOFTWARE ENGINEERING, INC.

Process improvement efforts will fail if they assume
processes are uniform across large organizations.
The basic set of practices should be uniform, but
certain projects or subprojects will have needs that
require specialized processes. This experience re-
port will share some techniques of process diversity
management, and will describe lessons learned.

Introduction
This paper presentation describes techniques for
managing process diversity, by which we mean
having several different process variants in simulta-
neous use in a particular organization. The tech-
niques presented are largely the result of one proj-
ect’s experience over a multi-year effort. The char-
acteristics of this project which led to a need for pro-
cess diversity are, I believe, common in the software
industry.

Before going into the lessons learned from this proj-
ect, let me describe why I think this project is typical
of many projects in the software industry.

An SPI Story
The story of this project begins with an enthusiastic
small team of developers. The developers are rela-
tively inexperienced, which makes them a good tar-
get for software process improvement (SPI) because
they haven’t learned to succeed by working within
an existing flawed process. These developers have
almost no software engineering training or experi-
ence, although they have been programming for
some time. I distinguish between programming and
software engineering: the latter includes things like
requirements analysis, metrics, team organization,
project estimating and planning, conducting team
and technical reviews, and developing design docu-
mentation.

Initial Risk Analysis

This team began their SPI effort with an analysis of
the risks their project faced. The initial risk assess-
ment used a combination of sources to come up with
a starter set of “typical” project risks. The Software
Engineering Institute’s Taxonomy of Risks [1] was
the primary source, but it was supplemented by a
risk-centric analysis of the SEI CMM and the Bal-
drige award criteria. The risk assessment resulted in
approximately 12 risk areas classified as “high,” 9
risk areas classified as “medium,” and 11 risk areas
classified as “low.” These counts reflect the combi-
nation of over 100 individual risk criteria that were
assessed. Among the high risk areas were existing
issues including:

· No established process for requirements track-
ing;

· Insufficient confidence in the requirements pro-
cess;

and potential risks including:

· Inconsistent planning and/or documentation of
project activities and commitments;

· Uncontrolled change to processes;

· Instability of requirements, specifications, and
designs.

A Single SPI Path

Based on the risk analysis conducted, the team de-
veloped a process-improvement plan to treat these
risks in approximate descending order of salience.
The process improvements were integrated with an
incremental development model, the idea being to
deliver product code incrementally so that it could be
integrated piecemeal with the target hardware (also
under development at the time).

The process improvement plan had several charac-
teristics that are important for this discussion. First,
it set a very high initial standard for software engi-
neering practices. These practices included:

· Formal requirements specifications using the
“box structures” approach [2].

· Reliance on team verification review for most
traceability analysis.

Copyr ight © 1999
Cleanroom Sof tware Engineer ing, Inc. ,
A l l R ights Reserved.

Copyr ight © 1999 2
Cleanroom Sof tware Engineer ing, Inc.
Al l R ights Reserved

· Numerous new documents including a detailed
project plan, user-view requirements, and formal
specifications at the system, component, class,
and method levels.

One aspect of this plan that did not seem significant
at the time was the fact that it was intended to apply
uniformly to all project code.

The team embarked on this learning process enthu-
siastically and unhesitatingly.

Initial Success

The first increment achieved most of its stated goals.
Through the review process, it met an important
requirement to train team members in the necessary
domain knowledge. The formal specification ap-
proach uncovered numerous significant architectural
and requirements “gotchas” that would likely have
arisen much later in a traditional process. The
documentation created was useful in focusing discus-
sion of design tradeoffs and alternatives.

The project also delivered significant functionality in
the first increment, demonstrating the capability of
both the process and the team to meet critical user
requirements.

One unexpected result of the intense documentation
and review effort was the creation of a surprisingly
robust and maintainable architecture. Although little
of Increment 1 remains in today’s product (due to a
switch from C to C++), most of the architectural
elements in today’s Increment 7 product were pres-
ent in Increment 2, after almost two years of addi-
tional work.

The large learning curve did delay delivery of the
first increment, though there were a number of un-
planned outside events that also took their toll on the
schedule.

Perhaps most importantly, the team that developed
increment 1 was extremely enthusiastic about the
“Cleanroom” process they had used [3], and were
committed to continuing its use.

Other Risks Emerge

Unfortunately, the initial risk assessment could not
account for all of the actual risks that were to appear.
Much of this was due to changes in the project’s
environment, but the fact remains that by increment
2 there were significant new risks. These risks did
not fully manifest themselves until increments 3 and
4, which is another reason why they were not ad-
dressed quickly enough.

The most significant change in the project’s envi-
ronment was the assumption of staffing stability. The
fact that this project’s process was so different from
that of other projects in the same organization meant
that personnel who transferred into it had to climb
its learning curve before they could become produc-
tive. That placed a large burden on the team to train
new members.

We also underestimated the impact of not having the
team trained in basic software engineering princi-
ples. This, too, contributed to a large learning curve
as team members struggled with the basics of in-
spections, requirements, and formal testing.

With its own unique process, the project was ex-
pending more and more energy explaining and de-
fending that process to upper management. The bat-
tles over “why should we do anything different” were
waged both externally with upper management and
internally with senior-level transfers from other proj-
ects. In the end, the original core team was not able
to enforce process compliance and still meet their
aggressive delivery schedule.

Resolution

After an increment of partial anarchy, a consensus
began to emerge around the possibility that a single
software process and a single SPI path might be un-
realistic for this project. In particular, we observed
that there were really three kinds of activities going
on at any one time. Some of the code was being built
to support critical elements of spaceborne scientific
instruments. This code had to meet the highest level
of quality and reliability, but could be commensu-
rately more expensive to build and document. Some
of the code was being built to support non-critical
components and ground-based instruments. This
code did not have to meet the same reliability re-
quirements as the critical software. Finally, there
were a lot of necessary experiments to run. For ex-
ample, would a particular memory-management
strategy meet performance objectives? The simplest
way to find out was to write a little code and run an
experiment, but nobody wanted to subject that code
to a formal process of specification, design, review,
testing, and documentation. The result is a diverse
set of processes in simultaneous use, each of which is
tailored to meeting key needs of a software subset.

Adopt Basic Practices
The first and most important lesson from this proj-
ect’s experience is to define a foundation of basic
practices upon which there is universal agreement.

Copyr ight © 1999 3
Cleanroom Sof tware Engineer ing, Inc.
Al l R ights Reserved

Rationale

If you don’t develop broad, grass-roots acceptance of
the fundamentals, three things are likely to happen
when you try to progress to more advanced tech-
niques. First, the staff will resist, either by active
subversion or merely “waiting it out” in the hope
that they will go away.

Without a base of universally-accepted practices,
your newly-proposed improvements will not survive
the inevitable project stress events like turnover, re-
organizations, requirements changes, and “crunch
mode” operation. The foundation practices must be
part of the fabric of the organization so that people
no longer question the practices' worth or try to
eliminate them in rounds of “cost-cutting.”

How To Do It

You should define foundation practices in all of the
following areas:

· Requirements management

· Software project planning

· Peer review

· Quality assurance

· Configuration management

· Metrics

· Defect Prevention

Also define practices in any areas that you know to
be risk-prone or that have been problematic in the
past. These practices need to be tailored for your
project and simple enough that they will be univer-
sally accepted.

It can be challenging to define a set of consensus
practices in some areas. However, you may be able to
achieve it with “baby steps.” For example, although
“Defect Prevention” is an advanced practice of the
Software Engineering Institute’s Software Capability
Maturity Model (SW-CMM), you could probably
find consensus to hold weekly informal discussion of
significant software bugs at the regular staff meeting.
Start by discussing any bug that took more than two
hours to fix. Talk about how to prevent that bug or
similar ones. You will probably see programmers at
their desks after the meeting, looking to find similar
problems in their code.

Use Risk Analysis To Select New
Practices
After you have established (and documented) a base-
line of universal agreement, you can look at areas of
process improvement based on the project risks you
see on the horizon. Then you can prioritize the risks,
addressing those that are most significant—rather
than those that have the coolest tools.

Continue to analyze and prioritize the risks through-
out the project, so that you don’t get stuck with a
process that no longer addresses the current situa-
tion.

Rationale

If you don’t choose the right targets for software
process improvement, you will waste valuable re-
sources fixing the wrong problems. For example, I
saw one project that was cancelled because they did a
poor job of prioritizing risks. The team spent months
learning object-orientation so that their code would
be extensible and maintainable, but their greater risk
lay in not being the first product on the market. If
you understand the threats to your project, you can
choose the right techniques to overcome them.

How To Do It

Apply risk analysis informally by thinking about all
of the ways you have seen projects (yours or others)
fail in the past, and asking whether any of those
factors are present in your current project. Use a risk
taxonomy[1] or risk assessment process (e.g. [4])
that you tailor to your project.

Armed with the risk profile, you can evaluate tools
and techniques. The highest risks will be expensive
to address, so they must be subdivided into manage-
able units. Here is an example of how it can be done.

Past Situation: A new project member needed weeks
of training and code-reading before being able to
make even a small change.

General Risk Areas: documentation, design, and
training.

Specific Risks: The current design documentation is
organized to be more useful as a reference than it is
for learning.

Possible Near-Term Practice Improvements: Create
“roadmap” and survey documents that don’t dupli-
cate content but serve as a guide for learning. Pro-
duce examples of typical tasks. Investigate docu-
mentation-management tools that support version
control.

Copyr ight © 1999 4
Cleanroom Sof tware Engineer ing, Inc.
Al l R ights Reserved

Success Criteria: Significant decrease in amount of
time between joining the team and making useful
contribution.

Plan For Diversity
Finally, you should always plan to have more than
one process in use at once.

Rationale

You are always going to have process variants unless
you adopt a bulletproof process and never change it.
In every other case, you will want to be trying out
process improvements on a pilot project or compo-
nent while leaving other parts of the project or or-
ganization alone.

Some of the process improvements you select
through risk analysis may become part of your foun-
dation process; others will be applied in special cir-
cumstances.

How To Do It

One approach is to segment your processes based on
the software “ilities” such as capability, reliability,
usability, and so on. The project described at the
beginning of this paper segmented its processes
based on reliability: the flight software had higher
reliability requirements so it needed a tougher proc-
ess. But you could also segment your process based
on something like usability: certain projects will
have mandatory usability testing, others will not. Or,
based on maintainability: certain projects will pro-
duce code that is used and maintained over a long
time, others produce one-off, short-term solutions.

There are two important attributes to managing di-
versity, once you have defined the required, recom-
mended, and optional elements of each process and
each segment.

Description Basic Advanced Minimal
Use formal ‘B’ lan-
guage specifications
for every method

Optional Required Optional

Conduct ‘buddy’
review of all code
created or changed

Required Recom-
mended

Optional

Conduct formal
inspection of all
code created or
changed

Optional Required Optional

Track all labor hours
spent in re-
view/inspection

Recom-
mended

Required Optional

First, you must clearly define which products must
use which processes, and who will decide. If this is

not clearly defined in advance, “crunch mode” will
reduce every project to the least strict process.

Second, you must have a mechanism through which
the work products of one process can be used by an-
other. For example, we don’t want code developed as
part of an experiment to be used in the flight kernel
without some additional reviews and testing. On the
other hand, we shouldn’t mandate that all experi-
ment code be thrown away either. The right thing to
do is to treat experiment code as “raw material”
which must be documented, reviewed, and tested
within the flight process if it is to be incorporated
into the space instrument.

Process diversity adds a little bit of complexity to the
search for standards compliance such as CMM and
ISO-9000. In general, the company’s CMM level
will probably be defined by the common subset of all
of its processes. If you are seeking CMM compli-
ance, you should evaluate all of your processes
against the relevant KPAs. In the case of ISO, each
process must be well-defined within the ISO frame-
work with the appropriate documents and records.
Each project team member must be aware of which
process they are using for each work effort.

Conclusion
For a project to make long-term progress toward
improved quality and productivity, it must agree on a
set of basic engineering practices. Risk analysis is
then used to identify advanced techniques that for
trial. The resulting diversity must be carefully man-
aged to prevent chaos and backsliding.

Biography

Michael Deck is a software practice consultant. His
company, Cleanroom Software Engineering, Inc.,
specializes in training project teams to tailor and use
software engineering practices to solve real-life soft-
ware process problems. The company also practices
what it teaches, applying Cleanroom practices to
contract software-development projects. From 1982
to 1993 he was a member of the IBM Cleanroom
Software Technology Center, where he worked
closely with the inventors of the Cleanroom ap-
proach. He has a BA in Mathematics from Kalama-
zoo College and an MS in Computer Science from
the University of Maryland, College Park. His cur-
rent research interests include application of Clean-
room to object-oriented development, real-time and
embedded software, and highly reliable systems.

Copyr ight © 1999 5
Cleanroom Sof tware Engineer ing, Inc.
Al l R ights Reserved

References
Note items marked with H can be obtained in soft-
copy from the Cleanroom web site,
www.cleansoft.com/cleansoft.

[1] Marvin J. Carr, Suresh L. Konda, Ira Monarch, F.
Carol Ulrich, & Clay F. Walker, “Taxonomy-Based Risk
Identification,” Technical Report CMU/SEI-93-TR-6,
June, 1993.

[2] Michael D. Deck, “Data Abstraction in the Box Struc-
tures Approach,” Proc. 3rd International Conference on
Cleanroom Software Engineering Practices, October,
1996.*

[3] Michael D. Deck, “Cleanroom Software Engineering:
Quality Improvement and Cost Reduction,” Proc. Pacific
Northwest Software Quality Conference, October, 1994.*

[4] Karl Wiegers, Know Your Enemy: Software Risk Man-
agement,
http://www.processimpact.com/articles/risk_mgmt.html

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 1

Usin g The Cost of Qualit y
Approach for Software

Usin g The Cost of Qualit y
Approach for Software

Herb Krasner
President, Krasner Consulting

hkrasner@cs.utexas.edu

Software Qualit y Week ‘99
San Jose, CA
May 27, 1999

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 2

Introductions, Motivation, and the
Economics of SW Quality

Introductions, Motivation, and the
Economics of SW Quality

Myth - Quality software costs more and takes longer

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 3

Different Philosophies on Software QualityDifferent Philosophies on Software Quality

• Microsoft - “just good enough” to sell massive
quantities to the consumers - shrink-wrapped

• Space Shuttle Flight Control - life critical, must
be near zero defect, no failures in flight

• Typical government contractor - meets the
requirements specification (telephone book)

• Motorola - 6 Sigma is required to get ahead of
our competition

• Others ? Yours ??

Software quality is both a business and technical
decision - but it is rarely treated that way

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 4

Good SW Quality is Good BusinessGood SW Quality is Good Business

quality is a business
success factor

quality is a manageable
aspect of development
projects

total quality is a
management tool

quality derives from
good people
doing the right things
the right ways

quality can be a differentiation in
the marketplace

Excellence
Strategy

Management
Philosophy

Fundamental
Approaches

Customer
relationships

Infrastructure

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 5

DefinitionsDefinitions

Software Quality Costs
• a measure of the costs specifically associated with the

achievement or non-achievement (nonconformance) of
software product quality - encompassing all
requirements established by the company, its customer
contracts and society

− Requirements - generally includes: wants, needs, constraints, etc. for both the
product and related services

− Nonconformance - generally, a deviation in one of the work products (e.g. SDP,
SQAP, SCMP, SRS, SDD, STP, code, etc.) with respect to understood objectives,
requirements, constraints and/or standards.

• Example terms associated with CoSQ
− negative -> rework, wasted efforts, unacceptable software
− positive -> preventing defects, validated software

• based on an emerging theory of the economics of
software quality, reflecting the differences from
manufacturing CoQ

• Non quality costs are the “normal” costs of creating SW

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 6

Cost of Software Quality
- Proposed Economic Theor y -

Cost of Software Quality
- Proposed Economic Theor y -

COST

Qualit y Metric
0% 100%

(perfect)

quality
achievement
costs

non-
conformance
costs

CoSQ

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 7

Where CoSQ Fits in the Bi gger Cost ModelWhere CoSQ Fits in the Bi gger Cost Model

Cost of Sold SW

Total Revenues

Cost of SW
Production

Compan y or Business Unit

CoSQ

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 8

CoSQ CategoriesCoSQ Categories

Dealing with
noncon-
formances

Appraising
the level of
quality

Preventing
poor quality
from
occurring

Major Category Subcategory Definition Typical sub-items

Internal

External

quality problems
detected prior to
shipment

quality problems
detected after
shipment

Pre-release defect mgt.,
rework, re-reviews,
restesting, etc.

Post release technical
support, problem
handling, fixes, etc.

H. Krasner, CrossTalk, November, 1998

Discovering
the condition

Assuring the
achievement

quality control
gating

discovering the
level of noncon-
formances

Testing, SQA,
inspections, reviews,
etc.
Product audits, go/no
decisions to proceed,
release to distribution

Project/process
interventions

Quality basis
mgt.

TQM, PIP, SPI, org.
learning, canceling
projects

quality defn., goals,
stds, thresholds,
tradeoff analyses

Training, process
improvements, metrics
collection and analysis

Defining release
criteria for acceptance,
quality stds., quality
goal model defn

Nonconformance - generally meaning a deviation in one of the
SW work products with respect to understood objectives,
requirements, constraints and/or standards.

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 9

Raytheon Electronic Systems
SW Improvement Pro gram

Raytheon Electronic Systems
SW Improvement Pro gram

•Nonconformance - cost of rework
•Appraisal - cost of reviews, audits and testing
•Prevention - cost of preventing nonconformances

- included their improvement initiative investment
•Performance - cost of building it right the first time (i.e. creation)

Changes experienced in avera ge % of pro ject time b y cost t ype

1988
1990
1992
1994

Performance Nonconformance Appraisal Prevention

34% 44% 15% 7%
55% 18% 15% 12%

RES Cost Model Cate gories:

66% 11% - 23% -
76% 6% - 18% -

} CoQ

see Haley, et. al., 1996 for details

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 10

The Cost of Software Quality at RESThe Cost of Software Quality at RES

Raytheon ESD/RES, see Dion, 1992, 1993, and Haley, et al 1995,1996

Years

%
 o

f T
ot

al
 P

ro
je

ct
 C

os
ts

87 88 89 90 91 92 93 94 95 96

70

60

50

40

30

20

10

00

total cost of SW quality

cost of conformance
(appraisal + prevention)

rework costs

TCoSQ

rework
 costs

cost of conformance

CMM
Level 3

start of
SEI initiative
at Level 1

CMM
Level 4
reqmt
set

$15.8 million
saved through
the end of 1992

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 11

Honeywell BSCE Cost of Software QualityHoneywell BSCE Cost of Software Quality

1.16
0.685

1.023
0.635

3.316

2.462

5.499

3.782

0

1

2

3

4

5

6

7

1995 1996

C
os

t (
$1

00
0)

Prevention

Testing

Rework

Total

from D. Houston, CoSQ:Selling SPI to Managers, 1998, ASQ SW Quality Journal

Legend

•30% decrease in CoSQ
•Achieved CMM Level 2
+implemented design & code reviews
+earlier testing

•80 person org.
•do advanced building control systems
•in Germany

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 12

Notional Relationships Observed in Lockheed Notional Relationships Observed in Lockheed

Krasner, 1990

Product Quality

double
digit

single
digit

.X

.0X

< .00X

Immature

Project process
controlled&stable

Defined
org. process

Management
by fact

Continous
Learning &
improvement

 Rework
(% of total
development effort)

>= .50

.25-.50

.15-.25

..05-.15

<= .05

Process Maturity
(characteristic) (defect density)

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 13

Relatin g CoSQ and CMM LevelRelatin g CoSQ and CMM Level

0

10

20

30

40

50

60
C

os
t a

s
a

P
er

ce
nt

 o
f D

ev
el

op
m

en
t

1 2 3 4 5
SEI CMM Levels

TCoSQ
Int NONC
Ext NONC
Appraisal
Prevention

Legend

Krasner, 1990, 1998; Knox, 1993; Hailey et al, 1995

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 14

Snapshot of a Level 1 PerformerSnapshot of a Level 1 Performer

0

10

20

30

40

50

60

70

Current CoSQ Profile

80

% of
total
devel-
opment
cost
(resources)

Prevention

Appraisal

NONC

Creation

Legend

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 15

Snapshot of a Level 3 PerformerSnapshot of a Level 3 Performer

18 17 16

49

0

10

20

30

40

50

60

70

This Year

%
 o

f T
ot

al
 C

os
ts

Prevention

Appraisal

NONC

Creation

Legend

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 16

SW Quality Costs - Pareto AnalysisSW Quality Costs - Pareto Analysis

% of
total
pro ject
costs

Categories

rework/
problem
fixing

testing

SQA

prevent
ions

quality
basis

50

10

20

30

40

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 17

CoSQ Vs Performance ImprovementCoSQ Vs Performance Improvement

Years

10

5

1

0

Im
pr

ov
em

en
t

M
ul

tip
lie

r
SW Quality

baselines

Business
Performance

1 2 3 4 5 6 7

CoSQ

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 18

Software Quality Perspectives
and CoSQ

Software Quality Perspectives
and CoSQ

•Conformance to
requirements/needs
•Customer and user
satisfaction levels
•Fitness for use

•Defect levels
•Defect severity
•Defect removal

•Reliability(MTBF)
•Portability
•Maintainability
•Complexity

Properties(“ illities ”)

Defectiveness

Customer Satisfaction

CoSQ
•Schedule & budget
performance
•process quality

Development
Effectiveness

Value to Stakeholders
•profit
•personnel satisfaction

Copyright@1999 - Herb Krasner - all rights reservedCost of SW Quality - 5/99 - Slide 19

CoSQ Readin g ReferencesCoSQ Readin g References

• Dion, R., Process Improvement and the Corporate Balence Sheet, IEEE
Software, July, 1993

• Haley, T., et al, Raytheon Electronic Systems Experience in Software Process
Improvement, CMU/SEI-95-TR-017, November, 1995, pp 47-51, also IEEE
Software, Nov. 1996

• Houston, D. and Keats, J.B., Research Shows the Cost of Quality Decreases for
Maturing Software Organizations, Software Quality Matters, Vol. 5, No. 1-3,
1997 - see http://www.utexas.edu/coe/sqi

• Krasner, H., 1999, Software Quality Costs in Principles of Quality Costs, 3rd
Edition, J. Campanella, Editor, ASQ Press, 1999

• Krasner, H., 1997; The Cost of SW Quality:Empowering SPI, Keynote Speech,
7th International Conference on Software Quality, see
www.utexas.edu/coe/sqi/archive

• Krasner, H., 1992, Continuous Software Process Improvement, in Total Quality
Management for Software, Van Nostrand Reinholt Co. Inc., NY,NY; ISBN 0-
442-00794-9

• Krasner, H., 1997; The Payoff of SPI: What it is and How to Get it, in The
Elements of Software Process Assessment and Improvement, 1998, IEEE
Computer Society Press, 1998, see http://www.utexas.edu/coe/sqi/archive

• Krasner, H. 1998, Using Cost of Quality in Software, CrossTalk, Nov. 1998

Copyright 1999@Herb Krasner - all rights reserved - 4/28/99 Page 1

USING THE COST OF QUALITY APPROACH FOR SOFTWARE

by Herb Krasner, Krasner Consulting

Abstract - Cost of software quality (CoSQ) is an accounting technique that is useful to enable our
understanding of the economic tradeoffs involved in delivering good quality software. Commonly used
in manufacturing, its adaptation to software offers the promise of preventing poor quality, but,
unfortunately has seen little use to date. This article discusses the rationale and context for using CoSQ,
then defines a basic CoSQ approach that differentiates the costs involved with: handling
nonconformances due to a lack of quality, activities performed for the achievement of acceptable quality,
and efforts to prevent poor quality. CoSQ implementation issues and suggestions are discussed. The
proliferation of this approach will help eliminate the wide-spread and debilitating effects of poor
software quality.

Software is pervasive in modern society, but we are often unaware of its presence until problems arise.
Software is one the most important and yet one of the most economically challenging technologies of the
current era. As a purely intellectual product, it is among the most labor-intensive, complex, and error-
prone technologies in human history. Even though many successful software products and systems exist
in the world today, an overall lack of attention to quality has also led to many problematic systems that
don’t work right, as well as to many software projects that are late, over budget, or canceled. In short,
Software Quality Matters [14].

 Although no standard industry definition exists for what constitutes good quality in software, it is
generally taken to mean [15] that a software product provides value (satisfaction) to its users, makes a
profit, generates few serious complaints, and contributes in some way to the goals of humanity (or at
least doesn’t do harm). Software quality is difficult to define because there is no single comprehensive
and complete standard definition of its lexicon. Various aspects and terms are found in sources such as
ISO 9000-3, IEEE Software Engineering Standards, and various books on the subject. The following are
the key dimensions of software quality.
1. Level of satisfaction: it is the degree to which a customer or user perceives that a software product

meets his or her composite needs and expectations.
2. Product value: it is the degree to which a software product has value for its various stakeholders,

relative to the competitive environment.
3. Key attributes (“ilities”): it is the degree to which a software product possesses a combination of

desired properties (e.g. reliability, usability, maintainability).
4. Defectiveness: it is the degree to which a software product works incorrectly in target user

environments, due to debilitating operational defects.
5. Process quality: in relation to the development process by which the product is produced, it means

good people doing the right things in an effective way.

 A definition fashioned from the above aspects should be created for your own organization and for each
project. Every application/business domain faces a specific set of software quality issues, and software
quality must be defined accordingly. For example, mission critical applications have very stringent
operational needs, whereas typical information system applications must focus on general measures of
customer satisfaction. It is also important for each software development project to define it’s specific
meaning of software quality during the planning phase. Such a definition contributes to the basis for

Copyright 1999@Herb Krasner - all rights reserved - 4/28/99 Page 2

setting objectives and practical measures of quality progress and determination of readiness for release to
customers. An example of such a definition is shown below as a Figure of Merit (FOM) Quality Factors
Model.

 Figure 1 - Software Quality FOM model example

SW Product FOM
Quality Model

Customer
Satisfaction

Product
Value

“illities”
 Goals

Correctness/
Defectiveness

Process
Quality

•people
capability,
•product
alignment,
•process
effectiveness

standards/
expectations
by user
groupings

expected
profile by
stakeholder
groupings

subfactors
model
(e.g. using:
FURPS+,
ISO 9126,
IEEE 1061)

profile of
acceptable
conditions
by category

W2 W3 W4

W5W1

 The categories and subcategories of the FOM model can be weighted as needed for use by domain,
system and/or project. The FOM would be the sum of the weighted factors.

 Now that we understand what software quality is, and that it is of utmost importance, we turn our
attention to the cost perspective of the economics of software quality, a subject in serious need of an
underlying theory.

Why is CoSQ Important Now?

If it is an organizational goal to improve business success through software quality, then we need the
answers to a few simple questions which are too often not even asked in today’s software development
groups. These questions are:
• how much does poor software quality cost?
• how much does good software quality cost?
• how good is our software quality?

Once the answers to the above questions are factually known then
• quality costs can then be compared to overall software production costs, and software profits
• quality costs can be compared to benchmarks and norms
• deeper analysis can lead to actions taken to improve the situation

Copyright 1999@Herb Krasner - all rights reserved - 4/28/99 Page 3

• the bottom line effect of quality programs and improvement actions can be measured
• previously hidden costs related to poor quality become visible
• the economic tradeoffs involved with software quality become visible, thus leading to better decision

making

Software companies that are concerned about both product quality and economics can successfully apply
cost of quality principles to their software developments as shown in the remainder of this paper. CoSQ
is the framework that we use to discuss how much good and poor software quality costs.

 Adapting CoQ Principles to Software

The principles behind the modern Cost of Quality concept were derived for manufacturing applications
and can be found in the works of Juran [16]. In the conventional quality literature, Crosby[3] asserted
that “it is always cheaper to do the job right the first time.” However, this statement must be
reconsidered with respect to software development. Software is, to borrow a metallurgical term,
inherently malleable, capable of being readily shaped, formed, and reworked to alter or refine its
function, its quality, or even its purpose.

Malleability is an important reason for developing technical solutions in software rather than in
hardware. It allows business and technology to adapt to rapid changes in the world, revising objectives
and requirements to address new opportunities as they arise. Both customers and producers have come
to rely on software’s ability to accommodate changing requirements, giving new meaning to “do the job
right.” A static sense of what is right cannot be presumed during the lifecycle of many software
development projects, thus giving rise to non-manufacturing oriented lifecycle models for software (e.g.
Spiral, Incremental, Evolutionary, etc.). This additional dynamism strongly influences the economics of
the software life cycle and therefore, the application of quality cost principles to software. Establishing
and maintaining a baseline definition of what is acceptable quality becomes a key component in the new
model for CoSQ.

2. Applying Cost of Quality Principles to Software

The basis for the new model of CoSQ is the accounting of three different types of costs:
1. those which are incurred due to a lack of quality,
2. those which are incurred in the appraisal and achievement of acceptable quality, and
3. those which are incurred in order to prevent poor quality from occurring.

Costs due a lack of quality are further divided into costs of internal nonconformances and costs of
external nonconformances. Costs of achieving quality are further divided into appraisal costs and
assurance costs. Prevention costs are found both in the development cycle and in organization-wide
activities, such as process improvement and metrics collection and analysis, as well as, in quality basis
definition and management.

Table 1 provides definitions of the three main CoSQ categories with the next level of breakdown for
typical sub-items. The term nonconformance means a deviation in one of the software work products
with respect to understood objectives, requirements, constraints and/or standards. A more detailed
taxonomy of CoSQ categories is available in [2].

Table 1. Costs of Software Quality Model Categories

Copyright 1999@Herb Krasner - all rights reserved - 4/28/99 Page 4

Major Category Sub-category Definition Typical Cost Sub-Items

Dealing with

Internal
nonconformances

Quality problems detected
prior to product shipment

Pre-release defect management,
 rework, re-reviews and
retesting.

Nonconformances External
nonconformances

Quality problems detected
after product shipment

Post release technical support,
complaint investigation, defect
notification, remedial upgrades
and fixes

Appraising the

Discovering the
condition of the
product

Discovering the level of
nonconformances

Testing, SQA, inspections,
reviews

level of quality Assuring the
achievement of quality

Quality control gating Product quality audits, go/no
decisions to release or proceed

Preventing poor
quality from

Quality basis
management

Efforts to define quality,
set quality goals, standards
and thresholds. Quality
tradeoff analysis.

Defining release criteria for
acceptance testing, and related
quality standards.

occurring Project and process
oriented
interventions

Efforts to prevent poor
product quality, and/or
improve process quality

Training, process
improvements, metrics
collection and analysis

An Economic Model of Software Quality Costs

There is no validated economic theory of software quality in existence today. This is clearly a ripe
subject for multidisciplinary research. The software community currently uses a cost of quality theory
borrowed from manufacturing, which is exhibited in the figure below.

Figure 2 - Economic Model of Software Quality Costs

COST

Quality Metric
0% 100%

(perfect
)

achievement costs

non-
conformance
costs

CoSQ

Copyright 1999@Herb Krasner - all rights reserved - 4/28/99 Page 5

Figure 2, for instance, represents what Juran's Quality Control Handbook [Gryner 1988] calls a model
for "traditional processes" in contrast to a different set of curves - with no point of diminishing returns -
for what was seen as "emerging processes." These latter processes take advantage of higher priorities on
prevention, the automation of appraisal activities, and new technology to reduce inherent failure rates. It
remains an open question whether software development follows this "emerging process" model: the
ability to achieve as near perfection as required at finite costs.

Once quality is defined, the costs of achieving quality (costs of conformance) and the costs due to lack of
quality (costs of nonconformance) have an inverse relationship to one another: as the investment in
achieving quality increases, the costs due to lack of quality decrease. This relationship is seen in Figure
2. The quality metric for software is usually a defectiveness level, such as number of defects per system
(or part). In traditional CoQ models, the TCoQ has a point of diminishing returns, a minimum prior to
achieving 100% of the quality measure. Current research is investigating whether or not the law of
diminishing returns applies to the CoSQ in all cases.

As an industry we have collected very little data about cost of software quality which could be used to
either challenge or validate this theory. The little we do have suggests that this economic model may not
account properly for the dynamics of software development, since perfection is either not a goal or is a
quickly moving target.

The NASA Space Shuttle software program collected and reported on data in this area. In this case
failure free software is the goal for much of the software system that flies the space shuttle. As shown in
the figure below, Keller and Rhone (1990) [10], were able to show the increasing cost of achieving
extremely high reliability in the mission critical parts of the flight control software of the shuttle. After
studying the defect data for mission critical software, it is apparent that the cost increases dramatically
below a certain level of defect density, under which it becomes very expensive to test, find and fix
problems.

Figure 3 - The Cost of Ultra High Reliability in the Shuttle Software

R
el

at
iv

e
un

it
co

st

Defects per KSLOC
1 2 3 4

1

2

3

4

x

x

x $350/SLOC

$35/SLOC

1 defect/KSLOC

CoSQ: Data Found in the Open Literature

Copyright 1999@Herb Krasner - all rights reserved - 4/28/99 Page 6

While the costs of software quality assurance and process improvement have been a topic of concern for
over 20 years (Alberts 1976), very limited data has been available in the open literature that discusses the
cost of software quality (CoSQ). The main sources to date are a Price Waterhouse study [12], Krasner’s
report [8], Knoxís article [7] and the Haley report on Raytheon efforts [6], which all discuss trends in
software rework costs.

A 1988 Price Waterhouse study analyzed the costs and benefits of software quality standards from a
survey of 19 United Kingdom (UK) software suppliers. The study estimated the cost of a quality control
effort (prevention and appraisal costs) to be 23% to 34% of development effort. The study also
estimated failure costs at 15% of development effort for a TCoSQ of 38% to 49% of development effort.
It must be noted that this study excluded the costs of unit testing and rework because the suppliers could
not separate these costs. With increases in the estimates to account for this oversight, TCoSQ in a
software organization with a quality system can range from 40% to 55% of development costs with a
conformance costs to nonconformance costs ratio from 1.5 to 2.

Another recently published case study [19] has reported on software quality initiatives that reduced the
total quality cost to 50% of its pre-initiative value. It indicated that there were greater marginal cost
reductions at the (initial) higher defect densities, but that all investments in quality improvement could
be cost-justified. They also used CoSQ data to compare the value of four process improvements at BDM
International.

Dion [5] used the CoQ model as one means of interpreting the results of improvement initiatives
undertaken at Raytheon Electronic Systems (RES). Recently Haley, et al [6] updated this study. Using
the results of tracking 15 projects, they recorded significant results in a little over three years. In the
Level 1 stage, RESís CoSQ fluctuated between 55 and 67% of total development costs and when
reaching Level 3 process maturity, their CoSQ had dropped to approximately 40% of total project cost.
The ratio of conformance to nonconformance costs was 1.5. By 1996 this organizationís TCoSQ was
approximately 15% of development costs, and the rework due to both internal and external
nonconformances has been reduced to less than 10% of development costs. The case study of RES is
presented in detail in [2].

Based on the results of my study of Lockheed projects at various CMM levels along with anecdotal and
quantitative data collected in the mid and late 80’s, I predicted the relationship of SEI CMM-based
process maturity level to typical rework rates and quality levels that could be expected [8]. The table
below is a slice of that presentation.

Table 2 - Process Maturity, Quality and Rework Results

Copyright 1999@Herb Krasner - all rights reserved - 4/28/99 Page 7

Product Quality

double
digit

single
digit

.X

.0X

< .00X

Immature

Project
controlled

Defined
org. process

Management
by fact

Continous
Learning &
improvement

 Rework
(% of total
development effort)

>= .50

.25-.50

.15-.25

..05-.15

<= .05

Process Maturity
(characteristic) (defect density)

Due to the SEI CMM process maturity movement, we have an aggregation of the payoff data that has
been collected as a result. See [9] for more information on how software process maturity is related to
CoSQ, software defectiveness levels and other measures of success. My ongoing collection of such data
from my clients, along with the early efforts of Knox [7] have led to the model presented below. The
following model makes predictions about CoSQ across the levels of the Software Engineering Instituteís
Capability Maturity Model (Figure 3).

Figure 4 - Cost of Software Quality and CMM Level

0

10

20

30

40

50

60

C
os

t a
s

a
P

er
ce

nt
 o

f D
ev

el
op

m
en

t

1 2 3 4 5
SEI CMM Levels

TCoSQ
Int NONC
Ext NONC
Appraisal
Prevention

Legend

Starting with the total CoSQ (TCoSQ) at 70% of development costs (based on several industry figures)
for CMM level 1 organizations, the model hypothesizes that CMM level 5 organizations can cut this

Copyright 1999@Herb Krasner - all rights reserved - 4/28/99 Page 8

CoSQ by more than 75%. The model predicts that a CMM level 3 organization would have a TCoSQ of
50%, but with a conformance to nonconformance cost ratio of .5. It appears that the model may be a fair
predictor of TCoSQ for maturing software organizations.

Typical manufacturing CoQ, ranging from 5 to 25 percent of company sales, contrasts significantly with
CoSQ. With the present state of software engineering practice we can expect CoSQ to range from 10 to
70 percent of development costs. Even accounting for the margin between production costs and sales,
CoSQ appears to be roughly twice manufacturing CoQ. Also, the optimum manufacturing CoQ is often
in the range of 95 to 100 percent of conformance to quality standards. The open literature lacks
sufficient data for CoSQ as a function of conformance to quality, but the above data suggests that
software producers have yet to reach such an optimum.

3.0 Elements of a CoSQ Program

3.1 CoSQ Program Purposes

There are many possible ways to apply the CoSQ approach. To date, CoSQ techniques are only being
used after the fact to document the ROI for software improvement initiatives because executives want to
know that there is a payoff from the up-front investments. This type of CoSQ application is expected to
accelerate as more process improvement programs take off.

Other ways in which the CoSQ approach can be used are to
• provide a basis for budgeting the quality management and assurance functions
• identify specific quality improvement candidates through causal analysis
• compare proposed process improvements and identify the most cost effective ones
• provide a (one) measure to compare the success of various projects
• reduce the quality costs on a particular project by altering the process prior to, or even in situ
• determine the potential cost/risk impact of specific quality tradeoff decisions on specific projects
• determine a company’s potential legal exposure due to customer experienced defects
• provide cost data to demonstrate the relationship of employee efforts to the bottom line

3.2 CoSQ Programmatics

Several points can be made with regard to the programmatic aspects of measuring and using cost of
quality information specifically for software development organizations. These are:
• initiating a CoSQ effort
• accounting and gathering the quality cost data
• gathering the quality metrics
• presenting the results
• improving the CoSQ program continuously

Initiating the CoSQ Effort

Convincing management of the value of tracking CoSQ may be the initial hurdle one encounters in using
this technique. There is a modest up-front investment required in order to educate those to be involved.

Initially, rough estimates of software quality costs may suffice very well for several reasons.

Copyright 1999@Herb Krasner - all rights reserved - 4/28/99 Page 9

• Usually the largest CoSQ costs can be estimated readily from time and activity reports, so the
expense of data gathering can be limited until its value is demonstrated.

• Controlled, scientific studies are unlikely and incomplete data can suffice in beginning a software
cost benefit analysis.

• The published data indicates that the quality cost difference between improved and unimproved
organizations is quite large.

• The primary purpose of the initial CoSQ effort will be to show the opportunity for cost savings.

 The best advice is to keep it simple when starting a CoSQ initiative.

 Accounting

 Gathering quality cost data assumes that costs have been accounted using task categories which can be
summed into the four major categories of quality costs. Many software organizations track costs in a
manner amenable to quality costing, but many others do not. In the latter case, a preliminary step of
defining and installing such a chart of accounts is required. A sample of such a chart of software quality
costs can be found in [3]. The quality categories in a software organizationís chart of accounts must be
tailored to reflect its software process. To realize the full benefit of CoSQ, it must also allow for the
addition of continuous improvement tasks.

 In the best cases, quality costs can be taken directly from departmental accounting (salary and expense)
reports. In other cases, it may be necessary to resort to basic accounting and engineering records, such as
schedules, time reports, defect reports, and purchasing records. In the worst cases, one may fall back on
interviews with members of the software organization in order to construct estimates of each quality cost
category. Exceptions are in the external failure category.

 One of the pitfalls of a CoSQ program is ìcontroversial cost categoriesî. Usually the question is about
which costs are normal operating costs and which are quality costs. An example would be the cost of
producing a project management plan. While this plan is produced for the sake of managing a projectís
expenses and schedule, it also influences product and process quality. Here it is helpful to keep in mind
the following points.
• The trend among quality specialists has been to view quality costs as those incurred to directly

prevent, appraise, and address the nonconformances of poor quality.
• Arguments over controversial categories have been known to sabotage cost of quality programs.
• The largest quality costs are those which are most easily discerned, for example reviews, software

quality assurance (SQA), testing, and rework. Therefore, it is often safe to exclude controversial
categories without unduly affecting the TCoSQ.

• Consistency throughout a CoSQ program is more important than thorough inclusion of quality costs
because consistency allows for clear identification of improvements and candidates for improvement.

 Concerns may also arise as to how quality costs should be categorized. Again, consistency is important.
For example, the costs associated with formal inspections (peer reviews) can be treated as prevention
costs rather than as appraisal costs. This is a matter of interpretation, depending on when a work product
is considered ready for appraisal. Although manufacturing inspections are conducted on pieces after
they are produced, in software production inspections may be incorporated into the production process.
For documentation, this means that a document is not complete until it has undergone a peer review and

Copyright 1999@Herb Krasner - all rights reserved - 4/28/99 Page 10

been revised. The same is true for code, especially when code inspections precede unit testing, clearly
an appraisal activity.

 Quality Metrics Collection

 With regard to measures of quality, the CoQ has been used primarily with a fundamental approach to
quality, that is defect rates (manufacturing) or service problem reports (service industries) rather than
broader approaches that would take into account factors such as usability, testability, maintainability,
and so forth. The fundamental approach has the advantages of straightforward measurement and ease of
understanding. It also allows comparison of dissimilar products. Furthermore, if failure costs are
collected in a defect tracking system, the most expensive defects can be identified for root cause analysis
(Mandeville 1990). This discussion recognizes that most software producers take a fundamental
approach to quality, concentrating on defect measurement, prevention, and removal.

 Defect density is a good metric to start with measuring CoSQ improvements. Specifically, CoSQ can be
plotted against defect density at the completion of system testing. This metric may be obtained from
defect reports during alpha and beta tests and for a time period, say six months, following product
release. Better yet, it may be generated statistically based on post-release defect reports for previous
products from the same organization. Stoddard and Hedstrom [17] offer a recent example of this
approach using Bayesian statistics in a defect prediction model. External failure costs can be estimated
from the defects-at-release metric.

 Presenting CoSQ Information

 The relationships which have the greatest impact on management are:
• Quality costs as a percent of sales and profit
• Quality costs as a percent of total development costs
• Quality costs compared to the magnitude of the current problem

 Figure 5 below shows an example of a snapshot report of an organization’s CoSQ profile as a percentage
of total development costs at that time. The example comes from a CMM Level 1 shop.

 Figure 5 - CoSQ snapshot profile

Copyright 1999@Herb Krasner - all rights reserved - 4/28/99 Page 11

0

10

20

30

40

50

60

70

Current CoSQ Profile

80

% of
total
devel-
opment
cost
(resources)

Prevention
Appraisal
NONC
Creation

Legend

 Showing CoSQ as a percent of total development costs, is appropriate to software for several reasons.
First, sales and profit may not have a direct relationship to the actual cost of a software product since
software pricing is often dictated by market forces. Second, all but a small percentage of software
development costs can be measured in labor hours, so the costs can be readily shown in either hours or
dollars. Third, the state of the art in software development is such that comparing quality costs to
development costs illustrates the magnitude of the current problem.

 Though quality costs as a percent of development costs can show significant effects of improvements,
this ratio does not reveal the optimum cost of quality. The optimum can be seen when quality costs are
shown as absolute costs against a quality measure. Plotting CoSQ costs against a quality measure, such
as defect density, reveals trends in an organizationís quality processes, e.g. in Houston [18].

Improving the CoSQ Program

Based on initial usage of CoSQ, organizations should expect to encounter difficulties in the following
areas:
• when and how the CoSQ data is gathered, analyzed, reported and used
• how the approach clashes with other approaches that are already in use, e.g. existing WBS’s that

• how the CoSQ model is defined at the detailed levels
• how the approach is implemented consistently in the organization
• how CoSQ is used for root cause analysis
• how CoSQ is used to stimulate improvements
These difficulties can be overcome with appropriate training and coaching.

Feedback on the usefulness of the CoSQ data presented can guide how the organizational CoSQ program
should be evolved over time. The lessons learned from trials and early adopters will be invaluable. The
technology to support CoSQ will emerge quickly in response to the needs as they grow, once a

Copyright 1999@Herb Krasner - all rights reserved - 4/28/99 Page 12

consensus on the CoSQ model is reached. Many of the TQM and CoQ tools available for
manufacturing can be adapted for use in software. CoSQ tools appear to be a significant market
opportunity yet to be explored.

4.0 Summary

CoQ is a proven technique in manufacturing industries both for communicating the value of quality
initiatives and for indicating quality initiative candidates. CoSQ offers the same promise for the
software industry, but has seen little use to date. Initial uses of CoSQ show that it can be a very large
percentage of development costs, 60 percent or higher for organizations which are unaware of
improvement opportunities. CoSQ has demonstrated its value in measuring the ROI of a software
improvement program, as in the RES case. If your improvement program is effective, and you track
CoSQ over time against the key performance indicators of your organization you should observe a trend
similar to that shown in Figure 6.

Figure 6 - Trend of CoSQ and other key indicators over time

Years

10

5

1

0

Im
pr

ov
em

en
t

M
ul

tip
lie

r

SW Quality

baselines

Business
Performance

1 2 3 4 5 6 7

CoSQ

CoSQ is a technique that is most useful in enabling our understanding of the economic tradeoffs
involved in delivering good quality software. Applying CoSQ in your organization requires a small
investment that pays off handsomely in your increased understanding of the complexities and hidden
issues involved in the delivery of quality software. The proliferation of CoSQ will help eliminate the
debilitating effects of poor software quality.

5.0 References

1. Alberts, D.S. 1976. The Economics of Software Quality Assurance. National Computer Conference
1976, 433-441.

2. Campanella, J., ed. 1999. Principles of Quality Costs, 3rd edition. Milwaukee, WI: American
Society for Quality Control, ISBN 0-87389-443-X

3. Crosby, P.B. 1988. Quality Without Tears. New York: McGraw-Hill.
4. Daugherty, T. 1988. The Search for Software Quality. Quality Progress. (November): 29-31.
5. Dion, R. 1993. Process Improvement and the Corporate Balance Sheet. IEEE Software. 10(July): 28-

35.

Copyright 1999@Herb Krasner - all rights reserved - 4/28/99 Page 13

6. Haley, T.J. 1996. Software Process Improvement at Raytheon, IEEE Software, 13(November): 33-
41.

7. Knox, S.T. 1993. Modeling the Cost of Software Quality. Digital Technical Journal 5 (4): 9-16.
8. Krasner, H., 1990, Self Assessment Experiences at Lockheed, Proceedings of the SEI/AIAA

Software Process Improvement Workshop, November 8, 1990, Chantilly, VA
9. Krasner, H.,1997, Accumulating the Body of Evidence for the Payoff of Software Process

Improvement(1997 version), on the web at www.utexas.edu/coe/sqi/archive, also published in The
Payoff for Software Process Improvement: What it is and How to get it, in The Elements of Software
Process Assessment and Improvement, IEEE Computer Society Press, 1999

10. Krasner, H. (1994), A Case History of the NASA Space Shuttle Onboard Systems Project,
SEMATECH Technology Transfer Report #94092551A-TR, October 31, 1994

11. Mandeville, W.A. 1990. Software Costs of Quality. IEEE Journal on Selected Areas in
Communications 8 (2): 315-318.

12. Price Waterhouse. 1988. Software Quality Standards: The Costs and Benefits. A review for the
Department of Trade and Industry. London: Price Waterhouse Management Consultants.

13. Putnam, L.H. 1994. The Economic Value of Moving up the SEI Scale. Managing System
Development 14 (7): 1-6.

14. Software Quality Matters, 1992-present, the quarterly newsletter on subjects of software quality
published by the University of Texas - Software Quality Institute, see back issues on the web at
www.utexas.edu/coe/sqi

15. Davis, A. 1997, IEEE Software, Editors Column, December, 1997
16. Juran, J.M., and Frank M. Gryna. Juran’s Quality Control Handbook, 4th ed., New York: McGraw-

Hill Book Company, 1988.
17. Stoddard, Robert, and John Hedstrom. 1995. “A Bayesian Approach to Deriving Parameter Values

for a Software Defect Predictive Model,” Proceedings of the Sixth Annual Conference on
Applications of Software Measurement, Oct 30 - Nov 2, 1995, 323-346

18. Houston, D. 1998, Cost of Software Quality: Selling Software Process Improvement to Managers, in
ASQ’s Software Quality Journal, 1998

19. Sandra A. Slaughter, Donald E. Harter, and Mayuram S. Krishnan, "Evaluating the Cost of Software
Quality," Communications of the ACM 41:8(August 1998) 67-73.

“Risk Management Technology” by Tom Gilb Page 1 of 18

Quality Week 98 Brussels , 12 November 98 4PM

Version 3.1 March 20 1999

For Quality Week San Jose CA, Thursday 27th May 1999 at 10:30 am

"Risk Management : A practical toolkit for identifying,
analyzing and coping with project risks"

By Tom Gilb,
Senior Partner, Result Planning Limited

Paper Summary
Risk management must be fully integrated into all the development and maintenance
processes for systems. It involves more than applying risk assessment methods to identify
and evaluate system risks.

To explain this broad approach to risk management, this paper discusses the way in
which Requirements Driven Management (RDM) methods contribute to handling risks.

Definition of ‘Risk’
Risk is an abstract concept expressing the possibility of unwanted outcomes.
A ‘risk’ is anything which can lead to results that deviate from the requirements.

It is in the nature of risk that the probability of risks actually occurring, and their actual
impact when they do so, can only be predicted to varying degrees of accuracy. Not all
risks can be identified in advance.

Risk Management is any activity which identifies risks, and takes action to remove,
reduce or control ‘negative results’ (deviations from the requirements).

Principles of Risk Management
In my view, the fundamental principles of risk management include:

1. Quantify requirements
All critical quality and resource requirements must be identified and quantified
numerically.

“Risk Management Technology” by Tom Gilb Page 2 of 18

Quality Week 98 Brussels , 12 November 98 4PM

2. Maximize profit, not minimize risk
Focus on achieving the maximum benefits within budget and time-scales rather than on
attempting to eliminate all risk.

3. Design out unacceptable risk
Unacceptable risk needs to be ‘designed out’ of the system consciously at all stages, at all
levels in all areas, e.g. architecture, purchasing, contracting, development, maintenance
and human factors.

4. Design in redundancy
When planning and implementing projects, conscious backup redundancy for
outmaneuvering risks is a necessary cost.

5. Monitor reality
Early, frequent and measurable feedback from reality must be planned into your
development and maintenance processes, to identify and assess risks before they become
dangerous.

6. Reduce risk exposure
The total level of risk exposure at any one time should be consciously reduced to between
2% and 5% of total budget.

7. Communicate about risk
There must be no unexpected surprises. If people have followed guidelines and are open
about what work they have done, then others have the opportunity to comment
constructively. Where there are risks, then share the information.

8. Reuse what you learn about risk
Standards, rules and guidance must capture and assist good practice. Continuous process
improvement is also needed.

9. Delegate personal responsibility for risk
People must be give personal responsibility in their sector for identification and
mitigation of risks.

10. Contract out risk
Make vendors contractually responsible for risks, they will give you better advice and
services as a result.

“Risk Management Technology” by Tom Gilb Page 3 of 18

Quality Week 98 Brussels , 12 November 98 4PM

Let’s now consider, each of these principles in turn and describe some (not all!) of the
roles that the RDM methods play in risk management. However, first here is an outline
sketch of the RDM methods:

• Planguage; a requirements specification language insisting on quantified values.

• Impact Estimation (IE); an analysis tool (a table) allowing evaluation of the
likelihood of achieving requirements and, the evaluation and comparison of different
designs (strategies). A strength of IE is that it also helps identify new designs and
uncover previously unstated requirements.

• Evolutionary Delivery (Evo); based on the work by the quality gurus Deming and
Juran, a way of working that focuses on evolutionary delivery of early, measurable,
system benefits to the customers. A system is developed, by small risk steps, in a
series of plan, develop, deliver and evaluate cycles.

• Inspection; a technique for measuring and improving technical document quality.
Technical documents are evaluated against their source documents and any prevailing
standards by Inspection teams consisting of individuals with specially assigned roles.
The overall aims are to identify defects, to identify patterns in the introduction of
defects (leading to process improvement), to help train individuals to avoid creating
defects and, to assist team-building.

Readers wanting a more detailed explanation of these methods should
look in the References.

Principle 1. Quantify requirements
All critical quality and resource requirements must be identified and quantified
numerically.

Risk is negative deviation from requirements. So, if we are going to understand risk, we
must have some way of specifying exactly what we want. If we use vague ways like
“State of the Art, World Class, Competitor-Beating Levels of Quality”, we cannot
understand and assess risk.

Planguage helps because it demands numerically quantified requirements. Using
Planguage, we must go through the following steps:

• Identify all critical quality and resource attributes of the system. In practice, this
could be ten or more critical qualities (e.g. availability) and, five or more critical
resources (e.g. operational costs).

“Risk Management Technology” by Tom Gilb Page 4 of 18

Quality Week 98 Brussels , 12 November 98 4PM

• Define exactly how to understand variation in each attribute by specifying a scale of
measure, e.g. ‘Scale: Probability of being fully operational during the office day’ and
‘Scale: Total of all monetary operational expenses including long term
decommissioning costs’.

• For each attribute, define one or more critical points on the defined scale of measure
which are needed for the system to function properly and profitably. There are two
important categories: ‘Must’ and ‘Plan’. A ‘Must’ level defines the system survival
level. A ‘Plan’ level defines the planned point for success. For risk management,
‘Must’ is the first level and ‘Plan’ is the second level for risk determination. A value
for any attribute less than its required Must level means total system failure. Only
when all Plan levels for all the attributes have been met can a system be declared a
success.

• For all the Must and Plan levels, define additional qualifying information. We call
this using ‘qualifiers’. You are basically defining time, place and event, i.e. when it is
critical for you to achieve a certain level of an attribute, where it is critical and under
what conditions. For example,

Plan [1999,Europe,IF European Monetary Union implemented anywhere] 99.98%

We can even give direct expression to the amount of risk we are prepared to take by a
statement such as :
Must [2001, UK, IF Euro is used in Norway & UK] 60% ±20%

In other words the range of results 40% to 80% is an acceptable upper and lower limit,
but below 40% is unacceptable.

Here is a more complete example:

Usability:
Scale: Mean time to learn [defined tasks] to minimum proficiency.
Must [Release 2.0, English Version, Task: Modifying Files] 10 minutes.
Plan [Release 2.0, English Version, Task: Modifying Files] 7 minutes.
Plan [Release 3.0, English Version, Task: Modifying Files] 5 minutes.
Plan [Release 3.0, French & Dutch Versions, Task: Finding a File by Content] 5 minutes.

In the example, the most critical (failure of system) risk is the Must level. The other
statements are only of secondary risk; they indicate the levels required to declare success.

It should be obvious that the degree of risk can be expressed in terms of the deviation
from the target levels. For example,
Method A can sometimes result in a learning time of 10 minutes, while method B can
never result in a learning time exceeding 4 minutes.

“Risk Management Technology” by Tom Gilb Page 5 of 18

Quality Week 98 Brussels , 12 November 98 4PM

This means that for the specified requirements, method A poses a real risk, but method B
does not.

A template specification of risk levels
In addition to the basic statements described above, it should be noted that there are a
wide variety of ways within Planguage to indicate that the information contains some
element of risk. Here are some examples:
Plan 60-80 Specification of a range
Plan 60±30 Specification of an upper and lower limit
Plan 60 à 90
Plan 60? Expressing that the value is in doubt
Plan 60?? Expressing that the value is in serious doubt
Plan 60 ß A wild guess Using the source of the information to show the doubt
Plan 60 ß A.N. Other Depends on A.N. Other’s credibility in setting this value
Plan <60> Fuzzy brackets indicate data needing improvement

All of the above signals can be used to warn of potential risk. Of course, the culture must
encourage such specification rather than intimidate people from using it.

Plan [IF Euro is used in UK] 99%
The above is an example where the risk is controlled by making the specification totally
dependent on the IF condition. There is no risk that anyone will plan to achieve 99% if
the condition is false. However, they are warned to plan to achieve 99% should the
condition turn true.

Note, you can also use IF qualifiers to constrain the use of a strategy (a means for
achieving a goal). This reduces the risk that an expensive strategy is applied under
inappropriate conditions.

Strategy99 [IF hunger famine in a country, IF road and rail transport unavailable] Aerial
Supply of Food.

Principle 2. Maximize profit, not minimize risk
Focus on achieving the maximum benefits within budget and time-scales rather
than on attempting to eliminate all risk.

Elimination of all risk is not practical, not necessary and, not even desirable.
All risk has to be controlled and balanced against the potential benefits. In some cases, it
is appropriate to decide to use (and manage) a strategy with higher benefits and higher
risks. I use Impact Estimation (IE) to help me assess the set of strategies I need to ensure
I meet the required objectives. My focus is always on achieving the objectives in spite of
the risks.

Outline Description of Impact Estimation (IE)

“Risk Management Technology” by Tom Gilb Page 6 of 18

Quality Week 98 Brussels , 12 November 98 4PM

The basic IE idea is simple: estimate quantitatively how much your design ideas impact
all critical requirements. This is achieved by completing an IE table. The left-hand
column of the table should contain the objectives and, across the top of the table should
be the proposed strategies. For the objectives, assuming you have expressed them using
Planguage, it is a question of listing down all the quality and resource attributes you wish
to consider. You need next to decide on a future date you want to use. This should be a
system ‘milestone’; a date for which you have specified Must and Plan levels. Then,
against each attribute, you state the current level and the Plan level for your chosen date.
(If you are especially risk averse you would use the Must level!) For the strategies, you
simply list them across the top of the IE table.

You then fill in the table, for each cell you answer the question, ‘How does this strategy
move the attribute from its current level towards the Plan level?’ First you state the actual
value you would expect and then you convert this into a percentage of the amount of
required change.

For example, Training Time for Task A is currently 15 minutes and you require it to be
10 minutes within six months. You estimate Strategy B will reduce Training Time for
Task A to 12 minutes. In other words, Strategy B will get you 60% of the way to meeting
your objective. See Table 1.

TABLE 1

 | Strategy B
 |
 | Real Impact % Impact

Training Time |
Past = 15 minutes in June 1998 |
Plan = 10 minutes by end of Dec. 1998 | 12 minutes 60%

 |
Resource = Development Budget |
Plan = $2000 up to end Dec. 1998 | $1,000 50%
--

Further improvements to specifying the impacts
There are a number of improvements to this basic idea, which make it more
communicative and credible. Here is a brief summary of them :

Uncertainty of Impact: you can specify a range of values rather than a single value.

Evidence for Impact Assertion: you can state the basis for making your estimate.
For example: "Strategy B was used for 5 projects last year in our company, and the
percentage improvement for Training Times was always 60% to 80%".

“Risk Management Technology” by Tom Gilb Page 7 of 18

Quality Week 98 Brussels , 12 November 98 4PM

Source of Evidence for Impact Assertion: Of course, some skeptic might like to check
your assertion and evidence out, so you should give them a source reference, e.g.
"Company Research Report ABR-017, pages 23-24."

Credibility Rating of the Impact Assertion: We have found it very useful to establish a
numeric 'credibility' for an estimate, based on the credibility of the evidence and the
source. We use a scale of 0.0 to 1.0 (because it can then be used later to modify estimates
in a conservative direction). See Table 2.

TABLE 2

Credibility Rating Meaning

0.0 wild guess, no credibility
0.1 we know it has been done somewhere
0.2 we have one measurement somewhere
0.3 there are several measurements in the estimated range
0.4 the measurements are relevant to our case
0.5 the method of measurement is considered reliable
0.6 we have used the method in-house
0.7 we have reliable measurements in-house
0.8 reliable in-house measurements correlate to independent

external measurements
0.9 we have used the idea on this project and measured it
1.0 perfect credibility, we have rock solid, contract-

guaranteed, long-term, credible experience with this idea
on this project and, the results are unlikely to disappear

--

Further Analysis of the IE data
Once you have completed filling in all the impacts, there are a number of calculations,
using the percentage impact estimates (%Impact), that help you understand the risks
involved with your proposed solution.

Let me stress that these are only rough, practical calculations. Adding impacts of
different independent estimates for different strategies, which are part of the same overall
architecture, is dubious in terms of accuracy. But, as long as this is understood, you will
find them very powerful when considering such matters as whether a specific quality goal
is likely to be met or which is the most effective strategy. The insights gained are
frequently of use in generating new strategies.

“Risk Management Technology” by Tom Gilb Page 8 of 18

Quality Week 98 Brussels , 12 November 98 4PM

Impact on a Quality: For each individual quality or resource attribute, sum all the
percentage impacts for the different strategies. This gives us an understanding of whether
we are likely to make the planned level for each quality or cost. Very small quality
impact sums like '4%' indicate high risk that the architecture is probably not capable of
meeting the goals. Large numbers like 400% indicate that we might have enough design,
or even a 'safety margin'.

TABLE 3
Example: Adding the percentage impacts for a set of strategies on a single quality or cost
can give some impression of how the strategies are contributing overall to the objectives.
Note Strategies A, B and C are independent and complementary.

Strategy A Strategy B Strategy C Sum of
Strategy
Impacts

Sum
Uncertainty

Reliability
900->1000
hours MTBF

0+/-10% 10+/-20% 50+/-40% 60% +/-70%

Impact of a Strategy: For each individual strategy, sum all the percentage impacts it
achieves across all the qualities to get an estimate of its overall effectiveness in delivering
the qualities. The resulting estimates can be used to help select amongst the strategies. It
is a case of selecting the strategy with the highest estimate value and the best fit across all
the critical quality requirements. If the design ideas are complementary then the aim is to
choose which strategies to implement first. If the strategies are alternatives, then you are
simply looking to determine which one to pick.

TABLE 4
A measure of the effectiveness of strategy ‘Big Idea’ can be found by adding together its
percentage impacts across all the qualities

QUALITY PAST-PLAN Big Idea
Reliability 900->1,000 hours

MTBF
50%+/-10%

Maintainability 10 min. fix to 5 min.
to fix.

100%+/-50%

150%+/-60% Estimate of total
effect of
Big Idea on all goals

“Risk Management Technology” by Tom Gilb Page 9 of 18

Quality Week 98 Brussels , 12 November 98 4PM

In addition to looking at the effectiveness of the individual strategies in impacting the
qualities, the cost of the individual strategies also needs to be considered, see next
section.

Quality to Cost Ratio: For each individual strategy, calculate the quality-to-cost ratio
(also known as the benefit-to-cost ratio). For quality, use the estimate calculated in the
previous section. For cost, use the percentage drain on the overall budget of the strategy
or use the actual cost.

The overall cost figure used should take into account both the cost of developing or
acquiring the strategy and, the cost of operationally running the strategy over the chosen
time scale. Sometimes, specific aspects of resource utilization also need to be taken into
account. For example, maybe staff utilization is a critical factor and therefore a strategy
that doesn’t utilize scarce programming skills becomes much more attractive.

My experience is that comparison of the 'bang for the buck' of strategies often wakes
people up dramatically to ideas they have previously under- or over-valued.

Average Credibility / Risk Analysis: Once we have all the credibility data (i.e. the
credibility’s for all the estimates of the impacts of all the strategies on all the qualities),
we can calculate the average credibility of each strategy and, the average credibility of
achieving each quality. This information is very powerful, because it helps us understand
the risk involved. For example, "the average credibility, quality controlled, for this
alternative strategy is 0.8". Sounds good! This approach also saves executive meeting
time for those who hold the purse strings.

Principle 3. Design out unacceptable risk
Unacceptable risk needs to be ‘designed out’ of the system consciously at all
stages, at all levels in all areas, e.g. architecture, purchasing, contracting,
development, maintenance and human factors.

Once you have the completed initial IE table, you are in a position to identify the
unacceptable risks and design them out of the system. Unacceptable risks include:

• Any quality or resource attribute where the sum of the %Impacts of all the proposed
strategies does not total 200%. (A 100% safety factor has been assumed to reduce the
risk of failure.)

• Any strategy providing i) a low total for the sum of its %Impacts, ii) very low
credibility or iii) low benefit-to-cost ratio.

“Risk Management Technology” by Tom Gilb Page 10 of 18

Quality Week 98 Brussels , 12 November 98 4PM

New strategies will have to be found that reduce these risks. In some cases, it may be
decided that the levels set for the objectives are unrealistic and they may be modified
instead.

Within software engineering, the art of designing a system to meet multiple quality and
cost targets, is almost unknown [GILB88]. However, I have no doubt that there is great
potential in conscious design to reduce risks. For example, it is a hallowed engineering
principle to be conservative and use known technology. However, this concept has not
quite caught on in software engineering technology, where ‘new is good’, even if we do
not know much about its risks. At least, with the use of an IE table there is a chance of
expressing and comparing the risk involved in following the differing strategies.

Principle 4. Design in redundancy
When planning and implementing projects, conscious backup redundancy for
outmaneuvering risks is a necessary cost.

Under Principle 3, we have discussed finding new strategies. Principle 4, takes this idea a
step further. Actively look for strategies that provide backup. An extreme example of this
practice is NASA’s use of backup computer systems for manned space missions.

Principle 5. Monitor reality
Early, frequent and measurable feedback from reality must be planned into your
development and maintenance processes to identify and assess risks before
they become dangerous.

I expect the IE information only be used as an initial, rough indicator to help designers
spot potential problems or select strategies. Any real estimation of the impact of many
strategies needs to be made by real tests (Ideally, by measuring the results of early
evolutionary steps in the field). Evolutionary Delivery (Evo) is the method to use to
achieve this (See next Principal).

Principle 6. Reduce risk exposure
The total level of risk exposure at any one time should be consciously reduced to
between 2% and 5% of total budget.

IE can also be used to support Evolutionary Delivery (Evo) as a budgeting and feedback
mechanism during project building and installation of partial deliveries [GILB98,
MAY96].

“Risk Management Technology” by Tom Gilb Page 11 of 18

Quality Week 98 Brussels , 12 November 98 4PM

The Evolutionary Delivery (Evo) method typically means that live systems are delivered
step by step to user communities for trial often (e.g. weekly) and early (e.g. 2nd week of
project).

One of the major objectives of Evo is to reduce and control risk of deviation from plans.
This is achieved by:

• getting realistic feedback after small investments
• allowing for change in requirements and designs as we learn during the project
• investing minimum amounts at any one time (2% to 5% of project time or
money) so that total loss is limited if a delivery step totally fails.

IE is of use in helping to plan the sequencing of Evo steps. IE tables also provide a
suitable format for presenting the results of Evo steps. See Table 5.

TABLE 5

Step->

Attribute

STEP1
plan
%

actual
%

Devia-
tion
%

STEP2
to

STEP20
plan

plan
cumul-

ated
to here

STEP21
[CA,NV,WA]

plan

plan
cumul-

ated
to here

STEP22
[all

others]
plan

plan
cumul-
ated to
here

QUAL-1 5 3 -2 40 43 40 83 -20 63
QUAL-2 10 12 +2 50 62 30 92 60 152
QUAL-3 20 13 -7 20 33 20 53 30 83
COST-A 1 3 +2 25 28 10 38 20 58
COST-B 4 6 +2 38 44 0 44 5 49

Table 5 is a hypothetical example of how an evolutionary project can be planned and
controlled and risks understood. The ‘deviation’ between what you planned and what
you actually measured in practice is a good indicator of risk. The larger the deviation, the
less you were able to correctly predict about even a small step. Consequently there is a
direct measure of areas of risk in the ‘deviation’ numbers.

The beauty of this, compared to conventional risk estimation methods [HALL98] is that
it:

• is based on real systems and real users (not estimates and speculation before
practical experience)
• is early in the investment process
• is based on the results of small system increments, and the cause of the risk is
easier to spot, and perhaps to eliminate, or to modify, so as to avoid the risk.

Evolutionary Project management does not ask what the risks might be. It asks what risks
have shown up in practice. But it does so at such an early stage, that we have a fair
chance to do something about the problems.

“Risk Management Technology” by Tom Gilb Page 12 of 18

Quality Week 98 Brussels , 12 November 98 4PM

Principle 7. Communicate about risk
There must be no unexpected surprises. If people have followed guidelines and
are open about what work they have done, then others have the opportunity to
comment constructively. Where there are risks, then share the information.

Hopefully, readers will by now have begun to understand that Planguage and IE are good
means of communicating risk. Let me now introduce Inspection as a third useful method.

Inspection is a direct weapon for risk reduction. [GILB93]. Early Inspections on all
written specifications is a powerful way to measure, identify and reduce risk of bad plans
becoming bad investments. The key idea is that Major defects are measured, removed,
and that people learn to avoid them, by getting detailed feedback from colleagues. A
defect is a violation of a ‘best practice’ rule. A Major defect is defined as a defect which
can have substantial economic effect ‘downstream’ (in practice, in ‘test’ phases and in the
field). By this definition, a Major defect is a ‘risk ’. So Inspection measures risks!

Many people think that the main benefit from Inspection is in identifying and removing
Major defects early (e.g. before source code reaches test phases). This is not the case.
(My experience is that Inspection is as bad as testing in % defect-removal effectiveness.
In very rough terms half of every defect present is not identified or removed.) The really
important economic effect of Inspection is not what happens at the level of a single
document, but in teaching the people and the organization. The real effect of Inspection is
in:
• • teaching individual engineers exactly how often they violate best practice rules
• • motivating the engineers to take rules seriously (really avoid injecting Major

defects)
• • regulating flow of documentation, so that high Major defect documents can neither

exit nor enter adjacent work processes.

Staff involved in Inspections learn very quickly how to stop injecting defects. Typically,
the defects introduced by an author reduce at the rate of about 50% every time a new
document is written and Inspected. For example, using Inspection, Raytheon reduced
‘rework’ costs, as a % of development costs, from 43% to 5% in an eight year period
[DION95].

Sampling
One other little-appreciated aspect of Inspection is that you can use it by sampling a small
section of a large document, rather than trying to ‘clean up’ the entire document. If the
sample shows a high Major defect density (say more than one Major/Page) then the
document is probably ‘polluted’ and action can be taken to analyze the defect sources. A
complete rewrite may be necessary using appropriate specification rules or new/improved
source documents. This is generally cheaper than trying to clean up the entire document
using defect removal Inspection or testing.

“Risk Management Technology” by Tom Gilb Page 13 of 18

Quality Week 98 Brussels , 12 November 98 4PM

Principle 8. Reuse what you learn about risk
Standards, rules and guidance must capture and assist good practice.
Continuous process improvement is also needed.

In the previous section, the importance of Inspection was discussed and rules were
highlighted as one of the essentials required to support it. It is worth emphasizing the
aspect of reuse that is occurring here. The more effort that is put into making rules more
effective and efficient by incorporating feedback from Inspections, the more productive
the Inspections and the greater the reduction in risk.

Even more benefit can be achieved if what is learnt from Inspection is used to modify the
processes that are causing the defects; Continuous Process Improvement has been shown
to have a major influence on risk. For example, Raytheon has achieved zero deviation
from plans and budgets over several years. They used a $1million/year (for 1,000
software engineers) for 8 years to do continuous software process improvement. They
report that the return on this investment was $7.70 per $1 invested on improving
processes such as requirements, testing and Inspection itself. Their software defect rate
went down by a factor of three [DION95].

Using Inspection, analysis of the identified defects to find process improvements is
carried out in the Defect Prevention Process (DPP). DPP was developed from 1983 at
IBM by Robert Mays and Carole Jones and, is today recognized as the basis for SEI
CMM Level Five. The breakthrough in getting DPP to work, compared to earlier failed
efforts within IBM, was probably in the decentralization of analysis activity to many
smaller groups, rather than one ‘Lab Wide’ effort by a Quality Manager. This follows
what the quality Guru Dr. W Edwards Deming taught the Japanese; factory workers must
analyze their own statistics and be empowered to improve their own work processes.

Analysis of ‘root causes’ of defects is very much a risk analysis effort [HALL98] and a
handful of my clients are reporting success at doing so. But, most are still working on
other disciplines like Inspection and others elsewhere in this paper.

Principle 9. Delegate personal responsibility for risk
People must be give personal responsibility in their sector for identification and
mitigation of risks.

To back up communicating about risk, people must be given ownership of the risks in
their sector (e.g. allocating ownership/sign off of IE tables and giving people specific
roles within Inspections).

“Risk Management Technology” by Tom Gilb Page 14 of 18

Quality Week 98 Brussels , 12 November 98 4PM

Principle 10. Contract out risk
Make vendors contractually responsible for risks, they will give you better advice
and services as a result.

I would like to point out that contracting for products and services gives great opportunity
to legally and financially control risks by squarely putting them on someone else’s
shoulders.

The effect of contracting a risk to someone else is that:
• you have gotten rid of the risk in some senses, but if they fail, you will still be
affected!
• the supplier (assuming they get the risk) will be more motivated to take steps to
eliminate the risks,
• be motivated to tell you exactly what you have to do the avoid being hit by risks,
• might come up with a more realistic bid and time plan to cope with the risks.

Summary
Risks can be handled in many ways and at many levels. I have tried to point out some
risk management methods which are not so well known or well treated in existing
literature. Hopefully, the need to fully integrate risk management into all the development
and maintenance processes is clear.

Table 6 and Table 7 recap the ideas presented in this paper. Table 6 is a set of policies for
risk management [See GILB98 for more detail]. Table 7 contains ‘Twelve Tough
Questions’ to ask when assessing risk.

TABLE 6: Policy Ideas for Risk Management

- EXPLICIT RISK SPECIFICATION
All managers/planners/engineers/testers/quality assurance people shall immediately in
writing, integrated in the main plan, specify any uncertainty, and any special conditions
which can imaginably lead to a risk of deviation from defined target levels of system
performance.

- NUMERIC EXPECTATION SPECIFICATION
The expected levels of all quality and cost attributes of the system shall be specified in a
numeric way, using defined scales of measure, and at least an outline of one or more
appropriate ‘Meters’ (test or measuring instruments for determining where we are on a
scale).

- CONDITIONS SPECIFIED

“Risk Management Technology” by Tom Gilb Page 15 of 18

Quality Week 98 Brussels , 12 November 98 4PM

The requirements levels shall be qualified with regard to when where and under which
conditions the targets apply, so there is no risk of us inadvertently applying them
inappropriately.

- COMPLETE REQUIREMENT SPECIFICATION
A complete set of all critical quality and cost aspects shall be specified, avoiding the risk
of failing to consider a single critical attribute.

- COMPLETE DESIGN SPECIFICATION and IMPACT ESTIMATION
A complete set of designs or strategies for meeting the complete set of quality and cost
targets will be specified. They will be validated against all specified quality and cost
targets (using Impact Estimation Tables). They will meet a reasonable level of safety
margin. They will then be evolutionarily validated in practice before major investment is
made. The Evo steps will be made at a rate of maximum 2% of budget, and 2% of
‘project time’, per ‘incremental trial’ (Evo step) of designs or strategies.

- SPECIFICATION QUALITY CONTROL NUMERICALLY EXITED
All requirements, design, impact estimation and Evolutionary project plans, as well as all
other related critical documents such as contracts, management plans, contract
modifications, marketing plans, shall be ‘quality controlled’ using the Inspection method
[GILB93]. A normal process Exit level shall be that ‘no more than 0.2 Major Defects per
page maximum, can be calculated to remain, as a function of those found and fixed
before release, when checking is done properly ’ (e.g. at optimum checking rates of 1
logical page or less per hour).

7. EVOLUTIONARY PROOF-OF-CONCEPT PRIORITIES
The Evolutionary Project Management method [GILB98, GILB88] will be used to sense
and control risk in mid-project. The dominant paradigms will be
- 2% steps,
- high value to cost with regard to risk delivered first.
- high risk strategies tested ‘offline to customer delivery’, in the Backroom of

development process, or at cost-to-vendor, or with ‘research funds’ as opposed to
project budget.

TABLE 7: Twelve Tough Questions

1. Why isn't the improvement quantified?
2. What is degree of the risk or uncertainty and why?
3. Are you sure? If not, why not?
4. Where did you get that from? How can I check it out?
5. How does your idea affect my goals, measurably?
6. Did we forget anything critical to survival?
7. How do you know it works that way? Did it before?
8. Have we got a complete solution? Are all objectives satisfied?
9. Are we planning to do the 'profitable things' first?

“Risk Management Technology” by Tom Gilb Page 16 of 18

Quality Week 98 Brussels , 12 November 98 4PM

10. Who is responsible for failure or success?
11. How can we be sure the plan is working, during the project, early?
12. Is it ‘no cure, no pay’ in a contract? Why not?

References

DION93: Raymond Dion, "Process Improvement and the Corporate Balance Sheet",
IEEE Software, July 1993, Pages 28-35.

DION95: Raymond Dion, Tom Haley, Blake Ireland and Ed Wojtaszek of Raytheon
Electronic Systems, “The Raytheon Report: Raytheon Electronic Systems Experience in
Software Process Improvement”, November 1995, SEI web-site,
http://www.sei.cmu.edu/products/publications/95.reports/95.tr.017.html/.
This is an important update of earlier reports.

GILB88: Tom Gilb, “Principles of Software Engineering Management”,
Addison-Wesley, 1988, 442 pages. ISBN 0-201-19246-2. See particularly Chapter 6,
Estimating the Risk (reproduced in Boehm, Software Risk Management, IEEE CS Press,
1989 page 53).

GILB93: Tom Gilb and Dorothy Graham, “Software Inspection”, Addison-Wesley,
1993, ISBN 0-201-63181-4, 5TH printing 1998, 471 pages.
This book covers the Defect Detection Process and the Defect Prevention Process, as well
as giving sample Rules to check by, defined processes and a well defined set of Glossary
terms to aid quantification and comparison. It is a next-generation Inspection, with
hundreds of larger and smaller improvements over initial Inspection practices.

GILB98: Tom Gilb, Various papers and manuscripts on
http://www.Result-Planning.com/. The manuscripts include:

. ‘Requirements-Driven Management using Planguage’ (1995-6)

. ‘Evolutionary Project Management’ (1997)

. ‘Requirements Engineering Language’ (1998).

HALL98: Elaine M. Hall, “Managing Risk: Methods for Software Systems
Development. SEI Series in Software Engineering”, Addison Wesley Longman, USA.
(enq.orders@awl.co.uk) , £31.95, 1998, ISBN 0-201-25592-8, 374 pages.
This book is impressive and contains a lot of useful detail and original thought. Anyone
interested in risk will enjoy and learn from the book as I did. It does not however deal
with most of the subjects in this paper {specification languages, impact estimation,
inspections, evolutionary delivery}. This in no way detracts from the book’s favorable
recommendation. It does tackle ‘quantified objectives’ much better than other texts.

MAY96: Elaine L. May and Barbara A. Zimmer, “The Evolutionary Development Model
for Software”, Hewlett-Packard Journal, August 1996, Vol. 47, No. 4, pages 39-45.

“Risk Management Technology” by Tom Gilb Page 17 of 18

Quality Week 98 Brussels , 12 November 98 4PM

The author was at HP in 1989 on a project team who were taught early versions of the
Planguage method. The article is full of practical advice and case studies gleaned from
ten major projects in eight HP divisions. It must be strongly recommended to anyone
interested in the practical implementation of Evo in a project and especially in an
organization for many projects. See also article by Todd Cotton in same issue on Evo.
HP Journal subscription free to qualified individuals: Write Distribution Manager, HP
Journal, M/S 20BH, 3000 Hanover Street, Palo Alto, CA, USA-94304, or Email:
hp_journal@hp_paloalto-gen13.om.hp.com. HP Journal is available on World Wide
Web at “http://www.hp.com/hpj/Journal.html”. (Warning HP may have moved this
site, but you can get to new site from here)

Author Biography

Tom Gilb is the author of “Principles of Software Engineering Management” (1988) and
“Software Inspection” (1993). His book “Software Metrics” (1976) coined the term and,
was used as the basis for the Software Engineering Institute Capability Maturity Model
Level Four [SEI CMM Level 4]. His most recent interests are development of true
software engineering and systems engineering methods. His sons, Kai and Tor, now work
with him.

Tom Gilb was born in Pasadena CA in 1940. He moved to England in 1956, then two
years later he joined IBM in Norway. Since 1963, he has been an independent consultant
and author.

This paper was edited by Lindsey Brodie, lindsey@brodie.source.co.uk

“Risk Management Technology” by Tom Gilb Page 18 of 18

Quality Week 98 Brussels , 12 November 98 4PM

-----End of Paper-------

*

1

REvolutionary?
A Software Development Method That Works

Philip Lones

Lucent Technologies
Octel Messaging Division

2

Introduction

• In the software development environment, projects are
always delivered on time, within budget and just what the
customer wanted.

NOT

• In reality, software projects are usually over budget, late,
and not always what the customer wants.

*

2

3

Introduction

In order to be successful and compete in a global market,
organizations must have a process that will move reality
closer to the ideal environment, i.e. on time, within budget,
and the right product.

4

Methodologies

• Waterfall Model

Investigate

Design

Implement

Test

Static Model. Each Phase completed before the next
 phase is initiated.

*

3

5

Methodologies

• Several other methodologies
– Rapid Prototyping

– Spiral

– Incremental

• Commonality:
– Lack of user involvement throughout the software

development lifecycle (SDLC)

• A different approach is needed

6

Investigate Design

Plan

TestPlan Cycle NCycle 2Cycle 1

Design Implement Test

User Feedback

….

EVO

• Evolutionary Delivery Model - EVO

Tom Gilb (http://www.Result-Planning.com)

*

4

7

EVO

• Key Concepts

– Early, frequent iteration

– Plan, design, implement and test in each cycle

– Result orientation, not software development process
orientation

– User orientation

8

EVO

• Each delivery step is 1%-5% of total project effort

• “How little can we do”, not “how much”

• Give the customer something of value in each delivery

• “Best” features first

• Customer involvement

*

5

9

Message Manager

• Desktop client

• Visual representation of
INTUITY™ AUDIX
messaging system

• Voice, fax, text, binary
can be viewed/heard
and created via PC

• Can send and receive
email with INTUITY™
Internet Messaging

• Over 1,000,000 seats
sold

10

Message Manager

• First release 1994

• 6 major releases

• Visual Basic client

• As product evolved so did process - EVO model

*

6

11

Message Manager

• MM incorporates key concepts

– Plan, implement, test in each cycle

 Review feedback, modify design, test features

– Early, frequent iteration

 average 15-20 build cycles per release

– User oriented

 Base of internal and external “friendly” users

12

Message Manager

• Plan, Implement, Test

– Technical Prospectus

• High level description of product

• Prioritized list of features

– Detailed Requirements

– User Interface

– Prototype GUI

– System Architecture

*

7

13

Message Manager

• Plan, Implement, Test (cont.)

– Features assigned by Project Manager and incorporated
into delivery cycles

– Modification Requests (MRs) assigned and
incorporated into delivery cycles

– Code read and unit test

14

Message Manager

• Plan, Implement, Test (cont.)

– End of cycle

• Sanity test - acceptance test cases

• MR test - functionality of bug fix

• Features - functionality of new features

– End of project

• System - customer based scenarios

• Regression - does it still work

*

8

15

Message Manager

• Early, Frequent Iterations

– 15-20 deliverables per release

• Weekly update to code base

• Available to customer when base is stable

16

Message Manager

• User Oriented

– Established beta users: 700

– Internal: 400

• Department

• Lucent

– External: 300

• 12 Sites

*

9

17

Message Manager

• User Oriented (cont.)

– Solicit feedback

• MM Hot Line

• Surveys

18

Message Manager

• Analyze feedback, redesign, implement, test

Investigate Design TestPlan Cycle NCycle 2Cycle 1

Design Implement Test

User Feedback

….

Plan

*

10

19

Message Manager

• Impact

– Respond quickly to usability issues

– Allowed testing of features much earlier in the SDLC

– Review scope of release and make changes early in the
SDLC

– Product the user wants, not one we think they want

20

Message Manager

MRs during development vs. MRs during CE

R 1 R 2 R 3 R 4 R 5 R 6

D e v

C E

*

11

21

Message Manager

Estimated Development to Actual Development Time

R e l 1 R e l 2 R e l 3 R e l 4 R e l 5 R e l 6

E s tim a te

A c tua l

22

Critical factors

• Project Manager

• Team commitment

• Open communications

• Manage the “friendly” customer base

*

12

23

Conclusion

• Competition in the global market requires successful
process

• EVO model

– Early, frequent builds

– Value to the customer

– User involvement

• Product to market the customer wants

– On time and within budget

24

References

• Principles of Software Engineering, Tom Gilb, Addison-Wesley, 1988

• The Evolutionary Project Managers Handbook, Tom Gilb, manuscript,
(http://www.Result-Planning.com)

• Hewlett Packard Journal

(http://www.hp.com/hpj/aug96/augart3.htm)

(http://www.hp.com/hpj/aug96/augart4.htm)

1

Seizing Control of the
Development Lifecycle

Nick Borelli

Microsoft Corporation

Introduction

◗ My background
• Life B.T. (before testing)

• The tester awakens

◗ Expectations of this talk
• Why I’m here today

• Management and Process Oriented

• Empowering the Test Org to improve
Development Methodology

2

Addressing our differences:
Products & Paradigms
◗ The labels we live by

• CMM, ISO, SEI, etc.

• MIL-Spec

• Shrink Wrap

◗ Common ground
• We all want a better process

• Higher quality

• Accurate Schedules

Why should Testing drive this?

◗ Biggest stakeholder?

◗ Desire

◗ Pragmatism

◗ Can any one else do it better?

◗ Don't forget the Tester's Mission

3

Seizing Control: Step 1,
Collecting Data
◗ In-depth Post-Mortem: Test

• Various methods to collect data

• Spend as much energy on your group as
critiquing others

• Important to reach consensus on items in
conflict

• Roll-up big ticket items from Cross-Functions
only

Seizing Control Step 1:
Collecting Data
◗ In-depth Post-Mortem, Cross-Functional

• Powerful Process to collect both Best/Worst
Practices

• Techniques
• Moderated Post-Mortems

• Self-Administrated Post-Mortems

• Frequency & Follow-up

4

Seizing Control Part 2: Analysis

◗ How can the current Development model
hurt test?
• Identify areas both from Post-Mortem and ones

missed

• How could these change?

• How would change affect other teams?

• Would these improve the chances for higher
quality and earlier ship date?

• Refine your "laundry list"

Seizing Control Part 3:
Communicating Results
◗ Rollout of Changes to your Test/Quality

Organization
• Hash out with your leads/managers

• Discuss changes with entire team

• Pitfalls
• Solving the right problem the wrong way

• Process change overload

• Cost/Benefit analysis

5

Seizing Control Part 3:
Communicating Results
◗ Rollout of Changes to Cross-Functions

• Meet with key stakeholders

• Identify benefits

• Review issues that the Post-Mortem identified

• Install feedback process

Seizing Control Part 3:
Communicating Results
◗ Testing-driven Development Lifecycle

• Rolling up changes in Test/Development Plans

• Modifying Milestone Criteria

• Milestone Post-Mortems

• Use Microsoft Project™ for tracking

6

Seizing Control Part 4:
Examples
◗ Real-World Examples of Process Changes

• Specification feedback

• Defect discovery: How can it be earlier?

• Automation re-work too costly

• Test documentation taking too much time

• Quality of code

• Development schedules/process out of sync
with milestones

Seizing Control: Conclusions

◗ More effective organization

◗ Higher quality

◗ Less conflict

◗ Improved communication

◗ Improved morale

7

Seizing Control: Conclusions

◗ Success breeds success
• Peer test groups

• Cross-functional groups in your company

Thanks for listening!

Questions or additional notes, send
email to:

Nickbo@Microsoft.com

1

G-Number

-DPHV� 5� %LQGDV Slide 1

Tactical ImprovementTactical Improvement
Projects:Projects:

Real-Life Lessons inReal-Life Lessons in
Leadin g ChangeLeadin g Change

James R. Bindas
james.r.bindas@intel.com

Microprocessor Products Group / Design Technology
Intel Corporation

G-Number

-DPHV� 5� %LQGDV Slide 2

Tactical Improvement Project (TIP)Tactical Improvement Project (TIP)

zz What is a TIP?What is a TIP?
PP A specific, boundedA specific, bounded

improvement projectimprovement project

PP A component of aA component of a
strategic improvementstrategic improvement
roadmaproadmap

PP Authorized andAuthorized and
monitored by seniormonitored by senior
managementmanagement

2

G-Number

-DPHV� 5� %LQGDV Slide 3

Typical TIP Lifec ycle/Roadma pTypical TIP Lifec ycle/Roadma p

Proliferatin g

Susta in ing

Learn and Adapt to Project's Needs

Res
ea

rc
h,

 T

ra
ini

ng
,

 E
va

lul
at

e

ID
 E

xp
ec

ta
tio

ns
,

Des
ire

d
Res

ult
s,

Play
er

s

Rev
iew

 A
pp

ro
ac

h

 a
nd

 R
ec

eiv
e

 A
pp

ro
va

l

Project
Charter

Key
Stakeholder Mtg

Fund T IP

D e c is ion
P oint

Form
TIP Team

Form
Stakeholders

Consensus by
Stakeholders

Deploym ent

Ear
ly

Ado
pt

er
s

Full

Dep

ar
tm

en
t

 D

ep
loy

m
en

t

Dep
loy

m
en

t

 t

o
all

 A
pp

ro
pr

iat
e

 A

re
as

 o
f O

rg
.

One or Two
Pilot Projec ts

Availab le to all
Dept. Projects

Availab le to
other Depts.

Package Ready
for Deployment

Pilot Program
Com plete

Implementation
Package

Pac
ka

ge
 A

pp
ro

ac
h f

or

 Im

ple
m

en
tat

ion
 in

 C
ur

re
nt

Cult
ur

e

PERFORM
IN

PARALLEL

Validate against
Measure of

Sucesss and
Close TIP

Training/Class

Tactical Im provem ent P roject (T IP)
Lifecycle / Roadm ap

Rev. 0 .1

Project
Definition

Existing
Learnings

Projected
Com pletetion

Milestones

Projected
Com pletetion

Milestones

Projected
Com pletetion

Milestones

Projected
Com pletetion

Milestones

Projected
Com pletetion

Milestones

Projected
Com pletetion

Milestones

Pro
ble

m
 S

ta
te

m
en

t

.

& D
ev

elo
p

High

Le

ve
l S

olu
tio

n

Refine
 Approach

Developed by James B indas
and James Zurn, 1997

G-Number

-DPHV� 5� %LQGDV Slide 4

Key Values of a TIPKey Values of a TIP

zz Can be led by an outsideCan be led by an outside
personperson

zz Working groups -Working groups -
PP Are formed to develop andAre formed to develop and

drive a group solutiondrive a group solution

PP Consist of stakeholdersConsist of stakeholders
–– Must be cross-organizationalMust be cross-organizational

zz The process should beThe process should be
simplesimple
PP I.e. Low OverheadI.e. Low Overhead

3

G-Number

-DPHV� 5� %LQGDV Slide 5

First Ste ps in Leadin g a TIPFirst Ste ps in Leadin g a TIP
zz Develo p a Pro ject DefinitionDevelo p a Pro ject Definition

which includes:which includes:
PP Team Members / RolesTeam Members / Roles
PP Pro ject OverviewPro ject Overview

–– Including problem statementIncluding problem statement

PP StakeholdersStakeholders
PP Linka ge to Business Ob jectivesLinka ge to Business Ob jectives
PP TIP Scope & Com plexit yTIP Scope & Com plexit y
PP Mission Statement, Ob jective andMission Statement, Ob jective and

Success CriteriaSuccess Criteria
PP Key Milestones and DeliverablesKey Milestones and Deliverables
PP Key Assum ptionsKey Assum ptions
PP Critical Success ElementsCritical Success Elements
PP High Level Im plementationHigh Level Im plementation

Roadma pRoadma p

G-Number

-DPHV� 5� %LQGDV Slide 6

Mistake Number #1Mistake Number #1
““ Not Writin g a Project Plan”Not Writin g a Project Plan”

zz Project Definition:Project Definition:
PPConfirms assum ptionsConfirms assum ptions
PP Ensures a commonEnsures a common

understandin gunderstandin g

zz Experience has shown,Experience has shown,
pro jects without a goodprojects without a good
understandin g...understandin g...
PPWill result in lost effortWill result in lost effort

and timeand time

4

G-Number

-DPHV� 5� %LQGDV Slide 7

Researchin g the TIPResearchin g the TIP
zz TIP Workin g Grou ps areTIP Workin g Grou ps are

formedformed
PP Members should includeMembers should include

stakeholders and be cross-stakeholders and be cross-
organizational in natureorganizational in nature

PP Ensures a cross-or ganizationEnsures a cross-or ganization
solutionsolution

zz Understandin g InvolvementUnderstandin g Involvement
PP A combination of formalA combination of formal

instruction and transferredinstruction and transferred
knowled geknowled ge

PP Can begin the process beforeCan begin the process before
a TIP Workin g Grou p isa TIP Workin g Grou p is
formedformed

zz The Pro ject’s Hone ymoonThe Pro ject’s Hone ymoon
PP Members in hi gh spiritsMembers in hi gh spirits
PP Confident the y are goin g toConfident the y are goin g to

make a differencemake a difference

G-Number

-DPHV� 5� %LQGDV Slide 8

Mistake Number #2Mistake Number #2
““ Not Taking Advantage of PreviousNot Taking Advantage of Previous
Knowledge”Knowledge”

zz Odds are that otherOdds are that other
departments and/ordepartments and/or
com panies attem ptedcom panies attem pted
similar effortssimilar efforts

zz Avoid re peatin g theAvoid re peatin g the
same mistakessame mistakes

5

G-Number

-DPHV� 5� %LQGDV Slide 9

Mistake Number #3Mistake Number #3
““ Failure to Document Agreements andFailure to Document Agreements and
Check Assumptions”Check Assumptions”

zz Early on man y perspectivesEarly on man y perspectives
and agreements areand agreements are
expressedexpressed

zz Later durin g execution,Later durin g execution,
inter pretations of theseinter pretations of these
discussions var ydiscussions var y
PP This causes conflictsThis causes conflicts

zz Keeping these a greementsKeeping these a greements
in a central, accessiblein a central, accessible
location, e. g. intranet weblocation, e. g. intranet web
site, will hel p preventsite, will hel p prevent
conflictsconflicts

G-Number

-DPHV� 5� %LQGDV Slide 10

Formin g and A pprovin g theFormin g and A pprovin g the
Pro ject CharterPro ject Charter

zz Broken down into:Broken down into:
PP Mission StatementMission Statement
PP ObjectivesObjectives
PP ApproachApproach
PP DeliverablesDeliverables
PP Success CriteriaSuccess Criteria

zz Important:Important: Keep the pro ject Keep the pro ject
focused and short-termfocused and short-term
PP Hard to maintain momentumHard to maintain momentum
PP Team dynamics chan geTeam dynamics chan ge
PP Management values chan geManagement values chan ge
PP Re-orgs can devalue the TIPRe-orgs can devalue the TIP

6

G-Number

-DPHV� 5� %LQGDV Slide 11

Mistake Number #4Mistake Number #4
““ Skip the Project Charter or Decrease itsSkip the Project Charter or Decrease its
Content”Content”

zz Expectations need to beExpectations need to be
set for mana gementset for mana gement
PPOtherwise, the pro jectOtherwise, the pro ject

may never be viewed as amay never be viewed as a
success b y managementsuccess b y management

G-Number

-DPHV� 5� %LQGDV Slide 12

Mistake Number #5Mistake Number #5
““ Rely on Selling the TIP based on itsRely on Selling the TIP based on its
Benefits”Benefits”

zz Classic a pproach is to sellClassic a pproach is to sell
the TIP based on itsthe TIP based on its
benefitsbenefits
PP TIP’s “cause & effect”TIP’s “cause & effect”

zz Often, the TIP “bu yer”:Often, the TIP “bu yer”:
PPDoes not possess theDoes not possess the

“abilit y”“abilit y”
PPOr, may not desire theOr, may not desire the

outcomeoutcome

zz E.g. Exercise ma y prolon gE.g. Exercise ma y prolon g
your lifeyour life
PP If true, wh y doesn’t ever yoneIf true, wh y doesn’t ever yone

exercise?exercise?

Reference : Emery, Dale H.,
Resistance as a Resource, (Slide
handout, 1/13/1998), � 1997-98

7

G-Number

-DPHV� 5� %LQGDV Slide 13

Pilot Pro ject Im plementationPilot Pro ject Im plementation
zz A workin g grou p’sA workin g grou p’s

efforts tend to s plitefforts tend to s plit
between:between:
PPDevelo ping the approachDevelo ping the approach
PP Implementin g theImplementin g the

approach, via a pilotapproach, via a pilot

zz Workin g Grou pWorkin g Grou p
members will start tomembers will start to
disa greedisa gree
PPNot on the intentNot on the intent
PP But, on theBut, on the

implementationimplementation
–– Sometimes, petty concernsSometimes, petty concerns

can turn u glycan turn u gly

G-Number

-DPHV� 5� %LQGDV Slide 14

Mistake Number #6Mistake Number #6
““ Select Challenging Pilots”Select Challenging Pilots”

zz An ur ge may exist toAn ur ge may exist to
select a pilot that willselect a pilot that will
make a differencemake a difference

zz Remember, the intentRemember, the intent
of the pilot is to confirmof the pilot is to confirm
the TIP’s a pproachthe TIP’s a pproach
PP Selectin g a com plicatedSelectin g a com plicated

pilot will put the TIP’spilot will put the TIP’s
success at risksuccess at risk

8

G-Number

-DPHV� 5� %LQGDV Slide 15

Mistake Number #7Mistake Number #7
““ Not Continuin g after the Pilot”Not Continuin g after the Pilot”

zz After the pilot isAfter the pilot is
com pleted, a let downcom pleted, a let down
can occurcan occur
PPNo follow-u pNo follow-u p
PPNo plannin g for futureNo plannin g for future

deploymentdeployment
PP Key lessons are notKey lessons are not

recorded and/or actedrecorded and/or acted
uponupon

zz The TIP fades awa yThe TIP fades awa y

G-Number

-DPHV� 5� %LQGDV Slide 16

TIP DeploymentTIP Deployment

zz The TIP approach hasThe TIP approach has
been provenbeen proven

zz Key StakeholdersKey Stakeholders
have declared the TIPhave declared the TIP
a successa success

zz Deploying the TIP isDeploying the TIP is
now the focusnow the focus

zz Workin g Grou pWorkin g Grou p
membershi p beginsmembershi p begins
to chan geto chan ge

9

G-Number

-DPHV� 5� %LQGDV Slide 17

Mistake Number #8 and #9Mistake Number #8 and #9
““ Expanding the Deployment Period” Expanding the Deployment Period” andand
“Assuming the Allocated Resource will“Assuming the Allocated Resource will
Always be Committed”Always be Committed”

zz The lon ger the de ployment,The lon ger the de ployment,
the greater the risk your TIPthe greater the risk your TIP
will die a slow deathwill die a slow death

zz Durin g the TIP, some of theDurin g the TIP, some of the
followin g “will” ha ppenfollowin g “will” ha ppen
PP “Hi gher Priorit y” pro jects will“Hi gher Priorit y” pro jects will

come alon gcome alon g
PP Re-org or mana gement valuesRe-org or mana gement values

will chan gewill chan ge
PP Personnel will turnover orPersonnel will turnover or

become re-assi gnedbecome re-assi gned

zz Rule of thumbRule of thumb
PP If commitment is not obtained,If commitment is not obtained,

come back when obtainedcome back when obtained

G-Number

-DPHV� 5� %LQGDV Slide 18

How to kee p the TIP “Alive”How to kee p the TIP “Alive”
zz TIPs can easil y becomeTIPs can easil y become

derailedderailed
PP For an y number of reasonsFor an y number of reasons

zz Three preventative methodsThree preventative methods
PP Patience and PersistencePatience and Persistence

–– Keep reminding themKeep reminding them

PP Make it com petitiveMake it com petitive
–– Make a scorecard andMake a scorecard and

distribute it to seniordistribute it to senior
managementmanagement

PP “Hail Mar y”“Hail Mar y”
–– Send out an email statingSend out an email stating

–– No progress has been madeNo progress has been made
–– I am ceasing my involvementI am ceasing my involvement

–– Worked for me in the pastWorked for me in the past

10

G-Number

-DPHV� 5� %LQGDV Slide 19

Mistake Number #10Mistake Number #10
““ Thinking the Same Approach willThinking the Same Approach will
work Every Time”work Every Time”

zz Over time:Over time:
PP Key lessons are a ppliedKey lessons are a pplied
PP The approach is o ptimizedThe approach is o ptimized
PP Environment chan gesEnvironment chan ges
PP Personnel chan gesPersonnel chan ges

zz Need to provideNeed to provide
“headroom” to allow the“headroom” to allow the
TIP grow over timeTIP grow over time

G-Number

-DPHV� 5� %LQGDV Slide 20

ConclusionConclusion
zz Discussed:Discussed:

PP TIP BasicsTIP Basics
PP TIP Lifec ycleTIP Lifec ycle
PP TIP ImplementationTIP Implementation
PP TIP MistakesTIP Mistakes

zz Above all else, TIPs:Above all else, TIPs:
PPNeed to be mana gedNeed to be mana ged

constantl yconstantl y
PPRequire fre quentRequire fre quent

attention to detailsattention to details
PPNeed key-insi ghts toNeed key-insi ghts to

handle human-relatedhandle human-related
activitiesactivities

Tactical Improvement Projects -
Real-Life Lessons in Leading Change

James R. Bindas
james.r.bindas@intel.com

Microprocessor Products Group / Design Technology
Intel Corporation

Mail Stop JFT-102
2111 NE 25th Avenue
Hillsboro, OR 97007

 (503) 264-8869

Abstract
This paper describes the typical lifecycle of an improvement team, how to lead an improvement effort and the common
experiences encountered during improvement projects.

Keywords
Keywords include Tactical Improvement Projects, Project Definitions, assumptions, stakeholders, pilot, deployment and
common mistakes.

Biography
James R. Bindas is a Software Process Engineer with Intel Corporation in Hillsboro, Oregon. His tasks include
implementing, standardizing and improving organizational and software development processes. James has been
working with Intel for ten years in various software roles ranging from software tester to project leader. Before joining
Intel, James worked for RCA/GE Solid State and Harris Semiconductor as a Quality Assurance Technician. James holds
a Master of Science degree in Computer Science from Stevens Institute of Technology, and a Bachelor of Science in
Graphic Communications from California University of Pennsylvania.

Tactical Improvement Projects: Real-Life Lessons in Leading Change James R. Bindas

March 31, 1999 Page 2 of 8

Introduction
Leading a Tactical Improvement Project (TIP) team is a challenging task. My experiences as a TIP leader in a cross-
organizational setting have enhanced my knowledge in this subject. A sample of my experiences are shared in this
paper.

Typical TIP Lifecycle / Roadmap, Values and General Leadership Process
To be effective in leading a TIP, creating a roadmap is essential. Without it, the leader’s efforts often result in confusion
and frustration in accomplishing tasks. No “silver bullet” approach to leading a TIP exists. Most often, a set of values, a
roadmap and a process (similar to what is detailed below) is followed.

Proliferatin g

Sustainin g

Learn and Adapt to Project's Needs

Res
ea

rc
h,

 T

ra
ini

ng
,

 E
va

lul
at

e

ID
 E

xp
ec

ta
tio

ns
,

Des
ire

d
Res

ult
s,

Play
er

s

Rev
iew

 A
pp

ro
ac

h

 a
nd

 R
ec

eiv
e

 A
pp

ro
va

l

Project
Charter

Key
Stakeholder Mtg

Fund TIP

Decis ion
Point

Form
TIP Team

Form
Stakeholders

Consensus by
Stakeholders

Deployment

Ear
ly

Ado
pt

er
s

Full

Dep

ar
tm

en
t

 D

ep
loy

m
en

t

Dep
loy

m
en

t

 t

o
all

 A
pp

ro
pr

iat
e

 A

re
as

 o
f O

rg
.

One or Two
Pilot Projects

Available to all
Dept. Projects

Available to
other Depts.

Package Ready
for Deployment

Pilot Program
Complete

Implementat ion
Package

Pac
ka

ge
 A

pp
ro

ac
h

fo
r

 I

m
ple

m
en

ta
tio

n
in

 C

ur
re

nt
 C

ult
ur

e

PERFORM
IN

PARALLEL

Validate against
Measure of

Sucesss and
Close TIP

Training/Class

Tact ical Improvement Project (TIP)
Li fecycle / Roadmap

Rev. 0.1

Project
Definition

Existing
Learnings

Projected
Completet ion

Milestones

Projected
Completet ion

Milestones

Projected
Completet ion

Milestones

Projected
Completet ion

Milestones

Projected
Completet ion

Milestones

Projected
Completet ion

Milestones

Pro
ble

m
 S

ta
te

m
en

t

.

& D
ev

elo
p

High

Le

ve
l S

olu
tio

n

Refine
 Approach

Developed by James Bindas
and James Zurn, 1997

Tactical Improvement Projects: Real-Life Lessons in Leading Change James R. Bindas

March 31, 1999 Page 3 of 8

Key Values to incorporate into a TIP
x Can be lead by an outside person, but working groups need to be stakeholders

– Working groups must have a cross-organizational mix.
x Working groups should adhere to a short life cycle.
x The process should be simple. (i.e., Low Overhead)

General TIP Leadership Process
x Inputs to the process -

�� Select an individual or group to organize an improvement team to solve a specific
problem.

x Before starting a checklist -
�� Obtain senior management sponsorship.
�� Devise a high-level project scope with the sponsor.

x Task list -
1. Develop a Project Definition that solidifies the project's purpose/goals.
2. Research the project by:
 a. Examining past or existing related-experiences and projects.

b. Forming a working cross-organizational group to develop and implement an
approach.

c. Obtaining training, if necessary.
3. Combining training with the Project Definition to form an approach that will implement

the TIP.
4. Presenting the approach to the Key Stakeholders for validation and settling any issues

that require their attention.
5. In parallel, perform the following:

a. Develop the implementation package of processes, templates, and checklists.
b. Pilot the implementation packages on one or two projects.

6. Feed Learned Lessons back into the TIP's process.
7. Deploy the project within the department.
8. Deploy the project within the greater organization.

x Success is achieved when...
1. The TIP team and key stakeholders agree upon the TIP project definition, approach

and success criteria.
2. The sponsor approves an implementation plan, success criteria and schedule.
3. The sponsor accepts the pre-determined success criteria that are met according to

plan.
x The process is completed when...

1. Success criteria are met.
2. The intended receiving party accepts the deliverables.
3. A post-project review has taken place and its results are recorded.
4. A project notebook or an intranet web site is completed, with Best Known Methods

documented and transferred to the responsible organization for storage.
x Process will output…

1. Stated deliverables.
2. Feedback will be generated between the sponsor and team members.
3. A Process Improvement (3 Ring) Notebook and/or Web Site will be produced that

contains:
 A plan and schedule.
 Meeting minutes and other related correspondence.
 Deliverables.
 A post-project report.
 Any other related documentation.

Tactical Improvement Projects: Real-Life Lessons in Leading Change James R. Bindas

March 31, 1999 Page 4 of 8

First Steps in Leading a TIP

Once you are assigned to lead a TIP, the first step is to interview the sponsor about the project. The purpose of the
interview is to gain an understanding of what is expected in terms of deliverables, what particular process is to be
followed, who are the people involved, and what is the intended timetable. All this information should be included in the
project definition and should be presented at a stakeholder meeting.

Typically, the items to include in this document are:
x Team Members (with roles and responsibilities)
x Project Overview

– Including problem statement
x Stakeholders (listing interest in project and benefits)
x Linkage to Department Business Objective
x TIP Scope
x TIP Complexity (in terms of level of organization involvement, technology complexity, business complexity

and geographical involvement)
x Project’s Mission Statement, Objective and Success Criteria (NOTE: Success criteria are optional at this

point, but needs to be defined in the Project Charter)
x Key Milestones and Intended Delivery
x Key Assumptions (invalid and valid)
x Critical Elements needed by the TIP to be successful (may involve management support, tools and customer

needs.)
x High Level Implementation Roadmap (keep this simple, otherwise, it will drive-off needed support.)

Mistake Number #1: Not writing a Project Definition!
Many people don’t understand the value of spending time writing a project definition. After all, “we all know what the
project covers, right?” These fatal words can doom a project from the start. While some may not be convinced at the
outset that writing a project definition is critical, once the project definition is presented to the stakeholders, they will
overwhelmingly appreciate the document, without exception.

One benefit of a project definition is to verify assumptions. Most of the time, a few assumptions exist that are not
universal within the team. For example, a manager and two co-workers were requested to introduce a major process
improvement into a department. Six weeks were spent analyzing the business practices, developing process flows and
developing process tools. The improvement processes portfolio was presented to the department manager. He was
really impressed, however, all that he really wanted was a simple scorecard to keep track of process steps and dates that
had been agreed to. Another department had already developed a similar scorecard, which could have easily been
adapted to their needs. Six weeks of work were never utilized.

Researching the TIP
At this point, more research is performed on the TIP. This section is broken down into two sections:

x Form TIP Working Groups
x Formal Instructions / Transfer Leanings

Working groups or teams are formed, if they have not already been established. The team members should represent
each of the stakeholder groups. These representatives should be empowered to lead change in their organization. This
will ensure that their interests will be taken into account and decrease resistance when the approach is implemented. For
example, resistance can be heard as, “this is our approach, not your approach.”

The working group researches the TIP by a combination of collecting ideas and taking formal instruction. This
combination will provide a better understanding of expectations in implementing the approach.

At times, research is begun before the working teams are formed. This is fine as long as information is documented and
available to the group when it is formed.

Tactical Improvement Projects: Real-Life Lessons in Leading Change James R. Bindas

March 31, 1999 Page 5 of 8

Mistake Number #2: Not Taking Advantage of Previous Leanings!
Chances are that other departments, inside and outside your company, had tried similar improvement efforts. Question
these efforts and learn from them. Understand where the projects had successes and failures. Learn and build upon past
experiences. Otherwise, needless repetition of failures may occur.

This period tends to be the project’s honeymoon because the team’s spirits are high. Each member believes they are part
of a greater solution and they are going to make a difference. Disagreements are insignificant and workable at this point.
Take advantage of this environment and nurture it, as long as you can. The longer you maintain this environment of
fellowship, the more productive your group will be.

Mistake #3: Failure to Document Agreements and Check Assumptions!
Take advantage of goodwill at this time and define the project, as much as possible. Document all meetings and
agreements. This information should be placed in a central repository, such as an intranet web site. Some feel this is
unnecessary. However, my experience reveals that conflict can occur over past agreements. In a previous TIP, two out
of three members assumed that write-access would not be granted for group members. The third person believed the
contrary. If documentation has been available, this episode could have been avoided.

Forming and Approving the Project Charter

Form an approach on how to complete your effort and how to measure its success. Writing a Project Charter forms the
foundation for this.

Mistake #4: Skip the Project Charter or Decrease the Content!
The TIP effort will be judged on its success. The question is who will judge the effort and how will they judge this one?
Success is translated to the TIP’s approach, deliverables and timeline. These expectations need to be decided with
management before work is begun. Otherwise, the project risks the danger of being redirected .

Traditionally, the charter is broken into the following categories:
x Mission Statement – Why are we here? Why are we investing in this effort?
x Objectives – What are we trying to accomplish?
x Approach – How are going to accomplish this?
x Deliverables – What are we going to deliver and when?
x Success Criteria – How do we know when we are successful?

It is not important whether the charter is in a fancy or a simple straightforward presentation. Focus on small, short-term
simple and achievable goals, while building a long-term roadmap. I based this approach on the following personal
experiences:

x It is difficult to keep the project’s momentum going for longer than a quarter or two.
x Team dynamics change, as people leave and join the team.
x What is currently important to management may not be important later.
x Departments can reorganized and devalued the TIP’s potential benefit.

Tactical Improvement Projects: Real-Life Lessons in Leading Change James R. Bindas

March 31, 1999 Page 6 of 8

Mistake #5: Rely on Selling the TIP on its Benefits.
In any TIP, the standard selling point is demonstrating its benefit, especially when tied to a business objective (values).
Don’t stop short at this point. Initiating a TIP will require people to change. Therefore, people need to believe that the TIP
will make a difference (cause and effect beliefs) and it is achievable (abilities), as well as beneficial to a business
objective. Dale Emery1 once said:
 People will change whenever:

- They believe they can perform the new behavior (abilities).
- They believe they know the likely outcome (cause and effect beliefs).
- They want the outcome (values).

Pilot Project Implementation:
At this stage, working teams now become focused on implementing the process into pilot programs. A parallel effort is
involved: one effort is developing the approach, while another effort is managing the pilot. (Actually, much of the
development approach occurs before implementing it to pilot programs.) At this time, the approach is adjusted according
to feedback from the pilot programs.

Mistake #6: Select Challenging Pilots
Generally, two pilot projects are launched to support the TIP. The criteria in selecting a pilot program can be
characterized as, “picking low hanging fruit,” or, in other words, choosing easy-to-implement pilots. The intent is to
validate the TIP approach, which is complicated enough; adding more complexity by choosing difficult pilots only
increases the chance of the TIP to fail.

Another characterization of the pilot-implementation phase is that team members begin to disagree openly about
implementing the approach, while agreeing with the TIP mission, objectives and the basic approach. At this point,
everyone has a different perspective on the implementation. An example from experience is about the wording and
format of an e-mail notification message. One person had the idea to write the message with less information, but
formatting it in a way to gain maximum attention. Another person had the idea of e-mailing the maximum information
possible and letting the receiver choose important information. These disagreements need to be resolved as soon as
possible. Otherwise, a snowball effect could occur with each party disagreeing with each other and expending large
amounts valuable energy over a small matter. This example also proves that “documenting” agreements in advance will
help minimize these unnecessary confrontations.

Mistake #7: Not Continuing after the Pilot
Launching pilots is taxing. The planning requires preparation, training and execution, which drains valuable resources.
Despite the considerable resource dedication, things do not always go as planned. It is my experience that key lessons
are often not utilized or acted upon, which wastes experiences learned from the pilot and jeopardizes the pilot’s success.

Deployment
After the pilot approach has been proven, the working group will deploy the pilot to other parts of the department and
organization. Group membership most likely will change in size and membership. This is a normal occurrence because
of the changing dynamics of the organization and the change in mission and objectives.

Mistake #8: Expanding the Deployment Period
If the TIP is successful, people may begin asking you to deploy the TIP in their area. Before responding yes, confirm their
schedule and priorities. If you suspect that they are unable to commit to the deployment in a short time- period, pass on
them until they are able to commit. In my experience, they may be interested, but if they cannot commit to a time frame,
they never will.

1 Emery, Dale H., Resistance as a Resource, (Slide handout, 1/13/1998), � 1997-98

Tactical Improvement Projects: Real-Life Lessons in Leading Change James R. Bindas

March 31, 1999 Page 7 of 8

Mistake #9: Assume that an Allocated Resource will Always be Committed
Things often change. Resources, once allocated, can vanish without warning. A host of “valid” business reasons can
affect the allocated resource. This can range from higher priority projects to the resource leaving the organization. I was
pulled from leading a TIP, at the most critical time, to work on a higher priority task. This reinforces the need to keep the
TIP deployment period as short as possible, while following a long-term improvement roadmap.

During deployment time, it is important to keep focused. Other priorities will emerge and organization changes will
threaten to derail the deployment progress.

I was asked to drive the transfer of a software development process from one group to another. When I met with both
teams in late November 1997, we agreed to start the transfer process in January and conclude by March. Delays caused
the formal transfer process to be completed in August. Unforeseen events occurred that had a higher priority and
conflicted with this project. I was lucky that the process transferred at all. Another process started in late September
1997 and required over ten months to transfer. When it was transferred, the intended receiver changed jobs and the
process was no longer valued. The perceived need did not exist for the new receiver.

Methods to keep the project focused may be considered passe, but often prove to be effective. These tools include
persistence, patience, completion, and the occasional “hail Mary” ploy. Persistence means constantly reminding the
parties of the TIP benefits, roadmap, and their obligations to the roadmap. Patience means understanding the
organization culture, current working environment and other tasks that need attending.

At times, it is beneficial to use internal competition to insure the success of a TIP. My former manager led a TIP where
department managers reported progress of their obligations to him. He gathered the results, assigned them into a
scorecard format, and presented them at department meetings. The department members, who were competitive by
nature, then devoted more energy into completing their obligations.

If you reach a point where nothing works, you may try using the “hail Mary” ploy, which is a high-stakes gamble and
should be used as a last resort. Basically, send out e-mail or hold a meeting stating:

x No progress has been made on the TIP.
x My involvement in the TIP will cease.

This ploy has worked for me in two-out-of-three attempts. If the TIP is highly valued, but somehow fell in priority, the
involvement level will rise to the occasion. If the TIP is not valued, the involvement level will further decline. Any further
involvement will not be valued. This will allow you to exit the TIP gracefully.

Mistake #10: Thinking that the Same Approach will work Every Time!
What makes the software world exciting is despite everyone having the same type of challenges, the particular solution
implementation is a bit different for each situation. Software processes, in any one organization, are a dynamic
combination of the organization’s culture, business goals, customers, and capabilities. If an organization is weak in
project scheduling, the solution is to utilize a standard-based and industry-proven estimation process. The challenge is
how to tailor and integrate a standard technique in a dynamic environment. This only comes with experience.

As you proceed through a broader deployment, the pilot approach will evolve over time. Sometimes, it will change
radically. This is to be expected for a number of reasons, but not limited to:

x Key pilot lessons are applied to the approach.
x The approach was optimized for maximum benefit.
x The environment changed.
x Different organization personalities exist.

While we always strive to create a “cookie cutter” approach that works in any situation over time. The fact remains that
reality evolves over time and once common approaches may not be as effective as it once was. If your TIP approach
does not provide “headroom” to evolve, then it will be destined to become an artifact of history.

Tactical Improvement Projects: Real-Life Lessons in Leading Change James R. Bindas

March 31, 1999 Page 8 of 8

Summary:

I have discussed the details of a TIP, a typical TIP Lifecycle and how TIPS are implemented. I have also shared some
personal experiences to assist you in avoiding some common mistakes.

Remember, above all else, the challenge of leading a TIP lies in constant project management, attention to details, and
ESPECIALLY having key insights in handling human-related issues. Despite all logic about why a TIP is a good idea, if
the TIP is not humanized for the culture intended it will fail.

6FRWW�<RXQJ

7KHP�DQG�8V�&RPPXQLFDWLRQ�%HWZHHQ
'HYHORSPHQW�DQG�7HVW �

Quality Week ‘99: 8M2Quality Week ‘99: 8M2

Them and Us: Communication Between
Development and Test

Scott Young

The ArgumentThe Argument

The Test Team do a better job if they listen to, learn
from and build a strong relationship with the
Development team.

Not Leadership 101: We are all supposed to be on the
same side

6FRWW�<RXQJ

7KHP�DQG�8V�&RPPXQLFDWLRQ�%HWZHHQ
'HYHORSPHQW�DQG�7HVW �

Why Be ConcernedWhy Be Concerned

■ The earlier in the development process a problem is
found, the cheaper it is to fix

■ Technology is easy, people are difficult

The ProblemThe Problem

Common goals but

■ Different focus

■ Different skills

■ Understanding not always in step

6FRWW�<RXQJ

7KHP�DQG�8V�&RPPXQLFDWLRQ�%HWZHHQ
'HYHORSPHQW�DQG�7HVW �

Shared GoalsShared Goals

The Development and Test teams:

■ Need to ask the same questions and resolve the same
issues of interpretation and ambiguity of the
requirements

■ Need to speak to the application users to understand
workflow

Different Focus: DevelopmentDifferent Focus: Development

■ Building the application

■ Technology

■ Specifying an architecture

■ Writing code

■ Designing a database

6FRWW�<RXQJ

7KHP�DQG�8V�&RPPXQLFDWLRQ�%HWZHHQ
'HYHORSPHQW�DQG�7HVW �

Different Focus: TestDifferent Focus: Test

■ V&V of the system

■ Building test conditions, cases and expected results

■ Gathering of realistic data

■ Application look and feel

TimingTiming

■ The Development team are ahead in the analysis

■ Test will benefit from talking to Development early in
the process

■ Development will benefit from talking to Test late in
the process

6FRWW�<RXQJ

7KHP�DQG�8V�&RPPXQLFDWLRQ�%HWZHHQ
'HYHORSPHQW�DQG�7HVW �

Building a Strong TeamBuilding a Strong Team

Factors

■ Environmental

■ Procedural

■ Organizational

EnvironmentalEnvironmental

A problem

■ Development projects are temporary

Some solutions

■ Put the teams together. If this is not possible use
technology

■ Appoint ambassadors

6FRWW�<RXQJ

7KHP�DQG�8V�&RPPXQLFDWLRQ�%HWZHHQ
'HYHORSPHQW�DQG�7HVW �

ProceduralProcedural

■ Write Requirements

■ Use problem tracking software

■ Developers ‘clarifying’ requirements

Problem Tracking: The ObservationProblem Tracking: The Observation

■ Its an observation first

■ Teach the team what to put in Observations

■ Teach the team what not to put in Observations

■ Never forget to talk to the Developer

6FRWW�<RXQJ

7KHP�DQG�8V�&RPPXQLFDWLRQ�%HWZHHQ
'HYHORSPHQW�DQG�7HVW �

OrganizationalOrganizational

■ Teach the development team about testing

■ Teach the test team about the technology

■ Use team building

Putting it all TogetherPutting it all Together

■ Effective communication between Test and
Development is an integral part of any successfully
development

■ The best location for teams is side by side

■ Formalize defect tracking to facilitate communication

■ Enforce configuration control

■ Organize cross team groups, appoint ambassadors

Them and Us: Communication between Development and Test

© Copyright 1999 Perot Systems Corporation
All Rights Reserved Page 1

Them and us: Communication between Development and Test

Contents
INTRODUCTION.. 2

THE SOFTWARE CHALLENGE ... 2
DEVELOPMENT AND TEST ... 2

THE IMPORTANCE OF COMMUNICATION .. 3

THE IMPORTANCE FOR THE TEST TEAM.. 3
THE IMPORTANCE TO THE DEVELOPMENT TEAM .. 4
THE BALANCE OF THE RELATIONSHIP .. 4
FAILURE TO COMMUNICATE .. 4

FACTORS .. 5

ENVIRONMENT ... 5
Proximity of Teams ... 5
Workflow... 5

PROCEDURE.. 6
Defect Tracking .. 6
Observation Tracking ... 6
Communicating with Observation Reports (OR’s) ... 6
Classic Mistakes to Avoid with OR’s ... 7
Configuration Control... 8

ORGANIZATIONAL .. 8
Team Structure ... 8
Training.. 9
Project Size... 9

SUMMARY.. 10

Them and Us: Communication between Development and Test

© Copyright 1999 Perot Systems Corporation
All Rights Reserved Page 2

Introduction

The Software Challenge
For all software development projects there are many challenges that the project
leadership and team must overcome to produce an application that is a business, financial
and technical success. The traps for the unwary exist from the initial conception of the
project and appear in many different forms through to initial implementation and beyond.
The same causes appear on the post mortem for most failed projects: feature creep, loss of
key staff, no project sponsor, technical complexity, lack of quality control, failure to reach
market in time, bad staff morale etc. Even when a project does achieve a measure of
success it has more than likely been affected by one or more of the most common
problems. After decades of progress, the ideal, on-time, on-budget, successful-in-the-
marketplace project, still draws attention.

One linking factor that influences every aspect of a project’s success is effective
communication between the teams involved in the application development: business
sponsors, marketing, customers, developers, and testers. Communication weaknesses can
be the root cause of many symptoms from not being able to say ‘no’ to feature creep to
not listening to what the market needs.

Development and Test
This paper addresses the internal communication between the main teams responsible for
the technical delivery of an application: Development and Test.

The Development team, as the term is used here, is responsible for the architecture, design
and implementation of all the required functionality. The skills of the team are analysis and
technological. They know about which development tools to choose, about third normal
databases, about the theory of human computer interaction and user interface design
standards and apply that knowledge to the problem in hand. They analyze, design and
implement a new application, creating a working product from a simple specification.

The Test team is responsible after-the-fact for the quality of the application1. They take
the application and complete both validation and verification prior to implementation or
product release. The test team is intent on the application look and feel, the gathering of
realistic data, the identification of business scenarios to use for test cases and the
application’s overall conformance to requirements. The testers are the first users of the
system and become advocates for the real users.

The Development team’s technical focus and the test team’s functional focus can often
lead to difficulties in communication between the teams. The two teams have different skill
sets and focus on (and like) different aspects of the development process. If ignored this
difficulty can grow into a them-and-us mentality that can represent a serious risk to a

1 I am ignoring the Quality Assurance function here.

Them and Us: Communication between Development and Test

© Copyright 1999 Perot Systems Corporation
All Rights Reserved Page 3

project. Some symptoms of failure that would appear include: low product quality,
significant rework, low team morale, loss of key staff and extended cost and schedule.

The key tool to preventing a them-and-us environment is effective communication
between the teams. Only through such communication can the necessary trust and
understanding be developed that will support a successful implementation. Effective
communication can be established through environment, procedure and organization:
• Environment includes those aspects that influence face to face communication.
• Procedure includes establishment of a method for the proper control of requirements

and an efficient and appropriate defect tracking system
• Organization includes those influences that related to team structure including both

project and enterprise wide factors.

The Importance of Communication

The Importance for the Test Team
For the Test team, communication with the Development team is essential to completing
the testing task successfully. There are other communication lines that are critical, such as
with the functional specialists but interaction with the Developers is the most important
internal communication. The Development team are important to the Test team because:
• While code writing is progressing the Test team are developing test cases. This is their

first major deliverable and to get it right the Test team need to talk to and learn from
the developers.

• Developers can’t learn everything about the system from the documentation they must
learn by asking the functional specialists. If the Test team is close to the Development
team they can learn through their discussions with the specialists. The alternative is for
the Test team to ask the same questions later, irritating the specialists, probably
wasting their time and worst of all perhaps getting a different answer.

• As the design and development progress the detail of the application changes; screens
are redesigned, menus re-ordered and single batch programs split into several. These
details affect the design of the test cases and the Test team can only find out such
implementation detail by talking with the developers

• During system testing a lot of problems are going to be discovered. Some of these
problems will be bugs, some execution errors, while others could be requirement
problems. If there is no rapport between the teams, the developers may take exception
to constant ‘criticism’ that the bugs represent.

• When system testing begins in earnest, it becomes the primary focus of the project and
is probably on the critical path. The Test team should not be shown wanting when the
spotlight falls on them. This requires the best possible preparation.

The relationship between the two teams is not balanced. The Development team can go
through almost the whole initial development, all the way up to the beginning of system
test without ever needing to talk to Testers to complete their initial implementation. This
is not true for the for the Test team. They need to talk to Development. It is therefore the

Them and Us: Communication between Development and Test

© Copyright 1999 Perot Systems Corporation
All Rights Reserved Page 4

Test team who must work on the relationship, build the trust and learn because it is the
Test team who needs the relationship most.

The Importance to the Development Team
The Development team has a different perspective on the relationship between the two
teams. Developers have a great sense of ownership of their code and the quality of the
product they produce. Developers also know, even if they have not expressed it, that
testing can only verify the quality of their software once it is complete. The Test team
cannot influence the quality of the code while it is still in pieces.

The Development team starts looking outward and becomes interested in talking to Test
when the initial coding is complete. This is the time when defects start to get raised and
generally when a single developer’s code is first integrated with the rest of the system.
Individual developers now must talk to and understand the Test team to clear up the
defects identified.

The Balance of the Relationship
As the system development progresses it is clear that the balance changes between the two
teams. Initially it is the Development team that has more information, better understanding
of the domain and a fuller picture of the application architecture. It is at this time during
the design and code phase that the Test team has most to gain by developing a strong
relationship.

Once into the final stages of development and certainly after system testing starts, the
balance shifts to the Development team being dependent upon Test for information on
tests and defects.

The responsibility for a strong relationship is there for all members of the project team,
whether they are developers or testers but the timing of the need means that the Test team
must be more conscious of the relationship and work at it earlier.

Failure to Communicate
There is unlikely to be a catastrophic event that will affect a development project if the
two teams do not talk. The effects are much more gradual and much harder to identify and
influence. The effects include:
• Failure to identify inconsistencies as early as possible. If the test team has a different

interpretation of the requirements than Development that should be dealt with when
the tests and the application are being designed. It is expensive and wasteful to wait
until test execution. The sharing of information does not compromise ‘independent
testing’ because it only influences when the information is shared between the teams,
without any prejudice about which interpretation is correct.

• A loss of morale within the Test team when their opinions and observations are
ignored. The test design requires similar level of analysis detail as the system design
done by the Development team. If these efforts are ignored or given superficial
attention this will have an effect on tester morale.

Them and Us: Communication between Development and Test

© Copyright 1999 Perot Systems Corporation
All Rights Reserved Page 5

• A loss of morale amongst the Development team when they receive poor or irrelevant
defects because the tester’s or test’s information is out of date.

Factors

Environment

Proximity of Teams
Most development projects suffer from the same problem: they are temporary: a need is
identified, a system specified, an application built, a product delivered. During the
project’s, sometimes long, lifetime the team grows from a small number to a peak during
the coding stage and then declines gradually until a core support group remains. Because
of this tremendous change in size, projects often must make do with ad-hoc office
arrangements.

There are many lessons to be learned from all the bad arrangements. The most important
of these however is physical proximity. Test and Development teams work best together if
there is a chance to develop informal relationships. If the teams share the same kitchen and
restrooms and pass each other in the passageway 20 times a day you have the ideal
situation.

However there are many cases when physical proximity is not possible. There are a
number of ways of dealing with this separation:
• Regular communication using conference calling and video conferencing. This cannot

always be a substitute for face-to-face meeting. When initially establishing a
relationship, there needs to be face-to-face communication. If two teams are
separated, someone will have to get on a plane. It is the only way. Once the
relationship is established the conference call and video are much more effective.

• Pick a single representative who will act as ambassador between the two teams. Make
sure this person is able to talk both languages, test and development. The ambassador
should be familiar with the technology and understand the testing process.

• Specify and enforce a formal defect tracking system. When teams are separated it is
easy for misunderstandings to become magnified. A formal tracking system should
prevent these misunderstanding.

Workflow
The issue of efficient workflow is related to physical proximity. Most of the delays in
processing work come not from doing the work itself, but from handing over the task to
the next person. This applies equally to organizing meetings, reviewing documents, fixing
defects and retesting code. Not having the teams located side by side immediately
introduces these delays into all work, even if when the work gets started it is done
efficiently.

Them and Us: Communication between Development and Test

© Copyright 1999 Perot Systems Corporation
All Rights Reserved Page 6

Procedure

Defect Tracking
Implementing a formal defect tracking system is an important part of ensuring effective
communication between the teams. Without an established system that is understood and
supported by both teams, system testing can quickly become uncontrolled and a drag on
the project schedule.

Defect tracking often comes as part of another tool or is developed and maintained by the
organization. For example defect tracking comes as part of the SQA Suite of test
automation tools. However there are definite advantages to establishing a project wide
system that covers the whole life cycle including change control, issue tracking and
defects. These are variously called issue, problem or defect tracking systems but I prefer
the term Observation Tracking.

Observation Tracking
When running tests, what the Test team is looking for are inconsistencies, that is behavior
that is different than that expected by the test. Different does not automatically mean the
code is bad. There could be many reasons:
• A problem with the test definition,
• A problem in the test execution,
• Inaccurate or ambiguous requirements,
• A coding problem,
• A design problem.

With an observation-based system, the Test team raise Observation Reports (OR). What
the OR says is that there is an observed difference between what was expected and what
the system does. It is then a joint effort to resolve the discrepancy. Code being corrected
because of defect is only one outcome.

This is also why an integrated tracking system is essential, the OR could easily become a
Change Request. If these are tracked separately then the same problem is tracked in two
different places.

The use of Observation Reports will improve the relationship between the teams. The Test
team is not out to find as many bugs as possible only to then dismiss them as Development
team problems. It becomes a joint problem to investigate observations and find the real
problem; be it requirements, test design or code.

Communicating with Observation Reports (OR’s)
Whether they are called defects, problem reports, issues or observation the idea is the
same: the tester writes down the problem, the developer fixes it. However there are many
things that can go wrong:

Them and Us: Communication between Development and Test

© Copyright 1999 Perot Systems Corporation
All Rights Reserved Page 7

• Misunderstanding the problem and changing the wrong thing,
• Fixing the right thing but in the wrong way,
• Sending a real problem back as ‘functions as designed’,
• Partially fixing the problem,
• Fixing the problem but breaking something else,
• Not fixing the problem and breaking something else,
• Fixing the problem in one place but not all the occurrences,
• Raising the same issue twice with two different recommended solutions.

The OR process should be designed to minimize these failures by addressing both the way
the OR’s are written and the teams’ commitment to the problem tracking system as a
whole. There are many projects where the OR tracking is problematic because only lip
service is paid to its use by some or all of the team.

To address the weaknesses in communication that can be present in an OR system try the
following:
• Make sure that the team is committed to using the system.
• Establish a common language when talking about the system e.g. functional

requirements, use cases, screens or components. It is important for the tester to be
able to say why they think there is a problem and where it is.

• Make sure that everybody has a basic understanding of the technology e.g. what a
dialog box is or what client/server is. Without a basic understanding it is very difficult
to describe problems effectively.

• Make sure everyone knows how to write a problem down. Frequently descriptions or
problems are incomplete, ambiguous or inaccurate.

• Include in each report how to recreate the problem: step by step instructions either
directly in the defect report or by reference to a test case.

• Make sure that the date and name of the person making the entry is included in every
comment made on the report including the original observation, the investigation and
description of the fix.

In addition to writing problems down, the personal touch can make the difference between
a ‘good’ OR and a ‘bad’ OR. If the developer is available, show the problem immediately.
This should not be a substitute for writing the OR but it does mean that the report will not
be returned as ‘not reproducible’. Having seen the problem in the Test environment, it
cannot be just the tester ‘dreaming’.

Even if the developer is not immediately available, follow up the OR by going and talking
to the developer while the problem is still fresh in your mind and the data required to
demonstrate the problem is still available.

Classic Mistakes to Avoid with OR’s
As well as positive steps there are also things that the Test team should refrain from doing:

Them and Us: Communication between Development and Test

© Copyright 1999 Perot Systems Corporation
All Rights Reserved Page 8

• Keep emotive language out of Observation Reports. Developers are rightly proud of
their creation and attacking it or cracking jokes is not going to win you any friends. I
have witnessed several times developers shout and rage at a tester for writing the
wrong thing. It is unnecessary and avoidable.

• Never make unsupported claims, always say why you think it is a defect. Requirements
are always good for this and so are GUI style guides and Interface Control
Documents.

• Observation reports that have a life of their own should be closed and opened anew.
Frequently a defect report has gone through much investigation and perhaps many
attempted fixes. After a while the current problem has no real bearing on the original
issue and the title of the report is out of date.

• If too many individual problems are included in one observation report it becomes
difficult to track which ones have been fixed and which need to be fixed again.

• Creating an individual observation reports for every small item is irritating for
everyone who must go through all the workflow actions to record progress on the
report.

• Don’t let reports languish, deal with the important ones first not the easy ones. A
report that is untouched is forgotten about eventually and someone will end up
documenting the same problem in another report.

Configuration Control
When the Development team hands the application over for the start of system testing, it is
‘finished’, that is, all the functionality is present and no further new development is
required. The remaining work is defect, fixing, performance tuning and documentation. All
changes to the structure and logic of the application should be done only when
documented in a defect report. Without enforcement of this control, the test team can
quickly lose sight of what is tested, what is not tested and what needs to be retested.
There are few things more frustrating for the test team than finding something that has
changed for no apparent reason and now does not work.

Although configuration control of software during System Testing is common to most
projects, it is clearly an important factor in establishing trust and maintaining effective
communication between the teams. Proper use of Release Notes to identify the defects
that have been fixed in each build reinforces the Observation Report communication and
provides additional confidence that the application is under strict control.

Organizational

Team Structure
Most project teams are split into management, requirements, development and testing
teams. This allows convenient reporting and allows each member of the team to draw on
the skills and experience of the others. However, we have tried and succeeded with cross
team groups, for example one person from each of the requirement, development and test
teams. These cross-teams can work on a very narrow set of tasks very efficiently by

Them and Us: Communication between Development and Test

© Copyright 1999 Perot Systems Corporation
All Rights Reserved Page 9

working closely together. Tasks that seem to be most suitable for this kind of group are
reports and batch processes.

Cross-teams create a sense of shared responsibility, breaking down the barriers between
each of the groups. However it is important to ensure that each person of the group
maintains strong ties with the rest of their team to ensure conformance to standards.

If the creation of formal groups is not appropriate, a less radical idea is to appoint an
ambassador from each team. The role of the ambassador is to represent the team at the
working level and to communicate what is happening back to his or her own team.

An ambassador for the Test team might attend design reviews, architecture or database
discussions or sit in on the regular team meetings of the Development team. The
Developer ambassador might be involved in the review of test conditions or the structure
of user acceptance or beta testing.

Training
There are several ways that both informal and formal training can be used to encourage
effective communication between the teams. Some of the most immediate are:
• Give the Test team training in how to write defects. The quality of most reports is low.

Training should aim to improve consistency and the effectiveness of the OR’s.
• Give the Test team grounding in the technology used in development. Testing is often

seem as a good introduction to IT and it is not uncommon for testers have only limited
technology experience.

• Teach the Development team about the testing process.
• Establish a corporate testing program to support the long term development of testing.

Project Size
As the size of a development project increases communication becomes much more of an
issue, not just between Development and Test but across the whole project team.
Eventually the problems of communication dominate all others and the single project
needs to be split into multiple, smaller projects.

Project size is one of the main determinates on the structure and formality of
communication between Development and Test2. On very large teams, there my just be
too many people to exploit the benefits of informal communication between the teams. If
the development team has 30 people on it, it will be difficult to ensure physical proximity
to a Test team of a similar size. As the effectiveness of informal communication reduces
formal communication replaces it: formal problem tracking, strict configuration control.

2 Others factors include the application domain; generally commercial applications are developed under a different quality environment
than safety critical applications.

Them and Us: Communication between Development and Test

© Copyright 1999 Perot Systems Corporation
All Rights Reserved Page 10

It is in large projects that communication is seen as an issue. However there are also issues
at the other end of the project spectrum. Because defect reports are designed primarily to
facilitate communication there should not be over enthusiastic use of tools or corporate
procedures. Too much formalization can be just as counterproductive and wasteful as too
little. If there are only a few developers and testers why use the corporate standard for
defect tracking when a spreadsheet or a simple MS Access database would suffice? Even a
paper-based system may be appropriate in some instances.

Summary
The effects of ignoring the relationship between Development and Test teams can be very
damaging. A breakdown in communication can lead to much extra rework both in code
fixes and testing. Without a sufficient understanding of the system, testing will leave many
undetected bugs.

To conclude:
• Effective communication between the Test and Development teams is an integral part

of any successful development project
• It is the Test team who benefit initially from the relationship and it is to their

advantage to promote and develop the relationship as early as possible
• The best location for the to teams is side by side. If this is not possible use technology

to facilitate communication
• A formal defect tracking system is essential on all but the smallest development

projects. It enforces a consistent and professional communication
• Enforce proper configuration control so that during System Testing, the test team has

a known configuration to test
• Organize testers and developers so that they have areas of shared responsibility, for

example evaluating change requests.

1

Page 1

Page 1May 24-28, 1999 Quality Week ‘99

Test Engineering - A “Value-Add” Career Path!

Thomas L Wissink
Lockheed Martin Mission Systems

E-Mail: tom.wissink@lmco.com
Phone: 301-918-7448

Copyright, Lockheed Martin Mission Systems, 1999.

Page 2May 24-28, 1999

 Test Engineering - A “Value-Add” Career Path

Quality Week ‘99

Agenda

• Introduction
– Past views of the Test Profession
– A new view of the Test Profession

• Test Engineering Skills
• Other Disciplines the Test Engineer should Know
• The Test Lead a Major Contributor
• The Steps in a Test Engineering Career Path
• Summary

2

Page 2

Page 3May 24-28, 1999

 Test Engineering - A “Value-Add” Career Path

Quality Week ‘99

Introduction
• Purpose

– Discuss Testing Engineering as a computer science discipline
– Explain how Testing Engineering is a “value-add” career path

• Definitions
– Testing

» William Hetzel 1973, testing is the process of establishing
confidence that a program or system does what is supposed to

» IEEE 1983, testing is the process of exercising or evaluating a
system by manual or automated means to verify that it satisfies
specified requirements or to identify differences between
expected and actual results

» Dr. Boris Beizer 1995, testing is defined as the act of
designing, debugging and executing tests

Page 4May 24-28, 1999

 Test Engineering - A “Value-Add” Career Path

Quality Week ‘99

Introduction (cont’d)
• Definitions

– Test Engineering,
» a career path or computer science discipline that focuses on

planning and implementing testing throughout the system or
software development lifecycle. It starts with the requirements
phases and continues into the support/maintenance or
production phase.

– “Value-Add”
» the test engineer provides input, ideas, suggestions and

results that:
• contribute to a timely product/system
• improves the product/system
• conforms to the company vision/mission

3

Page 3

Page 5May 24-28, 1999

 Test Engineering - A “Value-Add” Career Path

Quality Week ‘99

Past views of the Test Profession

• My 26 years in and around testing as an example
– 1970’s

» Diagnostics - HW/SW testing
• Diagnostodian
• Our new name - Diagnostician, with white lab coats

– Early 1980’s
» Validation Team

• Validators (Terminators), Verifiers, and Testers
» Test staffing realization

• training gound
• holding area
• viewed as not a place to stay

Page 6May 24-28, 1999

 Test Engineering - A “Value-Add” Career Path

Quality Week ‘99

• Testing career example continued
– Late 1980’s

» System Test Team Manager
• Very fulfuling
• Plenty of support
• Told this was not a place to stay

– Work in other areas (i.e. SW, SE)

Past views of the Test Profession (cont’d)

4

Page 4

Page 7May 24-28, 1999

 Test Engineering - A “Value-Add” Career Path

Quality Week ‘99

A new view of the Test Profession

• Testing career example continued
– The mid-1990’s

» After some time in others disciplines
• returned to Testing

» Became the Integration and Test Architect for a large and very
complex satellite control system

• Viewed by the management and technical team as “value-add”
• For me - Testing as a career began to take shape

» Over the same 20 plus years:
• Engineers became System Engineers
• Programmers became Software Engineers
• Testers stayed Testers

Page 8May 24-28, 1999

 Test Engineering - A “Value-Add” Career Path

Quality Week ‘99

• Testing career example continued
– The late-1990’s

» Another realization
• All the advice was correct - they said try other areas
• For the wrong reason - they said it was not a place to stay

– What it did was help make me a better test engineer and
provided a solid foundation for being “value-add”

• Test Engineering can and should be a distinct computer
science discipline with it’s own career path

• The remaining part of this presentation may:
– seem like common sense - it is!
– seem unnecessary - it isn’t!
– seem like company politics - it is, everything has it’s politics!

A new view of the Test Profession (cont’d)

5

Page 5

Page 9May 24-28, 1999

 Test Engineering - A “Value-Add” Career Path

Quality Week ‘99

Test Engineering Skills

• My first recommended skill probably isn’t a skill at all
– A good sense of humor

» That part of testing that is a the back end of the schedule will
most often be under schedule pressure

• you will go insane without this skill

• Recommended skills - not necessarily in textbooks or in
“How to write a resume” book

– Many good books on the market today that talk recommended
technical test methods/skills.

– This list should be viewed as a basis, fundamental or starter set of
skills for a test engineer

Page 10May 24-28, 1999

 Test Engineering - A “Value-Add” Career Path

Quality Week ‘99

• Recommended Fundamental Skills
– Analytical - two definitions or aspects

» Breakdown a program or system into component parts and
define tests for each part - through and specific

» Search out the cause of problems - dogged determination to
understand exactly why something occurred

» It might be a gift or knack but can be developed and improved
– Detailed

» Pulling out or Putting in all that is need to ensure
completeness and correctness

» Sufficiently document what happens - during and after each
test phase

» Can be taught, developed and improved

Test Engineering Skills (cont’d)

6

Page 6

Page 11May 24-28, 1999

 Test Engineering - A “Value-Add” Career Path

Quality Week ‘99

• Recommended Fundamental Skills (cont’d)
– Tenacious - this is the one that really explains the friction

» Keep testing over and over with only minor changes in data,
structure, and/or environment

• To get it to run right
• To find that error you saw one time

» Can be taught, developed and learned
– Knowledgeable

» Knows and understands the product or system
• requirements, processes/methodologies, cm, labs, etc.
• pervasive project awareness and involvement

» Can be taught, developed and learned

Test Engineering Skills (cont’d)

Page 12May 24-28, 1999

 Test Engineering - A “Value-Add” Career Path

Quality Week ‘99

• Recommended Fundamental Skills (cont’d)
– Teachable

» Always learning
• no matter what the source - even engineers and programmers

can teach a tester new things
» Open to new ways of doing the testing job

• New tools, new methods/processes, new ideas
– Entreprenurial - defined as organizing, managing and assuming

the risk of a business or enterprise
» Knows why the company is in business - Tests to the Vision
» Knows Test is the last line of defense - must assume responsibility

for reducing the risk of errors in the product or system

Test Engineering Skills (cont’d)

7

Page 7

Page 13May 24-28, 1999

 Test Engineering - A “Value-Add” Career Path

Quality Week ‘99

Other Disciplines the Test Engineer should Know
• The goal is to gain a working understanding

– Training & Performing or less desirable just Training
– technical and administrative aspects

• Here are a few examples - there are many more possibilities
– System Engineer

» write “testable” requirements
» support architecture development and/or analysis

– Software Development
» moderate a design and/or code inspection
» generate and unit test a piece of software

– Software Configuration Management
» support the build, delivery and installation processes

Page 14May 24-28, 1999

 Test Engineering - A “Value-Add” Career Path

Quality Week ‘99

The Test Lead as a Major Contributor

• A Test Lead, Manager or Supervision
– Viewed as a major contributor
– Less technical and more administrative

» cost, schedule, staffing, training, etc.

• Test Engineers at any level in the organization can be viewed
as major contributors

– awards for savings, improvements, heroic efforts, etc.

• Having all the skills we’ve talked about and performing them
effectively, makes us “value-add” and major contributors!

• How long does it take?
– Varies, but at a minimum several years

8

Page 8

Page 15May 24-28, 1999

 Test Engineering - A “Value-Add” Career Path

Quality Week ‘99

The Steps in a Test Engineering Career Path

• I can’t dictate to your company how to develop it’s people
– I can recommend a set of steps that will result in a career path for

test engineers and it will be “value-add”
• The recommended Steps in a Test Engineering Career Path

– A computer science degree (at least as a minor)
– Work assignment(s) in testing
– Test courses every other year (internal & external)
– Other Discipline courses on the alternate years
– Work assignment(s) in other discipline(s)
– Test Lead/Manager assignment
– Get certified (internal or external)
– Work assignment(s) in other discipline(s) or a Staff position

Page 16May 24-28, 1999

 Test Engineering - A “Value-Add” Career Path

Quality Week ‘99

The Steps in a Test Engineering Career Path (cont’d)

• The recommended Steps in a Test Engineering Career Path (cont’d)
– Next steps depends on personal goals and abilities

» If you earn the right or are given a chance at upper/executive
management - do it!

» If you return to or stay technical
• get published and/or work to improve the technology and

career paths within your company

• Some companies do a good job of helping achieve personal
goals - others don’t (not intended as a slam)

– In either case - Take ownership of your career

• A final comment about your career path - Be Flexible!
– Perform undesirable assignment very well, train replacement & move-on
– Management will appreciate it and work harder to assist your career

9

Page 9

Page 17May 24-28, 1999

 Test Engineering - A “Value-Add” Career Path

Quality Week ‘99

Summary
• A “Value-Add” Test Engineer

– Knows and has performed several disciplines
– Has improved the process (in testing and other areas)
– Implements a robust testing program throughout the lifecycle.

• This presentation is one more nuance in the process of
improving the Test Engineering profession

• Facing the Future in the next Millennium
– Test Engineering is poised to become a mainstream career path

within the computer industry
– Dr. Boris Beizer says - “Losing the test technology game is losing the

software quality game which means losing the software game…”

• Let’s go out and make Test Engineering all it can be!

Quality Week ‘99 May 24-28, 1999

Thomas L. Wissink Test Engineering - A “Value Add” Career Path! 1

Test Engineering - A “Value-Add” Career Path!

Thomas L. Wissink

Lockheed Martin Mission Systems
Phone: 301-918-7448

Fax: 301-918-7474
e-mail: tom.wissink@lmco.com

Copyright, Lockheed Martin Mission Systems, 1999.

Abstract

In the not too distant past software testing was viewed as an unattractive career path and
test personnel had few training or career enhancement options. In the past test
organizations have usually been insufficiently and inappropriately staffed. The staffing that
was provided, came from assigning new personnel to test for training purposes or some of
the project less desirable personnel were given the “opportunity” to test. Those who
enjoyed testing and wanted it as a career usually had to make up for these situations by
working harder and longer to overcome this “stereotype” view of testing.

However, the environment today provides a more positive opportunity for the test
engineer. We are now frequently viewed as important team members and as contributors
to the overall quality and timeliness of software products. The recognition that testers
must be involved early and throughout a product or project lifecycle, the plethora of
software testing companies, test products, test conferences and even test engineering
certification are all examples of the growth of the testing discipline.

This paper will provide insights into the following topics: 1) the past views of the testing
profession, 2) the skills that make a successful test engineer, 3) the other computer
industry disciplines that a test engineer should understand, 4) how the “Test Lead” can be
a major project/company contributor, and 5) the steps that should be in a test engineering
career path.

Quality Week ‘99 May 24-28, 1999

Thomas L. Wissink Test Engineering - A “Value Add” Career Path! 2

1. Introduction

This paper is written primarily for the test engineer, but provides insight for anyone with
an interest in the career aspects of testing. The paper has two main purposes: 1) to
present the notion that Test Engineering is a unique computer science discipline, with a
defined career path, and 2) to explain that test engineering can be a “value-add” career
path for the person and his or her company.

Today some companies have a specific career path for test engineers and there are formal
certifications available for testers. This progress is great, but the idea of a test career path
is not pervasive in the computer science industry and not many universities have a election
of test courses or a degree in test engineering.

Definitions

Here are a few simple definitions.

Testing, has been defined very well by many authors – here are a few good examples from
the past and present:

1) from William Hetzel in 1973, testing is the process of establishing confidence that
a program or system does what it is supposed to,

2) from Glen Myers in 1979, testing is the process of executing a program or system
with the intent of finding errors,

3) from the IEEE standard glossary in 1983, testing is the process of exercising or
evaluating a system by manual or automated means to verify that it satisfies
specified requirements or to identify differences between expected and actual
results, and

4) from Dr. Boris Beizer in his 1995 book “Black-Box Testing”, testing is defined as
the act of designing, debugging, and executing tests.

Value-Add means that the test engineer provides input, ideas, suggestions and results
that: 1) contributes to a timely product or system delivery, 2) improves the product or
system quality and 3) conforms to the company vision and mission.

Test Engineering is the term used to describe a career path or computer science
discipline that focuses on planning and implementing testing throughout the system or
software development lifecycle. It starts with the requirements phase and continues into
the support/maintenance or production phase.

Quality Week ‘99 May 24-28, 1999

Thomas L. Wissink Test Engineering - A “Value Add” Career Path! 3

Past Views of the Test Profession

I will use my personal 26-year career in the computer industry as an illustration. Those of
us who have had the “career opportunity” to test software and software based systems
have, over the years, been called by many different titles. These titles have included:
diagnostodian, verifier, checker, validater and tester. Let me explain the source of some
of these “titles”.

The term diagnostics refers to computer software that’s purpose is to: 1) test or checkout
new hardware, software and firmware as it comes off the assembly line, or 2)
troubleshoot hardware or system problems. When I wrote diagnostics for a small
computer firm in the 1970’s I was sometimes referred to as a diagnostodian. This title was
used half in jest but it was used. We diagnostodians coined our own title, “Diagnostician”
and we even wore white lab coats to emphasis our point. This was all in fun but the
“Engineers” were still the folks who made all the important technical decisions.

In the early 1980’s I was part of a “Validation Team” where we were either called
verifiers, validaters or testers (Note: If the movie Terminator had been around then I am
sure we would have been called Terminators – because that is what we usually did to the
software under test). During this particular assignment I began to realize that the “testers”
were not the “cream of the crop” when it came to the staff performing on a project. The
management team would say things like “it is good to do a little time in test so you
understand that part of the development process but you should not stay there”. Testing
was not viewed as a long-term career path for those who wanted to progress up the
corporate ladder or wanted to become a technical leader.

In late 1980’s I was the manager of a System Test Team. The management job was much
more visible, very fulfilling and I received all the help and support that was needed. I was
told however, that to really progress in the company I needed to be involved in other
disciplines like Systems Engineering and Software Development. Again, testing was not a
career that you could stay in for very long and have it continue to progress.

A New View of the Test Profession

In the mid 1990’s I finally decided that after being a line manger, a middle manager, a
software developer, and systems engineer, I would return to “testing”. I became the Chief
Integration and Test Architect for a very large and complex computer system used to
control a constellation of Air Force satellites. After several months I was viewed as a
critical people resource to project management and my opinions were sought out when
new or enhanced features were being considered for the system.

It was at this point in time for me that the whole idea of a testing career really began to
take shape. During the same 20 plus year period of time the other computer science
disciplines were evolving - engineers turned into Systems Engineers, programmers turned
into Software Engineers but testers stayed testers.

Quality Week ‘99 May 24-28, 1999

Thomas L. Wissink Test Engineering - A “Value Add” Career Path! 4

It finally dawned on me in the late 1990’s that much of the advice I had been given in the
past was not totally incorrect or untrue. It was however, given for the wrong reasons. In
the remainder of this paper I will pass along lessons I have learned concerning a career in
test. It will include some recommendations that can make the “tester” a key “value-add”
person to any company and earn him or her, my preferred title for this profession, “Test
Engineer”. Some of my recommendations may seem like common sense – they are!
Some may seem unnecessary – they are not! Still others may seem to be more about
company politics – they are – everything has its politics!

2. Test Engineer Skills

The first skill is a non-technical skill, if it can be considered a skill at all – a good sense of
humor. A positive attitude in any testing situation will serve you very well throughout
your test career. If you have not already encountered it, testing always takes the brunt of
the schedule impacts. Since part of testing is at the back end of the schedule you will
more than likely get pressure because of other project problems. So having a good sense
of humor will at least keep you sane.

There are several good testing books on the market today that list and define the many
phases of testing and the specific technical methods and/or skills that are needed to
perform a complete test program. These all tend to be very specific and they need to be.
This paper however, is intended to identify a basic set of fundamental skills for test
engineering.

You may not find these skills in one of those textbooks or in a “How to Write a Resume”
book. But they are skills that will make you a very successful test engineer. The skills
are not listed in any particular order and not every Test Engineer will have or is required
to have all these skills mastered – but they should constantly work to improve them.

1. Analytical – there are two important definitions for analytical. The first is being
able to break down a system or a software program into its component parts.
Then being able to define a set of tests that will ensure a quality product is the
result. The second definition of analytical, and the most important, is that a test
engineer is always looking for and searching out the cause of a problem. Working
(not just wanting) to understand why a function works the way it does, why an
error occurred under given circumstances or why something runs one way on one
device and another way on another device. Getting to concrete reasons and
rationale is the goal. This skill (especially the second definition) appears to be a
knack or a gift, but it can be developed and improved.

2. Detailed – able to determine the steps that are needed, the items to be queried or
the paths to be executed. Fleshing out the detail is crucial, it helps with
determining the testability of a requirement, the completeness of an inspection or

Quality Week ‘99 May 24-28, 1999

Thomas L. Wissink Test Engineering - A “Value Add” Career Path! 5

the robustness of a test procedure. Putting in and pulling out the detail is another
tool in the test engineer’s tool kit of skills (Note: You need to be able to
document this detail also). This skill can be taught, developed and improved.

3. Tenacious – this skill has to do with the ability to keep working on something
over and over until it works exactly right. That may mean running the same test
case or procedure with only minor differences in data or structure many, many
times to ensure the quality of test and the quality of the product. You may also be
running the test over and over because you saw something that did not look right
one time and your looking for that case again. Tenacity also aids the test engineer
when a software engineer declares the failure is “not repeatable”. This skill can
also be taught, developed and improved.

4. Knowledgeable – knows the system or software product that is being tested. A
deep understanding of the requirements, the architecture, the design and
development methodologies, the method and process of software configuration
management, the structure and integration plan of the labs that are being used, etc.
Being aware and interested in all aspects of a project is vital. This skill has to do
with paying attention, attending meetings, reviewing documents and just plain
being interested in all that is going on within a given project – it can be taught,
developed and improved.

5. Teachable – You must be able to be taught and be able to learn new things
everyday – no matter who you learn it from. Excuse me if you are an engineer or
programmer reading this paper - but yes, even engineers and programmers can
teach testers a new thing or two about test. Teachable also means learning new
ways of doing things. Because a given type of test worked in the past does not
mean that it will work exactly the same in the future. Be open to new ideas, new
tools and new processes.

6. Entrepreneurial – Webster defines entrepreneur as “on who organizes, manages,
and assumes the risk of a business or enterprise”. This skill has two aspects – The
first is the knowledge of why the company is in business. You should look for
ways testing can contribute to and promote the vision and direction of the
company. The other aspect to understand is that test engineers are the last line of
defense for delivering a quality product or system. Test Engineers should take
ownership to reduce the risk of delivering errors to the customer.

Quality Week ‘99 May 24-28, 1999

Thomas L. Wissink Test Engineering - A “Value Add” Career Path! 6

3. Other Disciplines the Test Engineer should Know

As noted in the Introduction of this paper, often well meaning people gave advice to
move-out of testing and try other disciplines. The rationale was that testing was not a
place to stay. In hindsight, this was good advice – but bad rationale. The correct rationale
is that being involved in other disciplines provides an opportunity to really understand that
discipline and how testing is involved and how it can be improved. Therefore, every test
engineer should develop a working understanding of other major computer science
disciplines. Systems engineering and software development are probably most important.
However, configuration management, the specialty engineering fields (i.e. security,
reliability, performance, safety, logistics, etc.) and others should also be investigated.

You gain a working understanding by one of two methods. First, and most important, you
should have training in and have worked in another discipline. The second choice is to at
least have training in the discipline and that training should include a workshop type
environment (i.e. you did it at least once in the class setting).

Here are a few sample assignments that could be performed in another discipline: 1) be a
moderator for the software and/or requirements inspection process, 2) be assigned and
generate several small software programs, classes or components with unit test
responsibility, 3) be involved in the software configuration management, build, delivery
and installation processes, and/or 4) work in lab support as a system administrator.

Two final points about being involvement in another discipline. One, be involved in as
many aspects of that discipline as possible, the technical aspects and the administrative
aspects (i.e. costing, scheduling, etc.). Two – an Army phrase seems appropriate here –
“Be the best you can be” and be easy to work with. It is virtually guaranteed, if you are
viewed as easy to work with and helpful when you support another discipline, you will
receive all the support you need, when again as a test engineer, you need something from
that discipline.

4. The “Test Lead” as a Major Contributor

By the time a Test Engineer becomes the leader or manager of a test team, they need to
have additional skills in their skill’s toolkit. These skills tend to be less technical and more
administrative and managerial. They include an understanding of the company’s proposal
or new business process, the cost and scheduling process and the people management
process. Developing these skills definitely takes education and experience.

It is usually not until this point in a career that upper management views a test engineer as
being “value-add” to the company or project. However, a test engineer at any position in
the company can be “value-add”. Many test engineers have received special company and

Quality Week ‘99 May 24-28, 1999

Thomas L. Wissink Test Engineering - A “Value Add” Career Path! 7

customer recognition for their contributions during all phases of a project. The test
engineers and the lead test engineer can and should be major contributors on any project.

Having all the technical and administrative skills that have been discussed above and being
able to productively use them will, by definition, make you “value-add”. Management,
customers, and other team members will appreciate and listen to your input, suggestions,
and recommendations. Your input should span the project lifecycle.

 How long might it take for someone to become a contributing test lead? It will more than
likely take several years. There are people who can progress through the different steps in
a test career very rapidly and do a great job. Then there those who will take longer.
Longer is not bad – producing and contributing throughout the career path is the
important factor.

5. Steps in a Test Engineers Career Path

Obviously, it would be dangerous to try to dictate how a particular company will develop
its people. But here is a suggested set of steps that are important for the development of a
“value-add” test engineer. The following list is a minimum set of ordered steps that
should be included in a test engineering career path:

1. A computer science degree is desirable.
2. Work assignment(s) in testing.
3. Test courses (either via your own company or one of the many testing companies that

are now available).
− As with any computer science field, education is an on-going activity. Plan on a

test course at least every other year. The alternate year should be a course in some
other discipline or in leadership/management.

4. Work assignment(s) in another discipline(s).
5. A work assignment back in testing, possibly as a technical lead or manager
6. Get certified as a Test Engineer (could be done earlier with the right experiences)

− Inside or outside your own company – there are several companies that have
certifications and/or specialist programs.

7. A work assignment in another discipline or on staff to a Project Manager.
8. The next set of steps depends on your own personal goals – do you want to try an

upper management/executive path or a technical path.
− If you earn the right or are given the chance at an upper management/executive

position, do it.
− If you decide to stay technical or return to a technical position after a management

assignment, work to get published and/or help define your company’s technical
direction.

In today’s market place you need to take ownership of your own career. Some companies
are very good about helping you develop along the path you desire while others seem only

Quality Week ‘99 May 24-28, 1999

Thomas L. Wissink Test Engineering - A “Value Add” Career Path! 8

interested in the bottom line. Without judging any particular company or line of business,
it is suggested, that if your goal is to be a test engineer, work at it with a specific plan in
mind.

A final thought about your career plan. While it may seem contradictory with the previous
paragraph, I suggest that you be flexible. There will be times when you are asked or
directed to work in an area that you do not think fits your plan. My suggestion is that you
work at it for a while, do well, look for and develop your replacement, and work to move
on to another assignment as soon as possible. This approach gives you an opportunity to
learn another discipline and will in most cases, ingratiate you to your management team.

6. Summary

To be a “Value-Add” Test Engineer means you have a working understanding of the
entire process of getting a product or system designed, developed and delivered. It means
you participate in the process and provide positive input to those processes. And finally,
and most importantly, it means you can implement a testing program throughout the
product or system development and support lifecycle.

Today, there are many people and companies working to improve the test engineering
profession. This paper is another nuance of that effort and has been focused on providing
career counseling to the test engineer.

The year 2000 computer problem has done many things for the computer industry – not all
of it good and not all bad. One of the good things is that the testing profession has been
brought to forefront. Facing the future and looking toward the next millennium, the
prospect exists for test engineering to become a mainstream “value-add” career path in the
computer industry.

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 1

Creating a Testing Culture
Sharing Best Practices

Keith Stobie

QA Process & Test Architect

Keith.Stobie@BEAsys.com

Acknowledgements:
Vern Peets, Michael Peters, Art Rofrano

QW - May 1999 Testing Culture - Keith Stobie
2

Culture

set of shared attitudes, values, goals, and
practices that characterizes a company

• Define them: create Body of Knowledge

• Reward them: job advancement

• Teach them: define training curriculum

• Share them: define common patterns

• Measure them: development, execution, defects, etc.

• Tool them: provide tools to match practices

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 2

QW - May 1999 Testing Culture - Keith Stobie
3

BEA Environment

• ORB (ObjectBroker)

• Transaction Monitors (Tuxedo, TopEnd)

• Java Platform for Enterprise (JPE)/ Enterprise Java Beans (EJB)

 transactional and component-based middleware
for integrating enterprise applications

WebLogic
San Francisco

Founded
San Jose

Funded IPO

120450 800 1200

$61.6 $157 $289

Tuxedo
New Jersey

ObjectBroker
Nashua, NH

TopEnd
San Diego

1/95 7/95 1/96 7/96 1/97 7/97 1/98 7/98 1/99

QW - May 1999 Testing Culture - Keith Stobie
4

Evolution

Dev Mgr

QA Mgr . . .

Dev Mgr

QA Mgr ... Doc Mgr

Services Mgr

QA Mgr ... QA Mgr

Services VP

QA Director

Dev VP

Services QA Org Initiatives BOK/Jobs Continuous
Improvement

 Engineering Common
 Clarify Process Project better tooling

Successes ⇒ Credibility

Build trust
 & awareness

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 3

QW - May 1999 Testing Culture - Keith Stobie
5

Quality Initiatives

• mini-projects (initiatives) for improvement

• project lead & management sponsor
additional initiative members

• Early areas identified included
• job skills & training

• test processes

• metrics

• automation

• best practices

QW - May 1999 Testing Culture - Keith Stobie
6

Body of Knowledge (BOK)

• Software Testing Labs (early web)

• ASQ’s Certified Software Quality Engineer

Knowledge of
• Company

• Process

• Testing

• Technical (software areas)

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 4

QW - May 1999 Testing Culture - Keith Stobie
7

BOK outline
• 1. BEA specific

• 2. Professionalism

• 3. Technical Knowledge

• 4. Software Quality

• 5. Test Planning

• 6. Test Design and Execution

• 7. Test Project Management

• 8. Documentation

• 9. Formal Inspection

• 10. Software Configuration Management

• 11. Software Project Dynamics & Software Development

QW - May 1999 Testing Culture - Keith Stobie
8

 BEA specific
• 1.1. Mission, Strategy and Values

• What makes BEA special, where we've been, & where we're going.

• History, Organization structure, Values, Goals, Competition

• 1.2. BEA Quality System

• 1.3. Standard Processes: How projects work in Engineering.

• Engineering Process
• Deliverables (Doc, Dev, QA, others)
• Standards (coding, portability, ...)
• Tools (CVS, ClearQuality, ...)
• Procedures (Reviews, Doc Versioning, ...)

• QA/Test Process
• Tools (MegaTest, ARTTS, Test FrameWork, Vasir ...)
• Patterns, Templates
• Tracking (Test Dev, Test Run)

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 5

QW - May 1999 Testing Culture - Keith Stobie
9

Technical Knowledge

3.1. Software Product Architecture
(structure and design of enterprise software product components.)

Performance, Scalability; Components & frameworks;
Applications; Documentation & packaging

3.2. Hardware Configuration
(architecture, maintenance, setup and testing of Windows and Unix)

Memory; Mass Storage; O/S setup

3.3. Technology Market and Trends

Popular products & companies; Emerging technologies & application trends.

QW - May 1999 Testing Culture - Keith Stobie
10

Technology Risks

Architecture, development, maintenance, setup, tools,
risks and testing methods associated with each technology.

 3.4. Networks & Data comm (TCP/IP, SNA, OSI)

 3.5. Client/Server (HTTP, ATMI, IIOP, JRMP)

 3.6. Databases (/D, Oracle, DB2, Sybase, Informix)

 3.7. GUIs (MFC, Java)

 3.8. Component Models (CORBA, COM, EJB)

 3.10. Installation: (InstallShield, Unix, Web)

3.15. Windows/NT Platform
3.16. Unix Platforms (Testing of Unix applications.)

3.17. Other Platforms (AS400, MVS, VMS)

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 6

QW - May 1999 Testing Culture - Keith Stobie
11

Test Case Design

• clues (specs, customer defect reports)
• requirements
• cases
• Equivalence Class partitioning
• Usage scenarios
• Fault Insertion / Design for Testability
• Authoring, Reviewing, Baselining

Test Design Specifications (TDS)

QW - May 1999 Testing Culture - Keith Stobie
12

Test Techniques

• Boundary Value Analysis
• Syntax Testing
• Cause Effect diagrams
• State machines
• Orthogonal Arrays, Combinatorial Design
• Testing the accuracy of customer deliverables:

user documentation, marketing and training materials
• Traceability mechanisms

• system verification diagrams
• requirements tracing
• system messages

• Evaluating requirements for:
consistency, completeness, and testability

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 7

QW - May 1999 Testing Culture - Keith Stobie
13

Test BOK Map
 8 9 10 11 12
1. BEA Specific
1.1 Mission, Strategy, & Values . . + + *
1.2. BEA Quality System . . + *
1.3. Standard Process . + + *

3. Technical Knowledge
3.1. Software Product Architecture . . + + +
3.2. Hardware Configuration . . + +
3.3. Technology Market and Trends . .

6. Test Design and Execution
6.1. Test Case Design . . + *
6.2. Test Techniques . + +

QW - May 1999 Testing Culture - Keith Stobie
14

BOK to Job Ladder Map

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 8

QW - May 1999 Testing Culture - Keith Stobie
15

Training - Basics

Basic Testing Process
• Plan
• Design
• Implement
• Execute
• Report

Basic Test Techniques
• Equivalence classes
• Boundary Values

Roles
• Planner : Creates Test Plans

• Designer : Designs Test Cases

• Implementer:Implements & automates

Test Cases

• Executor: Executes test cases

Basic Courses
• Software Testing 101

& Black Box Software Testing
• System Testing Techniques
• Testing in the Real World
• Systematic Software Testing

QW - May 1999 Testing Culture - Keith Stobie
16

Training - Advanced
The World of Testing: 5-day

covers 38 different test techniques

Advanced Test Design: 2-day
12 pragmatic techniques and
 36 tools for model construction/test generation

Software Testing Tools 2-day
 roadmap for automating the testing process &

overviews (with demos) of leading testing tools

Test management: 2-day
What Every Test Manager Needs to Know

Software Inspections

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 9

QW - May 1999 Testing Culture - Keith Stobie
17

Process Product
Requirements

Prototype ResultsBrainstorm ReviewFeature Proposal

Feature
Prospectus

Functional
Specification

Documentation
Plan

Test Design
Specification

Detailed Design

Product
Code

System Test
CasesUnit Testing

Results

Test ReportsCustomer
Evaluation

Draft Documents

BEA
Purple

Box

Retrospective
Observations

Product
Concept

Product
Specif ication

Product
Planning

and
Design

Planning

Development
and

Production

Delivery

Implementat ion
and

Qualif ication

Development
and Unit Test

S y s t e m T e s t

Production

Retrospective

Marketing
Requirements

Document
(MRD)

PostScript
Files

PDF Files

S
of

tw
ar

e
D

ev
el

op
m

en
t

Test Plan

Purple Box Test
Results

Planning

Development/
Acquisit ion

Measurement

D
oc

um
en

ta
ti

on

P roduct Planning,
Development , and

Main tenance Process
Baseline Version 2.01

P
ro

du
ct

 M
an

ag
em

en
t

Loads

Project Plan &
Schedule

Tier 4
Patches

R
el

ea
se

 C
en

te
r

CRs

Unit Test
Cases

Architecture
Description

T
es

tw
ar

e
D

ev
el

op
m

en
t

Cus tomer
Suppor t

Escalation
I tem

Online Help
Files

Online Doc
Files

Books
Printer's Proofs

QW - May 1999 Testing Culture - Keith Stobie
18

Common Test Designs

• Brian Marick’s Catalogs

• Cem Kaner’s Test Matrices

• Robert Binder’s Test Patterns

• Installation Test Design

• Host & Port test idiom

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 10

QW - May 1999 Testing Culture - Keith Stobie
19

Test Catalogs

• “a catalog is a collection of test requirements,
indexed by variables and operations”

• simple example
counts: The number of iterations, number of
data items, etc. Specification only.

-1 IN

0 IN/OUT

1 IN

>1 IN/OUT

maximum possible value IN/OUT

one larger than maximum possible value IN

QW - May 1999 Testing Culture - Keith Stobie
20

Test Matrices

• “matrices for whenever you can specify multiple
tests to be done on
 one class of object”

• simple example
Test Matrix for a
Numeric Input Field

N
ot

hi
ng

V
al

id
 v

al
ue

at
 L

ow
er

 B
ou

nd
 (

LB
)

of
 v

al
ue

at
 U

pp
er

 B
ou

nd
 (

U
B

)
of

 v
al

ue

A
t L

B
 o

f v
al

ue
-1

A
t U

B
 o

f v
al

ue
+

1

O
ut

si
de

 o
f L

B
 o

f v
al

ue

O
ut

si
de

 o
f U

B
 o

f v
al

ue

0 N
eg

at
iv

e

E
m

pt
y

F
ie

ld

N
on

-d
ig

its

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 11

QW - May 1999 Testing Culture - Keith Stobie
21

Test Patterns

• “Test patterns simply frame and focus the
issues that must be resolved to accomplish
any kind of testing.”

• simple example
Category-Partition:
Design test suite based on input/output
analysis.

QW - May 1999 Testing Culture - Keith Stobie
22

Installation Testing
• File Handling

pathnames (from test catalog) :
• empty name (legal? Default?)
• minimum name
• maximum name
• alphabet:
• network name
• alternate filesystem/drive

• System Settings
configuration

• minimum

• typical

• maximum

• Error/Exception Handling

• Compatibility

• Usability

• Special Capability Issues

• AutoPlay

• Custom Install
• all defaults

• no defaults

• other non-defaults

• Uninstall
• fresh install

• new (release) install

• re-install (over same version)

• parallel install

• Partial/Add Install
• single component at a time

• all components

• Upgrades

• On-line Registration

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 12

QW - May 1999 Testing Culture - Keith Stobie
23

Host test idiom

1) address length:
Reqt# Value Reason

2. 7 min legal: #.#.#.#
3. 15 max legal (255.255.255.255)

4) octet value
Reqt# Value Reason

2. 0 min
3. 128 middle
4. 255 max

2) octet length

3) octet characters

5) name length

6) dns components

7) name characters

<host-name> ::= <dns-name> | <dotted-address>

Test Requirements

Test Values
Reqts test case value
1.2, 4.2 Simple short addr: "0.0.0.0"
1.3, 4.3, 4.4 Simple safe (15) longest name: "000.127.128.255"

QW - May 1999 Testing Culture - Keith Stobie
24

Interview Questions: API

• Code method to merge 2 sorted linked lists:
What are the requirements?
Can they outline/design/code on the fly?

• How would you test a routine merging two
sorted linked lists?
Boundaries? Stress? Illegal inputs?

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 13

QW - May 1999 Testing Culture - Keith Stobie
25

Sample
Questions
: GUI

• How
would you
test a tree
control
based
widget?

QW - May 1999 Testing Culture - Keith Stobie
26

Metrics

• Defects (from Clarify database)
[CR = Change Request = Defect/Bug report]

• Code (from CVS repository)
metrics (from RSM)

• Web based standard reports

• Drill downs

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 14

QW - May 1999 Testing Culture - Keith Stobie
27

Product Birds Eye View

Graph

Report

CRs by version FOUND
(no replicates)

CRs by version FIXED
(includes Replicates)

Product B

QW - May 1999 Testing Culture - Keith Stobie
28

CRs by Component
CR Summary for Product A (Report generated: Tue Mar 2, 1999 09:43 PST)

Component Change Request Statistics
regression Priority 1 2 3 4 5 Total Severity 1 2 3 4 5 Total

OPEN 0 3 1 1 0 5 OPEN 0 2 1 1 1 5
FIXED 0 0 0 0 0 0 FIXED 0 0 0 0 0 0
CLOSED 1 14 0 2 8 25 CLOSED 1 15 0 0 9 25

sanity Priority 1 2 3 4 5 Total Severity 1 2 3 4 5 Total

OPEN 0 0 0 0 0 0 OPEN 0 0 0 0 0 0
FIXED 0 0 0 0 0 0 FIXED 0 0 0 0 0 0
CLOSED 0 0 2 1 1 4 CLOSED 0 0 2 1 1 4

stress Priority 1 2 3 4 5 Total Severity 1 2 3 4 5 Total

OPEN 0 1 0 3 0 4 OPEN 0 1 0 0 3 4
FIXED 0 0 0 0 0 0 FIXED 0 0 0 0 0 0
CLOSED 0 1 1 0 1 3 CLOSED 0 1 1 0 1 3

TOTAL Priority 1 2 3 4 5 Total Severity 1 2 3 4 5 Total

OPEN 0 4 1 4 0 9 OPEN 0 3 1 1 4 9
FIXED 0 0 0 0 0 0 FIXED 0 0 0 0 0 0
CLOSED 1 15 3 3 10 32 CLOSED 1 16 3 1 11 32

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 15

QW - May 1999 Testing Culture - Keith Stobie
29

Sample: Projected vs. Actual
Change Requests vs. Time

20 23 25 37 50
75 80

100 113
160

212

270

330

383
430

480

530
580

605
630

655
680 690 700 705710

20 22 20 27 35 55 52 65
43

62
87

130

183 164 154 164 174 180
150

118
74

30 20 9 5 00 1 5 10 15 20 28 35
70

98
125 140 147

219

276
316

356
400

455

512

581

650
670

691 700710

20 23 25 37 50
75 80

100 113
160

212

270

330

383
432

495

559

634

700

775
808

845 863
892

20 22 20 27 35 55 52 65
43

62
87

130

183 164 167 173 175

121

50 53 44 56
18 150 1 5 10 15 20 28 35

70
98

125 140 147

219
265

322

384

513

650

722
764

789

845
877

0

100

200

300

400

500

600

700

800

900

1000

1/
2

1/
9

1/
16

1/
23

1/
30 2/

6
2/

13
2/

20
2/

27 3/
6

3/
13

3/
20

3/
27 4/

3
4/

10
4/

17
4/

24 5/
1

5/
8

5/
15

5/
22

5/
29 6/

5
6/

12
6/

19
6/

26

C
um

ul
at

iv
e

C
R

s

Cum Opened
Cum Open
Cum Fixed/Closed
Actual Opened
Actual Open
Actual Fixed/Closed/Def/Dup

QW - May 1999 Testing Culture - Keith Stobie
30

Open/Fixed/Closed over Time

releases

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 16

QW - May 1999 Testing Culture - Keith Stobie
31

New Product Version

QW - May 1999 Testing Culture - Keith Stobie
32

Report Detail

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 17

QW - May 1999 Testing Culture - Keith Stobie
33

Code metrics

• Across Releases/Loads
• Drill down:

Product ⇒ Load ⇒ Component ⇒
Directory ⇒ File ⇒ Method

• Lines of Code (LOC),
Effective Lines (eLOC : exclude ‘{‘/’}’ only lines),
Blanks (Blk), Comments (Com)

• Complexity [Comparative (Cmp),
Cyclomatic (Cyc),
Interface (Int=Parameters+Returns),
Logic (Log=Cyc+Int)]

QW - May 1999 Testing Culture - Keith Stobie
34

Load to Load comparisons

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 18

QW - May 1999 Testing Culture - Keith Stobie
35

Source Code Metrics
Single load by component level

QW - May 1999 Testing Culture - Keith Stobie
36

Source Code Metrics
file level: logoncrypt.c with methods

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 19

QW - May 1999 Testing Culture - Keith Stobie
37

Project Milestone Tracking

QW - May 1999 Testing Culture - Keith Stobie
38

Deliverables Tracking

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 20

QW - May 1999 Testing Culture - Keith Stobie
39

Test Reporting

• Test Case: (unit of Development)
code or script with pass/fail result

• Test Point: (unit of Execution)
Test Case against a configuration

• Configuration :
Hardware, OS, Database, Compilers, etc.

QW - May 1999 Testing Culture - Keith Stobie
40

Test Development Tracking

Development Complete Automation Complete

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 21

QW - May 1999 Testing Culture - Keith Stobie
41

Test Unit
Development Life Cycle Diagram

Test Unit not targeted for MegaTest
but accepted for execution

Exception State

Under Development

Source Delivered

MT Integrated

Valid

Review Needed

Retired

New Test Unit
Test Unit developed by another group.

TDS and Code completed

Test Unit to be integrated into MegaTest

Code modification

required.

Code accepted by
test developer

Test Unit accepted for
execution

No longer valid for
future releases.

Test Unit needs rework to be
 integrated into MegaTest.

Test Unit is not working
correctly for current release.

QW - May 1999 Testing Culture - Keith Stobie
42

Test Execution Detail

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 22

QW - May 1999 Testing Culture - Keith Stobie
43

Weekly Execution & CRs

QW - May 1999 Testing Culture - Keith Stobie
44

Test Execution Tracking
Platform Test Execution Summary for load

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 23

QW - May 1999 Testing Culture - Keith Stobie
45

Release
Program
Summary

QW - May 1999 Testing Culture - Keith Stobie
46

Test Report Summary

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 24

QW - May 1999 Testing Culture - Keith Stobie
47

Test Report Failures
Click to see CR

QW - May 1999 Testing Culture - Keith Stobie
48

CR015637 (web link/report)

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 25

QW - May 1999 Testing Culture - Keith Stobie
49

Test Failure Notes

V. Notes First
New Problems Found Note CR# Found CR summary (or explanation)
msgBrowser_rpt_sum_mngNd 1 CR015601 N10 Log Central gives wrong directory for ...
msgdef_export_big 2 CR015626 N10 Got error messages when running msgdef_...
lc_online_help 3 CR015630 N10 The online help page for"Operation ...
msgBrowser_filt_combine 4 CR015633 N10 Filter for msg_body doesn't work when ...
 …
y2kInstAI_AC_AK_LC_fresh 13 CR015637 N10 Year 2K license doesn't work(it doesn't expire)
Perm_AI_AK_fresh 14 CR015638 N10 beamutil displays the license for TA+AK+...

QW - May 1999 Testing Culture - Keith Stobie
50

Test Automation

• Java API framework (AutoTest)

• Multi-Platform execution (MegaTest)

• GUI testing (commercial tool: SilkTest)

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 26

QW - May 1999 Testing Culture - Keith Stobie
51

AutoTest: Java API framework

public class SimplestTest extends AutoTest {

 boolean canA = false; boolean canB = true;

 public SimplestTest(TestContext tc) { super(tc); }

 /** Is canA true? */

 public boolean test A() {

 if (canA) return success("Can A") ;

 else return failure("Can't A") ;

 }

 /** Is canB true? */

 public boolean test B() {

 require("A") ;

 if (canB) return success("Can B") ;

 else return failure("Can't B") ;

 }

QW - May 1999 Testing Culture - Keith Stobie
52

AutoTest: Dependencies

public class TestStorage {

 TestStorage(TestContext tc) { super(tc);

 group("allLookups","Lookup1,Lkup2,Lkup3,Lkp4") ;}

 public boolean testBind() { ... }

 public boolean testLookup1(){require("Bind");... }

 public boolean testLkp2() { require("Bind"); ... }

 public boolean testLkp3() { require("Bind"); ... }

 public boolean testLkp4() { require("Bind"); ... }

 public boolean testUnbind() {
 require("Bind, %allLookups") ; ... }

 }

% = run, but not necessarily to have passed

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 27

QW - May 1999 Testing Culture - Keith Stobie
53

MegaTest: Management

MegaTestMegaTest
◆ Test Data Management

◆Test Project Management

combined with

Test Result FilesFiles processed and imported

◆Test Result Management

Software MetricsSoftware Metrics Test Set Generation

Test Set Execution

Input Data Files
➭Test Units and their attributes

➭Test Grouping

➭Test System Configuration

➭Test Result Filtering

produces For use by

Produces

QW - May 1999 Testing Culture - Keith Stobie
54

BEA Automated Test
Environment

Define Test Cases

MegaTest
TFW/Silk

System(s) Under
Test (SUT)

Text Report

Text

Test Lists

Import

HTML/WEB

Oracle
DB

Same
Oracle DB

Test
Data

CVS
Test

Executables

Log
Results

Track-It

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 28

QW - May 1999 Testing Culture - Keith Stobie
55

MegaTest: Test Driver

Test Set Harness
Test Unit Invocation

Test Driver

MegaTest Host System
mtgen Creates Test Set

mtrun Executes Test Set

T
e

st S
ystem

 1

 Test
 Code

T
e

st S
ystem

 #

Test Set Harness

Test Unit Invocation

MegaTest Host System

T
e

st S
ystem

 1
Test
Driver

T
e

st S
ystem

 #

OR

mtgen Creates Test Set

mtrun Executes Test Set

 Test
 Code

 Test
 Code

 Test
 Code

Test
Driver

QW - May 1999 Testing Culture - Keith Stobie
56

Unattended GUI testing

• Remote execution from MegaTest

• Unattended script execution &
automated gathering of results

BEA Systems, Inc. Quality Week - June 199

Testing Culture - Keith Stobie 29

QW - May 1999 Testing Culture - Keith Stobie
57

Summary / Future

• Hire / train / cultivate
outstanding Test Engineers

• Develop common Test Design patterns

• Improve metrics & status
automation and integration

• Improve test tools
flexibility and integration

• Continuously raise the bar

The Millenium is Getting Closer:
The Quickstart to Y2K Testing

Software Quality Week 1999 - San Jose

Andreas Rudolf / Rainer Pirker
AD Consultants
IBM Global Services Austria

IBM Global Services Austria

Presentation overview

Our experience
The Quickstart: What
can you do realistically?
Good practices
Bad practices

Measurements
Tools used
Y2K testing differences
Contingency management
Best practices summary

Software Quality Week 1999 03/31/99 1-2

IBM Global Services Austria

Our experience has been extended by large Y2K
testing projects in different industries
Our Department is strongly focussed on:

Test Consulting (EURO, Y2K, e-business, new product developments
etc.)

Application Development Effectivness Consulting (supporting the client
to assess and improve their application development processes)

Our experience includes:
Test consulting and test management for half a dozen large Y2K
projects

Marketing and workshop activities for dozens of customer projects

Test consulting in the finance, insurance, transport and utility
industries

IBM Global Services Austria

External Y2K problems can disrupt a firm's ability to
produce, deliver, sell and support products and
services

Supplies

Energy

ID
Verification,

Child Welfare
 Tracking

Trading Partners

Water

Process Receipts
and Payments

Public Health

Dispatcher
Systems, 999

Manufacturing

Infrastructure

Distribution

Customer
Service

Company
ASSETS

Software Quality Week 1999 03/31/99 3-4

IBM Global Services Austria

As time runs out our Quickstart will show you
how to speed up your testing!
The Quickstart essentials:

Focus on testing critical business transactions

Plan your test activities in parallel wherever possible

Key is a complete inventory of your software portfolio and the
supported business processes (business transactions)

Establish contingency management for those applications which
cannot be tested as well as those which support mission critical
business transactions

2. Identify
critical

applications

4a: Test of
critical

modules

5a: Time-warp
Planning

5b: Time-warp
Execution

6:
Contingency
Management

4b: QA Source
Code Scan

3a. Mission
critical &

important?

No

3b. Testable &
time for testing?

No

Yes
Yes

Non IT

1: Identify crit.
business

transactions

IBM Global Services Austria

Identifying the critical business transactions is the key
initial task for both time-warp test and contingency
management
Quickstart Step 1:

Identify critical business transactions

Advantages:
You do not test everything, you select and prioritorise what needs to be tested
based on business impact, just as for contingency management

Business transactions are understood by management, modules, lines of code
etc. are irrelevant to the business world

Steps to take:
Identify and describe the critical business transactions. Do this with people who
are subject matter experts.

Identify the most important parts of a business transaction, these are the
results, sequence, schematic input & output description

Software Quality Week 1999 03/31/99 5-6

IBM Global Services Austria

Identifying the applications gives you the technical
view of your business critical transactions
Quickstart Step 2:

Identify critical applications

Advantages:
Limits the technical support requirement for the test environment, data-aging
and problem fixing

Steps to take:
Identify the applications that support the critical business transactions

Identify the technical product owners and their deputies

IBM Global Services Austria

If an application is involved in a mission critical &
important business transaction contingency
management is needed

Quickstart Step 3:
Applications that are not tested and those which support mission critical &
important business transactions need to be covered by contingency
management

Steps to take:
Inventory is neccessary to support this step with links from business
transactions to IT applications

Decide which business transactions can be tested and which are primarily
covered by contingency management

Decide if enough time is left for testing => otherwise contingency management

Software Quality Week 1999 03/31/99 7-8

IBM Global Services Austria

Critical module tests give you a good return on your
investment for little effort and QA source code scan
secures that your conversion effort do not miss the target

Quickstart Step 4:
Test of critical modules and perform a QA Source code scan after
completion of the conversion phase

Advantages:
If you find an error it will be a critical one, since many applications depend
on the central date routines this module

Reduces the risk of Y2K failures

Steps to take:
Test of critical Modules:

QA source code scan:

1. Identify the central modules, where dates are
calculated;
2. Build test driver and test cases;
3. Execute the test cases

1. Select a pilot application to verify if this step is needed;
2. Choose an independent team;
3. Use a different tool as the analysis and conversion
team used

IBM Global Services Austria

Time-warp test planning and test execution is
the most effective way to find Y2K related bugs
Quickstart Step 5:

Time-warp test planning and test execution

Steps to take:
Test system preparation

Test data aging

Identify test dates (i.e. rollover 1999-2000, 29.02.2000)

Identify test cases

Execute the test cases

Document the results of the executed test cases

Problem management, Change management

Recommendation:
Use a hardware solution for the date manipulation in time-warp tests

Software Quality Week 1999 03/31/99 9-10

IBM Global Services Austria

Good practice #1: Establishing a test strategy is
the starting point of your test process

A sample for a proven Y2K test strategy:
Test level

Perform function tests in a
time-warp environment

Integration tests for inter-business
line transactions

Unit test for critical modules like
date calculation routines

Test environment
Dedicated test environment
(mainframe + bank branch office)

Hardware solution for time-warp
test

Black box test
Use test cases based on business
transactions

Test 20% of general transactions
weighted by business impact

Test 100% where date is affected

Check with the customer
Test cases

User documentation

Requirement, Design and Program
documentation

Test environment

available test tools

IBM Global Services Austria

Good practice #2: Have the right skills in your
test team
Technology

OS/2, Windows

Microsoft Office, Lotus Notes

S/390, MVS, CICS, IMS, JCL

Test methodology
Black & White box

Equivalence Class Definition

Metrics

Industry skills
i.e for banking: Knowledge of
banking systems (stock trading,
savings account management etc.)

Company internal know-how

Te
ch

no
lo

gy

Test Methodology

Industry skills

Software Quality Week 1999 03/31/99 11-12

IBM Global Services Austria

Good practice #3: Plan frequent time-warp
cycles and plan them in detail

Time-warp MO TU WE TH FR SA SU

Application days 02.03.1998 03.03.1998 04.03.1998 05.03.1998 06.03.1998 07.03.1998 08.03.1998

bundles Synchronisation & Preparation (computer-centre) Backup
Telefone
Bonds
Correcting values
Foreign money transfer
Bankbook

Time-warp MO TU WE TH FR SA SU

Application days 09.03.1998 10.03.1998 11.03.1998 12.03.1998 13.03.1998 14.03.1998 15.03.1998 real dates

bundles Realtime Realtime 29.12.1999 31.12.1999 31.12.1999 01.01.2000 02.01.2000 time-warp dates
Telefone can MUST
Bonds can MUST
Correcting values can MUST
Foreign money transfer MUST MUST
Bankbook MUST MUST

Time-warp MO TU WE TH FR SA SU

Application days 16.03.1998 17.03.1998 18.03.1998 19.03.1998 20.03.1998 21.03.1998 22.03.1998

bundles 03.01.2000 04.01.2000 05.01.2000 31.01.2000 01.02.2000
Telefone can can can can can

Bonds MUST MUST can MUST MUST
Correcting values can MUST can can can

Foreign money transfer MUST can can can can

Bankbook MUST MUST MUST testing not possible

Time-warp MO TU WE TH FR SA SU

Application days 23.03.1998 24.03.1998 25.03.1998 26.03.1998 27.03.1998 28.03.1998 29.03.1998

bundles 29.02.2000 29.02.2000 01/30.03.2000 31.03.2000 03.04.2000
Telefone MUST can can can

Bonds MUST MUST MUST MUST
Correcting values MUST can MUST MUST
Foreign money transfer MUST can can can

Bankbook testing not possible

Week 1:

Week 2:

Week 3:

Week 4:

time-warp environment not available

testing not possible

- recording test scripts

- data aging

- create comparable datas

IBM Global Services Austria

0
40

80
120

160
200

240
280

320

KLOCs
size of business line/subline

0

500

1000

1500

2000

2500

E
ffo

rt
in

 h
ou

rs

Effort of test definition
and execution for a business

line/subline

Good practice #4: Establish measurements right
from the start
i.e. sample project
estimation:
Only one input available: lines
of code

50 application bundles

6.0 MLOC code to test
leads to an effort of 410
person months

project length: 18 months
leading to 23 people working in
parallel for testing.

Due to management and
budget restrictions

only 15 people hired for testing

Software Quality Week 1999 03/31/99 13-14

IBM Global Services Austria

Bad Practice #1: Functional test planned by
developers
Developers have limited understanding of the underlying
business transactions

Which is ok, remember it is not their job!

The developer checks his own work
The person takes on the roles of developer and tester

Steps to do to avoid or get out of this situation:
Convince the management to get the business people onto the Y2K project

Priorisation based on business transactions can only be done by the
business and people who are subject matter experts

IBM Global Services Austria

Bad Practice #2: The test system is different from
the production system
Production system runs on 6 large IBM S/390 processors
The test system runs on just one IBM S/390 processor

With all production data and the complete batch job network

Which means the batch job network does not complete overnight, but the
clocks do not stop!!!

The batch job network has to be adapted for one processor

Steps required to avoid this situation:
Get the same hardware for your test system as for your production system

or, reduce test data and batch job network (skills of the developers needed)

Software Quality Week 1999 03/31/99 15-16

IBM Global Services Austria

Bad Practice #3: The standard software syndrom

Message from SAP: SAP R3 is Y2K ready.
Okay. But, what about your self written add-ons? If you have not
checked them, these add-ons are by default not Y2K ready!

Car production system:
A car producer uses a car production system from a partner, which
claims to be Y2K ready

The car producer has written add-ons to this system and five(!)
different versions of this system are running now in his production

This system is the core system for the car producer!

Steps required to avoid this situation:
Assess carefully

Divide into standard software and add-ons

Test when ever possible!

IBM Global Services Austria

Bad Practice #4: Assessing importance of
applications based only on date impact
Car production system:

Message from the Y2K project team: The code of the car production system
is only to 0,2% impacted with date calculation relevant code

Yeah, that is true but this is the most important system for car production

A failure goes quickly in Mio of $!

Steps required to avoid this situation:
Assess carefully

Testing decisions should be based on business impact

Software Quality Week 1999 03/31/99 17-18

IBM Global Services Austria

Bad Practice #5: Technical comparision of the
complete production data without link to business
transactions
Technical test with all production data

No functional test is strictly technical

Almost no priorisation is possible when there is no link from code to
business transactions

After comparision with the baseline data many differences were found

Very difficult to classify the problem (real Y2K problem, data-aging problem,
problems partly caused by differences between production and test system)

Steps to do to avoid or get out of this:
Reduce data in test!

Go for the functionally oriented test of the core business transactions!

IBM Global Services Austria

Measurements from a sample test project to
address the main objectives in Y2K testing
Customer:

Large bank in Austria

The software portfolio of
the bank

17.5 Millon lines of code (MLOC),
6.0 MLOCs under active
maintenance

Programming Languages: 70%
Assembler, 16 % PL/I; both under
MVS, 14% C under OS/2

The portfolio is partitioned into 50
application bundles

Goal:
Testing the software portfolio for
Year 2000 readiness

Establish a test center which can
later be used for general regression
and stress tests

Conversion Techniques:
mainly: static window

partial: flexible window

only when absolutely neccessary:
data expansion

Software Quality Week 1999 03/31/99 19-20

IBM Global Services Austria

10%

20%

70%

Unit test
Integration test
Function test

Effort split between test levels

Testing the main functions of applications is 70%
of the whole testing effort

IBM Global Services Austria

0% 47% 75%10%

17%

7%

65%

22%

9%
25%

14%
9%

1996 1997 1998 - 1Q1999
0

10

20

30

40

50

60

70

80

90

100

Effort distribution

15,3%

15,3%

9,7%
59,7%

Total

Projektmgmt
Analysis

Conversion
Test

Project period: 1996-1Q1999

Testing is 60% of the total Y2K effort

Software Quality Week 1999 03/31/99 21-22

IBM Global Services Austria

1230

7355

3861

486

Test period: 1997-1Q1999

0

1000

2000

3000

4000

5000

6000

7000

8000

T
es

t
o

b
je

ct
s

cr
ea

te
d

Business Transactions
Equivalence Classes
Testcases
Scenarios

Test objects for 50 applications bundles were
created

IBM Global Services Austria

7.5% of 14.500 executed Testcases failed

Relation testcases PASSED to FAILED

Testcases
FAILED
7.5%

Year 2000
ERRORs

4%

Testcases
PASSED

92.5%

General ERRORs
3.5%

Software Quality Week 1999 03/31/99 23-24

IBM Global Services Austria

29.12.1999
30.12.1999
31.12.1999
01.01.2000
02.01.2000
03.01.2000
04.01.2000
05.01.2000
30.01.2000
31.01.2000
01.02.2000
28.02.2000
29.02.2000
01.03.2000
30.03.2000
31.03.2000
01.04.2000
03.04.2000

0 10 20 30 40 50

application bundles

Frequency of tested dates for
50 application bundles

3 common time-warp
slots

29.12.1999 -> 04.01.2000

30.01.2000 -> 01.02.2000

29.02.2000

+ application specific
dates

for example: end of week, end
of quarter, bi-weekly interval,
first workday after Easter

All applications bundles were tested on 31.12.1999
and 29.02.2000 in a time-warp cycle

IBM Global Services Austria

In total we found 469 errors. 91 of them were
high severity Y2K bugs
Examples of impact:
Foreign money transfer
application:

No money transfer possible in
Year 2000

Common used date module:

Central date calculation routine
traps at 29th February 2000

B/L (bank bill) management:

Acceptance of a draft not possible
at 29th February 2000

high medium low
Error severity

0
40
80

120
160
200
240
280

E
rr

or
s

fo
un

d

General errors
Year 2000 errors

Errors during test of
50 application bundles

Software Quality Week 1999 03/31/99 25-26

IBM Global Services Austria

Most severe errors were found on 29.02.2000

29.12.1999
30.12.1999
31.12.1999
01.01.2000
02.01.2000
03.01.2000
04.01.2000
05.01.2000
30.01.2000
31.01.2000
01.02.2000
28.02.2000
29.02.2000
01.03.2000
30.03.2000
31.03.2000
01.04.2000
03.04.2000

0 20 40 60 80 100 120

low severity
medium sev.
high severity

Errors found in 50 time-warp tested application bundles

26

25

16

8

IBM Global Services Austria

Some examples of date related problems in the
period: December 1998 / January 1999
All Taxi Meters in Stockholm failed
The largest Petrol companies credit cards failed
Post Office postal bank account disrupted
UK Bank letter

...... Limiting liability for year 2000 insurance incidents

Insurance Period: 1st January 1999 to 1st January 1900

Electronics manufacturer - three weeks before Christmas found
140 occurences of "IF YEAR equals 1999"
Irish Electricity Board

Year 2000 ready solution implemented in December 1998

3 weeks of major disruption

Still some supply chain problems

Software Quality Week 1999 03/31/99 27-28

IBM Global Services Austria

Business transaction definition

Test case definition

Equivalence classes definition

Test case and scenario execution

Problem management

Our cornerstone tool suite is based on Lotus Notes
and MS Access and integrates:

Testcase administation and problem management
databases were developed to support our Y2K test
methodology

Business
Transaction

Definition

Equivalence
Class

Definition

Testcase
Definition

Scenario
Definition

Methodology and Tool: From Test Case Definition through Execution

Testcase &
Scenario
Execution

Problem
Management

IBM Global Services Austria

Tools are used to improve testing productivity
and to support data manipulation

Capture/replay tool
QAHiperStationTM from
CompuWare (mainframe
applications)

QA PartnerTM from Segue

(client/server systems)

Activity
Time using

QA PartnerTM

Time without
QA PartnerTM

Test case creation 160 h 150 h
Correcting generated scripts 5 h
Initial learning effort 5 h
Test case execution once 10 h 40 h

Total 180 h 190 h
Test execution 3 more time 30 h 120 h

Total 210 h 310 h

Data manipulation
File-AIDTM from CompuWare (prepare and verify test data)

File-AID/Data AgerTM from CompuWare (data aging)

Advantage of using a capture/replay tool for
regression tests

Software Quality Week 1999 03/31/99 29-30

IBM Global Services Austria

Y2K testing differences to normal testing

Short testing time at fixed date
The date is definitely fixed, there is no way to stretch the testing time

No quality improvement
The goal is simply to fix the Y2K related bugs

Affects the whole company
Interfaces to other companies or the government may be affected

Special test beds needed
For mainframe tests: Updated licenses, advance system clock

No pilot users
No pilot phase with pilot users can be done as with normal rollouts

IBM Global Services Austria

Contingency Management is a framework that
addresses business continuity strategy, risk planning,
prevention, and recovery from Y2K related problems

Operational Execution

Business Resumption

Event Management

Event

Risk Planning & Prevention

Readiness Reviews

Rollover Management

Contingency Planning

12/31/1999

Software Quality Week 1999 03/31/99 31-32

IBM Global Services Austria

Operational Execution

Business Resumption

Event Management

Event

Risk Planning & Prevention

Readiness Reviews

Rollover Management

Contingency Planning

12/31/1999

Launch
Readiness

Review

Present
Findings

Gather Data Analyze
Findings

Readiness Reviews provide a high-level analysis of Y2K
initiatives in order to identify opportunities for
improvement based on progress to-date.

Characteristics:
High level review
Quick completion - One Week per area
Focus on the key Y2K project areas
Leverage questionnaires and templates
Identify Issues and Recommendations

IBM Global Services Austria

Operational Execution

Business Resumption

Event Management

Event

Risk Planning & Prevention

Readiness Reviews

Rollover Management

Contingency Planning

12/31/1999
Analyze

Business
Processes

Prioritize
Processes,

Develop Strategy

Launch
Contingency

Planning
Strategy

Analyze
Assets &
Vendors

Review
Strategy With
Management

Launch "Plan
Development"

Activity

Develop
Contingency

Plans

Review
Contingency

Plans

Analyze
External
Agents

Launch
Organizational

Readiness

Train
Personnel
on Plans

Test
Contingency

Plans

Phase 2
Plan Development

Monitor
& Modify

Plans

Phase 3
Organizational
Preparedness

The contingency planning model covers strategy,
plan development and testing the plan.

Refine Contingency
Plans
Refine Scope

Phase 1
Strategy Definition

Software Quality Week 1999 03/31/99 33-34

IBM Global Services Austria

Example from a major Swedish Bank - the resulting
contingency plans have a wide priority spread and a
wide variety of contingency activities
Contingency plans have been considered for 339 prioritised business sub-processes
across all business areas of the Bank.

The defined contingency preparations include:

development of information plans

education, training and extra staffing

development of contact lists, contingency organisations

assessment of alternative routines and information channels

synchronisation of contingency planning including mutual testing with external
partners

Some examples of contingency actions defined in the plans are the use of:

stand alone PCs with the clock reset to a time before Y2K

hardcopies of customer information, positions and engagement status printed in
advance

other backups; telephone alternatives; multiple operators, mobiles

manual routines

IBM Global Services Austria

Launch
Rollover
Planning

Execute
Rollover Plan

Steps

Prepare
For

Rollover

Logistics/
Supply Chain

Technology

Customer
Interaction

Facilities
Infrastructure

Cash
Management

Human
Resources

Rollover
Management

Exceptional
Management

Action

Rollover Management establishes procedures, people,
equipment, materials and agreements to avoid or
minimize Y2K exposures around the rollover period

Operational Execution

Business Resumption

Event Management

Event

Risk Planning & Prevention

Readiness Reviews

Rollover Management

Contingency Planning

12/31/1999

Software Quality Week 1999 03/31/99 35-36

IBM Global Services Austria

Launch
Event

Management
Manage Command Center

Launch
Event
Team

Determine
Actions

Execute
Actions

Assess
Situation

Event Event

Event

Command
CenterEvent Management

Event Management assists in establishing a Command
Center to monitor for events, prioritize events, deploy
resources and report status to executive management.

Operational Execution

Business Resumption

Event Management

Event

Risk Planning & Prevention

Readiness Reviews

Rollover Management

Contingency Planning

12/31/1999

IBM Global Services Austria

Business
As

Usual

Manage Command Center

 Assess
Event

History

Develop and
Communicate
Re-Synchroni-

zation Plan

Develop and
Communicate

Business
Improvement
Opportunities

Transition
Command

Center

Operational Execution

Business Resumption

Event Management

Event

Risk Planning & Prevention

Readiness Reviews

Rollover Management

Contingency Planning

12/31/1999

Business Resumption provides support for the analysis
of an event, the implementation of corrective actions
and the re-establishment of normal business processes

Software Quality Week 1999 03/31/99 37-38

IBM Global Services Austria

Best practices summary

Testing:
Use test cases that test critical business transactions

Follow a black box testing strategy

Use exact values from equivalence class definitions, for simple test cases use
the equivalence class definitions

Establish metrics right from the start

Establish a test system that is a close copy of the production system

Contingency management:
Even if you are confident of your own Y2K work, you must protect yourself
against external failures

It is prudent to begin now to identify and prepare for the most serious failures

Contingency management focuses on the business processes essential to
business continuity, and on the Y2K-affected assets held by you and outside
parties on which those processes depend

IBM Global Services Austria

Open questions?

Ask them right now!
or if they come up later contact us:

Andreas Rudolf

e-mail:Andreas_Rudolf@at.ibm.com

Phone: +43-1-1706-4347

Fax: +43-1-1706-2393

Web: www.geocities.com/Vienna/Strasse/7559/

Rainer Pirker

e-mail:Rainer_Pirker@at.ibm.com

Phone: +43-1-1706-4163

Fax: +43-1-1706-2393

Software Quality Week 1999 03/31/99 39-40

1

© Gilb@acm.org 1999 1

Evolutionary Delivery Project Management

• or “EVO method.
• Quickstart Presentation
• Quality Week, San Jose

• 1:30 PM Wednesday 26th May 1999

 by Tom Gilb

© Gilb. Permission to copy and share freely, with credit, is granted.

For detail:

 Gilb, “Principles of Software Engineering Management”, Addison Wesley Longman.

Gilb, ‘Evo: The Evolutionary Project Managers Handbook’ at

http://www.Result-Planning.com

© Gilb@acm.org 1999 2

Introductory Literature
• See Chapters 7, 13, 15 (Literature survey)

2

© Gilb@acm.org 1999 3

Conventional Project Model

Frozen Build to
design

=Requirements?

Requir
e-
ments

Engin-
eering

Construction/
Acquisition

Test
(system, acceptance)

© Gilb@acm.org 1999 4

Simple Evo Model

Project Management

System Architecture

Requirements

Design

Build

Internal Test

Deliver to ‘User’

Study Result versus Plan

•Head

•Body

3

© Gilb@acm.org 1999 5

OMAR Case delivery value vs Waterfall (1998)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Project Month

Project FF Cumulative Delivered Functionality
Project FF Benefit / Cost
OMAR Cumulative Delivered Functionality
OMAR Benefit / Cost

Using Evolutionary Project Management, To Get More Quality, From Fewer Resources, In Less Time; By Stuart Woodward, DoubleHelix Software
& Services Ltd.

© Gilb@acm.org 1999 6

Basic Principles of Evo Delivery
• RD1. Any Project can be managed better using process control.
• RD2. Any ‘Improvement’ can be delivered as a series of smaller

changes.
• RD3. No person knows all the results of a design in advance.
• RD4. No person can know what all the goals should be, in

advance.
• RD5. You must be prepared to compromise intelligently with

reality.
• RD6. Early delivery means early payback.
• RD7. The customer is always right, even when they change their

goals.
• RD8. There is no real end to a project, if we have competition.
• RD9. You cannot foresee every change, but you can foresee

change itself.
• RD10. Useful results are your only justification for existence.

4

© Gilb@acm.org 1999 7

“Evo” model

System
Requirements

System
Design Evo Step 1

Evo Step 2

Evo Step n

Evo Step
1. Requirements
2. Step Design
3. Assemble
4. Deliver Step
5. Study Step

© Gilb@acm.org 1999 8

What EVO is

• a process for
• project management.

• This includes any effort to
–implement design ideas

–so as to achieve stated goals.

5

© Gilb@acm.org 1999 9

Evo Cousins: Process Control

Evo DPP Defect
Prevention
 CMM 5

Inspection
(Doc. Qual. Ctl.)

CMM 3

SPC
Statistical
Process
Control

Project
oriented

Organization
orientation

Document, and
work process

General, but
manufacturing

bias
Meet project
goals or
change them

Improve
general org.
ability work

Approve work,
clean work,
analyze tasks

Improve
work
processes

Project
Manager

Quality
Director

Inspection
process owner

Quality
Control

© Gilb@acm.org 1999 10

The Evo Cousins’ Commonality

• Learning
• Measurement
• Future Improvement orientation
• Process Improvement
• The Deming/Shewhart (Juran) Statistical

ideas
• Eternal learning
• Distinguish between ‘chance causes’

and ‘common causes’ (fix the common
causes)

6

© Gilb@acm.org 1999 11

EVO differs from conventional project
management methods in these ways:

• detailed design is integrated into entire system life cycle, rather
than a distinct initial phase

• specific provision is made for adjusting requirements, design, and
resource estimates as practical result delivery experience dictates;

• it is heavily oriented towards getting control over multiple critical
result (qualities and resources) parameters simultaneously;

• it attempts to deliver some concrete improvement results to real
users extremely early;

• it attempts to deliver results to users frequently, at typically 2%-
of-total-cost intervals;

• it is oriented towards project survival and success in spite of high
risks, and turbulent environments;

• by early frequent realistic deliveries it gets credible feedback to
project management, which permits adjustment in time of
anything threatening project success.

© Gilb@acm.org 1999 12

EVO aims to:
• deliver early: first deliveries (of some improvement) "next

week" if you are committed, even for large total projects;
• deliver partial improvements regularly: weekly, monthly (non-

disturbing for user/customer);
• prioritize customer's most -important improvements for early

delivery;
• discover "true costs", in practice, before larger commitment is

made;
• involve the customer early, practically, frequently;
• control quality aspects quantitatively;
• control costs and deadlines, much better than conventional

project management;
• exploit all other aspects of ”Result Driven Management"

methods (Impact Estimation, Planguage, Document Quality
Control).

7

© Gilb@acm.org 1999 13

What EVO is not

• phased development
– (Evo uses much smaller increments, 50 steps, not 3);

• prototyping
– (Evo delivers final cumulative results to users);

• incremental development
– DoD 498: no change to requirement and design permitted
– ("delivery" is the operative word for us here);

• conventional critical path method
– (our ‘critical paths’ are improvements, not just costs or time);

• a "waterfall" model method
– (it is more like a series of many small waterfalls).

© Gilb@acm.org 1999 14

Evolutionary Results Delivery
Method Project Planning Policy

• PP1.(Budget) No project cycle shall exceed 2% of total budget
before delivering measurable results to a real environment.

• PP2. (Deadline) No project cycle will exceed 2% of total project
time (one week for a year's projects) before it demonstrates
practical measurable improvement, of the kind targeted.

• PP3.(Priority) Project cycles which deliver the most planned
results to customers, for the resources they claim, shall be
delivered first, to the customer.

8

© Gilb@acm.org 1999 15

Priority: a definition

• 'priority'

•A choice you make
when resources are

limited

© Gilb@acm.org 1999 16

Dynamic Priority Principles

• Priority: is something which has strongest claim
on your limited resources.

• Priority is set by your “targets” (Must, Plan)
• Priority is determined ‘as time goes by’

– by need for survival (distance to Must levels)
– then by need to succeed (distance to Plan levels)

• when all Plan levels are achieved
– there is nothing which has claim on your resources
– you are done with the project
– free remaining resources for other projects

9

© Gilb@acm.org 1999 17

Dynamic Priority

Product

Step 1

Step 1

Step 2

Step 2

St.3

Must

Must Plan

Plan

‘Performance’ now has priority
because it is not at ‘survival’ level yet

‘Reliability’ now has priority
because it has not reached

‘satisfaction’ level yet.

© Gilb@acm.org 1999 18

Practical priorities

¥ Survival Priorities

– Real , but undocumented factors
– MUST levels of stated requirements

• with respect to time and other [conditions]
¥ Satisfaction Priorities

– Enough resource to satisfy PLAN levels
– Real, but undocumented factors
– PLAN levels of stated requirements

• with respect to time and other [conditions]
¥ IF no Priorities remain (no claim on resource)

– all PLAN levels are satisfied [on time, place]
– Project stop
– Redistribute or save resources

10

© Gilb@acm.org 1999 19

Backroom Development, Frontroom Delivery.

• The Evo deliveries are a ‘cyclical change’ from the
user/customer/potential market (“recipient”) point of
view.

• Some of the components which make up a delivery
step may take much longer time to purchase or build,
than the delivery cycle timing.

• These are prepared in the background (‘backroom’),
early enough to deliver at the appropriate step, from
the ‘frontroom’.

• The time needed to get backroom step components
ready for delivery is invisible to the step recipient.

• Until the step components are actually ready, they
cannot be considered for scheduling as a frontroom
step delivery.

© Gilb@acm.org 1999 20

Backroom Frontroom

B

C

E

A

F

G

D

H

t1 t2

B

C

E

A

F
G

D

H

t2

t1

t3

t3

11

© Gilb@acm.org 1999 21

Why do people have difficulty finding smaller delivery steps?

• people have almost no formal experience, or
teaching, on how to sub-divide

• they assume falsely, that we are going to sub-
divide their ‘design idea’ (we divide results)

• they don't realize we are going to sub-divide the
result delivery (increments of user pleasure)

• they have little faith that there is a solution, and
give up easily (there is always a way to divide)

• they have no managers who insist on an
Evolutionary solution,
– and give people help to do it.

© Gilb@acm.org 1999 22

Here are some principles of dividing up
a project into smaller steps:

• Divide the result, not the system.
• Get some real improvements now, don't wait for final goals.
• Ask your customer what they want most improved.
• Don't be afraid to use the "old system" as a temporary crutch.
• Don't hesitate to use some temporary "scaffolding" to get results

now.
• Make unusual agreements with suppliers, like 'pay as you

actually use'.
• Don't give up. Call it a challenge. Try other minds. There is a

way.
• Invent new design ideas,

– better for incrementing than those initally specified.
• Go to the "customer" to get permission to change constraints.
• Use the policy (2% resource cycles, biggest bang for buck first)

12

© Gilb@acm.org 1999 23

Practical Tip . Advice on finding smaller implementation
cycles when it seems difficult or impossible to achieve.

PART 1 of 2

• • Believe there is a way to do it, you just have not found it yet!
• • Identify obstacles, but don't use them as excuses: use your imagination to get rid

of them!
• • Focus on some usefulness for the user or customer, however small.
• • Do not focus on the design ideas themselves, they are distracting, especially for

small initial cycles. Focus on getting results and feedback.
• • Think; one customer, tomorrow, one interesting improvement. When that

succeeds, multiply it.
• • Focus on the results (which you should have defined in your goals, moving

toward PLAN levels).
• • Don't be afraid to use temporary-scaffolding designs. Their cost must be seen in

the light of the value of making some progress, and getting practical experience.
• • Don't be worried that your design is inelegant; it is results that count, not style.
• • Don't be afraid that the customer won't like it. If you are focusing on results

they want, then by definition, they should like it. If you are not, then do!
• • Don't get so worried about "what might happen afterwards" that you can make

no practical progress.
• • You cannot foresee everything. Don't even think about it!

© Gilb@acm.org 1999 24

Practical Tip . Advice on finding smaller implementation
cycles when it seems difficult or impossible to achieve.

PART 2 of 2

• • If you focus on helping your customer in practice, now, where they really need it,
you will be forgiven a lot of "sins"!

• • You can understand things much better, by getting some practical experience
(and removing some of your fears).

• • Do early cycles, on willing local mature parts of your user community.
• • When some cycles, like a purchase-order cycle, take a long time, initiate them

early, and do other useful cycles while you wait. (Parallel activity is OK!)
• • If something seems to need to wait for "the big new system", ask if you cannot

usefully do it with the ‘awful old system’, so as to pilot it realistically, and perhaps
alleviate some 'pain' in the old system.

• • If something seems too costly to buy, for limited initial use, see if you can
negotiate some kind of "pay as you really use" contract. Most suppliers would like to do
this to get your patronage, and to avoid competitors making the same deal.

• • If you can't think of some useful small cycles, then talk/observe directly with the
real "customer" or end user. They probably have dozens of suggestions.

• • Talk with end users in any case, they have insights you need.
• • Don't be afraid to use the old system and the old "culture" as a launching

platform for the radical new system. There is a lot of merit in this, and many people
overlook it.

13

© Gilb@acm.org 1999 25

How to get EVO into an organization

• Show that it works by practical
demonstration.

• Get the policy of planning the
Evo way adopted by top
management

© Gilb@acm.org 1999 26

How to sell EVO to managers

• Show, in practice, that it:
–Gives results early
–Gives better project control versus

plans and budgets
–Pleases the customers
–Is structurally incapable of a large

disaster.

14

© Gilb@acm.org 1999 27

How to sell EVO to planners and
engineers

• Show them that:
• they can get into real action with users and systems

earlier
• they get credibility with customers and their managers by

the stream of real results
• they can resolve many of their goal and design idea

problems by the practical route
• they can prove many points to customers and managers

in practice
• they can be more experimental with new technology,

since failure is more limited and controlled.
• Help them to make their first Evo plan in practice.

© Gilb@acm.org 1999 28

How to train people to do EVO

• An experienced Evolutionary planner must help them to
make a real plan.

• Secondarily, the “Requirements Driven Management”
book contains the detailed theory.

• You really need to master the art of specifying goals
quantitatively,

• and estimating design impact versus those goals.
• Evolutionary result delivery is not just about chopping

up the project into cycles. It is fundamental that those
cycles be towards defined primary improvement goals.

15

© Gilb@acm.org 1999 29

Step Impact Estimation and Accounting

• An IE table for project management planning or
feedback. It specifies the projected or actual impact
of any set of design ideas done at a particular
implementation cycle.

Cycle 1
I1[CA]

Cycle 2
I1[NY] &
I4[CA]

Cycle 3
I1[DC] & I5

Cycle 4
I3[AZ]

Cycle Sum Cycle SumCycle Sum Cycle Sum

GOAL-Q

GOAL-I

COST-C

Bene/Cost

30% 30%

0% 0%

 2% 2%

30/2 30/2

40% 70%

60% 60%

5% 7%

100/
5

130/
7

10% 80%

25% 85%

4% 11%

35/4 165/
11

30%110%

25%110%

39% 50%

65/
39

220/
50

© Gilb@acm.org 1999 30

Evo Book Chapters

• 0: Overview. The essential character of Evo.
• 1: Requirements at Project Level: The Evo direction.
• 2: Design: The Evo ‘Means’ to the Target ‘ends’.
• 3: Impact Tables: The Evo Accounting and Planning Mechanism

• 4: Evo Planning: How to specify an Evo Project plan.
• 5: Evo Step Objectives: Cycle Requirements
• 6: Detailed Evo Step Design: Extracting function and design to

make a step.
• 7: Planning the Evo Step: The delivery cycle in detail.
• 8: The Evo Backroom: Readying components for packaging and

delivery.
• 9: Evo Culture Change

16

© Gilb@acm.org 1999 31

Quotations from
Evo Practice

From the book manuscript by Tom Gilb
At www.result-planning.com

© Gilb@acm.org 1999 32

Any Complex System <-Todd HP

• “Evolutionary Development has
been positioned here’ [in cited HP
Journal article] ‘as a life cycle for
software development, but it really
has much broader application to any
complex system.”

• [COTTON96].

17

© Gilb@acm.org 1999 33

Early simple proof of concept (Ericsson)
• “Organic integration [Evo] is a way of getting rid of the myth [that

problems don’t exist] very early on.
• You could say that organic integration demands of an organization

that it do the specifications, the system, the design and the
verification for one first very small task very quickly.

• It also demands of the organization that it do this right in terms of
delivering products correctly.

• If the organization cannot even manage its first simple task in the
time agreed, it certainly should question the ability to manage more
difficult tasks.

• This process of questioning is very healthy. It may for example
prevent the delusions of grandeur so common in nearly all
organizations”.

• [Ericsson94], page 26, Jack Järkvik, in the context of building
mobile telephone base stations

© Gilb@acm.org 1999 34

Steps to Users (JPL)

• Evo “involves a series of incremental deliveries.
• Each delivery contributes an operable, functionally

valuable, partial system.
• The overall system is developed and delivered to its users

(and thereby contracturally delivered to its sponsor) in
small evolutionary increments.

• The users employ the evolving system in the daily
conduct of their mission.”

• [SPUCK93], Jet Propulsion Labs, JPL, on Rapid
Development Method RDM hereafter called ‘Evo’.

18

© Gilb@acm.org 1999 35

Upfront Requirements (JPL)

• “We assert that, in the case of an important class of systems, namely
those that automate human functions, it is unreasonable if not
impossible to expect system users or operators to be able to state
Final Operating Capability requirements up front.

• An evolutionary approach is essential.
• This is true because staff functions change, user insight into

operations increases, and concepts of operation are modified by the
introduction of automation.

• Further, needs that are rejected as impossible, beyond the existing
technology base, or simply heretofore inconceivable under
Conventional Development Methods often are perceived as
achievable at some point under [Evo].”

• [SPUCK93]

© Gilb@acm.org 1999 36

Synch and Stabilize (Ms)

• “We have labeled Microsoft’s style of product
development the ‘synch-and-stabilize’ approach.

• The essence is simple: continually synchronize
what people are doing as individuals and as
members of different teams, and periodically
stabilize the product in increments

• – in other words, as the project proceeds, rather
than once at the end.”

• CUSUMANO95 , 14

19

© Gilb@acm.org 1999 37

User Feedback (JPL)

• Evo “expects active feedback from the experience gained from one
incremental delivery to the requirements from the next.

• As Evo periodically delivers to the users an increment of capability,
the users are able to provide understanding of how effectively that
delivery is meeting their needs.

• As the users assess the impact of a delivery on their operations, the
system developer is able to work with them to adjust the system
requirements to better satisfy their operational needs.

• Evo lets that adjusted set of requirements be the basis for all
subsequent incremental deliveries.

• This feedback process is formal and proactive. It is a key element in
making Evo effective from a user’s perspective.”

• [SPUCK93]

© Gilb@acm.org 1999 38

Milestone Control (Ms)

• “Mike Conte, a senior program manager for Office
• “We actually break our development into three separate milestones.
• They might be six week milestones, [or] they might be ten-week

milestones …
• At the end of the milestone our goal is to get all the features for that

milestone that have been implemented … for that milestone at zero
bugs….

• And then, when we get to the point where we get to ‘ship quality’,
we can move on to the next milestone.

• The point of this is that we never get so totally out of control that
we’re at the end of a project and we have so many thousands of
bugs that we can’t ever tell when we’re going to finish it.”

• CUSUMANO95 , page 200

20

© Gilb@acm.org 1999 39

Cycle Length: short! (HP)

• The general rule of thumb is to keep the cycle length as
short as possible. Within Hewlett-Packard, projects have
used a cycle length as short as one week and as long as
four weeks. The typical cycle time is two weeks.

• The primary factor in determining the cycle length is
how often management wants insight into the project’s
progress and how often they want the opportunity to
adjust the project plan, product, and process.

• Since it is more likely that a team will lengthen their
cycle time than shorten it, it is best to start with as short a
cycle as possible.

• [COTTON96]

© Gilb@acm.org 1999 40

Early Sales Impact (HP)

• “Evo allows the marketing department access to early
deliveries, facilitating development of documentation and
demonstrations.

• Although this access must be given judiciously, in some
markets it is absolutely necessary to start the sales cycle
well before product release.

• The ability of developers to respond to market changes is
increased in Evo because the software is continuously
evolving and the development team is thus better
positioned to change a feature set or release it earlier.”

• [MAY96]

21

© Gilb@acm.org 1999 41

Major Milestone Releases (MS)

• “Major Milestone Releases. A project organizes
the development phases around three or four major
internal releases, or ‘milestone subprojects’.

• Microsoft intends these releases to be very stable.
Theoretically, projects could ship them to
customers,

• as Chris Peters observed “… What you do is you
essentially divide a project into three [or so] pieces
… and you pretend to ship the product after each
piece.”

• <-- CUSUMANO95 , page 200

© Gilb@acm.org 1999 42

Uncertainty Drives Evo (DOD)

• "When requirements uncertainty indicates an
Evolutionary Acquisition approach, the program may
involve little or no advanced development.

• In contrast, when technological uncertainty indicates an
evolutionary approach, significant amounts of advanced
development are ordinarily involved.

• Indeed, the evolutionary strategy has been derived as a
means of dealing with just such uncertainties because
development periods involved in making very large or
"revolutionary" jumps at the limits of a state-of-the-art
take so long and are so risky that U.S. readiness is being
threatened.

• [DODEVO95] quoting from other sources

22

© Gilb@acm.org 1999 43

Techno Risk/ User Risk (DoD)
• "While it is highly desirable that users be constantly

knowledgeable about programs with technological
uncertainty
– _ indeed play a continuous, if reactive role in the acquisition of

any DoD system
– - the approach for these programs does not require user acceptance

of any significant responsibility at any stage of the acquisition
cycle.

• In contrast, for programs with requirements uncertainty,
– succeeding blocks of work after the first cannot be adequately

specified
– until feedback from some user is received on the usefulness and

needed modifications to prior blocks."

• [DOD EVO 95] quoting from other sources

© Gilb@acm.org 1999 44

Evo shortens project by feedback (MS)

• “It appears that this incremental
approach takes longer, but it
almost never does, because it
keeps you in close touch with
where things really are”

• Brad Silverberg, Sr. VP for Personal Systems
Microsoft in CUSUMANO95 , page 202

23

© Gilb@acm.org 1999 45

Evo acknowledges only one measure of effectiveness.

• It is ‘measured progress towards defined target goals at the
recipient level’.
– User improvement.
– Customer improvement.
– As viewed by them, and their formal agenda.

Customer Objectives

© Gilb@acm.org 1999 46

Costs of Evo (HP)
• “Adopting Evolutionary Development is not without cost.
• It presents a new paradigm for the project manager to follow when decomposing

and planning the project,
• and it requires more explicit, organized decision making than many managers and

teams are accustomed to.
• In traditional projects, subsystems or code modules are identified and then

parceled out for implementation. As a result, planning and staffing of large
projects were driven by the structure of the system and not by its intended use.

• In contrast, Evolutionary Development focuses on the intended use of the system.
The functionality to be delivered in a given cycle is determined first. It is common
practice to implement only those portions of subsystems or modules that support
that functionality during that cycle.

• This approach to building a work breakdown structure presents a new paradigm
to the project manager and the development team. Subsystem and module
completion cannot be used for intermediate milestone definition because their full
functionality is not in place until the end of the project. The time needed to adopt
this new paradigm and create an initial plan can be a major barrier for some
project teams.” [COTTON96] HP Journal August 1996 (web available)

24

© Gilb@acm.org 1999 47

The Evo measure of project ‘efficiency’ is targeted results in relation to resources
needed to deliver them.

• The secondary measure of a project is efficiency.
• This is the effectiveness (delivered recipient-stipulated

results) in relation to all ‘resources consumed’ to deliver the
results.

• This is a measure of project profitability, or of return on
investment.

Project EffectivenessCost

© Gilb@acm.org 1999 48

Mills on Project Control

• “Software Engineering began to emerge in FSD (IBM Federal Systems Division, from
1996 a part of Lockheed Martin Marietta) some ten years ago [about 1970] in a continuing
evolution that is still underway.

– Ten years ago general management expected the worst from software projects – cost overruns,
late deliveries, unreliable and incomplete software.

– Today [1980] , management has learned to expect on-time, within budget, deliveries of high-
quality software.

• A Navy helicopter ship system, called LAMPS, provides a recent example.
– LAMPS software was a four-year project of over 200 person-years of effort,
– developing over three million, and integrating over seven million words of program and data for

eight different processors distributed between a helicopter and a ship,
– in 45 incremental deliveries.
– Every one of those deliveries was on time and under budget.

• A more extended example can be found in the NASA space program,
– where in the past ten years, FSD has managed some 7,000 person-years of software development,

developing and integrating over a hundred million bytes of program and data for ground and
space processors in over a dozen projects.

– There were few late or overrun deliveries in that decade, and
none at all in the past four years.” Harlan Mills [IBM80, page 415].

25

© Gilb@acm.org 1999 49

Chapter 1 Requirements

The main point of difference between Evo and other project management
methods is that ‘requirements achievement’ dominates, rather than

formal processes (such as ‘approve design’, or ‘conduct field trials’).

© Gilb@acm.org 1999 50

Failure due to goals (Kaplan, IBM)

• “We are continually amazed at how many
managers fail to achieve results simply
because their employees don’t understand the
desired goal state.” [Kaplan94, p.203] IBM
STL

26

© Gilb@acm.org 1999 51

‘quality’ is any variable result from a system

Cost
dimensions

A function

Quality
Dimensions
(outputs of a

function)

© Gilb@acm.org 1999 52

Adaptability, simple goal

• Adaptability:
• Scale: Engineering Hours needed to

modify product for a new market
• Plan [Product XX, Market YY] 1,000 Eng.

H.

Product Adaptability

27

© Gilb@acm.org 1999 53

Usability Goal, Complex example
Usability:

Gist: the relative ease of learning and using a defined product compared to previously used products.

Scale: average minutes per [defined User type] to learn to use [defined Tasks to use the product].

Meter: at least 30 users of representative defined User type will be monitored doing at least 10
defined Tasks of defined function type.

Past [Old Product PP, Home Buyer, Adult, Task: Build telephone number list] 30 minutes.

Record [MM, Adult, Task: Dial Out] 10 seconds ß Consumer Reports, January

Trend [US Market, Children, Mix] 20 minutes ß Market Analysis Feb.

Wish [Our Customers, Mix] 5 minutes ß Chairman’s Dream in Speech

MinLevel: Must [Our Customers, Mix, New Product] 10 minutes ß marketing minimum

Plan [Our customers, Mix, New Product, First Field Release] 50% of MinLevel? ß Guess by
Project Mgr., [within 2 years of First Field Release] 30% of MinLevel ßGuess.

Local Definitions of Terms.

Mix: Defined: representative mix of common frequent user tasks.

User: Defined: person who intends to use the product in the long term, not a test person.

First Field Release: Defined: First sold releases to any public market after Field Trials.

© Gilb@acm.org 1999 54

Usability Example Graphically

Usability: -|-|-|- minutes for User to do TaskProduct

Record 10
secsTrend 20

minutes

Past 30
minutes

Wish 5 minutes <- Chairman

Plan [1st rel.] 50% of 10 minutes Plan [within 2 yrs.
1st rel.] 30% of 10
minutesMust 10 mins.

28

© Gilb@acm.org 1999 55

Usability Evo Delivery

Usability: -|-|-|- minutes for User to do TaskProduct

Record 10
secsTrend 20

minutes

Past 30
minutes

Wish 5 minutes <- Chairman

Plan [1st rel.] 50% of 10 minutes Plan [within 2 yrs.
1st rel.] 30% of 10
minutesMust 10 mins.

Step 1 Step 2 Step3 Step 4

© Gilb@acm.org 1999 56

Requirements Control (DoD)
• “Change to functional requirements (especially additions to current

requirements) can be controlled by accepting only very important
changes.

• The philosophy of permitting only crucial requirement changes is
essential because:

• Feedback on effectiveness and suitability from actual operations
and maintenance is almost always required to determine the value
of proposed changes with any degree of certainty.

• For programs with short times between development increments,
deferring requirements changes until the next program increment
might be a better course of action because it preserves schedule
and does not place delivery and fielding plans at risk.

• However, preserving schedule is of little value if feedback
indicates an inability to meet or sustain specified performance
thresholds or a lack of logistics supportability.” [DODEVO95]

29

© Gilb@acm.org 1999 57

Fixing Project Resource (MS)
• “Microsoft managers also try to ‘fix’ project resources -

limiting the number of people and amount of time on any
one project.

• The fixed project resources thus become the key defining
elements in a product development schedule; in particular;
the intended ship date causes the whole development team
to bound its creativity and effort.

• The team must define intermediate steps and milestones that
work backward from the target ship date, and co-ordinate
product delivery with other Microsoft projects, product
distributors, and third-party system integrators.

• Projects accomplish these goals even though the intended
ship date almost always changes.”

• CUSUMANO95 , 188-9

© Gilb@acm.org 1999 58

IBM FSD on ITERATIVE DESIGN-TO-COST, 1980

• “Design is an iterative process in which each design level is a refinement of the previous level.
At each stage, design and cost alternatives are examined. Those that best satisfy the project
objectives are prepared for review and selection by the project sponsor.

• If no alternative fits the cost target, several courses of action are available.
– The most common one is to go back to the designer and ask for a less costly, and perhaps a

less attractive design.
• If the target has been missed by a large amount – and cost is critical - redesign may not produce

an answer.
– In this case the sponsor has to consider giving up some of the planned capability of the system.

• Otherwise he has to recognize that the capability cannot be acquired without increasing the cost
target.

• The design [to-cost] process is followed until the program design for a specific software
increment has been completed. From that point, development of each increment can proceed
concurrently with the program design of the others.

• When the development and test of an increment are complete, an estimate to complete the
remaining increments is computed.

– The algorithms used in this computation should reflect the various actual productivity rates experienced in
developing and testing previous increments.

– An alternative plan is prepared and reviewed, as previously described, whenever a cost projection is
inconsistent with its cost plan….

– The design-to-cost practice describes the management control procedures that balance cost, schedule, and
functional capability.” Robert Quinnan, [IBM80, page 474]

30

© Gilb@acm.org 1999 59

Constraints

© Gilb@acm.org 1999 60

Arbitrary Delivery Steps (JPL)

• “The delivery schedule is generally quite
arbitrary.

• It is determined a priori that deliveries
will occur .. at whatever… interval .. the
project and sponsor select. …

• This approach might be called ‘design to
schedule’ because only those functions that
can be implemented in the allocated time
are candidates for the next delivery.”

• [SPUCK93]

31

© Gilb@acm.org 1999 61

2: Design: The Evo ‘Means’ to the Target
‘ends’.

© Gilb@acm.org 1999 62

Design Analysis Process (HP)

• “Because some design issues are
cheaper to resolve through
experimentation than through
analysis,

• Evo can reduce costs by providing a
structured, disciplined avenue for
experimentation.”

• [MAY96]

32

© Gilb@acm.org 1999 63

Fixed Budget, Variable Build (JPL)

• “In contrast to conventional project
management,
–the overall budget for an Evo project is

taken as a given,
–and the Evo budget process is closely

analogous to the scheduling process;
–it is ‘build to cost’ “

• [SPUCK93]

© Gilb@acm.org 1999 64

Evo forces organized Project decision-making (HP)

• Many development teams lack a well-defined, efficient decision-making process.
Often they make decisions implicitly within a limited context,
– risking the compromise of the broader project goals and slowing progress

dramatically.

• Evolutionary Development forces many decisions to be made explicitly in an
organized way,
– because feedback on the product is received regularly
– and schedules must be updated for each implementation cycle.

• The continual stream of information that the project team receives must be
translated into three categories of decisions:
– changes to the product as it is currently implemented,
– changes to the plan that will further the product implementation, and
– changes to the development process used to develop the product.

• Fortunately, because of Evo’s short cycle time, teams
– have many opportunities to assess the results of decisions and adjust accordingly

– [COTTON96]

33

© Gilb@acm.org 1999 65

Requirements Refinement (JPL)

• “a key benefit … is its ability to progressively
refine requirements
– and to respond easily to the refinements.

• Refinement is done on the basis of
– developmental test,
– training, and
– operational experience.

• Requirements feedback facilitates working in an
environment of change.”

• [SPUCK93]

© Gilb@acm.org 1999 66

Final and Step Specification (JPL)

• “The [step] delivery specification is required to be
much more complete and specific than the Final
Operational Capability (FOC) specification,
– although good [Evo] practice suggests that any

requirements or design information that is known at any
point in time be captured in the FOC specification
regardless of the delivery in which it will be
implemented.

– Also the FOC specification is kept current with the
[step] delivery specification so that the FOC
specification evolves with time to become the complete
‘as built’ specification.” [SPUCK93]

34

© Gilb@acm.org 1999 67

System Specs and Step Specs (JPL)
Step 4 Spec

Step 3 Spec

System Requir-
ements

System
Design

Final Op. Capability

Step 2 Spec

Step 1
Rqts.

Step 1
Design

Step 1 Deliv. Spec

All ‘known’ requirements.
Will change with time.

Top Level System Design. Will
change with time. Requirements committed to

for Step 1

Reflects Step 1 detailed
design

© Gilb@acm.org 1999 68

Users feedback to next cycles (HP)

• “In parallel with the development
activities of the team,
– selected users or customers of the system

are working with and

– providing feedback on the release
from the previous cycle.

• This feedback is used to adjust the plan
for the following cycles.”

• [COTTON96]

35

© Gilb@acm.org 1999 69

Open-endedness Quantified

• Adaptability:
• Gist: the ability of our system to easily tolerate unexpected changes. The set of all other ease-of-

change qualities below { Extendibility, Portability, Serviceability }.

• Extendibility:
• Scale: the engineering effort needed to add [defined capacity] to the product.
• Plan [memory by factor 10] less than 10% of cost of memory itself.

• Portability:
• Scale: the engineering effort needed to move [defined system elements] to [defined target

environments] using [defined tools or skilled people or processes].
• Plan [software logic and data, East Asian Markets, Average Programmers] 1 hour per 100 lines

of code.

• Serviceability:
• Scale: The ease of giving [defined service types] in [defined service locations] by [defined levels

of service people].
• Plan [Shop Counter, Major Chains, Certified Trained Specialists] 90% Service Cases within 30

minutes “in shop wait”.

© Gilb@acm.org 1999 70

Open-endedness Design Spec example
• JAVA: Use Java programming Language à Portability.
• IEEE675: Use the IEEE 675 Interface Specification à

Extendibility.
• Self Test: Build all components hardware and software

with thorough self test and defect reporting capability in
fully automatic mode àTestability & Adaptability.

• Accessories: Use the Corporate Product Line Interface
for all accessories, or at least include necessary plugs,
cables and software with each product to enable
interface to it àAdaptability.

• Display: All design of displays will assume that future
displays can be of any size and dimension both smaller
and larger than initial releases àAdaptability.

36

© Gilb@acm.org 1999 71

3: Impact Tables: The Evo Accounting and
Planning Mechanism

© Gilb@acm.org 1999 72

Impact Tables Answer Us:

• How much will a particular design idea impact the step goals?
• Which ideas should be selected for this particular step?
• What is the expected outcome of implementing this step in terms

of quality improvements and costs?
• What is the uncertainty of the step implementation, and what is

worst case results?
• What is the expected impact of a planned series of steps on our

objectives?
• What was the cumulative impact of the past series of steps on

our objectives
• What was the impact of the last step on our objectives?
• What were the things we understood least on the past step?

37

© Gilb@acm.org 1999 73

Step Comparison Table

Step Candidate A:
{Design-X, Function-Y}

Step Candidate B:
{Design Z, Design F}

Reliability 99%-99.9% 50% 100%
Performance 11sec.-1
sec.

80% 30%

Usability 30 min.-30
sec.

-10% 20%

Capital Cost 1 mill. 20% 5%
Engineering Hours
10,000

2% 10%

Performance/Capital
Cost Ratio

80/20= 4.0 30/5= 6.0

Quality/Cost Ratio 120/22=5.46 150/15=10.00

© Gilb@acm.org 1999 74

Step Risk Analysis

Step Candidate A:
{Design-X, Function-Y}

Step Candidate B:
{Design Z, Design F}

Reliability 99%-
99.9%

50%±50% 100%±20%

Performance 11sec.-
1 sec.

80%±40% 30%±50%

Usability 30 min.-
30 sec.

-10%±20% 20%±15%

Capital Cost 1
mill.

20%±1% 5%±2%

Engineering Hours
10,000

2%±1% 10%±2.5%

Worst Case B/C
ratio
(1 to 3)

 (0+40-10)/(21+3) = 1.25 (80-20+5)/(7+12.5) = 3.33

Best Case B/C
ratio

(100+120+10)/(19+1) = 11.5 (120+80+35)/(3+7.5)= 22.38

38

© Gilb@acm.org 1999 75

Step Choice with ‘Credibility’

Step Candidate A:
{Design-X, Function-Y}

Step Candidate B:
{Design Z, Design F}

Reliability 99%-99.9% 50%±50% 100%±20%
Performance 11sec.-1
sec.

80%±40% 30%±50%

Usability 30 min.-30
sec.

-10%±20% 20%±15%

Capital Cost 1 mill. 20%±1% 5%±2%
Engineering Hours
10,000

2%±1% 10%±2.5%

Worst Case B/C ratio (0+40-10)/(21+3)
=1.25

 (80-20+5)/(7+12.5)
=3.33

æWorst WorstA case
considering estimate
credibility factor

0.8 x 1.25= 1.00 0.2 x 3.33= 0.67

A
Credibility=0.8

(High)

B
Credibility=0.2

(Low)

© Gilb@acm.org 1999 76

Building Up an Evo step to a ‘biggest allowable bet’
threshold.

Design:
Dual [USA]

Design
Dual [Europe]

Next Step
Maximum at the
2% level

Next Step Totals
Before looking at
possible additional
Design ideas

Capital Investment 150,000±100,000 10,000 ±5,000 200,000 180,000
Project Calendar
Time

0.1 to 0.5 weeks 0.05 week 1 week 0.9 week

Engineering Hours 20 ±10 hours 10±5 hours 150 130 hours

You can see, from this constructed example, that implementing
the design idea ‘Dual’ in ‘Europe’ will work if added to the
current step ‘bucket’. But, that the same design idea in ‘USA’
would be consistently ‘over the top’ of the allowable risk. That
one would be fine to think about for the next step after this.

39

© Gilb@acm.org 1999 77

An example of a typical one-week Evo cycle at the HP Manufacturing Test
Division during a project. [MAY96]

Wednesday Development Team Users

Monday � System Test and Release
Version N

� Decide What to Do for Version
N+1

� Design Version N+1

Tuesday � Develop Code � Use Version N and Give
Feedback

Wednesday � Develop Code
� Meet with users to Discuss

Action Taken Regarding
Feedback From Version Nû1

� Meet with developers to Discuss
Action Taken Regarding
Feedback From Version Nû1

Thursday � Complete Code

Friday � Test and Build Version N+1
� Analyze Feedback From Version

N and Decide What to Do Next

© Gilb@acm.org 1999 78

Scaling to Funds Available (JPL)

• “[Evo] adapts easily to changing programmatic
environments of which … budget changes
…are typical. ….

• Each succeeding delivery can be scaled to funds
available……

• [Evo] has an excellent immune system to normal
funding variations

• and finds little challenge in providing
meaningful increments of capability under most
real-life funding scenarios.”

• [SPUCK93, 7.2]

40

© Gilb@acm.org 1999 79

Direct Customer Input (MS)

• “Microsoft’s general philosophy
has been to ….. focus on evolving
features and whole products
incrementally, with direct input
from customers during the
development process.”
CUSUMANO95 , 13

© Gilb@acm.org 1999 80

WBS and Dependency (HP)

• “Although it is difficult and
time-consuming, the work
breakdown structure and
dependency information
must be done and done

correctly.” [MAY96]

41

© Gilb@acm.org 1999 81

Schedule Risk Steps Early (HP)

• “Some of the criteria commonly used in setting priorities
during this initial planning activity are …:

• Features with greatest risk.
• The most common criterion used for prioritizing the

development phase implementation cycles is risk.
• When adopting [new] technology, many teams are

concerned that the system performance will not be
adequate.

• Ease-of-use is another common risk for a project.
• The [step content] that will provide the best insight into

areas of greatest risk should be scheduled for
implementation as early as possible.”
[COTTON96]

© Gilb@acm.org 1999 82

Impact Table for Step Management
Step
#1 A:
{Design
-X,
Functio
n-Y}

Actual Differe-
nce.
 - is bad
+ is
good

Total Step #2
B:
{Design
Z,
Design
F}

Actual Differe-
nce

Total Step #3
Next
step
plan

Reliabil
ity
99%-
99.9%

50%
±50%

40% -10% 40% 100%
±20%

80% -20% 120% 0%

Perform
ance
11sec.-
1 sec.

80%
±40%

40% -40 40 30%
±50%

30% 0 70% 30%

30 min.
-30 sec.

10%
±20%

12% +2% 12% 20%
±15%

5% -15% 17% 83%

Capital
Cost
 1 mill.

20%
±1%

10% +10% 10% 5%
±2%

10% -5% 20% 5%

Enginee
-ring
Hours
10,000

2%
±1%

4% -2% 4% 10%
±2.5%

3% +7% 7% 5%

Calend-
ar Time

1 week 2 weeks -1week 2 weeks 1 week 0.5
weeks

+0.5 wk 2.5
weeks

1 week

42

© Gilb@acm.org 1999 83

4: Evo Planning: How to specify an Evo
Project plan.

© Gilb@acm.org 1999 84

Simple Evo Plan.

• Build customer files and produce published customer lists,
replacing old style ones.

• Build product files and pricing information, replace old price
catalogues.

• Take orders and produce a warehouse article picking list.
• Produce invoices for simple frequent cases.
• Produce more complex invoices with special discounts.
• Produce invoice reminders.
• Accept payment information and produce differential invoices.
• Do accounting for all invoices
• All other steps symbolized as included in this rough last one.

43

© Gilb@acm.org 1999 85

Prioritizing Essentials (Ericsson)

• “Customers do not like disappointments and broken promises.
• Promising the earth and then failing to deliver is not a good way of treating your

customers.
• It means you have to negotiate constant upgrades in order, some time in the future,

to achieve what was originally promised.
• It is far better to deliver something which just about meets the specification, and then sell

enhancement packages, i. e.. additions.
• When every bit costs money, you only add what is really needed. At the center of this

discussion … lies the importance of [us] understanding which features and functions are
essential for our customers to be able to do what they intend to with our products.

• In the final analysis it is to make money.
• No amount of [product simplification] should ever threaten this.
• This is precisely the main reason why we must always, always be able to deliver on time.
• And exactly the same reason why we must always put basic functionality before special

features.
• Even to the extent that special features should often be excluded altogether since otherwise

there is a risk that they may threaten the product’s basic functionality.
• Few people want to admit that this is in fact often the case.”
• [Ericsson94], page 49-50, Jack Järkvik, in the context of building mobile telephone base

stations

© Gilb@acm.org 1999 86

An Outliner Evo Plan

• Project Evo Plan
• Rest of This Year
• November
• Week 45
• Deliver Change of Priority for Top Brass
• Week 46
• Increase Performance by at least 10%
• December
• All remaining performance improvements
• Next Year
• First Half
• Focus on Quality Improvement targets
• Second Half
• Focus on Customer Service Improvement
• All remaining Years
• Content and sequence dependent on what has been learned and
• what has happened until this time.

44

© Gilb@acm.org 1999 87

The Step Plan Template

© Gilb@acm.org 1999 88

A multilevel Evo Plan

Mega- steps 2003
Step 6

? Mega
-

Steps Rest of
year
1.9

?
rest
tune

2002
Step 5

? May
1.5

Bottle
necks

2001
Step 4

Speed April
1.4

Priority 1.1.4 Wk.
4

2000
Step 3.

Capa-
city

March
1.3

Nodes 1.1.3 Wk.
3

Clea
n out

1999
Step 2.

Usab-
ility

Feb.
1.2

Com
munic

1.1.2 Wk. 2 Auto
tune

ß

1998
1.

Perfor
-
mance

Jan.

1.1

Tune
Data
base

Wk. 1

1.1.1

Reorg-
anize

ß Deli-
very
steps

45

© Gilb@acm.org 1999 89

Ladder Format

Step Name tag Description (Design Tag) Other related information
User Enhance {Interact, Intelligent} 9/1 (Value/Cost ratio)
Port {Convert Code [UNIX], Convert Data [Database, Tables]} 8/3

Miniaturize {Mini Phone, Field Trial} Depends on Port 7/3
Retail {Market, Distribute, Discount} 5/1
Europe {European Community, EEconC} 2/1 Do by Country Size, Small up

© Gilb@acm.org 1999 90

Operational vs. Earned Value (JPL)

• “For Conventional Development Methods (CDM), money is
invested steadily in order to derive value only at the final delivery,
Final Operating Capability(FOC).

• That is, under CDM there is no value to users until FOC.
• In contrast, [Evo] makes the same investment and derives value to

users incrementally, shortly after the investment.
• It is this characteristic of CDM that has prompted sponsors to

impose performance measurement systems (PMSs) that aggregate
artfully composed measures of ‘earned value’ for accomplishment
of the various processes of the CDM life cycle.

• [Evo] substitutes operational capability or delivered value to earned
value.”

• [SPUCK93]

46

© Gilb@acm.org 1999 91

Impact Table Top Level Plan
Host
System
base

Mega-
step
Next
Year

Mega-
step
Jan
Next

Delivery
step
Convert

Convert
Impact %

Jan
Next
Impact
%

Q1
99% to
99.9%

99.00% 99.5% 99.05% 99.05% 6% 6%

Q2
10 min-
1 min.

10 min. 5 min. 9 min. 10 min. 0% 11%

Ca
0-
$2mill.

0 $1,000,
000

$100,00
0

$20,000 1% 10%

Cb
0-
20,000
Eng.,
hours

0 10,000
hours

5,000
hours

1,000
hours

5% 25%

Q/C 6/6=1 17/35=
0.49

© Gilb@acm.org 1999 92

System Spec and Step Index (JPL)

• “Some [Evo] projects have very successfully
implemented the notions with only a Final
Operating Capability specification and a
tabular appendix to the specification, listing
which specification provisions are to be (or
were) implemented at each delivery”
[SPUCK93] JPL, CA, USA

47

© Gilb@acm.org 1999 93

Bill on Milestone Approach

•“the milestone
approach is a major
practice for us”

• Bill Gates in CUSUMANO95 , 18

• “Microsoft Secrets”

© Gilb@acm.org 1999 94

5: Evo Step Objectives: Cycle Requirements

48

© Gilb@acm.org 1999 95

‘Release Practice’ Makes Perfect (HP)

• “A second concern is that it will be too difficult to
make so many releases.

• If it is difficult to make one release every 9 to 18
months, how much more difficult will it be to
release every two weeks?

• The answer is that when you make frequent
releases, you get better at it (if this is not the case,
EVO becomes too inefficient).

• Further, the small chunks in each cycle keep
things to a manageable size.” [MAY96]

© Gilb@acm.org 1999 96

A Step with Quality at Top (MS)

• “When we reach milestones, we have not just
functionality but
– size,
– performance requirements and
– quality requirements. …

• So that milestone isn’t met until [then]…”

• Brad Silverberg, Sr. VP for Personal Systems
Microsoft in CUSUMANO95 , page 202

49

© Gilb@acm.org 1999 97

Leverage in Early Steps (JPL)

• “The first maxim is the ‘80/20 rule’.
• The 80/20 rule observes that 80 % of results can be achieved with 20 % of an

effort; it takes the remaining 80 % of effort to accomplish the remaining 20
percent of results.

• Under [Evo] the general guideline is to apply the 20 % of effort to accomplish
the 80% of results and to be satisfied with that until the next delivery…..

• The second maxim is ‘just-in-time engineering’ ……
– Requirements are not completed until design work must be initiated.
– Designs are not complete until shortly before they are to be implemented.
– In particular, requirements and designs for a future delivery are postponed until

work on that future delivery begins.
– In general, engineering is completed just in time for the need.
– Again, this maxim must not be pursued to absurdity.
– In particular, inasmuch as the products of [Evo] engineering processes evolve

throughout the successive deliveries, engineering data should be permanently
deposited in these products as they become available.” [SPUCK93, 6.3]

© Gilb@acm.org 1999 98

More Project Management Decisions

• “Because many more project management
decisions need to be made in Evo,
– handling decisions can also become a problem.

• If the decisions are not timely or cause
dissension, progress can be delayed.

• Participatory decision-making techniques
have been one solution at HP.”

• [MAY96]

50

© Gilb@acm.org 1999 99

Use this recipe for starters

• Decide on one required quality objective which the recipient would most
value improvement in (example ‘Reliability’).

• Decide on an interesting minimal increment for the recipient. Use this as
Must level.

• Decide what might be accomplished by the best technology you can insert in
the next cycle. Use this as a Plan level. This technology will normally be
extracted from the system architecture specification.

• Specify the technology you believe will get you the increase (in the Step
specification). More on choosing the technology in next chapter.

• Estimate that resources needed to implement that technology. Put this in the
step plan.

• If the resources exceed those available or permitted by step planning policy,
go to step 2 and ‘adjust’.

• Estimate the impact of the step technology on all other qualities. Document
your estimates. Example: in an Impact Table.

© Gilb@acm.org 1999 100

A Planning Impact Table

Thus Far Next Step est. Worst Case est. Risks Long term
target

Reliability 99.10% 99.20% 99.00% NewTech =??? 99.99%
Usability 5 minutes 5 minutes = none 1 minute
Budget 50,000 10,000 20,000 Weekend work 100,000
Calendar Time 300 days 5 days 10 days Weather 300 days left

51

© Gilb@acm.org 1999 101

Analyzing Step Cost Types

Step Costs Design idea
costs

Functionality
costs

Acquisition
Costs

Integration
and testing
costs

Deployment
costs

Budget $20,000 $1,000 $2,000 $3,000 $4,000
Calendar Time 1 day 6 days 3 days
Engineering
hours (Eh)

20 Eh 24 Eh 12 Eh

Post
deployment
costs/year oper.

$1,000/year 0 0 $1,000

© Gilb@acm.org 1999 102

Early Use During Development (JPL)

• ”For example, comments received from
document reviews can be incorporated in the
update of the document emanating from the
next delivery:

• thus, many typical document iterations are
eliminated.

• The chance to use a system while it evolves
and to fix deficiencies as they arise is simply
not available under Conventional
Development Methods” [SPUCK93]

52

© Gilb@acm.org 1999 103

6: Detailed Evo Step Design: Extracting
function and design to make a step.

© Gilb@acm.org 1999 104

Microsoft Success Principles
• “Microsoft is one of those rare firms that has sustained and

extended its market power. We think two principles we cite in
this chapter explain how.

• First, Microsoft frequently makes incremental improvements
and occasionally introduces major advances in its products.

• While often doing little more than packaging many incremental
innovations, these major changes make older product versions
obsolete.

• With a continual cycle of incremental and occasionally more
radical innovations, competitors have little opportunity to
challenge the market leader.

• Microsoft has accumulated enormous financial and technical
resources that enable it to sustain this level of R&D.
– It has followed a somewhat unusual strategy:
– Dominant firms generally hesitate to introduce new products that steal

sales from their existing product lines.” CUSUMANO95 ,129

53

© Gilb@acm.org 1999 105

Competitiveness by ...

• “.. the synch-and-stabilize process … provides
several benefits that serve Microsoft well …

• It facilitates competition based on
– customer feedback,
– product features, and
– short development times by
– providing a mechanism to

• incorporate customer inputs,
• set priorities,
• complete the most important parts first, and
• change or cut less important features.” CUSUMANO95 , 17

© Gilb@acm.org 1999 106

CASE STUDIES

54

© Gilb@acm.org 1999 107

Case 1.
The Sales Manager System.

• • Barrier: "We are not allowed by {somebody, Sales
manager, Research Director} to contact our users or

customers".
• About 1985 a U.K. Computer Manufacturer was making a product tailored for a new

market, "Sales Managers". About 30 young technical experts were designing the product. None
had sales experience of any kind.

• At an early stage I advised using weekly Evolutionary delivery to some real users. They
ignored the advice. This was probably because I did not present my case with a concrete
Evolutionary plan, I later learned. I made the mistake of giving advice in general terms to people
who had no practical familiarity with the concepts.

• About a year later, 12 months into a projected 35 month project, they finally took one
part of the advice. They invited a real sales manager from their own company to look at the
emerging product prototype. He laughed at it. They realized they had to start again from scratch.
Imagine if they had gotten him to laugh somewhat earlier!

• Not too long afterwards, I helped one of the team make a detailed multi-cycle
plan with about 5 key result numbers for each Evolutionary cycle of delivery. We presented it to
the project manager who up to then had said "no". He immediately warmed to the whole
concept.

• "Why didn't you explain it this way before?", "I'd be very interested in using this
method. I review the design every Friday. But all I review is non-working prototypes and more
design documentation. I don't know if it will work or sell. What you are offering me is the chance
to see a real live system being used by real sales managers every Friday. Let's do it!

• I felt I could have kicked myself for not presenting a more concrete results delivery
plan earlier.

Do Evo!
Deliver results
weekly to real

users!

© Gilb@acm.org 1999 108

Lesson Learned: Sales Manager Case

• Make a concrete plan
• showing real results expected,
• especially for the first steps.

55

© Gilb@acm.org 1999 109

Case 2.
The Naval Weapons System. Slide 1 of 2

• Barrier: "It cannot be done until the new {thing, building,
organization, system}.... is ready in some years time".

• British Naval Weapons System case: Once, when holding a public course on the EVO
method in London, a participant came to me in the first break and said he did not think
he could use this early Evolutionary method. Why? "Because my system is to be
mounted on a new ship not destined to be launched for three years."

• I did not know anything about his system, at that point. But I expressed
confidence that there is always a solution, and bet that we could find one during the
lunch hour.

• He started our lunch by explaining that his weapons research team made a
radar-like device that had two antennas instead of the usual one, which had their signals
analyzed by a computer before presenting their data. It was for ship-and-air traffic,
surrounding the ship it was on.

• I made a stab at the "results" he was delivering, and who his "customer was",
two vital pieces of insight for making Evolutionary delivery plans. "May I assume that
the main result you provide is 'increased accuracy of perception', and that your
'customer' is Her Majesty's Navy?" "Correct." He replied.

• "Does your 'box' work, more or less, now, in your labs?", I ventured. (Because if
it did, that opened for immediate use of some kind) "Yes", he replied. "Then what is to
prevent you from putting it aboard one of Her Majesty's current ships, and ironing out
any problems in practice, enhancing it, and possibly giving that ship increased
capability in a real war?" I tried, innocently.

• "Nothing!", he replied. And at that point I had won my bet, 20 minutes into the
lunch.

© Gilb@acm.org 1999 110

Case 2.
The Naval Weapons System. Slide 2 of 2

• "You know, Tom”, he said after five minutes of silent contemplation, “the
thing that really amazes me, is that not one person at our research labs has
ever dared think that thought!".

• The thing to notice here was that the customer was not the new ship,
and that the project was not to put the electronics box on the new ship.
The project was to give increased perception to the real customer, Her
Majesty's Navy.

•
• Notice the “method” emerging from this example:
• 1. Identify the real customer, and plan to deliver results to them.
• 2. Identify the real improvement results and focus on delivering those

results to the real customer.

• in other words:
• 1. Do not get distracted by intermediaries (the new ship)
• think “Her Majesty’s Navy” or even “The Western Alliance”.
• 2. Do not get distracted by the perceived project product (the new radar device for the new

ship):
• think “increased accuracy of perception”.

56

© Gilb@acm.org 1999 111

Lessons Learned: Naval Weapons Case

• Evolutionary Projects are not normal thinking even amongst
well educated engineers.

• Evo is a systems method not a software method

• Focus on ‘evolving’ the results of the project
• (increased accuracy of perception, not ‘deliver a black box’)

• Focus on your real customer (HM Navy, not a ship)

© Gilb@acm.org 1999 112

Case 3.
The Air Traffic Control System. part 1 of 2

• • Barrier: "Our customer, and the contract we have made with them, would never
permit it."

• Air Traffic Control System: In 1986-7 a Swedish client was building an air traffic control training system
for another European government.

• It was admittedly late. I was called in to help. I suggested we re-plan the project into a series of
Evolutionary cycles, delivering the most vital ones earliest.

• Fine, they said. One problem though. The client won't have it. They stick to their "all at once"
delivery contract fanatically, like good bureaucrats.

• "What would you want, if you were the customer?", I tried. The assembled executive team said
they, of course, were rational people, and would prefer to get the system incrementally. But, they were sure
the customer would have none of that nonsense.

• Well, I had their attention for the rest of the day, and they were paying me. So, I asked if they
would play the game of making an Evolutionary result delivery plan for the project with me, the way they
would like it, if they were customers. The customer had a training building specially built. The hardware
was ready, the "software" was late.

• Our rough sketch included the design that the early stages should deliver enough of the system so
that the instructors could begin to prepare a course for their students, and then, that simple air traffic
situations were working before more exotic ones. They worked out a ten basic Evolutionary cycle plan that
afternoon.

• At the end of the day, I said: "Let's do it". They said. "Tom, you don't understand the mentality of
our customer. There is no way they will accept this. They only think in terms of the contract as it is.

• I asked them what it would cost them to phone the customer and ask what the customer wanted to
do. They promised to try, no promises about results, after I left.

•

57

© Gilb@acm.org 1999 113

Case 3.
The Air Traffic Control System.

part 2 of 2

• What happened in later reality?

• A few weeks later, I was received back with almost a hero's welcome.
• The customer, to everyone's surprise, had accepted the evolutionary plan.
• The terrible deadline pressure was "off".
• The project could now concentrate on doing a quality job on the evo cycles.

• They finally did deliver, and the project was considered "not unsuccessful".
•
• Years later I met the main customer representative who made that decision, on my

course in Berlin. At a lunch at a Yugoslavian (it was still there, so was the Wall)
restaurant he told me: "Of course we accepted the evolutionary plan. Do they think
we are stupid?"

• Lesson: don't under-evaluate the customer's survival-intelligence, especially
if you talk to the appropriate level of manager.

• Another lesson: evolutionary results delivery can be used to save large
projects even after much initial effort has been placed in the wrong direction.

© Gilb@acm.org 1999 114

Lessons Learned:
Air Traffic Control Case

• Do not believe all the local experts,
• they are in trouble because they do not believe the answer.

• Get to the right level of management to get change decisions.

• Do not be afraid to use common sense: ‘what would I want if I
were the customer?’

58

© Gilb@acm.org 1999 115

Case 4.
The Department of Defense Standard.

• Barrier: "The government insists on a "waterfall" method
of doing projects. It is the standard".

• This was certainly the case in the U.S. The Department of Defense Standard "2167" (now obsolete)
apparently demanded a Waterfall Model (Straight line project development, requirements, design,
build, test, deliver) as a Requirement. A lot of my clients acted as though the government required
such a project management model (Big Bang or Waterfall Model).

• I noticed that IBM's Federal Systems Division, (later ‘Loral’ then ‘Lockheed’) was unique in
practicing an Evolutionary results delivery project management method since 1970. They were also
unique in being successful in project management. "All projects using the method were on time and
under budget". (Harlan Mills, IBM SJ 4/1980).

• In 1991 I met a man in uniform, at a conference in Florida, who claimed that he had
developed that standard (2167), and that it most certainly did not require the Waterfall method. He
had had to correct that wrong opinion with prominent software engineering personalities who were
spreading the wrong word.

• The lesson? Don't take things on hearsay. Even the government likes to get things done on
time and under budget. Any Standards were intended to help, not to stand in the way.

• In 1990, I asked Harlan Mills, in Oslo, how they had come to develop their Cleanroom method,
which included Evo. I said I guessed they had used the analogy of how rockets used process control to
hit their target. He smiled and acknowledged that was part of it.

© Gilb@acm.org 1999 116

Case 5. The German Telecommunications Company.

• Barrier: "It is too late, we have already invested so much the old way, that we
just have to see it through".

• At a large German telecommunications business in December 1984, about 985
software engineers had been working for three years on a major new world-market
product. December 1984 was the deadline for delivery of the product, but their
40,000 node PERT chart, the Financial Director told me, estimated that they had 2
or 3 years more effort left. Corporate top management had given them one more
year, to December 1985. Deliver, or forget the whole market, which by that time
would be taken over by competitors.

• As usual, I suggested re-planning the project in smaller and critical
increments first. They told me that this was unthinkable. The software was already
written, they claimed, only testing remained. They also had a rather long list of
other reasons why Evo would not work for them.

• Using common sense we worked out a basic Evolutionary scheme. The small-
model software first (there were 35 signed contracts for it, none for the medium and
large systems). Then fundamental telephone services before advanced fancy stuff.

• After what seemed like seven management layers of "you must present this to
my boss", we ended up in the office of Herr Raab, The Project Director. He thought
it was all good common sense, and stared coldly at his (cowardly, cautious?) sub-
ordinates as he asked: "Can you do it this way?", (assenting nods) "Then do it!".

• They did too. By November 1985, on a return visit, they told me that the small
systems had been operating for over six weeks with several real customers, with no
problems whatsoever. Note, three months before the impossible deadline!

• As in many other cases, I had to spell out the basic steps myself. I had to
make them obvious clear simple steps. I could not merely suggest the method. And
then, in spite of the obviousness, I had to get to the right person to make a decision.

59

© Gilb@acm.org 1999 117

Case 6. The European Chemicals Organization.part 1 of 2

• Barrier: "Sure, but it will take three years before we
have enough basic system to start incrementing
results in small cycles".

• A 10,000 person strong division of a multinational European chemicals corporation was in
trouble in 1981. Secretly (our planning team didn't know yet) the Board had said: Get profitable
within three years or we'll give the whole division a "golden handshake" (they were actually
quite generous). It was no idle threat. They had done such things a few years back.

• The planning team of about a dozen people, half production planners, half computer
specialists, was going to save the day by making a new production planning system which would
permit much cheaper production.

• They (unknown to themselves) had to reduce costs by $200 million annually (the
current annual deficit) within 3 years maximum. That was their goal (and it was my job to help
them clarify goals - they thought the goal was to build a great new planning system!).

• When the "real" ($200 million/annual cost reduction) goal was sensationally ferreted
out of the woodwork (probably kept secret with good reason) I reflected on the fact that I had
never heard of an improved production planning system, with such an effect, in the history of
business.

• I asked the team what was the best they thought they could do, in the best of worlds.
• They replied that they could save between $10-40 million annually. At that point we

ascertained, with the top manager, that we were the only planned effort! I told him that if he
didn't mount several other parallel Evolutionary efforts, he might as well kill the Division
instantly. He got that message.

• (continued next slide)

© Gilb@acm.org 1999 118

Case 6.
The European Chemicals Organization.part 2 of 2

• Getting back to our "little effort", I suggested to the team that it was a bit daring to bet the
workplaces of 10,000 colleagues (and 1/6 of the Corporation) on the fact that in exactly three years
their marvelous system would save the day. But that "big bang" was their current plan.

• I asked them if they would like to try to plan their project, so that the most useful and
profitable things were done early, and in small Evolutionary deliveries. If nothing worked out,
they would soon know there was no hope, and shut down.

• If things worked out in the small, they could accelerate. They would have gained confidence that
things would work out. They would actually be delivering real savings years earlier (even 5% of
$200 million a year bears worrying about for most of us).

• We met for a day and they developed an Evolutionary plan (I just tickled them at
appropriate intervals). It had about seven hierarchical layers.

• We got down to the detailed level where a special-exception cost report was the most profitable
thing to do first. We costed it at about $400. They could even name the man who was going to use
it, "Old Jim" in the factory production-planning department. At that level they suddenly realized
that Jim was not motivated to make use of such advice yet, and they cleverly remembered to design-
in the motivation to wake Jim up, so he took the report seriously.

• I'm glad to report that the Division survived (others had not). Sometimes I think it might
have been foreign exchange rates which did the trick. But it might have been getting clear goals,
and doing projects in evolutionary result deliveries.

60

© Gilb@acm.org 1999 119

Lessons Learned
 The Chemicals Organization

• Do not assume people are working towards even
remotely correct objectives

• Do not assume top management understands that your
project has no chance

• Do not assume people even want to talk about the real
objectives

• Do not assume that the common sense of evolutionary
results is understood by the culture

© Gilb@acm.org 1999 120

Case 7.
The News Agency.

• Barrier: "There is just so very much to do
before we are ready to deliver anything".

• A world-famous UK news agency was, in 1986, going to electronically sell its'
clippings files for the last ten years. They explained to me how much time it
would take to get all their files (10 years worth) into electronic medium.

• In thinking about possible Evolutionary cycles of result delivery I asked
them if they could just start working backwards, from yesterday's clippings "a
year at a time". One theory was that the most recent past was also the most
valuable for our industrial clients. I also pointed out that there were surely
certain types of reports which were more useful than others initially in this
context, for example company reports.

• This simple Evolutionary thought seemed obvious enough to me. But I
kept on hearing long afterwards how incredible they felt it was, that they had
never considered the thought themselves.

• If you don't look, you won't find.

61

© Gilb@acm.org 1999 121

Case 8. The Swedish Map-making Institute case.
• Barrier : "Our system is so small and simple that we don't need many cycles, we'll have it all done

shortly."
• A Norwegian systems house had contracted a fixed price ($80,000), and fixed deadline for making a map-drawing

system, including computer hardware, for the Swedish Government Fixed-Property Directorate.
• There were only two employees, Gunnar and Anne-Lise, experienced in making a similar system, and they

were assigned to the task.
• As an experiment, their top management asked me to spend a day with them.
• On that first day, we set quantified goals. One goal in particular was to dominate. The "maintainability" of the

system by the customer, at the local customer site had to be very easy. This goal immediately led us to find suitable
design ideas (software tools for error analysis and testing). The result of this was that it became clear that we had
twice as much work to do, than the salesperson had envisaged, when making the fixed price and deadline commitment.

• That first day, we developed a ten-cycle Evolutionary plan with the two project people, over, hopefully, the
deadlined three-month period.

• We planned to get the basic map-making system up and running, in the first cycle or so. We had to use
a crude temporary link to their main computer, but it already existed, and cost nothing to make use of, until we in a
later cycle built a customized link. Fancy polygon drawing features were also put off until later cycles. All things like
maintenance and training documentation were in the last cycles.

• After about two, of the projected three, months a small crisis erupted. Both Gunnar and Anne-Lise had
been off the job ill. Both had been forced to take time away from the project to service emergencies with previous
projects.

• So, after two months, three Evolutionary cycles had been delivered to Sweden, and it became painfully
clear that the last seven cycles were never going to be completed by the original deadline.

• "Hat in hand" Gunnar went to the customer to ask advice about what best to do about his "late"
project. "LATE!?" the customer replied (and I was later to hear him and Gunnar both personally tell the tale at a
conference in Sweden, where they specifically asked the audience to take my talk about Evolutionary delivery and
Ideaware seriously, as that was the key to their success). LATE!? We are already happily using the system weeks
before the promised deadline. We don't yet need the missing features. Please do not be tempted to do "crash program"
actions which might threaten the quality of our system. Take your time. Do a good job. And we will only speak of the
only system we have experienced, which was actually delivered BEFORE the deadline.

© Gilb@acm.org 1999 122

Case 8.
The British Life Assurance Computerized System cancelled by

the Board.
• Spring 1993,
• I was asked to analyze the situation at a well known British Life Assurance company. They had

spent about £70 million on an "advanced" computerization project. But I found no useful
objective was served for anybody. They were building it because advanced stuff was a good idea
for a large company.

• Their goal was to have a more-flexible advanced system (not much better defined than that
either) - no mention of precisely which improvements, like in operating costs, were going to
appear, and when. I believe that it was partly this total lack of clearly-defined goals which
permitted the project to wander on, without any warning signals, without any commitment
to specific result delivery in small early increments.

• Finally the huge expenditure, and total lack of any planned or previous result delivery to
anybody in the insurance company, got to the Board of Directors. They closed down the 200-
person project about a month later. It was reported in the trade weeklies.

• So was, a similar "Building Society" (Savings and Loan) system and a Stock Exchange
reported, at the same time, with the same magnitude of losses.

• There were plenty of "managers" involved at the assurance company. But they were not
managing.

• They did not, in my opinion understand how to define useful results.
• And I had to document this thoroughly for them. I fear that the culture of poor definition of

results is so prevalent that my message did not change their practice.

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

1 408-985-4476
ssqc@concentric.net

www.ssqc.com

0DNLQJ#WKH#&00#:RUN=0DNLQJ#WKH#&00#:RUN=0DNLQJ#WKH#&00#:RUN=0DNLQJ#WKH#&00#:RUN=
6WUHDPOLQLQJ#WKH#&006WUHDPOLQLQJ#WKH#&006WUHDPOLQLQJ#WKH#&006WUHDPOLQLQJ#WKH#&00
IRU#IRU#IRU#IRU#60$//60$//60$//60$//#3URMHFWV#3URMHFWV#3URMHFWV#3URMHFWV

2
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

� Software Systems Quality Consulting
� Located in San Jose
� Since 1990 - assisting organizations to develop

and improve their software engineering and
management practices

About SSQC

● CMM
● ISO 9000
● Software QA

and Testing

● Business Process
Reengineering and
Benchmarking

● Education and Training

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

2 408-985-4476
ssqc@concentric.net

www.ssqc.com

Topics

� Background, guidance, assumptions
� Mapping the CMM

z Levels, ratings, and other traps
z Tailoring techniques and examples for

small projects
� Strategy for transitioning to the CMM

z Appraisal methods - return on
investment

� The future of the CMM: CMMI

The CMM is …

… a procurement tool that has evolved into a
process improvement tool

• Selection
• Expectation

• Confidence
• Extent of control

CMU/SEI-87-TR-23, p. 3

3URYLGH#D#PHWKRG#IRU#86
'R'#WR#PRUH#HIIHFWLYHO\
HYDOXDWH#WKH#DELOLWLHV#RI
WKHLU#VRIWZDUH#FRQWUDFWRUV
WR#FRPSHWHQWO\#SHUIRUP#RQ
VRIWZDUH#HQJLQHHULQJ
FRQWUDFWV1

CMU/SEI-93-TR-24, section 1.3

7KH#&00#ZDV#GHVLJQHG#WR
JXLGH#VRIWZDUH#RUJDQL]DWLRQV#LQ
VHOHFWLQJ#SURFHVV#LPSURYHPHQW
VWUDWHJLHV#E\#GHWHUPLQLQJ
FXUUHQW#SURFHVV#PDWXULW\#DQG
LGHQWLI\LQJ#WKH#IHZ#LVVXHV#PRVW
FULWLFDO#WR#VRIWZDUH#TXDOLW\#DQG
SURFHVV#LPSURYHPHQW1

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

3 408-985-4476
ssqc@concentric.net

www.ssqc.com

5
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

/(9(/
5 /(9(/

6 /(9(/
7 /(9(/

8

385&+$6(5
())257#72#
63(&,)<

5(48,5(0(176
$1'

0$1$*(
5,6.

/(9(/
4

6.,//6#2)#3(23/(

5(3($7#:+$7·6#5(&(17

5(3($7/#5(&20%,1(#

&21752/

,1129$7(

6
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

The CMM is ...

… structured to support a large organization
executing large-scale projects for a specific
customer
CMU/SEI-93-TR-24, Section 2.2

7KH#GHWDLOHG#SUDFWLFHV
FKDUDFWHUL]H#WKH#«
EHKDYLRU#111#H[SHFWHG#LQ
DQ#RUJDQL]DWLRQ#GRLQJ
ODUJH0VFDOH#SURMHFWV#LQ#D
JRYHUQPHQW#FRQWUDFWLQJ
FRQWH[W1

CMU/SEI-93-TR-25, Section 1.1

7KH#&00#PXVW#EH
DSSURSULDWHO\#LQWHUSUHWHG
ZKHQ#WKH#EXVLQHVV
HQYLURQPHQW#RI#WKH
RUJDQL]DWLRQ#GLIIHUV
VLJQLILFDQWO\#IURP#WKDW#RI#D
ODUJH#FRQWUDFWLQJ#RUJDQL]DWLRQ1

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

4 408-985-4476
ssqc@concentric.net

www.ssqc.com

7
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Implications and assumptions

� Formal systems and an extensive
infrastructure and overhead are justified
and required

� Market/customer-specified and funded
development activities, methods, and tools

� Proliferation of tools and methods - size,
variety of technologies, acquisition

8
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

PROGRAM
TEAM

C US TO M E R

SY STEM S
EN G IN EE R-

ING

SO FTW AR E
EN G IN EE R-

ING

SO FTW AR E
PR O JEC T

TE AM

SO FTW AR E
SU BC O N-

TR AC T M G T.

H AR D-
W AR E

SQ A

SC M

TE STPU BS

REQUIREM ENTS

COMMITM ENTS

COMMENTS,
SUPPORT

STAFF, SUPPORT

ALLOCATED
REQUIREM ENTS

ALLOCATED
REQUIREM ENTS

The implied organizational model

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

5 408-985-4476
ssqc@concentric.net

www.ssqc.com

9
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Key points of comparison

Small Project Large Project

Team size (1-15, 1-3 teams) } ~15

Established individual
relationships and interpersonal
skills

Formal relationships

Work compartmentalized Overlap, shared responsibility

Individual skills Collective skills

Multiple and/or specialized
responsibilities

Narrow assignments

High key-person dependency Lower key person dependency

Short term (w~6 months) Longer duration

Low overhead High overhead

10
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

CMU/SEI-93-TR-25, Section 1.1

7KH#&00#PXVW#EH#DSSURSULDWHO\#LQWHUSUHWHG#ZKHQ#WKH#EXVLQHVV
HQYLURQPHQW#RI#WKH#RUJDQL]DWLRQ#GLIIHUV#VLJQLILFDQWO\#IURP#WKDW#RI#D#ODUJH
FRQWUDFWLQJ#RUJDQL]DWLRQ1##7KH#UROH#RI#SURIHVVLRQDO#MXGJPHQW#LQ#PDNLQJ
LQIRUPHG#XVH#RI#WKH#&00#PXVW#EH#UHFRJQL]HG1

 Focus on established principles

CMU/SEI-93-TR-25, Section 4.1

$OWKRXJK#WKH#NH\#SUDFWLFHV#DUH#PHDQW#WR#EH#LQGHSHQGHQW#RI#DQ\
SDUWLFXODU#LPSOHPHQWDWLRQ/#VSHFLILF#WHUPV#DQG#H[DPSOHV#DUH#FRQVLVWHQWO\
XVHG#111#2UJDQL]DWLRQV#«#VKRXOG#PDS#>WKHVH#WHUPV@#DSSURSULDWHO\#WR
WKHLU#RZQ#RUJDQL]DWLRQ/#SURMHFW/#DQG#EXVLQHVV#HQYLURQPHQW1

CMU/SEI-93-TR-25, Section 4.4.2

$#JURXS#FRXOG#YDU\#IURP#D#VLQJOH#LQGLYLGXDO#DVVLJQHG#SDUW#WLPH/#WR#VHYHUDO
SDUW0WLPH#LQGLYLGXDOV#DVVLJQHG#IURP#GLIIHUHQW#GHSDUWPHQWV/#WR#VHYHUDO
LQGLYLGXDOV#GHGLFDWHG#IXOO#WLPH1

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

6 408-985-4476
ssqc@concentric.net

www.ssqc.com

11
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Focus on “small”

� Techniques
z Map the CMM

� Select KPAs
� Translate definitions and

conventions
� Consolidate practices (e.g.,

reviews) and share responsibilities
� Combine documents (e.g., plans)

12
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Map the CMM

� Reduce the information overload
� Expose the goals and principles

85#NH\#VHQWHQFHV/#833#SDJHV#RI#JXLGDQFH
� Leverage parallels - maximize

opportunities to minimize overhead and
repetition

zBetween KPAs
zAcross levels

%DVLV#IRU=
� $SSURSULDWH
LQWHUSUHWDWLRQ

� 3URIHVVLRQDO
MXGJHPHQW

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

7 408-985-4476
ssqc@concentric.net

www.ssqc.com

KEY PRACTICES

KEY PROCESS
AREAS

GOALS

COM MITMENTS ACTIVITIESABILITIES M EASUREM ENT VERIFICATION

6&23(/
%281'$5,(6/
,17(17#0
1250$7,9(

7R#DFKLHYH#D#PDWXULW\#OHYHO/#WKH#NH\#SURFHVV
DUHDV#IRU#WKDW#OHYHO#PXVW#EH#VDWLVILHG1##7R
VDWLVI\#D#NH\#SURFHVV#DUHD/#HDFK#RI#WKH#JRDOV
IRU#WKH#NH\#SURFHVV#DUHD#PXVW#EH#VDWLVILHG1
CMU/SEI-93-TR-25, Section 3.3

KEY PRACTICES

KEY PROCESS
AREAS

GOALS

COM MITMENTS ACTIVITIESABILITIES M EASUREM ENT VERIFICATION

,1)5$6758&785(

,03/(0(17$7,21

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

8 408-985-4476
ssqc@concentric.net

www.ssqc.com

KEY PRACTICES

KEY PROCESS
AREAS

GOALS

COM MITMENTS ACTIVITIESABILITIES M EASUREMENT VERIFICATION

25*$1,=$7,21$/
32/,&</

5(63216,%,/,7<

5(6285&(6/
)81',1*/#75$,1,1*

0$1$*(0(17
$1'#64$

29(56,*+7

'(7(50,1(
67$786/#5($&7
,1#5($/#7,0(>
$&&58(#'$7$
)25#/(9(/#7

16
© SSQC All rights reserved. Version 3

ssqc@concentric.net www.ssqc.com 408-985-4476

Map the CMM -
at the KPA level

)RFXV#RQ#*2$/6

�#6HOHFW#.3$V

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

9 408-985-4476
ssqc@concentric.net

www.ssqc.com

17
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

5(48,5(0(176 0$1$*(0(17

Go1 Allocated requirements are
controlled

Go2 Software activities and work
products are kept consistent with
the allocated requirements ò

LEVEL 2LEVEL 2

18
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

5(48,5(0(176 0$1$*(0(17

62)7:$5(352-(&7
3/$11,1*

Go1 Estimates are documented

Go2 Activities and commitments are
planned and documented

Go3 Affected groups agree to their
commitments ò

LEVEL 2LEVEL 2

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

10 408-985-4476
ssqc@concentric.net

www.ssqc.com

19
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

62)7:$5(352-(&7
75$&.,1* $1' 29(56,*+7

5(48,5(0(176 0$1$*(0(17

62)7:$5(352-(&7
3/$11,1*

Go1 Actual results and performance
tracked against the plan

Go2 Corrective action taken when
actuals deviate significantly from the
plan

Go3 Affected groups agree to changes to
commitments ò

LEVEL 2LEVEL 2

20
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

62)7:$5(352-(&7
75$&.,1* $1' 29(56,*+7

62)7:$5(&21),*85$7,21 0$1$*(0(17

5(48,5(0(176 0$1$*(0(17

62)7:$5(352-(&7
3/$11,1*

Go1 SCM activities planned

Go2 Selected work products identified,
controlled, available

Go3 Affected groups informed of status
and content of baselines ò

LEVEL 2LEVEL 2

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

11 408-985-4476
ssqc@concentric.net

www.ssqc.com

21
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

62)7:$5(352-(&7
75$&.,1* $1' 29(56,*+7

5(48,5(0(176 0$1$*(0(17

62)7:$5(&21),*85$7,21 0$1$*(0(17

62)7:$5(48$/,7< $6685$1&(

62)7:$5(352-(&7
3/$11,1*

Go1 SQA activities planned

Go2 Adherence of activities, products
objectively verified

Go3 Inform affected groups of SQA
activities, results

Go4 Escalation of unresolvable issues
to senior management ò

LEVEL 2LEVEL 2

22
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

62)7:$5(352-(&7
75$&.,1* $1' 29(56,*+7

62)7:$5(68%&2175$&7
0$1$*(0(17

5(48,5(0(176 0$1$*(0(17

62)7:$5(&21),*85$7,21 0$1$*(0(17

62)7:$5(48$/,7< $6685$1&(

62)7:$5(352-(&7
3/$11,1*

Go1 Qualified subcontractors selected

Go2 Commitments agreed to

Go3 On-going communication and
tracking of performance against
commitments ò

LEVEL 2LEVEL 2

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

12 408-985-4476
ssqc@concentric.net

www.ssqc.com

23
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

62)7:$5(352-(&7
75$&.,1* $1' 29(56,*+7

� 25*$1,=$7,21 352&(66)2&86

62)7:$5(68%&2175$&7
0$1$*(0(17

5(48,5(0(176 0$1$*(0(17

62)7:$5(&21),*85$7,21 0$1$*(0(17

62)7:$5(48$/,7< $6685$1&(

62)7:$5(352-(&7
3/$11,1*

LEVEL 3LEVEL 3

Go1 Software process development
and improvement coordinated
and planned ò

24
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

62)7:$5(352-(&7
75$&.,1* $1' 29(56,*+7

� 25*$1,=$7,21 352&(66)2&86

� 25*$1,=$7,21 352&(66 '(),1,7,21

62)7:$5(68%&2175$&7
0$1$*(0(17

5(48,5(0(176 0$1$*(0(17

62)7:$5(&21),*85$7,21 0$1$*(0(17

62)7:$5(48$/,7< $6685$1&(

62)7:$5(352-(&7
3/$11,1*

LEVEL 3LEVEL 3

Go1 Standard software process developed,
maintained

Go2 Information on use of standard process
is collected, reviewed, available ò

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

13 408-985-4476
ssqc@concentric.net

www.ssqc.com

25
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

62)7:$5(352-(&7
75$&.,1* $1' 29(56,*+7

� 25*$1,=$7,21 352&(66)2&86

� 25*$1,=$7,21 352&(66 '(),1,7,21

� ,17(*5$7(' 62)7:$5(0$1$*(0(17

62)7:$5(68%&2175$&7
0$1$*(0(17

5(48,5(0(176 0$1$*(0(17

62)7:$5(&21),*85$7,21 0$1$*(0(17

62)7:$5(48$/,7< $6685$1&(

62)7:$5(352-(&7
3/$11,1*

LEVEL 3LEVEL 3

Go1 Project’s defined software process
tailored from standard software process

Go2 Project is managed according to its
defined software process ò

26
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

62)7:$5(352-(&7
75$&.,1* $1' 29(56,*+7

� 25*$1,=$7,21 352&(66)2&86

� 25*$1,=$7,21 352&(66 '(),1,7,21

� ,17(*5$7(' 62)7:$5(0$1$*(0(17

� 62)7:$5(352'8&7 (1*,1((5,1*

62)7:$5(68%&2175$&7
0$1$*(0(17

5(48,5(0(176 0$1$*(0(17

62)7:$5(&21),*85$7,21 0$1$*(0(17

62)7:$5(48$/,7< $6685$1&(

62)7:$5(352-(&7
3/$11,1*

LEVEL 3LEVEL 3

Go1 Software engineering tasks are defined,
integrated, and consistently performed

Go2 Software work products are kept
consistent with each other ò

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

14 408-985-4476
ssqc@concentric.net

www.ssqc.com

27
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

62)7:$5(352-(&7
75$&.,1* $1' 29(56,*+7

� 25*$1,=$7,21 352&(66)2&86

� 25*$1,=$7,21 352&(66 '(),1,7,21

� ,17(*5$7(' 62)7:$5(0$1$*(0(17

� 62)7:$5(352'8&7 (1*,1((5,1*

62)7:$5(68%&2175$&7
0$1$*(0(17

5(48,5(0(176 0$1$*(0(17

� ,17(5*5283
&225',1$7,21

62)7:$5(&21),*85$7,21 0$1$*(0(17

62)7:$5(48$/,7< $6685$1&(

62)7:$5(352-(&7
3/$11,1*

LEVEL 3LEVEL 3

Go1 All affected groups agree to customer
requirements and to inter-group commitments

Go2 Issues are identified, tracked, resolved ò

28
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

62)7:$5(352-(&7
75$&.,1* $1' 29(56,*+7

� 25*$1,=$7,21 352&(66)2&86

� 25*$1,=$7,21 352&(66 '(),1,7,21

� ,17(*5$7(' 62)7:$5(0$1$*(0(17

� 62)7:$5(352'8&7 (1*,1((5,1*

� 3((5 5(9,(:6

62)7:$5(68%&2175$&7
0$1$*(0(17

5(48,5(0(176 0$1$*(0(17

� ,17(5*5283
&225',1$7,21

62)7:$5(&21),*85$7,21 0$1$*(0(17

62)7:$5(48$/,7< $6685$1&(

62)7:$5(352-(&7
3/$11,1*

LEVEL 3LEVEL 3

Go1 Peer reviews are planned

Go2 Identified defects removed ò

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

15 408-985-4476
ssqc@concentric.net

www.ssqc.com

29
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

62)7:$5(352-(&7
75$&.,1* $1' 29(56,*+7

� 25*$1,=$7,21 352&(66)2&86

� 25*$1,=$7,21 352&(66 '(),1,7,21

� ,17(*5$7(' 62)7:$5(0$1$*(0(17

� 62)7:$5(352'8&7 (1*,1((5,1*

� 3((5 5(9,(:6

62)7:$5(68%&2175$&7
0$1$*(0(17

5(48,5(0(176 0$1$*(0(17

� ,17(5*5283
&225',1$7,21

� 75$,1,1* 352*5$0

62)7:$5(&21),*85$7,21 0$1$*(0(17

62)7:$5(48$/,7< $6685$1&(

62)7:$5(352-(&7
3/$11,1*

LEVEL 3LEVEL 3

Go1 Management and technical training are
planned and provided

Go2 Individuals receive required training ò

30
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

� 75$,1,1* 352*5$0

62)7:$5(352-(&7
75$&.,1* $1' 29(56,*+7

� 25*$1,=$7,21 352&(66)2&86

� 25*$1,=$7,21 352&(66 '(),1,7,21

� ,17(*5$7(' 62)7:$5(0$1$*(0(17

� 62)7:$5(352'8&7 (1*,1((5,1*

� 3((5 5(9,(:6

62)7:$5(68%&2175$&7
0$1$*(0(17

5(48,5(0(176 0$1$*(0(17

� ,17(5*5283
&225',1$7,21

62)7:$5(&21),*85$7,21 0$1$*(0(17

62)7:$5(48$/,7< $6685$1&(

� 48$17,7$7,9(
352&(66

0$1$*(0(17
62)7:$5(352-(&7

3/$11,1*

LEVEL 4LEVEL 4

Go1 Achieve quantitative control of the
project’s software process

Go2 Capability of the organization’s standard
process is quantified ò

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

16 408-985-4476
ssqc@concentric.net

www.ssqc.com

31
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

� 75$,1,1* 352*5$0

62)7:$5(352-(&7
75$&.,1* $1' 29(56,*+7

� 25*$1,=$7,21 352&(66)2&86

� 25*$1,=$7,21 352&(66 '(),1,7,21

� ,17(*5$7(' 62)7:$5(0$1$*(0(17

� 62)7:$5(352'8&7 (1*,1((5,1*

� 3((5 5(9,(:6

62)7:$5(68%&2175$&7
0$1$*(0(17

5(48,5(0(176 0$1$*(0(17

� ,17(5*5283
&225',1$7,21

62)7:$5(&21),*85$7,21 0$1$*(0(17

62)7:$5(48$/,7< $6685$1&(

� 48$17,7$7,9(
352&(66

0$1$*(0(17

� 62)7:$5(
48$/,7<

0$1$*(0(17

62)7:$5(352-(&7
3/$11,1*

LEVEL 4LEVEL 4

Go1 Project software quality management planned

Go2 Measurable goals set; progress is quantified
and managed ò

32
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

� '()(&7 35(9(17,21

62)7:$5(352-(&7
75$&.,1* $1' 29(56,*+7

� 25*$1,=$7,21 352&(66)2&86

� 25*$1,=$7,21 352&(66 '(),1,7,21

� ,17(*5$7(' 62)7:$5(0$1$*(0(17

� 62)7:$5(352'8&7 (1*,1((5,1*

� 3((5 5(9,(:6

62)7:$5(68%&2175$&7
0$1$*(0(17

5(48,5(0(176 0$1$*(0(17

� ,17(5*5283
&225',1$7,21

� 48$17,7$7,9(
352&(66

0$1$*(0(17

� 62)7:$5(
48$/,7<

0$1$*(0(17

62)7:$5(&21),*85$7,21 0$1$*(0(17

62)7:$5(48$/,7< $6685$1&(

62)7:$5(352-(&7
3/$11,1*

� 75$,1,1* 352*5$0

� 352&(66 &+$1*(0$1$*(0(17

� 7(&+12/2*< &+$1*(0$1$*(0(17

LEVEL 5LEVEL 5

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

17 408-985-4476
ssqc@concentric.net

www.ssqc.com

Level 5 Goals

DEFECT PREVENTION

Go1 Prevention activities are planned

Go2 Common causes of defects are identified, prioritized, and
systematically eliminated ò

TECHNOLOGY CHANGE MANAGEMENT
Go1 Incorporation of technology change is planned

Go2 New technologies are evaluated for impact on quality and
productivity

Go3 Appropriate new technologies are implemented across the
organization ò

PROCESS CHANGE MANAGEMENT

Go1 Continuous process improvement planned and achieved

Go2 Organization-wide participation ò

34
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Levels

� Basis for one set of ratings from the current
assessment methods
z CMM-Based Appraisal for Internal process

Improvement (CBA-IPI)
z Software Capability Evaluation (SCE)

� Potential for abuse
z Theory: Walk before you run.
z Practice: What do I have to do?
z Best practice: What do I need to do?

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

18 408-985-4476
ssqc@concentric.net

www.ssqc.com

Levels 2 and 3 for small
organizations
� Typical Silicon Valley company

z No proliferation of tools and methods
across projects - commonality

– Single approach across projects -
documented or not

z High degree of vocal participation and
consensus

� Organizational focus = Level 3
� Transition between ISO 9001 and CMM

Level 3

36
© SSQC All rights reserved. Version 3

ssqc@concentric.net www.ssqc.com 408-985-4476

Case Study
���� Select KPAs

)LQDQFLDO#$OJRULWKPV/)LQDQFLDO#$OJRULWKPV/)LQDQFLDO#$OJRULWKPV/)LQDQFLDO#$OJRULWKPV/
/WG1#+)$/,/WG1#+)$/,/WG1#+)$/,/WG1#+)$/,

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

19 408-985-4476
ssqc@concentric.net

www.ssqc.com

37
© SSQC All rights reserved. Version 3

ssqc@concentric.net www.ssqc.com 408-985-4476

6,/26
&21

62/,'
$7(

Map the CMM -
at the key practice level

$FURVV#WKH#.3$V
�#7UDQVODWH#GHILQLWLRQV
DQG#FRQYHQWLRQV

�#&RQVROLGDWH#SUDFWLFHV/
VKDUH#UHVSRQVLELOLWLHV

2 3 4 5
RM SPP SPT SSM SQA SCM OPF OPD TP ISM SPE IC PR QPM SQM DP TCM PCM

1 N N N N N N N N N N N N N N N N N N

2 N N N N N N N N N N N N N N N N N N

3 N N N N N N N N N N N N N
GOALS

4 N N N

1 N N N N N N N N N N N N N N N N N N

2 N N N N N N N N
COMMIT-
MENTS

3

1 N N N N N N N N N N N N N N N N N N

2 N N N N N N N N N N N N N N N N N N

3 N N N N N N N N N N N N N N N N N

4 N N N N N N N N N N N N N

ABILITIES

5 N N N N N

1 N N N N N N N N N N N N N N N N N N

2 N N N N N N N N N N N N N N N N N N

3 N N N N N N N N N N N N N N N N N N

4 N N N N N N N N N N N N N N N N

5 N N N N N N N N N N N N N N N N

6 N N N N N N N N N N N N N N N

7 N N N N N N N N N N N N N

8 N N N N N N N N N N

9 N N N N N N N

10 N N N N N N N

11 N N N N

12 N N N

13 N N N

14 N

ACTIVITIES

15 N

1 N N N N N N N N N N N N N N N N N NMEASURE-
MENT 2 N N

1 N N N N N N N N N N N N N N N N N N

2 N N N N N N N N N N N N N N N

3 N N N N N N N N N N N N N

VERIFICA-
TION

4 N

LEVELSCOMMON
FEATURES

ê

ê

ê

ê

ê #,167,787,21$/,=$7,21 è #,03/(0(17$7,21

è

69;28<7#+4;[66,

85

649

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

20 408-985-4476
ssqc@concentric.net

www.ssqc.com

39
© SSQC All rights reserved. Version 3

ssqc@concentric.net www.ssqc.com 408-985-4476

Example: Map
institutionalization key

practices
across the KPAs

&RPPLWPHQWV/#$ELOLWLHV/
0HDVXUHPHQW/#9HULILFDWLRQ

40
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Measurement and analysis

63
3

4
5

50 63
72

66
0

64
$

6&
0

23
)

23
'

73 ,6
0

63
(

,& 35 43
0

64
0

'3 7&
0

3&
0

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

21 408-985-4476
ssqc@concentric.net

www.ssqc.com

63
3

4
5

50 63
72

66
0

64
$

6&
0

23
)

23
'

73 ,6
0

63
(

,& 35 43
0

64
0

'3 7&
0

3&
0

0HDVXUHPHQWV#DUH
PDGH#DQG#XVHG#WR
GHWHUPLQH#WKH#VWDWXV
RI#WKH#DFWLYLWLHV#IRU
PDQDJLQJ#WKH
DOORFDWHG
UHTXLUHPHQWV

0HDVXUHPHQWV#DUH
PDGH#DQG#XVHG#WR
GHWHUPLQH#WKH#VWDWXV
RI#WKH#VRIWZDUH
SODQQLQJ#DFWLYLWLHV

0HDVXUHPHQWV#DUH#PDGH#DQG#XVHG#WR
GHWHUPLQH#WKH#VWDWXV#RI#WKH
VRIWZDUH#WUDFNLQJ#DQG
RYHUVLJKW#DFWLYLWLHV

0HDVXUHPHQWV#DUH#PDGH#DQG
XVHG#WR#GHWHUPLQH#WKH#VWDWXV
RI#WKH#DFWLYLWLHV#IRU
PDQDJLQJ#WKH#VRIWZDUH
VXEFRQWUDFW

0HDVXUHPHQWV#DUH#PDGH
DQG#XVHG#WR#GHWHUPLQH#WKH
VWDWXV#RI#WKH#6&0
DFWLYLWLHV

0HDVXUHPHQWV#DUH#PDGH#DQG
XVHG#WR#GHWHUPLQH#WKH#VWDWXV
RI#WKH

RUJDQL]DWLRQ·V
SURFHVV
GHYHORSPHQW
DQG
LPSURYHPHQW
DFWLYLWLHV 0HDVXUHPHQWV#DUH#PDGH#DQG#XVHG#WR

GHWHUPLQH#WKH#VWDWXV#RI#WKH

RUJDQL]DWLRQ·V#SURFHVV
GHILQLWLRQ#DFWLYLWLHV

0HDVXUHPHQWV#DUH#PDGH#DQG#XVHG#WR#GHWHUPLQH#WKH#VWDWXV#RI

WKH#WUDLQLQJ#SURJUDP#DFWLYLWLHV

0HDVXUHPHQWV#DUH#PDGH#DQG#XVHG#WR#GHWHUPLQH#WKH

VWDWXV#RI#WKH#VRIWZDUH#SURGXFW
HQJLQHHULQJ#DFWLYLWLHV

«#SHHU#UHYLHZ#DFWLYLWLHV

«#DFWLYLWLHV#IRU
TXDQWLWDWLYH#SURFHVV
PDQDJHPHQW

«#VRIWZDUH#TXDOLW\
PDQDJHPHQW#DFWLYLWLHV

(WF1/
#HWF1/
###HWF1

42
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

0($685(0(17

63
3

4
5

50 63
72

66
0

64
$

6&
0

23
)

23
'

73 ,6
0

63
(

,& 35 43
0

64
0

'3 7&
0

3&
0

0($685(0(176#$5(#0$'(#$1'
86('#72#'(7(50,1(#7+(#67$786
2)#$&7,9,7,(6

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

22 408-985-4476
ssqc@concentric.net

www.ssqc.com

43
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

0($685(0(17

63
3

4
5

50 63
72

66
0

64
$

6&
0

23
)

23
'

73 ,6
0

63
(

,& 35 43
0

64
0

'3 7&
0

3&
0

0($685(0(176#$5(#0$'(#$1'
86('#72#'(7(50,1(#7+(#

#67$786#2)
$&7,9,7,(6

&267
$1'#6&+('8/(

44
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

0($685(0(17

63
3

4
5

50 63
72

66
0

64
$

6&
0

23
)

23
'

73 ,6
0

63
(

,& 35 43
0

64
0

'3 7&
0

3&
0

0($685(0(176#$5(#0$'(
$1'#86('#72#'(7(50,1(
7+(# 2)#7+(
75$,1,1*#352*5$01

48$/,7<#

0($685(0(176#$5(#0$'(#$1'
86('#72#'(7(50,1(#7+(

2)#7+(#62)7:$5(#352'8&761
)81&7,21$/,7<#$1'#48$/,7<

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

23 408-985-4476
ssqc@concentric.net

www.ssqc.com

45
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Measurements for small projects

� Useful for managing the current project
(short-term) and future projects

� Easy to report and gather
z Progress against the schedule
z Accuracy of estimates
z Defects - found, closed

46
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Verifying implementation

9(5,),&$7,21

63
3

4
5
6
7

50 63
72

66
0

64
$

6&
0

23
)

23
'

73 ,6
0

63
(

,& 35 43
0

64
0

'3 7&
0

3&
0

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

24 408-985-4476
ssqc@concentric.net

www.ssqc.com

47
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

9(5,),&$7,21

63
3

4
5
6
7

50 63
72

66
0

64
$

6&
0

23
)

23
'

73 ,6
0

63
(

,& 35 43
0

64
0

'3 7&
0

3&
0

5(9,(:('#:,7+#6(1,25
0$1$*(0(17#21#$
3(5,2',&#%$6,6

48
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

9(5,),&$7,21

63
3

4
5
6
7

50 63
72

66
0

64
$

6&
0

23
)

23
'

73 ,6
0

63
(

,& 35 43
0

64
0

'3 7&
0

3&
0

5(9,(:('#:,7+#7+(#352-(&7
0$1$*(5#21#%27+#$#3(5,2',&
$1'#$1#(9(170'5,9(1#%$6,6

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

25 408-985-4476
ssqc@concentric.net

www.ssqc.com

49
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Senior management review
versus project manager review
Project manager - The role with total business responsibility
for an entire project; the individual who directs, controls,
administers, and regulates a project building a software or
hardware/software system. The project manager is the
individual ultimately responsible to the customer.

Senior manager - A management role at a high enough
level in an organization that the primary focus is the long-
term vitality of the organization, rather than short-term
project and contractual concerns and pressures. In general,
a senior manager for engineering would have responsibility
for multiple projects.

50
© SSQC All rights reserved. Version 3

ssqc@concentric.net www.ssqc.com 408-985-4476

Case Study
���� Translate definitions and

conventions

)LQDQFLDO#$OJRULWKPV/#/WG1#+)$/,)LQDQFLDO#$OJRULWKPV/#/WG1#+)$/,)LQDQFLDO#$OJRULWKPV/#/WG1#+)$/,)LQDQFLDO#$OJRULWKPV/#/WG1#+)$/,
&RPSOHDW#6\VWHPV/#,QF1#+&6,,&RPSOHDW#6\VWHPV/#,QF1#+&6,,&RPSOHDW#6\VWHPV/#,QF1#+&6,,&RPSOHDW#6\VWHPV/#,QF1#+&6,,

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

26 408-985-4476
ssqc@concentric.net

www.ssqc.com

51
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

9(5,),&$7,21

�,QWHJUDWH#64$#0#FURVV
IXQFWLRQDO#WHDP
�3DUW0WLPH#UHVSRQVLELOLW\
�&RQVXOW#DQG#DGYLVH

�,QWHJUDWH#64$#0#FURVV
IXQFWLRQDO#WHDP
�3DUW0WLPH#UHVSRQVLELOLW\
�&RQVXOW#DQG#DGYLVH

7+(#64$#*5283#5(9,(:6
$1'225#$8',76#$&7,9,7,(6#$1'
:25.#352'8&76#$1'
5(32576#7+(#5(68/76

63
3

4
5
6
7

50 63
72

66
0

64
$

6&
0

23
)

23
'

73 ,6
0

63
(

,& 35 43
0

64
0

'3 7&
0

3&
0

52
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

9(5,),&$7,21

7+(#64$#*5283#5(9,(:6
$1'225#$8',76#$&7,9,7,(6#$1'
:25.#352'8&76#$1'
5(32576#7+(#5(68/76

63
3

4
5
6
7

50 63
72

66
0

64
$

6&
0

23
)

23
'

73 ,6
0

63
(

,& 35 43
0

64
0

'3 7&
0

3&
0

5(9,(:('#:,7+#6(1,25
0$1$*(0(17#21#$
3(5,2',&#%$6,6

5(9,(:('#:,7+#7+(#352-(&7
0$1$*(5#21#%27+#$#3(5,2',&
$1'#$1#(9(170'5,9(1#%$6,6

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

27 408-985-4476
ssqc@concentric.net

www.ssqc.com

�$XWRPDWH#6&0#0#HQIRUFH
UXOHV/#VLPSOLI\#GDWD#FDSWXUH
�3DUW0WLPH/#URWDWLQJ
UHVSRQVLELOLW\#+EXLOG
PDQDJHU,

�$XWRPDWH#6&0#0#HQIRUFH
UXOHV/#VLPSOLI\#GDWD#FDSWXUH
�3DUW0WLPH/#URWDWLQJ
UHVSRQVLELOLW\#+EXLOG
PDQDJHU,

63
3

4
5
6
7

50 63
72

66
0

64
$

6&
0

23
)

23
'

73 ,6
0

63
(

,& 35 43
0

64
0

'3 7&
0

3&
0

,1'(3(1'(17#(;3(576
3(5,2',&$//<#5(9,(:
$&7,9,7,(6#$1'#:25.
352'8&76

7+(#6&0#*5283
3(5,2',&$//<#$8',76
%$6(/,1(6

54
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

9(5,),&$7,21

63
3

4
5
6
7

50 63
72

66
0

64
$

6&
0

23
)

23
'

73 ,6
0

63
(

,& 35 43
0

64
0

'3 7&
0

3&
0

,1'(3(1'(17/<
(9$/8$7('#21
$#3(5,2',&#%$6,6

$&7,9,7,(6#$1'#:25.
352'8&76#5(9,(:('
$1'225#$8',7('>#5(68/76
5(3257('

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

28 408-985-4476
ssqc@concentric.net

www.ssqc.com

55
© SSQC All rights reserved. Version 3

ssqc@concentric.net www.ssqc.com 408-985-4476

Example: Map activities
across the KPAs

�#&RQVROLGDWH#SUDFWLFHV/
VKDUH#UHVSRQVLELOLWLHV

50/#633/#63(/#DQG#,&
633/#6372/#,60

56
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

*R5 6RIWZDUH#DFWLYLWLHV#DQG#ZRUN
SURGXFWV#DUH#NHSW#FRQVLVWHQW
ZLWK#WKH#DOORFDWHG#UHTXLUHPHQWV

50

&200,70(176

$%,/,7,(6

$&7,9,7,(6

6
5

4

7
6

5
4

4

'2&80(17('#32/,&<=##$//2&$7('#5(48,5(0(176#'2&80(17('/#
5(9,(:('>#&+$1*(6#5(9,(:('/#,03/(0(17('

$//2&$7('#5(48,5(0(176#'2&80(17('=
#######WHFKQLFDO/#QRQ0WHFKQLFDO/#DFFHSWDQFH#FULWHULD

5(9,(:('#%<#62)7:$5(#(1*,1((5,1*#
*5283#35,25#72#,1&25325$7,21=
######FRPPLWPHQWV#QHJRWLDWHG

$//2&$7('#5(48,5(0(176#$5(#%$6,6#
)25#62)7:$5(#3/$16/#:25.#
352'8&76/#$1'#$&7,9,7,(6=
0DQDJHG#DQG#FRQWUROOHG
%DVLV#IRU#VRIWZDUH#UHTXLUHPHQWV

P

P

&+$1*(6#5(9,(:('/
,03/(0(17('=#FRPPLWPHQWV#

UHQHJRWLDWHG

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

29 408-985-4476
ssqc@concentric.net

www.ssqc.com

57
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

63
3

&200,70(176

$%,/,7,(6

$&7,9,7,(6

48

47

46

45

44

43
<

;
:
9

8
7
6

5
4

7
6

5
4

5
4 7+(#62)7:$5(#(1*,1((5,1*#*5283#3$57,&,3$7(6#21#

7+(#352-(&7#352326$/#7($0

62)7:$5(#3/$11,1*#%(*,16#
($5/<#,1#7+(#352-(&7

62)7:$5(#(1*,1((5,1*
#####3$57,&,3$7(6#,1#29(5$//#352-(&7
##########3/$11,1*#7+528*+287#7+(
################352-(&7#/,)(#&<&/(

4 5(9,(:('#%<#62)7:$5(#
(1*,1((5,1*#*5283#35,25#72#
,1&25325$7,21

58
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

63
(

$&7,9,7,(6

5

7+(#62)7:$5(#5(48,5(0(176#$5(#
'(9(/23('/#0$,17$,1('/#
'2&80(17('/#$1'#9(5,),('#%<#
6<67(0$7,&$//<#1/<=,1*#7+(#
$//2&$7('#5(48,5(0(176#
$&&25',1*#72#7+(#352-(&7·6#
'(),1('#62)7:$5(#352&(66

5(9,(:('#%<#62)7:$5(#
(1*,1((5,1*#*5283#35,25#72#
,1&25325$7,21

4

5 $//2&$7('#5(48,5(0(176#$5(#
%$6,6#)25#62)7:$5(#3/$16/#
:25.#352'8&76/#$1'#
$&7,9,7,(6

,&

$&7,9,7,(6

4

7+(#62)7:$5(#(1*,1((5,1*#*5283#
$1'#27+(5#(1*,1((5,1*#*52836#
3$57,&,3$7(#:,7+#7+(#&86720(5#$1'#
(1'#86(56/#$6#$335235,$7(/#72#
(67$%/,6+#7+(#6<67(0#
5(48,5(0(176

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

30 408-985-4476
ssqc@concentric.net

www.ssqc.com

59
© SSQC All rights reserved. Version 3

ssqc@concentric.net www.ssqc.com 408-985-4476

Case Study -
Implications for
software-only

projects

60
© SSQC All rights reserved. Version 3

ssqc@concentric.net www.ssqc.com 408-985-4476

Example: Map activities
across the KPAs (cont.)

�#&RQVROLGDWH#SUDFWLFHV/
VKDUH#UHVSRQVLELOLWLHV

50/#633/#63(/#DQG#,&
633/#6372/#,60

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

31 408-985-4476
ssqc@concentric.net

www.ssqc.com

61
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

,6
0

&200,70(176

$%,/,7,(6

$&7,9,7,(6

44

43
<

;
:

9
8

7

6
5

4

4

63
3

63
72

$&7,9,7,(6

$&7,9,7,(6

9
5

'2&80(17('#352&('85(
5HYLVH#WKH#36'3P

'2&80(17('#352&('85(
'HYHORS#WKH#36'3P

6
5

4

7+(#36'3/#:+,&+#'(6&5,%(6#7+(#86(#
2)#7+(#352-(&7*6#'(),1('#62)7:$5(#
352&(66#,6#'(9(/23('#$1'#5(9,6('#
$&&25',1*#72#$#'2&80(17('#
352&('85(1

62
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

,6
0

9

:

;

<

43

111#0$1$*('#$&&25',1*#72#$#
'2&80(17('#352&('85(

6,=(#$1'#&+$1*(6#72#6,=(#111

())257#$1'#&2676#111

&5,7,&$/#&20387(5#5(6285&(6#111

&5,7,&$/#3$7+#$1'#'(3(1'(1&,(6#111

5,6.6#«

63
3

:
7+(#36'3#,6#'2&80(17('

81#6,=(
91#())257#$1'#&2676#111
:1#&5,7,&$/#&20387(5#5(6285&(6
;1#6&+('8/(6
<1#5,6.6

63
72

8

9

:

;

<

43

111#75$&.('/#&255(&7,9(#$&7,21#7$.(1

6,=(#111

())257#$1'#&2676#111

&5,7,&$/#&20387(5#5(6285&(6#111

6&+('8/(#111

7(&+1,&$/#$&7,9,7,(6#111

5,6.6#$5(#75$&.('

$&7,9,7,(6

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

32 408-985-4476
ssqc@concentric.net

www.ssqc.com

63
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Estimation

� Find methods suitable for small projects
� PROBE - Proxy-based estimation

z A systematic method for preparing
accurate, individual estimates from
historical data

– You’re only as good as your data
– You still need data (Tinstaafl)
– Requires that new work relate closely

to previous work

64
© SSQC All rights reserved. Version 3

ssqc@concentric.net www.ssqc.com 408-985-4476

� Combine documents

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

33 408-985-4476
ssqc@concentric.net

www.ssqc.com

65
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Combine documents

� Policies, plans, procedures, work products
� Consolidate into a single document
� Joint authorship (e.g., MRD and SRS)

z Minimize hand offs, intermediaries
z Offer options based on scope and size of

work
� Simplify and automate “managed and

controlled” - use an intranet

66
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Combine documents (cont.)

� Evolve and reuse
z Flow forward

– Proposal to SDP and software
requirements

– Requirements to high-level design(s)
– Unit test cases to integration test

z Flow back
– Acceptance to integration test

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

34 408-985-4476
ssqc@concentric.net

www.ssqc.com

Plans across the KPAs and levels
Level KPA KP PLANS

SPP AC7 A plan for the software project
SSM AC4 A subcontractor’s SDP

AC12.3 An action plan for any software product that does not pass acceptance
SQA AC1 SQA plan

2

SCM AC1 An SCM plan
OPF AC1 Action plans to address findings from the periodic assessments

AC2 A plan for software process development and improvement activities
TP AC1 Project training plan

AC2 Organization’s training plan
ISM AC3 The project’s software development plan

AC10.1 A software risk management plan
SPE AC5.7 Test plans, test procedures, and test cases

AC6.1 Plans for integration testing
AC7.2 Plans for system and acceptance testing

3

PR AC1 Plans for Peer Reviews
QPM AC1 [A project] plan for quantitative process management4
SQM AC1 The project‘s software quality plan
DP AC1 The software project [defect prevention] plan
TCM GO1 Continuous process improvement [plan]

5

PCM AC3 A plan for software process improvement

68
© SSQC All rights reserved. Version 3

ssqc@concentric.net www.ssqc.com 408-985-4476

Example -
Consolidate plans

633/
64$/
6&0

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

35 408-985-4476
ssqc@concentric.net

www.ssqc.com

69
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Plan contents: SPP and SQA

SPP - Ac 7
z Purpose, scope, goal, objectives
z Selected life cycle
z Identify procedures, methods,

standards
z Identify work products
z Size estimates
z Effort and cost estimates
z Critical computer resource

estimates
z Schedule (milestones, reviews)
z Risks
z Engineering facilities and support

tools

SQA - Ac 2
z Responsibilities and authority
z Evaluations, audits, and reviews to

be performed; procedures for
tracking non-compliance; feedback
method

z Project standards and procedures
z Documentation to be produced
z Resources required
z Schedule and funding

70
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Plan contents: SPP and SCM

SPP - Ac 7
z Purpose, scope, goal, objectives
z Selected life cycle
z Identify procedures, methods,

standards
z Identify work products
z Size estimates
z Effort and cost estimates
z Critical computer resource

estimates
z Schedule (milestones, reviews)
z Risks
z Engineering facilities and support

tools

SCM - Ac 2
z Activities to be performed
z Resources required (staffing, tools

facilities)
z Schedule of activities

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

36 408-985-4476
ssqc@concentric.net

www.ssqc.com

71
© SSQC All rights reserved. Version 3

ssqc@concentric.net www.ssqc.com 408-985-4476

Transition strategy

72
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Where to start

� RM, SPP, and SPTO
z Integrated product life cycle

– Activities and responsibilities
– Create cross-functional teams

� Project planning and management methods
z Small projects and cross-functional teams
z Significant impact of individual

performance

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

37 408-985-4476
ssqc@concentric.net

www.ssqc.com

73
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Deployment

� Pilot versus roll-out irrelevant
z Incremental

� Training versus review and participation
z 100%
z Development, review, training roll

together
✗ Assessment

z CBA-IPI or SCE or ...

74
© SSQC All rights reserved. Version 3

ssqc@concentric.net www.ssqc.com 408-985-4476

The Future of the CMM

&00,#DQG#VPDOO#SURMHFWV

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

38 408-985-4476
ssqc@concentric.net

www.ssqc.com

75
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

CMMI product release plan

38%/,(9,(:
&00,06:#Y315
&00,06:26(#Y315
&00,06(#Y315

38%/,(9,(:
&00,06:26(#Y315

;2<< 4233432<< 72335233 8233 9233 ;233

3,/27#$66(660(176

38%/,6+
&00,06:#Y413
&00,06:26(#Y413
&00,06(#Y413

3,/27#$66(660(176

38%/,6+
&00,06:26(#Y413

:LWKRXW
,33'
:LWKRXW
,33'

:LWK
,33'
:LWK
,33'

76
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

IPPD?

� Integrated Product and Process
Development

A management technique that … integrates all
essential acquisition activities through the use of
multidisciplinary teams … . “A” Specification for the CMMI
Product Suite, Version 1.3

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

39 408-985-4476
ssqc@concentric.net

www.ssqc.com

77
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

CMMI product release plan (cont.)

CMMI Representation

Models Staged Continuous

Without IPPD SW æ æ

SW/SE æ æ

SE æ æ

With IPPD SW/SE æ æ

Staged? Continuous?
� Staged

Denotes a … structure that includes organizational maturity
levels based on groupings of process areas. “A” Specification for the
CMMI Product Suite, Version 1.3

� Continuous
Denotes a … structure of processes that provide a continuum
of increasing capability for each process area along with a
recommended grouping of process areas.
“A” Specification for the CMMI Product Suite, Version 1.3

CMMI Representation

Models Staged Continuous

Without IPPD SW æ æ

SW/SE æ æ

SE æ æ

With IPPD SW/SE æ æ

© Software Systems Quality Consulting
2269 Sunny Vista Drive, San Jose CA 95128
All rights reserved.

40 408-985-4476
ssqc@concentric.net

www.ssqc.com

79
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Topics - review

� Background, guidance,
assumptions

� Mapping the CMM
z Levels, ratings, and other

traps
z Tailoring techniques and

examples for small projects
� Strategy for transitioning to the

CMM
z Appraisal methods - return

on investment
� The future of the CMM: CMMI

7KURXJKRXW#WKH#VHVVLRQ
� $W#WKH#.3$#DQG#NH\#SUDFWLFH#OHYHOV
� :LWKLQ#DQG#DFURVV#.3$V#DQG#/HYHOV

�6HOHFW#.3$V
�7UDQVODWH#GHILQLWLRQV#DQG#FRQYHQWLRQV
�&RQVROLGDWH#SUDFWLFHV#+H1J1/#UHYLHZV,
DQG#VKDUH#UHVSRQVLELOLWLHV

�&RPELQH#GRFXPHQWV#+H1J1/#SODQV,
� /LIHF\FOH
� 3URMHFW#PDQDJHPHQW
� ,QWHJUDWHG#WHDPV

&KHFN#RXW#WKH#FRQWLQXRXV
UHSUHVHQWDWLRQV#+ZLWK#RU#ZLWKRXW#,33',
VFKHGXOHG#IRU#DYDLODELOLW\#LQ#4<<<#DQG
5333

80
© SSQC All rights reserved. Version 6

ssqc@concentric.net www.ssqc.com 408-985-4476

Contact Information

Bill Deibler
Software Systems Quality Consulting
2269 Sunny Vista Drive
San Jose, CA 95128
Phone 408-985-4476 Fax 408-248-7772
deibs@ssqc.com

www.ssqc.com

Thoughts on OraclesThoughts on Oracles
& Software Test Automation& Software Test Automation

Cem Kaner, JD, PhD, ASQ-CQE
Doug Hoffman, BA, MBA, MSEE, ASQ-CSQE

Quality Week. May, 1999.

2

AcknowledgmentAcknowledgment

• Many of the ideas in this presentation were presented and
refined at the 5th Los Altos Workshop on Software Testing.
LAWST 5 participants included:

– Chris Agruss (Autodesk), James Bach (RST), Jack Falk
(softGear technologies), David Gelperin (Software Quality
Engineering), Elisabeth Hendrickson (Quality Tree Software),
Doug Hoffman (Software Quality Methods), Bob Johnson
(Coyote Valley Software), Cem Kaner (KANER.COM), Brian
Lawrence (Coyote Valley Software), Noel Nyman (Microsoft),
Jeff Payne (RST), Johanna Rothman (Rothman Consulting
Group), Melora Svoboda, Loretta Suzuki (Storage
Techologies), Ned Young (softGear technologies).

– (Affiliations are presented for identification only)

3

Starting ExerciseStarting Exercise

Picture how automation would look like in your
environment . . .

4

The GUI Regression Automation ProblemThe GUI Regression Automation Problem

• Dominant paradigm for automated testing.
• Prone to failure because of difficult financing,

architectural, and maintenance issues.
• Low power (in its traditional form) even if successful.
• Extremely valuable under some circumstances.

THERE ARE MANY ALTERNATIVES

THAT CAN BE MORE APPROPRIATE

UNDER OTHER CIRCUMSTANCES.

,I \RXU RQO\ WRRO LV D KDPPHU� HYHU\WKLQJ ORRNV OLNH D QDLO�

5

Capabilities of Automation ToolsCapabilities of Automation Tools

• Automated testing tools provide special capabilities, such
as:

– Analyze source code for bugs

– Design test cases

– Automatically create test cases

– Ease manual creation of test cases

– Execute tests

– Record test events

– Measure software responses to tests (Discovery Functions)

– Determine expected results of tests (Reference Functions)

– Evaluate test results (Evaluation Functions)

– Report results

6

Examples of CapabilitiesExamples of Capabilities

• Analyze source code for bugs

– LINT, complexity analyzers, syntax checkers, etc.
• Design test cases

– Softtest, AETG
• Automatically create test cases

– Simulators and other random test case creators. Filter
checkers, test data generators

• Ease manual creation of test cases

– Keyboard capture
• Execute tests

– QA Partner, Visual Test, Spiders, TCL

7

Examples of CapabilitiesExamples of Capabilities

• Record test events (flight recorders)

– QA Partner, etc.
• Measure software responses to tests (Discovery

Functions)
– QA Partner, etc. Also, performance measurement,

memory meters, trace tools, event loggers, spiders.
– Note: this includes looking further than superficial results.

For example, check the contents of a changed data file, not
just the reported, calculated result.

8

Capabilities: ExamplesCapabilities: Examples

• Determine expected results of tests (Reference
Functions)
– Oracles (parallel or inverse functions, simulators,

alternate algorithms, or other versions of product).

– Oracles traditionally predict the main result, but
expected results might include expected side effects.

• Evaluate test results (Evaluation Functions)

– Perform results comparisons

– Analyze differences

– Identify potential faults (e.g.. heuristic evaluators)
• Report results

– Report detailed test results and summarize suite results.

9

Evaluating Tests: Limited ComparisonEvaluating Tests: Limited Comparison

S y s te m U n de r
T e s t

T e s t Inp u ts

P re c on d itio n D a ta

P re c on d itio n
P ro g ram S ta te

E n vi ron m e n ta l
In pu ts

T e s t R e su lts

P o s tc on d i tio n D a ta

P o s tc on d i tio n
P ro g ram S ta te

E n vi ron m e n ta l
R e sult s

A com plete eva lua tion o f th e system
un der test w ou ld be m u lti-d im ension a l

10

Reference Functions: ExamplesReference Functions: Examples

• Parallel function

– previous version

– competitor

– standard function

– custom model
• Inverse function

– mathematical inverse

– operational inverse (e.g. split a merged table or round
outbound conversion routines back to inbound converters)

• Statistical distribution

– test for outliers, means, predicted distribution
• Saved result from a previous test. (Consistency test)

11

Evaluation Functions: ExamplesEvaluation Functions: Examples

• Compare (apparently) sufficiently complete attributes

– compare calculated results of two parallel math functions
(but ignore duration, available memory, pointers,
display)

• Compare incidental but informative attributes

– durations
• Check (apparently) insufficiently complete attributes

– ZIP Code entries are 5 or 9 digits. ZIP codes starting
with 9 are not from a NY dataset.

• Check probabilistic attributes

– X is usually greater than Y. More customers in NY than
Wyoming.

12

Strategies for AutomationStrategies for Automation

What characteristics of the
– goal of testing
– software under test
– environment
– generator
– reference function
– evaluation function
– users
– risks

would support, counter-indicate, or drive you toward a strategy?
– small sample, pre-specified values
– exhaustive sample
– random (aka statistical)
– heuristic analysis of a large set
– consistency evaluation

13

Strategies for AutomationStrategies for Automation

The following slides are a work in progress. They are
not complete.
Please consider them in the context of the questions
on Slide 12 and try to list:
– more of the relevant characteristics

– more examples of the strategies (e.g. more heuristic
rules, more items for consistency comparison, etc.)

14

Strategy: Small SampleStrategy: Small Sample

• The small sample strategy is about limiting the
number of tests used to exercise a product. The most
common approach is to divide a large population of
possible tests into subsets and to choose a few
values that are representative of each set.

• Automated regression testing is a typical case:

– Execute tests

– Measure software responses

– Evaluate by comparison (typically of screen output or
screen-related output) against a saved result

15

Favorable Conditions: Small SampleFavorable Conditions: Small Sample

• Goal of Testing
–

• Software Under Test
– Regular function or any other input or output domain that is

well-tested by a small group of representative values (such as
boundary values)

–

• Environment
– Environment or data cost high (e.g. Beizer’s report of costs of

Y2K time machine tests)

–

• Generator
– High cost to generate test cases (e.g., no automated generator)

–

16

Favorable Conditions: Small SampleFavorable Conditions: Small Sample

• Generator
– High cost to generate test cases (e.g., no automated generator)

–

• Reference Function
– High cost to generate comparison data (e.g., no oracle)

–

• Evaluation Function
– Automated evaluation is slow, expensive

• Users
– Tolerant of errors

• Risks
– Low risk

17

Favorable Conditions: Small SampleFavorable Conditions: Small Sample

NOTE:

FAVORABLE CONDITIONS ARE NEITHER
NECESSARY NOR SUFFICIENT.

18

Evaluation: Small SampleEvaluation: Small Sample

• Advantages
– Identifies results of changes
– Automated comparisons are straightforward
– Product can be oracle for itself

• Disadvantages
– Saved results may contain unrecognized errors
– Doesn’t necessarily consider specific, key data values,

especially special cases not at visible boundaries
– Already-missed errors will remain undetected by repeated

regression tests
– If this testing is done before SW is cooked, then the code

becomes tailored to the tests
• The fundamental problem is, it only checks a few values

(we don’t know anything about the rest).

19

Regression AutomationRegression Automation

• Regression tools dominate the automated testing
market.

– Why automate tests that the program has already
passed?

– Percentage of bugs found with already-passed tests is
about 5-20%

– Efficiency of regression testing shows up primarily in
the next version or in a port to another platform.

• If the goal is to find new bugs quickly and efficiently,
we should use a method based on new test cases.

20

Strategy: ExhaustiveStrategy: Exhaustive

Exhaustive testing involves testing all values within a
given domain, such as:
– all valid inputs to a function

– compatibility tests across all relevant equipment
configurations.

Example: Testing the MASPAR square root function.

21

Favorable Conditions: ExhaustiveFavorable Conditions: Exhaustive

• Goal of Testing
–

• Software Under Test
– Limited input domain
–

• Environment
– The range of environments is limited: embedded software or

system configuration that is fully controlled by vendor.

– The important parameters (key elements of the environment) can
be identified and are known.

–

• Generator
– Easy to create tests

–

22

Favorable Conditions: ExhaustiveFavorable Conditions: Exhaustive

• Reference Function
– Oracle available
–

• Evaluation Function
– Evaluation function available
–

• Users
– ?
–

• Risks
– Safety-critical or business-critical

–

23

Evaluation: ExhaustiveEvaluation: Exhaustive

• Advantages

– Complete management of certain risks

– Discover special case failures that are not visible at
boundaries or suggested by traditional test design
approaches.

–
• Disadvantages

– Expensive

– Often impossible

–
• Bottom line

24

Strategy: RandomStrategy: Random

• Random (or statistical or stochastic) testing involves
generating test cases using a random number
generator. Because they are random, the individual
test cases are not optimized against any particular
risk. The power of the method comes from running
large samples of test cases.

• Typical examples:

– Random: Function equivalence testing

– Stochastic: Random transition from state to state.
Complex simulations, involving long series of events or
combinations of many variables.

– Statistical: Generate many tests in order to estimate
reliability (e.g. clean room)

25

Favorable Conditions: RandomFavorable Conditions: Random

• Goal of Testing
–

• Software Under Test
– knockoff of a successful competitor
– upgrade from a working program

– conditions under test are very complex
–

• Environment
–

• Generator
– Random inputs through a generator function, such as creating

random formulas for a spreadsheet

–

26

Favorable Conditions: RandomFavorable Conditions: Random

• Reference Function
– Need some way to evaluate pass or fail. For example, compute the

value of a formula from a reference spreadsheet.

–

• Evaluation Function
– Must be available.

–

• Users
–

• Risks
– Significant errors that involve complex sequences of states or

combinations of many inputs

–

27

Evaluation: RandomEvaluation: Random

• Advantages
– Can run a huge number of test cases
– Few or no evaluation errors

• Disadvantages
– Doesn’t consider specific, key data values (no special allowance

for boundaries, for example).
• Risks

– People sometimes underestimate the need for a good oracle. They
run so many tests that they think they are doing powerful work
even though they are merely testing for crashes.

– Risk of false negatives (oracle has same errors as software under
test, so no bug is discovered)(see Leveson’s work).

– Risk of overestimating coverage--miss need for other types of tests
to check for risks not tested for by this series of tests. E.G., might
test individual functions but miss need to check combinations.

28

Strategy: HeuristicStrategy: Heuristic

• Heuristics are rules of thumb that support but do not
mandate a given conclusion. We have partial
information that will support a probabilistic
evaluation. This won’t tell you that the program works
correctly but it can tell you that the program is
broken. This can be a cheap way to spot errors early
in testing.

• Typical case:

– Predict a characteristic (such as ZIP code is 5 or 9
digits, or X is usually less than Y) and check it against
a large random sample or a complete input or output
domain.

• See Hoffman’s papers on these for more details and
examples.

29

Favorable Conditions: HeuristicFavorable Conditions: Heuristic

• Goal of Testing
– Early testing for plausibility of results

• Software Under Test

• Environment

• Generator

• Reference Function
– Usually there are multiple choices for oracles (can select “best” for

the circumstances).

–

30

Favorable Conditions: HeuristicFavorable Conditions: Heuristic

• Evaluation Function

–
• Users

–
• Risks

– The risks that you manage by this type of testing are based on
your knowledge of any testable fact about code or data that
might be proved false by testing across a large set of data.

–

31

Evaluation: HeuristicEvaluation: Heuristic

• Advantages
– May allow exhaustive testing of values of inputs (or results).

– Allows discovery of problems early in testing

– Heuristic oracles are often reusable.

• Disadvantages
– The results are not definitive.

• Some tests can tell you that the program is broken
but not that the program is correct.

• Some tests will indicate failure when the program is
actually correct.

• Bottom line
– Handy, powerful for early detection, but should not be the only

test type that you use.

32

Strategy: ConsistencyStrategy: Consistency

• Consistency-based testing involves comparing the
results of today’s test with a prior result. If the results
match (are consistent), the program has “passed” the
test.

• More generally, A/B comparison where the set {B} is a
finite set of reference data, not a program that
generates results. (Example, A/B PDF file tests.)

• Typical case: Traditional automated regression test.

– Run a test manually. If the program passes the test,
automate it. (Create a script that can replay the test
procedure, create a reference file containing screen
output or result data). Then rerun the script, and
compare the results to the reference file.

33

Favorable Conditions: ConsistencyFavorable Conditions: Consistency

• Goal of Testing

–
• Software Under Test

– For a GUI-based test, uses standard controls, not custom controls.
– Hooks provided (e.g. API) for testing below the UI level

–

• Environment

–
• Generator

– Expensive to run tests in order to create reference data.
Therefore it is valuable to generate test results once and use
them from archives.

–

34

Favorable Conditions: ConsistencyFavorable Conditions: Consistency

• Reference Function
– captured screen, captured state, captured binary output file, saved

database

– duration of operation, amount of memory used, exiting state of
registers, or other incidental results.

– finite set of reference data against which we can compare current
behavior.

–

• Evaluation Function
–

• Users
–

• Risks
–

35

Evaluation: ConsistencyEvaluation: Consistency

• Advantages
– The program can serves as its own oracle

– Effective when test cases are very expensive or when the
software design is very stable

• Disadvantages
– Every time the software changes, tests that relied on that

characteristic of the software must change. Unless the test code
is carefully architected, the maintenance cost is impossible.

– Common mode of failure errors won’t be detected. Legacy
errors won’t be detected.

• Bottom line
– Potentially, a good tool for regression testing.

36

Confounding FactorsConfounding Factors

– The displayed (or printed) value may not be the same
as that generated by the SUT. [Interface defects]

– Assumptions made may not be valid and need to be
reconfirmed during and after testing.

– Smart tools limit visibility into actual SUT behaviors
(smart tools –> less tester control).

37

About Cem KanerAbout Cem Kaner

Cem Kaner tests software and software-related legislation.

The senior author of Testing Computer Software, Kaner has worked with computers
since 1976, doing and managing programming, user interface design, testing, and user
documentation. Through his consulting firm, KANER.COM, he teaches courses on
black box software testing and consults to software publishers on software testing,
documentation, and development management. Kaner is also the founder and co-host of
the Los Altos Workshop on Software Testing. He is writing a new book, Good Enough
Testing, with James Bach and Brian Marick.

An attorney whose practice is focused on the law of software quality, Kaner usually
represents customers and individual developers or small consulting firms. He is active
(as an advocate for customers, authors, and small development shops) in several
legislative drafting efforts involving software licensing, software quality regulation, and
electronic commerce. He has recently published a new book, Bad Software: What To
Do When Software Fails (with David Pels. John Wiley & Sons, 1998).

Kaner holds a B.A. in Arts & Sciences (Math, Philosophy), a Ph.D. in Experimental
Psychology (Human Perception & Performance: Psychophysics), and a J.D. (law
degree). He is Certified in Quality Engineering by the American Society for Quality.

38

About Doug HoffmanAbout Doug Hoffman

Douglas Hoffman has fifteen years experience in creating and transforming
software quality and development groups, and twenty years of management
experience. He has been a participant at dozens of software quality
conferences and has been Program Chairman for several international
conferences on software quality. He has architected test automation
environments for several commercial systems and software companies, and
has been an active participant in the Los Altos Workshops on Software Testing
(LAWST).

 He is an independent consultant with Software Quality Methods, LLC. He has
been in the software engineering and quality assurance fields for over 25 years
and now teaches courses and consults with Silicon Valley companies in
strategic and tactical planning for software quality. He has been elected
Chairman of the Santa Clara Valley Software Quality Association (SSQA) five.
He is active as a Senior Member in the ASQ, participating in the Software
division, the Software Quality Task Group, and the ISO 9000 Task Group, and is
also a member of the ACM and IEEE. He has earned an MBA as well as an MS in
Electrical Engineering and BA in Computer Science, was among the first to earn
a Certificate from ASQ in Software Quality Engineering, and has been a
registered ISO 9000 Lead Auditor.

Slide 1QW99 5/99

Continuous Risk Management at
NASA

Identify

Ana
lyz

e

Plan

T
rack

Control

Communicate
Document

Dr. Linda Rosenberg
NASA GSFC
301-286-0087

Linda.Rosenberg@gsfc.nasa.gov

Ted Hammer
NASA GSFC
301-286-7123

thammer@pop300.gsfc.nasa.gov

http://satc.gsfc.nasa.gov

Slide 2QW99 5/99

Overview

Background

Risk Management Guidance

Course Objectives

Course Outline

NASA’s Continuous Risk Management Course

Risk Management Functions

Course Evaluations

Implementation

Slide 3QW99 5/99

Background

Slide 4QW99 5/99

NASA Risk Management Guidance

• NPG 7120.5A, “NASA Program and Project Management
Processes and Requirements,” April 3, 1998

– RM is one of 7 major themes;

– Section 4.2 establishes RM requirements;

– Stresses RM as an integral part of program/project
management.

• NPD 2820, “Software Policy”

• SMA independent assessments of programs and projects are
RM-based.

Slide 5QW99 5/99

Continuous Risk Management
(CRM) Course

Taught by Software Assurance Technology Center, Goddard
Space Flight Center

Course #NASA-FSFC-SATC-98-001

Text: Software Engineering Institute at Carnegie Mellon
University, Continuos Risk Management Guidebook,
1996.

NTIS#: AD-A319533KKG

DTIC#: AD-A319533\6\XAB

Slide 6QW99 5/99

NASA Risk Management Course
Objectives

⇒ Understand the concepts and principles of Continuous Risk
Management and how to apply them

⇒ Develop basic risk management skills for each function of
Continuous Risk Management

⇒ Be able to use key methods and tools

⇒ Be able to tailor Continuous Risk Management to a project
or organization

Slide 7QW99 5/99

CRM Course Outline- Day 1

1 Introduction

2 Continuous Risk Management Paradigm
2-1 Overview

2-2 Identify

2-3 Analyze

2-4 Plan

2-5 Track

2-6 Control

2-7 Communicate and Document

3 Risk Management Example Implementation

4 Getting Started in Continuous Risk Management

Control

Identify

An
al

yz
e

Plan

T
ra

ck Communicate
Document

Slide 8QW99 5/99

CRM Workshop Outline - Day 2

Objectives: 1 - Partial completion of risk management plan

2 - Initial risk identification and mitigation

Steps:

Organizational chart Risk identification

Roles and responsibilities Writing risk statements

Meeting schedule Mitigation strategies

Tools and methods Tracking data

Attribute definitions

timeframe, probability, impact

Slide 9QW99 5/99

NASA’s Continuous
Risk Management Course

Slide 10QW99 5/99

Definitions of Risk

Risk involves the likelihood
that an undesired event
will occur .

Risk involves the severity
of consequence of the
event should it occur

Qualitative or
Quantitative

Qualitative or
Quantitative

Risk = Likelihood * Severity

Slide 11QW99 5/99

Risk Management &
 Project Management

Risk
Management

Budget

Schedule
Performance

People

Quality
Configuration
Management

Project
Management

Slide 12QW99 5/99

Why Do Risk Management?

Early identification of potential problems

Increase chances of project success

Enable more efficient use of resources

Promote teamwork by involving personnel at all levels of the
project

Information for tradeoffs based on priorities and quantified
assessment

Slide 13QW99 5/99

5HODWLRQVKLS�$PRQJ�)XQFWLRQV

Throughout the project life cycle, risk components
evolve

• continuously
• concurrently
• iteratively Identify

Ana
lyz

e

Plan

T
rack

Control

Communicate &
Document

Slide 14QW99 5/99

Where is Continuous Risk
Management Applied?

PeopleProcedures

Software

Facilities

Hardware

Operating
Environment

Support
Equipment

Continuous
Risk
Management

Slide 15QW99 5/99

Relationship to Everyday
Practice

 Learning
 Continuous Risk Management

is similar to incorporating
 any new habit

 into your daily life.

Everyone!

Slide 16QW99 5/99

1 - Identify

Purpose

Search for and locate risks before they become problems

Description

The process of transforming uncertainties and issues about a
project into distinct (tangible) risks that can be described
and measured

Identify

Ana
lyz

e

Plan

T
rack

Control

Communicate &
Document

Slide 17QW99 5/99

Components of a Risk Statement

Condition: a single phrase briefly describing current key
circumstances, situations, etc. that are causing concern,
doubt, anxiety, or uncertainty

Consequence: a single phrase or sentence that describes the
key, negative outcome(s) of the current conditions

Condition Consequence

Risk Statement

there is a possibility thatGiven the will occur ;

Slide 18QW99 5/99

Example Context

Risk statement:

This is the first time that the software staff will use OOD; the
staff may have a lower-than-expected productivity rate and
schedules may slip because of the associated learning
curve.

Context:

Object oriented development is a very different approach that
requires special training. There will be a learning curve
until the staff is up to speed. The time and resources must
be built in for this or the schedule and budget will overrun.

Slide 19QW99 5/99

Risk Statement & Context

A good risk statement:

Contains at least one condition

Contains at least one consequence

Is clear and concise

Good context:

Provides additional information not in the risk
statement

Ensures that the original intent of the risk can be
understood, particularly after time has passed

Risk Statement
Condition Consequence

Slide 20QW99 5/99

2 - Analyze

Purpose

Convert risk data into decision-making information

Description

The process of examining the risks in detail to determine
the extent of the risks, how they relate to each other, and
which ones are the most important

Identify

Ana
lyz

e

Plan

T
rack

Control

Communicate &
Document

Slide 21QW99 5/99

Evaluating Attributes of Risk

Purpose:

to gain a better understanding of the risk by determining the
expected impact, probability, and timeframe of a risk

Description - involves establishing values for:

 Impact: the loss or effect on the project if

 the risk occurs

 Probability: the likelihood the risk will occur

 Timeframe: the period when you must take

 action to mitigate the risk

Slide 22QW99 5/99

Levels of Analysis

Level Impact Probability Timeframe

binary level significant
insignificant

likely
not likely

near
far

tri-level high
moderate
low

high
moderate
low

near
mid
far

5-level very high
high
moderate
low
very low

very high
high
moderate
low
very low

imminent
near
mid
far
very far

n-level n levels of
impact

n levels of
probability

n levels of
timeframe

Slide 23QW99 5/99

Classification Perspectives

By Source: Risks are grouped based on the same source or
root cause. This will show the major sources of risk to the
project.

By Impact: Risks are grouped based on where or how the
impact will be felt by the project. This shows the major
aspects of the project that are most at risk.

Slide 24QW99 5/99

Analysis Activities

Risk I P T

Risk a M M F

Risk b M L N

Risk c L H N

. . .

Risk I P T

Risk set A H M F

Risk b M L N

Risk c L H N

. . .

Risk I P T

Risk n H H N

Risk s H M N

Risk set A H M F

Risk c L H N

Top N
1.
2.
3.
. . .

Evaluate:
•impact (I)
•probability (P)
•timeframe (T)

Classify:
•identify duplicates
•consolidate risks to sets Prioritize:

•identify Pareto top N
•rank top NConsolidate

risks

Sort by evaluation
results

Rank order
the Pareto
top N

P
ar

et
o

to
p

N

Slide 25QW99 5/99

3 - Plan

Purpose

Translate risk information into decisions and mitigating
actions (both present and future), and implement those
actions

Description

The process of deciding what, if anything, should be done
about a risk or set of related risks

Identify

Ana
lyz

e

Plan

T
rack

Control

Communicate &
Document

Slide 26QW99 5/99

Action Plan Approaches

Research Accept Watch

Mitigation Plan

Mitigate

 Research
 Plan

Acceptance
 Rationale

Action
 Item

Tracking
Requirements

 Task
 Plan

Action plans
(Approaches/types)

Slide 27QW99 5/99

Mitigation Goals and Success
Measures

Set a realistic, measurable (or verifiable) goal for
mitigating the risk, for example

avoid any changes to scheduled milestones

eliminate change requests unsupported by funding to
implement the change

Define success criteria— you need to know when you’ve
succeeded or failed

For example

all current change requests implemented by 3/1/96
with no change to scheduled milestones

Slide 28QW99 5/99

Contingency Plans

Not all mitigation plans can or should be carried out immediately,
for example:

there may not be sufficient funding at this time

other circumstances (such as having the right personnel) may not
be right

it may be a low probability, catastrophic impact risk with an
expensive mitigation plan

May be used as Plan B if Plan A fails

Contingency plans are held in reserve until specific conditions are
true or certain events occur

watch for the conditions and events!

Slide 29QW99 5/99

4 - Track

Purpose

Monitor risk indicators and mitigation actions

Is the plan followed?

Is the risk reduced?

Description

The process in which risk status data are acquired,
compiled, and reported

Identify

Ana
lyz

e

Plan

T
rack

Control

Communicate &
Document

Slide 30QW99 5/99

Tracking Risks and Plans

1. Tracking the mitigation plan will indicate

whether the plan is being executed correctly

if the plan is on schedule

2. Tracking the risk attributes will indicate

mitigation plan effectiveness

Slide 31QW99 5/99

Risk Metrics

Measure attributes of a risk

impact, probability, and timeframe

other risk-specific attributes

Assess the impact or success of a mitigation plan

Chosen during planning

Provide meaningful information to enable more informed control
decisions

Triggers

provide early warning of an impending critical event

indicate the need to implement a contingency plan to preempt
a problem

Slide 32QW99 5/99

Testing Metrics Example - Tracking
Errors/Faults/Changes

Cumulative Problem Reports
Submitted & Closed

0

500

1000

1500

2000

2500

3000

3500

4/
26

/9
6

5/
26

/9
6

6/
25

/9
6

7/
25

/9
6

8/
24

/9
6

9/
23

/9
6

10
/2

3/
96

11
/2

2/
96

12
/2

2/
96

1/
21

/9
7

2/
20

/9
7

3/
22

/9
7

4/
21

/9
7

5/
21

/9
7

6/
20

/9
7

7/
20

/9
7

8/
19

/9
7

9/
18

/9
7

10
/1

8/
97

11
/1

7/
97

12
/1

7/
97

1/
16

/9
8

2/
15

/9
8

3/
17

/9
8

4/
16

/9
8

5/
16

/9
8

N
o.

 o
f P

R
's

Cum. Submitted = 3140

Cum. Closed = 2043

Expected

0

Slide 33QW99 5/99

5 - Control

Purpose

To make informed, timely, and effective decisions
regarding risks and their mitigation plans

Description

The process that takes the tracking status reports
for the project risks and decides what to do with
the risks based on the reported data

Identify

Ana
lyz

e

Plan

T
rack

Control

Communicate &
Document

Slide 34QW99 5/99

Decide

Purpose:

ensure that project risks continue to be managed effectively

Description:

uses tracking data to determine how to proceed with project
risks

close

continue tracking and executing the current plan

replan

invoke a contingency plan

Slide 35QW99 5/99

6 - Communicate & Document

Purpose

Provide information and feedback to the project on the risk
activities, current risks, and emerging risks

Description

A process in which risk information is conveyed between
all levels of a project team

Identify

Ana
lyz

e

Plan

T
rack

Control

Communicate &
Document

Slide 36QW99 5/99

Implementation

Overview

Budget

Procedures

Goals

Milestones

Slide 37QW99 5/99

You need an . . .
 Organization Structure

Engineers
Testers

Software
manager

Hardware
manager

Project
Manager

Integration/
test manager

Software
engineers

Configuration
management
lead

Quality
assurance
manager

System
engineer
manager

Example:

Slide 38QW99 5/99

You need . . .
 Internal Communication

Project
manager

Technical
leads

Individuals/
team members

Identify Track

Risks

Top N
risks

Status/
forecast

Status/trends

Assign
responsibility

Control
- review
- reprioritize
- integrate
across teams

Required
indicators

Analyze

- evaluate
- classify

- review
- prioritize

Plan
- approve
 plans
- recommend
- accomplish

Example:

Slide 39QW99 5/99

You need . . .
 External Communication

Example:

Decisions
Project
Top N

Multi-project
 Integration

Senior Managers

Project

Awareness
Issue

Customer

resolution

Awareness
Risk

Suppliers

mitigation

Selected
Top N

Decisions,
Agreements

Selected
Top N

Mitigation plans,
Status reports

Slide 40QW99 5/99

You need . . .
 Assigned Roles & Responsibilities

Example:
 IR-SIP Personnel

Who Responsibilities
Individuals Software engineers, testers, leads, and project manager

• identify new risks
• estimate probability, impact, and timeframe
• classify risks
• recommend approach and actions
• track risks and mitigation plans (acquire, compile, and report)

S/W CSCI, CM,
and Test
Managers

Software engineering leads for each CSCI
• ensure accuracy of probability/impact/timeframe estimates and

the classification
• review recommendations on approach and actions
• build action plans (determine approach, define scope & actions)
• report their top N risks and issues to the project manager
• collect and report general risk management measures/metrics

Software Project
Manager,
Hardware Project
Manager, etc.

• integrates risk information from all technical leads
• reprioritizes all risks to determine top N risks in each area

(software, hardware, etc.)
• makes control decisions (analyze, decide, execute) for risks

(e.g., Software Project Manager controls software risks)
• authorizes expenditure of resources for mitigation
• assigns or changes responsibility for risks and mitigation plans

within the CSCI, CM, and test areas
• handles communication IR-SIP project manager

IR-SIP Project
Manager;
IR-SIP Project
Systems
Engineer

• integrates risk information from all software, hardware, and CM
leads

• reprioritizes all risks to determine top N project risks
• makes control decisions (analyze, decide, execute) for Top N

project risks
• authorizes expenditure of project resources for mitigation
• assigns or changes responsibility for risks and mitigation plans

within the project (e.g., moving responsibility for a risk from
software to hardware)

• handles communication with AA program manager
• reviews general risk management measures/metrics with Quality

Assurance during each quarter to evaluate effectiveness of risk
management

Slide 41QW99 5/99

You need . . .
 Established Meetings

Weekly Team Meetings
• establish priority of team’s risks
• assign responsibility for new risks
• review and approve mitigation plans

Monthly Project Meetings
• Leads present the team’s Top N risks (and mitigation plans)
• Project manager Leads decide on appropriate action
• Project manager determines allocation of resources for
mitigation discretionary funds for technical leads

Slide 42QW99 5/99

You must ...

Document your Risk Management Plan

Baseline a set of risks

Obtain training and project familiarization

Slide 43QW99 5/99

• Baseline Planning
• Planning Decision Flowchart
• Planning Worksheet
• Problem-Solving Planning

- Affinity Grouping
- Brainstorming
- Cause and Effect Analysis
- Cost-Benefit Analysis
- Gantt Charts
- Goal-Question-Measure
- Interrelationship Digraph
- List Reduction
- Multivoting
- PERT Chart
- Work Breakdown Structure

• Risk Information Sheet
• WCA

• Action Item List

Control
• Cause and Effect Analysis
• Closing a Risk
• Cost-Benefit Analysis
• List Reduction
• Mitigation Status Report
• Multivoting
• PERT Chart
• Problem-Solving Planning
• Risk Information Sheet
• Spreadsheet Risk Tracking
• Stoplight Chart

Analyze
• Affinity Grouping
• Baseline Identification and Analysis
• Binary Attribute Evaluation
• Comparison Risk Ranking
• Multivoting
• Pareto Top N
• Potential Top N

• Risk Information Sheet
• Taxonomy Classification

• Top 5
• Tri-level Attribute Evaluation
• FMEA
• FTA

Plan

Track
• Bar Graph
• Mitigation Status Report
• Risk Information Sheet
• Spreadsheet Risk Tracking
• Stoplight Chart
• Time Correlation Chart
• Time Graph

Risk Management Plan
A Risk Management Plan documents
how risks will be managed on a
project: the process, activities,
milestones, and responsibilities

associated with risk management. It is a subset of the
project plan and is written before the project begins.

Identify
• Baseline Identification and Analysis
• Brainstorming
• Periodic Risk Reporting
• Project Profile Questions
• Risk Information Sheet
• Short TBQ

 • Taxonomy-Based Questionnaire (TBQ)
• TBQ Interviews
• Voluntary Reporting
• Project Metrics
• FMEA
• FTA

• Project Metrics
• SPC

• Project Metrics

Identify

Ana
lyz

e

Plan

Track

Control

Communicate
 Document

<RX�PXVW�FKRRVH�\RXU������

 0HWKRGV�DQG�7RROV

Slide 44QW99 5/99

Purpose:

make maximum use of existing, effective project
management processes and methods while integrating
a set of proactive risk management activities

document the tailored processes, methods, and tools in
a risk management plan

define a schedule for transitioning specific methods,
tools, and activities into the project

Description:

tailors risk management processes, methods, and tools
for use on the project

<RX�VKRXOG�FDUHIXOO\������

������������$GDSW�WR�<RXU�3URMHFW

Slide 45QW99 5/99

<RX�PXVW�FKRRVH�\RXU������

����������5LVN�'DWDEDVH

A database is the simplest means of retaining and keeping
risk information up to date.

Data entry forms and reports can be used as the risk
information sheet, spreadsheet, and other templates.

A risk database enables documentation of lessons learned,
trend analysis, pattern analysis to support identifying
common risks (and solutions) across projects.

Slide 46QW99 5/99

Hints and Tips

Start simple; learn to “think risk.”

Never throw out or ignore any risk information; scan it once
in a while.

Always ask for feedback on how things are going and what
works.

Use outside facilitators until you’re comfortable with the
processes.

Slide 47QW99 5/99

Course Evaluations

Applicability to Work

Useful - At
Least In

Part
24%

Directly
Applicable

64%

Covered
Mostly Old
Ideas - But
Valuable

10%

No
Feedback

2%

Slide 48QW99 5/99

References

Ted Hammer, GSFC

301-286-7123

thammer@pop300.gsfc.nasa.gov

Dr. Linda Rosenberg

301-286-0087

Linda.Rosenberg@gsfc.nasa.gov

Continuous Risk Management at NASA

Dr. Linda H. Rosenberg Theodore Hammer Albert Gallo
Unisys @ NASA GSFC SATC NASA GSFC Unisys @ NASA GSFC SATC

Bld 6 Code 300.1 Bld 6 Code 302 Bld 6 Code 300.1
Greenbelt, MD 20771 Greenbelt, MD 20771 Greenbelt, MD 20771

301-286-0087 301-286-7123 301-286-8012
Linda.Rosenberg@gsfc.nasa.gov Thammer@pop300.gsfc.nasa.gov agallo@mail.hst.nasa.gov

Abstract
NPG 7120.5A, “NASA Program and Project Management Processes and Requirements”
enacted in April, 1998, requires that “The program or project manager shall apply risk
management principles…” The Software Assurance Technology Center (SATC) at
NASA GSFC has been tasked with the responsibility for developing and teaching a
systems level course for risk management that provides information on how to comply
with this edict. This risk management structure of functions has been taught to projects at
all NASA Centers and is being successfully implemented on many projects. The course
was developed in conjunction with the Software Engineering Institute at Carnegie Mellon
University, then tailored to the NASA systems community. This presentation will briefly
discuss the six functions for risk management: (1) Identify the risks in a specific format;
(2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach;
(4) Track the risk through data compilation and analysis; (5) Control and monitor the
risk; (6) Communicate and document the process and decisions.

This paper will give project managers the information needed to implement Continuous
Risk Management successfully at a cost they can afford.

Introduction
Software risk management is important because it helps avoid disasters, rework, and
overkill, but more importantly because it stimulates win-win situations. The objectives of
software risk management are to identify, address, and eliminate software risk items
before they become threats to success or major sources of rework. In general, good
project managers are also good managers of risk. It makes good business sense for all
software development projects to incorporate risk management as part of project
management. NPG 7120.5A, the NASA guidebook for project managers, requires risk
management applications and includes a section briefly discussing what should be
included in a risk management plan. A course in continuous risk management was
developed by the Software Engineering Institute at Carnegie Mellon University and has
been adapted to NASA by the Software Assurance Technology Center (SATC) at NASA
GSFC. The course was first taught in January, 1998, and has since been taught to over
300 students at all NASA centers.

There are a number of definitions and uses for the term risk, but there is no universally
accepted definition. What all definitions have in common is agreement that risk has two
characteristics:

uncertainty: An event may or may not happen.

loss: An event has unwanted consequences or losses.

Therefore, risk involves the likelihood that an undesirable event will occur, and the
severity of the consequences of the event, should it occur. Risk management can:

− Identify potential problems and deal with them when it is easier and cheaper to do
so—before they are problems and before a crisis exists.

− Focus on the project’s objective and consciously look for things that may affect
quality throughout the production process.

− Allow the early identification of potential problems (the proactive approach) and
provide input into management decisions regarding resource allocation.

− Involve personnel at all levels of the project; focus their attention on a shared
product vision, and provide a mechanism for achieving it.

− Increase the chances of project success.

At NASA, we focus on Continuous Risk Management that can be applied to any
development process: hardware, software, systems, etc. It provides a disciplined
environment for proactive decision making to:

− assess continually what could go wrong (risks)
− determine which risks are important to deal with
− implement strategies to deal with those risks
− assure, measure effectiveness of the implemented strategies

Risk management must not be allowed to become "shelfware". The process must be a
part of regularly scheduled periodic product management. It requires identifying and
managing risks routinely throughout all phases of the project's life. The paradigm shown
in Figure 1 illustrates the set of continuous risk management functions throughout the life
cycle of a project. These functions serve as the foundation for the application of
continuous risk management. Each risk nominally goes through these functions
sequentially, but the activity occurs continuously, concurrently, and iteratively. Risks are
usually tracked in parallel while new risks are identified and analyzed, and the mitigation
plan for one risk may yield another risk.

Figure 1: Continuous Risk Management Principle Functions

Identify

Ana
ly

ze

Plan

Track

Control

Communicate
Document

Continuous Risk Management Principle Functions

1- Identify
The purpose of identification is to consider risks before they become problems and to
incorporate this information into the project management process. Anyone in a project
can identify risks to the project. Each individual has particular knowledge about various
parts of a project. During Identify, uncertainties and issues about the project are
transformed into distinct (tangible) risks that can be described and measured.

During this function, all risks are written with the same, two part format. The first part is
the risk statement, written as a single statement concisely specifying the cause of the
concern as well as its impact. The second part may contain additional supporting details
in the form of a context.

The aim for a risk statement is that it be clear, concise, and sufficiently informative that
the risk is easily understood. Risk statements in standard format must contain two parts:
the condition and the consequence. The condition-consequence format provides a
complete picture of the risk, which is critical during mitigation planning. It is read as
follows:

given the <condition> there is a possibility that <consequence> will occur

The condition component focuses on what is currently causing concern; it must be
something that is true or widely perceived to be true. This component provides
information that is useful when determining how to mitigate a risk. The consequence
component focuses on the intermediate and long-term impact of the risk. Understanding
the depth and breadth of the impact is useful in determining how much time, resources,
and effort should be allocated to the mitigation effort. A well-formed risk statement
usually has only one condition, but may have more than one consequence.
Risk statements should avoid:

− abbreviations/acronyms that are not readily understood
− sweeping generalizations
− massive, irrelevant detail

Since the risk statement is to be concise, a context is added to provide enough additional
information about the risk to ensure that the original intent of the risk can be understood
by other personnel, particularly after time has passed. An effective context captures the
what, when, where, how, and why of the risk by describing the circumstances,
contributing factors, and related issues (background and additional information that are
NOT in the risk statement).

A diagram of the complete risk statement and context are shown in Figure 2.

Figure 2: Risk Statement and Context

An example is shown in Figure 3. Note there is one condition and two consequences in
the risk statement. The context explains why this is a risk.

 Risk statement:

This is the first time that the software staff will use OOD; the staff may have a lower-
than-expected productivity rate and schedules may slip because of the associated
learning curve.

 Context:
Object oriented development is a very different approach that requires special

training. There will be a learning curve until the staff is up to speed. The time and
resources must be built in for this or the schedule and budget will overrun.

Figure 3: Example Risk Statement and Context

Risk identification depends heavily on both open communication and a forward-looking
view to encourage all personnel to bring forward new risks and to plan beyond their
immediate problems. Although individual contributions play a role in risk management,
teamwork improves the chances of identifying new risks by allowing personnel to
combine their knowledge and understanding of the project.

2 - Analyze
The purpose of Analyze is to convert the data into decision-making information. Analysis
is a process of examining the risks in detail to determine the extent of the risks, how they
relate to each other, and which ones are the most important. Analyzing risks has three
basic activities: evaluating the attributes of the risks (impact, probability, and timeframe),
classifying the risks, and prioritizing or ranking the risks.

Evaluating - The first step provides better understanding of the risk by qualifying the
expected impact, probability, and timeframe of a risk. This involves establishing values
for:

 Impact: the loss or negative affect on the project should the risk occur
 Probability: the likelihood the risk will occur
 Timeframe: the period when you must take action in order to mitigate the risk

Figure 4 demonstrates sample values that might be used to evaluate a risk's attributes.

Risk Statement

Condition ; Consequence

Contributing factors

Risk source

Circumstances Interrelationships

Attribute Value Description
Probability Very Likely (H)

Probable (M)
Improbable (L)

High chance of this risk occurring, thus becoming a problem > 70%
Risk like this may turn into a problem once in a while {30% < x < 70%}
Not much chance this will become a problem {0% < x < 30%}

Impact Catastrophic (H)

Critical (M)

Marginal (L)

Loss of system; unrecoverable failure of system operations; major damage to
system; schedule slip causing launch date to be missed; cost overrun greater than
50% of budget

Minor system damage to system with recoverable operational capacity; cost
overrun exceeding 10% (but less than 50% of planned cost

Minor system damage to project; recoverable loss of operational capacity;
internal schedule slip that does not impact launch date cost overrun less than 10%
of planned cost

Timeframe Near-term (N)
Mid-term (M)
Far-term (F)

Within 30 days
1 to 4 months from now
more than 4 months from now
NOTE: refers to when action must be taken

Figure 4: Sample Attribute Values

Classifying - The next step is to classify risks. There are several ways to classify or group
risks. The ultimate purpose of classification is to understand the nature of the risks facing
the project and to group any related risks so as to build more cost-effective mitigation
plans. The process of classifying risks may reveal that two or more risks are equivalent—
the statements of risk and context indicate that the subject of these risks is the same.
Equivalent risks are therefore duplicate statements of the same risk and should be
combined into one risk.
Prioritize - The final step in the Analysis function is to prioritize the risks. The purpose is
to sort through a large number of risks and determine which are most important and to
separate out which risks should be dealt with first (the vital few risks) when allocating
resources. This involves partitioning risks or groups of risks based on the “vital few”
sense and ranking risks or sets of risks based on consistently applying an established set
of criteria. No project has unlimited resources with which to mitigate risks. Thus, it is
essential to determine consistently and efficiently which risks are most important and
then to focus those limited resources on mitigating risks.

Conditions and priorities will change during a project, and this natural evolution can
affect the important risks to a project–. Risk analysis must be a continual process.
Analysis requires open communication so that prioritization and evaluation is
accomplished using all known information. A forward-looking view enables personnel to
consider long-range impacts of risks.

3 - Plan
Planning is the function of deciding what, if anything, should be done about a risk or set
of related risks. In this function decisions and mitigation strategies are developed based
on current knowledge of project risks.
The purpose of plan is to:

− make sure the consequences and the sources of the risk are known

− develop effective plans
− plan efficiently (only as much as needed or will be of benefit)
− produce, over time, the correct set of actions that minimize the impacts of risks

(cost and schedule) while maximizing opportunity and value
− plan important risks first

Figure 5 indicates the potential approaches to Risk Planning.

Figure 5: Planning approaches

There are four options to consider when planning for risks:
1. Research: establish a plan to research the risk(s)
2. Accept: decide to “accept” the risk(s) and document the rationale behind the decision
3. Watch: monitor risk conditions for any indications of change in probability or impact

(tracking metrics must be established and documented)
4. Mitigate: allocate resources and assign actions in order to reduce the probability or

potential impact of risks. This can range from simple tasking to sweeping
activities:
Action Items: a series of discrete tasks to mitigate risk
Task Plan: formal, well-documented and larger in scope

Dealing with risk is a continuous process of determining what to do with new concerns as
they are identified and efficiently utilizing project resources. An integrated approach to
management is needed to ensure mitigation actions do not conflict with project or team
plans and goals. A shared product vision and global perspective are needed to create
mitigation actions on the macro level to the benefit the project, customer and
organization. The focus of risk planning is to be forward looking, to prevent risks from
becoming problems. Teamwork and open communication enhance the planning process
by increasing the amount of knowledge and expertise that can be applied to the
development of mitigating actions.

4 - Track
Tracking is the process by which risk status data are acquired, compiled, and reported
The purpose of Track is to collect accurate, timely, and relevant risk information and to
present it in a clear and easily understood manner to the appropriate people/group.

Research Accept Watch

Mitigation Plan

Mitigate

 Research
 Plan

Acceptance
 Rationale

Action
 Item

Tracking
Requirements

 Task
 Plan

Action plans
(Approaches/types)

Tracking is done by those responsible for monitoring “watched” or “mitigated” risks.
Tracking status information become critical to performing the next function in the
Continuous Risk Management paradigm, i.e. Control. Supporting information, such as
schedule and budget variances, critical path changes, and project/performance indicators
can be used as triggers, thresholds, and risk- or plan-specific measures where appropriate.

When a mitigation plan has been developed for a risk or risk set, both the mitigation plan
and the risk attributes are tracked. Tracking the mitigation plan, or even a list of action
items, will indicate whether the plan is being executed correctly and/or on schedule.
Tracking any changes in the risk attributes will indicate whether the mitigation plan is
reducing the impact or probability of the risk. In other words, tracking risk attributes
gives an indication of how effective the mitigation plan is.

Program and risk metrics provide decision makers with the information needed for
making effective decisions. Normally program metrics are used to assess the cost and
schedule of a program as well as the performance and quality of a product. Risk metrics
are used to measure a risk’s attributes and assess the progress of a mitigation plan. They
can also be used to help identify new risks.

Example: A program metric might look at the rate of module completion. If this
metric indicates that the rate of completion is lower than expected, then a schedule
risk should be identified.

Open communication regarding risk and mitigation status stimulates the project and risk
management process. Tracking is a continuous process - current information about a risk
status should be conveyed regularly to the rest of the project. Risk metrics provide
decision makers with the information needed for making effective decisions.

5 - Control
The purpose of the Control function is to make informed, timely, and effective decisions
regarding risks and their mitigation plans. It is the process that takes in tracking status
information and decides exactly what to do based on the reported data. Controlling risks
involves analyzing the status reports, deciding how to proceed, and then implementing
those decisions.

Decision-makers need to know 1) when or whether there is a significant change in risk
attributes and 2) the effectiveness of mitigation plans within the context of project needs
and constraints. The goal is to obtain a clear understanding of the current status of each
risk and mitigation plan relative to the project and then to make decisions based on that
understanding. Tracking data is used to ensure that project risks continue to be managed
effectively and to determine how to proceed with project risks. Options include:
− Replan - A new or modified plan is required when the threshold value has been

exceeded, analysis of the indicators shows that the action plan is not working, or an
unexpected adverse trend is discovered.

− Close the risk - A closed risk is one that no longer exists or is no longer cost effective
to track as a risk. This occurs when: the probability falls below a defined threshold,

impact lies below a defined threshold, or the risk has become a problem and is
tracked.

− Invoke a contingency plan - A contingency plan is invoked when a trigger has been
exceeded or some other related action needs to be taken.

− Continue tracking and executing the current plan - No additional action is taken
when analysis of the tracking data indicates that all is going as expected or project
personnel decide to continue tracking the risk or mitigation plan as before.

Open communication is important for effective feedback and decision-making - a critical
aspect of Control. Risk control is also enhanced through integrated management -
combining it with routine project management activities enables comprehensive project
decision-making.

6 - Communication & Documentation
The purpose of Communicate and Document is for all personnel to understand the
project’s risks and mitigation alternatives as well as risk data and to make effective
choices within the constraints of the project. Communication and Documentation are
essential to the success of all other functions within the paradigm and is critical for
managing risks.

- Identify: In risk identification, risk statements are communicated.
- Analyze: In analysis, project personnel communicate information about

impact, probability, and timeframe attributes. Risk classification
involves grouping risk information communicated by individuals.

- Plan: During planning, action plans are developed and communicated to
project personnel.

- Track: Reports designed to communicate data to decision-makers are
compiled during tracking.

- Control: The decisions made during control must be communicated and
recorded to project personnel.

For effective risk management, an organization must have open communication and
formal documentation. Communication of risk information is often difficult because the
concept of risk comprises two subjects that people don’t normally deal well with:
probability and negative consequences.

Not only Continuous Risk Management, but the project as a whole are in jeopardy when
the environment is not based on open communication. No one has better insight into
risks than project personnel, and management needs that input. Experienced managers
know that the free flow of information can make or break any project. Open
communication requires:

- Encouraging free-flowing information at and between all project levels
- Enabling forma, informal and impromptu communication
Using consensus-based processes that value the individual voice, bringing unique

knowledge and insight to identifying and managing risks.

Implementation

Successful implementation of a Risk Management Plan requires full integration of risk
management activities into the existing organizational structure. Risk management is not
something that is done off to the side of normal activities, rather it is something that is
integrated into the normal business operations of a project and is adapted to the specific
project. It should make maximum use of effective project management processes and
methods, while integrating a set of proactive risk management activities.

In order to successfully integrate risk management into the existing project infrastructure,
internal and external communication must be effective and roles and responsibilities,
which identify specific individuals and their tasks, must be assigned. It is essential that
every individual working on a project be involved in the risk management process in
order to take maximum advantage of existing knowledge and capabilities.

Internally, individual team members should be involved in identifying all possible risks.
The risks are then passed to the project technical leads who will analyze them (i.e. review
the risks, prioritize them, evaluate and classify them). Once the technical leads have
completed analysis, they pass risk information to the Project Manager. The Project
Manager will perform Control functions such as reviewing the risks, reprioritizing them,
and integrating the risk management process across teams. The Project Manager will
assign responsibility for individual risks or groups of risks and the technical leads will
begin Plan functions. Technical leads will recommend, approve, and accomplish risk
management plans, which will then be tracked and status reports will be generated to
monitor progress of the plan. Externally, the Project Manager must establish and
maintain effective communication with the customer to ensure that the customer is aware
of existing risks and risk management plans and to facilitate the agreement and decision-
making processes. The Project Manager needs to establish a solid communication link
with suppliers so they are aware of existing and potential risks and so they can work
jointly with the Project Manager to mitigate risks and generate status reports. The Project
Manager must maintain effective communication with Senior Managers so decisions can
be made and to give Senior Managers the most effective tools to effect multi-project
integration.

Risk management is a continual process and must be implemented in conjunction with
other routine activities. It should be discussed at weekly team meetings, monthly project
meetings, and other meetings as appropriate. Weekly team meetings can be used as a
forum to establish the priority of a team's risks, to assign responsibility for new risks, and
to review and approve risk mitigation plans. Monthly project meetings provide a venue
where project leads can present the team's high-priority risks and mitigation plans, where
Project Managers and technical leads can decide on appropriate action, and where Project
Managers can determine allocation of resources for mitigation discretionary funds for
technical leads.

As risk management processes are implemented and decisions are made, the Risk
Management Plan must be documented. This ensures the provision of information and

feedback to the project regarding current risks, risk activities, and emerging risks. It also
provides a process by which risk information is conveyed between all levels of a project
team. A risk database is probably the simplest means of retaining and keeping risk
information up-to-date. It enables documentation of lessons learned, trend analysis, and
pattern analysis to support identifying common risks and solutions across projects.

Risk management training is possibly the most vital asset to any Risk Management Plan.
Most project members are aware of risk management basics, but many are not aware of
how to successfully implement a solid Risk Management Plan. Training can help a
project clarify the risk management process, develop a Risk Management Plan, establish
a baseline set of risks, and act as a team building vehicle. It also provides an awareness
of methods and tools that can be utilized in the various risk management phases. Risk
management training can provide a project that extra edge needed to succeed.

Conclusion
Most project managers agree that risk management works, but the difficulty lies in
actually implementing it, even when required to do so. The risk management plan is often
hastily written and then thrown in a corner to gather dust. In addition to the course, one
of the steps NASA has taken is to establish a risk management web site
(htp://satc.gsfc.nasa.gov) that contains sample risk management plans and a schedule of
classes. Much time is spent discussing with managers the benefits of taking a formal
training course, which is more than recovered by a project when all team members are
working toward common goals in a coordinated manner.

Recruiting Software Testers

Cem Kaner, J.D., Ph.D., ASQ-CQE
kaner@kaner.com

Quality Week
May, 1999

For more detail, please see my paper,

“Recruiting Software Testers,” on the CD ROM.

2
Kaner, Recruiting Testers

Diversity is Essential

• Credentials are not the answer
– An example: Staffing for a financial application

• Opportunity hires
– Mutual opportunities: special skills, special deals

• Temporary assignment to testing
• Family commitments
• Training

• The need for consensus to support flexible hiring

3
Kaner, Recruiting Testers

Behavioral Interviewing

• The general principle:
– The goal of the interview is to predict how the

candidate will behave if she joins your group. The
interview provides a sample of her behavior.

• Questioning
– Closed vs. open-ended questions

– Factual vs. opinion questions

– Hypothetical vs. behavioral questions

• Work samples

4
Kaner, Recruiting Testers

Behavioral Interviewing

• Testing
– Puzzles

– Test cases

– A testing / training exercise

– Bug reports

– The colloquium

• Debating
• Other opportunities to see behavior

5
Kaner, Recruiting Testers

The Myers Test Case

• The program reads three integer values from a
card. The three values are interpreted as
representing the lengths of the sides of a
triangle. The program prints a message that
states whether the triangle is scalene, isosceles,
or equilateral.

• Write a set of test cases that would adequately
test this program.

6
Kaner, Recruiting Testers

The Training Exercise

File1
File2
File3

File4 OK

Copyright © Cem Kaner, 1999. Page 1

KANER.COM Cem Kaner, Ph.D., J.D. kaner@kaner.com
P.O. Box 1200 408-244-7000 (Voice)
Santa Clara, CA 95052 www.kaner.com 408-244-2181 (FAX)

RECRUITING SOFTWARE TESTERS

INTERNATIONAL QUALITY WEEK
SAN JOSE, CA, JUNE, 1999

This paper is a work in progress. Eventually, it will become a chapter in the 3rd Edition of Testing Computer
Software (under development by Cem Kaner, Bob Johnson, Brian Lawrence, Jack Falk, & Hung Quoc
Nguyen. This is a multi-year project. Please don't ask me when it will be done. It certainly won't be done in
1999.) I'd appreciate comments and suggestions. (Send them to kaner@kaner.com.)

I don't claim to be an expert on recruiting, but I have been reasonably successful at recruiting testers (and
other software workers) over the last 15 years, have made a lot of mistakes, and learned a few lessons. This
paper collects some of those lessons.

Managers get work done through other people. The people that a manager chooses are the people who will
achieve, or fail to achieve, the mission of the group and the tasks assigned by the manager. Recruiting staff is
one of the hardest jobs for any manager. Hiring the wrong staff is, I believe, the worst mistake that a manager
can make.

A good treatment of recruiting would consider the following issues:

§ A behavioral approach to gathering information

§ Legal issues

§ Consensus-driven hiring

§ A strategy for gathering information

§ Characteristics of the person you're seeking

§ Defining the position and characteristics needed for it

§ Who approves the hiring

§ How to find candidates

§ Sifting through resumes

§ Evaluating the candidate's public materials

§ The phone screen

§ The application form

§ Preparing for the interview

§ Asking questions during the interview

§ Reviewing work samples

§ Reviewing sample test documentation (of yours)

§ Writing bug reports

§ Using tests and puzzles

§ Debates and controversial questions

Copyright © Cem Kaner, 1999. Page 2

§ The problem of free consulting

§ The post-interview meeting

§ Checking references

§ Investigation (such as drug testing, credit checking, etc.)

§ Red flags

§ Making and closing the offer

I'll include notes on each of these sections, but because this paper is, in effect, an early draft seeking
comments, my depth of coverage of these issues will vary more than usual and I will cite fewer references
than I would in a final paper.

A BEHAVIORAL APPROACH TO GATHERING INFORMATION
When you interview someone, you interact with them. In the process, they reveal things about themselves
that go beyond the tidy sections of their well-formatted resume and the pat answers that they might have
prepared for your standard questions. This can give you a better chance of learning how it would be to work
with them. I recommend being very conscious about what candidates reveal to you in their behavior, and in
designing interviews to elicit behavior samples.

Here are some examples that come almost automatically during the interviewing process:

§ Look at the candidate's resume and cover letter (if there is one) for their structure and organization.
Are they sloppy? Disorganized? Do they communicate well? Does the candidate appear to be hiding
anything?

§ Listen to the message on the candidate's answering machine? Clear? Weird? Rambling? Are there
oddities in the message that suggest that the candidate didn't listen to/debug the recording?

§ Look at the candidate's web site and at the signature section of her e-mail messages. This is
information that she has chosen to make public. How interesting is it? What does it tell you about
how she organizes information, how carefully she gathers information, and how well she maintains
the documents that she posts? You can find a lot more about the candidate on the web, way more
than you’d expect. See Lane (1997), for example. I suggest that you avoid looking for credit-related
or sexual-activity-related information, and that if you find it, you make a point and a policy of not
reading it.

§ When the candidate comes for the interview, is he dressed appropriately? Does he show up on time?
If he's late, did he call in advance? Did he bring additional information (such as work samples, letters
of reference, publications, etc.) with him? If so, were they relevant and well organized?

Along with these, I ask probing questions about the candidate's experiences. My goal is to get the candidate
to tell me about something she has already done, rather than make up a hypothetical answer. So I don't ask,

"What would you do with a product that came to you without specifications?'
Instead I ask,

"Have you ever worked on a product that came to you without specifications? Tell me
about the challenges this raised and how you handled them. (And then, as a follow-up
question,…) What do you think you did particularly well in that situation? (And then…)
What did you learn that will help you handle this better in the future?"

Behavioral questioning is a standard approach. Rosse and Levin (1997, p. 173) provide more examples of
what they call situational and behavior-descriptive questions. Risser (1993, pp. 150-152) provides more
examples and useful discussion of the value of behavioral questioning.

I also give tests. For example, when I interview an experienced tester, I want to learn how well he can write a
bug report. So I give him a bug and ask for a bug report.

Copyright © Cem Kaner, 1999. Page 3

I also do some role playing. For example, when I interview a test manager, I want to learn how effectively
she can defend her point of view in a discussion with an authority figure. So I will arrange things so that an
authority figure (maybe me, maybe someone else) will challenge her viewpoint on something that she
considers important.

In general, to learn how well someone will do something, try to set up a situation that lets you see how well
they do it. To learn how someone will respond to something, try to set up a simulation that elicits their
response.

LEGAL ISSUES
I'm a lawyer, but I don't know the laws governing interviewing. I cannot give you reliable legal suggestions,
but I can point out some (not all) of the issues.

§ Several books that I've read tailor their approaches to minimize the chance that the company can be
successfully sued for discriminatory hiring practices. These authors would advocate a more rigidly
structured approach to interviewing than I do, such as making sure that every candidate is asked the
same list of questions. I tailor the details of my approach to the human being that I am interviewing.
Different humans, with different interests, aptitudes and backgrounds, get different questions. In a
lawsuit alleging discriminatory hiring practices, an approach that is tailored to the individual is
harder to defend.

§ Independently of the legal issues, in a testing group, discrimination on the basis of race, gender, age,
etc., is unwise. Diversity is a key goal for a testing group. Limiting that diversity means limiting your
group's effectiveness.

§ Privacy concerns implicate another body of law. For example, you probably can't check a candidate's
credit rating without her knowledge. You probably can't require an employee to take a pre-hiring
polygraph (the alleged but far from reliable "lie detector") test.

§ You also have to be careful during the interview process to avoid making unintended promises. For
example, suppose that you make a statement to a candidate that "No one here is fired unless they
have a substance abuse problem." If you hire this person and she doesn't do any work, she can argue
that you can't fire her unless she has a substance abuse problem (which she does not). Similarly, you
have to be careful about statements that you make about the nature of the job itself. You can clear all
of this up with an appropriately worded offer letter and employment contract (or you can make life
worse with a poorly worded one).

Risser (1993) lays out some of the issues, but you should recognize that even when you are dealing with an
excellent book, laws differ across states and change over time. For guidance on the legal issues, consult your
company's HR department. That's one of the reasons that you have an HR department.

CONSENSUS-DRIVEN HIRING
I follow three simple rules when hiring:

§ Anyone in the company who wants to be part of the interview process for a candidate is welcome.

§ Of the people who have interviewed the candidate, anyone in the testing group and any senior player
from any other group who will work with the candidate can veto the hiring of this person.

§ The veto policy must be actively managed so that vetos will not be based on race, religion, family
situation, gender, sexual orientation, age, national origin, etc.

There are a few reasons for doing this.

§ I believe that it is a more serious mistake to hire badly than to pass up a good candidate. The
consensus process will sometimes exclude a good candidate, but it is likely to expose problems. I
haved been repeatedly humbled by hiring someone over the objection or strong reservations of one
person, only to discover the hard way that the candidate is a jerk, a sexual harrasser, an incompetent,
or just not a good fit. I am just not willing to make this mistake any more.

Copyright © Cem Kaner, 1999. Page 4

§ Different interviewers bring out different answers and different characteristics from candidates. I
want a broad process that encourages people with different viewpoints and interests to interview
candidates. Encouragement requires letting people know that they’re welcome and that their
viewpoint will be carefully considered.

§ Many of the people who I hire are “opportunity candidates” (see below). We are taking a risk hiring
these people, or making some accommodations for them. I don’t want to confront staff resentment
later that this new person has some privileges that the complaining staff member lacks. For example,
if someone can't work beyond a 40-hour week, I raise this during the post-interview evaluation
meeting (see below). My question to the staff is direct. I explain the person's situation and ask
whether they can live with the fact that this person will work shorter hours than they do. If they say
no and I can't talk them around, then I can't hire this person. If they say that they'd resent a situation
in which the candidate would get full pay but work fewer hours, I reassure them that I will calculate
the person's salary with their limitations on hours of work factored in. And if they say yes, then three
months later, when someone says "Gee, how come Jane doesn't work as hard as I have to?", I can
say, "You agreed to this. Now we all have to live with it."

§ The people who participate in the hiring process become part of the support network for the
candidate after he joins the company. Many people new to a company go through a rough period
during their first few months as they learn cultural or technological issues the hard way. I want to be
in a position to say, We made the decision to bring this person in. Now let’s help him succeed. This is
particularly important when it is the new manager who is having a rough time. He needs a staff who
will rally around him and support him.

§ On her first day on the job, it is made clear to the candidate that every person who interviewed her
voted to hire her. She was carefully considered by all these people, and they all welcome her.
Especially in a controversial position (welcome to testing), it is good to remember that the person
you’re arguing with today was one of the people who liked and respected you enough to vote to hire
you. This can go a long way toward lessening the mistrust that sometimes develops between testers
and programmers.

Even in a small testing group, I don’t require everyone to be part of the interview process. Some people just
don’t want to do this, or they don’t want to do it for every candidate. That’s fine. But they can’t complain
about the hiring decision later.

Junior staff are often hesitant to interview people because they don’t know what to ask or because they’re
afraid to alienate the person they’re interviewing. Some people like to interview the person who will become
their supervisor. Others are uncomfortable. I encourage juniors to participate in interviews (partially because
they have to get training in interviewing sometime, and there are only so many opportunties for this in a
year), but I look for ways to make them comfortable. Here are some examples:

§ The junior can silently watch an interview conducted by someone more senior. When I do this, as the
interviewer, I introduce the observer to the candidate, explain that I am training this tester in
interviewing by allowing him to watch some interviews, and ask the candidate’s permission. If the
candidate balks, I will ask the junior to leave. If the candidate is an individual contributor who is
bringing technological skills, I might not hold this against him. Some very competent individual
contributors are shy or awkward in groups. On the other hand, if the candidate who rejects the junior
is interviewing for a management position, I will probe deeply into her attitude toward training and
mentoring staff. She will probably not get the job.

§ A small pack (maybe four of them) of juniors can take the candidate to lunch, maybe accompanied
by one mid-level member of the staff who is a good observer. The mid-level staffer will observe but
not speak beyond the minimum required for politeness. I am particularly likely to do this with
management candidates. This group and I might even draft some questions before lunch, that they
will ask during lunch. I encourage them to ask questions about the candidate’s attitude toward
training, education, and working conditions. If the candidate gets huffy (“You can’t ask questions
like that—I’m the manager, you’re just the junior employee”), the candidate gets to go home early.

Page 5

Note that both of these examples provide an opportunity for the candidate to exhibit behavior (the way they
handle the situation, rather than what they say) that gives you insight that you probably can’t get by asking
questions. You’ll see a lot of examples like this running through this paper, though I won’t keep drawing
your attention to them.

You’ll also note that my interpretation and reaction to the behavior might be different from yours. I am a fan
of Deming (1982). I believe that in employee relations, management should proceed from leadership and
from credibility, not from fear and power. I believe that it is normal for people’s behavior to vary over time,
for them to screw up sometimes, and for them to be good staff despite that. I believe that many employee-
made errors are induced by systematic weaknesses in their working situation (i.e. management-induced
problems). I believe that most people want to do a great job. I look for management candidates who try to
foster that greatness. You might look for people who have other attitudes. I can’t say that you’re wrong. This
paper isn’t to convince you either way on those issues. It is to help you gather data that will help you
evaluate whether the candidate meets the vision you have. My interpretations are for illustration, not because
they are necessarily the best ones for your situation.

The problem of discrimination is a more difficult one. First, let me stress that it is a real problem. Asians,
blacks, hispanics, and women are still finding it hard to get work, to get treated with respect on the job, to get
equal pay, and to get promoted. I have been personally reprimanded for hiring a black employee. I have had
to deal with repeated and credible complaints from female staff members that they were being harassed by an
executive and I have personally witnessed some of that unacceptable behavior. Asian immigrant colleagues
of mine have faced offers of as little as half of the going rate paid to whites. All of this is illegal, all of it is
unacceptable, and somehow you have to convince a racist not to use a veto for a discriminatory purpose or
your consensus-driven process becomes a roadblock (or a steep cliff) instead of a tool. Certainly, I publicly
remind the testing group that they cannot discriminate on the basis of certain types of characteristics. Most of
my work, though, is private. People make racist or sexist (or etc.) comments in private. Some people will
also consistently speak against candidates of a certain kind, gradually revealing their colors. I talk with them
privately and will cut off their veto power (and their opportunity to interview) if necessary. (I’ve also
suggested to some people that if they don’t like these rules, maybe they should find a more hospitable
company.)

One of the ways that I deal with the discrimination problem, if I think that there might be one, is to bring
prospective employees to the company as short term contractors. This makes it hard to recruit people who
already have a job somewhere else, but if the pay is right, unemployed testers will gladly accept a six-week
contract. I’ll hire contractors on my own, or in conjunction with just one or two interviewers. The full group
process doesn’t take place until the contractor has been working for a few weeks. Now we have data on
actual performance. A candidate who is doing a good job is harder to reject for spurious reasons.

A STRATEGY FOR GATHERING INFORMATION
You're looking for a candidate who has certain characteristics (knowledge, skills, abilities, and other
characteristics--see below). Make a list of the desirable characteristics.

You can gather information about the candidate on these characteristics from several sources:

§ Resume

§ Phone screen

§ Work samples

§ Publications

§ Interview questions

§ Tests

§ Puzzles

§ Group interview

§ Behavior elicited by the interview

Copyright © Cem Kaner, 1999. Page 6

§ References

§ Investigative material (such as drug tests, credit reference checks, etc.)

Different sources are more effective for different characteristics. You can make a matrix to represent this.
For example, yours might be structured like this:

Sources

Characteristics Resume Screen Samples
& Pubs

Intervie
w Ques

Tests &
Puzzles

Group Interview
Behavior

Refs Invest.

Knowledge

§ Testing
courses

x x x x

Skills

§ bug
reporting

x X x

Abilities

§ team
building

x x

Other

§ tolerance of
ambiguity

x x x

For more on this type of matrix, see Rosse & Levin (1997), Chapter 6.

Along with determining what method(s) you'll use to gather the information, you have to decide who will
gather it. For example, if you and several of your staff are interviewing the candidate, you will probably split
up the characteristics. For example, one of you might check bug reporting while another focuses on tolerance
of ambiguity.

CHARACTERISTICS OF THE PERSON YOU'RE SEEKING
As in so many aspects of software development, there is great value in thinking about your requirements first
rather than wondering why you didn't meet them later.

And, as in so many other aspects of requirements analysis, you can take this too far and get paralyzed by
analysis. The process of defining the job and the personal characteristics in advance has struck me as the
greatest opportunity for analysis-paralysis in the hiring literature. Please read this through and think on it, but
remember the 80/20 rule--80% of the benefit will come from the first 20% of the work that you can do in this
area.

Strength in diversity

There is no single profile that fits the ideal software tester. Two testers who work on the same program will
find different bugs. Diversity is essential. People with different skills, backgrounds, and sympathies will spot
different classes of issues.

Additionally, the testing effort requires several strikingly different skill sets. For example, a few years ago,
Jack Falk and I worked with a company that produced software to manage employee stock options. This
application area is subject to complex government regulation (taxes, employee compensation, securities law,
and sometimes lending law). If I had to build a small testing group for a company like that, I would shoot for
a staffing mix like this:

Copyright © Cem Kaner, 1999. Page 7

§ Senior tester or test manager with business operations or human resources experience.

§ Senior tester or test manager with strong test planning skills. If this is the test manager, she needs
excellent mentoring skills, because she won't have time to write the test documentation unless she is
an individual contributor.

§ Test automation hotshot, willing to serve as the group's tool builder.

§ Talented exploratory / intuitive tester, someone who is really good at finding bugs by playing with
the product.

§ Attorney who is willing to wander through the various statutes and regulations looking for rules that
the program must cover.

Some of these people have programming skill. Others have special knowledge of the application area. Others
have special knowledge of the tools and techniques of black box testing.

I often see ads that require a specific profile of software testers: degree in software engineering or computer
science, knowledge of the programming languages and tools in use at the hiring company, and some number
of years of experience as a tester or as a programmer. These are nice credentials, but they would only solve
some of the problems that must be addressed by this financial application company's testing group. Diversity
is essential.

Several of the most effective testers that I've worked with have had no programming experience. On the
other hand, most of the effective testing groups that I've worked with or consulted to have had at least one
knowledgeable programmer on staff. Diversity is essential.

Repeat until hiring is completed <Diversity is essential.>

Accepting testing as a way-station

The testing group is the easiest entry point to the software development company, and therefore, many
people come to testing on their way somewhere else. They want to become programmers, marketers, project
managers, technical writers, whatever.

Over the years, a remarkable number of people have come to me with the glitter of somewhere else in their
eyes and the willingness to stick it out in testing for an appropriate amount of time. If they offered the right
mix of opportunities to me, I hired them even though I knew that they would go away eventually. (Then
again, everyone goes away eventually.) A surprising number of those folks stayed in testing for a long time,
or have come back since. Testing is a seductive field, once you come to know it.

But even the confirmed transients can add substantial value and substantial diversity to your group. Consider
the following examples. These are real people, but the names have been changed:

§ Joe was a marketer, who had reached as high as Director of Marketing and Sales. But he wasn't as
effective as he could have been, partially because he didn't understand enough about software
development. Between jobs, he decided to take a testing position (and so learn a great deal more
about the realities of development) rather than moving right back into marketing. The job educated
Joe a great deal. And Joe educated the other testers. He had plenty of ideas on how to make bug
reports more persuasive, how to spot issues that would make the product harder to sell or support in
the market and how to collect data to back up a bug report of the issue, and how to build credibility
with groups outside of product development. He was a net gain to the group within weeks of being
hired.

§ Sam was a former VP of Marketing who heard about Joe and decided, between jobs, to learn more
about product development too. He joined testing but only lasted in the group for a month or so
before being transferred into a senior position in marketing, eventually becoming the company's VP.
The testers didn't learn too much from Sam, but they had a great link into marketing.

§ Sandy was a technical support supervisor with a software sales background. When her department
was outsourced, she transferred into testing. Along with bringing a customer focus that was always
welcome in this department, she brought strong scheduling, budgeting and status reporting skills.

Copyright © Cem Kaner, 1999. Page 8

She also had a personable style (salespeople are so valuable in testing groups) and was able to
present bad news without creating an interpersonal edge. A short time (perhaps two months) after
joining the testing group, she became the supervisor of the company's largest test team, working on
its most delivery-date critical project. Her status tracking, early warnings based on status, and her
visible but non-threatening had a big effect. The product shipped, with good quality, a day ahead of
schedule. About a year after joining the testing group, Sandy moved into a senior tech support role
elsewhere. For the year that she was in testing, she was invaluable.

§ Tony was a largely self-trained, but talented, programmer who wanted to work with a well-known
programming team. He joined the testing group to gain an entrée to that team and he worked in the
test group for a year or two before being promoted to a senior individual contributor level in the
programming group. Tony was, in some ways, difficult to manage as a tester. He hung around with
the programmers too much and with the testers too little. He collected and used a lot of information
about the program but kept too much of it to himself. In retrospect, Tony's manager realized that
Tony had been mismanaged. Tony would have been a valuable toolsmith, and would have probably
been quite happy in that role. Instead, he got the assignments that many other testers enjoyed more
than he did: lead the testing of a technically interesting project, map out the test plan and test
documentation and find/report lots of bugs.

§ Cindy was a librarian who probably wanted to become a technical writer but got into a testing group
first. As a tester, she was able to spot communication issues and training-related issues and explain
them with clarity. She also excelled at writing testing documentation and she was effective as a
supervisor and trainer of new testers. Over subsequent years (and subsequent companies), she moved
back and forth between writing and testing assignments.

§ Sean had been a project and a product manager, but he burned out on software and took a several
year break from software development to manage construction projects. Eventually he was ready to
come back to software development but software companies were hesitant to hire him. He didn't
have experience in the currently fashionable language and so his skills were seen as outdated. So he
joined a test group to update his skills. Years later, he was still in testing, doing a great job,
managing the test group of one of the industry's largest publishers.

There are lots of other stories like this--people who came to a testing organization with strong skill sets and a
desire for a relatively short term (6 to 18 months) stints in testing, who very quickly started to contribute
tremendously to the groups that they joined or who would have contributed tremendously if they had been
properly managed.

The mismanagement problem is a real one. Or, at least, it has been for me. On balance, I've been very
successful with staff who come to me with skills, on their way somewhere else. But when I've tried to jam
them into standard molds, without recognizing and taking advantage of their special strengths, they've been
disappointed and disappointing. When they don't fit a near-term or intermediate-term need, I am hesitant to
hire them.

Opportunity hires

I want a great staff. This isn't easy. It's harder when the field is booming, as it is today, because there are
fewer people than jobs. It's even harder when I work with a company that pays less than the market rate. (I
founded the testing group at one company whose products were very exciting, but whose top salary matched
the entry level rates of other software companies. I was successful in recruiting a top quality staff, but it took
creativity.)

When I can't offer the top money in the field or the most exciting product line or career path in the field, I
have to find some other incentives to attract solid talent. And so I look for people who have special needs
that I can fill. These people have a strong skill set but they also carry some baggage that make other test
managers reluctant to hire them. That leaves proportionally more of these people for me. If I can connect
with this market (these markets) of people, and if I have a good job to offer, then I can have my pick of them.
I call these people "opportunity hires." For them, the job that I offer is a special opportunity. For me, the
skills they come with provide a special opportunity.

Copyright © Cem Kaner, 1999. Page 9

The people who I described in the last section, people experienced in some other area who want to spend six
months or a year in testing and then move on, are an example of opportunity hires. There are a lot of other
people who are relatively unpalatable to traditional hiring managers, who have a hard time finding a position
even though they might be brilliant. Here are some examples:

§ Retirees, especially retirees who want to work only 20 or 30 hours per week. People step down from
their fast-paced, full-time jobs, and discover that they need money or that they've become bored. The
ones that I'm thinking of are not looking for fast-paced jobs that might require lots of overtime.
They're looking for an intellectually stimulating position that offers steady hours and some flexibility
to spend time away when they have to deal with personal matters.

§ Pregnant women or single mothers with young children. It might be illegal to discriminate against
these people, but they're discriminated against anyway. I don't ask about candidates' family
situations--if you do, the odds are that some day, you will be sued for it. But when someone raises
the issue with me because they anticipate needing a leave of absence in the near future, or because
they need unusually flexible hours, I'll talk frankly with them about it. The fact is that at most Silicon
Valley style software companies, people work long hours. And near the product release date, people
work longer hours. Especially testers. I don't feel obliged to hire anyone who can't reliably put in
those hours. But when someone with an extraordinary skill set and a positive attitude tells me that
she'll gladly take a step down in responsibility and salary in return for strong control over her hours,
I'd like to find a way to make this work.

§ Other family commitments: Many middle-aged workers are facing a new responsibility. Their parents
need time-consuming attention. As another example, non-custodial parents will often bargain for
guaranteed vacation times. For example, Mom has custody of the kids but Dad has visiting rights and
also has the right to a few weeks with them per year, for vacations. Dad has to book these weeks in
advance with Mom, and scheduling has to be take into account her convenience. From you, Dad
needs some assurance that he can have X weeks per year away from work, that he can book this time
in advance, and that you won't demand that he change his plans at the last minute. As with the
pregnancy issue, you can't ask about family commitments beyond asking whether there is anything
in the candidate's personal situation that would interfere with their regular attendance at work at the
normal work pace that you expect of your staff. But if a candidate raises family commitments as a
bargaining issue, I think that it is fair game to consider what accommodations can and cannot be
made and whether this candidate's talents justify the need for the requested accommodations.

§ Returning to the workforce. The prototypic case is the mother who comes back to software after
investing several years in the care of her children. Sean (the project manager described above) is
another example--he stayed commercially employed, but not in software. Similarly for the technical
person who spends years trying out sales and marketing and realizes that she's happier in
engineering. These people come to your with aptitude and seasoning but without current knowledge
of tools, languages, and best practices.

§ Immigrants who speak English with a thick accent. Testers must be able to fluently understand the
language spoken by the product development team. I don't want to hire people who can't understand
spoken or written English. But many immigrants understand more than they can say. I am reluctant
to consider a candidate whose written grammar and spelling (especially if the mistakes are on the
resume) are poor. And I am reluctant to consider a candidate who has no employment references
within reasonable telephone distance (North America). But so is every other hiring manager. If a
candidate looks as though he might be particularly talented or particularly smart, I'll suspend
judgment and try to find out more about him.

§ Career switch. Some of my most successful hires have been of people who were leaving a mid-level
to senior position in a different field in order to come to software. These aren't people who come to
you and say, "I want to work in testing for a year before I move on." They're people who say, "I want
to switch to software. Are you where I start?" They might well stay in testing. The key for these
folks is often not the pay scale. It is the opportunity for training in a new profession. If you can/will
offer to spend additional personal time (of yours, as the hiring/training manager) coaching this

Copyright © Cem Kaner, 1999. Page 10

person, you can make a competitive offer even if the candidate will have to take a steep pay cut to
come work for you.

In sum, opportunity hires are people who come to you with special needs or special circumstances. Their
circumstances are odd enough that recruiters will often not help them, perhaps never presenting their resumes
to employers or only presenting their resumes for unacceptably junior or low-paying positions. You can be in
the position (I have been in the position) of being the only employer that the candidate has talked with,
through a significant job search, who is willing to show respect for their talent and experience while making
allowances for their special circumstances. That is, you might be able to be the only person who makes a
serious job offer to a candidate who would normally appear to be substantially overqualified for the position
you have open.

Opportunity as risk

Not every "opportunity" candidate is a good bet. Here are some examples of people who initially look like
opportunities but on closer inspection turn out to be potential disasters. Again, the names are changed:

§ Joe was an alcoholic. He wanted to shift from technical (non-software) sales management into
software. He looked great on paper, increasingly responsible jobs, good performance reviews, decent
technical education, MBA, analytical and smart. But his real reason for looking for a new career is
that he is screwing up so badly this year that he's just about to lose his current job and he's afraid that
no one else in his current field will hire him.

§ Sandy wants a programming job today. She'll accept a position in the testing group but starting on
her first day on the job, she will do anything she can to wangle a transfer into the programming
group.

§ Jerry used to have a senior position. He will accept the job with you, but he will still expect to be
treated with the kind of deference that he got used to in his last position(s). He will become unhappy
when people (such as programmers) don't take his advice and follow his directions and will dedicate
his time on the job to political intrigue rather than to finding and reporting bugs.

§ Jane did well in her last career (perhaps even a software career, as a programmer or software
marketer) but has no aptitude for testing. In your group, she will be bright, articulate, cooperative,
hardworking and (unless you manage her very effectively) unproductive.

§ Cecil will need a lot of time away from the job and the attitudes within your group are such that this
will be resented by the rest of your staff. You will face a revolt if you give him privileges that the
rest of your staff don't get.

Minimizing opportunity hiring risk: Short-term contracts

When someone's moving into a new type of position or moving back into the workforce after a long time out,
there is just no way to be sure that they and the job will be good for each other. You will discover that many
wannabe-opportunities are no good and won't hire them, but for the person you seriously consider, you still
face a substantial risk of being wrong.

Whenever possible, I try to hire people for a six-week contract. If the candidate worked well and has the skill
set that I want, I can then make a long term employment offer. But if she didn't work out, I don't have to
renew the contract, make a new contract, or extend an employment offer. (I make it very, very clear up front
that the contract is complete at the end of six weeks, with no promises made as to consideration for future
work.)

If the candidate doesn't work out, but is trying hard and gets along reasonably well with the other staff, I'll
typically keep her for the full six weeks. This way, she gets to finish out the contract. This helps her in her
next interview, when a prospective employer asks, "Why did you leave BugWare, Inc.? You were only there
for six weeks." She can truthfully answer "It was only a six week contract. I completed it."

Handled this way, the six week contract limits my risk as an employer and the candidate's risk. Either of us
can walk away without complication.

Copyright © Cem Kaner, 1999. Page 11

Minimizing opportunity hiring risk: Group buy-in

I discussed this above, in the section on consensus-driven hiring. It is important for your group to accept
special arrangements. My position is that everybody has some special arrangements and everybody needs
some special accommodations. The issue is to make this clear enough that people are tolerant of each other’s
situations.

DEFINING THE POSITION AND CHARACTERISTICS NEEDED FOR IT
Any book on recruiting will talk about this. Rothman’s (1998) treatment is well tailored to the programming
environment and quite thoughtful. She also provides sample descriptions of testing positions. (ST Labs
website sometimes posts some excellent job description information too. www.stlabs.com.) Rosse & Levin
(1997) provide a detailed generic treatment. Risser (1993) provides a good overview. Kaner, Falk, & Nguyen
(1993) discuss some of the attributes of good testing candidates.

Defining tasks you need accomplished today

You're recruiting because there is some work that you want done. You're looking for someone to do it. It
makes sense to list the specific tasks and the knowledge, skills or abilities required to do those tasks. You
will then evaluate the candidate against the list. If he can't do what you need done today, you need someone
else.

Defining tasks you need accomplished later

If you take a primarily task-oriented approach to defining the job, then there will be several tasks that aren't
needed for today's product that will be important over the next year. What other things should the tester be
able to do, over the next year or two, that aren't on the immediate needs list?

If this person isn't capable of doing some of these tasks now, can you train him? Can you spare the time? Do
you have the skill? Does he have the aptitude?

Defining the strategic role of this person

Along with the specific tasks that you are trying to get done now, you should have a sense of what this
person will do for you over the longer term. For example, are you trying to find an automation specialist? A
test planner? Someone who will become a supervisor or manager after a few months of training? A brilliant
opportunity (candidate with strong potential to become a senior manager) might be no opportunity at all if
your goal is an automation hotshot.

List of individual characteristics

It can be very useful to list the individual characteristics that you will consider important for the job. You
might want all of these for all jobs, but some are more important for some jobs than others. For example,
diplomacy is probably a skill more needed by managers than by senior programmers.

§ Lists of characteristics are often broken into lists of KSAO (Knowledge, Skills, Abilities, Other).
These are defined as follows:

§ "Knowledge" is the body of information that the candidate will need in order to perform effectively.
For example, a person might know or have training in test case design, maybe even a course in
creating test matrices.

§ "Skills" involve proficiency at a specific task. For example, a person might be really good at creating
test matrices.

§ "Abilities" involve potential to do a job. For example, a person might be a very bright, systematic,
analytical thinker, who you would expect to be able to quickly become very good at creating test
matrices.

Copyright © Cem Kaner, 1999. Page 12

§ "Other" includes other characteristics that are important to the job, that aren't abilities. For example,
a person might have personal integrity.

Here is a list of some of the skills, abilities, or other characteristics that are sometimes mentioned as relevant
to success as a tester. Many of these are redundant. You might define them differently. This is a starting
point, not the ultimate list for you. Don't look for all of these in one person. Pick a subset, define them the
way that works for you, and add your own.

§ Alertness

§ Attentive to detail

§ Analytical problem solver

§ Architect (talented at designing systems, in breaking the system into achievable tasks, subtasks, and
data)

§ Arrogance (usually, less is better)

§ Artistic (understands visual or audio presentation issues, can knowledgeably critique the esthetics of
a design or product)

§ Assertive

§ Auditor (compare situations against standards)

§ Author (published, impressive, credible)

§ Commitment as a person (keep promises, stick around)

§ Commitment to a task (do what it takes)

§ Commitment to quality

§ Coping with difficult circumstances

§ Courageous

§ Creative

§ Credible (people believe what she says)

§ Curious (inquisitive, likes to explore and find things out)

§ Customer focused

§ Decision making and problem solving (judgment, realistic understanding of issues)

§ Decisiveness

§ Diplomatic (able to convey bad news, criticism, or unreasonable requests in ways that don't offend
and do encourage a desired response)

§ Effectiveness with junior testers

§ Effectiveness with senior testers

§ Effectiveness with test managers

§ Effectiveness with programmers

§ Effectiveness with non-testing managers

§ Empathetic (able to appreciate other people's situations and viewpoints)

§ Empirical frame of reference (learn by running experiments)

§ Empowering (promotes excellence and risk taking in other individuals)

§ Energizing

§ Fast abstraction skills

Copyright © Cem Kaner, 1999. Page 13

§ Financially aware and sophisticated (for example, able to make economic arguments)

§ Finds bugs (some people have excellent bug-finding intuition)

§ Flexible (willing to shift takes or to take on new things)

§ Goal setting

§ Glue (promotes group cohesiveness)

§ Humility

§ Integrity (likely to keep commitments, unlikely to engage in dishonest conduct)

§ Interpersonally perceptive (reads verbal and nonverbal behavior)

§ Interviewer (good at getting information by asking questions)

§ Investigative reader (good at pulling information from incomplete specs, from the Net, etc.)

§ Leadership

§ Long term thinker

§ Meeting manager (skillfully facilitate or record (e.g. on flipcharts) other people's meetings)

§ Mentor

§ Multi-tasking (juggles multiple tasks well and can handle the pressure)

§ Organizer and planner

§ Persuasive

§ Politically perceptive (reads the system)

§ Policy and procedure developer

§ Pragmatic

§ Programmer (able to write good code, command technical respect of other programmers)

§ Protective (stands behind, defends his staff, even when they're wrong)

§ Punctual

§ Scholarly (collects information, and is able to back up or evaluate arguments using data or credible
opinions/statements of others)

§ Sense of humor

§ Spoken communication

§ Strength of character (does the right thing even when it's personally costly or inconvenient)

§ Subject matter expert, in the area being automated by the software

§ Substance abuse (undesirable)

§ Team builder

§ Tolerant of ambiguity

§ Tolerant of other approaches to managing projects, doing tasks and solving problems

§ UI design (skilled at designing the appearance of features, etc., and a persuasive knowledgeable
critic of the designs of others)

§ Versatile (many abilities)

§ Warm (interpersonally, makes the human environment more pleasant)

§ Written communication

Copyright © Cem Kaner, 1999. Page 14

§ Zealot (believes in The One True Way and insists that everyone else believe too. Probably not
desirable in large quantities.)

I'll come back to the question of how to evaluate a person on these dimensions later.

HOW TO FIND CANDIDATES
You can advertise a particular position or you can advertise the general desirability of working for your
company an ongoing basis, whether you have positions open or not. Some people prefer the ongoing
approach because it generates a steady stream of resumes from people who pay attention to you or your
company.

Ongoing advertising

The goal of ongoing advertising is to present an image of yourself, your group, and your company that makes
people want to work with you. Do this by talking or writing about your technical views or your company's
technology or management style. Most of these activities (publishing, teaching) are done for other reasons,
but they have the effect of attracting people to your company. It should be obvious that it's important to avoid
creating a false impression. Even if you succeed in hiring someone this way, it won't be a lot of fun working
with them. Some of the usual types on ongoing advertising:

§ Advertisements (paid spots) in newspapers, radio, TV, that promote your company generally rather
than a specific position

§ Books that you or your staff write

§ Conference presentations

§ Courses that you offer to the public or to the profession

§ Newspaper or magazine articles about you or your company

§ Newspaper, magazine or technical articles written by you or your staff about technical or
management issues

Promoting a position

You can be much more effective at getting a stack of interesting resumes if you use multiple methods for
publicizing your company and your currently open position than if you rely on one approach or medium.

You can advertise positions through:

§ Announcements at conferences or meetings

§ Announcements or ads in professional journals or newsletters

§ Announcements (job listings) at employment services (your state unemployment agency, for
example). (Yes, this can be useful. When BigCo. lays off 1000 testers, many of them will file an
unemployment insurance claim. A notice with that government agency might capture their attention
at the start of their job search.)

§ Current employees (for example, pay them a bounty for bringing in good people)

§ Newspaper advertisements

§ Postings on Net-based job boards and job-related newsgroups and e-mail lists

§ Radio and TV advertisements

§ Recruiters

§ Spamming (if you want to find people who are willing to work for a spammer. Blecch.)

§ Word of mouth announcements spread as rumors through the community of people you'd like to
recruit from

Copyright © Cem Kaner, 1999. Page 15

What do you say in an advertisement?

Beyond my suggestions, Whitaker (1994) provides several other useful suggestions for advertisements.

When I advertise:

§ I want the right people to send me their resumes.

§ I want the wrong people to send their resumes to someone else.

§ I don't want people to misunderstand the job or the company.

§ I don't want government regulators to tell me (or my company) that I am acting unlawfully or
unethically.

Positions are often advertised ineffectively. An advertisement that lays out a generic job description is less
likely to capture anyone's imagination, and is very likely to discourage opportunity candidates (people with
unusual backgrounds) from even applying.

The following examples were all invented for this article. They might be reminiscent of ads that you have
seen, but they were not based on any particular advertisement.

Here is an example of a poor advertisement:

SOFTWARE TESTER. Hard-working, diplomatic, detail oriented, effective
communicator. Great at finding and reporting bugs. Strong test planning skills.
Automation experience desirable. UNIX and PC platforms. Must have B.S. in Computer
Science or equivalent and five years of related experience.

Why would you want to work for this company? The ad doesn't say. What is special about this company?
The ad doesn't say. What is interesting about this position? The ad doesn't say. Who will apply? My bet is
that this ad will attract lateral hires (people who want to do the same job as they have today, but for more
money, with a different boss). It will attract people who have standard backgrounds and it will attract people
who don't worry about background (people who have consciously decided to apply for positions for which
they are not qualified, at least on paper).

The next ad is another generic special that any HR Department can put together for you quickly:

SOFTWARE TESTER. Come join our state of the art company, and define the leading
edge in the testing of consumer software. Hard-working, diplomatic, detail oriented,
effective communicator. Great at finding and reporting bugs. Strong test planning
skills. Automation experience desirable. UNIX and PC platforms. Must have B.S. in
Computer Science or equivalent and five years of related experience.

We pay highly competitive salaries and have a superb benefits package. Work in the
heart of Silicon Valley. Etc.

This ad defines some of the benefits of the job, but in HR-speak. It promotes the company in general terms
and the financial and lifestyle benefits of working for the company. It doesn't promote the career growth or
the content of the job.

Here's an ad that could work:

SOFTWARE TESTER: Bank applications, COBOL, SQL, Visual BASIC, Client/Server,
etc. Financial application sophistication required. We are looking for excellent staff
and will pay appropriately. Depending on experience and demonstrable skill, this
position will pay $75,000 to $120,000 per year.

This is a generic financial position but is specific about its core selling feature. The employer will pay big
bucks. (If $75-120K is no longer big bucks for this type of position, reread the ad with a bigger pair of

Copyright © Cem Kaner, 1999. Page 16

numbers.) People who want the big bucks will apply for this job, whereas they might well not apply for a job
that offers "highly competitive salaries."

Here's another variation. In this case, the staff are the benefit, not the money:

SOFTWARE TESTER: Bank applications, COBOL, SQL, Visual BASIC, Client/Server,
etc. Every member of our group has sophistication in financial applications, and strong
technical skills outside of testing (such as programming, data design, etc.) along with
solid testing experience. Our department fosters a mutually supportive, growth
environment. We work in teams and we make time to educate ourselves and each other.

Now consider this one.

SOFTWARE TESTER. We test data communications software for the home market.
Help us develop software that must be reliable, quick, and easy and fun to use.

To effectively test our products, you will probably have to be able to read and write
code. For this position, we are especially interested in people who know about set-top
boxes, cable modems, TCP/IP, browser internals, or other current data
communications implementation and design issues. We are also willing to meet testers
(whether you can program or not) who are skilled in finding OS-level or device-level
bugs, or who are skilled in performance measurement, client/server methods, or
component level testing. Excellent communication skills are a must.

Pluses include project management skills, experience creating and managing test plans
to coordinate the work of several testers, and test automation experience.

The successful candidate will probably have a degree in computer science and five
years of software development or testing experience. In your cover letter, please
indicate the types of evidence that you can provide that you can excel in a fast paced
company as a technology-sophisticated software tester.

The ad conveys interest in technology and in the satisfaction of customers. Evidently, these are values of the
group and (presumably) of the company. The ad might attract lateral hires (from other testing groups), or
programmers who are will to switch into a testing role in order to learn more about data communications.
The ad will also attract a few senior testers who want to brush up on technology. Their letters (the best of
them) will admit to a lack of data communications experience, and to rusty programming skills, but will
stress their project management and test planning skills. They will express great interest in this opportunity to
learn about this new (to them) field, and will stress their willingness to work hard to achieve the learning. In
general, this ad tells people what they'll have to be (or become) good at, without demanding any particular
credential (such as a degree). It will also attract the same clueless crowd of people who will send their
resume to any ad that says "tester" or "programmer" and so you'll still have to throw those applications away.

One last example.

SOFTWARE TESTER. Be one of the first employees in a software start-up. We offer
challenging technology, long hours, and a stock option plan that will let you share in our
success. It's too early to publicize the nature of our business, but we will carefully
consider every resume that shows at least five years' experience in any aspect of
software development, including at least two years' experience in software testing.

Each of these ads stresses what is special about the employer. Every well-marketed product or service carries
a "unique selling proposition"--something special that is hard or impossible to find anywhere else. A reason
to buy it. I apply that principle to the job advertisement as well. The company might be committed to
customer satisfaction, hard driving pursuit of new technology, process management (ISO 9000-3 or CMM

Copyright © Cem Kaner, 1999. Page 17

done by a company that believes in it and wants to benefit from it), job stability, family values, whatever.
Telling candidates about the corporate mission and values, and the group mission and values helps people
decide whether they are excited by you or not. Rosse & Levin (1997, p. 61) talk about this “unique selling
proposition” in terms of being an “employer of choice,” a place that people will seek out. Rothman (1998)
writes of positive and negative company factors that should be considered for advertising.

The ad will often also say something about what must be special about the candidate. I tend to be flexible on
formal "requirements" like a degree in computing or accounting. I take some care to position these
requirements as desirables, rather than as rigid requirements, unless I believe that they are absolute minimum
requirements for the company at hand. In some other cases, I will be very specific. For example, I worked for
an entertainment software company at a time that certain DoD contractors and some other large IT employers
were laying off technical staff. Our style of testing was fast-paced, exploratory, without the benefit of a
specification. I got tired of talking to people who insisted that their 15 years of experience qualified them for
consumer software testing because testing is testing is testing and who then insisted that our development
methods were all wrong and we would have to change them. Eventually, my ads read:

Verifiable experience in development, support, or testing of software that was to be
sold to or used by mass-market customers.

I still got the inappropriate resumes (fewer) and the follow-up phone calls, but it was faster and easier for me
to say to a candidate that he was unqualified, as demonstrated by the lack of a qualification listed in the
advertisement. The specific language in the ad satisfied people that they weren't being singled out when I
turned them away. I might be a fool, but I was being consistent, and so they were willing to leave me alone.

I didn't adopt this wording because I don't like DoD or IT training. I adopted it because, at that time, in that
market, I was getting flooded with resumes and follow-up calls from people who were not going to get hired
for this class of job. At that time, in that company, other more appropriate, enthusiastic candidates were
readily available in the pool. The non-consumer candidates were wasting their time and mine.

Should you put your name in the advertisement?

Another issue in the content of the ad involves whether you should list your name as a contact point. I always
do list my name. This wastes some of my time, because recruiters and more recruiters and more recruiters
call me, and because some candidates call me. But I eliminate most of this issue while keeping the ad
personal by saying:

Send resumes to Cem Kaner, Manager of Software Testing, <<company address,
company e-mail address>>. Please send inquiries and resumes by letter or by e-mail. I
cannot handle inquiries and applications by telephone.

Principals only please. Materials received from intermediaries, such as recruiters, will
not be reviewed.

An advertisement with a human face will attract people who like to work for/with humans. Most ads are
impersonal, so a personal touch stands out.

By the way, after you've been in the business for a while, people come to recognize your name. I never
associate my name with an employer that I wouldn't commend to a friend. I never associate my name with a
description of a job that I wouldn't give to an appropriately qualified friend. I never associate my name with
an interviewing process that is designed in a way that it will demean or intimidate the candidates. Over the
years, goodwill develops. People will apply for a position just because it's your name on the ad.

If I am interviewing on behalf of an employer who has staff difficulties, I’m honest about that with
candidates, and I encourage other interviewers to be honest about it. The goal is to give candidates a
“realistic job preview” (Rosse & Levin, 1997, p. 62). That doesn’t mean that we try to advertise the
company’s faults or to discourage people from working at the company. And I don’t necessarily put the
company’s weaknesses forward in the first phone screen. But it’s important to make sure, before the
candidate accepts a position, that he knows what he’s signing up for.

Page 18

SIFTING THROUGH RESUMES
Most resumes will be rejected. Sort quickly through the resume pile to find the people who are worth calling.
It's important to call good candidates quickly because they will probably be lost (someone else will hire
them) if you delay.

I sort resumes into four piles: rejects, reject but keep in an active file, priority 2 and priority 1.

Rejects

Rejects get a form letter right away that says thanks, but no thanks. A common form letter says,

"Your qualifications are impressive and we appreciate your effort in contacting us, but
there is not a match between our requirements and your skills at this time."

I send a slightly-flattering letter like this to every reject, even the hopelessly underqualified and even the
ones who have obviously lied on their resume (like the cretin who claimed to have authored a manual that I
wrote). I am unfailingly polite. My goal is to spend a minimum of time and emotional energy on the rejects.
My rejection is friendly and respectful for a few reasons. First, being told that they’re not going to get the job
is bad enough. I’m not out to make anyone’s life miserable, just to close this relationship. Second, I don't
want to make anyone made because that makes them more likely to reappear, threatening a lawsuit or
demanding satisfaction in some other way, or just pestering some executive who will make my life miserable
for having motivated a person to become a pest.

Here are examples of resumes that I will reject:

§ Inappropriate behavior, such as foul language, inappropriate gender references, or jokes in poor
taste.

§ False statements or exaggerations. Many resumes, perhaps 25%, contain lies or significant
exaggerations. I have no tolerance for these. By the way, I make these judgments quickly, and
sometimes I might be wrong. I don't know of any requirement that I make a thorough investigation
before privately concluding that someone made a false statement. For example, if a candidate claims
to be an expert in Java and then writes about the Net in ways that misuse common phrases and
appear to demonstrate fundamental ignorance of the platform, I won't spend investigating further. I’ll
simply reject the resume (but without sharing my private conclusion that this person is a liar.) On the
other hand, I am always conscious of my duty to not discriminate against members of various
protected groups and so my dismissal of a resume cannot be based on a stereotypic judgment like,
"No woman could have led the testing of WordStar. She must be lying."

§ Clearly insufficient background. If the ad calls for experience in testing or programming, and the
resume doesn't list any, I usually reject it immediately. Not only is the candidate unqualified. He is
evidently not reading or responding to the content of the ad. On the other hand, if the candidate
writes a cover letter that admits that her experience is too thin, but says that she really wants the job,
then I will read the resume more carefully. This tester is paying attention to what was said in the ad
and responding to it head on. She is negotiating. I value those behaviors in a tester and so I will tend
toward keeping her under consideration for some other position, if not this one.

§ Spelling and obvious grammar errors. Someone who doesn't take the time to check his own work (or
get help from someone else) is unlikely to cut it as a tester. I make three exceptions to this
generalization. First, if the candidate is a very recent immigrant, I might read the resume a bit more
carefully before rejecting it. Second, if this is a very long resume, I tolerate an error or two as a
normal bug rate. And third, if the candidate has clear, verifiably successful experience, then my
prediction that he'll never be a good tester has been refuted. But in any of these cases, I'll question
him closely and check his references carefully.

§ Insufficient information. Some resumes convey so little information that I have no idea whether this
tester is suitable for the position. If nothing in the resume tells me to be interested in the candidate, I
reject it.

Page 19

Reject but keep in an active file.

Some candidates are not appropriate for the current position but have distinguished themselves in some way
that makes me want to keep their resume in an active file. For a different position, I might hire this person.
The rejection letter for this person might say something like:

"Thank you for your application. We have decided to consider other candidates for the
position for which you applied, but we are impressed with your qualifications and will
keep your application in an active file. We will contact you if a more suitable position
becomes available in the near future."

Priority 2

This is a holding pile. I'm not enthusiastic about these candidates, but it's possible that they would be suitable
for the job. I won't reject them yet but I won't call them for interviews until I've explored the higher priority
candidates.

Examples of candidates in this group:

§ Underqualified but within training distance. This candidate doesn't meet the position's minimum
knowledge / skill requirements, but it might be possible to train her into the role.

§ Recommended by someone significant. This candidate was recommended by a staff member or a
trusted colleague. Before I reject the resume (assuming that it is within the realm of possibility), I
will look at it with some care.

§ Insufficient information. Some resume styles (the very brief functional resume, for example) are
uninformative. They hint at information about the candidate but provide little useful detail. I will
usually reject such a resume if the candidate is applying for a management-level position (he should
have evaluated enough resumes as a hiring manager to know how worthless this one is). I won't
automatically reject such a resume from candidates for less senior positions or for technical
positions, as long as the resume somehow makes it seem plausible that this candidate might be
qualified for the position.

§ Unusual situations. Most of the "opportunity hires" start out in my second priority group.

First priority

I call first priority candidates (for a phone screen) as soon as possible.

EVALUATING THE CANDIDATE'S PUBLIC MATERIALS
Some candidates are published authors (in magazines, conferences, books). Some have web sites. Some are
active on news groups or mailing lists (these are often archived). These writings reveal a lot about the
candidate. For example, you are likely to learn:

§ about the candidate's knowledge and writing style

§ what the candidate claims in public about the nature of his job and his experience (Is it consistent
with the resume?)

§ what issues seem to draw the attention of the candidate--what he thinks is important

§ whether he engages in flame wars. What it takes in a debate to irritate him

§ how much time he spends posting to news and (to the extent that you find out) to mailing lists and
whether he is posting from a company e-mail address during normal business hours.

I prefer to read a candidate's material before a phone screen, but I often don't have time before the screen. I
make the time to read the material before the face-to-face interview.

Copyright © Cem Kaner, 1999. Page 20

THE PHONE SCREEN
The usual point of a phone screen is to filter out candidates. The face-to-face interview is expensive and
time-consuming for everyone. If this person is obviously a mistake, the sooner you close the call, the less
time and money that you waste on them.

I also use the phone screen to learn more about the candidate, in order to better prepare for the face-to-face
interview.

I allow ninety minutes per phone screen. The calls actually last between two and ninety minutes.

I have a list of issues/questions that I select from, and I often go through them in the order listed. But I might
go directly to an issue if I have specific concerns or interests in that candidate.

For example, if I'm calling someone who submitted a low-information content functional resume (they list
types of tasks that they've done, but don't tell me where or when or provide much beyond a buzzwordy list
and then list the employers and dates but don't say what they did where), I might start by collecting a
chronology. Where did you work? When? What Was your title? Who did you report to? What were your
major accomplishments? Why did you leave? Or, I might start by asking about the claim or two that captured
my attention. For example, I might say, "In your resume, you said that you have experience with QA Partner.
Can you tell me when you use that tool and what you used it for?" If the answer is weak, and this was the key
skill that led me to make the call, then I'll move into shutting down the call (see below).

Here's a list of questions that I put together over the course of recruiting a few test managers. I normally
bring this list up on-screen, creating a candidate-specific file. I often type while I talk with the candidate. If I
don't type, I take detailed written notes.

Several of the issues are well answered in the resume, and I won't spend much (or any) time on them in the
phone call.

The questions here are questions that I am asking myself. They tell me what I'm trying to find out. I word the
questions to the candidate differently for each candidate, following the flow of the discussion we've had so
far and taking into account what I already know.

You might be required to ask all candidates the same questions in the same order. (Some companies that
have been sued for discriminatory hiring practices, or that don't want to be, will adopt the rule that everyone
during a screening is asked the same question.) If so, I recommend that you start the phone screen (after
introductions) by telling the candidate that your practice is to ask everyone the same questions in the same
order, apologizing in advance for any questions that overlap or that seem out of context.

My list of questions for a test manager

The resume presentation

§ Typos

§ Consistency of presentation

If there are weaknesses in the presentation of the resume, I'll ask about them. For example, if there
are typos or spelling mistakes, I might note them and ask why. The typo or spelling mistake might not
have disqualified the candidate, but the candidate's response to this question might give me a reason
to close the interview quickly. A response that no one cares about these minor details, or a response
that seems unusually defensive (the candidate asks, "How dare you ask about something like that?")
will typically convince me to close the interview quickly.

Educational qualifications

§ College or university studies

§ Continuing education

Copyright © Cem Kaner, 1999. Page 21

§ Books and publications read / written

§ Conferences attended

§ Professional societies--member / activity

§ Standards committees--membership / what did they do

§ Awards received by the candidate or his staff

How has this person learned about testing and about software development in general? There are
very few university courses on software testing. What has the candidate read? Even at the test
manager level, the majority of candidates that I screen have never read a book on testing, never
taking a university-level or university extension class on testing, and never attended a conference on
testing. Their training has been completely in-house. I ask every testing candidate about education.
The more senior position that the candidate is applying for, the stronger my feelings are that the
candidate should have been actively broadening and deepening her knowledge of the field.

This group of questions also gives the candidate a chance to tell me about his commitment to the
profession. I don't expect the candidate to be active in the IEEE, ASQ, ACM, etc.. I don't expect the
candidate to work on the development of professional standards. But if the candidate does this, I
want to know what he does, what he's been learning from it, and I want a sense of whether this
candidate offers too much of a good thing. Some candidates expect to do this work on company time,
for many hours per week. That might or might not be acceptable for the open position.

Employment history. For each employer:

§ The basic data: company / dates / title / role / supervisor

§ What kind of products they worked on?

§ What interesting technology they used or developed (that they can talk about)?

§ What worked well?

§ What didn’t work well?

§ What they did that was special?

§ What approach to continuous improvement?

§ Why they left?

The question on continuous improvement is often informative. Sometimes I ask this up front, before
asking about specific companies. I want to know how they monitor and improve their own work and
the work of their staff (if they are managers).

Approach to testing

§ What is SQA?

§ What is the value of the testing group? How do you justify your work and your budget?

§ What is the proper role of the test group?

§ What is the role of the test group vis-à-vis documentation, tech support, etc.?

§ How much interaction with end users should testers have, and why? How should you learn
about problems discovered in the field, and what should you learn from them?

§ What role of glass box / black box / gray tools?

§ Automation?

§ Development model? What should the programmers use? What should the test group use?

§ How did you get programmers to build testability support into the code?

Copyright © Cem Kaner, 1999. Page 22

§ Role of bug tracking system (track bugs / personnel / design bugs)?

I ask these questions of supervisory candidates or of senior individual contributors. I am not looking
for The One Right Answer about How Testing Should Be Done. I primarily want to know if this
candidate has thought about these issues in any depth. I might also be trying to learn whether her
views are roughly compatible with the company's. For example, throughout this series of questions
you see a bias toward testing, with little regard to process standards. I listen to the answers about
SQA and role to hear whether this tester will work happily in a group that does not follow a process
standard like ISO 9000-3 or CMM. If this tester will work in one of those environments, I would
probe their knowledge of those standards and their sympathy with them.

The tool / technology questions here are really asking, what is the role of technology in your group,
and what should it be? I'll cover details later.

Knowledge of areas of testing

§ What are the key challenges of testing?

§ Have you ever completely tested any part of a product? How?

§ Have you done exploratory testing effectively?

§ Have you done specification-driven testing effectively?

§ Should every type of business test its software in the same way?

§ Economics of automation?

§ Role of metrics in testing?

§ Describe components of a typical test plan?

§ Tools for interactive products?

§ Tools for database products?

§ Cause-effect graphs?

§ Data flow diagrams?

§ When have you had to focus on data integrity?

§ Typical bugs at your last company?

This list illustrates the questions that I ask. The actual list that I would use will depend on the
company, application areas, etc.

The question, “Should every type of business test its software in the same way?” provides some
indication about the candidate’s open-mindedness and about the breadth of the candidate’s actual
education and exposure to the field. I have a Right Answer for this—No, every type of business
should not test its software the same way. I expect to hear that life critical applications probably go
through more rigorous testing and process management than here-today, new-version-tomorrow
web-based applications. I would like to hear that different application issues call for different
approaches. For example, the techniques that you apply when the key issue is whether a financial
application (written in COBOL, doing fancy stuff with a huge database) is computing the right
answers is very different from the techniques you’ll use to test the interactive competence of a word
processor. If I’m lucky, I’ll hear the candidate talk about the different paradigms of software testing
(the different ways that people think about the core issues of the field). Within the black box world,
for example, James Bach (1997) identifies Domain Testing, Stress Testing, Flow Testing, User
Testing, Regression Testing, Risk-Based Testing, and Claim-Based Testing as separate techniques.
In my course on testing (Kaner, 1998), I identify 9 paradigms that lead testers to think of different
kinds of criteria for what makes up an effective test case or test suite: Domain Testing, Stress
Testing, Risk-Based Testing, Random Testing, Specification-Driven Testing, Function Testing,
Scenario-Driven Testing, User Testing, and Security Testing. I don’t think that there is one right

Page 23

partitioning of paradigms, but it is a mark of maturity in the field to recognize that two different
groups can have substantially different views of what is a good approach to testing, and both can be
right (given their context).

For a senior candidate (individual contributor or test supervisor), I want to find out what they think
about various common issues in testing. How sophisticated is their thinking? Not whether I agree
with them, but whether they have a well developed point of view. I also want to give them a chance to
describe and evaluate the tools that they've used.

A highly skilled tester / test manager for interactive applications (games, word processors) might be
clueless about high end data storage or financial applications. That data-oriented questions
illustrate questions that I'll ask in order to probe sophistication in the testing of an application area.
For a different class of applications, I'd ask different questions.

The "typical bugs" question is trying to get at the underlying question--"What kinds of problems with
products are you used to dealing with?"

Interest and skill in this company’s areas of application

§ Product-category specific questions

This section gives the candidate a chance to show me that she is a subject matter expert.

Project Management

§ How do you prioritize testing tasks within a project?

§ How to develop a test plan and schedule? Tell me about bottom up vs. top down approaches?

§ When should you begin test planning?

§ When should you begin testing?

§ Do you know of metrics that help you estimate the size of the testing effort? How do you
scope out the size of the testing effort?

§ How many hours per day should a tester work?

§ How should staff overtime be managed?

§ How should your overtime be managed?

§ How to estimate staff requirements?

§ What to do (with the project tasks) when the schedule fails?

§ Conflict with programmers?

§ How do you know when the product is well enough tested?

These questions are primarily for mid-level to senior testers and for supervisors. At some point in
seniority in many companies, a tester becomes largely self-managing. For example, the tester is
assigned to a fairly large area of work and left pretty much alone to plan the size, type, and sequence
of tasks within that area. Drucker (1966) wrote a remarkable book on time management, decision-
making, prioritization, and survival skills for managers. Drucker includes any knowledge worker
who has to manage her own time and resources within his definition of "executive." One of the
successes in the development of my management style comes from learning to see the managerial
nature of my mid-level individual contributors.

Staff relations

§ What characteristics would you look for in a candidate for test group manager?

Copyright © Cem Kaner, 1999. Page 24

§ What do you think the role of the test group manager should be? Relative to more senior
management? Relative to other technical groups in the company? Relative to your staff?

§ How do your characteristics compare to the profile of the ideal manager that you just
described?

§ How does your preferred style work with the ideal test manager role that you just described?
What's different between the way you work and the role you described?

§ Who to hire in a testing group & why?

§ Role of metrics comparing staff performance in HR management?

§ How to estimate staff requirements?

§ What to do (with the project staff) when the schedule fails?

§ Tell me about staff conflicts that you’ve handled?

This section is primarily for supervisory staff.

I ask the test group manager questions only of management candidates. These four questions are
really enlightening, during the phone screen and during the face-to-face interviews. I think that it’s
entirely fair to ask these of someone who has management and hiring experience, and I expect
thoughtful answers. Here are examples of some of the insights that I can get from these answers:

§ The candidate’s picture of an ideal manager is dramatically different from his image of
himself, or from the impression of him that you’ve built up during the interview. This can
be a huge red flag. Not always. In some cases, for example, this reflects genuine humility.
But a significant mismatch should make you think. And it should help you structure
questions for the face-to-face interview.

§ The candidate’s description of the ideal manager exactly manages his perception /
presentation of himself. This person might not be pathologically egotistical. He might just
be trying to manage an interview in a way that puts himself in a good light—I think this is
OK, as long as he doesn’t lie or exaggerate. But again, it gives me a lead on future
questions.

§ The candidate’s description of the ideal manager differs strongly from the expectations of
your company. I expect to see some differences, but if there are fundamental differences in
expected role or in expected relationship with the staff, then I will wonder whether this
person can fit with the company. Wonderful, brilliant people might fit perfectly in some
companies and poorly in others.

Knowledge of the company

§ What does the candidate know about the company?

§ What questions does the candidate have about the position or the group?

§ What questions does the candidate have about the company?

For example, if the company has a web site, I’ll ask the candidate whether she has looked at it. If we
scheduled the interview in advance, then maybe the candidate will have looked at the site. But if I’m
simply phoning in response to the resume, the odds are good that the candidate sent the resume
without checking the web site.

By asking the candidate during the phone screen whether she has seen the web site, I set up a follow
up question for the face-to-face interview. If I told the candidate where to look during the phone
screen, and she hasn’t looked by the time she comes for the interview, that’s not a good sign.

I might also offer to send marketing materials or company profile materials to the candidate before
the face-to-face interview. I will certainly agree to this if the candidate asks me for the material. This
helps the candidate prepare her questions (she should have some).

Copyright © Cem Kaner, 1999. Page 25

THE APPLICATION FORM
When the candidate comes in for an interview (or you can mail or email it to him in advance), he should
complete an application form. Your HR people probably have one handy.

The typical form sets the candidate’s experience out in chronological order and asks a variety of other
standard questions about the candidate’s background. It is useful to interviewers to have this information in a
standard format.

This form is particularly important when interviewing someone who gave you a functional resume. People
often select that format in order to hide problems in their chronology or to make it easier to exaggerate what
they have done across companies.

For more on standard application forms, see Rosse & Levin (1997, Chapter 7).

THE INTERVIEW: PREPARING FOR THE INTERVIEW
Over a period of one to three days (perhaps spread over a few weeks), a candidate will meet with up to ten
(maybe even more) of your company’s staff. This is expensive. It interferes with other work. You should
prepare that time in advance, so that you spend it effectively.

Every interviewer needs some basic information, such as a copy of the advertisement, the candidate’s cover
letter (if there is one), and the resume. If the candidate’s resume is light on detail, then your chronological
notes from your phone screen are valuable.

There has to be an interview schedule. People have to know when they will meet with the candidate and who
they will bring the candidate to. You probably have to book the appropriate conference room in advance.
You might want to make restaurant reservations in advance, so that your staff and your candidate don’t waste
time standing in line waiting for a table.

If you’re going to give the candidate a demonstration of your products, you want to have a machine set up
and available for the purpose.

You probably also want to review your notes and decide what classes of characteristics are most important to
interview for. (See the discussion in the next section.)

There’s value in having a brief pre-interview meeting to divide tasks and establish ground rules. For
example, how independent do you want peoples’ impressions to be? In your process, once someone has
interviewed the candidate, can he discuss it with someone else who has interviewed the candidate? Can he
discuss it with someone who has not yet interviewed the candidate? Under what circumstances can he
discuss the interview with non-interviewers?

It’s valuable also to educate your staff so that they recognize some common mistakes in reasoning or in
appraising candidates, and so avoid them. For example, I try to help people understand:

§ Someone can be a wonderful person, very bright, and very competent, but still be inappropriate for
the position at hand. A rejection of the candidate’s suitability for this position is not a rejection of
that person.

§ A candidate can be weak in some areas even though she is superb in others. (This is the problem of
the “halo” effect.) For example, a person can be analytically talented, a solid mathematician, but
incapable of putting together even a simple test plan, even a simple sequence of relevant tests. (Hard
to believe? It was for me, too. But this is a real case.)

§ A candidate might be weak even though he has great credentials. It’s remarkable what glowing
letters of reference a company will give a problem employee as part of the process of convincing the
employee to go away. It’s remarkable how many great companies some losers can amass on their
resume. Once they start at a well-known, high quality (of testing) shop like Adobe or Apple or IBM
or HP or Microsoft, other companies will hire them. To give you a sense of how extreme this is, I’ve
seen two companies that hired a senior staff member who turned out not only to be (in my opinion)
incompetent but who had also been repeatedly involved in sexual harrassment complaints and/or

Copyright © Cem Kaner, 1999. Page 26

litigation. Their credentials appeared to be impeccable but they were disasters. Both of them might
have been avoided by more careful interviewing, reference checking, and respect for the rule that
allows any interviewer a veto.

§ A candidate might be unacceptable even though he doesn’t look unacceptable at first glance and you
are desperate or just really sick of interviewing. At some point, you might feel like you’ll hire the
next candidate who can prove that they can breathe. Don’t do this. If you have to hire in desperation,
bring on a short term contractor to fill the seat. Find the best contractor that you can, pay what you
have to pay, and buy yourself some breathing room.

§ A candidate who acts oddly during the interview won’t somehow improve when you hire him. If he
shows up late for the interview, with no good excuse, why do you think he’ll keep these types of
commitments later? If he makes promises that he doesn’t keep, if he doesn’t do his homework, if he
fumbles the assignments or snaps at people under pressure, he’s showing you what you’re going to
see later. He’s showing you the person that you’re going to work with. If you don’t like that person,

§ A candidate might be acceptable even though she is not a perfect match for your fantasy of the
perfect candidate. Nobody will perfectly match your ideal candidate. Remember the wisdom of the
Rolling Stones: “You can’t always get what you want, but if you try sometime, you might just find

Imperfections are normal. We are human. People will come to you
with weaknesses as well as with strengths. You want to hire someone with the strengths that you need
and the weaknesses that you know how to manage.

THE INTERVIEW: DIVIDING ISSUES AMONG STAFF
You want to know what this person knows, and how he thinks, and what his skills are, and whether he’s a
decent human being, and whether you can work with him. That’s a lot of questions. You have the huge list of
nice-to-have characteristics that I provided above (plus others that you’ve added). Which of these are
important? Make a much shorter list. For each item on the list, ask two questions (and get them both
answered) in the pre-interview meeting:

§ How are we going to find out about this?

§ Who is going to find it out?

For example:

§ One interviewer might demonstrate the product to the candidate. This is partially an important
courtesy to the candidate, but it also gives the interviewer a chance to watch how observant the
candidate is. Does the candidate ask questions? Does he try things? Does he take notes? Is he
interested?

§ One interviewer might focus on the technical programming and design knowledge of the candidate
who claims to be a competent programmer. The same interviewer (perhaps) or someone else might
focus on the candidate’s knowledge of specific test automation tools.

§ One interviewer might focus on the test planning aptitude of the candidate by walking through some
test planning exercises.

§ One interviewer might focus on the subject matter expertise of the candidate (if he claims to have
such knowledge).

§ One interviewer might ask questions focusing on how well a test manager candidate will train staff,
support growth along their career paths, and provide them with growth opportunities. Maybe this
person is also appraising negotiating skills, integrity, management of staff under difficult
circumstances.

§ One interviewer might serve as a guide, walking the candidate through the building, walking him
from interview to interview, and answering any questions that the candidate has. The guide is at a
peer level to the candidate and makes it clear that she’ll be glad to answer questions. The candidate

Page 27

might feel more comfortable asking questions of one person who feels more like a host than an
interviewer. The guide answers the questions, but also reports the questions back to the group.
Perhaps this person asks a few questions of her own, gently probing the inquisitiveness of the
candidate.

Unless you explicitly note the issues, you won’t even realize that you’re missing many of them. Unless you
assign them intentionally, you won’t cover them all.

(Gosh, it’s just like test planning.) (But of course. You are conducting a series of tests of a very complex
subject matter. Coverage is an important issue, just as it is for testing software.)

No group is perfect at this the first few times they interview a candidate. But you can get better at it by
walking through the issues again in the post-interview meeting.

THE INTERVIEW: QUESTIONS
I can’t begin to list all of the interesting questions that you can ask in an interview. Some of my thoughts are
reflected in the issues that I suggested for the phone screening. These are all good issues for the main
interview. The main interview should also look at skills (by demonstration as well as by discussion) and
detailed knowledge.

I refer to “issues” instead of questions because you can ask very different types of questions to get at the
same issue.

Here are some of the key types of questions:

§ Hypothetical vs. Behavioral

§ Factual vs. Opinion

§ Closed vs. Open-ended

§ Traditional interview questions

Hypothetical questions

The hypothetical question is a what-if question. You describe a situation and ask how the candidate would
deal with it. Normally, the candidate can ask you any questions that she considers appropriate, and then she
frames her answer. You appraise the answer and, if you’re paying attention, you also take note of the kinds
of questions she asked. These tell you something about the analytical approach of the candidate.

I like to ask a few hypotheticals, not because I’m necessarily interested in the answer (I ask behavioral
questions when I’m really interested in the answer), but because I am interested in seeing how the candidate
gathers information. So my hypos lack some critical details.

And, of course, sometimes the answers are informative too. But often, the answers reflect what the candidate
thinks you’d like to hear, or reflect an ideal situation rather than anything that the candidate has ever
achieved or even attempted.

Behavioral questions

The behavioral question probes the candidate’s actual experience.

For example, suppose that you want to appraise a candidate’s understanding of bug tracking system design.
You might ask:

(Situational)

“Suppose that someone asked you to design their bug tracking system. What would you
suggest as the most important characteristics of the system?”

Or you might ask (behavioral):

Copyright © Cem Kaner, 1999. Page 28

"Have you ever had to design a bug tracking system? How did you go about deciding
what were the most important characteristics of the system? What were they? Did
you actually succeed in building them into the system? How well did the system work?
What did you learn that would help you design a new system in the future?

Rosse and Levin (1997, p. 173) provide more examples of what they call situational and behavior-descriptive
questions. Risser (1993, pp. 150-152) provides more examples and additional useful discussion.

When interviewing a test manager candidate, I spend time creating some behavioral questions that tell me
how this person has handled problem employees. There are several variations, including the employee who
makes a political mess by criticizing the product’s (or the programmer’s) quality at an inopportune time, or
the employee who has been a great worker for a long time but has developed a drinking problem, or the
employee who is disillusioned with the company and is spending more time visiting with other staff and
complaining than on getting work done. I want to be able to predict how committed this manager is to
supporting, defending, and growing her staff, and I also want to be able to predict how she will demand
discipline when she must.

Factual vs. opinion questions

If I ask someone to tell me what they know about ISO 9000-3, I might be asking for their knowledge (“What
is it?”) or for their opinion (“Do you like it?”) Ideally, I would know which question I’m asking before I ask
it. If so, maybe I woud ask the question better: “Can you describe ISO 9000-3?” or “What do you think of

Factual questions are important. At least one interviewer should ask several of them, to test the candidate’s
detailed knowledge of an area.

§ Some candidates for a lab technician’s role know a lot about printers, video cards, and other
peripherals. If you don’t ask, you’ll never realize that one person is an expert (even if she is modest)
whereas another person is only slightly knowledgeable (even if he is boastful).

§ A candidate who claims to know a lot about QA Partner ought to be able to answer questions about
its syntax, bugs, special capabilities, and the ways that people use it to create test suites optimized for
different characteristics (maintainability, speed, re-use of scripts for foreign-language versions of the
software, whatever). Don’t just let the candidate tell you the (only) three things that he knows. Ask
him questions that he doesn’t volunteer the answer to.

§ A candidate who claims to be active in the software quality community and interested in promoting
the professional development of her staff ought to know who the main professional societies are,
what the differences are between the certifications (such as ASQ’s CQE or CSQE and QAI’s CSTE
and CQA), what conferences and courses are available to staff, etc.

Opinion questions are useful too:

§ The candidate’s opinion might be important. For example, if your company is committed to an ISO
9000-3 program, and the candidate thinks that there’s nothing wrong with this standard that you
couldn't fix with a shredder and a magnet, then you probably don’t need to spend much more time
interviewing him.

§ Often, the question is not whether the candidate’s opinion is right or wrong but whether the
candidate forms opinions thoughtfully. For example, suppose that you ask the candidate about ISO,
and he gives his negative opinion. Your next question might be, “Why do you think that?” Some
people turn out to despise ISO 9000-3 because that attitude is fashionable in some circles or because
their manager told them it was stupid or because they think that’s what you want them to say. Some
other people despise ISO 9000-3 because it was badly applied at a place they worked, and they’ve
seen it badly applied elsewhere. They even read a book about it. Some people have a large set of
thoughtless opinions. Others form opinions more carefully. If I’m hiring a lab tech, maybe I don’t
care. But if I’m hiring a senior tester, I want the one who is committed to knowing what he’s talking
about.

Copyright © Cem Kaner, 1999. Page 29

Closed and open-ended questions

A closed question calls for a yes or no answer, or a very short factual answer. Occasionally they are useful.
Usually, they are the product of an untrained questioner. Closed questions often tell the candidate what
answer you expect to hear, and so she just agrees with you because that’s all you’re calling for. Other closed
questions are hostile in tone or nature (these are the questions used in cross-examinations in court) and they
make people defensive. The candidate feels as though you are trying to put words in her mouth. (You are.)

An open-ended question calls for a broader or more detailed answer. It calls for more input from the
candidate and provides very little input from you.

For example, (closed question):

“You agree, don’t you, that maintainability is one of the most important characteristics

For example, (open-ended question):

“What do you think are the most important characteristics of an automated test
suite?” (followed up with) “Why?”

Traditional interview questions

Here are some of the traditional “good” interview questions. Note that they are all open-ended, which is
good.

§ Tell me a bit about yourself.

§ What are your strengths?

§ What are your weaknesses?

§ How would you feel if one of your subordinates was promoted to a position above yours?

§ Why did you leave your last job?

§ Why are you interested in joining our company?

§ What makes you interested in software testing?

§ Where do you see yourself X years from now?

It’s probably worth having someone ask them, just to hear the answers, but many people practice canned
answers to these things. Most people (of those who practice answers) practice their own answers, with their
friends. But some people look for standardized answers that will be socially acceptable. Rothstein (1996, p.
13) (a book of standard answers) suggests the following answer to the question:

“Q. How would you feel about one of your subordinates being promoted to a position
above yours?

“A. I guess it would depend on who it was and the circumstances in which it happened.
If I had honestly felt that the person deserved the promotion, I might be a little
jealous, but I’d also be among the first to congratulate him or her. But if I had reason
to believe that it was due to backroom politics or personal favors, I’d probably be very

By the way, let’s turn this into a behavioral question.

Q. Has a subordinate ever been promoted above you? (If yes) What happened? How
did it feel? (If no) Has this happened to a friend of yours? How did they take it? How
would you have felt in that situation?

Copyright © Cem Kaner, 1999. Page 30

THE INTERVIEW: WORK SAMPLES
When I schedule an interview, I ask the candidate if she has any work samples that she can bring in. I very
carefully don’t ask the candidate to bring in any secret documents. I ask if she has anything that she’s done
that she can share with me.

Confidential work samples

When the candidate arrives on interview day, I’ll briefly look at what (if anything) she’s brought. I won’t
look at the details yet. If there are any apparently confidential materials, I have to manage this issue with
care. The conversation might go like this:

Q. This is the test plan for your current product? Cool. Have you released the product
yet?

A. No, we’ll probably release it in a few weeks.

Q. Oh. Wow, I really appreciate your bringing this, but does your company consider
these documents confidential? Would they mind if I looked at them?

A. Well, yes, they probably would. But you asked for my work and this is what I have.
What was I supposed to do?

Q. I understand. I’m very sorry about confusing you. We never look at confidential
documents. Would you mind putting them away and not showing them to my staff
during the interviews? I could get into trouble with my management if my staff look at
this.

Notice two things:

§ My staff aren’t going to see these documents and I haven’t looked at them carefully enough to learn
anything from them (beyond the fact that they are confidential).

§ I’ve avoided blaming the candidate or calling her a dolt for bringing in company confidential
documents. I want to minimize the extent to which the candidate feels awkward over this. I don’t
want her to blow the interview because she feels bad about this.

Now, behind this, I have to decide what to do about this candidate.

§ If I decide that this candidate is probably naïve, then I won’t hold this against her. We’ll have a long
talk about trade secrets at hiring time, and more training later.

§ If this is a mangement candidate, she should know better than to make personal use of company
secrets. The odds are high that I will disqualify this candidate.

§ If I don’t know what to think about this candidate, I’ll find some way to probe further on questions
of integrity.

One last thing to notice. I didn’t ask for confidential materials, but I haven’t made a point of saying “Don’t
bring confidential materials to the candidate.” This is another case of letting the candidate show me who she
is and what she does. By the way, if she asks, “Do you want me to bring confidential materials?”, then of

Usable work samples

Suppose that the candidate brings stuff that you can look at. Publications, or generic charts, or test
documentation that his manager has agreed he can use. Then you want to review this material in detail.

§ Read some of it. Ask questions about it. What is special about it? What was challenging?

Copyright © Cem Kaner, 1999. Page 31

§ If this is a publication, ask for the story behind its development. Does the candidate publish
frequently? Why did he publish this piece? What started him thinking about the problem? What
research did he do for it? Why?

§ If this is a set of test documentation, skim pieces of it and then ask the candidate to walk you through
it. (“You” probably means, one of the senior testers on your staff.) What was challenging about
developing test documentation for this product? What was particularly useful about this
documentation? Did the candidate keep it up to date? How would he do a better job next time?

§ If this is test documentation, probe it a bit. Try to think of the kinds of bugs that could come up in a
product like this. Then ask what test cases would have revealed these bugs.

§ Remember that some of the strengths, and some of the weaknesses, of this test documentation come
from the tester and some of the others come from the tester’s boss. Treat the candidate with respect,
even if the document is poor. Ask what the constraints were on this project and what he would have
liked to have done if he had more time.

§ Ask what was the purpose of this document. How was it to be used? Did it meet the company’s
needs? This is a particularly interesting question if the document is weak because, in context, it
might have been entirely satisfactory. Don’t be hasty to form a negative judgment.

§ Be courteous with this document, especially if it is weak. Firmly resist the temptation to lecture on
how this should be done, or how you would do it at your company. This candidate is sharing
something with you out of his private files. If you embarrass him over it, he’ll remember that. This is

THE INTERVIEW: SAMPLE TEST PLANS
You might have documentation that is simple enough for the candidate to review. If so, have her inspect your
document and criticize it. This is primarily interesting if the candidate claims to be good at auditing or
inspecting testing documentation. Let her demonstrate her skill.

THE INTERVIEW: AN AUDITION
DeMarco & Lister (1987) recommend that you hold an “audition” for candidates. The candidate comes to the
interview with a prepared 10 or 15 minute presentation on some aspect of past work.

I would include the full group (anyone who wants to interview the candidate, or who wants to see the
audition) as attendee and would allow them to ask a few clarification-type questions, but no I-disagree-with-
you type of questions. (This can be a very threatening situation for some candidates.)

The more that this candidate will have to present material in public or the more experienced in presentation
that this candidate is, the more appropriate I think that this interview style would be. It is another type of
sample of the candidate’s work. As DeMarco & Lister put it, you want to see a juggler juggle before hiring
him.

THE INTERVIEW: BUG REPORTS
It’s fun to talk about how to write a bug report. It’s interesting to have the candidate actually write one. I
think that this is a particularly important test for testers who have a few months or a few years of experience.
You’ll find a lot of variation in how well they can do this, one of the most important and most basic parts of
their job.

Find a reasonably straightforward bug in part of your software that is reasonably easy to understand. If none
of your product’s bugs fit that bill, get one from www.bugnet.com.

In my course on black box testing, I demonstrate a simple bug in Windows 95 Paint:

(1) Start the program.

(2) Color the background black.

Copyright © Cem Kaner, 1999. Page 32

(3) Zoom 200%.

(4) Select an area using the Freehand Select tool.

(5) Hit Del to delete the selected area.

RESULT: Either nothing gets deleted or some other area (lower and to the right) will be deleted
instead.

In class, I also show a few additional (irrelevant) steps. I do some moving and deleting at 100% zoom first
(nothing bad happens). I draw a circle and run all of my tests by selecting around the circle (even though the
circle itself is completely irrelevant.) I show that the bug occurs with deleting, but not with moving (but that
there is no bug first if you move an area and then delete it). I draw the circle in the lower right corner, where
it appears that nothing gets deleted (rather than the wrong area being deleted). Then I grow the window (so
you can see the whole canvas) or select an area up and to the left, and the wrong area gets deleted. I
demonstrate the bug, give students screen shots of all the steps (there are 15 screens), and ask them to write a
bug report. I walk through the room answering individual questions (including “What would happen if I did

Even for this very simple bug, there are stunning individual differences among the students (who are usually
experienced testers).

I’ve used this bug with perhaps 400 students by now. Some students can write a good bug report in 5
minutes. Others are still struggling after 30 minutes. Some write effective summaries and describe the bug
step by step. Others, even some articulate people with 10 years experience, write a long, disjointed paragraph
that is hard to understand.

It’s easy to recognize a really good bug report, but even at leading software companies, a large percentage of
the students (usually 6 months to 20 years of testing experience) don’t write really good bug reports. It takes
a while before you can tell the difference between a pretty good report, a not-so-bad report, a mediocre
report, and a bad one. Try your bug on your staff, so that you have a sample of reports for comparison, before
trying it on interview candidates.

THE INTERVIEW: TESTS AND PUZZLES
Several groups do some type of informal aptitude testing, using logic puzzles or numeric puzzles. I don’t
object to these, but I don’t think that they are as informative as some people think they are. Here are some of
my concerns:

§ There are huge practice effects with logic and number puzzles. I used to do them with my daughter
when she was about 12. She got pretty good with them. That didn’t mean she was smarter, and it
didn’t make her a better tester. It meant that she was better at solving puzzles. These practice effects
are the basis of the large industry of test preparation for SAT, LSAT, GRE and other standardized
college admission tests. Practice effects (previous experience) last quite a long time and they are
more pronounced in speeded tests. They are more pronounced in nonverbal tests and performance
tests (Jensen, 1980). So, a person who looks really great on these tests might simply be more familiar
with them. A person who looks like a dummy might have no experience solving them but (in my
experience) be smart and an excellent tester anyway.

§ Speed tests select for quick but not necessarily for thorough thinking. Mental rabbits. Tortoises
sometimes design better products or better strategies for testing products.

A simple testing puzzle

Another old favorite among commonly used speed tests is Myers’ (1979, p. 1) self-assessment. The
candidate is given an extremely simple program and asked to generate a list of interesting test cases. The
specific program involves an abstraction (a triangle).

Copyright © Cem Kaner, 1999. Page 33

I prefer this because it tests something that testers will actually do (analyze a program and figure out ways to
test it). However, there will still be practice effects. Average testers who worked through Myers will
probably do better than strong testers who have never seen the puzzle.

Additionally, I suspect that among skilled testers there will still be cultural differences in success with this
test. I suspect that someone who is used to dealing with abstractions, such as geometric abstractions, or with
logical relationships among numbers, is probably going to do better than someone who tests user interfaces
or compatibility with devices.

Another simple testing test

Here’s an illustration of a test that I use that allows for cultural variation.

1. I draw a simple Open File dialog on a whiteboard.

2. I explain the dialog. This is an open file dialog. You can type in the file name (where it says
File4 at the bottom) or you can click on the file name in the file list. Once you’ve selected
the file, you can click on the Open button to open it. (View this figure in Word in Page
Layout mode):

3. I hand the marker to the candidate and ask him to tell me how he would test it. I make it
clear that he can have as much time as he wants, and that many candidates take several
minutes to think before they say anything.

4. The candidate can make notes on the whiteboard or on paper.

5. The candidate eventually begins presenting his thoughts. I listen, ask questions to clarify, but
don’t criticize and don’t challenge. When the tester pauses, I let him be silent (to think)
without saying anything. He can tell me when he’s done. If it’s ambiguous, I ask him if he
has any other thoughts.

This is a remarkable test in the extent to which answers vary.

§ One candidate might stay at the surface, pointing out every flaw in the design of the this dialog.
(There is no Cancel button. There is no dialog title. There is no obvious way to switch directories.
And on and on.)

File4

File1
File2
File3

Open

Copyright © Cem Kaner, 1999. Page 34

§ Another candidate might skip the UI issues altogether and try testing the opening of big files, little
files, remote files (specified by paths that she types into the file name box, such as,
d:\user\remote\fubar\File4), corrupt files, files with inappropriate extensions.

There are several other patterns. I think of these as cultural patterns because they reflect a cultural difference
across platforms or user communities. For example, back in the days before Windows was a big deal, testers
with Mac experience tended to focus on the user interface design, and testers with PC experience tended to
focus on reliability of opening different file types from different places but were relatively blind to dialog
box design. Testers with Amiga experience tended to focus on getting the thing to work under interesting
conditions but they did little intentional testing of error handling, and they were less concerned with the
niceties of the dialog design. For example, they would test large, existing files but they wouldn’t test files
that are no longer there. PC testers were more likely to try to open a non-existent file or a file on an empty
(no floppy in the) drive.

These patterns of response are based on dozens of interviews, back in 1987 and 1988: I was the founding
manager of the Creativity Division’s testing group at Electronic Arts, and then was a software development
manager at Power Up Software when it was just founding its testing group. The variation was initially
puzzling because candidates who seemed equally strong in other ways gave such wildly different answers.
Jack Falk and Hung Quoc Nguyen helped me recognize the patterns, and the extent to which they were
predictable from the tester’s platform.

I didn’t try Myers’ triangle puzzle with these candidates, but my bet is that testers who were more concerned
with logical data relationships would have done better than testers who were more concerned with UI-driven
products. And yet testers with either of these backgrounds might have been equally bright and equally
effective with the application that I would ask them to test.

As I came to recognize the variation in responses, I changed how I used this dialog:

1. I presented the dialog, gave the candidate the marker and whatever time he needed, and
encouraged him to give me his thoughts.

2. Then I complimented him on his analysis (even if he did badly, I tried to be encouraging)
and I showed him some other types of tests that he had missed. I explained that no one got
all of the types of tests and that some people missed some issues because they were nervous
or they thought they had been rushed. I spent most of the time showing different types of
tests and suggesting why they might be interesting (what kinds of bugs they could find).

3. Then I erased the whiteboard, drew a Save File dialog that was just as badly designed (a few
of the UI design flaws from before still there, some fixed and some new ones) and asked the
tester to try again.

The real test was the second test. For this one, everyone had just received an initial practice test and some
coaching, so differential practice effects were minimized. Everyone had received feedback, been reassured
that they weren’t dolts, but had been told that they’d missed some things. Most testers were substantially less
nervous the second time through.

My real question was whether this tester was responsive to my style of training. Could the candidate pick up
my explanations and do a substantially better job the next time? If yes, and if the second analysis was pretty
good, then I had a reasonable candidate (as measured by this test). If the second analysis wasn’t much better
than the first, then this candidate was unlikely to be hired. This might be a really bright, well intentioned,
interesting person, but if he doesn’t learn when I teach, he needs a different teacher.

Occasionally, I have dispensed with the second test because the candidate did impossibly badly during the
first test, or was extremely defensive or argumentative during my explanation of alternative tests. Both of
these have been rare, but they happen. Usually, this means that I’m done with this candidate. I’ll spend a
little more time looking for a polite way to sew up the interview, but he won’t be hired.

Page 35

More complex performance tests

Sometimes you know exactly what you want the candidate to do, it’s a specialized task, and you don’t much
care if she is weak in other areas. In this case, I want to try to find a way to measure the candidate against the
task at hand.

For example (details changed to protect confidentiality), a colleague and I interviewed a candidate for a
senior position that involved performance-related testing of a complex product. This candidate had
experience modelling complex systems, was very smart, had a solid technical background, had been in the
business for years, and was very good at oral presentation. Despite that, I had some reservations. Ultimately,
my colleague and I agreed to pose the candidate a puzzle that would be representative of the type of work
that she would do.

1. We explained the task first. We would demonstrate the product before lunch and answer any
questions that she had. We would run any test that she requested. Then when she was
satisfied, we would go to lunch and she would explain her approach to testing any aspect
(her choice) of the performance of the system. The candidate said that she understood, and
she agreed to do it.

2. We did demonstrate the system and, if she would have asked any questions, we would have
answered them.

3. We did go to lunch and we did discuss the performance of the system.

In the particular case, the candidate constantly challenged the design of the product while we demonstrated
it. She would explain how this or that was probably slowing up the system. We reminded her that the task
was to (a) observe and then (b) figure out how to test, and not yet (c) file bug reports. She persisted, we
reminded her again, she persisted, and over the next hour she didn’t learn a lot about the system. When we
went to lunch, she lectured us on what was wrong with the system, but said that she’d need more information
before she could tell us how to test it.

This was a bright candidate, and until this part of the interview, she had a significant chance of being hired.
But in this company, this candidate would not have survived.

In short, if you can find a way to present a piece of the job that the tester will actually do, you can see how
well the tester does it. You have to make it a fair test, by designing it in such a way that someone who
doesn’t know your product can still do well at it. That’s challenging. But if you come up with a fair test, the
behavior that you see can be very informative.

THE INTERVIEW: DEBATES AND CONTROVERSIAL QUESTIONS
When I interview a test manager candidate, either I engage him in a debate or I recruit some other authority
figure to engage him in a debate. My expectation is that test managers will have to stand up and be
persuasive under difficult circumstances, in the face of contrary pressure from authority figures. I want some
indication of how well this person can handle this. It is, in my view, an essential part of the job.

My procedure is simple:

1. Go through the usual interview questions, focusing on the role of the testing group, the use
of technology, the importance of specs and test plans, and so on. Encourage the candidate to
tell me what he thinks are the most important factors for success, or the things that he has
particularly strong opinions about.

2. Eventually, I’ll have a sense of what this candidate thinks (a) is really important and (b) he
has thought about carefully. There are typically a few possible areas to discuss. I’ll choose
the one that I can most effectively handle on the other side.

3. For example, suppose that this candidate loves black box GUI automation. I’ll comment that
in my experience, it has been a waste of time. On the other hand, if he says that it’s a waste
of time, inefficient, impossible to maintain, then I become a diehard fan of GUI regression
tools. In either case, I engage the candidate with questions and politely disagree with his

Copyright © Cem Kaner, 1999. Page 36

answers, asking additional questions, often in the form of “But don’t you think that . . .?” or

Here’s how I appraise the results:

§ If the candidate fumbles and stumbles and turns out to not know what he’s talking about, I reject
him. I only debate on an issue that the candidate has explicitly identified as an area of special
knowledge, and I only disagree when he has expressed a strong opinion. If he doesn’t have his facts
straight, he was feeding me baloney. I have zero tolerance for lies and exaggeration. He’s gone. (Of
course, I don’t call him an exaggerator. I close down the debate, continue the interview with friendly
questions, smile, thank him, don’t make him an enemy, and veto him in private.)

§ If the candidate backs down and adopts my point of view, I get concerned. After all, this is the test
manager and this is an opinion that he claims to hold dear. I’m persuasive, but not usually that
persuasive. If he backs down, it’s probably because I am an authority figure in the context of the
interview. So what’s going to happen in the Real Job when he has a strong opinion, raises it with his
boss (or his boss’s boss), and encounters some resistance? Will he back down? That’s not always the
right thing for a test manager (or a software quality assurance manager) to do.

§ If the candidate gets obnoxious (personal attacks on my judgment, calls me stupid or ignorant, raises
his voice, treats me without respect) then I predict that he will be ineffective (and maybe quickly
fired) when his wisdom is challenged by an executive. Next candidate, please.

§ If the candidate listens to what I have to say, acknowledges my points politely, accepts the
occasional correction, but sticks to his guns while maintaining his cool, I like him.

Some candidates walk away from this part of the interview feeling that they were unfairly confronted by
someone who is closed minded. They might go away and decide not to accept the job if it’s offered or they
might agree to accept the job but hold a grudge against the interviewer. I’m still learning how to handle this.
Probably the best way is directly, to explain at the end of the interview that my style of interviewing is to
allow a debate to develop in order to see how the candidate handles it. I then congratulate the candidate,
appreciate his attentiveness and his approach to the discussion, and then make my evaluation and decision in
private.

Even if the candidate misbehaves, it is important to recognize that this is a high pressure, difficult situation
for many people. There is no point attacking this person or insulting this person for responding poorly to
pressure. I do my best to smile and show appreciation to the candidate for coming and for working so hard in
the interview, even if I consider his performance during the interview completely unacceptable.

I’ve talked with other test managers who use the debating approach. We stick with it because it is
informative, but it is uncomfortable. Some other managers skip that but probe deeply with behavioral
questions, like these:

Q. Tell me about a time that you disagreed with your manager and stood up to her.
What was the disagreement about, how did you handle it, and how did it come out? (If
the candidate describes a success, follow up with a question asking if he ever stood up,
worked hard on an issue, but failed to persuade. How did that feel?) (If the candidate
describes an initial failure, follow up with a question asking about success.)

Q. Tell me about a time that a product was shipped over your protest. How did you
convey your dissent? What kinds of arguments did you make? Who did you make them
to? Why did they fail?

Q. Tell me about a time when you wanted to fire someone but your manager disagreed
(or someone senior wanted you to fire one of your staff and you refused).

Copyright © Cem Kaner, 1999. Page 37

THE INTERVIEW: FREE CONSULTING?
Some companies use an interview as an opportunity to get free consulting. A few companies have a
reputation for this. They have a technical/managerial problem and so they issue some invitations to senior
testers to interview with them. The interviewers discuss this current problem and ask for the candidate’s
opinions. The worst of these companies either drag the “interview” out for several days or cut off
communications as soon as they’ve gotten the advice / opinion / information that they wanted.

Don’t do this. It’s unethical. It’s probably a violation of the minimum wage laws. (After all, these people are
doing work for you at this point.) And it’s probably fraudulent, if you deliberately interview people with the
intent of getting their advice instead of with the hope of hiring them.

There is value in posing realistic puzzles, and your staff will learn a lot about how other people think about
testing by participating in interviews. But there’s a line between interviewing (giving someone information
on which they can base a hiring decision) and consulting (giving someone analysis and/or advice about a
current problem).

POST-INTERVIEW MEETING
Suppose that Joe, Sandy, Jane and Ted interview the candidate, in that order.

When Joe is finished, I’ll ask for his impressions, but I will ask him not to share them with Sandy until we
meet at the end of the day. Similarly for Sandy, Jane, and Ted. Some groups are close-knit, they don’t like
this, and so we adopt a different rule. Joe can talk to Sandy after she has completed her interview. But first, I
want Joe and Sandy to both give me, independently, a tentative Yes, No, or Maybe.

If the candidate is clearly failing, then I will send the candidate home early. All of a sudden we will have a
rush project that we have to take care of. We are very sorry, but we can’t finish this today.

I don’t have infinite time to spend on interviews. When a candidate is no longer in the running, I want to stop
spending money and time interviewing him. Those of us who interviewed him might briefly meet to discuss
it, but I won’t spend much time on this.

I’ve identified the desirability of terminating the interview at several points, because I am conscious that this
is an expensive process that can’t afford preventable waste. But please don’t get the wrong impression. In my
experience, most interview candidates make it through the entire day without being sent home early.

The typical candidate has stayed through the day, made good impressions and bad, and now we have to
appraise her.

I start by asking for a tentative vote. Do most people like this candidate or not? Yes / No / Not sure. Then we
go around the room and trade impressions. Sometimes, this results in a clear, quick decision (No) and so we
break quickly and get back to our other work.

My next step is to pull out the list of issues that we were interviewing the candidate against. (See the section
on dividing the issues among the staff, above.) We’ll work through the list one at a time. For example,
suppose that we interviewed a management candidate and we get to the issue of mentoring. Suppose, too,
that a pack of juniors was given the task of finding out over lunch how good a mentor this candidate would
be, and how helpful this candidate would be in assigning other senior staff as mentors:

§ First, the juniors will report on what they asked and what they learned.

§ Next (especially if the first feedback came from people who are just learning how to interview), I ask
for anyone else’s observations. It’s often the case that the same issues come up, perhaps as side
issues, in several interviews. It’s also all too often the case that a candidate will say different things
to different people. For example, the candidate might tell the juniors that training is very important,
that it will be a priority, and that lots of senior staff time will be spent on coaching. The same
candidate might tell the next interviewer (a senior tester) that juniors are a pain in the neck, and that
they require too much hand-holding. The candidate might promise to reduce the senior tester’s
training burden by hiring more senior staff or by subjecting the juniors to sink-or-swim self-training.

Copyright © Cem Kaner, 1999. Page 38

Contradictions like these happen. Sometimes they are rooted in a misunderstanding. Other times,
they reflect a two-faced candidate.

We walk through the list and by the end realize that we like this candidate a lot and are ready to hire (or to
move on to the next stage, perhaps scheduling a final interview with executive staff) or we like this candidate
but need more information (which we list, if we can), or that we don’t like this candidate.

Sometimes one or two people have reservations that no one else has. We all like the candidate except for this
one or two people. This can be difficult for everyone.

§ If the interviewer has a firm negative opinion, based on observation and reasonable interpretation of
what was said, the candidate is vetoed. Goodbye, too bad, oh well. You might not choose to adopt a
consensus model, but I commend it highly.

§ The interviewer might have a negative opinion based on a lack of information or on a
misunderstanding. This might be dealt with by the in-meeting discussion. It is important that the
interviewer be allowed to stick to her guns, and know that she is allowed to stick to her guns.
Becoming convinced that she should shift from a veto to an abstention should be the result of “being
convinced” and should not be the result of “being intimidated” or “being pressured.”

§ The interviewer might feel that she would change her mind if she learned certain additional
information or if the candidate answered certain additional questions the “right” way. If the
candidate is returning for another interview day, she could do her own follow-up interview or she
could ask one of the other interviewers to ask the appropriate questions. Alternatively, the dissenting
interviewer might agree that the issue can be explored as part of the reference checking process, as
long as the right questions are asked and answered during the reference checks. If the answers come
out the wrong way, of course, the dissenting interviewer can and (unless she has changed her mind
for good reason) probably should veto the candidate.

One piece to keep in mind and to make clear to the group. The meeting doesn’t provide the final decision. If
everyone agrees to accept the candidate, that is a tentative approval. I still have to check references, and I
will probably not broadcast the details of those references to everyone else. I still have to go through the
mechanics of developing an acceptable offer. The offer could be blocked for various reasons as we go
forward. But the group has spoken, saying that it is OK with them if we hire this person, and that’s
important.

Another decision that the group might make is that this candidate is acceptable but that the interviewing
process is not yet closed. If we have six people scheduled for interviews, we might interview all six before
making an offer to the first. The benefit is that you gain perspective when you can compare candidates. The
risk is that the first candidate might have a job by the time you get around to offering her a position.

FEEDBACK TO THE CANDIDATE
Throughout this paper, I’ve suggested that I don’t give the unsuccessful candidate much negative feedback,
especially when I decide not to hire him. I have several reasons for this:

§ Some people find negative feedback insulting, even (especially) when they’ve asked for it and
promised not to be offended. It is too easy to make an enemy through the interview process, and I
have no desire to do that.

§ Some people become angry and threaten me. I don’t like it when people scream at me, or threaten to
beat me up. When I was 18, I worked as an assistant manager in a store. Some of my edges were
rougher back then than they are now. One person came to the store waving a pistol. He was going to
shoot me for insulting his wife. Some people are a little crazy, and if I don’t know them, I don’t
know that I want to criticize them and learn just how crazy they might be.

§ Most people that I’ve given negative feedback to in the past have argued with me. They’ve tried to
convince me that I was wrong, that they deserve the job, that I should extend the interview process
and collect some more data. This is not useful to them or to me. It is just difficult.

Copyright © Cem Kaner, 1999. Page 39

§ Some people argue with me that the basis for my decision to not hire them was inappropriate and in
some way discriminatory. Now they’re going to complain up and down the corporate chain of
command that I am an evil person and they will quote me (or misquote me) to all and sundry. People
have threatened me in this way, but it has never gone very far. Still, it is a risk that I would rather
consciously manage by minimizing the amount of information that a rejected candidate can
misinterpret and misuse.

§ If I provide this type of feedback to some candidates but choose not to provide it to others, I am
treating people differently in a way that might be characterized as unfair or discriminatory. The
people who are most likely to react really badly to criticism seem to be the people who will demand
the most forcibly that you give them the feedback if you give anyone the feedback. Adopting and
following a minimal-feedback policy for everyone makes it easier to deal with the most troublesome
people.

§ This is not a culture that gives this kind of feedback. I don’t get it when I interview, unless I get it
from a friend, or a person who becomes a friend (and then gives me feedback from an interview
long, long ago). My friends don’t get it. The books that I read don’t recommend it. And I don’t have
a legal duty to provide it. And finally (I’ll check with this company’s HR to be sure), there is
probably a company policy or preference against it.

Instead, I will reject someone by appreciating the time that they spent coming to us (they deserve that, no
matter how awful they were after they arrived). And I appreciate their thoughtfulness (they must have done
some thinking during the interview). And if I can think of anything else that I can honestly praise, then I will.
And then I express my regrets, but we found someone else who was a perfect fit. Or I express my regrets but
we decided that it just wouldn’t work out. Sorry, we can’t discuss the reasoning, that’s company policy, you
know those bureaucrats, but it was really great meeting you. The goal is to cleanly terminate the process,
without insulting or hurting the feelings of the candidate.

CHECKING REFERENCES
Always check references. Some of my worst hiring mistakes would have been avoided if I had only been
more thorough about checking references.

Despite the fact that most companies have a policy against giving references that contain more than name,
dates of employment, and other strictly superficial factual information, many managers will give you
additional information if you build some rapport with them and ask polite, direct questions.

To the best of my knowledge, and I am not an expert in this field, the risk to an employer of providing an
honest but negative reference has been vastly overblown. Lawsuits over this are, as far as I can tell,
extremely rare. There are statutes in several states that make it extremely hard for a former employee to
prevail in such a suit and the courts are, as far as I know, pretty unfriendly toward these suits in the other
states. Rosse & Levin (1997, especially pages 143-53) have a lot to say about this. Risser (1993, pp. 165-
168) is a readable book about the law that provides advice on this. Again, I am not saying that in my opinion
as an attorney, Rosse & Levin and Risser are correct. I have not done the level of research necessary to form
a lawyer’s opinion on this matter.

I can’t provide an extended discussion of the reference call—it would take as long as the discussion so far of
interviewing. But my basics are pretty straightforward:

§ I ask for factual information, checking the candidate’s claims. This includes asking for a job
description. After I get the employer’s job description, I ask about specific tasks that the candidate
mentioned, and whether these were significant parts of the candidate’s job. (Sometimes they were
not part of the job at all. Hmmmm.)

§ I ask for examples of good performance. What were some of the memorable events that made you
happy to have been working with this candidate.

§ I ask what training the candidate received. If the candidate claimed that he attended specific courses
(or whatever), then I ask whether the manager remembers these. If not, well, sometimes people

Copyright © Cem Kaner, 1999. Page 40

forget these things. In my experience, the candidate was not necessarily incorrect in the resume in
cases like this. But it’s a tiny red flag that might combine with some other red flags.

§ I ask questions that came out of the interview. For example, if we had some questions about an
automation project that they candidate did, I might ask, “He told me about a product in which
he was the lead automated test developer. I think this was BugWare 2000. Do you
remember his role on that project?” If the reference-giver says yes (she might well not
remember enough details to answer the question fairly), then I ask for a description of the
candidate’s role and the success of the automation project. If I get pablum (bland reassurance), I

Let me tell you my concern. I’ve heard about a lot of test
automation projects like this that failed because the test code wasn’t maintainable
enough. We didn’t ask detailed enough questions to form an opinion about what
happened on this project. Can you give me some additional insight?”

§ I ask whether the candidate appeared to get along well with the other staff.

§ I ask why this person left, or what he said was the reason.

§ I ask whether the employer would hire this person again, and why.

§ And I ask whether there were any weaknesses in the person’s performance.

Beyond these general points, here are a few specific comments.

Asking for negative feedback

When you call for a reference, you can certainly ask whether some aspects of the employee’s performance
that would make the employer reluctant to hire this person again. You can also ask what aspects of the
employee’s performance needed improvement. But please, understand that some people will be cautious
about answering questions that call for direct criticism of the employee.

§ When you call someone for a reference, that person doesn’t know you. She doesn’t trust you. She
has no idea how mature you are, how experienced you are, how likely you are to keep what she says
in confidence, and how thoughtfully you will interpret what she says.

§ Many hiring managers jump on any criticism as the end of the world. I’ve been astonished by how
badly people (managers or HR staff calling for references) have responded to identification of even
relatively mild problems. Some very positive references from people who have been very
enthusiastic about a former employee have been interpreted as negative because of the answer to a
tell-me-about-the-employee’s-faults question.

§ Even if the current employee is great, and the flaws are weak, many managers have policies against
answering this question. Some handle it by providing a virtually meaningless answer, pre-determined
Pablum, often saying the same thing about different people. (Maybe you’ve heard this one?
sometimes deadlines were a challenge, but deadlines are a challenge around here for everybody. He
worked very hard.”)

§ Others simply refuse to answer the question. That’s what I do, and what some of my legal clients do,
on my advice. The problem is a complex one because if I give an answer to this question for Joe and
refuse to give an answer for Sandy (whose performance was terrible) and Sandy someday sues me
and claims, among other things, that my refusal was taken as an unfair criticism of her, then I am in a
much simpler defensive position if I can say, “I answer the question the same way for everybody. I
tell people that I’m not allowed to answer it, as a matter of company policy.” When I’ve given
refusals, the caller sometimes gets very huffy about it. One person interpreted it as a serious negative
criticism of a candidate who is, in fact, the single best individual contributor tester that I have ever
worked with. (I said that, and also that I had actively recruited this person into two subsequent
companies after managing him in a first company, and that I would hire him again, at top wages, any
time I had the opportunity. I said lots of other great stuff about this candidate, to no avail.) Please,
when someone refuses to answer a question, realize that they are simply refusing to answer a

Copyright © Cem Kaner, 1999. Page 41

question that they have probably been told not to answer or not to answer meaningfully. You are not
entitled to an answer. You might be entitled to a pattern of answers that does not taken as a whole,
intentionally mislead you. But you are not entitled to an answer to a difficult question from a
stranger who has no reason to trust or respect you.

Letters of reference

When someone gives you a letter of reference, it often means exactly what it says. But sometimes, it is a
negotiated document that carefully expresses everything good that a firing or contract-not-renewing or
encouraging-an-employee-to-quit manager can say without lying while carefully avoiding mentioning all of
the horrible things that this manager would like to say. If you call that manager for an interview, ask first if
he wrote the letter. If he says yes, ask some follow-up questions.

§ He might answer them by continuing to paint a glowing picture of the candidate.

§ He might answer them by continung to paint a favorable picture of the candidate, but under your
smooth questioning, he might reveal some other useful information.

§ He might answer them by filling in the gaps, when you ask specific questions. And so you realize
that this candidate was not so good an employee after all.

§ He might refuse to answer on the ground that company policy forbids it. This is odd, because he did
write the letter, so company policy doesn’t forbid some level of reference-providing. The underlying
problem might be that there is a termination contract that promises that the only thing that the
company will say about the former employee is what is in the letter. I’ll ask straight out whether this
is the problem. Sometimes the manager will tell me (yes, or no).

If someone sends me reference letters with their resume, I feel free to check those references before the face-
to-face interview. Sometimes, I’ll call one before the phone screen.

If someone gives me a list of references, I feel free to call them after the first face-to-face interview. I am
likely to call one after this interview (while making the decision to call back for another interview), and call
the others later, when I am making the hire/don’t hire decision.

I will also call some other people who are not on the candidate’s list. These might be other people who I
know, who worked with the candidate. Or it might just be a call to HR at that company, checking
employment dates, job description, salary, and asking for any additional information they can give (which, as
a matter of company policy, might be nothing).

RED FLAGS
Rosse & Levin (1997) have an excellent discussion of red flag issues (things that come up in the interview,
the resume, or the reference checks that should make you think twice about hiring this employee). I don’t
agree with everything they said—In particular, they raise a red flag when candidates lay out vacation or
attendance needs, without, in my opinion, spending enough time on the notion of opportunity hiring. But
overall, they provide a good discussion that you might find useful to consider.

Walley & Smith (1998) provide another useful red flag discussion. Deception (lies, exaggeration) is
widespread in interview responses and resumes. They focus on the types of ways that candidates mislead
potential employers and ways (not all of which I would feel comfortable recommending) to discover this.

REFERENCES
Bach. J. (1997) Tripos: A Model to Support Heuristic Software Testing, available at
http://www.stlabs.com/testnet/docs/tripover.htm.

DeMarco, T. & Lister, T. (1987) Peopleware: Productive Projects and Teams. Dorset House.

Deming, W.E. (1982) Out of the Crisis, MIT.

Drucker, P.E. (1966) The Effective Executive, HarperCollins.

Copyright © Cem Kaner, 1999. Page 42

Kaner, C., J. Falk, & H.Q. Nguyen (1993, 2nd Ed.) Testing Computer Software, ITCP/Coriolis currently, but
check www.kaner.com for updated publishing information.

Jensen, A.R. (1980) Bias in Mental Testing, The Free Press.

Kaner, C. (1998) Black Box Software Testing, course available from UC Berkeley Extension, UC Santa Cruz
Extension, Software Quality Engineering, or by arrangement with the author.

Lane, C. A. (1997) Naked in Cyberspace: How to Find Personal Information Online, Pemberton Press.

Myers, G. J. (1979) The Art of Software Testing John Wiley & Sons.

Risser, R. (1993) Stay Out of Court: The Manager’s Guide to Preventing Employee Lawsuits. Prentice-Hall.

Rosse, J. & R. Levin (1997) High-Impact Hiring. Josey-Bass.

Rothman, J.R. (1998) Hiring Technical People: A Guide to Hiring the Right People for the Job, Rothman
Consulting Group, Inc.

Rothstein, M. (1996) Ace the Technical Interview, 2nd Ed., McGraw-Hill.

Walley, L. & Smith, M. (1998) Deception in Selection, John Wiley & Sons.

Whitaker, K. (1994) Managing Software Maniacs, John Wiley & Sons.

ADDITIONAL REFERENCES
I’m still reading these. They look valuable, and I suggest that you look at them, but I haven’t quoted them
above. I’ve noted some of the useful characteristics of these books, but understand that I’m still reading

Beatty, R.H. (1994) Interviewing and Selecting High Performers. John Wiley & Sons. Good examples of
questions and questioning styles.

Constantine, L.L. (1995) Constantine on Peopleware, Yourdon Press / Prentice Hall. Interesting discussions
of consensus-based engineering and staff characteristics.

Cook, M.F. (Ed.) (1992) The AMA Handbook for Employee Recruitment and Retention, American
Management Association. There’s a lot of policy and procedure material here, including a long chapter on
legal issues

Humphrey, W.S. (1997) Managing Technical People, Addison-Wesley. The discussion of talented people
will be useful for enriching the consideration of desirable staff characteristics.

Irish, R.K. (1987, Revised 3rd Ed.) Go Hire Yourself an Employer, Doubleday.

1

CSC Proprietary 2/28/99_D_PP97_4066_FMT_1

0RYLQJ�)URP�&RQYHQWLRQDO
7HVWLQJ�WR�2EMHFW�2ULHQWHG

�22��7HVWLQJ

�(OIULHGH�'XVWLQ��&6&

�-RKQ�3DXO���)UHGGL�0DF

CSC Proprietary 2/28/99_D_PP97_4066_FMT_2

2

CSC Proprietary 2/28/99_D_PP97_4066_FMT_3

Movin g from
Conventional
Testin g to OO
Testin g

Process Chan ges Tools to enhance
OO Testin g

Agenda

Implementation

Changes

Steps (How)

CSC Proprietary 2/28/99_D_PP97_4066_FMT_4

Movin g from
Conventional
Testin g to OO
Testin g

How to move from conventional testin g to OO testin g

Steps taken (How)

3

CSC Proprietary 2/28/99_D_PP97_4066_FMT_5

Steps taken:

Customer DemoCustomer DemoCustomer Demo

✦✦PrototypePrototype
✦✦ Collect Lessons LearnedCollect Lessons Learned

Testers were
involved
throughout
lifecycle

Document
Benefits of

current
Testing
Process

Document
Benefits of

current
Testing
Process

Cost/Benefits
Analysis

Cost/Benefits
Analysis

Document
Improvement
Opportunities

Document
Improvement
Opportunities

Tool
Research/
Evaluation

Tool
Research/
Evaluation

Training/
Mentoring

Training/
Mentoring

CSC Proprietary 2/28/99_D_PP97_4066_FMT_6

Moving from
Conventional
Testing to OO
Testing

Process Changes

Process Changes

Steps taken (How)

4

CSC Proprietary 2/28/99_D_PP97_4066_FMT_7

�0RGHOLQJ�LV�D�YLWDO�SDUW�RI�22��8VH�&DVH�

'HVLJQ��HWF��

�H�J��8VH�&DVH�0RGHO

± 8VH�&DVHV�DQG�8VH�&DVH�'LDJUDPV

�$�GHVFULSWLRQ�RI�WKH�LQWHUDFWLRQ�RI�D
V\VWHP�ZLWK�WKH�RXWVLGH�ZRUOG���,W�LV�D
GHVFULSWLRQ�RI�WKH�V\VWHP�

± $OORZV�XQGHUVWDQGLQJ�RI�%XVLQHVV�3URFHVV

Conventional testing to OO testing (cont)

Process Changes:

CSC Proprietary 2/28/99_D_PP97_4066_FMT_8

�8VH�FDVHV�DUH�DQ�HIIHFWLYH�WRRO�LQ�FRPPXQLFDWLQJ
WR�XVHUV

�%RWK�IURP�D�XVHU¶V��GHYHORSHU¶V��WHVWHU¶V
SHUVSHFWLYH�XVH�FDVHV�DUH�VLPSOH�WR�PRGHO�DQG
XQGHUVWDQG

�6\VWHP�7HVWLQJ�FDQ�EHJLQ�YHU\�HDUO\�DV�WKRVH
PRGHOV�DUH�WHVWHG

�&ULWHULD�IRU�TXDOLW\�PRGHOV

�&RUUHFWQHVV��&RPSOHWHQHVV��&RQVLVWHQF\

Conventional testing to OO testing (cont)

Process Changes (cont):

5

CSC Proprietary 2/28/99_D_PP97_4066_FMT_9

�7HVWLQJ�RI�PRGHOV�DQG�XVH�FDVHV

LQYROYHV�D�FORVHU�LQWHUDFWLRQ�EHWZHHQ

FXVWRPHU��GHYHORSHUV�DQG�WHVWHUV

Conventional testin g to OO testin g (cont)

Process Chan ges (cont):

CSC Proprietary 2/28/99_D_PP97_4066_FMT_10

�%DVLV�RI�GHVLJQLQJ�DQG�GHYHORSLQJ�FRGH
LV�QRZ�WKH�VDPH�DV�WKH�EDVLV�IRU
GHVLJQLQJ�DQG�GHYHORSLQJ�WHVW
SURFHGXUHV

Use Cases
• Big OO selling point for users and testers

Conventional testin g to OO testin g (cont)

Process Chan ges (cont):

6

CSC Proprietary 2/28/99_D_PP97_4066_FMT_11

�:RUN�SURGXFWV��XVH�FDVHV��GHVLJQ

PRGHOV��HWF��IORZ�DFURVV�SKDVH

ERXQGDULHV�

±)RU�H[DPSOH��REMHFW�PRGHOV�WKDW

VWDUW�GXULQJ�EXVLQHVV�DQDO\VLV�SKDVH

DUH�IXUWKHU�UHILQHG�GXULQJ

UHTXLUHPHQWV�DQDO\VLV

Conventional testing to OO testing (cont)

Process Changes (cont):

CSC Proprietary 2/28/99_D_PP97_4066_FMT_12

Conventional Testing Process:

Frozen
spec DesignDesign BuildBuild Test & FixTest & Fix

7

CSC Proprietary 2/28/99_D_PP97_4066_FMT_13

Testin g Throu ghout the Lifec ycle

Iterative
refinement
with user

Iterative Refinement Process

Design
/Build

1

Design
/Build

1

Design
/Build

2

Design
/Build

2

Design
/Build

3

Design
/Build

3

Design
/Build

4

Design
/Build

4

Iterative Development

Use
Cases

Correct
architecture?

TestTest TestTest TestTest TestTest

Test
every
iteration

Software Configuration Management

Verify
Test-
ability

Verify
Test-
ability

CSC Proprietary 2/28/99_D_PP97_4066_FMT_14

�6KRUWHU�GHYHORSPHQW�F\FOHV

�,QFUHPHQWDO�DSSURDFK���,WHUDWLYH�F\FOHV

±$QDO\]H�D�OLWWOH��GHVLJQ�D�OLWWOH��FRGH�D
OLWWOH��WHVW�D�OLWWOH

ª3UREOHPV DUH GLVFRYHUHG HDUO\

ª%XLOG RQ /HVVRQV /HDUQHG

ª0XFK PRUH 5HJUHVVLRQ WHVWLQJ LV QHHGHG

�&0

Conventional testing to OO testing (cont)

Process Changes (cont):

8

CSC Proprietary 2/28/99_D_PP97_4066_FMT_15

�*RDOV�RI�22�GHYHORSPHQW�LV�IRU�FRGH�WR
EH�UHXVDEOH��SRUWDEOH��PDLQWDLQDEOH�

�6DPH�JRDOV�DSSO\�IRU�FUHDWLRQ�RI�22
WHVW�SURFHGXUHV

±*RDOV�RI�22�WHVWLQJ�LV�IRU�WHVW
SURFHGXUHV�WR�EH�UHXVDEOH

Conventional testing to OO testing (cont)

Process Changes (cont):

CSC Proprietary 2/28/99_D_PP97_4066_FMT_16

 Process Differences of Conventional testing vs OO testing

• Work products are sequential

• Models are vital

• Closer interaction between all
parties involved

• Metrics Change

•Detailed Design Requirements
basis for Design and
Requirements basis for Test
Procedures

•Detailed Design Requirements
basis for Design and
Requirements basis for Test
Procedures

ConventionalConventional

•Traceability is consistent•Traceability is consistent

OOOO

•Use Cases basis for Design and
Test Procedures

•Use Cases basis for Design and
Test Procedures

•Various Traceabilities•Various Traceabilities

•Use Cases - system flow•Use Cases - system flow•Requirements result in
fragmented view of system

•Requirements result in
fragmented view of system

•Waterfall approach•Waterfall approach •Iterative, incremental approach•Iterative, incremental approach

•Work products flow across
boundaries

•Work products flow across
boundaries

9

CSC Proprietary 2/28/99_D_PP97_4066_FMT_17

Movin g from
Conventional
Testin g to OO
Testin g

Process Chan ges

Implementation Chan ges

Implementation

Changes

Steps taken (How)

CSC Proprietary 2/28/99_D_PP97_4066_FMT_18

22�&RGH�LV�GHYHORSHG�GLIIHUHQWO\

�%DVLF�XQLW�RI�WHVWLQJ�LV�D�FODVV�LQVWHDG�RI�D
VXESURJUDP

�&DQ¶W�WHVW�RSHUDWLRQ�RI�FODVV�LQ�LVRODWLRQ

�&ODVVHV�LQWHUDFW�ZLWK�HDFK�RWKHU�E\
PRGLI\LQJ�WKH�VWDWH�RI�WKH�REMHFW�WKH\
DUH�DSSOLHG�WR

Conventional testin g to OO testin g (cont)

Implementation Chan ges:

10

CSC Proprietary 2/28/99_D_PP97_4066_FMT_19

&RQYHQWLRQDO�WHVWLQJ�WR�22�WHVWLQJ��FRQW��

,PSOHPHQWDWLRQ�&KDQJHV��FRQW���

Inheritance Polymorphism

Information
 Hiding

Encapsulation

•Class Techniques

Aggregation

CSC Proprietary 2/28/99_D_PP97_4066_FMT_20

�([KDXVWLYH�WHVWLQJ�EHFRPHV�DOPRVW
LPSRVVLEOH��DOZD\V�YHU\�H[SHQVLYH

�'HULYH�7HVW�&DVHV�XVLQJ�VSHFLILF�WHVW
FRYHUDJH�WHFKQLTXHV

±2UWKRJRQDO�$UUD\�7HVWLQJ��2$76�

±(TXLYDOHQFH�3DUWLWLRQLQJ

Conventional testing to OO testing (cont)

Implementation Changes (cont):

11

CSC Proprietary 2/28/99_D_PP97_4066_FMT_21

�22�IXQFWLRQV�DUH�JHQHUDOO\�VPDOOHU

±0RUH�RSSRUWXQLWLHV�IRU�LQWHJUDWLRQ�IDXOWV

�6HOHFWLYH�UHJUHVVLRQ�WHVWLQJ�LV�LPSRUWDQW

±'XH�WR�SURJUHVVLYH�FKDQJHV�WKHUH�PD\
H[LVW�WHVW�FDVHV�ZKLFK�PXVW�QRW�EH�UHUXQ
WR�DYRLG�IDOVH�DODUP

Conventional testin g to OO testin g (cont)

Implementation Chan ges (cont):

CSC Proprietary 2/28/99_D_PP97_4066_FMT_22

Implementation Differences of Conventional testin g vs. OO testin g

Conventional

• Smallest software unit:
subpro gram

• System Testers are
usuall y not involved in
unit and inte gration
testin g

• Test Procedures are
rarel y reusable

• Testin g Covera ge
techniques are rarel y
used

OO

• Smallest software unit:
Class

• System Testers audit
class (unit) and inte gration
testin g

• Test Procedures are
reusable

• Integration testin g and
Selective re gression
testin g is more important -
picking correct test cases

• Testin g Covera ge
techniques

12

CSC Proprietary 2/28/99_D_PP97_4066_FMT_23

Conventional testin g and ob ject-oriented testin g

/HVVRQV�/HDUQHG�

�7HVWLQJ�QHHGV�WR�EH�LQYROYHG�IURP�EHJLQQLQJ
RI�OLIHF\FOH

�0DQDJH�H[SHFWDWLRQV���<HV�22�GHYHORSHG
FRGH�VWLOO�QHHGV�WHVWLQJ

�8VH�&DVHV���PDMRU�VHOOLQJ�SRLQW

�'RFXPHQW�QHZ�VWDQGDUGV�DQG�SURFHGXUHV�WR
DOORZ�IRU�UHSHDWDELOLW\

�0HQWRULQJ�DQG�7UDLQLQJ�DUH�YHU\�LPSRUWDQW

CSC Proprietary 2/28/99_D_PP97_4066_FMT_24

Movin g from
Conventional
Testin g to OO
Testin g

Process Chan ges Tools to enhance
OO Testin g

Tools to enhance OO Testin g

Implementation

Changes

Steps taken (How)

13

CSC Proprietary 2/28/99_D_PP97_4066_FMT_25

Integrated Suite of Tools

Development Tools

Components

Visual Modeling

Automated Software Quality

Requirements Management &
Process Automation

Software Configuration Management

CSC Proprietary 2/28/99_D_PP97_4066_FMT_26

Key: A Well-Desi gned ArchitectureKey: A Well-Desi gned Architecture

Development Tools

Components

Visual Modeling

✦✦ Support forSupport for
ActiveX, Java,ActiveX, Java,
CorbaCorba

✦✦ Support forSupport for
UMLUML

✦✦ Rational RoseRational Rose

Use
cases

Design Build Assemble
Round-Trip Engineering

TestTest

14

CSC Proprietary 2/28/99_D_PP97_4066_FMT_27

Business Modelin g ToolsBusiness Modelin g Tools

�$OORZV�IRU�%XVLQHVV�0RGHOLQJ

�$OORZV�IRU�&UHDWLRQ�RI�8VH�&DVHV

±([DPSOH��5DWLRQDO�5RVH

�,QWHJUDWHG�ZLWK�5HTXLUHPHQWV�WRRO
5HTXLVLWH�3UR

CSC Proprietary 2/28/99_D_PP97_4066_FMT_28

Key: Controlled Iterative Develo pment Process

Development Tools

Components

Visual Modeling

Requirements Management &
Process Automation

✦✦ RequisiteProRequisitePro
✦✦ Organizes,Organizes,

tracks & controlstracks & controls
requirementsrequirements

✦✦ Reduces costReduces cost
and riskand risk

15

CSC Proprietary 2/28/99_D_PP97_4066_FMT_29

Requirements Mana gement (RM) ToolsRequirements Mana gement (RM) Tools

Tool not onl y used for RM but for TM
•Test Procedures located in one central
repositor y

•Multi ple Testers can be assi gned a section
of functionalit y of s ystem to write test
procedures

•Multi ple Testers could access a tool
simultaneousl y without affectin g anyone
else (allows for lockin g)

•Histor y of u pdates is maintained in RM tool
(who, what, when)

CSC Proprietary 2/28/99_D_PP97_4066_FMT_30

Requirements Mana gement Tools (Requirements Mana gement Tools (contcont))

7HVWHUV�FUHDWHG����

�a������7HVW�3URFHGXUH�6WHSV

16

CSC Proprietary 2/28/99_D_PP97_4066_FMT_31

Requirements Mana gement Tools (Requirements Mana gement Tools (contcont))

•~ 500 Testable Requirements

•~ 5000 Test Procedure Steps

•Imagine, creatin g a traceabilit y
matrix manuall y!

CSC Proprietary 2/28/99_D_PP97_4066_FMT_32

Requirements Mana gement Tools (Requirements Mana gement Tools (contcont))

,PDJLQH«

�0RQLWRULQJ�3URJUHVV��RI�7HVW
3URFHGXUH�([HFXWLRQ�������7HVW
3URFHGXUH�6WHSV�

�8VH�50�WRRO

17

CSC Proprietary 2/28/99_D_PP97_4066_FMT_33

TestTest

Key: Automated Testin g

Development Tools

Components

Visual Modeling

Automated Software Quality

Execution

Management

Development

✦✦ Test StudioTest Studio
✦✦ Client/server &Client/server &

web functionalweb functional
testingtesting

✦✦ Leading ActiveXLeading ActiveX
testingtesting

Requirements Management &
Process Automation

CSC Proprietary 2/28/99_D_PP97_4066_FMT_34

GUI Capture/Pla yback Testin g Tools

�:K\�DXWRPDWH
WHVWLQJ"

18

CSC Proprietary 2/28/99_D_PP97_4066_FMT_35

GUI Capture/Pla yback Testin g Tools

�$XJPHQW�PDQXDO�7HVWLQJ

�$OORZV�IRU�$XWRPDWLRQ�RI�UHSHWLWLYH��HUURU�
SURQH�DQG�WLPH�FRQVXPLQJ�WDVNV

– (i.e. adding a large number of accounts,
replicating a transaction, verifying those
transactions, and many more)

�7HVW�'HYHORSPHQW�([HFXWLRQ�7LPH�6DYLQJV

�5HGXFH�5HJUHVVLRQ�7HVWLQJ�7LPH�DQG�(IIRUW

CSC Proprietary 2/28/99_D_PP97_4066_FMT_36

More Tools….

,PDJLQH����

�������WHVWHUV�QHHGLQJ�WR�KLW�WKH
VWDUW�NH\�DW�WKH�VDPH�WLPH�WR
SHUIRUP�VWUHVV��ORDG�RU�YROXPH
WHVWLQJ

19

CSC Proprietary 2/28/99_D_PP97_4066_FMT_37

Load Testin g Tools to the Rescue

CSC Proprietary 2/28/99_D_PP97_4066_FMT_38

 Load Testin g Tools

�&RQGXFW�/RDG�7HVWLQJ�XVLQJ�/RDG
7HVWLQJ�7RRO��VWUHVV�WHVWLQJ�WKH
DSSOLFDWLRQ�ZLWKRXW�UHTXLULQJ
�����WHVWHUV¶�WLPH�

�([DPSOH��3HUIRUPDQFH�6WXGLR

�5HXVH�6FULSWV�GHYHORSHG�XVLQJ
5DWLRQDO¶V�7HVW6WXGLR

20

CSC Proprietary 2/28/99_D_PP97_4066_FMT_39

Lessons Learned:

�'RQ¶W�EX\�WRROV�EHIRUH�V\VWHP�DUFKLWHFWXUH
LV�LQ�SODFH

�7RRO�WUDLQLQJ�LV�YHU\�LPSRUWDQW

�7RRO�0HQWRUV�DQG�&KDPSLRQV�DUH�YHU\
LPSRUWDQW

�0DQ\�WRROV�OHVVRQV�OHDUQHG

± H�J��(YHU\RQH�QHHGV�WR�XVH�VDPH�WRRO
YHUVLRQ

± VWUDLJKW�&DSWXUH�3OD\EDFN�ZDVWH�RI�WLPH

�0DQDJH�([SHFWDWLRQV

Using automated tools to enhance OO-testing

CSC Proprietary 2/28/99_D_PP97_4066_FMT_40

When To Use Which Tool?

Oh, Great Matilda,
when do we apply

LoadTest?

 Peering into the Crystal Ball....

21

CSC Proprietary 2/28/99_D_PP97_4066_FMT_41

Usin g automated tools for OO-testin g

%RRN�³$XWRPDWHG�6RIWZDUH�7HVWLQJ´�ZLOO
KHOS�VRUW�RXW�WRRO�LVVXHV

�ZZZ�DXWRWHVWFR�FRP�

�:KDW�WRROV�DUH�DYDLODEOH

�+RZ�WR�FRQYLQFH�PDQDJHPHQW�WR�EX\�WKH�WRRO

�+RZ�WR�HYDOXDWH�WRROV

�+RZ�WR�LQFRUSRUDWH�WRROV�LQWR�SURMHFW�DQG�KRZ�WR
PDQDJH�DXWRPDWHG�WRROV

�/HVVRQV�/HDUQHG

CSC Proprietary 2/28/99_D_PP97_4066_FMT_42

Summar y:
�&RQGXFW�/LIHF\FOH�3URWRW\SH

± 7HVWHUV�QHHG�WR�EH�LQYROYHG�WKURXJKRXW
V\VWHP�OLIHF\FOH

± ,QFRUSRUDWH�/HVVRQV�/HDUQHG

�'RFXPHQW�6WDQGDUGV�DQG�3URFHGXUHV

�8VH�0HQWRUV�DQG�RWKHU�H[SHULHQFHG�SHRSOH

�7UDLQLQJ��WUDLQLQJ��WUDLQLQJ

�$�ORW�RI�ZKDW�ZH�NQRZ�VWLOO�DSSOLHV��EXW
PXFK�KDV�FKDQJHG�

Moving From Conventional Testing to OO Testing

22

CSC Proprietary 2/28/99_D_PP97_4066_FMT_43

?
Process Chan ges Tools to enhance

OO Testin g

Movin g from Conventional to OO Testin g

Implementation

Changes

Steps taken (How)

CSC Proprietary 2/28/99_D_PP97_4066_FMT_44

Movin g from Conventional to OO Testin g

Challenges of Testing Mass Market Software
By Elizabeth Hendrickson

Aveo, Inc

Testing mass market software presents unique challenges. We all work on “Internet time”
now: releases are scheduled at an ever-accelerating pace. At the same time, applications are
becoming more and more complex. The lack of clear, unambiguous specifications and requirements
documents (if any exist at all) is pervasive. Our customers have a wide variety of configurations,
making compatibility testing a daunting if not impossible task. And because the software is
released to such a large audience, the cost of failure can be very high. Yet somehow companies
release software that does well in the consumer marketplace.

Software companies address the challenges of mass market software in different ways.
Some test groups fight with development and marketing to get good specifications and
requirements documents. Other test groups find alternate ways to capture the same information
from email threads, conversations, meeting notes, and hallway interviews. Some organizations
outsource portions or all of the testing while other organizations try various hiring strategies. One
tactic is to hire large numbers of relatively inexperienced testers to “pound” on the product, another
is to hire primarily senior testers with programming experience who can write automated tests
using tools or APIs.

Whatever other tactics an organization uses to overcome the challenges of testing mass
market software, I believe that it’s important that the test group understand the customer. Value, or
quality, is in the eye of the beholder, in this case the customer. Unless we make an effort to
understand who buys the software, for what purpose, and what their expectations are, it’s
impossible to know whether we’re testing it right. As testers, we make the worst mistakes when we
misunderstand the significance of an issue—we might report an issue as a minor annoyance only to
find out later that it caused thousands of support calls—or when we misunderstand the users’
expectations.

Fortunately we can learn from others successes and failures by sharing experiences and
insights with other testers and test managers in similar situations. What do you think makes testing
mass market software so difficult? What challenges are other mass market software test groups
facing, and are they similar to your own? What solutions have others found that you haven’t tried
yet? Have others found solutions that failed in your environment—if so, how did the idea succeed
in one environment when it failed in another? Do you have experiences or ideas that might help
someone else facing challenges that you’ve faced before?

1

QW99 BOF Session

Medical and Safety Critical
Application Testing

Agenda
z Introductions
z What do you want to cover?

y Possible topics

z Helpful resources

2

Introductions
z Name
z Brief description of industry and your role

What do you want to
cover?
z QA - the whole validation process
z Testing only
z Attitude required

3

Helpful Resources
z FDA Guidance for Software Validation

y www.fda.gov/cdrh/odc/swareval.html

z Others

Medical and Safety Critical Application Testing

29 March, 1999

This is intended to be a brief overview of possible topics for consideration in the BOF session. It is not
intended to be a comprehensive study of the topic.

Most standards governing the validation of safety critical applications require not only appropriate testing
strategies but also a well-controlled process for the full development lifecycle from requirement
specification through the maintenance and retirement phases. One reason for this is to prevent problems
which are harder to detect as the development cycle proceeds. Another is that it is impossible to properly
validate a safety critical application without an established software development lifecycle. The standards
also strongly recommend an independent validation group – separate from the development team. Know
what your standards require and plan the validation accordingly.

The lifecycle should include planning, execution, analysis and documentation of appropriate validation
activities and tasks. All of this starts at the requirements specification stage calling for predetermined and
documented software requirements that are reviewed and accepted before proceeding with design. During
this phase the safety requirements should be identified and a hazard analysis performed. The hazard
analysis identifies the system failures that could result from software failures. This allows the design
process to consider the measures required to prevent the failures. Based on the hazard analysis the testing
team should understand what the safety requirements are, design tests to cover them specifically, and watch
for failures related to them in all tests that are executed.

Not all modules require the same level of validation effort. Take into consideration the risk of the device
and the module’s relationship to the risk. The size and complexity of the module may also play into the
decision about how much validation is required. However, a change in any module should call for a
regression test of the entire system.

The validation responsibilities include both static and dynamic testing activities. Reviews at every stage
are necessary in order to catch all possible defects. The independent testing team should be involved in the
static activities as well as the dynamic testing. This implies that they have technical and user level
(functional) understanding of the system.

Testing levels should include module, integration (including regression tests as new modules are
integrated), system, installation and maintenance test. Test to find defects and test to prove that all
requirements have been satisfied. The testing strategy should cover both of these objectives. In order to
prove that all requirements have been satisfied, some form of requirements tracing should be implemented
in order to show the links from requirement through design, implementation and test. The validation
process should also include both structural and functional testing.

With all of this said, we know that it is not impossible to get around the real intent of the standards. When
working in circumstances where we sense that people are cutting corners and possibly compromising
safety, it is important for us to remember our role – so that we can provide appropriate information and
remain credible within the organization. The role of the tester is provide clear information in the form of
plans, test results and reports so that those with decision-making responsibility can weigh the risks and
make an appropriate determination of the consequences of the release of the software. It is not the testing
team’s responsibility to stop shipment! Though we play an important part, we are not the only ones
responsible for the safety of those who rely on the system.

Other considerations:
• How to fulfill the requirements to validate OTS software which is part of the application or which is

used as part of the validation process
• Performing usability (human factor) testing during the design phase to avoid user errors that may cause

failures

Questions that may be discussed during the
 OS and Embedded System Testing Techniques
 Birds of a Feather Session.

 1.Would you please briefly describe the
 system(s) that you test?
 2.What are the most important types of
 problems that you try to find with your
 testing?
 3.Do you use commercial and/or
 home-grown tools to aid your testing. if
 so, would you please briefly describe
 them?
 4.What kinds of additional resources would
 you like in order to improve your testing?
 5.What unique testing challenges does
 testing your software present?
 6.Do you measure code coverage as part
 of your testing? If so, what obstacles did
 you overcome to make it work?
 7.Do you do reliability testing? If so, how
 do you do it?

Larry Apfelbaum

Position paper for Testing Telecommunication Software BOF on Wednesday, May 26

Customers have grown to expect that the dial tone will be there, that their
calls will be completed quickly, and their telephone bills will be accurate.
Those famous words, "the software will be fixed in the next release", do not
satisfy telecommunications customers. And if their current vendor or service
provider can't offer them the quality level they expect, there are several other
suppliers queuing up for their business who will.

The communications industry is experiencing unprecedented growth and change with
the explosion of the Internet, Client/Server computing, and the
Telecommunications Reform Act of 1996. Boundaries are being reset as
communications service providers and other companies are entering new markets
with revolutionary technology. This boom is fueled by businesses who are
becoming increasingly dependent on communications technology as part of their
"mission-critical" systems and networks, where failure just isn't an option. At
the heart of these systems are sophisticated electronics which handle high-speed
communications protocols, and thousands of lines of complex software which
control switching, enhanced services, billing, database access- just to name a
few. Both hardware and software must be thoroughly tested to ensure that these
systems will operate error free and that they withstand the rigors of
peak-loading conditions prior to actual deployment.

This session will explore the issues, trends and some of the techniques employed
to be successful in the real practice of telecommunications testing.

- - - - - - - - - - - - - -
Larry Apfelbaum (800) 996-8778 x3555
Teradyne Software & Systems Test (603) 879-3555
44 Simon Street (603) 879-3075 FAX
Nashua, NH 03060 larry@sst.teradyne.com
 http://www.teradyne.com/sst

Testing for Military and Government Software
Jon Hagar

Lockheed Martin Astronautics Company
Mail Stop H0512

P.O. Box 179
Denver, CO 80201

303-977-1625
fax 303-977-1472

jon.d.hagar@lmco.com

Question and items to consider are as follows:
1. Why are you here and what do you want to learn?
2. What have you done in you testing to address the following big issues:

a. Y2k
b. Security of information from hackers, warfare, corruption, etc.
c. Formal vs. Informal testing, “time crunch” documentation, etc.

3. What problems do you have?
a. One of kind
b. Conversions
c. Life, safety, and mission critical

4. Do you use Commercial off the shelf software (COTS) and should you be
using COTS (and how, when, where, why, etc.)?

5. Should you be making decision about Legacy systems?
a. Keep
b. Replace
c. Out source
d. Buy-Make decisions

6. Is the CMM just a DOD tool? Who should keep and use the CMM?
What are the holes in the CMM?

7. Government Reqs, are they good? Is IEEE Better? As the Air Force and
other remove standards how do companies, customers, and users cope?

8. What does OO mean to you?
9. What do commercial practices mean?
10. How can we get lean and mean (better faster cheaper) but keep good

quality?
11. Who is your customer and what makes them happy when you test?

Life as a New Test Manager, J. Rothman Page 1

Life as a New Test Manager

© 1999, Johanna Rothman

Congratulations! YouÕve just been promoted to test manager. Now what do you do?

We all have our own ways of becoming successful test managers. Please attend this BOF
to share whatÕs worked for you or your manager. Some of the topics weÕll discuss:
drawing the line between project management and test management, how to get the rest
of the organization to listen to you, how to know that youÕre managing the right things.

Areas of discussion

What do you do, what does the project manager?

• What are your responsibilities, how do they intersect with the project manager?

• What other matrix management issues do you have?

Influence and power, and how to use them

• How do you get others to listen to you?

• Do you have to be right all the time?

• Where is the power in your organization?

What are the right things to manage?

• What kinds of people have you hired/inherited? What bearing do their skills have on
your work?

• Do you have to create vision and mission statements?

• WhatÕs your style of management?

CEM KANER, J.D., Ph.D.
Law Office of Cem Kaner kaner@kaner.com
P.O. Box 1200 408-244-7000 (Voice)
Santa Clara, CA 95052 www.badsoftware.com 408-244-2181 (Fax)

STATUS REPORT ON

PROPOSED LAWS GOVERNING SOFTWARE QUALITY

This session will follow up my keynote talk (and status report on the law of software quality) on
Thursday morning.

Thanks in no small part to opposition and criticism by the software development and testing community
(ACM, IEEE, ICCA, sw-test-discuss forum), draft Uniform Commercial Code Article 2B is being viewed
more skeptically by the legal community.

Article 2B was co-authored by the National Conference of Commissioners on Uniform State Laws
(NCCUSL) and by the American Law Institute (ALI). The ALI passed a resolution last year requiring
what it called fundamental revision of 2B, but the 2B drafting committee chose to not make those
revisions.

In early April, 1999, Article 2B was pulled out of the Uniform Commercial Code. It is being renamed
(probably to the Uniform Computer Information Transactions Act) and will be sponsored solely by
NCCUSL. NCCUSL will vote on Article 2B / UCITA at its annual meeting in July, in Denver. If the bill
passes, then it will be submitted to state legislatures this fall.

There's a lot of work to do on this. I am in this way over my head. Along with reviewing status, I will
plead for help (as I have at previous Quality Week sessions).

==

Article 2B / UCITA is an enormously complex (200+ page) proposed law that will become the main
body of US law governing software quality and a significant source of law governing reverse
engineering, troubleshooting, and maintaining software. It will probably govern most computer sales and
many contracts involving "information" (such as contracts to write or to develop multimedia content).

This proposed law will virtually eliminate liability of vendors for software defects (even serious defects
that were known by the vendor but not disclosed to the customer at the time of sale). It will also make it
easier for software publishers to limit competition and to impose new restrictions on your use of the
software.

For my latest short summary of objections to Article 2B / UCITA (I update this summary fairly
frequently as I learn more), send me an email at kaner@kaner.com.

==

Cem Kaner practices law, focusing on the law of software quality. He is the senior author of a new book
on consumer protection, Bad Software: What to Do When Software Fails. See
http://www.badsoftware.com. Kaner also consults on technical and software development management
issues and teaches about software testing at UC Berkeley Extension, UC Santa Cruz Extension, and at
several software companies. He founded and hosts the Los Altos Workshops on Software Testing. He is
the senior author of Testing Computer Software. See http://www.kaner.com. Kaner holds a B.A. (Math,
Philosophy), a J.D.(law degree), and a Ph.D. (Psychology) and is Certified in Quality Engineering by the
American Society for Quality Control.

“Blue Collar Formal Methods” in Commercial Quality Assurance
Richard Denney
QA Manager
Landmark Graphics Corp.
Rdenney@lgc.com

There are many areas in commercial QA where Formal Methods (FM) could make useful
contributions, yet there has not been a lot of focus by the FM community on commercial
QA in a “real-world” setting. The use of FM by a software QA group in a commercial
setting presents a different set of needs than might be encountered in the context of, say,
FM as used by developers working on their own product in a commercial setting, or
researchers working in FM [Denney et.al.] For example, QA groups often operate in a
"MASH" like mode to support a much larger development group: there is no time for
tidy, thorough operations on a single patient; rather surgeons are forced to triage and
hastily perform rudimentary operations on a large number of incoming. For this type
environment there needs to be increased focus on what I call “Blue Collar FM”, i.e. FM
for the working folks. It’s about trying to identify that 20% of FM – as well as those 20%
of applications of FM -- that gives developers & QA engineers 80% of the bang for the
buck.

Example areas for applying Blue Collar FM are: test specification, project estimation
metrics (e.g. function point like metrics based on formal specs), operational profiles and
reliability engineering, and formal specification styles (e.g. algebraic and model-based) as
a basis for natural language specification templates.

Another potentially fruitful area for the application of Blue Collar FM is in increasing the
rigor of technical peer reviews. Formal technical peer reviews (e.g. walkthroughs &
inspections) are popular in industry as a way to "test" a product early in the life-cycle
before code is even written. Providing training on, and participating in, these peer
reviews is “state of the practice” stuff for QA groups. The use of FM as an analysis tool
of other peoples work has received some amount of discussion in the FM community, e.g.
[Bowen and Hinchey]. Likewise in the QA community the potential leverage of formal
methods in the technical review process has been recognized [Britcher], [Dyer 91], [Dyer
92], [Jackson and Hoffman], [Parnass and Weiss], [Van Emden].

But using FM to increase the rigor of analysis in the context of technical peer reviews
adds some real world challenges:

• Reviewers are often times domain experts, rather than software engineers, with little
or no experience with requirements specification, much less formal methods

• Reviewers are in some cases developers from other projects brought in to get an
“outside view”, and hence are more or less looking at the documents for the first time;
a practice encouraged by the technical peer review literature

• Preparation times by reviewers prior to the meeting is usually only 1 to 2 hours

Analysis under such constraints is a real challenge, but this is “state of the practice QA”
and systematic analysis tools are needed for these types of reviews.

What would Blue Collar FM as applied to technical peer reviews look like? Perhaps the
design of better inspection checklists that can be used by reviewers not trained in formal
methods. If a reviewer doesn’t understand what a good specification is, how will they
know a bad one when they see it? The structure of formal specification methods like the
model-based and algebraic can contribute to knowing what information a good natural
language specification should contain without necessarily delving into all the
mathematics.

The author conducts a style of inspection that borrows from the depositions of [Votta]
and the active design reviews of [Parnass and Weiss]. They are “depositions” in that the
inspection minimally involves two people: the interviewer and the interviewee. They are
“active” in that the interviewer, who must be versed in formal methods and has pre-
reviewed the functional spec, walks the interviewee (usually a domain expert) through a
light-weight modeling session of the functional specification (or some part thereof) under
review as a way to generate questions that are then posed to the interviewee; this puts the
interviewee in “active” review mode as opposed to “passive”. The advantages of this
approach are:

• One gains independent (from the person who wrote the functional spec) review from a
domain expert or experts

• One gains a more rigorous review with a minimal investment in formal methods
training

• The cost efficiency of depositions (see [Votta] for details) offsets what some might
complain is the added expense of using formal methods

• In-depth pre-meeting preparation time is incurred by the interviewer, then leveraged
across the many interviews, with minimal preparation time by the interviewees.

As has been said [Kac], models aren’t so much to explain and predict, as to pose sharp
questions, and that’s exactly the role that formal methods based modeling plays in this
type of inspection.

In conclusion, I believe commercial QA groups as a consumer of FM is a fruitful yet
largely unexplored area, with potential benefits for both QA and FM. For QA groups to
leverage off FM however, a body of Blue Collar FM techniques needs to be identified
which scales-up to the hectic MASH style operation of QA groups of the real world.

References
Bowen, Jonathan P. and Michael G. Hinchey, “Ten Commandments of Formal Methods”,
Computer, Vol. 28, No. 4, April 1995

Britcher, Robert N., "Using Inspections to Investigate Program Correctness," Computer,
Vol. 21, No. 11, Nov. 1988, pp. 38-44.

Denney, Richard, Dick Kemmerer, Mark Ardis (sitting in for Nancy Leveson), Alberto
Savoia, Joint ISSTA / FMSP Panel: “What State-of-the-Art is not State-of-the-Practice”,
Proceedings of the 1996 Int’l Symposium on Software Testing and Analysis (ISSTA),
ACM Press, 1996

Dyer, Michael, "Verification Based Inspection," Proc. 25th Hawaii Int'l Conf. System
Sciences, Vol. 2, IEEE CS Press, Los Alamitos, Calif., 1991, pp. 418-427.

Dyer, Michael, The Cleanroom Approach to Quality Software Development, John Wiley
& Sons, New York, N.Y., 1992, pp. 96-99.

Jackson, Ann and Daniel Hoffman, "Inspecting Module Interface Specifications,"
Software Testing, Verification, & Reliability, Vol. 4, No. 2, June 1994, pp. 101-117.

Kac, Marc, “Some Mathematical Models in Science”, Science, 166, No 3906 695, 1969

Parnas, David L. and David M. Weiss, "Active Design Reviews: Principles and
Practices," J. Systems and Software, No. 7, Elsevier, New York, N.Y., 1987, pp. 259-265.

Van Emden, Maarten H., "Structured Inspections of Code," Software Testing,
Verification and Reliability, Vol. 2, No. 3, Sept. 1992, pp. 133-153.

Votta, Lawrence G. Jr., "Does Every Inspection Need a Meeting?," Proc. 1st ACM
SIGSOFT Symp Foundations of Software Eng., ACM Press, New York, N.Y., 1993.
Published in ACM Software Eng. Notes, Vol. 18, No. 5, Dec. 1993, pp. 107-114.

Rodney Wilson

"Care and Feeding of a Testing Career"

Abstract

Questions and discussion for this Birds Of A Feather will center around the following three topic areas.

1. What are core competencies for software test and quality engineering professionals?
o Product technology and domain knowledge (databases, operating systems, networking,
 languages, business or scientific applications, etc.)
o Verification and Validation (methods, tools, metrics, processes, training, etc.)
o Certified Software Quality Engineer (CQE) body of knowledge
o Certified Quality Manager (CQM) body of knowledge
o Interpersonal skills (cross-functional teamwork, leadership, change management,
 conflict resolution, positive attitude to creative destruction, oral and written communication,
etc.)
o Positive attitude toward creative destruction.
o Interest and ability to successfully obtain broad product and complete solution knowledge. As
knowledgeable as the companies best application and field support engineers.
o Desire to be the customer advocate. Success is customer satisfaction and delight.
o Ability to successfully multi-task several assignments.

 o There are many others. What are some more examples?

2. What are potential career destinations for software test and quality engineers?
o Sr. Test Engineer, Test Project lead, Test Architect,
o Quality Manager, Director or VP
o Technical Support Manager, Director or VP
o Engineering Manager, Director or VP
o Chief Information Officer
o Contractor, Consultant or Company Owner

 o Test execution to test development
 o Testing to Quality Assurance and Software Engineering Process Group

o There are many others. What are some more examples?

3. How can you keep from falling into a career rut?
o Stay accountable, don't get caught in the victim loop. Have clear deliverables.
 Strive to always ensure the Test and Quality function is viewed as an important

 corporate asset (e.g., testware library, metrics, defect prevention and containment).
 Respect is earned. Image is nothing, contribution is everything.
o Strive for balance (work, home and play). It's easy to burnout in the high-tech industry.
o Continue to learn and explore (your responsible for managing your own career,

 not your manager or company HR representative).
o Develop a personal vision/mission statement. Define your short- and long-term
 career goals.
o Identify the important factors in a new career opportunity (management team,
 marketplace and technology, money and equity, location, company culture,

 your responsibilities and opportunities for advancement, etc.).
o There are many others. What are some more examples?

Increasing productivity through small integrated development/QA teams

Mark Johnson, OrCAD
mark.johnson@orcad.com

A Quote:

In Peopleware1, DeMarco and Lister reported an 11 to 1 difference between best and worst partic-
ipants in their coding war games. But the average difference between people from same organiza-
tion is only 21%. They found that “Two people from the same organization tend to perform alike.
That means the best performers are clustering in some organizations while the worst performers
are clustering in others.”

An Observation:
The most enjoyable, motivating, and productive work experiences I have ever had have been with
small teams where we really shared a common mind-set about what we were doing and had the
skills and confidence to deliver what we really believed in.

The Quest:
How do we create one of the 10x productivity organizations? The title of this session and the
abstract expose some of my opinions on what can make for a productive team.

What are your experiences?
This is an interactive session where we want to hear what you have experienced and
learned!

1. Have you ever been part of a team that you considered to be at the 10x-productivity level?

2. What factors do you believe allowed the team to operate at a this productivity level?

a) Were there special factors about the skills or mix of people?

b) Were there special factors about the way the team was organized, the team’s goals and
objectives, or the ways the team members interacted?

c) Were there other special factors about the team?

3. Were there environmental factors in the organization that were critical to the team’s productiv-
ity?

a) Were there special factors about the structure between teams, and communication in the
organization?

b) Were there special factors in the organization’s ‘systems’ that encouraged 10x productiv-
ity?

c) Were there other special factors about the organization?

4. Do you believe that creating 10x productivity teams is a repeatable process that is a matter of
following a specific set of steps? Or does it require ‘special’ people? Or both?

5. Do you feel there is a relationship between high productivity and work being ‘fun?’

1. DeMarco, Tom and Timothy Lister, Peopleware, Productive Projects and Teams, Dorset
House Publishing Co. New York, 1987.

Mark D. Anderson
Load testing practice today is hampered by several factors:

immature tools
the scarcity of those skilled in the art
the lack of a recognized position in the product lifecycle

This condition has arisen because in the past, large multi-user systems have usually had sizeable budgets, and so
they fostered a high-end market for load testing. Furthermore, there just haven't been that many such systems. Both
of those factors have been eliminated by the web.

The sorry state of the art has also been exacerbated by the proximity of load testing to two other markets: GUI
functional test tools (from Mercury, SQA, Segue, etc.), and canned benchmarks (TPC-C, specweb96, etc.). This
tends to obfuscate the technique and even the goals of load testing, and undermines the appropriateness of the tools
available. It is dubious enough whether the tools in either of those adjacent markets are valuable even in their core
areas, without the added problem of extending them beyond their supposed area of competence.

Indeed, a useful segmentation of test tools is the following:
 Errors Performance

single-user Purify, functional test tools, coverage Quantify, gprof

multi-user load testing tools, performance monitoring load testing tools, performance monitoring

Load testing can and should be done long before a system has a stable GUI.

Attend this BOF session to commiserate on this lamentable state of affairs, or to participate in a ritual stoning of me
for my incendiary and heretical comments.

A useful link farm of QA tools, including load testing, may be found at http://www.charm.net/~dmg/qatest/index.html.

1

Running the Nightlies

u What is a Nightly ?
l A nightly is the process in which a piece of software is

built daily and a suite of sanity tests run against it to
verify that it is at least as sane as it was yesterday.

u Benefits
l Minimizes integration risks
l Reduces bug isolation time
l Immediate feedback to developers

u Drawbacks
l Overhead of running and maintaining nightlies

u Requirements
l Automated build and test process
l Sane tests
l Must happen daily

1

Diapositive 1COMMUNICATIONS & SYSTEMS GROUP

Automated test generation
from

SDL/UML specification

Alain Kerbrat, Iulian Ober

Diapositive 2COMMUNICATIONS & SYSTEMS GROUP

Automated test generation

● Benefits

● correct, reproducible tests

● cost effective

● Requirements

● unambiguous, tractable description

● clear definition of the test semantics

2

Diapositive 3COMMUNICATIONS & SYSTEMS GROUP

TestComposer principles
This system

also makes
the coffee

System requirements

Abstract test cases

Formal specification Test purposes

SDL/UML MSC,
GOAL

TTCN,
user specific

2

2 test case computation

1

1 test purpose generation

Diapositive 4COMMUNICATIONS & SYSTEMS GROUP

TestComposer basics

● ISO/IEC 9646: « conformance testin g »

● based on two research protot ypes :

● Tveda from France -Telecom/CNET

pragmatic test purposes generation

● TGV from Irisa/Verima g

efficient test cases generation

3

Diapositive 5COMMUNICATIONS & SYSTEMS GROUP

TestComposer objects

● SDL specification : expected system’s behaviour

● must be validated

● Test environment specification

● Test purpose : functional view of the test

“What should I test ?”

● Test case : operational view of the test

“How should I test ?”

Diapositive 6COMMUNICATIONS & SYSTEMS GROUP

[connected,
disconnected]

[connected,DisconnectReq]

[ConnectAck,DisconnectAck,Busy]

Signalling

[DataIn]

[DataOut]

Datalink

SDL specification

4

Diapositive 7COMMUNICATIONS & SYSTEMS GROUP

From test purpose to test case

! ConReq

? ConAck

(PASS)(INC)

? busy

Cancel TAC

Start TAC

Cancel TAC

Main test sequence A tree with all possible outcomes

Diapositive 8COMMUNICATIONS & SYSTEMS GROUP

Test suite production

● Test cases database

● build in a multi-session mode

● Application Pro grammin g Interface

● TTCN production module

● ISO/IEC 9646-3 compliant

● SDL type definitions translated in ASN.1

5

Diapositive 9COMMUNICATIONS & SYSTEMS GROUP

TestComposer prototype usages

● France Telecom/CNET : relevancy for the end user

Experimentation on several low level protocols

● CS-Telecom : down to the test execution

Two ISDN complementary services (MCID, Call Waitin g)

● Danet, Sema Group : integrated TTCN environment

Edition, generation, cosimulation and execution

Diapositive 10COMMUNICATIONS & SYSTEMS GROUP

Test activities

Tester

TestComposer

TestPlayer

2

2 test implementation

4 reports and analysis

Target machine

System Under Test
(SUT)

System requirements

1

1 test generation

Abstract test cases

3 execution and results

33

4

6

Diapositive 11COMMUNICATIONS & SYSTEMS GROUP

TestPlayer principles

4

1

3

2

0

Tester

Signals and data
structures

Target

Test
reports

Test cases

4'

1 test cases interpreter

2 declarations handler

3 communication,
encoding/decoding

4 results storage

4’ results retrieval

Tester PCO PCO

T(2)

CC(1)

CC(*)

CACK(*)

Diapositive 12COMMUNICATIONS & SYSTEMS GROUP

MSC and Test Description Language example

2XWSXW && ZLWK � YLD J�

7LPHU6HW 8 �

([SHFW && ZLWK VWDU YLD J�

7LPHU6HW 7 �

7LPHU:DLW 7

([SHFW &$&. ZLWK VWDU YLD J�

Tester PCO PCO

T(2)

CC(1)

CC(*)

CACK(*)

st g1 g2

9HUGLFW PASS

7

Diapositive 13COMMUNICATIONS & SYSTEMS GROUP

TestComposer and TestPlayer summary

+ standardized formal notations (SDL, UML, MSC)

unambiguous and tractable descriptions

+ interactive or automated test purposes generation

covers both functional and structural coverage concerns

+ sound and efficient test cases generation

no ambiguous interpretation of the test results

+ APIs for user specific test lan guage and environment

seamless integration within customer testbed

1

Copyright McCabe & Associates 1996

XDOLW\
6RIWZDUH

1.1

Copyright McCabe & Associates 1996

● Shortened Timescales
● Reduced Budgets
● Changes in Personnel
● Changes in User Requirements
● Enhancements
● Bug Fixing
● Ineffective Testing

“Quality does not happen by mistake!”

Why does Quality Suffer?

2.3s

2

Copyright McCabe & Associates 1996

TestingMaintenance

Design Coding

3.2m-2t-2s

Software Development

Copyright McCabe & Associates 1996

Maintenance

3.3m-3t-3s

Software Development Effort ?

Design

Coding

Testing

3

Copyright McCabe & Associates 1996

Improvin g Quality

Measurement
– Determine Quality

– Prevent Degradation

– Enable Informed Decision Making

Comprehension
– Improve Productivity

– Determine Cost of Change
– Analyze Risk

Testing
– Ensure Quality

– Improve Test Effectiveness

4.1s

Time
Q

ua
lit

y

Copyright McCabe & Associates 1996

Measurement is useful but...
● What do we want to measure?
● How do we measure?
● What do the measurements mea n?

5.1o-1s

Measurement

4

Copyright McCabe & Associates 1996

Complexity

Complexity

Size
Size Te

st
 P

at
hs

Te
st

 P
at

hs

Measurable

UNmeasurable

Maintainability
Maintainability Redundancy

Redundancy
ReliabilityReliability

StructureStructureModularity

Modularity

Reusability

Reusability

5.2o-2s

What to Measure?

Copyright McCabe & Associates 1996

What is a Metric ?

● Any unit of measurement
– e.g. Cm, Litre, Ohm, Second, Colour

● Describes an attribute of an entity
● Software metrics indirectly describe:

– Maintainability
– Reliability
– Costs
– Timescales

Yards

X

Feet

X

Inches

X

5.3s

5

Copyright McCabe & Associates 1996

● Be Intuitive
● Be Objective
● Be Language Independent

Good Metrics must:

Good Metrics should:
● Directly Correlate with Errors
● Directly Correlate with Testing Effort
● Be Automated
● Be Easy !

5.4s

Good Metrics

Copyright McCabe & Associates 1996

 function_test(y)
0 {
 x=3;
1 if (y < 4)
2 x=sin(y);
 else
3 x=cos(y);
4 x=x*x;
5 }

0

1

3

4

5

2

5.3o-5s

Flow graphs

6

Copyright McCabe & Associates 1996

Flow graphs

0 SUB-PROC.

 DISPLAY "SUB-PROC".
MOVE A TO B.

1 IF SOME-NUMBER > OTHER-NUMBER

2 DISPLAY "IF - True"
 ELSE

3 MOVE A TO B.

4 PERFORM DISPLAY-PROC.

5 EXIT.

0

1

3

4

5

2

Copyright McCabe & Associates 1996

If .. then If .. then .. else If .. and .. then If .. or .. then

Do .. While While .. Do Switch

Flow graph Notation

5.6s

7

Copyright McCabe & Associates 1996

Copyright McCabe & Associates 1996

8

Copyright McCabe & Associates 1996

Copyright McCabe & Associates 1996

9

Copyright McCabe & Associates 1996

• Flow Graphs Give Intuitive
View of Complexity

• Requirement for Absolute
Measure

"Intellectual Content"
= Complexity

5.4o-7s

Control Flow graph

Copyright McCabe & Associates 1996

Complete Testin g

18 times

Statistical Paths = 10
18

If each test requires 1 nanosecond
then the total testing time is :

T =
10 x 3600 x 24 x 365

9
10

18

T = 317 Years317 Years

Why Measure Complexity?

5.9s

10

Copyright McCabe & Associates 1996

18 times

0 10
18

● Not Possible to Test All
Statistical Paths

● Requirement to Determine
what is Minimum Yet Effective
Testing

5.10s

Testin g Effort

Minimum yet
effective testing?

Copyright McCabe & Associates 1996

18 times

How many tests
are needed to exercise

every line of code
at least once?

Code Coverage
Testing Technique

5.11s

Testin g

11

Copyright McCabe & Associates 1996

Example ‘A’ Example ‘B’

Which function is more complex?

5.12s

Code Covera ge

Copyright McCabe & Associates 1996

Example ‘A’ Example ‘B’

2 Tests Required

2 Tests Required

Code Coverage is not proportional to complexity

5.13s

Usin g Code Covera ge

12

Copyright McCabe & Associates 1996

One Additional Path
Required to Determine
the Independence of

the 2 Decisions

McCabe’s cyclomatic complexity v(G)
Number of linearly independent paths

McCabe's Cyclomatic Complexity Metric

5.14s

Copyright McCabe & Associates 1996

Cyclomatic Complexity v(G) = 10

5.15s

McCabe’s Cyclomatic Complexity

10 tests will:
• Ensure Code Coverage
• Test independence of decisions

13

Copyright McCabe & Associates 1996

● Complexity Correlates with:
Probability of Errors
Reliability
Testing
Comprehension

● Complexity does not Correlate with:
 Maintenance Effort

5.6o-16s

Complexity

Copyright McCabe & Associates 1996

Which function do you prefer?

Function A Function B

v(G) = 20 v(G) = 18

5.17s

Visualization

14

Copyright McCabe & Associates 1996

Cyclomatic
Complexity = 4

5.7o-18s

Flow graph reduction

Essential
Complexity = 1

McCabe’s Essential Complexity ev(G)
Remove structured elements and recalculate the complexity

Copyright McCabe & Associates 1996

Function A Function B

v(G) = 20 ev(G) = 1 v(G) = 18 ev(G) = 17

5.20s

Structure

15

Copyright McCabe & Associates 1996

● Complexity v(G)
– Comprehensibility
– Probability of Errors
– Reliability
– Testing Effort

● Essential Complexity ev(G)
– Structure
– Maintainability
– Re-engineering Effort

5.9o-22s

McCabe Unit Level Metrics

Copyright McCabe & Associates 1996

● Module Level Views
– Flowgraphs & Code Listings
– Detailed Metrics Analysis

– Summary Reports

McCabe Visualization

Context Sensitive
Measurement and Visualization

6.4o-4s

● System Level Views
– Complete System Architecture

– Overlay of Quality Metrics

– Interaction of Modules

”
Q -Labs acts as change faci l i tators , providing indust ry
w ith state-of-the-art so lut ions des igned to keep our
customers s teps ahead in sof tware engineer ing

SUT at the FAA 1

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
52

D
a

te
99

-0
4-

06

© Q -Labs 1999
Al l R ights Reserved.

Experience Using Statist ical Usage
Testing at the FAA

A ra Kouchakd jia n
A ra .Kouchakd jia n @ q -labs .com

Q -Labs G roup

S w e d e n , Germany, Norway, U .S .A.

SUT at the FAA 2© Q -Labs 1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

99
:0

05
26

D
a

te
99

-0
4-

06

Agenda

◆ The P roject

◆ Sta tistic a l Usage Test ing

◆ Tim e lin e

◆ Techno logy Acqu isitio n

◆ Usage M o d e l Deve lopment

◆ Test G e n e rat ion and Execut ion

◆ Lessons Learned

◆ B roader Ins ights

◆ N e x t Steps

SUT at the FAA 3© Q -Labs 1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

99
:0

05
26

D
a

te
99

-0
4-

06

The Project

◆ S u p p o rt System for A ir Tra ffic C o n tro lle rs

● Inform a tion system to support contro llers in m a king

longer term s decis ions

● Not a contro l system

● >>300 KSLOC

◆ F A A h a d respons ib i l i ty for test/acceptance
a n d subsequent fie ld ing of th i s as a part of a

◆ D e c ided to use a usage=based tes t ing

● Focus on f ield rel iabil ity

● Typ ical ‘acceptance’ test felt to be insuff icient

SUT at the FAA 4© Q -Labs 1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

99
:0

05
26

D
a

te
99

-0
4-

06

Statist ical Usage Test ing

◆ Test the softw a re the w a y u sers use i t

● Deve lop test wi thout code knowledge

● Prov ide m a x imum f ield rel iabi l i ty gain

● Prov ide user focus for qual i ty

◆ Test ing as a stat ist ical exper im e n t

● Stat ist ical inference

● Test ing decisions based on ob ject ive data

SUT at the FAA 5© Q -Labs 1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

99
:0

05
26

D
a

te
99

-0
4-

06

Why SUT?

◆ To m a xim ize fie ld rel iabil i ty

◆ To m a xim ize the potent ial for object ive

● M e a surem e n t fo r test planning

● M e a surem e n t fo r test execut ion

● M e a surem e n t fo r product cert i f icat ion

● M e a surem e n t fo r process assessment

◆ To rem o ve hum a n b ias from test ing

◆ To test cons iste n tly w ith fie ld usage

◆ To m a ke softw a re qua lity assessm e n t more

SUT at the FAA 6© Q -Labs 1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

99
:0

05
26

D
a

te
99

-0
4-

06

SUT Process
Test P lanning Def ine Test G oals / Stratif y

Def ine Bo undary and Stimuli
Def ine a U se
Allocate Tes t Budget t o Goals
Allocate Tes t Approaches to
Goals

Usage Model
Development

Build Model Struct ure
Ass ign Probabili ties
Analyze Model

Generate Tes t s Generate Script s
Process int o Test Cases
S tudy Coverage
Compute Expected Res ult s

Test Execu tion Run Tes t s
Determine Succes s/Failure
Record Pas s/Fail

Certi fica tion Compute Quality Measures
Compute S toppage Cri teria
Make Release Decisi ons

SUT at the FAA 7© Q -Labs 1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

99
:0

05
26

D
a

te
99

-0
4-

06

Timel ine

◆ Initia l Tra in ing: Sum m e r 1997

◆ Initia l Model ing: Summer 1997-Sum m e r 1998

◆ Test ing: Spr ing 1998-Present

◆ A d d itio n a l Tra in ing: Spr ing 1998

◆ Extens ions/M o d ificat ions to M o d e ls: Sum m e r

◆ A d d itio n a l Syste m s to M o d e l: Su m m e r 1998 -

SUT at the FAA 8© Q -Labs 1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

99
:0

05
26

D
a

te
99

-0
4-

06

Technology Acquisition

◆ Initia l tra in ing - 3-4 day course to FAA staf f

◆ Too lSET_C e rtify® d e liv e red to FAA

◆ Q -Labs d id init ial m o d e lin g

◆ F A A focused on tes t ing

◆ F A A took on m o d e lin g responsibi l i t ies with
m inor am o u n ts o f coach ing

SUT at the FAA 9© Q -Labs 1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

99
:0

05
26

D
a

te
99

-0
4-

06

Usage M o d e l
Deve lopm e n t

◆ 7 m a jor m o d e ls (sta te tra n sitio n d iagrams)

● C o r responded to major m e n u p u ll-downs

● C o m p o s e d from 50+ sm a ller m o d e ls

● M a jor m o d e ls had >350 s tates

◆ M o d e ls w e re at a m o u se c lick leve l of
g ranu lar i ty (arcs values)

◆ R e p resented a ll p o ssib le sequences of inputs

◆ C u stom e r def ined probabilitie s on a rcs
ex itin g e a c h sta te

SUT at the FAA 10© Q -Labs 1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

99
:0

05
26

D
a

te
99

-0
4-

06

Test G e n e rat ion and
Execution

◆ A p p rox im a tely 20 tests autom a tic a lly
g e n e rated per m o d e l

● A ll executed, fa ilu res recorded

● Looked at a rc and s tate coverage based on

◆ G e n e rated and executed add itio n a l tests
for m o d e ls w ith low coverage

◆ Suf f ic iency of tes t based on s tate and arc

◆ Fa ilu res recorded by type, seve rity a n d
w h e re in test they occur red

SUT at the FAA 11© Q -Labs 1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

99
:0

05
26

D
a

te
99

-0
4-

06

Lessons Learned (1)

◆ Test cases appeared suf f ic ient

● V e ry fe w o ther tests run

● A p p roach works for th is type of software

◆ Test qui te ef f ic ient ly executed

● Tests on one screen

● Target sof tware on another

● Softw a re easy for testers to direct ly val idate

◆ E lim inat ion of paper

● Tests viewed/executed e lectronical ly

● Inf inite num b e rs generated at any t ime

● N o n e e d for paper test instruct ions

SUT at the FAA 12© Q -Labs 1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

99
:0

05
26

D
a

te
99

-0
4-

06

Lessons Learned (2)

◆ Test ing effect ive

● N o n - m o d e led components were m o re rel iable pr ior

to FAA test ing (used SUT on the

● M o d e led com p o n e n ts m o re rel iable after FAA test

◆ Found larg e n u m b e rs of require m e n ts a n d

● Resu lt o f u sage mode ls being precise descr ipt ions

● A llowed ques tions to be concrete

SUT at the FAA 13© Q -Labs 1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

99
:0

05
26

D
a

te
99

-0
4-

06

Broader Insights

◆ M o d e l based approach e lim inated hum a n

● Tes ted what one wou ld not have otherwise tested

◆ C a n test ‘forever’

● A lways generate ‘fresh’ tests

◆ C h a n g e in test ing paradigm

● G o a w a y fro m w a iting unt i l end to th ink about test

and creat ing detai led procedures

● Sh ift to init ial investm e n t wh ich pays d ividends

◆

SUT at the FAA 14© Q -Labs 1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

99
:0

05
26

D
a

te
99

-0
4-

06

Next Steps

◆ H a v e m o d e led another subsystem

◆ W ill m o d e l re m a inder of system

◆ C o n v inced that th i s i s the way to test

● Cannot imagine wr i t ing test procedures

● C o n tinue to use mode l generated tests to th is day

◆ G a ther ing up quant i tat ive resul ts (current ly
d o ing instal lat ions)

”
Q -Labs acts as change faci l i tators , providing indust ry
w ith state-of-the-art so lut ions des igned to keep our
customers s teps ahead in sof tware engineer ing

Statist ical Usage Testing 1

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
8:

00
47

D
a

te
99

-0
3-

31

© Q -Labs 1998-1999
Al l r ights reserved.

toolSET_Certify
®
�

A CASE tool for Statistica l Usage Test ing

P e g g y G ilb e rt

P e g g y .Gi lber t@q- labs .com

(423) 450-5151 ex t. 237

Q -Labs G roup
S w e d e n , Germany, Norway, U .S .A.

Statist ical Usage Testing 2© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

Agenda

◆ Test C h a llenges

◆ Test ing As Sam p lin g

◆ Sta tistic a l Usage Test ing (SUT)

◆ Process and Techn iques

◆ Pro ject Exper iences

Statist ical Usage Testing 3© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

Actual Test C h a llenges

◆ N o t test ing the ‘rig h t’ th ing

◆ Seem to test the sam e things

◆ Q u a lity g o e s d o w n in each phase

◆ C a n n o t measure p roduct ‘rel iabil ity’

◆ L o w fie ld rel iabil i ty

◆ Too m a n y fie ld reports

Statist ical Usage Testing 4© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

The Reality o f the
Sam p le

Samp le
Selec tion

I n p u t
P o p u lat i o n

Test In p u t s

◆Exhaust ive test ing i s not pract ical due to var iable
inputs and inf in i te languages

◆ALL SOFTW A RE TEST IN G IS SA M P L I N G

◆H o w to choose the bes t sam p le?

Statist ical Usage Testing 5© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

The Impl ications of
Sam p ling

◆ C a n n o t ensure the softw a re conta ins no

◆ C a n n o t ensure the softw a re w ill n e v e r fa il

◆ Two k inds of uses/tests

● Those executed dur ing test

● Those left for the user to execute

◆ H o w to pred ict w h a t the use r sh o u ld expect

Statist ical Usage Testing 6© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

Statist ical Usage Test ing

◆ Test the softw a re the w a y u sers use i t

● Deve lop test wi thout code knowledge

● Prov ide m a x imum f ield rel iabi l i ty gain

● Prov ide user focus for qual i ty

◆ Test ing as a stat ist ical exper im e n t

● Stat ist ical inference

● Test ing decisions based on ob ject ive data

Statist ical Usage Testing 7© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

Why SUT?

◆ To m a xim ize fie ld rel iabil i ty

◆ To m a xim ize the potent ial for object ive

● M e a surem e n t fo r test planning

● M e a surem e n t fo r test execut ion

● M e a surem e n t fo r product cert i f icat ion

● M e a surem e n t fo r process assessment

◆ To rem o ve hum a n b ias from test ing

◆ To test cons iste n tly w ith fie ld usage

◆ To m a ke softw a re qua lity assessm e n t more

Statist ical Usage Testing 8© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

‘Ins ide the Project’
G o a ls

◆ O u r prim a ry goa ls a re:

● quantita tive d e c isio n that software (intensive)

product is fit fo r its in tended use

● quantita tive d e c isio n to stop test ing

➔ fitness has been s tat istic a lly demonst rated

➔ fitness cannot be demonst rated with in budget
o f tim e a n d m o n e y

● t raceabi lity to test ing requirem e n ts

● o p tim a l use of test ing schedule and resources

◆ too lSET_C e rtify ® supports th is a p p roach to
softw a re qua lity c e rtific a tio n .

Statist ical Usage Testing 9© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

Phases of Statist ical
Test ing

◆ Usage M o d e l Deve lopment

◆ Usage M o d e l Analys i s and Test P lanning

◆ C o n s truc tio n a n d E x e c u tio n o f Crafted Test

◆ A u tom a tic G e n e rat ion of Random Test

◆ Product Cert i f icat ion Test ing

◆ too lSET_C e rtify ® is a test to o l th a t supports a ll

Statist ical Usage Testing 10© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

O p e rational Profi les

◆ D ivid e u sage to ach ieve sam p lin g e ffic iency

● ident i fy classes of users (beginner, expert , hom e ,

● ident i fy environm e n ts of use (norm a l, e m e rgency

light load, heavy load)

● identify m a n a g e m e n t test objectives (safety cr it ical

◆ C reate one or m o re usage m o d e ls

Statist ical Usage Testing 11© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

Usage M o d e l Structure

{analog, on,
none}

Terminated

{digital, off,
none}

{analog, off,
none}

{digital, on,
info}

{digital, on,
change font}

{digital, on,
none}

{analog, on,
info}

Statist ical Usage Testing 12© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

D e term ine Transit ion
Probabilities

◆ Estim a te p robab ilitie s on a rcs based on :

● exist ing data or user surveys

● ana lys is of prototype or pr ior system

● m a n a g e m e n t objectives

Statist ical Usage Testing 13© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

Leveraging the Usage
M o d e l

◆ The usage m o d e l is a p recise specif icat ion
o f how the system c a n b e u sed

● At a given level of abstract ion

◆ Usage m o d e l fa c ilita tes d isc u ssio n o f

● Precise art i fact for discuss ion

● C o m m o n forum

◆ Usage m o d e l deve lopm e n t often results in
requ ire m e n ts va lid a tion/c larific a tio n

Statist ical Usage Testing 14© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

Usage M o d e l Analysis
and Va lidation

◆ A n a lyze the m o d e l us ing results com p u ted
C e rtify®

● Structural er ror check

● M o d e l sta tistics:

➔ ident i fy heavy use states and paths

➔ expectat ion of test ing requi red to exper ience

➔ expectat ion of the average test case length

➔ m e a sure usage path complex ity of the m o d e l

◆ V a lid a te the est im a tes w ith respect to:

● known usage inform a tion , common sense, feas ib le

● test ing requirem e n ts

Statist ical Usage Testing 15© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

Test Planning

◆ P lan test ing based on:

● tim e a n d resources avai lable

● crafted test ing that m u st b e d o n e

● random test ing to support re l iabi l i ty goals

◆ Set sto p p ing cr i ter ia for fai lures that m ight be

● stop test ing i f fai lure renders further test ing fut i le

● stop test ing when rel iabi l i ty or coverage goals are

● s top test ing when goals cannot be reached w ithin

Statist ical Usage Testing 16© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

C rafted Test C a ses

◆ Us ing the m o d e l as a reference guide, non-
random , craf ted test cases should be
selected and executed for the fo l lowing

● to assure understanding is suff icient to address al l

● to test sub-paths of special concern (contractual

requirem e n t, m a n a g e m e n t requirement , custom e r

request, exper im e n tal interest) not expected in the

a m o u n t of random test ing planned

● to ach ieve m o d e l coverage, i f pract ical

➔ too lSET_Certify® generates the set of test
sequences that w ill cover a ll arcs with the
m inim a l num b e r of transit ions.

Statist ical Usage Testing 17© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

Autom a tic Test Scr ipt
Generation

◆ G e n e rate a set of random test scr ipts us ing
C e rtify ®

● prov ide hum a n readable test scr ipts

● interact with autom a ted test tools

● generate test cases

● ana lyze test cases

● assess m o d e l coverage

● forecast poss ib le test plan outcom e s

Statist ical Usage Testing 18© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

Q u a lity M e a sures

◆ A n a lyze product and process qua lity d a ta
C e rtify® ::

● Re lia b ility

➔ bounded by 95% and 99% conf idence intervals

● M e a n T ime To Fai lure

Statist ical Usage Testing 19© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

Stopp ing Criter ia

◆ M o n ito r tes t ing sequence-by- sequence and
relat ive to the stopping cr i ter ia establ i shed
in the tes t p lan and data com p u ted by

C e rtify ® ::

● St ructural coverage

➔ p e rcent of states t raversed

➔ p e rcent of arcs t raversed

● S a m p le suff iciency

➔ D iscrim ination m e a sure

➔ D ista n c e m e a s u re

Statist ical Usage Testing 20© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

Project Exper iences

◆ Prim a rily Em b e d d e d S y s tem s

◆ D o m a ins inc lude Te lecom m u n ications,
D e fense, Aerospace, M e d ical Devices,
C A S E T o o ls, M a ss Stora g e D e v ices

Statist ical Usage Testing 21© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

A lcatel

◆ Eva luate feas ib i l i ty of Usage Specif icat ion
a n d F u n c tio n a l Test

◆ M o d e led three ISDN swi tch features

◆ R e sults

● 3 0 % m o re effect ive (defects per test case)

● Large number of requ ire m e n ts i s sues noted and

● Usage m o d e ling m o re interest ing than creat ing test

● Sh ift in thought process for test ing

● R e d u c e d tim e to m a rket due to ear l ier defect

Statist ical Usage Testing 22© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

IBM -SSD Tucson

◆ M a ss Stora g e S o lut ions - Devices, control lers

◆ Us ing approach s ince 1992

◆ M a n y p roducts re leased, usage and

◆ Tests cor rectness and perform a n c e

◆ H igh degree of autom a tio n - fu ll p rocess +
> > 9 0 % o f test s evaluated autom a tic a lly

Statist ical Usage Testing 23© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

Sum m ary

◆ D e c ide operat ional prof i le

◆ Bu ild m o d e l(s) struc ture of nodes and arcs *

◆ D e term ine probabi l i t ies that character ize
the env iro n m e n t of use *

◆ V a lid a te m o d e l(s)*

◆ D e v e lop test p lan

◆ G e n e rate test cases *

◆ Execute test cases

◆ M o n ito r qua lity m e a sures and s topping
*

● *Steps supported d ire c tly by toolSET_C e rtify® :

Statist ical Usage Testing 24© Q -Labs 1998-1999
Al l R ights Reserved.

Re
v

A
D

o
c

. n
o

M
D

/Q
LS

 9
9:

00
47

D
a

te
99

-0
3-

31

W h a t’s Next!

◆ N e w v e rsio n o f to o l avai lable 4th quarter

● M o d e l compos ition

● Enhanced data handl ing / test ing support

● Java

◆ A d d itio n a l re search in

● Re lia b ility

● Eff icient m o d e l construct ion

● Leveraging test results

1

1

Push the Limits of Your
Applications and

Deploy With Confidence!

A Successful Deployment Story

2

Test Objective

• Test the applications scalability & performance.

• The current number or users was 250 and the goal was to add
750 users to reach 1000 concurrent users.

• CYRANO Impact was first used to simulate the 250 users,
and re-create the usual application load, then additional users
were added.

• Four tests were run to check system performance and capacity
prior to roll-out.

•Each test simulating the activity of 250, 500, 750 and 1000
concurrent on-line users respectively.

2

3

 Test Configuration

Description
Major ERP application
Oracle 7.3
Digital Alpha 4100
Digital UNIX
One Alpha 533 MHz
512 MB
2 Fast and Wide

7
Five 4 GB disks
Two 8 GB disks
One FDDI 100 MB

Item
Application
Database
Server Type
Server OS
CPU
Memory
Disk IO Channel Number/Type
and Speed
Number of Disks
Disk capacity and performance
characteristics
LAN Connection

4

Testing Software

CYRANO Impact Enterprise Edition

• Optimize user response times by tuning SQL statements
• Predict system behavior under heavy load
• Appropriately size and configure the server

3

5

Business Transaction
Per Day per User 90th Percentile Response Time per number of user

% 1 250 500 750 1000

Modify Customer 50 23% 59 64 200 1650 2700

Update Account 31 14% 25 29 93 341 992

Modify Customer 29 13% 29 32 87 145 783

Add Customer 58 27% 65 68 464 2610 7714

Support Entry 21 10% 18 19 63 84 147

Customer Care Query 28 13% 30 34 84 140 700

TOTAL 217 100% 227 496 991 4970 13036

Time Lost/Day/Emp. 3’47’’ 8' 16" 16' 31” 1h22’ 3h37'

Test Results

6

Response Time Without Tuning

Response Time

0

50

100

150

200

250

1 250 500 750 1000

Users

S
ec

on
ds

Modify Customer

Update Account

Modify Customer

Add Customer

Support Entry

Customer Care
Query

4

7

Tuning Information

Number of Users
250 500 750 1000

CPU 36.80% 66.97% 97.13% 95.71%
Utilization

IO/s 64 89 161 144
Per Second

Disk 38% 54% 97% 86%
Utilization

IO 0.614 1.158 28.66 6.580
Response Time (S)

8

First Results, using CYRANO Tuning Capabilities

• CPU on the test server is 100% utilized when running
between 500 and 750 users.

• Utilization of one disk is 100% when running between 500
and 750 users. This disk is the only disk that is doing any
significant amounts of physical IO for ORACLE.

• One transaction (add Customer) is generating a table scan of
a large table every 32 seconds in the 25-user test and every 8
seconds in the 100-user test. This generates physical IO,
consumes additional CPU, and forces other data blocks which
could have been reused out of buffer cache (more more
physical IO).

5

9

Unit Testing Results

No Tuning Unit Tuning Improvement
1 user 1 user

Modify Customer 59 12 + 80%
Update Account 25 13 + 48%
Modify Customer 29 29 0%
Add Customer 65 11 + 83%
Support Entry 18 18 0%
Cust. Care Query 30 30 0%

10

Unit Tuning With CYRANO Impact Enterprise Edition

Response Time

0

50

100

150

200

250

1

Unit Testing

S
ec

on
ds

Without Tuning

With CYRANO
Tuning

Global Response Time Divided by 2

6

11

Response Time With Tuning

0

20

40

60

80

100

120

1 250 500 750 1000

users

S
ec

on
ds

Modify Customer

Update Account

Modify Customer

Add Customer

Support Entry

Customer Care
Query

12

Response Time Comparison

0

2000

4000

6000

8000

10000

12000

14000

1 250 500 750 1000

Concurrent Users

With Tuning

Without Tuning

7

13

General Results

Capacity Planning
CYRANO Impact used as a standard load test tool determined that
500 users was the maximum concurrent on-line users the system
could handle before it crashed.

Optimization
With the tuning capability of CYRANO Impact, this number has
been increased to 750 concurrent on-line user with the same
hardware platform.

Without adding new users, under a 250 user load, the application
response time has been improved by 23% giving an immediate
return on investment even before deployment. The application
performance has been increased by 44% under a 1000 concurrent
user load.

14

Response Time [s]

0

2000

4000

6000

8000

10000

12000

14000

1 250 500 750 1000

Concurrent Users

CYRANO

Standard Load Test
Tool

Service Level
Agreement:
Hardware Limit

InsuranceLost Productivity

Capacity Planning Diagram

8

15

Customer’s Choice

Decided to deploy the first 750 users within the next 4 months.
Then buy more hardware to deploy with increased application
functionality.

Decided to systematically use CYRANO Impact Enterprise
Edition for their next deployment & development efforts.

- Test component Reusability
- Ease of Use
- Repeatable test results
- Increased performance

16

P u s h t h e L i m i t s.

Shari Turney ’s Technical Presentation:

Title: Push the Limits of Your Applications and Deploy with Confidence

Abstract: A description of how CYRANO solutions helped a worldwide travel agency to
properly size their ERP implementation and reduce their costs. By optimally tuning their
system and testing the entire application, this CYRANO customer increased their ROI,
productivity and quality of service. After 16 months of performance issues, CYRANO
solutions solved the problem within 4 weeks, allowing the customer to have a smooth
deployment.

Model-based performance analysis of an EDP/ERP-
oriented wide area network

Eugenio Cervetto

Performance Research, S.r.l.
Via Jervis, 22

10015 Ivrea, Italy
+39 0125 45 698

ecervetto@predicta.it

ABSTRACT
In this paper the operational phases of a model-based performance
analysis activity performed on the EDP/ERP WAN deployed by
FIAT Auto, S.p.a. in Argentina are described.

Keywords
Performance Modeling, Performance Prediction, Wide-Area
Network, EDP, ERP.

1. INTRODUCTION
The Problem is to optimize the performance of a large network
composed by several processing nodes and geographic links. The
network is devoted to provide remote processing and data to
financial, commercial and production environments operating
according to an integrated corporate strategy. The computational
nodes consist of multiprocessor, tightly coupled processing units.
Inside each node, one or more servers are devoted to handle the
applications and the database management, or are configured as
redundant resources to support high-availability requirements.
Servers are connected by a Local Area Network, which also
connects the user community to the application and database
servers. Commercially available routers are deployed to support
communication between nodes.

2. MODELING
On board of each modeled node several application environments
were defined, hence implying a typical multi-class scenario.
Application environments originate both local requests addressed
to processing units belonging to the same LAN and remote
requests addressed to processing units allocated on different
nodes, hence competing for system resources with the local
activities.

2.1 Modeling Approach
The whole model configuration can be considered as a “puzzle” in
which the visible pattern is originated by a replication of
archetypal objects such as processors, memories, I/O ports,
physical links, protocols, routers, O.S. kernels, access methods,
data bases, etc… The first modeling step consists in the
achievement of a SIMPLE archetypal model for each of the above
components.

2.1.1 Model Validation
The above archetypal models are made available as component-
level model libraries. All library models already passed through a
validation step to check whether the predicted figures for each of

them were consistent with the related “real world” performance
behaviors.

Model library items that are used in this system model are:

• IBM RS6000 servers (models J40 and J50) including the
PowerPC processors, multi-processor board, memory and
I/O components.

• SCSI RAID 5 controller

• IBM SSA controller

• SCSI disk subsystems

• LAN adapters

• Ethernet & Fast Ethernet links

• IBM HACMP

• IBM AIX O.S.

• CISCO 3620 and 3640 routers

• FDDI, radio and VSAT links

• Oracle database.

• Triton by BAAN.

Fig. 1 The Network Architecture under analysis

2.1.2 System Modeling
The previous steps were devoted to provide libraries describing
the components required for the model definition. The next one is
addressed to build the system-level model. A large network model
is an aggregation of occurrences of many archetypal objects
generated by properly setting for each of them the global
configuration variables used to parameterize the object. The
concept of global configuration variable is general: all
architectural and implementation options can be represented in
this way. Relevant parameters such as pool sizes, buffer sizes,
policies, strategies, disciplines and so on can be assigned at
configuration time without modifying the model libraries.

2.1.3 Advantages
This method supports a structured approach to the problem: while
modeling a large network, many of the archetypal models can be
instanced more than once. This results in advantages in the model
readability, re-usability and maintainability. A relevant aspect is
represented by the reduction of the model code, hence reflecting
in the time/cost paradigm of the modeling activity. Using this
approach, the above described WAN was modeled with a 2m/m
effort.

3. THE TOOL
Following several tests, it was agreed with the customer that a
simulation tool was not suitable to guarantee the achievement of
system-level results. The instantiation process underlying this
approach requires more sophisticated algorithms. After the model
has been generated, a visiting process of the defined components
becomes necessary to collect system-level resource demand
profiles. Considering the complexity of the real system, this
visiting process can become long and somewhat cumbersome. To
overcome this problem, a performance modeling and prediction
tool grounded on symbolic execution principles has been selected.
The main advantage of this technology proved to be its efficiency:
the visiting process related to the whole system model was
accomplished with a ten-minute run on a standard Pentium™ PC.
The tool is PREDICTA 2.1, developed by Performance Research
(http:/www.predicta.it or http:/www.pr-usa.com). It provides a
solution allowing the model designer to build up a system-level
model from a set of model libraries describing market-standard
and Commercial-Off-The-Shelf (COTS) components. All
components but the characterization of the application-level user
classes were taken from available model libraries.

3.1 The Computing Process
After the symbolic execution process has been accomplished, the
tool produces the model queuing network script by inspecting the
collection of the resource demand profiles. This phase is devoted
to build up a hierarchic model suitable to be solved producing
useful performance parameters such as arbitration times,
semaphore wait times and coefficients of utilization. To achieve
this, the queuing network script is compiled and linked with a
queuing network analysis library and the resulting task is
executed.

3.2 The Results
The performance figures produced by PREDICTA individuate
bottlenecks in the modeled system. Inside a hierarchic model, the

starvation of an innermost component can imply that some of the
outermost ones may appear as bottlenecks. The figures produced
by PREDICTA have been conceived to individuate the primary
bottleneck. A failure in the bottleneck analysis leading to a
corrective action addressed to enhance the performance of a
secondary bottleneck can slow down the system despite of the
related costs.

Fig. 2 “What-if” output charts.

4. THE PROBLEM SOLVING ACTIVITY
A performance prediction activity addressed to a large network
requires peculiar considerations: as a primary point we have the
widespread use of market standard components. It may appear
that a performance analyst, even when the existence of a problem
inside a COTS component has been demonstrated, has no chance
of recommending any modification and/or improvement in its
internal design. The outcomes of this activity prove that much
more can be done.

4.1 How to Use the Results
The outcomes of this performance analysis activity provide a
relevant support to the customer in checking its proposed
solutions. In this case, the designer’s opportunities can be
summarized as follows:

• the redefinition of some aspects of the application
architecture;

• the utilization of different HW and/or SW components;

• a tuning action on the configuration (e.g. the adoption of
larger memories, faster disks, more CPUs, etc.)

Among the above options, the first one proved to be the most
fruitful. It is clear that, when a corrective action is necessary, the
modeling effort to describe the action and predict its results plays
a fundamental role. Using PREDICTA, the analysis of design,
tuning and upgrade alternative can easily executed by means of a
low-cost re-configuration activity.

Fig. 3 PREDICTA 2.1 user interface.

4.2 Improving Response Times
A large network should give answer to the expectations of
different classes of users, and, in many circumstances, the
application environment requires to access data allocated in
remote nodes. In this case the response time, as experimented by
the users, is composed of contributions originated by the
residence time on several system components. The time required
to get service by I/O ports, routers, physical links, protocols,
transportation layers and interrupt handlers represents a non-
negligible fraction of the whole response time. The results, in
terms of response time reduction, obtained by enhancing a single
component are in general poor. The only effective option is to
enhance the whole chain of components involved in the
operations. This action always represents an expensive approach
to the problem. A large network represents a constrained
environment in which progresses are slow and expensive and
where common sense-driven actions can be dangerous.

4.2.1 Tuning Actions
The user perception of tuning results was in this case poor. We
can distinguish among the following possible actions:

• tuning actions related to the kernel configuration;

• tuning actions related to the database management;

• tuning actions related to the buffering conditions.

About the first point it appears that the kernel tuning, as proposed
by the system manufacturer, is generally behaving in a
satisfactorily way and just in peculiar situations a tuning action
could result in advantages. In this specific case, the tuning actions
related to the database management (e.g. reducing the number of
tables requiring a scansion, replacing the selection sequence with
a more efficient one, compacting data, etc…) prove to be more
effective in achieving advantages. About the buffering condition
tuning actions, in most cases expectations are not confirmed by
the field results: in particular a very large buffer pool size, when
used to tune databases, implies the consumption of more
computing resources.

4.2.2 Multiprocessor Environments
Attention has to be paid to the symmetric, multiprocessor
environment. This analysis demonstrates that processing units
with a large number of processors can behave in two main ways.
When the real time issues are low, the kernel overhead and the
related spin loop synchronization between processes do not
represent an unacceptable loss. When the system is involved in
severe real time issues, the number of concurrent processing
increases and the synchronization activities represent a significant
loss. It appears that almost no advantage can be achieved by
upgrading servers from six to eight processor. The output data
from the modeling activity demonstrates that the increase in
computing power achieved by means of this upgrade equates the
increase of the synchronization losses originated by the larger
number of processors competing for the inner kernel services.

4.2.3 Memory Size
Memory starvation for a processing unit involved in severe real
time activities is, in general, a disaster. For a large processing unit
with severe real time issues, the number of the active processes
can reach very high values. The presence of paging activities can
increase the inner kernel service requests per unit time.
Experiments executed with smaller memory sizes on application
servers show that a collapse of the system performance becomes
possible in this case.

5. ACKNOWLEDGMENTS
Many thanks to Mr. Gianluigi Castelli, Chief IT Officier of FIAT
Auto, S.p.A. for the high-profile collaboration offered by its
group and for allowing us to report about this challenging activity.

Eugenio Cervetto
Performance Research

Title:
"Model-based performance analysis of an EDP/ERP-oriented wide area network"

Abstract:
"Many people think that the system-level performance modeling of a wide-area
network is such a complex and time-consuming issue to discourage its
application when a short time optimization is forced by the user
dissatisfaction. Those people usually manage the efficiency issue at
component level and, eventually, manage the unavoidable system level
problems as a matter of experience and chance. Experience shows that, as the
system complexity increases, this way of thinking fails in providing
predictable and satisfactory solutions and, sometimes, even drives the
“performance risk” to become unmanageable. PREDICTA by Performance Research
is a performance modeling tool that has been specifically designed to face
the system-level complexity of a large network and provide an analitic view
of its performance behavior.
In this paper we report about a recent industrial application of PREDICTA by
FIAT Auto in Italy. PREDICTA was used to investigate a severe efficiency
problem on its ERP/EDP WAN serving all the production, commercial and
financial departments in Argentina and, therefore, deeply impacting the
performance of the organization. The modeling activity was performed at
system level using model libraries describing the hardware layers (mainly
IBM RS6000 servers, CISCO routers, physical links, controllers, protocols,
etc.) and the IBM AIX operating system. The software layer models represent
the most relevant exposure of this activity:
- BAAN Triton functions including Product Data Management, Work-item
tracking, Enterprise Resource Planning and Computer Aided Process Planning.
- Data Base Management functions using Oracle.
Finally, special emphasis is given to the performance oriented "what-if"
analysis and to the obtained results."

1

Compuware
Corporation

Year 2000: Lessons Learned

Presented by
Steve Goodhall

 Managing QA Architect
Compuware Corporation

Compuware
Corporation

It’s Januar y, 2000

�We just dealt with the biggest
software quality problem in
history.

�What did we learn?
�How can we do better?

2

Compuware
Corporation

Requirement defects are
the worst kind

�We never expected this stuff
would still be running after
30 years.

�Did we ask?
�Who remembers?

Compuware
Corporation

Testing is repetitive

� 3-5 tries to get the test right.
� Test to decide what to fix.
�Regression test before

implementing.
�At least 2 actual executions

for time dimensional test.
�Retest after correcting

defects.

3

Compuware
Corporation

Spend your effort
close to the ground

� Touch-point testing checks
your work.

�Unit testing finds the most
defects.

� Integration testing finds
interface problems.

�Stop when you stop finding
errors.

Compuware
Corporation

Test what you
didn’t change

�Most remediation errors are
omissions.

� Touch-point testing doesn’t
find these.

� Time-dimensional testing
does.

4

Compuware
Corporation

Time dimensional testing

Basel ine Test
Product ion

Extract
Data

Age Input
Data

Basel ine
Test Output

Aged Input
Data

Future Clock
Test

Age Basel ine
Output

Future
Clock Test

Output

Aged
Basel ine
Output

C o m p a r e
Output Fi les

Discrepancy
Repor ts

Compuware
Corporation

Test your test

�Didn’t find any defects?
�You probably didn’t try hard

enough.
�Base tests on business

functions.
�Measure coverage.
� Improve tests.

5

Compuware
Corporation

Data-aging - not just for
breakfast anymore

�Developed for Y2K testing.
�Useful for many things.

–Shift test data to current time.
–Test future events.

�Related tools
–Data extraction and generation
–File comparison

Compuware
Corporation

Make the tools better

�Clock emulation tools.
�Data aging and other data

manipulation.
�Better test management.
�Better defect tracking.

6

Compuware
Corporation

T E S T I N G S O L U T I O N S

Automation is a
wonderful thing

QADirector

QARun

File-AID/CS

QATrackRecord

QARun

File-AID/CS

QARun, NuMega, XPEDITER/SQL

QALoad

EcoSYSTEMS

QADirector / QABatch

QAHiperstation

File-AID

QATrackRecord

XPEDITER/ Xchange

File-AID/Data Ager

XPEDITER

QAHiperstation

CICS Abend-AID /Abend-AID

Test Management

Capture and Replay

File and Data Management

Problem Reporting/Tracking

Date Simulation/Validation

Date Aging

Unit Testing and Debugging

Performance/Regression

Problem ID/Resolution

M A I N F R A M E C L I E N T / S E R V E R

Defect Tracking and Analysis,
Software Quality, and the Internet

By

Manu Das
SOFFRONT Software, Inc.

Abstract

Tuesday, April 27, 1999

It wasn't so long ago that defect tracking and analysis was not thought of as separate disciplines
worthy of their own software tools. Feature requests and defect reports were kept manually on scraps
of paper if at all. With the advent of the PC and the LAN, more and more development groups began
using generic tools such as word processors, spreadsheets, and databases to record defects and
requirements. These later unfolded into home-built applications but remained relatively basic and
primitive. More recently, a number of specialized tools targeted at addressing the specific needs of
development and program maintenance and support organizations in this area.

While the PC and LAN have made this evolution possible, it would not have taken place without the
increase in complexity and size of the average programming projects that has taken place over the
past ten years. This, combined with an amazing growth in popularity of object oriented technology
and component-based development has led to an explosion of geographically dispersed development
efforts. These factors have all resulted in a greater need for timely communication of defect and
requirements information among development groups.

Current products address this need by incorporating a host of features including automatic e-mail
notification to key personnel of changes to defect records, customizable databases, status transition
matrix, scripting, integration with version control programs, advanced reporting and analysis
capabilities, attachment of documents and test files to defect records and more.

The need for greater communication among widely dispersed development groups on complex
projects and the advent of the Internet and intranets have led to the emergence of the Web enabled
defect tracking systems. These systems allow users interaction to the defect information and users
can download maintenance updates from a web site.

Now that the internet door has been opened on the support organization, users are bound to start
asking some obvious questions. "If my computer is already connected to support, why do I need to
call them on the phone when I find a bug?" "Why can't reporting a defect or requesting an
enhancement be as easy as using help?" "Why can't the system simply capture configuration and
program status information when a defect is encountered, send it to support with a problem report,
and automatically download a fix if one is available?" "Why can't users be automatically notified
about maintenance updates?"

This technical seminar will explore these issues in more depth and attempt to identify facilitating
technologies and obstacles to implementation of systems to meet these emerging requirements. The
target audience will be development, quality assurance and support engineers trying to understand
the future direction of their discipline and anyone interested in helping to stimulate an examination
of this subject. Topics to be discussed will include the following;

1. The Evolution of Defect and Request Tracking Systems

2. Current State of the Art in Tracking Systems

3. Impact of the Internet and Other Technologies

4. Future of the Tracking systems

1

1EVGL �1EVGL ���� �� ������� 'S'STT]]VVMMKKLX -RJSVLX -RJSVQQEEXMXMSSR &EPR &EPEERRGI -RG�GI -RG� 4EKI4EKI ��

44VIVIWWIIRRXIXIH FH F]]��

4IXIV�7^MVQEO�ERH

7GSXX�+EVHMRIV

8LI�VIQEMRMRK�XEWOW

ERH�XLI�GLEPPIRKI�SJ

PIZIVEKMRK�JSV�XLI�

JYXYVI

=�/

1EVGL �1EVGL ���� �� ������� 'S'STT]]VVMMKKLX -RJSVLX -RJSVQQEEXMXMSSR &EPR &EPEERRGI -RG�GI -RG� 4EKI4EKI ��

%KIRHE

! =IEV�����

! 6IQEMRMRK�XEWOW

! 5YEPMX]�%WWYVERGI�XIGLRMUYIW

! &I]SRH�=�/

! 'LEPPIRKIW�SFWIVZIH�HYVMRK�=�/�4VSNIGXW

! 0IZIVEKMRK�=�/�I\TIVMIRGI

2

1EVGL �1EVGL ���� �� ������� 'S'STT]]VVMMKKLX -RJSVLX -RJSVQQEEXMXMSSR &EPR &EPEERRGI -RG�GI -RG� 4EKI4EKI ��

=�/�1IXLSHSPSK]

! 7XEKIW�

! 4PERRMRK

! -RZIRXSV]

! %WWIWWQIRX

! 6IRSZEXMSR

! 8IWXMRK

! -QTPIQIRXEXMSR

! 'SRXMRYIH�6IEHMRIWW

! 'SRXMRKIRG]�4PERRMRK

'SQTPIXI

-R�4VSK
VIWW

1EVGL �1EVGL ���� �� ������� 'S'STT]]VVMMKKLX -RJSVLX -RJSVQQEEXMXMSSR &EPR &EPEERRGI -RG�GI -RG� 4EKI4EKI ��

;LEX�EFSYX�5YEPMX]#

! ,EW�UYEPMX]�FIIR�GSRWMHIVIH#

! 5YEPMX]�SJ�'SHI�6IRSZEXMSRW

! ,MKL�IVVSV�VEXIW�SJ�WSQI�VIRSZEXMSRW

! 5YEPMX]�SJ�8IWXMRK

! 'SZIVEKI�ERH�HSGYQIRXEXMSR�SJ�VIWYPXW

! 5YEPMX]�SJ�3ZIVEPP�4VSKVEQ

! ,EZI�FIWX�MRHYWXV]�TVEGXMGIW�FIIR�JSPPS[IH#

! ,EW�UYEPMX]�FIIR�ZIVMJMIH�MRHITIRHIRXP]#

3

1EVGL �1EVGL ���� �� ������� 'S'STT]]VVMMKKLX -RJSVLX -RJSVQQEEXMXMSSR &EPR &EPEERRGI -RG�GI -RG� 4EKI4EKI ��

-RHITIRHIRX�'SHI�:IVMJMGEXMSR

! 8LI�TVSFPIQ

! 7SQI�ZIRHSV�SV�MRXIVREP�EWWIWWQIRX�QIXLSHW�EVI
IVVSV�TVSRI

! �������IVVSV�VEXIW�JSYRH�MR�WSQI�PSGEXMSRW

! 1YPXM�PIZIP�5YEPMX]�%WWYVERGI

! 9WI�E�WITEVEXI�ETTVSEGL�XS�GSRJMVQ�UYEPMX]�ERH���SV
MHIRXMJ]�IVVSVW

! 'EXGL�[LEX�LEW�FIIR�QMWWIH�MR�VIRSZEXMSRW�ERH
XIWXMRK

1EVGL �1EVGL ���� �� ������� 'S'STT]]VVMMKKLX -RJSVLX -RJSVQQEEXMXMSSR &EPR &EPEERRGI -RG�GI -RG� 4EKI4EKI ��

=�/�8IWXMRK�1IXLSHSPSK]

! 8LI�XEWOW
! 8IWX�IRXMVI�ETTPMGEXMSR�MRZIRXSV]

! 8IWX�WIZIVEP�XMQIW��FEWIPMRI��WIZIVEP�JYXYVI�HEXIW�
MRJVEWXVYGXYVI�YTKVEHIW�

! 4VSZMHI�GPIEV�EYHMX�XVEMP�XS�TVSZI�HYI�HMPMKIRGI

! =IEV������8IWXMRK�1IXLSHSPSK]
! 8IQTPEXIW�HIJMRI�HIPMZIVEFPIW

! 'PIEV�XVEMP�JVSQ�8IWX�4PERW�XLVSYKL�8IWX�'SRHMXMSRW�XS
8IWX�6IWYPXW

! *SV�EPP�ETTPMGEXMSRW��MRJVEWXVYGXYVI�ERH�HIWOXST�WSJX[EVI

4

1EVGL �1EVGL ���� �� ������� 'S'STT]]VVMMKKLX -RJSVLX -RJSVQQEEXMXMSSR &EPR &EPEERRGI -RG�GI -RG� 4EKI4EKI ��

4VSKVEQ�6IZMI[

! 8LI�XEWO

! 8S�GSRJMVQ�GSQTPIXIRIWW�ERH�EGGYVEG]�SJ�XLI�=�/
TVSKVEQ

! 4VSZMHI�E�GSRJMHIRGI�JEGXSV�XS�QEREKIQIRX�SJ�XLI
SVKERM^EXMSR
W�=�/�VIEHMRIWW

! -RHITIRHIRX�4VSKVEQ�6IZMI[

! 1IEWYVI�TVSKVEQ�EKEMRWX�MRHYWXV]�FIWX�TVEGXMGIW

! (IXIVQMRI�EGXMSRW��MJ�RIGIWWEV]��XS�JYPP]�GSQTPIXI

XLI�TVSKVEQ

1EVGL �1EVGL ���� �� ������� 'S'STT]]VVMMKKLX -RJSVLX -RJSVQQEEXMXMSSR &EPR &EPEERRGI -RG�GI -RG� 4EKI4EKI ��

0IZIVEKMRK�JSV�XLI�*YXYVI

! ;LEX�LEZI�[I�PIEVRIH�JVSQ�=�/#

! 2IIH�FIXXIV�GSRXVSP�SJ�-RZIRXSV]

! 2IIH�JSV�MQTVSZIH�4VSNIGX�1EREKIQIRX

! %FMPMX]�XS�VIYWI�ERH�I\XIRH�0IKEG]�7]WXIQW

! -QTVSZI�8IWXMRK�ERH�5%�TVSGIWWIW

! -RZIWX�MR�8VEMRMRK

5

1EVGL �1EVGL ���� �� ������� 'S'STT]]VVMMKKLX -RJSVLX -RJSVQQEEXMXMSSR &EPR &EPEERRGI -RG�GI -RG� 4EKI4EKI ��

4VSNIGX�3YXWSYVGMRK

! 1ER]�GSQTERMIW�LEZI�SYXWSYVGIH�=IEV�����
VIRSZEXMSRW

! ;L]�RSX�SYXWSYVGI�HIZIPSTQIRX#

! %HZERXEKIW�

! 4VSJIWWMSREP�4VSNIGX�1EREKIQIRX

! 6IWYPXW�SVMIRXIH

! (IPMZIV]�EWWYVIH

! 'SQTVIWWIH�XMQIJVEQIW

1EVGL �1EVGL ���� �� ������� 'S'STT]]VVMMKKLX -RJSVLX -RJSVQQEEXMXMSSR &EPR &EPEERRGI -RG�GI -RG� 4EKI4EKI ����

0IKEG]�)\XIRWMSRW

! 0IKEG]�W]WXIQW�EVI�RS[�=�/�VIEH]

! ;L]�RSX�I\XIRH�XS�LERHPI�FYWMRIWW�VIUYMVIQIRXW�SJ
XLI�RI\X�GIRXYV]#

! %HZERXEKIW�

! 6IXEMR�XLI�MRZIWXQIRX�MR�XLI�0IKEG]

! ;IF�FEWIH�I\XIRWMSRW

! -RXIKVEXMSR���HEXE�W]RGLVSRM^EXMSR�I\XIRWMSRW

! 6IXEMR�UYEPMX]���XIWXMRK�ORS[PIHKI

6

1EVGL �1EVGL ���� �� ������� 'S'STT]]VVMMKKLX -RJSVLX -RJSVQQEEXMXMSSR &EPR &EPEERRGI -RG�GI -RG� 4EKI4EKI ����

8IWXMRK�1IXLSHSPSK]

! 8LI�'LEPPIRKIW

! 4VSNIGX��RSX�TVSGIWW��JSGYW

! 8IWXMRK�ZMI[IH�EW�E�TLEWI�EX�IRH�SJ�HIZIPSTQIRX

! 0EGO�SJ�IRXLYWMEWQ�JSV�8IWXMRK�ERH�5%

! 8IWXMRK�XSSPW�WXMPP�SR�XLI�WLIPJ

! 0EGO�SJ�8IWXMRK�)RZMVSRQIRXW

! 2I[�XIGLRSPSKMIW���;IF��SXLIVW

1EVGL �1EVGL ���� �� ������� 'S'STT]]VVMMKKLX -RJSVLX -RJSVQQEEXMXMSSR &EPR &EPEERRGI -RG�GI -RG� 4EKI4EKI ����

8IWXMRK�1IXLSHSPSK]

! 6IUYMVIQIRXW�JSV�XLI�2I[�1MPPIRRMYQ

! 3ZIVEPP�JSGYW�SR�UYEPMX]�TVSGIWWIW�JIEXYVMRK�MRWTIGXMSRW
ERH�QIEWYVIQIRX

! 5%�ERH�8IWXMRK�EVI�TIVJSVQIH�XLVSYKLSYX�IEGL�WXEKI�SJ
HIZIPSTQIRX

! 6IGSKRM^I�8IWXMRK���5%�EW�E�GEVIIV�TEXL�[MXL�ETTVSTVMEXI
XVEMRMRK�ERH�VI[EVHW

! 'VIEXI�8IWXMRK�)RZMVSRQIRXW�YWMRK�ETTVSTVMEXI�XSSPW�XS
WYTTSVX�RI[�ETTPMGEXMSRW�ERH�PIKEG]�ETTPMGEXMSRW

7

1EVGL �1EVGL ���� �� ������� 'S'STT]]VVMMKKLX -RJSVLX -RJSVQQEEXMXMSSR &EPR &EPEERRGI -RG�GI -RG� 4EKI4EKI ����

8VEMRMRK

! 8LI�'LEPPIRKI

! 1YWX�GSRXMRYI�XS�MRZIWX�MR�WXEJJ�IHYGEXMSR

! 8VEMRMRK�MR�RI[���VIZMWIH�TVSGIWWIW

! *SGYWWIH�8VEMRMRK

! 8IWXMRK�ERH�5%�8IGLRMUYIW

! (IZIPSTQIRX�4VSGIWWIW

! (EXE��4VSGIWW��3FNIGX�1SHIPMRK

! 7TIGMJMG�8IGLRSPSKMIW

! ;IF�FEWIH��'PMIRX�7IVZIV��1EMRJVEQI

1EVGL �1EVGL ���� �� ������� 'S'STT]]VVMMKKLX -RJSVLX -RJSVQQEEXMXMSSR &EPR &EPEERRGI -RG�GI -RG� 4EKI4EKI ����

! =�/�7IVZMGIW

! =�/�6IRSZEXMSRW

! 8IWXMRK�1IXLSHSPSK]

! 1YPXM�0IZIP�5YEPMX]

%WWYVERGI

�-RHITIRHIRX�'SHI6IZMI[�

! =�/�4VSKVEQ�6IZMI[

! 1MPPIRRMYQ�7IVZMGIW

! 4VSNIGX�3YXWSYVGMRK

! 0IKEG]�)\XIRWMSRW

! 8IWXMRK�1IXLSHSPSK]

! 8VEMRMRK

8

1EVGL �1EVGL ���� �� ������� 'S'STT]]VVMMKKLX -RJSVLX -RJSVQQEEXMXMSSR &EPR &EPEERRGI -RG�GI -RG� 4EKI4EKI ����

5YIWXMSRW#

Y2K: The remaining tasks
and the challenge of

leveraging for the future

Paper for Quality Week '99

Date Printed:
April 29, 1999

Author:
Peter Szirmak

Scott Gardiner
Information Balance Inc.

Information Balance Inc. Quality Week '99
__

__
March 31, 1999 Copyright Information Balance Inc. 2

Background

Most North American companies are well on their way to becoming Year 2000
compliant. Having completed their renovations of business critical systems, they are
now involved in testing those systems. Some lower criticality components such as
desktop software (e.g. spreadsheets) and applications (e.g. desktop databases) are still
being renovated.

During the remainder of 1999, some key areas remain to be addressed including:
• Testing, including testing of applications, infrastructure, embedded systems and
desktop systems,
• Quality Assurance (or Independent Code Verification) and.
• Independent Program Reviews.
• These tasks will ensure the quality and integrity of Year 2000 programs by providing an
independent assessment of processes and results, ensuring that no details fall between
the cracks. The various tasks involved follow.

Independent Code Verification

During the assessment and renovation of the application code, various techniques are
employed by the internal IT staff or by an external vendor to find and fix the Year 2000
issues. The applications are then tested to ensure the quality of the assessments and
renovations.

Our experience has shown that some assessment and renovation techniques don’t
necessarily find all of the code problems. In addition, Year 2000 renovations, particularly
manual renovations, can introduce new defects into the code. Testing is often difficult
due to a lack of application knowledge, lack of test scripts and little systems
documentation.

Our Quality Assurance projects have detected an extremely high incidence of errors in
some systems that have been renovated and tested!
Independent Code Verification, or what we call Multi-level Quality Assurance, assesses
the quality of your code renovations and testing by providing an independent
assessment of your code using unique assessment techniques. This approach can catch
many bugs that were undetected in the initial pass of assessment and testing, and
provides an extra assurance of the quality of Year 2000 compliance projects.

Year 2000 Testing Methodology

Year 2000 Testing is a huge chunk of the overall Year 2000 project. It is estimated that
anywhere from 40-60% of the total compliance project effort may be required for the
Testing portion.

Why is this necessary effort so large?

Information Balance Inc. Quality Week '99
__

__
March 31, 1999 Copyright Information Balance Inc. 3

Essentially, every application in your inventory must be tested. And not just once. Year
2000 testing typically involves several passes including: a baseline test (for current
dates), future date testing for several dates and application testing for upgrades to the
underlying infrastructure (hardware, operating systems, etc.).

The Methodology used should provide clear steps, well-defined deliverables and
templates to get the testing up and running quickly with the least amount of
experimentation and rework.

Desktop software testing requires a slightly modified approach. The methodology is
downsized to fit the smaller size and scope of end user-supported software applications.
This smaller methodology is intended to handle spreadsheets, databases and other end
user-supported desktop applications.

Year 2000 Program Review

Has anyone stepped back and taken a big picture view of your entire Year 2000
program? Are you following best practices as defined for your industry? Has any key
item been missed or been performed at a sub-par level?

The purpose of an independent program review is to verify the quality of the entire Y2K
program and provide a confidence level to management that the organization will
continue to operate into the next century.

The review should check an organization’s methodologies and practices against industry
best practices, confirm the claims of compliance from the various departments or
divisions within the organization, and determine an action plan, if necessary, to complete
any items that are not up the accepted industry level of completeness.

Lessons Learned

We have all learned a lot from the Year 2000 Compliance experience. Some of these
lessons were predictable, while others were not.

One component of these projects that proved to be a most difficult task for many
organizations was the creation of an inventory of applications, infrastructure components
and embedded systems. Many did not realize or predict the effort involved, which has
resulted in the realization of the value of asset management tools and techniques.

The need for good Project Management was a predictable outcome. Good project
managers have always been a prized asset; this position requires a skill-set that is quite
rare. Year 2000 compliance is the largest project that many companies have ever faced,
so the fact that some have been delayed or late is not a surprise.

After years of verbally trashing their legacy applications, companies are realizing that
these systems are a huge corporate asset that should be valued. Now, these
applications have been expanded, extended and have been made Year 2000 compliant.

Information Balance Inc. Quality Week '99
__

__
March 31, 1999 Copyright Information Balance Inc. 4

We must learn to love these systems and learn how to extend them to solve current and
future business requirements.

The lack of enthusiasm for Testing is not new to Testing and QA professionals. Our
hope is that the large effort required for Year 2000 testing will serve as a catalyst for
organizations to improve their testing processes.

The IT staff turnover of the last couple of years and the need to test all of our
applications at once has exposed a knowledge issue: most organizations have a low
level of business, applications and technology knowledge.

The next section address these issues and offer some options for solving the issues.

Project Outsourcing

After the panic of the rollover to the year 2000 subsides, many organizations will be
faced with a backlog of development activity that has been delayed by the Year 2000
projects. How does a company make significant headway into that backlog?

One way is through project outsourcing. Companies that have proven to be able to
successfully manage large, complex Year 2000 renovations are a natural fit to manage
outsourced projects and to ensure that the functionality and quality is delivered as
required by the client.

We feel the key to such outsourcing is proven project management capability.
Remember: good programmers and technicians are important, but it is the project
manager that ensures these specialists retain their focus and bring their projects in on
target and on budget.

Legacy Extensions

How do we retain the value in our Legacy applications?

Extending applications for new input mediums is an ever-growing area of development.
Organizations are web-enabling their applications for e-commerce, as well as using
many other innovative input mediums such as IVR, Call Centers and PDA’s to improve
customer service and productivity.

As well, many of the existing applications are isolated from each other. It has been
estimated that approximately 40% of development effort involves integrating these
islands of automation. Integration efforts will involve middleware, message queuing and
database technologies to integrate legacy systems.

From a QA / Testing viewpoint, Integration testing will become a more important aspect.
Integration Testing will need to verify the correct interactions between many components
deployed on multiple platforms and to also confirm the performance and scalability of
such solutions.

Information Balance Inc. Quality Week '99
__

__
March 31, 1999 Copyright Information Balance Inc. 5

Many exciting challenges lie ahead in this area.

Testing Methodology

There are a number of challenges in how testing is currently performed in most
organizations. Some of the challenges we have experienced include:

• Testing is viewed from a project viewpoint, where the goal is delivery of a specific
product, rather than from an organizational process viewpoint, where the goal is to
improve the overall development process.

• Testing is viewed as a phase squished between the coding and the project target date.

• Our IT organizations are comprised of developers who want to do modeling or coding,
but not testing. Testing is viewed as a chore or a necessary evil by the majority of
developers.

• Many testing tools are still shelfware. Despite the fact that Year 2000 testing typically
required applications two, three or more times, automated test tools have not caught the
interest of most developers.

• A significant challenge is the lack of testing environments in which applications can be
tested in isolation from the production environment. This is most acute in the
client/server environment.

The following features must be included in improved Testing and QA programs:

• A focus on the quality of every deliverable. Inspections can provide a quick start to this
quality focus, with additional automation being provided as required.

• Testing is not a phase, but a continuous process that is performed throughout the
development life cycle. The development life cycle should contain steps that prevent
defects from travelling further into the project. In this way, testing is a method of
confirming quality rather than the primary method of preventing defects.

• The lack of enthusiasm for testing and QA must be met by a commitment to recognize
and reward QA professionals. Testing and QA should be recognized career paths. We
should also recognize that the way we recruit / assess developers and testers may need
to be quite different: development managers should recruit developers and QA
managers should recruit testers.

• Testing environments, especially client/server test labs, containing appropriate
automated test tools are required to make the QA / testing professionals as efficient as
possible. Consider retaining your Y2K Test Labs for ongoing use in development
activities.

Training

Information Balance Inc. Quality Week '99
__

__
March 31, 1999 Copyright Information Balance Inc. 6

To ensure the ongoing quality of your development efforts, training plays a significant
part. Training over the last 18 months has typically been directed at Year 2000 efforts or
put on hold completely.

Staff training programs must be re-established with the goal of creating quality
deliverables the first time from the development efforts. No company has time for re-
work and trial-and-error training. Training programs should include hands-on training
courses and follow-up guidance and tutoring on the most appropriate usage of tools and
techniques.

Information Balance Y2K and Post-Y2K Services

Information Balance is uniquely positioned to assist your company in completing your
Year 2000 projects and in leveraging your experience for future development efforts.

Our Year 2000 services have been developed, focussed and sharpened through our
work with many large- and medium-sized companies worldwide. In 1999, our clients are
particularly interested in Quality Assurance code reviews, testing of desktop applications
and independent reviews of Y2K Program processes.

Into the new millennium, Information Balance will use our proven project management
and testing expertise to continue to deliver solid, practical services to our clients.
Project outsourcing allows companies to off-load development to a company with a
proven track record of successful project deliveries. Legacy Extensions recognizes the
need to extend the existing code base in new directions to solve new business
challenges. Testing Methodologies are utilized to entrench a quality mindset
throughout all phase of development. Training brings all of the development, testing,
quality assurance and tools components together for your staff.

About Information Balance

Information Balance Inc. offers Information Technology consulting and technical training
services, encompassing solutions for both public and private sectors in Information
Systems Planning, Project Management, Application Development/Project Outsourcing,
Systems Integration, Software Testing and Quality Assurance.

Building on years of training and consulting experience, and expertise with some of the
leading Year 2000 tools, we also offer a complete cycle of Year 2000 services, from
Assessment through Renovation to Quality Assurance, Testing, and Project Review.

Concurrent Software Development
and Quality Assurance:

New Tools and Techniques

Outline of Presentation

z Why Undertake Concurrent Software
Development and Quality Assurance?

z Exploring How To Improve Quality During

z Concurrent Development and Quality
Assurance is Possible

Why Undertake Concurrent Software
Development and Quality Assurance?

% Defects
Introduced in
this phase

$ Cost to
repair defect
in this phase

Coding Unit
Test

Funct
Test

Field
Test

Post
Release

85%

85%

% Defects
found in
in this phase

Ideal Defect Creation, Detection and Repair

Coding Unit
Test

Funct
Test

Field
Test

Post
Release

Reviewing the Benefits of
Concurrent Development and QA

Major Benefits
z Allows bugs to be fixed in the same phase they

z Finds bugs when they are the least costly to fix

Additional Benefits
z Allows QA to focus on intent errors, not effect

errors
z Can shorten time-to-market

Exploring How To Improve Quality
During Development

The Ideal Solution

z Available in Coding Phase

z Identifies the Bug’s Source

z Finds Significant Bugs
z Performs Comprehensive Testing
z Usable in Embedded Systems
z Low Development Impact
z No Impact on Code
z No Test Cases
z Low Spurious Rate

Current Solutions

z Manual Code Review

z Software Testing Tools

Manual Code Review

z Pros
y Still considered one of the best methods of early bug detection
y Can be performed at any time
y Does not require test cases
y Lower cost than other methods

z Cons
y Extremely time-consuming (100 LOC/hr per reviewer)
y Heavy impact on development resources
y Low frequency
y Inefficient use of development resources
y Non-comprehensive review of code
y Difficult to find very complex / random defects

Existing Software Testing Tools

z Automated Code Reviewer
y PREfix

z Execution Monitors
y Purify, Memory Advisor, BoundsChecker

z Static Analyzers
y lint, Code Advisor, PC-lint, Flexelint

z Automated Test Management
y Xrunner, Silk, Hindsight

z Code Comprehension
y Discover, iSight++

How Do Current Software Testing Tools
Compare to the Ideal Solution

Auto Code Execution Static Auto Test Code
Review Monitors Analysis Managemt Comp.

Ideal (PREfix) (Purify) (Lint) (Xrunner) (Discover)

Available in Coding Phase üüüü '''' üüüü '''' üüüü
Identifies Source of Bug üüüü üüüü üüüü '''' ''''
Finds Significant Bugs üüüü üüüü '''' üüüü ''''
Comprehensive Testing üüüü üüüü '''' üüüü ''''
Usable in Embedded Systems üüüü '''' üüüü '''' üüüü
Low Development Impact üüüü '''' üüüü '''' üüüü
No Impact on Code üüüü '''' üüüü üüüü üüüü
No Test Cases üüüü '''' üüüü '''' üüüü
Low Spurious Rate üüüü üüüü '''' üüüü N/A

Concurrent QA and Development
Is Possible Via

PREfix Automated Code Reviewer
PREfix Automated Code Reviewer:

z All the benefits of Manual Code Review without the

z Patented technology that simulates program
execution in source code without test cases

z Works on C/C++ source code under Windows NT
and UNIX platforms

PREfix Benefits

z Useful from the beginning of the coding phase
y Finds bugs immediately after they are coded
y Works on incomplete (non-executable) code
y Does not require test cases

PREfix--Benefits (Cont.)

z PREfix identifies
where the bug is
in the source code
y Indicates under

what conditions
the bug occurs

PREfix--Benefits (Cont.)

Resource Exhaustion
ü Leaking Resource
ü Leaking memory

Pointer Management
ü Dereferencing NULL pointer
ü Dereferencing invalid pointer
ü Dereferencing pointer to freed memory
ü Exports pointer to local
ü Returns pointer to freed

memory

Illegal State
ü Resource in illegal state
ü Illegal value
ü Divide by zero

Memory Management
ü Freeing pointer to already freed memory
ü Freeing pointer to global memory
ü Freeing pointer to static memory
ü Freeing pointer to stack memory
ü Freeing pointer in middle of memory block
ü Freeing NULL pointer
ü Freeing invalid pointer

Initialization
ü Using uninitialized memory
ü Freeing uninitialized pointer
ü Dereferencing uninitialized pointer

Prefix finds ~ 1 Bug/2000 LOC

z PREfix finds significant defects

PREfix--Benefits (Cont.)

Traditional
Test Path
Coverage

PREfix
Test Path
Coverage

Comprehensive Testing
Traditional Test Path Coverage

PREfix--Benefits (Cont.)

z Usable in Embedded Systems
y Does not require target environment to analyze source code

(e.g., does not use operating system services to check the code)

z No Impact on Code
y Does not expand code size during testing
y No code instrumentation

z Does Not Require Test Cases
y Code execution is simulated dynamically
y Not limited by the scope of test data

PREfix--Benefits (Cont.)

z Low Development Impact
y Seamless integration into regular software build process
y Browser-based review of error report
y Most significant bugs are prioritized for more effective review

z Low Spurious Error Rate
y Defects are automatically sorted, prioritized and ranked according

y Warnings marked “unimportant” disappear

Summary

z You can perform concurrent Quality Assurance
and Development -- with PREfix!

1

Interim: How the World is Working

Quality
Week ‘99

Fred Scheck, CQA
Vice President

Interim: How the World is Working

Beyond Y2K
&

The New Software Quality
Professional

2

Interim: How the World is Working

Beyond Y2K
What have we learned ???

◗ 3 Major Disciplines Needing
Most Attention

Interim: How the World is Working

Beyond Y2K
Project Management

◗ Planning - “Touch Point” All
Dependencies

◗ Reliable Estimates - Metrics and
Measures

◗ Business Continuity -- Mission
Critical Processes

3

Interim: How the World is Working

Beyond Y2K
Software Quality Mana gement
◗ Software Quality Plan

✓ Overview
✓ Quality Assurance and Quality Control
✓ Methodology
✓ Organizational Requirements
✓ Templates
✓ Glossary

Interim: How the World is Working

Beyond Y2K

Tool Support
◗ Requirements Manager
◗ Test Management
◗ Configuration Management
◗ Issue Management

4

Interim: How the World is Working

The New Software
Quality Professional

◗ 4 Major Roles to Play

Interim: How the World is Working

The New Software
Quality Professional

Product Business Analyst

◗ Business User Communication &
Facilitation Skills

◗ Product & Subject Matter
Expertise

5

Interim: How the World is Working

The New Software
Quality Professional

Software Technical Analyst

◗ Multi-Tier Environment
Knowledge

◗ Database & Communication
Experience

Interim: How the World is Working

The New Software
Quality Professional

Industry Solutions Analyst

◗ Internet
◗ Web
◗ E-Commerce

6

Interim: How the World is Working

The New Software
Quality Professional

Tool Specialist
◗ Comparative Assessment

Knowledge
◗ Tool Certified
◗ Training & Mentoring

Experience

QQuuaall ii ttyy WWeeeekk 11999999
FFaacciinngg tthhee FFuuttuurr ee

BBeeyyoonndd YY22KK aanndd tthhee NNeeww SSooff ttwwaarr ee QQuuaall ii ttyy PPrr ooffeessssiioonnaall

TThhee GGlloobbaall YY22KK ccoorrrreeccttiioonn wwii ll ll ccoonnttiinnuuee iinnttoo 22000000 aass ccoommppaanniieess ttrraannssii ttiioonn tthheeii rr eeff ffoorrttss ffrroomm ffaaii lluurree pprreevveennttiioonn ttoo
ffaaii lluurree mmaannaaggeemmeenntt.. WWhhaatt iiss oonn tthhee hhoorriizzoonn bbeeyyoonndd YY22KK?? NNeeww pprroodduuccttss,, pprroojjeeccttss,, aanndd tteecchhnnoollooggyy uuppggrraaddeess tthhaatt
hhaavvee bbeeeenn ddeeffeerrrreedd dduuee ttoo mmii ll lleennnniiuumm pprriioorrii ttiieess wwii ll ll bbee llaauunncchheedd iinn rreeccoorrdd ssppeeeedd aass ccoommppaanniieess ccaattcchh uupp ttoo mmeeeett
tthheeii rr bbuussiinneessss ggooaallss.. WWii ll ll wwee hhaavvee lleeaarrnneedd eennoouugghh ffrroomm tthhee eenntteerrpprriissee YY22KK pprroojjeecctt ttoo hheellpp uuss aavvooiidd tthhee ppii ttffaall llss ooff
oouurr nneexxtt mmiissssiioonn ccrrii ttiiccaall pprroojjeeccttss?? HHooww wwii ll ll tthhee ssooffttwwaarree qquuaall ii ttyy pprrooffeessssiioonnaall nneeeedd ttoo eevvoollvvee ttoo mmeeeett tthhee
cchhaall lleennggeess ooff tthhee nneeww ppllaattffoorrmmss aanndd mmaarrkkeett ddrriivveenn pprroodduucctt ddeell iivveerryy ttiimmeeffrraammeess?? LLeett uuss eexxpplloorree tthheessee qquueessttiioonnss
tthhrroouugghh oobbsseerrvvaattiioonnss ooff tthhee YY22KK pprroocceessss..

BBeeyyoonndd YY22KK

What has Y2K taught us to date? First we were not prepared. Surprised? You shouldn’t be. The management
processes that we have been promoting and partially implementing are the key items that were not in place for most
companies when they began the Y2K assessment process. Second, the best practices that were implemented to
assist in Y2K will not be carried forward unless industries invest in the roll out and maintenance of these processes
for new projects. The lessons we are still learning from Y2K must be carried forward to mitigate the issues and
risks for new projects beyond Y2K.

Three major areas have emerged as needing the most attention: project management, software quality management,
and automated tool support.

Project Management

Y2K risk, budget and time constraints will continue dominating the remainder of this year. New and innovative
industry initiatives to support business needs will begin their launch in 2000. As we proceed into the new
millennium, deferred projects for enhanced products and associated processes will need to be integrated into the
new corporate solutions. Managing these complex systems integration, business process reengineering, and
platform migration endeavors will require proven large project disciplines, some of which has been successfully
demonstrated during the Y2K corrective measures.

What has Y2K taught us thus far for managing complex integrated and dependent projects? First and foremost,
planning all activities for these projects must cover all of the touch points that are to be affected. Y2K has made us
acutely aware that any corporate global project requires considerable thought as to how the solution will be
implemented. We must take into account all of the dependencies, lead time preparation, and proper personnel to
support these activities. This planning process was generally demonstrated to be inadequate during the early stages
of Y2K corrective activities and still remains inadequate today in many corporations.

Second, Y2K has confirmed that most organizations do not prepare realistic estimates for major projects. One
local joke for estimating “rule of thumb” has been to provide a corporate best analysis guess for Y2K, then
multiply that number by a factor of 2 or 3. This joke has become a reality, with to-date time and costs grossly
exceeding most original corporate budget estimates. Improved metrics and measures must be implemented to
properly forecast the next projects, without which corporations will have limited confidence in the reliability of
future budget requests.

Finally, Y2K contingency planning, commonly referred to as business continuity, has been seriously pushed back
by many companies until this year. The problem is not only how IT will recover their applications, but also how
the business functions including IT will continue to be operational should an interruption or failure occur within a
critical business process. IT disaster/recovery plans typically addressed hardware and software failures, not
disruption at the business units nor the receiving/distribution legs of the business product. Business continuity
plans will need to accompany all mission critical processes as part of the implementation plan for these new
solutions in the next millennium.

Software Quality Management

A Software Quality Assurance Plan (or SQAP) is fundamental in managing the development, enhancement and
maintenance of software products. This plan describes the procedures required to apply Quality Assurance and
Quality Control standards to each step of the product lifecycle. Many corporations have a quality assurance entity
that may follow such a plan, but it was found that in most Y2K projects these key concepts were not consistently
integrated in the corporate Y2K strategy. Suggested components of a SQAP are detailed in a sample that follows.

1) Plan Overview
• Purpose of Document

Process quality is the measure of the efficiency and effectiveness of the execution of defined processes. It
results from the correct application of skills, tools, procedures and standards to a process, and from the
continued monitoring of the process to manage deviations. Key process quality requirements include:
(a) Development, integration, and testing processes are being conducted in a consistent manner across

organizational units
(b) Training on all processes is provided to all personnel engaged in these activities
(c) Metrics are collected to allow analysis of process efficiencies and effectiveness
(d) Process reviews and random audits are in place to spot process difficulties and to initiate corrective

actions, and identify best practices for publication and adoption across the organization
• Objectives of Plan

(a) QA/QC processes which will ensure a quality product
(b) Quality criteria to demonstrate that the projects and products meet their requirements
(c) Plans and activities necessary to ensure that QA/QC criteria are met
(d) Reference techniques and standards used to perform the specified QA/QC activities

• Scope of Plan
(a) Quality Assurance Processes
(b) Quality Assurance Organization
(c) Test Procedures
(d) Change Control
(e) Defect Tracking
(f) Test Data Management
(g) Quality Metrics

• Metrics Monitoring
The ongoing monitoring of process metrics is achieved through the use of standard work product status
reporting and through the use of process audits. Measures of process quality include:
(a) Process Reviews
(b) Number and type of significant variations from defined procedures, where “significant” is defined as

omitting a process step or failure to use standard templates or forms.
(c) Technical Reviews
(d) Number of issued identified and logged
(e) Number of reviews completed relative to the number of items subject to review
(f) Defects
(g) Number of defect reports logged
(h) Number of defect reports resolved
(i) Number of open defects
(j) Average time expended to close a defect
(k) Product Build or Component Performance
(l) Product Build or Component Development/Integration Phase Elapsed Time
(m) Test Execution Elapsed Time
(n) Product Build or Component Test Phase Reiterations

2) Quality Assurance and Quality Control
• Quality Assurance

(a) Quality Requirements for product implementation
• Product functions to business and technical requirements
• Product meets performance and load requirements
• Code complies with established coding standards

(b) Quality Assurance Strategy
The QA strategy establishes QA procedures to monitor the full renovation life cycle. Quality assurance
reviews are of two types:
• Reviews and Walkthroughs - by someone other than the deliverable producer
• Audits - Periodic reviews of deliverables and/or walkthroughs by a QA representative

(c) Procedure and Template References
• Test Plan Template
• Test Summary Report
• Problem Report Template
• Problem Report Log Template
• Test Progress Template
• Test Case Specification Template
• Test Case Log Template

(d) External documents
• Coding Standards
• Change Control Procedures
• Review Procedures
• Defect Resolution Procedures
• Installation Procedures
• Configuration Management Procedures

• Quality Control
(a) Quality Control Strategy
(b) Quality Control Process (mirrors development lifecycle model - hierarchical, iterative, etc.)

• Unit Test
• Integration Test
• Systems (or Release) Test
• Performance and Load Test
• Business Acceptance Test

3) Methodology
For each quality assurance identified control point (milestone, major activity, etc.) identify the following:
• Project process (milestone/activity name)
• QA control point name
• QA defined purpose
• Exit Criteria for QA completion
• QA task list (Task, QA Requirement, Role Responsible)

4) Organizational Requirements
• Project resource profiles
• Project training requirements
• Project approved tools

5) Templates (repository reference)
6) Glossary of Terms

Tool Support

Most companies would have been in a more serious Y2K time constraint if it were not for the deployment of
automated and auto assisted tools. Inventory, impact assessment, remediation, testing, and verification tools have
been instrumental in reducing the time and improving the accuracy of the Y2K corrective measures. Although they
were not the silver bullet, as many companies had envisioned and some vendors had proposed, they have been key
in the implementation of the Y2K Compliance Plan. Y2K has radically demonstrated that these tools, and
derivations yet to come, will be important in helping to accelerate the applications project life cycle and continue
the maintenance and enhancement management throughout the product life. A key point to emphasize is a tool is
only as good as the disciplined process that it supports. Four key application processes have benefited from tool
support in Y2K.

Requirement Management tools help to document and manage the business and technical requirements, and the
releases for change throughout entire product life. Just as we coordinated the Y2K remediation requirements for
future test and verification criteria, documented business requirements, product reviews, and a change management
process will depend heavily on tool support to reduce the overhead of creation, while reinforcing consistency and
continuity of the information.

Test Management tools have already provided a repository for managing application regression tests as well as
Y2K compliance tests. As Y2K has demonstrated, quality control has represented forty to sixty percent of the
overall effort, with tools providing demonstrative reduction in time for regression testing of the remediated code.
These tools will continue to evolve with the expectation that one can not envision having regression and release
tests scripts without this support.

Performance and load testing are categories we have typically limited to new applications, purchased packages, and
environment upgrades. Y2K has added to performance considerations, as most applications were not designed to
accommodate data windows and bridges. The load/performance test tools have significantly enhanced the ability to
simulate a business environment to validate that the compliant code will actually function within mandated
response time and production cycle operation windows. Internet and Web applications are forecasted to dominate
new business solutions and load/performance test tools will be essential in the business acceptance test.

Configuration Management support has been available for years in almost all platforms, with tools that coordinate
the promotion and demotion of software, documentation, and execution procedures. Y2K has added to the
complexity of managing production environments with the need of fully operational test environments and, in
addition, “clean environments” that are Y2K compliant. Although most companies have some level of
configuration management processes in place, they were not prepared for the millennium. The mainframe rich tool
investment that Y2K had reinforced will now have to be supplemented with the emerging technology (client/server,
e-based, web) configuration tools of equal or greater caliber to adequately manage this growth.

Issue management has been an “issue” forever. The management of issues is fairly straightforward once everyone
understands and uses the process. Y2K issue management has been chaos for many companies – primarily due to
the lack of any consistent process and the poor communication of any process, should it exist. Y2K has clearly
demonstrated that contingencies, dependencies, errors, and other items that could have knowledge share benefit
across the organization were not coordinated at an organizational level, resulting in considerable time and cost
overruns that could have been mitigated if the information was at hand for others to review. Tools will make it
easier to document, distribute, track, record resolution, and close issues, and ultimately improve the return on
investment beyond Y2K when an issues management process is defined, communicated, and supported in the
organization infrastructure.

TThhee NNeeww SSooff ttwwaarr ee QQuuaall ii ttyy PPrr ooffeessssiioonnaall

Prepared or not, we will begin 2000 facing some of the same needs and experiencing a variety of issues that have
been demonstrated for more than the past thirty years. Yet, industry will require a new software quality
professional to embrace and be skilled in the products and technologies that will be more prevalent in the next
millennium, and have more business savvy. What this professional should have in their tool kit is best defined by
the roles that will need to be fulfilled in the business solutions forecasted. We see four roles that the new software
quality professional should prepared for.

Product Business Analyst

In addition to being a solid quality assurance and quality control skilled engineer, the software quality professional
will need to be a skilled business analyst, as most immediate new projects will address the backlog of business
requirements put on hold until the millennium correction completed. This will include platform migrations, system
replacements, and new technology solutions. The professional will be working more with business users in
understanding the functional requirements and as more technology solutions deploy emerging technology object
based design, creating plans and scripts that focus on business objects and less on legacy code testing concepts.

Working with the business units will also require subject matter knowledge in the key industries, such as financial,
manufacturing and insurance. It will be important to share the vocabulary and concepts of the business to
effectively develop the test processes, without being heavily dependent on the business subject matter experts.
Excellent communication skills are a key attribute of an analyst, and the ability to interact at most levels of the
business community will be required to be effective in confirming quality requirements.

Software Technical Analyst

The business analytical skills will need to be complemented with new technology skills. Emerging technology
solutions including Web based design, distributive solutions and multi-tier architecture such as client, server and
data hosts require a fundamental technical knowledge to properly define the appropriate test strategies. Integration
tests will be more network centric, while systems tests will mandate complete platform knowledge for defining and
staging entry/exit criteria. A background in database standards and communication protocols will be necessary to
properly set up the test data and access the correct version, as release testing will be the prevalent choice for
iterative development and system integration projects.

Industry Solutions Analyst

Combining the business and technical analyst expertise will not be enough to satisfy the software quality
requirements for a number of the new solutions. Internet, web based, and electronic commerce (E-Based) industry
products will be dramatically expanding in the immediate future. The quality professional will require a
conceptual understanding of these business solutions to prepare the proper strategy, plan, and templates.
Functional and performance/load testing will be the dominant strategies to certify this architecture.

Tool Specialist

Aggressive schedules and conservative budgets require automated assistance at any level to improve productivity.
The new software quality professional will need experience in test productivity tools to meet the growing
competitive demand of product to market time constraints. Familiarity with tools including configuration
management, capture/playback, performance, load, data aging, and data comparison will be critical in developing
the test strategy and deploying the test packages.

Handouts to be given at the time of presentation!

Handouts to be given at the time of presentation!

1

1

Tools forTools for
usability validationusability validation

■■ Need for usability testingNeed for usability testing
■■ Methods for usability testingMethods for usability testing
■■ Need for automationNeed for automation
■■ ErgoLightErgoLight implementation implementation
■■ Features and limitationsFeatures and limitations
■■ Getting startedGetting started

2

The needThe need

Developer ofDeveloper of
MS-WindowsMS-Windows
Desktop ApplicationsDesktop Applications

■■ Need to redesign the GUI?Need to redesign the GUI?
■■ Need to improve the On line Help?Need to improve the On line Help?
■■ Need to enhance the User Documentation?Need to enhance the User Documentation?

2

3

DonDon ’’t ...t ...
■■ DonDon ’’t rely on standardst rely on standards

–– Standards were arrangedStandards were arranged
by the programmers by the programmers ……
for the programmersfor the programmers

■■ DonDon ’’t rely on style guidest rely on style guides
–– Many users are not familiar with the guidesMany users are not familiar with the guides

■■ DonDon ’’t rely on design rulest rely on design rules
–– Many users do not obey the rulesMany users do not obey the rules

■■ DonDon ’’t educate the usert educate the user
–– Users might prefer to change vendorsUsers might prefer to change vendors

4

Do ...Do ...

Adapt your product to the userAdapt your product to the user ’’s needs!s needs!
How?How?
Test the product usability, with real users:Test the product usability, with real users:
■■ During prototyping and alpha testing stagesDuring prototyping and alpha testing stages

–– Do laboratory testingDo laboratory testing
■■ During beta testing and product deployment stagesDuring beta testing and product deployment stages

–– Do remote testingDo remote testing

3

5

Laboratory testingLaboratory testing

Regular testingRegular testing
■■ FacilitationFacilitation
■■ Video recordingVideo recording
■■ Thinking aloudThinking aloud

■■ ObserverObserver ’’s logss logs
Automation -Automation -

Understand the userUnderstand the user ’’s confusions confusion
■■ User actions => error prone controlsUser actions => error prone controls
■■ Product modes => error prone modesProduct modes => error prone modes

6

Education SystemsEducation Systems

■■ CAICAI
■■ CBTCBT
■■ CAECAE
■■ GuidesGuides
■■ TutorialsTutorials

Procedure
Knowledge

Terminology
 Problems

System
Forgiveness

Conceptual
Problems

Net
Operation

User
Orientation

4

7

UserUser’’s times time

8

Production SystemsProduction Systems

■■ Data entryData entry
■■ Data miningData mining
■■ OfficeOffice
■■ CAD/CAMCAD/CAM
■■ AdministrationAdministration
■■ CASECASE

Terminology
 Problems

Procedure
Knowledge

User
Orientation

Net
Operation

Conceptual
Problems

System
Forgiveness

5

9

Time SpentTime Spent
(example)(example)

Concepts,
Terminology

Forgiveness

Read Only

Net Operation

Procedure
Knowledge

Print to file

Orientation

10

Operation profilesOperation profiles

6

11

Barriers toBarriers to
high performancehigh performance

In production systems users wasteIn production systems users waste
time due to:time due to:

■■ Unintentional actionsUnintentional actions
■■ Inadvertent actionsInadvertent actions
■■ Working in the wrong mode.Working in the wrong mode.

12

(YDXODWLRQ(YDXODWLRQ
�H[DPSOH��H[DPSOH�

7

13

Integration inIntegration in
usability labsusability labs

RecordRecord
–– User: video recording, think aloudUser: video recording, think aloud
–– Facilitator: identify user confusionFacilitator: identify user confusion
–– Observer: log user intentionObserver: log user intention
–– ErgoLightErgoLight : capture user actions: capture user actions
–– ErgoLightErgoLight : capture product modes: capture product modes

BacktrackBacktrack
–– Sync by time stampSync by time stamp

14

Teamwork supportTeamwork support

Analysis

Design

 Operation

Test Setup

Evaluation

Help Desk

Observation

8

15

UnderstandingUnderstanding
user errorsuser errors

Safety critical systemsSafety critical systems
■■ Air trafficAir traffic
■■ NuclearNuclear
■■ SafetySafety
■■ Health careHealth care
■■ MilitaryMilitary

16

Remote TestingRemote Testing

■■ User difficultiesUser difficulties
■■ ReasonsReasons
■■ Severity/ costSeverity/ cost

9

17

Computer AidedComputer Aided
Usability TestingUsability Testing

CAUTCAUT

■■ Identify user confusionIdentify user confusion
–– User delayUser delay
–– Help, Cancel, Undo activationHelp, Cancel, Undo activation

■■ Identify user intentionIdentify user intention
–– User selects from task breakdownUser selects from task breakdown
–– Incentive - resolve problemsIncentive - resolve problems

18

Getting startedGetting started

■■ DownloadDownload
–– Evaluation versions, documentationEvaluation versions, documentation

■■ Evaluation versionEvaluation version
–– Instrumentation, local recordingInstrumentation, local recording

■■ Express testingExpress testing
–– Backtrack and operation profilesBacktrack and operation profiles

■■ Remote testingRemote testing
–– Identify recurring user errorsIdentify recurring user errors

10

19

Thank you for thinkingThank you for thinking

USABILITYUSABILITY

ErgoLight Ltd., 6 Giv'on St., Haifa 34335, Israel

Tel:
Fax:

+972-4-826-3012
+972-4-825-8199

Email: info@ergolight.co.il
HTTP://www.ergolight.co.il

Measuring The Quality of GUI Usability
Avi Harel

ErgoLight™ Ltd.

Traditionally, Graphical User Interfaces (GUI) are designed based on style guides and validated
with reference to the GUI specification, which formalizes the GUI design. Often, end users
experience difficulties in using GUIs that are derived from specification. The reason for this is
that design based on style guides is often not suited for a particular application and that GUI
designers often fail to anticipate the user's problems. GUI developers are challenged by the need
to understand the ways end users actually operate the application. Accordingly, GUI validation
should rely on record of the Computer Human Interaction (CHI) rather on the GUI specification.

Common practices of usability validations are by manual procedures, using questionnaires,
video recording and observations. The measures of operation obtained by these techniques are
subjective and they suffer from low reliability and low validity. The procedures involved in
manual validation are lengthy and expensive.

In order to decide that an operational procedure should be changed, the measurement of
operability should be objective, valid and reliable. Objectivity may be obtained by using a tool
that collects data consistently, independent of the tester's observations. Validity may be obtained
by observing real end users while performing real tasks in their real working environments,
using measures that express organizational needs, such as operation costs. Reliability may be
obtained by statistics of the measurements of the operational procedures and of the user's failure
mode. Obviously, automation is required for achieving objectivity and reliability. Nevertheless,
methodology is essential for obtaining face validity.

A common measure of GUI operability is the "user profile", typically consisting of an array of
frequencies of operation of either GUI components or operational procedures. User profiles of
these types allow the developer to identify those components and procedures that end-users
prefer over their alternatives. An improvement of the user profile may be obtained by changing
the measure, by summing up the time that users spend while operating each of the components
or procedures. This measure is preferred over mere counting, because it expresses the real costs
of operation.

A user's profile that describes the user's operation is not sufficient for GUI validation. About
50% of typical data entry procedures are wasted because of user's errors. The situation is even
worse for education and utility applications, which are not operated frequently. Typically, users
of such an application waste most of the operation time trying to figure out the basic functions,
the concepts underlying the application, the meanings of terms used in the application and the
procedures required to actuate the user's tasks. For this reason, the user's profile should include
not only information about the operational procedures that users perform, but also information
about the procedures that user's fail to perform.

While the user's operational procedures may be measured transparently, based on the user's
actions, measuring the user's failure modes require elicitation of the user's intention, through
dialog with the end user. Besides the user's intention, the dialog with the end-user provides
information about deficiencies in the user's documentation, on-line help, the training program
and also about error prone GUI components and operation modes. Statistics of repeating failure
modes may provide measures of the costs of design deficiencies.

1

2XWVRXUFHG�RU�2XW�RI�/XFN2XWVRXUFHG�RU�2XW�RI�/XFN

By Eric J. BowdenBy Eric J. Bowden
Systems Engineer, KeyLabs Inc.Systems Engineer, KeyLabs Inc.

Phone: (801) 226-8200Phone: (801) 226-8200
Fax: (801) 226-8205Fax: (801) 226-8205
ericeric @@keylabskeylabs .com.com

www.keylabs.comwww.keylabs.com

3ODQQLQJ�DQG�&RPPXQLFDWLRQ3ODQQLQJ�DQG�&RPPXQLFDWLRQ

DUH�NH\�WR�D�VXFFHVVIXODUH�NH\�WR�D�VXFFHVVIXO

RXWVRXUFH�WHVWLQJ�UHODWLRQVKLSRXWVRXUFH�WHVWLQJ�UHODWLRQVKLS

2

2XWOLQH�2XWOLQH�

■■ :KHQ�LV�RXWVRXUFLQJ�VRIWZDUH�WHVWLQJ:KHQ�LV�RXWVRXUFLQJ�VRIWZDUH�WHVWLQJ

DSSURSULDWH"DSSURSULDWH"

■■ 7HVW�SODQ�GHYHORSPHQW7HVW�SODQ�GHYHORSPHQW

■■ 3LFNLQJ�DQ�RXWVRXUFH�SDUWQHU3LFNLQJ�DQ�RXWVRXUFH�SDUWQHU

■■ 3LWIDOOV�LQ�RXWVRXUFLQJ3LWIDOOV�LQ�RXWVRXUFLQJ

:KHQ�LV�RXWVRXUFLQJ:KHQ�LV�RXWVRXUFLQJ

DSSURSULDWH"DSSURSULDWH"

■■ 5HVRXUFH�&RQVWUDLQWV5HVRXUFH�&RQVWUDLQWV

■■ 6SHFLDOL]HG�([SHUWLVH6SHFLDOL]HG�([SHUWLVH

■■ ,QGHSHQGHQW�5HVXOWV,QGHSHQGHQW�5HVXOWV

■■ 7HPSRUDU\��QRQ�SHUPDQHQW��1HHG7HPSRUDU\��QRQ�SHUPDQHQW��1HHG

■■ &RVW�&RQWDLQPHQW&RVW�&RQWDLQPHQW

■■ 6WUDWHJLF�'LUHFWLRQ6WUDWHJLF�'LUHFWLRQ

3

7HVW�3ODQ�'HYHORSPHQW7HVW�3ODQ�'HYHORSPHQW

■■ 0XVW�EH�REMHFWLYH�EDVHG0XVW�EH�REMHFWLYH�EDVHG

■■ 7HVW�WRRO�DQG�PHWKRGV�HYDOXDWLRQ7HVW�WRRO�DQG�PHWKRGV�HYDOXDWLRQ

■■ &XWWLQJ�XS�WKH�SLH&XWWLQJ�XS�WKH�SLH

3LFNLQJ�D�7HVW�/DE�3DUWQHU3LFNLQJ�D�7HVW�/DE�3DUWQHU

■■ 6NLOO�VHW�DQG�WUDLQLQJ6NLOO�VHW�DQG�WUDLQLQJ

■■ ³7U\�EHIRUH�\RX�EX\´³7U\�EHIRUH�\RX�EX\´

■■ 5HODWLRQVKLS��UHODWLRQVKLS��UHODWLRQVKLS5HODWLRQVKLS��UHODWLRQVKLS��UHODWLRQVKLS

4

&RPPRQ�3LWIDOOV&RPPRQ�3LWIDOOV

:LWKRXW�D�FOHDU�YLVLRQ��PHDVXUDEOH:LWKRXW�D�FOHDU�YLVLRQ��PHDVXUDEOH

REMHFWLYH�DQG�FRQWLQXRXV�LQYROYHPHQW�REMHFWLYH�DQG�FRQWLQXRXV�LQYROYHPHQW�

RXWVRXUFLQJ�ZLOO�SURGXFH�OHVV�WKHQ�RXWVRXUFLQJ�ZLOO�SURGXFH�OHVV�WKHQ�

GHVLUDEOH�UHVXOWV�GHVLUDEOH�UHVXOWV�

&RPPRQ�3LWIDOOV&RPPRQ�3LWIDOOV

���� :DLWLQJ�XQWLO�IRUFHG�WR�RXWVRXUFH:DLWLQJ�XQWLO�IRUFHG�WR�RXWVRXUFH

���� $VVXPLQJ�VKDUHG�YLVLRQ$VVXPLQJ�VKDUHG�YLVLRQ

���� ³0DQXUH�3ULQFLSOH´³0DQXUH�3ULQFLSOH´

���� /DFN�RI�FRPPLWPHQW/DFN�RI�FRPPLWPHQW

���� &OHDU��VLQJXODU�REMHFWLYH&OHDU��VLQJXODU�REMHFWLYH

���� 0LQLPDO�FRPPXQLFDWLRQ0LQLPDO�FRPPXQLFDWLRQ

5

2XWVRXUFHG�RU�2XW�RI�/XFN2XWVRXUFHG�RU�2XW�RI�/XFN

By Eric J. BowdenBy Eric J. Bowden
Systems Engineer, KeyLabs Inc.Systems Engineer, KeyLabs Inc.

Phone: (801) 226-8200Phone: (801) 226-8200
Fax: (801) 226-8205Fax: (801) 226-8205
ericeric @@keylabskeylabs .com.com

www.keylabs.comwww.keylabs.com

Outsourced or Out of Luck
Consigning an independent testing partner can help you attain your QA goals when budgets are
tight and resources are scarce.

By Eric J. Bowden
Systems Engineer at KeyLabs Inc.
ebowden@keylabs.com
801.226.8200

Abstract
With so much work to be done and not enough hours in a day, hardware and software companies
are deciding that it is more cost effective for them to focus their resources on the things that they
do best. This sometimes means finding someone else to make sure that the product meets
design requirements. Outsourcing your QA testing can be advantageous, but simply having good
intentions will not guarantee that your outsourced relationship will be a successful one. This
paper will help you decide when outsourcing your testing needs is appropriate and will also help
you understand the common pitfalls when dealing with an outsourced partner.

“A man's got to know his limitations.” This trite sound bite from a Dirty Harry movie can apply to
both police work and software development. Good intentions alone are not enough to ensure the
quality requirements for your software projects. It takes planning and continuous involvement.
Understanding your own limitations will inspire you to search for alternatives. For many
companies--tight on resources--this means consigning a partner to help in the QA process.
KeyLabs has spent years helping ISV/IHV's with their testing and QA requirements. [And while it
may appear self-serving to write a self-promoting article on outsourcing, the real] intent is to
educate potential customers on how to make an outsource software testing relationship
successful. I have worked with many customers as Lab Director at KeyLabs. I have also found
that the better an outsourcing customer understands what they are getting themselves into, the
more likely they are going to have a successful and productive experience.

The two areas that I will cover in this article include:
• When is outsourcing software testing appropriate?
• Common mistakes in dealing with outsource labs:

When is outsourcing software testing appropriate?

Resource Constraints:
By definition, dealing will scares resources is what business is all about. If you find yourself in an
organization with copious resources, then count your blessings, but don’t plan on it lasting
forever. That kind of bounty is an open invitation for competitors, which have the redoubtable
tendency of reducing your margins. When this happens, companies are forced to “make due or

Resource constraints can take many forms:

Lack of Hardware--The first, and one of the more obvious forms, is a lack of hardware and
infrastructure. Some companies simply do not have enough hardware to adequately test their
products. For them test methodologies are tailored to existing equipment—not to a requirements
document. In these situations, a quality assurance engineer takes the list of “all things we might

test” and limits it to “all things we can test based on the hardware we have available.” Pruning
the list of test cases in this way can be dangerous when the undiscovered defects are only
exposed on large installations or under heavy load. This is especially important for client/server
applications and applications that are to support many users.

In some cases, you may have plenty of hardware to do your job, but lack a key piece of
equipment to adequately test your product. This can be anything from an esoteric test tool to a
common, but expensive piece of the test bed infrastructure. For example, over a year ago, a
customer came to KeyLabs wanting to create a test network with 100 users dialing into a server.
Not many companies have the 100 computers required to run a test like this. And even if they
did, they probably would not have the phone simulator, remote access server and modems to
support this kind of network. Outsourcing that portion of the testing that requires specialized
equipment makes particularly good sense if the limited amount of testing you will be doing does
not justify the cost of purchasing that piece of equipment. An outsource testing house is more
likely to amortize the cost of expensive test equipment over many customers than you will be. It
all boils down to do you rent or buy a water-ski boat if you know you will only be taking it out once
or twice a year. Sure the rental price of the same boat might be exorbitant, but it is a lot cheaper
than buying it your self and having it sit idle most of the year. And when you factor in what your
money could be earning if it weren’t tied up in capital assets.

Lack of People—Streamlining. Downsizing. Restructuring. Call it what you want, it usually
means fewer people doing the work that many were doing before. However, many companies
are taking this opportunity to re-focus on their core competencies—committing corporate
positions only to those key technologies that define a company and then outsourcing the rest.
Projects deemed “not part of the core business” are not getting funding for in-house execution.
What this means is a software developer will focus on making software. Everything else,
including testing and QA, will be outsourced. Contracting with a testing house can pick up the
slack created by downsizing.

Deadlines—We’ve all heard the term “moving at the speed of business.” This rapid movement
means that deadlines and delivery dates might not afford you the time required to outfit a lab and
ramp up. In these situations, an outsource testing partner can help smooth out the peaks,
making your job more manageable.

Specialized Expertise
Another reason you may decide to outsource your software testing is to benefit from the
specialized expertise of another organization. This may seem obvious, but let’s spend a little time
here. Hopefully, nobody understands your product as well as you do. However, what happens
when your product interacts with other products that you have no control over? In cases like
these, it pays to find somebody that already has the needed expertise. For example, we had a
customer that made a product that was to run and be certified on every server platform available.
These server platforms included many flavors of UNIX, Windows NT, and NetWare. This
company had limited NetWare experience. Because of KeyLabs extensive background in
NetWare, KeyLabs was able to provide both developmental and certification help to this customer
in a much more timely manner than if they tried to do it themselves. Building specialized
expertise in house can be costly and time consuming, especially when that expertise accounts for
only a small portion of your overall revenue.

Independent Results
[Twelve years ago, I worked for a university doing departmental IS/IT. The scope of my job
ranged from fixing PCs to hiring part-time dataentry personnel. Most of my time was spent
programming and maintaining the 300,000-entity database on a mainframe. Since I was the only
database administrator for this department, I had to write and test my own code. While I know

that I never intentionally wrote bad code, it still would have been valuable having an independent
3rd party make sure that my programs were doing what they were supposed to.]

Many software engineers and, indeed, many customers at KeyLabs believe that their code
“doesn’t need to be tested.” However, the perspicacious QA manager realizes that their products
not only need to be tested, but in many cases, need to be tested by an impartial third party—
whether that party is inside or outside the company. An outsource test lab offers instant
impartiality, primarily because they are not ego involved with the code they are testing. Their sole
job is to expose defects, and in many cases they are rewarded for each bug they find. An
outsource test lab comes to the testing event with no preconceptions. In other words, they aren’t
saddled with notions of what the product is or is not. They simply follow the test cases and report
inconsistencies. I have seen junior technicians out perform their mentors in shear number of
bugs found, simply because the technician did not try to second guess the application or to
devise a workaround to a problem. This independence is critical for quality software testing.

Another reason independent results may prompt you to consider outsourcing is that benchmark
and performance numbers are only as good as the “perceived credibility” of the source.
Understandably, most companies have a “Six Million Dollar Man” complex about their products—
better, stronger, faster. This leaves marketing departments with the responsibility of proving to
potential customers that their product is “better, stronger, faster” than the competitions’.
Performance testing executed by the vendor will always be under suspicion. Outsourcing to an
independent lab lends credibility to the report.

Finally, sometimes your customers demand independent validation of your technology. For
example, we had a firewall customer bring their firewall vendor into our lab to prove that it could
support 70,000 simultaneous connections. Fortunately for the firewall developer, we were able to
provide 3rd party validation that the firewall was performing as expected.

Temporary (non-permanent) Need
Even though you might be adequately equipped for your on-going, day-to-day testing, you may
not be prepared for the occasional peaks and unexpected developments. For instance, recently
many corporate testing organizations have received the additional responsibility of testing for Y2K
compliance. This is in addition to their normal responsibilities. Outsourcing is a viable alternative
to hiring for a temporary need.

Cost Containment
When you outsource, your costs become very visible. And because of this visibility, they are
much easier to budget for. How much does it cost to hire, set up, and train a new employee? At
a previous company I was allocating 36% over and above a persons salary. And this didn’t
include things like heating/air conditioning, office space rental, and equipment depreciation. As a
QA manager, you might be tempted to say “I can hire a temp for $20 an hour.” However, when
you add all the hidden costs (i.e. a PC, time spent training and managing, floor space, etc.) of that
worker, you will probably find that you are not any better off. Additionally, you managers will
agree, it is often easier to expense a project to an outside contractor than it is to add head count
to your department.

Strategic Direction
Finally, you may find that outsourcing is part of your company’s strategic direction. There are
companies that outsource everything that is not part of their “core competencies.” What this
means is, if company X is in the business of making software widgets, then only internal
corporate resources are dedicated to developing the best software widgets on the market.

Everything else is contracted out including support, order fulfillment, and yes, even QA testing.
We have seen many companies that outsource all their product testing. These companies
typically have a clear strategic vision of what they want to accomplish and are committed to the
outsource partnering relationship. Some of the value in partnering with an outsource lab is that it
allows them to focus their engineers on developing new technologies instead of using them to
test and maintain legacy applications.

The first half of this article talks about why you would want to outsource your software testing.
The remainder of this document will focus on common pitfalls in dealing with an outsource
software testing house. In reality, the points that follow are the most important things to keep in
mind when considering a move to outsourcing.

Common Mistakes in Dealing with Outsource Labs
Too many times developers see outsource testing as a magic bullet that is viewed as a way of
reducing pain or increasing bandwidth of already tight resources. Without a clear vision,
measurable objectives, and continuous involvement outsource testing will produce less-then-
desirable results. The following are pitfalls that I have seen that have resulted in an unsuccessful
outsourced relationship.

1) Assuming the outsourced lab shares the same vision you do. Common vision is shared
only after time and involvement. No contract test lab will intentionally try to mess up your
test. The more you can communication your desires and objective with the lab the more their
results will be in line with your expectations. When testing with an outsource partner,
evaluate them on process performance as well as testing performance. This means looking
beyond the technical qualifications of the test engineer. Do they have processes and
procedures for ensuring that you will be satisfied with the final results? Do they have a
mechanism for reporting on the status of a project? Do they communicate information in a
way that is beneficial to you? Are they capable of adjusting to your changing requirements
without re-bidding the entire project? Finally, when a screw up occurs, did they take
ownership, fix it, and move on or did they try to pass blame?

2) The Manure Principle comes from the idea of taking all the horse manure, throwing it over
the fence, and expecting to return in a week and find a beautiful rose garden. Throwing a
disorganized project over the fence with no involvement and expecting successful results is
bound to result in frustration and disappointments for both you and your outsource partner.
True, contract labs can help ease your pain by sorting through the chaos that you call your
job. Just make sure that they know what is expected of them. If you expect them to sort
through the incomplete test plans and make recommendations, then say so. Don’t just give
them some test cases and tell them to execute them, because that is exactly what they will
do. The customer statement that sends up a red flag at KeyLabs is “I work like the military. I
give an order and expect it to be obeyed.” Typically, this phrase is spoken by someone
whose only experience with the military was when they were giving orders to their GI-Joe with
the Kung Fu Grip. Even Napoleon would run his instructions by the dumbest soldier. Only
after that conscript understood the order completely would Napoleon issue the instructions to
the rank and file.

3) Lack of commitment to outsourcing. Outsourcing needs both upper and lower level
support. To many times I’ve seen customer technicians try to sabotage the process because
they felt that outsourcing was going to cost them their job. If you sense or suspect reticence,
try assuaging their doubts before the process starts. As a manager, this type of reluctance
on the part of your test engineers does not help your situation, because you still have work
that needs to be done and uncooperative employees.

4) Setting departments at odds with each other. Just as it is important to communicate your
objectives with your partners outside the company, you need to make sure that the different
departments inside the company share the same vision. There was an occasion where a
customer came to KeyLabs to develop a benchmark. We worked closely with their appointed

contact to get the benchmark just right—making requested adjustments to the original test
plan as we went along. When their contact was satisfied with the results, he presented them
to his VP, who promptly notified us that the work did not meet the VP’s expectations of the
assignment. It is important to make sure that all internal departments share the same vision
for each project otherwise support for outsourcing will erode and frustration will abound.

Finally, minimal planning and no communication are key to an unsuccessful outsource testing
relationship. Most of the problems I have encountered have been due to breakdowns in
communication. This was so important that at KeyLabs, we require, at a minimum, daily
communication—even if nothing has happened that day. This level of communication eliminates
surprises and uncertainty.

With all the things you have to worry about, it is nice to be able to share the workload with
someone else. However, good intentions are not enough to ensure success. Partnering requires
open communication and continuous involvement before expectations can be met.

KeyLabs invite questions or comments regarding this article. Please email your comments to ebowden@keylabs.com.

1

Software Emancipation Technology
presents

DISCOVER®

 Quality Process-Control and Management

presented by:
Bruce Boes

Agenda

• The Problem

• DISCOVER

• Software Quality Process-Control
and Management

• About SET

2

IDC States:

 “The fact that applications are rapidly becoming larger, distributed
and more complex is indisputable. There is also pressure to
deliver applications far more quickly and with higher quality than
ever before.”

 “The result is the ‘Software Complexity Crisis’ which suggests
that the increasing size and complexity of applications will require
a far more rigorous approach to application development”

Jeff Kinz

IDC #15523, March, 1998

Year 1 Year 4Year 3Year 2

Build
Application

Application
Used

Customer/Market
Enhancements

Competition, Mergers, Multi-Site &
Platform Support, Customer and

Feedback Enhancements

Software System EvolutionSoftware System Evolution

Change of computing paradigms and
Increasing Complexity of the product;
Result in a loss of Control

3

Software Quality

• 2 Types of Quality

External Quality
That Which Can be Seen by Customers

Traditionally Tested

Internal Quality
Program Structure
Coding Practices
Maintainability

WHAT YOU SEE
System Crashes

Unexpected Behavior
Data Corruption

Slow Performance
(Usability)

(Usefulness)

WHAT IS HAPPENING
Lost Development Time

Fixes introduce new Problems
Lengthy Retesting

Loss of Competitiveness
Loss of Reputation

Costs are Out of Control

time

Product Quality

M
ai

nt
en

an
ce

 C
os

t

“As S oftware ages and complexity increases - quality deteriorates while
maintenance cost spiral out of control”

4

Software Quality

• Assertions!
– External Quality is a Symptom

– Internal Quality is the Root Problem

– Poor Internal Quality = High Maintenance

– In Order to Improve SW Quality:
• Internal Quality Must be Addressed

DISCOVER

• DISCOVER is a Software Development
Information System based on a single,
comprehensive database of all the
objects used throughout the software
design, implementation, test, and
maintenance process

5

Information System ApproachInformation System ApproachInformation System Approach

Navigate/
Query

Analyze/
Change

Build/
Report Reengineer

Monitor/
Control

Information

Model

DATA

Source
Code

Tests
Documents
and Specs ETC.

For C, C++,
Oracle SQL,

and Java

Data Base
of

Information

Accounts
Payable

Order
Processing

General
L edger

Accounts
Receivable

Payroll

Asset Mgt

MIS

Data Base
of

Information

Personnel
Records Benefits

Applicant
Records

Benefits
Administration

Payroll
W/H and 401k

HR IS

Data Base
of

Information

Inventory

S hop F loor
ControlAccounting

E ngineering

S cheduling
Purchas ing

MRP

Information
Model

Developer

E ngineer

S pecial
P rojects

ArchitectQA Analys t

P roject L eader

DIS
Development Information S ys tem

DIS
Development Information S ys tem

Technology Parallels

6

DIS COVER Information Model

DIS COVE R
Information Model

E ntities

DIS COVE R
Information Model

E ntities
• Functions
• Structures
• Classes
• Global Variables
• Local Variables
• Unions
• Strings
• Macros
• Typdefs
• Enums
• Templates
• Packages
• Methods
• Class Vars
• Classes
• Interfaces
• Tables
• Cursors
Software Artifacts
• Unit Test
• Requirement Documents
• Documentation
• Design Documents

Entities Attributes Relationships

F ile S ys tem

DISCOVER ®

Model Build
E xis ting
S oftware

DIS COVE R
Information

Model

How the DIS COVER
Information Model is Built

ADMIN:
•Handles a wide variety of Makefile sys tems
•Generates Product Definition F ile from makefiles
•T he Generated PDF mirrors the build environment

E xecutableE xecutablePre-
processor

Pre-
processor CompilerCompiler L inkerL inker

PDFPDF
DIS COVE R ’s
R ecoverable

Parser

DIS COVE R ’s
R ecoverable

Parser
 ADMIN ADMIN

File S ys tem

Current source
directory structure

MakefilesMakefiles
DISCOVER

Information Model

7

Measure and Enforce
Quality Standards

QA Analyst

Rapid Source Code
Comprehension

DEVELOPER

Semantic and Syntactic
Source Code Analysis
and Change Propagation

ENGINEER

Project Setup
 and Management

PROJECT LEADER

DISCOVER

Information
Model

DISCOVER

Information
Model

Massive Source Code
Reengineering and Reuse

ARCHITECT

DISCOVER
Software Development Information System

For C, C++
SQL, JAVA

20-30%
Organizational Productivity Gain
By “Working Smarter”

30-50%
Gain by “Avoiding Work”

Infinite!
Improvements in Quality

10-20%
Personal Productivity Gain
By “Working Faster”

DISCOVER Focus

• Quality Process Control and Management
– Capture Company Standards for Software

Development

– Attack Internal Quality
• Root Cause Problem

– Provide a means to monitor and measure quality
complementary to testing

• Entire base

• Each new submission

– Transform Quality Control to Quality Assurance

– Provide Access for all Developers

8

Quality Process Control and
Management

• Capture Company Standards for Software Development
– Quality Filter Sets (QFS)

• Document Company Coding Standards for SW Quality

• Identifies Targeted Programming Constructs

• Provides Pre-Defined Filter Sets with Domain Expertise

– Programming Standards

– Portability

– Globalization

– Structure

– Complexity Metrics

– Statistical Measurements

– Y2K

• Customizable and Expandable with QFS Master

• Multiple Uses

DISCOVER Quality
Improvement Solutions

• Provide a Means to Measure and Assess Initial
Quality
– QAR

– Establishes a Quantitative Baseline to Measure Improvements in Product
Quality

– Generates a QFS Based Quality Assessment Report (QAR)

» Graphical Charts

» List of Viewable Suspect Instances

Ideal Quality

Dangerously low software quality

Low risk/ high quality

Products to market
sooner, fewer defects

High risk/low quality

Products to market later,
more defects

9

Quality Process Control and
Management

• Provide a means to monitor Quality

– Submission Check
• Monitors Compliance with Established Standards via QFS

Before Submission

• Allows Process Repeatability, Scalability

“Information

Model”

DISCOVER Quality
Improvement Solutions

• Provide a Means to Monitor Quality
– QA Cockpit

• Regularly Generated QFS Based Quality Assessment Reports (QAR)

• Provides Assessment of Trends Over Time
– Graphical Charts

Class Complexity Over Time

19
-J
ul
-9
5

25
-J
ul
-9
5

31
-J
ul
-9
5

6-
A
ug
-9
5

12
-A

ug
-9
5

18
-A

ug
-9
5

24
-A

ug
-9
5

30
-A

ug
-9
5

5-
Se

p-
95

11
-S
ep

-9
5

17
-S
ep

-9
5

23
-S
ep

-9
5

29
-S
ep

-9
5

5-
O
ct
-9
5

Time

Complexity

Total #

10

Quality Process Control and
Management

• Software Quality Assessment Diagnostic
Service
– Software Quality Assessment Diagnostic

– One Time Quality Assessment Report

– For Use In:
• Management Audits

• Software Acquisitions

• Proof of Concepts

Quality Process Control and
Management

• QA Analyst
– QFS Master Helps Establish Company

Standards

– TestCoverage Assures all Application
Features have Tests

– Turns Quality Control

Departments into
Proactive Quality
Assurance Departments

11

Accelerated Deployment and
Ease of Use

• Developer Xpress
– Concentrates on Comprehension

– Provides Fast Ramp Up

– Requires Only1/2 Hour Training

– $3000 Per Seat

Cost of Ownership
is Stabilized

Cost of
Software

Ownership

Cost of
Software

Ownership

TimeTime

O
ld

MaturityOrigin

New

12

Quality = Productivity

Maintenance 75%

Net
PRODUCT IVIT Y

Gain

Lower Quality

Higher Quality

New Development
25%

Maintenance 25% New Development 75%

Improvement of Software Quality, Liberates

Organizational Productivity

Summary

 The new Quality Process Control and
Management Solutions empower
management with unprecedented control,
giving them precise, predictable, and
measurable information about the quality
of their software as it is being developed.

13

Progress Software States:

 “Progress Software is always searching for new technologies to
gain competitive advantage. We recognize the benefit of
DISCOVER’s Quality Assessment Report (QAR) in providing us
with a mechanism to measure and track the quality of our software
on an ongoing basis, and to deliver high quality product to market
on time.”

Peter Sliwkowski

Vice President, Engineering

Progress Software

1/99

SET Confirms:

 “For the first time in history, Software Emancipation is placing in
the hands of software management, quality analysts, and engineers
the capability for quantitative, unbiased measurement of software.
This mechanism will provide the means to measure the quality of
software during the development process, as opposed to merely
testing it after integration.”

Software Emancipation Technology

14

Recent Company
Developments

• #2 New England Fast 50

• #11 National Fast 500

• 140 Customers

• 2600 End Users

• 50% Growth Forecast FY1999

Quality Week ’99 May 27, 1999

1

Automating
Cleanroom

Management

Automating
Cleanroom

Management

John Okanishi
T echnical Consultant

John Okanishi
T echnical Consultant

Automating Cleanroom
Management
Automating Cleanroom
Management

■ What is Clean Room Management

■ Change and Configuration

Management Benefits

■ Endevor: T he S olution

Quality Week ’99 May 27, 1999

2

What is Cleanroom
Management?
What is Cleanroom
Management?

Cleanroom, as defined by IBM, is a “managerial and

technical process for the development of software with ultra-

high quality with certified reliability”

“Management of the Cleanroom process is based on an

incremental life cycle in which development and certification

are conducted in a pipeline of user-function increments .”

Incremental L ife CycleIncremental L ife Cycle
■ Composed of s ite-defined requirements executed in

the system environment, des igned to accumulate

changes into a final product.

– Integration is top-down and continuous

– Implementation of process key to ensure change

process is error free

– Each change increment implemented onto of the last,

following the same procedures

Quality Week ’99 May 27, 1999

3

Incremental L ife CycleIncremental L ife Cycle

Automation, the Key to S uccess

■ Components of change increment move together

■ Required processes and tests can be automated -- ensuring

accuracy

■ Audit trail of all activities

Stage 1 Stage 2 Stage 3 Production

Change and Configuration
Management
Change and Configuration
Management

T he ability to manage,T he ability to manage,

control and improve thecontrol and improve the

process of building,process of building,

changing and operatingchanging and operating

software sys tems.software sys tems.

Quality Week ’99 May 27, 1999

4

CCM BenefitsCCM Benefits

■ Des ired bus iness s tandards are applied…everytime

■ Audit requirements are achieved

■ Concurrent development is under control

■ Prior executables recreated quickly and correctly

■ Accurate source to executables trace

CCM BenefitsCCM Benefits

■ T rack all components of a change

■ All required components are included

■ Appropriate approvals performed in a timely fashion

■ Reduced downtime

■ Improve time to market

Quality Week ’99 May 27, 1999

5

T he S olution: EndevorT he S olution: Endevor
E ndevor features:

■ Vers ion control

■ Change control

■ Configuration control

■ Life-cycle modeling

■ Concurrency protection

■ Auditing and reports

Standards Enforcement

Vers ion and Change
Control
Vers ion and Change
Control

■ Know who, when, why change made

■ Ensure the right people get involved

Quality Week ’99 May 27, 1999

6

Standards Enforcement

Configuration
Management
Configuration
Management

■ Creates executables when source is changed

– S tandards defined and enforced

– S tandard processes implemented

– Repeatable procedures established

Standards Enforcement

Life-cycle ModelingLife-cycle Modeling

■ E s tablish and enforce s ite-specific s tandards for life

cycle adminis tration

■ For specific change increments , individual

applications or across the organization

■ Ensures process control

Quality Week ’99 May 27, 1999

7

A A s ignins ignin-s ignout facility -s ignout facility prevents unintentionalintentional
overlaying of codeoverlaying of code

Parallel Development Management

Concurrency ProtectionConcurrency Protection

Prog A

EMU

Stage 3 Production

Concurrency ProtectionConcurrency Protection

Normal
Maintenance

EMU

Stage 2

Y2K

Quality Week ’99 May 27, 1999

8

Auditing and ReportingAuditing and Reporting

 Use ad hoc or predefined reports

with selection criteria

◗ Application logical class ification

◗ Activity

◗ Application changes

On-Line

Component
Used by Report

Component
Where Used

Report

Related
Entity Report

Impact AnalysisImpact Analysis

F rom S ynchronize Reports or

Auditing and ReportingAuditing and Reporting

Quality Week ’99 May 27, 1999

9

What is Cleanroom
Management?
What is Cleanroom
Management?

Cleanroom, as defined by IBM, is a “managerial and

technical process for the development of software with ultra-

high quality with certified reliability”

“Management of the Cleanroom process is based on an

incremental life cycle in which development and certification

are conducted in a pipeline of user-function increments .”

EndevorEndevor
 Workstation Workstation

Endevor for MVSEndevor for MVS

Endevor Endevor
for UNIXfor UNIX

Unicenter TNG Change and Configuration ManagementUnicenter TNG Change and Configuration Management
OptionOption

Endevor for NTEndevor for NT

Endevor S olution S uiteEndevor S olution S uite

1

YEAR 2000 READINESS DISCLOSURE NOT UNIVERSALLY

TESTMASTERS, Inc.

Y2K
INDEPENDENT
VERIFICATION

&
VALIDATION

May 1999 YEAR 2000 READINESS DISCLOSURE NOT UNIVERSALLY

What is Y2K IV&V? TESTMASTERS, Inc.

u INDEPENDENT
èConduct project review outside authority of established

project management
èEnsure project team reviews and understands all

findings and recommendations prior to reporting
èPreliminary and final written reports for project and

senior management

2

May 1999 YEAR 2000 READINESS DISCLOSURE NOT UNIVERSALLY

What is Y2K IV&V? TESTMASTERS, Inc.

u VERIFICATION
èStudy the project management and testing methods to

determine the effectiveness of the processes
èEnsure appropriate measures are being taken to

minimize the Y2K risks while staying on schedule and
within the budget

èRecommend process improvements, if necessary, to
find an approach that strikes a balance between risk
mitigation and cost

May 1999 YEAR 2000 READINESS DISCLOSURE NOT UNIVERSALLY

What is Y2K IV&V? TESTMASTERS, Inc.

u VALIDATION
èAuthenticate the correctness of the currently used

methods to achieve the expected benefits
èReview of the year 2000 test plans, testing procedures

and test results, including specified date validations
èValidation efforts include independent testing of the

methods and techniques used by the project

3

May 1999 YEAR 2000 READINESS DISCLOSURE NOT UNIVERSALLY

Usefulness of the Y2K IV&V TESTMASTERS, Inc.

u Recommended by attorneys
u Required by some companies and state agencies
u Verify the exercise of “Due Diligence”
u Increase the comfort level of the project team,

management and customers that the computer dependent
processes will perform satisfactorily after December 31,

u Maximize Y2K project performance by providing unbiased
advice on methods and review of results

May 1999 YEAR 2000 READINESS DISCLOSURE NOT UNIVERSALLY

The Y2K IV&V Process TESTMASTERS, Inc.

 1. Planning and Initial Assessment

 2. Evaluation

 3. Collection and Analysis

 4. Remediation and Test Review / Test Execution

 5. Reporting

4

May 1999 YEAR 2000 READINESS DISCLOSURE NOT UNIVERSALLY

The Y2K IV&V Process TESTMASTERS, Inc.

u Planning and Initial Assessment
èDevelop the scope and details of the IV&V effort

including project duration & deliverables, reporting
responsibilities and structure, client point(s) of contact,

èCollect basic project materials, such as project plans,
program inventories, coding/testing standards, Y2K
program change standards, test strategies and plans, test
results, status reports

May 1999 YEAR 2000 READINESS DISCLOSURE NOT UNIVERSALLY

The Y2K IV&V Process TESTMASTERS, Inc.

u Evaluation
èReview all project materials collected during Start-up &

Initial Assessment with particular attention to missing
or incomplete materials

èUse standard checklists and the expert’s understanding
of “good standard practices” to determine, if or where,
project practices, including the program
strategy, are not adequate to accomplish project

èPrepare preliminary findings on the effectiveness of the
project management, program correction and testing
methodologies in use

May 1999 YEAR 2000 READINESS DISCLOSURE NOT UNIVERSALLY

The Y2K IV&V Process TESTMASTERS, Inc.

u Collection and Analysis
èCollect and review detailed project plans,

strategy and test plans for completeness
èEnsure test plans contain all applicable test plan

èExamine test conditions and test data to determine if
they provide for adequate test coverage of the key test
dates and exercise changes called for in the

èReview standard policies and Y2K project practices to
determine if they are applicable and consistently used

May 1999 YEAR 2000 READINESS DISCLOSURE NOT UNIVERSALLY

The Y2K IV&V Process TESTMASTERS, Inc.

u Remediation and Test Review / Test Execution
èVerify the program remediation by selecting a sample

system and reviewing the sample for adherence to
established guidelines

èReport any problems found with, or enhancements
 process to project

èVerify program testing by reviewing test plans and
test deliverables to ensure that testing is following
established guidelines and achieving adequate levels of

èConduct or witness test execution

May 1999 YEAR 2000 READINESS DISCLOSURE NOT UNIVERSALLY

The Y2K IV&V Process TESTMASTERS, Inc.

u Reporting
èReport preliminary findings after planning and initial

èLog, track and report all project issues
èReport the results of schedule monitoring including any

variances and slippage
èProvide periodic IV&V reports to project management

and the project oversight authority
èProduce Final “letter of certification” for the system(s)

1

Testing Considerations
for

Web-Enabled Applications

Gerry Ocampo

Agenda
• Web Overview
• Test Considerations
• Test Types
• Conclusion

2

Types of Web Applications

• Business-to-Consumer
• Business-to-Business
• Catalog Applications
• Publishing Applications
• Transactional Applications

Web Architecture & Technology

• INTRANET
• INTERNET
• EXTRANET

3

Web Components

• Storefront
• Backoffice
• Security
• Database
• Other integrated systems

Test Considerations
• Quality Criteria
• Product Elements
• Project Factors
• Risk Assessment & Contingency

Planning

4

Test Considerations
• Project Planning
• People and Skills
• Test Environment
• Tools
• Test Outsourcing
• Testing Types

Compatibility Testing

Determines how well an application works in conjunction with
a variety of other products, on certain operating systems,
across a broad range of hardware and component
configurations, and when exposed to earlier
versions of the product.

Examples and Approach

5

Functionality Testing

Determines the extent to which an application meets
expected functional benchmarks through systematic
validation of product features with respect to representative
input data. This process can be as simple as checking to
make sure that each piece works, or as detailed as checking
a variety of scenarios and validating that all output is correct.

 Examples and Approach

Functional Globalization Testing

Determines how well an application functions across a range
of languages. Once functionality has been verified in the
English language, localized versions are checked to
determine whether particular language translations create
failures specific to that language version.

Examples and Approach

6

Interoperability Testing

Determines, to a deeper extent than compatibility testing,
how well an application works with a specific cross-section of
external components such as hardware, device drivers,
second-party software, and even specific operating systems
and factory delivered computer systems.

Examples and Approach

Performance Testing

Determines how quickly an application executes a variety of
events. This type of testing sometimes includes reports on
response time to a user’s command, system throughput, or
latency. The word, "performance" has various meanings.
Data Dimensions uses the word to refer to speed.

Examples and Approach

7

Load Testing

Determines how well an application functions when it is in
competition for system resources. This competition most
commonly comes from active processes, CPU utilization, I/O
activity, network traffic, database storage, or memory
allocation.

Examples and Approach

Stress Testing

Determines, to a deeper extent than load testing, how well an
application functions when a load is placed on the system
resources that exceeds their capacity. Stress testing can also
determine the capacity of a system by increasing the load
placed on the resources until either a failure or unacceptable
product behavior occurs.

Examples and Approach

8

Scalability Testing & Capacity
Planning

Predicts when future load levels will saturate the system.
Performing load/stress testing will assist in accomplishing
this but usually is supplemented by other techniques such as
performance modeling techniques.

Examples and Approach

Installation Testing

Determines how well and how easily an application or
component installs on a variety of platform configurations.

Examples and Approach

9

System Integration Testing

Determines, through isolation, which component of an
application is the roadblock in the development process. This
testing is beneficial to products that come together through a
series of builds where each step in the development process
has the potential to introduce a problem.

Examples and Approach

Test Automation

Determines how well an application functions through a
series of automated tasks, using a variety of tools to simulate
complex test data.

Examples and Approach

10

Conclusion

• Address the complexity
• Identify key areas by components
• Analyze test considerations
• Implement test strategy

Data Dimensions, Inc.

Gerry Ocampo
Gerry-Ocampo@Data-Dimensions.com

http://www.data-dimensions.com

www.softdim.com TestProc-1

5

&

Disciplined Software Testing Practices
&

Software Testing Certification
Dr. Magdy Hanna

International Institute for Software Testing

www.softdim.com

www.softdim.com TestProc-2

5

&

How Are We Doing??

• Testing is the only defect removal method practiced in
99% of software organizations

• Testing is the only activity that gets shortened or
almost eliminated to meet budget and time constraints

• Testing has much defect removal efficiency than
formal inspections.

• Most testing efforts focus on testing the functionality
of the software

www.softdim.com TestProc-3

5

&

Practice #1:
Maintain User’s Requirements

• You can’t test what you do not know

• Requirement precession is a must

• The use of prototyping is NOT an excuse for not
documenting requirements

• Use Case analysis is always works

• GUI models only functional requirements

www.softdim.com TestProc-4

5

&

Functional Vs Quality Requirements

• Although functional requirements seem to be most
important to the user, most software disasters
result from poor quality software.

• Quality requirements are the least understood
requirements by both customers and developers.

• Although never talked about, quality requirements
seem to be an “assumed” customer expectation.

• You can’t achieve quality unless you define it.

• You can’t evaluate quality unless you measure it.

www.softdim.com TestProc-5

5

&

The Sixteen Fitness-for-Use Factors
1. Configurability

the ability to configure the software for user’s convenience. Examples are
changing the system-user interface to use certain graphical symbols or
changing the default use of directories.

2. Correctness
the degree to which the software conforms to the user’s functional
requirements.

3. Efficiency
the amount of resources required by the system to perform its intended
functionality. This includes processing time, memory, disks, or
communication lines.

4. Expandability
the ability to change the software to add more functionality or to improve its
performance. This deals with the perfective maintenance of the software

www.softdim.com TestProc-6

5

&

The Sixteen Fitness-for-Use Factors
5. Flexibility

the ability to change the software to function in a different environment.
This includes working under different database structure or to execute
in a context different from that considered in the original
implementation. This deals with the adoptive maintenance of the
software.

6. Integrity
the ability of the software to protect itself and its data from overt and
covert access.

7. Interoperability
the ability of the software to exchange data with other software

8. Maintainability
the ability to change the software to fix errors. This deals with the
corrective maintenance of the software.

www.softdim.com TestProc-7

5

&

The Sixteen Fitness-for-Use Factors

9. Manageability
the ability to properly manage the administrative aspects of the software.
This includes resource allocation, configuration management, etc. It also
deals with the availability of tools to support manageability.

10. Portability
the ability of the software to function on different platforms.

11. Reliability
the rate of failures in the software that make it unable to deliver its intended
functionality.

12. Reusability
the ability to reuse portions of the software in other applications.

www.softdim.com TestProc-8

5

&

The Sixteen Fitness-for-Use Factors

13. Safety
the ability of the software to perform its functionality without causing
any unsafe conditions.

14. Survivability
the ability of the software to continue execution, even with degraded
functionality, after a software or hardware failure.

15. Usability
the ease by which the software can be learned and used.

16. Verifiability
the ease by which it can be verified that the software is working
correctly.

www.softdim.com TestProc-9

5

&Practice #2:
Trace Requirements to GUI

Components and Database Components
Req 1 Req 2 Req 3 Req 4 Req n

Component 1 X X
Component 2 X X
Component 3 X X X
Component 4

Component n

www.softdim.com TestProc-10

5

&Practice #3:
Trace Requirements to Test Objects

Req 1 Req 2 Req 3 Req 4
Test Case 1 Passed/

Failed
Passed/
Failed

X

Test Case 2 Passed/
Failed

Passed/
Failed

Test Case 3 Passed/
Failed

X

Test Case 4 Passed/
Failed

X

Test Case n

www.softdim.com TestProc-11

5

&

Practice #4:
Clearly Understand and Communicate
The Difference Between Testing and

Debugging

• Debugging is an ad hoc activity performed by
individual developers to find and remove bugs
from a program.

• Testing is a planned activity

www.softdim.com TestProc-12

5

&

Practice #5: Treat Testing As a Process
NOT As a Lifecycle Phase

Requirements

Design

Coding

Testing

Maintenance

????

www.softdim.com TestProc-13

5

&

Testing As A Process

Requirement
Analysis

Design Coding

Test Planning

Test Design

Implementation
&Maintenance

Test Execution

Regression
Test

www.softdim.com TestProc-14

5

&

Practice # 5:
Formally Define a Testing Process

Input output

www.softdim.com TestProc-15

5

&

Practice # 6:
Select Tools to Support Your Process

• Test planning tools

• Test management tools

• CM tools

• Test design tools

• Test coverage tools

• GUI testing tools

• Static analysis tools

• Test execution tools

www.softdim.com TestProc-16

5

&Practice #7:
Establish a Mechanism For Improving

The Process

• Measure, analyze and publicize success stories

• Revise process based on observations

• Re-train

• Re-measure

• Continuously improve the process

www.softdim.com TestProc-17

5

&Practice #8:
Develop A Test Plan

• Start planning for testing during the software
requirement phase or once it is complete.

• Never combine planning, designing, and executing
test in one phase.

• Test planning is the only way to perform
successful testing and to deliver reliable systems.

• Test planning is about developing a test strategy.

www.softdim.com TestProc-18

5

&

Components of The Systems Test
Plan

• Test Environment for systems test

• Objectives and scope of systems test

• Approach to systems test

• Staffing requirements and responsibilities for systems test

• Hardware, software, and network resources required for
systems test

• Tools

• Tasks and their sequence

• Deliverables and documentation of systems test

www.softdim.com TestProc-19

5

&

A Test Plan Template

1. Identification
 1.1 Systems Test Plan title
 1.2 Application
 1.3 Document locator
 1.4 Other documents

2. Systems Test Environment
 2.1 Site
 2.2 Security
 2.3 Submitting test items
 2.4 Software and central repository
 2.5 Supporting the testing environment
 2.6 Backup/Restore procedures

3. Systems Test Objectives and Scope

4. Systems Test Approach
 4.1 Test design
 4.2 Cycle and sequence
 4.3 Acceptance/Rejection criteria
 4.4 Suspending/Resuming systems test
 4.5 Reporting changes and corrections
 4.6 Support
 4.7 Order of systems testing

5. Staffing and Responsibilities

6. Hardware, Software, Network Requirements

7. Testing tools

8. Systems Test Deliverables

9. Systems Test Tasks

www.softdim.com TestProc-20

5

&Practice #9:
Balance Between Dynamic and Static

Testing

• Dynamic testing is the process of executing a
program or system with the intent of finding error

(Glen Myers’ definition)

• Static testing is any activity that aims at finding
defects by inspecting, reviewing and analyzing
any static component of the software (code,
documents, and models)

www.softdim.com TestProc-21

5

&

Balance Between Dynamic and Static
Testing

S S

S

S
S

S

S

S

S S

S
S

S

S

D

D

D
D

D D

D

D

D
D

S

S

D
D

D
D

D
D

D

D

D

D

D

D

D

D
D

D

D

D
DS

S

S

S
S

Many defects that are normally left for dynamic testing
can be found early through static testing

Defects found during
Static Testing

Defects found during
Dynamic Testing

www.softdim.com TestProc-22

5

&

Where Does Static Testing Fit?

Requirement
Analysis

Design Coding

Test Planning

Test Design

Implementation
&Maintenance

Test Execution

Regression
Test

Inspection

InspectionInspectionInspection

Inspection

Inspection

Inspection

www.softdim.com TestProc-23

5

&Practice #10:
Acquire Formal Training and

Certification

• Principles of Software Testing and Test Case
Design Techniques
– Requirement-based testing

– Test design specification

• Test management
– Planning

– Scheduling

– Resources

– Risk Management

www.softdim.com TestProc-24

5

&Acquire Formal Training and
Certification

• Testing process
– Defining the test process

– Measuring the testing process

– Improving the testing process

– Testing mainframe applications

– Testing client/server applications

– Testing Internet and web applications

– Testing object-oriented applications

– Testing embedded systems

www.softdim.com TestProc-25

5

&

Acquire Formal Training and
Certification

• Test Execution and defect tracking
– Test scripting

– Reporting

– Defect tracking

• Test automation
– Tool evaluation and selection

– Scripting

www.softdim.com TestProc-26

5

&

Acquire Formal Training and
Certification

• Requirement definition and refinement
– Writing testable requirements

– Requirement validation

• Static Testing (Inspections, Reviews)
– Defining the process

– Defining standards

– Measuring the process

– Improving the process

– Defect data analysis

www.softdim.com TestProc-27

5

&

Why Get Certified?

• Testing has become a career; You can’t have a
career without certification

• Broaden your skills and improve your marketability

• Improve the image of software testing professionals

• Professional recognition of skills and experiences

• Formal training can only be acquired through
Education-based certifications

• Be prepared to meet the today’s testing challenges

1

Charting the Progress of
System Development Using Defect Data

Copyright © 1999 Rex Black. All Rights Reserved.

Rex Black
President and Principal Consultant

7310 Beartrap Lane

www.rexblackconsulting.com
Rex_Black@rexblackconsulting.com

24-28 May 1999 12th International Software Quality Week

Benefits of Charting Bug Data
• Assess Product, Process, and Project

– Product stability
– Defect removal trends
– Root cause analysis
– Bug management
– Hot spots

• Communicate Status to Peers and

– Summarize key facts and underlying trends
Get the point across quickly.
Manage key indicators, not the crisis du jour.

2

24-28 May 1999 12th International Software Quality Week

Case Study: SpeedyWriter
Phase Cycle Start Date End Date Bugs Found

Component test 1 7/19/99 7/25/99 25

2 7/26/99 8/1/99 20

3 8/2/99 8/8/99 5

Integration test 1 8/2/99 8/8/99 20

2 8/9/99 8/15/99 15

3 8/16/99 8/22/99 5

System test 1 8/16/99 8/22/99 10

2 8/23/99 8/29/99 5

3 8/30/99 9/5/99 0

First customer ship
(FCS)

— 9/13/99 — —

 Key fields in bug tracking database for metrics
Bug report opened date
Bug report closed date

Bug root cause
Affected subsystem

 Export the bug reports to a spreadsheet to prepare charts
Bug reports approximate (linearly) underlying bugs (about 27% high)

24-28 May 1999 12th International Software Quality Week

Bugs Opened/Bugs Closed
• Cumulative opened curve becomes flat as system under test stabilizes

and test system finds all the bugs it can identify.
Cumulative closed curve converges to cumulative open curve, closing
the quality gap, as system under test approaches “customer ready” state.
A cumulative closed curve that tracks the cumulative open curve

• Milestones in the project
show up as changes in
the shape of the curves.

• In a worksheet, use
Excel COUNTIF()
function for opened and
closed bug reports by
date and two running
totals to create the chart.

3

24-28 May 1999 12th International Software Quality Week

Opened/Closed:Trouble Indicators
Counterclockwise from left:

– Endless bug discovery
(product never stabilizes)

– Ignored bug reports
(persistent quality gap)

– Poor report management
(sloppy open/close process)

Closure Period
• Measures turnaround time on reported bugs (developer responsiveness):

– Daily closure period is average turnaround for all bugs closed on a given day
Rolling closure period is average turnaround for all project bugs closed to date

• A stable closure period implies a smooth rolling closure period and daily
closure periods that are bounded at the top end by two or three times the
test cycle duration (in this example, each cycle is one week).

• An acceptable closure
period shows bugs moving
to resolution in the time
specified by project
management.

• This chart measures the
quality of the overall
process, including
development and test, for
bug fixing.

4

24-28 May 1999 12th International Software Quality Week

Calculating Closure Period
1. Find the closure period for each closed bug report.

2. Calculate the total closure period for all bug reports by date.

24-28 May 1999 12th International Software Quality Week

Calculating Closure Period (cont)
3. Count the number of bugs closed on each date.

4. Determine the daily and rolling closure periods.

5

24-28 May 1999 12th International Software Quality Week

Root Cause Breakdown
• Understand the underlying mistakes, miscommunications, and other

errors that lead to bugs and bug reports.
Allow for course-correction during the project.
Provide information for long-term development process improvement.

24-28 May 1999 12th International Software Quality Week

Subsystem Breakdown
• Analyze which portions of the system experience the most problems.

Increase testing of the subsystems that produce the most bug reports
(where there’s one bug, there’s another).
Improve the development processes (including internal testing) for the
subsystems that are most error-prone (preventing the additional bugs is

24-28 May 1999 12th International Software Quality Week 1

Charting the Progress of
System Development Using Defect Data

Rex Black; President and Principal Consultant,
RBCS, San Antonio, TX

Key Words: Test management, development
management, project management, bugs,
defects, bug reports, metrics, development
project, opened/closed, found/fixed, defect
removal, closure period, root cause, subsystem.

Abstract
Aggregate defect data (bug reports), presented graphically, allow testers to give development,
project, and executive management “dashboard” information they need to drive development
projects to successful conclusions. I discuss four charts that distill meaning from test findings in
terms of product stability, quality, bug repair, root cause, and affected subsystems.

Introduction
While bug reports are useful by themselves, you can discover some interesting facts by analyzing
them in aggregate. Defect data form the basis of various quality control charts in a number of
industries, and computer software and hardware are no exception. In this paper, I will introduc
you to four simple yet powerful, sophisticated defect analysis charts. The charts provide
information on project, process, and product quality. Using bug data, you can generate defect
analysis charts that show patterns in the process of defect removal, the root causes of bugs, th
effectiveness of bug management, and the parts of the product that cause the most problems.

These charts are also excellent for communicating with management for three reasons. First, test
metrics, graphically presented, highlight and illustrate test results that are difficult to explain
using the raw data, which usually consist of a thick stack of bug reports. Second, getting peopl
to focus for an hour-long bug review is hard, but presenting and explaining four charts fits into
the available attention span. Third, the perspective of these charts encourages the viewers to
manage the project and process according to key indicators, rather than to resolve the crisis du
jour.

Case Study
In the following paper, I use a case study approach to introduce these charts. The case study is a
hypothetical software development project to implement a word processor called SpeedyWriter. I
assume that the test team will execute a three-phased test effort as outlined in Table 1. The cas
study is presented from the perspective of a person looking back on the project on September 5,
1999, which gives us the benefit of hindsight. However, these charts are at their most useful
during a project; with practice, you’ll be able to understand the trends when you see them
developing. I’ve assigned pertinent data points somewhat randomly but to illustrate specific
circumstances. The charts are representative, though cleaner and clearer than those from a real
project.

Copyright © 1999 Rex Black. All Rights Reserved.

24-28 May 1999 12th International Software Quality Week 2

Phase Cycle Start Date End Date Bugs Found
Component test 1 7/19/99 7/25/99 25

2 7/26/99 8/1/99 20
3 8/2/99 8/8/99 5

Integration test 1 8/2/99 8/8/99 20
2 8/9/99 8/15/99 15
3 8/16/99 8/22/99 5

System test 1 8/16/99 8/22/99 10
2 8/23/99 8/29/99 5
3 8/30/99 9/5/99 0

First customer ship — 9/13/99 — —
Table 1: The Bug Location and Test Schedule for SpeedyWriter

The SpeedyWriter team uses a basic bug tracking database. To prepare the defect analysis charts
discussed in this paper, the following fields are necessary:

• Report opened date

• Report closed date

• Root caus

• Affected subsyste

To prepare these charts, you can use any bug tracking system capable of collecting these four data
points for each bug report, and exporting at least these four data fields into a file format readabl
by a spreadsheet program. (I used Microsoft ® Excel to create the charts in this paper.) Of
course, a useful bug tracking database must capture and report a lot more information than these
four fields, but that’s a topic for another conference.

In the following sections, I use bug reports-documented symptoms of problems observed by
testers-as a numerical proxy for actual bugs-defects present in software or hardware. Because of
duplicate bug reports, bug reports that turn out to be the result of test system or tester failure, and
other noise in the bug tracking database, this is a liberal approximation. On five projects
consisting of both hardware and software, I have observed defect overestimation by bug report
counts between 26 and 32 percent, with 27 percent the most frequent value. Therefore, th
approximation is defensible, and, assuming your bug reporting database captures root cause data,
you can correct your estimates dynamically.

Opened/Closed
The first and most important chart shows daily and cumulativ bug opened and bug closed
counts. It illustrates interesting trends in both defect location and repair, which often correspond
to important events in the project timeline. It also shows the stability of the product, and th
quality gap. Figure 1 provides an example of an opened/closed chart.

Copyright © 1999 Rex Black. All Rights Reserved.

24-28 May 1999 12th International Software Quality Week 3

Figure 1: Ideal SpeedyWriter opened/closed chart

This information-rich chart provides answers to a number of questions. First, are you ready to
ship the product? Since the number of bugs in a given program is unknown but is essentially a
fixed number once development ends, test projects eventually hit a point at which further testing
produces diminishing returns. When the cumulative opened curve—the top curve on the chart in
Figure 1—levels off at an asymptotic limit, testing is usually considered complete, at least for th
phase currently under way. (The asymptote actually indicates the fading of the test system’s
ability to find bugs in the current phase. Given a good test system, the bugs found represent th
bugs most likely to torment the customer, and the fading of the test system is consistent with
customer indifference.) Conversely, a cumulative opened curve that refuses to flatten indicates
that you have plenty of problems left to find. On the chart in Figure 1, the limit was hit around
August 23: the second cycle of system testing revealed few additional bugs, and then none were
found in the final round of system testing.

Next, have you finished fixing bugs? Once development winds down, developers usually start to
catch up with the problems. At about the same time, the cumulative opened curve starts to flatten.
Consequently, the cumulative closed curve—the lower curve on the chart in Figure 1—begins to
converge with the cumulative opened curve. Given the latency period that arises from the release
management process, the closed date for a given bug does lag the developer fix date. If you want
to add this, you will need a field to in your bug tracking database that tracks when bugs are fixed.

At a more general level, is the bug management process working? It is working well in this
example: the closed curve follows right behind the opened curve, indicating that the project team
is moving the bugs quickly toward resolution.

Finally, how do milestones in the project relate to inflection points, changes in the slope of th
cumulative opened or cumulative closed curves? The overlapping of the phases in the exampl
obscures this relationship somewhat, but often when you move from one test phase to the next,
you will see a spike in the cumulative opened curve. Such rises are gentle in our idealized

Copyright © 1999 Rex Black. All Rights Reserved.

24-28 May 1999 12th International Software Quality Week 4

example, but these transitions can be dramatic and even downright scary on some projects. As
developers move from writing new code or engineering new hardware to fixing bugs, you should
see an upward turn in the cumulative closed curve. A “bug scrub” meeting, where the technical
and management leaders of a project gather to decide the fate of all known bug reports, can result
in a discontinuous jump in the cumulative closed curve.

Such a chart is easily prepared using the COUNTIF() function in Excel. Create a worksheet that
counts, for each date during the test phases, how many bug reports were opened and closed. Then
accumulate these numbers day-by-day. Finally, use the Excel chart wizard to create the chart.

To explore the use of opened/closed charts, let’s look at three troublesome scenarios that
represent those unpleasant projects in which all test managers eventually participate. All of these
examples assume the SpeedyWriter testing schedule outlined in Table 1. For the first, imagin
that during the system test phase the bug find rate remains high and refuses to level off. The
opened/closed chart that results appears in Figure 2. Notice the deceptive leveling in the second
cycle of system test (8/23/99 through 8/29/99), where the opened curve appears to flatten, only to
leap up sharply in the third cycle (8/30/99 through 9/5/99). If the project team ships the product
on September 13 as scheduled, they can expect many failures in the field.

Figure 2: Endless bug discovery

For the second scenario, let’s assume that development is ignoring some of the bugs. Th
developers have convinced themselves that about 25 of the bugs that test has reported are beneath
contempt and can be disregarded. Figure 3 shows the opened/closed chart for this scenario. Until
about August 20, the chart in Figure 1 (the idealized example) and the chart in Figure 3 are not
radically different: on that date, the quality gap is about 20 in the former chart, whereas it is about
30 in the latter. Ten bugs out of 100 one way or the other three weeks before the first customer
ship is not a catastrophe. But as the second and third cycles of system testing unfold (8/23/99
through 8/29/99, and 8/30/99 through 9/5/99, respectively), it becomes clear that the gap is not
narrowing. Unless you bring the pernicious bugs to project management’s attention around

Copyright © 1999 Rex Black. All Rights Reserved.

24-28 May 1999 12th International Software Quality Week 5

August 23, the development team will deliver a fait accompli. Overturning their decision to
ignore these bugs even a week later will require a slip in the delivery date.

Figure 3: Ignored bug reports

Finally, suppose that the developers and the testers are both doing the right things at a technical
level, but the bug management process isn’t working. The development manager doesn’t notify
you when bugs are fixed and ready for confirmation testing, and you don’t follow up with your
testers to make sure they close bugs that pass confirmation testing. Also, testers don’t bother to
report bugs when they find them but instead wait until Thursday or Friday each week. Then they
enter their findings, some dimly remembered, into the bug tracking database. Figure 4 shows how
the opened/closed chart looks in this example. The trouble here is that you can’t tell whether a
jump in a curve represents a significant event or simply indicates that some people are getting
around to doing what they should have done earlier. If you use this chart as part of your project
dashboard, your gauge is jumpy.

Closure Period
While we’re on the topic of bug report management, let’s proceed next to the closure period
chart, which shows the daily and rolling (project to date) closure period for bug reports. Closur
period (a.k.a. closure gap) is complicated to calculate, but it has a simple intuitive meaning: th
closure period measures development’s responsiveness to test’s bug reports. Daily closure period
refers to the average number of days between the opening of a bug report and its resolution for all
bug reports closed on the same day. Rolling closure period is the average for all closed bugs,
including the current day and all previous days. Figure 5 shows the closure period chart for th
SpeedyWriter project. As you can see, the daily plot tends to “pull” the rolling plot toward it,
although the ever-increasing inertia of the rolling average makes it harder to influence as th
project proceeds.

Copyright © 1999 Rex Black. All Rights Reserved.

24-28 May 1999 12th International Software Quality Week 6

Figure 4: Poor report management

It’s useful to look at closure period in terms of stability and acceptability. A stable closure period
chart shows a relatively low variance from one day to another, with the slope of the rolling
closure curve remaining almost constant and close to 0. In addition, the daily closure period
fluctuates randomly around the rolling closure curve, staying within a few days in either
direction.

On an acceptable closure period chart, both the daily and rolling closure period curves fall within
the upper and lower limits set in the project or test plan for bug turnaround time. Although th
pressures of the typical project make it hard to believe, there is indeed a lower limit for an
acceptable closure period. Bugs deferred the day they are opened pull the daily closure curv
toward 0, but the bug remains in the product. Furthermore, an acceptable daily closure curve does
not exhibit a significant trend toward either boundary.

A closure period chart that is both stable and acceptable indicates a well-understood, smoothly
functioning bug management process. The ideal is a low number with a downward or level trend
since an efficient bug management process drives bugs through their state transitions to closure
with all deliberate speed. The closure period in Figure 5 is stable and, if management is realistic
in its expectations, acceptable. Bugs tend to get fixed in about a week and a half, which is a good
pace if you assume one-week test cycles and formal release management.

Unlike opened/closed charts, there are not archetypal “bad” closure period charts that indicate
particular types of failures in the development process. If the daily closure period shows too
much variability, then that might indicate sporadic bug fixing, but it could also mean that a mix of
simple functionality and complicated stability bugs are in the bug fix queue. An upward trend in
the rolling closure period can indicate a slowing of the fix process, but it may also imply that
development is focusing on the difficult bugs.

Copyright © 1999 Rex Black. All Rights Reserved.

24-28 May 1999 12th International Software Quality Week 7

Figure 5: SpeedyWriter closure period

Calculating the closure periods, as I mentioned above, is a little tricky. The process involves two
separate worksheets in Excel. In the first worksheet, calculate the closure period for each bug
report. The first step is to put all the bug report IDs in the left-most column on the worksheet.
The closure period for a given bug is N/A if the report is not closed. Figure 6 shows the upper
third of the Excel worksheet that calculates this number for each bug, including the formula (in
the formula bar, preceded with an “=” sign, directly above the worksheet).

Figure 6: Calculating closure period for each bug report.

On the second worksheet, calculate the daily and rolling closure periods. First, set up the left-
most column with all the dates from the start of test execution. Then, using thSUMIF()
formula, add the closure periods (from the previous worksheet) that correspond to a particular
closure date. (This number is zero if no bug report closed on that day.) Then, using the
COUNTIF() formula, find out how many bug reports closed on that day. The remaining
calculations entail totaling and dividing the numbers calculated by these two formulas. (Se
Figures 7 and 8 for the Excel worksheet, with the two formulas appearing in the respectiv

Copyright © 1999 Rex Black. All Rights Reserved.

24-28 May 1999 12th International Software Quality Week 8

formula fields.) The closure period chart is obtained by plotting the daily closure period and
rolling closure period columns against the dates in the first column.

Figure 7: Determining total closure periods by date

Figure 8: Determining bug reports closed by date

Root Cause
The third chart breaks down the root causes for all closed bugs. Root cause data is most
interesting in the aggregate. Listing the closure of one bug with a specific root cause may not
mean much, but seeing the breakdown for a hundred—or a thousand—bugs can tell an engaging
story. Figure 9 presents a root cause breakdown for SpeedyWriter, showing the contribution of
each type of error to the total number of bugs found and fixed so far. As you might imagine, a
chart such as the one in Figure 9 grabs management’s attention more effectively than a table.

Capturing root cause data has both short-term and long-term benefits. In the short-term,
developers and project management can use the root cause data to course-correct. If many bugs
arise from the lack of intelligible specifications, clarifying what the system should do may
prevent some of these problems as the project moves forward. In the longer term, for each
subsequent project, the project team can use the root cause information from previous projects to
improve their process.

The chart shown uses industry-standard categories to group the data. You can choose different
categories, you can use these, or you may have to accept the classifications offered by your bug
tracking system. The advantage of using industry-standard classes is that you can compare your
project and company results with those obtained by others in the software industry.

You can easily prepare the chart shown in figure 9. ThCOUNTIF() formula allows you to tally
the bug reports whose root causes fit into each category. The Excel chart wizard converts this
into a pie chart automatically.

Copyright © 1999 Rex Black. All Rights Reserved.

24-28 May 1999 12th International Software Quality Week 9

Figure 9: SpeedyWriter root cause breakdown

Subsystem
Like the root cause breakdown, the subsystem breakdown is a simple chart with an important
message: it tells you which subsystems experience the most bugs. Since this is usually closely
correlated with the subsystem in which the bug exists, you can draw conclusions about which
subsystems have the most bugs. This allows the project manager to focus process and product
improvement. It’s useful to format this as a Pareto chart, as shown in Figure 10, becaus
generally two or three subsystems suffer the most problems.

You can use a subsystem chart in the same way you use a root cause chart, to focus process and
product improvement efforts. The fact that the user interface and the edit engine account for two
out of every three bugs found in SpeedyWriter, for instance, indicates that an effort to make fewe
mistakes in these areas would pay off handsomely.

In addition, if you are dividing your test effort evenly among the six subsystems, you should
consider spending most of your testers’ time on these two problem areas. This conclusion might
seem counterintuitive—after all, if you didn’t find many bugs in the other four subsystems,
maybe you should have spent more time looking in those four categories. And you certainly
should do this if field-reporting problems indicate a disproportionate number of test escapes in
these four areas. However, it is usually the case that where you find many bugs, you will find
more bugs. On the five projects mentioned, the top two subsystems accounted for more than half
of the bugs every time, in two cases almost two-thirds, and once almost three-quarters.

Like the root cause chart, the subsystem breakdown is easy to create. On a separate worksheet,
use the COUNTIF() formula to compute the number of bugs in each subsystem. Sort the list by
count so that the most frequently reported subsystem comes first. Then, use another column in

Copyright © 1999 Rex Black. All Rights Reserved.

24-28 May 1999 12th International Software Quality Week 10

the same worksheet to accumulate an overall count for the upper curve on the chart. The Excel
chart wizard will do the rest.

Figure 10: SpeedyWriter subsystem breakdown

Points and Pitfalls
As you accumulate historical bug report data—on both good and bad projects—you can compar
charts from your current projects with charts from previous projects. Such comparisons can b
enlightening. Even within a single class of projects such as laptop computer development, I hav
seen variances of 600 percent in the total number of bugs found. Beyond the simple totals, th
shapes of the curves can also differ. If you use these four charts consistently across a fe
projects, you will soon recognize “virtuous” and “evil” curves.

Avoid blind faith in your charts, though. One key assumption of the opened/closed chart is ceteris
paribus (all things held equal). You can arbitrarily flatten any cumulative opened curve by
stopping the test effort. You can cause the opened and closed curves to converge by deferring
bugs rather than fixing them. You can spoof opened and closed dates in the database to make th
opened/closed chart fit any profile you choose. You can easily rig the closure period chart, too.
Mass deferral of stale bug reports, recording phony opened and closed dates, opening new bug
reports rather than reopening existing ones when fixes fail in confirmation testing, and other
manipulation of the opened and closed dates will defeat your purpose. Finally, carelessness when
assigning subsystems and root causes to bugs renders these charts worse than pointless. Nothing
good can come of making decisions based on phony data.

Similar cautions apply to any other analysis of defect or test data. For your analyses to hav
meaning, the underlying data must be accurate, complete, and free from gerrymandering. Only
honest data yields worthwhile information.

Copyright © 1999 Rex Black. All Rights Reserved.

24-28 May 1999 12th International Software Quality Week 11

Finally, for the closure gap and root cause charts, keep in mind that the charts represent a subset
of the overall bug data available. Only closed bug reports count in these charts. In the case of th
closure period, that means that the chart probably understates the true daily and rolling
turnaround metrics. The extent of the likely error in this chart depends on the proportion of th
bug reports that remain open at the moment of concern. The same argument applies to the root
cause chart. If fifty or more percent of the bug reports remain open, the root causes reported may
not represent accurately the root causes of all the bugs in the product. The opened/closed and
subsystem charts do not suffer from this problem to the same extent, being based on all the bugs
reported to date, but you are still managing from an incomplete data set until the project is over.
Be careful when using incomplete measurements to fine-tune processes in the midst of
development or test execution.

Conclusion
In this paper, I have introduced (or re-introduced) you to four charts I find valuable for managing
test projects. The perspectives offered by each chart are impossible to obtain by looking through
a stack of bug reports. The higher level of abstraction is enabled by using analysis and charting
tools to view certain key variables graphically. This abstraction along carefully chosen data
dimensions is what makes these charts good “dashboard” indicators of test and development
project performance.

The reports, charts, tables, and forms presented in this chapter are just starters. With a littl
imagination, you can extract all sorts of useful data and reports from a bug tracking database.
Start with simple tasks, learn the tool, and then expand it to meet your needs. For day-to-day
management, however, these four charts—or your own enhancements of them—may well suffice.
A cluttered dashboard makes it hard to focus on any one key indicator.

Recommended Readings
Rex Black: Managing the Testing Process (1999), Microsoft Press, Seattle, WA.

Boris Beizer: Software System Testing and Quality Assurance (1996), International Thomson
Computer Press, Boston, MA.

Kaoru Ishikawa: Guide to Quality Control (1986), Asian Productivity Organization, Tokyo.

Stephen Kan: Metrics and Models in Software Quality Engineering (1995), Addison-Wesley,
Reading, MA.

Biograph
Rex Black has spent almost seventeen years in the computer industry, with fourteen years in
testing and quality assurance. He is the President and Principal Consultant of Rex Black
Consulting Services, Inc., an international software and hardware testing and quality assuranc
consultancy (www.rexblackconsulting.com). His clients include Dell, SunSoft, Hitachi,
Motorola, Pacific Bell, GE Capital, Tatung, IMG, Renaissance Worldwide, DataRace,
OmegabyteOmnipoint, TeleSource, Strategic Forecasting, and Clarion. He recently completed
Managing the Testing Process, published by Microsoft Press in its Best Practices series. Mr.
Black holds a BS Degree in Computer Science and Engineering from UCLA, and belongs to th
Association for Computer Machinery and the American Society for Quality.

Model-based testscript generation for a C++
Object

J. P. Schroeder

TERADYNE

Software & Systems Test

44 Simon Street

Nashua, NH 03060-3094

800-996-8778

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

I

Table of Contents

Table of Contents ..i

Table of Figures..ii

Table of Tables ...ii

Purpose.. 1

Introduction... 2

Objects and Classes.. 2

Object Oriented Programming... 2

Object Testing... 3

C++ Classes ... 3

Example Class... 4

List Class... 4

Stack Behavior.. 4

Queue Behavior.. 5

Common Methods.. 6

State Machine Modeling.. 7

Black Box Testing... 7

Behavioral Models .. 8

State Machine Models.. 8

Attributes and Context.. 9

Stimulus/Response Pairs... 9

Styles of State Machine Models... 9

Pure Behavioral Models vs. Testing Models... 10

Example Class Modeling... 10

Object Analysis ... 10

State Transition Tables .. 10

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

II

Example Class Events ... 11

Example Class States .. 11

Example Class STT ... 12

Example Class State Machine Model.. 13

Exploring Model Behavior.. 15

Model Validation ... 15

Test Design... 16

Visual Documentation .. 16

Test Design Methodology .. 16

Tests... 18

Design Implementation .. 18

Model Annotation.. 18

Test Code.. 18

Automated Test Generation... 19

Constraint Strategies ... 21

Path Proliferation .. 21

Constraints.. 21

Coverage Schemes.. 22

Path Control .. 22

Example Class Model Constraints... 23

Summary.. 24

Questions or Comments?.. 24

Table of Figures

• Figure 1 C++ Class Definition... 4

• Figure 2: List with Stack Behavior .. 5

• Figure 3: List with Queue Behavior .. 6

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

III

• Figure 4: Example Class... 7

• Figure 5: State Machine Model of a "Body in Motion" using classic notation................. 8

• Figure 6: Moore-style Stimulus/Response Pairs ... 10

• Figure 7: Example State Transition Table (STT)... 11

• Figure 8: Example Class STT .. 13

• Figure 9: TestMaster Example Class State Machine Model... 14

• Figure 10: Stack Scenario .. 16

• Figure 11: Breadth-First Generated Stack Scenario... 18

• Figure 12: Push Function Stimulus and Response Verification Code.......................... 19

• Figure 13: Stack Scenario Test Driver ... 20

• Figure 14: Example Class Model with Constraints Shown ... 24

Table of Tables

• Table 1: Stack Example Test Creation Comparison... 17

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

1

Purpose

This paper describes how to approach software object testing using a model-based testing
technique. Specifically, it demonstrates how to create function-type tests for C++ classes.

This paper has been written for Testers with experience testing software applications. A
familiarity with state machine models and TestMaster would be helpful, although is not
necessary to understand this document. Readers are also assumed to have a working
knowledge of at least the C programming language and some experience using it.

Finally, the use of state machine models to test software objects can be extended to any
object-oriented program language or technology. Readers should be prepared to
generalize the concepts and extend the simple examples shown in this paper to meet their
own software testing needs.

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

2

Introduction

This application note illustrates how to generate tests for a C++ class using a state-
machine-based modeling approach.

C++ classes enable software engineers to design objects that have attributes (typically
data) and behavior (typically implemented as functions). The member functions of a class
are commonly called methods. Testing a class involves exercising its methods to ensure
that they are internally and externally consistent. Internal consistency means the methods
work correctly with all other methods of the class. External consistency involves correct
operation with objects in the larger software application. The following discussion only
includes testing for internal consistency.

A model-based approach to automated test design and generation involves creating “black
box, state machine models of a system’s behavior”. In this case the System Under Test is
a C++ class. The behavior of a class is defined by its public functions. Black box testing
meshes neatly with the information hiding inherent in class definitions. The
implementation details of the methods are purposely ignored. The focus of the testing is
(again) the class’s public functions. State machine notation is used to describe and
partition the class’s external behavior. The invocation of a method typically produces very
different results depending on the class object’s state. The state machine notation allows
you to set-up and invoke the methods under these differing conditions.

Finally, the tests being generated are each a small, compilable C++ Test Driver.

All the examples shown use the TestMaster automated test design tool. The document
also provides a step-by-step method for analyzing the components of a class and
modeling these components. Given these examples, Testers can create their own state
machine models manually or using TestMaster.

Objects and Classes

This section discusses Object Oriented Programming (OOP) and presents the C++ class
used as an example throughout the paper. Readers familiar with OOP and C++ can skip
this section.

Object Oriented Programming
OOP is a software technique for creating models of “things” in the real-world. It attempts
to create these models by grouping the software (data and functions) needed to describe a
“thing” into an object.

Objects are defined to have attributes and behavior (data members and methods).
Attributes describe the condition of an object. For example, empty or full. Attributes map
directly to data. Behavior describes the actions the object can perform. For example,
object empties or object fills. Behavior maps into functions (called methods).

Ideally, an object can be used by only knowing “what” it does without knowing “how” it
works. This is the programming technique called information hiding. Information hiding
provides an unambiguous interface to an object, but “hides” the details of the object’s
implementation. An object’s user can change its behavior and query its status through the
public interface, but not be aware of the code that is effecting this behavior and these

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

3

attributes. The interface should provide the information to use the object, without the user
having to know the internal details of the algorithms the object uses.

Using OOP, applications are programmed by combining objects to create the larger
system. Typically a system is analyzed to determine its set of constituent objects. Then
the objects are analyzed to determine their attributes and behavior. The interaction of the
objects is also defined within the system. Finally, the objects are programmed individually
and then together to create the overall system’s software. Useful objects are intended to
be “re-used” in subsequent systems, saving time and labor.

Object Testing

It should be noted that the use of previously created objects implies a certain amount of
faith on the part of the person using the object. The user of an object may not be able to
work back through its implementation to ensure it is producing the correct result. Without
this faith the use of objects lose their advantages as software components for reuse. It is
important that objects be coded in a robust fashion and be well tested to maintain to
promote their re-use.

C++ Classes
In the C++ programming language, objects are created as classes. A class defines all the
data associated with an object as well as the functions needed to manipulate the data.
Classes are used in conjunction with each other to create the C++ programs for larger
systems.

A C++ class definition begins with the language keyword class. This is followed by the
class’s label (or name). The body of the class object is defined with open and closed curly
brackets ({ }) and is terminated with a semicolon. Within the body of the class is the
public member access specification (public:). This defines the external interface to the
object. Client objects will use the class through the member functions described in this
interface. One (or more) of the public functions has the same name as the class. This
function is called the Constructor . A constructor is used to initialize an instance of a class.
After the public functions may appear a private member access specification (private:).
Private data and functions are only accessible through public member functions. The
example below shows a generic C++ class definition.

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

4

• Figure 1 C++ Class Definition

Optionally, a function with the same name as the class, but preceded with a tilde (~) may
appear in the list of public functions. This function is called a Destructor. The Destructor
does termination cleanup for each class instance.

Example Class

This section introduces the C++ class used as the example in this paper.

List Class
The example is a List class. The List can be configured to handle any data type. The
behavior of the List allows it to be used as either a Stack or a Queue.

Stack Behavior

When behaving as a Stack, elements can only be added to the array from the top and
removed from the top, i.e. it performs in a Last-In-First-Out (LIFO) fashion. There are two
Stack methods: Pop and Push.

• Pop: Places an array element on the top of the array.
• Push: Removes an array element from the top of the array.

class name {
public:

name(); // Constructor
method 1 // Member function
. .
. .
. .
method n // Member function

private:

. // Private functions

. // and data.

.
};

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

5

Both member functions return TRUE when successful, otherwise FALSE. The figure
below shows the behavior of Pop and Push on the data array.

• Figure 2: List with Stack Behavior

Queue Behavior

When behaving as a Queue, elements can only be added to the array from the bottom
and removed from the top, i.e. it performs in a First-In-First-Out (FIFO) fashion. There are
two Queue methods: Add and Delete.

• Add: Places an array element on the bottom of the array
• Delete: Removes an array element from the top of the array.

Both member functions return TRUE when successful, otherwise FALSE. The figure
below shows the behavior of Add and Delete on the data array.

Top

Bottom
D

at
a

A
rr

ay

Element
Pop Push

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

6

• Figure 3: List with Queue Behavior

Common Methods

In addition to the member functions affecting the list’s storage behavior there are two
functions used to query the current condition of the list: Empty, and Full.

• Empty: Returns TRUE when no data elements are stored in the list. FALSE is
returned when the list is in use.

• Full: Returns TRUE when no data elements are available for data storage. FALSE is
returned when storage is available.

Finally, both a Constructor and Destructor are included in the list of member functions.

The figure below shows the class template for the List object.

Top

Bottom

D
at

a
A

rr
ay

Element
Delete

Add

Element

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

7

• Figure 4: Example Class

State Machine Modeling

This section discusses creating “black box, state machine models of a system’s behavior”.

Black Box Testing

Typical testing strategies are either structural or behavioral in nature. Structural testing is
also called “glass-box” or “white box” testing. Behavioral or functional testing is called

Testers perform glass-box testing by having complete access to the System-Under-Test’s
design. In the case of software testing, this is the source code. This approach allows
Testers to ensure that every source code statement, branch of a conditional check, and
loop iteration executes correctly. Glass-box testing is most commonly employed by
software developers when unit testing their software.

Black-box testing, is based upon the functional, performance, and interface requirements
of the System-Under-Test. In the case of software testing, this is performed at the
program or system level. A system is defined as multiple software programs (and possibly
hardware assemblies) being employed together to perform an overall function. Knowledge
of the internal workings of the system’s components is not needed and is even avoided.
This approach encourages the Tester to concentrate on ensuring all the systems
requirements at a defined interface are met. Tests are constructed without being
influenced by the details of the system implementation. Functional testing is commonly
employed by independent test organizations performing system integration as part of
customer acceptance testing.

// tstqu.h
// Simple template class for Stack/Queue data storage object
#ifndef TSTQU_H
#define TSTQU_H

#include <iostream.h>

template<class T>
class Stack_Queue {
public:
 // Alpha and Omega
 Stack_Queue(int = 5); // Constructor (Default Size is 5)

 ~Stack_Queue() { delete [] storePtr; } // Destructor

 // Stack Methods
 int Push(const T&); // Push an element onto Stack (top)

 int Pop(T&); // Pop an element off of Stack (top)

 // Queue Methods
 int Add(const T&); // Add an element onto Queue (bottom)

 int Delete(T&); // Delete (remove) and element from Queue (top)

 // Common Methods
 int Empty() const { return top == -1; } // > 0 when no elements stored

 int Full() const { return top == size - 1 ; } // > 0 when full
private:
 int size; // Number of stored elements

 int top; // Location of top element

 T *storePtr; // Pointer to storage
};

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

8

Often, a product is tested using a hybrid test strategy, with unit level testing performed
using the glass-box approach and higher system level testing performed using the black-
box approach.

Behavioral Models

A model is an analogue of a thing or an object. It provides a tentative image of how its
subject will look or perform. Models can be rendered mathematically, textually, in
software, or graphically.

A behavioral model shows the lifecycle of an object. Lifecycle is defined as the object’s
behavior over time.

State Machine Models

State machine notation is a graphic technique for describing the behavior of an object over
time. Classic state machine notation is made-up of only states and events.

A state represents the object under defined conditions. Objects typically require more than
one state to describe all of their behavior. An event is an action causing the object to
change from one of its states to another. A change in an object’s state (or the movement
from state to state) is called a transition. State machine notation is usually shown using a
combination of labeled circles (or boxes) for states connected by labeled arrows describing
possible transitions. The simplicity of state machine notation makes it very precise.

• Figure 5: State Machine Model of a "Body in Motion" using classic notation

There are two types of transition shown in the example model above: Simple and Looping.
A simple transition is a single event (lone transition) that can cause a state change. For
example: the In Motion state is a direct result of the Applied Force event. A Looping
transition has the same state at its head and tail. This indicates an event having no effect
on the object’s state. For example: the Applied Force event re-applied to a body “In
Motion” does not cause a state change.

At Rest

In Motion

Applied
Force

Equal and
Opposite
Applied
Force

Applied
Force

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

9

Attributes and Context

Not shown in the model above are associated attributes and context. Attributes and
context are both maintained outside of state machine models.

Attributes are information associated with Events and States. There may or may not be
dependencies between a model’s events and states and its attributes. Examples of
attributes in the model above might include: the body’s mass and shape, and the
magnitude, direction, and duration of the Applied Forces.

Context is a point in time within the model’s lifecycle. Sometimes context is referred to as
model history. Knowing the past and current context of a model can be useful. The model
above has an infinite duration—there is no beginning or end. However, it may be
important to specify the initial state (initial context) of the body to be At Rest. The model’s
terminal state and context might also be At Rest. Further, it might be convenient to know
how many additional Applied Forces (and their direction, magnitude and duration) have
occurred while the body is In Motion to calculate the Equal and Opposite Applied Force.
This would require knowing the past context of the Applied Forces event.

Stimulus/Response Pairs

When using state machine models in testing, it’s important to understand the concept of a
stimulus/response pair.

Tests typically are made-up from individual test steps. Every test step is made-up of a
stimulus and a verifiable response. When you create models of objects you need to know
the events that stimulate the object to change state and the corresponding characteristics
of the new state. The characteristics of an individual state are used to verify the object’s
response. Generally, there is a one-to-one correspondence between stimuli and their
corresponding verifiable response. There can also be a many-to-one correspondence
between stimuli and a response transition. Your testing will be seriously complicated (or
your System Under Test has serious design problems), if a single stimulus can result in
any of several responses. Occasionally an event will have no effect on the state of an
object within the context of the model. The Tester must determine if this event is important
in the testing of the object and either include or exclude it from the model.

Styles of State Machine Models

The TestMaster tool models a stimulus as an event. Events are shown as transitions.
Modelers can embed information into a TestMaster model’s transition record (shown as an
Edit Transition window by the tool). The response verification is co-located in the stimulus
transition. Occasionally, the stimulus and response verification are located in separate
transitions. Generally, when modeling results in the stimulus and response being located
in the same transition, this results in Mealy-style state machine models. When they are
located in separate transitions this is Moore-style state machine models. The style chosen
is not important, as long as it is applied consistently throughout the model.

The diagram below shows a transition object (arrow) dedicated to stimulating the System-
Under-Test, the System Under Test’s change of state (a state object), and a transition
object dedicated to verifying the response of the System Under Test. Each test step in
your model needs to include these three elements (although not necessarily in three
separate objects).

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

10

• Figure 6: Moore-style Stimulus/Response Pairs

Pure Behavioral Models vs. Testing Models

A purely behavioral model may be very different from a model used for testing purposes.
A “pure” behavioral model may be an academic description of its subject’s operation. A
model used for testing purposes will necessarily include details of the implementation or
the (typically limiting) capabilities of the Testers Test Execution System. A compromise is
struck.

In the example class used in this paper note the state of “Full” is not inherent in the
definition of a Stack or Queue. Full is an artifact of the Stack or Queue’s implementation.
Likewise, the use of the C++ programming language will impose further limitations upon a
purely behavioral model.

The purpose of this paper is to demonstrate model usage for software testing. The
example model will make several compromises with regard to States and Events to test
the C++ implementation of the example class. Practitioners of OOD wanting to explore
model usage for design purposes may want to create slightly different models that exclude
these compromises.

Example Class Modeling

This section discusses creating a state machine model of the Example class.

Object Analysis
Modeling begins by listing the events and states in an object’s lifecycle. The actual model
is a description of the relationships between these states and events.

State Transition Tables

Describing all the behavior of an object is not always easy. Frequently Testers new to
modeling have trouble defining an object’s states. An effective tool for exploring the

Test Execution
System

and
Application

Domain

Test Script Test Script

Tester programs transition in TestMaster Edit Transition
Window TEST INFO field with Test Execution System’s
native language to stimulate Application under test into
a new state.

Tester programs transition in TestMaster Edit
Transition Window TEST INFO field with Test
Execution System’s native language verifying
Application under test’s anticipated response
to the stimulus.

Test Execution System
will apply stimulus.
Application will change
state (perform processing).
Test Execution System
will retrieve and verify
Application’s response.

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

11

behavior of an object is the State Transition Table (STT). A STT is also a type of model.
However, we will use it as the input to a graphic state machine model.

A STT is a matrix with states on columns and events on rows. The intersection of a row
and column (cell) is the new state resulting from an event occurring when the object is in
the column’s state. Not all events are applicable in all states. It is not uncommon to place
Not Applicable (N/A) in a STT cell. A STT provides a comprehensive listing of the state
event relationship and can be used by Testers to create their state machine models. The
figure below shows an example STT.

• Figure 7: Example State Transition Table (STT)

Example Class Events

Events are actions that may cause state change. The events of a class object are already
defined for us. They are the methods listed in the class’s public member access
specification. The events in our class example include:

• Push
• Pop
• Add
• Delete
• Empty
• Full

Behavioral modelers should note that we are making a compromise in pure behavioral
modeling by listing the Empty and Full methods as events. However, from a testing
perspective we want to include the Empty and Full methods in our model (and our tests).
The only available mechanism is to consider them as events.

Example Class States

A state is a representation of the object under defined conditions. Deriving all your
modeling subject’s states is not always intuitive. It helps to abstract the nature of subject
as much as possible. For example, a car is a vehicle, a ball is a sphere, and a bottle is a
container.

In the case of our example class, it helps to consider it as a “container of data”. This
perspective is hinted at by Empty and Full methods in the class’s declaration. The “state”
of our class is defined by the value of its data members.

It helps to verify your choice of states by creating one or more scenarios involving your
subject’s behavior. These scenarios should include the object’s common usage. For
example, a program incorporating the example class might use it in the following way:

Example State Transition Table
State 1 State 2 … State n

Event 1 new State N/A new State
Event 2 N/A new State new State

.

.

.
Event m new State N/A new State

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

12

The Constructor is called. Data is Pushed or Added to the Stack or Queue.
Added or Pushed data is Popped or Deleted. If enough data to fill the Stack
or Queue is Pushed or Added, no more Pushes or Adds can be performed
until data is Popped or Deleted. The Stack or Queue is checked to be Empty
or Full. The Destructor is called.

Use your scenario to determine your subject’s Initial and Terminal States. The Initial State
is the state of your subject when the scenario begins. The Terminal State is the state of
your subject when the scenario stops. Typically it is easiest to determine your subject’s
Initial State. It is not uncommon to find your subject has multiple Initial and Terminal
states.

Examining the scenario created above using the container abstraction you could derive the
following states:

1. When the Constructor is called, the Stack or Queue state is Empty.
2. When data is initially Pushed or Added, the Stack or Queue state is not Empty (or

not Full).
3. When the maximum amount of data is Pushed or Added, the Stack or Queue

state is Full.
4. When less data is Popped or Deleted then is Pushed or Added, the Stack or

Queue state is not Full.
5. When all the Pushed or Added data is Popped or Deleted, the Stack or Queue

state is Empty.
6. When the method Empty or Full is called, the Stack or Queue state is: Empty, not

Full (not Empty), or Full.
7. When the Destructor is called, the Stack or Queue state is: Empty, not Full (not

Empty), or Full.

Notice that when the Destructor is called the Stack or Queue can be in multiple states.
Also, that “not Full” and “not Empty” are equivalent states. Throughout this example
model, we’ll use the “not Full” state. The final list of possible states includes:

• Empty
• Not Full
• Full

Behavioral modeler’s should note the inclusion of the “Full” state. There is no “Full” state
inherent in the definition of a Stack or Queue. Full is an artifact of the class’s
implementation. This artifact can provide many interesting tests.

Example Class STT

Creating an STT from the list of Events and States results in the following:

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

13

• Figure 8: Example Class STT

The table is read in the following fashion: “When the Stack is Empty and the Push method
is exercised, the new state is Not Full”.

A few things must be noted about the table. The number of data elements contained by
the Stack or Queue effects the subsequent state. For example, when the Stack is Not Full
and a Push operation is exercised; if this last Push will fill the Stack., the new state is Full,
otherwise it is Not Full. The example table shows this as two states in one table cell. An
event that may lead to two different states is shown graphically using two separate
transitions.

Certain methods are prohibited on the current state. These are shown in the example’s
STT with an N/A. An example of this is trying to Pop an Empty Stack. Testers need to
decide if these events should be included in their model. Finally, some methods have no
effect on the current state. No state change is shown by listing the current state in the cell.
An example of this is the Empty method which does not change the state of a Stack or
Queue.

Example Class State Machine Model

The following figure is the state machine model created (using TestMaster) from the
Example Class STT.

Example Class State Transition
Table Empty Not Full Full

Push Not Full Not Full N/A
Full

Pop N/A Not Full Not Full
Empty

Add Not Full Not Full N/A
Full

Delete N/A Not Full Not Full
Empty

Empty Empty Not Full Full
Full Empty Not Full Full
Constructor Empty N/A N/A
Destructor Empty Not Full Full

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

14

• Figure 9: TestMaster Example Class State Machine Model

The Example class’s state machine model uses Mealy-style state machine notation.
Stimulus (method) and response verification are presumed to be located together in the
same transition.

All states in this model are shown as boxes. This model includes explicit Entry (Initial) and
Exit (Terminal) states describing the beginning and end of the object’s lifecycle. These
states are not shown in the STT.

Each method is a separate Event with its own transition. All of the methods have been
applied to each of the states for testing completeness. Mutually exclusive methods are
shown as two head-to-tail transitions between states. Mutually exclusive methods have
the same state changing effect on the List object, but are separate operations. For
example: the Push method when the Stack state is Empty results in the Not Full state, the
Add method also has the same effect on a Queue.

In the example, model transitions are documented with a comment box. A comment box
includes the Event name and optionally a Predicate. Event’s (“E:” in the box) are always
the method being documented by the transition. The optional predicate (“P:” in the box)
describes when the particular transition is applicable within the context of the model. For
example, checking to see if the current Push operation will fill the List (and change the
state) is an attribute check. Predicates in the model are implemented using the
TestMaster’s Path Flow Language (PFL). PFL has a programming language-like syntax
and can be used to create, check and maintain model attributes and model context.

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

15

TestMaster also uses PFL to automatically design and code tests directly from models
created with the tool.

Note this model was constructed to be complete. From the STT we saw that several
events were N/A in certain List states. In the “pure discipline” of behavioral modeling this
may be true. However, in the context of software testing it would be prudent to verify these
events truly have no effect.

Exploring Model Behavior

This section discusses using the example state machine model to design tests. To simplify the
narrative, only Stack behavior with be explored for the remainder of the document.

Model Validation

The TestMaster state machine model previously shown was created directly from the STT.
The intersection of each State and Event is included in the model.

It would be prudent to verify the model with regard to typical List behavior to ensure its
accuracy. Below is a scenario for using a Stack. The Stack methods (Push and Pop) are
used exclusively along with the Constructor, Destructor and the Full method.

1. The Constructor is called.
2. A data item is initially Pushed onto the Stack.
3. An additional data item is Pushed onto the Stack.
4. The previous data item is Popped off the Stack.
5. The List is checked to be Full.
6. The Destructor is called.

We can show this scenario graphically on the model. We call this sequence of model
objects a Path. Model objects include state and transition icons. A Path is a complete,
valid sequence of objects from the model’s Entry state to its Exit state. Below is a diagram
of the Path described in the enumerated scenario.

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

16

• Figure 10: Stack Scenario

Additional Stack-type scenarios, or Queue-type scenarios (using Queue methods Add and
Delete) can be constructed to further test the accuracy of the model. It should be noted
that there is no prohibition from using Stack methods together with Queue methods in a
scenario.

Test Design

It follows, that if you can map usage scenarios into the model, you can use the model to
create new scenarios. The creation of new scenarios is behavioral test design. There are
two advantages to using models to create tests: it’s visual i.e. it’s easy to understand, and it
provides an easy to follow methodology toward test design.

Visual Documentation

Diagrams are a very compact method of communication. The state machine model
created for the Example class tells a lot about the function of the class’s methods and their
relationship to each other. For example, we can easily see the Pop and Delete methods
are equivalent. Also, the Full and Empty methods have no effect on the object’s state
whether it’s used as a Stack or a Queue. Creating the state machine diagram teaches the
Modeler-cum-Tester about its subject and provides useful documentation for people who
might want to learn about the object.

Test Design Methodology

The state machine model can be used to create new scenarios. The creation of new
scenarios can be approached in a purely heuristic way or in a more methodical fashion.

If a heuristic approach to test design is taken, the diagrams act just like a map would be
used to plan travel. By looking at the map, the scenario creator can judge the total number

1

2

3

4
5

6

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

17

of possible Paths and select the important or representative Paths based on their previous
experience and best judgment.

If a methodical approach to test design is merited, search algorithms can be borrowed
from directed graph theory to examine all possible scenarios. The two applicable
techniques are Breadth-First and Depth-First searching. Either of these algorithms will
provide results. They will provide roughly equivalent results with simple state machine
models, and more divergent results as model complexity increases. Model complexity
increases as the number of states and transitions increase. Complexity is also increased
by the number of branching transitions occurring in the model.

Selecting either search methodology and manually applying it methodically will result in a
comprehensive list of all possible tests. The TestMaster tool supports the use of both
search algorithms. Testers can direct the tool to search for and document Paths using
either algorithm. In addition, it allows you to set criteria to condition the search. An
example of conditioning is: “Produce the minimum number of scenarios, where every
method is exercised appearing at least once in a test”.

Using TestMaster to automatically apply both of these algorithms to the Stack example
seeking the minimum number of tests to exercise all the methods together produces the
following results:

Search Algorithm
Applied

Number of Tests
Found

Breadth-First Methodology 5

Depth-First Methodology 3

• Table 1: Stack Example Test Creation Comparison

The different tests produced are roughly equivalent in length. Below is an example of a
Breadth-first search test produced. The Stack depth has been initialized to five elements
deep. Note that each transition is one of the class’s function calls.

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

18

• Figure 11: Breadth-First Generated Stack Scenario

Tests

This section describes how to create tests from state machine model scenarios

Design Implementation

Designed tests can be easily converted into executable tests for software objects. The
Tester needs to rewrite the scenarios created from the model to be executable in a Test
Execution Environment as a series of stimulus and response pairs (test steps).

Test Execution Environments can be commercially available products or applications you
write yourself. In its simplest form, a Test Execution Environment is a test driver. Since
the example class is written in the C++ language, our Test Execution Environment will be
C++ and we will write a C++ test driver.

Model Annotation

Going back to test design, we found that each transition was one of the class’s function
calls. Because we have created a Mealy-style state machine model each transition must
include both stimulus and response. So each transition must include both the function call
and verification of success or failure of the call. Because several of the functions return
success or failure as part of the call, code for simple stimulus and response verification
can be written very quickly. Below is an example of the code needed to verify a Push
Function call written using TestMaster. The code is found in the window field labeled Test
Info.

Test Code

Since a test is a Path, it’s made up of a series of transitions, it is easy to see how we can
substitute these code fragments for each of the transitions to incrementally build-up
programs that exercise the behavior of the software object.

Constructor /* Call the Constructor*/
Push /* Push the initial data element on the Stack

/Full / Is the Stack full?
/Empty / Is the Stack empty?
/Push / Push a data element on the Stack
/Pop / Pop a data element from the Stack
/Push / Push a data element on the Stack

/Push / Push a data element on the Stack
/Push / Push a data element on the Stack
/Push / Attempt to Push a data element on the Stack
/Pop / Pop a data element from the Stack
/Push / Push a data element on the Stack */

Push /* Attempt to Push a data element on the Stack
/Full / Is the Stack full?

Empty /* Is the Stack empty?
/Destructor / Call the Destructor */

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

19

• Figure 12: Push Function Stimulus and Response Verification Code

The construction of the test code requires the use of “regular” code fragments. The
model’s construction supports this. For example: the Push operation that occurs between
the class’s Empty and Not Full states always has the same syntax, whenever the initial
class state is Empty. In a behavioral test, the Push function may be exercised several
times between these Stack states. The same code fragment would be used for each of
these executions. Note any Push operation executed when the Stack’s state is Full would
be expected to be a different expression. In this case, we would expect the Push to fail
(the Stack is Full!), while a Push operation initiated when the Stack was Empty is expected
to succeed.

In the following figure, the Breadth-first generated Stack test (previously shown) is
implemented as executable code. The code fragments to generate the appropriate stimuli
and responses have been substituted for the transition events. The result is a Test Driver
for exercising the Example class’s performance as a Stack using floating point data type
elements. A C++ program header has been added to make the result compilable.

Note the example Test Driver instantiates a Stack with a capacity of five (5) float data
values. This capacity was purely a testing-based decision. In some circumstances the
selection of the appropriate capacity may be a seriously considered modeling decision.

The code in the Test Driver only takes advantage of each function’s return a status code.
More elaborate testing can easily be performed to verify the contents of the Stack by
varying the value of the Stack’s contents, checking stack order, and verifying the depth.
The degree and sophistication of the code to create the stimulus and verify the response is
only limited by the imagination of the Modeler and their ability to write code.

Automated Test Generation

The manual creation of a large number of tests can be time consuming and tedious. The
Test Driver shown as an example was automatically coded using TestMaster.

TestMaster is a graphic design tool used to create state machine models. It also has the
facility to design tests, and then code them automatically from the models. The coding of
the tests requires the Tester to provide code fragments for each transition in the model.
Several algorithms for creating tests from a model are available in the tool. In addition,
there is facility for formatting the tests produced directly from the model.

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

20

• Figure 13: Stack Scenario Test Driver

// Test #3

#include <iostream.h>
#include "test_object.h"

main ()
{

Stack_Queue<float> floatStack_Queue(5);
float val = 1.1;

if !(floatStack_Queue.Push(val)) { // Stack now has 1 entries
cout << endl << "ERROR: Push operation failure"<< endl;
return(0);

}

if (floatStack_Queue.Full()) {// Stack/Queue value is: 1
cout << endl << "ERROR: full stack/queue reported when not full"<< endl;
return(0);

}

if (floatStack_Queue.Empty()) { // Stack/Queue value is: 1
cout << endl << "ERROR: empty stack/queue reported when not full"<< endl;
return(0);

}

if !(floatStack_Queue.Push(val)) { // Stack now has 2 entries
cout << endl << "ERROR: Push operation failure"<< endl;
return(0);

}

if !(floatStack_Queue.Pop(val)) { // Stack now has 1 entries
cout << endl << "ERROR: Pop operation failure"<< endl;
return(0);

}

if !(floatStack_Queue.Push(val)) { // Stack now has 2 entries
cout << endl << "ERROR: Push operation failure"<< endl;
return(0);

}

if !(floatStack_Queue.Push(val)) { // Stack now has 3 entries
cout << endl << "ERROR: Push operation failure"<< endl;
return(0);

}

if !(floatStack_Queue.Push(val)) { // Stack now has 4 entries
cout << endl << "ERROR: Push operation failure"<< endl;
return(0);

}

if !(floatStack_Queue.Push(val)) { // Stack now has 5 entries
cout << endl << "ERROR: Push operation failure"<< endl;
return(0);

}

if !(floatStack_Queue.Pop(val)) { // Stack now has 4 entries
cout << endl << "ERROR: Pop operation failure" << endl;

}

if !(floatStack_Queue.Push(val)) { // Stack now has 5 entries
cout << endl << "ERROR: Push operation failure"<< endl;
return(0);

}

if (floatStack_Queue.Push(val)) { // Stack better have 5 entries
cout << endl << "ERROR: Push operation failure"<< endl;
return(0);

}

if !(floatStack_Queue.Full()) {// Stack/Queue value is: 5
cout << endl << "ERROR: not full stack/queue reported when full"<< endl;
return(0);

}

if (floatStack_Queue.Empty()) { // Stack/Queue value is: 5
cout << endl << "ERROR: empty stack/queue reported when full"<< endl;
return(0);

}

return 0;
}

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

21

In a small model like the example shown, automation is not needed. However with larger
models or several models used in combination with each other, using a tool can save a lot
of time creating tests.

Typically, Tester fatigue or lack of time to design and execute tests lead to incomplete
product testing. The best manually designed and coded test in a test suite is the first test.
Subsequent tests, especially when large numbers of tests are needed tend to be variations
of this initial test. Automatically designed and coded tests have several advantages over
manually generated tests. There are generally more of them, they are longer containing
more test steps, they can be more varied in behavior, and (once debugged) contain less
coding errors. The variation in the test’s behavior is a function of the algorithm used to
generate the tests.

Constraint Strategies

This section discusses how to constrain the model described in the previous section. It
applies to Testers using TestMaster to automatically design and code their tests.

Path Proliferation
In the context of state machine modeling, constraining is the used to reduce the number of
Paths (and hence tests) produced.

Carefully crafted models faithfully reproduce the lifecycle behavior of their subject.
However, it’s not uncommon for the simplest models to have a limitless variety of behavior.
It’s simply not practical to reproduce all of this behavior as tests. Since TestMaster initially
produces Paths, (which can be coded into tests) we call this the Path Proliferation
problem.

For example, in the automatically generated Stack Test Driver presented in a previous
section, the Stack is filled once and partially emptied. This provides an interesting and
meaningful test. Another meaningful test might be to fill and empty the Stack once, twice,
and maybe ten times. However, what is the value of filling and emptying the Stack 11
times? Probably none. If it works correctly 10 times, it will most likely work correctly the
11th (barring any “boundary” type software defects).

Hence constraining. In automated test generation, 11 Stack fills and empties has the
same importance as 10 fills and empties since it is valid Stack behavior. The Tester has to
constrain the model to produce interesting tests that can be completed in a reasonable
amount of time.

Testers should not confuse test constraint strategy with system behavior and the use of
predicates. Models should exhibit the behavior of the System Under Test. PFL
statements in transition Predicate fields ensure the model behaves like the System Under
Test. Predicates are control applied to the model called-out by the System Under Test’s
specification. Constraints are control applied to limit the quantity and direct the type of
tests generated by a correctly behaving model.

Constraints
The two basic methods for constraining TestMaster Models are Coverage Schemes and
Path Control.

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

22

Coverage Schemes

Coverage Schemes are a TestMaster term for the implementation of different Path search
algorithms. They are the implementation of the previously mentioned search methods.
Coverage schemes are the easiest method for controlling the number of tests being
automatically produced by a model. By choosing the appropriate coverage scheme
Testers can vary the number of tests, and the content of the tests being generated.
TestMaster supports the following coverage schemes:

• Quick
• Transition
• Full
• N-Switch
• Profile

Quick Cover is the Breadth-first search that includes every transition in a test at least once.
Transition Cover is the Depth-first search producing tests that include every transition in a
test at least once. Quick or Transition coverage can produce a modest number of tests
that can satisfy most testing requirements.

Full Cover is a Depth-first search. It produces tests that include every transition in all
possible combinations with each other transition. A higher degree of constraining needs to
be applied to reduce the number of tests produced using Full coverage schemes. Full
coverage generally produces a large amount of tests for even simple models. N-Switch is
a coverage scheme producing results between Transition and Full coverage. It uses a
Depth-first search. Profile cover allows Testers to “weight” the likelihood of individual
transitions in a model being incorporated into a Path. It uses a Depth-first search.

Table 1 previously showed that Quick Cover produced three tests and Transition Cover
produced five on our Stack example. When Full Cover was attempted, it produced greater
then 5000 tests.

Path Control

Path Control is the application of constraints to individual model paths. These path
constraints provide a finer degree of control over model test generation than coverage
schemes.

Path controlling constraints are PFL statements applied to a transition in the
CONSTRAINT field of a transition’s Edit Transition window.

There are two types of Path controlling constraint applied in TestMaster models:

• In-Path – Constraints limiting the number of times a transition occurs in a current
path.

• Across-Path – Constraints limiting the number of times a transition occurs in all
paths.

Note that a single transition may include both In-Path and Across-Path constraints.

In-Path Constraints

In-Path constraints limit the number of times a transition occurs in the current path. The
primary use of In-Path constraining is to control circular behavior (sometimes called Loop
Control) and access control.

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

23

Circular paths frequently occur in models and represents valid behavior. However, in
excess it typically does not lead to interesting or practical tests. Software engineers are
familiar with this as a problem known as “infinite loops”. Circular behavior can occur in the
use of Looping transitions and models where behavior can oscillate between one or more
states. The PFL ITERATE statement is a loop counting mechanism used to control the
number of times a transition is repeated in a Path.

Examples of Loop control can be seen on the Loop transitions used to describe the
example’s Empty and Full functions.

Access control involves setting-up logical conditions to ensure “interesting” or correct
behavior. Interesting behavior is test paths the Tester finds non-trivial, or test paths the
Tester believes are more likely to find errors in the System Under Test, or to ensure the
model reproduces its subject’s behavior correctly. Access control is accomplished through
PFL statements controlling and testing model context. This can be done by creating
variables maintained in the model or by testing model context.

Examples of Access control can be seen in the mutually exclusive transitions used to
describe the state change from Not Full to Full in the class. In this case the last Push or
Add of a data element needed to fill the Stack or Queue triggers the state change.

Both types of In-Path constraining have been applied to the model.

Across-Path Constraints

Across-Path constraints limit the number of times a transition occurs in all paths. The
primary Across-Path constraint types are the PFL PRUNEAFTER and SELECT
Statements.

PRUNEAFTER removes a transition from inclusion in subsequent Paths after it has
appeared a specified number of times. It can be used to delete transitions leading to
Paths which include marginal behavior, or that might produce unwanted multiple tests.

Examples of PRUNEAFTERs are used in the model to limit of the appearance of
transitions testing the Not Applicable Event and State combinations. For example, after
trying to Push or Add to a Full Stack or or Queue once this test step probably does not
need to be repeated.

Selection statements limit the sets of path objects appearing in a path. They also control
the sequence of appearance in a path. Selection statements were not use in the model.

Example Class Model Constraints
The figure below is the model with all constraints shown.

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

24

• Figure 14: Example Class Model with Constraints Shown

In the above example, transitions are documented with a comment box. The box includes
the Event Predicate and Constraint being applied. In this model, the Event (“E:” in the box)
is always the method being documented by the model. The optional predicate (“P:” in the
box) describes when the particular Event is applicable within the context of the model. The
optional constraint (“C:” in the box) describes the applied control to the automatic
generation of tests.

Summary

State machines can be used to model software objects, in particular C++ classes. Note
that state machine models can be used with any object oriented programming language.

By analyzing class methods a state machine model can be constructed. An example
class with both Stack and Queue behavior was modeled to show a class object state
machine model. Once a model is created, it can be used to explore the behavior of the
modeled object. The model also becomes a graphic test artifact. Tests can be designed
directly from the model. With the use of TestMaster these tests can also be automatically
designed and coded.

Given the example in this paper, Testers can create their own state machine models of
software objects. If they are using TestMaster they can use the product to design and
code the tests for their software objects automatically.

Questions or Comments?

Please direct any questions or comments to Applications Engineering at:

TERADYNE Model-based Testscript Generation for a C++ Class

 COPYRIGHT 1998 BY TERADYNE CORP. ALL RIGHTS RESERVED

25

TERADYNE
Software & Systems Test
44 Simon Street
Nashua, NH 03060-3094
VOX: 800-996-8778
FAX: 603-791-3075
e-mail: support@sst.teradyne.com

AutoTester Inc.

AutoTester provides software quality assurance experience, expertise, and technology
to more than 1,600 Fortune 3000 customers worldwide. Founded in 1986, AutoTester
specializes in developing and delivering software quality methodologies, technologies,
services, and support for mainframe, midrange, and client/server environments. Using a
defined quality process, experienced professional service, and a comprehensive suite of
quality assurance software, AutoTester helps customers worldwide with Year 2000,
SAP R/3� internet/intranet, Windows , and OS/2 software quality initiatives.
AutoTester is based in Dallas, Texas with a network of sales offices and distributors
throughout North America and Europe.

AutoTester takes a holistic approach to software quality assurance by providing
solutions that include processes, services, technology, and support.

Quality Assurance System- AutoTester has developed a unique quality assurance
system that ensures the integrity of your software applications during every step of the
implementation process. Our system includes a framework that integrates your existing
development and QA processes and provides a structured, repeatable process to help
ensure your applications meet your quality requirements.

Comprehensive Professional Services - AutoTester's software quality professionals
provide consulting, training, and implementation support to customers throughout the
software deployment process.

Proven Technology - AutoTester provides project managers, business users, and
software developers with a suite of software products designed to test a wide range of
applications. AutoTester’s integrated testing, test management, and task automation
software supports a wide range of development projects and environments.

Complete Customer Support - AutoTester’s customer and technical support teams are
committed to providing you with the highest level of support possible.

"Ferreting out bugs"
1032 Elwell Ct.

Suite 240
Palo Alto, Ca. 94303

AZOR, Inc. is committed to helping high technology companies improve the quality of their
software based products.

Outsource Testing:, Test Automation, Contract Testing

Your product can be independently tested at our facility. AZOR, Inc. can generate the test plan,
test design, test cases, test data and scripts and then execute tests, automate tests (using
WinRunner, QA Partner, Ferret, etc.) , and report defects to your developers. AZOR can also
supplement your own in-house testers with test execution or on-site contractors.

Training: AZOR provides world class two and three day seminars on:
• Best Practice Software Testing and Value Added Inspections
• Software Program Management and Software Test Management
• Software Quality Assurance

Test Execution Product: Ferret Patented Automated Software Testing System

FERRET is an automated capture/playback system testing tool useful in situations
where traditional invasive GUI test tools will not perform adequately. Such as
embedded devices, medical systems, real time, legacy, or mixed operating systems,
graphics intensive or 3D systems, multi-media, IR devices, set top units, television
based web products, factory automation, AC power cycling, etc. FERRET performs
automated regression and system testing to verify that code/firmware repairs or
software enhancements have not caused additional software bugs.

Test Planning Product: CodePlan Project Estimation Tool

CodePlan is a development estimation tool that calculates development effort,
staffing needs, and timing for each phase of your project. You provide a few
simple inputs on the expected project size (either in lines of code or function
points), the organization of your development team, and your project’s risk
factors.

Consulting:
• Software Development Process Assessment
• Software Project Management
• Software Testing and Quality Assurance
• Software Test Tool Selection and Jump Starts
• Y2K Project Management and Testing

V1.0 Copyright AZOR, Inc. 1/99

Outsource Testing, Training, Tools, and Consulting

Omega Outsource Testing:
ü Faster Time to Market, Reduced Risk
ü Test Plan, Design, Execution, Reporting, and Automation

Principle Based Software Test Seminar:
ü Courses for Developers, QA Engineers, Test Engineers, Management
ü What to do, how to do it, tools to use. Can be tailored for in-house.

 Ferret Automated Test Execution Tool:
ü Works with most all platforms, tool kits, browsers, and O/S Types
ü Completely non-intrusive, easy to learn and use.

CodePlan Estimation Tool:
ü Tells you how long the development and testing will take.
ü Helps you get more time to do your job

Consulting:
ü Assessments, Process Improvements, Hands On Projects
ü On-site Testing, QA, Program Management

For additional information, or to receive a proposal, please contact:
1032 Elwell Court, Suite 240
Palo Alto, CA 94303
Phone: (650) 934-2869
Fax: (650) 934-2860
Email: azor@azor.com
www.azor.com

…. Azor helps its customers by providing a complete solution

Capital One Description

What do you mean that you haven’t heard of CapitalOne?!
We have a long history and are a leader in the financial services industry. In fact, we are a top ten issuer of
the Mastercard and Visa credit cards with over $16 billion in managed loans and more than 16 million
customers! Despite our success in the credit card industry, we actually consider ourselves to be an
international information-based marketing company. Our success is based upon our proprietary
information-based strategy. This strategy involves a partnership between Marketing, Operations,
Customer Relations and Information Technology to integrate systems to ultimately "mass customize" the
right product to the right customer at the right time and at the right price. Our IBS strategy has contributed
to our 20% earnings per share growth over the past three years—and 41% earnings growth for 1998!

We have now applied this same strategy to the telecommunications industy in our subsidiary – America
One. America One is a provider of wireless phones and services, as well as long distance telephone
service. The IT group within America One integrates off-the-shelf applications along with software we
write ourselves. This software is written with Java in the middle layer, an n-tier architecture and use cases.
Both Capital One and America One have cutting edge test, QA and configuration management
opportunities! We are looking for testers, test leads, test harness developers, test database specialists,
quality assurance analysts and configuration management specialists to work on a variety of
projects.

Only One Company…
• adds 20,000 new customers a day
• has had 20% earnings growth for the last three years and 41% earnings growth in 1998

has partnered with World Championship Wrestling (a subsidiary of Turner Sports and Time Warner
Company) to offer a credit card to its more than 32 million fans

• is the largest (and only) direct marketer of cellular service through its subsidiary, AmericaOne
• has 16 Terabytes of information total in its data warehouse and is one of the largest users of Oracle

databases in the nation
• has benefits from day one -- including three weeks vacation in your first full calendar year, 401K,

stock purchase plan, flexible spending accounts, tuition reimbursement and much, much more!

All of this growth has created opportunities organization-wide to join the
over 10,000 associates already working at CapitalOne! If you’re looking for
a unique work environment where career potential is limited by only
individual desire…it’s time you discovered Capital One! A big part of our
success is our people. That’s why we believe in rewarding them…with an
exciting, passionate culture, an inspiring entrepreneurial spirit, and one of
the best compensation and benefits packages in the business! If you can’t
find all this at your current job then it’s time for your to check out our
website (www.capitalone.com) by clicking below.

Computer Associates International, Inc.
One Computer Associates Plaza
Islandia, NY 11788-7000
Phone: (516) 342-5224
Fax: (516) 342-5329
Web: http://www.cai.com

Computer Associates International, Inc. (NYSE: CA), with headquarters in Islandia, N.Y.,
is the world leader in mission critical business software. The company develops, licenses
and supports more than 500 integrated solutions that leverage technology for a
competitive business advantage in an emerging global market. These solutions include
enterprise computing and information management, database and application
development, Internet/Intranet, manufacturing and financial applications. CA has nearly
13,000 people in 160 offices in 43 countries and had revenue of $5.1 billion in fiscal year
1998.

CA solutions featured at Quality Week '99 include Endevor, CA-Fix/2000 for IV&V, and the
CA testing suite, including CA-Verify, CA-Datamacs/II, and CA-TestCoverage/2000.

The Endevor family of products automates change and configuration management
throughout the enterprise on MVS, NT and UNIX platforms, helping you maintain the
integrity of your organization's software assets and create the highest quality systems.

CA-Fix/2000 performs Independent Verification and Validation (IV&V) of COBOL code for
Year 2000 compliance, identifying at-risk year fields that may have been missed by
manual remediation or less sophisticated tools.

CA-Verify is an automated regression testing tool for mainframe online applications,
automatically detecting differences that the human eye may miss. Its Rules Function
streamlines testing by allowing users to predefine expected changes. CA-Datamacs/II
automates test data generation and includes date aging capabilities.
CA-TestCoverage/2000 for COBOL batch programs help testers ensure that test data is
adequate and that key execution paths have been exercised.

http://www.cai.com

WILL THE YEAR 2000 HAVE ANY IMPACT
ON YOUR ENVIRONMENT?

WILL THE YEAR 2000 HAVE ANY IMPACT
ON YOUR ENVIRONMENT?

CHOOSE THE WRONG VENDOR, AND IT COULD
DESTROY YOUR ENTIRE ENTERPRISE

NOW is the time to find out if you have errors in your renovated code!

NOW it is less expensive to find and fix any problems!

NOW you need Independent Verification and Validation (IV&V)!

NOW you need best-of-breed automated testing tools!

Computer Associates recognizes the necessity for thorough Year
2000 conversions. Using powerful data flow analysis engines, you
can validate that code has been changed correctly, identify year
fields that were missed (false negatives), and pinpoint bugs before
testing, when they are easier and less expensive to correct.

For ANSI standard COBOL (IBM 68, 74, and 85), MVS, VSE, Fujitsu
MSP, and Data General:
CA-Fix/2000TM

For CA-IDMS® COBOL and Unisys COBOL:
UNICAST/2000

Computer Associates also offers a complete suite of testing tools for

faster and more accurate Year 2000 testing:

CA-Verify ® Automated regression testing; migration,
stress, and concurrency testing

CA-DatamacsTM/II Test data generation; date aging
CA-TestCoverage/2000

TM Automated test coverage analysis
CA-InterTest ® CICS source-level debugging
CA-InterTest ®/Batch Batch source-level debugging
CA-Realia ® II WorkbenchTM CICS and Batch source-level debugging
CA-SymDump ® CICS abend resolution
CA-Optimizer ®/II Batch abend resolution; test coverage

analysis; optimization
CA-AccuchekTM File comparison

™

©1999 Computer Associates International, Inc. All trademarks used herein belong to their respective companies.

For more information, call 1-888-4-2000YR,
or visit our website at www.cai.com/y2k

Compuware Corporation
 Compuware Corporation is a leading worldwide provider of software products and
professional services.Compuware productivity solutions help 14,000 of the world's largest
corporations more efficiently maintain and enhance their most critical business
applications. Providing immediate and measurable return on information technology
investments, Compuware products and services improve quality, lower costs and increase
the speed at which systems can be developed, implemented and supported. Compuware
employs more than 11,000 information technology professionals worldwide, including
more than 6,600 in its professional services organization. With calendar 998 revenues in
excess of $1.5 billion, Compuware is the world leader in client/server development
technology.

 The Compuware QACenter product family offers the best in automated testing
technology for today's enterprise needs. From mainframe to client/server to web, from test
management through validation, from unit through load testing, for Year 2000 and euro
conversions-QACenter tools are helping companies achieve consistent, dependable
application performance

 The Products:

 QACenter products are available separately or as a part of an
 integrated family of products that includes:

 QARun- comprehensive capabilities for thorough, accurate client/server testing.

 QALoad- Load testing for client/server applications

 QADirector- managing the testing process across the enterprise.

 QAHiperstation- broad capabilities for testing VTAM-based applications.

 QABatch- regression testing for MVS batch applications.

 QAPlayback- advanced capabilities for testing CICS-based applications.

 QAHiperstation+ - testing mainframe applications from the desktop.

 QAPlayback+- windows-based interface for testing
 mainframe-based applications from the desktop.

 QASolutions- process, people and products for quality testing.

ready or not?
A better way to work
www.cisco.com/jobs

You can stop wondering. The Internet is definitely here to stay. And if you
think it's big now, just wait awhile and see. Better yet, why wait? Join
Cisco Systems and get a head start on the future. Here's what we bring to
the table-a majority share of the networked world, mind-boggling success,
and a highly evolved working culture. The Internet is a revolution that is
changing the world. And no matter who you are, it has touched your life
already. Which means that the question ready or not is about more than just
asking if you're ready to start. It's also about reminding you that you
already have.

Ready or not? Now is the time to act. Visit us online at www.cisco.com/jobs
for detailed listings of hundreds of current job opportunities. It's quick,
easy and well worth it.

http://www.cisco.com/jobs

EMPOWERING THE

INTERNET GENERATION™

A better way to work.

www.cisco.com/jobs
You can stop wondering. The Internet is definitely here to stay. And if you think it’s big now, just wait

awhile and see. Better yet, why wait? Join Cisco Systems and get a head start on the future. Here’s what

we bring to the table—a majority share of the networked world, mind-boggling success, and a highly

evolved working culture. The Internet is a revolution that is changing the world. And no matter who you

are, it has touched your life already. Which means that the question ready or not? is about more than just

asking if you’re ready to start. It’s also about reminding you that you already have.

Ready or not? Now is the time to act. To apply directly, please submit your resume along with

ad code: QW99 by E-MAIL: jobs@cisco.com; (ASCII text only); by MAIL: Cisco Systems, Inc.,

Human Resources, P.O. Box 640730, San Jose, CA 95164-0730; or by FAX: (800) 818-9201.

And don’t forget to visit us online at www.cisco.com/jobs for detailed listings of hundreds of

current job opportunities. It’s quick, easy and well worth it.

• Account Managers

• Customer Relationship Managers

• Customer Support Engineers

• Financial Analysts

• Hardware Engineers

• Human Resource Professionals

• IS Project Managers

• IT Analysts/Engineers

• Manufacturing Test

Development Engineers

• Marcom Specialists

• Network Consulting Engineers

• New Product Introduction

Engineers

• Product Marketing

Engineers/Managers

• Professional Services

(multiple locations)

• Project Engineers/Managers

• Quality Assurance Engineers

• Software Engineers

• Support Engineers/Managers

• Systems Administrators/

Managers

• Systems Engineers

• Test Development Engineers

• Web Developers

• Managers & Directors

(various departments)

or

EOE

CS VERILOG
3010 LBJ Freeway, Suite 900
Dallas, TX 75234

Phone: 972-241-6595
 800-424-3095
Fax: 972-241-6594
Email: info@verilogusa.com
Web: www.verilogusa.com

CS VERILOG is a world leader in software development solutions for real-time, distributed,
embedded, and critical systems. CS VERILOG solutions encompass technologies such as UML,
SDL, MSC, software metrics, test coverage, and graphical reverse engineering to generate products
that cover the complete development phase: system modeling, simulation, code generation, testing,
and quality assessment.

CS VERILOG is a subsidiary of the CS Communications & Systems Group, a telecommunica-tions
equipment and systems integration company listed on the Paris Stock Exchange. The company's US
headquarters are in Dallas, TX, with international headquarters in Toulouse, France, and
distributors worldwide. VERILOG has become one of the leading software companies providing
technical CASE solutions and related services to Fortune 500 corporations in the aerospace,
defense, telecommunications, transportation, medical and energy industries.
Visit CS VERILOG's Web site at www.verilogusa.com.

Products:

ObjectGEODE is a complete integrated development environment for system modeling,
verification and validation, code generation, and testing of real-time and distributed applications.
ObjectGEODE supports a coherent integration of complementary object-oriented and real-time
approaches based on UML, SDL and MSC standard notations.

LOGISCOPE is a set of tools providing quality and test analysis through software metrics, test
coverage, and reverse engineering, enabling effective software production and maintenance.

SCADE is a solution for developing safety critical real time systems. SCADE is based on a formal
technology developed in cooperation with Aerospatiale and Schneider Electric, and supports
software design using a block diagram approach, reuse of control engineering libraries, 100% code
generation, and testing.

http://www.verilogusa.com
http://www.verilogusa.com

ObjectGEODE
Integrated Development Environment for
Embedded, Real-Time, and Distributed Applications

www.verilogusa.com
info@verilogusa.com
1-800-424-3095

•System or Software Modeling
• Scalable to Handle Small to Very

 Used by System and Software Engineers

• Based on International Standards
• UML from OMG
• SDL and MSC from ITU
• ASN.1 and TTCN from ISO

• Comprehensive Graphical Modeling

• Fully Object-oriented
• Use Cases
• Architectural Patterns
• Complete Real-time Behavioral Modeling

• Full Blown Simulation
• Interactive, Random, and Exhaustive

 Verification of Deadlock, Race Conditions,
 Unreachable Parts, etc.
 Validation of Design
 Performance Evaluation

• Production-Quality Code Generation
• Readable, Small, Efficient, and Versatile

, Unix, Win32, Various
 Micro-Controllers, etc.
 On-target Back-to-Design Debugging

• Strong Testing Capabilities
• Automatic Test Case Generation
 System Test Case Execution

• Integrated with the Best-in-Class
• Requirements: QSS DOORS
• General-purpose: Rational ROSE

 Others: Please ask

CYRANO, Inc.
26 Parker Street
Newburyport, MA 01950
Phone: (978) 462-0737
Fax: (978) 462-4755
Email: info@cyrano.com
Web: www.cyrano.com

CYRANO is a leading provider of products and services designed to
help IT organizations deploy high quality/high performance Web and
client/server applications.

CYRANO provides end to end automated testing for client or web
browsers through any middle tiers and on to the database server.

The products range from web based functional and availability testing
to load and stress testing of web servers. Tools addressing performance
analysis of SQL transactions, database server stress testing, automated
coding standardization and network bandwith improvement are also available.

With a focus towards e-business and proof of concept planning and
execution, CYRANO solutions and services have helped many IT departments
with system deployment, capacity planning, performance and availability
testing and more.

To learn more about CYRANO, Inc., call us at 800.714.4900 or visit
our web site at www.cyrano.com

http://www.cyrano.com
http://www.cyrano.com

Data Dimensions, Inc.
The Data Dimensions’ Test Centers provide comprehensive Quality Assurance
and Test services including Testing Methodology, Best Practices, Project
Management, Year 2000 work, and Training.

The Test Centers offer heterogeneous testing environments from the PC to
mainframe, providing both LAN and WAN testing in a non-production, risk-free
environment.

Data Dimensions, Inc. provides Enterprise Integration Solutions (EIS) to
companies committed to aligning their Information Technology (IT) infrastructure
and business strategies. Since 1968, Data Dimensions has provided IT
leadership to national and international companies, including many among the
Fortune 500. For more information about Data Dimensions, visit the company’s
Web site at http://www.data-dimensions.com

http://www.data-dimensions.com

877.DIAL.DDI (877.342.5334) •• www.data-dimensions.com

1998 Data Dimensions, Inc. All Rights Reserved.
Data Dimensions is a registered trademark of

Data Dimensions, Inc. All Rights Reserved.

Data Dimensions, Inc. (DDI) Offers Comprehensive
QA and Test Services

The Data Dimensions’ Test Centers provide comprehensive Quality Assurance and Test services
include Testing Methodology, Best Practices, Project Management, Year 2000 work, and Training.

The Test Centers offer heterogeneous testing environments from the PC to mainframe, providing both
LAN and WAN testing in a non-production, risk-free environment.

We offer complete outsourcing solutions. Our facilities include both onshore and offshore solutions
centers, a comprehensive lab environment for testing client software, and a high capacity
multiplatform system environment.

Our clients have included Microsoft, Hewlett Packard, Texas Instrument, Xerox, Intel, Kodak, GTE
Intelligent Networks.

Data Dimensions, Inc. provides Enterprise Integration Solutions (EIS) to companies committed to
aligning their Information Technology (IT) infrastructure and business strategies. Data Dimensions
leverages a company’s IT investment by applying in-depth expertise through a comprehensive suite of
knowledge-based services and products. Since 1968, Data Dimensions has provided IT leadership to
national and international companies, including many among the Fortune 500.

ErgoLight Ltd., 6 Giv'on St.,
Haifa 34335, Israel
Email: info@ergolight-sw.com
Web: www.ergolight-sw.com

Tel:
Fax:
USA:

+972-4-826-3012
+972-4-825-8199

1-877-Use-Ergo
1-877-873-3746

ErgoLight

ErgoLight™ Ltd. develops and markets solutions for enhancing the usability of Windows
applications. The term “usability” is typically interpreted in various ways, to mean friendly
appearance, ease of use, ease of learning, user productivity and resisting user’s errors. The
solutions offer usability profiles, including operation profiles and failure profiles that are
based on human factors. The solutions allow automated capturing of the user operation, as
well as of the user's confusion, useful for usability labs and for remote testing. The
technology is based on a unique, patent pending, invention, which merges psychological
considerations in software tools.

ErgoLight addresses the full development cycle, from product specification to deployment.
The procedures that ErgoLight automates are mainly of usability validation, but also of
design, on-line assistance and Help Desk. ErgoLight offers solutions for software
developers, system integrators, testers and technical support personnel. The first solutions
run on Windows 95, 98 and NT.

ErgoLight professional solutions addresses the whole range of interactive Windows
applications, including education, mission critical and safety critical systems and production
applications. Particularly challenging applications of using ErgoLight are for validating the
forgiveness to user’s errors of “safety critical” systems, such as traffic control, nuclear
control, military, health and emergency systems. The capability of ErgoLight to identify
mode errors is most useful for validating the operation of modal systems, such as electrical
and electronic equipment.

ErgoLight express version is an easy-to-use version of the professional version that allows
QA engineers to identify error prone controls by statistics, even when running in silent mode.

ErgoLight Ltd., 6 Giv'on St.,
Haifa 34335, Israel
Email: info@ergolight-sw.com
Web: www.ergolight-sw.com

Tel:
Fax:
USA:

+972-4-826-3012
+972-4-825-8199
1-877-Use-Ergo
1-877-873-3746

Need to Redesign Your GUI?
Need to Improve the On line Help?

Need to Enhance the User Documentation?

Don’t rely on standards, style guides or design rules!
Standards were arranged by programmers . . .for programmers!

Most users aren’t familiar with the guides and don’t obey the rules.

Don’t risk trying to educate the users!
Most users prefer to change vendors rather than be educated.

Test your product’s usability with real users.
At the prototyping and alpha testing stages:

Add ErgoLight to your laboratory testing procedures,
to capture the user’s actions and the operation modes.

At the beta testing and product deployment stages:
Install ErgoLight Agent on the user’s PC as part of your product
installation, to capture the users’ intentions when they encounter
difficulties using your product.

Get usability data that you never had before:
•0 Statistics about your product’s usefulness
•1 Objective measures of user operation.

Understand the user’s errors:
•2 Backtrack the user’s actions including the product’s

operating mode at the time of the action
•3 Use integrated analysis tools based on human factors.

Usability Software

Hall Kinion
Hall Kinion’s objective is to provide efficient and high quality contract and
permanent IT professionals to high technology clients and to become the
“agent of choice” for IT professionals.

The Contract Services Division is divided into nine types of Practice
Groups. These groups focus on those technologies widely used by Hall
Kinion clients in the development of their products (Windows, UNIX, QA,
Hardware, Writers, Internet, NET, IS and Technology Support).

 Technical Recruiting Agents (TRAs) are responsible for recruiting IT
professionals in their particular fields of specialization. TRAs build long-
term relationships to understand their IT professional’s preferences and
capabilities and monitor their availability, progress and job satisfaction.
Account Managers are responsible for relationships with Hall Kinion’s
clients in different departments and at different management levels to
provide quicker ,more accurate placements.

 The Permanent Placement Division includes permanent placement to R&D
and IS departments of high technology firms; executive searches on a
retainer basis at a national level; and international recruiting from India,
Japan, China and Korea, to name a few. Recruiters are primarily
responsible for establishing relationships with clients needing permanent
IT professionals and matching the needs of the client.

Hall Kinion’s goal is to attract and retain the highest quality IT
professionals available. These IT professionals are provided with, among
other things, advance notice of state-of-the-art assignments and
prequisites, including participation in the Company’s 401(k) plan, access to
medical and dental benefits and inclusion in the Company’s stock options
plan to become the “agent of choice” for IT professionals.

Information Balance Inc.
Information Balance offers Information Technology consulting and technical training
services, encompassing solutions in Information Systems Planning, Project Management,
Application Development/Project Outsourcing, Systems Integration, Software Testing
and Quality Assurance.

Building on years of training and consulting experience, and expertise with some of the
leading Year 2000 tools, we also offer a complete cycle of Year 2000 services, from
Assessment through Renovation to Quality Assurance, Testing, and Project Review.

Our Year 2000 facilities are equipped with state-of-the-art hardware, software, and tools,
high-speed communication lines, and highly skilled professionals. Senior staff have
managed and implemented multiple large-scale development and Year 2000 projects for
Fortune 500 companies.

Information Balance is uniquely positioned to assist organizations as they complete Year
2000 programs, and to help leverage their experiences for future development. Services
include:

IBI*TEST2000, a turnkey testing methodology package, is a refinement of the best
practices and repeatable processes that our experts have developed during the testing
phase of Year 2000 projects. Comprised of test plans, templates, boilerplates, mentoring
and training, this testing pathway will speed up and streamline this crucial phase.
Multi-Level Quality Assurance Services will catch missed or erroneous renovations
before testing, saving both valuable time and effort.
Y2K Program Review to independently assess program processes, ensuring projects are
on-track, on-budget, and on-time.
A highly specialized Mobile Factory, designed for clients whose geographic location,
time limitations, or security needs necessitate on-site delivery. Able to assess, renovate,
test, and perform Quality Assurance at the client site, the Mobile Factory is particularly
valuable as the 2000 deadline approaches.

For more information please contact
our International Headquarters at:

416-962-5235 Fax: 416-962-8020

E-mail: infobal@infobal.com
www.infobal.com

Information Balance is uniquely positioned to assist your company
in completing your Year 2000 projects and in leveraging your hard-earned
experience for future development efforts.

We provide consulting and technical training solutions for both the public
and private sectors in Software Testing, Testing Methodologies, Quality Assurance,
Information Systems Planning, Project Management, Application Development/Project
Outsourcing and Systems Integration. Quality Assurance techniques and Testing
Methodologies are firmly entrenched in all our projects to ensure a quality mindset
throughout all phases of development.

Building on years of training and consulting experience, and expertise with some of
the leading Year 2000 tools, we also offer a complete cycle of Year 2000 services, from
Assessment through Renovation to Quality Assurance (IV&V), Testing, and Project Review.

Quality focused. Guaranteed delivery.

823 Commerce Drive Oak Brook, IL 60523 877-9IT-NSQM
peggythomas@interim.com www.interim.com/technology

Interim Technology, The Consulting Group is a global leader in providing
Software Quality Management solutions to premier companies around the world.
As a founding member of the Quality Assurance Institute, more than 30 years
experience, more than 5,000 full-time salaried consultants working from an
international network of offices, and more Certified Quality Analysts (CQAs) on
staff than any other consulting firm; Interim Technology offers its client base
expertise that stands alone in the industry.

Our world-class expertise along with our unique approach to service delivery
provides an unbeatable combination in exceeding our clients’ expectations with
each and every engagement. Our rigorous performance standards, commitment
to staff development and dedication to continuous improvement ensure
satisfaction for our clients.

Our Software Quality Management (SQM) practice provides the best guarantee
of delivering quality the first time, every time. Our services include: Software
Validation and Testing, Tool Automation Evaluation and Implementation, Quality
Process Assessment and Implementation, Quality and Productivity Metrics, as
well as Quality Process training for both users and IT professionals. These
services are supported by a proprietary set of tools and methodologies, which
include our state-of-the-art hypertext VALI/TEST Pro (Validation and Testing
methodology) and Interim Technology/SQM Tool Suitesm.. The Interim
Technology/SQM Tool Suitesm provides comprehensive planning and
management capabilities throughout the software development process.
Additional components help you size software development activities, as well as
build and maintain a comprehensive metrics repository for software engineering
projects.

In addition, Interim Technology offers a full range of educational programs that
can be customized for your organization’s needs, as well as for individual
mentorship and coaching. All are designed to instill and reinforce the
understanding of quality principles. The programs address management and
implementation issues, and fully support all elements of our services and
products.

http://www.interim.com

In case you were wondering,
here is our resume.

Interim Technology,The Consulting Group with over 30 years experience, is a world
leader for Software Quality Management solutions.

With offices around the world, and a founding member of the Quality Assurance
Institute, our scope of operations encompasses over 5,000 full-time salaried
consultants, and more CQAs than any other consulting firm on this planet.

INFORMATION’S POWERFUL MINDS
Interim Technology, 823 Commerce Drive, Oak Brook, IL 60521 • Phone (630) 645-8800 Fax (630) 645-8801

E-mail: www.interim.com/technology

THE CONSULTING GROUP

Now, can we hear from you?
We are currently seeking qualified professionals

in the following areas:

Test Automation Architects
Test Automation Analysts

Test Automation Engineers

The skill levels required:
•Minimum of 3 years experience with structured testing

•Automated test tools experience such as Rational SQA, Mercury Interactive •Segue and Compuware

We also require a 1 year minimum in programming, with Visual Basic, Java or C language preferred.

Please forward your detailed resume to The Director of National Recruiting at the address below. Or e-
mail: interview@interim.com.

It just might be the best career move of your life,
in case you were wondering.

EOE

International Institute for Software Testing
IIST is an educational and professional development organization that has been founded
to meet the following goal:

To promote a disciplined approach to software testing and to caution against ad hoc
testing by non-qualified individuals and groups.

To achieve this goal, IIST will operate according to the following charter:

• To promote and provide education and certification of software testing professionals
around the world.

• To create a pool of qualified software testing professionals to meet the needs of
testing organizations.

• To provide assistance and guidance to members, both corporate and individuals,
performing testing of all types of software systems.

• To provide a framework for assessing organizational testing practices and procedures.
• To partner with different software quality groups around the world to assure

continuity of information flow among testing professionals.
• To serve as a clearinghouse of services, methods, and tools supporting the discipline

of software testing.
• To provide an open forum for discussing different testing issues.

IIST offers a comprehensive training program for software testing and quality professionals. IIST
offers a certification of for software testing professionals that is based on formal training as well
as job experience requirement. IIST sponsors the International Conference on Practical Software
Quality Techniques (www.softdim.com/psqt)

Details for the institutes programs and offerings including the Certification for software testing
professionals are at www.softdim.com. For information, call (651) 306-1387.

International Institute for Software Testing

IIST is an educational and professional development organization that has been founded
to meet the following goal:

To promote a disciplined approach to software testing and to caution against ad hoc testing by
non-qualified individuals and groups.

IIST offers a comprehensive training program for software testing and quality professionals.

Details for the institutes programs and offerings including the Certification for software testing
professionals are at www.softdim.com. For information, call (651) 306-1387.

Intrinsa Corporation
444 Castro Street, Suite 130
Mountain View, CA 94041
650-526-8965 (Direct)
650-254-0350 (Fax)

Visit Intrinsa's at: http://www.intrinsa.com and discover PREfix Automated Code Reviewer
software, the new standard for improving software quality from Intrinsa Corporation. PREfix uses
patented technology to identify crash-causing defects in C/C++ source code without the need for
test cases or instrumentation of the code, and it works on Windows and UNIX platforms. Find out
why Fortune 500 companies such as AT&T, Autodesk, Cisco, HP, Microsoft, and Sun have
committed to improving their products through PREfix.

Why is PREfix Better?
Catching defects sooner can significantly reduce the cost of error correction. PREfix enables the
earliest identification of defects – as soon as the code is created -- providing substantial savings
over run-time analysis or traditional debug tools.

Using Intrinsa's patented technology, PREfix can uncover crash causing defects that are virtually
impossible to find using other software testing tools. Even better, PREfix operates without test
cases and works on components as well as incomplete (non-executable) or complete applications.

Rather than simply pointing to where the code failed, PREfix actually tracks and displays the
execution path that leads to the defect. Defect reports are also prioritized automatically, making it
easier to target the most significant defects first. Best of all, PREfix can be integrated into a
project's build process for automatic "round the clock" code analysis and improved project
management.

Contact Intrinsa at 1-888-CODEFIX and learn more about how PREfix can benefit you.

http://www.intrinsa.com

Intrinsa Corporation • 444 Castro Street, Suite 130 • Mountain View, CA 94041
650.390.8600 • fax 650.254.0350 • www.intrinsa.com

Discover PREfix Automated Code Reviewer software, the new
standard for improving software quality from Intrinsa Corporation.
PREfix uses patented technology to identify crash-causing defects in
C/C++ source code without the need for test cases or instrumentation
of the code, and it works on Windows and UNIX platforms.

Find out why Fortune 500 companies such as AT&T, Autodesk,
Cisco, HP, Microsoft, and Sun have committed to improving their
products by incorporating PREfix into their software development
process. By finding significant defects earlier, PREfix can help you

• improve your software quality

• make your developers more productive

• fix bugs in minutes, not hours

• reduce the cost of fixing errors/bugs

• accelerate your time to market

Explore the pages that follow and see the many ways that PREfix can
benefit you. And when you are ready to transform your software
development process with the new standard for improving software
quality, contact Intrinsa at 1-888-CODEFIX.

Test Software During Development with
PREfix® Automated Code Reviewer™

Looking for Bugs?
Why Wait for QA?

U S E P R E f i x T O :

◆ Identify Bugs Early

◆ Find Significant,
Difficult-to-Locate
Bugs

◆ Determine Which
Bugs to Fix First

◆ Fix Bugs Faster

◆ Validate Software
Component Integration

Find Intrinsa At Software Quality Week Booth #201

KeyLabs, Inc.
KeyLabs has the world's largest independent, professional testing lab dedicated to testing hardware
and software products in network environments. With its state of the art testing facility, KeyLabs
delivers results quickly and accurately, allowing you to keep up with the pace of technology while
maintaining costs and productivity.

KeyLabs' expert personnel have years of experience in test planning, design, and implementation.
We provide innovative solutions to your testing needs and back that up with reliable and competent
test results.

KeyLabs provides a full range of quality industry-standard tests and testing tools. Whether testing
for Year 2000 or your own specialized need, KeyLabs can provide a solution for you.

* Custom Testing Services
* Load/Stress Testing
* Y2K Testing
* Benchmark Testing
* Performance & Scalability Testing
* Configuration Validation
* Interoperability Testing
* E-Commerce Testing
* Certification Programs
* QA Testing
* Functionality Testing
* Localization Testing
* Bug Reporting

KeyLabs has a flexible lab with more than 800 networked PC's that can be configured to simulate
from one to tens of thousands of users, multiple network platforms, and a modem pool that boasts
over 100 true dial-up connections. With its unequaled test lab and experts with years of experience,
KeyLabs can simulate your network environment, your Internet/Intranet and test your E-Commerce
business model.

T E S T I N G S E R V I C E S

T
oday’s customers are more knowledge-

able than ever before. They require

products that not only solve business

needs but also work as advertised. This is why

it makes sense to call in the experts at KeyLabs.

Whether you need to supplement your own

in-house lab or you’d like to create a testing part-

nership to handle the entire process, KeyLabs

puts your hardware and software to the test. We

offer independent verification for your customers’

satisfaction and your peace of mind.

As the world’s largest independent testing lab

dedicated to testing hardware and software

products in network environments, KeyLabs

delivers results quickly, accurately and cost-

effectively. Choose KeyLabs and keep pace with

your product launch schedules, reduce your lab

expenses and eliminate engineer burnout.

K E Y L A B S D E L I V E R S S O L U T I O N S

At KeyLabs, we’ve moved beyond task-oriented

testing. We’re a full-service solutions provider.

Testing Managers choose KeyLabs to be an

extension of their own in-house test lab. We

reduce expenses and stress by providing you

with the technical staff, the environment and

the testing expertise needed during peak times.

Product Managers use us to verify internal

results, to provide competitive analysis and to

run industry certifications. In fact, we become

your company’s one-stop shop for quality

testing services and solutions.

From the time your product is born on a

white board until the time it’s retired, KeyLabs

is there every step of the way, evaluating tech-

nologies, streamlining the product life

cycle and regressing bug fixes.

“KeyLabs by

far had the

greatest degree of

customer-service

excellence and a

we’ll-make-it-work

attitude.”

James Leonard
Sun Microsystems

KeyLabs’ expertise and

scalable lab

provide today’s

technologically

advanced companies

with unequaled

testing services.

Your full-service testing
solution partners

The experts
in network testing

www.keylabs.com

Eric Bowden, Account Mgr.;
Rana Cook and John Conarroe,
Technical Staff; Pete Nelson, Program Manager;
and Shelly Linschoten, MarCom (right sidebar)

McCabe & Associates, Inc.
9861 Broken Land Parkway
Fourth Floor
Columbia, Maryland 21046
Toll Free: 1-800-638-6316
Phone: 410-381-3710
Fax: 410-995-1528
Web: http://www.mccabe.com

McCabe & Associates, Inc. is an international leader in software solutions for improving
the quality and reliability of enterprise software applications. Based on over twenty years
of research and experience in software quality, testing, and reengineering, McCabe IQ is
an integrated approach to building quality into your software development lifecycle. Using
Thomas McCabe's groundbreaking research in software testing and complexity, it
combines a strong theoretical foundation with practical, visual tools to help organizations:

* Accurately assess software quality, complexity, and testing requirements
* Pinpoint potential problems and high-risk areas
* Eliminate redundant code
* Thoroughly tests applications
* Validate coverage of high-risk areas

Since 1977, we have been working closely with our customers to improve the quality of
large-scale, mission-critical software. Many of the world's most influential corporations
and government organizations have used our products successfully to test, reengineer,
and verify the quality of over 30 billion lines of products for source code analysis and
testing. And our structured testing methodology has been adopted and published by the
National Institute of Standards and Technology (NIST).

Solidly based on source code analysis technology, McCabe IQ integrates the build, test,
and change phases of software development. By linking these processes through
advanced visualization, industry standard metrics, and dynamic monitoring, McCabe IQ
raises the quality standards of your deliverables, reduces your overall development costs,
decreases your time to market, and lets you focus your resources where they will have the
greatest impact, today and tomorrow.

http://www.mccabe.com

MicroCrafts Inc
A Metamor Software Solutions Company
8700 148th Avenue NE
Redmond, WA 98052
Tele: (425) 250-0000
Fax: (425) 250-0100
Email: info@microcrafts.com
Web: www.microcrafts.com

MicroCrafts is a leading software engineering firm specializing in the design,
development, quality assurance and testing of Windows software applications,
components and business solutions. We are experts in technology, project
management, software process improvement, and quality assurance engineering. Since
1989, we have focused exclusively on the development and testing of Windows-based
solutions, resulting in the delivery of truly innovative products for some of the most
demanding and successful companies in the world. MicroCrafts is constantly striving to
create new and more effective processes to help deliver higher quality software
products and solutions to our clients. MicroCrafts is a Metamor Software Solutions
company, a division of Metamor Worldwide (Nasdaq: MMWW), a leading information
technology consulting solutions organization.

http://www.mcrocrafts.com

Microsoft

Microsoft Project 98 is a powerful application you can use to efficiently plan,
manage, and communicate project information. If you need software to handle
dynamic scheduling, manage multiple projects and resources, and support better
communication, Microsoft Project 98 is the tool for you. It is designed for anyone
who oversees a team, plans a budget, juggles schedules, or has deadlines to
meet. In short, anyone who manages a project as part of their job in today's busy
working world.

No matter how large your project, or how many people on your team, Microsoft
Project 98 helps you to transform your organization into a more agile, responsive,
customer-oriented company by focusing on project needs. Because Microsoft
Project 98 is part of the Microsoft Office family, it's as easy to use as your other
favorite Office Programs.

Benefits

Control Your Projects with Confidence - With the flexible new scheduling
engine in Microsoft Project 98, you can plan and track your projects more
effectively and identify and respond to conflicts before they happen.

Communicate your Plans with Ease - Microsoft Project 98 has rich
presentation features including the ability to publish information to the intranet
and internet, plus workgroup features that let you communicate with team
members via e-mail or the web.

Works the way that you do - Full compatibility with Microsoft Office
applications, as well as other databases and systems, means that users learn
Microsoft Project 98 faster and can share information easier with others in the
company.

Crops
indicate
live area

Crops
indicate
live area

Client: Microsoft Job No: ATG-PJT-H83844

Description: Project 98 “Air Hockey” Std Page

Live: 7 x 9-3/4" Trim: 7-7/8 x 10-1/2"

Bleed: 8-9/16 x 11-1/4"

Type: In-House/Martha

Team: Madeline, Kimberly, Jorge, Jaime, Joan, Anton/Doug

Anderson & Lembke, 135 Main St., SF, CA 94105

Thursday, 18 February, 1999 4:27 PM
Freelancer H83844 AirHockey-StdPgeH
Franklin Gothic Heavy, FranklinGothic, 75
Helvetica Bold, 55 Helvetica Roman, B
Franklin Gothic Demi, I Franklin Gothic
BookOblique

PUBLICATION NOTE:
The printing material for this

insertion is to be examined
carefully upon receipt. If material is
deficient or does not comply with

your requirements, please
immediately contact:

Madeline Belliveau or Lauren Elliot
Prod Dept at Anderson & Lembke:

(415) 357.3400

For agency use only:

AD CW AE GD PR CD TM CL PF

Art Usage:

One Year Unlimited Use

Trade Consumer

Electronic DM

International

Start date

Where do you want to go today? ®

Developing software is a complicated task. In most cases, too complicated to update and track on a whiteboard. Microsoft®

Project 98 helps you make your deadlines by giving you the power to plan each step, make changes, and keep everyone informed
along the way.

You can update an entire plan with just a couple of clicks. You can integrate Microsoft Project 98 data with applications you
already use. And everyone on your team can stay up-to-date via e-mail or the Web. Try doing any of these tasks with your
whiteboard. Visit our Web site for a free* trial at www.microsoft.com/project/tryit98 or call 1-888 -877-9092.

Your old planning tool won’t be
completely obsolete.

*Connect time or shipping and handling charges may apply.
© 1999 Microsoft Corporation. All rights reserved. Microsoft and Where do you want to go today? are either registered trademarks or trademarks of Microsoft Corporation in the U.S. and/or other countries.

Performance Research, S.r.l.,

Performance Research, S.r.l., specializes in analysis and prediction of the
performance of complex integrated software/hardware systems. The company
provides software and services based on its technology.

PREDICTA is a comprehensive software tool that helps designers at solving
development issues of complex computing network systems by modeling,
simulating and predicting system interactions and performances.

PREDICTA features a performance-oriented modeling environment providing
engineering value for even complex, multi-layered systems. It answers
performance-related feasibility, configuration and optimization questions
quickly and can give objective guidance to the systems development team
and the system deployment team.

PREDICTA highlights many performance defects that cannot be identified
either by static analysis or by black-box testing techniques. Introducing a
performance-oriented modeling and prediction activity into the system design
process allows the design-team to perform what-if analyses on the proposed
designs from the start. With this information, the whole development process
can be guided by the performance requirements.

Using PREDICTA, system engineers can:
− Optimize a deployed system by performing the tuning or re-configuration

actions that resulted to be the most effective in the model-based analysis.
− Optimize a system design with respect to the specific service requirements

of a specific customer before deploying the real system.
− Discover bottlenecks and evaluate (what-if) the consequences of making a

particular choice of system components and/or system architectures.
− Have evidence of the sustainable service request increase curve for a

given system implementation/configuration.
− In general, benefit from knowledge of the projected performance for the

design-in-place in contrast to the service level agreements made on
performance requirements.

Q-Labs, Inc.
Q-Labs is dedicated to providing software engineering solutions to the industry, enhancing
software development capabilities. Q-Labs' expertise is as a change facilitator, which
includes providing 'state-of-the-art solutions' as well as supporting dissemination of
'industry standard best practices.' Our approach is to keep our customers steps ahead in
software engineering. Q-Labs products and services include:

o Software Management
 (Business Analysis, Software Process Improvement, ROI Calculations, ...)

o Software Process Improvement
 (SW-CMM-based Software Process Improvement, SE-CMM, Measurements, ...)
o Technology Transfer and Deployment services (Inspections, UML, SDL, ...)
o Cleanroom Software Engineering
 (Statistical Usage Testing, Sequence Based Specifications, Incremental
 Development)
o Humanics (Teamwork, P-CMM)
o Software Acquisition services (SA-CMM, Supplier Evaluations, External QA, ...)
o Test Support (Daily Builds, Automated test)
o Contract Development Services

 (software specification, development and test for customer projects)

Our goal is customer success. For example, Q-Labs in its role as the primary provider of
SPI support for the Ericsson System Software Initiative, helped Ericsson save 60 million
USD in 1997 due to improved software quality. Q-Labs works with a number of
customers around the world, including Alcatel, Bosch, CTI, Ericsson, IBM, Siemens, and
the U.S. Army. Q-Labs was founded in 1989 and has over 60 employees at offices located
in Sweden, Germany, US, Ireland, and Norway. We have a very strong international
network and a strong capability to support global customers. Q-Labs is a joint venture
between DNV and Ericsson.
For more details, visit us at www.q-labs.com or send write us at info@q-labs.com.

http://www.q-labs.com

Quantitative Software Management
Quantitative Software Management (QSM) is a leading software project
management organization specializing in software metrics products and services.
We offer our clients Software Lifecycle Management (SLIM) processes and
tools for software cost estimating, reliability modeling, schedule estimating,
planning, tracking, and benchmarking. We have been helping our clients
develop quality software on time and within budget for over 20 years.

Products:

• SLIM-Estimate is a project estimation and planning tool which implements a
structured method for determining the amount of function required to satisfy a
given set of software requirements and then allows managers to identify the
best strategy for building a corresponding product, shortening cycle time,
reducing cost, improving quality, and minimizing risk.

• SLIM-Control is a tracking and oversight tool which implements Statistical
Process Control techniques for assessing the status (plan versus actual with
forecast to completion) of built-in and user-defined measures and metrics.

• SLIM-Metrics is a metrics repository tool which allows the user to assess
competitive position, identify development bottlenecks, quantify the benefits
of improvement and support planning for future projects.

Rational Software Corporation
Address: Corporate Headquarters

18880 Homestead Road
Cupertino, CA 95014

Phone: 408-863-9900
Fax: 408-863-4120
Email: info@rational.com <mailto:info@rational.com>
WWW: www.rational.com <http://www.rational.com>

Rational Software (NASDAQ: RATL), creator of the Unified Modeling Language
(UML), is the leading provider of a solution that unifies proven software
development principles, tools, and services to improve the productivity of
project teams and individuals. Rational's products span the critical
activities of requirements management, visual modeling, testing, and
configuration and change management.

Rational's mission is to ensure the success of customers who depend on their
ability to develop the software upon which their businesses depend. Rational
enables its customers to achieve business objectives by turning software
into a source of competitive advantage, decreasing time-to-market, reducing
the risk of failure, and improving software quality.

Rational's comprehensive solution unifies proven principles of software
development, an integrated family of market-leading tools, and technical
consulting services into a set of software Best Practices applicable through
the development lifecycle by all members of a development team. Rational's
products can be purchased and used individually or integrated with other
Rational products, leveraging the power of each individual product.

Rational has more than 1900 employees worldwide, with corporate headquarters
in Cupertino, California. Major development centers are located in
California, Massachusetts, Oregon, Colorado, North Carolina, Washington,
Pennsylvania, Sweden, and India. For more information, visit Rational's
Website at www.rational.com.

http://www.rational.com
http://www.rational.com

T
he

 w
or

d
“R

at
io

na
l”

an
d

R
at

io
na

l’s
 p

ro
du

ct
s

ar
e

re
gi

st
er

ed
 t

ra
de

m
ar

ks
 o

f
R

at
io

na
l S

of
tw

ar
e

C
or

po
ra

tio
n.

 A
ll

ot
he

r
na

m
es

 a
nd

 t
ra

de
m

ar
ks

 a
re

 t
he

 p
ro

pe
rt

y
of

 t
he

ir
re

sp
ec

tiv
e

ow
ne

rs
.

www.rational.com • \1-800-728-1212

UNIFYING SOFTWARE TEAMS

Rational Suite TestStudio’s comprehensive suite of
testing tools includes breakthrough technology that

automatically exercises your application, measures code
coverage, and creates reusable test scripts for regression

testing. It liberates your team from mundane testing chores,
making them more productive and improving overall qual-

ity. No wonder Rational tools are #1 worldwide. Get
some sleep by visiting our website to order a

demo CD-ROM.

RATIONAL SUITE
TESTSTUDIO

WILL TAKE THE JOB.

See Us At
Booth #309

SQA98091TSinsomniac 3/29/99 3:01 PM Page 1

Solutions for Automated Software Inspection
Reasoning is a leading provider of solutions and services that lower the cost and accelerate the speed of
delivering reliable software and Web-enabled applications. The company’s solutions are based on the
Reasoning5 Code-base Management System (CBMS)an advanced software analysis and transformation
engine. Reasoning’s solutions for mainframe and client/server environments feature extraordinary
automation and accuracy providing benefits of high productivity, low cost fast turnaround and high
quality.

Inspector II for Automated Software Inspection
Inspector II is a software quality toolset and process that helps organizations produce high-quality
software and lowers the cost and time of testing. Inspector II automatically inspects mission-critical
applications and pinpoints and predicts software defects that cause application failures—it also measures
the fragility of software.

Inspector 2000 for Year 2000 IV&V
Inspector 2000 is acknowledged by Gartner Group and META Group as a superior solution for
Independent Verification and Validation (IV&V) of Y2K software repairs. Inspector 2000 audits of the
thousands of remediated applications show that virtually all repaired code bases still contain hundreds to
thousands of Y2K defects. Inspector 2000 can audit internally or externally remediated code, audit
commercial software vendor and supply chain partner applications, as well as help with Y2K contingency
planning.

enVision for Internet Transformation
enVision solutions combine CBMS technology and innovative services that accelerate the transformation
of client/server applications to the Oracle Internet Platform and the reengineering of IBM CICS
applications to support e-business. enVision is a superior solution for application migrations and Web-
enablement because it is more accurate than code translations and more time and cost-efficient than code
re-writes.

Enterprise Application Auditing Consulting Services
Reasoning offers consulting services to analyze and assess the quality, maintainability and Internet
adaptability of existing application software. These unique audits produce detailed information and
recommendations for improving the reliability of business-critical applications, lowering the costs of
software development and maintenance and streamlining ERP and EAI initiatives. Reasoning’s e-
business feasibility audits are designed to help organizations develop rapid implementation plans to
support strategic e-business initiatives.

For more information, visit the Reasoning website at http://www .reasoning.com

Reasoning, Inc.
700 East El Camino Real
Mountain View, California 94040
+1 (650) 429-0350 tele
+1 (650) 429-0222 fax
www.reasoning.com

Soffront Software Inc.
830 Hillview Ct. Ste 140
Milpitas, CA 95035 USA
http://www.soffront.com
Soffront Software Inc. is a leading supplier of enterprise-wide solutions designed to track all aspects of
development, sales and support. Founded in 1992, the company designs, manufactures, and markets
TRACK family of products for Defect Tracking, Help Desk, Sales Force Automation, and Knowledge
Management. These products are used by organizations worldwide to solve their enterprise wide tracking
and analysis needs. More than 40,000 licenses have been sold to organizations worldwide.

TRACK 5.1™ is an easy-to-use client server based system that provides tools for designing, creating and
customizing databases based on many popular SQL backend databases. The database is then used to keep
accurate, detailed records of projects, bug reports, code changes, test cycles, sales leads, sales forecast,
account details, support calls, product releases, documentation, system configurations and more. TRACK
version 1.0 was first introduced in January 1993.

TRACKWeb™, the industry’s first customizable web-based tracking system, was introduced by Soffront
in December of 1996. TRACKWeb lets developers, vendors, customers, and users easily access, submit
and report necessary information through their web browsers, such as Netscape Navigator™ or Microsoft
Explorer™. TRACKWeb supports applications such as Help Desk, Sales Force Automation, and Defect
Tracking. TRACKWeb enhances communication between vendors and their customers by providing a
way to get answers to questions in real-time.

TRACKRules™, a flexible rule definition system, extends the power of TRACK and TRACKWeb.
Introduced in October of 1997, TRACKRules allows a system’s administrator to define complex
conditions, which activate mail notifications and field updates, thereby ensuring proper maintenance and
execution of business rules, process flow, and communication.

TRACK KB™, a knowledge base tool which “learns” a company's product and service information from
expert support personnel, thus creating an available pool of wisdom for users who need to quickly find
answers to their questions. TRACK Kb was introduced in August of 1998. TRACK Kb, used in
conjunction with TRACK™ and TRACKWeb™, utilizes rules, questions and solutions to automate
locating answers to users' questions.

Soffront sells TRACK family of products for Help Desk, Defect Tracking, and Sales Force Automation
through a direct sales force and distributors in the United States and Canada and through an international
network of value-added resellers. Soffront is funded by private investors.

http://www.soffront.com

qw99.foffront_ad.gif (576x793x256 gif)

Software Development Technologies (SDT)
SDT's mission is to assist organizations throughout the world with

improving their software quality through training and consulting. SOFTWARE

DEVELOPMENT TECHNOLOGIES is the only company to offer a fully-integrated

solution to Technical Reviews and Inspections, from methodology to automated

implementation.

TECHNOLOGY ASSESSMENTS. SDT’s senior consultants identify and

prioritize the areas in greatest need of improvement and recommend a step-by-

step plan to most effectively address the goals and actions for optimal

improvement. SDT uses a pragmatic, hands-on approach.

TRAINING SERVICES. SDT's expert methodologists are constantly

developing and evolving our comprehensive public and on-site training courses

in the areas of Software Testing, Testing Tools and Technical Reviews and

Inspections. Our train-the-trainer program can certify your instructors to teach

courses that have been customized and licensed for use within your company.

CONSULTING, QUALITY TEAM COACHING/MENTORING. SDT consultants are

experts in software technologies that apply universally to all types of software.

They meet the same high standards as our course instructors and include

prominent technology leaders, authors, conference speakers and leaders of

national software standards efforts.

For companies serious about significantly improving their software quality

practices, SDT offers coaching for senior Quality, Development and Test

managers and their teams.

PRODUCTS. SDT provides specialized software testing products that

complement our service offerings. ReviewProTM, SDT's new web-based,

automation tool for Technical Reviews and Inspections, prevents the migration of

defects to later phases of software development. ReviewPro is integrated with

your existing IT infrastructure and easily accommodates your existing Inspection

process.

Headquarters: San Jose, California. www.sdtcorp.com. 408.297.1911

Software Development Technologies
Providing practical, proven and effective software quality products and services

Training Services
• Public and onsite courses in:

♦ Software Testing
♦ Testing Tools
♦ Technical Review and Inspection

• Onsite courses customized for your test
environment

• Course licensing available
• Train-the-trainer program offered

Consulting Services
• Expertise in all areas of software quality

improvement:
♦ Test practices
♦ Automation
♦ Inspection
♦ TestFrame design and automation

methodology
• Senior consultants take a practical, hands-on

approach

Technology Assessments
• Evaluation of your company’s test and

development methods, tools, practices,
organizational structure, and environment

• Identification of areas for improvement
• Recommendation of a step-by-step action plan
• Scope can include verification and/or validation

as well as entire life cycle

ReviewPro
• Brings automation to the Technical Review and

Inspection process
• Web-based collaboration application
• Open architecture
• Project management for geographically

dispersed teams
• Data collection and metrics reporting capabilities

ReviewPro
Bringing Automation to Software Review and Inspection

ReviewPro is an enterprise software application which facilitates and simplifies the most powerful defect
detection and removal method—the Review and Inspection process. A web-based collaboration
application, ReviewPro allows you to harness all the information created and decisions made during your
product development cycle.

♦ Simplifies and facilitates communication
♦ Eliminates needless paperwork and meetings
♦ Enables you to measure and manage analysis results
♦ Serves as a central, accessible repository for

collection and reporting of Inspection metrics
♦ Leverages industry acknowledged best practices

♦ Increases willingness to participate in the review
process

♦ Compatible with your existing IT infrastructure
♦ Easily customized to accommodate any industry

standard or custom in-house Inspection process
♦ Gives management visibility to the status of software

deliverables

“ReviewPro is the most interesting piece of software for giving support to the Inspections process I have seen. I am
recommending that my clients evaluate it.” Tom Gilb, www.Result-Planning.com

“The biggest complaint we’ve had with our current inspections process was getting data into the system; this
problem will be solved with ReviewPro. Its collaborative feature allows defects to be documented and visible before
our meeting so productivity is greatly improved.” Edward Weller, Fellow, Bull Information System

Software Development Technologies (408) 297-1911 · sdt@sdtcorp.com · www.sdtcorp.com

Software Emancipation Technology, Inc.
15 Third Avenue, Burlington, MA 01803
Tel: 781-359-3300 or 1-888-9-DISCOVER
Fax: 781-359-3399
Web: www.setech.com
E-mail: info@setech.com

Software Emancipation develops, markets, and supports DISCOVER®, a flexible
and scalable development information system designed to help enterprises to
evolve their mission-critical software development processes, and to more
effectively manage their software systems as strategic assets. By using
DISCOVER, enterprises achieve measurable improvements in software quality
and development processes, reduction in development and maintenance costs,
and predictability in time to market.

DISCOVER analyzes source code and creates a database of information (the
Information Model) that captures the interrelationships between all entities
in the code base, resulting in a detailed view and high-level architectural
perspective of the entire application. This Information Model provides
critical information for both management and the development team.

DISCOVER captures detailed knowledge about the structure and operation of an
organization’s software - that might otherwise reside only in the minds of
individual programmers - and brings precision, manageability, and
predictability to the software development process. DISCOVER enables
software professionals to more thoroughly understand their large software
systems, to more efficiently and accurately effect changes to a large body
of source code, and to more easily reengineer or reorganize a complex
software system.

With DISCOVER 7.0 Software Emancipation introduces premier solutions for
improving software quality through quality process-control and management.
It includes a mechanism for quantitative unbiased measurement of software
and the means to analyze, monitor, control, and improve software quality
early in the development process. DISCOVER 7.0 includes:
SubmissionCheck for early detection of violations in coding procedures before
submission.
QA Analyst enables to set up, monitor, and enforce quality compliance standards.
QA Cockpit provides a quantitative reporting tool:
QAR (Quality Assessment Report) for monitoring and supervising software quality
as it is being developed.
Quality Assessment and Diagnostic Service

DISCOVER supports C and C++ source code, Oracle embedded SQL and PL/SQL, and
Java, and runs on SunOS, Solaris, HP-UX, SGI IRIX, and Windows NT.

Software Quality Engineering
330 Corporate Way
Suite 300
Orange Park, FL 32073
(904) 278-0707
(904) 278-4380 (fax)
sqeinfo@sqe.com
www.sqe.com

Company Description for CD-ROM Proceedings:

Founded in 1986, Software Quality Engineering (SQE) assists software
professionals and organizations throughout the world with improving their
software testing and quality engineering practices. The company’s hands-on
experience and training expertise help companies – large and small – to improve
testing practices, gain measurable control over software projects, and ultimately
deliver better software.

SQE can assist your software organization through the following services:

Professional Services – SQE understands that a one-size-fits-all approach to
software improvement is rarely effective. Our professional support process
begins with assessment and analysis of the unique needs of your organization,
followed by hands-on, targeted action. From on-site training to in-depth project
implementation support, SQE has the technical experience and resources to
address the special needs of your organization.

Training Seminars – SQE delivers specialized training seminars on systematic
testing, test automation, Year 2000 testing, software metrics, requirements,
software management, and more. These high-leverage courses are presented
publicly throughout the year and provide verifiable results in improving
productivity and software quality.

International Conferences – SQE organizes international conferences,
including ASM Software Measurement Conference, SM Software Management
Conference, and the STAR Software Testing Conferences.

Publications & Research – In an effort to make good software testing and
development information more readily available, SQE publishes Software Testing
& Quality Engineering magazine and operates the online SingleSource Guide to
the Best Software Quality Books.

http://www.sqe.com

Software Research, Inc.
901 Minnesota Street
San Francisco, CA 94107
Phone: (415) 957-1441
Fax: (415) 957-0730
Email: info@soft.com
WWW: http://www.soft.com

Software Research, Inc. created the field of Automated Software Testing and,
since 1987, has been providing the QA community with testing tools such as
CAPBAK, the capture/playback system, SMARTS, the corresponding test manager,
and the first commercial test coverage analyzer, TCAT.

Since 1995, TestWorks has been the original and only suite of Integrated
Testing Tools that includes both test regression and test coverage support for
Embedded, GUI, Client/Server and Web applications, on UNIX and Windows
platforms. The tools can be used separately or as a family integrated with
the other TestWorks tools, enhancing the thoroughness of the testing process.

More recently, TestWorks has expanded with TCAT for Java and CAPBAK/Web.
TCAT for Java is the first coverage analyzer for Java applets and Remote Testing
Technology (RTT) with local, Email and over-the-Web collection of snapshot
user interactions and refined test coverage data from Java applets.
CAPBAK/Web is a "test enabled Web browser" that incorporates all of the
required features for a CAPture/playBAcK system for testing websites.

Software Research, Inc, the company that pioneered end-to-end testing
solutions, looks forward to helping improve the quality of your applications
and achieving 100% return on your IT tools and technology investment.

To learn more about TestWorks from Software Research, Inc., visit our website
at: http://www.soft.com, or send email to: info@soft.com.

http://www.soft.com
http://www.soft.com

All the tools you need
for rock-solid code

Capture/Playback

Test Management

Test Data Generation

Static Analysis

Metrics

Path & Branch Coverage

Call-Pair Coverage

Web Applications

Capture/Playback

Test Management

Test Data Generation

Static Analysis

Metrics

Path & Branch Coverage

Call-Pair Coverage

Web Applications

TestWorksTestWorksTest ToolsTest Tools Your
Process

Your
Process

Software Research has created a
suite of fully integrated and
automated testing tools to help you
ensure the quality of your software
products. TestWorks offers an end-
to-end solution that covers all
aspects of your process life cycle:
test design and development, test
data generation, test execution and
evaluation, reporting and test
management, code comprehension,
coverage analysis, metrics and
maintenance. Perfect Tools for the
Quality Architect.

TestWorks improves the quality of
your products, whether in an
embedded or distributed client/server
system, in GUI desktop or web
applications. Its open architecture
empowers your work across
the major UNIX and all windows
platforms and OSs, in C, C++,
Ada, Fortran and Java.

You need to deliver high-quality
software on time, under budget?

We have TestWorks! Call the
company that created the field .

Software Research
1 (800) 942-SOFT
email:info@soft.com http://www.soft.com

Software SETT Corporation

Software SETT Corporation is a SQA consulting group that specializes in
systems evaluation, software testing and tester training services. We have been
a Quality Assurance organization for over a decade – creating test plans,
recommending testing strategies, managing and executing tests, evaluating
defect tracking and automation tools. Our clients include start-ups, the Fortune
50, and many prestigious Silicon Valley companies.

Repeat business and referrals have given Software SETT Corporation
solid expertise in the following markets/applications:

• PeopleSoft-based client/server applications for the corporate IT market
• Internet/Intranet applications
• Data warehousing software
• Medical device products
• Embedded systems
• Communications/networking hardware and software

Software SETT Corporation also offers a training curriculum tailored to fit
the needs, budgets and timeframes of our clients.

We believe that one of our most important assets is our people. We are
dedicated to building the best QA team in the industry. This goal ensures that
we have a highly cohesive team of SQA professionals to meet the needs of our
clients.

Our commitment to total quality, coupled with our ability to respond quickly
to our clients’ needs, has resulted in consistently high levels of customer
satisfaction. At Software SETT Corporation, customer satisfaction is our
number one priority – every employee is dedicated to providing quality service.
To maintain this important aspect of our business, customers are invited to
confer with us regularly.

You can count on Software SETT Corporation to be your reliable SQA
provider.

Software SETT Corporation is an SQA consulting group that specializes
in systems evaluations, software testing and tester training services. For
over a decade, we have acted as the Quality Assurance department - cre-
ating test plans, recommending testing strategies, managing and execut-
ing tests, evaluation tools for a number of prestigious Silicon Valley
clients, ranging from start-ups to the Fortune 50.

Word-of-mouth referrals and repeat business has given Software SETT a
vast array of expertise in many market segments. Our knowledge base
encompasses, but is not limited to:

w PeopleSoft-based client/server applications for the
corporate IT market.

w Internet/Intranet applications.
w Data warehousing software.
w Financial investment software.
w Communications/networking hardware and software solutions.
w Embedded systems software.
w Medical device products.

Software SETT also offers a comprehensive training curriculum tailored
to fit the needs, budgets, and timeframes of of your test team.

Software SETT Corporation

YOUR SQA SERVICE PROVIDER

Software SETT Corporation
233 Oak Meadow Drive

Los Gatos, California 95032
Phone: 408-395-9376
Fax: 408-354-6477
http://www.softsett.com

Sun Microsystems, Inc.
www.sun.com/jobs
www.sunboston.com
jobs@East.Sun.COM

A $10 billion company with offices in 150 countries, Sun Microsystems
provides end-to-end solutions for doing business in the network age.

We provide high-speed microprocessors, scalable systems, robust software,
network storage, mission-critical support, and comprehensive professional
services. Not to mention innovative, platform-independent Java and
Jini technologies. In short, all the key components that drive the Internet
as well as corporate intranets and business-to-business extranets.

Which explains why we're the dot in .com.

Headquartered in Palo Alto, CA, Sun recently opening a 170 acre
East Coast Headquarters in Burlington, MA. As well as a new
facility in Broomfield, CO. For information on job opportunities
at Sun, please visit us at www.sun.com/jobs or www.sunboston.com
or send email to jobs@east.sun.com

http://www.sun.com/jobs
http://www.sunboston.com

Powerlab™

Powerlab is designed as quality assurance testing hardware that
dramatically reduces floor space, cooling and power consumption. It is
ideal anywhere where multiple computers or servers are needed.
 The Powerlab provides 20-24 computers in a cabinet that uses only 10
square feet of floor space, and offers electronic switching.

... for Software Developers
The Powerlab model for software testing runs on a standard 20 amp
circuit, uses 10 square feet of floor space and produces no more heat
than a typical bread rack populated with 15 PCs. It allows the operators
to have all the components at their fingertips - in drawers that each
hold 4 computers.

... for Drive Manufacturers
The Powerlab model for drive testing increases testing capacity by 30%
over conventional bread rack testing configurations. Only 12.25 square
feet of floor space is required for 21 standard PCs. Powerlab provides a
convenient test shelf with connections for power and all drive types,
including USB, PCMCIA, IDE, SCSI, floppy, tape, cd-rom, dvd, and
removable media drives.

... for Peripheral Manufacturers
Powerlab provides a space saving, energy efficient method for testing
almost every computer peripheral on the market. It is the ideal solution
for testing modems, network cards, video cards, sound cards, scsi
controller cards, and much more.

... for Testing Laboratories
There are many reasons for testing labs to choose Powerlab over
conventional bread rack systems. Powerlab provides up to twice the
testing power per square foot as compared to it's bread rack
counterpart, works on conventional 20 amp circuits, produces less heat.

Technology Search International
1737 North First Street, Suite 600
San Jose, CA 95112
408-437-9500
www.tsearch.com

Technology Search offers over 15 years of experience in all aspects of technical search.
Our national clientele range from some of the most prestigious computer systems /
software companies to the hottest venture funded start-ups in the Silicon Valley. Our
detailed understanding of the industry and of our client companies is unparalleled, as is
our reputation and the results that ensue. Industry leaders provide TSI direct onsite
access to the hiring managers that should be reviewing your resume. The close
relationship we share with these clients has earned us an unparalleled reputation as the
logical place to go for top software talent. Often times the best opportunity is the one that
finds you. Our purpose is to open a dialog and keep you informed on what is happening
outside of your present situation. Supply your background information in advance and let
us learn about your sphere, focus and goals. Then we can act as your agent and bring
suitable and attractive opportunities to your attention as they arise.

Montage Solutions
Montage Solutions was created to offer clients a new model for addressing their
temporary technical staffing needs, and consultants an open and more inclusive way to
work with agencies. The cornerstone to our approach is an open and fixed pricing model
designed to remove a common stumbling block to a smooth process, and to allow each of
our clients to feel comfortable that our rates are consistent and fair. We've taken this
dramatic departure from the standard approach to our business for one reason - to offer
you a better service. Contact us today to find out more about our services in Software
Development, Hardware Development and Information Technology.

Teradyne SST
Teradyne Software and Systems Test (SST) is the leading supplier of solutions
for automating the system definition and test generation process for software
systems. Major telecom suppliers currently use SST’s products across a wide
range of telecom systems to achieve 80-90% improvement in test development
time and productivity.

Unlike manual script generation or capture/replay tools which require test
engineers to spend days or weeks interactively generating software tests, SST
products generate tests in minutes using a graphical description of the software’s
behavior. This description is developed from a functional software description.
It can easily be updated or expanded as specifications/requirements evolve, and
new tests can be generated in minutes.

Teradyne SST offers two product lines. TestMaster is a general-purpose solution
that generates tests for virtually any application running under any test execution
environment or combination of test execution environments. Hammer CallMaster
is a new optimized test generation solution for computer telephony applications
that are tested using the Hammer Integrated Telecommunications (IT) Test
system.

The new TestMaster Version 1.9 release extends its industry leading test
generation capability to include the first integrated solution for automating the QA
process from requirements definition through testing, including test
documentation, test program generation and requirements tracking. TestMaster
is well proven across a wide variety of software systems, driving a variety of
commercial and custom execution environments.

The NEW Hammer CallMaster is the first product to automatically generate
computer telephony tests from a call flow diagram. Instead of analyzing dozens
of pages of call flow diagrams to determine the best test strategy, test developers
simply enter the call flow diagram in Hammer CallMaster by clicking and placing
call flow icons from a palette of standard and/or custom icons. A test generation
algorithm then finds an optimal set of test paths that cover all data and all call
flow icons at lease once, outputting the result in Hammer Visual Basic (HVB)
code. New tests for feature changes or additions are created in seconds by
editing the call flow diagram and re-running the test generation algorithm.

Teradyne SST is a division of Teradyne, a billion-dollar corporation and the
world’s largest supplier of automated testing solutions.

Testing is the
Bottleneck
Software development
generally represents the
largest portion of telecom
projects, and verification of
the software has become
the bottleneck in the
delivery of most telecom
systems. That’s because
software testing for most
telecom companies is still
largely a manual process
that is very dependent on
individual skills and yields
highly variable results.
The Toughest Job in
Testing is
Generating the Tests
Telecom software testing
can be thought of in two
major parts:
1) creating the tests
2) executing the tests
The industry has made
significant progress in
recent years in
automating the execution

of tests with such tools as
GUI recorders and
telephony test systems.
However, the toughest job
in software testing is
creating and maintaining
comprehensive tests.
That’s why companies
who adopt a systematic
automated approach to
test generation will have a
significant competitive
advantage. That’s where
Teradyne SST comes in.
TestMaster
TestMaster provides an
integrated solution for
automating the QA process
from requirements
definition through testing,
including test
documentation, test
program generation and
requirements tracking.
TestMaster is well proven

Teradyne Software and Systems Test (SST) is the leading
supplier of solutions for automating the system definition
and test generation process for software systems. Major
telecom suppliers currently use Teradyne SST’s products
across a wide range of telecom systems to achieve 80-90%
improvement in test development time and productivity.

Hammer CallMaster automatically
generates Hammer IT test scripts
from a call flow diagram

TestMaster automates the QA process from
requirements definition through test

TestMaster

• Powerful
graphical
editor quickly
captures
software
requirements

• Controllable test
coverage
optimizes
testing resources

• Flexible output
formats adapt
to any test
execution
environment

• Automated
requirements
tracking

Hammer
CallMaster

• Develop tests
graphically
with call flow
objects instead
of scripts

• Automatically
generate that
exercise all
call flow
objects and
data

• Modify tests
for feature
changes or
additions in
seconds

TERADYNE SST
Mastering Software Quality

across a wide variety of
software systems, driving a
variety of commercial and
custom execution
environments.
Hammer CallMaster
Hammer CallMaster
automatically generates
computer telephony tests
for the Hammer IT Test
System from a call flow
diagram. Test developers
simply enter the call flow
diagram in Hammer
CallMaster by clicking and
placing call flow icons from
a palette of standard
and/or custom icons. A
test generation algorithm
then finds an optimal set of
test paths that cover all
data and all call flow icons
at lease once, outputting
the result in Hammer
Visual Basic (HVB) code.

TESTMASTERS, INC.
Test Management Tools & Consulting

TESTMASTERS, INC. specializes in functional test management. Armed with
extensive experience in software systems testing, TESTMASTERS’ consultants
assist in creating efficient and cost effective structured test environments.
TESTMASTERS' consulting services and product suite, Test Management
System™, bolsters our clients’ risk mitigation efforts supplementing, current
practices or introducing new structured methodologies that enable the
implementation of repeatable testing processes. We work closely with both user
and technical staff to formulate an integrated team focused on timely completion
of an organizations’ test objectives.

TESTMASTERS' offers structured test methodologies based on risk assessment,
test planning, generic test data development, strong test execution and tracking
control methods, and the philosophy of establishing test strategies that build equity
in every test effort. TESTMASTERS' test methodologies can be applied to reduce
on-going testing costs and improve the overall quality of all development projects.

TESTMASTERS' products and services assist clients in overcoming current testing
obstacles and establishing a foundation that will produce cost effective returns well
throughout the next millennium.

TESTMASTERS’ SERVICES:

Ø Test Management & Execution
Ø Test Strategy Development & Planning
Ø Test Data Development
Ø Integration of Automated Tools
Ø Training Programs
Ø Year 2000 Testing

TEST TOOLS:

 TEST MANAGEMENT SYSTEM™

Ø Test Control System, TCS™
Ø Problem Reporting System, PRS™

TESTMASTERS, INC.
4055 Oceanside Blvd.-Suite M, Oceanside, CA 92056

(760) 724-2720 or (800) 499-3811
(760) 630-8139 FAX

testmasters@testtools.com
http://www.testtools.com

Test Management Tools & Consulting

 Test Management
 Test Strategy Design
 Test Planning
 Test Execution
 Year 2000 Testing

TESTMASTERS, INC.
4055 Oceanside Blvd., Suite M, Oceanside, CA 92056

Phone (760) 724-2720 or (800) 499-3811 Fax (760) 630-8139
testmasters@testtools.com
http://www.testtools.com

 Test Date Development
 Integration of

 Automated Tools
 Training Programs
 Test Management Tools

1

To request a copy of the viewgraphs for this presentation,
please contact:

Dr. Edward MillerDr. Edward Miller
miller@soft.com

Software Research, Inc.
901 Minnesota St.

San Francisco, CA 94107
(415)957-1441

(800)942-SOFT

WebSite Validation TechnologyWebSiteWebSite Validation Technology Validation Technology

	qw99.2a2.paper.pdf
	Purpose
	Definitions
	References
	Introduction
	Fault Density and Problem Reports
	Measuring Fault Density for a Large Commercial Software Product
	Counting the total number of faults
	Determining the size of the product

	Proposed Capabilities for New Tools for Determining Fault Density

	qw99.8b2.paper.pdf
	Body Text - Increasing productivity through small integrated development/QA teams
	Body Text - Mark Johnson, OrCAD
	Body Text - mark.johnson@orcad.com
	Body Text - A Quote:
	Body Text - In Peopleware, DeMarco and Lister reported an 11 to 1 difference between best and wor...
	Body Text -
	Body Text - An Observation:
	Body Text - The most enjoyable, motivating, and productive work experiences I have ever had have ...
	Body Text -
	Body Text - The Quest:
	Body Text - How do we create one of the 10x productivity organizations? The title of this session...
	Body Text -
	Body Text - What are your experiences?
	Body Text - This is an interactive session where we want to hear what you have experienced and le...
	Body Text -
	Body Text - 1. Have you ever been part of a team that you considered to be at the 10x-productivit...
	Body Text - 2. What factors do you believe allowed the team to operate at a this productivity level?
	Body Text - a) Were there special factors about the skills or mix of people?
	Body Text - b) Were there special factors about the way the team was organized, the team’s goals ...
	Body Text - c) Were there other special factors about the team?
	Body Text - 3. Were there environmental factors in the organization that were critical to the tea...
	Body Text - a) Were there special factors about the structure between teams, and communication in...
	Body Text - b) Were there special factors in the organization’s ‘systems’ that encouraged 10x pro...
	Body Text - c) Were there other special factors about the organization?
	Body Text - 4. Do you believe that creating 10x productivity teams is a repeatable process that i...
	Body Text - 5. Do you feel there is a relationship between high productivity and work being ‘fun?’

	View ad:
	Deibler: This viewgraphs is the sole peoperty of Mr. Bill Deibler of SSQC. Do not copy or
reproduce without written permission from Software Research Institute and Mr.
Deibler. Any person copying or reproducing this material without permission is in
violation of existing copyright laws.
	back:

